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Introduction

The Painlevé equations PI–PVI are six classical
second-order ordinary differential equations that
appear widely in modern physical applications.
Their conventional forms (governing y(x) with
derivatives y0= dy=dx, y00= d2y=dx2) are:
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where �, �, �, � are constants. They were identified
and studied by Painlevé and his school in their
search for ordinary differential equations (in the
class y00= R(x, y, y0), where R is rational in y0, y and
analytic in x) that define new transcendental func-
tions. Painlevé focussed his search on equations that
possess what is now known as the Painlevé property:
that all solutions are single-valued around all

movable singularities (a singularity is ‘‘movable’’ if
its location changes with initial conditions).

For the Painlevé equations, all movable singula-
rities are poles. For PI and PII, all solutions are
meromorphic functions. However, the solutions of
each of the remaining equations have other singula-
rities called ‘‘fixed’’ singularities, with locations that
are determined by the singularities of the coefficient
functions of the equation. PIII–PVI have a fixed
singularity at x =1. PIII and PV have additional
fixed singularities at x = 0, and PVI has them at x = 0
and 1. Although each solution of PIII–PVI is single-
valued around a movable singularity, it may be
multivalued around a fixed singularity.

Painlevé’s school considered canonical classes of
ordinary differential equations equivalent under linear
fractional transformations of y and x. Of the fifty
canonical classes of equations they found, all except
six were found to be solvable in terms of already
known functions. These six lead to the Painlevé
equations PI–PVI as their canonical representatives.

A resurgence of interest in the Painlevé equations
came about from the observation (due to Ablowitz
and Segur) that they arise as similarity reductions
of well-known integrable partial differential equa-
tions (PDEs), or soliton equations, such as the
Korteweg–de Vries equation, the sine-Gordon equa-
tion, and the self-dual Yang–Mills equations.

As this connection suggests, the Painlevé equations
possess many of the special properties that are
commonly associated with soliton equations. They
have associated linear problems (i.e., Lax pairs) for
which they act as compatibility conditions. There
exist special transformations (called Bäcklund trans-
formations) mapping a solution of one equation to a
solution of another Painlevé equation (or the same
equation with changed parameters). There exist
Hamiltonian forms that are related to existence of
tau-functions, that are analytic everywhere except at
the fixed singularities. They also possess multilinear
forms (or Hirota forms) that are satisfied by tau-
functions. In the following subsections, for concise-
ness, we give examples of these properties for the first
or second Painlevé equations and briefly indicate
differences, in any, with other Painlevé equations.



Complex Analytic Structure of Solutions

Consider the two-(complex-)parameter manifold of
solutions of a Painlevé equation. Each solution is
globally determined by two initial values given at a
regular point of the solution. However, the solution
can also be determined by two pieces of data given
at a movable pole. The location x0 of such a pole
provides one of the two free parameters. The other
free parameter occurs as a coefficient in the Laurent
expansion of the solution in a domain punctured at
x0. For PI, the Laurent expansion of a solution at a
movable singularity x0 is

yðxÞ ¼ 1

ðx� x0Þ2
þ x0

10
ðx� x0Þ2

þ 1

6
ðx� x0Þ3 þ cIðx� x0Þ4 þ � � � ½1�

where cI is arbitrary. This second free parameter is
normally called a ‘‘resonance parameter.’’ For PII,
the Laurent expansion of a solution at a movable
singularity x0 is

yðxÞ ¼ �1

ðx� x0Þ
þ �x0

6
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þ �1� �
4

ðx� x0Þ2 þ cIIðx� x0Þ3 þ � � � ½2�

where cII is arbitrary. The symmetric solution of PI

that has a pole at the origin and corresponding
resonance parameter cI = 0 has a distribution of poles
in the complex x-plane shown in Figure 1. (This figure
was obtained by searching for zeros of truncated
Taylor expansions of the tau-function �I described in
the section ‘‘Bä cklund and Miura transformations.’’
One hundred and sixty numerical zeros are shown.
The two pairs of closely spaced zeros near the

imaginary axis (between 8 < �=x < 12) may be
numerical artifacts. We used the command NSolve to
32 digits in MATHEMATICA4.)

The rays of symmetry evident in Figure 1 reflect
discrete symmetries of PI. The solutions of PI and PII

are invariant under the respective discrete symmetries,

PI : ynðxÞ¼ e2�in=5yðe4�in=5xÞ; n¼�1;�2

PII : ynðxÞ¼ e�in=3yðe2�in=3xÞ; � 7! e��in�

n¼�1;�2; 3

The rays of angle 2�n=5 for PI and �n=3 for PII

related to these symmetries play special roles in the
asymptotic behaviors of the corresponding solutions
for jxj ! 1.

Linear Problems

The Painlevé equations are regarded as completely
integrable because they can be solved through an
associated system of linear equations (Jimbo and
Miwa 1981).
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The compatibility condition, that is,

Lx �M� þ L;M½ � ¼ 0 ½4�

is equivalent to the corresponding Painlevé equation.
The matrices L, M for PI and PII are listed below:
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Figure 1 Poles of a symmetric solution of PI in the complex

x-plane, with a pole at the origin and zero corresponding

resonance parameter, i.e., x0 = 0, cI = 0.
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quation. For example, for PII, an alternative choice
f L and M is (Flaschka and Newell 1980): !  !

PII : LII0 ðx; �Þ¼

�4 i 0

0 4 i
�2 þ

0 4y

4y 0
�

þ
�iðxþ 2y2Þ 2 iy0

�2 iy0 iðxþ 2y2Þ

 !

þ �
�

0 1

1 0

 !

MII0 ðx; �Þ¼
�i� y

y i�

 !

The matrix L for each Painlevé equation is
ingular at a finite number of points ai(x) in the
-plane. For the above choices of L for PI and PII,
he point �=1 is clearly a singularity. For LII0 , the
rigin �= 0 is also a singularity. The analytic
ontinuation of a fundamental matrix of solutions

around ai gives a new solution e� which must be
elated to the original solution: e� = � A. A is called
he monodromy matrix and its trace and determi-
ant are called the monodromy data. In general, the
ata will change with x. However, eqn [4] ensures
hat the monodromy data remain constant in x. For
his reason, the system [3] is called an isomonodr-
my problem.
Bäcklund and Miura Transformations

Bäcklund transformations are those that map a
solution of a Painlevé equation with one choice of
parameter to a solution of the same equation with
different parameters. For PI no such transformation
is known. For PII, there is one Bäcklund transforma-
tion. Let y = y(x;�) denote a solution of PII with
parameter �. Then ~y = y(x;�� 1), which solves PII

with parameter �� 1, is given by

~y :¼�yþ
�� 1

2

y0 � y2 � x=2
if � 6¼ 1=2 ½5�

If �= 1=2, then y0= y2 þ x=2 and ~y =�y (see the
next section for this case). Combined with the
symmetry y 7!�y,�=��, we can write down
another version of this Bäcklund transformation
which maps y to ŷ = y(x;�þ 1):

ŷ :¼�y�
�þ 1

2

y0 þ y2 þ x=2
; if � 6¼ � 1

2
½6�

If we parametrize � by cþ n for arbitrary c, and
denote the solution for corresponding parameter as
yn, we can write a difference equation relating yn�1

and ynþ1 (by eliminating y0 from the two transfor-
mations ~y, ŷ) as

cþ 1
2þ n

ynþ1 þ yn
þ

c� 1
2þ n

yn�1 þ yn
þ 2y2

n þ x ¼ 0

This is an example of a discrete Painlevé equation (called
‘‘alternate’’ dPI in the literature). In such a discrete
Painlevé equation, x is fixed while n varies. Another
lesser known Bäcklund transformation for PII is

y0 � y2 � x

2
� � v2 ¼ 0 ½7�

v0 þ y v ¼ 0 ½8�

between PII with �= 1=2 and

v00 þ � v3 þ x

2
v ¼ 0

which can be scaled (take v(x) = y(
ffiffiffi
2
p

x)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
pp

) to
the usual form of PII with �= 0.

Miura transformations are those that map a solution
of a Painlevé equation to another equation in the 50
canonical types classified by Painlevé’s school. If y is a
solution of PII with parameter � 6¼ 1=2, then

ð2�� 1Þw ¼ 2ðy0 � y2 � x=2Þ; y ¼ 1�w0

2w

maps between PII and

w00 ¼ ðw
0Þ2

2 w
� ð2�� 1Þw2 � xw� 1

2 w

which represents the 34th canonical class in the
Painlevé classification listed in Ince (1927).

The Painlevé equations do not possess contin-
uous symmetries other than Bäcklund and Miura
transformations described here. However, they do
possess discrete symmetries described in the section
‘‘Com plex analytic structure of solutions .’’
Classical Special Solutions

Painlevé showed that there can be no explicit first
integral that is rational in y and y0 for his
eponymous equations. It is known that this state-
ment can be extended to say that no such algebraic
first integral exists. But the question whether the
Painlevé equations define new transcendental func-
tions remained open until recently.

Form a class of functions consisting of those
satisfying linear second-order differential equations,
such as the Airy, Bessel, and hypergeometric functions,
as well as rational, algebraic, and exponential func-
tions. Extend this class to include arithmetic opera-
tions, compositions under such functions, and



solutions of linear equations with these earlier func-
tions as coefficients. Members of this class are called
classical functions. For general values of the constants
�,�, �, �, it is now known (Umemura 1990, Umemura
and Watanabe 1997) that the six Painlevé equations
cannot be solved in terms of classical functions.
However, there are special values of the constant
parameters �, �, �, � for which classical functions do
solve the Painlevé equations. Each Painlevé equation,
except PI, has special solutions given by classical
functions when the parameters in the Painlevé equa-
tion take on special values. For PII, with �= 1=2 we
have the special integral

I1=2 � y0 � y2 � x

2
¼ 0 ½9�

which, modulo PII with �= 1=2, satisfies the relation

d

dx
þ 2y

� �
I1=2 ¼ 0

The Riccati eqn [9] can be linearized via y =� 0= 
to yield

 00 þ x

2
 ¼ 0

which gives

 ðxÞ ¼ a Aið�2�1=3xÞ þ b Bið�2�1=3 xÞ

for arbitrary constants a and b, that is, the well-
known Airy function solutions of PII. Iterations of
the Bäcklund transformations ~y and ŷ, [5]–[6] give
further classical solutions in terms of Airy functions
for the case when �= (2N þ 1)=2 for integer N.

Similarly, there is a sequence of rational solutions of
the family of equations PII with �= N, for integer N, if
we iterate the Bäcklund transformations ~y, ŷ by
starting with the trivial solution y � 0 for the case
�= 0. For example, for �= 1, we have ŷ =�1=x. The
transformations [7]–[8] give a mapping that shows
that this family of rational solutions and the above
family of Airy-type solutions of PII both exist for the
cases when � is half-integer and when it is integer.

Hamiltonians and Tau-Functions

Each Painlevé equation has a Hamiltonian form. For
PI and PII, these can be found by integrating each
equation after multiplying by y0. These give

PI :
y02

2
¼ 2y3 þ xy�

Z x

yð	Þd	 þ EI

PII :
y02

2
¼ y4

2
þ x

2
y2 � 1

2

Z x

yð	Þ2d	 þ � yþ EII

where EII and EII are constants. We choose
canonical variables q1(t) = y(x), p1(t) = y0(x), where
t = x. Furthermore, for PI, we take

q2ðtÞ ¼ x; p2ðtÞ ¼
Z x

yð	Þd	

and the Hamiltonian

HI :¼ p2
1

2
� 2q1

3 � q2q1 þ p2

so that the Hamiltonian equations of motion
_qi = @H=@pi and _pi =�@H=@qi are satisfied. For
PII, we take

q2ðtÞ ¼ x=2; p2ðtÞ ¼
Z x

yð	Þ2d	

and the Hamiltonian

HII :¼ p1
2

2
� q1

4

2
� q2q1

2 þ 1

2
p2 � �q1

We note that these Hamiltonians govern systems
with two degrees of freedom and each is conserved.
However, no explicit second conserved quantity is
known (see comments on first integrals in the last
section).

Painlevé’s viewpoint of the transcendental solutions
of the Painlevé equations as natural generalizations of
elliptic functions also led him to search for entire
functions that play the role of theta functions in
this new setting. He found that analogous functions
could be defined which have only zeros at the
locations of the movable singularities of the Painlevé
transcendents. These functions are now commonly
known as tau-functions (also denoted �-functions).
For PI and PII, the corresponding tau-functions are
entire functions (i.e., they are analytic everywhere in
the complex x-plane). However, for the remaining
Painlevé equations, they are singular at the fixed
singularities of the respective equation.

For PI, all movable singularities of PI are double
poles of strength unity (see eqn [1]). Therefore, the
function given by

PI : �IðxÞ ¼ exp �
Z xZ s

yðtÞdtds

� �
has Taylor expansion with leading term (x� x0).
In other words, �I(x) is analytic at all the poles
of the corresponding solution of PI. Since y(x) has
no other singularity (other than at infinity), �I(x)
must be analytic everywhere in the complex x-plane.
Differentiation and substitution of PI shows that
�I(x) satisfies the fourth-order equation

PI : �
ð4Þ
I ðxÞ�IðxÞ ¼ 4� 0IðxÞ�

ð3Þ
I ðxÞ�3� 00I ðxÞ

2�x� IðxÞ2
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Note that this equation is bilinear in � and its
derivatives. Such bilinear, or in general, multilinear,
equations are called Hirota-type forms of the Painlevé
equations. The special nature of such equations is
most simply expressed in terms of the Hirota D(�Dx)
operator, an antisymmetric differential operator defined
here on products of functions of x:

Dnf � g ¼ ð@	 � @
Þnf ð	Þgð
Þj	¼
¼x

Notice that

D2� � � ¼ �� 00 � � 02;

D4� � � ¼ �� ð4Þ � 4� 0� ð3Þ þ 3� 002

Hence the equation satisfied by �I(x) can be
rewritten more succinctly as

ðD4 þ xÞ�I � �I ¼ 0

For PII, a generic solution y(x) has movable simple
poles of residue �1 (see eqn [2]). Painlevé pointed
out that if we square the function y(x), multiply
by �1 and integrate twice, we obtain a function
with Taylor expansion with leading term (x� x0).
However, the square is not invertible and to
construct an invertible mapping to entire functions,
we need two �-functions. We denote these by �(x)
and �(x):

PII: �IIðxÞ¼ exp �
Z xZ s

yðtÞ2dtds

� �
�IIðxÞ¼ yðxÞ�IIðxÞ

The equations satisfied by these tau-functions are

PII: � 00ðxÞ�ðxÞ¼ � 0ðxÞ2 � �ðxÞ2

�00ðxÞ�ðxÞ2¼ 2�ðxÞ� 0ðxÞ�0ðxÞ � � 0ðxÞ2�ðxÞ

þ �ðxÞ3 þ x�ðxÞ2�ðxÞ þ ��ðxÞ3

Hierarchies

Each Painlevé equation is associated with at least
one infinite sequence of ordinary differential
equations (ODEs) indexed by order. These
sequences are called hierarchies and arise from
symmetry reductions of PDE hierarchies that are
associated with soliton equations.

Define the operator Ln{v(z)} (the Lenard recursion
operator) recursively by

d

dz
Lnþ1fvg¼

d3

dz3
þ 4v

d

dz
þ 2v0

 !
Lnfvg

L1fvg¼ v

where primes denote z-derivatives. Note that

L2fvg ¼ v00 þ 3v2

L3fvg ¼ vð4Þ þ 10vv00 þ 5v02 þ 10v3

This operator is intimately related to the Korteweg–de
Vries equation. (It was first discovered as a method of
generating the infinite number conservation laws
associated with this soliton equation.)

The scaling v(z) =�y(x), with �= (�2)1=3,
= (�2)�1=3, shows that the case n = 2 of the
sequence of ODEs defined recursively by

Lnfvg ¼ z

is PI. Hence this is called the first Painlevé hierarchy.
A second Painlevé hierarchy is given recursively by

d

dx
þ 2y

� �
Lnfy0 � y2g ¼ xyþ �n; n � 1

where �n are constants.
Each Painlevé equation may arise as a reduction

of more than one PDE. Since different soliton
equations have different hierarchies, this means
that more than one hierarchy may be associated
with each Painlevé equation.

See also: Bäcklund Transformations; Integrable Discrete
Systems; Integrable Systems: Overview; Isomonodromic
Deformations; Ordinary Special Functions;
Riemann–Hilbert Methods in Integrable Systems;
Riemann–Hilbert Problem; Solitons and Kac–Moody Lie
Algebras; Two-Dimensional Ising Model; WDVV
Equations and Frobenius Manifolds.
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Introduction

Many physical laws are mathematically expressed
in terms of partial differential equations (PDEs);
this is, for instance, the case in the realm of
classical mechanics and physics of the laws of
conservation of angular momentum, mass, and
energy.

The object of this short article is to provide an
overview and make a few comments on the set of
PDEs appearing in classical mechanics, which is
tremendously rich and diverse. From the mathema-
tical point of view the PDEs appearing in mechanics
range from well-understood PDEs to equations
which are still at the frontier of sciences as far as
their mathematical theory is concerned. The math-
ematical theory of PDEs deals primarily with their
‘‘well-posedness’’ in the sense of Hadamard. A well-
posed PDE problem is a problem for which
existence and uniqueness of solutions in suitable
function spaces and continuous dependence on the
data have been proved.

For simplicity, let us restrict ourselves to space
dimension 2. Several interesting and important PDEs
are of the form

a
@2u

@x2
þ b

@2u

@x@y
þ c

@2u

@y2
¼ 0 ½1�

Here a, b, c may depend on x and y or they may be
constants, and then eqn [1] is linear: they may also
depend on u, @u=@x, and @u=@y, in which case the
equation is nonlinear.

Such an equation is

� elliptic when (where) b2� 4ac < 0,
� hyperbolic when (where) b2� 4ac > 0,
� parabolic when (where) b2� 4ac = 0.

Among the simplest linear equations, we have the
elliptic equation

�u ¼ 0 ½2�

which governs the following phenomena: equation
for the potential or stream function of plane,
incompressible irrotational fluids; equation for
some potential in linear elasticity, or the equation
for the temperature in suitable conditions (sta-
tionary case; see below for the time-dependent
case).
Another eqn of the form [1] is the hyperbolic
equation

@2u

@t2
� @

2u

@x2
¼ 0 ½3�

which governs, for example, linear acoustics in one
dimension (sound pipes) or the propagation of an
elastic wave along an elastic string.

A third equation of type [1] is the linear parabolic
equation

@u

@t
� @

2u

@x2
¼ 0 ½4�

also called the heat equation, which governs, under
appropriate circumstances, the temperature (u(x, t) =
temperature at x at time t).

All these equations are well understood from the
mathematical viewpoint and many well-posedness
results are available. A fundamental difference
between eqns [2], [3], and [4] is that for [2] and
[4] the solution is as smooth as allowed by the data
(forcing terms, boundary data not mentioned here),
whereas the solutions of [3] usually present some
discontinuities corresponding to the propagation of
a wave or wave front.

A considerable jump of complexity occurs if we
consider the equation of transonic flows in which

a ¼ 1� 1

v2

@u

@x

� �2
 !

b ¼ � 2

v2

@u

@x

@u

@y

c ¼ 1� 1

v2

@u

@y

� �2

½5�

where v = v(x, y) is the local speed of sound. This is
a mixed second-order equation: it is elliptic in the
subsonic region where M < 1, M the Mach number
being the ratio of the velocity

grad uj j ¼ @u

@x

� �2

þ @u

@y

� �2
 !1=2

to the local velocity of sound v = v(x, y); eqn [1]
(with [5]) is hyperbolic in the supersonic region,
where M > 1 and parabolic on the sonic line
M = 1. Essentially no result of well-posedness is
available for this problem, and it is not even totally
clear what are the boundary conditions that one
should associate to [1]–[5] to obtain a well-posed
problem.
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Intermediate mathematical situations are encoun-
tered with the Navier–Stokes and Euler equations,
which govern the motion of fluids in the viscous
and inviscid cases, respectively. A number of
mathematical results are available for these equa-
tions (see Compressible Flows: Mathematical The-
ory, Incompressible Euler Equations: Mathematical
Theory, Viscous Incompressible Fluids: Mathema-
tical Theory, Inviscid Flows); but other questions
are still open, including the famous Clay prize
problem, which is: to show that the solutions of the
(viscous, incompressible) Navier–Stokes equations,
in space dimension three, remain smooth for all time,
or to exhibit an example of appearance of singularity.
A prize of US$ 1 million will be awarded by the Clay
Foundation for the solution of this problem.

For compressible fluids, the Navier–Stokes equa-
tions expressing conservation of angular momentum
and mass read

�
@u

@t
þ ðu � rÞu

� �

� ��uþrp� ð�þ �Þrðr � uÞ ¼ 0 ½6�

@�

@t
þrð�uÞ ¼ 0 ½7�

Here u = u(x, t) is the velocity at x at time t,
p = p(x, t) the pressure, � the density; �,� are
viscosity coefficients, � > 0, 3�þ 2� � 0. When
�=�= 0, we obtain the Euler equation (see Com-
pressible Flows: Mathematical Theory). If the fluid
is incompressible and homogeneous, then the den-
sity is constant, �= �0 and

r � u ¼ 0 ½8�

so that eqn [8] replaces eqn [7] and eqn [6]
simplifies accordingly.

Finally, let us mention still different nonlinear
PDEs corresponding to nonlinear wave phenomena,
namely the Korteweg–de Vries (see Korteweg–de
Vries Equation and Other Modulation Equations)
@u

@t
þ u

@u

@x
þ @

3u

@x3
¼ 0 ½9�

and the nonlinear Schrödinger equation (see Non-
linear Schrödinger Equations)

@u

@z
þ i�

@2A

@t2
� i �jAj2Aþ �A ¼ 0 ½10�

�, � > 0. These equations are very different from
eqns [1]–[8] and are reasonably well understood
from the mathematical point of view; they produce
and describe the amazing physical wave phenom-
enon known as the soliton (see Solitons and Kac–
Moody Lie Algebras).

This article is based on the Appendix of the book
by Miranville and Temam quoted below, with the
authorization of Cambridge University Press.

See also: Compressible Flows: Mathematical Theory;
Elliptic Differential Equations: Linear Theory; Evolution
Equations: Linear and Nonlinear; Fluid Mechanics:
Numerical Methods; Fractal Dimensions in Dynamics;
Image Processing: Mathematics; Incompressible Euler
Equations: Mathematical Theory; Integrable Systems and
the Inverse Scattering Method; Interfaces and
Multicomponent Fluids; Inviscid Flows; Korteweg–de
Vries Equation and Other Modulation Equations; Leray–
Schauder Theory and Mapping Degree;
Magnetohydrodynamics; Newtonian Fluids and
Thermohydraulics; Nonlinear Schrödinger Equations;
Solitons and Kac–Moody Lie Algebras; Stochastic
Hydrodynamics; Symmetric Hyperbolic Systems and
Shock Waves; Viscous Incompressible Fluids:
Mathematical Theory; Non-Newtonian Fluids.
Further Reading

Brezis H and Browder F (1998) Partial differential equations in
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Evans LC (1998) Partial Differential Equations. Providence, RI:

American Mathematical Society.

Miranville A and Temam R (2001) Mathematical Modelling in
Continuum Mechanics. Cambridge: Cambridge University
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Path Integral Methods see Functional Integration in Quantum Physics; Feynman Path Integrals
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Introduction

Let us recall that there are basically two algebraic
infinite-dimensional distribution theories:

� The first one is white-noise analysis (Hida et al.
1993, Berezansky and Kondratiev 1995), and uses
Fock spaces and the algebra of creation and
annihilation operators.
� The second one is the noncommutative differen-

tial geometry of Connes (1988) and uses the entire
cyclic complex.

If we disregard the differential operations, these
two distribution theories are very similar. Let us
recall quickly their background on geometrical
examples. Let V be a compact Riemannian manifold
and E a Hermitian bundle on it. We consider an
elliptic Laplacian �E acting on sections ! of this
bundle. We consider the Sobolev space Hk, k > 0, of
sections ! of E such that:Z

V

�k
Eþ 1

� �
!; !

D E
dmV <1 ½1�

where dmV is the Riemannian measure on V and h , i
the Hermitian structure on V. Hkþ1 is included in
Hk and the intersection of all Hk is nothing other
than the space of smooth sections of the bundle E,
by the Sobolev embedding theorem.

Let us quickly recall Connes’ distribution theory:
let �(n) be a sequence of real strictly positive
numbers. Let

�¼
X

�n ½2�

where �n belongs to H�n
k with the Hilbert structure

naturally inherited from the Hilbert structure of Hk.
We put, for C > 0,

k�k1;C;k¼
X

Cn�ðnÞk�nkH�n
k

½3�

The set of � such that k�k1, C, k <1 is a Banach
space called CoC, k. The space of Connes functionals
Co1� is the intersection of these Banach spaces for
C > 0 and k > 0 endowed with its natural topology.
Its topological dual Co�1 is the space of distribu-
tions in Connes’ sense.

Remark We do not give the original version of the
space of Connes where tensor products of Banach
algebras appear but we use here the presentation of
Jones and Léandre (1991).

Let us now quickly recall the theory of distribu-
tions in the white-noise sense. The main tools are
Fock spaces. We consider interacting Fock spaces
(Accardi and Boźejko (1998)) constituted of �
written as in [2] such that

k�k2
2;C;k ¼

X
Cn�ðnÞ2k�nk2

H�n
k
<1 ½4�

The space of white-noise functionals WN1� is the
intersection of these interacting Fock spaces �k, C for
C > 0, k > 0. Its topological dual WN�1 is called
the space of white-noise distributions.

Traditionally, in white-noise analysis, one con-
siders in [2] the case where �n belongs to the
symmetric tensor product of Hk endowed with its
natural Hilbert structure. We get a symmetric Fock
space �s

C, k and another space of white-noise
distributions WNs,�1. The interest in considering
symmetric Fock spaces, instead of interacting Fock
spaces, arises from the characterization theorem of
Potthoff–Streit. For the sake of simplicity, let us
consider the case where �(n) = 1. If ! if a smooth
section of E, we can consider its exponential
exp[!] =

P
n!�1!�n. If we consider an element � of

WNs,�1, h�, exp[!]i satisfies two natural
conditions:

1. jh�, exp[!]ij � C exp[Ck!k2
Hk

] for some k> 0.

2. z!h�, exp[!1þ z!2]i is entire.

The Potthoff–Streit theorem states the opposite:
a functional which sends a smooth section of V
into a Hilbert space and which satisfies the two
previous requirements defines an element of
WNs,�1 with values in this Hilbert space. More-
over, if the functional depends holomorphically on
a complex parameter, then the distribution
depends holomorphically on this complex para-
meter as well.

The Potthoff–Streit theorem allows us to define
flat Feynman path integrals as distributions. It is the
opposite point of view, from the traditional point of
view of physicists, where generally path integrals are
defined by convergence of the finite-dimensional
lattice approximations. Hida–Streit have proposed
replacing the approach of physicists by defining
path integrals as infinite-dimensional distributions,
and by using Wiener chaos. Getzler was the first
who thought of replacing Wiener chaos by other
functionals on path spaces, that is, Chen iterated
integrals. In this article, we review the recent
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developments of path integrals in this framework.
We will mention the following topics:

� infinite-dimensional volume element
� Feynman path integral on a manifold
� Bismut–Chern character and path integrals
� fermionic Brownian motion

The reader who is interested in various rigorous
approaches to path integrals should consult the
review of Albeverio (1996).
Infinite-Dimensional Volume Element

Let us recall that the Lebesgue measure does not
exist generally as a measure in infinite dimensions.
For instance, the Haar measure on a topological
group exists if and only if the topological group is
locally compact. Our purpose in this section is to
define the Lebesgue measure as a distribution.

We consider the set C1(M; N) of smooth maps x(.)
from a compact Riemannian manifold M into a
compact Riemannian manifold N endowed with its
natural Fréchet topology. S is the generic point of M
and x the generic point of N. We would like to say
that the law of x(Si) for a finite set of n different
points Si under the formal Lebesgue measure dD(x(.))
on C1(M; N) is the product law of n dmN (This
means that the Lebesgue measure on C1(M; N) is a
cylindrical measure). Let us consider a smooth
function �n from (M	N)n into C. We introduce
the associated functional F(�n)(x(.)) on C1(M; N):

Fð�nÞðxð:ÞÞ

¼
Z

Mn

�nðS1; . . . ; Sn; xðS1Þ; . . . ; xðSnÞÞdmMn ½5�

If we use formally the Fubini formula, we getZ
C1ðM;NÞ

Fð�nÞðxð:ÞÞdDðxð:ÞÞ

¼
Z

Mn	Nn

FðS1; . . . ; Sn; x1; . . . ; xnÞdmMn	Nn ½6�

We will interpret this formal remark in the framework
of the distribution theories of the introduction. We
consider V = M	N and E the trivial complex line
bundle endowed with the trivial metric and �(n) = 1.
We can define the associated algebraic spaces Co�1
and WN�1 and we can extend to Co1� and WN1�
the map F of [5]. F sends elements of Co1� and
WN1� into the set of continuous bounded maps of
C1(M; N) where we can extend [6]. We obtain:

Theorem 1 �!
R

C1(M; N) F(�)(x(.))dD(x(.)) defines
an element of Co�1 or WN�1.
Feynman Path Integral on a Manifold

Let us introduce the flat Brownian motion s!B(s)
in Rd starting from 0. It has formally the Gaussian
law

Z�1 exp � 1

2

Z 1

0

d

ds
BðsÞ

����
����
2

ds

" #
dDðBð:ÞÞ

where dD(B(.)) is the formal Lebesgue measure on
finite-energy paths starting from 0 in Rd (the
partition function Z is infinite!). Let N be a compact
Riemannian manifold of dimension d endowed with
the Levi–Civita connection. The stochastic parallel
transport on semimartingales for the Levi-Civita
connection exists almost surely (Ikeda and Watanabe
1981). Let us introduce the Laplace–Beltrami opera-
tor �N on N and the Eells–Elworthy–Malliavin
equation starting from x (Ikeda and Watanabe 1981):

dxsðxÞ ¼ 	sðxÞdBðsÞ ½7�

where B(.) is a Brownian motion in Tx(M) starting
from 0 and s! 	s(x) is the stochastic parallel transport
associated to the solution. s! xs(x) is called the
Brownian motion on N. The heat semigroup asso-
ciated to �N satisfies exp[�t�N]f (x) = E[f (xt(x))] for
f continuous on N. Formally, there is a Jacobian which
appears in the transformation of the formal path
integral which governs B(.) into the formal path
integral which governs x.(x)

d�xð1Þ¼Z�1
x exp½�Iðx:ðxÞÞ=2�dDðx:ðxÞÞ ½8�

It was shown by B DeWitt, in a formal way, that the
action in [8] is not the energy of the path and that
there are some counter-terms in the action where the
scalar curvature K of N appears (see Andersson and
Driver (1999) and Sidorova et al. (2004) for rigorous
results). In order to describe Feynman path integrals,
we perform, as it is classical in physics, analytic
continuation on the semigroup and on the ‘‘measure’’
d�x(1) such that we get a distribution d�x(�) which
depends holomorphically on �, Re� � 0.

In order to return to the formalism of the
introduction, we consider V = N, E the trivial com-
plex line bundle and the symmetric Fock space and
�(n) = 1. To �n=n! belonging to H�sym n

k we associate
the functional on P(N), the smooth path space on N:

Fð�n=n!Þðxð:ÞÞ

¼
Z

�n

�nðxðs1Þ; . . . ;xðsnÞÞds1 � � � dsn ½9�

where �n is the n-dimensional simplex of [0,1]n

constituted of times 0< s1 < � � �< sn < 1 (Léandre
(2003)). We remark that F maps WNs,1� into the
set of bounded continuous functionals on P(N). We
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introduce an element h of L2(N). The map which to
!, a smooth function on N, associates exp[�(�Nþ
!)]h(Re�� 0) satisfies the requirements (1) and (2)
of the introduction and depends holomorphically on
�. This defines by the Potthoff–Streit theorem a
distribution �� which depends holomorphically on �,
Re�� 0 with values in L2(N). By uniqueness of
analytic continuation, we obtain:

Theorem 2 If Px(N) is the space of smooth paths
starting from x in N, we have

h��; �i ¼ x!
Z

PxðNÞ
Fð�Þhðxð1ÞÞd�xð��Þ

( )
½10�

Instead of taking functions, we can consider as
bundle E the space of complex 1-forms on N. We
then consider Chen (1973) iterated integrals:

Fð�nÞðxð:ÞÞ

¼
Z

�n

�nðxðs1Þ; . . . ;xðsnÞÞ;dxðs1Þ; . . . ;dxðsnÞh i ½11�

such that F maps WNs,1� into the set of measurable
maps on P(N). These maps are generally not
bounded. Namely,

Fðexp½!�Þ ¼ exp

Z 1

0

!ðxðsÞÞ; dxðsÞh i
� �

½12�

instead of exp[
R 1

0 !(x(s))ds] in the previous case. By
using the Cameron–Martin–Girsanov–Maruyama for-
mula and Kato perturbation theory, we get an analog
of Theorem 2 for Chen iterated integrals, but for
Re�< 0, because we have to deal with a perturbation
of �N by a drift when we want to check (1) and (2).
The interest of this formalism is that the parallel
transport belongs in some sense to the domain of the
distribution and that we get the flat Feynman path
integral from the curved one by using an analog of [7].
Bismut–Chern Character
and Path Integrals

Since we are concerned in this part with index theory,
we replace the free path space of N by the free smooth
loop space L(N). We consider the case where V = N is
a compact oriented Riemannian spin manifold and
E = E� 
 Eþ. E� is the bundle of complexified odd
forms and Eþ is the bundle of complexified even
forms. To �n = n!�1(!1 þ !1

1)� � � � � (!n þ !1
n), we

associate the even Chen (1973) iterated integral

Fð�nÞ ¼
Z

�n

!1ðdxðs1Þ; :Þ þ !1
1ds1

	 

^ � � �

^ !nðdxðsnÞ; :Þ þ !1
ndsn

	 

½13�
where s! x(s) is a smooth loop in N, !i is of odd
degree and !1

i is of even degree. Let us recall that
even forms on the free loop space commute. F(�n) is
built from even forms on the free loop space, which
commute. This explains why we have to consider
the symmetric Fock space. Therefore, if � belongs to
WNs,1�, then F(�) =

P
F2r(�), where F2r(�) is a

measurable form on L(N) of degree 2r (see Jones
and Léandre (1991) for an analogous statement in
the stochastic context).

Let us explain why the free loop space is
important in this context. Let d
x(1) be the law of
the Brownian bridge on N starting from x and
coming back at x at time 1: this is the law of the
Brownian motion x.(x) subject to return in time 1 at
its departure. Let pt(x, y) be the heat kernel
associated with xt(x): the law of xt(x) is namely
pt(x, y) dmN(y) (Ikeda and Watanabe 1981). We
consider the Bismut–Høegh–Krohn measure on the
continuous free loop space L0(N):

dP ¼ p1ðx; xÞdx� d
xð1Þ ½14�

This satisfies

tr½exp½�s1�N� f1� � � fn exp½�ð1� snÞ�N��

¼
Z

L0ðNÞ
f1ðxðs1ÞÞ � � � fnðxðsnÞÞdP ½15�

(We are interested in the trace of the heat semigroup
instead of the heat semigroup itself unlike in the
previous section.)

Since N is spin, we can consider the spin bundle
Sp = Spþ 
 Sp� on it, the Clifford bundle Cl on it with
its natural Z=2Z gradation (Gilkey 1995). Let us recall
that the Clifford algebra acts on the spinors. A form !
can be associated with an element !̃ of the Clifford
bundle (Gilkey 1995). We consider the Brownian loop
x(.) associated to the Bismut–Høegh–Krohn measure.
If s < t, we can define the stochastic parallel transport
~	s, t from x(t) to x(s) (we identify a loop to a path from
[0, 1] into N with the same end values). We remark
that with the notations of [13]Z

�n

~	0;s1
ð~!1ðdxðs1ÞÞþ ~!1ds1Þ~	s1;s2

. . .

	 ~	sn�1;sn
~!nðdxðsnÞÞ þ ~!1

ndsn

	 

~	sn;1 ¼ A ½16�

is a random almost surely defined even element of the
Clifford bundle over x(0). Acting on Sp(x(0)), it thus
preserves the gradation. We consider its supertrace
trsA = trSpþA� trSp�A. This becomes a random vari-
able on L0(N). We introduce the scalar curvature K of
the Levi–Civita connection on N, whose introduction
arises from the Lichnerowicz formula given the square
of the Dirac operator in terms of the horizontal
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Laplacian on the spin bundle (Gilkey 1995). We

consider the expression
R

L0(N) exp[�
R 1

0 K(x(s) ds=8]
trsA dP. This expression can be extended to WNs,1�
and therefore defines an element Wi of WNs,�1 called
by Getzler (Léandre 2002) the Witten current.

Bismut has introduced a Hermitian bundle � on M.
He deduces a bundle �1 on L(N): the fiber on a loop x(.)
is the space of smooth sections along the loop of �. We
can suppose that � is a sub-bundle given by a projector p
of a trivial bundle. We can suppose that the Hermitian
connection on � is the projection connection A = pdp
such that its curvature is R = pdp ^ pdp. Bismut (1985,
1987) has introduced the Bismut–Chern character:

Chð�1Þ¼ tr

�Z
�n

ðAdxðs1Þ � Rds1Þ ^ � � �

^ ðAdxðsnÞ � RdsnÞ
�

½17�

Ch(�1) is a collection of even forms equal to F(�(�)),
where �(�) belongs to WNs,1�. We obtain:

Theorem 3 Let us consider the index Ind(D�) of
the Dirac operator on N with auxiliary bundle �
(Hida et al. 1993). We have

Wi; �ð�Þh i ¼ Ind D� ½18�

The proof arises from the Lichnerowicz formula,
the matricial Feynman–Kac formula, and the decom-
position of the solution of a stochastic linear
equation into the sum of iterated integrals.

By using the Potthoff–Streit theorem, we can do the
analytic continuation of [18], as is suggested by the path-
integral interpretation of Atiyah (1985) or Bismut
(1985, 1987) of [18], motivated by the Duistermaat–
Heckman or Berline–Vergne localization formulas on
the free loop space. For this, these authors consider the
Atiyah–Witten even form on the free loop space given by
I(x(.)) =

R
S1 j(d=ds)x(s)j2dsþ dX1, where dX1 is the

exterior derivative of the Killing form X1 which to a
vector X(.) on the loop associates hX1, X(.)i=R

S1hX(s), dx(s)i. We should obtain the heuristic formula

Wi; �h i ¼ Z�1

Z
LðMÞ

Fð�Þ ^ exp � 1

2
Iðxð:ÞÞ

� �
½19�

We refer to Léandre (2002) for details.
Let us remark that Bismut (1987) and Léandre

(2003) has continued his formal considerations to
the case of the index theorem for a family of Dirac
operators. We consider a fibration � : N!B of
compact manifolds. Bismut replaces [19] by an
integral of forms on the set of loops of N which
project to a given loop of B. Bismut remarks that
this integration in the fiber is related to filtering
theory in stochastic analysis.
Fermionic Brownian Motion

Alvarez-Gaumé has given a supersymmetric proof of the
index theorem: the path representation of the index of
the Dirac operator involves infinite-dimensional Berezin
integrals, while in the previous section only integrals of
forms on the free loop space were concerned. Rogers
(1987) has given an interpretation of the work of
Alvarez-Gaumé, which begins with the study of
fermionic Brownian motion. Let us interpret the
considerations of Rogers (1987) in this framework.

We consider Cd. H is the space of L2-maps from
[0, 1] into Cd. We denote such a path by (s) =
(1(s), . . . ,d(s)), where i(s) = qi(s)þ

ffiffiffiffiffiffi
�1
p

pi(s).
pi(s) is the ith momentum and qi(s) the ith position.
We denote by �̂(H) the fermionic Fock space associated
with H.

We introduce the bilinear antisymmetric form on H:

�ð1; 2Þ¼
ffiffiffiffiffiffiffi
�1
p Xd

i¼1

Z 1

0

�p1
i ðsÞ dq2

i ðsÞ

þ p2
i ðsÞ dq1

i ðsÞ ½20�

and we consider the formal expression exp[�] =P1
n = 0 n!�1�^n. We define a state on �̂2(H) by

!(1 ^ 2) = �(1,2). We put ̂i(s) = 1[0, s]þffiffiffiffiffiffi
�1
p

1[0, s] where we take the ith coordinate in Cd.
We obtain, if s1 < s2,

!ð̂iðs1Þ ^ ̂jðs2ÞÞ ¼ �
ffiffiffiffiffiffiffi
�1
p

�i;j ½21�

where �i, j is the Kronecker symbol. We change the
sign if s2 > s1 and we write 0 if s1 = s2.

We consider the finite-dimensional space Pol of
fermionic polynomials on Cd. Pol is endowed with a
suitable norm, and we consider Pol�n endowed with
the induced norm. We consider a formal series
�=

P
�n, where �n belongs to Pol�n. In order to

simplify the treatment, we suppose that our fermio-
nic polynomials do not contain constant terms. We
introduce the following Banach norm:

k�kC ¼
XCn

n!
k�nk ½22�

We obtain the notion of Connes space Co1� in this
simpler context: � belongs to Co1� if k�kC <1 for
all C. If �n = P1 � � � � � Pn, we associate

Fð�nÞ ¼
Z

�n

P1ð̂ðs1ÞÞ^ � � �

^ Pnð̂ðsnÞÞ ds1 � � � dsn ½23�

F can be extended in an injective continuous map
from Co1� into �̂(H). By using [21], we get:

Theorem 4 exp[�] is a distribution in the sense of
Connes.
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We have only to use the formula [21] and

hexp½��; 1 ^ 2 � � � ^ 2ni ¼ Pf f!ði ^ jÞg ½24�

and to estimate the obtained Pfaffians when n!1.
Theorem 4 allows us to give a rigorous interpreta-

tion of the fermionic Feynman–Kac formula of Rogers
(1987). We refer to Roepstorff (1994) for details.

exp[�] should give a rigorous interpretation to the
Gaussian Berezin integral with formal density
exp [

ffiffiffiffiffiffi
�1
p R 1

0

P
pi(s) dqi(s)].

See also: Equivariant Cohomology and the Cartan
Model; Feynman Path Integrals; Functional Integration in
Quantum Physics; Hopf Algebras and q-Deformation
Quantum Groups; Index Theorems; Measure on Loop
Spaces; Positive Maps on C�-Algebras; Stationary Phase
Approximation; Stochastic Differential Equations;
Supermanifolds; Supersymmetric Quantum Mechanics.
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Léandre R (2002) White noise analysis, filtering equation and

the index theorem for families. In: Heyer H and Saitô (eds.)
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Introduction

Peakons are singular solutions of the dispersionless
Camassa–Holm (CH) shallow-water wave equation in
one spatial dimension. These are reviewed in the
context of asymptotic expansions and Euler–Poincaré
(EP) variational principles. The dispersionless CH
equation generalizes to the EPDiff equation (defined
subsequently in this article), whose singular solutions
are peakon wave fronts in higher dimensions. The
reduction of these singular solutions of CH and EPDiff
to canonical Hamiltonian dynamics on lower-dimen-
sional sets may be understood, by realizing that their
solution ansatz is a momentum map, and momentum
maps are Poisson.

Camassa and Holm (1993) discovered the ‘‘peakon’’
solitary traveling-wave solution for a shallow-
water wave:

uðx; tÞ ¼ ce�jx�ctj=� ½1�

whose fluid velocity u is a function of position x on
the real line and time t. The peakon traveling wave
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moves at a speed equal to its maximum height, at
which it has a sharp peak (jump in derivative).
Peakons are an emergent phenomenon, solving the
initial-value problem for a partial differential equa-
tion (PDE) derived by an asymptotic expansion of
Euler’s equations using the small parameters of
shallow-water dynamics. Peakons are nonanalytic
solitons, which superpose as

uðx; tÞ ¼
XN
a¼1

paðtÞe�jx�qaðtÞj=� ½2�

for sets {p} and {q} satisfying canonical Hamiltonian
dynamics. Peakons arise for shallow-water waves in
the limit of zero linear dispersion in one dimension.
Peakons satisfy a PDE arising from Hamilton’s
principle for geodesic motion on the smooth
invertible maps (diffeomorphisms) with respect to
the H1 Sobolev norm of the fluid velocity. Peakons
generalize to higher dimensions, as well. We explain
how peakons were derived in the context of
shallow-water asymptotics and describe some of
their remarkable mathematical properties.
Shallow-Water Background for Peakons

Euler’s equations for irrotational incompressible
ideal fluid motion under gravity with a free surface
have an asymptotic expansion for shallow-
water waves that contains two small parameters,
� and �2, with ordering � � �2. These small para-
meters are �= a=h0 (the ratio of wave amplitude to
mean depth) and �2 = (h0=lx)2 (the squared ratio of
mean depth to horizontal length, or wavelength).
Euler’s equations are made nondimensional by
introducing x = lxx0 for horizontal position, z = h0z0

for vertical position, t = (lx=c0)t0 for time, �= a�0 for
surface elevation, and ’= (glxa=c0)’0 for velocity
potential, where c0 =

ffiffiffiffiffiffiffiffi
gh0

p
is the mean wave speed

and g is the constant gravity. The quantity
�= �0=(h0	c

2
0) is the dimensionless Bond number,

in which 	 is the mass density of the fluid and �0 is
its surface tension, both of which are taken to be
constants. After dropping primes, this asymptotic
expansion yields the nondimensional Korteweg–de
Vries (KdV) equation for the horizontal velocity
variable u =’x(x, t) at ‘‘linear’’ order in the small
dimensionless ratios � and �2, as the left-hand side of

ut þ ux þ
3�

2
uux þ

�2

6
ð1� 3�Þuxxx ¼ Oð��2Þ ½3�

Here, partial derivatives are denoted using sub-
scripts, and boundary conditions are u = 0 and
ux = 0 at spatial infinity on the real line. The famous
sech2(x� t) traveling-wave solutions (the solitons)
for KdV [3] arise in a balance between its (weakly)
nonlinear steepening and its third-order linear
dispersion, when the quadratic terms in � and �2

on its right-hand side are neglected.
In eqn [3], a normal-form transformation due to

Kodama (1985) has been used to remove the other
possible quadratic terms of order O(�2) and O(�4).
The remaining quadratic correction terms in the
KdV equation [3] may be collected at order O(��2).
These terms may be expressed, after introducing a
‘‘momentum variable,’’

m ¼ u� 
�2uxx ½4�

and neglecting terms of cubic order in � and �2, as

mtþmxþ
�

2
ðumxþ bmuxÞþ

�2

6
ð1� 3�Þuxxx ¼ 0 ½5�

In the momentum variable m=u� 
�2uxx, the
parameter 
 is given by Dullin et al. (2001):


 ¼ 19� 30�� 45�2

60ð1� 3�Þ ½6�

Thus, the effects of �2-dispersion also enter the
nonlinear terms. After restoring dimensions in eqn
[5] and rescaling velocity u by (bþ 1), the following
‘‘b-equation’’ emerges,

mt þ c0mx þ umx þ b mux þ �uxxx ¼ 0 ½7�

where m = u� �2uxx is the dimensional momentum
variable, and the constants �2 and �=c0 are squares of
length scales. When �2 ! 0, one recovers KdV from
the b-equation [7], up to a rescaling of velocity. Any
value of the parameter b 6¼ �1 may be achieved in
eqn [7] by an appropriate Kodama transformation
(Dullin et al. 2001).

As already emphasized, the values of the coeffi-
cients in the asymptotic analysis of shallow-water
waves at quadratic order in their two small para-
meters only hold, modulo the Kodama normal-form
transformations. Hence, these transformations may
be used to advance the analysis and thereby gain
insight, by optimizing the choices of these coeffi-
cients. The freedom introduced by the Kodama
transformations among asymptotically equivalent
equations at quadratic order in � and �2 also helps
to answer the perennial question, ‘‘Why are integr-
able equations so ubiquitous when one uses asymp-
totics in modeling?’’

Integrable Cases of the b-equation [7]

The cases b = 2 and b = 3 are special values
for which the b-equation becomes a completely
integrable Hamiltonian system. For b = 2, eqn [7]
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specializes to the integrable CH equation of
Camassa and Holm (1993). The case b = 3 in [7]
recovers the integrable equation of Degasperis and
Procesi (1999) (henceforth DP equation). These two
cases exhaust the integrable candidates for [7], as
was shown using Painlevé analysis. The b-family of
eqns [7] was also shown in Mikhailov and Novikov
(2002) to admit the symmetry conditions necessary
for integrability, only in the cases b = 2 for CH and
b = 3 for DP.

The b-equation [7] with b = 2 was first derived in
Camassa and Holm (1993) by using asymptotic
expansions directly in the Hamiltonian for Euler’s
equations governing inviscid incompressible flow in
the shallow-water regime. In this analysis, the CH
equation was shown to be bi-Hamiltonian and
thereby was found to be completely integrable by
the inverse-scattering transform (IST) on the real
line. Reviews of IST may be found, for example, in
Ablowitz and Clarkson (1991), Dubrovin (1981),
and Novikov et al. (1984). For discussions of other
related bi-Hamiltonian equations, see Degasperis
and Procesi (1999).

Camassa and Holm (1993) also discovered the
remarkable peaked soliton (peakon) solutions of [1],
[2] for the CH equation on the real line, given by [7]
in the case b = 2. The peakons arise as solutions of
[7], when c0 = 0 and � = 0 in the absence of linear
dispersion. Peakons move at a speed equal to their
maximum height, at which they have a sharp peak
(jump in derivative). Unlike the KdV soliton, the
peakon speed is independent of its width (�).
Periodic peakon solutions of CH were treated in
Alber et al. (1999). There, the sharp peaks of
periodic peakons were associated with billiards
reflecting at the boundary of an elliptical domain.
These billiard solutions for the periodic peakons
arise from geodesic motion on a triaxial ellipsoid, in
the limit that one of its axes shrinks to zero length.

Before Camassa and Holm (1993) derived their
shallow-water equation, a class of integrable equa-
tions existed, which was later found to contain eqn
[7] with b = 2. This class of integrable equations was
derived using hereditary symmetries in Fokas and
Fuchssteiner (1981). However, eqn [7] was not
written explicitly, nor was it derived physically as
a shallow-water equation and its solution properties
for b = 2 were not studied before Camassa and
Holm (1993). (See Fuchssteiner (1996) for an
insightful history of how the shallow-water equation
[7] in the integrable case with b = 2 relates to the
mathematical theory of hereditary symmetries.)

Equation [7] with b = 2 was recently re-derived as a
shallow-water equation by using asymptotic methods
in three different approaches in Dullin et al. (2001), in
Fokas and Liu (1996), and also in Johnson [2002]. All
the three derivations used different variants of the
method of asymptotic expansions for shallow-water
waves in the absence of surface tension. Only the
derivation in Dullin et al. (2001) used the Kodama
normal-form transformations to take advantage of the
nonuniqueness of the asymptotic expansion results at
quadratic order.

The effects of the parameter b on the solutions of
eqn [7] were investigated in Holm and Staley (2003),
where b was treated as a bifurcation parameter, in the
limiting case when the linear dispersion coefficients are
set to c0 = 0 and � = 0. This limiting case allows
several special solutions, including the peakons, in
which the two nonlinear terms in eqn [7] balance each
other in the ‘‘absence’’ of linear dispersion.
Peakons: Singular Solutions without
Linear Dispersion in One Spatial
Dimension

Peakons were first found as singular soliton solutions
of the completely integrable CH equation. This is eqn
[7] with b = 2, now rewritten in terms of the velocity as

ut þ c0ux þ 3uux þ �uxxx

¼ �2ðuxxt þ 2uxuxx þ uuxxxÞ ½8�

Peakons were found in Camassa and Holm (1993)
to arise in the absence of linear dispersion. That is,
they arise when c0 = 0 and � = 0 in CH [8].
Specifically, peakons are the individual terms in the
peaked N-soliton solution of CH [8] for its velocity

uðx; tÞ ¼
XN
b¼1

pbðtÞe�jx�qbðtÞj=� ½9�

in the absence of linear dispersion. Each term in the
sum is a soliton with a sharp peak at its maximum,
hence the name ‘‘peakon.’’ Expressed using its
momentum, m = (1� �2@2

x )u, the peakon velocity
solution [9] of dispersionless CH becomes a sum
over a delta functions, supported on a set of points
moving on the real line. Namely, the peakon
velocity solution [9] implies

mðx; tÞ ¼ 2�
XN
b¼1

pbðtÞ�ðx� qbðtÞÞ ½10�

because of the relation (1� �2@2
x)e�jxj=� = 2��(x).

These solutions satisfy the b-equation [7] for any
value of b, provided c0 = 0 and � = 0.

Thus, peakons are ‘‘singular momentum solu-
tions’’ of the dispersionless b-equation, although



Figure 1 A smooth localized (Gaussian) initial condition for the

CH equation breaks up into an ordered train of peakons as time

evolves (the time direction being vertical). The peakon train

eventually wraps around the periodic domain, thereby allowing

the leading peakons to overtake the slower emergent peakons

from behind in collisions that cause phase shifts as discussed in

Camassa and Holm (1993). Courtesy of Staley M.
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they are not stable for every value of b. From
numerical simulations (Holm and Staley 2003),
peakons are conjectured to be stable for b > 1. In
the integrable cases b = 2 for CH and b = 3 for DP,
peakons are stable singular soliton solutions. The
spatial velocity profile e�jxj=�=2� of each separate
peakon in [9] is the Green’s function for the
Helmholtz operator on the real line, with vanishing
boundary conditions at spatial infinity. Unlike the
KdV soliton, whose speed and width are related, the
width of the peakon profile is set by its Green’s
function, independently of its speed.

Integrable Peakon Dynamics of CH

Substituting the peakon solution ansatz [9] and [10]
into the dispersionless CH equation

mt þ umx þ 2mux ¼ 0; m ¼ u� �2uxx ½11�

yields Hamilton’s canonical equations for the
dynamics of the discrete set of peakon parameters
qa(t) and pa(t):

_qaðtÞ ¼
@hN

@pa
and _paðtÞ ¼ �

@hN

@qa
½12�

for a = 1, 2, . . . , N, with Hamiltonian given by
(Camassa and Holm 1993):

hN ¼
1

2

XN
a; b¼1

papbe�jqa�qbj=� ½13�

Thus, one finds that the points x = qa(t) in the
peakon solution [9] move with the flow of the fluid
velocity u at those points, since u(qa(t), t) = _qa(t).
This means the qa(t) are Lagrangian coordinates.
Moreover, the singular momentum solution ansatz
[10] is the Lagrange-to-Euler map for an invariant
manifold of the dispersionless CH equation [11].
On this finite-dimensional invariant manifold for
the PDE [11], the dynamics is canonically
Hamiltonian.

With Hamiltonian [13], the canonical equations
[12] for the 2N canonically conjugate peakon
parameters pa(t) and qa(t) were interpreted in
Camassa and Holm (1993) as describing ‘‘geodesic
motion’’ on the N-dimensional Riemannian mani-
fold whose co-metric is gij({q}) = e� jqi�qjj=�. More-
over, the canonical geodesic equations arising from
Hamiltonian [13] comprise an integrable system for
any number of peakons N. This integrable system
was studied in Camassa and Holm (1993) for
solutions on the real line, and in Alber et al. (1999)
and Mckean and Constantin (1999) and references
therein, for spatially periodic solutions.
Being a completely integrable Hamiltonian soliton
equation, the continuum CH equation [8] has an
associated isospectral eigenvalue problem, discov-
ered in Camassa and Holm (1993) for any values of
its dispersion parameters c0 and �. Remarkably,
when c0 = 0 and � = 0, this isospectral eigenvalue
problem has a purely ‘‘discrete’’ spectrum. More-
over, in this case, each discrete eigenvalue corre-
sponds precisely to the time-asymptotic velocity of a
peakon. This discreteness of the CH isospectrum in
the absence of linear dispersion implies that only the
singular peakon solutions [10] emerge asymptoti-
cally in time, in the solution of the initial-value
problem for the dispersionless CH equation [11].
This is borne out in numerical simulations of the
dispersionless CH equation [11], starting from a
smooth initial distribution of velocity (Fringer and
Holm 2001, Holm and Staley 2003).

Figure 1 shows the emergence of peakons from an
initially Gaussian velocity distribution and their
subsequent elastic collisions in a periodic one-
dimensional domain. This figure demonstrates that
singular solutions dominate the initial-value pro-
blem and, thus, that it is imperative to go beyond
smooth solutions for the CH equation; the situation
is similar for the EPDiff equation.

Peakons as Mechanical Systems

Being governed by canonical Hamiltonian equa-
tions, each N-peakon solution can be associated
with a mechanical system of moving particles.
Calogero (1995) further extended the class of
mechanical systems of this type. The r-matrix
approach was applied to the Lax pair formulation
of the N-peakon system for CH by Ragnisco and
Bruschi (1996), who also pointed out the connection
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of this system with the classical Toda lattice. A discrete
version of the Adler–Kostant–Symes factorization
method was used by Suris (1996) to study a discretiza-
tion of the peakon lattice, realized as a discrete
integrable system on a certain Poisson submanifold of
gl(N) equipped with an r-matrix Poisson bracket. Beals
et al. (1999) used the Stieltjes theorem on continued
fractions and the classical moment problem for study-
ing multipeakon solutions of the CH equation. Gen-
eralized peakon systems are described for any simple
Lie algebra by Alber et al. (1999).

Pulsons: Generalizing the Peakon Solutions of
the Dispersionless b-Equation for Other Green’s
Functions

The Hamiltonian hN in eqn [13] depends on
the Green’s function for the relation between
velocity u and momentum m. However, the singular
momentum solution ansatz [10] is ‘‘independent’’ of
this Green’s function. Thus, as discovered in Fringer
and Holm (2001), the singular momentum solution
ansatz [10] for the dispersionless equation

mt þ umx þ 2mux ¼ 0; with u ¼ g �m ½14�

provides an invariant manifold on which canonical
Hamiltonian dynamics occurs, for any choice of the
Green’s function g relating velocity u and momen-
tum m by the convolution u = g �m.

The fluid velocity solutions corresponding to the
singular momentum ansatz [10] for eqn [14] are the
‘‘pulsons’’. Pulsons are given by the sum over N velocity
profiles determined by the Green’s function g, as

uðx; tÞ ¼
XN
a¼1

paðtÞg x;qaðtÞð Þ ½15�

Again for [14], the singular momentum ansatz [10]
results in a finite-dimensional invariant manifold of
solutions, whose dynamics is canonically Hamilto-
nian. The Hamiltonian for the canonical dynamics
of the 2N parameters pa(t) and qa(t) in the ‘‘pulson’’
solutions [15] of eqn [14] is

hN ¼
1

2

XN
a; b¼1

pa pb gðqa; qbÞ ½16�

Again, for the pulsons, the canonical equations for the
invariant manifold of singular momentum solutions
provide a phase-space description of geodesic motion,
this time with respect to the co-metric given by the
Green’s function g. Mathematical analysis and numer-
ical results for the dynamics of these pulson solutions
are given in Fringer and Holm (2001). These results
describe how the collisions of pulsons [15] depend
upon their shape.
Compactons in the 1=a2!0 Limit of CH

As mentioned earlier, in the limit that �2 ! 0, the
CH equation [8] becomes the KdV equation.
In contrast, when 1=a2! 0, CH becomes the
Hunter–Zheng equation (Hunter and Zheng 1994):

ðut þ uuxÞxx ¼ 1
2 u2

x

� �
x

This equation has ‘‘compacton’’ solutions, whose
collision dynamics was studied numerically and
put into the present context in Fringer and Holm
(2001). The corresponding Green’s function satis-
fies �@x

2g(x) = 2�(x), so it has the triangular
shape, g(x) = 1� jxj for jxj < 1, and vanishes
otherwise, for jxj � 1. That is, the Green’s func-
tion in this case has compact support, hence the
name ‘‘compactons’’ for these pulson solutions,
which as a limit of the integrable CH equations
are true solitons, solvable by IST.

Pulson Solutions of the Dispersionless b-Equation

Holm and Staley (2003) give the pulson solutions of
the traveling-wave problem and their elastic colli-
sion properties for the dispersionless b-equation:

mt þ umx þ bmux ¼ 0; with u ¼ g �m ½17�

with any (symmetric) Green’s function g and for
any value of the parameter b. Numerically,
pulsons and peakons are both found to be stable
for b > 1 (Holm and Staley 2003). The reduction
to ‘‘noncanonical’’ Hamiltonian dynamics for the
invariant manifold of singular momentum solu-
tions [10] of the other integrable case b = 3 with
peakon Green’s function g(x, y) = e� jx�yj=� is found
in Degasperis and Procesi (1999) and Degasperis
et al. (2002).
Euler–Poincaré Theory in More
Dimensions

Generalizing the Peakon Solutions of the CH
Equation to Higher Dimensions

In Holm and Staley (2003), weakly nonlinear analysis
and the assumption of columnar motion in the
variational principle for Euler’s equations are found
to produce the two-dimensional generalization of the
dispersionless CH equation [11]. This generalization is
the EP equation (Holm et al. 1998a, b) for the
Lagrangian consisting of the kinetic energy:

‘ ¼ 1

2

Z
juj2 þ �2ðdiv uÞ2
h i

dx dy ½18�

in which the fluid velocity u is a two-dimensional
vector. Evolution generated by kinetic energy in
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Hamilton’s principle results in geodesic motion,
with respect to the velocity norm kuk, which is
provided by the kinetic-energy Lagrangian. For
ideal incompressible fluids governed by Euler’s
equations, the importance of geodesic flow was
recognized by Arnol’d (1966) for the L2 norm of
the fluid velocity. The EP equation generated by
any choice of kinetic-energy norm without impos-
ing incompressibility is called ‘‘EPDiff,’’ for ‘‘Euler–
Poincaré equation for geodesic motion on the
diffeomorphisms.’’ EPDiff is given by (Holm et al.
1998a):

@

@t
þ u � r

� �
mþruT �mþmðdiv uÞ ¼ 0 ½19�

with momentum density m = �‘=�u, where ‘= (1=2)
kuk2 is given by the kinetic energy, which defines a
norm in the fluid velocity kuk, yet to be determined.
By design, this equation has no contribution from
either potential energy or pressure. It conserves the
velocity norm kuk given by the kinetic energy. Its
evolution describes geodesic motion on the diffeo-
morphisms with respect to this norm (Holm et al.
1998a).

An alternative way of writing the EPDiff equation
[19] in either two or three dimensions is

@

@t
m� u� curl mþrðu �mÞ þmðdiv uÞ ¼ 0 ½20�

This form of EPDiff involves all three differential
operators: curl, gradient, and divergence. For the
kinetic-energy Lagrangian ‘ given in [18], which is a
norm for ‘‘irrotational’’ flow (with curl u = 0), we
have the EPDiff equation [19] with momentum
m = �‘=�u = u� �2r(div u).

EPDiff [19] may also be written intrinsically as

@

@t

�‘

�u
¼ �ad�u

�‘

�u
½21�

where ad� is the L2 dual of the ad-operation
(commutator) for vector fields (see Arnol’d and
Khesin (1998) and Marsden and Ratiu (1999) for
additional discussions of the beautiful geometry
underlying this equation).
Reduction to the Dispersionless CH Equation
in One Dimension

In one dimension, the EPDiff equations [19]–[21] with
Lagrangian ‘ given in [18] simplify to the dispersionless
CH equation [11]. The dispersionless limit of the CH
equation appears, because potential energy and pres-
sure have been ignored.
Strengthening the Kinetic-Energy Norm to Allow
for Circulation

The kinetic-energy Lagrangian [18] is a norm for
irrotational flow, with curl u = 0. However, inclusion
of rotational flow requires the kinetic-energy norm to be
strengthened to the H1

� norm of the velocity, defined as

‘ ¼ 1

2

Z
juj2 þ �2ðdiv uÞ2 þ �2ðcurl uÞ2
h i

dx dy

¼ 1

2

Z
juj2 þ �2jruj2
h i

dx dy ¼ 1

2
kuk2

H1
�

½22�

Here, we assume boundary conditions that give
no contributions upon integrating by parts. The
corresponding EPDiff equation is [19] with m �
�‘=�u = u� �2�u. This expression involves inver-
sion of the familiar Helmholtz operator in the
(nonlocal) relation between fluid velocity and
momentum density. The H1

� norm kuk2
H1
�

for the
kinetic energy [22] also arises in three dimensions
for turbulence modeling based on Lagrangian aver-
aging and using Taylor’s hypothesis that the
turbulent fluctuations are ‘‘frozen’’ into the Lagran-
gian mean flow (Foias et al. 2001).

Generalizing the CH Peakon Solutions
to n Dimensions

Building on the peakon solutions [9] for the CH
equation and the pulsons [15] for its generalization
to other traveling-wave shapes in Fringer and Holm
(2001), Holm and Staley (2003) introduced the
following measure-valued singular momentum solu-
tion ansatz for the n-dimensional solutions of the
EPDiff equation [19]:

mðx; tÞ ¼
XN
a¼1

Z
Paðs; tÞ� x�Qaðs; tÞð Þ ds ½23�

These singular momentum solutions, called ‘‘diffeons,’’
are vector density functions supported in Rn on a set of
N surfaces (or curves) of codimension (n� k) for s 2
Rk with k < n. They may, for example, be supported on
sets of points (vector peakons, k = 0), one-dimensional
filaments (strings, k = 1), or two-dimensional surfaces
(sheets, k = 2) in three dimensions.

Figure 2 shows the results for the EPDiff equation
when a straight peakon segment of finite length is
created initially moving rightward (East). Because of
propagation along the segment in adjusting to the
condition of zero speed at its ends and finite speed in its
interior, the initially straight segment expands outward
as it propagates and curves into a peakon ‘‘bubble.’’

Figure 3 shows an initially straight segment whose
velocity distribution is exponential in the transverse



Figure 3 An initially straight segment of velocity distribution

whose exponential profile is wider than the width � for the

peakon solution breaks up into a train of curved peakon

‘‘bubbles,’’ each of width �. This example illustrates the

emergent property of the peakon solutions in two dimensions.

Figure 2 A peakon segment of finite length is initially moving

rightward (east). Because its speed vanishes at its ends and it

has fully two-dimensional spatial dependence, it expands into a

peakon ‘‘bubble’’ as it propagates. (The various shades indicate

different speeds. Any transverse slice will show a wave profile

with a maximum at the center of the wave, which falls

exponentially with distance away from the center.)

18 Peakons
direction, but is wider than � for the peakon
solution. This initial-velocity distribution evolves
under EPDiff to separate into a train of curved
peakon ‘‘bubbles,’’ each of width �. This example
illustrates the emergent property of the peakon
solutions in two dimensions. This phenomenon is
observed in nature, for example, as trains of internal
wave fronts in the South China Sea (Liu et al. 1998).

Substitution of the singular momentum solution
ansatz [23] into the EPDiff equation [19] implies the
following integro-partial-differential equations (IPDEs)
for the evolution of the parameters {P} and {Q}:

@

@t
Qaðs; tÞ ¼

XN
b¼1

Z
Pbðs0; tÞG

�
Qaðs; tÞ

�Qbðs0; tÞ
�

ds0

@

@t
Paðs; tÞ ¼ �

XN
b¼1

Z
Paðs; tÞ � Pbðs0; tÞ
� �

� @

@Qaðs; tÞG
�

Qaðs; tÞ

�Qbðs0; tÞ
�

ds0

½24�

Importantly for the interpretation of these solutions,
the coordinates s 2 Rk turn out to be Lagrangian
coordinates. The velocity field corresponding to the
momentum solution ansatz [23] is given by

uðx; tÞ ¼ G �m

¼
XN
b¼1

Z
Pbðs0; tÞG x�Qbðs0; tÞ

� �
ds0 ½25�
for u 2 Rn. When evaluated along the curve
x = Qa(s, t), this velocity satisfies

uðQaðs; tÞ; tÞ ¼
XN
b¼1

Z
Pbðs0; tÞ

�G
�

Qaðs; tÞ �Qbðs0; tÞ
�

ds0

¼ @Qaðs; tÞ
@t

½26�

Consequently, the lower-dimensional support sets
defined on x = Qa(s, t) and parametrized by
coordinates s 2 Rk move with the fluid velocity.
This means that the s 2 Rk are Lagrangian coordi-
nates. Moreover, eqns [24] for the evolution of these
support sets are canonical Hamiltonian equations:

@

@t
Qaðs; tÞ ¼ �HN

�Pa ;
@

@t
Paðs; tÞ ¼ � �HN

�Qa ½27�

The corresponding Hamiltonian function HN : (Rn �
Rn)N ! R is

HN ¼
1

2

Z Z XN
a;b¼1

�
Paðs; tÞ � Pbðs0; tÞ

�

�GðQaðs; tÞ;Qjðs0; tÞÞ ds ds0 ½28�

This is the Hamiltonian for geodesic motion on the
cotangent bundle of a set of curves Qa(s, t) with
respect to the metric given by G. This dynamics was
investigated numerically in Holm and Staley (2003)
which can be referred to for more details of the
solution properties. One important result found
‘‘numerically’’ in Holm and Staley (2003) is that
only codimension-1 singular momentum solutions



Figure 5 A series of multiple collisions is shown involving

reconnections as the faster wider peakon segment initially moving

northeast along the diagonal expands, breaks up into a wave train

of peakons, each of which propagates, curves, and obliquely

overtakes the slower wide peakon segment initially moving

rightward (east), which is also breaking up into a train of wave

fronts. In this series of oblique collision, the now-curved peakon

filaments exchange momentum and reconnect several times.
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appear to be stable under the evolution of the EPDiff
equation. Thus,

Stability for codimension-1 solutions: the singular
momentum solutions of EPDiff are stable, as points
on the line (peakons), as curves in the plane (filaments,
or wave fronts), or as surfaces in space (sheets).

Proving this stability result analytically remains an
outstanding problem. The stability of peakons on the
real line is proven in Constantin and Strauss (2000).

Reconnections in Oblique Overtaking Collisions
of Peakon Wave Fronts

Figures 4 and 5 show results of oblique wave front
collisions producing reconnections for the EPDiff
equation in two dimensions. Figure 4 shows a single
oblique overtaking collision, as a faster expanding
peakon wave front overtakes a slower one and
reconnects with it at the collision point. Figure 5
shows a series of reconnections involving the
oblique overtaking collisions of two trains of curved
peakon filaments, or wave fronts.
The Peakon Reduction is a Momentum Map

As shown in Holm and Marsden (2004), the singular
solution ansatz [23] is a momentum map from the
cotangent bundle of the smooth embeddings of lower-
dimensional sets Rs 2 Rn, to the dual of the Lie algebra
of vector fields defined on these sets. (Momentum maps
for Hamiltonian dynamics are reviewed in Marsden
and Ratiu (1999), for example.) This geometric feature
underlies the remarkable reduction properties of the
EPDiff equation, and it also explains why the reduced
equations must be Hamiltonian on the invariant
manifolds of the singular solutions; namely, because
Figure 4 A single collision is shown involving reconnection as the

faster peakon segment initially moving southeast along the diagonal

expands, curves, and obliquely overtakes the slower peakon

segment initially moving rightward (east). This reconnection

illustrates one of the collision rules for the strongly two-dimensional

EPDiff flow.
momentum maps are Poisson maps. This geometric
feature also underlies the singular momentum solution
[23] and its associated velocity [25] which generalize
the peakon solutions, both to higher dimensions and to
arbitrary kinetic-energy metrics. The result that the
singular solution ansatz [23] is a momentum map helps
to organize the theory, to explain previous results, and
to suggest new avenues of exploration.
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Introduction

Percolation as a mathematical theory was introduced
by Broadbent and Hammersley (1957), as a stochastic
way of modeling the flow of a fluid or gas through a
porous medium of small channels which may or may
not let gas or fluid pass. It is one of the simplest models
exhibiting a phase transition, and the occurrence of a
critical phenomenon is central to the appeal of
percolation. Having truly applied origins, percolation
has been used to model the fingering and spreading of
oil in water, to estimate whether one can build
nondefective integrated circuits, and to model the
spread of infections and forest fires. From a mathema-
tical point of view, percolation is attractive because it
exhibits relations between probabilistic and algebraic/
topological properties of graphs.

To make the mathematical construction of such a
system of channels, take a graph G (which originally
was taken as Zd), with vertex set V and edge set E, and
make all the edges independently open (or passable)
with probability p or closed (or blocked) with
probability 1� p. Write Pp for the corresponding
probability measure on the set of configurations of
open and closed edges – that model is called bond
percolation. The collection of open edges thus forms a
random subgraph of G, and the original question stated
by Broadbent was whether the connected component
of the origin in that subgraph is finite or infinite.

A path on G is a sequence v1, v2, . . . of vertices of G,
such that for all i � 1, vi and viþ1 are adjacent on G. A
path is called open if all the edges {vi, viþ1} between
successive vertices are open. The infiniteness of the
cluster of the origin is equivalent to the existence of
an unbounded open path starting from the origin.

There is an analogous model, called ‘‘site percola-
tion,’’ in which all edges are assumed to be passable,
but the vertices are independently open or closed
with probability p or 1� p, respectively. An open
path is then a path along which all vertices are open.
Site percolation is more general than bond percola-
tion in the sense that the existence of a path for

bond percolation on a graph G is equivalent to the
existence of a path for site percolation on the
covering graph of G. However, site percolation on
a given graph may not be equivalent to bond
percolation on any other graph.

All graphs under consideration will be assumed to
be connected, locally finite and quasitransitive. If
A, B � V, then A$B means that there exists an
open path from some vertex of A to some vertex of
B; by a slight abuse of notation, u$ v will stand for
the existence of a path between sites u and v, that is,
the event {u}$ {v}. The open cluster C(v) of the
vertex v is the set of all open vertices which are
connected to v by an open path:

CðvÞ¼ fu 2 V : u$ vg

The central quantity of the percolation theory is the
percolation probability:

�ðpÞ :¼Ppf0$1g ¼ PpfjCð0Þj ¼ 1g

The most important property of the percolation
model is that it exhibits a phase transition, that is,
there exists a threshold value pc 2 [0, 1], such that
the global behavior of the system is substantially
different in the two regions p < pc and p > pc. To
make this precise, observe that � is a nondecreasing
function. This can be seen using Hammersley’s joint
construction of percolation systems for all p 2 [0, 1]
on G: let {U(v), v 2 V} be independent random
variables, uniform in [0,1]. Declare v to be p-open
if U(v)� p, otherwise it is declared p-closed. The
configuration of p-open vertices has the distribution
Pp for each p 2 [0, 1]. The collection of p-open
vertices is nondecreasing in p, and therefore �(p) is
nondecreasing as well. Clearly, �(0) = 0 and �(1) = 1
(Figure 1).

 θ(p)

pc 1

p

1

0

Figure 1 The behavior of �(p) around the critical point

(for bond percolation).
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The critical probability is defined as

pc :¼ pcðGÞ¼ supfp: �ðpÞ¼ 0g

By definition, when p < pc, the open cluster of the
origin is Pp-a.s. finite; hence, all the clusters are also
finite. On the other hand, for p > pc there is a
strictly positive Pp-probability that the cluster of the
origin is infinite. Thus, from Kolmogorov’s zero–one
law it follows that

PpfjCðvÞj ¼ 1 for some v 2 Vg ¼ 1 for p > pc

Therefore, if the intervals [0, pc) and (pc, 1] are both
nonempty, there is a phase transition at pc.

Using a so-called Peierls argument it is easy to see
that pc(G)> 0 for any graph G of bounded degree.
On the other hand, Hammersley proved that
pc(Z

d) < 1 for bond percolation as soon as d � 2,
and a similar argument works for site percolation

and various periodic graphs as well. But for some
graphs G, it is not so easy to show that pc(G) < 1.
One says that the system is in the subcritical (resp.
supercritical) phase if p < pc (resp. p > pc).

It was one of the most remarkable moments in the
history of percolation when Kesten (1980) proved,
based on results by Harris, Russo, Seymour and
Welsh, that the critical parameter for bond percolation
on Z2 is equal to 1/2. Nevertheless, the exact value of
pc(G) is known only for a handful of graphs, all of
them periodic and two dimensional – see below.
Percolation in Zd

The graph on which most of the theory was
originally built is the cubic lattice Zd, and it was
not before the late twentieth century that percola-
tion was seriously considered on other kinds of
graphs (such as Cayley graphs), on which specific
phenomena can appear, such as the coexistence of
multiple infinite clusters for some values of the
parameter p. In this section, the underlying graph is
thus assumed to be Zd for d � 2, although most
of the results still hold in the case of a periodic
d-dimensional lattice.

The Subcritical Regime

When p < pc, all open clusters are finite almost
surely. One of the greatest challenges in percolation
theory has been to prove that �(p) := Ep{jC(v)j} is
finite if p < pc (Ep stands for the expectation with
respect to Pp). For that one can define another critical
probability as the threshold value for the finiteness of
the expected cluster size of a fixed vertex:

pTðGÞ :¼ supfp : �ðpÞ<1g
It was an important step in the development of the
theory to show that pT(G) = pc(G). The fundamental
estimate in the subcritical regime, which is a much
stronger statement than pT(G) = pc(G), is the following:

Theorem 1 (Aizenman and Barsky, Menshikov).
Assume that G is periodic. Then for p < pc there
exist constants 0 < C1, C2 <1, such that

PpfjCðvÞj � ng � C1 e�C2n

The last statement can be sharpened to a ‘‘local
limit theorem’’ with the help of a subadditivity
argument: for each p < pc, there exists a constant
0<C3(p)<1, such that

lim
n!1
� 1

n
log PpfjCðvÞj ¼ ng ¼ C3ðpÞ

The Supercritical Regime

Once an infinite open cluster exists, it is natural to
ask how it looks like, and how many infinite open
clusters exist. It was shown by Newman and Schul-
man that for periodic graphs, for each p, exactly one
of the following three situations prevails: if N 2
Zþ [ {1} is the number of infinite open clusters, then
Pp(N = 0) = 1, or Pp(N = 1) = 1, or Pp(N =1) = 1.

Aizenman, Kesten, and Newman showed that the
third case is impossible on Zd. By now several
proofs exist, perhaps the most elegant of which is
due to Burton and Keane, who prove that indeed
there cannot be infinitely many infinite open clusters
on any amenable graph. However, there are some
graphs, such as regular trees, on which coexistence
of several infinite clusters is possible.

The geometry of the infinite open cluster can be
explored in some depth by studying the behavior of
a random walk on it. When d = 2, the random walk
is recurrent, and when d � 3 is a.s. transient. In all
dimensions d � 2, the walk behaves diffusively, and
the ‘‘central limit theorem’’ and the ‘‘invariance
principle’’ were established in both the annealed and
quenched cases.
Wulff droplets In the supercritical regime, aside
from the infinite open cluster, the configuration
contains finite clusters of arbitrary large sizes. These
large finite open clusters can be thought of as droplets
swimming in the areas surrounded by an infinite open
cluster. The presence at a particular location of a large
finite cluster is an event of low probability, namely, on
Zd, d � 2, for p > pc, there exist positive constants
0<C4(p), C5(p)<1, such that

C4ðpÞ� �
1

nðd�1Þ=d log PpfjCðvÞj ¼ ng�C5ðpÞ



for all large n. This estimate is based on the fact that
the occurrence of a large finite cluster is due to a
surface effect. The typical structure of the large
finite cluster is described by the following theorem:

Theorem 2 Let d � 2, and p > pc. There exists a
bounded, closed, convex subset W of Rd containing
the origin, called the normalized Wulff crystal of
the Bernoulli percolation model, such that, under the
conditional probability Pp{� jnd � jC(0)j<1}, the
random measure

1

nd

X
x2Cð0Þ

�x=n

(where �x denotes a Dirac mass at x) converges
weakly in probability toward the random measure
�(p)1W(x�M) dx (where M is the rescaled center of
mass of the cluster C(0)). The deviation probabilities
behave as exp{�cnd�1} (i.e., they exhibit large
deviations of surface order; in dimensions 4 and
more it holds up to re-centering).

This result was proved in dimension 2 by Alexander
et al. (1990), and in dimensions 3 and more by Cerf
(2000).

Percolation Near the Critical Point

Percolation in Slabs The main macroscopic obser-
vable in percolation is �(p), which is positive above
pc, 0 below pc, and continuous on [0, 1]n{pc}.
Continuity at pc is an open question in the general
case; it is known to hold in two dimensions
(cf. below) and in high enough dimension (at the
moment d � 19 though the value of the critical
dimension is believed to be 6) using lace expansion
methods. The conjecture that �(pc) = 0 for 3� d� 18
remains one of the major open problems.

Efforts to prove that led to some interesting and
important results. Barsky, Grimmett, and Newman
solved the question in the half-space case, and simulta-
n
p
t

C
n
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s

w
a
t
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eously showed that the slab percolation and half-space
ercolation thresholds coincide. This was complemen-
ed by Grimmett and Marstrand showing that

pcðslabÞ ¼ pcðZdÞ

ritical exponents In the subcritical regime, expo-
ential decay of the correlation indicates that there

a finite correlation length �(p) associated to the
ystem, and defined (up to constants) by the relation

Ppð0$ nxÞ� exp � n’ðxÞ
�ðpÞ

� �

here ’ is bounded on the unit sphere (this is known
s Ornstein–Zernike decay). The phase transition can
hen also be defined in terms of the divergence of the
correlation length, leading again to the same value for
pc; the behavior at or near the critical point then has no
finite characteristic length, and gives rise to scaling
exponents (conjecturally in most cases).

The most usual critical exponents are defined as
follows, if �(p) is the percolation probability, C the
cluster of the origin, and �(p) the correlation length:

@3

@p3
Ep½jCj�1� � jp� pcj�1��

�ðpÞ � ðp� pcÞ�þ
�f ðpÞ :¼Ep½jCj1jCj<1� � jp� pcj��

Ppc
½jCj ¼ n� � n�1�1=�

Ppc
½x 2 C� � jxj2�d�	

�ðpÞ � jp� pcj


Ppc
½diamðCÞ ¼ n� � n�1�1=�

Ep½jCjkþ11jCj<1�
Ep½jCjk1jCj<1�

� jp� pcj��

These exponents are all expected to be universal,
that is, to depend only on the dimension of the
lattice, although this is not well understood at the
mathematical level; the following scaling relations
between the exponents are believed to hold:

2� � ¼ � þ 2� ¼ �ð� þ 1Þ; � ¼ ��; � ¼ 
ð2� 	Þ

In addition, in dimensions up to dc = 6, two
additional hyperscaling relations involving d are
strongly conjectured to hold:

d� ¼ � þ 1; d
 ¼ 2� �

while above dc the exponents are believed to take
their mean-field value, that is, the ones they have for
percolation on a regular tree:

� ¼ �1; � ¼ 1; � ¼ 1; � ¼ 2

	 ¼ 0; 
 ¼ 1
2; � ¼ 1

2; � ¼ 2

Not much is known rigorously on critical expo-
nents in the general case. Hara and Slade (1990)
proved that mean field behavior does happen above
dimension 19, and the proof can likely be extended
to treat the case d � 7. In the two-dimensional case
on the other hand, Kesten (1987) showed that,
assuming that the exponents � and � exist, then so
do �, �, 	, and 
, and they satisfy the scaling and
hyperscaling relations where they appear.

The incipient infinite cluster When studying long-
range properties of a critical model, it is useful to
have an object which is infinite at criticality, and
such is not the case for percolation clusters. There
are two ways to condition the cluster of the origin to



be infinite when p = pc: The first one is to condition
it to have diameter at least n (which happens with
positive probability) and take a limit in distribution
as n goes to infinity; the second one is to consider
the model for parameter p > pc, condition the
cluster of 0 to be infinite (which happens with
positive probability) and take a limit in distribution
as p goes to pc. The limit is the same in both cases; it
is known as the incipient infinite cluster.

As in the supercritical regime, the structure of the
cluster can be investigated by studying the behavior
of a random walk on it, as was suggested by de
Gennes; Kesten proved that in two dimensions, the
random walk on the incipient infinite cluster is
subdiffusive, that is, the mean square displacement
after n steps behaves as n1�" for some " > 0.

The construction of the incipient infinite cluster
was done by Kesten (1986) in two dimensions, and a
similar construction was performed recently in high
dimension by van der Hofstad and Jarai (2004).
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pbond
c for T 0, i.e., the hexagonal lattice) and pbond

c for
the bow-tie lattice which is a root of the equation
p5 � 6p3 þ 6p2 þ p� 1 = 0. The value of the critica
parameter for site percolation on Z2 might, on the
other hand, never be known; it is even possible that
it is ‘‘just a number’’ without any other signification

Still using duality, one can prove that the
probability, for bond percolation on the square
lattice with parameter p = 1=2, that there is a
connected component crossing an (nþ 1)
 n rec-
tangle in the longer direction is exactly equal to 1/2
This and clever arguments involving the symmetry
of the lattice lead to the following result, proved
independently by Russo and by Seymour and Welsh
and known as the RSW theorem:

Theorem 3 (Russo 1978, Seymour and Welsh 1978)
For every a, b > 0 there exist 	 > 0 and n0 > 0 such
that for every n > n0, the probability that there is a
cluster crossing an bnac 
 bnbc rectangle in the first
direction is greater than 	.

The most direct consequence of this estimate is tha
the probability that there is a cluster going around an
annulus of a given modulus is bounded below
independently of the size of the annulus; in particular
almost surely there is some annulus around 0 in
which this happens, and that is what allows to prove
that �(pc) = 0 for bond percolation on Z2 (Figure 2)

The Scaling Limit

RSW-type estimates give positive evidence that a
scaling limit of the model should exist; it is indeed
essentially sufficient to show convergence of the
crossing probabilities to a nontrivial limit as n goes
to infinity. The limit, which should depend only on
the ratio a/b, was predicted by Cardy using con-
formal field theory methods. A celebrated result of
Smirnov is the proof of Cardy’s formula in the case of
site percolation on the triangular lattice T :

Theorem 4 (Smirnov (2001)). Let � be a simply
connected domain of the plane with four points a, b
c, d (in that order) marked on its boundary. For
every � > 0, consider a critical site-percolation

Figure 2 Two large critical percolation clusters in a box of the

square lattice (first: bond percolation, second: site percolation).
Percolation in Two Dimensions

As is the case for several other models of statistical
physics, percolation exhibits many specific properties
when considered on a two-dimensional lattice: duality
arguments allow for the computation of pc in some
cases, and for the derivation of a priori bounds for the
probability of crossing events at or near the critical
point, leading to the fact that �(pc) = 0. On another
front, the scaling limit of critical site percolation on the
two-dimensional triangular lattice can be described in
terms of Stochastic Loewner evolutions (SLE) processes.

Duality, Exact Computations, and RSW Theory

Given a planar lattice L, define two associated
graphs as follows. The dual lattice L0 has one vertex
for each face of the original lattice, and an edge
between two vertices if and only if the correspond-
ing faces of L share an edge. The star graph L	 is
obtained by adding to L an edge between any two
vertices belonging to the same face (L	 is not planar
in general; (L,L	) is commonly known as a
matching pair). Then, a result of Kesten is that,
under suitable technical conditions,

pbond
c ðLÞ þ pbond

c ðL0Þ¼ psite
c ðLÞ þ psite

c ðL	Þ¼ 1

Two cases are of particular importance: the lattice
Z2 is isomorphic to its dual; the triangular lattice T
is its own star graph. It follows that

pbond
c ðZ2Þ¼ psite

c ðT Þ¼ 1
2

The only other critical parameters that are known
exactly are pbond

c (T ) = 2 sin (�=18) (and hence also
l

.

.

.

t
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model on the intersection of � with �T and let
f�(ab, cd; �) be the probability that it contains a
cluster connecting the arcs ab and cd. Then:

(i) f�(ab, cd; �) has a limit f0(ab, cd; �) as �! 0;
(ii) the limit is conformally invariant, in the

following sense: if � is a conformal map from
� to some other domain �0= �(�), and maps
a to a0, b to b0, c to c0 and d to d0, then
f0(ab, cd; �) = f0(a0b0, c0d0; �0); and

(iii) in the particular case when � is an equilateral
triangle of side length 1 with vertices a, b and c,
and if d is on (ca) at distance x 2 (0, 1) from c,
then f0(ab, cd; �) = x.

Point (iii) in particular is essential since it allows
us to compute the limiting crossing probabilities in
any conformal rectangle. In the original work of
Cardy, he made his prediction in the case of a
rectangle, for which the limit involves hypergeo-
metric functions; the remark that the equilateral
triangle gives rise to nicer formulae is originally due
to Carleson.

To precisely state the convergence of percolation
to its scaling limit, define the random curve known
as the percolation exploration path (see Figure 3) as
follows: In the upper half-plane, consider a site-
percolation model on a portion of the triangular
lattice and impose the boundary conditions that on
the negative real half-line all the sites are open,
while on the other half-line the sites are closed. The
exploration curve is then the common boundary of
the open cluster spanning from the negative half-
line, and the closed cluster spanning from the
positive half-line; it is an infinite, self-avoiding
random curve in the upper half-plane.

As the mesh of the lattice goes to 0, the exploration
curve then converges in distribution to the trace of an
SLE process, as introduced by Schramm, with
parameter = 6 – see Figure 4. The limiting curve is
not simple anymore (which corresponds to the

Figure 3 A percolation exploration path. Figure courtesy

Schramm O (2000) Scaling limits of loop-erased random walks

and uniform spanning trees. Israel Journal of Mathematics 118:

221–228.

Figure 4 An SLE process with parameter = 6 (infinite time,

with the driving process stopped at time 1).
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The rigorous derivation of the critical exponents
or percolation is due to Smirnov and Werner
2001); the dimension of the limiting curve was
btained by Beffara (2004).

ther Lattices and Percolative Systems

ome modifications or generalizations of standard
ernoulli percolation on Zd exhibit an interesting
ehavior and as such provide some insight into the
riginal process as well; there are too many
athematical objects which can be argued to be

ercolative in some sense to give a full account of all
existence of pivotal sites on large critical percolation
clusters), and it has Hausdorff dimension 7/4. For
more details on SLE processes, see, for example, the
related entry in the present volume.

As an application of this convergence result, one
can prove that the critical exponents described in the
previous section do exist (still in the case of the
triangular lattice), and compute their exact values,
except for �, which is still listed here for
completeness:

� ¼ � 2

3

� �
; � ¼ 5

36
; � ¼ 43

18
; � ¼ 91

5

	 ¼ 5

24
; 
 ¼ 4

3
; � ¼ 48

5
;� ¼ 91

36

These exponents are expected to be universal, in the
sense that they should be the same for percolation
on any two-dimensional lattice; but at the time of
this writing, this phenomenon is far from being
understood on a mathematical level.
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of them, so the following list is somewhat arbitrary
and by no means complete.

Percolation on Nonamenable Graphs

The first modification of the model one can think of
is to modify the underlying graph and move away
from the cubic lattice; phase transition still occurs,
and the main difference is the possibility for
infinitely many infinite clusters to coexist. On a
regular tree, such is the case whenever p 2 (pc, 1),
the first nontrivial example was produced by
Grimmett and Newman as the product of Z by a
tree: there, for some values of p the infinite cluster is
unique, while for others there is coexistence of
infinitely many of them. The corresponding defini-
tion, due to Benjamini and Schramm, is then the
following: if N is as above the number of infinite
open clusters,

pu :¼ inf p : PpðN ¼ 1Þ ¼ 1
� �

� pc

The main question is then to characterize graphs on
which 0 < pc < pu < 1.

A wide class of interesting graphs is that of Cayley
graphs of infinite, finitely generated groups. There,
by a simultaneous result by Häggström and Peres
and by Schonmann, for every p 2 (pc, pu) there are
Pp-a.s. infinitely many infinite cluster, while for
every p 2 (pu, 1] there is only one – note that this
does not follow from the definition since new
infinite components could appear when p is
increased. It is conjectured that pc < pu for any
Cayley graph of a nonamenable group (and more
generally for any quasitransitive graph with positive
Cheeger constant), and a result by Pak and
Smirnova is that every infinite, finitely generated,
nonamenable group has a Cayley graph on which
pc < pu; this is then expected not to depend on the
choice of generators. In the general case, it was recently
proved by Gaboriau that if the graph G is unimodular,
transitive, locally finite, and supports nonconstant
harmonic Dirichlet functions (i.e., harmonic functions
whose gradient is in ‘2), then indeed pc(G)< pu(G).

For referenc e a nd further r eading on the t opic,
the reader is advised to refer to the review paper by
Benjamini and Schramm (1996), the lecture notes
of Peres (1999), and the more recent article of
Gaboriau (2005).

Gradient Percolation

Another possible modification of the original model
is to allow the parameter p to depend on the
location; the porous medium may for instance have
been created by some kind of erosion, so that there
will be more open edges on one side of a given

domain than on the other. If p still varies smoothly,
then one expects some regions to look subcritical
and others to look supercritical, with interesting
behavior in the vicinity of the critical level set
{p = pc}. This particular model was introduced by
Sapoval et al. (1978) under the name of gradient
percolation (see Figure 5).

The control of the model away from the critical
zone is essentially the same as for usual Bernoulli
percolation, the main question being how to
estimate the width of the phase transition. The
main idea is then the same as in scaling theory: if the
distance between a point v and the critical level set is
less than the correlation length for parameter p(v),
then v is in the phase transition domain. This of
course makes sense only asymptotically, say in a
large n
 n square with p(x, y) = 1� y=n as is the
case in the figure: the transition then is expected to
have width of order na for some exponent a > 0.

First-Passage Percolation

First-passage percolation (also known as Eden or
Richardson model) was introduced by Hammersley
and Welsh (1965) as a time-dependent model for the
passage of fluid through a porous medium. To define
the model, with each edge e 2 E(Zd) is associated a
random variable T(e), which can be interpreted as
being the time required for fluid to flow along e. The
T(e) are assumed to be independent non-negative
random variables having common distribution F. For
any path � we define the passage time T(�) of � as

Tð�Þ :¼
X
e2�

TðeÞ

Figure 5 Gradient percolation in a square. In black is the

cluster spanning from the bottom side of the square.
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The first passage time a(x, y) between vertices x and
y is given by

aðx; yÞ ¼ inffTð�Þ : � a path from x to yg

and we can define

WðtÞ :¼fx 2 Zd : að0; xÞ � tg

the set of vertices reached by the liquid by time t. It
turns out that W(t) grows approximately linearly as
time passes, and that there exists a nonrandom limit
set B such that either B is compact and

ð1� "ÞB � 1

t
fWðtÞ � ð1þ "ÞB; eventually a:s:

for all � > 0, or B = Rd, and

fx 2 Rd : jxj � Kg � 1

t
fWðtÞ; eventually a:s:

for all K > 0. Here fW(t) = {zþ [�1=2, 1=2]d :
z 2W(t)}.

Studies of first-passage percolation brought
many fascinating discoveries, including Kingman’s
celebrated subadditive ergodic theorem. In recent
years interest has been focused on study of
fluctuations of the set fW(t) for large t. In spite of
huge effort and some partial results achieved, it
still remains a major task to establish rigorously
conjectures predicted by Kardar–Parisi–Zhang the-
ory about shape fluctuations in first passage
percolation.

Contact Processes

Introduced by Harris and conceived with biological
interpretation, the contact process on Zd is a
continuous-time process taking values in the space
of subsets of Zd. It is informally described as
follows: particles are distributed in Zd in such a
way that each site is either empty or occupied by
one particle. The evolution is Markovian: each
particle disappears after an exponential time of
parameter 1, independently from the others; at any
time, each particle has a possibility to create a new
particle at any of its empty neighboring sites, and
does so with rate � > 0, independently of everything
else.

The question is then whether, starting from a
finite population, the process will die out in finite
time or whether it will survive forever with positive
probability. The outcome will depend on the value
of �, and there is a critical value �c, such that for
� � �c process dies out, while for � > �c indeed
there is survival, and in this case the shape of the
population obeys a shape theorem similar to that of
first-passage percolation.

The analogy with percolation is strong, the
corresponding percolative picture being the follow-
ing: in Zdþ1

þ , each edge is open with probability p 2
(0, 1), and the question is whether there exists an
infinite oriented path � (i.e., a path along which the
sum of the coordinates is increasing), composed of
open edges. Once again, there is a critical parameter
customarily denoted by pc, at which no such path
exists (compare this to the open question of the
continuity of the function � at pc in dimensions
3 � d � 18). This variation of percolation lies in a
different universality class than the usual Bernoulli
model.

Invasion Percolation

Let X(e) : e 2 E be independent random variables
indexed by the edge set E of Zd, d � 2, each
having uniform distribution in [0, 1]. One con-
structs a sequence C = {Ci, i� 1} of random
connected subgraphs of the lattice in the
following iterative way: the graph C0 contains
only the origin. Having defined Ci, one obtains
Ciþ1 by adding to Ci an edge eiþ1 (with its outer
lying end-vertex), chosen from the outer edge
boundary of Ci so as to minimize X(eiþ1). Still
very little is known about the behavior of this
process.

An interesting observation, relating �(pc) of usual
percolation with the invasion dynamics, comes from
CM Newman:

�ðpcÞ ¼ 0, Pfx 2 Cg ! 0 as jxj ! 1

Further Remarks

For a much more in-depth review of percolation on
lattices and the mathematical methods involved in
its study, and for the proofs of most of the results we
could only point at, we refer the reader to the
standard book of Grimmett (1999); another excel-
lent general reference, and the only place to find
some of the technical graph-theoretical details
involved, is the book of Kesten (1982). More
information in the case of graphs that are not
lattices can be found in the lecture notes of Peres
(1999).

For curiosity, the reader can refer to the first
mention of a problem close to percolation, in the
problem section of the first volume of the American
Mathematical Monthly (problem 5, June 1894,
submitted by D V Wood).

See also: Determinantal Random Fields; Stochastic
Loewner Evolutions; Two-Dimensional Ising Model; Wulff
Droplets.
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Introduction

There are several equivalent formulations of the
problem of quantizing an interacting field theory.
The list includes canonical quantization, path-
integral (or functional) techniques, stochastic
quantization, ‘‘unified’’ methods such as the
Batalin–Vilkovisky formalism, and techniques
based on the realizations of field theories as low-
energy limits of string theory. The problem of
obtaining an exact nonperturbative description of a
given quantum field theory is most often a very
difficult one. Perturbative techniques, on the other
hand, are abundant, and common to all of the
quantization methods mentioned above is that they
admit particle interpretations in this formalism.

The basic physical quantities that one wishes to
calculate in a relativistic (d þ 1)-dimensional quan-
tum field theory are the S-matrix elements

Sba ¼ outh bðtÞj aðtÞiin ½1�

between in and out states at large positive time t.
The scattering operator S is then defined by writing
[1] in terms of initial free-particle (descriptor) states as

Sba¼: h bð0ÞjSj að0Þi ½2�

Suppose that the Hamiltonian of the given field
theory can be written as H = H0 þH0, where H0 is
the free part and H0 the interaction Hamiltonian.
The time evolutions of the in and out states are
governed by the total Hamiltonian H. They can be
expressed in terms of descriptor states which evolve
in time with H0 in the interaction picture and
correspond to free-particle states. This leads to the
Dyson formula

S ¼ T exp �i

Z 1
�1

dt HIðtÞ
� �

½3�

where T denotes time ordering and HI(t) =R
dd

xHint(x, t) is the interaction Hamiltonian in the
interaction picture, with Hint(x, t) the interaction
Hamiltonian density, which deals with essentially
free fields. This formula expresses S in terms of
interaction-picture operators acting on free-particle
states in [2] and is the first step towards Feynman
perturbation theory.
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For many analytic investigations, such as those
which arise in renormalization theory, one is
interested instead in the Green’s functions of the
quantum field theory, which measure the response
of the system to an external perturbation. For
definiteness, let us consider a free real scalar field
theory in d þ 1 dimensions with Lagrangian
density

L ¼ 1
2 @��@

��� 1
2 m2�2 þ Lint ½4�

where Lint is the interaction Lagrangian density
which we assume has no derivative terms. The
interaction Hamiltonian density is then given by
Hint =�Lint. Introducing a real scalar source J(x),
we define the normalized ‘‘partition function’’
through the vacuum expectation values,

Z½ J� ¼ h0jS½ J�j0ih0jS½0�j0i ½5�

where j0i is the normalized perturbative vacuum
state of the quantum field theory given by (4)
(defined to be destroyed by all field annihilation
operators), and

S½ J� ¼ T exp i

Z
ddþ1xðLint þ JðxÞ�ðxÞÞ

� �
½6�

from the Dyson formula. This partition function is
the generating functional for all Green’s functions
of the quantum field theory, which are obtained
from [5] by taking functional derivatives with
respect to the source and then setting J(x) = 0.
Explicitly, in a formal Taylor series expansion in J
one has

Z½ J� ¼
X1
n¼0

in

n!

Yn
i¼1

Z
ddþ1xi JðxiÞGðnÞðx1; . . . ; xnÞ ½7�

whose coefficients are the Green’s functions

GðnÞðx1; . . . ;xnÞ

:¼
h0jT½exp i

R
ddþ1xLint

� �
�ðx1Þ � � ��ðxnÞ�j0i

h0jTexp i
R

ddþ1xLint

� �
j0i

½8�

It is customary to work in momentum space by
introducing the Fourier transforms

~JðkÞ ¼
Z

ddþ1x eik�xJðxÞ

~GðnÞðk1; . . . ; knÞ

¼
Yn
i¼1

Z
ddþ1xi eiki�xiGðnÞðx1; . . . ; xnÞ

½9�
in terms of which the expansion [7] reads

Z½ J � ¼
X1
n¼0

in

n!

Yn

i¼1

Z
ddþ1ki

ð2�Þdþ1
~Jð�kiÞ

� ~GðnÞðk1; . . . ; knÞ ½10�

The generating functional [10] can be written as a sum
of Feynman diagrams with source insertions. Dia-
grammatically, the Green’s function is an infinite series
of graphs which can be represented symbolically as

~
G(n)(k1, . . . ,kn) =

kn

k2

k3

k1

..
.

. ½11�

where the n external lines denote the source
insertions of momenta ki and the bubble denotes
the sum over all Feynman diagrams constructed
from the interaction vertices of Lint.

This procedure is, however, rather formal in the way
that we have presented it, for a variety of reasons. First
of all, by Haag’s theorem, it follows that the interaction
representation of a quantum field theory does not exist
unless a cutoff regularization is introduced into the
interaction term in the Lagrangian density (this
regularization is described explicitly below). The
addition of this term breaks translation covariance.
This problem can be remedied via a different definition
of the regularized Green’s functions, as we discuss
below. Furthermore, the perturbation series of a
quantum field theory is typically divergent. The
expansion into graphs is, at best, an asymptotic series
which is Borel summable. These shortcomings will not
be emphasized any further in this article. Some
mathematically rigorous approaches to perturbative
quantum field theory can be found in the bibliography.

The Green’s functions can also be used to describe
scattering amplitudes, but there are two important
differences between the graphs [11] and those which
appear in scattering theory. In the present case,
external lines carry propagators, that is, the free-
field Green’s functions

�ðx� yÞ ¼ 0 T �ðxÞ�ðyÞ½ �j j0h i

¼ x &þm2
� ��1
��� ���yD E

¼
Z

ddþ1p

ð2�Þdþ1

i

p2 �m2 þ i�
e�ip�ðx�yÞ ½12�

where �! 0þ regulates the mass shell contributions,
and their momenta ki are off-shell in general
(k2

i 6¼m2). By the LSZ theorem, the S-matrix element
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is then given by the multiple on-shell residue of the
Green’s function in momentum space as

k01; . . . ; k0n S� 1j jk1; . . . ; kl

	 

¼ lim

k0
1
;...;k0n!m2

k1 ;...;kl!m2

Yn

i¼1

1

i
ffiffiffiffi
c0i

p k0 2i �m2
� �Yl

j¼1

1

i
ffiffiffiffi
cj
p k2

j �m2
� �

� ~GðnþmÞ �k01; . . . ;�k0n; k1; . . . ; kl

� �
½13�

where ic0i, icj are the residues of the corresponding
particle poles in the exact two-point Green’s
function.

This article deals with the formal development
and computation of perturbative scattering ampli-
tudes in relativistic quantum field theory, along the
lines outlined above. Initially we deal only with real
scalar field theories of the sort [4] in order to
illustrate the concepts and technical tools in as
simple and concise a fashion as possible. These
techniques are common to most quantum field
theories. Fermions and gauge theories are then
separately treated afterwards, focusing on the
methods which are particular to them.
Diagrammatics

The pinnacle of perturbation theory is the technique
of Feynman diagrams. Here we develop the basic
machinery in a quite general setting and use it to
analyze some generic features of the terms compris-
ing the perturbation series.
Wick’s Theorem

The Green’s functions [8] are defined in terms of
vacuum expectation values of time-ordered products
of the scalar field �(x) at different spacetime points.
Wick’s theorem expresses such products in terms of
normal-ordered products, defined by placing each
field creation operator to the right of each field
annihilation operator, and in terms of two-point
Green’s functions [12] of the free-field theory
(propagators). The consequence of this theorem is
the Haffnian formula

0 T �ðx1Þ � � ��ðxnÞ½ �j j0h i

¼

0

n ¼ 2k� 1

X
�2S2k

Yk

i¼1

0 T �ðx�ð2i�1ÞÞ�ðx�ð2iÞÞ
� �� ��0	 


n ¼ 2k

8>>>>>>>>><
>>>>>>>>>:

½14�
The formal Taylor series expansion of the
scattering operator S may now be succinctly
summarized into a diagrammatic notation by
using Wick’s theorem. For each spacetime integra-
tion

R
ddþ1xi we introduce a vertex with label i,

and from each vertex there emanate some lines
corresponding to field insertions at the point xi.
If the operators represented by two lines appear in
a two-point function according to [14], that is, they
are contracted, then these two lines are connected
together. The S operator is then represented as a
sum over all such Wick diagrams, bearing in mind
that topologically equivalent diagrams correspond
to the same term in S. Two diagrams are said to
have the same pattern if they differ only by a
permutation of their vertices. For any diagram D
with n(D) vertices, the number of ways of inter-
changing vertices is n(D)!. The number of diagrams
per pattern is always less than this number. The
symmetry number S(D) of D is the number of
permutations of vertices that give the same dia-
gram. The number of diagrams with the pattern of
D is then n(D)!=S(D).

In a given pattern, we write the contribution to S
of a single diagram D as

1

nðDÞ! :�ðDÞ:

where the combinatorial factor comes from
the Taylor expansion of S, the large colons
denote normal ordering of quantum operators,
and :�(D) : contains spacetime integrals over nor-
mal-ordered products of the fields. Then all
diagrams with the pattern of D contribute :�(D) :
=S(D) to S. Only the connected diagrams Dr, r 2 N
(those in which every vertex is connected to every
other vertex) contribute and we can write the
scattering operator in a simple form which
eliminates contributions from all disconnected dia-
grams as

S ¼:exp
X1
r¼1

�ðDrÞ
SðDrÞ

 !
: ½15�

Feynman Rules

Feynman diagrams in momentum space are
defined from the Wick diagrams above by drop-
ping the labels on vertices (and also the symmetry
factors S(D)�1), and by labeling the external lines
by the momenta of the initial and final particles
that the corresponding field operators annihilate.
In a spacetime interpretation, external lines
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represent on-shell physical particles while internal
lines of the graph represent off-shell virtual
particles (k2 6¼ m2). Physical particles interact
via the exchange of virtual particles. An arbitrary
diagram is then calculated via the Feynman rules:

p1

=  ig (2π)d +1 δ 
(d +1)(p1 + · · · + pn)

=
dd +1p

(2π)d +1
i

.

.
p2

p3

.

pn

p

p 

2 – m 

2 + i 

½16�

for a monomial interaction Lint = (g=n!)�n.
Irreducible Green’s Functions

A one-particle irreducible (1PI) or proper Green’s
function is given by a sum of diagrams in which
each diagram cannot be separated by cutting one
internal line. In momentum space, it is defined
without the overall momentum conservation delta-
function factors and without propagators on exter-
nal lines. For example, the two particle 1PI Green’s
function

k k
1PI =: ∑(k) ½17�

is called the self-energy. If G(k) is the complete
two-point function in momentum space, then one
has

kk

= i
k 

2 – m 
2 – ∑(k)

G(k) :=

kk= + 1PIk

k1PI 1PI+ kk + . . .

½18�

and thus it suffices to calculate only 1PI diagrams.
The 1PI effective action, defined by the Legendre

transformation �[�] :=�i ln Z[J]�
R

ddþ1xJ(x)�(x)
of [5], is the generating functional for proper vertex
functions and it can be represented as a functional of
only the vacuum expectation value of the field �,
that is, its classical value. In the semiclassical (WKB)
approximation, the one-loop effective action is
given by
�½�� ¼ S½�� þ i�h

2
Tr ln 1þ�V 00½��ð Þ þOð�h2Þ

¼ S½�� þ i�h
X1
n¼1

ð�1Þn

2n

�
Yn

i¼1

Z
ddþ1xi�ðxi � xiþ1ÞV 00 �ðxiþ1Þ½ �

þOð�h2Þ ½19�

where we have denoted S[�] =
R

ddþ1xL and
V[�] =�Lint, and for each term in the infinite
series we define xnþ1 := x1. The first term in [19]
is the classical contribution and it can be
represented in terms of connected tree diagrams.
The second term is the sum of contributions of
one-loop diagrams constructed from n propaga-
tors �i�(x� y) and n vertices �iV 00[�]. The
expansion may be carried out to all orders in
terms of connected Feynman diagrams, and the
result of the above Legendre transformation is to
select only the one-particle irreducible diagrams
and to replace the classical value of � by an
arbitrary argument. All information about the
quantum field theory is encoded in this effective
action.
Parametric Representation

Consider an arbitrary proper Feynman diagram
D with n internal lines and v vertices. The
number, ‘, of independent loops in the diagram
is the number of independent internal momenta in
D when conservation laws at each vertex have
been taken into account, and it is given by ‘= nþ
1� v. There is an independent momentum inte-
gration variable ki for each loop, and a propa-
gator for each internal line as in [16]. The
contribution of D to a proper Green’s function
with r incoming external momenta pi, withPr

i = 1 pi = 0, is given by

~IDðpÞ ¼
VðDÞ
SðDÞ

Yn
i¼1

Z
ddþ1ki

ð2�Þdþ1

i

k2
i �m2 þ i�

�
Yv

j¼1

ð2�Þdþ1�ðdþ1Þ Pj � Kj

� �
½20�

where V(D) contains all contributions from the
interaction vertices of Lint, and Pj (resp. Kj) is the
sum of incoming external momenta plj (resp.
internal momenta klj) at vertex j with respect to
a fixed chosen orientation of the lines of the
graph. After resolving the delta-functions in terms
of independent internal loop momenta k1, . . . , k‘
and dropping the overall momentum conservation
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delta-function along with the symmetry and vertex
factors in [20], one is left with a set of momentum
space integrals

IDðpÞ ¼
Y‘
i¼1

Z
ddþ1ki

ð2�Þdþ1

Yn
j¼1

i

ajðk; pÞ þ i�
½21�

where aj(k, p) are functions of both the internal and
external momenta.

It is convenient to exponentiate propagators using
the Schwinger parametrization

i

aj þ i�
¼
Z 1

0

d�j ei�jðajþi�Þ ½22�

and after some straightforward manipulations one
may write the Feynman parametric formula

Yn
j¼1

i

ajðk; pÞ þ i�

¼ ðn� 1Þ!
Yn

j¼1

Z 1

0

d�j

� 1�
P

j �j

� �
DDðk;�; pÞn ½23�

where DD(k;�, p) :=
P

j �j[aj(k, p)þ i�] is generic-
ally a quadratic form

DDðk;�; pÞ ¼ 1

2

X‘
i;j¼1

ki �Qijð�Þkj

þ
X‘
i¼1

LiðpÞ � ki þ 	 p2
� �

½24�

The positive symmetric matrix Qij is independent
of the external momenta pl, invertible, and
has nonzero eigenvalues Q1, . . . , Q‘. The vectors
L�

i are linear combinations of the p�j , while 	(p2)
is a function of only the Lorentz invariants p2

i .
After some further elementary manipulations,
the loop diagram contribution [21] may be
written as

IDðpÞ

¼ ðn�1Þ!
Yn
j¼1

Z 1

0

d�j

Y‘
i¼1

1

Qið�Þ2
Z

ddþ1ki

ð2�Þdþ1
� 1�

X
j

�j

 !

� 1

2

X
i

k2
i þ	 p2

� �
�1

2

X
i;j

LiðpÞ �Q�1ð�ÞijLjðpÞ
 !�n

½25�

Finally, the integrals over the loop momenta ki

may be performed by Wick-rotating them
to Euclidean space and using the fact that
the combination of ‘ integrations in Rdþ1 has
O((dþ1)‘) rotational invariance. The contribu-
tion from the entire Feynman diagram D thereby
reduces to the calculation of the parametric
integrals:

IDðpÞ ¼
� n� ðdþ1Þ‘

2

� �
ð2�Þ

ðdþ1Þ‘
2 id‘

Yn
j¼1

Z 1

0

d�j

Y‘
i¼1

1

Qið�Þ2

�
�
�

1�
P

j �j

�
�
	 p2ð Þ � 1

2

P
i;j

LiðpÞ �Q�1ð�ÞijLjðpÞ
�n�ðdþ1Þ‘

2

½26�

where �(s) is the Euler gamma-function.
Regularization

The parametric representation [26] is generically
convergent when 2n� (d þ 1)‘ > 0. When diver-
gent, the infinities arise from the lower limits of
integration �j! 0. This is just the parametric
representation of the large-k divergence of the
original Feynman amplitude [20]. Such ultraviolet
divergences plague the very meaning of a quan-
tum field theory and must be dealt with in some
way. We will now quickly tour the standard
methods of ultraviolet regularization for such
loop integrals, which is a prelude to the renor-
malization program that removes the divergences
(in a renormalizable field theory). Here we
consider regularization simply as a means of
justification for the various formal manipulations
that are used in arriving at expressions such
as [26].
Momentum Cutoff

Cutoff regularization introduces a mass scale �
into the quantum field theory and throws away
the Fourier modes of the fields for spatial
momenta k with jkj > �. This regularization
spoils Lorentz invariance. It is also nonlocal. For
example, if we restrict to a hypercube in
momentum space, so that jkij < � for i = 1, . . . , d,
then

Z
jkj>�

ddk

ð2�Þd
eik�x ¼

Yd
i¼1

sinð�xiÞ
�xi

which is a delta-function in the limit �!1 but is
nonlocal for � <1. The regularized field theory is
finite order by order in perturbation theory and
depends on the cutoff �.
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Lattice Regularization

We can replace the spatial continuum by a lattice L
of rank d and define a Lagrangian on L by

LL ¼
1

2

X
i2SðL Þ

_�2
i þ J

X
hi;ji2LðL Þ

�i�j þ
X

i2SðL Þ
Vð�iÞ ½27�

where S(L ) is the set of sites i of the lattice on each
of which is situated a time-dependent function �i, and
LL is the collection of links connecting pairs hi, ji of
nearest-neighbor sites i, j on L . The regularized field
theory is now local, but still has broken Lorentz
invariance. In particular, it suffers from broken rota-
tional symmetry. If L is hypercubic with lattice spacing
a, that is, L = (Za)d, then the momentum cutoff is
at � = a�1.
Pauli–Villars Regularization

We can replace the propagator i(k2 �m2 þ i�)�1 by
i(k2 �m2 þ i�)�1 þ i

PN
j = 1 cj(k

2 �M2
j þ i�)�1, where

the masses Mj � m are identified with the momen-
tum cutoff as min{Mj} = �!1. The mass-depen-
dent coefficients cj are chosen to make the modified
propagator decay rapidly as (k2)�N�1 at k!1,
which gives the N equations (m2)i þ

P
j cj(M

2
j )i =

0, i = 0, 1, . . . , N � 1. This regularization preserves
Lorentz invariance (and other symmetries that the
field theory may possess) and is local in the
following sense. The modified propagator can be
thought of as arising through the alteration of the
Lagrangian density [4] by N additional scalar fields
’j of masses Mj with

LPV ¼ 1
2 @��@

��� 1
2 m2�2

þ
XN
j¼1

1
2 @�’j@

�’j � 1
2 M2

j ’
2
j

� �
þ Lint½�� ½28�

where � :=�þ
P

j
ffiffiffiffi
cj
p

’j. The contraction of the �
field thus produces the required propagator.
However, the cj’s as computed above are gener-
ically negative numbers and so the Lagrangian
density [28] is not Hermitian (as � 6¼ �y). It is
possible to make [28] formally Hermitian by
redefining the inner product on the Hilbert
space of physical states, but this produces
negative-norm states. This is no problem at
energy scales E�Mj on which the extra particles
decouple and the negative probability states are
invisible.
Dimensional Regularization

Consider a Euclidean space integral
R

d4k(k2 þ a2)�r

arising after Wick rotation from some loop diagram
in (3þ 1)-dimensional scalar field theory. We
replace this integral by its D-dimensional version

Z
dDk

k2 þ a2ð Þr ¼
�D=2 a2

� �D=2�r

ðr� 1Þ! � r�D

2

� �
½29�

This integral is absolutely convergent for D < 2r.
We can analytically continue the result of this
integration to the complex plane D 2 C. As an
analytic function, the only singularities of the Euler
function �(z) are poles at z = 0, �1, �2, . . . . In
particular, �(z) has a simple pole at z = 0 of residue
1. If we write D = 4þ � with j�j! 0, then the
integral [29] is proportional to �(r� 2� �=2) and �
plays the role of the regulator here. This regulariza-
tion is Lorentz invariant (in D dimensions) and is
distinguished as having a dimensionless regulariza-
tion parameter �. This parameter is related to the
momentum cutoff � by ��1 = ln (�=m), so that the
limit �! 0 corresponds to �!1.

Infrared Divergences

Thus far we have only considered the ultraviolet
behavior of loop amplitudes in quantum field theory.
When dealing with massless particles (m = 0 in [4])
one has to further worry about divergences arising
from the k! 0 regions of Feynman integrals. After
Wick rotation to Euclidean momenta, one can show
that no singularities arise in a given Feynman diagram
as some of its internal masses vanish provided that all
vertices have superficial degree of divergence d þ 1,
the external momenta are not exceptional (i.e., no
partial sum of the incoming momenta pi vanishes), and
there is at most one soft external momentum. This
result assumes that renormalization has been carried
out at some fixed Euclidean point. The extension of
this property when the external momenta are con-
tinued to physical on-shell values is difficult. The
Kinoshita–Lee–Nauenberg theorem states that, as a
consequence of unitarity, transition probabilities in a
theory involving massless particles are finite when the
sum over all degenerate states (initial and final) is
taken. This is true order by order in perturbation
theory in bare quantities or if minimal subtraction
renormalization is used (to avoid infrared or mass
singularities in the renormalization constants).
Fermion Fields

We will now leave the generalities of our pure scalar
field theory and start considering the extensions of
our previous considerations to other types of
particles. Henceforth we will primarily deal with
the case of (3þ 1)-dimensional spacetime. We begin
by indicating how the rudiments of perturbation
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theory above apply to the case of Dirac fermion
fields. The Lagrangian density is

LF ¼  ði@=�mÞ þ L0 ½30�

where  are four-component Dirac fermion fields in
3þ 1 dimensions,  := y
0 and @== 
�@� with 
�

the generators of the Clifford algebra {
�, 
�} = 2���.
The Lagrangian density L0 contains couplings of the
Dirac fields to other field theories, such as the scalar
field theories considered previously.

Wick’s theorem for anticommuting Fermi fields
leads to the Pfaffian formula

h0jT  ð1Þ � � � ðnÞ½ �j0i

¼

0; n ¼ 2k� 1

1

2kk!

X
�2S2k

sgnð�Þ

�
Yk
i¼1

h0jT  �ð2i� 1Þð Þ �ð2iÞð Þ½ �j0i

n ¼ 2k

8>>>>>>>>>>><
>>>>>>>>>>>:

½31�

where for compactness we have written in the
argument of  (i) the spacetime coordinate, the
Dirac index, and a discrete index which distin-
guishes  from  . The nonvanishing contractions
in [31] are determined by the free-fermion
propagator

�Fðx� yÞ ¼ 0 T  ðxÞ ðyÞ
� �� ��0	 


¼ x ði@=�mÞ�1
��� ���yD E

¼ i

Z
d4p

ð2�Þ4
p=þm

p2 �m2 þ i�
e�ip�ðx�yÞ ½32�

Perturbation theory now proceeds exactly as
before. Suppose that the coupling Lagrangian
density in [30] is of the form L0= (x)V(x) (x).
Both the Dyson formula [3] and the diagrammatic
formula [15] are formally the same in this instance.
For example, in the formal expansion in powers ofR

d4xL0, the vacuum-to-vacuum amplitude (the
denominator in [5]) will contain field products of
the form

Yn
i = 1

Z
d4xih0jT½ ðxiÞVðxiÞ ðxiÞ�j0i

which correspond to fermion loops. Before applying
Wick’s theorem, the fields must be rearranged as

tr
Yn
i = 1

VðxiÞ ðxiÞ ðxiþ1Þ
(with xnþ1 := x1), where tr is the 4� 4 trace
over spinor indices. This reordering introduces the
familiar minus sign for a closed fermion loop, and
one has

V(x2)

V(xn)

  (–)Π
n

n – 1

 

i=1

j =1

d4xi

V(x3)

V(x1)

.
.

.

tr Π ΔF 
(xj – xj + 1) 

V(xj + 1) ΔF 
(xj + 1 – xj + 2)

×

×

=

½33�

Feynman rules are now described as follows.
Fermion lines are oriented to distinguish a particle
from its corresponding antiparticle, and carry both
a four-momentum label p as well as a spin
polarization index r = 1, 2. Incoming fermions (resp.
antifermions) are described by the wave functions
u(r)

p (resp. v(r)
p ), while outgoing fermions (resp.

antifermions) are described by the wave functions
u(r)

p (resp. v(r)
p ). Here u(r)

p and v(r)
p are the classical

spinors, that is, the positive and negative-energy
solutions of the Dirac equation (p=�m)u(r)

p = (p=þ
m)v(r)

p = 0. Matrices are multiplied along a Fermi
line, with the head of the arrow on the left. Closed
fermion loops produce an overall minus sign as in
[33], and the multiplication rule gives the trace of
Dirac matrices along the lines of the loop. Unpolar-
ized scattering amplitudes are summed over the spins
of final particles and averaged over the spins of initial
particles using the completeness relations for spinorsX

r¼1;2

u
ðrÞ
p u

ðrÞ
p ¼ p=þm;

X
r¼1;2

v
ðrÞ
p v
ðrÞ
p ¼ p=�m ½34�

leading to basis-independent results. Polarized
amplitudes are computed using the spinor bilinears
u(r)

p 

�u(s)

p = v(r)
p 


�v(s)
p = 2p��rs, u(r)

p u(s)
p = � v(r)

p v(s)
p = 2m

�rs, and u(r)
p v(s)

p = 0.
When calculating fermion loop integrals using

dimensional regularization, one utilizes the Dirac
algebra in D dimensions


�
� ¼ ��� ¼D


�p=
� ¼ ð2�DÞp=

�p=k=
� ¼ 4p �kþðD�4Þp=k=


�p=k=q=
� ¼�2q=k=p=�ðD�4Þp=k=q=

tr1¼ 4; tr
�1 � � �
�2k�1 ¼ 0; tr
�
� ¼ 4���

tr
�
�

� ¼ 4 ������ �����ð
þ �����Þ

½35�
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Specific to D=4 dimensions are the trace identities

tr
5 ¼ tr
� 
� 
5 ¼ 0;

tr
� 
� 
 
� 
5 ¼ �4i����
½36�

where 
5:= i
0
1
2
3. Finally, loop diagrams eval-
uated with the fermion propagator [32] require a
generalization of the momentum space integral [29]
given byZ

dDk

ð2�ÞD
1

k2 þ 2k � pþ a2 þ i�ð Þr

¼
ið��ÞD=2� r� D

2

� �
ð2�ÞDðr� 1Þ!

1

a2 � p2 þ i�ð Þr�D=2
½37�

From this formula we can extract expressions for
more complicated Feynman integrals which are
tensorial, that is, which contain products of
momentum components k� in the numerators of
their integrands, by differentiating [37] with respect
to the external momentum p�.
Gauge Fields

The issues we have dealt with thus far have
interesting difficulties when dealing with gauge
fields. We will now discuss some general aspects of
the perturbation expansion of gauge theories using
as prototypical examples quantum electrodynamics
(QED) and quantum chromodynamics (QCD) in
four spacetime dimensions.

Quantum Electrodynamics

Consider the QED Lagrangian density

LQED ¼� 1
4 F��F

��

þ 1
2�

2A�A
� þ  ði@=� eA=�mÞ ½38�

where A� is a U(1) gauge field in 3þ 1 dimensions
and F�� = @�A� � @�A� is its field strength tensor.
We have added a small mass term �! 0 for
the gauge field, which at the end of calculations
should be taken to vanish in order to describe
real photons (as opposed to the soft photons
described by [38]). This is done in order to cure
the infrared divergences generated in scattering
amplitudes due to the masslessness of the photon,
that is, the long-range nature of the electromag-
netic interaction. The Bloch–Nordsieck theorem
in QED states that infrared divergences cancel
for physical processes, that is, for processes
with an arbitrary number of undetectable soft
photons.

Perturbation theory proceeds in the usual way
via the Dyson formula, Wick’s theorem, and
Feynman diagrams. The gauge field propagator is
given by

h0jT A�ðxÞA�ðyÞ
� 

j0i

¼ hxj ��� &þ �2
� �

� @�@�
� �1jyi

¼ i

Z
d4p

ð2�Þ4
���� þ p�p�

�2

p2 � �2 þ i�
e�ip�ðx�yÞ ½39�

and is represented by a wavy line. The fermion–
fermion–photon vertex is

= –ie γμ

μ
½40�

An incoming (resp. outgoing) soft photon of
momentum k and polarization r is described by the
wave function e(r)

� (k) (resp. e(r)
� (k)�), where the

polarization vectors e(r)
� (k), r = 1, 2, 3 solve the vector

field wave equation (&þ �2)A� = @�A� = 0 and
obey the orthonormality and completeness
conditions

eðrÞðkÞ� � eðsÞðkÞ ¼ ��rs

X3

r¼1

eðrÞ� ðkÞeðrÞ� ðkÞ
� ¼� ��� þ

k�k�
�2

½41�

along with k � e(r)(k) = 0. All vector indices are
contracted along the lines of the Feynman graph.
All other Feynman rules are as previously.

Quantum Chromodynamics

Consider nonabelian gauge theory in 3þ 1 dimen-
sions minimally coupled to a set of fermion fields
 A, A = 1, . . . , Nf , each transforming in the funda-
mental representation of the gauge group G whose
generators Ta satisfy the commutation relations
[Ta, Tb] = f abcTc. The Lagrangian density is given by

LQCD ¼�
1

4
Fa
�� Fa�� þ 1

2�
@�Aa�
� �2þ@��D��

þ
XNf

A¼1

 
AðiD=�mAÞ A ½42�

where Fa
�� = @�Aa

� � @�Aa
� þ f abcAb

�Ac
� and D� = @� þ

ieR(Ta)Aa
�, with R the pertinent representation of G

(R(Ta)bc = f a
bc for the adjoint representation and

R(Ta) = Ta for the fundamental representation).
The first term is the Yang–Mills Lagrangian density,
the second term is the covariant gauge-fixing term,
and the third term contains the Faddeev–Popov
ghost fields � which transform in the adjoint
representation of the gauge group.

Feynman rules are straightforward to write
down and are given in Figure 1 where wavy lines
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Figure 1 Feynman rules.
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represent gluons and dashed lines represent ghosts.
Feynman rules for the fermions are exactly as
before, except that now the vertex [40] is multi-
plied by the color matrix Ta. All color indices are
contracted along the lines of the Feynman graph.
Color factors may be simplified by using the
identities

Tr Ra Rb ¼ dim R

dim G
C2ðRÞ�ab; Ra Ra ¼ C2ðRÞ

Ra Rb Ra ¼ C2ðRÞ �
1

2
C2ðGÞ

� �
Rb

½43�

where Ra:= R(Ta) and C2(R) is the quadratic
Casimir invariant of the representation R (with
value C2(G) in the adjoint representation). For
G = SU(N), one has C2(G) = N and C2(N) = (N2 �
1)=2N for the fundamental representation.

The cancellation of infrared divergences in loop
amplitudes of QCD is far more delicate than in
QED, as there is no analog of the Bloch–
Nordsieck theorem in this case. The Kinoshita–
Lee–Nauenberg theorem guarantees that, at the
end of any perturbative calculation, these diver-
gences must cancel for any appropriately defined
physical quantity. However, at a given order of
perturbation theory, a physical quantity typically
involves both virtual and real emission contribu-
tions that are separately infrared divergent.
Already at two-loop level these divergences have
a highly intricate structure. Their precise form is
specified by the Catani color-space factorization
formula, which also provides an efficient way of
organizing amplitudes into divergent parts, which
ultimately drop out of physical quantities, and
finite contributions.

The computation of multigluon amplitudes in
nonabelian gauge theory is rather complicated
when one uses polarization states of vector bosons.
A much more efficient representation of amplitudes
is provided by adopting a helicity (or circular
polarization) basis for external gluons. In the
spinor–helicity formalism, one expresses positive
and negative-helicity polarization vectors in terms
of massless Weyl spinors jk	i := 1

2 (1	 
5)uk =
1
2 (1	 
5)vk through

e	� ðk; qÞ ¼ 	
q
 
�
�� ��k
	 

ffiffiffi
2
p

q
 k	jh i
½44�
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where q is an arbitrary null reference momentum
which drops out of the final gauge-invariant
amplitudes. The spinor products are crossing sym-
metric, antisymmetric in their arguments, and satisfy
the identities

k�i jkþj
D E

kþj jk�i
D E

¼ 2ki � kj

k�i kþj

��� E
k�l jkþr
	 
D

¼ k�i jkþr
	 


k�l jkþj
D E

þ k�i jkþl
	 


k�j jkþr
D E

½45�

Any amplitude with massless external fermions
and vector bosons can be expressed in terms of
spinor products. Conversely, the spinor products
offer the most compact representation of helicity
amplitudes which can be related to more conven-
tional amplitudes described in terms of Lorentz
invariants. For loop amplitudes, one uses a
dimensional regularization scheme in which all
helicity states are kept four dimensional and only
internal loop momenta are continued to D = 4þ �
dimensions.
Computing Loop Integrals

At the very heart of perturbative quantum field
theory is the problem of computing Feynman
integrals for multiloop scattering amplitudes. The
integrations typically involve serious technical chal-
lenges and for the most part are intractable by
straightforward analytical means. We will now
survey some of the computational techniques that
have been developed for calculating quantum loop
amplitudes which arise in the field theories consid-
ered previously.
*

*+

+  2

*=

Figure 2 Asymptotic expansion of the two-loop double bubble

diagram.
Asymptotic Expansion

In many physical instances one is interested in
scattering amplitudes in certain kinematical limits. In
this case one may perform an asymptotic expansion of
multiloop diagrams whose coefficients are typically
nonanalytic functions of the perturbative expansion
parameter �h. The main simplification which arises
comes from the fact that the expansions are done
before any momentum integrals are evaluated. In the
limits of interest, Taylor series expansions in different
selected regions of each loop momentum can be
interpreted in terms of subgraphs and co-subgraphs
of the original Feynman diagram.

Consider a Feynman diagram D which depends on
a collection {Qi} of large momenta (or masses), and
a collection {mi, qi} of small masses and momenta.
The prescription for the large-momentum
asymptotic expansion of D may be summarized in
the diagrammatic formula

lim
Q!1

D ðQ; m; qÞ

¼
X
d�D

ðD =dÞðm; qÞ ? T fmd ;qdgd
� �

ðQ; md ; qdÞ ½46�

where the sum runs through all subgraphs d of D

which contain all vertices where a large momentum
enters or leaves the graph and is one-particle irredu-
cible after identifying these vertices. The operator
T {md , qd } performs a Taylor series expansion before any
integration is carried out, and the notation (D =d) ?
(T {md , qd }d) indicates that the subgraph d � D is
replaced by its Taylor expansion in all masses and
external momenta of d that do not belong to the set
{Qi}. The external momenta of d which become loop
momenta in D are also considered to be small. The
loop integrations are then performed only after all
these expansions have been carried out. The diagrams
D =d are called co-subgraphs.

The subgraphs become massless integrals in which
the scales are set by the large momenta. For instance,
in the simplest case of a single large momentum Q one
is left with integrals over propagators. The co-
subgraphs may contain small external momenta and
masses, but the resulting integrals are typically much
simpler than the original one. A similar formula is true
for large-mass expansions, with the vertex conditions
on subdiagrams replace by propagator conditions. For
example, consider the asymptotic expansion of the
two-loop double bubble diagram (Figure 2) in the
region q2 � m2, where m is the mass of the inner loop.
The subgraphs (to the right of the stars) are expanded
in all external momenta including q and reinserted into
the fat vertices of the co-subgraphs (to the left of the
stars). Once such asymptotic expansions are carried
out, one may attempt to reconstruct as much informa-
tion as possible about the given scattering amplitude



38 Perturbation Theory and Its Techniques
by using the method of Padé approximation which
requires knowledge of only part of the expansion of
the diagram. By construction, the Padé approximation
has the same analytic properties as the exact
amplitude.
Brown–Feynman Reduction

When considering loop diagrams which involve
fermions or gauge bosons, one encounters tensorial
Feynman integrals. When these involve more than
three distinct denominator factors (propagators),
they require more than two Feynman parameters
for their evaluation and become increasingly
complicated. The Brown–Feynman method simpli-
fies such higher-rank integrals and effectively
reduces them to scalar integrals which typically
require fewer Feynman parameters for their
evaluation.

To illustrate the idea behind this method, consider
the one-loop rank-3 tensor Feynman integral

J��	¼
Z

dDk

ð2�ÞD

� k�k�k	

k2ðk2��2Þðq�kÞ2ððk�qÞ2þ�2Þðk2þ2k �pÞ
½47�

where p and q are external momenta with the mass-
shell conditions p2 = (p�q)2 =m2. By Lorentz invar-
iance, the general structure of the integral [47] will
be of the form

J��	 ¼ a��p	 þ b��q	 þ c�s�	 þ c�s�	 ½48�

where a��, b�� are tensor-valued functions and
c� a vector-valued function of p and q. The
symmetric tensor s�� is chosen to project out
components of vectors transverse to both p and q,
i.e., p�s�� = q�s�� = 0, with the normalization
s�
� = D� 2. Solving these constraints leads to the

explicit form

s��¼����m2q�q�þq2p�p� �ðp �qÞ q�p�þp�q�ð Þ
m2q2�ðp �qÞ2

½49�

To determine the as yet unknown functions
a��, b�� and c� above, we first contract both sides
of the decomposition [48] with p� and q� to get

2p	 J��	 ¼ 2m2a�� þ 2ðp � qÞb��

2q	 J��	 ¼ 2ðp � qÞa�� þ 2q2b��
½50�

Inside the integrand of [47], we then use the trivial
identities

2k � p ¼ k2 þ 2k � p
� �

� k2

2q � k ¼ k2 þ q2 � ðk� qÞ2
½51�
to write the left-hand sides of [50] as the sum of
rank-2 Feynman integrals which, with the exception
of the one multiplied by q2 from [51], have one less
denominator factor. This formally determines the
coefficients a�� and b�� in terms of a set of rank-2
integrations. The vector function c� is then found
from the contraction

J��� ¼ p�a
�� þ q�b

�� þ ðD� 2Þc� ½52�

This contraction eliminates the k2 denominator
factor in the integrand of [47] and produces a
vector-valued integral. Solving the system of
algebraic equations [50] and [52] then formally
determines the rank-3 Feynman integral [47] in
terms of rank-1 and rank-2 Feynman integrals. The
rank-2 Feynman integrals thus generated can then
be evaluated in the same way by writing a
decomposition for them analogous to [48] and
solving for them in terms of vector-valued and
scalar-valued Feynman integrals. Finally, the rank-1
integrations can be solved for in terms of a set of
scalar-valued integrals, most of which have fewer
denominator factors in their integrands.

Generally, any one-loop amplitude can be reduced
to a set of basic integrals by using the Passarino–
Veltman reduction technique. For example, in
supersymmetric amplitudes of gluons any tensor
Feynman integral can be reduced to a set of scalar
integrals, that is, Feynman integrals in a scalar field
theory with a massless particle circulating in the
loop, with rational coefficients. In the case of N = 4
supersymmetric Yang–Mills theory, only scalar box
integrals appear.

Reduction to Master Integrals

While the Brown–Feynman and Passarino–Veltman
reductions are well suited for dealing with one-loop
diagrams, they become rather cumbersome for
higher-loop computations. There are other more
powerful methods for reducing general tensor
integrals into a basis of known integrals called
master integrals. Let us illustrate this technique on a
scalar example. Any scalar massless two-loop Feyn-
man integral can be brought into the form

IðpÞ ¼
Z

dDk

ð2�ÞD
Z

dDk0

ð2�ÞD
Yt

j¼1

�
�lj
j

Yq

i¼1

�ni

i ½53�

where �j are massless scalar propagators depending
on the loop momenta k, k0 and the external
momenta p1, . . . , pn, and �i are scalar products of
a loop momentum with an external momentum or
of the two loop momenta. The topology of the
corresponding Feynman diagram is uniquely deter-
mined by specifying the set �1, . . . , �t of t distinct
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propagators in the graph, while the integral itself is
specified by the powers lj � 1 of all propagators, by
the selection �1, . . . , �q of q scalar products and by
their powers ni � 0.

The integrals in a class of diagrams of the same
topology with the same denominator dimension
r =

P
j lj and same total scalar product number

s =
P

i ni are related by various identities. One
class follows from the fact that the integral over a
total derivative with respect to any loop momentum
vanishes in dimensional regularization as

Z
dDk

ð2�ÞD
@JðkÞ
@k�

¼ 0

where J(k) is any tensorial combination of propaga-
tors, scalar products and loop momenta. The
resulting relations are called integration-by-parts
identities and for two-loop integrals can be cast
into the form

Z
dDk

ð2�ÞD
Z

dDk0

ð2�ÞD
v�
@f ðk; k0; pÞ

@k�
¼ 0

¼
Z

dDk

ð2�ÞD
Z

dDk0

ð2�ÞD
v�
@f ðk; k0; pÞ

@k0�
½54�

where f (k, k0, p) is a scalar function containing
propagators and scalar products, and v� is any
internal or external momentum. For a graph with ‘
loops and n independent external momenta, this
results in a total of ‘(nþ ‘) relations.

In addition to these identities, one can also exploit
the fact that all Feynman integrals [53] are Lorentz
scalars. Under an infinitesimal Lorentz transformation
p�! p� þ �p�, with �p� = p����� , ���� =�����, one has
the invariance condition I(pþ �p) = I(p), which leads
to the linear homogeneous differential equations

Xn

i¼1

p�i
@

@pi�
� p�i

@

@pi�

� �
IðpÞ ¼ 0 ½55�

This equation can be contracted with all possible
antisymmetric combinations of pi�pj� to yield
linearly independent Lorentz invariance identities
for (53).

Using these two sets of identities, one can either
obtain a reduction of integrals of the type (53)
to those corresponding to a small number of simpler
diagrams of the same topology and diagrams of
simpler topology (fewer denominator factors), or
a complete reduction to diagrams with simpler
topology. The remaining integrals of the topology
under consideration are called irreducible master
integrals. These momentum integrals cannot be
further reduced and have to be computed by different
techniques. For instance, one can apply a Mellin–
Barnes transformation of all propagators given by

1

ðk2þaÞl
¼ 1

ðl�1Þ!

Z i1

�i1

dz

2�i

az

ðk2Þlþz
�ðlþ zÞ�ð�zÞ ½56�

where the contour of integration is chosen to lie to the
right of the poles of the Euler function �(lþ z) and to
the left of the poles of �(�z) in the complex z-plane.
Alternatively, one may apply the negative-dimension
method in which D is regarded as a negative integer in
intermediate calculations and the problem of loop
integration is replaced with that of handling infinite
series. When combined with the above methods, it may
be used to derive powerful recursion relations among
scattering amplitudes. Both of these techniques rely on
an explicit integration over the loop momenta of the
graph, their differences occurring mainly in the repre-
sentations used for the propagators.

The procedure outlined above can also be used to
reduce a tensor Feynman integral to scalar integrals, as
in the Brown–Feynman and Passarino–Veltman reduc-
tions. The tensor integrals are expressed as linear
combinations of scalar integrals of either higher
dimension or with propagators raised to higher
powers. The projection onto a tensor basis takes the
form [53] and can thus be reduced to master integrals.
String Theory Methods

The realizations of field theories as the low-energy
limits of string theory provides a number of power-
ful tools for the calculation of multiloop amplitudes.
They may be used to provide sets of diagrammatic
computational rules, and they also work well for
calculations in quantum gravity. In this final part we
shall briefly sketch the insights into perturbative
quantum field theory that are provided by tech-
niques borrowed from string theory.

String Theory Representation

String theory provides an efficient compact repre-
sentation of scattering amplitudes. At each loop
order there is only a single closed string diagram,
which includes within it all Feynman graphs along
with the contributions of the infinite tower of
massive string excitations. Schematically, at one-
loop order, the situation is as shown in Figure 3.
The terms arising from the heavy string modes are
removed by taking the low-energy limit in which all
external momenta lie well below the energy scale set
by the string tension. This limit picks out the regions
of integration in the string diagram corresponding to
particle-like graphs, but with different diagrammatic
rules.
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Figure 3 String theory representation at one-loop order.
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Given these rules, one may formulate a purely
field-theoretic framework which reproduces them.
In the case of QCD, a key ingredient is the use of a
special gauge originally derived from the low-energy
limit of tree-level string amplitudes. This is known
as the Gervais–Neveu gauge and it is defined by the
gauge-fixing Lagrangian density

LGN ¼ �
1

2
Tr @�A� � ieffiffiffi

2
p A�A�

� �2

½57�

This gauge choice simplifies the color factors that
arise in scattering amplitudes. The string theory
origin of gauge theory amplitudes is then most
closely mimicked by combining this gauge with the
background field gauge, in which one decomposes
the gauge field into a classical background field and
a fluctuating quantum field as A� = Acl

� þ Aqu
� , and

imposes the gauge-fixing condition Dcl
�Aqu� = 0,

where Dcl
� is the background field covariant deriva-

tive evaluated in the adjoint representation of the
gauge group. This hybrid gauge is well suited for
computing the effective action, with the quantum
part describing gluons propagating around loops
and the classical part describing gluons emerging
from the loops. The leading loop momentum
behavior of one-particle irreducible graphs with
gluons in the loops is very similar to that of graphs
with scalar fields in the loops.

Supersymmetric Decomposition

String theory also suggests an intimate relationship
with supersymmetry. For example, at tree level,
QCD is effectively supersymmetric because a multi-
gluon tree amplitude contains no fermion loops, and
so the fermions may be taken to lie in the adjoint
representation of the gauge group. Thus, pure gluon
tree amplitudes in QCD are identical to those in
supersymmetric Yang–Mills theory. They are con-
nected by supersymmetric Ward identities to ampli-
tudes with fermions (gluinos) which drastically
simplify computations. In supersymmetric gauge
theory, these identities hold to all orders of
perturbation theory.

At one-loop order and beyond, QCD is not super-
symmetric. However, one can still perform a super-
symmetric decomposition of a QCD amplitude for
which the supersymmetric components of the ampli-
tude obey the supersymmetric Ward identities. Con-
sider, for example, a one-loop multigluon scattering
amplitude. The contribution from a fermion propagat-
ing in the loop can be decomposed into the contribution
of a complex scalar field in the loop plus a contribution
from an N = 1 chiral supermultiplet consisting of a
complex scalar field and a Weyl fermion. The
contribution from a gluon circulating in the loop can
be decomposed into contributions of a complex scalar
field, an N = 1 chiral supermultiplet, and an N = 4
vector supermultiplet comprising three complex scalar
fields, four Weyl fermions and one gluon all in the
adjoint representation of the gauge group. This
decomposition assumes the use of a supersymmetry-
preserving regularization.

The supersymmetric components have important
cancellations in their leading loop momentum
behavior. For instance, the leading large loop
momentum power in an n-point 1PI graph is
reduced from jkjn down to jkjn�2 in the N = 1
amplitude. Such a reduction can be extended to any
amplitude in supersymmetric gauge theory and is
related to the improved ultraviolet behavior of
supersymmetric amplitudes. For the N = 4 ampli-
tude, further cancellations reduce the leading power
behavior all the way down to jkjn�4. In dimensional
regularization, N = 4 supersymmetric loop ampli-
tudes have a very simple analytic structure owing to
their origins as the low-energy limits of superstring
scattering amplitudes. The supersymmetric Ward
identities in this way can be used to provide
identities among the nonsupersymmetric contribu-
tions. For example, in N = 1 supersymmetric Yang–
Mills theory one can deduce that fermion and gluon
loop contributions are equal and opposite for multi-
gluon amplitudes with maximal helicity violation.

Scattering Amplitudes in Twistor Space

The scattering amplitude in QCD with n incoming
gluons of the same helicity vanishes, as does the
amplitude with n� 1 incoming gluons of one helicity
and one gluon of the opposite helicity for n � 3. The
first nonvanishing amplitudes are the maximal helicity
violating (MHV) amplitudes involving n� 2 gluons of
one helicity and two gluons of the opposite helicity.
Stripped of the momentum conservation delta-function
and the group theory factor, the tree-level amplitude
for a pair of gluons of negative helicity is given by

AðkÞ ¼ en�2 k�r
��kþs	 
Yn

i¼1

k�i
��kþiþ1

	 
�1 ½58�

This amplitude depends only on the holomorphic
(negative chirality) Weyl spinors. The full MHV
amplitude (with the momentum conservation
delta-function) is invariant under the conformal
group SO(4, 2) ffi SU(2, 2) of four-dimensional
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Minkowski space. After a Fourier transformation of
the positive-chirality components, the complexifica-
tion SL(4, C) has an obvious four-dimensional repre-
sentation acting on the positive- and negative-chirality
spinor products. This representation space is iso-
morphic to C4 and is called twistor space. Its elements
are called twistors.

Wave functions and amplitudes have a known
behavior under the C�-action which rescales twistors,
giving the projective twistor space CP3 or RP3

according to whether the twistors are complex valued
or real valued. The Fourier transformation to twistor
space yields (due to momentum conservation) the
localization of an MHV amplitude to a genus-0
holomorphic curve CP1 of degree 1 in CP3 (or to a
real line RP1 � RP3). It is conjectured that, generally,
an ‘-loop amplitude with p gluons of positive helicity
and q gluons of negative helicity is supported on a
holomorphic curve in twistor space of degree qþ ‘� 1
and genus�‘. The natural interpretation of this curve is
as the world sheet of a string. The perturbative gauge
theory may then be described in terms of amplitudes
arising from the couplings of gluons to a string. This
twistor string theory is a topological string theory which
gives the appropriate framework for understanding the
twistor properties of scattering amplitudes. This frame-
work has been used to analyze MHV tree diagrams and
one-loop N = 4 supersymmetric amplitudes of gluons.

See also: Constructive Quantum Field Theory;
Dispersion Relations; Effective Field Theories; Gauge
Theories from Strings; Hopf Algebra Structure of
Renormalizable Quantum Field Theory; Perturbative
Renormalization Theory and BRST; Quantum
Chromodynamics; Renormalization: General Theory;
Scattering, Asymptotic Completeness and Bound States;
Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools; Stationary Phase
Approximation; Supersymmetric Particle Models.
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Main Problems in the Perturbative
Quantization of Gauge Theories

Gauge theories are field theories in which the basic
fields are not directly observable. Field configurations
yielding the same observables are connected by a
gauge transformation. In the classical theory, the
Cauchy problem is well posed for the observables,
but in general not for the nonobservable gauge-
variant basic fields, due to the existence of time-
dependent gauge transformations.

Attempts to quantize the gauge-invariant objects
directly have not yet been completely satisfactory.
Instead, one modifies the classical action by adding a
gauge-fixing term such that standard techniques of
perturbative quantization can be applied and such
that the dynamics of the gauge-invariant classical
fields is not changed. In perturbation theory, this



problem shows up already in the quantization of the
free gauge fields (see the section ‘‘Quantization of
free gauge fields’’). In the final (interacting) theory the
physical quantities should be independent on how the
gauge fixing is done (‘‘gauge independence’’).

Traditionally, the quantization of gauge theories
is mostly analyzed in terms of path integrals (e.g., by
Faddeev and Popov), where some parts of the
arguments are only heuristic. In the original treat-
ment of Becchi, Rouet, and Stora (cf. also Tyutin)
(which is called ‘‘BRST-quantization’’), a restriction
to purely massive theories was necessary; the
generalization to the massless case by Lowenstein’s
method is cumbersome.

The BRST quantization is based on earlier work
of Feynman, Faddeev, and Popov (introduction of
‘‘ghost fields’’), and of Slavnov. The basic idea is
that after adding a term to the Lagrangian which
makes the Cauchy problem well posed but which is
not gauge-invariant one enlarges the number of
fields by infinitesimal gauge transformations
(‘‘ghosts’’) and their duals (‘‘anti-ghosts’’). One
then adds a further term to the Lagrangian which
contains a coupling of the anti-ghosts and ghosts.
The BRST transformation acts as an infinitesimal
gauge transformation on the original fields and on
the gauge transformations themselves and maps the
anti-ghosts to the gauge-fixing terms. This is done
in such a way that the total Lagrangian is invariant
and that the BRST transformation is nilpotent.
The hard problem in the perturbative construction
of gauge theories is to show that BRST symmetry can
be maintained during renormalization (see the section
on perturbative renormalization). By means of the
‘‘quantum action principle’’ of Lowenstein (1971)
and Lam (1972, 1973) a cohomological classification
of anomalies was worked out (an overview is given,
e.g., in the book of Piguet and Sorella (1995)). For
more details, see BRST Quantization.

The BRST quantization can be carried out in a
transparent way in the framework of algebraic
quantum field theory (AQFT, see Algebraic
Approach to Quantum Field Theory). The advan-
tage of this formulation is that it allows one to
separate the three main problems of perturbative
gauge theories:

1. the elimination of unphysical degrees of freedom,
2. positivity (or ‘‘unitarity’’), and
3. the problem of infrared divergences.

In AQFT, the procedure is the following: starting
from an algebra of all local fields, including the
unphysical ones, one shows that after perturbative
quantization the algebra admits the BRST transfor-
mation as a graded nilpotent derivation. The

algebra of observables is then defined as the
cohomology of the BRST transformation. To solve
the problem of positivity, one has to show that the
algebra of observables, in contrast to the algebra of
all fields, has a nontrivial representation on a
Hilbert space. Finally, one can attack the infrared
problem by investigating the asymptotic behavior
of states. The latter problem is nontrivial even in
quantum electrodynamics (since an electron is
accompanied by a ‘‘cloud of soft photons’’) and
may be related to confinement in quantum
chromodynamics.

The method of BRST quantization is by no means
restricted to gauge theories, but applies to general
constrained systems. In particular, massive vector
fields, where the masses are usually generated by the
Higgs mechanism, can alternatively be treated
directly by the BRST formalism, in close analogy
to the massless case (cf. the section on quantization
of free gauge fields).

Local Operator BRST Formalism

In AQFT, the principal object is the family of
operator algebras O ! A(O) (where O runs, e.g.,
through all double cones in Minkowski space),
which fulfills the Haag–Kastler axioms (cf. Algebraic
Approach to Quantum Field Theory). To construct
these algebras, one considers the algebras F (O)
generated by all local fields including ghosts u and
anti-ghosts ũ. Ghosts and anti-ghosts are scalar
fermionic fields. The algebra gets a Z2 grading with
respect to even and odd ghost numbers, where ghosts
get ghost numbersþ1 and anti-ghosts ghost number�1.
The BRST transformation s acts on these algebras as a
Z2-graded derivation with s2 = 0, s(F (O)) � F (O),
and s(F�) =�(�1)�F s(F)�, �F denoting the ghost num-
ber of F.

The observables should be s-invariant and may be
identified if they differ by a field in the range of s.
Since the range A00 of s is an ideal in the kernel A0

of s, the algebra of observables is defined as the
quotient

A :¼ A0=A00 ½1�

and the local algebras A(O) � A are the images of
A0 \ F (O) under the quotient map A0 ! A.

To prove that A admits a nontrivial representa-
tion by operators on a Hilbert space, one may use
the BRST operator formalism (Kugo and Ojima
1979, Dütsch and Fredenhagen 1999): one starts
from a representation of F on an inner-product
space (K, h� , �i) such that hF��, i = h�, F i
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and that s is implemented by an operator Q on K,
that is,

sðFÞ ¼ ½Q; F� ½2�

with [� , �] denoting the graded commutator, such
that Q is symmetric and nilpotent. One may then
construct the space of physical states as the
cohomology of Q, H := K0=K00, where K0 is the
kernel and K00 the range of Q. The algebra of
observables now has a natural representation �
on H:

�ð½A�Þ½�� :¼ ½A�� ½3�

(where A 2 A0,� 2 K0, [A] := AþA00, [�] := �þ
K00). The crucial question is whether the scalar
product on H inherited from K is positive definite.

In free quantum field theories (K, h� , �i) can be
chosen in such a way that the positivity can directly
be checked by identifying the physical degrees of
freedom (see next section). In interacting theories
(see the section on perturbative construction of
gauge theories), one may argue in terms of scattering
states that the free BRST operator on the asymptotic
fields coincides with the BRST operator of the
interacting theory. This argument, however, is
invalidated by infrared problems in massless gauge
theories. Instead, one may use a stability property of
the construction.

Namely, let ~F be the algebra of formal power
series with values in F , and let ~K be the vector space
of formal power series with values in K. ~K possesses
a natural inner product with values in the ring of
formal power series C[[�]], as well as a representa-
tion of ~F by operators. One also assumes that the
BRST transformation s̃ is a formal power series
s̃ =

P
n �

nsn of operators sn on F and that the
BRST operator Q̃ is a formal power series
Q̃ =

P
n �

nQn of operators on K. The algebraic
construction can then be done in the same way as
before, yielding a representation �̃ of the algebra
of observables ~A by endomorphisms of a C[[�]]
m
in

is

s
h
c̃
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odule ~H, which has an inner product with values
C[[�]].

One now assumes that at � = 0 the inner product
positive, in the sense that

(Positivity)

ðiÞ h�; �i 	 0 8� 2 K with Q0� ¼ 0; and

ðiiÞ Q0� ¼ 0 ^ h�; �i ¼ 0 ¼) � 2 Q0K ½4�

Then the inner product on ~H is positive in the
ense that for all �̃ 2 ~H the inner product with itself,
�̃, �̃i, is of the form c̃�c̃ with some power series
2 C[[�]], and c̃ = 0 iff �̃ = 0.
This result guarantees that, within perturbation
theory, the interacting theory satisfies positivity,
provided the unperturbed theory was positive and
BRST symmetry is preserved.
Quantization of Free Gauge Fields

The action of a classical free gauge field A,

S0ðAÞ ¼ �
1

4

Z
dx F��ðxÞF��ðxÞ

¼ 1

2

Z
dkÂ�ðkÞ�M��ðkÞÂ�ðkÞ ½5�

(where F�� := @�A� � @�A� and M��(k) := k2g�� �
k�k�) is unsuited for quantization because M�� is not
invertible: due to M��k� = 0, it has an eigenvalue 0.
Therefore, the action is usually modified by adding a
Lorentz-invariant gauge-fixing term: M�� is replaced
by M��(k)þ �k�k� , where � 2 R n {0} is an arbitrary
constant. The corresponding Euler–Lagrange equation
reads

&A� � ð1� �Þ@�@�A� ¼ 0 ½6�

For simplicity, let us choose � = 1, which is referred
to as Feynman gauge. Then the algebra of the free
gauge field is the unital ?-algebra generated by
elements A�(f ), f 2 D(R4), which fulfill the
relations:

f 7!A�ðf Þ is linear ½7�

A�ð&f Þ ¼ 0 ½8�

A�ðf Þ� ¼ A�ð�f Þ ½9�

½A�ðf Þ;A�ðgÞ� ¼ ig��
Z

dx dy f ðxÞDðx� yÞgðyÞ ½10�

where D is the massless Pauli–Jordan distribution.
This algebra does not possess Hilbert space

representations which satisfy the microlocal spectrum
condition, a condition which in particular requires
the singularity of the two-point function to be of the
so-called Hadamard form. It possesses, instead,
representations on vector spaces with a nondegene-
rate sequilinear form, for example, the Fock space
over a one-particle space with scalar product

h�;  i ¼ ð2�Þ�3

Z
d3p

2jpj�
�ðpÞ �ðpÞjp0¼jpj ½11�

Gupta and Bleuler characterized a subspace of the
Fock space on which the scalar product is semide-
finite; the space of physical states is then obtained



by dividing out the space of vectors with vanishing
norm.

After adding a mass term

m2

2

Z
dxA�ðxÞA�ðxÞ

to the action [5], it seems to be no longer necessary
to add also a gauge-fixing term. The fields then
satisfy the Proca equation

@�F�� þm2A� ¼ 0 ½12�

which is equivalent to the equation (&þm2)A� = 0
together with the constraint @�A� = 0. The Cauchy
problem is well posed, and the fields can be
represented in a positive-norm Fock space with
only physical states (corresponding to the three
physical polarizations of A). The problem, however,
is that the corresponding propagator admits no
power-counting renormalizable perturbation series.

The latter problem can be circumvented in the
following way: for the algebra of the free quantum
field, one takes only the equation (&þm2)A� = 0
into account (or, equivalently, one adds the gauge-
fixing term (1/2)(@�A�)2 to the Lagrangian) and goes
over from the physical field A� to

B� :¼ A� þ @
��

m
½13�

where � is a real scalar field, to the same mass m
where the sign of the commutator is reversed
(‘‘bosonic ghost field’’ or ‘‘Stückelberg field’’).
The propagator of B� yields a power-counting
renormalizable perturbation series; however, B� is
an unphysical field. One obtains four independent
components of B which satisfy the Klein–Gordon
equation. The constraint 0 = @�A� = @�B� þm� is
required for the expectation values in physical states
only. So, quantization in the case m > 0 can be
treated in analogy with [8]–[10] by replacing A� by
B�, the wave operator by the Klein–Gordon operator
(&þm2) in [8], and D by the corresponding massive
commutator distribution �m in [10]. Again, the
algebra can be nontrivially represented on a space
with indefinite metric, but not on a Hilbert space.

One can now use the method of BRST quantiza-
tion in the massless as well as in the massive case.
One introduces a pair of fermionic scalar fields
(ghost fields) (u, ũ). u, ũ, and (for m > 0) � fulfill the
Klein–Gordon equation to the same mass m 	 0 as
the vector field B. The free BRST transformation
reads

s0ðB�Þ ¼ i@�u; s0ð�Þ ¼ imu

s0ðuÞ ¼ 0; s0ð~uÞ ¼ �ið@�B� þm�Þ
½14�
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(see, e.g., Scharf (2001)). It is implemented by the
free BRST charge

Q0 ¼
Z

x0¼const:

d3xj
ð0Þ
0 ðx0; xÞ ½15�

where

jð0Þ� :¼ ð@�B� þm�Þ@�u� @�ð@�B� þm�Þu ½16�

is the free BRST current, which is conserved. (The
interpretation of the integral in [15] requires some
care.) Q0 satisfies the assumptions of the (local)
operator BRST formalism, in particular it is nilpotent
and positive [4]. Distinguished representatives of the
equivalence classes [�] 2 Ke Q0=Ra Q0 are the states
built up only from the three spatial (two transversal
for m = 0, respectively) polarizations of A.

Perturbative Renormalization

The starting point for a perturbative construction of
an interacting quantum field theory is Dyson’s
formula for the evolution operator in the interaction
picture. To avoid conflicts with Haag’s theorem on
the nonexistence of the interaction picture in
quantum field theory, one multiplies the interaction
Lagrangian L with a test function g and studies the
local S-matrix,

SðgLÞ ¼ 1þ
X1
n¼1

in

n!

Z
dx1 � � � dxngðx1Þ � � � gðxnÞ

� TðLðx1Þ � � � LðxnÞÞ ½17�

where T denotes a time-ordering prescription. In the
limit g!1 (adiabatic limit), S(gL) tends to the

scattering matrix. This limit, however, is plagued by
infrared divergences and does not always exist.
Interacting fields FgL are obtained by the Bogoliubov
formula:

FgLðxÞ ¼
�

�hðxÞ jh¼0SðgLÞ�1SðgL þ hFÞ ½18�

The algebraic properties of the interacting fields
within a region O depend only on the inter-
action within a slightly larger region (Brunetti and
Fredenhagen 2000), hence the net of algebras in the
sense of AQFT can be constructed in the adiabatic
limit without the infrared problems (this is called the
‘‘algebraic adiabatic limit’’).

The construction of the interacting theory is thus
reduced to a definition of time-ordered products of
fields. This is the program of causal perturbation
theory (CPT), which was developed by Epstein and
Glaser (1973) on the basis of previous work by
Stückelberg and Petermann (1953) and Bogoliubov



and Shirkov (1959). For simplicity, we describe
CPT only for a real scalar field. Let ’ be a classical
real scalar field which is not restricted by any field
equation. Let P denote the algebra of polynomials
in ’ and all its partial derivatives @a’ with multi-
indices a 2 N4

0. The time-ordered products (Tn)n2N

are linear and symmetric maps Tn : (P 

D(R4))
n ! L(D), where L(D) is the space of
operators on a dense invariant domain D in the
Fock space of the scalar free field. One often uses
the informal notation

Tnðg1F1 
 � � � 
 gnFnÞ

¼
Z

dx1 � � � dxnTnðF1ðx1Þ; . . . ; FnðxnÞÞ

� g1ðx1Þ � � � gnðxnÞ ½19�

where Fj 2 P, gj 2 D(R4).
The sequence (Tn) is constructed by induction on

n, starting with the initial condition

T1

Y
j

@aj’ðxÞ
 !

¼:
Y

j

@aj�ðxÞ : ½20�

where the right-hand side is a Wick polynomial of
the free field �. In the inductive step the requirement
of causality plays the main role, that is, the
condition that

Tnðf1 
 � � � 
 fnÞ ¼Tkðf1 
 � � � 
 fkÞ
� Tn�kðfkþ1 
 � � � 
 fnÞ ½21�

if

ðsupp f1 [ � � � [ supp fkÞ
\ ððsupp fkþ1 [ � � � [ supp fnÞ þ V̄�Þ = ;

(where V̄� is the closed backward light cone). This
condition expresses the composition law for evolu-
tion operators in a relativistically invariant and local
way. Causality determines Tn as an operator-valued
distribution on R4n in terms of the inductively known
Tl, l < n, outside of the total diagonal �n :=
{(x1, . . . , xn) jx1 = � � � = xn}, that is, on test functions
from D(R4n n�n).

Perturbative renormalization is now the exten-
sion of Tn to the full test function space D(R4n).
Generally, this extension is nonunique. In contrast
to other methods of renormalization, no diver-
gences appear, but the ambiguities correspond to
the finite renormalizations that persist after
removal of divergences by infinite counter terms.
The ambiguities can be reduced by (re-)normal-
ization conditions, which means that one requires
that certain properties which hold by induction on
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D(R4n n�n) are maintained in the extension,
namely:

� (N0) a bound on the degree of singularity near
the total diagonal;
� (N1) Poincaré covariance;
� (N2) unitarity of the local S-matrix;
� (N3) a relation to the time-ordered products of

subpolynomials;
� (N4) the field equation for the interacting field
’gL [18];
� (AWI) the ‘‘action Ward identity’’ (Stora 2002,

Dütsch and Fredenhagen 2003): @�T(� � �Fl(x) � � �) =
T(� � � @�Fl(x) � � �). This condition can be understood
as the requirement that physics depends on the action
only, so total derivatives in the interaction Lagrangian
can be removed; and
� further symmetries, in particular in gauge

theories, Ward identities expressing BRST invar-
iance. A universal formulation of all symmetries
which can be derived from the field equation in
classical field theory is the ‘‘master Ward iden-
tity’’ (which presupposes (N3) and (N4)) (Boas
and Dütsch 2002, Dütsch and Fredenhagen
2003); see next section.

The problem of perturbative renormalization is to
construct a solution of all these normalization
conditions. Epstein and Glaser have constructed the
solutions of (N0)–(N3). Recently, the conditions
(N4) and (AWI) have been included. The master
Ward identity cannot always be fulfilled, the
obstructions being the famous ‘‘anomalies’’ of
perturbative quantum field theory.

Perturbative Construction of Gauge
Theories

In the case of a purely massive theory, the
adiabatic limit S = limg!1 S(gL) exists (Epstein
and Glaser 1976), and one may adopt a formalism
due to Kugo and Ojima (1979), who use the fact
that in these theories the BRST charge Q can be
identified with the incoming (free) BRST charge
Q0 [15]. For the scattering matrix S to be a well-
defined operator on the physical Hilbert space of
the free theory, H = Ke Q0=Ra Q0, one then has to
require

lim
g!1
½Q0;TððgLÞ
nÞ�jkerQ0

¼ 0 ½22�

This is the motivation for introducing the condi-
tion of ‘‘perturbative gauge invariance’’ (Dütsch
et al. 1993, 1994); see Scharf (2001)): according
to this condition, there should exist a Lorentz



vector L�1 2 P associated with the interaction L,
such that

½Q0;TnðLðx1Þ � � � LðxnÞ�

¼ i
Xn

l¼1

@xl
� TnðLðx1Þ � � � L�1ðxlÞ � � � LðxnÞÞ ½23�

This is a somewhat stronger condition than [22] but
has the advantage that it can be formulated
independently of the adiabatic limit. The condition
[22] (or perturbative gauge invariance) can be
satisfied for tree diagrams (i.e., the corresponding
requirement in classical field theory can be fulfilled).
In the massive case, this is impossible without a
modification of the model; the inclusion of addi-
tional physical scalar fields (corresponding to Higgs
fields) yields a solution. It is gratifying that,
by making a polynomial ansatz for the interaction
L 2 P, perturbative gauge invariance [23] for tree
diagrams, renormalizability (i.e., the mass dimension
of L is �4), and some obvious requirements (e.g.,
the Lorentz invariance) determine L to a far extent.
In particular, the Lie-algebraic structure needs not to
be put in, as it can be derived in this way (Stora 1997,
unpublished). Including loop diagrams (i.e., quantum
effects), it has been proved that (N0)–(N2) and
perturbative gauge invariance can be fulfilled to all
orders for massless SU(N) Yang–Mills theories.

Unfortunately, in the massless case, it is unlikely that
the adiabatic limit exists and, hence, an S-matrix
formalism is problematic. One should better rely on
the construction of local observables in terms of
couplings with compact support. However, then the
selection of the observables [1] has to be done in terms
of the BRST transformation s̃ of the interacting fields.

For the corresponding BRST charge, one makes
the ansatz

~Q ¼
Z

d4x ~j�gLðxÞb�ðxÞ; L ¼
X
n	1

Ln�
n ½24�
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where (b�) is a smooth version of the �-function
characterizing a Cauchy surface and j̃

�

gL is the
interacting BRST-current [18] (where
j̃� =

P
n j(n)
� �n (j(n)

� 2 P) is a formal power series with
j(0)
� given by [16]). (Note that there is a volume

divergence in this integral, which can be avoided by a
spatial compactification. This does not change the
abstract algebra FL(O).) A crucial requirement is that
j̃
�

gL is conserved in a suitable sense. This condition is
essentially equivalent to perturbative gauge invariance
and hence its application to classical field theory
determines the interaction L in the same way, and in
addition the deformation j(0) ! j̃gL. The latter also
gives the interacting BRST charge and transformation,
Q̃ and s̃, by [24] and [2]. The so-obtained Q̃ is often
nilpotent in classical field theory (and hence this holds
also for s̃). However, in QFT conservation of j̃gL and
Q̃

2
= 0 requires the validity of additional Ward

identities, beyond the condition of perturbative gauge
invariance [23]. All the necessary identities can be
derived from the master Ward identity

Tnþ1ðA; F1; . . . ; FnÞ

¼ �
Xn

k¼1

TnðF1; . . . ; �AFk; . . . ; FnÞ ½25�

where A = �AS0 with a derivation �A. The master
Ward identity is closely related to the quantum
action principle which was formulated in the
formalism of generating functionals of Green’s
functions. In the latter framework, the anomalies
have been classified by cohomological methods. The
vanishing of anomalies of the BRST symmetry is a
selection criterion for physically acceptable models.

In the particular case of QED, the Ward identity

@y
�T j�ðyÞF1ðx1Þ � � � FnðxnÞð Þ

¼ i
Xn

j¼1

�ðy� xjÞ

� T F1ðx1Þ � � � ð�FjÞðxjÞ � � � FnðxnÞ
� �

½26�

for the Dirac current j� := � 	� , is sufficient for
the construction, where (�F) := i(r� s)F for
F =  r � sB1 � � �Bl (B1, . . . , Bl are nonspinorial fields)
and F1, . . . , Fn run through all subpolynomials of
L = j�A�, (N0)–(N4) and [26] can be fulfilled to all
orders (Dütsch and Fredenhagen, 1999).

See also: Algebraic Approach to Quantum Field Theory;
Axiomatic Quantum Field Theory; Batalin–Vilkovisky
Quantization; BRST Quantization; Constrained Systems;
Indefinite Metric; Perturbation Theory and its Techniques;
Quantum Chromodynamics; Quantum Field Theory:
A Brief Introduction; Quantum Fields with Indefinite
Metric: Non-Trivial Models; Renormalization: General
Theory; Renormalization: Statistical Mechanics and
Condensed Matter; Standard Model of Particle Physics.
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19: 211.

Epstein H and Glaser V (1976) Adiabatic limit in perturbation
theory. In: Velo G and Wightman AS (eds.) Renormalization
Theory, pp. 193–254.

Henneaux M and Teitelboim C (1992) Quantization of Gauge
Systems. Princeton: Princeton University Press.

Kugo T and Ojima I (1979) Local covariant operator formalism

of nonabelian gauge theories and quark confinement problem.

Supplement of the Progress of Theoritical Physics 66: 1.

Phase Transition Dynamics
A Onuki, Kyoto University, Kyoto, Japan

ª 2006 Elsevier Ltd. All rights reserved.

Introduction

When an external parameter such as the tempera-
ture T is changed, physical systems in a homo-
geneous state often become unstable and tend to
an ordered phase with broken symmetry. The
growth of new order takes place with coarsening
of domains or defect structures on mesoscopic
spatial scales much longer than the microscopic
molecular scale. Such ordering processes are
ubiquitously observed in many systems such as
ferromagnetic (spin) systems, solid alloys, and
fluids. Historically, structural ordering and phase
separation in solid alloys have been one of the
central problems in metallurgy (Cahn 1961). These
are highly nonlinear and far-from-equilibrium
processes and have been studied as challenging
subjects in condensed matter physics, polymer
science, and metallurgy (Gunton et al. 1983,
Binder 1991, Bray 1994, Onuki 2002). Here a
short review on phase ordering is given on the
basis of prototype mathematical models, which
can be a starting point to understand the real
complex problems.
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Phase Ordering in Nonconserved
Systems

Let us consider phase ordering in a system with a
scalar spacetime-dependent variable  (r, t). If its
space integral is not conserved in time, it is called
the nonconserved order parameter, representing
magnetization, electric polarization, etc. After
appropriate scaling of time t, space r, and  , the
simplest dynamic equation reads

@

@t
 ¼r2 � 
 �  3 þ hþ � ½1�

The coefficient 
 is related to the temperature by

 = A(T � Tc), where A is a constant and Tc is the
critical temperature. The constant h is also an
externally controllable parameter, proportional to
the applied magnetic field for the ferromagnetic
case. The last term is the Markovian Gaussian
random noise needed when eqn [1] is treated
as a Langevin (stochastic differential) equation.
In physics its stochastic property is usually
expressed as

h�ðr; tÞ�ðr 0; t0Þi ¼ 2"�ðr � r 0Þ�ðt � t0Þ ½2�

where " represents the strength of the noise
(proportional to the temperature before the scaling).
In the presence of �, the variable  is a random
variable, whose probability distribution P({ }, t)
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Figure 1 Time evolution of  in model [1] in 2D with system

length = 128. The numbers are the times after quenching. Noise

is added, but is not essential for large patterns or in the late

stage. Reproduced with permission from Onuki A (2002) Phase

Transition Dynamics. Cambridge, UK: Cambridge University

Press.
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obeys the Fokker–Planck equation. The equilibrium
(steady) distribution is given by

Peqf g¼ const: expð�Ff g="Þ ½3�

where

F¼
Z

dr
�

2
 2 þ 1

4
 4 þ 1

2
jr j2 � h 

� �
½4�

is the so-called Ginzburg–Landau free energy. Using
F we rewrite eqn [1] in a standard form of the
Langevin equation,

@

@t
 ¼ � �F

� 
þ � ½5�

In equilibrium  consists of the average  e and the
deviation � , where the latter is a Gaussian
fluctuation in the limit of small ". If � > 0 and
h = 0, we obtain  e = 0. If � < 0 and h = 0, there
are two minima  e =�j� j1=2. These two states
can coexist in equilibrium with a planar interface
separating them at h = 0. If its normal is along the x-
axis, the interface solution is of the form

 ðxÞ ¼ j� j1=2 tanhðj� j1=2x=
ffiffiffi
2
p
Þ ½6�

which tends to �j� j1=2 as x�1 and satisfies

�F=� ¼ð� þ  2Þ � d2 =dx2 ¼ 0 ½7�

It is well known that the fluctuations of  are
increasingly enhanced near the critical point. The
renormalization group theory shows how the equili-
brium distribution Peq{ } in eqn [3] depends on the
upper cutoff wave number � of  , where we suppose
that  consists of the Fourier components  k with
k < � (Onuki 2002). In our phase-ordering problem
the shortest relevant spatial scale is the interface
width of the order of the thermal correlation length �
at the final temperature. Therefore, near criticality,
we may assume that the thermal fluctuations with
wave numbers larger than ��1 have been eliminated
in the model (or � � ��1 at the starting point).

Domain Growth

Thermodynamic instability occurs when � is
changed from a positive value �i to a negative
value �f at t = 0. We here assume h = 0. We set
�f =�1 using the scaling. At long wavelengths k <
1, small plane wave fluctuations with wave vector k
grow exponentially as

 kðtÞ � exp½ð1� k2Þt� ½8�

with the growth rate largest at k = 0. This suggests
that the nonlinear term in eqn [1] becomes crucial
after a transient time. Numerically obtained snap-
shots of the subsequent  (r, t) are shown in Figure 1
in two dimensions (2D), where we can see the
coarsening of the patterns. The characteristic domain
size ‘(t) grows algebraically as

‘ðtÞ � ta ½9�

where a = 1=2 is known for the model [1]. Scattering
experiments detect the time-dependent correlation

gðr; tÞ¼ h� ðr þ r0; tÞ� ðr0; tÞi ½10�

Sðk; tÞ¼
Z

drgðr; tÞeik�r ½11�

where S(k, t) is called the structure factor. We
assume the translational invariance and the spatial
isotropy after the thermal average h� � �i. If �i � 1,
the quartic term in F is negligible, leading to the
initial structure factor

Sðk; 0Þ ffi "=ð�i þ k2Þ ½12�

which is produced by the thermal fluctuations.
However, when the domain size ‘(t) much exceeds
the microscopic length (lattice constant), the follow-
ing scaling behavior emerges:

gðr; tÞ¼Gðr=‘ðtÞÞ ½13�

Sðk; tÞ¼ ‘ðtÞdQð‘ðtÞkÞ ½14�

where d is the space dimensionality and G(x) and Q(x)
are the scaling functions of order unity for x � 1. The
correlation on the scale of ‘(t) in eqn [13] arises
from large-scale domain structures, while eqn [14]
is simply its Fourier transformation. The maxi-
mum of the structure factor grows as ‘(t)d. When
"	 1, however, there can be a well-defined initial
stage in which S(k, t) grows exponentially at long
wavelengths.
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We may explain the roles of the terms on the
right-hand side of eqn [1] in phase ordering in a
simple manner.

1. The linear term �� triggers instability for � < 0.
2. The nonlinear term � 3 gives rise to saturation

of  into �1. To see this, we neglect r2 and �
to have @ =@t = (1�  2) for � =�1. This
equation is solved to give

 ðtÞ¼ 0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 2

0 þ ð1�  2
0Þe�2t

q
½15�

where  0 = (0) is the initial value. Thus,  ! 1
for  0 > 0 and  !�1 for  0 < 0 as t!1.

3. The gradient term limits the instability only in
the long wavelength region k < 1 in the initial
stage (see eqn [8]) and creates the interfaces in
the late stage (see eqn [7]).

4. The noise term � is relevant only in the early
stage where  is still on the order of the initial
thermal fluctuations. The range of the early stage
is of order 1 for " >� 1, but weakly grows as
ln(1=") for "	 1. The noise term can be
neglected once the fluctuations much exceed the
thermal level.

5. If h is a small positive number, it favors growth
of regions with  ffi 1.

Interface Dynamics

At long times t� 1 domains with typical size ‘(t)
are separated by sharp interfaces and the thermal
noise is negligible. Allowing the presence of a small
positive h, we may approximate the free energy F as

F¼ �SðtÞ � 2hVþðtÞ þ const: ½16�

where � is a constant (surface tension), S(t) is the
surface area, and Vþ(t) is the volume of the
regions with  ffi 1. In this stage the interface velocity
vint = vint � n is given by the Allen–Cahn formula
(Allen and Cahn 1979):

vint ¼ �Kþ ð2=�Þh ½17�

The normal unit vector n is from a region with  ffi 1
to a region with  ffi �1. The K is the sum of the
principal curvatures 1=R1 þ 1=R2 in 3D. This equa-
tion can be derived from eqn [1]. If the interface
position ra moves to ra þ ��n infinitesimally, the
surface area changes by �S =

R
daK��, where

R
da � � �

denotes the surface integral. Therefore, F in eqn [16]
changes in time as

dF

dt
¼
Z

dað�K� 2hÞvint 
 0 ½18�

which is non-negative-definite owing to eqn [17].
Furthermore, we may draw three results from eqn [17].
1. If we set vint � ‘(t)=t and K � 1=‘(t), we obtain
a = 1=2 in the growth law [9].

2. In phase ordering under very small positive h,
the balance 1=‘(t) � h=� yields the crossover
time th � h�2. For t < th the effect of h is small,
while for t > th the region with  ffi 1 becomes
predominant.

3. A spherical droplet with  ffi 1 evolves as

@R

@t
¼� 2

R
þ 2h

�
½19�

from which the critical radius is determined as

Rc¼ �=h ½20�

A droplet with R > Rc(R < Rc) grows (shrinks).
We mention a statistical theory of interface dynamics

at h = 0 by Ohta (1982). There, a smooth subsidiary
field u(r, t) is introduced to represent surfaces by
u = const. The differential geometry is much simplified
in terms of such a field. The two-phase boundaries are
represented by u = 0. If all the surfaces follow vint =�K
in eqn [17] in the whole space, u obeys

@

@t
u ¼

h
r2 �

X
ij

ninjrirj

i
u ½21�

where ri = @=@xi and ni =riu=jruj. This equation
becomes a linear diffusion equation if ninjrirj is
replaced by d�1�ijr2. Then u can be expressed in
terms of its initial value and the correlation function
of  (r, t)(ffi u(r, t)=ju(r, t)j in the late stage) is
calculated in the form of eqn [13] with

GðxÞ ¼ 2

�
sin�1 exp � 1

8ð1� 1=dÞ x
2

� �� �
½22�

which excellently agrees with simulations.
Spinodal Decomposition in Conserved
Systems

The order parameter  can be a conserved variable
such as the density or composition in fluids or
alloys. With the same F in eqn [4], a simple dynamic
model in such cases reads

@

@t
 ¼r2 �F

� 
�r � jR ½23�

Here jR is the random current characterized byD
jR	ðr; tÞjR
 ðr 0; t0Þ

E
¼ 2"�	
�ðr � r 0Þ�ðt � t0Þ ½24�

which ensures the equilibrium distribution [3] of  .
However, the noise jR is negligible in late-stage
phase separation as in the nonconserved case. Note
that h in the conserved case is the chemical potential
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conjugate to  and, if it is homogeneous, it vanishes
in the dynamic equation [23]. In experiments the
average order parameter

M ¼ h i ¼
Z

dr ðrÞ=V ½25�

is used as a control parameter instead of h, where
the integral is within the system with volume V. If
there is no flux from outside, M is constant in time.
Here the instability occurs below the so-called
spinodal M2 < 1=3(M2 < j� j=3 for general � < 0).
In fact, small fluctuations with wave vector k grow
exponentially as

 kðtÞ � exp½k2ð1� 3M2 � k2Þt� ½26�

right after the quenching as in eqn [8]. The growth rate
is largest at an intermediate wave number k = km with

km ¼ ½ð1� 3M2Þ=2�1=2 ½27�

This behavior and the exponential growth of the
structure factor have been observed in polymer mixtures
where the parameter " in eqn [3] or [12] is expected to be
small (Onuki 2002). In late-stage coarsening the peak
position of S(k, t) decreases in time as

kmðtÞ � 2�=‘ðtÞ ½28�

in terms of the domain size ‘(t). The growth
exponent in eqn [9] is given by 1/3 for the simple
model [23] (see eqn [33] below).

Figure 2 shows the patterns after quenching in 2D.
For M = 0 the two phases are symmetric and the
patterns are bicontinuous, while for M 6¼ 0 the
20 100 400

20 100 400

M = 0

M = 0.1

(a)

(b)

Figure 2 Time evolution of  in model [23] in 2D with system

length = 128 without thermal noise: (a) M = 0 and (b) M = 0.1.

The numbers are the times after quenching. Reproduced with

permission from Onuki A (2002) Phase Transition Dynamics.

Cambridge, UK: Cambridge University Press.
minority phase eventually appears as droplets in the
percolating region of the majority phase.

Interface Dynamics

Interface dynamics in the conserved case is much
more complicated than in the nonconserved case,
because the coarsening can proceed only through
diffusion. Long-distance correlations arise among
the domains and the interface velocity cannot be
written in terms of the local quantities like the
curvature. As a simple example, we give the counter-
part of eqn [19]. In 3D a spherical droplet with  ffi 1
appears in a nearly homogeneous matrix with  = M
far from the droplet. The droplet radius R is then
governed by (Lifshitz and Slyozov 1961)

@

@t
R¼D

�

R
� 2d0

R2

� �
½29�

where � = (Mþ 1)=2 is called the supersaturation,
while D and d0 are constants (equal to 2 and �=8,
respectively, after the scaling). The critical radius is
written as

Rc ¼ 2d0=� ½30�

The general definition of the supersaturation is

� ¼ M�  ð2Þcx

� �.
 ð1Þcx �  ð2Þcx

� �
½31�

Here the equilibrium values of  are written as  (1)
cx

and  (2)
cx and M is supposed to be slightly different

from  (2)
cx .

Lifshitz and Slyozov (1961) analyzed domain coar-
sening in binary AB alloys when the volume fraction q
of the A-rich domains is small. They noticed that the
supersaturation � around each domain decreases in
time with coarsening. That is, the A component atoms
in the B-rich matrix are slowly absorbed onto the
growing A-rich domains, while a certain fraction of the
A-rich domains disappear. Thus, q(t) and �(t) both
depend on time, but satisfy the conservation law

qðtÞ þ�ðtÞ ¼ �ð0Þ ¼ ðMþ 1Þ=2 ½32�

With this overall constraint, they found the
asymptotic late-stage behavior

‘ðtÞ � �ðtÞ�1 � t1=3 ½33�

where ‘(t) is the average droplet radius. Notice that
this behavior is consistent with the droplet equation
[29], where each term is of order R=t � t�2=3.
Nucleation

In metastable states the free energy is at a local
minimum but not at the true minimum. Such states
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are stable for infinitesimal fluctuations, but rare
spatially localized fluctuations, called critical nuclei,
can continue to grow, leading to macroscopic phase
ordering (Onuki 2002, Debenedetti 1996). The birth
of a critical droplet is governed by the Boltzmann
factor exp (�Fc=kBT) at finite temperatures, where
Fc is the free energy needed to create a critical
droplet and kBT is the thermal energy with kB being
the Boltzmann constant. In this section we explicitly
write kBT, but we may scale  and space such that
� = �1 at the final temperature.

Droplet Free Energy and Experiments

In the nonconserved case we prepare a spin-down state
with  ffi �1 in the time region t < 0 and then apply a
small positive field h at t = 0. For t > 0 a spin-up
droplet with radius R requires a free energy change

FðRÞ¼ 4��R2 � 8�

3
hR3 ½34�

The first term is the surface free energy and the
second term is the bulk decrease due to h. The
critical radius Rc in eqn [20] gives the maximum of
F(R) given by

Fc¼
4�

3
�R2

c ½35�

In fact, F0(R) = @F(R)=@R is written as

F0ðRÞ¼ 8��ðR� R2=RcÞ ½36�

In conserved systems such as fluids or alloys, we
lower the temperature slightly below the coexistence
curve with the average order parameter M held fixed.
We again obtain the droplet free energy [34], but

h ¼ ð�=2d0Þ� ½37�

in terms of the (initial) supersaturation � = �(0).
Let the equilibrium values  (1)

cx and  (2)
cx in the two

phases be written as �A(Tc � T)
 with A and 

being constants (
 ffi 1=3 as T!Tc). For each given
M, we define the coexistence temperature Tcx by
M = (2)

cx = �A(Tc � Tcx)
. In nucleation experi-
ments the final temperature T is slightly below Tcx

and �T � Tcx � T is a positive temperature incre-
ment. For small �T we find

� ffi 

2
�T=ðTc � TcxÞ ½38�

Droplet Size Distribution and Nucleation Rate

In a homogeneous metastable matrix, droplets of the
new phase appear as rare thermal fluctuations. We
describe this process by adding a thermal noise term
to the droplet equation [19] or [29]. The droplet size
distribution n(R, t) then obeys the Fokker–Planck
equation

@

@t
n¼ @

@R
LðRÞ @

@R
þ F0ðRÞ

kBT

� �
n ½39�

Here n(R, t)dR denotes the droplet number density
in the range [R, Rþ dR]. We determine the kinetic
coefficient L(R) such that

vðRÞ � �LðRÞF0ðRÞ=kBT ½40�

is the right-hand side of eqn [19] or [29]. It is
equal to @R=@t when the thermal noise is
neglected. Thus, L(R) / R�2 or R�3 for the non-
conserved or conserved case. The second deriva-
tive (@=@R)L(R)(@=@R) in eqn [39] stems from the
thermal noise and is negligible for R� Rc >�1 in
3D (Onuki 2002). Hence, for R� Rc >� 1, the
droplets follow the deterministic equation [19] or
[29] and n obeys

@

@t
n¼� @

@R
½vðRÞn� ½41�

In Figure 3, we plot the solution of eqn [39] for
the conserved case with Fc=kBT = 17.4 (Onuki
2002). The time is measured in units of 1=�c,
which is the timescale of a critical droplet defined by

�c¼ð@vðRÞ=@RÞR¼Rc
½42�

We notice �c / R�3
c from eqn [29] so �c is small.

The initial distribution is given by

nðR; 0Þ¼ n0 expð�4��R2=kBTÞ ½43�
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with n0 being a constant number density. This form
has been observed in computer simulations as the
droplet size distribution on the coexistence curve
(h = 0). Figure 3 indicates that n(R, t) tends to a
steady solution ns(R) which satisfies

LðRÞ @

@R
þ F0ðRÞ

kBT

� �
ns¼� I ½44�

where I is a constant. Imposing the condition ns(R)! 0
as R!1, we integrate the above equation as

nsðRÞ¼ I

Z 1
R

dR1
1

LðR1Þ
exp

FðR1Þ � FðRÞ
kBT

� �
½45�

For R� Rc � 1 we may replace F(R1)� F(R)
by F0(R)(R1 � R) in the integrand of eqn [45] to
obtain

nsðRÞ ffi I=vðRÞ ½46�

which also follows from eqn [41]. Thus

nsðRÞdR¼ I dt ðdR¼ vðRÞdtÞ ½47�

This means that I is the nucleation rate of droplets
with radii larger than Rc emerging per unit volume
and per unit time. Furthermore, as R! 0, we
require ns(R)! n0 = const. in eqn [43] so that

n0 ¼ I

Z 1
0

dR1
1

LðR1Þ
exp

FðR1Þ
kBT

� �
½48�

where the integrand becomes maximum
around Rc. Using the expansion F(R) = Fc þ
F00(Rc) (R� Rc)

2=2þ � � � , we obtain the famous
formula for the nucleation rate

I¼ I0 expð�Fc=kBTÞ ½49�

¼ I0 expð�C0=�2Þ ½50�

where the coefficient I0 is of order n0�c. The second
line holds in the 3D conserved case. Here, C0 � 10�3

typically and I0 is a very large number in units of
cm�3 s�1, say, 1030. Then the exponential factor in I
changes abruptly from a very small to a very large
number with only a slight increase of � at small
�	 1. For example, if C0=�2 = 50, I is increased
by exp (100��=�) with a small increase of � to
�þ ��. This factor can be of order 103 even for
��=� = 0.05. Unless very close to criticality, simple
metastable fluids become opaque suddenly with
increasing � or �T at a rather definite cloud point. In
near-critical fluids, however, I0 itself becomes small
(/��6) such that the cloud point considerably depends
on the experimental timescale (observation time).
Remarks

The order parameter can be a scalar, a vector as in
the Heisenberg spin system, a tensor as in liquid
crystals, and a complex number as in superfluids
and superconductors. In phase ordering a crucial
role is played by topological singularities like
interfaces in the scalar case and vortices in the
complex number case. Furthermore, a rich variety of
phase transition dynamics can be explained if the
order parameter is coupled to other relevant
variables in the free energy and/or in the dynamic
equations. We mention couplings to velocity field in
fluids, electrostatic field in charged systems, and
elastic field in solids. Phase ordering can also be
influenced profoundly by external fields such as
electric field or shear flow.

See also: Reflection Positivity and Phase Transitions;
Renormalization: Statistical Mechanics and Condensed
Matter; Statistical Mechanics of Interfaces; Topological
Defects and Their Homotopy Classification.
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Introduction

Many aspects of our everyday life, from weather to
boiling water for a cup of coffee, involve heat
exchanges and variations of pressure and, as a
result, a phase transition. The general theory behind
these phenomena is thermodynamics, which studies
fluids and macroscopic bodies under these and more
general transformations.

In the simple case of a one-component substance,
the behavior under changes of temperature T and
pressure P is described, according to the Gibbs
phase rule, by a phase diagram such as the one in
Figure 1. The curves in the (T, P) plane, distinguish
regions where the substance is in its solid, liquid,
and gas phases. Thus, in an experiment where we
vary the pressure and temperature moving along a
line which crosses a transition curve, we observe an
abrupt and dramatic change at the crossing, when
the system changes phase. As already stated, every-
day life is an active source of examples of such
phenomena.

The picture is ‘‘far from innocent’’, it states that air,
liquid, and solid are not different elements of nature, as
for long believed, but just different aspects of the same
thing: substances are able to adapt to different external
conditions in dramatically different ways. What
properties of intermolecular forces are responsible for
such astonishing behavior? The question has been
extensively studied and it is the argument of the
present article, where it will be discussed in the
framework of statistical mechanics for continuous
systems. Before entering into the matter, let us mention
two basic motivations.
P

T

Liquid
Solid

Gas

Figure 1 Phase diagram of a one-component substance.
As always, there is a ‘‘fundamental theory’’
aspect; in the specific case it is the attempt for an
atomistic theory able to describe also macroscopic
phenomena, thus ranging from the angstrom to the
kilometer scales. From an engineering point of view,
the target is, for instance, to understand why and
when a substance is an insulator, or a conductor or,
maybe, a superconductor, and, more importantly,
how should we change its microscopic interactions
to produce such effects: this opens the way to
technologies which are indeed enormously affecting
our life.
Phase Transitions and Statistical
Mechanics

The modern theory of statistical mechanics is based
upon the Gibbs hypothesis. In a classical (i.e., not
quantum) framework, the macroscopic states are
described by probability measures on a particle
configuration phase space. The equilibrium states
are then selected by the Gibbs prescription, which
requires that the probability of observing a config-
uration which has energy E should be proportional
to e��E, where �= 1=kT, k is the Boltzmann
constant, and T the absolute temperature. These
are the ‘‘Gibbs measures’’ and the purpose of
statistical mechanics is to study their properties. A
prerequisite for the success of the theory is compat-
ibility with the principles of thermodynamics, the
theory should then be able to explain the origin of
the various phase diagrams and in particular to
determine the circumstances under which phase
transitions appear.

The theory, commonly called DLR, after
Dobrushin, Lanford, and Ruelle, who, in the
1960s, contributed greatly to its foundations, has
solid mathematical basis. Its main success is a
rigorous proof of consistency with thermodynamics,
which is derived under the only assumption that
surface effects are negligible, a condition which is
mathematically achieved by studying the system in a
‘‘thermodynamic limit,’’ where the region containing
the system invades the whole space.

In the thermodynamic limit, the equilibrium states
can no longer be defined by the Gibbs prescription,
because the energy of configurations in the whole
space, being extensive, is typically infinite. The
problem has been solved by first proving conver-
gence of the finite-volume Gibbs measures in the
thermodynamic limit. After defining the limit states,
called ‘‘DLR states,’’ as the equilibrium states of the
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infinite systems, it is proved that the DLR states can
be directly characterized (i.e., without using limit
procedures) as the solutions of a set of equations,
the ‘‘DLR equations,’’ which generalize the finite-
volume Gibbs prescription.

In terms of DLR states, the mathematical meaning
of phase transitions becomes very clear and sharp.
The starting point is the proof that the physical
property that intensive variables in a pure phase
have negligible fluctuations is verified by all the
DLR measures which are in a special class, thus
selected by this property, and which are therefore
interpreted as ‘‘pure phases.’’ All the other DLR
measures are proved to be mixtures, that is, general
convex combinations, of the pure DLR states. Thus,
in the DLR theory, the system is in a single phase
when there is only one DLR state, at the given
values of the thermodynamic parameters (e.g.,
temperature and chemical potential), while the
system is at a phase transition if there are several
distinct DLR states.

While the theory beautifully clarifies the meaning
of phase transitions, it does not say whether the
phenomenon really occurs! This is maybe the main
open problem in equilibrium statistical mechanics. A
general proof of existence of phase diagrams is
needed, which should at least capture the basic
property behind the Gibbs phase rule, namely that in
most of the space (of thermodynamic parameters)
there is a single phase, with rare exceptions where
several phases coexist. A more refined result should
then indicate that coexistence occurs only on regular
surfaces of positive codimension.

There is, however, a general result of existence of
the gaseous phase, with a proof of uniqueness of
DLR measures when temperature is large and
density low. Coexistence of phases is much less
understood at a general level, but results for
particular classes of models exist, for instance, in
lattice systems at low temperatures. The prototype is
the ferromagnetic Ising model in two or more
dimensions, where indeed the full diagram has
been determined, see Figure 2. The transition curve
h

TTc

Figure 2 Phase diagram of the Ising ferromagnet.
is the segment {0 � T � Tc, h = 0}, in the (T, h)
plane, h being the magnetic field. In the upper-half
plane, there is a single phase with positive magne-
tization, in the lower one with a negative value; at
h = 0, positive and negative magnetization states can
coexist, if the temperature is lower than the critical
value Tc. Correspondingly, there are, simulta-
neously, a positive and a distinctly negative DLR
state, which describe the two phases.

An analogous result is missing for systems of
particles in the continuum, but there has been recent
progress on the analysis of the liquid–vapor branch
of the phase diagram, and the issue will be the main
focus of this article.
Sensitive Dependence on Boundary
Conditions

Phase transitions describe exceptional regimes where
the system is in a critical state; this is why they are
so interesting and difficult to study. As in chaotic
systems, criticality corresponds to a ‘‘butterfly
effect,’’ which, in a statistical-mechanics setting
means changing far-away boundary conditions.
Such changes affect the neighbors, which in turn
influence their neighbors, and so on. In general, the
effect decays with the distance but, at phase
transition, it provokes an avalanche which propa-
gates throughout the system reaching all its points.
Its occurrence is not at all obvious, if we remember
the stochastic nature of the theory. The domino
effect described above can in fact, at each step, be
subverted by stochastic fluctuations. The latter, in
the end, may completely hide the effect of changing
the boundary conditions. This is an instance of a
competition between energy and entropy which is
the ruling phenomenon behind phase transitions.

This intuitive picture also explains the relevance
of space dimensionality. In a many-dimensional
space, the influence of the boundary conditions has
clearly many more ways to percolate, in contrast to
the one-dimensional case, where in fact there is a
general result on the uniqueness of DLR measures
and therefore absence of phase transitions, for short-
range interactions. For pair potentials, ‘‘short’’
means that the interaction energy between two
molecules, respectively at r and r0, decays as
jr� r0j��, � > 2. There are results on the converse,
namely on the presence of phase transitions when
the above condition is not satisfied, mainly for
lattice systems, but with partial extensions also to
continuous systems. One-dimensional and long-
range cases are not the main focus of this article,
and the issue will not be discussed further here.
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Ising Model

In order to make the previous ideas quantitative, let
us first describe the simple case of the Ising model.
Ising spin configurations are collections {�(x), x 2
Zd} of �(x) 2 {�1} magnetic moments called spins.
In the nearest-neighbor case, the interaction between
two spins is �J�(x)�(y), J > 0, if x and y are nearest
neighbors on Zd, or is vanishing otherwise. There
are, therefore, two ground states, one with all spins
equal to þ1 and the other one with all spins equal to
�1. Since the Gibbs probability of higher energies
vanishes as the temperature goes to zero, these are
interpreted as the equilibrium states at temperature
T = 0.

If T > 0, configurations with larger energy will
appear, even though depressed by the Gibbs factor,
but their occurrence is limited if T is small. In fact,
in the ferromagnetic Ising model at zero magnetic
field, dimensions d � 2, and low enough tempera-
ture, it has been proved that there are two distinct
DLR measures, one called positive and the other
negative. The typical configurations in the positive
measure are mainly made by positive spins and, in
such an ‘‘ocean of positive spins’’ there are rare and
small islands of negative spins. The same situation,
but with the positive and negative spins inter-
changed, occurs in the negative DLR state.

The selection of one of these two states can be
made by choosing the positive or the negative
boundary conditions, which shows how a surface
effect, namely putting the boundary spins equal to 1
or �1, has a volume effect, as most of the spins in the
system follow the value indicated by the boundary
values. Again, this is more and more striking as we
note that each spin is random, yet a strong,
cooperative effect takes over and controls the system.

The original proof due to Peierls exploits the spin-
flip symmetry of the Ising interaction, but it has
subsequently been extended to a wider class of
systems on the lattice, in the general framework of
the ‘‘Pirogov–Sinai theory.’’ This theory studies the
low-temperature perturbations of ground states and
it applies to many lattice systems, proving the
existence of a phase transition and determining the
structure of the phase diagram in the low-
temperature region. The theory, however, does not
cover continuous systems, where the low-temperature
regime is essentially not understood, with the notable
exception of the Widom and Rowlinson model.
Two Competing Species in the Continuum

The simplest version of the Widom and Rowlinson
model has two types of particles, red and black,
which are otherwise identical. Particles are massive
points and the only interaction is a hard-core
interaction among different colors, namely a red and
a black particle cannot be closer than 2R0, R0 > 0
being the hard-core radius.

The order parameter for the phase transition is the
particle color. For large values of the chemical
potential, and thus large densities, there are two
states, one essentially red, the other black, while, if
the density is low, the colors ‘‘are not separated’’
and there is a unique state. The proof of the
statement starts by dividing the particles of a
configuration into clusters, each cluster made by a
maximal connected component, where two particles
are called connected when their mutual distance is
<2R0. Then, in each cluster, all particles have the
same color (because of the hard-core exclusion
between black and red), and the color is either
black or red, with equal probability.

The question of phase transition is then related to
cluster percolation, namely the existence of clusters
which extend to infinity. If this occurs, then the influence
of fixing the color of a particle may propagate infinitely
far away, hence the characteristic ‘‘sensitive dependence
phenomenon’’ of phase transitions. Percolation and
hence phase transitions have been proved to exist in the
positive and negative states, if the density is large and,
respectively, small. The above argument is a more recent
version of the original proof by Ruelle, which goes back
to the 1970s.

The key element for the appearance of the phase
transition is the competition between two different
components, so that the analysis is not useful in
explaining the mechanisms for coexistence in the
case of identical particles, which are considered in
the following.
Coarse Graining Transformations

The Peierls argument in Ising systems does not seem
to extend to the continuum, certainly not in a trivial
way. The ground states, in fact, will not be as simple
as the constant configurations of a lattice system;
they will instead be periodic or quasiperiodic config-
urations with a complicated dependence on the
particle interactions. The typical fluctuations when
we raise the temperature above zero have a much
richer and complex structure and are correspondingly
more difficult to control. Closeness to the ground
states at nonzero temperature, as described in the
Ising model, would prove the spontaneous breaking
of the Euclidean symmetries and the existence of a
crystalline phase. The question is, of course, of great
interest, but it looks far beyond the reach of our
present mathematical techniques.
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The simpler Ising picture should instead reappear
at the liquid–vapor coexistence line. Looking at the
fluid on a proper spatial scale, we should in fact see
a density that is essentially constant, except for
small and rare fluctuations. Its value will differ in
the liquid and in the gaseous states, �gas < �liq.
Therefore, density is an order parameter for the
transition and plays the role of the spin magnetiza-
tion in the Ising picture.

There are general mathematical techniques devel-
oped to translate these ideas into proofs, they involve
‘‘coarse graining,’’ ‘‘block spin transformations,’’ and
‘‘renormalization group’’ procedures. The starting
point is to ideally divide the space into cells. Their size
should be chosen to be much larger than the typical
microscopic distance between molecules, to depress
fluctuations of the particle density in a cell. To study
the probability distribution of the latter, we integrate
out all the other degrees of freedom. After such a
coarse graining, we are left with a system of spins on a
lattice, the lattice sites labeling the cells (also called
blocks) and each spin (also called block spin) giving
the value of the density of particles in the correspond-
ing cell. Translated into the language of block spins,
the previous physical analysis of the state of the fluid
suggests that most probably, in each block the density
is approximately equal to either �liq or �gas, and the
same in different blocks, except in the case of small
and rare fluctuations. If we represent the probability
distribution of the block spins in terms of a Gibbs
measure (as always possible if the system is in a
bounded region), the previous picture is compatible
with a new Hamiltonian with a single spin (one-body)
potential which favors the two values �liq and �gas and
an attractive interaction between spins which sup-
presses changes from one to the other. A new effective
low temperature should finally dampen the
fluctuations.

Thus, after coarse graining, the system should be in
the same universality class as of the low-temperature
Ising model, and we may hope, in this way, to extend
to the liquid–vapor branch of the phase diagram the
Pirogov–Sinai theory of low-temperature lattice
systems. In particular, as in the Ising model, we will
then be able to select the liquid or the vapor phases by
the introduction of suitable boundary conditions.

The conditional tense arises because the computation
of the coarse graining transformation is in general very
difficult, if not impossible, to carry out, but there is a
class of systems where it has been accomplished. These
are systems of identical point particles in Rd, d � 2,
which interact with ‘‘special’’ two- and four-body
potentials, having finite range and which can be chosen
to be rotation and translation invariant; their specific
form will be described later. For such systems, the above
coarse graining picture works and it has been proved
that in a ‘‘small’’ region of the temperature–chemical
potential plane, there is a part of the curve where two
distinct phases coexist, while elsewhere in the neighbor-
hood, the phase is unique.

The ideas behind the choice of the Hamiltonian
go back to van der Waals, and the Ginzburg–
Landau theory, which are milestones in the theory
of phase transitions, while the mathematics of
variational problems also enters here in an impor-
tant way. These are briefly discussed in the next
sections.
The van der Waals Liquid–Vapor
Transition

Let us then do a step backwards and recall the
van der Waals theory of the liquid–vapor transition.
As typical intermolecular forces have a strong
repulsive core and a rather long attractive tail, in a
continuum, mesoscopic approximation of the system
will be described by a free-energy functional of the
type

Fð�Þ ¼
Z

�

f 0
�;�ð�ðrÞÞdr

� 1

2

Z
���

Jðr; r0Þ�ðrÞ�ðr0Þdr dr0 ½1�

where �= {�(r), r 2 �} is the particles density and �
the region where the system is confined, which, for
simplicity, is taken here as a torus in Rd, consisting
of a cube with periodic boundary conditions. The
term �J(r, r0)�(r)�(r0), J(r, r0) � 0, is the energy due to
the attractive tail of the interaction, which is
periodic in �; f 0

�,�(�) = f 0
�, 0(�)� �� is the free-energy

density due to the short, repulsive part of the
interaction, � being the chemical potential.

As noted later, [1] can be rigorously derived by a
coarse graining transformation; it will be used to
build a bridge between the van der Waals theory and
the previous block spin analysis of the liquid–vapor
phase transition. Let us take for the moment [1] as a
primitive notion. By invoking the second principle of
thermodynamics, the equilibrium states can be
found by minimizing the free-energy functional.
Supposing J to be translation invariant, that is,
J(r, r0) = J(rþ a, r0 þ a), r, r0, a 2 Rd, and calling
�=

R
J(r, r0)dr0 the intensity of J, we can rewrite

F(�) as

Fð�Þ ¼
Z

�

�
f 0
�;�ð�ðrÞÞ �

��ðrÞ2

2

�
dr

þ 1

4

Z
���

Jðr; r0Þ½�ðrÞ � �ðr0Þ�2dr dr0 ½2�
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This shows that the minimizer must have �(r)
constant (so that the second integral is minimized)
and equal to any value which minimizes the function
{f 0
�, �(�)� ��2=2}. By thermodynamic principles, the

free energy f 0
�, �(�) is convex in �, but, if � is large

enough, the above expression is not convex and, by
properly choosing the value of �, the minimizers are
no longer unique, hence the van der Waals phase
transition.
Kac Potentials

The analogy between the above analysis of [2] and
the previous heuristic study of the fluid based on
coarse graining is striking. As customary in con-
tinuum theory, each mesoscopic point r should be
regarded as representative of a cell containing many
molecules. Then the functional F(�) can be inter-
preted as the effective Hamiltonian after coarse
graining. The role of the one-body term is played in
[2] by the curly bracket, which selects two values of
� (its minimizers, to be identified with �liq and �gas);
the attractive two-body potential is then related to
the last term in [2], as it suppresses the variations of
�. The analogy clearly suggests a strategy for a
rigorous proof of phase transitions in the conti-
nuum, an approach which has been and still is
actively pursued. It will be discussed briefly in the
sequel.

The first rigorous derivation of the van der Waals
theory in a statistical-mechanics setting goes back to
the 1960s and to Kac, who proposed a model where
the particle pair interaction is

���d e��jqi�qjj þ hard core; �; � > 0 ½3�

The phase diagram of such systems, after the
thermodynamic limit, can be quite explicitly deter-
mined in the limit � ! 0, where it has been proved
to converge to the van der Waals phase diagram,
under a proper choice of f 0

�,�( � ) in [1].
The characteristic features of the first term in [3]

are: (1) very long range, which scales as ��1, and (2)
very small intensity, which scales as �d, so that the
total intensity of the potential, defined as the
integral over the second position, is independent of
�. The additional hard-core term (which imposes
that any two particles cannot get closer than
2R0, R0 > 0 being the hard-core radius) is to ensure
stability of matter, that is, to avoid collapse of the
whole system on an infinitesimally small region, as it
would happen if only the attractive part of the
interaction were present.

Derivation of the van der Waals theory has been
proved for a general class of Kac potentials, where
the exponential term in [3] is replaced by functions
whose dependence on � has the same scaling
properties as mentioned above (in (1) and (2)),
while the hard core can be replaced by suitably
repulsive interactions.

The proof, in the version proposed by Lebowitz
and Penrose, uses coarse graining and shows that the
effective Hamiltonian is well approximated by the
van der Waals functional [1], when � is small, while
the effective temperature scales as �d. The approx-
imation becomes exact in the limit � ! 0, where it
reduces the computation of the partition function to
the analysis of the minima and the ground states of
an effective Hamiltonian which, in the limit � ! 0,
is exactly the van der Waals functional.

A true proof of phase transitions requires instead
to keep � > 0 fixed (instead of letting � ! 0) and
thus to control the difference of the effective
Hamiltonian after coarse graining and the van der
Waals functional, which is the effective Hamilto-
nian, but only in the actual limit � ! 0. In general,
there is no symmetry between the two ground states,
unlike in the Ising case where they are related by
spin flip, and the Pirogov–Sinai theory thus enters
into play. The framework in fact is exactly similar,
with the lattice Hamiltonian replaced by the func-
tional and low temperatures by small � (recall that
the effective temperature scales as �d). The extension
of the theory to such a setting, however, presents
difficulties and success has so far been only partial.
A Model for Phase Transitions in the
Continuum

The problem is twofold: to have a good control of
(1) the limit theory and (2) the perturbations
induced by a nonzero value of the Kac parameter
�. The former falls in the category of variational
problems for integral functionals, whose prototype
is the Ginzburg–Landau free energy

Fglð�Þ ¼
Z
fwð�Þ þ jr�j2g dr ½4�

which can be regarded as an approximation of [2]
with w equal to the curly bracket in [2] and J
replaced by a �-function. Minimization problems for
this and similar functionals have been widely
analyzed in the context of general variational
problems theory and partial differential equations
(PDEs), and the study of the limit theory can benefit
from a vast literature on the subject. The analysis of
the corrections due to small � is, however, so far
quite limited. To implement the Pirogov–Sinai
strategy, we need, in the case of the interaction [3],
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a very detailed knowledge of the system without the
Kac part of the interaction and with only hard cores.
This, however, is so far not available when the
particle density is near to close-packing (i.e., the
maximal density allowed by the hard-core poten-
tial). Replacing hard cores by other short-range
repulsive interactions does not help either, and this
seems the biggest obstacle to the program.

The difficulty, however, can be avoided by
replacing the hard-core potential by a repulsive
many-body (more than two) Kac potential, which
ensures stability as well. The class of systems
covered by the approach is characterized by Hamil-
tonian of the form

H�;�ðqÞ ¼
Z

Rd
e�ð	�ðrÞÞdr ½5�

where e�(	) is a polynomial of the scalar field
variable 	, a specific example being

e�ð	Þ ¼
	4

4!
� 	

2

2
� �	 ½6�

This form of the Hamiltonian is familiar from
Euclidean field theories. In these theories, the free
distribution of the field is Gaussian; in our case,
however, the field 	=	�(r) is a function of the
particle configurations q = (qi, i = 1, . . . , n):

	�ðrÞ ¼ j� 	 qðrÞ ¼
Xn

i¼1

j�ðr; qiÞ

j�ðr; r0Þ ¼ �djð�r; �r0Þ
½7�

where j(r, r0) is a translation-invariant, symmetric
transition probability kernel. Thus, 	�(r) is a non-
negative variable which has the meaning of a local
density at r, weighted by the Kac kernel j�(r, r0).
Contours and Phase Indicators

The dependence on � yields the scaling properties
characteristic of the Kac potentials and [5] may be
regarded as a generalized Kac Hamiltonian, which,
in the polynomial case of [6], involves up to four-
body Kac potentials. The phase diagram of the
model, after taking first the thermodynamic limit
and then the limit � ! 0, is determined by the free-
energy functional

Fð�Þ ¼
Z

e�ðj 	 �ðrÞÞ �
Sð�ðrÞÞ
�

� �
dr ½8�

Sð�Þ ¼ ��ðlog �� 1Þ ½9�
where [8] is taken to be defined on a torus (to avoid
convergence problems of the integral), and
j = j�, �= 1.

Exploiting the concavity of the entropy S(�), it is
proved that the minimizers of F( � ) are constant
functions with the constants minimizing

f�;�ðuÞ ¼ e�ðuÞ �
SðuÞ
�

; u � 0 ½10�

In the case of [6], to which we restrict in the sequel,
for any � > (3=2)3=2 there is �� so that f�� ,�(u) is
double-well with two minimizers, �gas < �liq (depen-
dence on � is omitted).

To ‘‘recognize’’ the densities �gas and �liq in a
particle configuration, we use coarse graining and
introduce two partitions of Rd into cubes C(‘
, �). The
cubes C(‘�, � ) of the first partition have side ‘�, �

proportional to ��1þ�,� > 0 suitably small; those of
the second one have length ‘þ, � proportional to
��1��; they are chosen so that each cube C(‘þ, � ) is
union of cubes C(‘�, � ). Notice that the small cubes
have side much smaller than the interaction range (for
small �), while the opposite is true for the large cubes.

Given a particle configuration q, we say that
a point r is in the liquid phase and write
�(r; q) = 1, if

jq u Cð‘�;�Þj
‘d
��

� �liq

�����
����� � �a; a > 0 suitably small ½11�

for any small cube C(‘�, �) contained either in C
(‘þ, � )
r or

in the cubes C(‘þ, � ) contiguous to C
(‘þ, �)
r : jq u C(‘�, �)j is

referred to as the number of particles of q in C(‘�, � ),
and C

(‘þ, �)
r as the large cube which contains r.

Thus, �(r; q) = 1 if the local particle density is
constantly close to �liq in a large region around r.
Defining �(r; q) = �1 if the above holds with �gas

instead of �liq and setting �(r; q) = 0 in all the other
cases, we then have a phase indicator �(r; q), which
identifies, for all particle configurations, which
spatial regions should be attributed to the liquid
and gas phases. The connected components of the
complementary region are called contours and the
definition of �(r; q) has been structured in such a
way that liquid and gas are always separated by a
contour. The liquid phase will then be represented
by a measure which gives large probability to
configurations having mostly � = 1, while the gas
phase by configurations with mostly � = �1.

This is quite similar to the Ising picture and, as in
the Ising model, the existence of a phase transition
follows from a Peierls estimate that contours have
small probability. In fact, if there are few contours,
the phase imposed on the boundaries of the region
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where the system is observed percolates inside,
invading most of the space. Thus, boundary condi-
tions select the phase in the whole volume. The
absence of the short-range potential, which was the
hard-core interaction in [3], and hence the absence
of all the difficulties which originate from it, allow
one to carry through successfully the Pirogov–Sinai
program and prove Peierls estimates on contours
and, hence, the existence of a phase transition. In
particular, the statistical weight of a contour is
estimated by first relating the computation to one
involving the functional [8] and then computing its
value on density profiles compatible with the
existence of the given contour. This part of the
problem needs variational analysis for [8], with
constraints and benefits of a vast literature on the
subject.

The phase transition is very sharp, as shown by
the following ideal experiment. Having fixed � >
(3=2)3=2, let � vary in a (suitably) small interval
[�� � �,�� þ �], � > 0, centered around the mean-
field critical value ��. We consider the system in a
large region with, for instance, boundary conditions
� = �1 (i.e., forcing the gas phase) and fix � small
enough. At �=�� � �, the system has � = �1 in
most of the domain, and this persists when we
increase � till a critical value, ��, �, close to, but not
the same as ��. For � > ��, �, � = 1 in most of the
domain, except for a small layer around the
boundaries. The analogous picture holds if we
choose boundary conditions � = 1, and �=��, � is
the only value of the chemical potential where the
system is sensitive to the boundary conditions and
both phases can be produced by the right boundary
conditions. The fact that the actual value ��, � differs
from ��, is characteristic of the Pirogov–Sinai
approach and enlightens the delicate nature of the
proofs.
Some Related Problems

In this concluding section, two important related
problems, which have not been mentioned so far,
are discussed.

A natural question, after proving a phase transi-
tion, is to describe how two phases coexist, once
forced to be simultaneously present in the system.
This can be achieved, for instance, by suitable
boundary conditions (typically positive and negative
on the top and bottom of the spatial domain) or by
imposing a total density (or magnetization in the
case of spins) intermediate between those of the pure
phases. There will then be an interface separating
the two phases with a corresponding surface tension
and the geometry will be determined by the solution
of a variational problem and given by the Wulff
shape.

Can statistical mechanics explain and describe the
phenomenon? Important progress has been made
recently on the subject in the case of lattice systems
at low temperatures. The question has also been
widely studied at the mesoscopic level, in the
context of variational problems for Ginzburg and
Landau and many other functionals. Therefore, all
the ingredients of further development of the theory
in this direction are now present.

We have so far discussed only classical systems;
a few words about extensions to the quantum case
are now in order. In the range of values of
temperatures and densities where the liquid–vapor
transition occurs, the quantum effects are not
expected to be relevant. Referring to the case of
bosons, and away from the Bose condensation
regime (and for system with Boltzmann statistics
as well), the quantum delocalization of particles
caused by the indeterminacy principle should
essentially disappear after macroscopic coarse
graining, and the block-spin variables should
again behave classically, even though their under-
lying constituents are quantal. If this argument
proves correct, then progress along these lines may
be expected in near future.

See also: Cluster Expansion; Ergodic Theory; Finite
Group Symmetry Breaking; Pirogov–Sinai Theory;
Reflection Positivity and Phase Transitions; Statistical
Mechanics and Combinatorial Problems; Statistical
Mechanics of Interfaces; Symmetry Breaking in Field
Theory; Two-Dimensional Ising Model.
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Introduction

Pirogov–Sinai theory is a method developed to
study the phase diagrams of lattice models at low
temperatures. The general claim is that, under
appropriate conditions, the phase diagram of a
lattice model is, at low temperatures, a small
perturbation of the zero-temperature phase dia-
gram designed by ground states. The treatment can
be generalized to cover temperature driven transi-
tions with coexistence of ordered and disordered
phases.
Formulation of the Main Result

Setting

Refraining first from full generality, we formulate
the result for a standard class of lattice models with
finite spin state and finite-range interaction. We will
mention different generalizations later.

We consider classical lattice models on the
d-dimensional hypercubic lattice Zd with d � 2.
A spin configuration �= (�x)x2Zd is an assignment of
a spin with values in a finite set S to each lattice site
x 2 Zd; the configuration space is � = SZd

. For � 2 �
and � � Zd, we use �� 2�� = S� to denote the
restriction �� = {�x; x 2 �}.

The Hamiltonian is given in terms of a collection of
interaction potentials (�A), where �A are real func-
tions on �, depending only on �x with x 2 A, and A
runs over all finite subsets of Zd. We assume that the
potential is periodic with finite range of interactions.
Namely, �A0(�

0) = �A(�) whenever A and � are related
to A0 and �0 by a translation from (aZ)d for some fixed
integer a and there exists R� 1 such that �A � 0 for
all A with diameter exceeding R.

Without loss of generality (possibly multiplying
the number a by an integer and increasing R), we
may assume that R = a.

The Hamiltonian H�(�j�) in � with boundary
conditions � 2 � is then given by

H�ð�j�Þ¼
X

A\� 6¼;
�Að�� _ ��cÞ ½1�

where �� _ ��c 2� is the configuration �� extended
by ��c on �c. The Gibbs state in � under boundary
conditions � 2 � (and with Hamiltonian H) is the
probability ��(�j�) on �� defined by

��ðf��gj�Þ¼
expf��H�ð�j�Þg

Zð�j�Þ ½2�

with the partition function

Zð�j�Þ¼
X
��

expf��H�ð�j�Þg ½3�

We use G(H) to denote the set of all periodic Gibbs
states with Hamiltonian H defined on � by means of
the Dobrushin–Lanford–Ruelle (DLR) equations.
Ground-State Phase Diagram and the Removal
of Degeneracy

A periodic configuration � 2 � is called a (periodic)
ground state of a Hamiltonian H = (�A) if

Hð~�;�Þ ¼
X

A

ð�Að~�Þ � �Að�ÞÞ�0 ½4�

for every finite perturbation �̃ 6¼ � of � (�̃ differs
from � at a finite number of lattice sites). We use
g(H) to denote the set of all periodic ground states
of H. For every configuration � 2 g(H), we define
the specific energy e�(H) by

e�ðHÞ ¼ lim
n!1

1

jVnj
X

A\Vn 6¼;
�Að�Þ ½5�

(with Vn denoting a cube consisting of nd lattice sites).
To investigate the phase diagram, we will consider

a parametric class of Hamiltonians around a
fixed Hamiltonian H(0) with a finite set of periodic
ground states g(H(0)) = {�1, . . . ,�r}. Namely, let H(0),
H(1), . . . , and H(r�1) be Hamiltonians determined by
potentials �(0), �(1), . . . , and �(r�1), respectively, and
consider the (r� 1)-parametric set of Hamiltonians
Ht = H(0) þ

Pr�1
‘= 1 t‘H

(‘) with t = (t1, . . . , tr�1)2Rr�1.
Using a shorthand em(H) = e�m

(H), and introducing
the vectors e(H)= (e1(H), . . . ,er(H)) and h(t)=e(Ht)�
minm em(Ht), we notice that for each t 2 Rr�1, the
vector h(t)2 @Qr, the boundary of the positive octant
in Rr. A crucial assumption for such a parametriza-
tion Ht to yield a meaningful phase diagram is the
condition of removal of degeneracy: we assume that
g(H(0)þH(‘))$ g (H(0)),‘=1, . . . ,r�1, and that the
vectors e(H(‘)),‘=1, . . . ,r�1, are linearly independent.

In particular, its immediate consequence is that
the mapping Rr�1 3 t 7! h(t)2 @Qr is a bijection.
This fact has a straightforward interpretation in
terms of ground-state phase diagram. Viewing the
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phase diagram (at zero temperature) as a partition of
the parameter space into regions Kg with a given set
g � g(H(0)) of ground states – ‘‘coexistence of zero-
temperature phases from g’’ – the above bijection
means that the region Kg is the preimage of the set

Qg ¼fh 2 @Qrjhm ¼ 0 for �m 2 g and

hm > 0 otherwiseg ½6�

The partition of the set @Qr has a natural
hierarchical structure implied by the fact that Qg1

\
Qg2

= Qg1[g2
(Qg is the closure of Qg). Namely, the

origin {0} = Qg(H(0)) is the intersection of r positive
coordinate axes Q{� �m, �m 6¼m}, m = 1, . . . , r; each of
those half-lines is an intersection of r� 1 two-
dimensional quarter-planes with boundaries on posi-
tive coordinate axes, etc., up to (r� 1)-dimensional
planes Q{�m}, m = 1, . . . , r. This hierarchical structure
is thus inherited by the partition of the parameter
space Rr�1 into the regions Kg. The phase diagrams
with such regular structure are sometimes said to
satisfy the Gibbs phase rule.

We can thus summarize in a rather trivial conclusion
that the condition of removal of degeneracy implies
that the ground-state phase diagram obeys the Gibbs
phase rule. The task of the Pirogov–Sinai theory is to
provide means for proving that this remains true, at
least in a neighborhood of the origin of parameter
space, also for small nonzero temperatures. To achieve
this, we need an effective control of excitation energies.

Peierls Condition

A crucial assumption for the validity of the Pirogov–
Sinai theory is a lower bound on energy of
excitations of ground states – the Peierls condition.

In spite of the fact that for a study of phase diagram
we consider a parametric set of Hamiltonians whose
set of ground states may differ, it is useful to introduce
the Peierls condition with respect to a single fixed
collection G of reference configurations (eventually, it
will be identified with the ground states of the
Hamiltonian H(0)). Let thus a fixed set G of periodic
configurations {�1, . . . ,�r} be given. Again, without
loss of generality, we may assume that the periodicity
of all configurations �m 2G is R.

Before formulating the Peierls condition, we have
to introduce the notion of contours. Consider the set
of all sampling cubes C(x) = {y 2 Zdkyi � xij � R for
1 � i � d}, x 2 Zd. A bad cube of a configuration
� 2 � is a sampling cube C for which �C differs from
�m restricted to C for every �m 2 G. The boundary
B(�) of � is the union of all bad cubes of �. If �m 2G
and � is its finite perturbation (differing from �m on a
finite set of lattice sites), then, necessarily, B(�) is
finite. A contour of � is a pair �= (�,��), where �
(the support of the contour �) is a connected
component of B(�) (and �� is the restriction of � on
�). Here, the connectedness of � means that it cannot
be split into two parts whose (Euclidean) distance is
larger than 1. We use @(�) to denote the set of all
contours of �, B(�) =

S
�2@(�) �.

Consider a configuration �� such that � is its
unique contour. The set Zdn� has one infinite
component to be denoted Ext � and a finite number
of finite components whose union will be denoted
Int �. Observing that the configuration �� coincides
with one of the states �m 2G on every component of
ZdnB(�), each of those components can be labeled
by the corresponding m. Let q be the label of Ext �,
we say that � is a q-contour, and let Intm � be the
union of all components of Int � labeled by
m, m = 1, . . . , r.

Defining the ‘‘energy’’ �(�) of a q-contour � by
the equation

�ð�Þ¼Hð��;�qÞ þ eqðHÞj�j

�
Xr

m¼1

ðemðHÞ � eqðHÞÞjIntm �j ½7�

the Peierls condition with respect to the set G of
reference configurations is an assumption of the
existence of � > 0 such that

�ð�Þ� ð�þmin
m

emðHÞÞj�j ½8�

for any contour of any configuration � that is a
finite perturbation of �q 2G.

Notice that if G = g(H), the sum on the right-hand
side of [7] vanishes.
Phase Diagram

The main claim of the Pirogov–Sinai theory provides,
for � sufficiently large, a construction of regions Kg(�)
of the parameter space characterized by the coex-
istence of phases labeled by configurations �m 2 g.
This is done similarly as for the ground-state phase
diagram discussed earlier by constructing a home-
omorphism t 7! a(t) from a neighborhood of the origin
of the parameter space to a neighborhood of the origin
of @Qr that provides the phase diagram (actually, the
function a(t) will turn out to be just a perturbation of
h(t) with errors of order e��).

Before stating the result, however, we have to
clarify what exactly is meant by existence of phase
m for a given Hamiltonian H. Roughly speaking, it
is the existence of a periodic extremal Gibbs state
�m 2 G(H), whose typical configurations do not
differ too much from the ground-state configura-
tion �m. In more technical terms, the existence
of such a state is provided once we prove a
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suitable bound, for the finite-volume Gibbs state
��({��}j�m) under the boundary conditions �m, on
the probability that a fixed point in � is encircled
by a contour from @�. If this is the case, we say that
the phase m is stable. It turns out that such a bound
is actually an integral part of the construction of
metastable free energies fm(t) yielding the home-
omorphism t 7! a(t). In this way, we get the main
claim formulated as follows:

Theorem 1 Consider a parametric set of Hamilto-
nians Ht = H(0) þ

Pr�1
‘= 1 t‘H

(‘) with periodic finite-
range interactions satisfying the condition of
removal of degeneracy as well as the Peierls
condition with respect to the reference set
G = g(H(0)). Let d � 2 and let � be sufficiently
large. Then there exists a homeomorphism t 7! a(t)
of a neighborhood V� of the origin of the parameter
space Rr�1 onto a neighborhood U� of the origin of
@Qr such that, for any t 2 V�, the set of all stable
phases is {m 2 {1, . . . , r}jam(t) = 0}.

The Peierls condition can be actually assumed
only for the Hamiltonian H(0) inferring its validity
for Ht on a sufficiently small neighborhood V�.

Notice also that the result can be actually stated
not as a claim about phase diagram in a space of
parameters, but as a statement about stable phases
of a fixed Hamiltonian H. Namely, for a Hamilto-
nian H satisfying Peierls condition with respect to a
reference set G, one can assure the existence of
parameters am labeled by elements from G such that
the set of extremal periodic Gibbs states of H
consists of all those m-phases for which am = 0.
Construction of Metastable Free Energies

An important part of the Pirogov–Sinai theory is
an actual construction of the metastable free
energies – a set of functions fm(t), m = 1, . . . , r,
that provide the homeomorphism a(t) by taking
am(t) = fm(t)�min �m f �m(t).

We start with a contour representation of
partition function Z(�j�q). Considering, for each
contributing configuration �, the collection @(�) of
its contours, we notice that, in addition to the fact
that different contours �, �0 2 @(�) have disjoint
supports, � \ �0= ;, the contours from @(�) have
to satisfy the matching conditions: if C is a
connected component of Zdn

S
�2@ �, then the

restrictions of the spin configurations �� to C
are the same for all contours � 2 @(�) with
dist(�, C) = 1. In other words, the contours touch-
ing C induce the same label on C. Let us observe
that there is actually one-to-one correspondence
between configurations � that coincide with �q on
�c and collections M(�, q) of contours @ in �
satisfying the matching condition, and such that the
external among them are q-contours. Here, a contour
� 2 @ is called an external contour in @ if � � Ext �0

for all �0 2 @ different from �.
With this observation and using �m(@) to denote

the union of all components of � n
S
�2@ � with label

m, we get

Zð�j�qÞ ¼
X

@2Mð�;qÞ

Y
m

e��emðHÞj�mð�Þj
Y
�2@

e���ð�Þ ½9�

Usefulness of such contour representations stems
from an expectation that, for a stable phase q,
contours should constitute a suppressed excitation
and one should be able to use cluster expansions to
evaluate the behavior of the Gibbs state �q.
However, the direct use of the cluster expansion on
[9] is trammeled by the presence of the energy terms
e��em(H)j�m(@)j and, more seriously, by the require-
ment that the contour labels match.

Nevertheless, one can rewrite the partition func-
tion in a form that does not involve any matching
condition. Namely, considering first a sum over
mutually external contours @ext and resumming over
collections of contours which are contained in their
interiors without touching the boundary (being thus
prevented to ‘‘glue’’ with external contours), we get

Zð�j�qÞ ¼
X
@ext

e��eqðHÞjExtj

	
Y
�2@ext

�
e���ð�Þ

Y
m

ZdilðIntm�j�mÞ
�
½10�

Here the sum goes over all collections of
compatible external q-contours in �, Ext =
Ext�(@ext) =

T
�2@ext (Ext � \ �), and the partition

function Zdilð�j�qÞ is defined by [9] with
Mð�, qÞ replaced by Mdilð�, qÞ � Mð�, qÞ, the
set of all those collections whose external coun-
tours � are such that dist ð�, �cÞ > 1: Multiplying
now each term by

1 ¼
Y
�2@ext

Y
m

ZdilðIntm �j�qÞ
ZdilðIntm �j�qÞ

½11�

we get

Zð�j�qÞ ¼
X
@ext

e��eqðHÞjExtj

	
Y
�2@ext

e��eqðHÞj�jwqð�ÞZdilðInt �j�qÞ
� �

½12�

where wq(�) is given by

wqð�Þ¼ e���ð�Þ e�eqðHÞj�j
Y
m

ZdilðIntm �j�mÞ
ZdilðIntm �j�qÞ

½13�
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Observing that a similar expression is valid for
Zdilð�j�qÞ (with an appropriate restriction on the
sum over external contours @ext) and proceeding by
induction, we eventually get the representation

Zð�j�qÞ ¼ e��eqðHÞj�j
X

@2Cð�;qÞ

Y
�2@

wqð�Þ ½14�

where C(�, q) denotes the set of all collections of
nonoverlapping q-contours in �. Clearly, the sum on
the right-hand side is exactly of the form needed to
apply cluster expansion, provided the contour weights
satisfy the necessary convergence assumptions.

Even though this is not necessarily the case, there
is a way to use this representation. Namely, one can
artificially change the weights to satisfy the needed
bound, for example, by modifying them to the form

w0qð�Þ ¼ min wqð�Þ; e�� j�j
� �

½15�

with a suitable constant � . The modified partition
function

Z0ð�j�qÞ ¼ e��eqðHÞj�j
X

@2Cð�;qÞ

Y
�2@

w0qð�Þ ½16�

can then be controlled by cluster expansion allowing
to define

fqðHÞ ¼ �
1

�
lim
j�j!1

1

j�j log Z0ð�j�qÞ ½17�

This is the metastable free energy corresponding to the
phase q. Applying the cluster expansion to the
logarithm of the sum in [16], we get jfq(H)� eq(H)j �
e��=2. The metastable free energy corresponds to
taking the ground state �q and its excitations as long
as they are sufficiently suppressed. Once wq(�) exceeds
the weight e�� j�j (and the contour would have been
actually preferred), we suppress it ‘‘by hand.’’ The
point is that if the phase q is stable, this never happens
and w0q(�) = wq(�) for all q-contours �. This is the idea
behind the use of the function fq(H) as an indicator of
the stability of the phase q by taking

aqðtÞ ¼ fqðHtÞ �min
m

fmðHtÞ ½18�

Of course, the difficult point is to actually prove that
the stability of phase q (i.e., the fact that aq(t) = 0)
indeed implies w0q(�) = wq(�) for all �. The crucial step
is to prove, by induction on the diameter of � and �,
the following three claims (with 	= 2e��=2):

1. If � is a q-contour with aq(t) diam � � �=4, then
w0q(�) = wq(�).

2. If aq(t) diam � � �=4, then Z(�j�q) = Z0(�j�q) 6¼ 0
and

Zð�j�qÞ
�� �� � e�fqðHt Þj�j�	j@�j ½19�
3. If m 2 G, then

Zð�j�mÞj j � e�minq fqðHtÞj�je	j@�j ½20�

A standard example illuminating the perturbative
construction of the metastable free energies and
showing the role of entropic contributions is the
Blume–capel model. It is defined by the Hamiltonian

H�ð�Þ ¼ �J
X
hx;yi
ð�x� �yÞ2� 


X
x2�

�2
x� h

X
x2�

�x ½21�

with spins �x 2 {�1,0,1}. Taking into account only
the lowest-order excitations, we get:

~f
ð
; hÞ ¼ �
� h� 1

�
e��ð2d�

hÞ

(sea of pluses or minuses with a single spin flip
 ! 0)
and

~f0ð
; hÞ ¼ �
1

�
e��ð2dþ
Þ e�h þ e��h

� �

(sea of zeros with a single spin flip either 0 ! þ or
0 ! �)
Since these functions differ from full metastable free
energies f
(
, h), f0(
, h) by terms of higher order
(�e�(4d�2)�), the real phase diagram differs in this
order from the one constructed by equating the
functions ~f
(
, h) and ~f0(
, h). It is particularly
interesting to inspect the origin, 
= h = 0. It is only
the phase 0 that is stable there at all small
temperatures since

f0ð0; 0Þ � �
2

�
e��2d < f
ð0; 0Þ � �

1

�
e��2d ½22�

The only reason why the phase 0 is favored at this
point with respect to phases þ and � is that there
are two excitations of order e�2d� for the phase 0,
while there is only one such excitation for þ or �.
The entropy of the lowest-order contribution to
f0(0, 0) is overweighting the entropy of the contribu-
tion to f
(0, 0) of the same order.
Applications

Several applications, stemming from the Pirogov–
Sinai theory, are based on the fact that, due to the
cluster expansion, we have quite accurate descrip-
tion of the model in finite volume.

One class of applications concerns various
problems featuring interfaces between coexisting
phases. To be able to transform the problem into a
study of the random boundary line separating the
two phases, one needs a precise cluster expansion
formula for partition functions in volumes occupied
by those phases. In the situation with no symmetry
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between the phases, the use of the Pirogov–Sinai
theory is indispensable.

Another interesting class of applications concerns
the behavior of the system with periodic boundary
conditions. It is based on the fact that the partition
function ZTN

on a torus TN consisting of Nd sites
can be, again with the help of the cluster expan-
sions, explicitly and very accurately evaluated in
terms of metastable free energies,

ZTN
�
Xr

q¼1

e��fqðHÞNd

�����
�����

� expf��min
m

fmðHÞNd � b�Ng ½23�

with a fixed constant b. This formula (and its
generalization to the case of complex parameters)
allows us to obtain various results concerning the
behavior of the model in finite volumes.
Finite-Size Effects

Considering as an illustration a perturbation of the
Ising model, so that it does not have the 
 symmetry
any more (and the value ht(�) of external field
at which the phase transition between plus and
minus phase occurs is not known), we can pose a
natural question that has an importance for correct
interpretation of simulation data. Namely, what is
the asymptotic behavior of the magnetization
mper

N (�, h) =�TN
(1/�

P
x2� �x) on a torus? In the

thermodynamic limit, the magnetization mper
1 (�, h)

displays, as a function of h, a discontinuity at
h = ht(�). For finite N, we get a rounding of the
discontinuity – the jump is smoothed. What is the
shift of a naturally chosen finite-volume transition
point ht(N) with respect to the limiting value ht?
The answer can be obtained with the help of [23]
once sufficient care is taken to use the freedom in
the definition of the metastable free energies fþ(h)
and f�(h) to replace them with a sufficiently smooth
version allowing an approximation of the functions
f
(h) around limiting point ht in terms of their
Taylor expansion.

As a result, in spite of the asymmetry of the model,
the finite-volume magnetization mper

N (�, h) has a uni-
versal behavior in the neighborhood of the transition
point ht. With suitable constants m and m0, we have

mper
N ð�; hÞ�m0 þm tanhfNd�mðh� htÞg ½24�

Choosing the inflection point hmax(N) of mper
N (�, h)

as a natural finite-volume indicator of the occurence
of the transition, one can show that

hmaxðNÞ¼ ht þ
3�

2�2m3
N�2d þOðN�3dÞ ½25�
Zeros of Partition Functions

The full strength of the formula [23] is revealed
when studying the zeros of the partition function
ZTN

(z) as a polynomial in a complex parameter z
entering the Hamiltonian of the model. To be able
to use the theory in this case, one has to extend the
definitions of the metastable free energies to com-
plex values of z. Indeed, the construction still goes
through, now yielding genuinely complex, contour
models w
 with the help of an inductive procedure.
Notice that no analytic continuation is involved. An
analog of [23] is still valid,

ZTN
ðzÞ �

Xr

m¼1

e��fmðzÞNd

�����
�����

� expf��min
m
<efmðzÞNd � b�Ng ½26�

Using [26], it is not difficult to convince oneself
that the loci of zeros can be traced down to the
phase coexistence lines. Indeed, on the line of
the coexistence of two phases <efm = <efq, the
partition function ZTN

(z) is approximated by

e��fNd
(e��=mfmNd þ e��=mfnNd

). The zeros of this
approximation are thus given by the equations

<efm ¼ <efn < <ef‘ for all ‘ 6¼ m; n

�Ndð=mfm � =mfnÞ ¼ �mod 2�
½27�

The zeros of the full partition function ZTN
(z) can

be proved to be exponentially close, up to a shift
of order O(e��bN), to those of the discussed
approximation.

Briefly, the zeros of ZTN
(z) asymptotically con-

centrate on the phase coexistence curves with the
density (1=2�)�Ndj(d=dz)(fm � fn)j.
Bibliographical Remarks
and Generalizations

The original works Pirogov and Sinai (1975, 1976)
and Sinai (1982) introduced an analog of the weights
w0q(�) and parameters aq(H) as a fixed point of a
suitable mapping on a Banach space. The inductive
definition used here was introduced in Kotecký and
Preiss (1983) and Zahradnı́k (1984). The completeness
of phase diagram – the fact that the stable phases
exhaust the set of all periodic extremal Gibbs states
was first proved in Zahradnı́k (1984). Extension to
complex parameters was first considered in Gawȩdzki
et al. (1987) and Borgs and Imbrie (1989). For a review
of the standard Pirogov–Sinai theory, see Sinai (1982)
and Slawny (1987).

Application of Pirogov–Sinai theory for finite-size
effects was studied in Borgs and Kotecký (1990) and
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general theory of zeros of partition functions is
presented in Biskup et al. (2004).

The basic statement of the Pirogov–Sinai theory
yielding the construction of the full phase diagram
has been extended to a large class of models. Let us
mention just few of them (with rather incomplete
references):

1. Continuous spins. The main difficulty in these
models is that one has to deal with contours
immersed in a sea of fluctuating spins (Dobrushin
and Zahradnı́k 1986, Borgs and Waxler 1989).

2. Potts model. An example of a system a transi-
tion in temperature with the coexistence of the
low-temperature ordered and the high-tempera-
ture disordered phases. Contour reformulation is
employing contours between ordered and dis-
ordered regions (Bricmont et al. 1985, Kotecký
et al. 1990). The treatment is simplified with help
of Fortuin–Kasteleyn representation (Laanait
et al. 1991).

3. Models with competing interactions. ANNNI
model, microemulsions. Systems with a rich
phase structure (Dinaburg and Sinai 1985).

4. Disordered systems. An example is a proof of
the existence of the phase transition for the three-
dimensional random field Ising model (Bricmont
and Kupiainen 1987, 1988) using a renormaliza-
tion group version of the Pirogov–Sinai theory
first formulated in Gawȩdzki et al. (1987).

5. Quantum lattice models. A class of quantum
models that can be viewed as a quantum perturba-
tion of a classical model. With the help of Feyn-
man–Kac formula these are rewritten as a (d þ 1)-
dimensional classical model that is, in its turn,
treated by the standard Pirogov–Sinai theory (Datta
et al. 1996, Borgs et al. 1996).

6. Continuous systems. Gas of particles in con-
tinuum interacting with a particular potential of
Kac type. Pirogov–Sinai theory is used for a proof
of the existence of the phase transitions after a
suitable discretisation (Lebowitz et al. 1999).

See also: Cluster Expansion; Falicov–Kimball Model;
Phase Transitions in Continuous Systems; Quantum
Spin Systems.
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Figure 2 Hurricane Jeanne. Reproduced with permission from

the National Oceanic and Atmospheric Administration (NOAA)

(www.noaanews.noaa.gov).
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Figure 1 Thomson atomic model: (a) atom with three

electrons and (b) atom with four electrons. From Thomson JJ

(1883) A Treatise on the Motion of Vortex Rings. New York:

Macmillan and Thomson JJ (1904) Electricity and Matter.

Westmister: Archibald Constable.
Introduction

Vortices have a long fascinating history. Descartes
wrote in his Le Monde:

. . .que tous les mouvements qui se font au Monde sont
en quelque façon circulaire: c’est à dire que, quand un
corps quitte sa place, il entre toujours en celle d’un
autre, et celui-ci en celle d’un autre, et ainsi de suite
jusques au dernier, qui occupe au même instant le lieu
délaissé par le premier.

In particular, Descartes thought of vortices to
model the dynamics of the solar system, as reported
by W W R Ball (1940):

Descartes’ physical theory of the universe, embodying
most of the results contained in his earlier and
unpublished Le Monde, is given in his Principia,
1644, . . . He assumes that the matter of the universe
must be in motion, and that the motion must result in a
number of vortices. He stated that the sun is the center
of an immense whirlpool of this matter, in which the
planets float and are swept round like straws in a
whirlpool of water.

Descartes’ theory was later on recused by Newton
in his Principia in 1687. Few centuries later,
W Thomson (1867) the later Lord Kelvin, made use
of vortices to formulate his atomic theory: each atom
was assumed to be made up of vortices in a sort of
ideal fluid. In 1878–79 the American physicist A M
Mayer conducted a few experiments with needle
magnets placed on floating pieces of cork in an
applied magnetic field, as toy models for studying
atomic interactions and forms (Mayer 1878, Aref
et al. 2003). In 1883 inspired by Mayer experiments,
J J Thomson combined W Thomson’s atomic theory
with H von Helmholtz’s point-vortex theory
(Helmholtz 1858): he thought as the electrons were
point vortices inside a positively charged shell (see
Figure 1), the vortices being located at the vertices of
regular parallelograms and investigated about the
stability of such structures (see Thomson (1883,
section 2.1)). The vortex-atomic theory survived for
quite a few years up to Rutherford’s experiments
proved that atoms have quite a different structure!
Before continuing this historical/modeling overview,
let’s address the following question:

what is a vortex and, more specifically, what is a point-
vortex?
Roughly speaking, following Descartes, a vortex
is an entity which makes particles move along
circular-like orbits. Examples are the cyclones and
anticyclones in the atmosphere (see Figure 3).
Mathematically speaking, let u = (u, v, w) 2 R3 be a
velocity field, the associated vorticity field ! is
defined to be

! ¼ r ^ u ½1�

In this article we are considering exclusively inviscid
flows which are also incompressible, that is,

r � u ¼ 0 ½2�

and have constant density �, which we normalize to
be equal to 1 (�= 1). In two dimensions, a point-
vortex field is the simplest of all vorticity fields: it
can be thought as an entity where the vorticity field
is concentrated into a point. In other words, point
vortices are singularities of the vorticity field! Then,
in the plane the vorticity field associated to a system
of N point vortices is

!ðrÞ ¼
XN
�¼1

���ðr � r�Þ ½3�
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Figure 3 Cyclones and anticyclones in the atmosphere. Repro-

duced from Boatto S and Cabrel HE, SIAM Journal of Applied

Mathematics 64:216–230 (2003). With the permission of SIAM.
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where ��, �= 1, . . . , N, is a constant and corre-
sponds to the vorticity (or circulation) of the
�-vortex, situated at r�. In fact by definition,
the circulation around a curve C delimiting a region
� with boundary C,

�C ¼
I

C

u � ds ¼
Z Z

�

ðr ^ uÞ � n dA ¼
Z Z

�

! ½4�

where we have used Stokes’ theorem to bring in the
vorticity. Then if the region contains only the �th
point vortex, we obtain

�C ¼
Z Z

�

! � dA ¼ �� ½5�

by eqn [3]. A positive (resp. negative) sign of ��
indicates that the corresponding point vortex
induces an anticlockwise (resp. clockwise) particle
motion, see Figure 4a)). Is there an analog of a
point-vortex system for a three-dimensional flow?

Yes, and this brings in the analogy between vortex
lines and magnetic field lines that Mayer used in his
experiments with floating magnets. In fact, in three
dimensions, the notion of a point vortex can be
extended to that one of a straight vortex line (see
Figure 4b), where, by definition, a vortex line is a curve
that is tangent to the vorticity vector ! at each of its
point. In this context we would like to mention the
beautiful experiments of Yarmchuck–Gordon–Packard
on vortices in superfluid helium. They observed the
r Γ > 0   Γ >

r   

2
__Γ= c|u| 

particle

u

(a)

Figure 4 (a) Advected by the velocity field of one point vortex, a te

absolute value of the vortex circulation and inversely proportional to th
formation of stable polygonal configurations of iden-
tical vortices, quite similar to the ones observed by
Mayer with his magnets (see Figures 5 and 1).

One would like to understand how such configura-
tions form and to give a theoretical account about their
stability. In order to answer these questions we have to
first be able to describe the dynamics of a system of
point vortices from a mathematical point of view.
Evolution Equations

Can point vortices be viewed as ‘‘discrete’’ (or
localized) solutions of Euler equation in two dimen-
sions? Let us consider the Euler equation

@u

@t
þ u � ru ¼ �rpþ f ½6�

where p is the pressure, f =�rU is a conservative
force, and restrict our attention to the two-dimensional
setting, for example, vortex dynamics on the plane (or a
sphere). Then it is immediate that by taking the curl of
eqn [6] we obtain the evolution equation of the
vorticity, that is,

@!

@t
þ u � r! ¼ 0; or

D!

Dt
¼ 0 ½7�

where the operator D=Dt = @=@t þ u � r is called the
material derivative and describes the evolution along
the flow lines. It follows from eqn [7] that in two
dimensions the vorticity is conserved as it is trans-
ported along the flow lines. Then a natural question
arises: supposing the vorticity field ! is known, is it
possible to deduce the velocity field u generating !? Or
in other words, is it possible to solve the system of eqns
[1]–[2]? It is immediate to see that in general the
solution is not unique, if some boundary conditions
are not specified (see Marchioro and Pulvirenti
(1993)). Furthermore, as already observed by Kirchh-
off in 1876 (Boatto and Cabral 2003), in two
dimensions we can recast the fluid equations [1]–[2]
into a Hamiltonian formalism. In fact, notice that on
the plane u = ( _x, _y) and eqn [2] is still satisfied if we
represent the velocity components as
 0

ω
u

(b)

st particle follows a circular orbit, with a speed proportional to the

e square of its distance from the vortex. (b) Straight vortex lines.



Figure 5 Photographs of vortex configurations in a rotated

sample of superfluid helium with 1, . . . ,11 vortices. Reprinted

figure with permission from Yarmchuk EJ, Gordon MJV, and

Packard RE (1979) Observation of stationary vortices arrays in

rotating superfluid Helium. Physical Review Letters 43(3): 214–

217. Copyright (1979) by the American Physical Society.
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_x ¼ @�

@y
; _y ¼ � @�

@x
½8�

that is, by means of �, called the stream function.
Formally, � plays the rôle of a Hamiltonian for the pair
of conjugate variables (x, y) and it is used to describe the
dynamics of a test particle, located at (x, y) and advected
by the flow. By substituting [8] into [1], we obtain

��ðrÞ ¼ !ðrÞ ½9�

that is, a Poisson equation with ! as a source term.
Then, once we specify the vorticity field, by
inverting [9] we obtain the stream function � to be

�ðrÞ ¼
Z

Gðr; r 0Þ!ðr 0Þ dr 0 ½10�
where G(r, r 0) is the Green’s function, solution of
the equation �G(x, y) = ��(x, y). The Green’s func-
tion both for the plane and the sphere is (Marchioro
and Pulvirenti 1993)

Gðr; r 0Þ ¼ � 1

4�
log kr � r 0k2 ½11�

where kr � r 0k2 = (x� x0)2 þ (y� y0)2. By [10], once
we specify the vorticity field !(r) we can compute �,
and by replacing it into [8] the velocity field becomes

uðrÞ ¼
Z

Kðr; r 0Þ!ðr 0Þ dr 0 ½12�

where K(r, r 0) = �(r � r 0)?=½2�kr � r 0k2� and it
represents the velocity field generated by a point
vortex of intensity one, located at r 0. Then by
considering the vorticity field generated by point
vortices, eqn [3], together with eqn [11], eqn [10]
becomes

�ðrÞ ¼ � 1

4�

Z
log kr � r 0k2

XN
�¼1

���ðr 0 � r�Þ
 !

dr 0

¼ � 1

4�

XN
�¼1

�� log kr � r�k2 ½13�

Equation [13] describes together with [8], the
dynamics of a test particle at a point r = (x, y) in
the plane. Analogously, it can be shown that the
dynamics of a systems of point vortices in the plane
is given by the equations

��
dx�
dt
¼ @Hv

@y�
; ��

dy�
dt
¼ � @Hv

@x�
½14�

where (q�, p�) = (x�, ��y�),�= 1, . . . , N, is a pair of
conjugate variables and Hv is the generalization of
the stream function � (eqn [13]):

Hv ¼ �
1

4�

XN
�;�¼1
� 6¼�

���� log kr� � r�k2 ½15�

Notice that the vortex Hamiltonian Hv (eqn [15]) is
an autonomous Hamiltonian and, as we will discuss
in the first subsection, it provides a good Lyapunov-
like function to study stability properties of some
vortex configurations. Moreover, Hv is invariant
with respect to rotations and translations, then by
the Noether theorem there are other first integrals of
motion, that is,

L ¼
XN
k¼1

�k k xk k2; Mx ¼
XN
k¼1

�kxk;

My ¼
XN
k¼1

�kyk
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Figure 6(a–d) For N = 2 the vortex dipole exhibits a synchro-

nous and the orbits are in general circular orbits, with the

exception of the case (d) for which �1 =��2 and the circular

orbit degenerates into a line (or a circle of infinite radius).

Point-Vortex Dynamics 69
expressing, respectively, the conservation of angular
momentum, L, and linear momentum, M =
(Mx, My), on the plane. We shall denote with M
the magnitude of M (i.e., M = kMk). Furthermore,
by introducing the Poisson bracket

½f ; g� ¼
XN
�¼1

@f

@q�

@g

@p�
� @f

@p�

@g

@q�

� �

¼
XN
�¼1

1

��

@f

@x�

@g

@y�
� @f

@y�

@g

@x�

� �

we can construct three integrals in involution out of
the four conserved quantities L, Mx, My, and Hv.
These are L, M2

x þM2
y and Hv: in fact,

½Hv;L�¼ 0; Hv;M
2
x þM2

y

h i
¼ 0;

L;M2
x þM2

y

h i
¼ 0

It is then possible to reduce the system of equations
from N to N � 2 degrees of freedom. A Hamiltonian
system with N degrees of freedom is integrable
whenever there are N independent integrals of
motion in involution. It follows that a vortex system
with N � 3 is integrable, whereas the system of
equations of four identical vortices has been shown
by Ziglin to be nonintegrable in the sense that there
are no other first integrals analytically depending on
the coordinates and circulations, and functionally
independent of L, Hv, Mx, My (see Ziglin (1982)).
The following, however, has been shown:

1. Let K =
PN

�= 1 k� be the total vorticity,
M = (Mx, My) the total momentum and M = kMk .
Then, as shown by Aref and Stremler (1999), if K = 0
and M = 0, N-vortex problem [16] is integrable.

2. A system of four identical vortices (i.e., k� = k
for �= 1, . . . , 4) can undergo periodic or quasi-
periodic motion for special initial conditions (see
Khanin (1981) Russian Math. Surveys 36: 231;
Aref and Pomphrey (1982) Proc. R. Soc. Lond. A
380: 359–387). More specifically, the motion of a
system of four identical vortices can be periodic,
quasiperiodic, or chaotic depending on the symme-
try of the initial configuration. In fact, every vortex
configuration that belongs to the subspace of
symmetric configurations – x� = �x�þ2 and y� =
y�þ2,�= 1, 2 – gives rise to an integrable vortex
motion.

We have that up to two vortices, the motion is
almost always periodic and the orbits are circles; the
only exception being the case for which k2 =�k1,
when the circles degenerate into straight lines. Thus,
a configuration of two point vortices is always a
relative equilibrium configuration, that is, there exists
a specific reference frame in which the two vortices
are at rest. If the vortices are identical (�1 = �2 = �),
the motion is synchronous with frequency � = �=�
and the vortices share the same circular orbit (see
Figure 6a). If the vortices are not identical and have
vorticities of different magnitudes (say j�1j > j�2j),
their motion is still synchronous and periodic, with
frequency � = (�1 þ �2)=(2�), and the vortices move
on different circular orbits (with r2 < r1) both
centered at the center of vorticity. Note that for
both cases, identical and nonidentical vortices, we
can view the vortex dynamics in a co-rotating frame
where the vortices are simply at rest.

For three vortices we can have periodic and
quasiperiodic motion, depending on the initial
conditions, and for four vortices we can have
periodic, quasiperiodic, or weakly chaotic motion.

Remarks

(i) The nonintegrability of the 4-vortex system was
also proved for configurations of nonidentical vortices.
Koiller and Carvalho (1989) gave an analytical proof
for �1 = ��2 and �3 = �4 = �, 0� �� 1. Moreover,
Castilla et al. (1993) considered the case:
�1 = �2 = �3 = 1 and �4 = �.

(ii) Due to the translational and rotational
symmetries of Hv, there are some analogies between
the N-vortex problem and the N-body problem,
especially for what concerns configurations of
relative equilibria (see Albouy (1996) and Glass
(2000)). A relative equilibrium is a vortex (or mass)
configuration that moves without change of shape
or form, that is, a configuration which is steadily
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Figure 7 Polygonal configuration of vortices: (a) planar

configurations and (b) configurations of vortex rings on a sphere,

with and without polar vortices.
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rotating or translating. A few examples are vortex
polygons (see Figure 7) like the ones studied by
Thomson, Mayer, Yarmchuk–Gordon–Packard,
Boatto–Cabral (2003), Cabral–Schmidt (1999/
2000), Dritschel–Polvani (1993), Lim–Montaldi–
Roberts (2001), Sakajo (2004). For an exhaustive
review on relative equilibria of vortices, see the
article by Aref et al. (2003). We shall discuss
stability of polygonal vortex configuration in the
following subsection.

(iii) As shown by Kimura (1999) in a beautiful
geometrical formalism, on the unit sphere (S2) and
on the Hyperbolic plane (H2), the vortex Hamilto-
nians [15] are

Hv ¼ �
1

4�

XN
�6¼�

���� logð1� cos ���Þ on S2

Hv ¼ �
1

4�

XN
�6¼�

���� log
cosh ��� � 1

cosh ��� þ 1
on H2

where

cos ��� ¼ cos �� cos ��

þ sin �� sin �� cosð	� � 	�Þ on S2

cosh ��� ¼ cosh �� cosh ��

þ sinh �� sinh �� cosð	� � 	�Þ on H2

On S2, �� and 	� are, respectively, the co-latitude
and the longitude of the �-vortex, �= 1, . . . , N. We
can define canonical variables q� and p� on S2 and
H2, respectively, as

q� ¼ �� cos ��; p� ¼ 	� on S2

q� ¼ �� cosh ��; p� ¼ 	� on H2
Montaldi et al. (2002) studied vortex dynamics on
a cylindrical surface, and Soulière and Tokieda
(2002) considered vortex dynamics on surfaces
with symmetries.

(iv) As we shall see in the section on point
vortex motion, it is sometimes useful to employ
the complex analysis formalism. Then the vari-
ables of interest are z� = x� þ iy�,�= 1, . . . , N, and
its conjugate �z�, the Hamiltonian [15] takes the
form

Hv ¼ �
1

2�

X
�6¼�

���� log jz� � z�j

and the equations of motions become

_z� ¼
i

2�

XN
� 6¼�;�¼1

��
z� � z�

jz� � z�j2
; � ¼ 1; . . . ;N ½16�

(v) Equation [14] can we rewritten in a more
compact form as

dX

dt
¼ JrXHv ½17�

where

X ¼ ðq1; . . . ; qN; p1; . . . ; pNÞ

rX ¼
@

@q1
; . . . ;

@

@qN
;
@

@p1
; . . . ;

@

@pN

� �

J ¼
O I

�I O

� �

I being the N �N identity matrix.
(vi) How close is the point-vortex model to the

original Euler equation? Point-vortex systems repre-
sent discrete solutions of the Euler equation in a
‘‘weak’’ sense – see both the book and the article by
Marchioro and Pulvirenti (1993, 1994). These
authors proved that the Euler dynamics is ‘‘similar’’
to the vortex dynamics in which the vortices are
localized in very small regions, and the vortex
intensities are the total vorticities associated to
such small regions. In particular, let us consider a
vorticity field with compact support on a family of
�-balls, that is,

!� ¼
XN
i¼1

!�i

with support of !�i contained in the ball of center xi

(independent of �) and radius �. Furthermore let us
assume that Z

jr�r ij��
!�i dr ¼ �i
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Figure 8 In the limit �! 0, the dynamics of the center of

vorticity of a vortex �-ball is approximated by the dynamics of a

point vortex.
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with the 
i independent of �. Then in the limit �! 0
the dynamics of the center of vorticity
B�(t) =

R
r!�(r, t) dr, of a given �-ball, ‘‘converges’’

to the motion of a single point vortex (see Figure 8).
This result is important to illustrate as vortex
systems provide both a useful heuristic tool in the
analysis of the general properties of the solutions of
Euler’s equations (Poupaud 2002, Schochet 1995),
and a useful starting point for the construction of
practical algorithms for solving equations in specific
situations. In particular, it provides a theoretical
justification to the vortex method previously intro-
duced by Carnevale et al. (1992). These authors
constructed a numerical algorithm to study turbu-
lence decaying in two dimensions. Their vortex
method greatly simplifies fluid simulations as basi-
cally it relies on a discretization of the fluid into
circular patches. The dynamics of patches is given
by the centers of vorticity, which interact as a point-
vortex system, endowed with a rule dictating how
patches merge (see Figure 9).
Stability of a Vortex Ring

As mentioned in the Introduction section, the study
of vortex relative equilibria has a long history.
Kelvin showed that steadily rotating patterns of
identical vortices arise as solutions of a variational
problem in which the interaction energy (vortex
Hamiltonian) is minimized subject to the constraint
that the angular impulse be maintained (see Aref
(2003). In 1883, while studying and modeling the
atomic structure, J J Thomson investigated the linear
2a1

2a2

2a3

Figure 9 In Carnevale et al. (1992) the fluid is modeled by a

dilute vortex gas with density � and typical radius a. The

dynamics is governed by the point-vortex dynamics of the disk

centers, each disk corresponding to a point vortex of intensity

� = ��ext a
2, where �ext plays the role of a vorticity density. Two

vortices or radius a1 and a2 merge when their center-to-center

distance is less or equal to the sum of their radii, a1 þ a1. Then a

new vortex is created and its radius a3 is given by

a3 = (a4
1 þ a4

2)1=4.
stability of co-rotating point vortices in the plane. In
particular, his interest was in configurations of
identical vortices equally spaced along the circum-
ference of a circle, that is, located at the vertices of a
regular polygon (see Figure 7). He proved that for
six or fewer vortices the polygonal configurations
are stable, while for seven vortices – the Thomson
heptagon – he erroneously concluded that the
configuration is slightly unstable. It took more
than a century to make some progresses on this
problem. D G Dritschel (1985) succeeded in solving
the heptagon mystery for what concerns its linear
stability analysis, leaving open the nonlinear stabi-
lity question: he proved that the Thomson heptagon
is neutrally stable and that for eight or more vortices
the corresponding polygonal configurations are
linearly unstable. Later on in 1993, Polvani and
Dritschel (1993) generalized the techniques used in
Dritschel (1985) to study the linear stability of a
‘‘latitudinal’’ ring of point vortices on the sphere, as
a function of the number N of vortices in the ring,
and of the ring’s co-latitude � (see Figure 10). They
proved that polygonal configurations are more
unstable on the sphere than in the plane. In
particular, they showed that at the pole, for N < 7
the configuration is stable, for N = 7 it is neutrally
stable and for N > 7 it is unstable. By means of the
energy momentum method (Marsden–Meyer–Weistein
reduction), J E Marsden and S Pekarsky (1998)
studied the nonlinear stability analysis for the
integrable case of polygonal configurations of
three vortices of arbitrary vorticities (�1, �2 and
�3) on the sphere, leaving open the stability
analysis for nonintegrable vortex systems (N > 3).
In 1999 H E Cabral and D S Schmidt completed
the linear and nonlinear stability analysis at once
for polygonal configurations in the plane. In 2003
Boatto and Cabral studied the nonlinear stability of
a ring of vortices on the sphere, as a function of the
number of vortices N and the ring colatitude �.
θ

y

x

z

Figure 10 Latitudinal ring of vortices. Reproduced with

permission from Boatto S and Cabral HE SIAM Journal of

Applied Mathematics 64: 216–230 (2003).
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Boatto and Simó (2004) generalized the stability
analysis to the case of a ring with polar vortices
and of multiple rings, the key idea being, as we
shall discuss in this section, the structure of the
Hessian of the Hamiltonian.

How to infer about linear and nonlinear stability
of steadily rotating configurations?

Let us restrict the discussion to a polygonal ring of
identical vortices on a sphere as illustrated in
Figure 7 (Boatto and Cabral 2003, Boatto and
Simó 2004). The reasoning is easily generalized for
the planar case. The case of multiple rings is
discussed in great detail in Boatto and Simó
(2004). A polygonal ring is a relative equilibrium
of coordinates X(t) = (q1(t), . . . , qN(t), p1(t), . . . ,
pN(t)), where

q�ðtÞ ¼ 	�ðtÞ ¼ !t þ 	o�

p�ðtÞ ¼ po ¼ � cos �o � ¼ 1; . . . ;N
½18�

!= (N � 1)po=r
2
o, ro =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

o=�2
p

,	o� and �o� = �o

being the initial longitude and co-latitude of the �th
vortex.

Theorem 1 (Spherical case) (Boatto and Simó
2004). The relative equilibrium [18] is (linearly and
nonlinearly) stable if

� 4ðN � 1Þð11�NÞ þ 24ðN � 1Þr2
o

þ 2N2 þ 1þ 3ð�1ÞN < 0 ½19�

and it is unstable if the inequality is reversed.

Remarks

(i) By Theorem 1 a vortex polygon, of N point vortices,
is stable for 0� � �o � �	o and (180� � �	o) � �o �
180�, where �	o = arcsin(r	o) and

r	2o <
7�N

4
for N odd

r	2o < �N2 � 8N þ 8

4ðN � 1Þ for N even

where r	o = sin �	o.
(ii) Theorem 1 includes at once the results of

Thomson (1883), Dritschel (1985), and Polvani
and Dritschel (1993) (and other authors who
have been working in the area (Aref et al. 2003)).
We recover the planar case by setting ro = 0 in
eqn [19], deducing that stability is guaranteed
for N < 7.

To prove Theorem 1 it is useful to consider the
Hamiltonian equations as in eqn [17]. The first step
is to make a change of reference frame: view the
dynamics in a frame co-rotating with the relative
equilibrium configuration. In the co-rotating refer-
ence system, the Hamiltonian takes the form

~H ¼ H þ !M

where M is the momentum of the system, and H and
! are, respectively, the Hamiltonian and the rota-
tional frequency of the relative equilibrium in the
original frame of reference. In the new reference
frame, the relative equilibrium becomes an equili-
brium, X	, and the standard techniques can be used
to study its stability.

To study linear stability, the relevant equation is

d�X

dt
¼ JS�X ½20�

where X = X	 þ�X, and S is the Hessian of ~H
evaluated at the equilibrium X	. Then linear (or
spectral) stability is deduced by studying the
eigenvalues of the matrix JS (spectral stability). For
nonlinear stability we make use of a sufficient
stability criterion due to Dirichlet (1897) (see G
Lejeune Dirichlet (1897). Werke, vol. 2, Berlin,
pp. 5–8; Boatto and Cabral (2003) and references
therein).

Theorem 2 Let X	 be an equilibrium of an
autonomous system of ordinary differential equations

dX

dt
¼ f ðXÞ; � 
 R2N ½21�

that is, f (X	) = 0. If there exists a positive (or
negative) definite integral F of the system [21] in a
neighborhood of the equilibrium X	, then X	 is
stable.

In our case the Hamiltonian itself is an integral of
motion. Then by studying definiteness of its Hes-
sian, S, evaluated at X	, we infer minimal stability
intervals in � and N. Details are given in Boatto and
Cabral (2003) and Boatto and Simó (2004). The
proof is mainly based on the following
considerations:

1. Since S is a symmetric matrix it is diagonaliz-
able, that is, there exists an orthogonal matrix
C such that CTSC = D, where D is a diagonal
matrix, D = diag(�1, . . . ,�N). Furthermore, the
matrix C can be chosen to leave invariant the
symplectic form (equivalently J = CTJC). Then
by the canonical change of variables Y = CTX
eqn [20] becomes

d�Y

dt
¼ JD�Y ½22�
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where Y = (~q1, . . . , ~qN, ~p1, . . . , ~pN) and (~qj, ~pj),
j = 1, . . . , N, are pairs of conjugate variables.
Equation [22] can be rewritten as

d2�~qj

dt2
¼ ��j�jþN�~qj; j ¼ 1; . . . ;N

2. When evaluated at the equilibrium X	, the
Hessian S takes the block structure

~S ¼
Q O

O P

� �

where the matrices Q and P are symmetric circulant
matrices, that is, (N �N) matrices of the form

A ¼

a1 a2 . . . aN

aN a1 . . . aN�1

..

. ..
. . .

. ..
.

a2 a3 . . . a1

0
BBB@

1
CCCA ½23�

Circulant matrices are of special interest to us
because we can easily compute their eigenvalues
and eigenvectors for all N. In fact, it is immediate
to show that:

Lemma 3 All circulant matrices [23] have
eigenvalues

�j ¼
XN
k¼1

akrk�1
j ; j ¼ 1; . . . ;N

and corresponding eigenvectors vj = (1, rj, . . . ,
rN�1
j )T, j = 1, . . . , N, where rj = exp (2�(j� 1)=N)

are solutions of rN = 1.

Passive Tracers in the Velocity Fields of N Point
Vortices: The Restricted (N þ 1)-Vortex Problem

The terminology ‘‘restricted (N þ 1)-vortex prob-
lem’’ is used in analogy with celestial mechanics
literature, when one of the vorticities is taken to be
zero. The zero-vorticity vortex does not affect the
dynamics of the remaining N-vortices. For this
reason, it is said to be passively advected by the
flow of the remaining N-vortices and in the fluid
mechanics literature the terminology ‘‘passive tra-
cer’’ is also employed. The tracer dynamics is given
by the Hamiltonian equations [8]. Notice that in
general the Hamiltonian � is time dependent,
through the vortex variables r j, j = 1, . . . , N, that is,

�ðr; tÞ ¼ �ðr; r1ðtÞ; . . . ; rNðtÞÞ

and (q, p) = (x, y) play the role of conjugate canoni-
cal variables. There is an extensive literature on the
subject both from theoretical (see, e.g., Boatto and
Simó (2004) and Newton (2001)) and an experi-
mental (van Heijst 1993, Ottino 1990) point of
view. As discussed in the previous section, there are
some vortex configurations, such as the polygonal
ones, for which vortices undergo a periodic circular
motion. Then by viewing the dynamics in a
reference frame co-rotating with the vortices the
tracer Hamiltonian is manifestly time independent
and, therefore, integrable – since it reduces to a
Hamiltonian of one degree of freedom. In such an
occurrence, tracer trajectories form a web of homo-
clinic and heteroclinic orbits. An interesting theo-
retical problem is to study how the tracer transport
properties (i.e., existence of barriers to transport,
diffusion etc.) are affected by perturbing the poly-
gonal vortex configuration, that is, by introducing in
� a ‘‘genuine’’ time dependence (periodic, quasi-
periodic, or chaotic) (see, e.g., Boatto and Pierre-
humbert (1999), Rom-Kedar, Leonard and Wiggins
(1990), Kuznetsov and Zaslavsky (2000), and
Newton (2001)). Furthermore, in the lab experi-
ments, color dyes, which monitor the flow velocity
field, are often used as the experimental equivalent
of tracer particles. In this context we would like to
stress the striking resemblance between theoretical
particle trajectories, deduced from point vortex
dynamics, and the actual dye visualizations observed
by van Heijst and Flor for vortex dipoles in a
stratified fluid (see Figures 11 and 12) (van Heijst
1993). Similarly, tripolar structures have been
observed both in lab experiments (see Figure 13)
and in nature (see Figure 14). Recently, the Danish
group of Jansson–Haspang–Jensen–Hersen–Bohr has
observed beautiful rotating polygons, such as
squares and pentagons, on a fluid surface in the
presence of a rotating cylinder (see Figure 15).
Point Vortex Motion with Boundaries

In comparison with the extensive literature on point
vortex motion in unbounded domains, the study of
point vortex motion in the presence of walls is modest.
There is, however, a general theory for such problems,
and some recent new developments in this area have
resulted in a versatile tool for analyzing point vortex
motion with boundaries. Newton (Newton 2001)
contains a chapter on point vortex motion with
boundaries and also features a detailed bibliography.
The reader is referred there for standard treatments;
here, we focus on more recent developments of the
mathematical theory.

The Method of Images

When point vortices move around in bounded
domains, it is clear that the motion is subject to
the constraint that no fluid should penetrate any of



Figure 11 Test-particle trajectories: on the left, theoretical

trajectories, from the point-vortex model; on the right, a top view

of a laboratory experiment in stratified flows. Reproduced from

van Heijst GJF and Flor JB (1989) Dipole formation and

collisions in a stratified fluid. Nature 340: 212–215, with

permission from Nature Publishing Group.

Figure 12 A frontal collision of two dipoles as observed in a

stratified fluid: after a so called ‘‘partner-exchange’’ two new

dipoles are formed. Reproduced from van Heijst GJF and Flor JB

(1989) Dipole formation and collisions in a stratified fluid. Nature

340: 212–215, with permission from Nature Publishing Group.

Figure 13 A tripolar vortex structure as observed in a rotating

stratified fluid. Reproduced from van Heijst GJF, Kloosterziel

RC, and Williams CWM (1991) Laboratory experiments on the

tripolar vortex in a rotating fluid. Journal of Fluid Mechanics 225:

301–331, with permission from Cambridge University Press.
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the boundary walls of the domain. If n denotes the
local normal to the boundary walls, the boundary
condition on the velocity field u is therefore u � n = 0
everywhere on the walls. Another way to say the
same thing is that all the walls must be streamlines
so that the streamfunction,  say, must be constant
on any boundary wall.

A classical approach to bounded vortex motion is
the celebrated method of images – a rather special
technique limited to cases where the domain of
interest has certain geometrical symmetries so that
an appropriate distribution of image vorticity can be
ascertained, essentially by inspection. This image
vorticity is placed in nonphysical regions of the
plane in order to satisfy the boundary conditions
that the walls act as impenetrable barriers for the
flow.

The simplest example is the motion of a single
vortex next to a straight plane wall of infinite
extent. Suppose the wall is along y = 0 in an (x, y)-
plane and that the fluid occupies the upper-half
plane. If a circulation-� vortex is at the complex
position z0 = x0 þ iy0, the solution for the stream-
function is

 ðz; zÞ ¼ � �

2�
log

z� z0

z� z0

����
���� ½24�

where z = xþ iy. This has a single logarithmic
singularity in the upper-half plane at z = z0



Figure 14 Infrared image taken by NOAA11 satellite on

January 4 1990 (0212 UT) shows a tripolar structure in the

Bay of Biscay. The central part of the tripole measures about

50–70 km and rotates clockwise, whereas the two satellite

vortices rotate anticlockwise. The dipoles persisted for a few

days before it fell apart. Reproduced from Pingree RD and Le

Cann B, Anticyclonic Eddy X91 in the Southern Bay of Biscay,

Journal of Geophysical Research, 97: 14353–14362, May 1991

to February 1992. Copyright (1992) American Geophysical

Union. Reproduced/modified by permission of American Geo-

physical Union.

Figure 15 The free surface of a rotating fluid will, due to the

centrifugal force, be pressed radially outward. If the flow is driven

by rotating the bottom plate, the axial symmetry can break

spontaneously and the surface can take the shape of a rigidly

rotating polygon. With water Jansson–Haspang–Jensen–Her-

sen–Bohr have observed polygons with up to six corners. The

rotation speed of the polygons does not coincide with that of the

plate, but it is often mode-locked, such that the polygon rotates

by one corner for each complete rotation of the plate.

Reproduced from Jansson TRN, Haspang M, Jensen KH,

Hersen P, and Bohr T (2005) Rotating polygons on a fluid

surface. Preprint, with permission from T Bohr.
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(corresponding to the point vortex) and it is easily
checked that  = 0 on y = 0. Therefore, no fluid
penetrates the wall. Equation [24] can be written as

 ðz; zÞ ¼ � �

2�
log jz� z0j þ

�

2�
log jz� z0j ½25�

which is the sum of the streamfunction due to a
point vortex of circulation � at z0 = x0 þ iy0 and
another, one imagines, of circulation �� at z0 =
x0 � iy0. In this case, the image vortex distribution is
simple: it is just the second vortex sitting at the
reflected point in the wall. The method of images
can be applied to flows in other regions bounded by
straight line segments (e.g., wedge regions of various
angles (Newton 2001)).

A variant of the method of images is the Milne–
Thomson circle theorem relevant to planar flow
around a circular cylinder. Given a complex
potential w(z) with the required singularities in the
fluid region exterior to the cylinder, but failing to
satisfy the boundary condition that the surface of
the cylinder is a streamline, this theorem says that
the correct potential W(z) is

WðzÞ ¼ wðzÞ þwða2=zÞ ½26�

where a is the cylinder radius and w(z) is the
conjugate function to w(z). It is easy to verify that
the imaginary part of W(z), that is, the stream-
function, is zero on jzj= a. The second term,
w(a2=z), produces the required distribution of
image vorticity inside the cylinder. A famous
example is the Föppl vortex pair which is the
simplest model of the trailing vortices shed in the
wake of a circular aerofoil traveling at uniform
speed.
Kirchhoff–Routh–Lin Theory

The most important general mathematical tool for
point vortex motion in bounded planar regions is
the Hamiltonian approach associated with the
names of Kirchhoff (1876) and Routh (1881),
who developed the early theory. It is now known
that the problem of N-vortex motion in a simply
connected domain is a Hamiltonian dynamical
system. Moreover, the Hamiltonian has simple
transformation properties when a given flow
domain of interest is mapped conformally to
another – a result originally due to Routh. A
formula for the Hamiltonian can be built from
knowledge of the instantaneous Green’s function
associated with motion of the point vortex in the
simply connected domain D. In fact, [24] is
precisely the relevant Green’s function when D is
the upper-half plane.
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Much later, in 1941, Lin (1941a) extended these
general results to the case of multiply connected
fluid regions. To visualize such a region, think of a
bounded region of the plane containing fluid but
also a finite number of impenetrable islands whose
boundaries act as barriers for the fluid motion. If the
islands are infinitely thin, they can be thought of as
straight wall segments immersed in the flow (see
later examples). Lin (1941b) showed that both the
Hamiltonian structure, and the transformation
properties of the Hamiltonian under conformal
mapping, are preserved in the multiply connected
case.

Lin’s Special Green’s Function

Since Lin’s result subsumes the earlier simply
connected studies, we now outline the key results
as presented in Lin (1941a). Consider a fluid region
D, with outer boundary C0 and M enclosed islands
each having boundaries {Cjjj = 1, . . . , M}. Lin intro-
duced a special Green’s function G(x, y; x0, y0)
satisfying the following properties:

1. the function

gðx; y; x0; y0Þ ¼ �Gðx; y; x0; y0Þ �
1

2�
log r0 ½27�

is harmonic with respect to (x, y) throughout
the region D including at the point (x0, y0). Here,

r0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� x0)2 þ (y� y0)2

q
;

2. if @G=@n is the normal derivative of G on a curve
then

Gðx; y; x0; y0Þ ¼ Ak; on Ck; k ¼ 1; . . . ;MI
Ck

@G

@n
ds ¼ 0; k ¼ 1; . . . ;M

½28�

where ds denotes an element of arc and {Ak} are
constants;

3. G(x, y; x0, y0) = 0 on C0.

Flucher and Gustafsson (1997) refer to this G as
the hydrodynamic Green’s function. (In fact, it
coincides with the modified Green’s function
arising in abstract potential theory – a function
that is dual to the usual first-type Green’s function
that equals zero on all the domain boundaries.)
On the use of G, Lin established the following two
key results:

Theorem 4 If N vortices of strengths {�kjk =
1, . . . , N} are present in an incompressible fluid at
the points {(xk, yk)jk = 1, . . . , N} in a general multi-
ply connected region D bounded by fixed bound-
aries, the stream function of the fluid motion is
given by
 ðx; y; xk; ykÞ

¼  0ðx; yÞ þ
XN
k¼1

�kGðx; y; xk; ykÞ ½29�

where  0(x, y) is the streamfunction due to outside
agencies and is independent of the point vortex
positions.

Theorem 5 For the motion of vortices of strengths
{�kjk = 1, . . . , N} in a general region D bounded by
fixed boundaries, there exists a Kirchhoff–Routh
function H({xk, yk}), depending on the point vortex
positions, such that

�k
dxk

dt
¼ @H

@yk
; �k

dyk

dt
¼ � @H

@xk
½30�

where H({xk, yk}) is given by

Hðfxk; ykgÞ ¼
XN
k¼1

�k 0ðxk; ykÞ

þ
XN

k1 ;k2¼1

k1>k2

�k1
�k2

Gðxk1
; yk1

; xk2
; yk2
Þ

� 1

2

XN
k¼1

�2
kgðxk; yk; xk; ykÞ ½31�

In rescaled coordinates (xk, �kyk), [30] is a Hamil-
tonian system in canonical form. For historical
reasons, H is often called the Kirchhoff–Routh
path function. Analyzing the separate contributions
to the path function [31] is instructive: the first term
is the contribution from flows imposed from outside
(e.g., background flows and round-island circula-
tions), the second term is the ‘‘free-space’’ contribu-
tion (it is the relevant Hamiltonian when no
boundaries are present) while the third term encodes
the effect of the boundary walls (or, the effect of the
‘‘image vorticity’’ distribution discussed earlier).

Lin (1941a) went on to show that, with the
Hamiltonian in some D given by H in [31], the
Hamiltonian relevant to vortex motion in another
domain obtained from D by a conformal mapping
z() consists of [31] with some simple extra additive
contributions dependent only on the derivative of
the map z() evaluated at the point vortex positions.

Flucher and Gustafsson (1997) also introduce
the Robin function R(x0, y0) defined as the regular
part of the above hydrodynamic Green’s function
evaluated at the point vortex. Indeed, R(x0, y0) �
g(x0, y0; x0, y0), where g is defined in [27]. An
interesting fact is that, for single-vortex motion in
a simply connected domain, R(x0, y0) satisfies the
quasilinear elliptic Liouville equation everywhere in
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D with the boundary condition that it becomes
infinite everywhere on the boundary of D.

By combining the Kirchhoff–Routh theory with
conformal mapping theory, many interesting prob-
lems can be studied. What happens, for example, if
there is a gap in the wall of Figure 16? In recent
work, Johnson and McDonald (2005) show that if
the vortex starts off, far from the gap, at a distance
of less than half the gap width from the wall, then it
will eventually penetrate the gap. Otherwise, it will
dip towards the gap but not go through it. The
trajectories are shown in Figure 17.

Unfortunately, Lin did not provide any explicit
analytical expressions for G in the multiply con-
nected case. This has limited the applicability of his
theory beyond fluid regions that are anything other
than simply and doubly connected. Recently, how-
ever, Lin’s theory has recently been brought to
implementational fruition by Crowdy and Marshall
Wall

Image vortex, circulation-Γ

Point vortex, circulation Γ

Figure 16 The motion of a point vortex near an infinite straight

wall. The vortex moves, at constant speed, maintaining a

constant distance from the wall. Other possible trajectories are

shown; they are all straight lines parallel to the wall. The motion

can be thought of as being induced by an opposite-circulation

‘‘image’’ vortex at the reflected point in the wall.
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Figure 17 Distribution of point vortex trajectories near a wall

with a single gap of length 2. There is a critical trajectory which,

far from the gap, is unit distance from the wall.
(2005a), who, up to conformal mapping, have
derived explicit formulas for the hydrodynamic
Green’s function in multiply connected fluid regions
of arbitrary finite connectivity. Their approach
makes use of elements of classical function theory
dating back to the work of Poincaré, Schottky, and
Klein (among others). This allows new problems
involving bounded vortex motion to be tackled. For
example, the motion of a single vortex around
multiple circular islands has been studied in Crowdy
and Marshall (2005b), thereby extending recent
work on the two-island problem (Johnson and
McDonald 2005). If the wall in Figure 17 happens
to have two (or more) gaps, then the fluid region is
multiply connected. The two-gap (doubly con-
nected) case was recently solved by Johnson and
McDonald (2005) using Schwarz–Christoffel maps
combined with elements of elliptic function theory
(see Figure 18). Crowdy and Marshall have solved
the problem of an arbitrary number of gaps in a wall
by exploiting the new general theory presented
in Crowdy and Marshall (2005a,b) (and related
works by the authors). The case of a wall with three
gaps represents a triply connected fluid region and
the critical vortex trajectory is plotted in Figure 19.

Point vortex motion in bounded domains on the
surface of a sphere has received scant attention in
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Figure 18 The critical trajectory when there are two symmetric

gaps in a wall. The fluid region is now doubly connected. This

problem is solved in Johnson and McDonald (2005) and Crowdy

and Marshall (2005).
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Figure 19 The critical vortex trajectories when there are three

gaps in the wall. This time the fluid region is triply connected.

This problem is solved in Crowdy and Marshall (2005) using the

general methods in Crowdy and Marshall (2005).
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the literature, although Kidambi and Newton
(2000) and Newton (2001) have recently made a
contribution. Such paradigms are clearly relevant
to planetary-scale oceanographic flows in
which oceanic eddies interact with topography such
as ridges and land masses and deserve further study.
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Besançon, France
T S Ratiu, Ecole Polytechnique Federale de
Lausanne, Lausanne, Switzerland

ª 2006 Elsevier Ltd. All rights reserved.
Introduction

The Poisson reduction techniques allow the con-
struction of new Poisson structures out of a given
one by combination of two operations: ‘‘restriction’’
to submanifolds that satisfy certain compatibility
assumptions and passage to a ‘‘quotient space’’
where certain degeneracies have been eliminated.
For certain kinds of reduction, it is necessary to pass
first to a submanifold and then take a quotient.
Before making this more explicit, we introduce the
notations that will be used in this article. All
manifolds in this article are finite dimensional.

Poisson Manifolds

A ‘‘Poisson manifold’’ is a pair (M, {� , �}), where M is a
manifold and {� , �} is a bilinear operation on C1(M)
such that (C1(M), {� , �}) is a Lie algebra and {� , �} is a
derivation (i.e., the Leibniz identity holds) in each
argument. The pair (C1(M), {� , �}) is also called a
‘‘Poisson algebra.’’ The functions in the center C(M) of
the Lie algebra (C1(M), {� , �}) are called ‘‘Casimir
functions.’’ From the natural isomorphism between
derivations on C1(M) and vector fields on M, it follows
that each h2C1(M) induces a vector field on M via the
expression Xh = {� , h}, called the ‘‘Hamiltonian vector
field’’ associated to the ‘‘Hamiltonian function’’ h.
The triplet (M, {� , �}, h) is called a ‘‘Poisson dynami-
cal system.’’ Any Hamiltonian system on a symplec-
tic manifold is a Poisson dynamical system relative
to the Poisson bracket induced by the symplectic
structure. Given a Poisson dynamical system
(M, {� , �}, h), its ‘‘integrals of motion’’ or ‘‘con-
served quantities’’ are defined as the centralizer of
h in (C1(M), {� , �}) that is, the subalgebra of
(C1(M), {� , �}) consisting of the functions
f 2C1(M) such that {f , h} = 0. Note that the
terminology is justified since, by Hamilton’s equa-
tions in Poisson bracket form, we have _f = Xh[f ] =
{f , h} = 0, that is, f is constant on the flow of Xh. A
smooth mapping ’ : M1!M2, between the two
Poisson manifolds (M1, {� , �}1) and (M2, {� , �}2),
is called ‘‘canonical’’ or ‘‘Poisson’’ if for all g,
h2C1(M2) we have ’	{g, h}2 = {’	g,’	g}1. If
’ : M1!M2 is a smooth map between two Poisson
manifolds (M1, {� , �}1) and (M2, {� , �}2), then ’ is a
Poisson map if and only if T’ �Xh�’ = Xh � ’ for
any h2C1(M2), where T’ : TM1!TM2 denotes
the tangent map (or derivative) of ’.

Let (S, {� , �}S) and (M, {� , �}M) be two Poisson mani-
folds such that S 
M and the inclusion iS : S ,!M
is an immersion. The Poisson manifold (S, {� , �}S) is
called a ‘‘Poisson submanifold’’ of (M, {� , �}M)
if iS is a canonical map. An immersed submanifold
Q of M is called a ‘‘quasi-Poisson submanifold’’ of
(M, {� , �}M) if for any q2Q, any open neighborhood
U of q in M, and any f 2C1(U) we have
Xf (iQ(q))2TqiQ(TqQ), where iQ : Q ,!M is the
inclusion and Xf is the Hamiltonian vector field of f
on U with respect to the Poisson bracket of M
restricted to U. If (S,{� , �}S) is a Poisson submanifold
of (M, {� , �}M), then there is no other bracket {� , �}0 on
S making the inclusion i : S ,!M into a canonical map.
If Q is a quasi-Poisson submanifold of (M, {� , �}), then
there exists a unique Poisson structure {� , �}Q on Q
that makes it into a Poisson submanifold of (M, {� , �})
but this Poisson structure may be different from the
given one on Q. Any Poisson submanifold is quasi-
Poisson but the converse is not true in general.
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The Poisson Tensor and Symplectic Leaves

The derivation property of the Poisson bracket implies
that for any two functions f , g2C1(M), the value of
the bracket {f , g}(z) at an arbitrary point z2M (and
therefore Xf (z) as well) depends on f only through
df (z) which allows us to define a contravariant
antisymmetric 2-tensor B2�2(T�M), called the ‘‘Pois-
son tensor,’’ by B(z)(�z,�z) = {f , g}(z), where
df (z) =�z 2T�z M and dg(z) = �z 2T�z M. The vector
bundle map B] : T�M!TM over the identity naturally
associated to B is defined by B(z)(�z,�z) =
h�z, B](�z)i. Its range D := B](T�M) � TM is called
the ‘‘characteristic distribution’’ of (M, {� , �}) since D is
a generalized smooth integrable distribution. Its
maximal integral leaves are called the ‘‘symplectic
leaves’’ of M for they carry a symplectic structure that
makes them into Poisson submanifolds. As integral
leaves of an integrable distribution, the symplectic
leaves L are ‘‘initial submanifolds’’ of M, that is, the
inclusion i :L ,!M is an injective immersion such that
for any smooth manifold P, an arbitrary map g : P!L
is smooth if and only if i � g : P!M is smooth.
Poisson Reduction

Canonical Lie Group Actions

Let (M, {� , �}) be a Poisson manifold and let G be a
Lie group acting canonically on M via the map
�: G�M!M. An action is called ‘‘canonical’’ if
for any h2G and f , g2C1(M), one has

ff � �h; g � �hg¼ff ; gg � �h

If the G-action is free and proper, then the orbit space
M=G is a smooth regular quotient manifold. Moreover,
it is also a Poisson manifold with the Poisson bracket
{� , �}M=G, uniquely characterized by the relation

ff ; ggM=Gð�ðmÞÞ ¼ ff � �; g � �gðmÞ ½1�
for any m2M and where f , g : M=G!R are two
arbitrary smooth functions. This bracket is appro-
priate for the reduction of Hamiltonian dynamics
in the sense that if h2C1(M)G is a G-invariant
smooth function on M, then the Hamiltonian
flow Ft of Xh commutes with the G-action, so it
induces a flow F

M=G
t on M=G that is Hamiltonian on

(M=G, {� , �}M=G) for the reduced Hamiltonian
function [h]2C1(M=G) defined by [h] � �= h.

If the Poisson manifold (M, {� , �}) is actually
symplectic with form ! and the G-action has an
associated momentum map J : M! g�, then the
symplectic leaves of (M=G,{� , �}M=G) are given by the
spaces (Mc

O� := G � J�1(�)c=G,!c
O� ), where J�1(�)c is a

connected component of the fiber J�1(�) and !c
O� is the

restriction to Mc
O� of the symplectic form !O� of the
symplectic orbit reduced space MO� (see Symmetry
and Symplectic Reduction). If, additionally, G is
compact, M is connected, and the momentum map J
is proper, then Mc

O�= MO� .
In the remainder of this section, we characterize

the situations in which new Poisson manifolds can
be obtained out of a given one by a combination of
restriction to a submanifold and passage to the
quotient with respect to an equivalence relation that
encodes the symmetries of the bracket.

Definition 1 Let (M,{ � , � }) be a Poisson manifold
and D � TM a smooth distribution on M. The
distribution D is called ‘‘Poisson’’ or ‘‘canonical,’’ if
the condition df jD = dgjD = 0, for any f , g2C1(U)
and any open subset U � P, implies that d{f , g}jD = 0.

Unless strong regularity assumptions are invoked, the
passage to the leaf space of a canonical distribution
destroys the smoothness of the quotient topological
space. In such situations, the Poisson algebra of functions
is too small and the notion of presheaf of Poisson
algebras is needed. See Singularity and Bifurcation
Theory for more information on singularity theory.

Definition 2 Let M be a topological space with a
presheaf F of smooth functions. A presheaf of Poisson
algebras on (M,F ) is a map {� , �} that assigns to each
open set U �M a bilinear operation {� , �}U :F (U)�
F (U)!F (U) such that the pair (F (U), {� , �}U) is a
Poisson algebra. A presheaf of Poisson algebras is
denoted as a triple (M,F , {� , �}). The presheaf of
Poisson algebras (M,F , {� , �}) is said to be ‘‘nondegene-
rate’’ if the following condition holds: if f 2F (U) is such
that {f , g}U\V = 0, for any g2F (V) and any open set of
V, then f is constant on the connected components of U.

Any Poisson manifold (M, {� , �}) has a natural
presheaf of Poisson algebras on its presheaf of smooth
functions that associates to any open subset U of M
the restriction {� , �}jU of {� , �} to C1(U)�C1(U).

Definition 3 Let P be a topological space and
Z= {Si}i2 I a locally finite partition of P into smooth
manifolds Si � P, i2 I, that are locally closed topo-
logical subspaces of P (hence their manifold topol-
ogy is the relative one induced by P). The pair (P,Z)
is called a ‘‘decomposition’’ of P with ‘‘pieces’’ in Z,
or a ‘‘decomposed space,’’ if the following ‘‘frontier
condition’’ holds:

Condition (DS) If R, S2Z are such that R \ �S 6¼ ;,
then R � �S. In this case, we write R 	 S. If, in
addition, R 6¼ S we say that R is incident to S or that
it is a boundary piece of S and write R 
 S.

Definition 4 Let M be a differentiable manifold
and S �M a decomposed subset of M. Let {Si}i2 I
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be the pieces of this decomposition. The topology
of S is not necessarily the relative topology as a
subset of M. Then D � TMjS is called a ‘‘smooth
distribution’’ on S adapted to the decomposition
{Si}i2 I, if D \ TSi is a smooth distribution on Si for
all i2 I. The distribution D is said to be ‘‘integrable’’
if D \ TSi is integrable for each i2 I.

In the situation described by the previous defini-
tion and if D is integrable, the integrability of the
distributions DSi

:= D \ TSi on Si allows us to
partition each Si into the corresponding maximal
integral manifolds. Thus, there is an equivalence
relation on Si whose equivalence classes are precisely
these maximal integral manifolds. Doing this on
each Si, we obtain an equivalence relation DS on the
whole set S by taking the union of the different
equivalence classes corresponding to all the DSi

.
Define the quotient space S=DS by

S=DS :¼
[
i2 I

Si=DSi

and let �DS
: S! S=DS be the natural projection.
The Presheaf of Smooth Functions on S=DS

Define the presheaf of smooth functions C1S=DS
on

S=DS as the map that associates to any open subset V
of S=DS the set of functions C1S=DS

(V) characterized
by the following property: f 2C1S=DS

(V) if and only if
for any z2V there exists m2 ��1

DS
(V),Um open

neighborhood of m in M, and F2C1(Um) such that

f � �DS
j��1

DS
ðVÞ\Um

¼ Fj��1
DS
ðVÞ\Um

½2�

F is called a ‘‘local extension’’ of f � �DS
at the point

m2 ��1
DS

(V). When the distribution D is trivial, the
presheaf C1S=DS

coincides with the presheaf of
Whitney smooth functions C1S, M on S induced by
the smooth functions on M.

The presheaf C1S=DS
is said to have the (D, DS)-

local extension property when the topology of S is
stronger than the relative topology and, at the same
time, the local extensions of f � �DS

defined in [2]
can always be chosen to satisfy

dFðnÞjDðnÞ ¼ 0 for any n2 ��1
DS
ðVÞ \Um

F is called a ‘‘local D-invariant extension’’ of f � �DS
at

the point m2 ��1
DS

(V). If S is a smooth embedded
submanifold of M and DS is a smooth, integrable, and
regular distribution on S, then the presheaf C1S=DS

coincides with the presheaf of smooth functions on
S=DS when considered as a regular quotient manifold.

The following definition spells out what we mean
by obtaining a bracket via reduction.
Definition 5 Let (M, {� , �}) be a Poisson manifold,
S a decomposed subset of M, and D � TMjS a
Poisson-integrable generalized distribution adapted
to the decomposition of S. Assume that C1S=DS

has the (D, DS)-local extension property. Then
(M, {� , �}, D, S) is said to be ‘‘Poisson reducible’’ if
(S=DS,C1S=DS

, {� , �}S=DS ) is a well-defined presheaf of
Poisson algebras where, for any open set V � S=DS,
the bracket {� , �}S=DS

V : C1S=DS
(V)� C1S=DS

(V)!C1S=DS

(V) is given by

ff ; ggS=DS

V ð�DS
ðmÞÞ :¼ fF;GgðmÞ

for any m2 ��1
DS

(V) for local D-invariant extensions
F,G at m of f � �DS

and g � �DS
, respectively.

Theorem 1 Let (M, {� , �}) be a Poisson manifold with
associated Poisson tensor B2�2(T�M), S a decom-
posed space, and D � TMjS a Poisson-integrable
generalized distribution adapted to the decomposition
of S (see Definitions 4 and 1). Assume that C1S=DS

has
the (D, DS)-local extension property. Then (M, {� , �},
D, S) is Poisson reducible if for any m2 S

B]ð�mÞ� �S
m

� �� ½3�

where �m := {dF(m)jF2C1(Um), dF(z)jD(z) = 0, for
all z2Um \ S, and for any open neighborhood Um

of m in M} and �S
m := {dF(m)2�mjFjUm\Vm

is
constant for an open neighborhood Um of m in M
and an open neighborhood Vm of m in S}.

If S is endowed with the relative topology, then
�S

m := {dF(m)2�mjFjUm\Vm
is constant for an open

neighborhood Um of m in M}.

Reduction by Regular Canonical Distributions

Let (M, {� , �}) be a Poisson manifold and S an
embedded submanifold of M. Let D � TMjS be a
sub-bundle of the tangent bundle of M restricted to
S such that DS := D \ TS is a smooth, integrable,
regular distribution on S and D is canonical.

Theorem 2 With the above hypotheses, (M, {� , �},
D, S) is Poisson reducible if and only if

B]ðD�Þ�TSþD ½4�
Applications of the Poisson Reduction
Theorem

Reduction of Coisotropic Submanifolds

Let (M, {� , �}) be a Poisson manifold with associated
Poisson tensor B2�2(T�M) and S an immersed
smooth submanifold of M. Denote by (TS)� := {�s 2
T�s Mjh�s, vsi= 0, for all s2 S, vs 2TsS} � T�M the
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conormal bundle of the manifold S; it is a vector
sub-bundle of T�MjS. The manifold S is called
‘‘coisotropic’’ if B]((TS)�) � TS. In the physics
literature, coisotropic submanifolds appear some-
times under the name of ‘‘first-class constraints.’’
The following are equivalent:

1. S is coisotropic;
2. if f 2C1(M) satisfies f jS � 0, then Xf jS 2X(S);
3. for any s2 S, any open neighborhood Us of s in

M, and any function g2C1(Us) such that
Xg(s)2TsS, if f 2C1(Us) satisfies {f , g}(s) = 0, it
follows that Xf (s)2TsS;

4. the subalgebra {f 2C1(M) j f jS � 0} is a Poisson
subalgebra of (C1(M), {� , �}).

The following proposition shows how to endow
the coisotropic submanifolds of a Poisson manifold
with a Poisson structure by using the reduction
theorem 1.

Proposition 1 Let (M, {� , �}) be a Poisson manifold
with associated Poisson tensor B2�2(T�M). Let S
be an embedded coisotropic submanifold of M and
D := B]((TS)�). Then

(i) D = D \ TS = DS is a smooth generalized
distribution on S.

(ii) D is integrable.
(iii) If C1S=DS

has the (D, DS)-local extension property,
then (M, {� , �}, D, S) is Poisson reducible.

Coisotropic submanifolds usually appear as the
level sets of integrals in involution. Let (M, {� , �}) be a
Poisson manifold with Poisson tensor B and let
f1, . . . , fk 2C1(M) be k smooth functions in involu-
tion, that is, {fi, fj} = 0, for any i, j2 {1, . . . , k}.
Assume that 02Rk is a regular value of the function
F := (f1, . . . , fk) : M!Rk and let S := F�1(0). Since for
any s2 S, span {df1(s), . . . , dfk(s)} � (TsS)� and the
dimensions of both sides of this inclusion are equal,
it follows that span{df1(s), . . . , dfk(s)} = (TsS)�.
Hence, B](s)((TsS)�) = span{Xf1

(s), . . . , Xfk
(s)} and

B](s) ((TsS)�)�TsS by the involutivity of the compo-
nents of F. Consequently, S is a coisotropic submani-
fold of (M, {� , �}).
Cosymplectic Submanifolds and Dirac’s
Constraints Formula

The Poisson reduction theorem 2 allows us to define
Poisson structures on certain embedded submani-
folds that are not Poisson submanifolds.

Definition 6 Let (M, {� , �}) be a Poisson manifold
and let B2�2(T�M) be the corresponding Poisson
tensor. An embedded submanifold S �M is called
cosymplectic if
(i) B]((TS)�) \ TS = {0},
(ii) TsSþ TsLs = TsM,

for any s2 S and Ls the symplectic leaf of (M, {� , �})
containing s2 S.

The cosymplectic submanifolds of a symplectic mani-
fold (M, !) are its symplectic submanifolds. Cosym-
plectic submanifolds appear in the physics literature
under the name of ‘‘second-class constraints.’’

Proposition 2 Let (M, {� , �}) be a Poisson manifold,
B2�2(T�M) the corresponding Poisson tensor,
and S a cosymplectic submanifold of M. then, for
any s2 S,

(i) TsLs = (TsS \ TsLs)� B](s)((TsS)�), where Ls is
the symplectic leaf of (M, {� , �}) that contains
s2 S.

(ii) (TsS)� \ ker B](s) = {0}.
(iii) TsM = B](s)((TsS)�)� TsS.
(iv) B]((TS)�) is a sub-bundle of TMjS and hence

TMjS = B]((TS)�)� TS.
(v) The symplectic leaves of (M, {� , �}) intersect S

transversely and hence S \ L is an initial
submanifold of S, for any symplectic leaf L of
(M, {� , �}).

Theorem 3 (The Poisson structure of a cosymplectic
submanifold). Let (M, {� , �}) be a Poisson manifold,
B2�2(T�M) the corresponding Poisson tensor,
and S a cosymplectic submanifold of M. Let
D := B] ((TS)�) � TMjS. Then,

(i) (M, {� , �}, D, S) is Poisson reducible.
(ii) The corresponding quotient manifold equals S

and the reduced bracket {� , �}S is given by

ff ; ggSðsÞ ¼ fF;GgðsÞ ½5�
where f , g2C1S, M(V) are arbitrary and F, G2
C1(U) are local D-invariant extensions of f
and g around s2 S, respectively.
(iii) The Hamiltonian vector field Xf of an arbitrary
function f 2C1S, M(V) is given either by

Ti �Xf ¼ XF � i ½6�
where F2C1(U) is a local D-invariant exten-
sion of f and i : S ,!M is the inclusion, or by
Ti �Xf ¼ �S �XF � i ½7�
where F2C1(U) is an arbitrary local extension
of f and �S : TMjS!TS is the projection
induced by the Whitney sum decomposition
TMjS = B]((TS)�)� TS of TMjS.
(iv) The symplectic leaves of (S, {� , �}S) are the
connected components of the intersections S \ L,
where L is a symplectic leaf of (M, {� , �}). Any
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symplectic leaf of (S, {� , �}S) is a symplectic
submanifold of the symplectic leaf of (M,{� , �})
that contains it.

(v) Let Ls and LS
s be the symplectic leaves of

(M, {� , �}) and (S, {� , �}S), respectively, that contain
the point s2 S. Let !Ls

and !LS
s

be the correspond-
ing symplectic forms. Then B](s)((TsS)�) is a
symplectic subspace of TsLs and

B]ðsÞððTsSÞ�Þ ¼ TsLS
s

� �!Ls ðsÞ ½8�
where (TsLS
s )!Ls (s) denotes the !Ls

(s)-orthogonal
complement of TsLS

s in TsLs.

(vi) Let BS 2�2(T�S) be the Poisson tensor associated

to (S, {� , �}S). Then

B]
S ¼ �S � B]jS � ��S ½9�
where ��S : T�S!T�MjS is the dual of �S : TMjS
!TS.
The ‘‘Dirac constraints formula’’ is the expression in
coordinates for the bracket of a cosymplectic
submanifold. Let (M, {� , �}) be an n-dimensional
Poisson manifold and let S be a k-dimensional
cosymplectic submanifold of M. Let z0 be an
arbitrary point in S and (U, �) a submanifold chart
around z0 such that �= (’,  ) : U ! V1 � V2, where
V1 and V2 are two open neighborhoods of the origin
in two Euclidean spaces such that �(z0) = (’(z0),
 (z0)) = (0, 0) and

�ðU \ SÞ ¼ V1 � f0g ½10�

Let ’ =: (’1, . . . ,’k) be the components of ’
and define b’1 :=’1jU\S, . . . , b’k :=’kjU\S. Extendb’1, . . . , b’k to D-invariant functions ’1, . . . ,’k on U.
Since the differentials db’1(s), . . . ,db’k(s) are linearly
independent for any s2U \ S, we can assume (by
shrinking U if necessary) that d’1(z), . . . ,d’k(z) are
also linearly independent for any z2U. Conse-
quently, (U,�) with � := (’1, . . . ,’k,  1, . . . , n�k) is
a submanifold chart for M around z0 with respect to
S such that, by construction,

d’1ðsÞjB#ðsÞððTsSÞ�Þ

¼ � � � ¼ d’kðsÞjB#ðsÞððTsSÞ�Þ ¼ 0

for any s2U \ S. This implies that for any
i2 {1, . . . ,k}, j2 {1, . . . , n� k}, and s2 S

f’i;  jgðsÞ ¼ d’iðsÞ X jðsÞ
� �

¼ 0

since d j(s)2 (TsS)� by [10] and hence

X jðsÞ 2B#ðsÞððTsSÞ�Þ ½11�
Additionally, since the functions ’1, . . . ,’k are
D-invariant, by [6], it follows that

X’1ðsÞ ¼ Xb’ 1ðsÞ 2TsS; . . . ;X’kðsÞ

¼ Xb’ kðsÞ 2TsS

for any s2 S. Consequently, {X’1 (s), . . . ,X’k(s),
X 1 (s), . . . , X n�k(s)} spans TsLs with

fX’1ðsÞ; . . . ;X’kðsÞg � TsS \ TsLs

and

fX 1ðsÞ; . . . ;X n�kðsÞg � B#ðsÞððTsSÞ�Þ

By Proposition 2(i),

spanfX’1ðsÞ; . . . ;X’kðsÞg ¼ TsS \ TsLs

and

spanfX 1ðsÞ; . . . ;X n�kðsÞg ¼ B#ðsÞððTsSÞ�Þ

Since dim(B#(s)((TsS)�)) = n� k by Proposition
2(iii), it follows that {X 1 (s), . . . , X n�k(s)} is a basis
of B#(s)((TsS)�).

Since B#(s)((TsS)�) is a symplectic subspace of
TsLs by Theorem 3(v), there exists some r2N such
that n� k = 2r and, additionally, the matrix C(s)
with entries

CijðsÞ :¼ f i;  jgðsÞ; i; j2f1; . . . ; n� kg

is invertible. Therefore, in the coordinates (’1, . . . ,
’k,  1, . . . , n�k), the matrix associated to the
Poisson tensor B(s) is

BðsÞ ¼ BSðsÞ 0
0 CðsÞ

� �

where BS 2�2(T�S) is the Poisson tensor associated
to (S, {� , �}S). Let Cij(s) be the entries of the matrix
C(s)�1.

Proposition 3 (Dirac formulas). In the coordinate
neighborhood (’1, . . . ,’k, 1, . . . , n�k) constructed
above and for s2 S we have, for any f , g2 C1S,M(V):

Xf ðsÞ ¼ XFðsÞ �
Xn�k

i;j¼1

fF;  igðsÞCijðsÞX jðsÞ ½12�

and

ff ; ggSðsÞ ¼ fF;GgðsÞ

�
Xn�k

i;j¼1

fF;  igðsÞCijðsÞf j;GgðsÞ ½13�

where F, G2C1(U) are arbitrary local extensions of
f and g, respectively, around s2 S.
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Mechanical Examples. Unfolding
Billiard Trajectories

The billiard system inside a polygon P has a very
simple description: a point moves rectilinearly with
the unit speed until it hits a side of P; there it
instantaneously changes its velocity according to the
rule ‘‘the angle of incidence equals the angle of
reflection,’’ and continues the rectilinear motion. If
the point hits a corner, its further motion is not
defined. (see Billiards in Bounded Convex Domains).
From the point of view of the theory of dynamical
systems, polygonal billiards provide an example of
parabolic dynamics in which nearby trajectories
diverge with subexponential rate.

One of the motivations for the study of polygonal
billiards comes from the mechanics of elastic particles in
dimension 1. For example, consider the system of two
point-masses m1 and m2 on the positive half-line x  0.
The collision between the points is elastic, that is, the
energy and momentum are conserved. The reflection
off the left endpoint of the half-line is also elastic: if a
point hits the ‘‘wall’’ x = 0, its velocity changes sign.
The configuration space of this system is the wedge
0 � x1 � x2. After the rescaling �xi =

ffiffiffiffiffiffi
mi
p

xi, i = 1, 2,
this system identifies with the billiard inside a wedge
with the angle measure arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
.

Likewise, the system of two elastic point-masses
on a segment is the billiard system in a right
triangle; a system of a number of elastic point-
masses on the positive half-line or a segment is the
billiard inside a multidimensional polyhedral cone
or a polyhedron, respectively. The system of three
elastic point-masses on a circle has three degrees of
freedom; one can reduce one by assuming that the
center of mass of the system is fixed. The resulting
two-dimensional system is the billiard inside an
acute triangle with the angles

arctan mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þm2 þm3

m1m2m3

r� �
; i ¼ 1; 2; 3

For comparison, the more realistic system of
elastic balls identifies with the billiard system in a
domain with nonflat boundary components.



Figure 1 Unfolding a billiard trajectory in a wedge.
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A useful elementary method of study is unfolding:
instead of reflecting the billiard trajectory in the
sides of the polygon, reflect the polygon in the
respective side and unfold the billiard trajectory to a
straight line. This method yields an upper bound

�

arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
" #

for the number of collisions in the system of two
point-masses m1 and m2 on the positive half-line.
Likewise, the number of collisions for any number
of elastic point-masses on the positive half-line is
bounded above by a constant depending on the
masses only. Similar results are known for systems
of elastic balls (Figure 1).

Similarly, one studies the billiard inside the unit
square. Unfolding the square yields a square grid in
the plane, acted upon by the group of parallel
translations 2Z� 2Z. Factorizing by this group
action yields a torus, and the billiard flow in a
given direction becomes a constant flow on the
torus. If the slope is rational, then all orbits are
periodic, and if the slope is irrational, then all orbits
are dense and the billiard flow is ergodic. Its metric
entropy is equal to zero. Periodic trajectories of the
billiard in a square come in bands of parallel ones.
Let f (‘) be the number of such bands of length not
greater than ‘. Then, f (‘) equals the number of
coprime lattice points inside the circle of radius ‘,
that is, f (‘) has quadratic growth in ‘.
Periodic Trajectories

The simplest example of a periodic orbit in a
polygonal billiard is the 3-periodic Fangano trajec-
tory in an acute triangle: it connects the bases of the
three altitudes of the triangle and has minimal
perimeter among inscribed triangles. The Fagnano
trajectory belongs to a band of 6-periodic ones. It is
not known whether every acute triangle has other
periodic trajectories.

For a right triangle, one has the following result:
almost every (in the sense of the Lebesgue measure)
billiard trajectory that leaves a leg in the perpendicular
direction returns to the same leg in the same direction
and is therefore periodic. A similar existence result
holds for polygons whose sides have only two
directions.

In general, not much is known about the existence
of periodic billiard trajectories in polygons. Con-
jecturally, every polygon has one, but this is not
known even for all obtuse triangles. Recently,
R Schwartz proved that every obtuse triangle with
the angles not exceeding 100� has a periodic billiard
path. This work substantially relies on a computer
program, McBilliards, written by Schwartz and
Hooper.

If an arbitrary small perturbation of the vertices of a
billiard polygon leads to a perturbation of a periodic
billiard trajectory, but not to its destruction, then this
trajectory is called stable. Label the sides of the
polygon 1, 2, . . . , k. Then a periodic trajectory is
coded by the word consisting of the labels of the
consecutively visited sides. An even-periodic trajectory
is stable if and only if the numbers in the respective
word can be partitioned in pairs of equal numbers, so
that the number from each pair appears once at an
even position, and once at an odd one. As a
consequence, if the angles of a polygon are indepen-
dent over the rational numbers, then every periodic
billiard trajectory in it is stable.
Complexity of Billiard Trajectories

The encoding of billiard trajectories by the consecu-
tively visited sides of the billiard polygon provides a
link between billiard and symbolic dynamics. For a
billiard k-gon P, denote by � the set of words in
letters 1, 2, . . . , k corresponding to billiard trajec-
tories in P, and let �n be the set of such words of
length n.

One has a general theorem: the topological
entropy of the billiard flow is zero. This implies
that a number of quantities, associated with a
polygonal billiard, grow slower than exponentially,
as functions of n: the cardinality j�nj, the number of
strips of n-periodic trajectories, the number of
generalized diagonals with n links (i.e., billiard
trajectories that start and end at corners of the
billiard polygon), etc. Conjecturally, all these quan-
tities have polynomial growth in n.



a

b

Figure 2 The invariant surface for a right triangle with acute

angle �/8 has genus 2.
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The complexity of the billiard in a polygon is
defined as the function p(n) = j�nj. Likewise, one
may consider the billiard trajectories in a given
direction � and define the corresponding complexity
p�(n).

In the case of a square, one modifies the encoding
using only two symbols, say, 0 and 1, to indicate
that a trajectory reflects in a horizontal or a vertical
side, respectively. If � is a direction with an
irrational slope, then p�(n) = nþ 1. This is a classical
result by Hedlund and Morse. The sequences with
complexity p(n) = nþ 1 are called Sturmian; this
is the smallest complexity of aperiodic sequences.
A generalization for multidimensional cubes and
parallelepipeds, due to Yu Baryshnikov, is known.

For a k-gon P, let N be the least common
denominator of its �-rational angles and s be the
number of its distinct �-irrational angles. Then,

p�ðnÞ � kNn 1þ n

2

� �s

Concerning billiard trajectories in all directions,
one has a lower bound for complexity: p(n) � cn2

for a constant c depending on the polygon. A similar
estimate holds for a d-dimensional polyhedron with
the exponent 2 replaced by d.
Figure 3 A cone singularity for the flow on an invariant surface.
Rational Polygons and Flat Surfaces

The only class of polygons for which the billiard
dynamics is well understood are rational one, the
polygons satisfying the property that the angles
between all pairs of sides are rational multiples of �.

Let P be a simply connected (without holes)
rational k-gon with angles �mi=ni, where mi and ni

are coprime integers. The reflections in the sides of P
generate a subgroup of the group of isometries of
the plane. Let G(P) � O(2) consist of the linear
parts of the elements of this group. Then, G(P) is the
dihedral group DN consisting of 2N elements. When
a billiard trajectory reflects in a side of P, its
direction changes by the action of the group G(P),
and the orbit of a generic direction � 6¼ k�=N on the
unit circle consists of 2N points.

The phase space of the billiard flow is the unit
tangent bundle P� S1. Let M� be the subset of
points whose projection to S1 belongs to the orbit of
� under G(P) = DN. Then, M� is an invariant surface
of the billiard flow in P. The surface M� is obtained
from 2N copies of P by gluing their sides according
to the action of DN. This oriented compact surface
depends only on the polygon P, but not on the
choice of �, and may be denoted by M. The
directional billiard flows F� on M in directions �
are obtained, one from another, by rotations. The
genus of M is given by the formula

1þN

2
k� 2�

X 1

ni

� �

For example, if P is a right triangle with an acute
angle �=8, then M is a surface of genus 2 (Figure 2).

The cases when M is a torus are as follows: the
angles of P are all of the form �=ni, where ni are
equal, up to permutations, to

ð3; 3; 3Þ; ð2; 4; 4Þ; ð2; 3; 6Þ; ð2; 2; 2; 2Þ

and the respective polygons are an equilateral
triangle, an isosceles right triangle, a right triangle
with an acute angle �=6, and a square. All these
polygons tile the plane.

The billiard flow on the surface M has saddle
singularities at the points obtained from the vertices
of P. The surface M inherits a flat metric from P
with a finite number of cone-type singularities,
corresponding to the vertices of P, with cone angles
multiples of 2� (Figure 3).

A flat surface M is a compact smooth surface with
a distinguished finite set of points �. On M n �, one
has coordinate charts v = (x, y) such that the transi-
tion functions on the overlaps are of the form

v! vþ c or v! �vþ c
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In particular, one may talk about directions on a flat
surface.

The group PSL(2, R) acts on the space of flat
structures. From the point of view of complex analysis,
a flat surface is a Riemann surface with a holomorphic
quadratic differential; the set of cone points � corre-
sponds to the zeros of the quadratic differential. Not
every flat surface is associated with a polygonal billiard.

Concerning ergodicity, one has the theorem of
Kerckhoff, Masur, and Smillie: given a flat surface of
genus not less than 2, for almost all directions � (in the
sense of the Lebesgue measure), the flow F� is uniquely
ergodic. Furthermore, the Hausdorff dimension of the
set of angles � for which ergodicity fails does not
exceed 1/2, and this bound is sharp. As a consequence,
the billiard flow on the invariant surface is uniquely
ergodic for almost all directions. Another corollary:
there is a dense G� subset in the space of polygons
consisting of polygons for which the billiard flow is
ergodic. If a billiard polygon admits approximation by
rational polygons at a superexponentially fast rate,
then the billiard flow in it is ergodic.

Concerning periodic orbits, one has the following
theorem due to H Masur: given a flat surface of genus
not less than 2, there exists a dense set of angles � such
that F� has a closed trajectory. As a consequence, for
any rational billiard polygon, there is a dense set of
directions each with a periodic orbit. Furthermore,
periodic points are dense in the phase space of the
billiard flow in a rational polygon.

Similarly to the case of a square, let f (‘) be the
number of strips of periodic trajectories of length not
greater than ‘ in a rational polygon P. By a theorem
of H Masur, there exist constants c and C such that
for sufficiently large ‘ one has: c‘2 < f (‘) < C‘2, and
likewise for flat surfaces.

There is a class of flat surfaces, called Veech (or
lattice) surfaces, for which more refined results are
available. The groups of affine transformations of a
flat surface determine a subgroup in SL(2, R). If this
subgroup is a lattice in SL(2, R), then the flat surface
is called a Veech surface. Similarly, one defines a
Veech rational polygon. For example, regular poly-
gons and isosceles triangles with equal angles �=n
are Veech. All acute Veech triangles are described.

For a Veech surface, one has the following Veech
dichotomy: for any direction �, either the flow F� is
minimal or its every leaf is closed (unless it is a saddle
connection, i.e., a segment connecting cone points).
For a Veech surface (and polygon), the quadratic
bounds for the counting function f (‘) become quad-
ratic asymptotics: f (‘)=‘2 has a limit as ‘ ! 1. The
value of this limit is expressed in arithmetical terms.

A generic flat surface also has quadratic asymptotics.
The value of the limit depends only on the stratum of
the Teichmuller space that contains this surface. These
values are known, due to Eskin, Masur, Okunkov, and
Zorich. Since a generic flat surface does not correspond
to a rational polygon, this result does not immediately
apply to polygonal billiards. However, quadratic
asymptotics are established for rectangular billiards
with barriers.

Note, in conclusion, a close relation of billiards in
rational polygons and interval exchange transforma-
tions; the reduction of the former to the latter is a
particular case of the reduction of the billiard flow to
the billiard ball map. On an invariant surface M of the
billiard flow, consider a segment I, perpendicular to
the directional flow. Since ‘‘the width of a beam’’ is an
invariant transversal measure for the constant flow, the
first return map to I is a piecewise orientation preserving
isometry, that is, an interval exchange transformation.
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Introduction

The theme of positive maps on �-algebras and other
ordered vector spaces, dates back to the Perron–
Frobenius theory of matrices with positive entries,
the Shur’s product of matrices, the study of doubly
stochastic matrices describing discrete-time random
walks and the behavior of limits of powers of
positive matrices in ergodic theory.

A long experience proved that far-reaching general-
izations of the above situations have to be considered
in various fields of mathematical physics and that
C�-algebras, their positive cones, and other associated
ordered vector spaces provide a rich unifying frame-
work of functional analysis to treat them.

It is the scope of this note to review some of the
basic aspects both of the general theory and of the
applications.

In the next section we briefly recall the definitions
of C�-algebras and their positive cones. However,
throughout this article we refer to C�-Algebras and
their Classification and von Neumann Algebras:
Introduction, Modular Theory and Classification
Theory as sources of the definitions and general
properties of the objects of these operator algebras.
We then introduce positive maps, illustrate their
general properties, and discuss some relevant classes
of them. The correspondence between states and
representations is described next, as well as the
appearance of vector, normal and non-normal states
in applications. We then illustrate the structure of
completely positive maps and their relevance in
mathematical physics. Finally, we describe the
relevance of the class of completely positive maps
to understand the structure of nuclear C�-algebras.
Positive Cones in C�-Algebras

A C�-algebra A is a complex Banach algebra with a
conjugate-linear involution a 7! a� such that ka�ak=
kak2 for all a 2 A.

When A has a unit 1A, the spectrum Sp(a) of an
element a is the subset of all complex numbers �
such that a� � � 1A is not invertible in A. When A is
realized as a subalgebra of some B(H), and this is
always possible, the set Sp(a) coincides with the
spectrum of the bounded operator a on the Hilbert
space H.
The involution determines the self-adjoint part
Ah := {a 2 A: a = a�} of A, a real subspace such that
A = Ah þ iAh. A self-adjoint element a of A satisfies
Sp(a)�R and, if k � 0, one has kak � k if and only
if Sp(a)� [�k, k].

The involution determines another important
subset of A: Aþ := {a�a: a 2 A}. This subset of Ah is
closed in the norm topology of A and contains the
sums of its elements as well as their multiples by
positive scalars: in other words, it is a closed convex
cone. From a spectral point of view, one has the
following characterization: a self-adjoint element a
belongs to Aþ if and only if its spectrum is positive
Sp(a)� [0,þ1). It is this property that allows us to
call Aþ the positive cone of A and its elements
positive. If it exists, a unit 1A in A is always positive
and a Hermitian element a is positive if and only if
k1A � a=kak k� 1.

The continuous functional calculus in A allows
to write any self-adjoint element of Ah as a
difference of elements of Aþ: Ah = Aþ � Aþ. More-
over, Aþ \ (�Aþ) = {0} and the decomposition
a = b� c of a self-adjoint element a as difference
of positive elements b and c is unique provided one
requires that bc = cb = 0. In this case, it is called the
orthogonal decomposition.

The cone Aþ determines an underlying structure
of order space on A: for a, b 2 A one says that a is
less than or equal to b, in symbols a � b, if and only
if b� a 2 Aþ. In particular, a � 0 just means that a
is positive.

Another fundamental characterization of the
positive cone is the following: a self-adjoint element
a = a� is positive if and only if there exists an
element b in A such that a = b2. Moreover, among
the elements b with this property, there exists one
and only one which is positive, the square root of a.
Some examples of positive cones are provided in the
following.

Example 1 By a fundamental result of I M
Gelfand, a commutative C�-algebra A is isomorphic
to the C�-algebra C0(X) of all complex continuous
functions vanishing at infinity on a locally compact
Hausdorff topological space X. The algebraic
operations have the usual pointwise meaning and
the norm is the uniform one. The constant function
1 represents the unit precisely when X is compact.
The positive cone C0(X)þ coincides with that of the
positive continuous functions in C0(X).

Example 2 Finite dimensional C�-algebras A are
classified as finite sums Mn1

(C)	Mn2
(C)	 � � � 	

Mnk
(C) of full matrix algebras Mni

(C). An element
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a1 	 a2 	 � � � 	 ak is positive if and only if the
matrices ai have positive eigenvalues.

Example 3 When a C�-algebra A � B(H) is rep-
resented as a self-adjoint closed algebra of operators
on a Hilbert space H, its positive elements are those
which have non-negative spectrum.
Positive Maps on C�-Algebras

Among the various relevant classes of maps between
C�-algebras, we are going to consider the following
ones, whose properties are connected with the
underlying structures of ordered vector spaces.

Definition 1 Given two C�-algebras A and B, a
map � : A�!B is called positive if �(Aþ)� Bþ. In
other words, a map is positive if and only if it
transforms the positive elements of A into positive
elements of B:

a 2 A) �ða�aÞ 2Bþ ½1


If A and B have units, the map is called unital
provided �(1A) = 1B.

Morphisms and Jordan Morphisms

A �-morphism between C�-algebras � : A�!B is
positive; in fact, �(a�a) =�(a)��(a)� 0.

This also the case for Jordan �-morphism, the
linear maps satisfying �(a�) =�(a)� and �({a, b}) =
{�(a),�(b)}, where {a, b} = abþ ba denotes the Jor-
dan product. In fact, if a = a� then �(a2) =�(a)2 is
positive.

Shur’s Product of Matrices

Let A 2Mn(C) be a positive matrix and define a
linear map � : Mn(C)�!Mn(C) through the Shur’s
product of matrices: �A(B) := [AijBij]

n
i, j = 1. Since the

Shur’s product of positive matrices is positive too
(i.e., the positive cone of Mn(C) is a semigroup
under matrix product), the above map is positive.

Positive-Definite Function on Groups

Positive maps also arise naturally in harmonic
analysis. Let G be a locally compact topological
group with identity e and left Haar’s measure m. Let
p : G�!C be a continuous positive-definite function
on G. This just means that for all n � 1 and all
s1, . . . , sn 2 G, the matrix { p(s�1

i sj)}
n
i,j = 1 belongs to

the positive cone of Mn(C):
Pn

i, j = 1 p(s�1
i sj)�i�j � 0

for all �1, . . . ,�n. Such functions are necessarily
bounded with kpk1 � p(e), so that an operator
� : L1(G, m)�!L1(G, m) is well defined by point-
wise multiplication: �(f )(s) := p(s)f (s). This map
extends to a positive map � : C�(G)�!C�(G),
which is unital when p(e) = 1, on the full group
C�-algebra C�(G). When G is amenable, this algebra
coincides with reduced C�-algebra Cr(G) so that, if
G is also unimodular (as is the case if G is compact),
the positive elements can be approximated by
positive-definite functions in L1(G, m) and the
positivity of � follows exactly as in the previous
example.

Positive Maps in Commutative C�-Algebras

Positive maps � : C0(Y)�!C0(X) between commu-
tative C�-algebras have the following structure:
�(a)(x) =

R
Y k(x, dy)a(y), a 2 C0(Y). Here the kernel

x 7! k(x, �) is a continuous map from X to the space
of positive Radon measures on Y. In case X and Y
are compact, the map is unital provided k(x, �) is a
probability measure for each x 2 X. In fact, for a
fixed x 2 X, the map a 7!�(a)(x) is a positive linear
functional from C0(Y) to C and Riesz’s theorem
guarantees that it can be represented by a positive
Radon measure on Y.

In probability theory, one-parameter semigroups
�t � �s =�tþs of positive maps �t: C0(X)�!C0(X)
such that �t(1)� 1 for all t � 0, are called Markovian
semigroups (conservative, if the maps are unital). They
represent the expectation at time t>0 of Markovian
stochastic processes on X. In this case, the time-
dependent kernel k(t, x, �) represents the distribution
probability at time t of a particle starting in x 2 X at
time t = 0.

These kinds of maps arise also in potential theory,
where the dependence of the solution �(a) of a
Dirichlet problem on a bounded domain �, with
nice boundary @�, upon the continuous boundary
data a 2 C(@�) gives rise to a linear unital map
� : C(@�)�!C(� [ @�), whose positivity and uni-
tality translates the ‘‘maximum principle’’ for har-
monic functions. When � is the unit disk, k is the
familiar Poisson’s kernel.

Continuity and Algebraic Properties
of Positive Maps

Since the order structure of a C�-algebra A is defined
by its positive cone Aþ, positive maps are

1. real: �(a�) =�(a)� and
2. order preserving: �(a) � �(b) whenever a � b.

From this follows an important interplay between
positivity and continuity:

a positive map � : A�!B

between C�-algebras is continuous

In case A has a unit, this follows by the fact that � is
order preserving and that, for self-adjoint a, one has
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�kak1A � a � þkak1A, so that �kak�(1A) � �(a) �
þkak�(1A) and then k�(a)k � k�(1A)k � kak. In gen-
eral, splitting a = bþ ic as a combination of Hermitian
elements b and c, as kbk � kak and kck � kak, one
obtains

k�ðaÞk � k�ðbÞk þ k�ðcÞk
� k�ð1AÞkðkbk þ kckÞ
� 2k�ð1AÞk � kak

The second general result concerning positivity
and continuity is the following:

Let � : A�!B be a linear map between C�-algebras
with unit such that �(1A) = 1B; then � is positive if
and only if k�k= 1.

The result relies, among other things, on the
generalized Schwarz inequality for unital positive
maps on normal elements,

�ða�Þ�ðaÞ��ða�aÞ; a�a ¼ aa�

These results may be used to reveal the strong
interplay between the algebraic, continuity and
positivity properties of maps:

Let � : A�!B be an invertible linear map between
unital C�-algebras such that �(1A) = 1B. The
following properties are equivalent:

1. � is Jordan isomorphism,
2. � is an isometry, and
3. � is an order isomorphism (� and ��1 are order

preserving).

The above conclusions can be strengthened if,
instead of individual maps, continuous groups of
maps are considered.

Let t 7!�t be a strongly continuous, one-parameter
group of maps of a unital C�-algebra A and
assume that �t(1A) = 1A for all t 2 R. The follow-
ing properties are equivalent:

1. �t is a �-automorphism of A for all t 2 R,
2. k�tk� 1 for all t 2 R, and
3. �t is positive for all t 2 R.

An analogous result holds true for w�-continuous
groups on abelian, or factors, von Neumann algebras.
States on C�-Algebras

A state on a C�-algebra A is a positive functional
� : A�!C of norm 1:

� �(a�a)� 0 for all a 2 A, and
� k�k= 1.
As C is a C�-algebra, when A is unital, a state on it
is just a unital positive map:

� �(a�a)� 0 for all a 2 A, and
� �(1A) = 1.

States for which �(ab) =�(ba) are called tracial states.
States constitute a distinguished class of positive

maps, both from a mathematical viewpoint and for
application to mathematical physics. We will see below
that states are deeply connected to representations of
C�-algebras (see C�-Algebras and their Classification).

States on Commutative C�-Algebras

Since this is a subcase of positive maps in commutative
C�-algebras we only add a comment. As far as a
C�-algebra represents observable quantities of a
physical system, states carry our actual knowledge
about the system itself. The smallest C�-sub-algebra
{f (a): f 2 C0(R)} of A containing a given self-adjoint
element a 2 A, representing a certain observable
quantity, is isomorphic to the algebra C(Sp(a)) of
continuous functions on the spectrum of a. A state on
A induces, by restriction, a state on C(Sp(a)), which,
by the Riesz representation theorem, is associated to a
probability measure �a on Sp(a) through the formula

�ðf ðaÞÞ ¼
Z

SpðaÞ
f ðxÞ�aðdxÞ

Since Sp(a) represents the possible values of the
observable associated to a, �a represents the dis-
tribution of these values when the physical state of
the system is represented by �.

Vector States and Density Matrices

In case A is acting on a Hilbert space h, A�B(h),
each unit vector � 2 h gives rise to a vector state
��(a) = (�ja �). In the quantum-mechanical descrip-
tion of a finite system, as far as observables with
discrete spectrum are concerned, one can assume A
to be the C�-algebra K(h) of compact operators on
the Hilbert space h. In this case every state is a
convex superposition of vector states, in the sense
that it can be represented by the formula

�ðaÞ ¼ trð�aÞ=trð�Þ; a 2 KðhÞ

for a suitable density matrix �, that is, a positive,
compact operator with finite trace. In quantum
statistical mechanics, the grand canonical Gibbs
equilibrium state of a finite system at inverse tempera-
ture � and chemical potential �, with Hamiltonian H
and number operator N, is of the above type

��;�ðaÞ ¼ trðe��KaÞ=trðe��KÞ
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where K = H � �N, and the spectrum of H is assumed
to be discrete and such that e��K is trace-class. For
infinite systems, A is a quasilocal C�-algebra generated
by a net {A�}� of C�-subalgebras describing observa-
bles referred to finite-volume regions. Infinite-volume
equilibrium states on A can then be obtained as
thermodynamic limits of finite-volume Gibbs equili-
brium states of the above type.

Normal and Singular States

When observables with continuous spectrum have to
be considered and one chooses the algebra B(h) of
all bounded operators, the above formula, although
still meaningful, does not describe all states on B(h)
but only the important subclass of the normal ones.
To this class, which can be considered on any von
Neumann algebra M, belong states � which are
	-weakly continuous functionals. Equivalently, these
are the states such that for all increasing net a� 2 Mþ
with least upper bound a 2Mþ,�(a) is least upper
bound of the net �(a�).

In general, each state � on a von Neumann
algebra M splits as a sum of a maximal normal
piece and a singular one. Singular traces appear in
noncommutative geometry as very useful tools to get
back local objects from spectral ones via the familiar
principle that local properties of functions depend
on the asymptotics of their Fourier coefficients.

This is best illustrated on a compact, Riemannian
n-manifold M by the formulaZ

M

f dm ¼ cn � 
!ðMf jDj�nÞ

which expresses the Riemannian integral of a nice
function f in terms of the Dirac operator D acting on the
Hilbert space of square-integrable spinors, the multi-
plication operator Mf by f, and the singular Dixmier
tracial state 
! on B(H). Here the compactness of M
implies the compactness of the operator Mf jDj�n and

! is a limiting procedure depending only on the
asymptotic behavior of the eigenvalues of Mf jDj�n.
Similar formulas are valid on self-similar fractals as well
as on quasiconformal manifolds. Local index formulas
represent cyclic cocycles in Connes’ spectral geometry
(see Noncommutative Geometry and the Standard
Model; Noncommutative Geometry from Strings;
Path-Integrals in Noncommutative Geometry).

States and Representations: The
GNS Construction

A fundamental tool in studying a C�-algebra A
are its representations. These are morphisms of
C�-algebras � : A�!B(H) from A to the algebra of
all bounded operators on some Hilbert space H.
There is a symbiotic appearance of states and
representations on C�-algebras. In fact, given a
representation � : A�!B(H), one easily constructs
states on A by unit vectors � 2 H by

��ðaÞ ¼ ð�j�ðaÞ�Þ

In fact, one checks that ��(a
�a) = (�j�(a�a) �) =

(�j�(a�)�(a) �) = k�(a) �k2 � 0 and, at least if a unit
exists, that ��(1A) = k�k2 = 1.

A fundamental construction due to Gelfand,
Naimark, and Segal allows to associate a represen-
tation to each state in such a way that each state is a
vector state for a suitable representation.

‘‘Let ! be a state over the C�-algebra A. It follows
that there exists cyclic representation (�!,H!, �!)
of A such that

!ðaÞ ¼ ð�!j�!ðaÞ�!Þ
Moreover, the representation is unique up to
unitary equivalence. It is called the canonical
cyclic representation of A associated with !.’’

The positivity property of the state allows to
introduce the positive-semidefinite scalar product
hajbi=!(a�b) on the vector space A. Moreover, its
kernel I! = {a 2 A: !(a�a) = 0} is a left-ideal of A: in
fact, if a 2 A and b 2 I! then !((ba)�(ba)) �
kak2!(b�b) = 0. This allows to define, on the
quotient pre-Hilbert space A=I!, an action of
the elements a 2 A: �!(a)(bþ I!) := abþ I!. It is
the extension of this action to the Hilbert space
completion H! of A=I! that gives the representation
associated to !. When A has a unit, the cyclic vector
�! with the stated properties is precisely the image of
1A þ I!. By definition, the cyclicity of the represen-
tation amounts to check that �!(A)�! is dense in H!.
Completely Positive Maps

In a sense, the order structure of a C�-algebra A
is better understood through the sequence of
C�-algebras AMn(C) ffiMn(A), obtained as tensor
products of A and full matrix algebras Mn(C). For
example, C�-algebras are matrix-ordered vector
spaces as ��(Mm(A))þ� � (Mn(A))þ for all matrices
� 2Mm�n(C).

In this respect, one is naturally led to consider
stronger notion of positivity:

‘‘A map � : A�!B is called n-positive if its
extension

� 1n : AMnðCÞ�!BMnðCÞ
ð� 1nÞ½ai;j
i;j ¼ ½�ðai;jÞ
i;j
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is positive and completely positive (CP map for
short) if this happens for all n.’’

Equivalently, n-positive means that
Pn

i, j = 1 b�i ��
(a�i aj)bj � 0 for all a1, . . . , an 2 A and b1, . . . , bn 2 b.
In particular, if � is n-positive then it is k-positive for
all k � n. Many positive maps we considered are in
fact CP maps:

1. morphisms of C�-algebras are CP maps;
2. positive maps � : A�!B are automatically CP

maps provided A, B or both are commutative and
states are, in particular, CP maps; and

3. an important class of CP maps is the following.
A norm one projection " : A�!B, from a
C�-algebra A onto a C�-subalgebra B, is a
contraction such that "(b) = b for all b 2 B. It
can be proved that these maps satisfy
"(bac) = b"(a)c for all a 2 A and b, c 2 B and
for this reason they are called conditional
expectations. This property then implies that
they are CP maps.

However, the identity map from a C�-algebra A
into its opposite A� is positive but not 2-positive
unless A is commutative, the transposition a 7! at in
Mn(C) is positive and not 2-positive if n � 2 and, for
all n, there exist n-positive maps which are not
(nþ 1)-positive.
CP Maps in Mathematical Physics

In several fields of application, the transition of a
state of a system into another state can be described
by a completely positive map � : A�!B between
C�-algebras: for any given state ! of B, ! � � is then
a state of A.

1. In the theory of quantum communication pro-
cesses (see Channels in Quantum Information
Theory; Optimal Cloning of Quantum States;
Source Coding in Quantum Information Theory;
Capacity for Quantum Information), for exam-
ple, B and A represent the input and output
systems, respectively, ! the signal to be trans-
mitted, ! � � the received signal, and � the system
of transmission, called the channel.

2. In quantum probability and in the theory of
quantum open systems, continuous semigroups
of CP maps (see Quantum Dynamical Semi-
groups) describe dissipative time evolutions of a
system due to interaction with an external one
(heat bath).

3. In the theory of measurement in quantum
mechanics, an observable can be described by a
positive-operator-valued (POV) measure M which
assigns a positive element m(E) in a C�-algebra A
to each Borel subset E of a topological space X. For
each a2C0(X), one can define its integral
�(f ) :=

R
X f dE as an element of A. The map

� : C0(X)�!A, called the observation channel, is
then a CP map.

4. Another field of mathematical physics in which CP
maps play a distinguished role is in the construc-
tion and application of the quantum dynamical
entropy, an extension of the Kolmogorov–Sinai
entropy of measure preserving transformations
(see Quantum Entropy). When dealing with
a noncommutative dynamical system (M,�, 
)
in which 
 is a normal trace state on a finite
von Neumann algebra M, the Connes–Størmer
entropy h
 (�) is defined through the consideration
of an entropy functional H
 (N1, . . . , Nk) of finite-
dimensional von Neumann subalgebras
N1, . . . , Nk�M. To extend the definition to
more general C�-algebras and states on them, one
has to face the fact that C�-algebras may have no
nontrivial C�-subalgebras. To circumvent the
problem A Connes, H Narnhofer, and W Thirring
(CNT) introduced an entropy functional
H(�1, . . . , �k) associated to a set �i : Ai�!A of
CP maps (finite channels) from finite-dimensional
C�-algebras Ai into A. This led to the CNT entropy
h!(�) of a noncommutative dynamical system
(A,�,!), where ! is a state on A and � is an
automorphism or a CP map preserving it:
! � �=!.

CP Maps and Continuity

Since for an element a 2 A of a unital C�-algebra,
one has kak� 1 precisely when

1 a
a� 1

� �

is positive in M2(A), it follows that

2-positive unital maps are contractive

Unital 2-positive maps satisfy, in particular, the
generalized Schwarz inequality for all a 2 A,

�ða�Þ�ðaÞ��ða�aÞ

In particular,

‘‘CP maps are completely bounded as supn k� 1nk=
k�(1A)k and completely contractive if they are
unital. Conversely unital, completely contractive
maps are CP maps.’’

CP Maps and Matrix Algebras

When the domain or the target space of a map are
matrix algebras, one has the following equivalences
concerning positivity. Let [ei, j]i, j denote the standard
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matrix units in Mn(C) and � : Mn(C)�!B into a
C�-algebra B. The following conditions are
equivalent:

1. � is a CP map,
2. � is n-positive, and
3. [�(ei, j)]i, j is positive in Mn(B).

Associating to a linear map � : A�!Mn(C), the
linear functional s� : Mn(A)�!C by s�([ai, j]) :=P

i, j �(ai, j)i, j, one has the following equivalent
properties:

1. � is a CP map,
2. � is n-positive,
3. s� is positive, and
4. s� is positive on Aþ Mn(C)þ.

Stinspring Representation of CP Maps

CP maps are relatively easy to handle, thanks to the
following dilation result due to W F Stinspring. It
describes a CP map as the compression of a
morphism of C�-algebras.

Let A be a unital C�-algebra and � : A�!B(H) a
linear map. Then � is a CP map if and only if it
has the form

�ðaÞ ¼ V��ðaÞV

for some representation � : A�!B(K) on a Hil-
bert space K, and some bounded linear map
V :H�!K. If A is a von Neumann algebra and �
is normal then � can be taken to be normal. When
A =B(H) and H is separable, one has, for some
bn 2 B(H),

�ðaÞ¼
X1
n¼1

b�nabn

The proof of this result is reminiscent of the
GNS construction for states and its extension, by
G Kasparov, to C�-modules is central in bivariant
K-homology theory.

Despite the above satisfactory result, one should
be aware that positive but not CP maps are much
less understood and only for maps on very low
dimensional matrix algebras do we have a definitive
classification. To have an idea of the intricacies of
the matter, one may consult Størmer (1963).

Positive Semigroups on Standard Forms
of von Neumann Algebras and Ground State
for Physical Hamiltonians

The above result allows one to derive the structure
of generators of norm-continuous dynamical semi-
groups in terms of dissipative operators.
Strongly continuous positive semigroups, which
are KMS symmetric with respect to a KMS state !
of a given automorphism group of a C�-algebra A,
can be analyzed as positive semigroups in the
standard representation (M,H,P, J) (see Tomita–
Takesaki Modular Theory) of the von Neumann
algebraM := �!(A)00. A semigroup on A gives rise to
a corresponding w�-continuous positive semigroup
on M and to a strongly continuous positive
semigroup on the ordered Hilbert space (H,P) of
the standard form. In the latter framework, one can
develop an infinite-dimensional, noncommutative
extension of the classical Perron–Frobenius theory
for matrices with positive entries. This applies, in
particular, to semigroups generated by physical
Hamiltonians and has been used to prove existence
and uniqueness of the ground state for bosons and
fermions systems in quantum field theory (one may
consult Gross (1972)).
Nuclear C�-Algebras and Injective
von Neumann Algebras

The nonabelian character of the product in
C�-algebras may prevent the existence of nontrivial
morphisms between them, while one may have an
abundance of CP maps. For example, there are no
nontrivial morphisms from the algebra of compact
operators to C, but there exist sufficiently many
states to separate its elements. A much more well-
behaved category of C�-algebras is obtained by
considering CP maps as morphisms. This is true, in
particular, for nuclear C�-algebras: those for which
any tensor product A B with any other C�-algebra
B admits a unique C�-cross norm (see C�-Algebras
and their Classification). The intimate relation
between this class of algebras and CP maps is
illustrated by the following characterization:

1. A is nuclear;
2. the identity map of A is a pointwise limit of CP

maps of finite rank;
3. the identity map of A can be approximately

factorized, lim� (T� � S�)a! a for all a 2 A,
through matrix algebras and nets of CP maps
S� : A!Mn(C), T� : Mn(C)!A.

A second important relation between nuclear
C�-algebras and CP maps emerges in connection to
the lifting problem.

‘‘Let A be a nuclear C�-algebra and J a closed two-
sided ideal in a C�-algebra B. Then every CP map
� : A!B=J can be lifted to a CP map �0 : A!B.
In other words, � factors through B by the
quotient map q : B!B=J: �= q � �.’’
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This and related results are used to prove that
the Brown–Douglas–Fillmore K-homology invariant
Ext(A) is a group for separable, nuclear C�-algebras.

Our last basic result, due to W Arveson, about CP
maps concerns the extension problem.

‘‘Let A be a unital C�-algebra and N a self-adjoint
closed subspace of A containing the identity. Then
every CP map � : N!B(H) from N into a type I factor
B(H) can be extended to a CP map � : A!B(H).’’

This result can be restated by saying that type I
factors are injective von Neumann algebras. It may
suggest how the notion of a completely positive map
plays a fundamental role along Connes’ proof of one
culminating result of the theory of von Neumann
algebras, namely the fact that the class of injective
von Neumann algebras coincides with the class
of approximately finite-dimensional ones (see von
Neumann Algebras: Introduction, Modular Theory
and Classification Theory).

See also: Capacity for Quantum Information;
C *-Algebras and Their Classification; Channels
in Quantum Information Theory; Noncommutative
Geometry and the Standard Model; Noncommutative
Geometry from Strings; Optimal Cloning of Quantum
States; Path Integrals in Noncommutative Geometry;
Quantum Dynamical Semigroups; Quantum Entropy;
Source Coding in Quantum Information Theory; Tomita–
Takesaki Modular Theory; von Neumann Algebras:
Introduction, Modular Theory, and Classification Theory.
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Nilpotent Lie Groups

While not much had been published on the geometry
of nilpotent Lie groups with a left-invariant
Riemannian metric till around 1990, the situation is
certainly better now; see the references in Eberlein
(2004). However, there is still very little that is
conspicuous about the more general pseudo-
Riemannian case. In particular, the two-step
nilpotent groups are nonabelian and as close as
possible to being abelian, but display a rich variety of
new and interesting geometric phenomena (Cordero
and Parker 1999). As in the Riemannian case, one of
many places where they arise naturally is as groups of
isometries acting on horospheres in certain (pseudo-
Riemannian) symmetric spaces. Another is in the
Iwasawa decomposition G = KAN of semisimple
groups with the Killing metric tensor, which need
not be (positive or negative) definite even on N. Here,
K is compact and A is abelian.

An early motivation for this study was the
observation that there are two nonisometric
pseudo-Riemannian metrics on the Heisenberg
group H3, one of which is flat. This is a strong
contrast to the Riemannian case in which there is
only one (up to positive homothety) and it is not
flat. This is not an anomaly, as we now well know.

While the idea of more than one timelike
dimension has appeared a few times in the physics
literature, both in string/M-theory and in brane-
world scenarios, essentially all work to date assumes
only one. Thus, all applications so far are of
Lorentzian or definite nilpotent groups. Guediri
and co-workers led the Lorentzian studies, and
most of their results stated near the end of the
section ‘‘Lorentzian groups’’ concern a major,
perennial interest in relativity: the (non)existence of
closed timelike geodesics in compact Lorentzian
manifolds.



Others have made use of nilpotent Lie groups
with left-invariant (positive or negative) definite
metric tensors, such as Hervig’s (2004) constructions
of black hole spacetimes from solvmanifolds (related
to solvable groups: those with Iwasawa decomposi-
tion G = AN), including the so-called BTZ construc-
tions. Definite groups and their applications, already
having received thorough surveys elsewhere, most
notably those of Eberlein, are not included here.

Although the geometric properties of Lie groups
with left-invariant definite metric tensors have been
studied extensively, the same has not occurred for
indefinite metric tensors. For example, while the
paper of Milnor (1976) has already become a classic
reference, in particular for the classification of
positive-definite (Riemannian) metrics on three-
dimensional Lie groups, a classification of the
left-invariant Lorentzian metric tensors on these
groups became available only in 1997. Similarly,
only a few partial results in the line of Milnor’s
study of definite metrics were previously known for
indefinite metrics. Moreover, in dimension 3, there
are only two types of metric tensors: Riemannian
(definite) and Lorentzian (indefinite). But in higher
dimensions, there are many distinct types of indefi-
nite metrics while there is still essentially only one
type of definite metric. This is another reason why
this area has special interest now.

The list in ‘‘Further readi ng’’ at the end of this
article consists of general survey articles and a
select few of the more historically important papers.
Precise bibliographical information for references
merely mentioned or alluded to in this article
may be found in those. The main, general reference
on pseudo-Riemannian geometry is O’Neill’s (1983)
book. Eberlein’s (2004) article covers the Rieman-
nian case. At this time, there is no other compre-
hensive survey of the pseudo-Riemannian case. One
may use Cordero and Parker (1999) and Guediri
(2003) and their reference lists to good advantage,
however.

Inner Product and Signature

By an inner product on a vector space V we shall
mean a nondegenerate, symmetric bilinear form on
V, generally denoted by h , i. In particular, we do not
assume that it is positive definite. It has become
customary to refer to an ordered pair of non-
negative integers (p, q) as the signature of the inner
product, where p denotes the number of positive
eigenvalues and q the number of negative eigen-
values. Then nondegeneracy means that pþ q =
dim V. Note that there is no real geometric
difference between (p, q) and (q, p); indeed, O’Neill

gives handy conversion procedures for this and for
the other major sign variant (e.g., curvature) (see
O’Neill (1983, pp. 92 and 89, respectively)).

A Riemannian inner product has signature (p, 0).
In view of the preceding remark, one might as well
regard signature (0, q) as also being Riemannian, so
that ‘‘Riemannian geometry is that of definite metric
tensors.’’ Similarly, a Lorentzian inner product has
either p = 1 or q = 1. In this case, both sign
conventions are used in relativistic theories with
the proviso that the ‘‘1’’ axis is always timelike.

If neither p nor q is 1, there is no physical
convention. We shall say that v 2 V is timelike if
hv, vi > 0, null if hv, vi= 0, and spacelike if hv, vi < 0.
(In a Lorentzian example, one may wish to revert to
one’s preferred relativistic convention.) We shall refer
to these collectively as the causal type of a vector (or of
a curve to which a vector is tangent).

Considering indefinite inner products (and metric
tensors) thus greatly expands one’s purview, from
one type of geometry (Riemannian), or possibly two
(Riemannian and Lorentzian), to a total of b(pþ
q)=2c þ 1 distinctly different types of geometries on
the same underlying differential manifolds.

Rise of 2-Step Groups

Throughout, N will denote a connected (and simply
connected, usually), nilpotent Lie group with Lie
algebra n having center z. We shall use h , i to denote
either an inner product on n or the induced left-
invariant pseudo-Riemannian (indefinite) metric
tensor on N.

For all nilpotent Lie groups, the exponential map
exp : n !N is surjective. Indeed, it is a diffeomorph-
ism for simply connected N; in this case, we shall
denote the inverse by log.

One of the earliest papers on the Riemannian
geometry of nilpotent Lie groups was Wolf (1964).
Since then, a few other papers about general nilpotent
Lie groups have appeared, including Karidi (1994)
and Pauls (2001), but the area has not seen a lot of
progress.

However, everything changed with Kaplan’s
(1981) publication. Following this paper and its
successor (Kaplan 1983), almost all subsequent
work on the left-invariant geometry of nilpotent
groups has been on two-step groups.

Briefly, Kaplan defined a new class of nilpotent
Lie groups, calling them of Heisenberg type. This
was soon abbreviated to H-type, and has since been
called also as Heisenberg-like and (unfortunately)
‘‘generalized Heisenberg.’’ (Unfortunate, because
that term was already in use for another class, not
all of which are of H-type.) What made them so
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compelling was that (almost) everything was expli-
citly calculable, thus making them the next great test
bed after symmetric spaces.

Definition 1 We say that N (or n ) is 2-step
nilpotent when [n , n ] � z. Then [[n , n ], n ] = 0 and
the generalization to k-step nilpotent is clear:

½½� � � ½½½n ; n �; n �; n � � � ��; n � ¼ 0

with kþ 1 copies of n (or k nested brackets, if you
prefer).

It soon became apparent that H-type groups
comprised a subclass of 2-step groups; for a nice,
modern proof see Berndt et al. (1995). By around
1990, they had also attracted the attention of the
spectral geometry community, and Eberlein pro-
duced the seminal survey (with important new
results) from which the modern era began. (It was
published in 1994 (Eberlein 1994), but the preprint
had circulated widely since 1990.) Since then,
activity around 2-step nilpotent Lie groups has
mushroomed; see the references in Eberlein (2004).

Finally, turning to pseudo-Riemannian nilpo-
tent Lie groups, with perhaps one or two
exceptions, all results so far have been obtained
only for 2-step groups. Thus, the remaining
sections of this article will be devoted almost
exclusively to them.

The Baker–Campbell–Hausdorff formula takes on
a particularly simple form in these groups:

expðxÞ expðyÞ ¼ exp xþ yþ 1
2½x; y�

� �
½1�

Proposition 1 In a pseudo-Riemannian 2-step
nilpotent Lie group, the exponential map preserves
causal character. Alternatively, one-parameter sub-
groups are curves of constant causal character.

Of course, one-parameter subgroups need not be
geodesics.

Lattices and Completeness

We shall need some basic facts about lattices in N.
In nilpotent Lie groups, a lattice is a discrete
subgroup � such that the homogeneous space
M = �nN is compact. Here we follow the conven-
tion that a lattice acts on the left, so that the coset
space consists of left cosets and this is indicated by
the notation. Other subgroups will generally act on
the right, allowing better separation of the effects of
two simultaneous actions.

Lattices do not always exist in nilpotent Lie
groups.

Theorem 1 The simply connected, nilpotent Lie
group N admits a lattice if and only if there exists a

basis of its Lie algebra n for which the structure
constants are rational.

Such a group is said to have a rational structure, or
simply to be rational.

A nilmanifold is a (compact) homogeneous space
of the form �nN, where N is a connected, simply
connected (rational) nilpotent Lie group and � is a
lattice in N. An infranilmanifold has a nilmanifold
as a finite covering space. They are commonly
regarded as a noncommutative generalization of
tori, the Klein bottle being the simplest example of
an infranilmanifold that is not a nilmanifold.

We recall the result of Marsden from O’Neill
(1983).

Theorem 2 A compact, homogeneous pseudo-
Riemannian space is geodesically complete.

Thus, if a rational N is provided with a bi-invariant
metric tensor h , i, then M becomes a compact,
homogeneous pseudo-Riemannian space which is
therefore complete. It follows that (N, h , i) is itself
complete. In general, however, the metric tensor is
not bi-invariant and N need not be complete.

For 2-step nilpotent Lie groups, things work nicely
as shown by this result first published by Guediri.

Theorem 3 On a 2-step nilpotent Lie group, all
left-invariant pseudo-Riemannian metrics are geode-
sically complete.

No such general result holds for 3- and higher-step
groups, however.

2-Step Groups

In the Riemannian (positive-definite) case, one splits
n = z� v = z� z?, where the superscript denotes the
orthogonal complement with respect to the inner
product h , i. In the general pseudo-Riemannian case,
however, z� z? 6¼ n . The problem is that z might be
a degenerate subspace; that is, it might contain a
null subspace U for which U � U

?.
It turns out that this possible degeneracy of the

center causes the essential differences between
the Riemannian and pseudo-Riemannian cases. So
far, the only general success in studying groups with
degenerate centers was in Cordero and Parker (1999)
where an adapted Witt decomposition of n was used
together with an involution � exchanging the two null
parts.

Observe that if z is degenerate, the null subspace
U is well defined invariantly. We shall use a
decomposition

n ¼ z� v ¼ U � Z � V � E ½2�
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in which z = U � Z and v = V � E , U and V are
complementary null subspaces, and U

? \ V
?= Z � E .

Although the choice of V is not well defined
invariantly, once a V has been chosen then Z and E

are well defined invariantly. Indeed, Z is the portion of
the center z in U

? \ V
?, and E is its orthocomplement

in U
? \ V

?. This is a Witt decomposition of n given U ,
easily seen by noting that (U � V )?= Z � E , adapted
to the special role of the center in n .

We shall also need to use an involution � that
interchanges U and V and which reduces to the
identity on Z � E in the Riemannian (positive-definite)
case. (The particular choice of such an involution is
not significant.) It turns out that � is an isometry of n

which does not integrate to an isometry of N. The
adjoint with respect to h , i of the adjoint representa-
tion of the Lie algebra n on itself is denoted by ady.

Definition 2 The linear mapping

j : U � Z ! End V � Eð Þ

is given by

jðaÞx ¼ � adyx �a

Formulas for the connection and curvatures, and
explicit forms for many examples, may be found in
Cordero and Parker (1999). It turns out there is a
relatively large class of flat spaces, a clear distinction
from the Riemannian case in which there are none.

Let x, y 2 n . Recall that homaloidal planes are
those for which the numerator hR(x, y)y, xi of the
sectional curvature formula vanishes. This notion is
useful for degenerate planes tangent to spaces that
are not of constant curvature.

Definition 3 A submanifold of a pseudo-Riemannian
manifold is flat if and only if every plane tangent to
the submanifold is homaloidal.

Theorem 4 The center Z of N is flat.

Corollary 1 The only N of constant curvature
are flat.

The degenerate part of the center can have a
profound effect on the geometry of the whole
group.

Theorem 5 If [n , n ] � U and E = {0}, then N is flat.

Among these spaces, those that also have Z = {0}
(which condition itself implies [n , n ] � U ) are funda-
mental, with the more general ones obtained by
making nondegenerate central extensions. It is also
easy to see that the product of any flat group with a
nondegenerate abelian factor is still flat.

This is the best possible result in general. Using
weaker hypotheses in place of E = {0}, such as

[V , V ] = {0} = [E , E ], it is easy to construct examples
which are not flat.

Corollary 2 If dim Z � dn=2e, then there exists a
flat metric on N.

Here dre denotes the least integer greater than or
equal to r and n = dim N.

Before continuing, we pause to collect some facts
about the condition [n , n ] � U and its consequences.

Remark 1 Since it implies j(z) = 0 for all z 2 Z , this
latter is possible with no pseudo-Euclidean de Rham
factor, unlike the Riemannian case. (On the other
hand, a pseudo-Euclidean de Rham factor is
characterized in terms of the Kaplan-Eberlein map
j whenever the center is nondegenerate.)

Also, it implies j(u) interchanges V and E for all
u 2 U if and only if [V , V ] = [E , E ] = {0}. Examples
are the Heisenberg group and the groups H(p, 1) for
p � 2 with null centers.

Finally, we note that it implies that, for every u 2 U ,
j(u) maps V to V if and only if j(u) maps E to E if and
only if [V , E ] = {0}.

Proposition 2 If j(z) = 0 for all z 2 Z and j(u)
interchanges V and E for all u 2 U , then N is Ricci
flat.

Proposition 3 If j(z) = 0 for all z 2 Z , then N is
scalar flat. In particular, this occurs when [n , n ] � U .

Much like the Riemannian case, we would expect
that (N, h , i) should in some sense be similar to flat
pseudo-Euclidean space. This is seen, for example,
via the existence of totally geodesic subgroups
(Cordero and Parker 1999). (O’Neill (1983, ex. 9,
p. 125) has extended the definition of totally
geodesic to degenerate submanifolds of pseudo-
Riemannian manifolds.)

Example 1 For any x 2 n the one-parameter sub-
group exp(tx) is a geodesic if and only if x 2 z or
x 2 U � E . This is essentially the same as the
Riemannian case, but with some additional geodesic
one-parameter subgroups coming from U .

Example 2 Abelian subspaces of V � E are Lie
subalgebras of n , and give rise to complete, flat,
totally geodesic abelian subgroups of N, just as in
the Riemannian case. Eberlein’s construction is valid
in general, and shows that if dim V � E � 1þ kþ
k dim z, then every nonzero element of V � E lies in
an abelian subspace of dimension kþ 1.

Example 3 The center Z of N is a complete, flat,
totally geodesic submanifold. Moreover, it deter-
mines a foliation of N by its left translates, so each
leaf is flat and totally geodesic, as in the Riemannian
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case. In the pseudo-Riemannian case, this foliation
in turn is the orthogonal direct sum of two foliations
determined by U and Z , and the leaves of the
U -foliation are also null. All these leaves are
complete.

There is also the existence of dim z independent
first integrals, a familiar result in pseudo-Euclidean
space, and the geodesic equations are completely
integrable; in certain cases (mostly when the center
is nondegenerate), one can obtain explicit formulas.
Unlike the Riemannian case, there are flat groups
(nonabelian) which are isometric to pseudo-
Euclidean spaces (abelian).

Theorem 6 If [n , n ] � U and E = {0}, then N is
geodesically connected. Consequently, so is any
nilmanifold with such a universal covering space.

Thus, these compact nilmanifolds are much like tori.
This is also illustrated by the computation of their
period spectrum.

Isometry Group

The main new feature is that when the center is
degenerate, the isometry group can be strictly larger
in a significant way than when the center is
nondegenerate (which includes the Riemannian case).

Letting Aut(N) denote the automorphism group
of N and I(N) the isometry group of N, set
O(N) = Aut(N) \ I(N). In the Riemannian case,
I(N) = O(N) n N, the semidirect product where N
acts as left translations. We have chosen the
notation O(N) to suggest an analogy with the
pseudo-Euclidean case in which this subgroup is
precisely the (general, including reflections) pseudo-
orthogonal group. According to Wilson (1982), this
analogy is good for any nilmanifold (not necessarily
2-step).

To see what is true about the isometry group in
general, first consider the (left-invariant) splitting of
the tangent bundle TN = zN � vN.

Definition 4 Denote by Ispl(N) the subgroup of the
isometry group I(N) which preserves the splitting
TN = zN � vN. Further, let Iaut(N) = O(N) n N,
where N acts by left translations.

Proposition 4 If N is a simply connected, 2-step
nilpotent Lie group with left-invariant metric tensor,
then Ispl(N) � Iaut(N).

There are examples to show that Ispl < Iaut is
possible when U 6¼ {0}.

When the center is degenerate, the relevant group
analogous to a pseudo-orthogonal group may be
larger.

Proposition 5 Let ~O(N) denote the subgroup of
I(N) which fixes 1 2 N. Then I(N) ffi ~O(N) n N,
where N acts by left translations.

The proof is obvious from the definition of ~O.
It is also obvious that O � ~O. Examples show that
O < ~O, hence Iaut < I, is possible when the center is
degenerate.

Thus, we have three groups of isometries, not
necessarily equal in general: Ispl� Iaut� I. When the
center is nondegenerate (U = {0}), the Ricci transfor-
mation is block-diagonalizable and the rest of
Kaplan’s proof using it now also works.

Corollary 3 If the center is nondegenerate, then
I(N) = Ispl(N) whence ~O(N) ffi O(N).

In the next few results, we use the phrase ‘‘a
subgroup isometric to’’ a group to mean that the
isometry is also an isomorphism of groups.

Proposition 6 For any N containing a subgroup
isometric to the flat three-dimensional Heisenberg
group,

IsplðNÞ < IautðNÞ < IðNÞ

Unfortunately, this class does not include our flat
groups in which [n , n ] � U and E = {0}. However,
it does include many groups that do not satisfy
[n , n ] � U , such as the simplest quaternionic
Heisenberg group.

Remark 2 A direct computation shows that on this
flat H3 with null center, the only Killing fields with
geodesic integral curves are the nonzero scalar
multiples of a vector field tangent to the center.

Proposition 7 For any N containing a subgroup
isometric to the flat H3 
 R with null center,

IsplðNÞ < IautðNÞ < IðNÞ

Many of our flat groups in which [n , n ] � U and
E = {0} have such a subgroup isometrically
embedded, as in fact do many others which are not
flat.

Lattices and Periodic Geodesics

In this subsection, we assume that N is rational and
let � be a lattice in N.

Certain tori TF and TB provide the model fiber
and the base for a submersion of the coset space �nN.
This submersion may not be pseudo-Riemannian in
the usual sense, because the tori may be degenerate.
We began the study of periodic geodesics in these
compact nilmanifolds, and obtained a complete
calculation of the period spectrum for certain flat
spaces.
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To the compact nilmanifold �nN we may
associate two flat (possibly degenerate) tori.

Definition 5 Let N be a simply connected, two-step
nilpotent Lie group with lattice � and let � : n ! v

denote the projection. Define

Tz ¼ z=ðlog � \ zÞ
Tv ¼ v=�ðlog �Þ

Observe that dim Tz þ dim Tv = dim zþ dim v =
dim n .

Let m = dim z and n = dim v. It is a consequence
of a theorem of Palais and Stewart that �nN is a
principal Tm-bundle over Tn. The model fiber Tm

can be given a geometric structure from its closed
embedding in �nN; we denote this geometric
m-torus by TF. Similarly, we wish to provide the
base n-torus with a geometric structure so that the
projection pB : �nN � TB is the appropriate general-
ization of a pseudo-Riemannian submersion
(O’Neill 1983) to (possibly) degenerate spaces.
Observe that the splitting n = z� v induces splittings
TN = zN � vN and T(�nN) = z(�nN)� v(�nN),
and that pB� just mods out z(�nN). Examining
O’Neill’s definition, we see that the key is to
construct the geometry of TB by defining

pB� : v�ð�nNÞ!TpBð�ÞðTBÞ
for each � 2 �nN is an isometry ½3�

and

rTB
pB�x

pB�y ¼ pB�ð�rxyÞ
for all x; y 2 v ¼ V � E ½4�

where � : n ! v is the projection. Then the rest of the
usual results will continue to hold, provided that
sectional curvature is replaced by the numerator of
the sectional curvature formula at least when
elements of V are involved:

hRTB
ðpB�x; pB�yÞ pB�y; pB�xi
¼ hR�nNðx; yÞy; xi þ 3

4h½x; y�; ½x; y�i ½5�

Now pB will be a pseudo-Riemannian submersion in
the usual sense if and only if U = V = {0}, as is
always the case for Riemannian spaces.

In the Riemannian case, Eberlein showed that
TF ffi Tz and TB ffi Tv . In general, TB is flat only if N
has a nondegenerate center or is flat.

Remark 3 Observe that the torus TB may be
decomposed into a topological product TE 
 TV in
the obvious way. It is easy to check that TE is flat
and isometric to ( log � \ E )nE , and that TV has a
linear connection not coming from a metric and not

flat in general. Moreover, the geometry of the
product is ‘‘twisted’’ in a certain way. It would be
interesting to determine which tori could appear as
such a TV and how.

Theorem 7 Let N be a simply connected, 2-step
nilpotent Lie group with lattice �, a left-invariant
metric tensor, and tori as above. The fibers TF of
the (generalized) pseudo-Riemannian submersion
�nN � TB are isometric to Tz. If in addition the
center Z of N is nondegenerate, then the base TB is
isometric to Tv .

We recall that elements of N can be identified
with elements of the isometry group I(N): namely,
n 2 N is identified with the isometry �= Ln of left
translation by n. We shall abbreviate this by writing
� 2 N.

Definition 6 We say that � 2 N translates the
geodesic � by ! if and only if ��(t) = �(t þ !) for
all t. If � is a unit-speed geodesic, we say that ! is a
period of �.

Recall that unit speed means that j�̇j=
h�̇, �̇ij j1=2 = 1. Since there is no natural normal-
ization for null geodesics, we do not define periods
for them. In the Riemannian case and in the
timelike Lorentzian case in strongly causal space-
times, unit-speed geodesics are parametrized by
arclength and this period is a translation distance.
If � belongs to a lattice �, it is the length of a closed
geodesic in �nN.

In general, recall that if � is a geodesic in N and if
pN : N � �nN denotes the natural projection, then
pN� is a periodic geodesic in �nN if and only if
some � 2 � translates �. We say periodic rather than
closed here because in pseudo-Riemannian spaces it
is possible for a null geodesic to be closed but not
periodic. If the space is geodesically complete or
Riemannian, however, then this does not occur; the
former is in fact the case for our 2-step nilpotent Lie
groups. Further, recall that free homotopy classes of
closed curves in �nN correspond bijectively with
conjugacy classes in �.

Definition 7 Let C denote either a nontrivial, free
homotopy class of closed curves in �nN or the
corresponding conjugacy class in �. We define }(C)
to be the set of all periods of periodic unit-speed
geodesics that belong to C.
In the Riemannian case, this is the set of lengths of
closed geodesics in C, frequently denoted by ‘(C).

Definition 8 The period spectrum of �nN is the set

spec}ð�nNÞ¼
[
C
}ðCÞ
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where the union is taken over all nontrivial, free
homotopy classes of closed curves in �nN.

In the Riemannian case, this is the length spectrum
spec‘(�nN).

Example 4 Similar to the Riemannian case, we can
compute the period spectrum of a flat torus �nRm,
where � is a lattice (of maximal rank, isomorphic to
Zm). Using calculations in an analogous way as for
finding the length spectrum of a Riemannian flat
torus, we easily obtain

spec}ð�nRmÞ ¼ fjgj 6¼ 0 j g 2 �g

It is also easy to see that the nonzero d’Alembertian
spectrum is related to the analogous set produced
from the dual lattice ��, multiplied by factors of
�4�2, almost as in the Riemannian case.

As in this example, simple determinacy of periods
of unit-speed geodesics helps make calculation of the
period spectrum possible purely in terms of
log � � n .

For the rest of this subsection, we assume that N
is a simply connected, two-step nilpotent Lie group
with left-invariant pseudo-Riemannian metric tensor
h , i. Note that non-null geodesics may be taken to be
of unit speed. Most non-identity elements of N
translate some geodesic, but not necessarily one of
unit speed.

For our special class of flat 2-step nilmanifolds,
we can calculate the period spectrum completely.

Theorem 8 If [n , n ] � U and E = {0}, then spec}(M)
can be completely calculated from log � for any
M = �nN.

Thus, we see again just how much these flat, two-
step nilmanifolds are like tori. All periods can be
calculated purely from log � � n , although some will
not show up from the tori in the fibration.

Corollary 4 spec}(TB) (respectively, TF) is [C}(C)
where the union is taken over all those free
homotopy classes C of closed curves in M = �nN
that do not (respectively, do) contain an element in
the center of � ffi �1(M), except for those periods
arising only from unit-speed geodesics in M that
project to null geodesics in both TB and TF.

We note that one might consider using this to assign
periods to some null geodesics in the tori TB and TF.

When the center is nondegenerate, we obtain
results similar to Eberlein’s. Here is part of them.

Theorem 9 Assume U = {0}. Let � 2 N and write
log�= z� þ e�. Assume � translates the unit-speed
geodesic � by ! > 0. Let z0 denote the component of

z� orthogonal to [e�, n ] and set !�= jz0 þ e�j. Let
�̇(0) = z0 þ e0. Then

(i) je�j � !. In addition, ! < !� for timelike (space-
like) geodesics with !z0 � z0 timelike (spacelike),
and ! > !� for timelike (spacelike) geodesics
with !z0 � z0 spacelike (timelike);

(ii) != je�j if and only if �(t) = exp(te�=je�j) for all
t 2 R; and

(iii) !=!� if and only if !z0 � z0 is null.

Although !� need not be an upper bound for periods
as in the Riemannian case, it nonetheless plays a
special role among all periods, as seen in (iii) above,
and we shall refer to it as the distinguished period
associated with � 2 N. When the center is definite,
for example, we do have ! � !�.

Now the following definitions make sense at least
for N with a nondegenerate center.

Definition 9 Let C denote either a nontrivial, free
homotopy class of closed curves in �nN or the
corresponding conjugacy class in �. We define }�(C)
to be the distinguished periods of periodic unit-speed
geodesics that belong to C.

Definition 10 The distinguished period spectrum
of �nN is the set

Dspec}ð�nNÞ ¼
[
C
}�ðCÞ

where the union is taken over all nontrivial, free
homotopy classes of closed curves in �nN.

Then we get this result:

Corollary 5 Assume the center is nondegenerate. If
n is nonsingular, then spec}(TB) (respectively, TF) is
precisely the period spectrum (respectively, the
distinguished period spectrum) of those free homo-
topy classes C of closed curves in M = �nN that do
not (respectively, do) contain an element in the
center of � ffi �1(M), except for those periods arising
only from unit-speed geodesics in M that project to
null geodesics in both TB and TF.

Conjugate Loci

This is the only general result on conjugate points.

Proposition 8 Let N be a simply connected, 2-step
nilpotent Lie group with left-invariant metric tensor
h , i, and let � be a geodesic with �̇(0) = a 2 z.
If ady a = 0, then there are no conjugate points
along �.

In the rest of this subsection, we assume that the
center of N is nondegenerate.

For convenience, we shall use the notation
Jz = ady z for any z 2 z. (Since the center is
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nondegenerate, the involution � may be omitted.)
We follow Ciatti (2000) for this next definition. As
in the Riemannian case, one might as well make
2-step nilpotency part of the definition since it
effectively is so anyway.

Definition 11 N is said to be of pseudoH-type if
and only if

J2
z ¼ �hz; ziI

for any z 2 z.

Complete results on conjugate loci have been
obtained only for these groups (Jang et al. 2005).
For example, using standard results from analytic
function theory, one can show that the conjugate
locus is an analytic variety in N. This is probably
true for general two-step groups, but the proof we
know works only for pseudoH-type.

Definition 12 Let � denote a geodesic and assume
that �(t0) is conjugate to �(0) along �. To indicate
that the multiplicity of �(t0) is m, we shall write
multcp(t0) = m. To distinguish the notions clearly,
we shall denote the multiplicity of � as an eigenvalue
of a specified linear transformation by multev�.

Let � be a geodesic with �(0) = 1 and �̇(0) = z0 þ
x0 2 z� v , respectively, and let J = Jz0

. If � is not
null, we may assume that � is normalized so that
h�̇, �̇i= �1. As usual, Z� denotes the set of all
integers with 0 removed.

Theorem 10 Under these assumptions, if N is of
pseudoH-type, then:

(i) if z0 = 0 and x0 6¼ 0, then �(t) is conjugate to
�(0) along � if and only if hx0, x0i < 0 and

� 12

t2
¼ hx0; x0i

in which case multcp(t) = dim z;
(ii) if z0 6¼ 0 and x0 = 0, then �(t) is conjugate to

�(0) along � if and only if hz0, z0i > 0 and

t 2 2�

jz0j
Z�

in which case multcp(t) = dim v .

Theorem 11 Let � be such a geodesic in a
pseudoH-type group N with z0 6¼ 0 6¼ x0.

(i) If hz0, z0i=�2 with � > 0, then �(t0) is con-
jugate to �(0) along � if and only if

t0 2
2�

�
Z� [A1 [A2

where

A1 ¼ t 2 R hx0;x0i
�t

2
cot

�t

2

��� ¼ h _�; _�i
n o

and

A2 ¼ t 2 R �t ¼ hx0; x0i
h _�; _�i þ hz0; z0i

���� sin�t

� �

when dim z � 2

If t0 2 (2�=�)Z�, then

multcpðt0Þ ¼
dim v � 1 if h _�; _�iþ hz0;z0i 6¼ 0
dim n � 2 if h _�; _�iþ hz0;z0i ¼ 0

�

If t0 62 (2�=�)Z�, then

multcpðt0Þ ¼
1 if t0 2 A1 �A2

dim z� 1 if t0 2 A2 �A1

dim z if t0 2 A1 \A2

8<
:

(ii) If hz0, z0i=�	2 with 	 > 0, then �(t0) is a
conjugate point along � if and only if t0 2
B1 [ B2 where

B1 ¼ t 2 R hx0; x0i
	t

2
coth

	t

2

���� ¼ h _�; _�i
� �

and

B2 ¼ t 2 R 	t ¼ hx0; x0i
h _�; _�i þ hz0; z0i

���� sinh 	t

� �

when dim z � 2

The multiplicity is

multcpðt0Þ ¼
1 if t0 2 B1 � B2

dim z� 1 if t0 2 B2 � B1

dim z if t0 2 B1 \ B2

8<
:

(iii) If hz0, z0i= 0, then �(t0) is a conjugate point
along � if and only if

t2
0 ¼ �

12

hx0; x0i
and multcp(t0) = dim z� 1.

This covers all cases for a pseudoH-type group with
a center of any dimension.

Some results on other two-step groups and
examples (including pictures in dimension 3) may
be found in the references cited in Jang et al. (2005).
When the groups are not pseudoH-type, however,
complete results are available only when the center
is one dimensional. Guediri (2004) has results in the
timelike Lorentzian case.
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Lorentzian Groups

Not too long ago, only a few partial results in the
line of Milnor’s study of definite metrics were
known for indefinite metrics (Barnet 1989, Nomizu
1979), and they were Lorentzian.

Guediri (2003) and others have made special
study of Lorentzian two-step groups, partly because
of their relevance to general relativity, where they
can be used to provide interesting and important
(counter)examples. Special features of Lorentzian
geometry frequently enable them to obtain much
more complete and explicit results than are possible
in general.

For example, Guediri (2003) was able to provide
a complete and explicit integration of the geodesic
equations for Lorentzian 2-step groups. This
includes the case of a degenerate center, which
only required extremely careful handling through a
number of cases. He also paid special attention to
the existence of closed timelike geodesics, reflecting
the relativistic concerns.

As usual, N denotes a connected and simply
connected 2-step nilpotent Lie group. For the rest
of this section, we assume that the left-invariant
metric tensor is Lorentzian. Whenever a lattice is
mentioned, we also assume that the group is
rational.

Proposition 9 If the center is degenerate, then no
timelike geodesic can be translated by a central
element.

Thus, there can be no closed timelike geodesics
parallel to the center in any nilmanifold obtained
from such an N.

Theorem 12 If the center is Lorentzian, then �nN
contains no timelike or null closed geodesics for any
lattice �.

To handle degenerate centers, three refined
notions for nonsingular are used: almost, weakly,
and strongly nonsingular. The precise definitions
involve an adapted Witt decomposition (as in the
general pseudo-Riemannian case, but a rather
different one here) and are quite technical, as is
typical. We refer to Guediri (2003) for details.

Theorem 13 If N is weakly nonsingular, then no
timelike geodesic can be translated by an element
of N.

Corollary 6 If N is flat, then no timelike geodesic
can be translated by a non-identity element.

Corollary 7 If N is flat, then �nN contains no
closed timelike geodesics for any lattice �.

Corollary 8 If N is weakly nonsingular, then �nN
contains no closed timelike geodesic.

Corollary 9 If N ¼ H2kþ1 is a Lorentzian Heisen-
berg group with degenerate center, then �nN
contains no closed timelike geodesic.

Guediri also has the only non-Riemannian results
so far about the phenomenon Eberlein called ‘‘in
resonance.’’ Roughly speaking, this occurs when the
eigenvalues of the map j have rational ratios. (The
Lorentzian case actually requires a slightly more
complicated condition when the center is
degenerate.)

Theorem 14 If N is almost nonsingular, then N is
in resonance if and only if every geodesic of N is
translated by some element of N.

See also: Classical Groups and Homogeneous Spaces;
Einstein Equations: Exact Solutions; Lorentzian
Geometry.
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Introduction

In this article we give a brief introduction to q-special
functions, that is, q-analogs of the classical special
functions. Here q is a deformation parameter, usually
0 < q < 1, where q = 1 is the classical case. The
deformation is such that the calculus simultaneously
deforms to a q-calculus involving q-derivatives and
q-integrals. The main topics to be treated are
q-hypergeometric series, with some selected evalu-
ation and transformation formulas, and some
q-hypergeometric orthogonal polynomials, most nota-
bly the Askey–Wilson polynomials. In several vari-
ables, we discuss Macdonald polynomials associated
with root systems, with most emphasis on the An case.
The rather new theory of elliptic hypergeometric series
gets some attention. While much of the theory of
q-special functions keeps q fixed, some of the deeper
aspects with number-theoretic and combinatorial
flavor emphasize expansion in q. Finally, we indicate
applications and interpretations in quantum groups,
Chevalley groups, affine Lie algebras, combinatorics,
and statistical mechanics.

Conventions

q 2 Cn{1} in general, but 0 < q < 1 in all infinite
sums and products.
n, m, N will be non-negative integers unless men-
tioned otherwise.

q-Hypergeometric Series

Definitions

For a, q 2 C the q-shifted factorial (a; q)k is defined
as a product of k factors:

ða; qÞk :¼ ð1� aÞð1� aqÞ � � � ð1� aqk�1Þ
ðk 2 Z>0Þ; ða; qÞ0 :¼ 1 ½1�

If jqj < 1 this definition remains meaningful for
k =1 as a convergent infinite product:

ða; qÞ1 :¼
Y1
j¼0

ð1� aqjÞ ½2�

We also write (a1, . . . , ar; q)k for the product of r
q-shifted factorials:

ða1; . . . ; ar; qÞk :¼ ða1; qÞk . . . ðar; qÞk
ðk 2 Z�0 or k ¼ 1Þ ½3�

A q-hypergeometric series is a power series (for the
moment still formal) in one complex variable z with
power series coefficients which depend, apart from q,
on r complex upper parameters a1, . . . , ar and s
complex lower parameters b1, . . . , bs as follows:

r�s

a1; . . . ;ar

b1; . . . ;bs

;q;z

" #
¼ r�sða1; . . . ;ar;b1; . . . ;bs;q;zÞ

:¼
X1
k¼0

ða1; . . . ;ar;qÞk
ðb1; . . . ;bs;qÞkðq;qÞk

� ð�1Þkqð1=2Þkðk�1Þ
� �s�rþ1

zk ðr; s 2Z�0Þ ½4�

Clearly the above expression is symmetric in
a1, . . . ,ar and symmetric in b1, . . . ,bs. On the right-
hand side of [4], we have that

ðkþ 1Þth term

kth term

¼ ð1� a1qkÞ � � � ð1� arq
kÞð�qkÞs�rþ1z

ð1� b1qkÞ � � � ð1� bsqkÞð1� qkþ1Þ ½5�

is rational in qk. Conversely, any rational function in
qk can be written in the form of the right-hand side
of [5]. Hence, any series

P1
k = 0 ck with c0 = 1 and

ckþ1=ck rational in qk is of the form of a
q-hypergeometric series [4].

In order to avoid singularities in the terms of [4],
we assume that b1, . . . , bs 6¼ 1, q�1, q�2, . . . . If, for
some i, ai = q�n, then all terms in the series [4] with
k > n will vanish. If none of the ai is equal to q�n



and if jqj < 1, then the radius of convergence of the
power series [4] equals 1 if r < sþ 1, 1 if r = sþ 1,
and 0 if r > sþ 1.

We can view the q-shifted factorial as a q-analog
of the shifted factorial (or Pochhammer symbol) by
the limit formula

lim
q!1

ðqa; qÞk
ð1� qÞk

¼ ðaÞk :¼ aðaþ 1Þ � � � ðaþ k� 1Þ ½6�

Hence the q-binomial coefficient

n

k

� �
q

:¼ ðq; qÞn
ðq; qÞkðq; qÞn�k

ðn;k 2 Z;n � k � 0Þ ½7�

tends to the binomial coefficient for q ! 1:

lim
q!1

n
k

� �
q

¼ n
k

� �
½8�

and a suitably renormalized q-hypergeometric series
tends (at least formally) to a hypergeometric series
as q " 1:

lim
q"1

rþr0�sþs0

qa1 ; . . . ;qar ;c1; . . . ;cr0

qb1 ; . . . ;qbs ;d1; . . . ;ds0

;q; ðq� 1Þ1þs�rz

" #

¼ rFs

a1; . . . ;ar

b1; . . . ;bs

;
ðc1� 1Þ � � � ðcr0 � 1Þz
ðd1� 1Þ � � � ðds0 � 1Þ

 !
½9�

At least formally, there are limit relations between
q-hypergeometric series with neighboring r, s:

lim
ar!1

r�s
a1; . . . ; ar

b1; . . . ;bs
; q;

z

ar

� �
¼ r�1�s

a1; . . . ; ar�1

b1; . . . ;bs
; q; z

� �
½10�

lim
bs!1

r�s
a1; . . . ;ar

b1; . . . ;bs
;q;bsz

� �
¼ r�s�1

a1; . . . ;ar

b1; . . . ;bs�1
;q;z

� �
½11�

A terminating q-hypergeometric seriesPn
k=0 ck zk rewritten as zn

Pn
k=0 cn�kz�k yields

another terminating q-hypergeometric series, for
instance:

sþ1�s

q�n; a1; . . . ; as

b1; . . . ; bs

; q; z

� �

¼ ð�1Þn q�ð1=2Þnðnþ1Þ ða1; . . . ; an; qÞn
ðb1; . . . ; bs; qÞn

zn

� sþ1�s

q�n; q�nþ1b�1
1 ; . . . ; q�nþ1b�1

s

q�nþ1a�1
1 ; . . . ; q�nþ1a�1

s

;

"

q;
qnþ1b1 � � � bs

a1 � � � asz

�
½12�

Often, in physics and quantum groups related
literature, the following notation is used for

q-number, q-factorial, and q-Pochhammer
symbol:

½a�q :¼ qð1=2Þa � q�ð1=2Þa

q1=2 � q�1=2
½k�q! :¼

Yk

j¼1

½j�q

ð½a�qÞk :¼
Yk�1

j¼0

½aþ j�q ðk 2 Z�0Þ ½13�

For q! 1, these symbols tend to their classical
counterparts without the need for renormalization.
They are expressed in terms of the standard notation
[1] as follows:

½k�q! ¼ q�ð1=4Þkðk�1Þ ðq; qÞk
ð1� qÞk

ð½a�qÞk ¼ q�ð1=2Þkða�1Þ q�ð1=4Þkðk�1Þ ðqa; qÞk
ð1� qÞk

½14�

Special Cases

For s = r� 1, formula [4] simplifies to

r�r�1

a1; . . . ; ar

b1; . . . ; br�1

; q; z

� �

¼
X1
k¼0

ða1; . . . ; ar; qÞk
ðb1; . . . ; br�1; qÞk ðq; qÞk

zk ½15�

which has radius of convergence 1 in the nontermi-
nating case. The case r = 2 of [15] is the q-analog of
the Gauss hypergeometric series.

q-Binomial series

1�0ða;�; q; zÞ ¼
X1
k¼0

ða; qÞkzk

ðq; qÞk
¼ ðaz; qÞ1
ðz; qÞ1

ðif series is not terminating, then jzj < 1Þ ½16�

q-Exponential series

eqðzÞ:¼ 1�0ð0;�; q; zÞ

¼
X1
k¼0

zk

ðq; qÞk
¼ 1

ðz; qÞ1
ðjzj < 1Þ ½17�

EqðzÞ:¼ 0�0ð�;�; q;�zÞ ¼
X1
k¼0

qð1=2Þkðk�1Þzk

ðq; qÞk
¼ð�z; qÞ1 ¼ eqð�zÞ

� 	�1 ðz 2 CÞ ½18�

"qðzÞ:¼ 1�1ð0;�q1=2; q1=2;�zÞ

¼
X1
k¼0

qð1=4Þkðk�1Þ

ðq; qÞk
zk ðz 2 CÞ ½19�
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Jackson’s q-Bessel functions

Jð1Þ� ðx;qÞ :¼ ðq
�þ1;qÞ1
ðq;qÞ1

1

2
x

� ��

� 2�1

0;0

q�þ1
;q;�1

4
x2

� �
ð0< x< 2Þ ½20�

Jð2Þ� ðx; qÞ :¼ ðq
�þ1; qÞ1
ðq; qÞ1

1

2
x

� ��
0�1

�
q�þ1

; q;� 1

4
q�þ1x2

� �

¼ � 1

4
x; q

� �
1

Jð1Þ� ðx; qÞ ðx > 0Þ ½21�

Jð3Þ� ðx; qÞ :¼ ðq
�þ1; qÞ1
ðq; qÞ1

1

2
x

� ��

� 1�1

0

q�þ1
; q;

1

4
qx2

� �
ðx > 0Þ ½22�

See [90] for the orthogonality relation for J(3)
� (x; q).

If expq(z) denotes one of the three q-exponentials
[17]–[19], then (1=2)( expq(ix)þ expq(�ix)) is a
q-analog of the cosine and �(1=2)i( expq(ix)
� expq(�ix)) is a q-analog of the sine. The three
q-cosines are essentially the case �= �1=2 of the
corresponding q-Bessel functions [20]–[22], and the
three q-sines are essentially the case �= 1=2 of x
times the corresponding q-Bessel functions.

q-Derivative and q-Integral

The q-derivative of a function f given on a subset of
R or C is defined by

ðDqf ÞðxÞ :¼ f ðxÞ � f ðqxÞ
ð1� qÞx ðx 6¼ 0; q 6¼ 1Þ ½23�

where x and qx should be in the domain of f. By
continuity, we set (Dqf )(0) := f 0(0), provided f 0(0)
exists. If f is differentiable on an open interval
I, then

lim
q"1
ðDqf ÞðxÞ ¼ f 0ðxÞ ðx 2 IÞ ½24�

For a 2 Rn{0} and a function f given on (0, a] or
[a, 0), we define the q-integral byZ a

0

f ðxÞ dqx :¼ að1� qÞ
X1
k¼0

f ðaqkÞ qk

¼
X1
k¼0

f ðaqkÞ ðaqk � aqkþ1Þ ½25�

provided the infinite sum converges absolutely (e.g.,
if f is bounded). If F(a) is given by the left-hand side
of [25], then DqF = f . The right-hand side of [25] is
an infinite Riemann sum. For q " 1 it converges, at
least formally, to

R a
0 f (x) dx.

For nonzero a, b 2 R we defineZ b

a

f ðxÞ dqx :¼
Z b

0

f ðxÞ dqx�
Z a

0

f ðxÞ dqx ½26�

For a q-integral over (0,1), we have to specify a
q-lattice {aqk}k2Z for some a > 0 (up to multi-
plication by an integer power of q):Z a:1

0

f ðxÞ dqx :¼ að1� qÞ
X1

k¼�1
f ðaqkÞ qk

¼ lim
n!1

Z q�na

0

f ðxÞ dqx ½27�

The q-Gamma and q-Beta Functions

The q-gamma function is defined by

�qðzÞ :¼ ðq;qÞ1 ð1� qÞ1�z

ðqz; qÞ1
ðz 6¼ 0;�1;�2; . . .Þ ½28�

¼
Z ð1�qÞ�1

0

tz�1 Eqð�ð1�qÞqtÞdqt ð<z>0Þ ½29�

Then

�qðzþ 1Þ ¼ 1� qz

1� q
�qðzÞ ½30�

�qðnþ 1Þ ¼ ðq; qÞn
ð1� qÞn ½31�

lim
q"1

�qðzÞ ¼ �ðzÞ ½32�

The q-beta function is defined by

Bqða; bÞ :¼ �qðaÞ�qðbÞ
�qðaþ bÞ ¼

ð1� qÞ ðq; qaþb; qÞ1
ðqa; qb; qÞ1

ða; b 6¼ 0;�1;�2; . . .Þ ½33�

¼
Z 1

0

tb�1 ðqt; qÞ1
ðqat; qÞ1

dqt

ð<b > 0; a 6¼ 0;�1;�2; . . .Þ ½34�

The q-Gauss Hypergeometric Series

q-Analog of Euler’s integral representation

2�1ðqa; qb; qc; q; zÞ

¼ �qðcÞ
�qðaÞ�qðc� bÞ

Z 1

0

tb�1 ðtq; qÞ1
ðtqc�b; qÞ1

� ðtzqa; qÞ1
tz; qÞ1

dqt ð<b > 0; jzj < 1Þ ½35�
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By substitution of [25], formula [35] becomes a
transformation formula:

2�1ða; b; c; q; zÞ

¼ ðaz; qÞ1
ðz; qÞ1

ðb; qÞ1
ðc; qÞ1

2�1ðc=b; z; az; q; bÞ ½36�

Note the mixing of argument z and parameters
a, b, c on the right-hand side.

Evaluation formulas in special points

2�1 a; b; c; q; c=ðabÞð Þ

¼ ðc=a; c=b; qÞ1
ðc; c=ðabÞ; qÞ1

ðjc=ðabÞj < 1Þ ½37�

2�1ðq�n; b; c; q; cqn=bÞ ¼ ðc=b; qÞn
ðc; qÞn

½38�

2�1ðq�n; b; c; q; qÞ ¼ ðc=b; qÞn bn

ðc; qÞn
½39�

Two general transformation formulas

2�1
a; b
c

; q; z

� �
¼ ðaz; qÞ1
ðz; qÞ1

2�2
a; c=b
c; az

; q; bz

� �
½40�

¼ ðabz=c; qÞ1
ðz; qÞ1

2�1
c=a; c=b

c
; q;

abz

c

� �
½41�

Transformation formulas in the terminating case

2�1

q�n; b

c
; q; z

� �

¼ ðc=b; qÞn
ðc; qÞn

3�2
q�n; b; q�nbc�1z

q1�nbc�1;0
; q; q

" #
½42�

¼ ðq�nbc�1z; qÞn 3�2
q�n; cb�1; 0
c; qcb�1z�1 ; q; q

� �
½43�

¼ ðc=b; qÞn
ðc; qÞn

bn
3�1

q�n; b; qz�1

q1�nbc�1 ; q;
z

c

� �
½44�

Second order q-difference equation

zðqc � qaþbþ1zÞðD2
quÞðzÞ

þ 1� qc

1� q
� qb 1� qa

1� q
þ qa 1� qbþ1

1� q

� �
z

� �
ðDquÞðzÞ

� 1� qa

1� q

1� qb

1� q
uðzÞ ¼ 0 ½45�

Some special solutions of [45] are:

u1ðzÞ :¼ 2�1ðqa; qb; qc; q; zÞ ½46�

u2ðzÞ :¼ z1�c
2�1ðq1þa�c; q1þb�c; q2�c; q; zÞ ½47�

u3ðzÞ :¼ z�a
2�1ðqa; qa�cþ1; qa�bþ1; q;q�a�bþcþ1z�1Þ ½48�

They are related by:

u1ðzÞ þ
ðqa; q1�c; qc�b; qÞ1
ðqc�1; qa�cþ1; q1�b; qÞ1

� ðq
b�1z; q2�bz�1; qÞ1

ðqb�cz; qc�bþ1z�1; qÞ1
u2ðzÞ

¼ ðq
1�c; qa�bþ1; qÞ1
ðq1�b; qa�cþ1; qÞ1

� ðq
aþb�cz; qc�a�bþ1z�1; qÞ1za

ðqb�cz; qc�bþ1z�1; qÞ1
u3ðzÞ ½49�

Summation and Transformation Formulas
for r�r�1 Series

An r�r�1 series [15] is called ‘‘balanced’’ if b1 . . . br�1 =
qa1 . . . ar and z = q, and the series is called ‘‘very well-
poised’’ if qa1 =a2b1 =a3b2 = � � � =arbr�1 and qa

1=2
1 =

a2 =�a3. The following more compact notation is
used for very well-poised series:

rWr�1ða1; a4; a5; . . . ;ar; q; zÞ

:¼ r�r�1

a1;qa
1=2
1 ;�qa

1=2
1 ;a4; . . . ;ar

a
1=2
1 ;�a

1=2
1 ;qa1=a4; . . . ;qa1=ar

; q; z

2
4

3
5 ½50�

Below only a few of the most important identities
are given. See Gasper and Rahman (2004) for many
more. An important tool for obtaining complicated
identities from more simple ones is Bailey’s Lemma,
which can moreover be iterated (Bailey chain), see
Andrews (1986, ch.3).

The q-Saalschütz sum for a terminating balanced 3�2

3�2
a; b; q�n

c; q1�nabc�1 ; q;q

� �
¼ ðc=a; c=b; qÞn
ðc; c=ðabÞ; qÞn

½51�

Jackson’s sum for a terminating balanced 8W7

8W7ða; b; c; d; qnþ1a2=ðbcdÞ; q�n; q; qÞ

¼ ðqa; qa=ðbcÞ;qa=ðbdÞ; qa=ðcdÞ; qÞn
ðqa=b; qa=c;qa=d; qa=ðbcdÞ; qÞn

½52�
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Watson’s transformation of a terminating 8W7 into a
terminating balanced 4�3

8W7 a; b; c; d; e; q�n; q;
qnþ2a2

bcde

� �

¼ ðqa; qa=ðdeÞ; qÞn
ðqa=d; qa=e; qÞn

� 4�3

q�n; d; e; qa=ðbcÞ
qa=b; qa=c; q�nde=a

; q; q

� �
½53�

Sears’ transformation of a terminating balanced 4�3

4�3

q�n; a;b; c

d; e; f
; q; q

� �

¼ ðe=a; f=a; qÞn
ðe; f ; qÞn

an
4�3

q�n; a; d=b; d=c

d; q1�na=e;q1�na=f
; q;q

� �
½54�

By iteration and by symmetries in the upper and in
the lower parameters, many other versions of this
identity can be found. An elegant comprehensive
formulation of all these versions is as follows.

Let x1x2x3x4x5x6 = q1�n. Then the following
expression is symmetric in x1, x2, x3, x4, x5, x6:

qð1=2Þnðn�1Þðx1x2x3x4; x1x2x3x5; x1x2x3x6; qÞn
ðx1x2x3Þn

� 4�3

q�n; x2x3; x1x3; x1x2

x1x2x3x4; x1x2x3x5; x1x2x3x6

; q; q

" #
½55�

Similar formulations involving symmetry groups can
be given for other transformations, see Van der Jeugt
and Srinivasa Rao (1999).

Bailey’s transformation of a terminating
balanced 10W9

10W9 a; b; c;d; e; f ;
qnþ2a3

bcdef
;q�n; q;q

� �

¼ ðqa;qa=ðef Þ; ðqaÞ2=ðbcdeÞ; ðqaÞ2=ðbcdf Þ; qÞn
ðqa=e;qa=f ; ðqaÞ2=ðbcdef Þ; ðqaÞ2=ðbcdÞ; qÞn

� 10W9
qa2

bcd
;
qa

cd
;
qa

bd
;
qa

bc
; e; f ;

qnþ2a3

bcdef
;q�n; q;q

� �
½56�

Rogers–Ramanujan Identities

0�1ð�; 0; q; qÞ ¼
X1
k¼0

qk2

ðq; qÞk
¼ 1

ðq; q4; q5Þ1
½57�

0�1ð�; 0; q; q2Þ ¼
X1
k¼0

qkðkþ1Þ

ðq; qÞk
¼ 1

ðq2; q3; q5Þ1
½58�

Bilateral Series

Definition [1] can be extended by

ða; qÞk :¼ ða; qÞ1
ðaqk; qÞ1

ðk 2 ZÞ ½59�

Define a bilateral q-hypergeometric series by the
Laurent series

r s

a1; . . . ; ar

b1; . . . ; bs

; q; z

" #
¼ r sða1; . . . ; ar; b1; . . . ; bs; q; zÞ

:¼
X1

k¼�1

ða1; . . . ; ar; qÞk
ðb1; . . . ; bs; qÞk

ð�1Þkqð1=2Þkðk�1Þ
� �s�r

zk

ða1; . . . ; ar; b1; . . . ; bs 6¼ 0; s � rÞ ½60�

The Laurent series is convergent if jb1 . . .bs=(a1 . . . ar)j<
jzj and moreover, for s= r, jzj< 1.

Ramanujan’s 1 1 summation formula

1 1ðb; c; q; zÞ

¼ ðq; c=b; bz; q=ðbzÞ; qÞ1
ðc; q=b; z; c=ðbzÞ; qÞ1

ðjc=bj < jz < 1Þ ½61�

This has as a limit case

0 1ð�; c; q; zÞ ¼ ðq; z; q=z; qÞ1
ðc; c=z; qÞ1

ðjzj > jcjÞ ½62�

and as a further specialization the Jacobi triple
product identity

X1
k¼�1

ð�1Þk qð1=2Þkðk�1Þ zk

¼ ðq; z; q=z; qÞ1 ðz 6¼ 0Þ ½63�

which can be rewritten as a product formula for a
theta function:

�4ðx; qÞ :¼
X1

k¼�1
ð�1Þk qk2

e2�ikx

¼
Y1
k¼1

ð1� q2kÞ

� 1� 2qk�1 cosð2�xÞ þ q4k�2
� �

½64�

q-Hypergeometric Orthogonal
Polynomials

Here we discuss families of orthogonal polyno-
mials {pn(x)} which are expressible as terminating
q-hypergeometric series (0 < q < 1) and for
which either (1) Pn(x):= pn(x) or (2) Pn(x):= pn
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((1=2)(xþ x�1)) are eigenfunctions of a second-
order q-difference operator, that is,

AðxÞPnðqxÞ þ BðxÞPnðxÞ þ CðxÞPnðq�1xÞ
¼ �n PnðxÞ ½65�

where A(x), B(x), and C(x) are independent of n,
and where the �n are the eigenvalues. The generic
cases are the four-parameter classes of ‘‘Askey–
Wilson polynomials’’ (continuous weight function)
and q-Racah polynomials (discrete weights
on finitely many points). They are of type (2) (quad-
ratic q-lattice). All other cases can be obtained from
the generic cases by specialization or limit transition.
In particular, one thus obtains the generic three-
parameter classes of type (1) (linear q-lattice). These
are the big q-Jacobi polynomials (orthogonality by
q-integral) and the q-Hahn polynomials (discrete
weights on finitely many points).

Askey–Wilson Polynomials

Definition as q-hypergeometric series

pnðcos �Þ¼ pnðcos �; a; b; c; d jqÞ

:¼ ðab; ac; ad; qÞn
an 4�3

� q�n; qn�1abcd; aei�; ae�i�

ab; ac; ad
; q; q

" #
½66�

This is symmetric in a, b, c, d.

Orthogonality relation Assume that a, b, c, d are
four reals, or two reals and one pair of complex
conjugates, or two pairs of complex conjugates.
Also assume that jabj, jacj, jadj, jbcj, jbdj, jcdj < 1.
Then Z 1

�1

pnðxÞpmðxÞwðxÞ dx

þ
X

k

pnðxkÞ pmðxkÞ!k ¼ hn �n;m ½67�

where

2� sin �wðcos �Þ ¼ ðe2i�; qÞ1
ðaei�; bei�; cei�; dei�; qÞ1











2

½68�

h0 ¼
ðabcd; qÞ1

ðq; ab; ac; ad; bc; bd; cd; qÞ1
hn

h0
¼ 1� abcdqn�1

1� abcdq2n�1

� ðq; ab; ac; ad; bc; bd; cd; qÞn
ðabcd; qÞn

½69�

and the xk are the points (1=2)(eqk þ e�1q�k) with
e any of the a, b, c, d of absolute value >1; the sum
is over the k 2 Z�0 with jeqkj > 1. The !k are
certain weights which can be given explicitly. The
sum in [67] does not occur if moreover
jaj, jbj, jcj, jdj < 1.

A more uniform way of writing the orthogonality
relation [67] is by the contour integral

1

2�i

I
C

pn
1

2
ðzþ z�1Þ

� �
pm

1

2
ðzþ z�1Þ

� �

� ðz2; z�2; qÞ1
ðaz; az�1; bz; bz�1; cz; cz�1; dz; dz�1; qÞ1

dz

z

¼ 2hn�n;m ½70�

where C is the unit circle traversed in positive
direction with suitable deformations to separate the
sequences of poles converging to zero from the
sequences of poles diverging to 1.

The case n = m = 0 of [70] or [67] is known as the
Askey–Wilson integral.

q-Difference equation

AðzÞPnðqzÞ� AðzÞþAðz�1Þ
� 	

PnðzÞþAðz�1ÞPnðq�1zÞ
¼ ðq�n�1Þð1�qn�1abcdÞPnðzÞ ½71�

where Pn(z)=pn(1
2(zþ z�1)) and A(z)= (1�az)

(1�bz)(1� cz) (1�dz)=((1� z2)(1�qz2))

Special cases These include the continuous
q-Jacobi polynomials (two parameters), the contin-
uous q-ultraspherical polynomials (symmetric one-
parameter case of continuous q-Jacobi), the
Al-Salam-Chihara polynomials (Askey–Wilson with
c = d = 0), and the continuous q-Hermite polyno-
mials (Askey–Wilson with a = b = c = d = 0).

Continuous q-Ultraspherical Polynomials

Definitions as finite Fourier series and as special
Askey–Wilson polynomial

Cnðcos �;� jqÞ

:¼
Xn

k¼0

ð�; qÞkð�; qÞn�k

ðq; qÞkðq; qÞn�k

eiðn�2kÞ� ½72�

¼ ð�; qÞn
ðq; qÞn

pnðcos �;�1=2; q1=2�1=2;��1=2;

� q1=2�1=2 j qÞ ½73�
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Orthogonality relation (�1 < � < 1)

1

2�

Z �

0

Cnðcos �;�; qÞCmðcos �;�; qÞ ðe
2i�; qÞ1

ð�e2i�; qÞ1











2

d�

¼ ð�; q�; qÞ1
ð�2; q; qÞ1

1� �
1� �qn

ð�2; qÞn
ðq; qÞn

�n;m ½74�

q-Difference equation

AðzÞPnðqzÞ� AðzÞþAðz�1Þ
� 	

PnðzÞþAðz�1ÞPnðq�1zÞ
¼ ðq�n�1Þð1�qn�2ÞPnðzÞ ½75�

where Pn(z)=Cn( 1
2 (zþ z�1);� j q) and A(z)= (1��z2)

(1�q�z2)=((1� z2)(1�qz2)).

Generating function

ð�ei�z; �e�i�z; qÞ1
ðei�z; e�i�z; qÞ1

¼
X1
n¼0

Cnðcos �;� jqÞzn

ðjzj < 1; 0 � � � �;�1 < � < 1Þ ½76�

Special case: the continuous q-Hermite polynomials

Hnðx jqÞ ¼ ðq; qÞn Cnðx; 0 jqÞ ½77�

Special cases: the Chebyshev polynomials

Cnðcos �; q jqÞ ¼ Unðcos �Þ :¼ sinððnþ 1Þ�Þ
sin �

½78�

lim
�"1

ðq; qÞn
ð�; qÞn

Cnðcos �;� jqÞ ¼ Tnðcos �Þ

:¼ cosðn�Þ ðn > 0Þ ½79�

q-Racah Polynomials

Definition as q-hypergeometric series
(n = 0, 1, . . . , N)

Rnðq�y þ 	�qyþ1;
; �; 	; � jqÞ

:¼ 4�3
q�n; 
�qnþ1; q�y; 	�qyþ1

q
; q��; q	
; q; q

" #

ð
; �� or 	 ¼ q�N�1Þ ½80�

Orthogonality relation

XN
y¼0

Rnðq�y þ 	�qyþ1ÞRmðq�y þ 	�qyþ1Þ!y

¼ hn�n;m ½81�

where !y and hn can be explicitly given.

Big q-Jacobi Polynomials

Definition as q-hypergeometric series

PnðxÞ ¼ Pnðx; a; b; c; qÞ

:¼ 3�2
q�n; qnþ1ab; x

qa; qc
; q; q

" #
½82�

Orthogonality relationZ qa

qc

PnðxÞPmðxÞ
ða�1x; c�1x; qÞ1
ðx; bc�1x; qÞ1

dqx ¼ hn �n;m;

ð0 < a < q�1; 0 < b < q�1; c < 0Þ ½83�

where hn can be explicitly given.

q-Difference equation

AðxÞPnðqxÞ � ðAðxÞ þ CðxÞÞPnðxÞ þ CðxÞPnðq�1xÞ
¼ ðq�n � 1Þð1� abqnþ1ÞPnðxÞ ½84�

where A(x)=aq(x�1)(bx� c)=x2 and C(x)= (x�qa)
(x�qc)=x2

Limit case: Jacobi polynomials P(
,�)
n (x)

lim
q"1

Pnðx; q
; q�;�q�1d; qÞ

¼ n!

ð
þ 1Þn
Pð
;�Þn

2xþ d � 1

d þ 1

� �
½85�

Special case: the little q-Jacobi polynomials

pnðx; a; b; qÞ ¼ ð�bÞ�nq�ð1=2Þnðnþ1Þ

� ðqb; qÞn
ðqa; qÞn

Pnðqbx; b; a; 0; qÞ ½86�

¼ 2�1ðq�n; qnþ1ab; qa; q; qxÞ ½87�

which satisfy orthogonality relation (for 0 < a < q�1

and b < q�1)Z 1

0

pnðx; a; b; qÞpmðx; a; b; qÞ ðqx; qÞ1
ðqbx; qÞ1

xlogq a dqx

¼ ðq; qab; qÞ1
ðqa; qb; qÞ1

ð1� qÞðqaÞn

1� abq2nþ1

ðq; qb; qÞn
ðqa; qab; qÞn

�n;m ½88�

Limit case: Jackson’s third q-Bessel function (see [22])

lim
N!1

pN�nðqNþk; q�; b; qÞ ¼ ðq; qÞ1
ðq�þ1; qÞ1

q��ðnþkÞ

� Jð3Þ� ð2qð1=2ÞðnþkÞ; qÞ ð� > �1Þ ½89�
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by which [88] tends to the orthogonality relation for
J(3)
� (x; q):

X1
k¼�1

Jð3Þ� ð2qð1=2ÞðnþkÞ; qÞ Jð3Þ� ð2qð1=2ÞðmþkÞ; qÞqk

¼ �n;mq�n ðn;m 2 ZÞ ½90�

q-Hahn Polynomials

Definition as q-hypergeometric series

Qnðx;
; �;N; qÞ :¼ 3�2
q�n; qnþ1
�; x

q
; q�N ; q; q

� �
ðn ¼ 0; 1; . . . ;NÞ ½91�

Orthogonality relation

XN
y¼0

Qnðq�yÞQmðq�yÞ
ðq
; q�N; qÞyðq
�Þ

�y

ðq�N��1;q; qÞy
¼ hn�n;m ½92�

where hn can be explicitly given.

Stieltjes–Wigert Polynomials

Definition as q-hypergeometric series

Snðx; qÞ ¼ 1

ðq; qÞn
1�1

q�n

0
; q;�qnþ1x

� �
½93�

The orthogonality measure is not uniquely determined:Z 1
0

Snðq1=2x; qÞSmðq1=2x; qÞwðxÞ dx ¼ 1

qnðq; qÞn
�n;m;

where, for instance

wðxÞ ¼ q1=2

logðq�1Þðq;�q1=2x;�q1=2x�1; qÞ1
or

q1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� logðq�1Þ

p exp � log2 x

2 logðq�1Þ

 !
½94�

Rahman–Wilson Biorthogonal Rational Functions

The following functions are rational in their first
argument:

Rn
1
2 ðzþ z�1Þ; a; b; c; d; e
� 	
:¼ 10W9ða=e; q=ðbeÞ; q=ðceÞ;

q=ðdeÞ; az; a=z; qn�1abcd; q�n; q; qÞ ½95�

They satisfy the biorthogonality relation

1

2�i

I
C

Rn
1

2
ðzþ z�1Þ; a; b; c; d; e

� �

� Rm
1

2
ðzþ z�1Þ; a; b; c; d;

q

abcde

� �
wðzÞ dz

z

¼ 2hn�n;m ½96�

where the contour C is as in [70], and where

wðzÞ

¼ ðz2; z�2; abcdez; abcde=z; qÞ1
ðaz; a=z; bz; b=z; cz; c=z; dz; d=z; ez; e=z; qÞ1

½97�

h0 ¼
ðbcde;acde;abde;abce;abcd;qÞ1

ðq;ab;ac;ad;ae;bc;bd;be;cd;ce;de;qÞ1
½98�

and hn=h0 can also be given explicitly. For
ab=q�N,n,m 2 {0,1, . . . ,N}, there is a related dis-
crete biorthogonality of the form

XN
k¼0

Rn
1

2
ðaqk þ a�1q�kÞ; a; b; c; d; e

� �

� Rm
1

2
ðaqk þ a�1q�kÞ; a; b; c; d;

q

abcde

� �
wk ¼ 0

ðn 6¼ mÞ ½99�

Identities and Functions Associated
with Root Systems

�-Function Identities

Let R be a root system on a Euclidean space of
dimension l. Then Macdonald (1972) generalizes
Weyl’s denominator formula to the case of an affine
root system. The resulting formula can be written as
an explicit expansion in powers of q of

Y1
n¼1

ð1� qnÞl
Y

2R

ð1� qne
Þ
 !

which expansion takes the form of a sum over a
lattice related to the root system. For root system A1

this reduces to Jacobi’s triple product identity [63].
Macdonald’s formula implies a similar expansion in
powers of q of �(q)lþjRj, where �(q) is ‘‘Dedekind’s
�-function’’ �(q) := q1=24(q; q)1.

Constant Term Identities

Let R be a reduced root system, Rþ the positive
roots, and k 2 Z>0. Macdonald conjectured the
second equality inR

T

Q

2Rþðe�
; qÞkðqe
; qÞk dxR

T dx

¼ CT
Y

2Rþ

Yk

i¼1

ð1� qi�1e�
Þð1� qie
Þ
 !

¼
Yl

i¼1

kdi

k

� �
q

½100�
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where T is a torus determined by R, CT means the
constant term in the Laurent expansion in e
, and
the di are the degrees of the fundamental invariants
of the Weyl group of R. The conjecture was
extended for real k > 0, for several parameters k
(one for each root length), and for root system BCn,
where Gustafson’s five-parameter n-variable analog
of the Askey–Wilson integral ([70] for n = 0)
settles:Z

½0;2��n
j�ðei�1 ; . . . ; ei�nÞj2 d�1 . . . �n

ð2�Þn ¼ 2nn!

�
Yn

j¼1

ðt; tnþj�2abcd; qÞ1
ðtj; q; abtj�1; actj�1; . . . ; cdtj�1; qÞ1

½101�

where

�ðzÞ :¼
Y

1�i<j�n

ðzizj; zi=zj; qÞ1
ðtzizj; tzi=zj; qÞ1

�
Yn
j¼1

ðz2
j ; qÞ1

ðazj; bzj; czj; dzj; qÞ1
½102�

Further extensions were in Macdonald’s conjectures
for the quadratic norms of Macdonald polynomials
associated with root systems (see the subsection
‘‘Macdonald–Koornwinder polynomials’’), and finally
proved by Cherednik.

Macdonald Polynomials for Root System An�1

Let n 2 Z>0. We work with partitions �= (�1, . . . ,�n)
of length � n, where �1 � � � � � �n � 0 are integers.
On the set of such partitions, we take the partial
order � � �)�1 þ � � � þ �n =�1 þ � � � þ �n and
�1 þ � � � þ �i � �1 þ � � � þ �i (i = 1, . . . , n� 1). Write
� < � iff � � � and � 6¼ �. The monomials are
z
 = z
1

1 . . . z
n
n (
1, . . . ,
n 2 Z�0). For � a partition

the symmetrized monomials m�(z) and the Schur
functions s�(z) are defined by:

m�ðzÞ:¼
X



z
 ðsum over all distinct

permutations 
 of ð�1; . . . ; �nÞÞ ½103�

s�ðzÞ :¼
detðz�jþn�j

i Þi;j¼1;...;n

detðzn�j
i Þi;j¼1;...;n

½104�

We integrate a function over the torus T := {z 2 Cn j
jz1j= � � � = jznj= 1} asZ

T

f ðzÞ dz :¼ 1

ð2�Þn

�
Z 2�

0

. . .

Z 2�

0

f ðei�1 ; . . . ; ei�nÞd�1 . . . d�n ½105�

Definition For � a partition and for 0 � t � 1, the
(analytically defined) Macdonald polynomial P�(z) =
P�(z; q, t) is of the form

P�ðzÞ ¼ P�ðz; q; tÞ ¼ m�ðzÞ þ
X
�<�

u�;�m�ðzÞ

ðu�;� 2 CÞ

such that for all � < �Z
T

P�ðzÞm�ðzÞ�ðzÞ dz ¼ 0

where

�ðzÞ ¼ �ðz; q; tÞ :¼
Y
i6¼j

ðziz
�1
j ; qÞ1

ðtziz�1
j ; qÞ1

½106�

Orthogonality relation

1

n!

Z
T

P�ðzÞP�ðzÞ�ðzÞ dz

¼
Y
i<j

ðq�i��j tj�i; q�i��jþ1tj�i; qÞ1
ðq�i��j tj�iþ1; q�i��jþ1tj�i�1; qÞ1

��;� ½107�

q-Difference equation

Xn

i¼1

Y
j 6¼i

tzi � zj

zi � zj
q;zi

P�ðz; q; tÞ

¼
Xn

i¼1

q�i tn�i

 !
P�ðz; q; tÞ ½108�

where q, zi
is the q-shift operator: q, zi

f (z1, . . . , zn) :=
f (z1, . . . , qzi, . . . , zn). See (Macdonald 1995, ch. VI, §3)
for the full system of q-difference equations.

Special value

P�ð1; t; . . . ; tn�1; q; tÞ ¼
Yn
i¼1

tði�1Þ�i

�
Y
i<j

ðtqj�i; qÞ�i��j

ðqj�i; qÞ�i��j

½109�

Restriction of number of variables

P�1;�2;...;�n�1;0ðz1; . . . ; zn�1; 0; q; tÞ
¼ P�1;�2;...;�n�1

ðz1; . . . ; zn�1; q; tÞ ½110�

Homogeneity

P�1;...;�n
ðz; q; tÞ ¼ z1 . . . znP�1�1;...;�n�1ðz; q; tÞ

ð�n > 0Þ ½111�
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Self-duality Let �,� be partitions.

P�ðq�1 tn�1; q�2tn�2; . . . ; q�n ; q; tÞ
P�ðtn�1; tn�2; . . . ; 1; q; tÞ

¼ P�ðq�1tn�1; q�2tn�2; . . . ; q�n ; q; tÞ
P�ðtn�1; tn�2; . . . ; 1; q; tÞ ½112�

Special cases and limit relations
Continuous q-ultraspherical polynomials (see [72]):

Pm;nðrei�; re�i�; q; tÞ ¼ ðq; qÞm�n

ðt; qÞm�n

rmþn

� Cm�nðcos �; t j qÞ ½113�

Symmetrized monomials (see [103]):

P�ðz; q; 1Þ ¼ m�ðzÞ ½114�

Schur functions (see [104]):

P�ðz; q; qÞ ¼ s�ðzÞ ½115�

Hall–Littlewood polynomials (see Macdonald (1995),
ch. III):

P�ðz; 0; tÞ ¼ P�ðz; tÞ ½116�

Jack polynomials (see Macdonald (1995), §VI.10):

lim
q"1

P�ðz; q; qaÞ ¼ P
ð1=aÞ
� ðzÞ ½117�

Algebraic definition of Macdonald polynomials
Macdonald polynomials can also be defined
algebraically. We work now with partitions
� (�1 � �2 � � � � � 0) of arbitrary length l(�), and
with symmetric polynomials in arbitrarily many
variables x1, x2, . . . , which can be canonically
extended to symmetric functions in infinitely
many variables x1, x2, . . . . The rth power sum pr

and the symmetric functions p� are formally
defined by

pr ¼
X
i�1

xr
i ; p� ¼ p�1

p�2
. . . ½118�

Put

z� :¼
Y
i�1

imimi! where mi ¼ mið�Þ is the number of

parts of � equal to i: ½119�

Define an inner product h , iq, t on the space of
symmetric functions such that

hp�; p�iq; t ¼ ��; � z�
Ylð�Þ
i¼1

1� q�i

1� t�i
½120�

For partitions �,� the partial ordering � � �
means now that

P
j�1 �j =

P
j�1 �j and �1 þ � � � þ

�i � �1 þ � � � þ �i for all i. The Macdonald poly-
nomial P�(x; q, t) can now be algebraically defined
as the unique symmetric function P� of the form
P� =

P
��� u�,�m� (u�,� 2 C, u�, � = 1) such that

hP�;P�iq:t ¼ 0 if � 6¼ � ½121�

If l(�) � n, then the newly defined P�(x) with
xnþ1 = xnþ2 = � � � = 0 coincides with P�(x; q, t)
defined analytically, and the new inner product is a
constant multiple (depending on n) of the old inner
product.

Bilinear sumX
�

1

hP�;P�iq; t
P�ðx; q; tÞP�ðy; q; tÞ

¼
Y
i; j�1

ðtxiyj; qÞ1
ðxiyj; qÞ1

½122�

Generalized Kostka numbers The Kostka numbers
K�,� occurring as expansion coefficients in
s� =

P
� K�,�m� were generalized by Macdonald to

coefficients K�,�(q, t) occurring in connection with
Macdonald polynomials, see Macdonald (1995,
§VI.8). Macdonald’s conjecture that K�,�(q, t) is a
polynomial in q and t with coefficients in Z�0 was
fully proved in Haiman (2001).

Macdonald–Koornwinder Polynomials

Macdonald (2000, 2001) also introduced Macdonald
polynomials associated with an arbitrary root
system. For root system BCn this yields a three-
parameter family which can be extended to the
five-parameter Macdonald–Koornwinder (M–K) poly-
nomials (Koornwinder 1992). They are orthogonal
with respect to the measure occurring in [101] with
�(z) given by [102]. The M–K polynomials are
n-variable analogs of the Askey–Wilson polynomials.
All polynomials just discussed tend, for q " 1, to
Jacobi polynomials associated with root systems.

Macdonald conjectured explicit expressions for
the quadratic norms of the Macdonald polynomials
associated with root systems and of the M–K
polynomials. These were proved by Cherednik by
considering these polynomials as Weyl group
symmetrizations of non-invariant polynomials
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which are related to double affine Hecke algebras
(see Macdonald (2003)).

Elliptic Hypergeometric Series

Let p, q 2 C, jpj, jqj < 1. Define a modified Jacobi
theta function by

�ðx; pÞ :¼ ðx; p=x; pÞ1 ðx 6¼ 0Þ ½123�

and the elliptic shifted factorial by

ða; q; pÞk :¼ �ða; pÞ�ðaq; pÞ . . . �ðaqk�1; pÞ
ðk 2 Z>0Þ; ða; q; pÞ0 :¼ 1 ½124�

ða1; . . . ; ar; q;pÞk :¼ ða1; q; pÞk . . . ðar; q; pÞk ½125�

where a,a1, . . . ,ar 6¼ 0. For q=e2�i�, p=e2�i (= > 0),
and a2C we have

�ðae2�i�ðxþ��1Þ; e2�i Þ
�ðae2�i�x; e2�i Þ ¼ 1

�ðae2�i�ðxþ��1Þ; e2�i Þ
�ðae2�i�x; e2�i Þ ¼ �a�1q�x ½126�

A series
P1

k = 0 ck with ckþ1=ck being an elliptic
(i.e., doubly periodic meromorphic) function of k
considered as a complex variable is called an elliptic
hypergeometric series. In particular, define the rEr�1

theta hypergeometric series as the formal series

rEr�1ða1; . . . ; ar; b1; . . . ; br�1; q; p; zÞ

:¼
X1
k¼0

ða1; . . . ; ar; q; pÞk
ðb1; . . . ; br�1; q; pÞk

zk

ðq; q; pÞk
½127�

It has g(k):= ckþ1=ck with

gðxÞ ¼ z�ða1qx; pÞ . . . �ðarq
x; pÞ

�ðqxþ1; pÞ �ðb1qx; pÞ . . . �ðbr�1qx; pÞ

By [126], g(x) is an elliptic function with periods ��1

and ��1 (q = e2�i�, p = e2�i ) if the balancing condi-
tion a1 . . . ar = qb1 . . . br�1 is satisfied.

The rVr�1 very well-poised theta hypergeometric
series (a special rEr�1) is defined, in case of
argument 1, as:

rVr�1ða1; a6; . . . ; ar; q; pÞ

:¼
X1
k¼0

�ða1q2k; pÞ
�ða1; pÞ

ða1; a6; . . . ; ar; q; pÞk
ðqa1=a6; . . . ; qa1=ar; q; pÞk

� qk

ðq; q; pÞk
½128�

The series is called balanced if a2
6 . . . a2

r = ar�6
1 qr�4.

The series terminates if, for instance, ar = q�n.

Elliptic Analog of Jackson’s 8W7 Summation

10V9ða; b; c; d; qnþ1a2=ðbcdÞ; q�n; q; pÞ

¼ ðqa; qa=ðbcÞ; qa=ðbdÞ; qa=ðcdÞ; q; pÞn
ðqa=b; qa=c; qa=d; qa=ðbcdÞ; q; pÞn

½129�

Elliptic Analog of Bailey’s 10W9 Transformation

12V11 a;b;c;d;e; f ;
qnþ2a3

bcdef
;q�n;q;p

� �

¼ðqa;qa=ðef Þ;ðqaÞ2=ðbcdeÞ;ðqaÞ2=ðbcdf Þ;q;pÞn
ðqa=e;qa=f ;ðqaÞ2=ðbcdef Þ;ðqaÞ2=ðbcdÞ;q;pÞn

� 12V11
qa2

bcd
;
qa

cd
;
qa

bd
;
qa

bc
;e;f ;

qnþ2a3

bcdef
;q�n;q;p

� �
½130�

Suitable 12V11 functions satisfy a discrete biortho-
gonality relation which is an elliptic analog of [99].

Ruijsenaars’ elliptic gamma function

�ðz; q;pÞ :¼
Y1

j;k¼0

1� z�1qjþ1pkþ1

1� zqjpk
½131�

which is symmetric in p and q. Then

�ðqz; q; pÞ ¼ �ðz; pÞ�ðz; q; pÞ
�ðqnz; q; pÞ ¼ ðz; q; pÞn�ðz; q; pÞ

½132�

Applications

Quantum Groups

A specific quantum group is usually a Hopf algebra
which is a q-deformation of the Hopf algebra of
functions on a specific Lie group or, dually, of a
universal enveloping algebra (viewed as Hopf
algebra) of a Lie algebra. The general philosophy is
that representations of the Lie group or Lie algebra
also deform to representations of the quantum
group, and that special functions associated with
the representations in the classical case deform to
q-special functions associated with the representa-
tions in the quantum case. Sometimes this is
straightforward, but often new subtle phenomena
occur.

The representation-theoretic objects which may
be explicitly written in terms of q-special functions
include matrix elements of representations with
respect to specific bases (in particular spherical
elements), Clebsch–Gordan coefficients and Racah
coefficients. Many one-variable q-hypergeometric
functions have found interpretation in some way
in connection with a quantum analog of a three-
dimensional Lie group (generically the Lie group
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SL(2, C) and its real forms). Classical by now are:
little q-Jacobi polynomials interpreted as matrix
elements of irreducible representations of SUq(2)
with respect to the standard basis; Askey–Wilson
polynomials similarly interpreted with respect to a
certain basis not coming from a quantum subgroup;
Jackson’s third q-Bessel functions as matrix elements
of irreducible representations of Eq(2); q-Hahn
polynomials and q-Racah polynomials interpreted
as Clebsch–Gordan coefficients and Racah coeffi-
cients, respectively, for SUq(2).

Further developments include: Macdonald poly-
nomials as spherical elements on quantum analogs
of compact Riemannian symmetric spaces; q-analogs
of Jacobi functions as matrix elements of irreducible
unitary representations of SUq(1, 1); Askey–Wilson
polynomials as matrix elements of representations
of the SU(2) dynamical quantum group; an inter-
pretation of discrete 12V11 biorthogonality relations
on the elliptic U(2) quantum group.

Since the q-deformed Hopf algebras are usually
presented by generators and relations, identities for
q-special functions involving noncommuting vari-
ables satisfying simple relations are important for
further interpretations of q-special functions in
quantum groups, for instance:

q-Binomial formula with q-commuting variables

ðxþ yÞn ¼
Xn

k¼0

n
k

� �
q

yn�kxk ðxy ¼ qyxÞ ½133�

Functional equations for q-exponentials with xy
= qyx

eqðxþ yÞ ¼ eqðyÞeqðxÞ
Eqðxþ yÞ ¼ EqðxÞEqðyÞ

½134�

eqðxþ y� yxÞ ¼ eqðxÞeqðyÞ
Eqðxþ yþ yxÞ ¼ EqðyÞEqðxÞ

½135�

Various Algebraic Settings

Classical groups over finite fields (Chevalley
groups) q-Hahn polynomials and various kinds of
q-Krawtchouk polynomials have interpretations as
spherical and intertwining functions on classical
groups (GLn, SOn, Spn) over a finite field Fq with
respect to suitable subgroups, see Stanton (1984).

Affine Kac–Moody algebras (see Lepowsky
(1982)) The Rogers–Ramanujan identities [57],
[58] and some of their generalizations were inter-
preted in the context of characters of representations
of the simplest affine Kac–Moody algebra A(1)

1 .

Macdonald’s generalization of Weyl’s denominator
formula to affine root systems has an interpretation
as an identity for the denominator of the character
of a representation of an affine Kac–Moody
algebra.

Partitions of Positive Integers

Let n be a positive integer, p(n) the number of
partitions of n, pN(n) the number of partitions of n
into parts �N, pdist(n) the number of partitions of
n into distinct parts, and podd(n) the number of
partitions of n into odd parts. Then, Euler observed:

1

ðq; qÞ1
¼
X1
n¼0

pðnÞqn 1

ðq; qÞN
¼
X1
n¼0

pNðnÞqn ½136�

ð�q; qÞ1 ¼
X1
n¼0

pdistðnÞqn

1

ðq; q2Þ1
¼
X1
n¼0

poddðnÞqn

½137�

and

ð�q; qÞ1 ¼
1

ðq; q2Þ1
; pdistðnÞ ¼ poddðnÞ ½138�

The Rogers–Ramanujan identity [57] has the
following partition-theoretic interpretation: the
number of partitions of n with parts differing at
least 2 equals the number of partitions of n into
parts congruent to 1 or 4 (mod 5). Similarly, [58]
yields: the number of partitions of n with parts
larger than 1 and differing at least 2 equals the
number of partitions of n into parts congruent to
2 or 3 (mod 5).

The left-hand sides of the Rogers–Ramanujan
identities [57] and [58] have interpretations in
the ‘‘hard hexagon model,’’ see Baxter (1982).
Much further work has been done on Rogers–
Ramanujan-type identities in connection with
more general models in statistical mechanics. The
so-called ‘‘fermionic expressions’’ do occur.

See also: Combinatorics: Overview; Eight Vertex and
Hard Hexagon Models; Hopf Algebras and q-Deformation
Quantum Groups; Integrable Systems: Overview; Ordinary
Special Functions; Solitons and Kac–Moody Lie Algebras.
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Introduction

The idea to derive topological invariants of smooth
manifolds from partition functions of certain action
functionals was suggested by A Schwarz (1978) and
highlighted by E Witten (1988). Witten interpreted
the Jones polynomial of links in the 3-sphere S3 as a
partition function of the Chern–Simons field theory.
Witten conjectured the existence of mathematically
defined topological invariants of 3-manifolds, gen-
eralizing the Jones polynomial (or rather its values
in complex roots of unity) to links in arbitrary
closed oriented 3-manifolds. A rigorous construction
of such invariants was given by N Reshetikhin and
V Turaev (1989) using the theory of quantum
groups. The Witten–Reshetikhin–Turaev invariants
of 3-manifolds, also called the ‘‘quantum invar-
iants,’’ extend to a topological quantum field theory
(TQFT) in dimension 3.

Ribbon and Modular Categories

The Reshetikhin–Turaev approach begins with fixing
suitable algebraic data, which are best described in terms
of monoidal categories. Let C be a monoidal category
(i.e., a category with an associative tensor product and
unit object 1). A ‘‘braiding’’ in C assigns to any objects
V, W 2 C an invertible morphism cV, W : V �W !
W � V such that, for any U, V, W 2 C,

cU;V�W ¼ ðidV � cU;WÞðcU;V � idWÞ
cU�V;W ¼ ðcU;W � idVÞðidU � cV;WÞ

A ‘‘twist’’ in C assigns to any object V 2 C an
invertible morphism �V : V ! V such that, for any
V, W 2 C,

�V�W ¼ cW;V cV;Wð�V � �WÞ

A ‘‘duality’’ in C assigns to any object V 2 C a ‘‘dual’’
object V	 2 C, and evaluation and co-evaluation
morphisms dV : V	 � V ! 1, bV : 1! V � V	 such
that

ðidV � dVÞðbV � idVÞ ¼ idV

ðdV � idV	 ÞðidV	 � bVÞ ¼ idV	
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The category C with duality, braiding, and twist is
ribbon, if for any V 2 C,

ð�V � idV� ÞbV ¼ ðidV � �V� ÞbV

For an endomorphism f : V ! V of an object V 2 C,
its trace ‘‘tr(f ) 2 EndC(1)’’ is defined as

trðf Þ ¼ dVcV;V� ðð�Vf Þ � idV� ÞbV : 1! 1

This trace shares a number of properties of the
standard trace of matrices, in particular,
tr(fg) = tr(gf ) and tr(f � g) = tr(f )tr(g). For an object
V 2 C, set

dimðVÞ ¼ trðidVÞ ¼ dVcV;V� ð�V � idV� ÞbV

Ribbon categories nicely fit the theory of knots
and links in S3. A link L � S3 is a closed one-
dimensional submanifold of S3. (A manifold is
closed if it is compact and has no boundary.) A
link is oriented (resp. framed) if all its components
are oriented (resp. provided with a homotopy class
of nonsingular normal vector fields). Given a framed
oriented link L � S3 whose components are labeled
with objects of a ribbon category C, one defines a
tensor hLi 2 EndC(1). To compute hLi, present L by
a plane diagram with only double transversal cross-
ings such that the framing of L is orthogonal to the
plane. Each double point of the diagram is an
intersection of two branches of L, going over and
under, respectively. Associate with such a crossing
the tensor (cV, W)�1 where V, W 2 C are the labels of
these two branches and �1 is the sign of the crossing
determined by the orientation of L. We also
associate certain tensors with the points of the
diagram where the tangent line is parallel to a fixed
axis on the plane. These tensors are derived from the
evaluation and co-evaluation morphisms and the
twists. Finally, all these tensors are contracted into a
single element hLi 2 EndC(1). It does not depend on
the intermediate choices and is preserved under
isotopy of L in S3. For the trivial knot O(V) with
framing 0 and label V 2 C, we have hO(V)i=
dim (V).

Further constructions need the notion of a tangle.
An (oriented) tangle is a compact (oriented) one-
dimensional submanifold of R2 � [0, 1] with end-
points on R� 0� {0, 1}. Near each of its endpoints,
an oriented tangle T is directed either down or up,
and thus acquires a sign �1. One can view T as a
morphism from the sequence of �1’s associated
with its bottom ends to the sequence of �1’s
associated with its top ends. Tangles can be
composed by putting one on top of the other.
This defines a category of tangles T whose objects
are finite sequences of �1’s and whose morphisms
are isotopy classes of framed oriented tangles.
Given a ribbon category C, we can consider C-
labeled tangles, that is, (framed oriented) tangles
whose components are labeled with objects of C.
They form a category T C. Links appear here as
tangles without endpoints, that is, as morphisms
; ! ;. The link invariant hLi generalizes to a
functor h � i : T C ! C.

To define 3-manifold invariants, we need modular
categories (Turaev 1994). Let k be a field. A
monoidal category C is k-additive if its Hom sets
are k-vector spaces, the composition and tensor
product of the morphisms are bilinear, and
EndC(1) = k. An object V 2 C is simple if
EndC(V) = k. A modular category is a k-additive
ribbon category C with a finite family of simple
objects {V�}� such that (1) for any object V 2 C
there is a finite expansion idV =

P
i figi for

certain morphisms gi : V ! V�i , fi : V�i ! V and
(2) the S-matrix (S�,�) is invertible over k where
S�,� = tr(cV�, V�

cV�, V�
). Note that S�,� = hH(�,�)i

where H(�,�) is the oriented Hopf link with framing 0,
linking numberþ1, and labels V�, V�.

Axiom (1) implies that every simple object in C is
isomorphic to exactly one of V�. In most interesting
cases (when there is a well-defined direct summa-
tion in C), this axiom may be rephrased by saying
that C is finite semisimple, that is, C has a finite set
of isomorphism classes of simple objects and all
objects of C are direct sums of simple objects. A
weaker version of the axiom (2) yields premodular
categories.

The invariant h � i of links and tangles extends by
linearity to the case where labels are finite linear
combinations of objects of C with coefficients in k.
Such a linear combination � =

P
� dim (V�)V� is

called the Kirby color. It has the following sliding
property: for any object V 2 C, the two tangles in
Figure 1 yield the same morphism V ! V. Here, the
dashed line represents an arc on the closed compo-
nent labeled by �. This arc can be knotted or linked
with other components of the tangle (not shown in
the figure).
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Invariants of Closed 3-Manifolds

Given an embedded solid torus g : S1 �D2 ,! S3,
where D2 is a 2-disk and S1 = @D2, a 3-manifold can
be built as follows. Remove from S3 the interior of
g(S1 �D2) and glue back the solid torus D2 � S1

along gjS1�S1 . This process is known as ‘‘surgery.’’
The resulting 3-manifold depends only on the
isotopy class of the framed knot represented by g.
More generally, a surgery on a framed link
L = [m

i = 1 Li in S3 with m components yields a
closed oriented 3-manifold ML. A theorem of
W Lickorish and A Wallace asserts that any closed
connected oriented 3-manifold is homeomorphic to
ML for some L. R Kirby proved that two framed
links give rise to homeomorphic 3-manifolds if and
only if these links are related by isotopy and a finite
sequence of geometric transformations called Kirby
moves. There are two Kirby moves: adjoining a
distant unknot O" with framing "=�1, and sliding
a link component over another one as in Figure 1.

Let L = [m
i = 1 Li � S3 be a framed link and let

(bi, j)i, j = 1,..., m be its linking matrix: for i 6¼ j, bi, j is
the linking number of Li, Lj, and bi, i is the framing
number of Li. Denote by eþ (resp. e�) the number of
positive (resp. negative) eigenvalues of this matrix.
The sliding property of modular categories implies
the following theorem. In its statement, a knot K
with label � is denoted by K(�).

Theorem 1 Let C be a modular category with
Kirby color �. Then hO1(�)i 6¼ 0, hO�1(�)i 6¼ 0 and
the expression

�CðMLÞ¼hO1ð�Þi�eþhO�1ð�Þi�e�hL1ð�Þ; . . . ;Lmð�Þi

is invariant under the Kirby moves on L. This
expression yields, therefore, a well-defined topological
invariant �C of closed connected oriented 3-manifolds.

Several competing normalizations of �C exist in
the literature. Here, the normalization used is such
that �C(S

3) = 1 and �C(S
1 � S2) =

P
� (dim (V�))

2.
The invariant �C extends to 3-manifolds with a
framed oriented C-labeled link K inside by

�CðML; KÞ
¼ hO1ð�Þi�eþhO�1ð�Þi�e�hL1ð�Þ; . . . ;Lmð�Þ; Ki
Three-Dimensional TQFTs

A three-dimensional TQFT V assigns to every closed
oriented surface X a finite-dimensional vector space
V(X) over a field k and assigns to every cobordism
(M, X, Y) a linear map V(M) = V(M, X, Y) : V(X)!
V(Y). Here, a ‘‘cobordism’’ (M, X, Y) between
surfaces X and Y is a compact oriented 3-manifold
M with @M = (�X)q Y (the minus sign indicates the
orientation reversal). A TQFT has to satisfy axioms
which can be expressed by saying that V is a
monoidal functor from the category of surfaces and
cobordisms to the category of vector spaces over k.
Homeomorphisms of surfaces should induce iso-
morphisms of the corresponding vector spaces
compatible with the action of cobordisms. From
the definition, V(;) = k. Every compact oriented
3-manifold M is a cobordism between ; and @M
so that V yields a ‘‘vacuum’’ vector V(M) 2 Hom(V(;),
V(@M)) = V(@M). If @M = ;, then this gives a
numerical invariant V(M) 2 V(;) = k.

Interestingly, TQFTs are often defined for
surfaces and 3-cobordisms with additional struc-
ture. The surfaces X are normally endowed with
Lagrangians, that is, with maximal isotropic
subspaces in H1(X; R). For 3-cobordisms, several
additional structures are considered in the litera-
ture: for example, 2-framings, p1-structures, and
numerical weights. All these choices are equiva-
lent. The TQFTs requiring such additional struc-
tures are said to be ‘‘projective’’ since they provide
projective linear representations of the mapping
class groups of surfaces.

Every modular category C with ground field k
and simple objects {V�}� gives rise to a projective
three-dimensional TQFT VC. It depends on the
choice of a square root D of

P
� (dim (V�))

2 2 k.
For a connected surface X of genus g,

VCðXÞ ¼ HomC 1;
M
�1;...;�g

Og

r¼1

ðV�r
� V��r

Þ

0
@

1
A

The dimension of this vector space enters the
Verlinde formula

dimkðVCðXÞÞ � 1k ¼ D2g�2
X
�

ðdimðV�ÞÞ2�2g

where 1k 2 k is the unit of the field k. If char(k) = 0,
then this formula computes dimk (VC(X)). For a
closed connected oriented 3-manifold M with
numerical weight zero, VC(M) =D�b1(M)�1�C(M),
where b1(M) is the first Betti number of M.

The TQFT VC extends to a vaster class of surfaces
and cobordisms. Surfaces may be enriched with a
finite set of marked points, each labeled with an
object of C and endowed with a tangent direction.
Cobordisms may be enriched with ribbon (or fat)
graphs whose edges are labeled with objects of C and
whose vertices are labeled with appropriate inter-
twiners. The resulting TQFT, also denoted VC, is
nondegenerate in the sense that, for any surface X,
the vacuum vectors in V(X) determined by all M



a 

–1 = (s – s 

–1)–a

120 Quantum 3-Manifold Invariants
with @M = X span V(X). A detailed construction
of VC is given in Turaev (1994).

The two-dimensional part of VC determines a
‘‘modular functor’’ in the sense of G Segal,
G Moore, and N Seiberg.
Figure 2 The Homfly relation.
Constructions of Modular Categories

The universal enveloping algebra Ug of a (finite-
dimensional complex) simple Lie algebra g admits
a deformation Uqg, which is a quasitriangular Hopf
algebra. The representation category Rep(Uqg) is
C-linear and ribbon. For generic q 2 C, this category is
semisimple. (The irreducible representations of g can
be deformed to irreducible representations of Uqg.)
For q, an appropriate root of unity, a certain
subquotient of Rep(Uqg) is a modular category
with ground field k = C. For g = sl2(C), it was
pointed out by Reshetikhin and Turaev; the general
case involves the theory of tilting modules. The
corresponding 3-manifold invariant � is denoted
�g

q . For example, if g = sl2(C) and M is the Poincaré
homology sphere (obtained by surgery on a left-
hand trefoil with framing �1), then (Le 2003)

�g
q ðMÞ ¼ ð1� qÞ�1

X
n	0

qnð1� qnþ1Þ

� ð1� qnþ2Þ � � � ð1� q2nþ1Þ

The sum here is finite since q is a root of unity.
There is another construction (Le 2003) of a

modular category associated with a simple Lie
algebra g and certain roots of unity q. The
corresponding quantum invariant of 3-manifolds is
denoted �Pg

q . (Here, it is normalized so that
�Pg

q (S3) = 1.) Under mild assumptions on the order
of q, we have �g

q (M) = �g
q (M)� 0(M) for all M, where

� 0(M) is a certain Gauss sum determined by g, the
homology group H = H1(M) and the linking form
Tors H � Tors H ! Q=Z.

A different construction derives modular categories
from the category of framed oriented tangles T . Given
a ring K, a bigger category K[T ] can be considered
whose morphisms are linear combinations of tangles
with coefficients in K. Both T and K[T ] have a
natural structure of a ribbon monoidal category.

The skein method builds ribbon categories by
quotienting K[T ] using local ‘‘skein’’ relations,
which appear in the theory of knot polynomials
(the Alexander–Conway polynomial, the Homfly
polynomial, and the Kauffman polynomial). In
order to obtain a semisimple category, one com-
pletes the quotient category with idempotents as
objects (the Karoubi completion). Choosing appro-
priate skein relations, one can recover the modular
categories derived from quantum groups of series
A, B, C, D. In particular, the categories determined
by the series A arise from the Homfly skein relation
shown in Figure 2 where a, s 2 K. The categories
determined by the series B, C, D arise from the
Kauffman skein relation.

The quantum invariants of 3-manifolds and the
TQFTs associated with slN can be directly described
in terms of the Homfly skein theory, avoiding the
language of ribbon categories (W Lickorish,
C Blanchet, N Habegger, G Masbaum, P Vogel for
sl2 and Y Yokota for all slN).
Unitarity

From both physical and topological viewpoints,
one is mainly interested in Hermitian and unitary
TQFTs (over k = C). A TQFT V is Hermitian if the
vector space V(X) is endowed with a nondegene-
rate Hermitian form h. , .iX : V(X)�C V(X)! C
such that:

1. the form h. , .iX is natural with respect to homeo-
morphisms and multiplicative with respect to
disjoint union and

2. for any cobordism (M, X, Y) and any
x 2 V(X), y 2 V(Y),

hVðM;X;YÞðxÞ; yiY ¼ hx;Vð�M;Y;XÞðyÞiX
If h. , .iX is positive definite for every X, then the
Hermitian TQFT is ‘‘unitary.’’ Note two features of
Hermitian TQFTs. If @M = ;, then V(�M) = V(M).
The group of self-homeomorphisms of any X
acts in V(X) preserving the form h. , .iX. For a
unitary TQFT, this gives an action by unitary matrices.

The three-dimensional TQFT derived from a mod-
ular category V is Hermitian (resp. unitary) under
additional assumptions on V which are discussed
briefly. A ‘‘conjugation’’ in V assigns to each morph-
ism f : V !W in V a morphism �f : W ! V so that

f ¼ f ; f þ g ¼ �f þ �g for any f ; g : V !W

f � g ¼ �f � �g for any morphisms f ; g in C
f 
 g ¼ �g 
 �f for any morphisms

f : V !W; g : W ! V
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One calls V Hermitian if it is endowed with
conjugation such that

�V ¼ ð�VÞ�1; cV;W ¼ ðcV;WÞ�1

bV ¼ dVcV;V� ð�V � 1V� Þ
dV ¼ ð1V� � ��1

V Þc�1
V�;VbV

for any objects V, W of V. A Hermitian modular
category V is unitary if tr(f�f ) 	 0 for any morphism
f in V. The three-dimensional TQFT, derived from a
Hermitian (resp. unitary) modular category, has a
natural structure of a Hermitian (resp. unitary)
TQFT.

The modular category derived from a simple Lie
algebra g and a root of unity q is always Hermitian.
It may be unitary for some q. For simply laced g,
there are always such roots of unity q of any given
sufficiently big order. For non-simply-laced g, this
holds under certain divisibility conditions on the
order of q.
i
k

l
m

n

j

Figure 3 Labeled tetrahedron.
Integral Structures in TQFTs

The quantum invariants of 3-manifolds have one
fundamental property: up to an appropriate res-
caling, they are algebraic integers. This was
first observed by H Murakami, who proved that
� sl2

q (M) is an algebraic integer, provided the order of
q is an odd prime and M is a homology sphere. This
extends to an arbitrary closed connected oriented 3-
manifold M and an arbitrary simple Lie algebra g as
follows (Le 2003): for any sufficiently big prime
integer r and any primitive rth root of unity q,

�Pg
q ðMÞ 2 Z½q� ¼ Z½expð2�i=rÞ� ½1�

This inclusion allows one to expand �Pg
q (M) as

a polynomial in q. A study of its coefficients leads
to the Ohtsuki invariants of rational homology
spheres and further to perturbative invariants of
3-manifolds due to T Le, J Murakami, and
T Ohtsuki (see Ohtsuki (2002)). Conjecturally, the
inclusion [1] holds for nonprime (sufficiently big) r
as well. Connections with the algebraic number
theory (specifically modular forms) were studied by
D Zagier and R Lawrence.

It is important to obtain similar integrality results
for TQFTs. Following P Gilmer, fix a Dedekind
domain D � C and call a TQFT V almost D-integral
if it is nondegenerate and there is d 2 C such
that dV(M) 2 D for all M with @M = ;. Given
an almost-integral TQFT V and a surface X, we
define S(X̂) to be the D-submodule of V(X), generated
by all vacuum vectors for X. This module is preserved
under the action of self-homeomorphisms of X.
It turns out that S(X) is a finitely generated
projective D-module and V(X) = S(X)�D C.
A cobordism (M, X, Y) is targeted if all its connected
components meet Y along a nonempty set. In
this case, V(M)(S(X)) � S(Y). Thus, applying S to
surfaces and restricting � to targetet cobordisms, we
obtain an ‘‘integral version’’ of V. In many interest-
ing cases, the D-module S(X) is free and its basis
may be described explicitly. A simple Lie algebra g
and a primitive rth (in some cases 4rth) root of unity
q with sufficiently big prime r give rise to an almost
D-integral TQFT for D = Z[q].
State-Sum Invariants

Another approach to three-dimensional TQFTs is
based on the theory of 6j-symbols and state sums on
triangulations of 3-manifolds. This approach intro-
duced by V Turaev and O Viro is a quantum
deformation of the Ponzano–Regge model for the
three-dimensional lattice gravity. The quantum 6j-
symbols derived from representations of Uq(sl2C) are
C-valued rational functions of the variable q0 = q1=2

i j k
l m n

����
���� ½2�

numerated by 6-tuples of non-negative integers i, j,
k, l, m, n. One can think of these integers as labels
sitting on the edges of a tetrahedron (see Figure 3).
The 6j-symbol admits various equivalent normal-
izations and we choose the one which has full
tetrahedral symmetry. Now, let q0 2 C be a
primitive 2rth root of unity with r 	 2. Set
I = {0, 1, . . . , r� 2}. Given a labeled tetrahedron T
as in Figure 3 with i, j, k, l, m, n 2 I, the 6j-symbol
[2] can be evaluated at q0 and we can obtain a
complex number denoted jTj. Consider a closed
three-dimensional manifold M with triangulation t.
(Note that all 3-manifolds can be triangulated.) A
coloring of M is a mapping ’ from the set Edg(t)
of the edges of t to I. Set

jMj ¼ ð
ffiffiffiffiffi
2r
p

=ðq0 � q�1
0 ÞÞ

�2a
X
’

Y
e2EdgðtÞ

h’ðeÞi
Y
T

jT’j
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where a is the number of vertices of t, hni= (�1)n

(qn
0 � q�n

0 )
�

(q0 � q�1
0 ) for any integer n, T runs over

all tetrahedra of t, and T’ is T with the labeling
induced by ’. It is important to note that jMj does
not depend on the choice of t and thus yields a
topological invariant of M.

The invariant jMj is closely related to the
quantum invariant �g

q (M) for g = sl2(C). Namely,
jMj is the square of the absolute value of �g

q (M), that
is, jMj= j�g

q (M)j2. This computes j�g
q (M)j inside M

without appeal to surgery. No such computation of
the phase of �g

q (M) is known.
These constructions generalize in two directions.

First, they extend to manifolds with boundary. Second,
instead of the representation category of Uq(sl2C), one
can use an arbitrary modular category C. This yields a
three-dimensional TQFT, which associates to a surface
X a vector space jXjC, and to a 3-cobordism (M, X, Y)
a homomorphism jMjC : jXjC ! jYjC, (see Turaev
(1994)). When X = Y = ;, this homomorphism is
multiplication C! C by a topological invariant
jMjC 2 C. The latter is computed as a state sum on a
triangulation of M involving the 6j-symbols associated
with C. In general, these 6j-symbols are not numbers
but tensors so that, instead of their product, one
should use an appropriate contraction of tensors. The
vectors in V(X) are geometrically represented by
trivalent graphs on X such that every edge is labeled
with a simple object of C and every vertex is labeled
with an intertwiner between the three objects labeling
the incident edges. The TQFT j � jC is related to the
TQFT V = VC by jMjC = jV(M)j2. Moreover, for any
closed oriented surface X,

jXjC ¼EndðVðXÞÞ ¼ VðXÞ � ðVðXÞÞ�

¼VðXÞ � Vð�XÞ

and for any three-dimensional cobordism (M, X, Y),

jMjC ¼ VðMÞ � Vð�MÞ : VðXÞ � Vð�XÞ
! VðYÞ � Vð�YÞ

J Barrett and B Westbury introduced a general-
ization of jMjC derived from the so-called spherical
monoidal categories (which are assumed to be
semisimple with a finite set of isomorphism classes
of simple objects). This class includes modular
categories and a most interesting family of (unitary
monoidal) categories arising in the theory of sub-
factors (see Evans and Kawahigashi (1998) and
Kodiyalam and Sunder (2001)). Every spherical
category C gives rise to a topological invariant jMjC
of a closed oriented 3-manifold M. (It seems that this
approach has not yet been extended to cobordisms.)

Every monoidal category C gives rise to a double (or
a center) Z(C), which is a braided monoidal category
(see Majid (1995)). If C is spherical, then Z(C) is
modular. Conjecturally, jMjC = �Z(C)(M). In the case
where C arises from a subfactor, this has been recently
proved by Y Kawahigashi, N Sato, and M Wakui.

The state sum invariants above are closely related
to spin networks, spin foam models, and other
models of quantum gravity in dimension 2þ 1 (see
Baez (2000) and Carlip (1998)).

See also: Axiomatic Approach to Topological Quantum
Field Theory; Braided and Modular Tensor Categories;
Chern–Simons Models: Rigorous Results; Finite-type
Invariants of 3-Manifolds; Large-N and Topological
Strings; Schwarz-Type Topological Quantum Field
Theory; Topological Quantum Field Theory: Overview;
von Neumann Algebras: Subfactor Theory.
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Introduction

Calogero–Moser (C–M) systems are multiparticle
(i.e., finite degrees of freedom) dynamical systems
with long-range interactions. They are integrable
and solvable at both classical and quantum levels.
These systems offer an ideal arena for interplay of
many important concepts in mathematical/theoreti-
cal physics: to name a few, classical and quantum
mechanics, classical and quantum integrability,
exact and quasi-exact solvability, addition of dis-
crete (spin) degrees of freedom, quantum Lax pair
formalism, supersymmetric quantum mechanics,
crystallographic root systems and associated Weyl
groups and Lie algebras, noncrystallographic root
systems, and Coxeter groups or finite reflection
groups. The quantum integrability or solvability of
C–M systems does not depend on such known
solution mechanisms as Yang–Baxter equations,
quantum R-matrix or Bethe ansatz for the quantum
systems. In fact, quantum C–M systems provide a
good material for pondering about quantum
integrability.
Quantum (Liouville) Integrability

The classical Liouville theorem for an integrable
system consists of two parts. Let us consider
Hamiltonian dynamics of finite degrees of freedom
N with coordinates q = (q1, . . . , qN) and conjugate
momenta p = (p1, . . . , pN) equipped with Poisson
brackets {qj, pk} = �jk, {qj, qk} = {pj, pk} = 0. The first
part is the existence of a set of independent and
involutive {Kj, Kk} = 0 conserved quantities {Kj} as
many as the degrees of freedom (j = 1, . . . , N). The
second part asserts that the generating function of the
canonical transformation for the action-angle vari-
ables can be constructed from the conserved quan-
tities via quadrature. In other words, the second part,
that is, the reducibility to the action-angle variables is
the integrability. The quantum counterpart of the
first half is readily formulated: that is, the existence
of a set of independent and mutually commuting
(involutive) [Kj, Kk] = 0 conserved quantities {Kj} as
many as the degrees of freedom. (This does not
necessary imply, however, that they are well defined
in a proper Hilbert space.) The definition of the
quantum integrability should come as a second part,
which is yet to be formulated. It is clear that the
quantum Liouville integrability does not imply the
complete determination of the eigenvalues and
eigenfunctions. Such systems would be called exactly
solvable. This can be readily understood by consider-
ing any (autonomous) degree-1 Hamiltonian system,
which, by definition, is Liouville integrable at the
classical and quantum levels. However, it is known
that the number of excatly solvable degree-1 Hamil-
tonians are very limited. What would be the quantum
counterpart of the ‘‘transformation to action-angle
variables by quadrature’’? Could it be better for-
mulated in terms of a path integral? Many questions
remain to be answered. The quantum C–M systems,
an infinite family of exactly solvable multiparticle
Hamiltonians, would shed some light on the problem
of quantum integrability, in addition to their own
beautiful structure explored below.

Throughout this article, the dependence on
Planck’s constant, �h, is shown explicitly to distin-
guish the quantum effects.
Simplest Cases (Based on Ar�1 Root
System)

The simplest example of a C–M system consists of r
particles of equal mass (normalized to unity) on a
line with pairwise 1=(distance)2 interactions
described by the following Hamiltonian:

Ĥ ¼ 1

2

Xr

j¼1

p2
j þ gðg� �hÞ

Xr

j<k

1

ðqj � qkÞ2
½1�

in which g is a real positive coupling constant.
Here q = (q1, . . . , qr) are the coordinates and
p = (p1, . . . , pr) are the conjugate canonical momenta
obeying the canonical commutation relations:
[qj, pk] = i�h�jk, [qj, qk] = [pj, pk] = 0, j, k = 1, . . . , r.
The Heisenberg equations of motion are _qj = (i=�h)
[Ĥ, qj] = pj, €qj = _pj = (i=�h)[Ĥ, pj] = 2g(g� �h)

P
k 6¼j 1=

(qj � qk)3. The repulsive 1=(distance)2 potential
cannot be surmounted classically or quantum
mechanically, and the relative position of the
particles on the line is not changed during the time
evolution. Classically, it means that if a motion
starts at a configuration q1>q2> � � �>qr, then the
inequalities remain valid throughout the time evolu-
tion. At the quantum level, the wave functions
vanish at the boundaries, and the configuration
space can be naturally limited to q1>q2> � � �>qr

(the principal Weyl chamber).
Similar integrable quantum many-particle

dynamics are obtained by replacing the inverse
square potential in [1] by the trigonometric
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Figure 1 Four different types of quantum C–M potentials.
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(hyperbolic) counterpart (see Figure 1)
1=(qj � qk)2! a2=sinh2 a(qj � qk), in which a > 0 is
a real parameter. The 1=sin2 q potential case
(the Sutherland system) corresponds to the
1=(distance)2 interaction on a circle of radius 1/2a,
see Figure 2. A harmonic confining potential
!2
Pr

j = 1 q2
j =2 can be added to the rational Hamil-

tonian [1] without breaking the integrability
(the Calogero system, see Figure 1). At the
classical level, the trigonometric (hyperbolic) and
rational C–M systems are obtained from the
elliptic potential systems (with the Weierstrass }
function) as the degenerate limits: }(q1 � q2)!
a2=sinh2 a(q1 � q2)! 1=(q1 � q2)2, namely as one
(two) period(s) of the } function tends to infinity.

It is remarkable that these equations of motion can
be expressed in a matrix form (Lax pair):
i=�h[Ĥ,L]=dL=dt=LM�ML= [L,M],Heisenberg
equation of motion, in which L and M are given by

L ¼

p1
ig

q1�q2
� � � ig

q1�qr

ig
q2�q1

p2 � � � ig
q2�qr

..

. ..
. . .

. ..
.

ig
qr�q1

ig
qr�q2

� � � pr

0
BBBBBBBBBB@

1
CCCCCCCCCCA

M ¼

m1 � ig

ðq1�q2Þ2
� � � � ig

ðq1�qrÞ2

� ig

ðq2�q1Þ2
m2 � � � � ig

ðq2�qrÞ2

..

. ..
. . .

. ..
.

� ig

ðqr�q1Þ2
� ig

ðqr�q2Þ2
� � � mr

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

½2�
q 1

q 2
q 3

q 4
R = 1/2a

distance(q 1, q 2) = sin a(q 1 – q 2)/a

Figure 2 Sutherland potential is 1=(distance)2 interaction on a

circle. The large-radius limit, a ! 0, gives the rational potential.
The diagonal element mj of M is given by
mj = ig

P
k 6¼j 1=(qj � qk)2. The matrix M has a special

property
Pr

j = 1 Mjk =
Pr

k = 1 Mjk = 0, which ensures
the quantum conserved quantities as the total sum of
powers of Lax matrix L: [Ĥ, Kn] = 0, Kn �
Ts(Ln) =

P
j,k (Ln)jk, (n = 1, 2, 3, . . . ), [Kn, Km] = 0.

It should be stressed that the trace of Ln is not
conserved because of the noncommutativity of q and
p. The Hamiltonian is equivalent to K2, Ĥ / K2 þ
const. In other words, the Lax matrix L is like a
‘‘square root’’ of the Hamiltonian. The quantum
equations of motion for the Sutherland and hyper-
bolic potentials are again expressed by Lax pairs if
the following replacements are made: 1=(qj � qk)!
a coth a(qj � qk) in L and 1=(qj � qk)2!
a2=sinh2 a(qj � qk) in M. The quantum conserved
quantities are obtained in the same manner as above
for the systems with the trigonometric and hyperbolic
interactions.

The main goal here is to find all the eigenvalues
{E} and eigenfunctions { (q)} of the Hamiltonians
with the rational, Calogero, Sutherland, and
hyperbolic potentials: Ĥ (q) = E (q). The mome-
ntum operator pj acts as differential operators
pj = �i�h@=@qj. For example, for the rational
model Hamiltonian [1], the eigenvalue equation
reads

� �h2

2

Xr

j¼1

@2

@q2
j

þ gðg� �hÞ
Xr

j<k

1

ðqj � qkÞ2

2
4

3
5 ðqÞ

¼ E ðqÞ ½3�

which is a second-order Fuchsian differential
equation for each variable {qj} with a regular
singularity at each hyperplane qj = qk whose expo-
nents are g=�h, 1� g=�h. Any solution  of [3] is
regular at all points, except for those on the union
of hyperplanes qj = qk. Since the structure of the
singularity is the same for the other three types of
potentials, the same assertion for the regularity and
singularity of the solution  holds for these cases,
too. For the trigonometric (Sutherland) case, there
are other singularities at qj � qk = l�=a, l 2 Z, due
to the periodicity of the potential. As is clear from
the shape of the potentials, see Figure 1, the
rational and hyperbolic Hamiltonians have only
continuous spectra, whereas the Calogero and
Sutherland Hamiltonians have only discrete
spectra.

The integrability or more precisely the triangular-
ity of the quantum C–M Hamiltonian was first
discovered by Calogero for particles on a line with
inverse square potential plus a confining harmonic
force and by Sutherland for the particles on a circle



Table 1 Functions appearing in the prepotential and Lax pair

Potential w (u) x (u) y (u)

Rational u 1/u �1=u2

Hyperbolic sinh au a coth au �a2=sinh2 au

Trigonometric sin au a cot au �a2=sin2 au
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with the trigonometric potential. Later, classical
integrability of the models in terms of Lax pairs was
proved by Moser. Olshanetsky and Perelomov
showed that these systems were based on Ar�1 root
systems, that is, qj � qk =� � q, and � is one of the
root vectors of Ar�1 root system [13]. They also
introduced generalizations of the C–M systems
based on any root system including the noncrystal-
lographic ones.

As shown by Heckman–Opdam and Sasaki and
collaborators, quantum C–M systems with degen-
erate potentials (i.e., the rational potentials with/
without harmonic force, the hyperbolic, and the
trigonometric potentials), based on any root system
can be formulated and solved universally. To be
more precise, the rational and Calogero systems are
integrable for all root systems, the crystallographic
and noncrystallographic. The hyperbolic and trigo-
nometric (Sutherland) systems are integrable for any
crystallographic root system. The universal formulas
for the Hamiltonians, Lax pairs, ground state wave
functions, conserved quantities, the triangularity, the
discrete spectra for the Calogero and Sutherland
systems, the creation and annihilation operators,
etc., are equally valid for any root system. This will
be shown in the next section. Some rudimentary
facts of the root systems and reflections are
summarized in the appendix.
Universal Formalism

A C–M system is a Hamiltonian dynamical systems
associated with a root system � of rank r, which is a
set of vectors in Rr with its standard inner product.
A brief review of the properties of the root systems
and the associated reflections together with explicit
realizations of all the classical root systems will be
found in the appendix.
Factorized Hamiltonian

The Hamiltonian for the quantum C–M system can
be written in terms of a pre-potential W(q) in a
‘‘factorized form’’:

H ¼ 1

2

Xr

j¼1

pj � i
@WðqÞ
@qj

� �
pj þ i

@WðqÞ
@qj

� �
½4�

The pre-potential is a sum over positive roots:

WðqÞ ¼
X
�2�þ

g� ln jwð� � qÞj þ �!
2

q2
� �

½5�

The real positive coupling constants g� are
defined on orbits of the corresponding Coxeter
group, that is, they are identical for roots in the
same orbit. That is, for the simple Lie algebra cases,
one coupling constant, g� = g, for all roots in simply
laced models and two independent coupling con-
stants, g� = gL for long roots and g� = gS for short
roots, in non-simply laced models. The function
w(u) and the other functions x(u) and y(u) appearing
in the Lax pair [10], [11] are listed in Table 1 for
each type of degenerate potentials. The dynamics of
the prepotentials W(q) (eqn [5]) has been discussed
by Dyson from a different point of view (random-
matrix model). The above factorized Hamiltonian
[4] consists of an operator part Ĥ, which is the
Hamiltonian in the usual definition (see the Hamil-
tonians in the previous section, e.g., [1]), and a
constant E0 which is the ground-state energy,
H= Ĥ � E0. The factorized Hamiltonian [4] also
arises within the context of supersymmetric quan-
tum mechanics.

The pre-potential and the Hamiltonian are
invariant under reflection of the phase space
variables in the hyperplane perpendicular to any
root W(s�(q)) = W(q),H(s�(p), s�(q)) =H(p, q), 8� 2
�, with s� defined by [12]. The above Coxeter
(Weyl) invariance is the only (discrete) symmetry of
the C–M systems. The main problem is, as in the Ar�1

case, to find all the eigenvalues {E} and eigenfunctions
{ (q)} of the above Hamiltonian H (q) = E (q).

For any root system and for any choice of
potential, the C–M system has a hard repulsive
potential �1=(� � q)2 near the reflection hyperplane
H� = {q 2 Rr,� � q = 0}. The C–M eigenvalue equa-
tion is a second-order Fuchsian differential equation
with regular singularities at each reflection hyper-
plane H� and those arising from the periodicity in
the case of the Sutherland potential. Near the
reflection hyperplane H�, the solution behaves as
follows:

 � ð� � qÞg�=�hð1þ regular termsÞ; or

 � ð� � qÞ1�g�=�hð1þ regular termsÞ

The former solution is chosen for the square
integrability. Because of the singularities, the con-
figuration space is restricted to the principal Weyl
chamber PW or the principal Weyl alcove PWT

for the trigonometric potential (see Figure 3): PW =
{q 2 Rr j� � q > 0,� 2 �}, PWT = {q 2 Rr j� � q > 0,
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Figure 3 Simple roots, the highest root, fundamental weights,

and the principal Weyl alcove (grey) and the principal Weyl

chamber (light grey, extending to infinity) in a two-dimensional

root system.

Table 2 The degrees fj in which independent Coxeter-invariant

polynomials exist

� fj = 1þ ej � fj = 1þ ej

Ar 2, 3, 4, . . . , r þ 1 E8 2, 8, 12, 14, 18, 20, 24, 30

Br 2, 4, 6, . . . , 2r F4 2, 6, 8, 12

Cr 2, 4, 6, . . . , 2r G2 2, 6

Dr 2, 4, . . . , 2r � 2, r I2(m) 2, m

E6 2, 5, 6, 8, 9, 12 H3 2, 6, 10

E7 2, 6, 8, 10, 12, 14, 18 H4 2, 12, 20, 30
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� 2 �,�h � q < �=a}, (�: set of simple roots, see the
appendix). Here �h is the highest root.

Ground-State Wave Function and Energy

One straightforward outcome of the factorized
Hamiltonian [4] is the universal ground-state wave
function, which is given by

�0ðqÞ ¼ eWðqÞ=�h

¼
Y
�2�þ

jwð� � qÞjg�=�h �e�ð!=2�hÞq2
� �

H�0ðqÞ ¼ 0

½6�

The exponential factor e�(!=2�h)q2
exists only for the

Calogero systems. The ground-state energy, that is,
the constant part of H= Ĥ � E0, has a universal
expression for each potential:

E0 ¼
0 rational

! �hr=2þ
P

�2�þ
g�

� �
Calogero

(

E0 ¼ 2a2�2 � �1 hyperbolic

1 Sutherland

� ½7�

where �= 1=2
P

�2�þ
g�� is called a ‘‘deformed

Weyl vector.’’ Obviously, �0(q) is square integrable
in the configuration spaces for the Calogero and
Sutherland systems and not square integrable for the
rational and hyperbolic potentials.

Excited States, Triangularity, and Spectrum

Excited states of the C–M systems can be easily
obtained as eigenfunctions of a differential operator
~H obtained from H by a similarity transformation:

~H ¼ e�W=�hHeW=�h

¼ �1

2

Xr

j¼1

ð�h2@2=@q2
j þ 2�h@W=@qj@=@qjÞ

The eigenvalue equation for ~H, ~H�E = E�E , is then
equivalent to that of the original Hamiltonian,
H�Ee

W = E�EeW . Since all the singularities of the
Fuchsian differential equation H (q) = E (q) are
contained in the ground-state wave function eW , �E
must be regular at finite q, including all the
reflection boundaries. As for the rational and
hyperbolic potentials, the energy eigenvalues are
only continuous. For the rational case, the eigen-
functions are multivariable generalization of Bessel
functions.
Calogero systems The similarity-transformed
Hamiltonian ~H reads

~H ¼ �h!q � @
@q
� �h2

2

Xr

j¼1

@2

@q2
j

� �h
X
�2�þ

g�
� � q� �

@

@q

½8�

which maps a Coxeter-invariant polynomial in q of
degree d to another of degree d. Thus, the
Hamiltonian ~H (8) is lower-triangular in the basis
of Coxeter-invariant polynomials and the diagonal
elements have values as �h!� degree, as given by the
first term. Independent Coxeter-invariant polyno-
mials exist at the degrees fj listed in Table 2: fj = 1þ
ej, j = 1, . . . , r, where {ej}, j = 1, . . . , r, are the
exponents of �.

The eigenvalues of the Hamiltonian H are �h!N
with N a non-negative integer. N can be
expressed as N =

Pr
j = 1 njfj, nj 2 Zþ, and the

degeneracy of the eigenvalue �h!N is the number
of partitions of N. It is remarkable that the
coupling constant dependence appears only in the
ground-state energy E0. This is a deformation of
the isotropic harmonic oscillator confined in the
principal Weyl chamber. The eigenpolynomials
are generalization of multivariable Laguerre
(Hermite) polynomials. One immediate consequence
of this spectrum is the periodicity of the quantum
motion. If a system has a wave function  (0) at
t = 0, then at t = T = 2�=! the system has physically
the same wave function as  (0), that is,
 (T) = e�iE0T=�h (0). The same assertion holds at the
classical level, too.
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Sutherland Systems The periodicity of the trigono-
metric potential dictates that the wave function
should be a Bloch factor e2ia��q (where � is a weight)
multiplied by a Fourier series in terms of simple
roots. The basis of the Weyl invariant wave
functions is specified by a dominant weight
�=

Pr
j= 1 mj�j, mj 2 Zþ, ��(q)�

P
�2O�

e2ia��q, where
O� is the orbit of � by the action of the Weyl group:
O� = {g(�) jg 2G�}. The set of functions {��} has an
order � , j�j2 > j�0j2 ) �� � ��0 . The similarity-
transformed Hamiltonian ~H given by

~H ¼ � �h2

2

Xr

j¼1

@2

@q2
j

� a�h
X
�2�þ

g� cot ða� � qÞ� � @
@q
½9�

is lower-triangular in this basis: ~H�� = 2a2(�h2�2 þ
2�h� � �)�� þ

P
j�0 j<j�j c�0��0 . That is, the eigenvalue is

E= 2a2(�h2
�2 þ 2�h� � �) or E þ E0 = 2a2(�h�þ �)2.

Again, the coupling constant dependence comes
solely from the deformed Weyl vector �. This
spectrum is a deformation of the spectrum corre-
sponding to the free motion with momentum 2�ha�
in the principal Weyl alcove. The corresponding
eigenfunction is called a generalized Jack polynomial
or Heckman–Opdam’s Jacobi polynomial. For the
rank-2 (r = 2) root systems, A2, B2 ffi C2 and I2(m)
(the dihedral group), the complete set of eigenfunc-
tions are known explicitly.
Quantum Lax Pair and Quantum Conserved
Quantities

The universal Lax pair for C–M systems is given in
terms of the representations of the Coxeter (Weyl)
group in stead of the Lie algebra. The Lax operators
without spectral parameter for the rational, trigono-
metric, and hyperbolic potentials are

Lðp; qÞ ¼ p � Ĥ þXðqÞ

XðqÞ ¼ i
X
�2�þ

g�ð� � ĤÞxð� � qÞŝ�
½10�

MðqÞ ¼ i

2

X
�2�þ

g��
2yð� � qÞ ŝ� � Ið Þ ½11�

where I is the identity operator and {ŝ�j� 2 �} are
the reflection operators of the root system. They act
on a set of Rr vectors, R= {�(k) 2 Rr j k = 1, . . . , d},
permuting them under the action of the reflection
group. The vectors in R form a basis for the
representation space V of dimension d. The matrix
elements of the operators {ŝ� j� 2 �} and
{Ĥj j j = 1, . . . , r} are defined as follows:
(ŝ�)�	 = ��, s�(	) = �	, s�(�), (Ĥj)�	 = �j��	, � 2 �, �,
	 2 R. The form of the functions x, y depends on
the chosen potential as given in Table 1. Then the
equations of motion can be expressed in a matrix
form dL=dt = i=�h[H, L] = [L, M]. The operator M
satisfies the relation

P
�2R M�	 =

P
	2RM�	 = 0,

which is essential for deriving quantum conserved
quantities as the total sum (Ts) of all the matrix
elements of Ln: Kn = Ts(Ln) �

P
�, 	2R (Ln)�	 ,

[H, Kn] = 0, [Km,Kn] = 0, n, m = 1, . . . In particular,
the power 2 is universal to all the root systems, and
the quantum Hamiltonian is given by H / K2 þ
const. As in the affine Toda molecule systems, a Lax
pair with a spectral parameter can also be intro-
duced universally for all the above potentials. The
Dunkl operators, or the commuting differential–
difference operators are also used to construct
quantum conserved quantities for some root sys-
tems. This method is essentially equivalent to the
universal Lax operator formalism. As the Lax
operators do not contain the Planck’s constant, the
quantum Lax pair is essentially of the same form as
the classical Lax pair. The difference between the
trace (tr) and the total sum (Ts) vanishes as �h ! 0.

Lax pair for Calogero systems The quantum Lax
pair for the Calogero systems is obtained from the
universal Lax pair [10] by replacement L!
L
= L
 i!Q, Q � q � Ĥ, which correspond to the
creation and annihilation operators of a harmonic
oscillator. The equations of motion are rewritten as
dL
=dt = i=�h[H, L
] = [L
, M]
 i!L
. Then L
=
L
L� satisfy the Lax type equation dL
=dt =
i=�h[H,L
], giving rise to conserved quantities
Ts(L
)n, n = 1, 2, . . . The Calogero Hamiltonian is
given by H / Ts(L
).

All the eigenstates of the Calogero Hamiltonian H
with eigenvalues �h!N, N =

Pr
j = 1 njfj, nj 2 Zþ, are

simply constructed in terms of L
:
Qr

j = 1 (Bþfj
)nj eW .

Here the integers {fj}, j = 1, . . . , r, are listed in
Table 2. The creation operators Bþfj

and the
corresponding annihilation operators B�fj

are defined
by B
fj

= Ts(L
)fj , j = 1, . . . , r. They are Hermitian
conjugate to each other (B
fj

)y= B�fj
with respect to

the standard Hermitian inner product of the states
defined in PW. They satisfy commutation relations
[H, B
k ] = 
 �hk!B
k , [Bþk , Bþl ] = [B�k , B�l ] = 0, k, l 2
{fj j j = 1, . . . , r}. The ground state is annihilated by
all the annihilation operators B�fj

eW = 0, j = 1, . . . , r.
Further Developments

Rational Potentials: Superintegrability

The systems with the rational potential have a remark-
able property: superintegrability. A rational C–M
system based on a rank-r root system has 2r� 1
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independent conserved quantities. Roughly speaking,
they are of the form Kn = Ts(Ln), Jm = Ts(QLm), Q �
q � Ĥ, among which only r are involutive. At the
classical level, superintegrability can be characterized
as algebraic linearizability. Since a commutator of any
conserved quantities is again a conserved quantity, these
conserved quantities form a nonlinear algebra called a
quadratic algebra. It can be considered as a finite-
dimensional analog of the W-algebra appearing in
certain conformal field theory.

Quantum vs Classical Integrability

In C–M systems, the classical and quantum integr-
ability are very closely related. The quantum discrete
spectra of the Calogero and the Sutherland systems
are, as shown above, expressed in terms of the
coupling constant (!, g) and the exponents or the
weights of the corresponding root systems. Namely,
they are integral multiples of coupling constants. The
corresponding classical systems with the potential
V(q) = (1=2)

Pr
j = 1 (@W(q)=@qj)

2 share many remark-
able properties. As is clear from Figure 1, they always
have an equilibrium position. The equilibrium posi-
tions (q̄) are described by the zeros of a classical
orthogonal polynomial; the Hermite polynomial
(A-type Calogero), the Laguerre polynomial (B, C, D-
type Calogero), the Chebyshev polynomial (A-type
Sutherland) and the Jacobi polynomial (B, C, D-type
Sutherland). For the exceptional root systems, the
corresponding polynomials were not known for a long
time. The minimum energy of the classical potential
V(q) at the equilibrium is the quantum ground-state
energy lim�h!0 E0 itself. It is also an integral multiple of
coupling constants for both Calogero and Sutherland
cases. Near a classical equilibrium, a multiparticle
dynamical system is always reduced to a system of
coupled harmonic oscillators. For Calogero systems,
the eigenfrequencies of these small oscillations are, in
fact, exactly the same as the quantum eigenfrequen-
cies, !fj =!(1þ ej). For Sutherland systems, the
classical eigenfrequencies are the same as the o(�h)
part of the quantum spectra corresponding to all
the fundamental weights �j: 2a2�j � �. Moreover, the
eigenvalues of various Lax matrices L and M at the
equilibrium take many ‘‘interesting values.’’ These
results provide ample explicit examples of the general
theorem on the quantum–classical correspondence
formulated by Loris–Sasaki.

Spin Models

For any root system � and an irreducible represen-
tation R of the Coxeter (Weyl) group G�, a spin
C–M system can be defined for each of the
potentials: rational, Calogero, hyperbolic and
Sutherland. For each member � of R, to be called
a ‘‘site,’’ a vector space V� is associated whose
element is called a ‘‘spin.’’ The dynamical variables
are those of the particles {qj, pj} and the spin
exchange operators {P̂�} (� 2 �) which exchange
the spins at the sites � and s�(�). For each � and R
a spin exchange model can be defined by ‘‘freezing’’
the particle degrees of freedom at the equilibrium
point of the corresponding classical potential
{q, p}! {q̄, 0}. These are generalization of Hal-
dane–Shastry model for Sutherland potentials and
that of Polychronakos for the Calogero potentials.
Universal Lax pair operators for both spin C–M
systems and spin exchange models are known and
conserved quantities are constructed.
Integrable Deformations

C–M systems allow various integrable deformations at
the classical and/or quantum levels. One of the well-
known deformations is the so-called ‘‘relativistic’’ C–M
system or the Ruijsenaars–Schneider (R–S) system. For
degenerate potentials, they are integrable both at the
classical and quantum levels. The classical quantities of
the R–S systems at equilibrium exhibit many interesting
properties, too. The equilibrium positions are described
by the zeros of certain deformation of the above-
mentioned classical polynomials. The frequencies of
small oscillations are also related to the exact quantum
spectrum, and they can be expressed as coupling
constant times the (q-) integers.

Inozemtsev models are classically integrable mul-
tiparticle dynamical systems related to C–M systems
based on classical root systems (A, B, C, D) with
additional q6 (rational) or sin2 2q (trigonometric)
potentials. Their quantum versions are not exactly
solvable in contrast to the C–M or R–S systems,
although there is some evidence of their Liouville
integrability (without a proper Hilbert space).
Quantum Inozemtsev systems can be deformed to
be a widest class of quasi-exactly solvable multi-
particle dynamical systems. They possess a form of
higher-order supersymmetry for which the method
of prepotential is also useful.
Appendix: Root Systems

Some rudimentary facts of the root systems and
reflections are recapitulated here. The set of roots �
is invariant under reflections in the hyperplane
perpendicular to each vector in �. In other words,
s�(
) 2 �, 8�,
 2 �, where

s�ð
Þ ¼ 
 � ð�_ � 
Þ�; �_ � 2�=j�j2 ½12�
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The set of reflections {s� j� 2 �} generates a group
G�, known as a Coxeter group, or finite reflection
group. The orbit of 
 2 � is the set of root vectors
resulting from the action of the Coxeter group on
it. The set of positive roots �þ may be defined in
terms of a vector U 2 Rr, with � �U 6¼ 0, 8� 2 �,
as the roots � 2 � such that � �U > 0. Given �þ,
there is a unique set of r simple roots
� = {�j j j = 1, . . . , r} defined such that they span
the root space and the coefficients {aj} in

=

Pr
j = 1 aj�j for 
 2 �þ are all non-negative.

The highest root �h, for which
Pr

j = 1 aj is max-
imal, is then also determined uniquely. The subset
of reflections {s� j� 2 �} in fact generates the
Coxeter group G�. The products of s�, with � 2
�, are subject solely to the relations
(s�s
)

m(�,
) = 1, �,
 2 �. The interpretation is that
s�s
 is a rotation in some plane by 2�=m(�,
). The
set of positive integers m(�,
) (with
m(�,�) = 1, 8� 2 �) uniquely specifies the Coxeter
group. The weight lattice P(�) is defined as the
Z-span of the fundamental weights {�j}, defined by
�_j � �k = �jk,8�j 2 �.

The root systems for finite reflection groups may
be divided into two types: crystallographic and
noncrystallographic. Crystallographic root systems
satisfy the additional condition �_ � 
 2 Z, 8�,
 2 �.
The remaining noncrystallographic root systems are
H3, H4, whose Coxeter groups are the symmetry
groups of the icosahedron and four-dimensional
600-cell, respectively, and the dihedral group of
order 2m, {I2(m)jm � 4}.

The explicit examples of the classical root
systems, that is, A, B, C, and D are given below.
For the exceptional and noncrystallographic root
systems, the reader is referred to Humphrey’s book.
In all cases, {ej} denotes an orthonormal basis in Rr.

1. Ar�1: This root system is related with the Lie
algebra su(r).

�¼ [
1jkr

f
ðej� ekÞg;

Y
¼ [

r�1

j¼1
fej� ejþ1g

½13�

2. Br: This root system is associated with Lie
algebra so(2rþ1). The long roots have
(length)2 =2 and short roots have (length)2 =1:

� ¼ [
1jkr

f
ej 
 ekg [r
j¼1 f
ejg

Y
¼ [

r�1

j¼1
fej � ejþ1g [ ferg

½14�
3. Cr: This root system is associated with Lie
algebra sp(2r). The long roots have (length)2 = 4
and short roots have (length)2 = 2:

� ¼ [
1jkr

f
ej 
 ekg [r
j¼1 f
2ejg

Y
¼ [

r�1

j¼1
fej � ejþ1g [ f2erg

½15�

4. Dr: This root system is associated with Lie
algebra so(2r):

� ¼ [
1jkr

f
ej 
 ekg

Y
¼ [

r�1

j¼1
fej � ejþ1g [ fer�1 þ erg

½16�

See also: Calogero–Moser–Sutherland Systems
of Nonrelativistic and Relativistic Type;
Dynamical Systems in Mathematical Physics:
An Illustration from Water Waves; Functional Equations
and Integrable Systems; Integrable Discrete Systems;
Integrable Systems in Random Matrix Theory; Integrable
Systems: Overview; Isochronous Systems; Toda
Lattices.
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Introduction

Statistical physics deals with systems with many
degrees of freedom and the problems concern finding
procedures for the extraction of relevant physical
quantities for these extremely complex systems. The
idea is to find relevant reduction procedures which
map the complex systems onto simpler, tractable
models at the price of introducing elements of
uncertainty. Therefore, probability theory is a natural
mathematical tool in statistical physics. Since the early
days of statistical physics, in classical (Newtonian)
physical systems, it is natural to model the observables
by a collection of random variables acting on a
probability space. Kolmogorovian probability techni-
ques and results are the main tools in the development
of classical statistical physics. A random variable is
usually considered as a measurable function with
expectation given as its integral with respect to a
probability measure. Alternatively, a random variable
can also be viewed as a multiplication operator by the
associated function. Different random variables com-
mute as multiplication operators, and one speaks of a
commutative probabilistic model.

Now, looking at genuine quantum systems, in
many cases the procedure mentioned above leads to
commutative probabilistic models, but there exist
the realms of physics where quantum noncommuta-
tive probabilistic concepts are unavoidable. Typical
examples of such areas are quantum optics, low-
temperature solid-state physics and ground-state
physics such as quantum field theory. During the
last 50 years physicists have developed more or less
heuristic methods to deal with, for example,
manifestations of fluctuations of typical quantum
nature. In the last 30 years, mathematical founda-
tions of such theories were also formulated, and a
notion of quantum probability was launched as a
branch of mathematical physics and mathematics
(Cushen and Hudson 1971, Fannes and Quaegebeur
1983, Quaegebeur 1984, Hudson 1973, Giri and
von Waldenfels 1978).

The aim of this article is to review briefly a few
selected rigorous results concerning noncommuta-
tive limit theorems. This choice is made not only
because of the author’s interest but also for its close
relation to concrete problems in statistical physics
where one aims at understanding the macroscopic

phenomena on the basis of the microscopic struc-
ture. A precise definition or formulation of a
microscopic and a macroscopic system is of prime
importance. The so-called algebraic approach of
dynamical systems (Brattelli and Robinson 1979 and
2002) offers the necessary generality and mathema-
tical framework to deal with classical and quantum,
microscopic and macroscopic, finite and infinite
systems. The observables of any system are assumed
to be elements of an (C�- or von Neumann) algebra
A, and the physical states are given by positive
linear normalized functionals ! of A, mapping the
observables on their expectation values.

A common physicist’s belief is that the macro-
scopic behavior of an idealized infinite system is
described by a reduced set of macroscopic quantities
(Sewell 1986). Some examples of these are the
average densities of particles, energy, momentum,
magnetic moment, etc. Analogously as the micro-
scopic quantities, the macroscopic observables
should be elements of an algebra, and macroscopic
states of the system should be states on this algebra.
The main problem is to construct the precise
mathematical procedures to go from a given micro-
scopic system to its macroscopic systems.

A well-known macroscopic system is the one
given by the algebra of the observables at infinity
(Lanford and Ruelle 1969) containing the spacial
averages of local micro-observables, that is, for any
local observable A one considers the observable

A! ¼ !� lim
V!1

1

V

Z
V

dx �xA

where V is any finite volume in R� and �x the
translation over x 2 R�, and where ! lim is the
weak operator limit in the microstate !. The limits
A! obtained correspond to the law of large numbers
in probability. The algebra generated by these limit
observables A! = {A! jA2A} is an abelian algebra
of observables of a macroscopic system. This
algebra can be identified with an algebra with
pointwise product of measurable functions for
some measure or macroscopic state.

The content of this review is to describe an
analogous mapping from micro to macro but for a
different type of scaling, namely the scaling of
fluctuations. For any local observable A 2 A, one
considers the limit

lim
V

1

V1=2

Z
V

dx �xA� !ð�xAÞð Þ � FðAÞ

The problem consists in characterizing the F(A) as
an operator on a Hilbert space, called fluctuation
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operator, and to specify the algebraic character of
the set of all of these.

Based on this quantum central-limit theorem, one
notes that not all locally different microscopic
observables always yield different fluctuation opera-
tors. Hence the central-limit theorem realizes a well-
defined procedure of coarse graining or reduction
procedure which is handled by the mathematical
notion of an equivalence relation on the microscopic
observables yielding the same fluctuation operator.

In the following sections we discuss the prelimin-
aries, the basic results about normal and abnormal
fluctuations. Three model-independent applications
are also discussed. In this review, we omit the
properties of the so-called modulated fluctuations.

One should remark that we discuss only fluctua-
tions in space. One can also consider timelike
fluctuations. The theory of fluctuation operators
for these has not been explicitly worked out so far.
However, it is clear that for normal fluctuations the
clustering properties of the time correlation func-
tions will play a crucial role. On the other hand,
typical properties of the structure of this fluctuation
algebra may come up.

Another point which one has to stress is that all
systems, which are treated in this review, are quasilocal
systems. Other systems, for example, fermion systems,
are note treated. But, in particular, fermion systems
share many properties of quasilocality, and many of
the results mentioned hold true also for fermion
systems.

Preliminaries

Quantum Lattice Systems

Although all results we review can be extented to
continuous or more general systems, modulo some
technicalities, we limit ourself to quasilocal quantum
dynamical lattice systems.

We consider the quasilocal algebra built on a
�-dimensional lattice Z� . Let D(Z�) be the directed
set of finite subsets of Z� where the direction is the
inclusion. With each point x 2 Z� we associate an
algebra (C�- or von Neumann algebra) Ax, all copies
of an algebra A. For all � 2 D(Z�), the tensor
product �x2�Ax is denoted by A�. We take A to be
nuclear, then there exists a unique C�-norm on A�.
Every copy Ax is naturally embedded in A�.
The family {A�}�2D(Z� ) has the usual relations of
locality and isotony:

A�1
;A�2

½ � ¼ 0 if �1 \ �2 ¼ ; ½1�

A�1
� A�2

if �1 � �2 ½2�

Denote by AL all local observables, that is,

AL ¼
[
�

A�

This algebra is naturally equipped with a C�-norm
k � k and its closure

B ¼ AL

is called a quasilocal C�-algebra and considered as the
microscopic algebra of observables of the system.
Typical examples are spin systems whereA= Mn is the
n	 n complex matrix algebra. In this case, every state
! of B is then locally normal, that is, there exists a
family of density matrices {�� j� 2 D(Z�)} such that

!ðAÞ ¼ tr ��A for all A2A�

An important group of �-automorphisms of B is the
group of space translations {�x, x 2 Z�}:

�x : Ay 2Ay! �xAy ¼ Axþy 2Ayþx

for all A 2 A.
Note that the quasilocal algebra B is asymptoti-

cally abelian for space translations: that is, for all
A, B 2 B

lim
jxj!1

k½A; �xB�k ¼ 0

A state ! of B represents a physical state of the
system, assigning to every observable A its expecta-
tion value !(A). Therefore, this setting can be viewed
as the quantum analog of the classical probabilistic
setting. Sequences of random variables or observables
can be constructed by considering an observable and
its translates, that is, �x(A)x2Z� is a noncommutative
random field. If a state ! is translation invariant, that
is, ! 
 �x =! for all x, then all �x(A) are identically
distributed random variables. The mixing property of
the random field is then expressed by the spatial
correlations tending to zero:

! �xðAÞ�yðBÞ
� �

� ! �xðAÞð Þ! �yðBÞ
� �

! 0 ½3�

if jx� yj!1.
One of the basic limit theorems of probability theory

is the weak law of large numbers. In this noncommu-
tative setting the law of large numbers is translated into
the problem of the convergence of space averages of an
observable A 2 B. A first result was given by the mean
ergodic theorem of von Neumann (1929). In Brattelli
and Robinson (1979, 2002) one finds the following
theorem: if the state! is space translation invariant and
mixing (see [3]) then for all A, B, and C in B

lim
�!Z�

! A
1

j�j
X
x2�

�xðBÞ
 !

C

 !
¼ !ðACÞ!ðBÞ ½4�
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That is, in the GNS (Gelfand–Naimark–Segal) repre-
sentation of the state !, the sequence S�(B) =
1=j�j

P
x2� �xB converges weakly to a multiple of

the identity: S(B) � !(B)1. This theorem, called the
mean ergodic theorem, characterizes the class of
states yielding a weak law of large numbers. Clearly,
these limits {S(A)jA2B} form a trivial abelian algebra
of macroscopic observables.

Now we go a step further and consider space
fluctuations. Define the local fluctuation of an
observable A in a homogeneous (spatial invariant)
state ! by

F�ðAÞ ¼
1

j�j1=2
X
x2�

�xA� !ðAÞð Þ ½5�

The problem is to give a rigorous meaning to
lim F�(A) for � tending to Z� in the sense of
extending boxes. When does such a limit exist?
What are the properties of the fluctuations or the
limits F(A) = lim F�(A), etc.? Again, the F(A) are
macroscopic variables of the microsystem.

Already we remark the following: if A, B are
strictly local elements, A, B 2 AL, thenX

y2Z�

½A; �yB� 2AL

and an easy computation yields, by [4],

weak lim
�

F�ðAÞ; F�ðBÞ½ �

¼ weak lim
�

1

j�j
X
x2�

�x

X
y2�

½A; �y�xB�
 !

¼ weak lim
�

1

j�j
X
x2�

�x

X
y2Z�

½A; �yB�
 !

¼
X

y2Z�

! ½A; �yB�
� �

� i�ðA;BÞ1

that is, if the F(A) and F(B) limits do exist, then

FðAÞ; FðBÞ½ � ¼ i�ðA;BÞ1 ½6�

This property indicates that fluctuations should have
the same commutation relations as boson fields. If
fluctuations can be characterized as macroscopic
observables, they must satisfy the canonical com-
mutation relations (CCRs). Therefore, in the next
section we introduce the essentials on CCR
representations.

CCR Representations

We present the abstract Weyl CCR C�-algebra.
More details can be found in Brattelli and
Robinson (1979, 2002) and in particular in
Manuceau et al. (1973), where the case of a real

test function space (H,�) with a possibly degen-
erate symplectic form � is treated. Hence, H is a
real vector space and � a bilinear, antisymmetric
form on H.

Denote by W(H,�) the complex vector space
generated by the functions W(f ), f 2H, defined by

Wðf Þ : H!C : g!Wðf Þg

¼
0 if f 6¼ g

1 if f ¼ g

�

W(H,�) becomes an algebra with unit W(0) for the
product

Wðf ÞWðgÞ ¼Wðf þ gÞe�ði=2Þ�ðf ;gÞ; f ; g2H

and a �-algebra for the involution

Wðf Þ!Wðf Þ� ¼Wð�f Þ

It becomes a C�-algebra C�(H,�) following the
construction of Verbeure and Zagrebnov (1992).
A linear functional ! of a C�-algebra C�(H,�) is
called a state if !(I) = 1 and !(A�A) � 0 for all
A2C�(H,�) and I = W(0). Every state gives rise to a
representation through the GNS construction
(Brattelli and Robinson 1979, 2002). In particular,
! is a state if for any choice of A =

P
j cjW(fj) we

have X
jk

cj�ck! Wðfj � fjÞ
� �

e�i�ðfj;fkÞ � 0

! Wð0Þð Þ ¼ 1

A remark about the special case that � is degenerate
is in order. Denote by H0 the kernel of �:

H0 ¼ ff 2Hj�ðf ; gÞ ¼ 0 for all g2Hg

If H = H0 �H1 with �1 a nondegenerate symplectic
form on H1 and �1 equal to the restriction of � to
H1, we have that C�(H,�) is a tensor product:

C�ðH; �Þ ¼ C�ðH0; 0Þ � C�ðH1; �1Þ

Note that C�(H0, 0) is abelian and that each
positive-definite normalized functional ’,

’ : h2H0!’ðWðhÞÞ

defines a state !(W(h)) =’(W(h)) on C�(H0, 0).
Let � be any character of the abelian additive

group H, then the map ��,

��Wðf Þ ¼ �ðf ÞWðf Þ

extends to a �-automorphism of C�(H,�). Let s be a
positive symmetric bilinear form on H such that for
all f , g2H:

1
4 j�ðf ; gÞj

2  sðf ; f Þ sðg; gÞ ½7�
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and let !s, � be the linear functional on C�(H,�)
given by

!s;�ðWðhÞÞ ¼ �ðhÞe�ð1=2Þsðh;hÞ ½8�

then it is straightforward (Brattelli and Robinson
1979, 2002) to check that !s, � is a state on C�(H,�).
All states of the type [8] are called quasifree states
on the CCR algebra C�(H,�).

A state ! of C�(H,�) is called a regular state if, for
all f , g2H, the map � 2 R!!(W(�f þ g)) is con-
tinuous. The regularity property of a state yields the
existence of a Bose field as follows. Let (H,�, �) be
the GNS representation (Brattelli and Robinson
1979, 2002) of the state w, then the regularity of
w implies that there exists a real linear map
b : H!L(H) (linear operators on H) such that
8f 2H: b(f )�= b(f ) and

�ðWðf ÞÞ ¼ exp ibðxÞð Þ

The map b is called the Bose field satisfying the Bose
field commutation relations:

½bðf Þ; bðgÞ� ¼ i�ðf ; gÞ ½9�

Note that the Bose fields are state dependent. Note
also already that if � is a continuous character of H,
then any quasifree state [8] is a regular state
guaranteeing the existence of a Bose field.

Normal Fluctuations

In this section we develop the theory of normal
fluctuations for �-dimensional quantum lattice sys-
tems with a quasilocal structure (see the section
‘‘Quantum lattice systems’’) and for technical simpli-
city we assume that the local C�-algebra Ax, x 2 Z�,
are copies of the matrix algebra Mn(C) of n	 n
complex matrices. Most of the results stated can be
extended to the case where Ax is a general C�-algebra
(Goderis et al. 1989, 1990, Goderis and Vets 1989).

We consider a physical system (B,!) where ! is a
translation-invariant state of B, that is, ! 
 �x =! for
all x 2 Z�. Later on we extend the situation to a
C�-dynamical system (B,!,	t) and analyze the
properties of the dynamics 	t under the central limit.

For any local A we introduced its local fluctuation
in the state ! of the system:

F�ðAÞ ¼
1

j�j1=2
X
x2�

ð�xA� !ðAÞÞ ½10�

The main problem is to give a rigorous mathema-
tical meaning to the limits

lim
�!1

F�ðAÞ � FðAÞ

where the limit is taken for any increasing
Z�-absorbing sequence {�}� of finite volumes of
Z�. The limits F(A) are called the macroscopic
fluctuation operators of the system (B,!).

Already earlier work (Cushen and Hudson 1971,
Sewell 1986) suggested that the fluctuations behave
like bosons. We complete this idea by proving that
one gets a well-defined representation of a CCR C�-
algebra of fluctuations uniquely defined by the
original system (B,!).

Denote by AL, sa and Bsa the real vector space of
the self-adjoint elements of AL, respectively, B.

Definition 1 An observable A 2 Bsa satisfies the
central-limit theorem if

(i) lim
�
!(F�(A)2) � s!(A, A) exists and is finite, and

(ii) lim
�
!(eitF�(A)) = e(�t=2)2s!(A, A) for all t 2 R.

Clearly, our definition coincides with the notion in
terms of characteristic functions, for classical systems (A
abelian) equivalent with the notion of convergence in
distribution. For quantum systems, there does not exist
a standard notion of ‘‘convergence in distribution.’’
Only the concept of expectations is relevant. This does
not exclude the notion of central-limit theorem in terms
of the moments, which is the analog of the moment
problem (Giri and von Waldenfels 1978).

Definition 2 The system (B,!) is said to have
normal fluctuations if ! is translation invariant and if

(i) 8A, B 2 ALX
x2Z�

j!ðA�xBÞ � !ðAÞ!ðBÞj <1

(ii) the central-limit theorem holds for all A 2 AL, sa.

Note that (i) implies that the state ! is mixing for
space translations. Also by (i), one can define a
sesquilinear form on AL:

hA;Bi! ¼ lim
�
! F�ðA�ÞF�ðBÞð Þ

¼
X

!ðA��xBÞ � !ðA�Þ!ðBÞð Þ

and denote

s!ðA;BÞ ¼ RehA;Bi!
�!ðA;BÞ ¼ 2 ImhA;Bi!

For A, B 2 AL, sa one has

�!ðA;BÞ ¼ �i
X

x2Z�

!ð½A; �xB�Þ ½11�

s!ðA;AÞ ¼ hA;Ai! ½12�

Clearly, (AL, sa,�!) is a symplectic space and s! a
non-negative symmetric bilinear form on AL, sa.
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Follo wing the discu ssion in the section ‘‘CCR
repre sentati ons’’ we get a natural CCR C� -algebra
C�(AL, sa,�!) defined on this symplectic space. The
following theorem is an essential step in the
construction of a macroscopic physical system of
fluctuations of the microsystem (B,!).

Theorem 1 If the system (B,!) has normal
fluctuations, then the limits { lim

�
!(eiF�(A)) =

exp ((�1=2)s!(A, A)), A 2 AL} define a quasifree
state !̃ on the CCR C�-algebra C�(AL, sa,�!) by

~!ðWðAÞÞ ¼ exp � 1
2 s!ðA;AÞ

� �
Proof The proof is clear from the definition [8] if
one can prove that the positivity condition [7] holds.
But the latter follows readily from

1
4 j�!ðA;BÞj

2 ¼ lim
�
jIm!ðF�ðAÞF�ðBÞÞj2

 lim
�
!ðF�ðAÞ2Þ!ðF�ðBÞ2Þ

¼ s!ðA;AÞs!ðB;BÞ

by Schwarz inequality. &

This theorem indicates that the quantum-mechan-
ical alternative for (classical) Gaussian measures are
quasifree states on CCR algebras. However, the
following basic question arises: is it possible to take
the limits of products of the form

lim
�
! eiF�ðAÞeiF�ðBÞ � � �
� �

and, if they exist, do they preserve the CCR
structure? Clearly, this is a typical noncommutative
problem.

Using the following general bounds: for C�= C
and D�= D norm-bounded operators one has

eiðCþDÞ � eiC
�� ��  kDk
½eiC; eiD�
�� ��  k½C;D�k
eiðCþDÞ � eiCeiD
�� ��  1

2 k½C;D�k

and by the expansion of the exponential function
one proves easily that

lim
�

eiF�ðAÞeiF�ðBÞ � eiðF�ðAÞþF�ðBÞÞ
��
	 e�ð1=2Þ½F�ðAÞ;F�ðBÞ�

�� ¼ 0 ½13�

if A and B are one-point observables, that is, if A, B 2
A{0}. For general local elements the proof is some-
what more technical and can be based on a Bernstein-
like argument (for details see Goderis and Vets
(1989)). The property [13] can be seen as a
Baker–Campbell–Hausdorff formula for fluctuations.

From [13], the mean ergodic theorem, and Theorem
1 we get:

Theorem 2 If the system (B,!) has normal
fluctuations then for A, B 2 AL, sa:

lim
�
! eiF�ðAÞeiF�ðBÞ
� �

¼ exp � 1

2
s!ðAþ B;Aþ BÞ � i

2
�!ðA;BÞ

� �
¼ ~!ðWðAÞWðBÞÞ

with !̃ a quasifree state on the CCR algebra C�(A�!L, sa).

Theorems 1 and 2 describe completely the
topological and analytical aspects of the quantum
central-limit theorem under the condition of normal
fluctuations (Definition 2). In fact, the quantum
central limit yields, for every microphysical system
(B,!), a macrophysical system (C�(AL, sa,�!), !̃)
defined by the CCR C�-algebra of fluctuation
observables C�(AL, sa,�!) in the representation
defined by the quasifree state !̃. As the state !̃ is a
quasifree state, it is a regular state, that is, the map
� 2 R ! !̃( W ( � A þ B )) is contin uous. From in sec-
tion ‘‘C CR repre senta tions’’ we know that this
regularity property yields the existence of a Bose
field, that is, there exists a real linear map

F : A2AL;sa! FðAÞ

where F(A) is a self-adjoint operator on the GNS
representation space ~H of !̃, such that for all
A, B 2 AL, sa:

½FðAÞ; FðBÞ� ¼ i�!ðA;BÞ

Moreover, if one has a complex structure J on
(AL, sa,�!) such that J2 =�1 and for all A, B 2 AL, sa:

�!ðJA;BÞ ¼ ��!ðA; JBÞ
�!ðA; JBÞ > 0

then one defines the boson creation and annihilation
operators

F�ðAÞ ¼ 1ffiffiffi
2
p ðFðAÞ � iFðJAÞÞ

satisfying the usual boson commutation relations

½F�ðAÞ; FþðBÞ� ¼ �!ðA; JBÞ þ i�!ðA;BÞ

Finally, it is straightforward, nevertheless impor-
tant, to remark that Theorems 1 and 2 hold true if
the linear space of local observables AL, sa is replaced
by any of its subspaces. Some of them can have
greater physical importance than others. This means
that the quantum central-limit theorems can realize
several macrophysical systems of fluctuations. But
all of them are Bose field systems.
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It is also important to remark that these results
end up in giving a probabilistic canonical basis of
the canonical commutation relations.

Now we analyze the notion of coarse graining due
to the quantum central limit. Consider on AL the
sesquilinear form (see [11], [12]) again

hA;Bi! ¼
X

x2Z�

ð!ðA��xBÞ � !ðAÞ!ðBÞÞ

¼ s!ðA;BÞ þ i�!ðA;BÞ ½14�

This form defines a topology on AL which is not
comparable with the operator topologies induced by
!. In fact, this form is not closable in the weak,
strong, ultraweak, or ultrastrong operator topologies.

We call A and B in AL equivalent, denoted by
A � B if hA� B, A� Bi! = 0. Clearly, this defines
an equivalence relation on AL. The property of
coarse graining is mathematically characterized by
the following: for all A, B 2 AL, sa the relation A � B
is equivalent with F(A) = F(B). Suppose first that
F(A) = F(B), then

½WðAÞ;WðBÞ� ¼ 0

hence �!(A, B) = 0. Therefore, from Theorem 1:

1 ¼ ~!ðWðAÞWðBÞ�Þ ¼ ~!ðWðAÞWð�BÞÞ
¼ ~!ðWðA� BÞÞ ¼ exp � 1

2 s!ðA� B;A� BÞ
� �

and from [12] and [14]: hA� B, A� Bi! = 0. The
converse is equally straightforward.

From this property, it follows immediately that, for
example, the action of the translation group is trivial
or that F(�xA) = F(A) for all x 2 Z�. Therefore, the
map F :AL, sa!C�(AL, sa,�!) is not injective. This
expresses the physical phenomenon of coarse graining
and gives a mathematical signification of the fluctua-
tions being macroscopic observables.

In the above, we have constructed the new
macroscopic physical system of quantum fluctua-
tions for any microsystem with the property of
normal fluctuations (see Definition 2). The main
problem remains: when the microsystem does have
normal fluctuations. We end this section with the
formulation of a general sufficient clustering condi-
tion for the microstate ! in order that the micro-
system (B,!) has normal fluctuations.

Let �, �0 2 D(Z�) and ! a translation invariant
state, denote

	!ð�;�0Þ ¼ sup
A2A�;kAk¼1

B2A
�0 ;kBk¼1

j!ðABÞ � !ðAÞ!ðBÞj

The cluster function 	!N(d) is defined by

	!NðdÞ¼ sup 	!ð�;�0Þ : dð�;�0Þ � d andf
maxðj�j; j�0jÞ  Ng

where N, d 2 Rþ and d(�, �0) is the Euclidean
distance between � and �0. It is obvious that

	!NðdÞ  	!Nðd0Þ if d � d0

	!NðdÞ  	!N0 ðdÞ if N  N0

The clustering condition is expressed by the follow-
ing scaling law:

9
 > 0 : lim
N!1

N1=2	!N N1=2��

� �

¼ 0 ½15�

or, equivalently,

9
 > 0 : lim
N!1

N�þ
	!N2ð�þ
Þ ðNÞ ¼ 0 ½16�

Note that this condition implies thatX
x2Z�

	!NðjxjÞ <1

that is, that the function 	!N( � ) is an L1(Z�)-
function for all N. In fact, this condition corre-
sponds to the uniform mixing condition in the
commutative (classical) central-limit theorem (see,
e.g., Ibragimov and Linnick (1971)). This condition
can also be called the modulus of decoupling.
Product states, for example, equilibrium states of
mean-field systems are uniformly clustering with
	!(d) = 0 for d > 0.

The normality of the fluctuations of the micro-
system (B,!) for product states is proved and
extensively studied in Goderis et al. (1989), and for
states satisfying the condition [15] or [16] in Goderis
and Vets (1989). In the latter case, the proofs are
very technical and based on a generalization of the
well-known Bernstein argument (Ibragimov and
Linnick 1971) of the classical central-limit theorem
to the noncommutative situation. A refinement of
these arguments can be found in Goderis et al.
(1990). For the sake of formal self-consistency we
formulate the theorem:

Theorem 3 (Central-limit theorem) Take the micro-
system (B,!) such that ! is lattice translation invariant
and satisfies the clustering condition [15]; then the
system has normal fluctuations for all elements of the
vector space of local observables AL, sa. &

In Goldshtein (1982) a noncommutative central-
limit theorem is derived using similar techniques.
The main difference, however, is its strictly local
character, namely for one local operator separately.
The conditions depend on the spectral properties of
the operator. It excludes a global approach resulting
in a CCR algebra structure.

Even for quantum lattice systems, it is not
straightforward to check whether a state satisfies
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the degree of mixing as expressed in conditions
[15]–[16]. Clearly, one expects the condition to hold
for equilibrium states at high enough temperatures.
For quantum spin chains, a theorem analogous with
Theorem 3 under weaker conditions than [15] is
proved for example, in Matsui (2003).

So far we have reviewed the quantum central-limit
theorem for physical C�-spin systems (B,!) with
normal fluctuations.

Now we extend the physical system to a
C�-dynamical system (B,!,	t) (Brattelli and Robinson
1979, 2002) and we investigate the properties of the
dynamics 	t under the central limit. As usual, the
dynamics is supposed to be of the short-range type in
order to guarantee the norm limit:

	tð�Þ ¼ n� lim
�

eitH� � e�itH�

and space homogeneous 	t � �x = �x � 	t, 8t 2 R, 8x 2
Z�. We suppose that the state ! is both space as
time translation invariant. Moreover, we assume
that the state ! satisfies the mixing condition [15]
for normal fluctuations.

In [10] we defined, for every local A 2 AL, sa, the
local fluctuation F�(A) and obtained a clear meaning
of F(A) = lim� F�(A) from the central-limit theorem.
Now we are interested in the dynamics of the
fluctuations F(A). Clearly, for all A 2 AL, sa and all
finite �:

	tF�ðAÞ ¼ F�ð	tAÞ ½17�

and one is tempted to define the dynamics ~	t of the
fluctuations in the �-limit by the formula

~	tFðAÞ ¼ Fð	tAÞ ½18�

Note, however, that in general 	tA is not a local
element of AL, sa. It is unclear whether the central
limit of elements of the type 	tA, with A 2 AL, sa

exists or not and hence whether one can give a
meaning to F(	tA). Moreover, if F(	tA) exists, it
remains to prove that (~	t)t defines a weakly
continuous group of �-automorphisms on the fluc-
tuation CCR algebra ~M= C�(AL, sa,�!)00 (the von
Neumann algebra generated by the !̃-representation
of C�(AL, sa,�!)). All this needs a proof. In Goderis
et al. (1990), one finds the proof of the following
basic theorem about the dynamics.

Theorem 4 Under the conditions on the dynamics
	t and on the state ! expressed above, the limit
F(	tA) = lim� F�(	tA) exists as a central limit as in
Theorem 2, and the maps ~	t defined by [18] extend
to a weakly continuous one-parameter group of
�-automorphisms of the von Neumann algebra ~M.
The quasifree state !̃ is ~	t-invariant (time invariant).

This theorem yields the existence of a dynamics ~	t

on the fluctuations algebra and shows that it is of
the quasifree type

~	tFðAÞ ¼ Fð	tAÞ

where F(A) is a representation of a Bose field in a
quasifree state ~!, the noncommutative version of a
Gaussian distribution. In physical terms, it also
means that any microdynamics 	t induces a linear
process on the level of its fluctuations.

We can conclude that on the basis of the
Theorems 3 and 4 the quantum central-limit
theorem realized a map from the microdynamical
system (B,!,	t) to a macrodynamical system
(C�(AL, sa,�!), !̃, ~	t) of the quantum fluctuations.
The latter system is a quasifree Boson system.

Note that, contrary to the central-limit theorem,
the law of large numbers [4] maps local observables
to their averages forming a trivial commutative
algebra of macro-observables. The macrodynamics
is mapped to a trivial dynamics as well. Therefore,
the consideration of law of large numbers does not
allow one to observe genuine quantum phenomena.
On the other hand, on the level of the fluctuations,
macroscopic quantum phenomena are observable.

Abnormal Fluctuations

The results about normal fluctuations in the last
section contain two essential elements. On the one
hand, the central limit has to exist. The condition in
order that this occurs is the validity of the cluster
condition ([15] or [16]) guaranteeing the normality
of the fluctuations. On the other hand, there is the
reconstruction theorem, identifying the CCR algebra
representation of the fluctuation observables or
operators in the quasifree state, which is denoted
by !̃.

The cluster condition is in general not satisfied for
systems with long-range correlations, for example,
for equilibrium states at low temperatures with
phase transitions. It is a challenging question to also
study in this case the existence of fluctuations
operators and, if they exist, to study their mathe-
matical structure. Here we detect structures other
than the CCR structure, other states or distributions
different from quasifree states, etc.

Progress in the elucidation of all these questions
started with a detailed study of abnormal fluctua-
tions in the harmonic and anharmonic crystal
models (Verbeure and Zagrebnov 1992, Momont
et al. 1997). More general Lie algebras are obtained
than the Heisenberg Lie algebra of the CCR algebra,
and more general states !̃ or quantum distributions
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are computed beyond quasifree states, which is the
case for normal fluctuations.

Abnormal fluctuations turn up, if one has an
ergodic state ! with long-range correlations. We
have in mind continuous (second-order) phase
transitions, then typically, for example, the heat
capacity or some more general susceptibilities
diverge at critical points or lines. This means that
normally scaled (with the factor j�j�1=2) fluctuations
of some observables diverge. This is equivalent with
the divergence of sums of the typeX

x2Z�

ð!ðA�xAÞ � !ðAÞ2Þ

for some local observable A.
In order to deal with these situations, we rescale

the local fluctuations. One determines a scaling
index 
A 2 (�1=2, 1=2), depending on the observa-
ble A, such that the abnormally scaled local
fluctuations

F
A

� ¼ j�j
�
AF�ðAÞ

with F�(A) as in [10], yield a nontrivial character-
istic function: 8t 2 R,

lim
�
!�ðeitF


A
�
ðAÞÞ � �AðtÞ ½19�

where we limit our discussion to states !� local
Gibbs states. The index 
A is a measure for the
abnormality of the fluctuation of A. Note that

A =�1=2 yields a triviality and that 
A = 1=2
would lead to a law of large numbers (theory of
averages). Observe also that in general the char-
acteristic function �A or the corresponding state !̃
need not be Gaussian or quasifree.

In the physics literature, one describes the long-
range order by means of the asymptotic form of the
connected two-point function in terms of the critical
exponent �

!�ða�xAÞ � !�ðAÞ2 ’ 0
1

jxj��2þ�

 !
; jxj!1 ½20�

Our scaling index 
A is related to the critical
exponent � by the straightforward relation

� ¼ 2� 2�
A

As stated above, the index 
A is determined by the
existence of the central limit and explicitly com-
puted in several model calculations, for example,
Verbeure and Zagrebnov (1992), and for equili-
brium states. Apart from the strong model depen-
dence, the indices also depend strongly on the
chosen boundary conditions. This fact draws a new
light on the universality of the critical exponents.

Suppose now that the indices 
A are determined
by the existence of the central limit [19]. The next
problem is to find out whether also in these cases a
reconstruction theorem, comparable to, for exam-
ple, Theorem 2, can be proved giving again a
mathematical meaning to the limits

lim
�

F
A

� ðAÞ � F
AðAÞ ½21�

as operators, in general unbounded, on a Hilbert space.
Here we develop a proof of the Lie algebra

character of the abnormal fluctuations under the
conditions: (1) the 
-indices are determined by the
existence of the variances (second moments), and
(2) the existence of the third moments (for more
details see, e.g., Momont et al. (1997)).

Consider a local algebra, namely an n-dimensional
vector space G with basis {vi}i = 1,..., n and product

vj � vk � ½vj; vk� ¼
Xn

‘¼1

c‘jkv‘ ½22�

with structure constants c‘jk satisfying

c‘jk þ c‘kj ¼ 0X
r

ðcr
ijc

s
rk þ cr

jkcs
ri þ cr

kic
s
rjÞ ¼ 0

Consider the concrete Lie algebra basis of operators
in A{0}

fL0 ¼ i1;L1; . . . ;Lmg; m <1

such that L�j =�Lj, j = 0, 1, . . . , m and !(Lj) =
lim�!�(Lj) = 0 for j > 0. Clearly, !�(L0) = i for all
�, and the {Li} satisfy eqn [22]. Because of the
special choices of L0 one has c‘ok = c‘ko = 0 and
co

jk =�i lim�!�([Lj, Lk]). We consider now the
fluctuations of these generators and we are looking
for a characterization of the Lie algebra of the
fluctuations if any.

For a translation-invariant local state !�, � � Z�,
such that != lim� !� is mixing, define the local
fluctuations, for j = 1, . . . , m,

F

j

j ;� ¼
1

j�j1=2þ
j

X
x2�

�xLj � !�ðLjÞ
� �

½23�

and for notational convenience, take

F0;� ¼ i1

Now we formulate the conditions for our purposes.

Condition A We assume that the parameters 
j are
determined by the existence of the finite and
nontrivial variances: for all j = 1, . . . , m,

0 < lim
�
!� ðF
j

j;�Þ
2

� �
<1 ½24�
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After reordering, take 1=2 > 
1 � 
2 � � � � � 
m >
�1=2.

Condition B Assume that all third moments are
finite, that is,

lim
�
!� F


j

j;�F
k

k;�F
‘‘;�

� �


 


 <1
We have in mind, that the !�’s are Gibbs states

for some local Hamiltonians with some specific
boundary conditions. The limit �!Z� may depend
very strongly on these boundary conditions, in the
sense that they are visible in the values of the
indices 
j (see, e.g., Verbeure and Zagrebnov
(1992)). If for some j � 1, the corresponding 
j = 0
then the operator Lj has a normal fluctuation
operator

F

j

j ¼ lim
�

F

j

j;� ½25�

where the limit is understood in the sense of
Condition A, namely a finite nontrivial variance. If,
for some j � 1, the corresponding 
j 6¼ 0, then the
fluctuation [25] is called an abnormal fluctuation
operator. In order to satisfy Condition A, it happens
sometimes that 
j has to be chosen negative (see,
e.g., Verbeure and Zagrebnov (1992)). In this case,
it is reasonable to limit our discussion to the
situation that all 
j > �1=2.

On the basis of Condition A, the limit set
{F


j

j }j = 0,..., m of fluctuation operators generates a
Hilbert space H with scalar product

F

j

j ; F

k

k

� �
¼ lim

�
!� ðF
j

j;�Þ
�F
k

k;�

� �
½26�

On the basis of Condition B, the fluctuation
operators are defined as multiplication operators of
the Hilbert space H. Note that the Conditions A and
B are not sufficient to obtain a characteristic
function. However, they are sufficient to obtain the
notion of fluctuation operator. Now we proceed to
clarify the Lie algebra character of these fluctuation
operators on H.

Consider the Lie product of two local fluctuations
for a finite �, one gets

F

j

j;�; F

k

k;�

h i
¼
Xm
‘¼0

c‘jkð�ÞF

‘
‘;� ½27�

with

c‘jkð�Þ ¼
c‘jk

j�j1=2þ
jþ
k�
‘
; ‘ ¼ 1; . . . ; m

c0
jkð�Þ ¼ j�j

�
j�
k
Xm
‘¼0

c‘jk!�ðF
�

‘;�Þ

It is an easy exercise to check that the {c‘jk(�)} are the
structure coefficients of a Lie algebra G(�). Hence,
by considering local fluctuations, one constructs a
map from the Lie algebra G onto the Lie algebra
G(�) by a nontrivial change of the structure
constants. When the transformed structure constants
approach a well-defined limit, a new nonisomorphic
Lie algebra might appear. The limit algebra G(Z�),
called the contracted one of the original one G is
always nonsemisimple. This contraction is a typical
Inönü–Wigner contraction (Inönü and Wigner
1953). About the limit algebra G(Z�), the following
results are obtained (see Momont et al. (1997)):

lim
�

c‘jkð�Þ ¼
0 if 1

2þ 
j þ 
k � 
‘ > 0
c‘jk if . . . . . . . . . . . . . . . ¼ 0

0 if . . . . . . . . . . . . . . . < 0

8<
: ½28�

It is interesting to distinguish a number of special
cases:

1. If all fluctuations are normal, one recovers the
Heisenberg algebra of the canonical commuta-
tion relations with the right symplectic form �!.

2. If 1=2þ 
j þ 
k � 
‘ > 0 for all j, k, ‘ one obtains
an abelian Lie algebra of fluctuations.

3. One gets the richest structure if 1=2þ 
j þ 
k �

‘ = 0 for all j, k, ‘ or for some of them. One
notes a phenomenon of scale invariance, the
c‘jk(�) are �-independent. Algebras different from
the CCR algebra are observed. A particularly
interesting case turns up if 
j =�
k 6¼ 0, that is,
one of the indices is negative, for example, 
j < 0,
the corresponding fluctuation F


j

j shows a prop-
erty of space squeezing, and then 
k > 0, the
fluctuation F
k

k expresses the property of space
dilation. These phenomena are observed and
computed in several models (see, e.g., Verbeure
and Zagrebnov (1992)). This yields in particular
a microscopic explanation of the phenomenon of
squeezing (squeezed states and all that) in
quantum optics. We refer also to the section
‘‘Spont aneous symm etry breaking’’ for this phe-
nomenon as being the basis of the construction of
the Goldstone normal modes of the Goldstone
particle appearing in systems showing sponta-
neous symmetry breakdown.

Some Applications

The notion of fluctuation operator as presented
above, and the mathematical structure of the algebra
of fluctuations have been tested in several soluble
models. Many applications of this theory of quan-
tum fluctuations can be found in the list of
references. Here we are not entering into the details
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of any model, but we limit ourselves to mention
three applications which are of a general nature and
totally model independent.

Conservation of the KMS Property under
the Transition from Micro to Macro

Suppose that we start with a micro-dynamical
system (B,!,	t) with normal fluctuations, that is,
we are in the situation as treated in the section
‘‘No rmal fluctuat ions.’’ Hence, we know that the
quantum central-limit theorem maps the system
(B,!,	t) onto the macrodynamical system
(C�(AL, sa,�!), !̃, ~	t) of quantum fluctuations.

If the microstate ! is 	t-time invariant (! � 	t =!
for all t 2 R), then it also follows readily that the
macrostate !̃ is ~	t-time invariant (see Theorem 4,
i.e., !̃ � ~	t = !̃ for all t 2 R).

A less trivial question to pose is: suppose that the
microstate ! is an equilibrium state for the micro-
dynamics 	t, is then the macrostate !̃ also an
equilibrium state for the macrodynamics ~	t of the
fluctuations? In Goderis et al. (1990) this question is
answered positively in the following more technical
sense: if ! is an 	t-KMS state of B at inverse
temperature , then !̃ is an ~	t-KMS state at the
same temperature.

This property proves that the notion of equili-
brium is preserved under the operation of coarse
graining induced by the central-limit theorem. This
statement constitutes a proof of one of the
basic assumptions of the phenomenological theory
of Onsager about small oscillations around
equilibrium.

This result also yields a contribution to the
discussion whether or not quantum systems should
be described at a macroscopic level by classical
observables. The result above states that the macro-
scopic fluctuation observables behave classically if
and only if they are time invariant. In other words, it
can only be expected a priori that conserved
quantities behave classically. In principle, other
observables follow a quantum dynamics.

Linear Response Theory

In particular, in the study of equilibrium states
(KMS states) a standard procedure is to perturb the
system and to study the response of the system as a
function of the perturbation. The response eluci-
dates many, if not all, of the properties of the
equilibrium state.

Technically, one considers a perturbation of the
dynamics by adding a term to the Hamiltonian. One
expands the perturbed dynamics in terms of the
perturbation and the unperturbed dynamics. It is

often argued that when the perturbation is small,
one can limit the study of the response to the first-
order term in the perturbation in the corresponding
Dyson expansion. This is the basis of what is called
the ‘‘linear response theory of Kubo.’’

A long-term debate is going on about the validity
of the linear response theory. The question is how to
understand from a microscopic point of view the
validity of the response theory being linear or not.
One must realize that the linear response theory
actually observed in macroscopic systems seems to
have a significant range of validity beyond the
criticism being expressed about it.

Here we discuss the main result of the paper
(Goderis et al. 1991) in which contours are sketched
for the exactness of the response being linear.

We assume:

1. that the microdynamics 	t is the norm-limit of
the local dynamics 	�

t = eitH� � e�itH� , where H�

contains only standard finite-range interactions
(as in the sect ion ‘‘No rmal fluc tuations’’);

2. that the !� are states such that != lim� !� is a
state which is time and space translation invar-
iant; and

3. that ! satisfies the cluster condition [15] or [16].

From the time invariance of the state, one has a
Hamiltonian GNS representation of the dynamics:
	t = eitH � e�itH. On the basis of Theorem 4, one has
the dynamics ~	t of the fluctuation algebra
C�(AL, sa,�!) in the state !̃. This GNS representation
yields a Hamiltonian representation for ~	t:

~	t ¼ eit ~H � e�it ~H

Now take any local perturbation P 2 AL, sa of 	t,
namely

	P
t;� ¼ eitðHþF�ðPÞÞ � e�itðHþF�ðPÞÞ

where F�(P) is the local fluctuation of P in !. Then
one proves the following central-limit theorem
(Goderis et al. 1991): for all A and B in AL, sa, one
has the perturbed dynamics

~	P
t ¼ eitð ~HþFðPÞÞ � e�itð ~HþFðPÞÞ

of the fluctuation algebra in the sense of [18]:

~	P
t FðAÞ ¼ lim

�
Fð	P

t;�ðAÞÞ

This proves the existence and the explicit form of
the perturbed dynamics lifted to the level of the
fluctuations. In particular, one has

lim
�
!� 	P

t;�ðF�ðAÞÞ
� �

¼ ~!ð~	P
t FðAÞÞ
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This is nothing but the existence of the relaxation
function of Kubo but lifted to the level of the
fluctuations and instead of dealing with strictly local
observables here one considers fluctuations.

Assume, furthermore, that the state ! is an (	t,)-
KMS state; then one derives readily Kubo’s famous
formula of his linear response theory:

d

dt
~!ð~	P

t FðAÞÞ ¼ i~! ½FðPÞ; ~	tFðAÞ�ð Þ

which shows full linearity in the perturbation
observable P. Kubo’s formula arises as the central
limit of the microscopic response to the dynamics
perturbed by a fluctuation observable. We remark
that if ! is an equilibrium state, then the right-hand
side of the formula above can be expressed in terms
of the Duhamel two-point function, which is the
common way of doing in linear response theory.

Spontaneous Symmetry Breaking

SSB is one of the basic phenomena accompanying
collective phenomena, such as phase transitions in
statistical mechanics, or specific ground states in
field theory. SSB goes back to the Goldstone
theorem. There are many different situations to
consider, for example, in the case of short-range
interactions, it is typical that SSB yields a
dynamics which remains symmetric, whereas for
long-range interactions SSB also breaks the sym-
metry of the dynamics. However, in all cases the
physics literature predicts the appearance of a
particular particle, namely the Goldstone boson, to
appear as a result of SSB. The theory of fluctua-
tion operators allows the construction of the
canonical coordinates of this particle. The most
general result can be found in Michoel and
Verbeure (2001). We sketch the essentials in two
cases, namely for systems of long-range interac-
tions (mean fields) and for systems with short-
range interactions.

Long-range (mean-field) interactions Here we give
explicitly the example of the strong-coupling BCS
model in one dimension (�= 1). The microscopic
algebra of observables is B=�i (M2)i, where M2 is
the algebra of 2	 2 complex matrices. The local
Hamiltonian of the models is given by

HN ¼ �
XN

i¼�N

�z
i �

1

2N þ 1

XN
i;j¼�N

�þi �
�
j

0 < � < 1
2

where �z,�� are the usual 2	 2 Pauli matrices. In
the thermodynamic limit, the KMS equation has the

following product state solutions: !� = �i tr��,
where

��¼
e�h�

tr e�h�
; � ¼ tr ���

� ¼!�ð��Þ

h�¼ ��z � ��þ � ���

Note that �= tr���
� is a nonlinear equation for �

whose solutions determine the density matrix ��.
This equation always has the solution �= 0,
describing the so-called normal phase. For  > c,
with thc�= 2�, one has a solution � 6¼ 0, describing
the superconducting phase. Remark that if � is a
solution, then also �ei� for all � is a solution as
well. It is clear that HN is invariant under the
continuous gauge transformation automorphism
group G= {�’ j’ 2 [0, 2�]} of B:

�’ð�þi Þ ¼ e�i’�þi

Hence G is a symmetry group. On the other hand:
!�(�’(�þi )) = e�i’!�(�

þ
i ) 6¼ !�(�þi ). The gauge group

G is spontaneously broken. Remark also that the
gauge transformations are implemented locally by
the charges

QN ¼
XN

j¼�N

�z
i ; i:e:; �’ð�þi Þ ¼ e�i’QN�þi ei’QN

and �z is the symmetry generator density. As the
states !� are product states, all fluctuations are
normal (see the section ‘‘N ormal fluc tuations’’). One
considers the local operators

Q ¼ j�j
2

�2
�z þ �

�2
ð��þ þ ���Þ

P ¼ i

�
ð��þ � ���Þ

where �= (�2 þ j�j2)1=2. Note that P is essentially
the order parameter operator, that is, the operator P
is breaking the symmetry:

d

d’
!�ð�’ðAÞÞ 6¼ 0; !�ðAÞ ¼ 0

On the other hand, Q is essentially the generator of
the symmetry �z normalized to zero, that is,
!�(Q) = 0.

Michoel and Verbeure (2001) proved in detail
that the fluctuations F(Q) and F(P) form a
canonical pair

½FðQÞ; FðPÞ� ¼ i
4j�j2

�

and that they behave, under the time evolution, as
harmonic oscillator coordinates oscillating with a
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frequency equal to 2�. This frequency is called a
plasmon frequency. Moreover, the variances are

~!�ðFðQÞ2Þ ¼
j�j2

�2
¼ ~!�ðFðPÞ2Þ

This means that these coordinates vanish or dis-
appear if �= 0. The coordinates F(Q) and F(P) are
the canonical coordinates of a particle appearing
only if there is spontaneous symmetry breakdown.
They are the canonical coordinates of the Goldstone
boson, which arise if SSB occurs.

Short-range interactions An analogous result, as
for long-range interactions, can be derived for
systems with short-range interactions. However, in
this case we have equilibrium states with poor
cluster properties. We are now in the situation as
descr ibed in the ‘‘Abno rmal Fluct uations’’ sect ion.
Also in this case we have the phenomenon of SSB,
which shows the appearance of a Goldstone particle.
Also in this case one is able to construct its
canonical coordinates. The details of this construc-
tion can be found in Michoel and Verbeure (2001).
Here we give a heuristic picture of this construction.

Consider again a microsystem (B,!,	t) and let �s

be a strongly continuous one-parameter symmetry
group of 	t which is locally generated by
Q� =

P
x2� qx. SSB amounts to find an equilibrium

(KMS) or ground state ! which breaks the symme-
try, that is, there exists a local observable A 2 AL, sa

such that for s 6¼ 0 holds: !(�s(A)) 6¼ !(A) and
	t�s = �s	t. This is equivalent to

d

ds
!ð�sðAÞÞ






s¼0

¼ lim
�
!ð½Q�;A�Þ ¼ c 6¼ 0

with c a constant.
Now we turn this equation into a relation for

fluctuations. Using space translation invariance of
the state, one gets

lim
�

1

j�j!
X
x2�

ðqx � !ðqÞÞ
X
y2�

ð�xA� !ðAÞÞ
" # !

¼ c

We now use another consequence of the Gold-
stone theorem, namely that SSB implies poor
clustering properties for the order parameter A,
that is, in the line of what is done in the last
section, we assume that the lack of clustering is
expressed by the existence of a positive index 

such that

lim
�
!

1

j�j1þ2


X
x2�

ð�xA� !ðAÞÞ
 !2

0
@

1
A

is nontrivial and finite. This means that the fluctua-
tion F
(A) exists. Then we get

lim
�
!

1

j�j1=2�

X
x2�

ðqx � !ðqÞÞ;
" 

1

j�j1=2þ

X
y2�

ð�xA� !ðAÞÞ
#!
¼ c

Hence

~! F�
ðqÞ; F
ðAÞ
� �� �

¼ c

which for equilibrium states !, turns into the
operator equation for fluctuations

½F�
ðqÞ; F
ðAÞ�¼ c1

In other words, one obtains a canonical pair
(F�
(q), F
(A)) of normal coordinates of the collec-
tive Goldstone mode.

Note that the long-range correlation of the
order-parameter operator (positive 
) is exactly
compensated by a squeezing, described by the
negative index �
, for the fluctuation operator of
the local generator of the broken symmetry. This
result can also be expressed as typical for SSB,
namely that the symmetry is not completely
broken, but only partially. More detailed informa-
tion about all this is found in Michoel and
Verbeure (2001).

See also: Algebraic Approach to Quantum Field Theory;
Large Deviations in Equilibrium Statistical Mechanics;
Macroscopic Fluctuations and Thermodynamic
Functionals; Quantum Phase Transitions; Quantum
Spin Systems; Symmetry Breaking in Field Theory;
Tomita–Takesaki Modular Theory.
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The Definition

A numerical measure of the ability of a classical or
quantum information processing system (for definite-
ness, one speaks of a communication channel) to
transmit information expressible as a text message
(called ‘‘classical information’’ as distinct from quan-
tum information). It is equal to the least upper bound
for rates of the asymptotically perfect transmission of
classical information through the system, when the
transmission time tends to infinity, and arbitrary pre-
and post-processing (encoding and decoding) are
allowed at the input and the output of the system.
Typically, for rates exceeding the capacity, not only
the asymptotically perfect transmission is impossible,
but the error probability with arbitrary encoding–
decoding scheme tends to 1, so that the capacity has a
nature of a threshold parameter.

From Classical to Quantum
Information Theory

A central result of the classical information theory is
the Shannon coding theorem, giving an explicit
expression to the capacity in terms of the maximal
mutual information between the input and the
output of the channel. The issue of the information
capacity of quantum communication channels arose

soon after the publication of the pioneering papers
by Shannon and goes back to the classical works of
Gabor, Brillouin, and Gordon, asking for funda-
mental physical limits on the rate and quality of
information transmission. This work laid a physical
foundation and raised the question of consistent
quantum treatment of the problem. Important steps
in this direction were made in the early 1970s when
a quantum probabilistic framework for this type
of problem was created and the conjectured upper
bound for the classical capacity of quantum
channel was proved. A long journey to the quantum
coding theorem culminated in 1996 with the
proof of achievability of the upper bound
(the Holevo–Schumacher–Westmoreland theorem;
see Holevo (1998) for a detailed historical survey).
Moreover, it was realized that quantum channel is
characterized by the whole spectrum of capacities
depending on the nature of the information resources
and the specific protocols used for the transmission.
To a great extent, this progress was stimulated by an
interplay between the quantum communication theory
and quantum information ideas related to more recent
development in quantum computing. This new age of
quantum information science is characterized by
emphasis on the new possibilities (rather than restric-
tions) opened by the quantum nature of the informa-
tion processing agent. On the other hand, the question
of information capacity is important for the theory of
quantum computer, particularly in connection with
quantum error-correcting codes, communication and
algorithmic complexity, and a number of other
important issues.
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The Quantum Coding Theorem

In the simplest and most basic memoryless case, the
information processing system is described by the
sequence of block channels,

��n ¼ �� � � � � �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

; n ¼ 1; . . .

of n parallel and independent uses of a channel �, n
playing the role of transmission time (Holevo 1998).
More generally, one can consider memory channels
given by open dynamical systems with a kind of
ergodic behavior and the limit where the transmission
time goes to infinity (Kretschmann and Werner 2005).

Restricting to the memoryless case, encoding is given
by a mapping of classical messages x from a given
codebook of size N into states (density operators) �(n)

x

in the input space H�n
1 of the block channel ��n, and

decoding – by an observable M(n) in the output space
H�n

2 , that is, a family {M(n)
y } of operators constituting a

resolution of the identity in H�n
2 :

MðnÞ
y � 0;

X
y

MðnÞy ¼ I

Here y plays the role of outcomes of the whole
decoding procedure involving both the quantum
measurement at the output and the possible classical
information post-processing. Then the diagram for
the classical information transmission is

x! �
ðnÞ
i|{z}

input
state

! ��n½�ðnÞx �|fflfflfflfflffl{zfflfflfflfflffl}
output
state

!M
ðnÞ

y

The such-described encoding and decoding consti-
tute a quantum block code of length n and size N
for the memoryless channel. The conditional prob-
ability of obtaining an outcome y provided the
message x was sent for a chosen block code is given
by the statistical formula

pðnÞðyjxÞ ¼ tr ��n½�ðnÞx �MðnÞ
y

and the error probability for the code is just
maxx (1� p(n)(x j x)).

Denoting by pe(n, N) the infimum of the error
probability over all codes of length n and size N, the
classical capacity C(�) of the memoryless channel is
defined as the least upper bound of the rates R for
which lim n!1 pe(n, 2nR) = 0.

Let � be a quantum channel from the input to the
output quantum systems, assumed to be finite
dimensional. The coding theorem for the classical
capacity says that

Cð�Þ ¼ lim
n!1

1

n
C�ð��nÞ ½1�
where

C�ð�Þ ¼ max H
X

x

px� �x½ �
 !(

�
X

x

pxH � �x½ �ð Þ
)

½2�

H(�) =�tr � log2 � is the binary von Neumann
entropy, and the maximum is taken over all
probability distributions {px} and collections of
density operators {�x} in H1.
The Variety of Capacities

This basic definition and the formulas [1], [2] generalize
the definition of the Shannon capacity and the coding
theorem for classical memoryless channels. For quantum
channel, there are several different capacities because
one may consider sending different kinds (classical or
quantum) of information, restrict the admissible coding
and decoding operations, and/or allow the use of
additional resources, such as shared entanglement,
forward or backward communication, leading to really
different quantities (Bennett et al. 2004). Few of these
resources (such as feedback) also exist for classical
channels but usually influence the capacity less drama-
tically (at least for memoryless channels). Restricting to
the transmission of classical information with no
additional resources, one can distinguish at least four
capacities (Bennett and Shor 1998), according to
whether, for each block length n, one is allowed to use
arbitrary entangled quantum operations on the full
block of input (resp. output) systems, or if, for each of the
parallel channels, one has to use a separate quantum
encoding (resp. decoding), and combine these only by
classical pre- (resp. post-) processing:

???

=

≥

≥

C1∞ = Cχ:
unentangled

coding, quantum
block decoding

C∞1: quantum
block

coding, separate
decoding

C∞∞: full
capacity, arbitary

(de)coding

C11: one-shot
capacity or accessible
information, separate

quantum (de)coding, block
(de)coding only classical

The full capacity C11 is just the classical capacity
C(�) given by [1]. That C11 coincides with the
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quantity C�(�) given by [2] is the essential content
of the HSW theorem, from which [1] is obtained
by additional blocking. Since C� is apparently
superadditive, C�(�1 � �2) � C�(�1)þ C�(�2), one
has C11 � C�. It is still not known whether the
quantity C�(�) is in fact additive for all channels,
which would imply the equalities here. Additivity of
C�(�) would have the important physical conse-
quence – it would mean that using entangled input
states does not increase the classical capacity of
quantum channel. While such a result would be very
much welcome, giving a single-letter expression for
the classical capacity, it would call for a physical
explanation of asymmetry between the effects of
entanglement in encoding and decoding procedures.
Indeed, the inequality in the lower left is known to be
strict sometimes (Holevo 1998), which means that
entangled decodings can increase the classical capa-
city. There is even an intermediate capacity between
C11 and C11 obtained by restricting the quantum
block decodings to adaptive ones (Shor 2002). The
additivity of the quantity C� for all channels is one of
the central open problems in quantum information
theory; it was shown to be equivalent to several other
important open problems, notably (super)additivity
of the entanglement of formation and additivity of
the minimal output entropy (Shor 2004).

For infinite-dimensional quantum processing sys-
tems, one needs to consider the input constraints
such as the power constraint for bosonic Gaussian
channels. The definition of the classical capacity and
the capacity formula are then modified by introduc-
ing the constraint in a way similar to the classical
theory (Holevo 1998, Holevo and Werner 2001).
Another important extension concerns multiuser
quantum information processing systems and their
capacity regions (Devetak and Shor 2003).

See also: Capacities Enhanced by Entanglement;
Capacity for Quantum Information; Channels in Quantum
Information Theory; Entanglement Measures.
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Introduction

Quantum chromodynamics, or QCD, as it is normally
called in high-energy physics, is the quantum field
theory that describes the strong interactions. It is the
SU(3) gauge theory of the current standard model for
elementary particles and forces, SU(3)�SU(2)L�U(1),
which encompasses the strong, electromagnetic, and
weak interactions. The symmetry group of QCD, with
its eight conserved charges, is referred to as color
SU(3). As is characteristic of quantum field theories,
each field may be described in terms of quantum waves
or particles.

Because it is a gauge field theory, the fields that
carry the forces of QCD transform as vectors under
the Lorentz group. Corresponding to these vector
fields are the particles called ‘‘gluons,’’ which carry
an intrinsic angular momentum, or spin, of 1 in
units of �h. The strong interactions are understood as
the cumulative effects of gluons, interacting among
themselves and with the quarks, the spin-1/2
particles of the Dirac quark fields.

There are six quark fields of varying masses in
QCD. Of these, three are called ‘‘light’’ quarks, in a
sense to be defined below, and three ‘‘heavy.’’ The
light quarks are the up (u), down (d), and strange (s),
while the heavy quarks are the charm (c), bottom (b),
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and top (t). Their well-known electric charges are
ef = 2e=3(u, c, t) and ef =�e=3(d, s, b), with e the
positron charge. The gluons interact with each quark
field in an identical fashion, and the relatively light
masses of three of the quarks provide the theory with
a number of approximate global symmetries that
profoundly influence the manner in which QCD
manifests itself in the standard model.

These quark and gluon fields and their correspond-
ing particles are enumerated with complete confidence
by the community of high-energy physicists. Yet, none
of these particles has ever been observed in isolation,
as one might observe a photon or an electron. Rather,
all known strongly interacting particles are colorless;
most are ‘‘mesons,’’ combinations with the quantum
numbers of a quark q and a antiquark �q0, or
‘‘baryons’’ with the quantum numbers of (possibly
distinct) combinations of three quarks qq0q00. This
feature of QCD, that its underlying fields never
appear as asymptotic states, is called ‘‘confinement.’’
The very existence of confinement required new ways
of thinking about field theory, and only with these
was the discovery and development of QCD possible.
The Background of QCD

The strong interactions have been recognized as a
separate force of nature since the discovery of the
neutron as a constituent of atomic nuclei, along with
the proton. Neutrons and protons (collectively,
nucleons) possess a force, attractive at intermediate
distances and so strong that it overcomes the electric
repulsion of the protons, each with charge e. A sense
of the relative strengths of the electromagnetic and
strong interactions may be inferred from the typical
distance between mutually repulsive electrons in an
atom, �10�8 cm, and the typical distance between
protons in a nucleus, of order 10�13 cm.

The history that led up to the discovery of QCD is a
fascinating one, beginning with Yukawa’s 1935 theory
of pion exchange as the source of the forces that bind
nuclei, still a useful tool for low-energy scattering.
Other turning points include the creation of nonabelian
gauge theories by Yang and Mills in 1954, the discovery
of the quantum number known as strangeness, the
consequent development of the quark model, and then
the proposal of color as a global symmetry. The role of
pointlike constituents in hadrons was foreshadowed by
the identification of electromagnetic and weak currents
and the analysis of their quantum-mechanical algebras.
Finally, the observation of ‘‘scaling’’ in deep-inelastic
scattering, which we will describe below, made QCD,
with color as a local symmetry, the unique explanation
of the strong interactions, through its property of
asymptotic freedom.
The Lagrangian and Its Symmetries

The QCD Lagrangian may be written as

L ¼
Xnf

f¼1

�qf i 6D½A� �mf

� �
qf �

1

2
tr F2

��ðAÞ
h i

� �
2

BaðAÞð Þ2þ�cb
�BbðAÞ
��a

� �
ca ½1�

with 6D[A] = � � @ þ igs� � A the covariant derivative in
QCD. The �� are the Dirac matrices, satisfying the
anticommutation relations, [��, ��]þ= 2g��. The SU(3)
gluon fields are A� =

P8
a = 1 A�

aTa, where Ta are the
generators of SU(3) in the fundamental representation.
The field strengths F��[A] = @�A� � @�A� þ igs[A�, A�]
specify the three- and four-point gluon couplings of
nonabelian gauge theory. In QCD, there are nf = 6
flavors of quark fields, qf , with conjugate �qf = qyf�

0.
The first two terms in the expression [1] make up

the classical Lagrangian, followed by the gauge-fixing
term, specified by a (usually, but not necessarily
linear) function Ba(A), and the ghost Lagrangian. The
ghost (anti-ghost) fields ca(�ca) carry the same adjoint
index as the gauge fields.

The classical QCD Lagrangian before gauge fixing
is invariant under the local gauge transformations

A0�ðxÞ¼
i

gs
@��ðxÞ��1ðxÞ þ �ðxÞA0�ðxÞ��1ðxÞ

¼A�ðxÞ � @���ðxÞ
þ igs ��ðxÞ;A�ðxÞ

� �
þ � � �

 0iðxÞ¼�ðxÞij jðxÞ ¼  iðxÞ
þ igs��ðxÞij jðxÞ þ � � �

��ðxÞ¼
X8

a¼1

��aðxÞTa

½2�

The full QCD action including gauge-fixing and
ghost terms is also invariant under the Bechi, Rouet,
Stora, Tyutin (BRST) transformations with �	 an
anticommuting variable.

�A�;a ¼ �ab@� þ gA�cfabc

� �
cb�	

�ca ¼�1
2 gCabc cb cc�	; ��c ¼ �Ba�	

� i ¼ ig Tb½ �ij cb j

½3�

with fabc the SU(3) structure constants. The Jacobian
of these transformations is unity.

In addition, neglecting masses of the light quarks,
u, d, and s, the QCD Lagranian has a class of global
flavor and chiral symmetries, the latter connecting
left- and right-handed components of the quark
fields,  L, R 	 (1=2)(1
 �5) ,

 0ðxÞ ¼ ei��P
5  ðxÞ; P ¼ 0; 1 ½4�
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Here, power P = 0 describes phase, and P = 1 chiral,
transformations. Both transformations can be
extended to transformations among the light flavors,
by letting  become a vector, and � an element in
the Lie algebra of SU(M), with M = 2 if we take only
the u and d quarks, and M = 3 if we include the
somewhat heavier strange quark. These symmetries,
not to be confused with the local symmetries of the
standard model, are strong isospin and its extension
to the ‘‘eightfold way,’’ which evolved into the
(3-)quark model of Gell–Mann and Zweig. The
many successes of these formalisms are automati-
cally incorporated into QCD.
Green Functions, Phases,
and Gauge Invariance

In large part, the business of quantum field theory is
to calculate Green functions,

Gn x1 . . . xnð Þ
¼ 0 T �1ðx1Þ . . . �iðxiÞ . . . �nðxnÞð Þj j0h i ½5�

where T denotes time ordering. The �i(x) are
elementary fields, such as A or qf , or composite
fields, such as currents like J� = �qf�

�qf . Such a
Green function generates amplitudes for the scatter-
ing of particles of definite momenta and spin, when
in the limit of large times the xi-dependence of the
Green function is that of a plane wave. For example,
we may have in the limit x0

i ! 1,

Gn x1 . . . xnð Þ ! 
iðp; �Þ eip�xi ðp; �Þ T �1ðx1Þ . . .ðjh
�i�1ðxi�1Þ�iþ1ðxiþ1Þ . . . �nðxnÞÞj0i ½6�

where 
i(p,�) is a solution to the free-field equation for
field �i, characterized by momentum p and spin �. (An
inegral over possible momenta p is understood.)
When this happens for field i, the vacuum state is
replaced by j(p,�)i, a particle state with precisely
this momentum and spin; when it occurs for all
fields, we derive a scattering (S)-matrix amplitude.
In essence, the statement of confinement is that
Green functions with fields qf (x) never behave as
plane waves at large times in the past or future.
Only Green functions of color singlet composite
fields, invariant under gauge transformations, are
associated with plane wave behavior at large times.

Green functions remain invariant under the BRST
transformations [3], and this invariance implies a set
of Ward identities

�

�	ðzÞ
Xn

i¼1

0 T �1ðx1Þ . . . �BRS�iðxiÞ . . .ðjh

�nðxnÞÞj0i ¼ 0 ½7�
The variation of the anti-ghost as in [3] is equivalent
to an infinitesimal change in the gauge-fixing term;
variations in the remaining fields all cancel single-
particle plane wave behavior in the corresponding
Green functions. These identities then ensure the
gauge invariance of the perturbative S-matrix, a result
that turns out to be useful despite confinement.

To go beyond a purely perturbative description of
QCD, it is useful to introduce a set of nonlocal
operators that are variously called nonabelian
phases, ordered exponentials, and Wilson lines,

UCðz; yÞ ¼ P exp �igs

Z z

y

dx�A�ðxÞ
" #

½8�

where C is some self-avoiding curve between y and z.
The U’s transform at each end linearly in nonabelian
gauge transformations �(x) at that point,

U0Cðz; yÞ ¼ �ðzÞUCðz; yÞ��1ðyÞ ½9�

Especially interesting are closed curves C, for which
z = y. The phases about such closed loops are, like
their abelian counterparts, sensitive to the magnetic
flux that they enclose, even when the field strengths
vanish on the curve.
QCD at the Shortest and Longest
Distances

Much of the fascination of QCD is its extraordinary
variation of behavior at differing distance scales. Its
discovery is linked to asymptotic freedom, which
characterizes the theory at the shortest scales.
Asymptotic freedom also suggests (and in part
provides) a bridge to longer distances.

Most analyses in QCD begin with a path-integral
formulation in terms of the elementary fields
�a = qf . . . ,

Gn xi;ðzj;yjÞ
� �

¼
Z Y

a¼q;�q;G;c;�c

D�a

" #Y
i

�iðxiÞ

�
Y

j

UCj
ðzj;yjÞeiSQCD ½10�

with SQCD the action. Perturbation theory keeps
only the kinetic Lagrangian, quadratic in fields, in
the exponent, and expands the potential terms in
the coupling. This procedure produces Feynman
diagrams, with vertices corresponding to the cubic
and quartic terms in the QCD Lagrangian [1].

Most nonperturbative analyses of QCD require
studying the theory on a Eucliean, rather than
Minkowski space, related by an analytic continuation
in the times x0, y0, z0 in Gn from real to imaginary
values. In Euclidean space, we find, for example,
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classical solutions to the equations of motion, known as
instantons, that provide nonperturbative contributions
to the path integral. Perhaps the most flexible non-
perturbative approach approximates the action and the
measure at a lattice of points in four-dimensional space.
For this purpose, integrals over the gauge fields are
replaced by averages over ‘‘gauge links,’’ of the form of
eqn [8] between neighboring points.

Perturbation theory is most useful for processes
that occur over short timescales and at high relative
energies. Lattice QCD, on the other hand, can
simulate processes that take much longer times, but
is less useful when large momentum transfers are
involved. The gap between the two methods remains
quite wide, but between the two they have covered
enormous ground, enough to more than confirm
QCD as the theory of strong interactions.
Asymptotic Freedom

QCD is a renormalizable field theory, which implies
that the coupling constant g must be defined by its
value at a ‘‘renormalization scale,’’ and is denoted
g(�). Usually, the magnitude of �s(�) 	 g2=4�, is
quoted at �= mZ, where it is �0.12. In effect, g(�)
controls the amplitude that connects any state to
another state with one more or one fewer gluon,
including quantum corrections that occur over time-
scales from zero up to �h=� (if we measure � in units of
energy). The QCD Ward identities mentioned above
ensure that the coupling is the same for both quarks
and gluons, and indeed remains the same in all terms
in the Lagrangian, ensuring that the symmetries of
QCD are not destroyed by renormalization.

Quantum corrections to gluon emission are not
generally computable directly in renormalizable
theories, but their dependence on � is computable,
and is a power series in �s(�) itself,

�2 d�sð�Þ
d�2

¼�b0
�2

s ð�Þ
4�
�b1

�3
s ð�Þ
ð4�Þ2

þ�� � 	 �ð�sÞ ½11�

where b0 =11�2nf=3 and b1 =2(31�19nf=3). The
celebrated minus signs on the right-hand side are
associated with both the spin and self-interactions of
the gluons.

The solution to this equation provides an expres-
sion for �s at any scale �1 in terms of its value at
any other scale �0. Keeping only the lowest-order,
b0, term, we have

�sð�1Þ ¼
�sð�0Þ

1þ ðb0=4�Þ ln �2
1=�

2
0

� �
¼ 4�

b0 ln �2
1=�2

QCD

� 	 ½12�
where in the second form, we have introduced �QCD,
the scale parameter of the theory, which embodies
the condition that we get the same coupling at scale
�1 no matter which scale �0 we start from.
Asymptotic freedom consists of the observation that
at larger renormalization masses �, or correspond-
ingly shorter timescales, the coupling weakens, and
indeed vanishes in the limit �!1. The other side of
the coin is that over longer times or lower momenta,
the coupling grows. Eventually, near the pole at
�1 = �QCD, the lowest-order approximation to the
running fails, and the theory becomes essentially
nonperturbative. Thus, the discovery of asymptotic
freedom suggested, although it certainly does not
prove, that QCD is capable of producing very strong
forces, and confinement at long distances. Current
estimates of �QCD are �200 MeV.
Spontaneous Breaking of Chiral Symmetry

The number of quarks and their masses is an external
input to QCD. In the standard model masses are
provided by the Higgs mechanism, but in QCD they
are simply parameters. Because the standard model
has chosen several of the quarks to be especially light,
QCD incorporates the chiral symmetries implied by
eqn [4] (with P = 1). In the limit of zero quark
masses, these symmetries becomes exact, respected to
all orders of perturbation theory, that is, for any
finite number of gluons emitted or absorbed.

At distances on the order to 1=�QCD, however,
QCD cannot respect chiral symmetry, which would
require each state to have a degenerate partner with
the opposite parity, something not seen in nature.
Rather, QCD produces, nonperturbatively, nonzero
values for matrix elements that mix right- and left-
handed fields, such as h0j�uLuRj0i, with u the up-quark
field. Pions are the Goldstone bosons of this symmetry,
and may be thought of as ripples in the chiral
condensate, rotating it locally as they pass along. The
observation that these Goldstone bosons are not
exactly massless is due to the ‘‘current’’ masses of the
quarks, their values in LQCD. The (chiral perturbation
theory) expansion in these light-quark masses
also enables us to estimate them quantitatively:
1.5�mu� 4MeV, 4�md� 8MeV, and 80�ms�
155MeV. These are the light quarks, with masses
smaller than �QCD. (Like �s, the masses are renorma-
lized; these are quoted from Eidelman (2004) with
�=2GeV.) For comparison, the heavy quarks
have masses mc� 1–1.5GeV, mb� 4–4.5GeV, and
mt� 180GeV (the giant among the known elementary
particles).

Although the mechanism of the chiral condensate
(and in general other nonperturbative aspects of
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QCD) has not yet been demonstrated from first
principles, a very satisfactory description of the origin
of the condensate, and indeed of much hadronic
structure, has been given in terms of the attractive
forces between quarks provided by instantons. The
actions of instanton solutions provide a dependence
exp[�8�2=g2

s ] in Euclidean path integrals, and so are
characteristically nonperturbative.

Mechanisms of Confinement

As described above, confinement is the absence of
asymptotic states that transform nontrivially under
color transformations. The full spectrum of QCD,
however, is a complex thing to study, and so the
problem has been approached somewhat indirectly. A
difficulty is the same light-quark masses associated
with approximate chiral symmetry. Because the masses
of the light quarks are far below the scale �QCD at
which the perturbative coupling blows up, light quarks
are created freely from the vacuum and the process of
‘‘hadronization,’’ by which quarks and gluons form
mesons and baryons, is both nonperturbative and
relativistic. It is therefore difficult to approach in both
perturbation theory and lattice simulations.

Tests and studies of confinement are thus normally
formulated in truncations of QCD, typically with no
light quarks. The question is then reformulated in a
way that is somewhat more tractable, without
relativistic light quarks popping in and out of the
vacuum all the time. In the limit that its mass becomes
infinite compared to the natural scale of fluctuations in
the QCD vacuum, the propagator of a quark becomes
identical to a phase operator, [8], with a path C
corresponding to a constant velocity. This observation
suggests a number of tests for confinement that can be
implemented in the lattice theory. The most intuitive is
the vacuum expectation value of a ‘‘Wilson loop,’’
consisting of a rectangular path, with sides along the
time direction, corresponding to a heavy quark and
antiquark at rest a distance R apart, and closed at some
starting and ending times with straight lines. The
vacuum expectation value of the loop then turns out to
be the exponential of the potential energy between the
quark pair, multiplied by the elapsed time,


0

����P exp �igs

I
C

A�ðxÞ dx�
� �����0

�
¼ expð�VðRÞT=�hÞ ½13�

When V(R) / R (‘‘area law’’ behavior), there is a
linearly rising, confining potential. This behavior,
not yet proven analytically yet well confirmed on the
lattice, has an appealing interpretation as the energy
of a ‘‘string,’’ connecting the quark and antiquark,
whose energy is proportional to its length.
Motivation for such a string picture was also
found from the hadron spectrum itself, before any of
the heavy quarks were known, and even before the
discovery of QCD, from the observation that many
mesonic (�qq0) states lie along ‘‘Regge trajectories,’’
which consist of sets of states of spin J and mass m2

J

that obey a relation

J ¼ �0m2
J ½14�

for some constant �0. Such a relation can be modeled
by two light particles (‘‘quarks’’) revolving around each
other at some constant (for simplicity, fixed nonrela-
tivistic) velocity v0 and distance 2R, connected by a
‘‘string’’ whose energy per unit length is a constant .

Suppose the center of the string is stationary, so
the overall system is at rest. Then neglecting the
masses, the total energy of the system is M = 2R.
Meanwhile, the momentum density per unit length
at distance r from the center is v(r) = (r=R)v0, and
the total angular momentum of the system is

J ¼ 2v0

Z R

0

dr r2 ¼ 2v0

3
R2¼ v0

6
M2 ½15�

and for such a system, [14] is indeed satisfied.
Quantized values of angular momentum J give
quantized masses mJ, and we might take this as a
sort of ‘‘Bohr model’’ for a meson. Indeed, string
theory has its origin in related consideration in the
strong interactions.

Lattice data are unequivocal on the linearly rising
potential, but it requires further analysis to take a
lattice result and determine what field configura-
tions, stringlike or not, gave that result. Probably the
most widely accepted explanation is in terms of an
analogy to the Meissner effect in superconductivity,
in which type II superconductors isolate magnetic
flux in quantized tubes, the result of the formation
of a condensate of Cooper pairs of electrons. If the
strings of QCD are to be made of the gauge field,
they must be electric (F�0) in nature to couple to
quarks, so the analogy postulates a ‘‘dual’’ Meissner
effect, in which electric flux is isolated as the result
of a condensate of objects with magnetic charge
(producing nonzero Fij). Although no proof of this
mechanism has been provided yet, the role of
magnetic fluctuations in confinement has been
widely investigated in lattice simulations, with
encouraging results. Of special interest are magnetic
field configurations, monopoles or vortices, in the
Z3 center of SU(3), exp [i�k=3]I3�3, k = 0, 1, 2. Such
configurations, even when localized, influence
closed gauge loops [13] through the nonabelian
Aharonov–Bohm effect. Eventually, of course, the
role of light quarks must be crucial for any complete
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description of confinement in the real world, as
emphasized by Gribov.

Another related choice of closed loop is the
‘‘Polyakov loop,’’ implemented at finite temperature,
for which the path integral is taken over periodic
field configurations with period 1=T, where T is the
temperature. In this case, the curve C extends from
times t = 0 to t = 1=T at a fixed point in space. In
this formulation it is possible to observe a phase
transition from a confined phase, where the expec-
tation is zero, to a deconfined phase, where it is
nonzero. This phase transition is currently under
intense experimental study in nuclear collisions.
Using Asymptotic Freedom:
Perturbative QCD

It is not entirely obvious how to use asymptotic
freedom in a theory that should (must) have
confinement. Such applications of asymptotic free-
dom go by the term perturbative QCD, which has
many applications, not the least as a window to
extensions of the standard model.

Lepton Annihilation and Infrared Safety

The electromagnetic current, J� =
P

f ef �qf��qf , is a
gauge-invariant operator, and its correlation functions
are not limited by confinement. Perhaps, the simplest
application of asymptotic freedom, yet of great
physical relevance, is the scalar two-point function,

�ðQÞ¼ �i

3

Z
d4x e�iQ�x 0 T J�ð0ÞJ�ðxÞ

� ��� ��0 �
½16�

The imaginary part of this function is related to the
total cross section for the annihilation process eþe� !
hadrons in the approximation that only one photon
takes part in the reaction. The specific relation is
�QCD = (e4=Q2) Im�(Q2), which follows from the
optical theorem, illustrated in Figure 1. The perturba-
tive expansion of the function �(Q) depends, in
general, on the mass scales Q and the quark masses
mf as well as on the strong coupling �s(�) and on the
renormalization scale �. We may also worry about the
m
2

 = Im

= Im(

+ + . . . )

Π(Q) = 

σ(Q) = Σ 2
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Π(Q)e 
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q

Figure 1 First line: schematic relation of lowest order eþe�

annihilation to sum over quarks q, each with electric charge eq .

Second line: perturbative unitarity for the current correlation

function �(Q).
influence of other, truly nonperturbative scales,
proportional to powers of �QCD. At large values of
Q2, however, the situation simplifies greatly, and
dependence on all scales below Q is suppressed by
powers of Q. This may be expressed in terms of the
operator product expansion,

0 T J�ð0ÞJ�ðxÞ
� ��� ��0 �
¼
X
OI

ðx2Þ�3þdI=2CIðx2�2; �sð�ÞÞ

� 0 OIð0Þj j0h i ½17�

where dI is the mass dimension of operator OI, and
where the dimensionless coefficient functions CI

incorporate quantum corrections. The sum over
operators begins with the identity (dI = 0), whose
coefficient function is identified with the sum of
quantum corrections in the approximation of zero
masses. The sum continues with quark mass correc-
tions, which are suppressed by powers of at least
m2

f =Q
2, for those flavors with masses below Q. Any

QCD quantity that has this property, remaining
finite in perturbation theory when all particle masses
are set to zero, is said to be ‘‘infrared safe.’’

The effects of quarks whose masses are above Q
are included indirectly, through the couplings and
masses observed at the lower scales. In summary,
the leading power behavior of �(Q), and hence of
the cross section, is a function of Q, �, and �s(�)
only. Higher-order operators whose vacuum matrix
elements receive nonperturbative corrections include
the ‘‘gluon condensate,’’ identified as the product
�s(�)G��G�� / �4

QCD.
Once we have concluded that Q is the only

physical scale in �, we may expect that the right
choice of the renormalization scale is �= Q. Any
observable quantity is independent of the choice of
renormalization scale, �, and neglecting quark
masses, the chain rule gives

�
d�ðQ=�; �sð�ÞÞ

d�
¼ � @�

@�
þ 2�ð�sÞ

@�

@�s
¼ 0 ½18�

which shows that we can determine the beta
function directly from the perturbative expansion
of the cross section. Defining a 	 �s(�)=�, such a
perturbative calculation gives

Im�ðQ2Þ¼ 3

4�

X
f

e2
f

�
1þ aþ a2

�
1:986

� 0:115nf � ðb0=4�Þ ln
Q2

�2

��
½19�

with b0 as above. Now, choosing �= Q, we see that
asymptotic freedom implies that when Q is large,
the total cross section is given by the lowest order,
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plus small and calculable QCD corrections, a result
that is borne out in experiment. Comparing experi-
ment to an expression like [19], one can measure the
value of �s(Q), and hence, with eqn [12], �s(�) for
any �� �QCD. Figure 2 shows a recent compilation
of values of �s from this kind of analysis in different
experiments at different scales, clearly demonstrat-
ing asymptotic freedom.
Factorization, Scaling, and Parton distributions

One step beyond vacuum matrix elements of currents
are their expectation values in single-particle states,
and here we make contact with the discovery of
QCD, through scaling. Such expectations are relevant
to the class of experiments known as deep-inelastic
scattering, in which a high-energy electron exchanges
a photon with a nucleon target. All QCD information
is contained in the tensor matrix element

W��
N ðp; qÞ

	 1

8�

X
�

Z
d4x e�iq�x p; � J�ð0ÞJ�ðxÞj jp; �h i ½20�

with q the momentum transfer carried by the
photon, and p,� the momentum and spin of the
target nucleon, N. This matrix element is not
infrared safe, since it depends in principle on the
entire history of the nucleon state. Thus, it is not
accessible to direct perturbative calculation.

Nevertheless, when the scattering involves a large
momentum transfer compared to �QCD, we may
expect a quantum-mechanical incoherence between
the scattering reaction, which occurs (by the uncer-
tainty principle) at short distances, and the forces that
stabilize the nucleon. After all, we have seen that the
latter, strong forces, should be associated with long
distances. Such a separation of dynamics, called
factorization, can be implemented in perturbation
theory, and is assumed to be a property of full QCD.
Factorization is illustrated schematically in Figure 3.
Of course, short and long distances are relative
concepts, and the separation requires the introduction
of a so-called factorization scale, �F, not dissimilar to
the renormalization scale described above. For many
purposes, it is convenient to choose the two equal,
although this is not required.

The expression of factorization for deep-inelastic
scattering is

W��
N ðp; qÞ

¼
X

i¼qf ;�qf ;G

Z 1

x

d	C��
i ð	p; q; �F; �sð�FÞÞ

� fi=Nð	; �FÞ ½21�

where the functions C��
i (the coefficient functions)

can be computed as an expansion in �s(�F), and
describe the scattering of the ‘‘partons,’’ quarks, and
gluons, of which the target is made. The variable 	
ranges from unity down to x 	 �q2=2p � q > 0, and
has the interpretation of the fractional momentum
of the proton carried by parton i. (Here �q2 = Q2 is
positive.) The parton distributions fi=N can be
defined in terms of matrix elements in the nucleon,
in which the currents are replaced by quark (or
antiquark or gluon) fields, as

fq=Nðx;�Þ¼
1

4�

Z 1
�1

d�e�i�xpþ

� p;� �qð�nÞUnðn�;0Þn ��qð0Þj jp;�h i ½22�



Quantum Chromodynamics 151
n� is a light-like vector, and Un a phase operator
whose path C is in the n-direction. The dependence
of the parton distribution on the factorization scale
is through the renormalization of the composite
operator consisting of the quark fields, separated
along the light cone, and the nonabelian phase
operator Un(n�, 0), which renders the matrix ele-
ment gauge invariant by eqn [9]. By combining the
calculations of the C’s and data for W��

N , we can
infer the parton distributions, fi=N. Important factor-
izations of a similar sort also apply to some
exclusive processes, including amplitudes for elastic
pion or nucelon scattering at large momentum
transfer.

Equation [21] has a number of extraordinary
consequences. First, because the coefficient function
is an expansion in �s, it is natural to choose �2

F �
Q2 � p � q (when x is of order unity). When Q is
large, we may approximate C��

i by its lowest order,
which is first order in the electromagnetic coupling
of quarks to photons, and zeroth order in �s. In this
approximation, dependence on Q is entirely in the
parton distributions. But such dependence is of
necessity weak (again for x not so small as to
produce another scale), because the �F dependence
of fi=N(	,�F) must be compensated by the �F

dependence of C��
i , which is order �s. This means

that the overall Q dependence of the tensor W��
N is

weak for Q large when x is moderate. This is the
scaling phenomenon that played such an important
role in the discovery of QCD.

Evolution: Beyond Scaling

Another consequence of the factorization [21], or
equivalently of the operator definition [22], is that
the �F-dependence of the coefficient functions and
the parton distributions are linked. As in the lepton
annihilation cross section, this may be thought of as
due to the independence of the physically observable
tensor W��

N from the choice of factorization and
renormalization scales. This implies that the
�F-dependence of fi=N may be calculated perturba-
tively since it must cancel the corresponding
dependence in Ci. The resulting relation is coven-
tionally expressed in terms of the ‘‘evolution
equations,’’

�
dfa=Nðx; �Þ

d�

¼
X

c

Z 1

x

d	 Pacðx=	; �sð�ÞÞfc=Nð	; �Þ ½23�

where Pac(	) are calculable as power series, now
known up to �3

s . This relation expands the applic-
ability of QCD from scales where parton
distributions can be inferred directly from experi-
ment, to arbitrarily high scales, reachable in accel-
erators under construction or in the imagination, or
even on the cosmic level.

At very high energy, however, the effective values
of the variable x can become very small and
introduce new scales, so that eventually the evolu-
tion of eqn [23] fails. The study of nuclear collisions
may provide a new high-density regime for QCD,
which blurs the distinction between perturbative and
nonperturbative dynamics.
Inclusive Production

Once we have evolution at our disposal, we can take
yet another step, and replace electroweak currents
with any operator from any extension of QCD, in
the standard model or beyond, that couples quarks
and gluons to the particles of as-yet unseen fields.
Factorization can be extended to these situations as
well, providing predictions for the production of
new particles, F of mass M, in the form of factorized
inclusive cross sections,

�AB!FðMÞðM; pA; pBÞ

¼
X

i;j¼qf �qf ;G

Z
d	a d	bfi=Að	a; �Þfj=Bð	b; �Þ

�Hij!FðMÞðxapA;xbpB;M; �; �sð�ÞÞ ½24�

where the functions Hij! F may be calculated
perturbatively, while the fi=A and fj=B parton
distributions are known from a combination of
lower-energy observation and evolution. In this
context, they are said to be ‘‘universal,’’ in that
they are the same functions in hadron–hadron
collisions as in the electron–hadron collisions of
deep-inelastic scattering. In general, the calculation
of hard-scattering functions Hij is quite nontrivial
beyond lowest order in �s. The exploration of
methods to compute higher orders, currently as far
as �2

s , has required extraordinary insight into the
properties of multidimensional integrals.

The factorization method helped predict the
observation of the W and Z bosons of electroweak
theory, and the discovery of the top quark. The
extension of factorization from deep-inelastic scat-
tering to hadron production is nontrivial; indeed, it
only holds in the limit that the velocities, �i, of the
colliding particles approach the speed of light in the
center-of-momentum frame of the produced particle.
Corrections to the relation [24] are then at the level
of powers of �i � 1, which translates into inverse
powers of the invariant mass(es) of the produced
particle(s) M. Factorizations of this sort do not
apply to low-velocity collisions. Arguments for this
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result rely on relativistic causality and the uncer-
tainty principle. The creation of the new state
happens over timescales of order 1/M. Before that
well-defined event, the colliding particles are
approaching at nearly the speed of light, and hence
cannot affect the distributions of each others’
partons. After the new particle is created, the
fragments of the hadrons recede from each other,
and the subsequent time development, when
summed over all possible final states that include
the heavy particle, is finite in perturbation theory as
a direct result of the unitarity of QCD.

Structure of Hadronic Final States

A wide range of semi-inclusive cross sections are
defined by measuring properties of final states that
depend only on the flow of energy, and which bring
QCD perturbation theory to the threshold of
nonperturbative dynamics. Schematically, for a
state N = jk1 . . . kNi, we define S(N) =

P
i s(�i)k

0
i ,

where s(�) is some smooth function of directions.
We generalize the eþe� annihilation case above, and
define a cross section in terms of a related, but
highly nonlocal, matrix element,

d�ðQÞ
dS 	�0

Z
d4x e�iQ�x



0

����J�ð0Þ
� �
�Z

d2�sð�ÞEð�Þ � S
�

J�ðxÞ
����0
�

½25�

where �0 is a zeroth-order cross section, and where
E is an operator at spatial infinity, which measures
the energy flow of any state in direction �: E(�)
jk1 . . .kNi= (1=Q)

P
i k

0
i �

2(���i). This may seem a
little complicated, but like the total annihilation cross
section, the only dimensional scale on which it
depends is Q. The operator E can be defined in a
gauge-invariant manner, through the energy–momen-
tum tensor for example, and has a meaning indepen-
dent of partonic final states. At the same time, this
sort of cross section may be implemented easily in
perturbation theory, and like the total annihilation
cross section, it is infrared safe. To see why, notice
that when a massless (k2 =0) particle decays into two
particles of momenta xk and (1� x)k (0� x� 1), the
quantity S is unchanged, since the sum of the new
energies is the same as the old. This makes the
observable S(N) insensitive to processes at low
momentum transfer.

For the case of leptonic annihilation, the lowest-
order perturbative contribution to energy flow
requires no powers of �s, and consists of an
oppositely moving quark and antiquark pair. Any
measure of energy flow that includes these config-
urations will dominate over correlations that require
�s corrections. As a result, QCD predicts that in
most leptonic annihilation events, energy will flow
in two back-to-back collimated sets of particles,
known as ‘‘jets.’’ In this way, quarks and gluons are
observed clearly, albeit indirectly.

With varying choices of S, many properties of
jets, such as their distributions in invariant mass,
and the probabilities and angular distributions of
multijet events, and even the energy dependence of
their particle multiplicities, can be computed in
QCD. This is in part because hadronization is
dominated by the production of light quarks,
whose production from the vacuum requires very
little momentum transfer. Paradoxically, the very
lightness of quarks is a boon to the use of
perturbative methods. All these considerations can
be extended to hadronic scattering, and jet and other
semi-inclusive properties of final states also com-
puted and compared to experiment.
Conclusions

QCD is an extremely broad field, and this article has
hardly scratched the surface. The relation of QCD-
like theories to supersymmetric and string theories,
and implications of the latter for confinement and
the computation of higher-order perturbative ampli-
tudes, have been some of the most exciting devel-
opments of recent years. As another example, we
note that the reduction of the heavy-quark propa-
gator to a nonabelian phase, noted in our discussion
of confinement, is related to additional symmetries
of heavy quarks in QCD, with many consequences
for the analysis of their bound states. Of the
bibliography given below, one may mention the
four volumes of Shifman (2001, 2002), which
communicate in one place a sense of the sweep of
work in QCD.

Our confidence in QCD as the correct description of
the strong interactions is based on a wide variety of
experimental and observational results. At each stage in
the discovery, confirmation, and exploration of QCD,
the mathematical analysis of relativistic quantum field
theory entered new territory. As is the case for gravity or
electromagnetism, this period of exploration is far from
complete, and perhaps never will be.

See also: AdS/CFT Correspondence; Aharonov–Bohm
Effect; BRST Quantization; Current Algebra; Dirac
Operator and Dirac Field; Euclidean Field Theory;
Effective Field Theories; Electroweak Theory; Lattice
Gauge Theory; Operator Product Expansion in Quantum
Field Theory; Perturbation Theory and its Techniques;
Perturbative Renormalization Theory and BRST;
Quantum Field Theory: A Brief Introduction; Random



Quantum Cosmology 153
Matrix Theory in Physics; Renormalization: General
Theory; Scattering in Relativistic Quantum Field Theory:
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Asymptotic Completeness and Bound States;
Seiberg–Witten Theory; Standard Model of Particle
Physics.
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Introduction

Classical gravity, through its attractive nature, leads
to a high curvature in important situations. In
particular, this is realized in the very early universe
where in the backward evolution energy densities
are growing until the theory breaks down. Mathe-
matically, this point appears as a singularity where
curvature and physical quantities diverge and the
evolution breaks down. It is not possible to set up an
initial-value formulation at this place in order to
determine the further evolution.

In such a regime, quantum effects are expected to
play an important role and to modify the classical
behavior such as the attractive nature of gravity or the
underlying spacetime structure. Any candidate for
quantum gravity thus allows us to reanalyze the
singularity problem in a new light which implies the
tests of the characteristic properties of the respective
candidate. Moreover, close to the classical
singularity, in the very early universe, quantum
modifications will give rise to new equations of
motion which turn into Einstein’s equations only on
larger scales. The analysis of these equations of
motion leads to new classes of early universe
phenomenology.

The application of quantum theory to cosmology
presents a unique problem with not only mathema-
tical but also many conceptual and philosophical
ramifications. Since by definition there is only one
universe which contains everything accessible, there
is no place for an outside observer separate from the
quantum system. This eliminates the most straight-
forward interpretations of quantum mechanics and
requires more elaborate, and sometimes also more
realistic, constructions such as decoherence. From
the mathematical point of view, this situation is
often expected to be mirrored by a new type of
theory which does not allow one to choose initial or
boundary conditions separately from the dynamical
laws. Initial or boundary conditions, after all, are
meant to specify the physical system prepared for
observations which is impossible in cosmology.
Since we observe only one universe, the expectation
goes, our theories should finally present us with only
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one, unique solution without any freedom for
further conditions. This solution then contains all
the information about observations as well as
observers. Mathematically, this is an extremely
complicated problem which has received only scant
attention. Equations of motion for quantum cosmol-
ogy are usually of the type of partial differential or
difference equations such that new ingredients from
quantum gravity are needed to restrict the large
freedom of solutions.
Minisuperspace approximation

In most investigations, the problem of applying full
quantum gravity to cosmology is simplified by a
symmetry reduction to homogeneous or isotropic
geometries. Originally, the reduction was performed
at the classical level, leaving in the isotropic case
only one gravitational degree of freedom given by
the scale factor a. Together with homogeneous
matter fields, such as a scalar �, there are then
only finitely many degrees of freedom which one can
quantize using quantum mechanics. The classical
Friedmann equation for the evolution of the scale
factor, depending on the spatial curvature k = 0 or
�1, is then quantized to the Wheeler–DeWitt
equation, commonly written as

1

9
‘ 4

P a�x @

@a
a x @

@a
� ka 2

� �
 ða; �Þ

¼ � 8�G

3
aĤmatterðaÞ ða; �Þ ½1�

for the wave function  (a,�). The matter Hamilto-
nian Ĥmatter(a), such as

ĤmatterðaÞ ¼ �
1

2
�h2a�3 @2

@�2
þ a 3Vð�Þ ½2�

is left unspecified here, and x parametrizes factor
ordering ambiguities (but not completely). The
Planck length ‘P =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G�h
p

is defined in terms of
the gravitational constant G and the Planck
constant �h.

The central conceptual issue then is the generality
of effects seen in such a symmetric model and its
relation to the full theory of quantum gravity. This
is completely open in the Wheeler–DeWitt form
since the full theory itself is not even known. On the
other hand, such relations are necessary to value any
potential physical statement about the origin and
early history of the universe. In this context,
symmetric situations thus present models, and the
degree to which they approximate full quantum
gravity remains mostly unknown. There are exam-
ples, for instance, of isotropic models in anisotropic
but still homogeneous models, where a minisuper-
space quantization does not agree at all with the
information obtained from the less symmetric
model. However, often those effects already have a
classical analog such as instability of the more
symmetric solutions. A wider investigation of the
reliability of models and when correction terms
from ignored degrees of freedom have to be included
has not been done yet.

With candidates for quantum gravity being
available, the current situation has changed to
some degree. It is then not only possible to reduce
classically and then simply use quantum
mechanics, but also perform at least some of the
reduction steps at the quantum level. The relation
to models is then much clearer, and consistency
conditions which arise in the full theory can be
made certain to be observed. Moreover, relations
between models and the full theory can be studied
to elucidate the degree of approximation. Even
though new techniques are now available, a
detailed investigation of the degree of approxima-
tion given by a minisuperspace model has not been
completed due to its complexity.

This program has mostly been developed in the
context of loop quantum gravity, where the specia-
lization to homogeneous models is known as loop
quantum cosmology. More specifically, symmetries
can be introduced at the level of states and basic
operators, where symmetric states of a model are
distributions in the full theory, and basic operators
are obtained by the dual action on those distribu-
tions. In such a way, the basic representation of
models is not assumed but derived from the full
theory where it is subject to much stronger
consistency conditions. This has implications even
in homogeneous models with finitely many degrees
of freedom, despite the fact that quantum mechanics
is usually based on a unique representation if the
Weyl operators eisq and eitp for the variables q and p
are represented weakly continuously in the real
parameters s and t.

The continuity condition, however, is not neces-
sary in general, and so inequivalent representations
are possible. In quantum cosmology this is indeed
realized, where the Wheeler–DeWitt representation
assumes that the conjugate to the scale factor,
corresponding to extrinsic curvature of an isotropic
slice, is represented through a continuous Weyl
operator, while the representation derived for loop
quantum cosmology shows that the resulting opera-
tor is not weakly continuous. Furthermore, the scale
factor has a continuous spectrum in the Wheeler–
DeWitt representation but a discrete spectrum in the
loop representation. Thus, the underlying geometry
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of space is very different, and also evolution takes
a new form, now given by a difference equation of
the type

ðV�þ5 � V�þ3Þe ik �þ4ð�Þ
� ð2þ k2ÞðV�þ1 � V��1Þ �ð�Þ
þ ðV��3 � V��5Þe�ik ��4ð�Þ
¼ �4

3�G‘ 2
PĤmatterð�Þ �ð�Þ ½3�

in terms of volume eigenvalues V� = (‘ 2
Pj�j=6) 3=2.

For large � and smooth wave functions, one can see
that the difference equation reduces to the
Wheeler–DeWitt equation with j�j / a2 to leading
order in derivatives of  . At small �, close to the
classical singularity, however, both equations have
very different properties and lead to different
conclusions. Moreover, the prominent role of
difference equations leads to new mathematical
problems.

This difference equation is not simply obtained
through a discretization of [1], but derived from a
constraint operator constructed with methods from
full loop quantum gravity. It is, thus, to be regarded
as more fundamental, with [1] emerging in a
continuum limit. The structure of [3] depends on
the properties of the full theory such that its
qualitative analysis allows conclusions for full
quantum gravity.
Applications

Traditionally, quantum cosmology has focused on
three main conceptual issues:

� the fate of classical singularities,
� initial conditions and the ‘‘prediction’’ of inflation

(or other early universe scenarios), and
� arrow of time and the emergence of a classical

world.

The first issue consists of several subproblems since
there are different aspects to a classical singularity.
Often, curvature or energy densities diverge and one
can expect quantum gravity to provide a natural
cutoff. More importantly, however, the classical
evolution breaks down at a singularity, and quan-
tum gravity, if it is to cure the singularity problem,
has to provide a well-defined evolution which does
not stop. Initial conditions are often seen in relation
to the singularity problem since early attempts tried
to replace the singularity by choosing appropriate
conditions for the wave function at a = 0. Different
proposals then lead to different solutions for the
wave function, whose dependence on the scalar �
can be used to determine its probability distribution
such as that for an inflaton. Since initial conditions
often provide special properties early on, the
combination of evolution and initial conditions has
been used to find a possible origin of an arrow
of time.
Singularities

While classical gravity is based on spacetime
geometry and thus metric tensors, this structure is
viewed as emergent only at large scales in canonical
quantum gravity. A gravitational system, such as a
whole universe, is instead described by a wave
function which, at best, yields expectation values for
a metric. The singularity problem thus takes a
different form since it is not metrics which need to
be continued as solutions to Einstein’s field equa-
tions but the wave function describing the quantum
system. In the strong curvature regime around a
classical singularity, one does not expect classical
geometry to be applicable, such that classical
singularities may just be a reflection of the break-
down of this picture, rather than a breakdown of
physical evolution. Nevertheless, the basic feature of
a singularity as presenting a boundary to the
evolution of a system equally applies to the quantum
equations. One can thus analyze this issue, using
new properties provided by the quantum evolution.

The singularity issue is not resolved in the
Wheeler–DeWitt formulation since energy densities,
with a being a multiplication operator, diverge and
the evolution does not continue anywhere beyond
the classical singularity at a = 0. In some cases one
can formally extend the evolution to negative a, but
this possibility is not generic and leaves open what
negative a means geometrically. This is different in
the loop quantization: here, the theory is based on
triad rather than metric variables. There is thus a
new sign factor corresponding to spatial orientation,
which implies the possibility of negative � in the
difference equation. The equation is then defined on
the full real line with the classical singularity �= 0
in the interior. Outside �= 0, we have positive
volume at both sides, and opposite orientations.
Using the difference equation, one can then see that
the evolution does not break down at �= 0,
showing that the quantum evolution is singularity
free.

For the example [3] shown here, one can follow
the evolution, for instance, backward in internal
time �, starting from initial values for  at large
positive �. By successively solving for  ��4, the wave
function at lower � is determined. This goes on in
this manner only until the coefficient V��3 � V��5 of
 ��4 vanishes, which is the case if and only if �= 4.
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The value  0 of the wave function exactly at the
classical singularity is thus not determined by initial
data, but one can easily see that it completely drops
out of the evolution. In fact, the wave function at all
negative � is uniquely determined by initial values at
positive �. Equation [3] corresponds to one parti-
cular ordering, which in the Wheeler–DeWitt case is
usually parametrized by the parameter x (although
the particular ordering obtained from the continuum
limit of [3] is not contained in the special family
[1]). Other nonsingular orderings exist, such as that
after symmetrizing the constraint operator, in which
case the coefficients never become 0.

In more complicated systems, this behavior is
highly nontrivial but still known to be realized in a
similar manner. It is not automatic that the internal
time evolution does not continue since even in
isotropic models one can easily write difference
equations for which the evolution breaks down.
That the most natural orderings imply nonsingular
evolution can be taken as a support of the general
framework of loop quantum gravity. It should also
be noted that the mechanism described here,
providing essentially a new region beyond a classical
singularity, presents one mechanism for quantum
gravity to remove classical singularities, and so far
the only known one. Nevertheless, there is no claim
that the ingredients have to be realized in any
nonsingular scenario in the same manner. Different
scenarios can be imagined, depending on how
quantum evolution is understood and what the
interpretation of nonsingular behavior is. It is also
not claimed that the new region is semiclassical in
any sense when one looks at it at large volume. If
the initial values for the wave function describe a
semiclassical wave packet, its evolution beyond the
classical singularity can be deformed and develop
many peaks. What this means for the re-emergence
of a semiclassical spacetime has to be investigated in
particular models, and also in the context of
decoherence.
Initial Conditions

Traditional initial conditions in quantum cosmology
have been introduced by physical intuition. The
main mathematical problem, once such a condition
is specified in sufficient detail, then is to study well-
posedness, for instance, for the Wheeler–DeWitt
equation. Even formulating initial conditions
generally, and not just for isotropic models, is
complicated, and systematic investigations of the
well-posedness have rarely been undertaken. An
exception is the historically first such condition,
due to DeWitt, that the wave function vanishes at
parts of minisuperspace, such as a = 0 in the
isotropic case, corresponding to classical singulari-
ties. This condition, unfortunately, can easily be
seen to be ill posed in anisotropic models where in
general the only solution vanishes identically. In
other models, lima! 0  (a) does not even exist.
Similar problems of the generality of conditions
arise in other scenarios. Most well known are the
no-boundary and tunneling proposal where initial
conditions are still imposed at a = 0, but with a
nonvanishing wave function there.

This issue is quite different for difference equa-
tions since at first the setup is less restrictive: there
are no continuity or differentiability conditions for a
solution. Moreover, oscillations that become arbi-
trarily rapid, which can be responsible for the
nonexistence of lim a! 0  (a), cannot be supported
on a discrete lattice. It can then easily happen that a
difference equation is well posed, while its con-
tinuum limit with an analogous initial condition is
ill posed. One example are the dynamical initial
conditions of loop quantum cosmology which arise
from the dynamical law in the following way: the
coefficients in [3] are not always nonzero but vanish
if and only if they are multiplied with the value of
the wave function at the classical singularity �= 0.
This value thus decouples and plays no role in the
evolution. The instance of the difference equation
that would determine  0, for example, the equation
for �= 4 in the backward evolution, instead implies
a condition on the previous two values,  4 and  8,
in the example. Since they have already been
determined in previous iteration steps, this translates
to a linear condition on the initial values chosen. We
thus have one example where indeed initial condi-
tions and the evolution follow from only one
dynamical law, which also extends to anisotropic
models. Without further conditions, the initial-value
problem is always well posed, but may not be
complete, in the sense that it results in a unique
solution up to norm. Most of the solutions,
however, will be rapidly oscillating. In order to
guarantee the existence of a continuum approxima-
tion, one has to add a condition that these
oscillations are suppressed in large volume regimes.
Such a condition can be very restrictive, such that
the issue of well-posedness appears in a new guise:
nonzero solutions do exist, but in some cases all of
them may be too strongly oscillating.

In simple cases, one can use generating function
techniques advantageously to study oscillating solu-
tions, at least if oscillations are of alternating nature
between two subsequent levels of the difference
equation. The idea is that a generating function
G(x) =

P
n  nx n has a stronger pole at x = �1 if  n
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is alternating compared to a solution of constant
sign. Choosing initial conditions which reduce the
pole order thus implies solutions with suppressed
oscillations. As an example, we can look at the
difference equation

 nþ1 þ
2

n
 n �  n�1 ¼ 0 ½4�

whose generating function is

GðxÞ¼  1xþ  0ð1þ 2xð1� logð1� xÞÞÞ
ð1þ xÞ2

½5�

The pole at x = �1 is removed for initial values
 1 = 0(2 log 2� 1) which corresponds to nonoscil-
lating solutions. In this way, analytical expressions
can be used instead of numerical attempts which
would be sensitive to rounding errors. Similarly, the
issue of finding bounded solutions can be studied by
continued fraction methods. This illustrates how an
underlying discrete structure leads to new questions
and the application of new techniques compared to
the analysis of partial differential equations which
appear more commonly.
More General Models

Most of the time, homogeneous models have been
studied in quantum cosmology since even formulat-
ing the Wheeler–DeWitt equation in inhomogeneous
cases, the so-called midisuperspace models, is
complicated. Of particular interest among homo-
geneous models is the Bianchi IX model since it has
a complicated classical dynamics of chaotic beha-
vior. Moreover, through the Belinskii–Khalatnikov–
Lifschitz (BKL) picture, the Bianchi IX mixmaster
behavior is expected to play an important role even
for general inhomogeneous singularities. The classi-
cal chaos then indicates a very complicated
approach to classical singularities, with structure
on arbitrarily small scales.

On the other hand, the classical chaos relies on a
curvature potential with infinitely high walls, which
can be mapped to a chaotic billiard motion. The
walls arise from the classical divergence of curva-
ture, and so quantum effects have been expected to
change the picture, and shown to do so in several
cases.

Inhomogeneous models (e.g., the polarized
Gowdy models) have mostly been studied in cases
where one can reformulate the problem as that of a
massless free scalar on flat Minkowski space. The
scalar can then be quantized with familiar techni-
ques in a Fock space representation, and is related to
metric components of the original model in rather
complicated ways. Quantization can thus be per-
formed, but transforming back to the metric at the
operator level and drawing conclusions is quite
involved. The main issue of interest in the recent
literature has been the investigation of field theory
aspects of quantum gravity in a tractable model. In
particular, it turns out that self-adjoint Hamilto-
nians, and thus unitary evolution, do not exist in
general.

Loop quantizations of inhomogeneous models are
available even in cases where a reformulation such
as a field theory on flat space does not exist, or is
not being made use of to avoid special gauges. This
is quite valuable in order to see if specific features
exploited in reformulations lead to artifacts in the
results. So far, the dynamics has not been investi-
gated in detail, even though conclusions for the
singularity issue can already be drawn.

From a physical perspective, it is most important
to introduce inhomogeneities at a perturbative level
in order to study implications for cosmological
structure formation. On a homogeneous back-
ground, one can perform a mode decomposition of
metric and matter fields and quantize the homo-
geneous modes as well as amplitudes of higher
modes. Alternatively, one can first quantize the
inhomogeneous system and then introduce the mode
decomposition at the quantum level. This gives rise
to a system of infinitely many coupled equations of
infinitely many variables, which needs to be trun-
cated, for example, for numerical investigations. At
this level, one can then study the question to which
degree a given minisuperspace model presents a
good approximation to the full theory, and where
additional correction terms should be introduced. It
also allows one to develop concrete models of
decoherence, which requires a ‘‘bath’’ of many
weakly interacting degrees of freedom usually
thought of as being provided by inhomogeneities in
cosmology, and an understanding of the semiclassi-
cal limit.
Interpretations

Due to the complexity of full gravity, investigations
without symmetry assumptions or perturbative
approximations usually focus on conceptual issues.
As already discussed, cosmology presents a unique
situation for physics since there cannot be any
outside observer. While this fact has already
implications on the interpretation of observations
at the classical level, its full force is noticed only in
quantum cosmology. Since some traditional inter-
pretations of quantum mechanics require the role of
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observers outside the quantum system, they do not
apply to quantum cosmology.

Sometimes, alternative interpretations such as
Bohm theory or many-world scenarios are cham-
pioned in this situation, but more conventional
relational pictures are most widely adopted. In
such an interpretation, the wave function yields
relational probabilities between degrees of free-
dom rather than absolute probabilities for mea-
surements done by an outside observer. This has
been used, for instance, to determine the prob-
ability of the right initial conditions for inflation,
but it is marred by unresolved interpretational
issues and still disputed. These problems can be
avoided by using effective equations, in analogy
to an effective action, which modify classical
equations on small scales. Since the new equa-
tions are still of classical type, that is, differential
equations in coordinate time, no interpretational
issues arise at least if one stays in semiclassical
regimes. In this manner, new inflationary scenar-
ios motivated from quantum cosmology have
been developed.

In general, a relational interpretation, though
preferable conceptually, leads to technical
complications since the situation is much more
involved and evolution is not easy to disentangle.
In cosmology, one often tries to single out one
degree of freedom as internal time with respect to
which evolution of other degrees of freedom is
measured. In homogeneous models, one can
simply take the volume as internal time, such as
a or � earlier, but in full no candidate is known.
Even in homogeneous models, the volume is not
suitable as internal time to describe a possible
recollapse. One can use extrinsic curvature
around such a point, but then one has to under-
stand what changing the internal time in quantum
cosmology implies, that is, whether evolution
pictures obtained in different internal time for-
mulations are equivalent to each other.

There are thus many open issues at different
levels, which, strictly speaking, do not apply only to
quantum cosmology but to all of physics. After all,
every physical system is part of the universe, and
thus a potential ingredient of quantum cosmology.
Obviously, physics works well in most situations
without taking into account its being part of one
universe. Similarly, much can be learned about a
quantum universe if only some degrees of freedom
of gravity are considered as in mini- or
midisuperspace models. In addition, complicated
interpretational issues, as important as they are for
a deep understanding of quantum physics, do not
prevent the development of physical applications in
quantum cosmology, just as they did not do so in
the early stages of quantum mechanics.

See also: Canonical General Relativity; Cosmology:
Mathematical Aspects; Loop Quantum Gravity; Quantum
Geometry and its Applications; Spacetime Topology,
Causal Structure and Singularities; Wheeler–De Witt
Theory.
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Introduction

With a given quantum system we associate a
Hilbert space H such that pure states of the system
are represented by normalized vectors  in H or
equivalently by one-dimensional projections j ih j,
whereas mixed states are given by density matrices
�=

P
j pjj jih jj, pj > 0,

P
j pj = 1, that is, positive

trace-1 operators and observables are identified
with self-adjoint operators A acting on H. The
mean value of an observable A at a state � is given
by the following expression:

<A>�¼ trð�AÞ ½1�

The time evolution of the isolated system is deter-
mined by the self-adjoint operator H (Hamiltonian)
corresponding to the energy of the system. The
infinitesimal change of state of the isolated system
can be written as

 ðt þ dtÞ ¼  ðtÞ � iHdt ðtÞ; or

�ðt þ dtÞ ¼ �ðtÞ � idt½H; ��
½2�

what leads to a reversible purity preserving unitary
dynamics  (t) = e�itH , �(t) = e�itH�eitH. We use the
notation [A, B] � AB� BA, {A, B} = ABþ BA and
put �h � 1. An interaction with environment leads
to irreversible changes of the density matrix trans-
forming, in general, pure states into mixed ones.
Such a process can be modeled phenomenologically
by a transition map V :H 7!H leading to

�ðt þ dtÞ ¼ �ðtÞ þ dtV�V� � dt
1

2
fV�V; �g ½3�

Combining Hamiltonian dynamics with several
irreversible processes governed by a family of
transition operators {Vj} we obtain the following
formal evolution equation in the Schrödinger picture
(quantum Markovian master equation)

d

dt
�ðtÞ ¼L�ðtÞ

¼�i½H;�ðtÞ�þ1

2

X
j2I

�
½Vj;�ðtÞV�j �þ ½Vj�ðtÞ;V�j �

�
¼D�ðtÞþ�ðtÞD� þ��ðtÞ ½4�

with the initial condition �(0)=�. Here D=�iH�
(1=2)

P
j V
�
j Vj, ��=

P
j2I Vj�V

�
j , and I is a certain

countable set of indices. Assume for the moment
that the Hilbert space H= Cn. Then the eqn [4] is
always meaningful and its solution is given in
terms of the exponential �(t)=�(t)�� etL�. The
linear map � is a general completely positive map
on matrices, which preserves the positivity of �
and �� Id preserves positivity of nd�nd matrices
for arbitrary d=1,2,3, . . . A useful Dyson-type
expansion

etL� ¼WðtÞ�þ
X1
k¼1

Z t

0

dtk

Z tk

0

dtk�1 � � �

�
Z t2

0

dt1Wðt � tkÞ�Wðtk � tk�1Þ

� � � � ��Wðt1Þ� ½5�

with W(t)� �W(t)�W(t)�, W(t) = etD shows that
�(t) is also completely positive. It is often conve-
nient to describe quantum evolution in terms of
observables (Heisenberg picture)

<A>�ðtÞ ¼ tr etL�
� �

A
� �

¼ tr � etL�A
� �

¼<AðtÞ>� ½6�

d

dt
AðtÞ ¼ L�AðtÞ

¼ i½H;AðtÞ� þ 1

2

X
j2I

�
V�j ½AðtÞ;Vj� þ ½V�j ;AðtÞ�Vj�

�
¼ D��ðtÞ þ �ðtÞDþ ���ðtÞ ½7�

with the initial condition A(0) = A, completely
positive ��A =

P
j2I V�j AVj and the corresponding

Dyson expansion.
The solutions of eqns [4] and [7] are given in

terms of dynamical semigroups. Their general
mathematical properties and particular examples
will be reviewed in this article. Various methods of
derivation of master equations for open quantum
systems from the underlying Hamiltonian dynamics
of composed systems will also be presented.
Semigroups and Their Generators

For standard quantum-mechanical models it is con-
venient to define quantum dynamical semigroup in
the Schrödinger picture as a one-parameter family
{�(t); t 	 0} of linear and bounded maps acting on the
Banach space of trace-class operators T (H) equipped
with the norm k�k1 = tr(���)1=2 and satisfying the
following conditions:

1. Composition (semigroup) law

�ðtÞ�ðsÞ ¼ �ðt þ sÞ; for all t; s 	 0 ½8�
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2. Complete positivity

�ðtÞ � Id is positive on T ðH �CdÞ
for all d ¼ 1; 2; 3; . . . and t 	 0 ½9�

3. Conservativity (trace preservation)

trð�ðtÞ�Þ ¼ trð�Þ; for all � 2 T ðHÞ ½10�

4. Continuity (in a weak sense)

lim
t!0

trðA�ðtÞ�Þ ¼ trðA�Þ

for all � 2 T ðHÞ; A 2 BðHÞ ½11�

From a general theory of one-parameter semigroups
on Banach spaces it follows that under the condi-
tions (1)–(4) �(t) is a one-parameter strongly
continuous semigroup of contractions on T (H)
uniquely characterized by a generally unbounded
but densely defined semigroup generator L with the
domain dom(L) 
 T (H) such that for any
� 2 dom(L)

d

dt
�ðtÞ ¼ L�ðtÞ; �ðtÞ ¼ �ðtÞ� ½12�

One can show that for �> 0 the resolvent
R(�) = (�I� L)�1 can be extended to a bounded
operator satisfying kR(�)k���1 and, therefore, the
following formula makes sense:

lim
n!1

I� t

n
L

� ��n

� ¼ �ðtÞ�; for all � 2 T ðHÞ ½13�

Under the additional assumption that the generator
L is bounded (and hence everywhere defined) Gorini,
et al. (1976) and Lindblad (1976) proved that eqns
[4] and [7] with bounded H, Vj and

P
j VjV

�
j provide

the most general form of L. The choice of H and Vj is
not unique and the sum over j can be replaced by an
integral. In the case of n-dimensional Hilbert space
we can always choose the form of eqn [4] with at
most n2 � 1 Vj’s. Sometimes the structure [4] is
hidden as for the following useful example of the
relaxation process to a fixed density matrix �0 with
the rate �> 0:

d

dt
�ðtÞ ¼ � �0 � �ðtÞð Þ ½14�

The general structure of an unbounded L is not
known. However, the formal expressions [4] and [7]
with possibly unbounded D and Vj are meaningful
under the following conditions:

� the operator D generates a strongly continuous
contracting semigroup {etD; t 	 0} on H;
� dom(Vj) dom(D), for all j;
� <�, D > þ <D�, > þ

P
j <Vj�, Vj > = 0, for

all �,  2 dom(D).
We can solve eqn [4] in terms of a minimal solution.
Defining by Z the generator of the contracting
semigroup � 7! etD�etD� and denoting by J the com-
pletely positive (unbounded) map � 7!

P
j2I Vj�V

�
j ,

one can show that for any �> 0, J(�I� Z)�1 possesses
a unique bounded completely positive extension
denoted by A� with kA�k� 1. Hence, for any
0� r < 1 there exists a strongly continuous, comple-
tely positive and contracting semigroup �(r)(t) with the
resolvent explicitly given by

RðrÞð�Þ ¼ ð�I� ZÞ�1
X1
k¼0

rkAk
� ½15�

As kR(r)(�)k� 1 the limit limr! 1 R(r)(�) = R(�),
where R(�) is the resolvent of the semigroup �(t)
satisfying (1), (2), and (4) and called the minimal
solution of the eqn [4]. The minimal solution need
not be a unique solution or conservative (generally
tr �(t)� tr �(0) and for any other solution
�0(t) 	 �(t)). There exist useful sufficient conditions
for conservativity, an example of a sufficient and
necessary condition is the following: An

�! 0 strongly
as n!1 for all �> 0 (Chebotarev and Fagnola
1988).
Examples

Bloch equation The simplest two-level system can
be described in terms of spin operators
Sk = (1=2)�k, k = 1, 2, 3, where �k are Pauli matrices.
The most general master equation of the form [4]
can be written as (Alicki and Fannes 2001, Ingarden
et al. 1997)

d�

dt
¼� i

X3

k¼1

hk½Sk; �� þ
1

2

X3

k;l¼1

akl ½Sk�; Sl�f

þ ½Sk; �Sl�g ½16�

where hk 2 R and [akl] is a 3� 3 complex,
positively defined matrix. Introducing the magneti-
zation vector Mk(t) = tr(�(t)Sk), we obtain the
following Bloch equation used in the magnetic
resonance theory:

d

dt
MðtÞ ¼ h� ðMðtÞ �M0Þ � FðMðtÞ �M0Þ ½17�

where the tensor F (real, symmetric, and positive
3� 3 matrix) and the vector M0 are functions of
[akl]. In particular, complete positivity implies the
following inequalities for the inverse relaxation
times �1, �2, �3 (eigenvalues of F):

�k 	 0; �1 þ �2 	 �3

�3 þ �1 	 �2; �2 þ �3 	 �1

½18�
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Damped and pumped harmonic oscillator The
quantum master equation for a linearly damped
and pumped harmonic oscillator with frequency !
and the damping (pumping) coefficient �#(�") has
form

d�

dt
¼� i!½a�a; �� þ �#

2
½a�; a�� þ ½a; �a��ð Þ

þ �"
2
½a��; a� þ ½a�; �a�ð Þ ½19�

where a�, a are creation and annihilation operators
satisfying [a, a�] = 1. Taking diagonal elements
pn = <n, �n> in the ‘‘particle number’’ basis
a�ajn>= njn>, n = 0, 1, 2, . . . , which evolve inde-
pendently of the off-diagonal elements, one obtains
the birth and death process,

dpn

dt
¼ �#ðnþ 1Þpnþ1 þ �"npn�1

� �#nþ �"ðnþ 1Þ
� �

pn ½20�

It is convenient to use the Heisenberg picture and
find an explicit solution in terms of Weyl unitary
operators W(z) = exp[(i=

ffiffiffi
2
p

)(zaþ �za�)],

��ðtÞWðzÞ

¼ exp �jzj
2

4

�#
�# ��"

1� e�ð�#��"Þt
� �( )

WðzðtÞÞ ½21�

where z(t)= exp{�(i!þ 1
2(�# ��"))t}, t	 0. For �#>�"

the solution of eqn [19] always tends to the stationary
Gibbs state

�� ¼ Z�1e��!a�a; Z ¼ tre��!a�a

� ¼ 1

!
lnð�#=�"Þ

½22�
Quasifree semigroups The previous example is the
simplest instance of the dynamical semigroups for
noninteracting bosons and fermions which are
completely determined on the single-particle level.
Such systems are defined by a single-particle Hilbert
space H1 and a linear map H1 3 � 7! a�(�) into
creation operators satisfying canonical commutation
or anticommutation relations (CCRs or CARs,
respectively) for bosons and fermions, respectively

½að Þ; a�ð�Þ��¼< ; �>
½A;B�� � AB� ð�1ÞBA

½23�

In all expressions containing (�), sign (þ) refers to
bosons and (�) to fermions.

Consider a nonhomogeneous evolution equation
on the trace-class operators � 2 T (H1):

d�

dt
¼ �i½H1 ; �� �

1

2
fð�# � ð�Þ�"Þ; �g þ �" ½24�
with a single-particle Hamiltonian H1 and a damp-
ing (pumping) positive operator �#(�") 	 0. The
operators H1, �#, and �" need not be bounded
provided �iH1 � (1=2){(�# � (�)�") generates a
(contracting in the fermionic case) semigroup
{T(t); t 	 0} on H1 and the formal solution of
eqn [24]

�ðtÞ ¼ TðtÞ�ð0ÞT�ðtÞ þQðtÞ

where QðtÞ ¼
Z t

0

TðsÞ�"T�ðsÞds ½25�

is meaningful. We can now define the quasifree
dynamical semigroup for the many-particle system
described by the Fock space F�(H1) (Alicki and
Lendi 1987, Alicki and Fannes 2001). The simplest
definition involves Heisenberg evolution of the
ordered monomials in a�( j) and a(�j):

��ðtÞa�ð 1Þ � � � a�ð mÞað�1Þ � � � að�nÞ

¼
X

P

	�Det� < jk ;QðtÞ�il >
� �

k;l¼1;2;...;r

� a� T�ðtÞ 
1
ð Þ � � � a� T�ðtÞ 
m�r

ð Þ
� a T�ðtÞ��1

� �
� � � a T�ðtÞ��n�r

� �
½26�

The sum is taken over all partitions {(j1, . . . , jr)
(
1, . . . ,
m�r)}, {(i1, . . . , ir)(�1, . . . ,�n�r} such that
j1< j2< � � � < jr, 
1<
2, � � � < � � � <
m�r, i1< i2< � � �
< rr, �1 <�2 � � � <
n�r; 	

þ � 1, 	� is a product of
signatures of the permutations {1, 2, . . . , m} 7!
{j1, . . . , jr,
1, . . . ,
m�r}, {1,2, . . . ,n} 7! {i1, . . . , ir,�1, . . . ,
�n�r}; a permanent Detþ is taken for bosons, a
determinant Det� for fermions.

Introducing an orthonormal basis {ek} in H1 and
using the notation a�(ek) � a�k, we can write a
formal master equation for density matrices on the
Fock space corresponding to eqn [26]:

d�

dt
¼� i½HF; �� þ

1

2

X
k;l

�kl
# ½ak�; a

�
l �

��

þ ½ak; �a
�
l �
�
þ �kl

" ½a�k�; al� þ ½a�k; �al�
� ��

½27�

Again, formally,

HF ¼
X
k;l

<ek;H1el> a�kal

�kl
# ¼<ek;�#el>; �kl

" ¼<ek;�"el>

½28�

Often the formulas [27], [28] are not well-
defined, but replacing the (infinite) matrices by
(distribution-valued) integral kernels, sums by inte-
grals, and a�k, al by quantum fields, we can obtain
meaningful objects.

Quasifree dynamical semigroups find applications
in the theory of unstable particles, quantum linear
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optics, solid-state physics, quantum information
theory, etc. (Alicki and Lendi 1987, Sewell 2002).
Ergodic Properties

Dynamical semigroups which possess stationary
states satisfying L�0 = 0 are of particular interest,
for example, in the description of relaxation
processes toward equilibrium states (Frigerio 1977,
Spohn 1980, Alicki and Lendi 1987). The dynamical
semigroup {�(t)} with a stationary state �0 is called
ergodic if

lim
t!1

�ðtÞ� ¼ �0; for any initial � ½29�

For the case of finite-dimensional H at least one
stationary state always exists. If, moreover, it is
strictly positive, �0 > 0, then we have the following
sufficient condition of ergodicity:

fVj; j 2 Ig0 � fA; A 2 BðHÞ; ½A;Vj� ¼ 0; j 2 Ig
¼ C1 ½30�

Open systems interacting with heat baths at the
temperature T are described by the semigroups with
generators [4] of the special form

d

dt
�ðtÞ ¼ � i½H; �ðtÞ� þ 1

2

X
!j	0

½Vj; �ðtÞV�j �
�n

þ ½Vj�ðtÞ;V�j �
�
þ e��!j ½V�j ; �ðtÞVj�

�
þ ½V�j �ðtÞ;Vj�

�o
½31�

where

� ¼ 1

kBT
; ½H;Vj� ¼ �!jVj ½32�

The Gibbs state �� = Z�1 e��H is a stationary state
for eqn [31] and the condition {Vj, V�j ; j 2 I}0= C1
implies ergodicity (return to equilibrium). Moreover,
the matrix elements of � diagonal in H-eigenbasis
transform independently of the off-diagonal ones
and satisfy the Pauli master equation

dpk

dt
¼
X

l

ðaklpl � alkpkÞ ½33�

with the detailed balance condition akl e��El =
alk e��Ek , where Ek are eigenvalues of H.

Define the new Hilbert space L2(H, ��) as a
completion of B(H) with respect to the scalar
product (A, B)�� � tr(��A�B). The semigroup’s gen-
erators in the Heisenberg picture corresponding to
eqn [31] are normal operators in L2(H, ��) with the
Hamiltonian part i[H, � ] being the anti-Hermitian
one (automatically for bounded L�, and for
unbounded one under technical conditions concern-
ing domains). This allows spectral decomposition of
L� and a proper definition of damping rates for the
obtained eigenvectors. The normality condition is
one of the possible definitions of quantum detailed
balance. The other, based on the time-reversal
operation, often coincides with the previous one
for important examples.

Interesting examples of nonergodic dynamical
semigroups are given for open systems consisting of
N identical particles with Hamiltonians H(N) and

operators V(N)
j invariant with respect to particles

permutations. Then the commutant {H(N), V(N)
j ,

j 2 I}0 contains an abelian algebra generated by
projections on irreducible tensors corresponding to
Young tables.
From Hamiltonian Dynamics to
Semigroups

One of the main tasks in the quantum theory of open
systems is to derive master equations [4] from the
model of a ‘‘small’’ open system S interacting with a
‘‘large’’ reservoir R at a certain reference state !R

(Davies 1976, Spohn 1980, Alicki and Lendi 1987,
Breurer and Petruccione 2002, Garbaczewski and
Olkiewicz 2002). Starting with the total Hamiltonian
H� = HS � 1Rþ1S �HRþ�

P

 S
 �R
, where S
 =

S�
, R
 = R�
, tr(!RR
) = 0, and � is a coupling con-
stant, we define the reduced dynamics of S by

�ðtÞ ¼ �ð�ÞðtÞ� ¼ trR U�ðtÞ�� !RU��ðtÞ
� �

½34�

with U�(t) = exp (�itH�). Here trR denotes a partial
trace over R defined in terms of an arbitrary basis
{ek} of R by the formula <�, (trRA)�>=

P
k<��

ek, A�� ek>. Generally, �(�)(t þ s) 6¼ �(�)(t)�(�)(s),
but dynamical semigroups can provide good approx-
imations in important cases.
Weak-Coupling Limit

Under the conditions of sufficiently fast decay of
multitime correlation functions constructed from the
observables R
 at the state !R, one can prove that
for small coupling constant � the exact dynamical
map �(�)(t) can be approximated by the dynamical
semigroup corresponding to the following master
equation:

d

dt
�ðtÞ ¼ �i½H; �ðtÞ� þ �

2

2

X

�

X
!2Sp

C
�ð!Þ

� ½V

! ; �ðtÞV�

!

�� þ ½V

!�ðtÞ;V�

!

��
� �

½35�



Quantum Dynamical Semigroups 163
where H = HS þ �2
P


�

P
!2Sp K
�(!)V


!
�V�

! is a
renormalized Hamiltonian,

P
!2Sp denotes the sum

over eigenfrequencies of �[H, � ], eitHS
 e�itH =
P

!2Sp

V

!e�i!t andZ 1

0

ei!ttr !ReitHRR
e�itHRR�

� �
dt

¼ 1
2 C
�ð!Þ þ iK
�ð!Þ ½36�

The rigorous derivation involves van Hove or weak
coupling limit, �! 0, with � =�2t kept fixed.

It follows from the Bochner theorem that the
matrix [C
�(!)] is positively defined and therefore
by its diagonalization we can convert eqn [35]
into the standard form [4]. If the reservoir’s state
!R is an equilibrium state (Kubo–Martin–Schwinger
state) then C
�(�!) = e�!=kBT C�
(!) and therefore
eqn [35] can be written in a form [31]. Moreover,
transition probabilities akl from eqn [33] coincide
with those obtained using the ‘‘Fermi golden
rule.’’

Low-Density Limit

If the reservoir can be modeled by a gas of
noninteracting particles (bosons or fermions) at
low density �, we can derive the following master
equation which approximates an exact dynamics
[34] in the low-density limit (�! 0, with � = �t kept
fixed)

d

dt
�ðtÞ ¼ �i½H; �ðtÞ� þ �

X
!2S

Z
R6

d3pd3p0GðpÞ

� � Ep0 � Ep þ !
� �

½T!ðp;p0Þ; �ðtÞT!ðp; p0Þ��ð
þ ½T!ðp; p0Þ�ðtÞ;T!ðp; p0Þ��Þ ½37�

Here H is a renormalized Hamiltonian of the system
S, eitHTe�itH =

P
!2S T! e�i!t, T is a T-matrix

describing the scattering process involving S and a
single particle, T = V�þ, where V is a particle-
system potential and �þ is a Møller operator.
T!(p, p0) denotes the integral kernel corresponding
to T! expressed in terms of momenta of the bath
particle, Ep the kinetic energy of a particle, and G(p)
its probability distribution in the momentum space.
If G(p)� exp(�Ep=kBT) and microreversibility con-
ditions, Ep = E�p and T!(�p,�p0) = T!(p0, p), hold,
then eqn [37] satisfies the quantum detailed-balance
condition with the stationary Gibbs state
��, �= 1=kBT.
Entropy and Purity

The relative entropy S(� j�) = tr(� ln �� � ln �) is
monotone with respect to any trace-preserving
completely positive map �, that is, S(��j��)� S(�j�).
Hence, for the quantum dynamical semigroup �(t) with
the stationary state �0 we obtain the following relation
for the von Neumann entropy S(�) =�tr(� ln �):

d

dt
Sð�ðtÞÞ ¼ � d

dt
Sð�ðtÞj�0Þ �

d

dt
trð�ðtÞ ln �0Þ ½38�

where �(d=dt)S(�(t) j �0) 	 0 is an entropy produc-
tion and the second term describes entropy exchange
with environment (Spohn 1980, Alicki and Lendi
1987).

Bistochastic dynamical semigroups preserve the
maximally mixed state, that is, L(1) = 0. For them,
the von Neumann entropy does not decrease and the
purity tr �2 never increases (Streater 1995). Two
important classes of master equations, used to
describe decoherence, yield bistochastic dynamical
semigroups:

d

dt
�ðtÞ ¼ �i½H; �ðtÞ�

�
X

j

½Aj; ½Aj; �ðtÞ��; Aj ¼ A�j ½39�

d

dt
�ðtÞ ¼ �i½H; �ðtÞ�

þ
Z

M

�ðd
Þ Uð
Þ�ðtÞU�ð
Þ� �ðtÞð Þ ½40�

where U(
) are unitary and �(�) is a (positive)
measure on M.
Itô–Schrödinger Equations

Up to technical problems in the case of unbounded
operators, the master equation [4] is completely
equivalent to the following stochastic differential
equation (in Itô form):

d ðtÞ ¼ � iH ðtÞ dt � 1

2

X
j2I

V�j Vj ðtÞ dt

� i
X
j2I

Vj ðtÞdXjðtÞ ½41�

where Xj(t) are arbitrary statistically independent
stochastic processes with independent increments
(continuous or jump processes) such that the
expectation E(dXj(t) dXk(t)) = �jk dt. Equation [41]
should be understood as an integral equation
involving stochastic Itô integrals with respect to
{Xj(t)} computed according to the Itô rule:
dXj(t) dXk(t) = �jk dt. Taking the average �(t) =
E(j (t)>< (t)j) one can show, using the Itô rule,
that �(t) satisfies eqn [4]. For numerical
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applications, it is convenient to use the nonlinear
version of eqn [41] for the normalized stochastic
vector �(t) = (t)=k (t)k, which can be easily
derived from eqn [41] (Breurer and Petruccione
2002).

Introducing quantum noises, for example, quan-
tum Brownian motions defined in terms of bosonic
or fermionic fields and satisfying suitable quantum
Itô rules one can develop the theory of noncommu-
tative stochastic differential equations (NSDE)
(Hudson and Parthasarathy 1984). Both, eqn [41]
and NSDE, provide examples of unitary dilations –
(physically singular) mathematical constructions of
the environment R and the R–S coupling which
exactly reproduce dynamical semigroups as reduced
dynamics [34].
Algebraic Formalism

In order to describe open systems in thermodyna-
mical limit (e.g., infinite spin systems) or systems
in the quantum field theory one needs the
formalism based on C� or von Neumann algebras.
In the C�-algebraic language, by dynamical semi-
group (in the Heisenberg picture) we mean a
family {T(t); t 	 0} of linear maps on the unital
C�-algebra A satisfying the following conditions:
(1) complete positivity, (2) T(t)T(s) = T(t þ s),
(3) weak (or strong) continuity, and (4) T(t)1 = 1.
Assuming the existence of a faithful stationary
state !=! � T(t) on A, one can use a Gelfand–
Naimark–Segal (GNS) representation !(A) of A
in terms of bounded operators on the suitable
Hilbert space H! with the cyclic and separating
vector � satisfying !(A) = <�,!(A)�> for all
A 2 A. Then the dynamical semigroup can be
defined on the von Neumann algebra M (obtained
by a weak closure of !(A)) as T̂(t)!(A) �
!(T(t)A). The Kadison inequality valid even for
2-positive bounded maps � on A

�ðAA�Þ 	 �ðAÞ�ð1Þ�ðA�Þ ½42�

implies that !([T(t)A]�T(t)A)�!(A�A), which
allows one to extend the dynamical semigroup
to the contracting semigroup ~T(t)[!(A)�] �
[!(T(t)A)]� on the GNS Hilbert space H!. Typi-
cally, one tries to define the semigroup in terms of
the proper limiting procedures T(t) = limn!1 Tn(t),
where Tn(t) is well defined on A. However, the limit
may not exist as an operator on A but can be well
defined on the von Neumann algebra M. If not, the
contracting semigroup on H! may still be a useful
object.

Although there exists a rich ergodic theory
of dynamical semigroups for the special types of
von Neumann algebras, the most difficult problem
of constructing physically relevant semigroups
for generic infinite systems remains unsolved
(Majewski and Zegarliński 1996, Garbaczewski
and Olkiewicz 2002).
Nonlinear Dynamical Semigroups

The reduced description of many-body classical or
quantum systems in terms of single-particle states
(probability distributions, wave functions, or density
matrices) leads to nonlinear dynamics (e.g., Boltz-
mann, Vlasov, Hartree, or Hartree–Fock equations)
(Spohn 1980, Garbaczewski and Olkiewicz 2002). A
large class of nonlinear evolution equations for
single-particle density matrices � can be written as
Alicki and Lendi (1987)

d�

dt
¼ L½��� ½43�

where � 7!L[�] is a map from density matrices to
semigroup generators of the type [4]. Under
certain technical conditions the solution of eqn
[43] exists and defines a nonlinear dynamical
semigroup – a family {�(t); t 	 0} of maps on the
set of density matrices satisfying the composition
law �(t þ s) = �(t)�(s).

A simple example is provided by an open N-
particle system with the total Hamiltonian invariant
with respect to particle permutations. The Marko-
vian approximation combined with the mean-field
method leads to a nonlinear dynamical semigroup
which preserves purity and for initial pure states is
governed by the nonlinear Schrödinger equation
with the following structure:

d 

dt
¼�i hþNUð Þð Þ 

þN

2

X
j

< ;V�j  >Vj 
�

�< ;Vj >V�j  
�

½44�

Here h is a single-particle Hamiltonian, U( ) a
Hartree potential, and Vj are single-particle opera-
tors describing collective dissipation.

See also: Boltzmann Equation (Classical and Quantum);
Channels in Quantum Information Theory; Evolution
Equations: Linear and Nonlinear; Kinetic Equations;
Nonequilibrium Statistical Mechanics (Stationary):
Overview; Positive Maps on C*-Algebras; Quantum
Error Correction and Fault Tolerance; Quantum
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Mechanical Scattering Theory; Stochastic Differential
Equations.
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Introduction

In general relativity, the metric is a dynamic entity,
there is no preferred notion of time, and the theory
is invariant under diffeomorphisms. Therefore, one
expects the concept of dynamics to be very different
from that in mechanical or special relativistic
systems. Indeed, in a canonical formulation, the
diffeomorphism symmetry manifests itself through
the appearance of constraints (see Constrained
Systems). In particular, in the absence of boundaries,
the Hamiltonian turns out to be a linear combina-
tion of them. Thus, the dynamics is completely
encoded in the constraints.

To quantize such a system following Dirac, one
has to define operators corresponding to the
constraints on an auxiliary Hilbert space. Solutions
to the quantum dynamics are then vectors that are
annihilated by all the constraint operators. Techni-
cal complications can arise, and the solutions might
not lie in the auxiliary Hilbert space but in an
appropriately chosen dual.

Physical observables on the other hand are
associated with operators on the auxiliary space
that commute with the constraints or, equivalently,
operators that act within the space of solutions.
Since the solutions of the quantum dynamics will
not depend on any sort of time parameter in an
explicit way, they cannot be readily interpreted as a
(quantum) spacetime history. The conceptual ques-
tions related to this are known as the ‘‘problem of
time’’ in quantum gravity.

We should mention that there is a proposal –
consistent discretizations – that allows us to elimi-
nate constraints, at the expense of a discretization
of the classical theory and dynamical specification of
Lagrange multipliers. Application of this technique
to gravity is currently under study.

Loop quantum gravity (LQG) (see Loop Quantum
Gravity) is based on the choice of a canonical pair
(Aa, Eb) of an SU(2) connection and an su(2)-valued
vector density. The constraints come in three classes:

Gi½A;E�ðxÞ ¼ 0; Va½A;E�ðxÞ ¼ 0;
C½A;E�ðxÞ ¼ 0

the Gauss, vector, and scalar constraints, respectively.
Before giving some detail about the quantization

of the constraints and their solutions, we should
mention that there exists an analogous classical
formulation in terms of complex (self-dual) vari-
ables. The quantization in that formulation faces
serious technical obstacles, but in the case of
positive cosmological constant an elegant formal
solution to all the constraints – the Kodama state –
is known. It is related to the Chern–Simons action
on the spatial slice.
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As said before, strictly speaking, implementing the
dynamics comprises quantizing and satisfying all the
constraints. Here we will however focus on C since
it is the most challenging, and most closely related
to standard dynamics in that it generates changes
under timelike deformations of the Cauchy surface
� on which the canonical formulation is based.

The quantum solutions of the other constraints,
linear combinations of s-knots, lie in a Hilbert space
Kdiff which is part of the dual of the kinematical
Hilbert space K of the theory. For details on these
solutions as well as some basic definitions that will
be used without comment below (see Loop Quan-
tum Gravity). Since s-knots are labeled, among other
things, by a diffeomorphism equivalence class of a
graph, relations to knot theory are emerging at this
level (see Knot Invariants and Quantum Gravity).

It is important to note that C does not Poisson-
commute with the diffeomorphism constraints.
Therefore, in the quantum theory it does matter in
which order the constraints are solved. It turns out
that on the quantum solutions to the other con-
straints, the scalar constraint can be defined by
introducing a regulator, and stays well defined even
when the regulator is removed. This ultraviolet
finiteness on Kdiff can be intuitively understood
from the diffeomorphism invariance of its elements:
There is no problematic short-distance regime since
the states do not contain any scale at all.

In the following we will briefly review the imple-
mentation of the scalar constraint in LQG and
comment on some ramifications and open questions.
s3

s2

s1

α12

v

(a) (b)

Figure 1 (a) A tetrahedron � and its labeling of edges and

loops. (b) A tetrahedron � adapted to the edges (dashed lines)

of a graph �.
The Scalar Constraint Operator

In the Lorentzian theory the scalar constraint C is
the sum of the scalar constraint CE of the Euclidean
theory:

CE ¼ ðdet qÞ�1=2 trðFab½Ea;Eb�Þ

a second term of a similar form, but with the
curvature F of the connection A replaced by the
curvature associated to a certain triad e, and
possibly matter terms. In the following we will just
discuss CE, the other terms can be handled in a
similar fashion.

There appear to be a number of obstacles to the
quantization of CE: for one, the inverse of
the determinant would likely be ill defined, as
the volume operator – essentially a quantization ofR

(det q)1=2 – has a large kernel. In addition, there
are no well-defined operators corresponding to F
and E evaluated at points. Rather, only holonomies
he[A] of A along curves e and certain functionals of
E are well defined as operators. These issues can
however be dealt with in an elegant way as follows.

The first step is to absorb the determinant factor
into a Poisson bracket,

CE ¼ 2

�
�abc trðFabfAc;VgÞ

where V is the volume of the spatial slice �. Then
one approximates the curvature by (identity minus)
the holonomy around a small loop. In the present
case one finds that for a small tetrahedron � with
base point v, one can approximate

CE
�ðNÞ :¼ 2��1

Z
�

N trðF ^ fA;VgÞ

� � 2

3�
NðvÞ�ijk trðh�ij

hsk
fh�1

sk
;VgÞ ½1�

where (see Figure 1a)) the si are edges of � incident
at v and the �ij loops around the faces of � incident
at v.

This suggests how to define an operator bCE
� that

acts on cylindrical functions on a given graph �: one
chooses a triangulation adapted to the graph and
quantizes the CE

�(N) (where � is a tetrahedron of
this triangulation) using the right-hand side of [1] –
holonomies are quantized by the holonomy opera-
tors of the quantum theory, V by the volume
operator bV, and the Poisson bracket by the
corresponding commutator divided by i�h. To be
more precise, the triangulation is chosen such that
the sk in [1] are part of �, and the operators
corresponding to the h� are creating new edges that
connect the endpoints of the sk (see Figure 1b).

Still this is not sufficient, since the definition of bCE
�

depends quite heavily on the choice of the triangula-
tion, and there is no natural way to choose one.
Furthermore, there is no choice that would guarantee
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that the bCE
� for different � are consistent in the sense

that they correspond to the action of the same
operator bCE on two different cylindrical subspaces.
Here, the diffeomorphism invariance of the theory
comes to the rescue: a well-defined operator largely
free of ambiguities can be obtained by letting the
operators above act (by duality) on Kdiff to give
elements in K�. When acting on diffeomorphism-
invariant states, the ambiguities in the definition of
the triangulations can be eliminated, and the opera-
tors bCE

� for different � are consistent and together
define an operator bCE(N). Roughly speaking, for a
diffeomorphism-invariant state, it does not matter
anymore where on the graph the endpoints of the sk

lie and how they are connected to form the loops �.
The final picture looks as follows: for each s-knot s,
the operator gives a sum of contributions, one for
each vertex of s, that is, bCE(N)s =

P
v
cCv(N)s. The

terms in this sum are not diffeomorphism invariant.
Their evaluation on a spin network S is of the form

ðcCvsÞ½S� ¼
X

s0
cðs0ÞNðxðvÞÞs0½S� ½2�

where the s0 are s-knots that differ from s by the
addition or deletion of certain edges, and correspond-
ing changes in coloring (by�1=2) and intertwiners. As
an example, Figure 2 schematically depicts the action
on a trivalent vertex. The point x(v) on which N is
evaluated in the above formula gets determined as
follows: the evaluation s0[S] is zero unless the graph �
on which S is based is an element in the diffeomorph-
ism equivalence class on which s0 is based. x(v) is the
position of the vertex v in this element of the
equivalence class. Because of this x(v), the action ofbCE(N) is not diffeomorphism invariant.

Similar techniques give a quantization bC of the
full constraint. The solutions to the constraint can
be determined as the vectors  2 Kdiff that are
annihilated by bC in the sense that (bC(N) )[f ] = 0
for all functions N and elements f of K. The
solutions are more or less explicitly known; how-
ever, the task of interpreting them is a hard one and
remains an object of current research.

It should be mentioned that, strictly speaking, one
can arrive at several slightly different versions of the
k

j

∑ 1
2

j, k

Figure 2 A schematic rendering of the action of the operatorbCv for a trivalent vertex.
constraint operator along the lines sketched above.
The quantization ambiguities include changes in the
power of the volume operator and the spin quantum
number that the constraint creates or annihilates. An
interesting check on these quantizations would be to
inspect the algebra of constraint operators for anoma-
lies. In the present situation, this can only be carried
out to a certain extent, because bC is defined on
diffeomorphism-invariant states. The Poisson bracket
between two scalar constraints is proportional to a
diffeomorphism constraint, and indeed it turns out
that in the quantum theory the commutator of two
scalar constraint operators vanishes for quantizations
as described above. In that sense they are ambiguity
free; however, this criterion is not strong enough to
distinguish between the candidates.

Recently, a slightly different strategy has been
proposed, which, if successfully implemented, would
eliminate some of the questions regarding the
constraint algebra. The idea is to combine the
constraints C(N) for different lapse functions N
into one master constraint

M ¼
Z

�

ðdet qÞ�1=2C2 d3x

M is manifestly diffeomorphism invariant and could
replace all the noncommuting constraints C(N),
hence simplifying the constraint algebra considerably.

The interpretation of the solutions of all the
constraints hinges on the construction of observables
for the theory. This is already a difficult task in the
classical theory, and thus even more so after quantiza-
tion. Though there is no general solution to this problem
available, interesting proposals are being studied.

Finally, it should be said that the quantization of
the scalar constraint can be used to obtain a picture
that resembles more the standard time evolution in
quantum field theory. The (formal) power series
expansion of the projector

P ¼
Y
x2�

�ðbCðxÞÞ ¼ Z D½N� exp i

Z
�

NðxÞbCðxÞ� �

onto the kernel of bC can be described by a spin foam
model (see Spin Foams).

For further information on the subject of this article
see the references: Thiemann (to appear), Rovelli
(2004), and Ashtekar and Lewandowski (2004) for
general reviews on LQG (with a systematic exposition
of a large class of quantizations of the scalar constraint
and their solutions in Ashtekar and Lewandowski
(2004)); Thiemann (1998) for a seminal work on the
quantization of the scalar constraint; Rovelli (1999)
and Reisenberger and Rovelli (1997) on the connec-
tion to spin foam models; Di Bartolo et al. (2002) on
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consistent discretizations; Kodama (1990) and Freidel
and Smolin (2004) on the Kodama state; and
Thiemann (2003) on the master constraint program.

See also: Constrained Systems; Knot Invariants and
Quantum Gravity; Loop Quantum Gravity; Quantum
Geometry and its Applications; Spin Foams; Wheeler–De
Witt Theory.
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Introduction

Quantum electrodynamics (QED) describes the
interaction of the electromagnetic field (EMF)
with charged particles. Any physical particle
interacts, directly or indirectly, with any other
particle (including itself); in the case of the
electron, however, at low and medium energy
(say, up to a few GeV) the interaction with the
EMF is by and far the most important, so that
QED describes with great precision the dynamics
of the electron, and at the same time the electron
provides with the most stringent tests of QED
currently available.

In the various sections of this article we will
discuss, in the following order, the origin of QED,
the structure of the radiative corrections, the
application of QED to various bound states pro-
blems (the hydrogen-like atoms, the muonium, and
positronium) and the anomalous magnetic moments
of the leptons (the muon and the electron).
Origin of QED

The origin of QED can ideally be traced back to the
very beginning of quantum mechanics, the black-
body formula by M Planck (1900), which was soon
understood as pointing to a discretization of the
energy and momentum associated to the EMF into
quanta of light or photons (Einstein 1905).

The quantization of the EMF was first worked out
by P Jordan, within the article (1926) by M Born,
W Heisenberg, and P Jordan (usually referred to as
the Dreimännerarbeit) and then in the paper ‘‘The
quantum theory of emission and absorption of
radiation’’ by PAM Dirac, commonly considered
the beginning of the so-called second quantization
formalism.

In the subsequent year (1928) Dirac published the
famous equation for the relativistic electron, from
which it was immediately deduced, on a firmer
basis, that the electron has spin 1/2, that its spin
gyromagnetic ratio (the ratio between spin and
associated magnetic moment in suitable dimension-
less units; see below for more details) is twice the
value predicted by classical physics (a result
expressed as ge = 2) and that the levels of atomic
hydrogen with the same principal quantum number
n are not fully degenerate, as in the nonrelativistic
limit, but do possess the so-called fine structure
splitting. In particular, the energy of the n = 2 levels
splits into two values, one value for 2P3=2 states
with total angular momentum J = 3=2 and another
value for the states 2S1=2 and 2P1=2, which have
J = 1=2; note that the 2S1=2 and 2P1=2 states are still
degenerate.

Very soon it was realized that Dirac’s equation
also requires that each particle must be accompanied
by its antiparticle, with exactly the same mass and
opposite charge. The antiparticle of the electron, the
positron, was indeed discovered by C Anderson
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(1932), establishing Dirac’s equation as one of the
cornerstones of theoretical physics.

All the ingredients needed for the evaluation of
the perturbative corrections to the QED theory
(usually called radiative corrections) were already
present at that moment, but radiative corrections
were not systematically investigated for several
years, due perhaps to the length and difficulty of
the calculations and the absence of important
disagreements between theoretical predictions and
experimental results.

The situation changed in 1947, when two experi-
ments were carried out, measuring the energy
difference between the 22S1=2 and 22P1=2 levels of
the hydrogen atom and the gyromagnetic ratios of
the electron.

Lamb and Retherford (1947), by using the ‘‘great
wartime advances in microwaves techniques,’’ suc-
ceeded in establishing that in the hydrogen atom
‘‘the 22S1=2 state is higher than the 22P1=2 by about
1000 Mc/sec.,’’ while (as observed above) according
to the Dirac theory the two states are expected to
have exactly the same energy. Subsequent refine-
ments of the experiment (Triebwasser et al. 1953)
gave for the difference (now referred to as Lamb
shift) the value 1057.77� 0.10 MHz, with a relative
error 1� 10�4.

The authors of the second 1947 experiment
(Kusch and Foley 1947) measured the frequencies
associated with the Zeeman splitting of two differ-
ent states of gallium, finding an inconsistency with
the theoretical values of the gyromagnetic ratios of
the electron. More exactly, write the magnetic
moments mL, mS associated to the (dimensionless)
orbital and spin angular momenta L, S of the
electron as

mL ¼ �gL
e�h

2mec
L; mS ¼ �gS

e�h

2mec
S ½1�

where (�e) is the charge of the electron (e > 0), me

its mass, c the speed of light and gL, gS, respectively,
the orbital and spin gyromagnetic ratios; the Dirac
theory then predicts gL = 1 and gS = 2, while the
results of Kusch and Foley (1947) gave a discre-
pancy which could be accounted for by taking
gS = 2.00229 � 0.00008 and gL = 1, or alternatively
gS = 2 and gL = 0.99886� 0.00004. In modern
notation the first conjecture can be rewritten as

gS ¼ ge ¼ 2ð1þ aeÞ; ae ¼ 0:001145� 0:00004 ½2�

where ae is the anomalous magnetic moment (or
magnetic anomaly) of the electron.

The need of explaining the two experimental
results gave rise to a rapid development of covariant
perturbation theory (which replaced the previous
noncovariant ‘‘old fashioned’’ perturbation theory)
and of the renormalization theory, which liberated
the perturbative expansion from the divergences
plaguing the older approach, opening the path to the
evaluation of radiative corrections and to the great
success of precision predictions of QED.

The formalism improved quickly, evolving in
the more general quantum field theory (QFT)
approach; three of the main contributors were
Sin-Itiro Tomonaga, Julian Schwinger, and Richard
P Feynman, awarded a few years later (1965) the
Nobel price ‘‘for their fundamental work in quantum
electrodynamics, with deep-ploughing consequences
for the physics of elementary particles.’’ QFT was then
successfully used for describing the weak interactions
in the electroweak model and later on also for the
strong interactions theory, dubbed quantum chromo-
dynamics (or QCD, in analogy with the popular QED
acronym). For more details and references to original
works, the reader is invited to look at any treatise on
QED or QFT, such as, for instance, Weinberg (1995).

Initially, the Lamb shift was perhaps more
important than the electron magnetic anomaly both
for the establishment of renormalization theory and
as a test of QED, but in the following years it was
supplanted by the latter as a precision test of QED.

In 1947 the ‘‘best values’’ for some fundamental
constants were indeed

c ¼ ð2:99776� 0:00004Þ� 1010 cm s�1

R1 ¼
mec

2�2

2hc
¼ 109737:303� 0:017 cm�1

1=� ¼ 137:030� 0:016

½3�

where R1 is the Rydberg constant for infinite mass,
h the Planck constant, and � the fine structure
constant (let us observe here in passing that R1 was
and is still known much better than the separate
values of me,�, and h entering in its definition); for
comparison, the current (2005) values for c and R1
are

c ¼ 299792458 m s�1

R1 ¼ 109737:31568525ð73Þ cm�1
½4�

where the value of c is exact (it is in fact the
definition of the meter), and the relative error in R1
is 6.6� 10�12 (the value of � will be discussed later).
The measurement of the Lamb shift, repeated
several times, gave results in nice agreement with
the original value, and for several years it was
providing either a test of QED or a precise value for
�. But the Lamb shift is the energy difference
between the metastable level 2S1=2 (whose lifetime
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is about 1/7 s) and the 2P1=2 level, which has a
lifetime of about 1.596 ns or a natural linewidth of
99.7 MHz. Such a large linewidth poses a strong
intrinsic limitation to the precision attainable in the
measure of the Lamb shift, which is just ten times
larger; as a matter of fact, that precision could never
reach the 1� 10�6 relative error level, while in the
meantime the relative precision in ae reached the
10�9 range, replacing the Lamb shift in the role of
the leading quantity in high-precision QED.
The Structure of Radiative Corrections

For obvious space problems we can only super-
ficially sketch here the lines along which the
perturbative expansion of QED leading to the
evaluation of radiative corrections can be built,
considering for simplicity only the photon and the
electron. One can start from a QED Lagrangian,
formally similar to the classical Lagrangian, invol-
ving the electron field and the vector potentials of
the electromagnetic (or photon) field. The theory is
a gauge theory (its physical content should not
change if a gradient is added to the vector
potentials); it is further an abelian gauge theory as
the EMF does not interact directly with itself.

The QED Lagrangian is separated into a free part
and an interaction part. From the free part, one
derives the wave functions of the free-particle states
and the corresponding time-evolution operators
(free Green’s functions or propagators; let us just
recall here that to obtain a convenient photon
propagator one has to break the gauge invariance
by adding to the Lagrangian a suitable gauge-
breaking term), while the interaction part of the
Lagrangian gives the ‘‘interaction vertices’’ of the
theory.

Aim of the theory is to build the Green’s function
for the various processes in the presence of the
interaction; from these Green’s functions, one then
derives all the physical quantities of interest.

With the free propagators and the interaction
vertices, one generates the perturbative expansion of
the Green’s functions. The result, namely the
contributions to the perturbative expansion (or
radiative corrections), can be depicted in terms of
Feynman graphs: they consist of various particle
lines joined in the interaction vertices, with external
lines corresponding to the initial and final particles
and internal lines corresponding to intermediate or
virtual particle states. Each graph stands for an
integral on the momenta of all the intermediate
states, each vertex implying among other things an
interaction constant, which is (�e) in the case of
electron QED, and a �-function imposing the
conservation of the momenta at that vertex. For
each process, the Feynman graphs are naturally
classified by the total number of the interaction
vertices they contain. In the simplest graphs for a
given process (the so-called tree graphs) the
�-functions at the vertices make the integrations
trivial; but when the number of vertices increases,
closed loops of virtual particle states appear, whose
evaluation quickly becomes extremely demanding.
In QED, each loop gives an extra factor (�e)2 with
respect to the tree graph; it is customary to express it
in terms of (�=�) = (e=2�)2, so that the resulting
power of (�=�) corresponds to the number of
internal loops. The typical QED prediction for a
physical quantity is then expressed as a series of
powers of the fine structure constant � (and of its
logarithm in bound-state problems). As � is small
(� ’ 1=137), and the first coefficients of the expan-
sions are usually of the order of 1, a small number
of terms in the expansion is in general sufficient to
match the precision of the available experimental
data.

But the number of different graphs for a given
number of loops grows quickly with the number of
the loops; in turn, each graph consists in general of a
great number of terms and the loop integrations
become prohibitively difficult when the number of
loops increases, so that the evaluation of radiative
corrections proved to be one of the major computa-
tional challenges of theoretical physics. As a matter
of fact, it prompted the development of computer
programs (Veltman 1999) for processing the huge
algebraic expressions usually encountered, and of
many sophisticated numerical and analytical techni-
ques for performing the loop integrations.

It should be further mentioned here that Feynman
graphs written by naively following the above
sketched rules are often mathematically ill-defined,
taking the form of nonconvergent integrals on the
loop momenta. A regularization procedure is needed
to give an unambiguous meaning to all the integrals;
currently the most powerful regularization is the
continuous dimensional regularization scheme, in
which the loop integrations are carried out in d
continuous dimensions, with d unspecified; renor-
malization counter-terms are also evaluated in the
same scheme, and the physical quantities are
recovered in the d! 4 limit (unrenormalized loop
integrals and renormalization counterterms are
usually singular as powers of 1=(d � 4) in the
d! 4 limit, but all those divergences cancel out in
the physical combinations of interest).

QED describes the main interaction of the
charged leptons (e, �, and �) which have, however,
weak interactions as well. Strictly speaking, pure
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QED processes do not exist; it is an essential feature
of QFT that any existing particle can contribute to
the Feynman graphs for any process, when the
approximation is pushed to a sufficiently high
degree. In particular the photon, which is the main
carrier of the QED interaction, is directly coupled
also to the strongly interacting particles (the result-
ing contributions are referred to as ‘‘hadronic
vacuum polarization’’ effects).

The precision tests of QED are then to be
necessarily searched for in those phenomena where
non-QED contributions are presumably small and
which involve quantities already well known inde-
pendently of QED itself. But such high-precision
quantities are not always available, and as QED is
known better than the rest of physics, very often it is
taken to be correct by assumption, and used as a
tool for extracting or measuring some of the non-
QED quantities relevant to various physical
processes.

In any case, as QED predictions are expressed in
terms of the fine structure constant �, a determina-
tion of � independent of QED is needed; without it,
the most precise predictions of QED would simply
become measures of � and not tests of the theory.

Finally, it is to be recalled that, ironically, the
problem of the convergence of the expansion in
powers of � is still open, even if it is commonly
accepted that convergence problems will matter only
for precisions and corresponding perturbative orders
(say at order 1=� ’ 137) absolutely out of reach of
present experimental and computational possibili-
ties, involving further extremely high energies,
where the other fundamental interactions are
expected to be as important as QED, so that it
would be meaningless to consider only QED.

In the following we will discuss only the QED
predictions for bound states and the anomalous
magnetic moments of � and e.
The Bound States

A very good review of the current status of the theory
of hydrogen-like atoms can be found in Eides et al.
(2001), to which we refer for more details and
citation of the original papers. The starting point for
studying the bound-state problem in QED is the
scattering amplitude of two charged particles, pre-
dicted by perturbative QED (pQED) as a (formal)
series expansion in powers of �. In the static limit
v! 0, where v is the relative velocity of the two
particles, some of the pQED terms behave as �=v, so
that the naive expansion in � becomes meaningless.
Fortunately, it is relatively easy to identify the origin
of those terms (which are essentially due to the
Coulomb interaction between the two charges) and
to devise techniques for their resummation. Among
them, one can quote the Bethe–Salpeter equation,
formally very elegant and complete but difficult to
use in practice. A great progress has been achieved by
the NRQED (nonrelativistic QED) approach, which
is a nonrelativistic theory designed to reproduce the
full QED scattering amplitude in the nonrelativistic
limit by the ad hoc definition, a posteriori, of a
suitable effective Hamiltonian. The Hamiltonian is
then divided into a part containing the Coulomb
interaction, which is treated exactly and which gives
rise to the bound states, and all the rest, to be treated
perturbatively. The power of the NRQED approach
was further boosted by the continuous dimensional
regularization technique of Feynman graph integrals.

Traditionally, the results are expressed in terms of
the energies of the bound states, but as in practice
the precise measurements concern the transition
frequencies between various levels, it is customary
to express any energy contribution to some level, say
�E, also in terms of the associated frequency
�= (�E)=h, where h is the Planck constant.
The Hydrogen-Like Atoms

Quite in general, a hydrogen-like atom consists of a
single electron bound to a positively charge particle,
which is a proton for the hydrogen atom, a deuteron
nucleus for deuterium, a Helium nucleus for an Heþ

ion, a �þ meson for muonium, or a positron for
positronium. Even if QED alone is not sufficient to
treat the dynamical properties of the nuclei, their
strong interactions can be described by introducing
suitable form factors and a few phenomenological
parameters; weak interactions could be treated
perturbatively, but are not yet required at the
precision levels achieved so far.

The QED results for the hydrogen-like atoms can
be expressed in terms of the mass M of the positive
particle and of its charge Ze (of course Z = 1 for
hydrogen). When the electron mass me is smaller
then M (which is always the case, except the
positronium case) one can take as a starting point
the QED electron moving in the external field of the
positive particle, and treat all the other aspects of
the relativistic two-body problem (the so-called
recoil effects) perturbatively in me=M.

Neglecting the spin of the positive particle, the
energy levels of the hydrogen-like atom are identi-
fied by the usual principal quantum number n, the
orbital angular momentum l (with the convention of
writing S, P, D, . . . instead of l = 0, l = 1, l = 2, . . .)
and j, the total angular momentum including the
spin of the electron. It turns out that the bound
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levels consist of very many contributions of different
kinds; dropping quantum number indices for sim-
plicity, the energy levels can be written as an
expression of the form

E ¼�mec
2ðZ�Þ2

2

mr

me

� �

� 1

n2
þ ðZ�Þ2f4 þ ðZ�Þ4f6 þ � � �

� �

þ�Erad þ�Erec þ�Enucl þ � � � ½5�

Let us observe that it is convenient to write
explicitly the Z factors even when Z = 1 for a better
bookkeeping of the various corrections. As usual, mr

is the reduced mass of the electron, mr = meM=
(me þM) the mass of the nucleus being M; the first
term in the square bracket, 1=n2, the familiar
Balmer term, is by and far the dominant one, giving
for the n = 1 level in the Z = 1 case an energy of
about 13.6 eV or a corresponding frequency of
3.3� 1015 Hz. The other terms in the square
bracket, f4 and f6, are known coefficients (depend-
ing also on the small parameter me=M; f4 is
essentially the fine structure).

The term �Erad, is the bulk of the radiative QED
corrections; it can be written as a multiple expan-
sion on (Z�),� and L = ln [1=(Z�)2], which turns
out to have the following explicit form:
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The first index of the coefficients refers to the power
of (Z�), the second to the power of L; as a rule,
there are three powers of (Z�) due to the normal-
ization of the wave function and one power of (Z�)
for each interaction with the nucleus (in the leading
term of eqn [5] one must subtract two powers of
(Z�) due to the long-range nature of the Coulomb
interaction), while the terms in L= ln [1=(Z�)2] are
related to the infrared divergences of the scattering
amplitude, with the binding energy acting as infra-
red cutoff. The A-coefficients refers to order (�=�)
or one-loop virtual correction (we do not distinguish
here between one-loop self-mass and vacuum-
polarization contribution, as usually done in the
literature), the B-coefficients to two loops, etc. The
coefficients are pure numbers, entirely determined
within QED, even if their actual calculation is an
extremely demanding task. One of the first results
obtained in 1947 was A41 = (4=3)�l0, contributing to
the 2S but not to the 2P states (quite in general,
most corrections are much bigger for l =0 states
than for higher-angular-momentum states), which is
sufficient to give the right order of magnitude of the
(2S1=2–2P1=2) Lamb shift (about 1000 MHz). The
other coefficients are now known, thanks to the
strenuous and continued efforts (Eides et al. 2001)
since then, which is impossible to refer properly here
in any detail. The current frontier of the theoretical
calculation (around the dots in the previous for-
mula) corresponds to 8–9 total powers of (�=�) and
(Z�) or some kHz for the 1S state.

The next term in eqn [5], �Erec contains
contributions of order mec

2(Z�)5(me=M) or smaller
(some care must be done for classifying the
contributions of order me=M, which can be
accounted for by proper use of mr rather than me

and genuine me=M contributions), and are suffi-
ciently known for practical purposes; the same is
true for many other contributions discussed in Eides
et al. (2001) and skipped in eqn [5]. A troublesome
contribution comes however from �Enucl; at leading
order, one has

�Enucl ¼
2ðZ�Þ4mc2

3n3

mcRp

�h

� �2

�l0

where Rp is the so-called root-mean-square charge
radius of the proton, which is not well known
experimentally (in the literature, there are indeed
two direct measurements, Rp = 0.805(11) fm and
Rp = 0.862(12) fm, in poor agreement with each
other; a new independent measurement is strongly
needed).
The hyperfine splitting The effect of the interac-
tion of the electron with the spin of the positive
particle introduces the so-called hyperfine splitting
of all the levels. The order of magnitude of the
hyperfine splitting of the 1S state is given by the
Fermi energy

EF ¼
4

3
mec

2ðZ�Þ4gp
me

mp

where gp ’ 5.586 is the g-factor of the proton,
which gives ’1.42 GHz. It was dubbed hyperfine
because it is smaller than the fine structure terms by
the factor me=mp. Many classes of corrections can
be worked out, with patterns similar to those of the
previous subsection, and also in this case the nuclear
contributions (this time mainly due to the theoreti-
cally unknown magnetic form factor and the
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so-called polarizability of the proton) prevent from
obtaining predictions with an error less than 1 kHz
(or a relative precision better than 1� 10�6).
The comparison with the experiments Experimen-
Experimentally, one measures transition frequencies
among the various levels. For many years the
precision record was given by the hyperfine splitting
of the ground states of hydrogen �hfs(1S) was
measured long ago (see Hellwig et al. (1970) and
Essen et al. (1971)),

�hfsð1SÞ ¼ 1 420 405:751 766 7ð9Þ kHz ½7�

with a relative error 6� 10�13. The current record in
the optical range is the value of the (1S–2S)
hydrogen transition frequency, obtained by means
of two-photon Doppler-free spectroscopy Niering
et al. (2000),

�ð1S–2SÞ ¼ 2 466 061 413 187:103ð46Þ kHz ½8�

with a relative precision 1.9� 10�14; other optical
transitions, such as (2S–8D), (2S–12D) are measured
with precision of about 1� 10�11.

The measurement of the Lamb shift was repeated
several times, with results in nice agreement with the
original value, such as Lundeen and Pipkin (1986),
1057.845(9) MHz. The most precise value,
1057.8514� 0.0019 MHz was given in Palchikov
et al. (1985) (the result depends, however, on the
theoretical value of the lifetime, and should be
changed into 1057.8576� 0.0021 according to
subsequent analysis (see Karshenboim (1996)). The
experimental (2S1=2–2P1=2) Lamb shift was also
obtained as the difference between the measured
fine structure separation (2P3=2–2S1=2) and the
theoretical value of the (2P3=2–2P1=2) frequency,
and the radiative corrections �Erad to any level are
now referred to as the Lamb shift of that level.

As a somewhat deceiving conclusion, the wonder-
ful experimental results of eqns [7] and [8] cannot
be used as a high-precision test of the theory or to
obtain precise values of many fundamental con-
stants, as the theoretical calculations depend, unfor-
tunately, on hadronic quantities which are not
known accurately. Combining theoretical predic-
tions, the above transitions and Lamb shift data, and
the available values of � and me=mp, one can indeed
obtain a measure of Rp (Rp = 0.883� 0.014,
according to Melnikov and van Ritbergen (2000))
and the value of R1 already quoted above.

Muonium

The muonium is the bound state of a positive mþ

meson and an electron. At variance with the proton,
the mþ lepton has no strong interactions, the mþe�

system can be studied theoretically within pure
QED, with the weak interactions giving a known
and small perturbation. Further, the ratio of the
masses me=mm ’ 4.8� 10�3 is small, so that the
external field approximation holds. However, the m
is unstable (lifetime ’2.2 m s), which makes experi-
ments more difficult to carry out. The best measured
quantity is the hyperfine splitting of the 1S ground
state (see Liu et al. (1999))

�hfsðme; 1SÞ ¼ 4 463 302 765ð53ÞHz

with a relative precision of 12� 10�9. The theore-
tical treatment is similar to the case of hydrogen,
with the important advantage that nuclear interac-
tions are absent and everything can be evaluated
within QED, so that the bulk of the contribution is
given by a formula with the structure of eqn [6]. But
the prediction depends, in any case, on the me=mm

mass, which is not known with the required
precision. Indeed, a recent theoretical calculation
(Czarnecki et al. 2002) (which includes also a
contribution of 0.233(3) kHz from hadronic
vacuum polarization) gives 4 463 302 680(510)
(30)(220) Hz, where the first (and biggest) error
comes from me=mm, the second from �, and the third
is the theoretical error (an estimation of higher-
order contributions not yet evaluated).
Positronium

The positronium is the bound state of an electron
and a positron. Theoretically, it is an ideal system to
study, as it can be described entirely within QED,
without any unknown parameter of non-QED
origin. As the masses of the two constituents,
positron and electron, are strictly equal, the reduced
mass of the system is exactly equal to half of the
electron mass, mr = me=2, and the energy scale of
the bound states is half of R1.

At variance with the muonium case, the external
field approximation is not valid, so that positronium
must be treated with the full two-body bound-state
machinery of QFT, of which it provides an excellent
test (Karshenboim 2004).

Experimentally, radioactive positron sources are
available, so that positronium is easier to produce
than muonium. It is, however, unstable; states with
total spin S equal 0 (also called parapositronium
states) annihilate into an even number (mainly two)
of gammas, and states with S = 1 (orthopositronium)
into an odd number (mainly three) of gammas, with
short lifetimes (which make precise measurements
difficult). Further, as positronium is the lightest
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atom, Doppler-broadening effects are very impor-
tant, reducing the precision of spectroscopical
measurements.

Positronium decay rates There has been a long-
time discrepancy between theory and experiment in
decay rate of ground-state orthopositronium, which
prompted thorough theoretical investigations look-
ing for errors in the calculations or flaws in the
formalism, but it turned out that the flaw was on the
experimental side. The current theoretical prediction
for the ground state S = 1 decay is (Adkins et al.
2002)

�ð1S;orthoÞ ¼�0 1þA
�

�

� �
þ 1

3
�2 ln�

�

þB
�

�

� �2
�3�3

2�
ln2

�þC
�3

�
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�

¼ 7:039979ð11Þms�1

where �0 = 2(�2 � 9)me�
6=(9�) = 7.2111670(1),

A= �10.286606(10),B=45.06(26),C=�5.517, in
nice agreement with the less precise experimental
result of Karshenboim (2004, ref. 38) 7.0404
(10)(8)ms�1. As a curiosity, the coefficients A, B
above are among the greatest coefficients so far
appeared in QED radiative corrections.

The agreement between theory and experiment for
the ground-state parapositronium decay rate has
always been good; the current status of Karshenboim
(2004, ref. 41) is 7990.9(1.7) ms�1 for the experimental
result and of Karshenboim (2004, ref. 43)
7989.64(2) ms�1 for the theoretical prediction.

Positronium levels The quantum number structure
of the levels is similar to muonium, with the
important difference, however, that the hyperfine
splitting (which in hydrogen or muonium is small
because it is proportional to the ratio of the masses of
the two components) is in fact of the same order as
the fine structure. The theoretical evaluation of the
energy levels provides a very stringent check of QED
and of the overall treatment of the bound-state
problem. Corrections have been evaluated, typically,
up to order mc2�7. The best-known quantities are
the ground state (hyper)fine splitting, experimental
value (Ritter et al. 1984) 203.38910(74) GHz
(3.6� 10�6 relative error), theoretical (Karshenboim
2004) 203.3917(6), and the 1S–2S transition for
orthopositronium, experiment (Fee et al. 1993) 1 233
607 216.4 (3.2) MHz, theory 1 233 607 222.2(6).
The general agreement is good; the precisions
achieved are, however, not yet sufficient to allow a
determination of R1 or � competitive with other
measurements.
The Anomalous Magnetic Moments
of Leptons

The precision of the measurements requires, for both
the e and � leptons, to also take into account graphs
with contributions from the other leptons as virtual
intermediate states and those of hadronic and weak
origin. Quite in general, if the mass of the virtual
particle, say mv, is smaller than the mass of the
external lepton, say ml, one can have an ln (ml=mv)
behavior of the contributions; that is the case of the
virtual electron contributions to the muon magnetic
anomaly am, which can be enhanced by powers of
ln (mm=me). In the opposite case, mv > ml, the
contribution has the behavior (ml=mv)

2; that is the
case of the (mm=m� )

2 contributions to am from �
loops and of the (me=mm)

2 contributions from �
loops to th electron magnetic anomaly, ae. As strong
and weak interactions are in general associated with
heavy-mass particles, they are expected to be more
important for am than ae; further, a given heavy
particle contribution to ae is smaller by a factor
(me=mm)

2 than the corresponding contribution to am.
The Magnetic Anomaly am of the m

The am has been reviewed in Passera (2005). The
present (2005) world average experimental value is

amðexpÞ ¼ 116 592 080ð60Þ� 10�11

with a relative error 0.5� 10�6.
Theoretically, one can write

am ¼ amðQEDÞ þ amðhadÞ þ amðEWÞ ½9�

where the three terms stand for the contributions
from pure QED, strong interacting hadrons and
electroweak interactions. In turn, one can expand
am(QED) in powers of � as
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The coefficients A(l)
1 involve only the photon and

the external lepton as virtual states, are identically
the same as in ae; they are known up to l = 4
included (but, strictly speaking, the contribution of
A(4)

1 is smaller than the experimental error of am)
and will be discussed later for the electron. The
A(l)

2 (mm=me) are very large, being enhanced by
powers of ln (mm=me), and are required and known
up to l = 5; A(l)

2 (mm=mt) starts with A(2)
2 (mm=mt) ’
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1=45(mm=mt)
2, contributing 4.2� 10�11 to am, so

that the A(l)
2 (mm=mt) with higher values of l are not

needed. A(l)
3 (mm=me, mm=mt), finally, starts from

l = 3, and gives a negligible contribution
0.7� 10�11. Summing up, one finds C1 = 1=2,
C2 = 0.765 857 410(27) (the error is from the experi-
mental errors in the lepton masses) C3 = 24.050
509 64(43), C4 = 131.011(8), and C5 = 677(40). As
already observed, the coefficients are large due to the
presence of ln (mm=me) factors. The last term C5

contributes 4.6(0.3)� 10�11 to am, and the total QED
contribution is

amðQEDÞ ¼ 116 584 718:8ð0:3Þð0:4Þ� 10�11

where the first error is due to the uncertainties in the
coefficients C2, C3, and C5 and the second from the
value of � coming from atom interferometry
measurements (see below).

The hadronic contributions are of two kinds,
those due to vacuum polarization, am(vac.pol),
which can be evaluated by sound theoretical
methods by using existing experimental data, and
those due to light-by-light hadronic scattering,
am(lbl), whose evaluation relies on much less firmer
grounds and are entirely model-dependent. The
value of am(vac.pol) varies slightly among the
various authors (see Passera (2005) for reference to
original work), let us take as a typical value
am(vac.pol) = 6834(92)� 10�11 (based on eþe� scat-
tering data and including also first-order radiative
corrections). The model-dependent value of the
light-by-light contribution changed several times in
the years (also in sign!) but now there is a general
consensus that it should be positive; let us take,
somewhat arbitrarily, am(lbl) = 136(25)� 10�11, so
that the total hadronic contribution becomes

amðhadÞ ¼ 6970ð92Þ� 10�11

The electroweak contribution, finally, is

amðEWÞ ¼ 154ð2Þ� 10�11

which accounts for a one-loop purely weak
contribution and a two-loop electromagnetic and
weak contribution, which turns out to be very large
(�42� 10�11) for the presence of logarithms in the
masses (the error is due to the uncertainty in the
Higgs boson mass).

Summing up, eqn [9] gives am = 116 591 842
(92)� 10�11, so that

amðexpÞ � am ¼ 138ð60Þð90Þ� 10�11

The substantial agreement can be considered to be a
good overall check of QED and electroweak inter-
actions. But another attitude is often adopted in
the scientific community: the validity of QED and
electroweak models is taken for granted, and a
disagreement, if any, is considered to be an indica-
tion of new physics. To obtain significant informa-
tion in that direction, however, the experimental
and the theoretical errors (dominated in turn by the
experimental error in eþe� scattering data) should
be significantly reduced.
The Magnetic Anomaly ae of the Electron

Experimentally, one has the 1987 value (Kinoshita
2005, ref. 1).

aeðexpÞ ¼ 1 159 652 188:4ð4:3Þ� 10�12 ½11�

with a relative error 3.7� 10�9 and the preliminary
Harvard (2004) measurement (Kinoshita 2005, ref. 3).

aeðHarvardÞ ¼ 1159652180:86ð0:57Þ�10�12 ½12�

with 0.5�10�9 relative error, that is, an increase in
precision by a factor 7.

Theoretically, eqns [9] and [10] apply also to the
electron; given the smallness of the electron mass,
the relevant terms up to the precision of the
experimental data are

ae ¼A
ð1Þ
1

�

�

� �
þ A

ð2Þ
1

�

�

� �2
þA

ð3Þ
1

�

�

� �3

þ A
ð4Þ
1

�

�

� �4
þ � � � þ A

ð2Þ
2

me

mm

� �
�

�

� �2

þ aeðhadÞ þ aeðEWÞ ½13�

The explicit calculation gives
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and

A
ð2Þ
2

me

mm

� �
�

�

� �2
’ 1

45

me

mm

� �2 �

�

� �2
’ 2:72� 10�12

aeðhadÞ ¼ 1:67ð0:02Þ� 10�12

aeðEWÞ ¼ 0:03� 10�12 ½14�

For obtaining a meaningful prediction, one needs
now a precise value of �. The most precise value
available at present is that of Passera (2005, ref. 49)

��1ðaifÞ ¼ 137:036 000 3ð10Þ

with relative error 7� 10�9, obtained by the atom
interferometry method (which is independent of
QED, depending only on the kinematics of the
Doppler effect). With that value of �, the theoretical
prediction for ae becomes

ae ¼ 1 159 652 175:9ð8:5Þð0:1Þ10�12

where the first error comes from � and the second
from C4; conversely, one can use the QED predic-
tion for ae and ae(Harvard) for obtaining �; one
obtains in that way

��1ðQED; aeÞ ¼ 137:035 999 708ð12Þð67Þ

where the first uncertainty is from C4 and the
second from the experiment. We see that theory and
experiment are in good agreement.

As a concluding remark, another independent and
more precise (or analytic!) evaluation of C4 contribu-
tion would be welcome. The five-loop term is not
known; but as (�=�)5 � 0.07� 10�12, if C5 is, say,
not greater than 2, its contribution to ae becomes
equal to the contribution of the error �C4 of C4 and
is not yet required to match the current precision of
ae( exp ). The ultimate theoretical limit, the error of
the hadronic contribution, �ae(had) = 0.02� 10�12,
is still smaller, corresponding to a change
�C4 = 0.0007 of C4 or �C5 = 0.3 of C5.

See also: Abelian and Nonabelian Gauge Theories Using
Differential Forms; Anomalies; Effective Field Theories;
Electroweak Theory; Quantum Field Theory: A Brief
Introduction; Standard Model of Particle Physics.
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In the past 50 years, entropy has broken out of
thermodynamics and statistical mechanics and
invaded communication theory, ergodic theory
mathematical statistics, and even the social and
life sciences. The favorite subjects of entropy
concern macroscopic phenomena, irreversibility,
and incomplete knowledge. In the strictly mathe-
matical sense entropy is related to the asymptotics
of probabilities or concerns the asymptotic beha-
vior of probabilities.

This review is organized as follows. First the
history of entropy is discussed generally and then we
concentrate on the von Neumann entropy again
somewhat historically following the work of von
Neumann. Umegaki’s quantum relative entropy is
discussed both in case of finite systems and in the
setting of C�-algebras. An axiomatization is pre-
sented. To show physical applications of the concept
of entropy, the statistical thermodynamics is
reviewed in the setting of spin chains. The relative
entropy shows up in the asymptotic theory of
hypothesis testing and data compression.
General Introduction to Entropy: From
Clausius to von Neumann

The word ‘‘entropy’’ was created by Rudolf Clausius
and it appeared in his work Abhandlungen über die
mechanische Wärmetheorie published in 1864. The
word has a Greek origin, its first part reminds us of
‘‘energy’’ and the second part is from ‘‘tropos,’’
which means ‘‘turning point.’’ Clausius’ work is the
foundation stone of classical thermodynamics.
According to Clausius, the change of entropy of a
system is obtained by adding the small portions of
heat quantity received by the system divided by the
absolute temperature during the heat absorption.
This definition is satisfactory from a mathematical
point of view and gives nothing other than an
integral in precise mathematical terms. Clausius
postulated that the entropy of a closed system
cannot decrease, which is generally referred to as
the second law of thermodynamics.

The concept of entropy was really clarified by
Ludwig Boltzmann. His scientific program was to
deal with the mechanical theory of heat in connec-
tion with probabilities. Assume that a macroscopic
system consists of a large number of microscopic
ones, we simply call them particles. Since we have
ideas of quantum mechanics in mind, we assume
that each of the particles is in one of the energy
levels E1 < E2 < � � � < Em. The number of particles
in the level Ei is Ni, so

P
i Ni = N is the total

number of particles. A macrostate of our system is
given by the occupation numbers N1, N2, . . . , Nm.
The energy of a macrostate is E =

P
i NiEi. A given

macrostate can be realized by many configurations
of the N particles, each of them at a certain energy
level Ei. These configurations are called microstates.
Many microstates realize the same macrostate. We
count the number of ways of arranging N particles
in m boxes (i.e., energy levels) such that each box
has N1, N2, . . . , Nm particles. There are

N
N1;N2; . . . ;Nm

� �
:¼ N!

N1!N2! . . . Nm!
½1�

such ways. This multinomial coefficient is the
number of microstates realizing the macrostate
(N1, N2, . . . , Nm) and it is proportional to the
probability of the macrostate if all configurations
are assumed to be equally likely. Boltzmann called [1]
the thermodynamical probability of the macrostate,
in German ‘‘thermodynamische Wahrscheinlichkeit,’’
hence the letter W was used. Of course, Boltzmann
argued in the framework of classical mechanics and
the discrete values of energy came from an approxi-
mation procedure with ‘‘energy cells.’’

If we are interested in the thermodynamic limit N
increasing to infinity, we use the relative numbers
pi := Ni=N to label a macrostate and, instead of the
total energy E =

P
i NiEi, we consider the average

energy pro particle E=N =
P

i piEi. To find the most
probable macrostate, we wish to maximize [1] under
a certain constraint. The Stirling approximation of
the factorials gives

1

N
log

N

N1;N2; . . . ;Nm

� �

¼ Hðp1;p2; . . . ; pmÞ þOðN�1 log NÞ ½2�

where

Hðp1; p2; . . . ; pmÞ :¼
X

i

�pi log pi ½3�

If N is large then the approximation [2] yields that
instead of maximizing the quantity [1] we can
maximize [3]. For example, maximizing [3] under
the constraint

P
i piEi = e, we get

pi ¼
e��EiP
j e��Ej

½4�
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where the constant � is the solution of the equation

X
i

Ei
e��EiP
j e��Ej

¼ e

Note that the last equation has a unique solution if
E1 < e < Em, and the distribution [4] is now known
as the discrete Maxwell–Boltzmann law.

Let p1, p2, . . . , pn be the probabilities of different
outcomes of a random experiment. According to
Shannon, the expression [1] is a measure of our
ignorance prior to the experiment. Hence it is also
the amount of information gained by performing the
experiment. The quantity [1] is maximum when all
the pi’s are equal. In information theory, logarithms
with base 2 are used and the unit of information is
called bit (from binary digit). As will be seen below,
an extra factor equal to Boltzmann’s constant is
included in the physical definition of entropy.

The comprehensive mathematical formalism of
quantum mechanics was first presented in the famous
book Mathematische Grundlagen der Quantenme-
chanik published in 1932 by Johann von Neumann.
In the traditional approach to quantum mechanics, a
physical system is described in a Hilbert space:
observables correspond to self-adjoint operators and
statistical operators are associated with the states. In
fact, a statistical operator describes a mixture of pure
states. Pure states are really the physical states and
they are given by rank-1 statistical operators, or
equivalently by rays of the Hilbert space.

von Neumann associated an entropy quantity to a
statistical operator in 1927 and the discussion was
extended in his book (von Neumann 1932). His
argument was a gedanken experiment on the
grounds of phenomenological thermodynamics. Let
us consider a gas of N(�1) molecules in a box.
Suppose that the gas behaves like a quantum system
and is described by a statistical operator ! which is a
mixture

P
i �ij’iih’ij, where j’ii� ’i are orthogonal

state vectors. We may take �iN molecules in the pure
state ’i for every i. The gedanken experiment gave

S

�X
i

�ij’iih’ij
�

¼
X

i

�iSðj’iih’ijÞ � �
X

i

�i log�i ½5�

where � is Boltzmann’s constant and S is certain
thermodynamical entropy quantity (relative to the
fixed temperature and molecule density).

After this, von Neumann showed that S(j’ih’j) is
independent of the state vector j’i, so that

S

�X
i

�ij’iih’ij
�
¼ � �

X
i

�i log�i ½6�
up to an additive constant, which could be chosen to
be 0 as a matter of normalization. Equation [6] is
von Neumann’s celebrated entropy formula; it has a
more elegant form

Sð!Þ ¼ � tr �ð!Þ ½7�

where the state ! is identified with the correspond-
ing statistical operator, and � : Rþ!R is the
continuous function �(t) =�t log t.

von Neumann solved the maximization problem
for S(!) under the constraint tr!H = e. This means
the determination of the ensemble of maximal
entropy when the expectation of the energy operator
H is a prescribed value e. It is convenient to rephrase
his argument in terms of conditional expectations.
H = H� is assumed to have a discrete spectrum and
we have a conditional expectation E determined by
the eigenbasis of H. If we pass from an arbitrary
statistical operator ! with tr!H = e to E(!), then the
entropy is increasing, on the one hand, and the
expectation of the energy does not change, on the
other, so the maximizer should be searched among
the operators commuting with H. In this way we are
(and von Neumann was) back to the classical
problem of statistical mechanics treated at the
beginning of this article. In terms of operators, the
solution is in the form

expð��HÞ
tr expð��HÞ ½8�

which is called Gibbs state today.
The von Neumann Entropy

von Neumann was aware of the fact that statistical
operators form a convex set whose extreme points
are exactly the pure states. He also knew that
entropy is a concave functional, so

S
X

i
�i!i

� �
�
X

i
�Sð!iÞ ½9�

for any convex combination. To determine the
entropy of a statistical operator, he used the
Schatten decomposition, which is an orthogonal
extremal decomposition in our present language.
For a statistical operator ! there are many ways to
write it in the form

! ¼
X

i

�ij iih ij

if we do not require the state vectors to be
orthogonal. The geometry of the statistical opera-
tors, that is, the state space, allows many extremal
decompositions and among them there is a unique
orthogonal one if the spectrum of ! is not



Quantum Entropy 179
degenerate. Nonorthogonal pure states are essen-
tially nonclassical. They are between identical and
completely different. Jaynes recognized in 1956 that
from the point of view of information the Schatten
decomposition is optimal. He proved that

S ð!Þ ¼ sup �
X

i
�i log�i: ! ¼

X
i
�i!i

n o
½10�

where the supremum is over all convex combina-
tions !=

P
i �i!i statistical operators. This is Jaynes

contribution to the von Neumann entropy. By the
way, formula [10] may be used to define von
Neumann entropy for states of an arbitrary
C�-algebra whose states cannot be described by
statistical operators.

Certainly the highlight of quantum entropy theory
in the 1970s was the discovery of subadditivity. This
property is formulated in a tripartite system whose
Hilbert space H is a tensor product HA 	HB 	HC.
A statistical operator !ABC admits several reduced
densities, !AB, !B, !BC, and others. The strong
subadditivity is the inequality due to Lieb and
Ruskai in 1973:

Theorem 1

Sð!ABCÞ þ Sð!BÞ 
 Sð!ABÞ þ Sð!BCÞ ½11�

The strong subadditivity inequality [11] is con-
veniently rewritten in terms of the relative entropy.
For statistical operators � and !,

Sð�k!Þ ¼ tr �ðlog �� log!Þ ½12�

if supp � 
 supp!, otherwise S(�k!) =þ1. The
relative entropy expresses statistical distinguishabil-
ity and therefore it decreases under stochastic
mappings:

Sð�k!Þ � SðEð�ÞkEð!ÞÞ ½13�

for a completely positive trace-preserving mapping E.
The strong subadditivity is equivalent to

Sð!AB; ’	 !BÞ 
 Sð!ABC; ’	 !BCÞ ½14�

where ’ is any state on B(HA) of finite entropy. This
inequality is a consequence of monotonicity of the
relative entropy, since !AB = E(!ABC) and ’	 !B =
E(’	 !BC), where E is the partial trace over HC.
Clearly, the equality in [11] is equivalent to equality
in [14].

Theorem 2 The equality holds in [11] if and only
if there is an orthogonal decomposition pBHB =L

nHL
nB 	HR

nB, pB = supp!B, such that the density
operator of !ABC satisfies

!ABC ¼
X

n

!BðpnÞ!L
n 	 !R

n ½15�
where !L
n 2 B(HA)	 B(HL

nB) and !R
n 2 B(HR

nB)	
B(HC) are density operators and pn 2 B(HB) are
the orthogonal projections HB!HL

nB 	HR
nB.
Quantum Relative Entropy

The quantum relative entropy is an information
measure representing the uncertainty of a state with
respect to another state. Hence it indicates a kind of
distance between the two states. The formal defini-
tion [12] is due to Umegaki.

Now we approach quantum relative entropy
axiomatically. Our crucial postulate includes the
notion of conditional expectation. Let us recall that
in the setting of operator algebras conditional
expectation (or projection of norm 1) is defined as
a positive unital idempotent linear mapping onto a
subalgebra.

Now we list the properties of the relative entropy
functional which will be used in an axiomatic
characterization:

1. Conditional expectation property. Assume that A
is a subalgebra of B and there exists a projection of
norm 1 E of B onto A, such that ’ � E =’. Then
for every state ! of B S(!,’) = S(!jA,’jA)þ
S(!,! � E) holds.

2. Invariance property. For every automorphism �
of B we have S(!,’) = S(! � �,’ � �).

3. Direct sum property. Assume that B=B1 � B2. Let
’12(a�b)=�’1(a)þ (1��)’2(b) and !12(a�b)=
�!1(a)þ (1��)!2(b) for every a2 B1, b2 B2 and
some 0<�< 1. Then S(!12,’12)=�S (!1,’1)þ
(1��)S(!2,’2).

4. Nilpotence property. S(’,’) = 0.
5. Measurability property. The function (!,’) 7!

S(!,’) is measurable on the state space of the
finite dimensional C�-algebra B (when ’ is
assumed to be faithful).

Theorem 3 If a real valued functional R(!,’)
defined for faithful states ’ and arbitrary states !
of finite quantum systems shares the properties
[1]–[5], then there exists a constant c 2 R such
that

Rð!; ’Þ ¼ c Tr D!ðlog D! � log D’Þ

The relative entropy may be defined for linear
functionals of an arbitrary C�-algebra. The general
definition may go through von Neumann algebras,
normal states and the relative modular operator.
Another possibility is based on the monotonicity.
Let ! and ’ be states of a C�-algebra A. Consider
finite-dimensional algebras B and completely posi-
tive unital mappings � :B!A. Then the supremum
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of the relative entropies S(! � �k’ � �) (over all �)
can be defined as S(!k’).

Theorem 4 The relative entropy of states of
C�-algebras shares the following properties.

(i) (!,’) 7! S(!k’) is convex and weakly lower-
semicontinuous.

(ii) k’� !k2 
 2S(!,’).
(iii) For a unital Schwarz map � :A0!A1 the

relation S(! � �k’ � �) 
 S(!k’) holds.

Property (iii) is Uhlmann’s monotonicity theorem,
which we have already applied above.

The relative entropy appears in many concepts
and problems in the area of quantum information
theory (Nielsen and Chuang 2000, Schumacher and
Westmoreland 2002).
Statistical Thermodynamics

Let an infinitely extended system of quantum spins
be considered in the simple cubic lattice L = Z�,
where � is a positive integer. The observables
confined to a lattice site x 2 Z� form the self-adjoint
part of a finite-dimensional C�-algebra Ax which is a
copy of the matrix algebra Md(C). It is assumed that
the local observables in any bounded region �  Z�

are those of the finite quantum system

A� ¼
O
x2�

Ax

It follows from the definition that for �  �0 we
have A�0 =A� 	A�0n�, where �0 n� is the comple-
ment of � in �0. The algebra A� and the subalgebra
A� 	CI�0n� of A�0 have identical structure and we
identify the element A2A� with A	 I�0n� in A�0 .
If �  �0 then A�  A�0 and it is said that A� is
isotonic with respect to �. The definition also
implies that if �1 and �2 are disjoint then elements
of A�1

commute with those of A�2
. The quasilocal

C�-algebra A is the norm completion of the normed
algebra A1= [� A�, the union of all local algebras
A� associated with bounded (finite) regions �  Z�.

We denote by ax the element of Ax corresponding
to a 2 A0(x 2 Z�). It follows from the definition
that the algebra A1 consists of linear combinations
of terms a(1)

x1
� � � a(k)

xk
where x1, . . . , xk and a(1), . . . , a(k)

run through Z� and A0, respectively. We define 	x

to be the linear transformation

að1Þx1
� � � aðkÞxk

7�! a
ð1Þ
x1þx � � � a

ðkÞ
xkþx

	x corresponds to the space translation by x 2 Z�

and it extends to an automorphism of A. Hence 	 is
a representation of the abelian group Z� by
automorphisms of the quasilocal algebra A. Clearly,
the covariance condition

	xðA�Þ ¼ A�þx

holds, where �þ x is the space-translate of the
region � by the displacement x.

Having described the kinematical structure of
lattice systems, we turn to the dynamics. The local
Hamiltonian H(�) is taken to be the total potential
energy between the particles confined to �. This
energy may come from many-body interactions of
various orders. Most generally, we assume that there
exists a global function � such that for any finite
subsystem � the local Hamiltonian takes the form

Hð�Þ ¼
X
X�

�ðXÞ ½16�

Each �(X) represents the interaction energy of the
particles in X. Mathematically, �(X) is a self-adjoint
element of AX and H(�) will be a self-adjoint
operator in A�. We restrict our discussion to
translation-invariant interactions, which satisfy the
additional requirement

	xð�ðXÞÞ ¼ �ðXþ xÞ

for every x 2 Z� and every region X  Z�. An
interaction � is said to be of finite range if �(�) = 0
when the cardinality (or diameter) of � is large
enough, d(�) � d�. The infimum of such numbers is
called the range of �.

If ’ is a state of the quasilocal algebra A then it
will induce a state ’� on A(�), the finite system
comprising the spin in the bounded region � of Z�.
The (local) energy, entropy, and free energy of this
finite system are given by the following formulas:

E�ð’Þ :¼ tr �!�Hð�Þ
S�ð’Þ :¼ �tr �!� log!� ½17�

F��ð’Þ :¼ E�ð’Þ �
1

�
S�ð’Þ

Here !� denotes the density of ’� with respect to the
trace tr� ofA�, and � denotes the inverse temperature.
The functionals E�, S�, and F�� are termed local. It is
rather obvious that all three local functionals are
continuous if the weak� topology is considered on the
state space of the quasilocal algebra. The energy is
affine, the entropy is concave and consequently, the
free energy is a convex functional.

The free energy functional F�� is minimized by the
Gibbs state (see [8] with H = H(�)), and the
minimum value is given by

� 1

�
log tr �e��Hð�Þ ½18�
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Our aim is to explain this variational principle after
the thermodynamic limit is performed.

The thermodynamic limit ‘‘� tends to infinity’’
may be taken along lattice parallelepipeds. Let a 2 Z�

with positive coordinates and define

�ðaÞ ¼ fx 2 Z�: 0 
 xi < ai; i ¼ 1; 2; . . . ; �g ½19�

When a!1, �(a) tends to infinity in a manner
suitable for the study of thermodynamic limit: the
boundary of the parallelepipeds is getting more and
more negligible compared with the volume. The
notion of limit in the sense of van Hove makes this
idea more precise and physically more satisfactory.
For the sake of simplicity, we restrict ourselves to
thermodynamic limit along parallelepipeds.

Denoting by j�j the volume of � (or the number
of points in �), we may define the global energy,
entropy, and free energy functionals of translation-
ally invariant states to be

eð’Þ :¼ lim
�!1

E�ð’Þ=j�j ½20�

sð’Þ :¼ lim
�!1

S�ð’Þ=j�j ½21�

f �ð’Þ :¼ lim
�!1

F��ð’Þ=j�j ½22�

The existence of the limit in [21] is guaranteed by
the strong subadditivity of entropy, while that of the
limits in [20] and [22] is assumed if the interaction
is suitably tempered, as it certainly does if the
interaction is of finite range.

Theorem 5 If ’ is a translationally invariant state of
the quasilocal algebraA, then the limit [21] exists and

sð’Þ ¼ inffS�ðaÞð’Þ=j�ðaÞj : a 2 Z�
þg ½23�

Moreover, the von Neumann entropy density functional
’ 7! s(’) is affine and upper-semicontinuous when the
state space is endowed with the weak� topology.

Let � be an interaction of finite range. Then the
thermodynamic limit [20] exists and the energy
density is given by

eð’Þ ¼ ’ðE�Þ and E� ¼
X
02�

�ð�Þ
j�j

Furthermore, e(’) is an affine weak� continuous
functional of ’.

It follows that the free energy density f (’) exists
and it is an affine lower-semicontinuous function of
the translation-invariant state ’.

For 0 < � <1 the thermodynamic limit

lim
�!1

1

j�j log tr�e��Hð�Þ � pð�;�Þ

exists.
In accordance with the lattice-gas interpretation
of our model, the global quantity p is termed
pressure.

In the treatment of quantum spin systems, the set
S 	 of all translation-invariant states is essential. The
global entropy functional s is a continuous affine
function on S 	 and physically it is a macroscopic
quantity which does not have microscopic (i.e.,
local) counterpart. Indeed, the local entropy func-
tional is not an observable because it is not affine on
the (local) state space. The local internal energy
E�(’) is microscopic observable and the energy
density functional e of S 	 is the corresponding
global extensive quantity.

As an analog of the variational principle for finite
quantum systems, the global free-energy functional f�
attains an absolute minimum at a translationally
invariant state, and the minimum value of f � is equal
to the thermodynamic limit of the canonical free-
energy densities of the local finite systems. In the next
theorem, this global variational principle will be
formulated in a slightly different but equivalent way.

Theorem 6 When � is an interaction of finite
range, then

pð�;�Þ ¼ supfsð!Þ � �eð!Þg

holds, when the supremum is over all translationally
invariant states ! on A.

The minimizers of the right-hand side are called
equilibrium states and they have several different
characterizations.
Asymptotical Properties

We keep the notation of the previous section but we
consider one-dimensional chains, �= 1. Let ! be
translation-invariant state on A and we fix a positive
number " < 1. We have in our mind that " is small and
say that a sequence of projection Qn 2 A[1, n] is of high
probability if !(Qn) � 1� ". The size of Qn, the
cardinality of a maximal pairwise orthogonal family of
projections contained in Qn, is given by trnQn. (The
subscript n in trn indicates that the algebraic trace
functional on An is meant here.) The theorem below
says that the entropy density of ! governs asymptoti-
cally the rank of the high-probability projections.

Theorem 7 Assume that ! is an ergodic translation-
invariant state of A. Then the limit relation

lim
n!1

1

n
infflog trnQng ¼ sð!Þ

holds, when the infimum is over all projections
Qn 2 A[1, n] such that !n(Qn) � 1� ".
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This result is strongly related to data compression.
When ! is interpreted as a stationary quantum source
(with possible memory), then efficient and reliable
data compression needs a subspace of small dimension
and the range of Qn can play this role. The entropy
density is the maximal rate of reliable compression.

It is interesting that one can impose further
requirements on the high-probability projections
and the statement of the theorem remains true.

1. The partial trace of Qnþ1 over Anþ1 is Qn;
2. en(s�") 
 tr Qn 
 en(sþ") if n is large enough; and
3. if q 
 Qn is a minimal projection (in A[1, n]), then

!(q) 
 e�n(s�") if n is large enough.

In (2) and (3) s stands for s(!). Let Dn be the density
matrix of the restriction of ! to A[1, n]. It follows
that for an eigenvalue � of QnDnQn the inequality

s� " 
 � log�

n

holds.
From the point of view of data compression, it is

important if the sequence Qn 2 A[1, n] works uni-
versally for many states. Indeed, in this case the
compression algorithm can be universal for several
quantum sources.

Theorem 8 Let R > 0. There is a projection
Qn 2 A[1, n] such that

lim sup
n

1

n
log trQn 
 R ½24�

and for any ergodic state ! on A such that s(!) < R
the relation

lim
n
!ðQnÞ ¼ 1 ½25�

holds.

In the simplest quantum hypothesis testing prob-
lem, one has to decide between two states of a
system. The state �0 is the null hypothesis and �1 is
the alternative hypothesis. The problem is to decide
which hypothesis is true. The decision is performed
by a two-valued measurement {T, I � T}, where
0 
 T 
 I is an observable. T corresponds to
the acceptance of �0 and I � T corresponds to the
acceptance of �1. T is called a test. When the
measurement value is 0, the hypothesis �0 is
accepted, otherwise the alternative hypothesis �1 is
accepted. The quantity �[T] = tr�0(I � T) is inter-
preted as the probability that the null hypothesis is
true but the alternative hypothesis is accepted. This
is the error of the first kind. Similarly, �[T] = tr�1T
is the probability that the alternative hypothesis is
true but the null hypothesis is accepted. It is called
the error of the second kind.
Now we fix a formalism for an asymptotic theory
of the hypothesis testing. Suppose that a sequence
(Hn) of Hilbert spaces is given, (�(n)

0 ) and (�(n)
1 ) are

density matrices on Hn. The typical example we have
in mind is �(n)

0 = �0 	 �0 	 � � � 	 �0 and �(n)
1 = �1	

�1 	 � � � 	 �1. A positive contraction Tn 2 B(Hn) is
considered as a test on a composite system. Now the
errors of the first and second kind depend on n:
�n[Tn] = tr�(n)

0 (I � Tn) and �n[Tn] = tr�(n)
1 Tn.

Set

��ðn; "Þ ¼ infftr�ðnÞ1 Ang ½26�

where the infimum is over all An 2 B(Hn) such that
0 
 An 
 I and tr�(n)

0 (I � An) 
 ". In other words,
this is the infimum of the error of the second kind
when the error of the first kind is at most ". The
importance of this quantity is in the customary
approach to hypothesis testing.

The following result is the quantum Stein lemma.

Theorem 9 In the above setting, the relation

lim
n!1

1

n
log ��ðn; "Þ ¼ �Sð�0k�1Þ

holds for every 0 < " < 1.
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Quantum ergodicity and mixing belong to the field
of quantum chaos, which studies quantizations of
‘‘chaotic’’ classical Hamiltonian systems. The basic
question is: how does the chaos of the classical
dynamics impact on the eigenvalues/eigenfunctions
of the quantum Hamiltonian Ĥ and on long-time
dynamics generated by Ĥ?

These problems lie at the foundations of the
semiclassical limit, that is, the limit as the Planck
constant �h! 0 or the energy E!1. More generally,
one could ask what impact any dynamical feature of a
classical mechanical system (e.g., complete integrabil-
ity, KAM, and ergodicity) has on the eigenfunctions
and eigenvalues of the quantization.

Over the last 30 years or so, these questions have
been studied rather systematically by both mathe-
maticians and physicists. There is an extensive
literature comparing classical and quantum
dynamics of model systems, such as comparing the
geodesic flow and wave group on a compact (or
finite-volume) hyperbolic surface, or comparing
classical and quantum billiards on the Sinai billiard
or the Bunimovich stadium, or comparing the



discrete dynamical system generated by a hyperbolic
torus automorphism and its quantization by the
metaplectic representation. As these models indicate,
the basic problems and phenomena are richly
embodied in simple, low-dimensional examples in
much the same way that two-dimensional toy
statistical mechanical models already illustrate com-
plex problems on phase transitions. The principles
established for simple models should apply to far
more complex systems such as atoms and molecules
in strong magnetic fields.

The conjectural picture which has emerged from
many computer experiments and heuristic argu-
ments on these simple model systems is roughly
that there exists a length scale in which quantum
chaotic systems exhibit universal behavior. At this
length scale, the eigenvalues resemble eigenvalues of
random matrices of large size and the eigenfunctions
resemble random waves. A small sample of the
original physics articles suggesting this picture is
Berry (1977), Bohigas et al. (1984), Feingold and
Peres (1986), and Heller (1984).

This article reviews some of the rigorous mathe-
matical results in quantum chaos, particularly those
on eigenfunctions of quantizations of classically
ergodic or mixing systems. They support the
conjectural picture of random waves up to two
moments, that is, on the level of means and
variances. A few results also exist on higher
moments in very special cases. But from the
mathematical point of view, the conjectural links
to random matrices or random waves remain very
much open at this time. A key difficulty is that the
length scale on which universal behavior should
occur is far below the resolving power of any known
mathematical techniques, even in the simplest model
problems. The main evidence for the random
matrix and random wave connections comes from
numerous computer experiments of model cases in
the physics literature. We will not review numerical
results here, but to get a well-rounded view of the
field, it is important to understand the computer
experiments (see, e.g., Bäcker et al. (1998a, b) and
Barnett (2005)).

The model quantum systems that have been most
intensively studied in mathematical quantum chaos
are Laplacians or Schrödinger operators on com-
pact (or finite-volume) Riemannian manifolds, with
or without boundary, and quantizations of sym-
plectic maps on compact Kähler manifolds. Similar
techniques and results apply in both settings, so for
the sake of coherence we concentrate on the
Laplacian on a compact Riemannian manifold
with ‘‘chaotic’’ geodesic flow and only briefly
allude to the setting of ‘‘quantum maps.’’

Additionally, two main kinds of methods are in
use: (1) methods of semiclassical (or microlocal)
analysis, which apply to general Laplacians (and
more general Schrödinger operators), and (2)
methods of number theory and automorphic
forms, which apply to arithmetic models such as
arithmetic hyperbolic manifolds or quantum cat maps.
Arithmetic models are far more ‘‘explicitly solvable’’
than general chaotic systems, and the results obtained
for them are far sharper than the results of semiclassi-
cal analysis. This article is primarily devoted to the
general results on Laplacians obtained by semiclassical
analysis; see Arithmetic Quantum Chaos for results by
J Marklov. For background on semiclassical analysis,
see Heller (1984).

Wave Group and Geodesic Flow

The model quantum Hamiltonians we will discuss
are Laplacians � on compact Riemannian mani-
folds (M, g) (with or without boundary). The
classical phase space in this setting is the cotangent
bundle T�M of M, equipped with its canonical
symplectic form

P
i dxi ^ d�i. The metric defines

the Hamiltonian

Hðx; �Þ ¼ j�jg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

ij¼1

gijðxÞ�i�j

vuut
on T�M, where

gij ¼ g
@

@xi
;
@

@xj

� �

[gij] is the inverse matrix to [gij]. We denote the
volume density of (M, g) by dVol and the corre-
sponding inner product on L2(M) by hf , gi. The unit
(co-) ball bundle is denoted B�M = {(x, �) : j�j � 1}.

The Hamiltonian flow �t of H is the geodesic
flow. By definition, �t(x, �) = (xt, �t), where (xt, �t) is
the terminal tangent vector at time t of the unit
speed geodesic starting at x in the direction �. Here
and below, we often identify T�M with the tangent
bundle TM using the metric to simplify the
geometric description. The geodesic flow preserves
the energy surfaces {H = E} which are the co-sphere
bundles S�EM. Due to the homogeneity of H,
the flow on any energy surface {H = E} is equivalent
to that on the co-sphere bundle S�M = {H = 1}.
(This homogeneity could be broken by adding a
potential V 2 C1(M) to form a semiclassical
Schrödinger operator ��h2�þ V, whose underlying
Hamiltonian flow is generated by j�j2g þ V(x).) See
h-Pseudodifferential Operators and Applications.
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The quantization of the Hamiltonian H is the
square root

ffiffiffiffi
�
p

of the positive Laplacian

� ¼ � 1ffiffiffi
g
p
Xn

i;j¼1

@

@xi
gijg

@

@xj

of (M, g). Here, g = det [gij]. We choose to work
with

ffiffiffiffi
�
p

rather than � since the former generates
the wave

Ut ¼ eit
ffiffiffi
�
p

which is the quantization of the geodesic flow �t.
By the last statement we mean that Ut is related to

�t in several essentially equivalent ways:

1. singularities of waves, that is, solutions Ut of
the wave equation, propagate along geodesics;

2. Ut is a Fourier integral operator (= quantum
map) associated to the canonical relation defined
by the graph of �t in T�M� T�M; and

3. Egorov’s theorem holds.

We only define the latter since it plays an important
role in studying eigenfunctions. As with any quantum
theory, there is an algebra of observables on the
Hilbert space L2(M, dvolg) which quantizes T�M.
Here, dvolg is the volume form of the metric. The
algebra is that ��(M) of pseudodifferential operators
 DO’s of all orders, though we often restrict to the
subalgebra �0 of  DO’s of order zero. We denote by
�m(M) the subspace of pseudodifferential operators of
order m. The algebra is defined by constructing a
quantization Op from an algebra of symbols a 2
Sm(T�M) of order m (polyhomogeneous functions on
T�Mn0) to �m. The map Op is not unique. In the
reverse direction is the symbol map �A: �m!
Sm(T�M) which takes an operator Op(a) to the
homogeneous term am of order m in a.

Egorov’s theorem for the wave group concerns the
conjugations

�tðAÞ :¼UtAU�t ; A2�mðMÞ ½1�

Such a conjugation defines the quantum evolution of
observables in the Heisenberg picture, and, since the
early days of quantum mechanics, it was known to
correspond to the classical evolution

VtðaÞ :¼ a � �t ½2�

of observables a 2 C1(S�M). Egorov’s theorem is
the rigorous version of this correspondence: it states
that �t defines an order-preserving automorphism of
��(M), that is, �t(A)2�m(M) if A2�m(M), and
that

�UtAU�t ðx; �Þ ¼ �Að�tðx; �ÞÞ :¼Vtð�AÞ;
ðx; �Þ 2T�Mn0 ½3�

This formula is almost universally taken to be the
definition of quantization of a flow or map in the
physics literature.

The key difficulty in quantum chaos is that it
involves a comparison between long-time dynamical
properties of �t and Ut through the symbol map and
similar classical limits. The classical dynamics
defines the ‘‘principal symbol’’ behavior of Ut and
the ‘‘error’’ UtAU�t �Op(�A � �t) typically grows
exponentially in time. This is just the first example
of a ubiquitous ‘‘exponential barrier’’ in the subject.

Eigenvalues and Eigenfunctions of �

The eigenvalue problem on a compact Riemannian
manifold

�’j ¼ �2
j ’j; h’j; ’ki¼ �jk

is dual under the Fourier transform to the wave
equation. Here, {’j} is a choice of orthonormal basis
of eigenfunctions, which is not unique if the
eigenvalues have multiplicities >1. The individual
eigenfunctions are difficult to study directly, and so
one generally forms the spectral projections kernel,

Eð�; x; yÞ¼
X

j :�j ��
’jðxÞ’jðyÞ ½4�

Semiclassical asymptotics is the study of the �!1
limit of the spectral data {’j,�j} or of E(�, x, y). The
(Schwartz) kernel of the wave group can be
represented in terms of the spectral data by

Utðx; yÞ¼
X

j

eit�j’jðxÞ’jðyÞ

or equivalently as the Fourier transformR
R eit� dE(�, x, y) of the spectral projections. Hence,

spectral asymptotics is often studied through the
large-time behavior of the wave group.

The link between spectral theory and geometry,
and the source of Egorov’s theorem for the wave
group, is the construction of a parametrix (or WKB
formula) for the wave kernel. For small times t, the
simplest is the Hadamard parametrix,

Utðx; yÞ �
Z 1

0

ei�ðr2ðx;yÞ�t2Þ
X1
k¼0

Ukðx; yÞ�ððd�3Þ=2Þ�k d�

ðt < injðM; gÞÞ ½5�

where r(x, y) is the distance between points,
U0(x, y) = ��1=2(x, y) is the volume 1/2-density,
inj(M, g) is the injectivity radius, and the higher
Hadamard coefficients are obtained by solving
transport equations along geodesics. The parametrix
is asymptotic to the wave kernel in the sense of
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smoothness, that is, the difference of the two sides of
[5] is smooth. The relation [5] may be iterated using
Utm = Um

t to obtain a parametrix for long times.
This is obviously complicated and not necessarily
the best long-time parametrix construction, but it
illustrates again the difficulty of a long-time
analysis.

Weyl Law and Local Weyl Law

A fundamental and classical result in spectral
asymptotics is Weyl’s law on counting eigenvalues:

Nð�Þ ¼ #fj : �j � �g

¼ jBnj
ð2	Þn VolðM; gÞ�n þOð�n�1Þ ½6�

Here, jBnj is the Euclidean volume of the unit ball
and Vol(M, g) is the volume of M with respect to the
metric g. An equivalent formula which emphasizes
the correspondence between classical and quantum
mechanics is

trE� ¼
Volðj�jg � �Þ
ð2	Þn ½7�

where Vol is the symplectic volume measure relative
to the natural symplectic form

Pn
j = 1dxj ^ d�j on

T�M. Thus, the dimension of the space where
H =

ffiffiffiffi
�
p

is � � is asymptotically the volume where
its symbol j�jg � �.

The remainder term in Weyl’s law is sharp on the
standard sphere, where all geodesics are periodic, but
is not sharp on (M, g) for which the set of periodic
geodesics has measure zero (Duistermaat–Guillemin,
Ivrii) (see Semiclassical Spectra and Closed Orbits).
When the set of periodic geodesics has measure zero
(as is the case for ergodic systems), one has

Nð�Þ ¼ #fj : �j � �g

¼ jBnj
ð2	Þn VolðM; gÞ�n þ oð�n�1Þ ½8�

The remainder is then of smaller order than the
derivative of the principal term, and one then has
asymptotics in shorter intervals:

Nð½�; �þ 1�Þ ¼ #fj : �j 2 ½�; �þ 1�g

¼ n
jBnj
ð2	Þn VolðM; gÞ�n�1 þ oð�n�1Þ ½9�

Physicists tend to write � � h�1 and to average over
intervals of this width. Then mean spacing between
the eigenvalues in this interval is � CnVol(M, g)�1�
��(n�1), where Cn is a constant depending on the
dimension.
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quantum system. One would like to know the
behavior as �j!1 (or �h! 0 in the semiclassical
setting) of invariants such as:

1. matrix elements hA’j,’ji of observables in this
state;

2. transition elements hA’i,’ji between states;
3. size properties as measured by Lp norms k’jkLp ;
4. value distribution as measured by the distribution

function Vol{x 2M : j’j(x)j2 > t}; and
5. shape properties, for example, distribution of

zeros and critical points of ’j.

Let us introduce some problems which have
motivated much of the work in this area.
An important generalization is the ‘‘local Weyl law’’
concerning the traces trAE(�), where A 2 �m(M).
It asserts thatX

�j��
hA’j; ’ji

¼ 1

ð2	Þn
Z

B�M
�Adx d� �n þOð�n�1Þ ½10�

There is also a pointwise local Weyl law:

X
�j��
j’jðxÞj2 ¼

1

ð2	Þn jB
nj�n þ Rð�; xÞ ½11�

where R(�, x) = O(�n�1) uniformly in x. Again,
when the periodic geodesics form a set of measure
zero in S�M, one could average over the shorter
interval [�,�þ 1]. Combining the Weyl and local
Weyl law, we find the surface average of �A is a
limit of traces:

!ðAÞ :¼ 1


ðS�MÞ

Z
S�M

�A d


¼ lim
�!1

1

Nð�Þ
X
�j��
hA’j; ’ji ½12�

Here, 
 is the ‘‘Liouville measure’’ on S�M, that is,
the surface measure d
= dx d�=dH induced by the
Hamiltonian H = j�jg and by the symplectic volume
measure dx d� on T�M.
Problems on Asymptotics Eigenfunctions

Eigenfunctions arise in quantum mechanics as
stationary states, that is, states  for which the
probability measure j (t, x)j2dvol is constant in time
where  (t, x) = Ut (x) is the evolving state. This
follows from the fact that

Ut’k ¼ eit�k’k ½13�

and that jeit�k j= 1. They are the basic modes of the



Problem 1 Let Q denote the set of ‘‘quantum
limits,’’ that is, weak� limit points of the sequence
{�k} of distributions on the classical phase space
S�M, defined byZ

X

a d�k :¼ hOpðaÞ’k; ’ki

where a 2 C1(S�M).

The set Q is independent of the definition of Op.
It follows almost immediately from Egorov’s theo-
rem that Q 	MI, where MI is the convex set of
invariant probability measures for the geodesic flow.
Furthermore, they are time-reversal invariant, that
is, invariant under (x, �)! (x,��) since the eigen-
functions are real valued.

To see this, it is helpful to introduce the linear
functionals on �0:

�kðAÞ ¼ hOpðaÞ’k; ’ki ½14�

We observe that �k(I) = 1, �k(A) 
 0 if A 
 0,
and that

�k UtAU�t
� �

¼ �kðAÞ ½15�

Indeed, if A 
 0 then A = B�B for some B 2 �0

and we can move B� to the right-hand side.
Similarly, [15] is proved by moving Ut to the right-
hand side and using [13]. These properties mean
that �j is an ‘‘invariant state’’ on the algebra �0.
More precisely, one should take the closure of �0 in
the operator norm. An invariant state is the analog
in quantum statistical mechanics of an invariant
probability measure.

The next important fact about the states �k is that
any weak limit of the sequence {�k} on �0 is an
invariant probability measure on C(S�M), that is,
a positive linear functional on C(S�M) rather than
just a state on �0. This follows from the fact that
h
li
H
in
A
li
t
f
p
in
�
in

m
f
T
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K’j,’ji! 0 for any compact operator K, and so any
mit of hA’k,’ki is equally a limit of h(Aþ K)’k,’ki.

Obviously, je j = 1, so the eigenfunctions are
already diffuse in configuration space. On the other
ence, any limit is bounded by infK kAþ Kk (the
fimum taken over compact operators), and for any
2 �0, k�AkL1 = infK kAþ Kk. Hence, any weak

mit is bounded by a constant times k�AkL1 and is
herefore continuous on C(S�M). It is a positive
unctional since each �j, and hence any limit, is a
robability measure. By Egorov’s theorem and the
variance of the �k, any limit of �k(A) is a limit of

k(Op(�A � �t)) and hence the limit measure is
variant.
Problem 1 is thus to identify which invariant
easures in MI show up as weak limits of the

unctionals �k or equivalently the distributions d�k.
he weak limits reflect the concentration and
oscillation properties of eigenfunctions. Here are
some possibilities:

1. Normalized Liouville measure. In fact, the func-
tional ! of [12] is also a state on �0 for the
reason explained above. A subsequence {’kj

} of
eigenfunctions is considered diffuse if �kj

!!.
2. A periodic orbit measure 
� defined by


�ðAÞ ¼
1

L�

Z
�

�A ds

where L� is the length of �. A sequence of
eigenfunctions for which �kj

!
� obviously con-
centrates (or strongly ‘‘scars’’) on the closed
geodesic.

3. A finite sum of periodic orbit measures.
4. A delta-function along an invariant Lagrangian

manifold � 	 S�M. The associated eigenfunctions
are viewed as ‘‘localizing’’ along �.

5. A more general invariant measure which is
singular with respect to d
.

All of these possibilities can and do happen in
different examples. If d�kj

!!, then in particular
we have

1

VolðMÞ

Z
E

j’kj
ðxÞj2dVol! VolðEÞ

VolðMÞ

for any measurable set E whose boundary has
measure zero. Interpreting j’kj

(x)j2dVol as the
probability density of finding a particle of energy
�2

k at x, this result means that the sequence of
probabilities tends to uniform measure.

However, d�kj
!! is much stronger since it says

that the eigenfunctions become diffuse on the energy
surface S�M and not just on the configuration space
M. As an example, consider the flat torus Rn=Zn.
An orthonormal basis of eigenfunctions is furnished
by the standard exponentials e2	ihk, xi with k 2 Zn.

2	ihk, xi 2

hand, they are far from diffuse in phase space, and
localize on invariant Lagrangian tori in S�M. Indeed,
by definition of pseudodifferential operator,
Ae2	ihk, xi= a(x, k) e2	ihk, xi, where a(x, k) is the com-
plete symbol. Thus,

hAe2	ihk;xi; e2	ihk;xii ¼
Z

Rn=Zn
aðx; kÞ dx

�
Z

Rn=Zn
�A x;

k

jkj

� �
dx

A subsequence e2	ihkj, xi of eigenfunctions has a weak
limit if and only if kj=jkjj tends to a limit vector �0 in
the unit sphere in Rn. In this case, the associated



weak� limit is
R

Rn=Zn �A(x, �0)dx, that is, the delta-
function on the invariant torus T�0

	 S�M defined
by the constant momentum condition �= �0. The
eigenfunctions are said to localize on this invariant
torus for �t.

The flat torus is a model of a completely
integrable system on both the classical and quantum
levels. Another example is that of the standard
round sphere Sn. In this case, the author and
D Jakobson showed that absolutely any invariant
measure � 2 MI can arise as a weak limit of a
sequence of eigenfunctions. This reflects the huge
degeneracy (multiplicities) of the eigenvalues.

On the other hand, if the geodesic flow is ergodic,
one would expect the eigenfunctions to be diffuse in
phase space. In the next section, we will discuss the
rigorous results on this problem.

Off-diagonal matrix elements

�jkðAÞ ¼ hA’i; ’ji ½16�

are also important as transition amplitudes between
states. They no longer define states since �jk(I) = 0,
are positive, or invariant. Indeed, �jk(UtAU�t ) =
eit(�j��k)�jk(A), so they are eigenvectors of the
automorphism �t of [1]. A sequence of such matrix
elements cannot have a weak limit unless the
spectral gap �j � �k tends to a limit  2 R. In this
case, by the same discussion as above, any weak
limit of the functionals �jk will be an eigenmeasure
of the geodesic flow which transforms by eit under
the action of �t. Examples of such eigenmeasures
are orbital Fourier coefficients

1

L�

Z L�

0

e�it�Að�tðx; �ÞÞ dt

along a periodic orbit. Here,  2 (2	=L�)Z. We
denote by Q such eigenmeasures of the geodesic
flow. Problem 1 has the following extension to off-
diagonal elements:

Problem 2 Determine the set Q of ‘‘quantum
limits,’’ that is, weak� limit points of the sequence
{�kj} of distributions on the classical phase space
S�M, defined byZ

X

ad�kj :¼ hOpðaÞ’k; ’ji

where �j � �k =  þ o(1) and where a 2 C1(S�M), or
equivalently of the functionals �jk.

As will be disc ussed in the section ‘‘Quantum
weak mixing, ’’ the asymp totics of off-diag onal
elements depends on the weak mixing properties of
the geodesic flow and not just its ergodicity.

188 Quantum Ergodicity and Mixing of Eigenfunctions
Matrix elements of eigenfunctions are quadratic
forms. More ‘‘nonlinear’’ problems involve the
Lp-norms or the distribution functions of eigenfunc-
tions. Estimates of the L1-norms can be obtained
from the local Weyl law [10]. Since the jump in
the left-hand side at � is

P
j : �j = � j’j(x)j2 and the

jump in the right-hand side is the jump of R(�, x),
this impliesX

j:�j¼�
j’jðxÞj2 ¼ Oð�n�1Þ¼) jj’jjjL1 ¼ Oð�n�1

2 Þ ½17�

For general Lp-norms, the following bounds were
proved by C Sogge for any compact Riemannian
manifold:

k’jkp

k’k2

¼Oð��ðpÞÞ; 2 � p � 1 ½18�

where

�ðpÞ ¼
n

1

2
� 1

p

� �
� 1

2
;

2ðnþ 1Þ
n� 1

� p � 1

n� 1

2

1

2
� 1

p

� �
; 2 � p � 2ðnþ 1Þ

n� 1

8>><
>>: ½19�

These estimates are sharp on the unit sphere Sn 	
Rnþ1. The extremal eigenfunctions are the zonal
spherical harmonics, which are the L2-normalized
spectral projection kernels �N(x, x0)=k�N( � , x0)k
centered at any x0. However, they are not sharp
for generic (M, g), and it is natural to ask how
‘‘chaotic dynamics’’ might influence Lp-norms.

Problem 3 Improve the estimates k’jkp=k’k2 =
O(��(p)) for (M, g) with ergodic or mixing geodesic

flow.

C Sogge and the author have proved that if a
sequence of eigenfunctions attains the bounds in
[17], then there must exist a point x0 so that a
positive measure of geodesics starting at x0 in S�x0

M
returns to x0 at a fixed time T. In the real analytic
case, all return so x0 is a perfect recurrent point. In
dimension 2, such a perfect recurrent point cannot
occur if the geodesic flow is ergodic; hence
k’jkL1 = o(�(n�1)=2) on any real analytic surface
with ergodic geodesic flow. This shows that none
of the Lp-estimates above the critical index are sharp
for real analytic surfaces with ergodic geodesic flow,
and the problem is the extent to which they can be
improved.

The random wave model (see the section ‘‘Random
waves and or thonormal bases’’) p redicts that e igen-
functions of Riemannian manifolds with chaotic
geodesic flow should have the bounds k’�kLp = O(1)
for p <1 and that k’�kL1 <

ffiffiffiffiffiffiffiffiffiffi
log�

p
. But there are
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o rigorous estimates at this time close to such
redictions. The best general estimate to date on
egatively curved compact manifolds (which are
odels of chaotic geodesic flow) is just the logarithmic
provement

jj’jjjL1 ¼ O
�n�1

log �

� �

n the standard remainder term in the local Weyl
w. This was known for compact hyperbolic
anifolds from the Selberg trace formula, and

imilar estimates hold manifolds without conjugate
oints (P Bérard). The exponential growth of the
eodesic flow again causes a barrier in improving
he estimate beyond the logarithm. In the analogous
etting of quantum ‘‘cat maps,’’ which are models of
haotic classical dynamics, there exist arbitrarily
rge eigenvalues with multiplicities of the order

(�n�1=log�); the L1-norm of the L2-normalized

rojection kernel onto an eigenspace of this multi-
licity is of order of the square root of the
ultiplicity (Faure et al. 2003). This raises doubt

hat the logarithmic estimate can be improved by
eneral dynamical arguments. Further discussion of
1-norms, as well as zeros, will be given at the end
f the next section for ergodic systems.
Quantum Ergodicity

In this section, we discuss results on the problems
stated above when the geodesic flow of (M, g) is
assumed to be ergodic. Let us recall that this means
that Liouville measure is an ergodic measure for �t.
This is a spectral property of the operator Vt of [2]
on L2(S�M, d
), namely that Vt has 1 as an
eigenvalue of multiplicity 1. That is, the only
invariant L2-functions (with respect to Liouville
measure) are the constant functions. This implies
that the only invariant sets have Liouville measure 0
or 1 and (Birkhoff’s ergodic theorem) that time
averages of functions are constant almost every-
where (equal to the space average).

In this case, there is a general result which
originated in the work of Schnirelman and was
developed into the following theorem by Zelditch,
Colin de Verdière, and Sunada (manifolds without
boundary), and Gérard–Leichtnam and Zelditch–
Zworski (manifolds with boundary). The following
discussion is based on the articles (Zelditch
1996b, c, Zelditch and Zworski 1996), which
contain further references to the literature.

Theorem 1 Let (M, g) be a compact Riemannian
manifold (possibly with boundary), and let {�j,’j}
be the spectral data of its Laplacian �. Then the
geodesic flow Gt is ergodic on (S�M, d
) if and only
if, for every A 2 �o(M), we have:

(i) lim�!1
1

N(�)

P
�j�� j(A’j,’j)� !(A)j2 = 0.

(ii) (8�)(9�) lim sup�!1
1

N(�)

P
j6¼k :�j,�k��j�j��kj<�

j(A’j,’k)j2 < �.

This implies that there exists a subsequence {’jk}
of eigenfunctions whose indices jk have counting
density 1 for which hA’jk ,’jki!!(A). We will call
the eigenfunctions in such a sequence ‘‘ergodic
eigenfunctions.’’ One can sharpen the results by
averaging over eigenvalues in the shorter interval
[�,�þ 1] rather than in [0,�].

There is also an ergodicity result for boundary values
of eigenfunctions on domains with boundary and with
Dirichlet, Neumann, or Robin boundary conditions
(Gérard–Leichtnam, Hassell–Zelditch, Burq). This cor-
responds to the fact that the billiard map on B�@M
is ergodic.

The first statement (i) is essentially a convexity
result. It remains true if one replaces the square by
any convex function ’ on the spectrum of A,

1

NðEÞ
X
�j �E

’ðhA’k; ’ki � !ðAÞÞ! 0 ½20�

Before sketching a proof, we point out a some-
what heuristic ‘‘picture proof’’ of the theorem.
Namely, ergodicity of the geodesic flow is equivalent
to the statement that Liouville measure is an
extreme point of the compact convex set MI. In
fact, it further implies that ! is an extreme point of
the compact convex set ER of invariant states for �t

of eqn [1]; see Ruelle (1969) for background. But
the local Weyl law says that ! is also the limit of the
convex combination

1

NðEÞ
X
�j�E

�j

An extreme point cannot be written as a convex
combination of other states unless all the states in the
combination are equal to it. In our case, ! is only a
limit of convex combinations so it need not (and does
not) equal each term. However, almost all terms in the
sequence must tend to !, and that is equivalent to [1].

Sketch of Proof of Theorem 1(i) As mentioned
above, this is a convexity result and with no
additional effort we can consider more general
sums of the form. We then haveX

�j�E

’ðhA’k; ’ki � !ðAÞÞ

¼
X
�j�E

’ðhhAiT � !ðAÞ’k; ’kiÞ ½21�



where

hAiT ¼
1

2T

Z T

�T

UtAU�t dt

We then apply the Peierls–Bogoliubov inequality

Xn

j¼1

’ððB’j; ’jÞÞ � tr’ðBÞ

with B = �E[hAiT � !(A)]�E to getX
�j�E

’ðhhAiT � !ðAÞ’k; ’kiÞ

� tr’ð�E½hAiT � !ðAÞ��EÞ ½22�

Here, �E is the spectral projection for Ĥ corre-
sponding to the interval [0, E]. From the Berezin
inequality we then have (if ’(0) = 0):

1

NðEÞ tr’ð�E½hAiT � !ðAÞ��EÞ

� 1

NðEÞ tr �E’ð½hAiT � !ðAÞ�Þ�E

! !Eð’ðhAiT � !ðAÞÞÞ; as E!1

As long as ’ is smooth, ’(hAiT � !(A)) is a
pseudodifferential operator of order zero with
principal symbol ’(h�AiT � !(A)). By the assump-
tion that !E!! we get

lim
E!1

1

NðEÞ
X
�j�E

’ðhA’k; ’ki � !ðAÞÞ

�
Z
fH¼1g

’ðh�AiT � !ðAÞÞ d


where

h�AiT ¼
1

2T

Z T

�T

�A � �t dt

As T!1 the right-hand side approaches ’(0) = 0
by the dominated convergence theorem and by
Birkhoff’s ergodic theorem. Since the left-hand side
is independent of T, this implies that

lim
E!1

1

NðEÞ
X
�j �E

’ðhA’k; ’ki � !ðAÞÞ ¼ 0

for any smooth convex ’ on Spec(A) with ’(0) = 0.
&

As mentioned above, the statement of Theorem 1(i)
is equivalent to saying that there is a subsequence
{’jk} of counting density 1 for which �jk!!. The
above proof does not and cannot settle the question
whether there exist exceptional sparse subsequences
of eigenfunctions of density zero tending to other
invariant measures. To see this, we observe that

the proof is so general that it applies to seemingly very
different situations. In place of the distributions
{�j} we may consider the set 
� of periodic orbit
measures for a hyperbolic flow on a compact manifold
X. That is,


�ðf Þ ¼
1

T�

Z
�

f for f 2 CðXÞ

where � is a closed orbit and T� is its period.
According to the Bowen–Margulis equidistribution
theorem for closed orbits of hyperbolic flows, we
have

1

�ðTÞ
X

�:T��T

1

jdetðI � P�Þj

�!


where as above 
 is the Liouville measure, where P�
is the linear Poincaré map and where �(T) is the
normalizing factor which makes the left side a
probability measure, that is, defined by the integral
of 1 against the sum. An exact repetition of the
previous argument shows that up to a sparse
subsequence of �’s, 
�!
 individually. Yet clearly,
the whole sequence does not tend to d
: for
instance, one could choose the sequence of iterates
�k of a fixed closed orbit.

Quantum Ergodicity in Terms of Operator Time
and Space Averages

The first part of the result above may be reformu-
lated as a relation between operator time and space
averages.

Definition Let A 2 �0 be an observable and define
its time average to be:

hAi :¼ lim
T!1

1

2T

Z T

�T

U�t AUt dt

and its space average to be scalar operator

!ðAÞ � I

Here, the limit is taken in the weak operator
topology (i.e., one matrix element at a time). To see
what is involved, we consider matrix elements with
respect to the eigenfunctions. We have

1

2T

Z T

�T

U�t AUt dt’i; ’j

� �
¼ sin Tð�i � �jÞ

Tð�i � �jÞ
ðA’i; ’jÞ

from which it is clear that the matrix element tends
to zero as T!1 unless �i =�j. However, there is
no uniformity in the rate at which it goes to zero
since the spacing �i � �j could be uncontrollably
small.
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In these terms, Theorem 1(i) states that

hAi ¼ !ðAÞI þ K; where lim
�!1

!�ðK�KÞ! 0 ½23�

where !�(A) = tr E(�)A. Thus, the time average
equals the space average plus a term K which
is semiclassically small in the sense that its
Hilbert–Schmidt norm square kE�Kk2

HS in the span
of the eigenfunctions of eigenvalue �� is o(N(�)).

This is not exactly equivalent to Theorem 1(i)
since it is independent of the choice of orthonormal
basis, while the previous result depends on the
choice of basis. However, when all eigenvalues have
multiplicity 1, then the two are equivalent. To see
the equivalence, note that hAi commutes with

ffiffiffiffi
�
p

and hence is diagonal in the basis {’j} of joint
eigenfunctions of hAi and of Ut. Hence, K is the
diagonal matrix with entries hA’k,’ki � !(A). The
condition is therefore equivalent to

lim
E!1

1

NðEÞ
X
�j�E

jhA’k; ’ki � !ðAÞj2 ¼ 0

Since all the terms are positive, no cancellation is
possible and this condition is equivalent to the
existence of a subset S 	 N of density 1 such that
QS := {d�k : k 2 S} has only ! as a weak� limit
point. As above, one says that the sequence of
eigenfunctions is ergodic.

One could take this restatement of Theorem 1(i)
as a semiclassical definition of quantum ergodicity.
Two natural questions arise. First:

Problem 4 Suppose the geodesic flow �t of (M, g)
is ergodic on S�M. Is the operator K in

hAi ¼ !ðAÞ þ K

a compact operator? In this case,
ffiffiffiffi
�
p

is said to be
quantum uniquely ergodic (QUE). If ergodicity is
not sufficient for the QUE property, what extra
conditions need to be added?

Compactness would imply that hK’k,’ki! 0,
hence hA’k,’ki!!(A) along the entire sequence.
Quite a lot of attention has been focused on this
problem in the last decade. It is probable that
ergodicity is not by itself sufficient for the QUE
property of general Riemann manifold. For instance,
it is believed that there exist modes of asymptotic
bouncing ball type which concentrate on the
invariant Lagrangian cylinder (with boundary)
formed by bouncing ball orbits of the Bunimovich
stadium (see e.g., Heller (1984) for more on such
‘‘scarring’’). Further, Faure et al. (2003) have shown
that QUE does not hold for the hyperbolic system
defined by a quantum cat map on the torus. Since
the methods applicable to eigenfunctions of

quantum maps and of Laplacians have much in
common, this negative result shows that there
cannot exist a universal structural proof of QUE.

The principal positive result available at this time
is the recent proof by Lindenstrauss of the QUE
property for the orthonormal basis of Laplace–
Hecke eigenfunctions on arithmetic hyperbolic sur-
faces. It is generally believed that the spectrum of
the Laplace eigenvalues is of multiplicity 1 for such
surfaces, so this should imply QUE completely for
these surfaces. Earlier partial results on Hecke
eigenfunctions are due to Rudnick–Sarnak, Wolpert,
and others. For references and further discussion onf
Hecke eigenfunctions, see Rudnick and Sarnak
(1994) (see Arithmetic Quantum Chaos).

So far we have not mentioned Theorem 1(ii). In
the next section, we will describe a similar but more
general result for mixing systems and the relevance
of (ii) will become clear. An interesting open
problem is the extent to which (ii) is actually
necessary for the equivalence to classical ergodicity.

Problem 5 Converse QE: What can be said of the
classical limit of a quantum ergodic system, that is, a
system for which hAi=!(A)þ K, where K is
compact? Is it necessarily ergodic?

Very little is known on this converse problem at
present. It is known that if there exists an open set in
S�M filled by periodic orbits, then the Laplacian
cannot be quantum ergodic (see Marklof and
O’Keefe (2005) for recent results and references).
But no proof exists at this time that KAM systems,
which have Cantor-like positive measure invariant
sets, are not quantum ergodic. It is known that there
exists a positive proportion of approximate eigen-
functions (quasimodes) which localize on the invari-
ant tori, but it has not been proved that a positive
proportion of actual eigenfunctions has this localiza-
tion property.

Further Problems and Results on Ergodic
Eigenfunctions

Ergodicity is also known to have an impact on
the distribution of zeros. The complex zeros in
Kähler phase spaces of ergodic eigenfunctions of
quantum ergodic maps become uniformly distrib-
uted with respect to the Kähler volume form
(Nonnenmacher–Voros, Shiffman–Zelditch). An inter-
esting problem is whether the real analog is true:

Problem 6 Ergodicity and equidistribution of
nodal sets. Let N ’j

	M denote the nodal set (zero
set) of ’j, and equip it with its hypersurface volume
form dHn�1 induced by g. Let (M, g) have ergodic
geodesic flow, and suppose that {’j} is an ergodic
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sequence of eigenfunctions. Are the following
asymptotics valid?Z

N ’j

f dHn�1 � �j
1

VolðM; gÞ

Z
M

f dVol

This is predicted by the random wave model of
the section ‘‘Rand om wave s and orthon ormal
bases.’’ An equidist ribution law for the compl ex
zeros is known which gives some evidence for the
validity of this limit formula. Let (M, g) be a
compact real analytic Riemannian manifold and let
’C

j be the holomorphic extension of the real analytic
eigenfunction ’j to the complexification MC of M
(its Grauert tube). Then, if the geodesic flow is
ergodic and if ’j is an ergodic sequence of
eigenfunctions, the normalized current of integration
(1=�j)Z’C

j
over the complex zero set of ’C

j tends
weakly to (i=	) �@@j�gj. This current is singular along
the zero section.

Finally, we mention some results on L1-norms of
eigenfunctions on arithmetic hyperbolic manifolds
of dimensions 2 and 3. It was proved by Iwaniec–
Sarnak that the joint eigenfunctions of � and the
Hecke operators on arithmetic hyperbolic surfaces
have the upper bound k’jk1= O�(�

5=48þ�
j ) for all

j and � > 0, and the lower bound k’jk1 

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log �j

p
for some constant c > 0 and infinitely

many j. Rudnick and Sarnak (1994) proved that
there exists an arithmetic hyperbolic manifold and a
subsequence ’jk of eigenfunctions with k’jkkL1 �
�

1=4
jk

, contradicting the random wave model
predictions.

Quantum Weak Mixing

There are parallel results on quantizations of weak-
mixing geodesic flows which are the subject of this
section. First we recall the classical definition:
the geodesic flow of (M, g) is weak mixing if the
operator Vt has purely continuous spectrum on the
orthogonal complement of the constant functions in
L2(S�M, d
). Hence, like ergodicity, it is a spectral
property of the geodesic flow.

We have:

Theorem 2 (Zelditch 1996c). The geodesic flow �t

of (M, g) is weak mixing if and only if the conditions
(i) and (ii) of Theorem 1 hold and additionally, for
any A 2 �o(M),

ð8�Þð9�Þ lim sup
�!1

1

Nð�Þ
X

j 6¼k : �j ;�k � �
j�j��k� j<�

jðA’j; ’kÞj2 < �

ð8 2 RÞ

The restriction j 6¼ k is of course redundant unless
 = 0, in which case the statement coincides with
quantum ergodicity. This result follows from the
general asymptotic formula, valid for any compact
Riemannian manifold (M, g), that

1

Nð�Þ
X

i 6¼j;�i;�j��
jhA’i; ’jij2

sin Tð�i � �j � Þ
Tð�i � �j � Þ

����
����
2

� 1

2T

Z T

�T

eitVtð�AÞ
����

����
2

2

� sin T

T

����
����
2

!ðAÞ2 ½24�

In the case of weak-mixing geodesic flows, the right-
hand side tends to 0 as T ! 1. As with diagonal
sums, the sharper result is true where one averages
over the short intervals [�,�þ 1].

Spectral Measures and Matrix Elements

Theorem 2 is based on expressing the spectral
measures of the geodesic flow in terms of matrix
elements. The main limit formula isZ þ"

�"
d
�A

:¼ lim
�!1

1

Nð�Þ
X

i; j: �j��;
j�i��j� j<"

jhA’i; ’jij2 ½25�

where d
�A
is the spectral measure for the geodesic

flow corresponding to the principal symbol of
A, �A 2 C1(S�M, d
). Recall that the spectral mea-
sure of Vt corresponding to f 2 L2 is the measure
d
f defined by

hVtf ; f iL2ðS�MÞ ¼
Z

R

eit d
f ðÞ

The limit formula [25] is equivalent to the dual
formula (under the Fourier transform):

lim
�!1

1

Nð�Þ
X

i;j:�j��
eitð�i��jÞjhA’i; ’jij2

¼ hVt�A; �AiL2ðS�MÞ ½26�

The proof of [26] is to consider, for A 2 ��, the
operator A�t A 2 �� with At = U�t AUt. By the local
Weyl law,

lim
�!1

1

Nð�Þ tr Eð�ÞA�t A ¼ hVt�A; �AiL2ðS�MÞ

The right-hand-side of [25] defines a measure dmA

on R and [26] saysZ
R

eit dmAðÞ ¼ hVt�A; �AiL2ðS�MÞ ¼
Z

R

eit d
�A
ðÞ
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Since weak-mixing systems are ergodic, it is not
necessary to average in both indices along an
ergodic subsequence:

lim
�j!1

hA�t A’j; ’ji ¼
X

j

eitð�i��jÞjhA’i; ’jij2

¼ hVt�A; �AiL2ðS�MÞ ½27�

Dually, one has

lim
�j!1

X
i : j�i��j� j<"

jhA’i; ’jij2 ¼
Z þ"

�"
d
�A

½28�

For QUE systems, these limit formulas are valid for
the full sequence of eigenfunctions.

Rate of Quantum Ergodicity and Mixing

A quantitative refinement of quantum ergodicity is
to ask at what rate the sums in Theorem 1(i) tend to
zero, that is, to establish a rate of quantum
ergodicity. More generally, we consider ‘‘variances’’
of matrix elements. For diagonal matrix elements,
we define

VAð�Þ :¼ 1

Nð�Þ
X

j:�j��
jhA’j; ’ji � !ðAÞj2 ½29�

In the off-diagonal case, one may view jhA’i,’jij2 as
analogous to jhA’j,’j)� !(A)j2. However, the sums
in [25] are double sums while those of [29] are
single. One may also average over the shorter
intervals [�,�þ 1].

Quantum Chaos Conjectures

First, consider off-diagonal matrix elements. One
conjecture is that it is not necessary to sum in j in
[28]: each individual term has the asymptotics
consistent with [28]. This is implicitly conjectured
by Feingold–Peres (1986) (see [11]) in the form

jhA’i; ’jij2 ’
CA

Ei � Ej

�h

� �
2	�ðEÞ ½30�

where

CAðÞ ¼
Z 1
�1

e�ithVt�A; �Ai dt

In our notation, �j = �h�1Ej and �(E) dE � dN(�).
There are �C�n�1 eigenvalues �i in the interval
[�j �  � �,�j �  þ �], so [30] states that individual
terms have the asymptotics of [28].

On the basis of the analogy between jhA’i,’jij2
and jhA’j,’ji � !(A)j2, it is conjectured in Feingold
and Peres (1986) that

VAð�Þ �
CA�!ðAÞIð0Þ
�n�1 volð	Þ

The idea is that ’= (1=
ffiffiffi
2
p

)(’i  ’j) have the same
matrix element asymptotics as eigenfunctions when
�i � �j is sufficiently small. But then 2hA’þ,’�i=
hA’i,’ii � hA’j,’ji when A�= A. Since we are
taking a difference, we may replace each matrix
element hA’i,’ii by hA’i,’ii � !(A) (and also for ’j).
The conjecture then assumes that hA’i,’ii � !(A) has
the same order of magnitude as hA’i,’ii � hA’j,’ji.
Dynamical grounds for this conjecture are given in
Eckhardt et al. (1995). The order of magnitude is
predicted by some natural random wave models, as
discussed in the next section.

Rigorous results

At this time, the strongest variance result is an
asymptotic formula for the diagonal variance proved
by Luo and Sarnak (2004) for special Hecke
eigenfunctions on the quotient H2=SL(2, Z) of the
upper half plane by the modular group. Their result
pertains to holomorphic Hecke eigenforms, but the
analogous statement for smooth Maass–Hecke
eigenfunctions is expected to hold by similar
methods, so we state the result as a theorem/
conjecture. Note that H2=SL(2, Z) is a noncompact
finite-area surface whose Laplacian � has both a
discrete and a continuous spectrum. The discrete
Hecke eigenfunctions are joint eigenfunctions of �
and the Hecke operators Tp.

Theorem/Conjecture 1 (Luo and Sarnak 2004).
Let {’k} denote the orthonormal basis of Hecke
eigenfunctions for H2=SL(2, Z). Then there exists a
quadratic form B(f ) on C10 (H2=SL(2, Z)) such that

1

Nð�Þ
X
�j��

Z
X

f ’j

�� ��2dvol� 1

VolðXÞ

Z
X

fdVol

����
����
2

¼ Bðf ; f Þ
�
þ o

1

�

� �

When the multiplier f =’� is itself an eigenfunc-
tion, Luo–Sarnak have shown that

Bð’�; ’�Þ ¼ C’�ð0ÞLð12 ; ’�Þ

where L( 1
2 ,’�) is a certain L-function. Thus, the

conjectured classical variance is multiplied by an
arithmetic factor depending on the multiplier. A
crucial fact in the proof is that the quadratic form B
is diagonalized by the ’�.
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The only rigorous result to date which is valid on
general Riemannian manifolds with hyperbolic
geodesic flow is the logarithmic decay:

Theorem 3 (Zelditch). For any (M, g) with hyper-
bolic geodesic flow,

1

Nð�Þ
X
�j��
jðA’j; ’jÞ � !ðAÞj2p ¼ 1

ðlog�Þp

The logarithm reflects the exponential blow-up in
time of remainder estimates for traces involving the
wave group associated to hyperbolic flows. It would
be surprising if the logarithmic decay is sharp for
Laplacians. However, a recent result of R Schubert
shows that the estimate is sharp in the case of two-
dimensional hyperbolic quantum cat maps. Hence,
the estimate cannot be improved by semiclassical
arguments that hold in both settings.

Random Waves and Orthonormal Bases

We have mentioned that the random wave model
provides a kind of guideline for what to conjecture
about eigenfunctions of quantum chaotic system. In
this final section, we briefly discuss random wave
models and what they predict.

By a random wave model, one means a prob-
ability measure on a space of functions. To deal
with orthonormal bases rather than individual
functions, one sets a probability measure on a
space of orthonormal bases, that is, on a unitary
group. We denote expected values relative to a given
probability measure by E. We now consider some
specific Gaussian models and what they predict
about variances.

As a model for quantum chaotic eigenfunctions
in plane domains, Berry (1977) suggested using
the Euclidean random wave model at fixed
energy. A rigorous version of such a model is as
follows: let E� denote the space of (tempered)
eigenfunctions of eigenvalue �2 of the Euclidean
Laplacian � on Rn. It is spanned by exponentials
eihk, xi with k 2 Rn, jkj=�. The infinite-dimensional
space E� is a unitary representation of the Euclidean
motion group and carries an invariant inner
product. The inner product defines an associated
Gaussian measure whose covariance kernel
C�(x, y) = Ef (x)�f (y) is the derivative at � of the
spectral function

Eð�;x; yÞ ¼ ð2	Þ�n
Z
j�j��

eihx�y;�i d�; � 2 Rn ½31�

Thus,

C�ðx; yÞ ¼
d

d�
Eð�; x; yÞ

¼ ð2	Þ�n
Z
j�j¼�

eihx�y;�idS

¼ ð2	Þ�n�n�1

Z
j�j¼1

ei�hx�y;�i dS ½32�

where dS is the usual surface measure. With this
definition, C�(x, x) � �n�1. In order to make
E(f (x)2) = 1 consistent with normalized eigenfunc-
tions, we divide by �n�1 to define

Ĉ�ðx; yÞ ¼ ð2	Þ�n
Z
j�j¼1

ei�hx�y;�idS

One could express the integral as a Bessel function
to rewrite this as



n� 1

2

� �
j�jx� yjj�ðn�2Þ=2Jðn�2Þ=2ð�jx� yjÞ

Wick’s formula in this ensemble gives

E’ðxÞ2’ðyÞ2 ¼ 1

Volð	Þ2
½1þ 2C�ðx; yÞ2�

Thus, in dimension n we have

E

"Z Z
VðxÞVðyÞ’ðxÞ2’ðyÞ2dxdy� �V2

#

¼ 2

Volð	Þ2
Z

	

Z
	

Ĉ�ðx; yÞ2VðxÞVðyÞdx dy

� 1

�n�1Volð	Þ2
Z

	

Z
	

VðxÞVðyÞ
jx� yjn�1

cosðjx� yj�Þ2dx dy

In the last line, we used the stationary-phase
asymptotics

ð2	Þ�n�n�1

Z
j�j¼1

ei�hx�y;�idS

� Cnð�jx� yjÞ�ðn�1Þ=2 cosðjx� yj�Þ ½33�

Thus, the variances have order ��(n�1) in dimension n,
consistent with the conjectures in Feingold and
Peres (1986) and Eckhardt et al. (1995).

This model is often used to obtain predictions on
eigenfunctions of chaotic systems. By construction,
it is tied to Euclidean geometry and only pertains
directly to individual eigenfunctions of a fixed
eigenvalue. It is based on the infinite-dimensional
multiplicity of eigenfunctions of fixed eigenvalue of
the Euclidean Laplacian on Rn. There also exist
random wave models on a curved Riemannian
manifold (M, g), which model individual eigen-
functions and also random orthonormal bases
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(Zelditch 1996a). Thus, one can compare the
behavior of sums over eigenvalues of the orthonor-
mal basis of eigenfunctions of � with that of a
random orthonormal basis. Instead of taking
Gaussian random combinations of Euclidean plane
waves of a fixed eigenvalue, one takes Gaussian
random combinations

P
j : �j2[�,�þ1] cj’j of the eigen-

functions of (M, g) with eigenvalues in a short
interval in the sense above. Equivalently, one takes
random combinations with

P
j jcjj2 = 1. These

random waves are globally adapted to (M, g). The
statistical results depend on the measure of the set of
periodic geodesics of (M, g); thus, as discussed in
Kaplan and Heller (1998), different random wave
models make different predictions about off-
diagonal variances.

Fix a compact Riemannian manifold (M, g) and
partition the spectrum of

ffiffiffiffi
�
p

into the intervals
Ik = [k, kþ 1]. Let �k = E(kþ 1)� E(k) be the
kernel of the spectral projections for

ffiffiffiffi
�
p

corre-
sponding to the interval Ik. Its kernel �k(x, y) is
the covariance kernel of Gaussian random combi-
nations

P
j : �j2Ik

cj’j and is analogous to C�(x, y) in
the Euclidean case; it is of course not
the derivative dE(�, x, y) but the difference of the
spectral projector over Ik. We denote by N(k) the
number of eigenvalues in Ik and put Hk = ran�k

(the range of �k). We define a ‘‘random’’ ortho-
normal basis of Hk by changing the basis of
eigenfunctions {’j} of � in Hk by a random
element of the unitary group U(Hk) of the finite-
dimensional Hilbert space Hk. We then define a
random orthonormal basis of L2(M) by taking the
product over all the spectral intervals in our
partition. More precisely, we define the infinite-
dimensional unitary group

Uð1Þ ¼
Y1
k¼1

UðHkÞ

of sequences (U1, U2, . . . ), with Uk 2 U(Hk). We
equip U(1) with the product

d�1 ¼
Y1
k¼1

d�k

of the unit mass Haar measures d�k on U(Hk): we
then define a random orthonormal basis of L2(M) to
be obtained by applying a random element
U 2 U(1) to the orthonormal basis � = {’j} of
eigenfunctions of

ffiffiffiffi
�
p

.
Assuming the set of periodic geodesics of (M, g)

has measure zero, the Weyl remainder results [8]
and strong Szegö limit asymptotics of Guillemin–
Okikiolu and Laptev–Robert–Safarov give two term

asymptotics for the traces �kA�k, (�kA�k)2 for any
pseudodifferential operator A. Combining the strong
Szegö asymptotics with the arguments of Zelditch
(1996a), random orthonormal bases can be proved
to satisfy the following variance asymptotics:

1. Eð
P

j:�j2Ik
jðAU’j;U’jÞ � !ðAÞj2

� ð!ðA�AÞ � !ðAÞ2Þ;

2. Eð
P

i 6¼j:�j;�i2Ik

sinTð�i��j�Þ
Tð�i��j�Þ

��� ���2jðAU’j;U’iÞj2

� 2 sinT
T

�� ��2þ 1
NðkÞ

P
i6¼j

sinTð�i��j�Þ
Tð�i��j�Þ

��� ���2	 

�ð!ðA�AÞ � !ðAÞ2Þ

See also: Arithmetic Quantum Chaos; Determinantal
Random Fields; Eigenfunctions of Quantum Completely
Integrable Systems; Fractal Dimensions in Dynamics;
h-Pseudodifferential Operators and Applications; Number
Theory in Physics; Regularization for Dynamical Zeta
Functions; Semiclassical Spectra and Closed Orbits.
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Quantum Error Correction

Building a quantum computer or a quantum com-
munications device in the real world means having
to deal with errors. Any qubit stored unprotected or
one transmitted through a communications channel
will inevitably come out at least slightly changed.
The theory of quantum error-correcting codes
(QECCs) has been developed to counteract noise
introduced in this way. By adding extra qubits and
carefully encoding the quantum state we wish to
protect, a quantum system can be insulated to a
great extent against errors.

To build a quantum computer, we face an even
more daunting task: if our quantum gates are
imperfect, everything we do will add to the error.
The theory of fault-tolerant quantum computation
tells us how to perform operations on states encoded
in a QECC without compromising the code’s ability
to protect against errors.

In general, a QECC is a subspace of a Hilbert
space designed so that any of a set of possible errors
can be corrected by an appropriate quantum
operation. Specifically:

Definition 1 Let Hn be a 2n-dimensional Hilbert
space (n qubits), and let C be a K-dimensional
subspace of Hn. Then C is an ((n, K)) (binary) QECC
correcting the set of errors E= {Ea} iff 9R s.t. R is a
quantum operation and (R � Ea)(j i) = j i for all
Ea 2 E, j i 2 C.

R is called the ‘‘recovery’’ or ‘‘decoding’’ opera-
tion and serves to actually perform the correction
of the state. The decoder is sometimes also taken to
map Hn into an unencoded Hilbert space Hlog K

isomorphic to C. This should be distinguished from
the ‘‘encoding’’ operation which maps Hlog K into
Hn, determining the imbedding of C. The computa-
tional complexity of the encoder is frequently

a great deal lower than that of the decoder.
In particular, the task of determining what error
has occurred can be computationally difficult
(NP-hard, in fact), and designing codes with
efficient decoding algorithms is an important task
in quantum error correction, as in classical error
correction.

This article will cover only binary quantum codes,
built with qubits as registers, but all of the
techniques discussed here can be generalized to
higher-dimensional registers, or ‘‘qudits.’’

To determine whether a given subspace is able to
correct a given set of errors, we can apply the
quantum error-correction conditions (Bennett et al.
1996, Knill and Laflamme 1997):

Theorem 1 A QECC C corrects the set of errors E iff

h ijEyaEbj ji ¼ Cab�ij ½1�

where Ea, Eb 2 E and {j ii} form an orthonormal
basis for C.

The salient point in these error-correction condi-
tions is that the matrix element Cab does not depend
on the encoded basis states i and j, which, roughly
speaking, indicates that neither the environment nor
the decoding operation learns any information about
the encoded state. We can imagine the various
possible errors taking the subspace C into other
subspaces of Hn, and we want those subspaces to be
isomorphic to C, and to be distinguishable from
each other by an appropriate measurement. For
instance, if Cab = �ab, then the various erroneous
subspaces are orthogonal to each other.

Because of the linearity of quantum mechanics,
we can always take the set of errors E to be a linear
space: if a QECC corrects Ea and Eb, it will also
correct �Ea þ �Eb using the same recovery opera-
tion. In addition, if we write any superoperator S in
terms of its operator-sum representation S(�) 7!P

Ak�A
y
k, a QECC that corrects the set of errors

{Ak} automatically corrects S as well. Thus, it is
sufficient in general to check that the error-correc-
tion conditions hold for a basis of errors.
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Frequently, we are interested in codes that correct
any error affecting t or fewer physical qubits. In that
case, let us consider tensor products of the Pauli
matrices

I ¼
1 0

0 1

� �
; X ¼

0 1

1 0

� �

Y ¼
0 �i

i 0

� �
; Z ¼

1 0

0 �1

� � ½2�

Define the Pauli group Pn as the group consisting of
tensor products of I, X, Y, and Z on n qubits, with
an overall phase of �1 or �i. The weight wt(P) of a
Pauli operator P 2 Pn is the number of qubits on
which it acts as X, Y, or Z (i.e., not as the identity).
Then the Pauli operators of weight t or less form a
basis for the set of all errors acting on t or fewer
qubits, so a QECC which corrects these Pauli
operators corrects all errors acting on up to t
qubits. If we have a channel which causes errors
independently with probability O(�) on each qubit
in the QECC, then the code will allow us to
decode a correct state except with probability
O(�tþ1), which is the probability of having more
than t errors. We get a similar result in the case
where the noise is a general quantum operation on
each qubit which differs from the identity by
something of size O(�).

Definition 2 The distance d of an ((n, K)) QECC is
the smallest weight of a nontrivial Pauli operator
E 2 Pn s.t. the equation

h ijEj ji ¼ CðEÞ�ij ½3�

fails.

We use the notation ((n, K, d)) to refer to an
((n, K)) QECC with distance d. Note that for P, Q 2
Pn, wt(PQ) � wt(P)þwt(Q). Then by comparing
the definition of distance with the quantum error-
correction conditions, we immediately see that a
QECC corrects t general errors iff its distance d > 2t.
If we are instead interested in ‘‘erasure’’ errors, when
the location of the error is known but not its precise
nature, a distance d code corrects d � 1 erasure
errors. If we only wish to detect errors, a distance d
code can detect errors on up to d � 1 qubits.

One of the central problems in the theory of
quantum error correction is to find codes which
maximize the ratios ( log K)=n and d=n, so they can
encode as many qubits as possible and correct as
many errors as possible. Conversely, we are also
interested in the problem of setting upper bounds on
achievable values of ( log K)=n and d=n. The
quantum Singleton bound (or Knill–Laflamme
(1997) bound) states that any ((n, K, d)) QECC
must satisfy

n� log K � 2d � 2 ½4�

We can set a lower bound on the existence of
QECCs using the quantum Gilbert–Varshamov
bound, which states that, for large n, an ((n, 2k, d))
QECC exists provided that

k=n � 1� ðd=nÞ log 3� hðd=nÞ ½5�

where h(x) =�x log x� (1� x) log (1� x) is the
binary Hamming entropy. Note that the Gilbert–
Varshamov bound simply states that codes at least
this good exist; it does not suggest that better codes
cannot exist.
Stabilizer Codes

In order to better manipulate and discover QECCs,
it is helpful to have a more detailed mathematical
structure to work with. The most widely used
structure gives a class of codes known as ‘‘stabilizer
codes’’ (Calderbank et al. 1998, Gottesman
1996). They are less general than arbitrary quantum
codes, but have a number of useful properties that
make them easier to work with than the general
QECC.

Definition 3 Let S 	 Pn be an abelian subgroup of
the Pauli group that does not contain �1 or �i, and
let C(S) = {j i s.t. Pj i= j i8P 2 S}. Then C(S) is a
stabilizer code and S is its stabilizer.

Because of the simple structure of the Pauli group,
any abelian subgroup has order 2n�k for some k and
can easily be specified by giving a set of n� k
commuting generators.

The code words of the QECC are by definition in
the þ1-eigenspace of all elements of the stabilizer,
but an error E acting on a code word will move the
state into the �1-eigenspace of any stabilizer element
M which anticommutes with E:

M Ej ið Þ ¼ �EMj i ¼ �Ej i ½6�

Thus, measuring the eigenvalues of the generators of
S tells us information about the error that has
occurred. The set of such eigenvalues can be
represented as an (n� k)-dimensional binary vector
known as the ‘‘error syndrome.’’ Note that the error
syndrome does not tell us anything about the encoded
state, only about the error that has occurred.

Theorem 2 Let S be a stabilizer with n� k gener-
ators, and let S?= {E 2 Pn s.t. [E, M] = 0 8M 2 S}.
Then S encodes k qubits and has distance d, where d
is the smallest weight of an operator in S?nS.
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We use the notation [[n, k, d]] to a refer to such a
stabilizer code. Note that the square brackets specify
that the code is a stabilizer code, and that the middle
term k refers to the number of encoded qubits, and
not the dimension 2k of the encoded subspace, as for
the general QECC (whose dimension might not be a
power of 2).

S? is the set of Pauli operators that commute with
all elements of the stabilizer. They would therefore
appear to be those errors which cannot be detected
by the code. However, the theorem specifies the
distance of the code by considering S?nS. A Pauli
operator P 2 S cannot be detected by the code, but
there is in fact no need to detect it, since all code
words remain fixed under P, making it equivalent to
the identity operation. A distance d stabilizer code
which has nontrivial P 2 S with wt(P) < d is called
degenerate, whereas one which does not is non-
degenerate. The phenomenon of degeneracy has no
analog for classical error-correcting codes, and
makes the study of quantum codes substantially
more difficult than the study of classical error
correction. For instance, a standard bound on
classical error correction is the Hamming bound
(or sphere-packing bound), but the analogous
quantum Hamming bound

k=n � 1� ðt=nÞ log 3� hðt=nÞ ½7�

for [[n, k, 2t þ 1]] codes (when n is large) is only
known to apply to nondegenerate quantum codes
(though in fact we do not know of any degenerate
QECCs that violate the quantum Hamming bound).

An example of a stabilizer code is the 5-qubit
code, a [[5,1,3]] code whose stabilizer can be
generated by

X
Z
Z
X
 I
I
X
Z
Z
X
X
 I
X
Z
Z
Z
X
 I
X
Z

The 5-qubit code is a nondegenerate code, and is the
smallest possible QECC which corrects 1 error (as
one can see from the quantum Singleton bound).

It is frequently useful to consider other represen-
tations of stabilizer codes. For instance, P 2 Pn can
be represented by a pair of n-bit binary vectors
(pX j pZ), where pX is 1 for any location where P has
an X or Y tensor factor and is 0 elsewhere, and pZ

is 1 for any location where P has a Y or Z tensor
factor. Two Pauli operators P = (pXjpZ) and
Q = (qXjqZ) commute iff pX � qZ þ pZ � qX = 0.
Then the stabilizer for a code becomes a pair of
(n�k)� n binary matrices, and most interesting
properties can be determined by an appropriate
linear algebra exercise. Another useful representa-
tion is to map the single-qubit Pauli operators I, X,
Y, Z to the finite field GF(4), which sets up a
connection between stabilizer codes and a subset of
classical codes on four-dimensional registers.
CSS Codes

CSS codes are a very useful class of stabilizer codes
invented by Calderbank and Shor (1996), and by
Steane (1996). The construction takes two binary
classical linear codes and produces a quantum code,
and can therefore take advantage of much existing
knowledge from classical coding theory. In addition,
CSS codes have some very useful properties which
make them excellent choices for fault-tolerant
quantum computation.

A classical [n, k, d] linear code (n physical bits, k
logical bits, classical distance d) can be defined in
terms of an (n� k)� n binary ‘‘parity check’’ matrix
H – every classical code word v must satisfy Hv = 0.
Each row of the parity check matrix can be
converted into a Pauli operator by replacing each 0
with an I operator and each 1 with a Z operator.
Then the stabilizer code generated by these opera-
tors is precisely a quantum version of the classical
error-correcting code given by H. If the classical
distance d = 2t þ 1, the quantum code can correct t
bit flip (X) errors, just as could the classical code.

If we want to make a QECC that can also correct
phase (Z) errors, we should choose two classical
codes C1 and C2, with parity check matrices H1 and
H2. Let C1 be an [n, k1, d1] code and let C2 be an
[n, k2, d2] code. We convert H1 into stabilizer
generators as above, replacing each 0 with I and
each 1 with Z. For H2, we perform the same
procedure, but each 1 is instead replaced by X. The
code will be able to correct bit flip (X) errors as if it
had a distance d1 and to correct phase (Z) errors as
if it had a distance d2. Since these two operations are
completely separate, it can also correct Y errors as
both a bit flip and a phase error. Thus, the distance
of the quantum code is at least min (d1, d2), but
might be higher because of the possibility of
degeneracy.

However, in order to have a stabilizer code at all,
the generators produced by the above procedure
must commute. Define the dual C? of a classical
code C as the set of vectors w s.t. w � v = 0 for all
v 2 C. Then the Z generators from H1 will all
commute with the X generators from H2 iff C?2 
C1 (or equivalently, C?1  C2). When this is true, C1

and C2 define an [[n, k1 þ k2 � n, d]] stabilizer code,
where d � min (d1, d2).
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The smallest distance-3 CSS code is the 7-qubit
code, a [[7, 1, 3]] QECC created from the classical
Hamming code (consisting of all sums of classical
strings 1111000, 1100110, 1010101, and 1111111).
The encoded j�0i for this code consists of the
superposition of all even-weight classical code
words and the encoded j�1i is the superposition of
all odd-weight classical code words. The 7-qubit
code is much studied because its properties make it
particularly well suited to fault-tolerant quantum
computation.
Fault Tolerance

Given a QECC, we can attempt to supplement it
with protocols for performing fault-tolerant opera-
tions. The basic design principle of a fault-tolerant
protocol is that an error in a single location – either
a faulty gate or noise on a quiescent qubit – should
not be able to alter more than a single qubit in each
block of the QECC. If this condition is satisfied, t
separate single-qubit or single-gate failures are
required for a distance 2t þ 1 code to fail.

Particular caution is necessary, as computational
gates can cause errors to propagate from their
original location onto qubits that were previously
correct. In general, a gate coupling pairs of qubits
allows errors to spread in both directions across the
coupling.

The solution is to use transversal gates whenever
possible (Shor 1996). A transversal operation is one
in which the ith qubit in each block of a QECC
interacts only with the ith qubit of other blocks of
the code or of special ancilla states. An operation
consisting only of single-qubit gates is automatically
transversal. A transversal operation has the virtue
that an error occurring on the third qubit in a block,
say, can only ever propagate to the third qubit of
other blocks of the code, no matter what other
sequence of gates we perform before a complete
error-correction procedure.

In the case of certain codes, such as the 7-qubit
code, a number of different gates can be performed
transversally. Unfortunately, it does not appear to
be possible to perform universal quantum compu-
tations using just transversal gates. We therefore
have to resort to more complicated techniques.
First we create special encoded ancilla states in a
non-fault-tolerant way, but perform some sort of
check on them (in addition to error correction) to
make sure they are not too far off from the goal.
Then we interact the ancilla with the encoded data
qubits using gates from our stock of transversal
gates and perform a fault-tolerant measurement.
Then we complete the operation with a further
transversal gate which depends on the outcome of
the measurement.
Fault-Tolerant Gates

We will focus on stabilizer codes. Universal fault
tolerance is known to be possible for any stabilizer
code, but in most cases the more complicated type
of construction is needed for all but a few gates. The
Pauli group Pk, however, can be performed trans-
versally on any stabilizer code. Indeed, the set S?nS
of undetectable errors is a boon in this case, as it
allows us to perform these gates. In particular, each
coset S?=S corresponds to a different logical Pauli
operator (with S itself corresponding to the identity).
On a stabilizer code, therefore, logical Pauli opera-
tions can be performed via a transversal Pauli
operation on the physical qubits.

Stabilizer codes have a special relationship to a
finite subgroup Cn of the unitary group U(2n)
frequently called the ‘‘Clifford group.’’ The Clifford
group on n qubits is defined as the set of unitary
operations which conjugate the Pauli group Pn into
itself; Cn can be generated by the Hadamard trans-
form, the controlled-NOT (CNOT), and the single-
qubit �=4 phase rotation diag(1, i). The set of
stabilizer codes is exactly the set of codes which can
be created by a Clifford group encoder circuit using
j0i ancilla states.

Some stabilizer codes have interesting symmetries
under the action of certain Clifford group elements,
and these symmetries result in transversal gate
operations. A particularly useful fact is that a
transversal CNOT gate (i.e., CNOT acting between
the ith qubit of one block of the QECC and the ith
qubit of a second block for all i) acts as a logical
CNOT gate on the encoded qubits for any CSS code.
Furthermore, for the 7-qubit code, transversal
Hadamard performs a logical Hadamard, and the
transversal �=4 rotation performs a logical ��=4
rotation. Thus, for the 7-qubit code, the full logical
Clifford group is accessible via transversal
operations.

Unfortunately, the Clifford group by itself does
not have much computational power: it can be
efficiently simulated on a classical computer.
We need to add some additional gate outside
the Clifford group to allow universal quantum
computation; a single gate will suffice, such as the
single-qubit �=8 phase rotation diag(1, exp (i�=4)).
Note that this gives us a finite generating set of
gates. However, by taking appropriate products, we
get an infinite set of gates, one that is dense in the
unitary group U(2n), allowing universal quantum
computation.
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The following circuit performs a �=8 rotation,
given an ancilla state j �=8i= j0i þ exp (i�=4)j1i:

PX⏐ψπ/8〉

Here P is the �=4 phase rotation diag(1, i), and X
is the bit flip. The product is in the Clifford group,
and is only performed if the measurement outcome
is 1. Therefore, given the ability to perform fault-
tolerant Clifford group operations, fault-tolerant
measurements, and to prepare the encoded j �=8i
state, we have universal fault-tolerant quantum
computation. A slight generalization of the fault-
tolerant measurement procedure below can be used
to fault-tolerantly verify the j �=8i state, which is a
þ1 eigenstate of PX. Using this or another verifica-
tion procedure, we can check a non-fault-tolerant
construction.
Fault-Tolerant Measurement
and Error Correction

Since all our gates are unreliable, including those
used to correct errors, we will need some sort of
fault-tolerant quantum error-correction procedure.
A number of different techniques have been devel-
oped. All of them share some basic features: they
involve creation and verification of specialized
ancilla states, and use transversal gates which
interact the data block with the ancilla state.

The simplest method, due to Shor, is very general
but also requires the most overhead and is
frequently the most susceptible to noise. Note that
the following procedure can be used to measure
(non-fault-tolerantly) the eigenvalue of any (possibly
multiqubit) Pauli operator M: produce an ancilla
qubit in the state jþi= j0i þ j1i. Perform a con-
trolled-M operation from the ancilla to the state
being measured. In the case where M is a multiqubit
Pauli operator, this can be broken down into a
sequence of controlled-X, controlled-Y, and con-
trolled-Z operations. Then measure the ancilla in the
basis of jþi and j�i= j0i � j1i. If the state is a þ1
eigenvector of M, the ancilla will be jþi, and if the
state is a �1 eigenvector, the ancilla will be j�i.

The advantage of this procedure is that it
measures just M and nothing more. The disadvan-
tage is that it is not transversal, and thus not fault
tolerant. Instead of the unencoded jþi state, we
must use a more complex ancilla state j00 . . . 0i þ
j11 . . . 1i known as a ‘‘cat’’ state. The cat state
contains as many qubits as the operator M to
be measured, and we perform the controlled-X, -Y,
or -Z operations transversally from the appropriate
qubits of the cat state to the appropriate qubits in
the data block. Since, assuming the cat state is
correct, all of its qubits are either j0i or j1i, the
procedure either leaves the data state alone or
performs M on it uniformly. A þ1 eigenstate in the
data therefore leaves us with j00 . . . 0i þ j11 . . . 1i in
the ancilla and a �1 eigenstate leaves us with
j00 . . . 0i � j11 . . . 1i. In either case, the final state
still tells us nothing about the data beyond the
eigenvalue of M. If we perform a Hadamard
transform and then measure each qubit in the
ancilla, we get either a random even-weight string
(for eigenvalue þ1) or an odd-weight string (for
eigenvalue �1).

The procedure is transversal, so an error on a
single qubit in the initial cat state or in a single gate
during the interaction will only produce one error in
the data. However, the initial construction of the cat
state is not fault tolerant, so a single-gate error then
could eventually produce two errors in the data
block. Therefore, we must be careful and use some
sort of technique to verify the cat state, for instance,
by checking if random pairs of qubits are the same.
Also, note that a single phase error in the cat state
will cause the final measurement outcome to be
wrong (even and odd switch places), so we should
repeat the measurement procedure multiple times
for greater reliability.

We can then make a full fault-tolerant error-
correction procedure by performing the above
measurement technique for each generator of the
stabilizer. Each measurement gives us one bit of the
error syndrome, which we then decipher classically
to determine the actual error.

More sophisticated techniques for fault-tolerant
error correction involve less interaction with the
data but at the cost of more complicated ancilla
states. A procedure due to Steane uses (for CSS
codes) one ancilla in a logical j�0i state of the same
code and one ancilla in a logical j�0i þ j�1i state. A
procedure due to Knill (for any stabilizer code)
teleports the data qubit through an ancilla consisting
of two blocks of the QECC containing an encoded
Bell state j00i þ j11i. Because the ancillas in Steane
and Knill error correction are more complicated
than the cat state, it is especially important to verify
the ancillas before using them.
The Threshold for Fault Tolerance

In an unencoded protocol, even one error can
destroy the computation, but a fully fault-tolerant
protocol will give the right answer unless multiple
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errors occur before they can be corrected. On the
other hand, the fault-tolerant protocol is larger,
requiring more qubits and more time to do each
operation, and therefore providing more opportu-
nities for errors. If errors occur on the physical
qubits independently at random with probability p
per gate or time step, the fault-tolerant protocol has
probability of logical error for a single logical gate
or time step at most Cp2, where C is a constant that
depends on the design of the fault-tolerant circuitry
(assume the QECC has distance 3, as for the 7-qubit
code). When p < pt = 1=C, the fault tolerance helps,
decreasing the logical error rate. pt is the ‘‘thresh-
old’’ for fault-tolerant quantum computation. If the
error rate is higher than the threshold, the extra
overhead means that errors will occur faster than
they can be reliably corrected, and we are better off
with an unencoded system.

To further lower the logical error rate, we turn to
a family of codes known as ‘‘concatenated codes’’
(Aharonov and Ben-Or, Kitaev 1997, Knill et al.
1998). Given a code word of a particular [[n, 1]]
QECC, we can take each physical qubit and again
encode it using the same code, producing an [[n2, 1]]
QECC. We could repeat this procedure to get an n3-
qubit code, and so forth. The fault-tolerant proce-
dures concatenate as well, and after L levels of
concatenation, the effective logical error rate is
pt(p=pt)

2L

(for a base code correcting 1 error).
Therefore, if p is below the threshold pt, we can
achieve an arbitrarily good error rate � per logical
gate or time step using only poly( log �) resources,
which is excellent theoretical scaling.

Unfortunately, the practical requirements for this
result are not nearly so good. The best rigorous
proofs of the threshold to date show that the
threshold is at least 2� 10�5 (meaning one error
per 50,000 operations). Optimized simulations of
fault-tolerant protocols suggest that the true thresh-
old may be as high as 5%, but to tolerate this much
error, existing protocols require enormous overhead,
perhaps increasing the number of gates and qubits
by a factor of a million or more for typical
computations. For lower physical error rates, over-
head requirements are more modest, particularly if
we only attempt to optimize for calculations of a
given size, but are still larger than one would like.
Furthermore, these calculations make a number of
assumptions about the physical properties of the
computer. The errors are assumed to be independent
and uncorrelated between qubits except when a gate
connects them. It is assumed that measurements and
classical computations can be performed quickly
and reliably, and that quantum gates can be
performed between arbitrary pairs of qubits in the
computer, irrespective of their physical proximity.
Of these, only the assumption of independent errors
is at all necessary, and that can be considerably
relaxed to allow short-range correlations and certain
kinds of non-Markovian environments. However,
the effects of relaxing these assumptions on the
threshold value and overhead requirements have not
been well studied.
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Introduction and Preliminaries

Quantum Field Theory (QFT) in curved spacetime
is a hybrid approximate theory in which quantum
matter fields are assumed to propagate in a fixed
classical background gravitational field. Its basic
physical prediction is that strong gravitational
fields can polarize the vacuum and, when time
dependent, lead to pair creation just as a strong
and/or time-dependent electromagnetic field can
polarize the vacuum and/or give rise to pair
creation of charged particles. One expects it to
be a good approximation to full quantum gravity
provided the typical frequencies of the gravita-
tional background are very much less than
the Planck frequency (c5=G�h)1=2 � 1043 s�1) and
provided, with a suitable measure for energy, the
energy of created particles is very much less than
the energy of the background gravitational field or
of its matter sources. Undoubtedly, the most
important prediction of the theory is the Hawking
effect, according to which a, say spherically
symmetric, classical black hole of mass M will
emit thermal radiation at the Hawking tempera-
ture T = (8�M)�1 (here and from now on, we use
Planck units where G, c, �h and, k (Boltzmann’s
constant) are all taken to be 1).

On the mathematical side, the need to formulate the
laws and derive the general properties of QFT on
nonflat spacetimes forces one to state and prove results
in local terms and, as a byproduct, thereby leads to an
improved perspective on flat-spacetime QFT too. It is
also interesting to formulate QFT on idealized space-
times with particular global geometrical features.
Thus, QFT on spacetimes with bifurcate Killing
horizons is intimately related to the Hawking effect;
QFT on spacetimes with closed timelike curves is
intimately related to the question whether the laws of
physics permit the manufacture of a time machine.

As is standard in general relativity, a curved
spacetime is modeled mathematically as a
(paracompact, Hausdorff) manifold M equipped
with a pseudo-Riemannian metric g of signature
(� , þþþ) (we follow the conventions of the
standard text by Misner et al. (1973)). We shall
also assume, except where otherwise stated, our
spacetime to be globally hyperbolic, that is, that
M admits a global time coordinate, by which we

mean a global coordinate t such that each constant-t
surface is a smooth Cauchy surface, that is, a
smooth spacelike 3-surface cut exactly once by each
inextendible causal curve. (Without this default
assumption, extra problems arise for QFT which
we shall briefly mention in connection with the
‘‘time machine’’ question discussed later.) In view
of this definition, globally hyperbolic spacetimes
are clearly time-orientable and we shall assume a
choice of time-orientation has been made so we can
talk about the ‘‘future’’ and ‘‘past’’ directions.
Modern formulations of the subject take, as the
fundamental mathematical structure modeling the
quantum field, a �-algebra A (with identity I)
together with a family of local sub �-algebras
A(O) labeled by bounded open regions O of the
spacetime (M, g) and satisfying the isotony or net
condition that O1 � O2 implies A(O1) is a subalge-
bra of A(O2) as well as the condition that whenever
two bounded open regions O1 and O2 are spacelike
separated, then A(O1) and A(O2) commute.

Standard concepts and techniques from algebraic
quantum theory are then applicable: In particular,
states are defined to be positive (this means
!(A�A) � 0 8A 2 A) normalized (this means !(I) = 1)
linear functionals onA. One distinguishes between pure
states and mixed states, only the latter being writable
as nontrivial convex combinations of other states. To
each state, !, the GNS construction associates a
representation, �!, of A on a Hilbert space H!

together with a cyclic vector � 2 H! such that

!ðAÞ ¼ h�j�!ðAÞ�i

(and the GNS triple (�!,H, �) is unique up to
equivalence). There are often technical advantages
in formulating things so that the �-algebra is a
C�-algebra. Then the GNS representation is as every-
where-defined bounded operators and is irreducible if
and only if the state is pure. A useful concept, due to
Haag, is the folium of a given state ! which may be
defined to be the set of all states !� which arise in the
form tr(��!(�)), where � ranges over the density
operators (trace-class operators with unit trace) onH!.

Given a state, !, and an automorphism, �, which
preserves the state (i.e., ! � �=!) then there will be
a unitary operator, U, on H! which implements � in
the sense that �!(�(A)) = U�1�!(A)U and U is
chosen uniquely by the condition U� = �.

On a stationary spacetime, that is, one which
admits a one-parameter group of isometries
whose integral curves are everywhere timelike,
the algebra will inherit a one-parameter group (i.e.,
satisfying�(t1) � �(t2) =�(t1 þ t2)) of time-translation

202 Quantum Field Theory in Curved Spacetime



automorphisms, �(t), and, given any stationary
state (i.e., one which satisfies ! � �(t) =! 8t 2 R),
these will be implemented by a one-parameter
group of unitaries, U(t), on its GNS Hilbert space
satisfying U(t)� = �. If U(t) is strongly continuous
so that it takes the form e�iHt and if the
Hamiltonian, H, is positive, then ! is said to be
a ‘‘ground state.’’ Typically one expects ground
states to exist and often be unique.

Another important class of stationary states for
the algebra of a stationary spacetime is the class of
KMS states, !�, at inverse temperature �; these have
the physical interpretation of thermal equilibrium
states. In the GNS representation of one of these, the
automorphisms are also implemented by a strongly
continuous unitary group, e�iHt, which preserves �
but (in place of H positive) there is a complex
conjugation, J, on H! such that

e��H=2�!ðAÞ� ¼ J�!ðA�Þ� ½1	

for all A 2 A. An attractive feature of the subject is
that its main qualitative features are already present
for linear field theories and, unusually in compar-
ison with other questions in QFT, these are
susceptible of a straightforward explicit and rigor-
ous mathematical formulation. In fact, as our
principal example, we give, in the next section a
construction for the field algebra for the quantized
real linear Klein–Gordon equation

ð&g �m2 � VÞ� ¼ 0 ½2	

of mass m on a globally hyperbolic spacetime (M, g).
Here, &g denotes the Laplace–Beltrami operator
gabra@b (= (j det (g)j)�1=2@a((j det (g)j1=2gab@b)). We
include a scalar external background classical field,
V, in addition to the external gravitational field
represented by g. In case m is zero, taking V to equal
R=6, where R denotes the Riemann scalar, makes the
equation conformally invariant.

The main new feature of QFT in curved spacetime
(present already for linear field theories) is that, in a
general (neither flat nor stationary) spacetime there
will not be any single preferred state but rather a
family of preferred states, members of which are best
regarded as on an equal footing with one another. It
is this feature which makes the above algebraic
framework particularly suitable, indeed essential, to
a clear formulation of the subject. Conceptually, it is
this feature which takes the most getting used to. In
particular, one must realize that, as we shall explain
later, the interpretation of a state as having a
particular ‘‘particle content’’ is in general problematic
because it can only be relative to a particular choice
of ‘‘vacuum’’ state and, depending on the spacetime
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here � is the Lichnérowicz commutator function
= �A ��R. Here, the ‘‘^ ’’ on the quantum field �̂

erves to distinguish it from a classical solution �. In
athematical work, one does not assign a meaning

o the field at a point itself, but rather aims to assign
eaning to smeared fields �̂(F) for all real-valued

est functions F 2 C10 (M) which are then to be
nterpreted as standing for

R
M �̂(x)f (x)j det (g)j1=2 d4x.

n fact, it is straightforward to define a minimal
ield algebra (see below) Amin generated by such
ˆ(F) which satisfy the suitably smeared version

½�̂ðFÞ; �̂ðGÞ	 ¼ i�ðF;GÞI
of interest, there may be one state or several states or,
frequently, no states at all which deserve the name
‘‘vacuum’’ and even when there are states which
deserve this name, they will often only be defined in
some approximate or asymptotic or transient sense or
only on some subregion of the spacetime.

Concomitantly, one does not expect global obser-
vables such as the ‘‘particle number’’ or the quantum
Hamiltonian of flat-spacetime free-field theory to
generalize to a curved spacetime context, and for
this reason local observables play a central role in
the theory. The quantized stress–energy tensor is a
particularly natural and important such local obser-
vable and the theory of this is central to the whole
subject. A brief introduction to it is given in a later
section.

This is followed by a further section on the
Hawk ing and Unruh effects and then a brief section
on the problems of extending the theory beyond the
‘‘default’’ setting, to nonglobally hyperbolic space-
times. Finally, we briefly mention a number of other
interesting and active areas of the subject as well as
issuing a few warnings to be borne in mind when
reading the literature.
Construction of �-Algebra(s) for a Real
Linear Scalar Field on Globally
Hyperbolic Spacetimes and Some
General Theorems

On a globally hyperbolic spacetime, the classical
equation [2] admits well-defined advanced and
retarded Green functions (strictly bidistributions)
�A and �R and the standard covariant quantum
free real (or ‘‘Hermitian’’) scalar field commutation
relations familiar from Minkowski spacetime free-
field theory naturally generalize to the (heuristic)
equation

½�̂ðxÞ; �̂ðyÞ	 ¼ i�ðx; yÞI

w
�
s
m
t
m
t
i
I
f
�



of the above commutation relations together with
Hermiticity (i.e., �̂(F)�= �̂(F)), the property of being a
weak solution of eqn [2] (i.e., �̂((&g �m2 � V)F) =
0 8F 2 C10 (M)) and linearity in test functions. There
is a technically different alternative formulation of this
minimal algebra, which is known as the Weyl algebra,
which is constructed to be the C�-algebra generated by
operators W(F) (to be interpreted as standing for
exp (i

R
M �̂(x)f (x)j det (g)j1=2 d4x) satisfying

WðF1ÞWðF2Þ¼ expð�i�ðF1; F2Þ=2ÞWðF1 þ F2Þ

together with W(F)�= W(�F) and W((&g �m2 �
V)F) = I. With either the minimal algebra or the
Weyl algebra one can define, for each bounded open
region O, subalgebras A(O) as generated by the �̂(�)
(or the W(�)) smeared with test functions supported
in O and verify that they satisfy the above ‘‘net’’
condition and commutativity at spacelike separation.

Specifying a state, !, on Amin is tantamount to
specifying its collection of n-point distributions (i.e.,
smeared n-point functions) !(�̂(F1) . . . �̂(Fn)). (In the
case of the Weyl algebra, one restricts attention to
‘‘regular’’ states for which the map F!!(W(F)) is
sufficiently often differentiable on finite-dimensional
subspaces of C10 (M) and defines the n-point
distributions in terms of derivatives with respect to
suitable parameters of expectation values of suitable
Weyl algebra elements.) A particular role is played
in the theory by the quasifree states for which all the
truncated n-point distributions except for n = 2
vanish. Thus, all the n-point distributions for odd n
vanish while the four-point distribution is made out
of the two-point distribution according to

!ð�̂ðF1Þ�̂ðF2Þ�̂ðF3Þ�̂ðF4ÞÞ
¼ !ð�̂ðF1Þ�̂ðF2ÞÞ!ð�̂ðF3Þ�̂ðF4ÞÞ
þ !ð�̂ðF1Þ�̂ðF3ÞÞ!ð�̂ðF2Þ�̂ðF4ÞÞ
þ !ð�̂ðF1Þ�̂ðF4ÞÞ!ð�̂ðF2Þ�̂ðF3ÞÞ

etc. The anticommutator distribution

GðF1; F2Þ ¼ !ð�̂ðF1Þ�̂ðF2ÞÞ þ !ð�̂ðF2Þ�̂ðF1ÞÞ ½3	

of a quasifree state (or indeed of any state) will
satisfy the following conditions (for all test functions
F, F1, F2, etc.):

C1. Symmetry

GðF1; F2Þ ¼ GðF2; F1Þ

C2. Weak bisolution property

Gðð&g �m2 � VÞF1; F2Þ ¼ 0

¼ GðF1; ð&g �m2 � VÞF2Þ

C3. Positivity

GðF; FÞ � 0 and GðF1; F1Þ1=2GðF2;F2Þ1=2
� j�ðF1; F2Þj

and it can be shown that, to every bilinear
functional G on C10 (M) satisfying (C1)–(C3),
there is a quasifree state with two-point distri-
bution (1=2)(Gþ i�). One further declares a
quasifree state to be physically admissible only if
(for pairs of points in sufficiently small convex
neighborhoods)

C4. Hadamard condition

‘‘Gðx1; x2Þ ¼
1

2�2
uðx1; x2ÞP

1

�

�

þ vðx1; x2Þ log j�j þwðx1; x2Þ
�

’’

This last condition expresses the requirement that
(locally) the two-point distribution actually ‘‘is’’
(in the usual sense in which one says that a
distribution ‘‘is’’ a function) a smooth function for
pairs of non-null-separated points. At the same
time, it requires that the two-point distribution be
singular at pairs of null-separated points and
locally specifies the nature of the singularity for
such pairs of points with a leading ‘‘principal part
of 1=�’’ type singularity and a subleading ‘‘log j�j’’
singularity, where � denotes the square of the
geodesic distance between x1 and x2. u (which
satisfies u(x1, x2) = 1 when x1 = x2) and v are certain
smooth two-point functions determined in terms of
the local geometry and the local values of V by
something called the Hadamard procedure while the
smooth two-point function w depends on the state.
We shall omit the details. The important point is
that this Hadamard condition on the two-point
distribution is believed to be the correct general-
ization to a curved spacetime of the well-known
universal short-distance behavior shared by the
truncated two-point distributions of all physically
relevant states for the special case of our theory
when the spacetime is flat (and V vanishes). In the
latter case, u reduces to 1, and v to a simple power
series

P1
n = 0 vn�

n with v0 = m2=4, etc.
Actually, it is known (this is the content of ‘‘Kay’s

conjecture’’ which was proved by M Radzikowski in
1992) that (C1)–(C4) together imply that the two-
point distribution is nonsingular at all pairs of (not
necessarily close together) spacelike separated
points. More important than this result itself is a
reformulation of the Hadamard condition in terms
of the concepts of microlocal analysis which
Radzikowski originally introduced as a tool towards
its proof.
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C40. Wave front set (or microlocal) spectrum condition

WFðGþ i�Þ
¼ fðx1;p1;x2;p2Þ 2 T�ðM
MÞ n 0jx1 and x2

lie on a single null geodesic, p1 is tangent to
that null geodesic and future pointing, and
p2 when parallel transported along that null
geodesic from x2 to x1 equals �p1g

For the gist of what this means, it suffices to know that
to say that an element (x, p) of the cotangent bundle of
a manifold (excluding the zero section 0) is in the wave
front set, WF, of a given distribution on that manifold
may be expressed informally by saying that that
distribution is singular at the point x in the direction
p. (And here the notion is applied to Gþ i�, thought
of as a distribution on the manifoldM
M.)

We remark that generically (and, e.g., always if the
spatial sections are compact and m2 þ V(x) is every-
where positive) the Weyl algebra for eqn [2] on a given
stationary spacetime will have a unique ground state
and unique KMS states at each temperature and these
will be quasifree and Hadamard.

Quasifree states are important also because of a
theorem of R Verch (1994, in verification of another
conjecture of Kay) that (in the Weyl algebra frame-
work) on the algebra of any bounded open region,
the folia of the quasifree Hadamard states coincide.
With this result one can extend the notion of
physical admissibility to not-necessarily-quasifree
states by demanding that, to be admissible, a state
belong to the resulting common folium when
restricted to the algebra of each bounded open
region; equivalently, that it be a locally normal state
on the resulting natural extension of the net of local
Weyl algebras to a net of local W�-algebras.

Particle Creation and the Limitations
of the Particle Concept

Global hyperbolicity also entails that the Cauchy
problem is well posed for the classical field equation
[2] in the sense that for every Cauchy surface, C, and
every pair (f , p) of Cauchy data in C10 (C), there
exists a unique solution � in C10 (M) such that
f =�jC and p = j det (g)j1=2gab@b�jC. Moreover, � has
compact support on all other Cauchy surfaces.
Given a global time coordinate t, increasing towards
the future, foliating M into a family of constant-t
Cauchy surfaces, Ct, and given a choice of global
timelike vector field �a (e.g., �a = gab@bt) enabling
one to identify all the Ct, say with C0, by identifying
points cut by the same integral curve of �a, a single
such classical solution � may be pictured as a family
{(ft, pt): t 2 R} of time-evolving Cauchy data on C0.

Moreover, since [2] implies, for each pair of classical
solutions, �1,�2, the conservation (i.e., @aja = 0) of
the current ja = j det (g)j1=2gab(�1@b�2 � �2@b�1), the
symplectic form (on C10 (C)
 C10 (C))

�ððf 1
t ; p

1
t Þ; ðf 2

t ; p
2
t ÞÞ ¼

Z
C0

ðf 1
t p2

t � p1
t f 2

t Þd
3x

will be conserved in time.
Corresponding to this picture of classical

dynamics, one expects there to be a description of
quantum dynamics in terms of a family of sharp-
time quantum fields (’t,�t) on C0, satisfying
heuristic canonical commutation relations

½’tðxÞ; ’tðyÞ	 ¼ 0

½�tðxÞ; �tðyÞ	 ¼ 0

½’tðxÞ; �tðyÞ	 ¼ i	3ðx; yÞI

and evolving in time according to the same
dynamics as the Cauchy data of a classical solution.
(Both these expectations are correct because the field
equation is linear.) An elegant way to make rigorous
mathematical sense of these expectations is in terms
of a �-algebra with identity generated by Hermitian
objects ‘‘�((’0,�0); (f , p))’’ (‘‘symplectically smeared
sharp-time fields at t = 0’’) satisfying linearity in f
and p together with the commutation relations

½�ðð’0; �0Þ; ðf 1; p1ÞÞ; �ðð’0; �0Þ; ðf 2; p2ÞÞ	
¼ i�ððf 1; p1Þ; ðf 2; p2ÞÞI

and to define (symplectically smeared) time-t sharp-
time fields by demanding

�ðð’t; �tÞ; ðft; ptÞÞ ¼ �ðð’0; �0Þ; ðf0;p0ÞÞ

where (ft, pt) is the classical time-evolute of (f0, p0).
This �-algebra of sharp-time fields may be identified
with the (minimal) field �-algebra of the previous
section, the �̂(F) of the previous section being
identified with �((’0,�0); (f , p)), where (f , p) are
the Cauchy data at t = 0 of � � F. (This identifica-
tion is of course many–one since �̂(F) = 0 whenever
F arises as (&g �m2 � V)G for some test function
G 2 C10 (M).)

Specializing momentarily to the case of the free
scalar field (&�m2)�= 0 (m 6¼ 0) in Minkowski
space with a flat t = 0 Cauchy surface, the ‘‘sym-
plectically smeared’’ two-point function of the usual
ground state (‘‘Minkowski vacuum state’’), !0, is
given, in this formalism, by

!0ð�ðð’; �Þ; ðf 1; p1ÞÞ�ðð’; �Þ; ðf 2; p2ÞÞÞ
¼ 1

2 ðhf
1j
f 2i þ hp1j
�1p2i

þ i�ððf 1; p1Þ; ðf 2; p2ÞÞÞ ½4	
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where the inner products are in the one-particle
Hilbert space H= L2

C(R3) and 
= (m2 �r2)1=2. The
GNS representation of this state may be concretely
realized on the familiar Fock space F (H) over H by

�0ð�ðð’; �Þ; ðf ; pÞÞÞ ¼ �iðâyðaÞ � ðâyðaÞÞ�Þ

where a denotes the element of H:

a ¼ ð

1=2f þ i
�1=2pÞffiffiffi

2
p

(we note in passing that, if we equip H with the
symplectic form 2 Imh�j�i, then K : (f , p) 7! a is a
symplectic map) and ây(a) is the usual smeared creation
operator (= ‘‘

R
ây(x)a(x)d3x”) on F (H) satisfying

½ðâyða1ÞÞ�; âyða2Þ	 ¼ ha1ja2iHI

The usual (smeared) annihilation operator, â(a), is
(ây(Ca))�, where C is the natural complex conjuga-
tion, a 7! a� on H. Both of these operators annihilate
the Fock vacuum vector �F . In this representation,
the one-parameter group of time-translation
automorphisms

�ðtÞ : �ðð’0; �0Þ; ðf ; pÞÞ 7!�ðð’t; �tÞ; ðf ; pÞÞ ½5	

is implemented by exp (�iHt) where H is the second
quantization of 
 (i.e., the operator otherwise
known as

R

(k)ây(k)â(k)d3k) on F (H).

The most straightforward (albeit physically artifi-
cial) situation involving ‘‘particle creation’’ in a curved
spacetime concerns a globally hyperbolic spacetime
which, outside of a compact region, is isometric to
Minkowski space with a compact region removed –
that is, to a globally hyperbolic spacetime which is flat
except inside a localized ‘‘bump’’ of curvature (see
Figure 1). (One could also allow the function V in [2]
to be nonzero inside the bump.) On the field algebra
(defined as in the previous section) of such a spacetime,
there will be an ‘‘in’’ vacuum state (which may be
identified with the Minkowski vacuum to the past of
the bump) and an ‘‘out’’ vacuum state (which may be
identified with the Minkowski vacuum to the future of
the bump) and one expects, for example, the ‘‘in
vacuum’’ to arise as a many-particle state in the GNS
representation of the ‘‘out vacuum’’ corresponding to
the creation of particles out of the vacuum by the
bump of curvature.

In the formalism of this section, if we choose our
global time coordinate on such a spacetime so that,
say, the t = 0 surface is to the past of the bump and
the t = T surface to its future, then the single
automorphism �(T) (defined as in [5]) encodes the
overall effect of the bump of curvature on the
quantum field and one can ask whether it is
implemented by a unitary operator in the GNS
representation of the Minkowski vacuum state [4].

This question may be answered by referring to the
real linear map T :H!H which sends aT = 2�1=2

(
1=2fT þ i
�1=2pT) to a0 = 2�1=2(
1=2f0 þ i
�1=2p0).
By the conservation in time of � and the symplec-
ticity, noted in passing above, of the map
K : (f , p) 7! a, this satisfies the defining relation

ImhT a1jT a2i ¼ Imha1ja2i

of a classical Bogoliubov transformation. Splitting T
into its complex-linear and complex-antilinear parts
by writing

T ¼ �þ �C

where � and � are complex-linear operators, this
relation may alternatively be expressed in terms of
the pair of relations

���� ��� �� ¼ I; ��� �� ¼ ���

where ��= C�C, ��= C�C.
We remark that there is an easy-to-visualize

equivalent way of defining � and � in terms of
the analysis, to the past of the bump, into
positive- and negative-frequency parts of complex
solutions to [2] which are purely positive fre-
quency to the future of the bump. In fact, if, for
any element a 2 H, we identify the positive-
frequency solution to the Minkowski-space
Klein–Gordon equation

�
pos
outðt; xÞ ¼ ðð2
Þ�1=2 expð�i
tÞaÞðxÞ

with a complex solution to [2] to the future of the
bump, then (it may easily be seen) to the past of the
bump, this same solution will be identifiable with

t = T

t = 0

Figure 1 A spacetime which is flat outside of a compact bump

of curvature.
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the (partly positive-frequency, partly negative-
frequency) Minkowski-space Klein–Gordon solution

�inðt; xÞ¼ ð2
Þ�1=2 expð�i
tÞ�a
� �

ðxÞ

þ ð2
Þ�1=2 expði
tÞ ��a
� �

ðxÞ

and this could be taken to be the defining equation
for the operators � and �.

It is then known (by a 1962 theorem of Shale)
that the automorphism [5] (strictly, its Weyl algebra
counterpart) will be unitarily implemented if and
only if � is a Hilbert–Schmidt operator on H. Wald
(1979, in case m � 0) and Dimock (1979, in case
m 6¼ 0) have verified that this condition is satisfied
in the case of our bump-of-curvature situation. In
that case, if we denote the unitary implementor by
U, we have the following results:

R1. The expectation value hU�jN(a)U�iF (H) of the
number operator, N(a) = ây(a)â(a), where a is a
normalized element of H, is equal to h�a j�aiH.

R2. First note that there exists an orthonormal basis
of vectors, ei, (i = 1 . . .1), in H such that the
(Hilbert–Schmidt) operator ��� ����1 has the
canonical form

P
i �ihCeij�ijeii. We then have

(up to an undetermined phase)

U� ¼ N exp � 1

2

X
i

�iâ
yðeiÞâyðeiÞ

 !
�

where the normalization constant N is chosen
so that kU�k= 1. This formula makes manifest
that the particles are created in pairs.

We remark that, identifying elements, a, of H with
positive-frequency solutions (below, we shall call
them ‘‘modes’’) as explained above, result (R1) may
alternatively be expressed by saying that the
expectation value, !in(N(a)), in the in-vacuum state
of the occupation number, N(a), of a normalized
mode, a, to the future of the bump, is given by
h�aj�aiH.

This formalism and the results, (R1) and (R2)
above, will generalize (at least heuristically, and
sometimes rigorously – see especially the rigorous
scattering-theoretic work in the 1980s by Dimock
and Kay and more recently by A Bachelot and others)
to more realistic spacetimes which are only asympto-
tically flat or asymptotically stationary. In favorable
cases, one will still have notions of classical solutions
which are positive frequency asymptotically towards
the future/past, and, in consequence, one will have
well-defined asymptotic notions of ‘‘vacuum’’ and
‘‘particles.’’ Also, in, for example, cosmological,
models where the background spacetime is slowly

varying in time, one can define approximate adia-
batic notions of classical positive-frequency solutions,
and hence also of quantum ‘‘vacuum’’ and ‘‘particles’’
at each finite value of the cosmological time. But, at
times where the gravitational field is rapidly varying,
one does not expect there to be any sensible notion of
‘‘particles.’’ And, in a rapidly time-varying back-
ground gravitational field which never settles down,
one does not expect there to be any sensible particle
interpretation of the theory at all. To understand
these statements, it suffices to consider the (1þ 0)-
dimensional Klein–Gordon equation with an external
potential V:

� d2

dt2
�m2 � VðtÞ

 !
� ¼ 0

which is of course a system of one degree of
freedom, mathematically equivalent to the harmonic
oscillator with a time-varying angular frequency
$(t) = (m2 þ V(t))1=2. One could of course express
its quantum theory in terms of a time-evolving
Schrödinger wave function �(’, t) and attempt to
give this a particle interpretation at each time, s, by
expanding �(’, s) in terms of the harmonic oscilla-
tor wave functions for a harmonic oscillator with
some particular choice of angular frequency. But the
problem is, as is easy to convince oneself, that there
is no such good choice. For example, one might
think that a good choice would be to take, at time s,
the set of harmonic oscillator wave functions with
angular frequency $(s). (This is sometimes known
as the method of ‘‘instantaneous diagonalization of
the Hamiltonian.’’) But suppose we were to apply
this prescription to the case of a smooth V(�) which
is constant in time until time 0 and assume the
initial state is the usual vacuum state. Then at some
positive time s, the number of particles predicted to
be present is the same as the number of particles
predicted to be present on the same prescription at
all times after s for a V̂(�) which is equal to V(�) up
to time s and then takes the constant value V(s) for
all later times (see Figure 2). But V̂(�) will
generically have a sharp corner in its graph (i.e., a

s0 t

Figure 2 Plots of$ against t for the two potentials V (continuous

line) and V̂ (continuous line upto s and then dashed line) which play

a role in our critique of ‘‘instantaneous diagonalization.’’
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discontinuity in its time derivative) at time s, and
one would expect a large part of the particle
production in the latter situation to be accounted
for by the presence of this sharp corner – and
therefore a large part of the predicted particle
production in the case of V(�) to be spurious.

Back in 1þ 3 dimensions, even where a good
notion of particles is possible, it depends on the
choice of time evolution, as is dramatically illu-
strated by the Unruh effect discussed in the relevant
section.

208 Quantum Field Theory in Curved Spacetime
has Hadamard form – i.e., whose anticommutator
function satisfies condition (C4)) on the minimal
field algebra and to other linear field theories
(including the stress tensor for a conformally
coupled linear scalar field) on a general globally
hyperbolic spacetime (and the result obtained
agrees with that obtained by other methods,
including dimensional regularization and zeta-
function regularization). However, the general-
ization to a curved spacetime involves a number
of important new features which we now briefly
list (see Wald (1978) for details).

First, the subtraction term which replaces
!0(�(x1)�(x2)) is, in general, not the expectation
value of �(x1)�(x2) in any particular state, but
rather a particular locally constructed Hadamard
two-point function whose physical interpretation is
more subtle; the renormalization is thus in general
not to be regarded as a normal ordering. Second, the
immediate result of the resulting limiting process
will not be covariantly conserved and, in order to
obtain a covariantly conserved quantity, one needs
to add a particular local geometrical correction
term. The upshot of this is that the resulting
expected stress–energy tensor is covariantly con-
served but possesses a (state-independent) anoma-
lous trace. In particular, for a massless conformally
coupled linear scalar field, one has (for all physically
admissible quasifree states, !) the trace anomaly
formula

!ðTa
a ðxÞÞ ¼ ð2880�2Þ�1 CabcdCabcd þRabRab� 1

3 R2
� �

plus an arbitrary multiple of &R. In fact, in general,
the thus-defined renormalized stress–energy tensor
operator (see below) is only defined up to a finite
renormalization ambiguity which consists of the
addition of arbitrary multiples of the functional
derivatives with respect to gab of the quantities

In ¼
Z
M

FnðxÞjdetðgÞj1=2d4x

where n ranges from 1 to 4 with F1 = 1, F2 = R,
F3 = R2, and F4 = RabRab. In the Minkowski-space
case, only the first of these ambiguities arises and it
is implicitly resolved in the formulas [6], [7]
inasmuch as these effectively incorporate the
renormalization condition that !0(Tab) = 0. (For the
same reason, the locally flat example we give below
has no ambiguity.)

One expects, in both flat and curved cases, that,
for test functions, F 2 C10 (M), there will exist
operators Tab(F) which are affiliated to the net of
Theory of the Stress–Energy Tensor

To orient ideas, consider first the free (minimally
coupled) scalar field, (&�m2)�= 0, in Minkowski
space. If one quantizes this system in the usual
Minkowski-vacuum representation, then the expec-
tation value of the renormalized stress-energy tensor
(which in this case is the same thing as the normal
ordered stress–energy tensor) in a vector state � in
the Fock space will be given by the formal point-
splitting expression

h�jTabðxÞ�i

¼ lim
ðx1;x2Þ! ðx;xÞ

@1
a@

2
b � 1

2 �abð�cd@1
c @

2
d þm2Þ

� �

 h�j�0ð�ðx1Þ�ðx2ÞÞ�ið
� h�F j�0ð�ðx1Þ�ðx2ÞÞ�F iÞ ½6	

where �ab is the usual Minkowski metric. A
sufficient condition for the limit here to be finite
and well defined would, for example, be for � to
consist of a (normalized) finite superposition of
n-particle vectors of form ây(a1), . . . , ây(an)�F

where the smearing functions a1, . . . , an are all
C1 elements of H (i.e., of L2

C(R3). The reason this
works is that the two-point function in such states
shares the same short-distance singularity as the
Minkowski-vacuum two-point function. For exactly
the same reason, one obtains a well-defined finite
limit if one defines the expectation value of
the stress–energy tensor in any physically admissible
quasifree state by the expression

!ðTabðxÞÞ

¼ lim
ðx1;x2Þ!ðx;xÞ

@1
a@

2
b � 1

2 �abð�cd@1
c @

2
d þm2Þ

� �

 !ð�ðx1Þ�ðx2ÞÞ � !0ð�ðx1Þ�ðx2ÞÞð Þ ½7	

This latter point-splitting formula generalizes to a
definition for the expectation value of the
renormalized stress–energy tensor for an arbitrary
physically admissible quasifree state (or indeed
for an arbitrary state whose two-point function
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cal W�-algebras referred to earlier and that it is Hawking and Unruh Effects

eaningful to writeZ

M
!ðTabðxÞÞFðxÞj detðgÞj1=2d4x ¼ !ðTabðFÞÞ

rovided that, by ! on the right-hand side, we
nderstand the extension of ! from the Weyl algebra
o this net. (Tab(F) is however not expected to
elong to the minimal algebra or be affiliated to the
eyl algebra.)
An interesting simple example of a renormalized

tress–energy tensor calculation is the so-called
asimir effect calculation for a linear scalar field
n a (for further simplicity, (1þ 1)-dimensional)
imelike cylinder spacetime of radius R (see
igure 3). This spacetime is globally hyperbolic
nd stationary and, while locally flat, globally
istinct from Minkowski space. As a result, while –
rovided the regions O are sufficiently small
such as the diamond region in Figure 3) – elements
(O) of the minimal net of local algebras on this

pacetime will be identifiable, in an obvious way,
ith elements of the minimal net of local algebras
n Minkowski space, the stationary ground state

cylinder will, when restricted to such thus-identified
egions, be distinct from the Minkowski vacuum
tate !0. The resulting renormalized stress–energy
ensor (as first pointed out in Kay (1979)),
efinable, once the above identification has been
ade, exactly as in [7]) turns out, in the massless

ase, to be nonzero and, interestingly, to have a (in
he natural coordinates, constant) negative energy-
ensity T00. In fact, in this massless case,

!cylinderðTabÞ ¼
1

24�R2
�ab

igure 3 The timelike cylinder spacetime of radius R with a

iamond region isometric to a piece of Minkowski space. See

ay (1979). Casimir effect in quantum field theory. (Original title:

he Casimir effect without magic.) Physical Review D 20:

052–3062. Reprinted with permission ª 1979 by the American

hysical Society.
The original calculation by Hawking (1975) con-
cerned a model spacetime for a star which collapses
to a black hole. For simplicity, we shall only discuss
the spherically symmetric case (see Figure 4). Adopt-
ing a similar ‘‘mode’’ viewpoint to that mentioned
after results (R1) and (R2) discussed earlier, the
result of the calculation may be stated as follows:
For a real linear scalar field satisfying [2] with m = 0
(and V = 0) on this spacetime, the expectation value
!in(N(a$, ‘)) of the occupation number of a one-
particle outgoing mode a$, ‘) localized (as far as a
normalized mode can be) around $ in angular-
frequency space and about retarded time v, and with
angular momentum ‘‘quantum number’’ ‘, in the in-
vacuum state (i.e., on the minimal algebra for a real
scalar field on this model spacetime) !in is, at late
retarded times, given by the formula

!inðNða$;‘ÞÞ ¼
�ð$; ‘Þ

expð8�M$Þ � 1

where M is the mass of the black hole and the
absorption factor (alternatively known as gray-body
factor) �($, ‘) is equal to the norm-squared of that
part of the one-particle mode a$, ‘ which, viewed as
a complex positive-frequency classical solution
propagating backwards in time from late retarded
times, would be absorbed by the black hole. (Note
the independence of the right-hand side of this
formula from the retarded time, v.) This calculation
can be understood as an application of result (R1)
Interior of
star

Singularity

Horizon

Figure 4 The spacetime of a star collapsing to a spherical

black hole.



(even though the spacetime is more complicated than
one with a localized ‘‘bump of curvature’’ and even
though the relevant overall time evolution will not be
unitarily implemented, the result still applies when
suitably interpreted) and the heart of the calculation
is an asymptotic estimate of the relevant ‘‘�’’
Bogoliubov coefficient which turns out to be depen-
dent on the geometrical optics of rays which pass
through the star just before the formation of the
horizon. This result suggests that the in-vacuum state
is indistinguishable at late retarded times from a state
of blackbody radiation at the Hawking temperature,
THawking = 1=8�M, in Minkowski space from a
blackbody (gray body) with the same absorption
factor. This was confirmed by further work by many
authors. Much of that work, as well as the original
result of Hawking was partially heuristic but later
work by Dimock and Kay (1987), by Fredenhagen
and Haag (1990), and by Bachelot (1999) and others
has put different aspects of it on a rigorous
mathematical footing. The result generalizes to
nonzero mass and higher spin fields to interacting
fields as well as to other types of black hole and the
formula for the Hawking temperature generalizes to

THawking ¼ =2�

where  is the surface gravity of the black hole.
This result suggests that there is something funda-

mentally ‘‘thermal’’ about quantum fields on black-
hole backgrounds and this is confirmed by a number of
mathematical results. In particular, the theorems in the
two papers Kay and Wald (1991) and Kay (1993),
combined together, tell us that there is a unique state
on the Weyl algebra for the maximally extended
Schwarzschild spacetime (a.k.a. Kruskal–Szekeres
spacetime) (see Figure 5) which is invariant under the
Schwarzschild isometry group and whose two-point
function has Hadamard form. Moreover, they tell us
that this state, when restricted to a single wedge (i.e.,
the exterior Schwarzschild spacetime) is necessarily a
KMS state at the Hawking temperature. This unique
state is known as the Hartle–Hawking–Israel state.
These results in fact apply more generally to a wide
class of globally hyperbolic spacetimes with bifurcate
Killing horizons including de Sitter space – where the
unique state is sometimes called the Euclidean and
sometimes the Bunch–Davies vacuum state – as well as
to Minkowski space, in which case the unique state is
the usual Minkowski vacuum state, the analog of the
exterior Schwarzschild wedge is a so-called Rindler
wedge, and the relevant isometry group is a one-
parameter family of wedge-preserving Lorentz boosts.
In the latter situation, the fact that the Minkowski
vacuum state is a KMS state (at ‘‘temperature’’ 1=2�)

when restricted to a Rindler wedge and regarded with
respect to the time evolution consisting of the wedge-
preserving one-parameter family of Lorentz boosts is
known as the Unruh effect (1975). This latter property
of the Minkowski vacuum in fact generalizes to
general Wightman QFTs and is in fact an immediate
consequence of a combination of the Reeh–Schlieder
theorem (applied to a Rindler wedge) and the
Bisognano–Wichmann theorem (1975). The latter
theorem says that the defining relation [1] of a KMS
state holds if, in [1], we identify the operator J with the
complex conjugation which implements wedge reflec-
tion and H with the self-adjoint generator of the
unitary implementor of Lorentz boosts. We remark
that the Unruh effect illustrates how the concept of
‘‘vacuum’’ (when meaningful at all) is dependent on
the choice of time evolution under consideration.
Thus, the usual Minkowski vacuum is a ground state
with respect to the usual Minkowski time evolution
but not (when restricted to a Rindler wedge) with
respect to a one-parameter family of Lorentz boosts;
with respect to these, it is, instead, a KMS state.

Nonglobally Hyperbolic Spacetimes
and the ‘‘Time Machine’’ Question

Hawking (1992) argued that a spacetime in which a
time machine gets manufactured should be modeled
(see Figure 6) by a spacetime with an initial globally

Future singularity
(Schwarzschild case)

Past singularity
(Schwarzschild case)

Exterior
Schwarzschild

wedge/
Rindler wedge

Figure 5 The geometry of maximally extended Schwarzschild

(/or Minkowski) spacetime. In the Schwarzschild case, every

point represents a 2-sphere (/in the Minkowski case, a 2-plane).

The curves with arrows on them indicate the Schwarzschild time

evolution (/one-parameter family of Lorentz boosts). These

curves include the (straight lines at right angles) event horizons

(/Killing horizons).
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hyperbolic region with a region containing closed
timelike curves to its future and such that the future
boundary of the globally hyperbolic region is a
compactly generated Cauchy horizon. On such a
spacetime, Kay et al. (1997) proved that it is
impossible for any distributional bisolution which
satisfies (even a certain weakened version of) the
Hadamard condition on the initial globally hyper-
bolic region to continue to satisfy that condition on
the full spacetime – the (weakened) Hadamard
condition being necessarily violated at at least one
point on the Cauchy horizon. This result implies
that, however one extends a state, satisfying our
conditions (C1)–(C4), on the minimal algebra for [2]
on the initial globally hyperbolic region, the expec-
tation value of its stress–energy tensor must neces-
sarily become singular on the Cauchy horizon. This
result, together with many heuristic results and
specific examples considered by many other authors
appears to support the validity of the (Hawking
1992) chronology protection conjecture to the effect
that it is impossible in principle to manufacture a time
machine. However, there are potential loopholes in the
physical interpretation of this result as pointed out by
Visser (1997), as well as other claims by various authors
that one can nevertheless violate the chronology
protection conjecture. For a recent discussion on this
question, we refer to Visser (2003).

Other Related Topics and Some
Warnings

There is a vast computational literature, calculating
the expectation values of stress–energy tensors in
states of interest for scalar and higher spin linear
fields (and also some work for interacting fields) on
interesting cosmological and black-hole backgrounds.
QFT on de Sitter and anti-de Sitter space is a big
subject area in its own right with recent renewed
interest because of its relevance to string theory and
holography. Also important on black-hole back-
grounds is the calculation of gray-body factors,
again with renewed interest because of relevance to
string theory and to brane-world scenarios.

There are many further mathematically rigorous
results on algebraic and axiomatic QFT in a curved
spacetime setting, including versions of PCT, spin-
statistics and Reeh–Schlieder theorems and also
rigorous energy inequalities bounding the extent to
which expected energy densities can be negative, etc.

There is much mathematical work controlling
scattering theory on black holes, partly with a view
to further elucidating the Hawking effect.

Perturbative renormalization theory of interacting
quantum fields in curved spacetime is also now a
highly developed subject.

Beyond QFT in a fixed curved spacetime is
semiclassical gravity which takes into account the
back-reaction of the expectation value of the stress–
energy tensor on the classical gravitational back-
ground. There are also interesting condensed matter
analogs of the Hawking effect such as dumb holes.

Readers exploring the wider literature, or doing
further research on the subject should be aware that
the word ‘‘vacuum’’ is sometimes used to mean
‘‘ground state’’ and sometimes just to mean ‘‘quasifree
state.’’ They should be cautious of attempts to define
particles on Cauchy surfaces in instantaneous diag-
onalization schemes (cf. the remarks at the end of the
section ‘‘Particle creation and the limitations of the
pa rti cle c onc ept’’ ). W he n s tudy ing ( or pe rfor ming )
calculations of the ‘‘expectation value of the stress–
energy tensor’’ it is always important to ask oneself
with respect to which state the expectation value is
being taken. It is also important to remember to check
that candidate two-point (anticommutator) functions
satisfy the positivity condition (C3) discussed earlier.
Typically, two-point distributions obtained via mode
sums automatically satisfy condition (C3) (and condi-
tion (C4)), but those obtained via image methods do
not always satisfy it. (When they do not, the presence
of nonlocal spacelike singularities is often a tell-tale
sign as can be inferred from Kay’s conjecture/Radzi-
kowski’s theorem discussed earlier.) There are a
number of apparent implicit assertions in the literature
that some such two-point functions arise from ‘‘states’’
when of course they cannot. Some of these concern
proposed analogs to the Hartle–Hawking–Israel state
for the (appropriate maximal globally hyperbolic
portion of the maximally extended) Kerr spacetime.
That they cannot belong to states is clear from a
theorem in Kay and Wald (1991) which states that
there is no stationary Hadamard state on this space-
time at all. Others of them concern claimed ‘‘states’’ on
spacetimes such as those discussed in the previous
section which, if they really were states would seem to
be in conflict with the chronology protection con-
jecture. Finally, beware states (such as the so-called �-
vacua of de Sitter spacetime) whose two-point

Region with closed
timelike curves

Initial globally hyperbolic region

Cauchy
horizon

Figure 6 The schematic geometry of a spacetime in which a

time machine gets manufactured.
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distributions violate the ‘‘Hadamard’’ condition (C4)
and which therefore do not have a well-defined finite
expectation value for the renormalized stress–energy
tensor.

See also: AdS/CFT Correspondence; Algebraic
Approach to Quantum Field Theory; Axiomatic Quantum
Field Theory; Black Hole Mechanics; Bosons and
Fermions in External Fields; Integrability and Quantum
Field Theory; Quantum Fields with Indefinite Metric:
Non-Trivial Models; Quantum Fields with Topological
Defects; Quantum Geometry and Its Applications;
Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools; Thermal Quantum
Field Theory.
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By any account quantum field theory occupies a
prominent place in the history of mathematical
physics. This article is, however, not intended to
serve as an overview of this subject, but has the
more modest aim of identifying a few areas which
seem to me interesting and significant.

Historical Remarks; Second Quantization

At the time when quantum field theory was at the
forefront of theoretical physics its raison d’être was
to complete the quantum description of the sub-
atomic world. Quantum mechanics had been amaz-
ingly successful in solving almost the whole of
atomic physics by making explicit the quantum

(wave) nature of the electron, according to the
formulations of Heisenberg and Schrödinger. The
introduction of the quantum idea into physics,
however, by Planck in 1900 closely followed by
Einstein in 1905 was the proposal of a quantum
(particular) aspect of the electromagnetic field – the
photon. In the mid-1920s the only force in nature to
be considered was the electromagnetic interaction;
this was before the theories of Yukawa and Fermi,
concerning the strong and weak nuclear forces.
Dirac, Heisenberg, Jordan, and others then
addressed themselves to finding a formulation of
quantum electrodynamics (QED) comparable in
mathematical sophistication to the Heisenberg–
Schrödinger formulation of quantum mechanics –
which Planck’s and Einstein’s theories were not.

The idea that was pursued, at least in the early
stages, was that the Schrödinger wave function  ,
taken as a wave field, should be ‘‘quantized’’; Dirac
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seems to have taken this as a model for photons.
Jordan further proposed that electrons should be
treated as the quanta of an electron field, but
recognized that their fermionic nature would modify
the quantization procedure. This generic idea
involved what was called ‘‘second quantization’’ –
of a field into a particle.

One of the earliest quantization rules was Bohr’s
condition relating to the periodic orbits of electrons in
atoms, J =

R
p dq = nh. At the hands of Heisenberg and

Dirac this became upgraded to the commutation
relation

½q; p� ¼ i�h

where the operators p and q are ‘‘observables.’’ In
their papers on quantum field theory, Dirac, Jordan
and Wigner, and Heisenberg introduced creation and
annihilation operators which had the function, as
their name implied, of creating and destroying single
particles – quanta of the field. These operators obeyed
the commutation rules (with [A, B] = AB� BA)

½br; b
�
s � ¼ �rs; ½br; bs� ¼ ½b�r ; b�s � ¼ 0

when the field quanta were bosons, and the anti-
commutation rules

fbr; b
�
sg ¼ �rs; fbr; bsg ¼ fb�r ; b�sg ¼ 0

(with {A, B} = ABþ BA) when the field quanta were
fermions (e.g., electrons). These steps constitute
second quantization, but it may be noted that
the creation and annihilation operators are not
observables, as p and q are in the Heisenberg
commutation relation. In addition, the second
quantization conditions do not involve Planck’s
constant. ‘‘First’’ and ‘‘second’’ quantization are
therefore not so similar as one might like to think.

The question of what exactly is being quantized
was in fact the source of some confusion. In his
paper of 1927, Dirac’s attention is focussed on
electromagnetic radiation, but he nevertheless dis-
cusses the difference between ‘‘a light-wave and the
de Broglie or Schrödinger wave associated with the
light-quanta.’’ As Dirac points out, ‘‘their intensities
are to be interpreted in different ways. The number
of light quanta per unit volume associated with a
monochromatic light-wave equals the energy per
unit volume of the wave divided by the energy
(2�h)� of a single light quantum. On the other hand
a monochromatic de Broglie wave of amplitude a
(multiplied into the imaginary exponential factor)
must be interpreted as representing a2 light quanta
per unit volume for all frequencies.’’ There are at
least two problematic issues here. First, is the
Schrödinger wave function  to be considered as a
‘‘real’’ field, whose quanta result in ‘‘real’’ particles,
or is it a probability field, whose significance lies in
Born’s probabilistic interpretation of quantum
mechanics? Born wrote in 1926, ‘‘[Einstein said
that] the waves are present only to show the
corpuscular light quanta the way, and he spoke in
the sense of a ‘‘ghost field’’. This determines the
probability that a light quantum, the bearer of
energy and momentum, takes a certain path;
however, the field itself has no energy and no
momentum.’’ This is the first problem. The second
one concerns the nature of the quantization itself. Is
this a quantization of field energy, or a quantization
of the field itself, as a substantial entity? If the field
is real, the second of these does not imply the first.

Ambiguities surrounding the idea of second
quantization survived into the 1960s. Wigner is
recorded as saying, in an interview in 1963, ‘‘just as
we get photons by quantising the electromagnetic
fields, so we should be able to get material particles
by quantising the Schrödinger field.’’ And Rosenfeld,
also in an interview in 1963, said, ‘‘in some sense or
other, Jordan himself took the wave function, the
probability amplitude, physically more seriously
than most people [did].’’

It would seem we are justified in concluding that the
idea of second quantization contains flaws, but an even
clearer indication of the need for rethinking is provided
by the story of the Dirac equation. This is a wave
equation for the electron, compatible with special
relativity, and taking explicit account of its spin being
(1/2)�h. The equation famously had both positive- and
negative-energy solutions. This potential disaster was
converted by Dirac into a triumph by reinterpreting the
(absence of) negative-energy solutions as (positive-
energy) antiparticles – positrons, particles with positive
charge but the same mass and spin as the electron.
Positrons were eventually discovered by Anderson. It
was later shown that the existence of antiparticles is a
general feature of quantum field theory, not just a
peculiarity of spin-1/2 particles. The significance of this
discovery, however, is that the twin requirements of
relativity and quantum theory are not compatible with
a single-particle state; rather, these requirements result
in a two-particle state. Thus, in some sense the
requirements of relativity and quantum mechanics
already start to take us down the road to a quantum
theory of fields.

Quantum field theory is then constructed on the
following sort of framework: ‘‘classical’’ theories for
fields with any spin may be written down and these
are quantized by reinterpreting the field variables as
operators and imposing Heisenberg-type commuta-
tion relations on the field and its corresponding
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‘‘momentum’’ variable. So, for example, for spinless
fields we have the equal-time commutation relation

½�ðx; tÞ; �ðy; tÞ� ¼ i�h�ð3Þðx� yÞ

where �= @L=@(@0�) and L is the Lagrange density.
The mass and spin of particles are defined with
reference to the Poincaré group (thereby incorporat-
ing special relativity) and the quantum requirement
is the familiar one that physical states are repre-
sented by vectors in Hilbert space. The rest follows:
as Weinberg says, ‘‘quantum field theory is the way
it is because (with certain qualifications) this is the
only way to reconcile quantum mechanics with
special relativity.’’
Renormalization

A notorious problem in quantum field theory is the
occurrence of infinities. In QED, for example, the
electron acquires a self-energy – and therefore a
contribution to its mass – by virtue of the emission
and reabsorption of virtual photons. It turns out
that this self-energy is infinite – it is given by a
divergent integral – even in the lowest order of
perturbation theory. In the early days, this was
recognized as being a serious problem, and in fact it
turns out to be a generic problem in quantum field
theory. It was realized by Dyson, however, that in
some field theories these divergences may be dealt
with by redefining a small number of parameters
(e.g., in QED, the electron mass, charge, and field
amplitude) so that thereafter the theory is finite to
all orders of perturbation theory. Such theories are
called renormalizable, and QED is a renormalizable
field theory.

Some important field theories, however, are not
renormalizable; an example is Fermi’s theory of
weak interactions. To lowest order in perturbation
theory, Fermi’s theory works well (e.g., in account-
ing for the electron spectrum in neutron beta decay),
but to higher orders divergent results are obtained,
which cannot be waved away by redefining a finite
number of parameters; that is to say, as the order of
perturbation increases, so also does the number of
parameters to be redefined. Nonrenormalizable
theories of this type have traditionally been regarded
as highly undesirable, not to say rather nasty.

The modern view of renormalization is, however,
somewhat different. The problem with nonrenormal-
izable theories is that, in order to calculate a physical
process to all orders in perturbation theory, an
infinite number of parameters must be renormalized,
so the theory has no predictive power. In practice,
however, we do not need to calculate to all orders in
perturbation theory, since any physical process (say a
scattering process or a particle decay) will only be
observed at a finite energy and comparison of theory
and experiment therefore only requires calculation up
to a finite order of perturbation theory. So even
nonrenormalizable theories are perfectly acceptable
as low-energy theories. This amounts to a philosophy
of effective field theories; an effective field theory is a
model which holds good up to a particular energy
scale, or equivalently down to a particular length
scale.

An important addition to the theoretical armoury
is the renormalization group. Renormalization is
implemented first of all by a scheme of regulariza-
tion, which enables the divergences to be exhibited
explicitly. The simplest type of regularization is the
introduction of a cutoff in the momentum integrals,
but in modern particle physics the favored scheme is
dimensional regularization. The dimensionality of
the integrals in momentum space is taken to be
d = 4� " and the divergent quantities have an
explicit dependence on " (which, of course, as the
‘‘real’’ world is approached, approaches zero). At
the same time, a mass parameter � is introduced in
order to define dimensionless quantities, for exam-
ple, a dimensionless coupling constant. The renor-
malized quantities then depend on the ‘‘bare’’
(unrenormalized) quantities and on � and ". The
arbitrariness of � enables a differential equation, for
scattering amplitudes, for example, to be written
down. While at first sight this renormalization
group equation might seem to have no physical
importance, in fact it gives a powerful way of
studying scattering behavior at large momenta.

Most interestingly, the concept of the renormali-
zation group also arises in condensed matter physics.
Here, rather than, for example, a cutoff in momen-
tum space, the relevant parameter is a distance scale.
In the Ising model in statistical mechanics, for
example, in which spins are located on a lattice,
the parameter is the lattice spacing. To construct a
theory that describes the physics on the macroscopic
scale involves integrating out the details on the
microscopic scale and one way to do this is via the
‘‘block spin’’ transformation originally introduced
by Kadanoff. In this way the renormalization group
has had a large impact in condensed matter physics,
for example, in the study of critical phenomena.
Particle Physics and Cosmology

Probably the most spectacular success of quantum
field theory in the twentieth century has been in
particle physics. The ‘‘standard model’’ accounts for
the strong, electromagnetic, and weak interactions
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between elementary particles with outstanding
success. The interactions are generalizations of Max-
well’s electrodynamics, which is invariant under a
symmetry group U(1) of gauge transformations. An
enlargement of this group to SU(2)� U(1) accounts
for the unified electroweak interaction (the unifica-
tion resulting from the fact that the two U(1)’s above
are not exactly the same; there is some on-diagonal
mixing), and the strong interactions between quarks,
which binds them into hadrons, are invariant under an
SU(3) group of gauge transformations. The gauge
fields are the photon �, the W and Z bosons (both
heavy; of the order of 100 times the proton mass), and
the (massless) gluons mediating the force between
quarks (quantum chromodynamics, QCD). An
important feature of the standard model is sponta-
neous symmetry breaking, which is the mechanism by
which the W and Z particles acquire a mass (but the
photon does not, and neither do the gluons). This goes
by the name of the Higgs mechanism.

The quantization of the standard model is most
successfully carried out using the path-integral
formalism, rather than canonical quantization, and
the proof of the renormalizability of the model (of
nonabelian gauge theories with spontaneous sym-
metry breaking) was given by ’t Hooft. Details of
these topics are now available in many textbooks.

Confidence that this is a realistic model of elemen-
tary particles – that is to say, of quarks and leptons –
depends, of course, on particular experiments and
their interpretation and an important milestone on this
journey was Feynman’s quark–parton model of deep
inelastic electron–proton scattering. The interpretation
of the data required a picture of an electron scattering
from an individual quark in the proton, and this in
turn required a negligible interaction between quarks;
in other words, that at small distances (inside the
proton) the quarks are (almost) free – despite the fact
that at large distances they most certainly are not! The
proof, by Gross, Politzer, and Wilczek, that nonabe-
lian gauge are indeed asymptotically free (asymptotic
in momentum space, that is) was therefore an
important event in helping to establish the credibility
of the standard model.

A characteristic contribution of quantum field theory
to our view of the physical world is its picture of the
vacuum, as being populated with virtual particle–
antiparticle pairs. A consequence of this is the phenom-
enon of vacuum polarization – that the presence of an
electric charge in free space polarizes these virtual pairs.
This in turns leads to the phenomenon of screening in
QED, and antiscreening in QCD, SU(3) having a more
complicated structure than U(1). It also leads to a
nonzero (in fact, quadratically divergent!) value for the
energy of the vacuum. This is in effect the contribution
of the zero-point energies of all the oscillators in the
Fourier expansion of the scalar field operator. In any
other interaction than gravity, this zero-point energy
may be ignored, but in gravity it may be expected to
have observable consequences, and indeed it turns out
that it plays the same role as a cosmological constant �,
and therefore acts as an agent of acceleration, rather
than deceleration, of the universe.

A final topic worth noting is one whose existence
would have been inconceivable in the early days of this
subject. The nonlinearity of the (nonabelian) gauge
field equations and the existence of a nontrivial group
space allows new types of topologically nontrivial
solutions to these equations: solitons, bounces, instan-
tons, sphalerons, and so on. Effects such as fractional
spin and nonconservation of fermion number also
appear, and, on the cosmological scale, domain walls
and cosmic strings. There is something here for
theoretical physicists of many differing interests.

See also: Algebraic Approach to Quantum Field Theory;
Axiomatic Quantum Field Theory; BRST Quantization;
Constrained Systems; Constructive Quantum Field
Theory; Deformation Quantization; Electroweak Theory;
Euclidean Field Theory; Exact Renormalization Group;
Integrability and Quantum Field Theory; Nonperturbative
and Topological Aspects of Gauge Theory; Perturbative
Renormalization Theory and BRST; Quantum
Chromodynamics; Quantum Electrodynamics and Its
Precision Tests; Quantum Fields with Indefinite Metric:
Non-Trivial Models; Quantum Fields with Topological
Defects; Renormalization: General Theory; Standard
Model of Particle Physics; Symmetries and Conservation
Laws; Symmetries in Quantum Field Theory of Lower
Spacetime Dimensions; Topological Defects and Their
Homotopy Classification; Topological Quantum Field
Theory: Overview; Twistors.
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Introduction

The nonperturbative construction of quantum field
models with nontrivial scattering in arbitrary dimen-
sion d of the underlying Minkowski spacetime is
much simpler in the framework of quantum field
theory with indefinite metric than in the positive-
metric case. In particular, there exist a number of
solutions in the physical dimension d = 4, where up
to now no positive-metric solutions are known. The
reasons why this is so are reviewed in this article,
and some examples obtained by analytic continua-
tion from the solutions of Euclidean covariant
stochastic partial differential equations (SPDEs)
driven by non-Gaussian white noise are discussed.
The Hilbert Space Structure Condition

It has been proved by F Strocchi that a quantum
gauge field in a local, covariant gauge cannot act on
a Hilbert space with a positive-definite inner
product. But it is possible to overcome this obstacle
by passing from a Hilbert space representation of
the algebra of the quantum field to Krein space
representations in order to preserve locality and
covariance under the Poincaré group.

A Krein space K is an inner-product space which
also is a Hilbert space with respect to some auxiliary
scalar product. The relation between the inner
product h. , .i and the auxiliary scalar product (. , .)
is given by a self-adjoint linear operator J :K ! K
with J2 = 1K and h. , .i = (. , J.). J is called the metric
operator. A quantum field acting on such a space is
called a quantum field with indefinite metric. The
formal definition is as follows.

Let D � K be a dense linear space and � 2 D a
distinguished vector (henceforth called the vacuum).
Let S = S(Rd, CN) be the space of Schwartz test
functions with values in CN. A quantum field � by
definition is a linear mapping from S to the linear
operators on D. One usually assumes that D is
generated as the linear span of vectors generated by
repeated application of field operators to the
vacuum. The following properties should hold for
the quantum field �:

1. Temperedness: fn ! f in S )h�, �(fn)�i !
h�, �(f )�i 8�, � 2 S.

2. Covariance: There exists a weakly continuous
representation U of the covering of the
orthochronous, proper Poincaré group ~P

"
þ by

linear operators on D which is J-unitary, that is,
U[�] = U�1 with U[�] = JU�JjD and leaves �
invariant. � is said to be covariant with respect
to U and a representation � of the covering of the
orthochronous, proper Lorentz group ~L

"
þ if

U(g)�(f )U(g)�1 = �(fg), where fg(x) = �(�)f (��1

(x� a)), g = f�, ag, � 2 ~L
"
þ, a 2 Rd.

3. Spectrality: Let U(a), a 2 Rd, be the representa-
tion of the translation group and let
	 = [�,�2D suppF (h�, U(.)�i) with F the Fourier
transform (in the sense of tempered distribu-
tions). Formally, 	 is the joint spectrum of the
generators of spacetime translations U(a). The
spectral condition then demands that 	 � �V

þ
0 ,

the closed forward light cone in energy–momentum
space.

4. Locality: There is a decomposition CN =�
V


such that for each f , h 2 S taking values in a V


and having spacelike separated supports one has
either [�(f ),�(h)]=0 or f�(f ),�(h)g=0, where
[.,.] is the commutator and f.,.g the
anticommutator.

5. Hermiticity: There is an involution � on S such
that �(f )[�] = �(f �).

The quantum-mechanical interpretation of the
inner product of two vectors in K as a probability
amplitude, however, gets lost. It has to be restored
by the construction of a physical subspace of K
where the restriction of the inner product is non-
negative. This is called the Gupter–Bleuler gauge
procedure. Typically, one first considers the problem
of constructing quantum fields with indefinite
metric, that is, the dynamical problem is addressed.
This is often followed by the construction of the
physical states, which involves implementation of
quantum constraints.
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The vacuum expectation values (VEVs), also called
Wightman functions, of the quantum field theory
with indefinite metric (IMQFT) are defined as

Wnðf1 � � � � � fnÞ = h�; �ðf1Þ � � ��ðfnÞ�i
f1; . . . ; fn 2 S ½1�

An axiomatic framework for (unconstrained)
IMQFT has been suggested by G Morchio and
F Strocchi in terms of the Wightman functions
Wn 2 S0, n 2 N0. Previous work on the topic had
been done by J Yngvason. These generalized Wight-
man axioms of Morchio and Strocchi replace the
positivity condition on the Wightman functions by a
so-called Hilbert space structure condition (HSSC):
for n 2 N0 there exist pn a Hilbert seminorm on S�n

such that

jWnþmðf � hÞj 	 pnðf ÞpmðhÞ 8n;m 2 N0

f 2 S�n; h 2 S�m ½2�

This condition makes sure that a field algebra on a
Krein space with VEVs equal to the given set of
Wightman functions can be constructed. The
remaining axioms of the Wightman framework –
temperedness, covariance, spectral condition, local-
ity, and Hermiticity – remain the same. Clustering of
Wightman functions is assumed at least for massive
theories:

lim
t!1

Wnþmðf � htaÞ = Wnðf ÞWmðhÞ 8n;m 2 N0

f 2 S�n; h 2 S�m ½3�

for spacelike a 2 Rd. It fails to hold in certain
physical contexts where multiple vacua (also called
�-vacua) accompanied with massless Goldstone
bosons occur due to spontaneous symmetry
breaking.

In the original Wightman axioms, there are
essentially two nonlinear axioms: positivity and
clustering. Here nonlinear means that checking that
condition involves more than one VEV with a given
number of field operators. The cluster condition can
be linearized by an operation on the Wightman
functions called ‘‘truncation.’’ The equations

Wnðf1 � � � � � fnÞ
¼
X

I2PðnÞ

Y
fj1;...;jlg2I

j1<j2<���<jl

WT
n ðfj1 � � � � � fjlÞ ½4�

recursively define the truncated Wightman functions
WT

n for n 2 N. Here P(n) stands for the set of all
partitions of f1, . . . , ng into disjoint, nonempty sets.
Unfortunately, the positivity condition (at least
when combined with nontrivial scattering) becomes
highly nonlinear for truncated Wightman functions.
This can be seen as one explanation why it is so
difficult to find nontrivial (i.e., corresponding to
nontrivial interactions) solutions to the Wightman
axioms.

But it turns out that, in contrast to positivity, the
HSSC is essentially linear for truncated Wightman
functions.

Theorem 1 If there exists a Schwartz norm jj � jj on
S such that WT

n is continuous with respect to jj � jj�n

for n 2 N then the associated sequence of Wightman
functions fWng fulfills the HSSC [2].

Note that jj � jj�n is well defined as S is a nuclear
space. This theorem makes it much easier to
construct IMQFTs. In particular, all known solu-
tions of the linear program for truncated
Wightman functions lead to an abundance of
mathematical solutions to the axioms of IMQFT,
as long as the singularities of truncated Wightman
functions in position and energy–momentum space
do not become increasingly stronger with growing n.
For example, the perturbative solutions to Wight-
man functions of Ostendorf and Steinmann provide
solutions when the perturbation series is truncated at
a given order.
Relativistic Fields from Euclidean
Stochastic Equations

In the classical work on constructive quantum field
theory, relativistic fields in spacetime dimensions
d = 2 and 3 have been constructed by analytic
continuation from Euclidean random fields. This, in
particular, has led to firm connections between
quantum field theory and equilibrium statistical
mechanics. Let us discuss one specific class of
solutions of the axioms of IMQFT for arbitrary d
which also stem from random fields related to an
ensemble of statistical mechanics of classical, con-
tinuous particles. Mathematically, this is connected
with using random fields with Poisson distribution.
As in constructive QFT, the moments, also called
Schwinger functions, of the random field can be
analytically continued from Euclidean imaginary
time to relativistic real time. That this is possible
results from an explicit calculation. Axiomatic results
cannot be used, as they depend on positivity or
reflection positivity in the Euclidean spacetime,
respectively.

By definition, a mixing Euclidean covariant
random field ’ is an almost surely linear mapping
from SR = S(Rd, RN) to the space of real-valued
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measurable functions (random variables) on some
probability space that fulfills the following
properties:

1. Temperedness: fn ! f in SR )’(fn)!L ’(f ).
2. Covariance: ’(f )¼L ’(fg) 8f 2SR, g = f�, ag,

� 2SO(d), a2Rd, fg(x) = �(�)f (��1(x� a)) for
some continuous representation � : SO(d)!GL(N).

3. Mixing: limt!1E[ABta] = E[A]E[B] for all
square-integrable random variables A = A(’),
B = B(’), and Bta = B(’ta), ’ta(f ) =’(fta) 8f 2SR,
a2Rd nf0g.

The mixing condition in the Euclidean spacetime
plays the same role as the cluster property in the
generalized Wightman axioms.

In particular, we consider random fields ’
obtained as solutions of the SPDE D’ = �. In this
equation, � is a noise field, that is, � is �-covariant
for some representation of SO(d), �(f ) has infinitely
divisible probability law and �(f ), �(h) are indepen-
dent 8f , h 2 SR with supp f \ supp h = ;. D is a
�-covariant (i.e., �(�)D�(�)�1 = D 8� 2 SO(d))
partial differential operator with constant coeffi-
cients (also pseudodifferential operators D could be
considered). From the classification of infinitely
divisible probability laws, it is known that �
essentially consists of Gaussian white noise and
Poisson fields and derivatives thereof. Such a Gauss–
Poisson noise field by the Bochner–Minlos theorem
is characterized by its Fourier transform. Direct
relations with QFT arise if one chooses

E½ei�ðf Þ� = exp

Z
Rd
 ðf Þ � f � ��2pð��Þf dx

� �
f 2 SR ½5�

where  : RN ! C is a Lévy function,

 ðtÞ = ia � t � t � �2t

2
þ z

Z
RNnf0g

ðeit�s � 1Þ drðsÞ

t 2 RN ½6�

Here the centered dot represents a �-invariant scalar
product on RN, � a positive-semidefinite �-invariant
N 
N matrix, z � 0 a real number and r is a
�-invariant probability measure on Rn nf0g with all
moments. Further, ��2

�,� = (@2 (t)=@t�@t�)jt = 0,
and p : [0,1)! [0,1) is a polynomial depending
on D. If D̂

�1
, the Fourier-transformed inverse of D,

exists, it can be represented by

D̂
�1ðkÞ =

QEðkÞQP
l = 1 ðjkj

2 þm2
l Þ
	l

½7�

Here QE(k) is a complex N 
N matrix with
polynomial entries being �-covariant, �(�)QE
(��1k)�(�)�1 = QE(k) 8� 2 SO(d), k 2 Rd. 	l 2
N and m1 2 Cn(�1, 0) are parameters with the
interpretation of the mass spectrum (m1, . . . , mP)
and (	1, . . . , 	P) the dipole degrees of the related
masses. We restrict ourselves to the case of positive
mass spectrum where ml > 0, and in this case

pðtÞ = pðt;DÞ =

QP
l = 1 ðt þm2

l Þ
	lQP

l = 1 m2	l

l

; t > 0 ½8�

One can show that ’ obtained as the unique
solution of the SPDE D’ = � is a Euclidean covariant,
mixing random field. The Schwinger functions
(moments) of ’ are given by

Snðf1 � � � � � fnÞ
= E½’ðf1Þ � � �’ðfnÞ�; f1; . . . ; fn 2 SR ½9�

Now the Schwinger functions can be calculated
explicitly. They are determined by the truncated
Schwinger functions, cf. [4], as follows: for n = 2,

ST
2;�1;�2

ðx1; x2Þ

¼
QE

2;�1;�2
ð�ir2ÞQN

l¼ 1 m2	l

l

YN
l¼1

ð��þm2
l Þ
�	l

" #
ðx1 � x2Þ ½10�

and for n � 3

ST
n;�1����n

ðx1; . . . ;xnÞ
¼ QE

n;�1����n
ð�irnÞ



Z

Rd

Yn
j¼ 1

YN
l¼1

ð��þm2
l Þ
�	l

" #
ðxj � xÞ dx ½11�

where

QE
n;�1����n

ð�irnÞ ¼ C�1����n

Yn

l¼1

QE;�l ;�l

�
� i

@

@xl

�
½12�

with

C�1����n
= ð�iÞn @n ðtÞ

@t�1
� � � @t�n

����
t = 0

½13�

and the Einstein convention of summation and raising/
lowering of indices on RN with respect to the invariant
inner product � is applied. The Schwinger functions
fulfill the requirements of �-covariance, symmetry,
clustering, and Hermiticity from the Osterwalder–
Schrader axioms of Euclidean QFT.

While there is no known general reason why a
relativistic QFT should exist for a given set of
Schwinger functions, one can take advantage of the
explicit formulas [10]–[13] in order to calculate the
analytic continuation from Euclidean to relativistic
times explicitly.
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It simplifies the considerations to exclude dipole
fields, that is, one assumes that 	l = 1 for
l = 1, . . . , n. In physical terms, the no-dipole condi-
tion guarantees that the asymptotic fields in Min-
kowski spacetime fulfill the Klein–Gordon equation
and thus generate particles in the usual sense if
applied to the vacuum. If this condition is not
imposed, asymptotic fields might only fulfill a dipole
equation (&þm2)2�in=out = 0 or a related hyper-
bolic equation of even higher order, and the particle
states generated by application of such fields to the
vacuum require a gauge fixing (constraints) in order
to obtain a physical interpretation. Given the no-
dipole condition, one obtains by expansion into
partial fractions

1QP
l = 1 ðjkj

2 þm2
l Þ

=
XN
l = 1

bl

ðjkj2 þm2
l Þ

½14�

with bl 2 (0,1) uniquely determined and bl 6¼ 0.
For the truncated Schwinger functions, this implies
(n � 3) that

ST
n;�1����n

ðx1; . . . ; xnÞ

¼ QE
n;�1����n

ð�irnÞ
XP

l1;...; ln ¼1



Yn

r¼ 1

blr

Z
Rd

Yn

j¼1

ð��þm2
lj
Þ�1ðx� xjÞ dx ½15�

At this point, a lengthy calculation yields a repres-
entation of the functions

R
Rd

Qn
j = 1 (��þm2

j )�1

(x� xj) dx as the Fourier–Laplace transform of a
distribution ŴT

n,m1,...,mn
that fulfills the spectral

condition. This is equivalent to the statement that
the analytic continuation of such functions to
relativistic times yields WT

n,m1,...,mn
, where the latter

distribution is the inverse Fourier transform of
ŴT

n , m1,..., mn
. This distribution up to a constant that

can be integrated into QE is given by

Xn

j = 1

Yj�1

l = 1


�ml
ðklÞ

ð�1Þ
k2 �m2

j

Yn
l = jþ1


þml
ðklÞ

8<
:

9=
;

�Xn

l = 1

kl

�

½16�

Here 
�m(k) = �(� k0)
(k2 �m2), where � is the
Heaviside step function and k2 = k02� jkj2. On the
other hand, the partial differential operator QE

n can
be analytically continued in momentum space:

QM
n ððk0

1; k1Þ; . . . ; ðk0
n; knÞÞ

= QE
nððik0

1; k1Þ; . . . ; ðik0
n; knÞÞ

½17�

k1, . . . , kn 2 Rd. With the definition
ŴT
2;�1�2

ðk1; k2Þ ¼ ð2�Þðdþ1ÞQ
M
2;�1�2

ðk1; k2ÞQN
l¼1 m2

l



XN
l¼1

bl 

�
ml
ðk1Þ
ðk1 þ k2Þ ½18�

and

ŴT
n;�1����n

ðk1; . . . ; knÞ

¼ QM
n;�1����n

ðk1; . . . ; knÞ



XN

l1;...; ln ¼ 1

Yn

j¼1

blj Ŵ
T

n;ml1
;...;mln

ðk1; . . . ; knÞ ½19�

the analytic continuation of Schwinger functions can
be summarized as follows:

Theorem 2 The truncated Schwinger functions
ST

n have a Fourier–Laplace representation with ŴT
n

defined in eqns [18] and [19]. Equivalently, ST
n is the

analytic continuation of WT
n from purely real

relativistic time to purely imaginary Euclidean
time. The truncated Wightman functions WT

n fulfill
the requirements of temperedness, relativistic covar-
iance with respect to the representation of the
orthochronous, proper Lorentz group �̃ : L"þ(d)!
Gl(L), locality, spectral property, and cluster prop-
erty. Here �̃ is obtained by analytic continuation of �
to a representation of the proper complex Lorentz
group over Cd (which contains SO(d) as a real
submanifold) and restriction of this representation
to the real orthochronous proper Lorentz group.

Again making use of the explicit formula in
Theorem 2, the condition of Theorem 1 can be verified.
This proves the existence of IMQFT models associated
with the class of random fields under discussion.

Theorem 3 The Wightman functions defined in
Theorem 2 fulfill the HSSC [2]. In particular, there
exists a QFT with indefinite metric such that the
Wightman functions are given as the VEVs of that
IMQFT.
Nontrivial Scattering

Theories as described in Theorem 2 obviously have
trivial scattering behavior if the noise field � is
Gaussian, that is, if, in [7], z = 0. In the case where
there is also a Poisson component in �, that is, z > 0,
higher-order truncated Wightman functions do not
vanish and such relativistic theories have nontrivial
scattering.

Before the scattering of the models can be
discussed, some comments about scattering in
IMQFT in general are in order. The scattering
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theory in axiomatic QFT, Haag–Ruelle theory, relies
on positivity. In fact, one can show that in the class
of models under discussion, the LSZ asymptotic
condition is violated if dipole degrees of freedom are
admitted. In that case more complicated asymptotic
conditions have to be used. In any case, the Haag–
Ruelle theory cannot be adapted to IMQFT.

Nevertheless, asymptotic fields and states can be
constructed in IMQFT if one imposes a no-dipole
condition in a mathematically precise way. Then the
LSZ asymptotic condition leads to the construction of
mixed VEVs of asymptotic in- and out-fields with local
fields. The collection of such VEVs is called the form-
factor functional. After constructing this collection of
mixed VEVs, one can try to check the HSSC for this
functional and obtains a Krein space representation for
the algebra generated by in- local and out-fields.

Following this line, asymptotic in- and out-particle
states can be constructed for the given mass spectrum
(m1, . . . , mP). If a

in=outy
�, l (k), l = 1, . . . , P, denotes the

creation operator for an incoming/outgoing particle
with mass ml, spin component �, and energy–momen-
tum k, the following scattering amplitude can be derived
for r incoming particles with masses ml1 , . . . , mlr and
n� r outgoing particles with masses mlrþ1

, . . . , mln :

a
iny
�1;l1
ðk1Þ � � � ainy

�r;lr
ðkrÞ�; aouty

�rþ1;lrþ1
ðkrþ1Þ � � � aouty

�n;ln
ðknÞ�

D ET

¼ �ð2�ÞiQM
�1;...;�n

ð�k1; . . . ;�kr; krþ1; . . . ; knÞ



Yn

j¼ 1


þmlj
ðkjÞ 
ðKin � KoutÞ ½20�

Kin=out stand for the total energy–momentum of
in- and out-particles, that is, Kin =

Pr
j = 1 kj and

Kout =
Pn

j = rþ1 kj.
Two immediate consequences can be drawn from

[20]. First, choosing a model with nonvanishing
Poisson part such that C�1�2�3

6¼ 0 and a differential
operator D containing in its mass spectrum the
masses m and  with m > 2, one gets a nonvanish-
ing scattering amplitude for the process

m

µ

µ
½21�

even though in- and out-particle states consist of
particles with well-defined sharp masses. Thus, for the
incoming particle, the energy uncertainty, which for a
particle at rest is proportional to the mass uncertainty,
vanishes but still the particle undergoes a nontrivial
decay and must have a finite decay time. This appears
to be a contradiction to the energy–time uncertainty
relation, which therefore seems to have an unclear
status in IMQFT (i.e., in QFT including gauge fields).
The origin of this inequality, which of course is
experimentally very well tested, apparently has to be
located in the constraints, that is, in the procedure of
implementing a gauge, of the theory and not in the
unconstrained IMQFT.

Second, one can replace somewhat artificially the
polynomials QM

n in [17] by any other symmetric and
relativistically covariant polynomial. If the sequence of
the ‘‘new’’ QM

n is of uniformly bounded degree in any
of the arguments k1, . . . , kn, the redefined Wightman
functions in [17] still fulfill the requirements of
Theorem 1 and thus define a new relativistic, local
IMQFT. The scattering amplitudes of such a theory
are again well defined and given by [20]. For example,
in the case of only one scalar particle with mass m, one
can show that arbitrary Lorentz-invariant scattering
behavior of bosonic particles can be reproduced by
such theories for energies below an arbitrary maximal
energy up to arbitrary precision. This kind of
interpolation theorem shows that the outcome of an
arbitrary scattering experiment can be reproduced
within the formalism of (unconstrained) IMQFT as
long as it is in agreement with the general requirements
of Poincaré invariance and statistics.
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Introduction

The ordered patterns we observe in condensed
matter and in high-energy physics are created by
the quantum dynamics. Macroscopic systems exhi-
biting some kind of ordering, such as superconduc-
tors, ferromagnets, and crystals, are described by the
underlying quantum dynamics. Even the large-scale
structures in the universe, as well as the ordering in
the biological systems appear to be the manifesta-
tion of the microscopic dynamics governing the
elementary components of these systems. Thus, we
talk of macroscopic quantum systems: these are
quantum systems in the sense that, although they
behave classically, some of their macroscopic fea-
tures nevertheless cannot be understood without
recourse to quantum theory.

The question then arises how the quantum
dynamics generates the observed macroscopic prop-
erties. In other words, how it happens that the
macroscopic scale characterizing those systems is
dynamically generated out of the microscopic scale
of the quantum elementary components (Umezawa
1993, Umezawa et al. 1982).

Moreover, we also observe a variety of phenom-
ena where quantum particles coexist and interact
with extended macroscopic objects which show a
classical behavior, for example, vortices in super-
conductors and superfluids, magnetic domains in
ferromagnets, dislocations and other topological
defects (grain boundaries, point defects, etc.) in
crystals, and so on.

We are thus also faced with the question of the
quantum origin of topological defects and their
interaction with quanta (Umezawa 1993, Umezawa
et al. 1982): this is a crucial issue for the under-
standing of symmetry-breaking phase transitions
and structure formation in a wide range of systems
from condensed matter to cosmology (Kibble 1976,
Zurek 1997, Volovik 2003).

Here, we will review how the generation of
ordered structures and extended objects is explained
in quantum field theory (QFT). We follow Umezawa
(1993) and Umezawa et al. (1982) in our presenta-
tion. We will consider systems in which spontaneous
symmetry breaking (SSB) occurs and show that
topological defects originate by inhomogeneous
(localized) condensation of quanta. The approach
followed here is alternative to the usual one
(Rajaraman 1982), in which one starts from the
classical soliton solutions and then ‘‘quantizes’’
them, as well as to the QFT method based on dual
(disorder) fields (Kleinert 1989).

In the next section we introduce some general
features of QFT useful for our discussion and treat
some aspects of SSB and the rearrangement of
symmetry. Next we discuss the boson transforma-
tion theorem and the topological singularities of the
boson condensate. We then present, as an example,
a model with U(1) gauge invariance in which SSB,
rearrangement of symmetry, and topological defects
are present (Matsumoto et al. 1975a, b). There we
show how macroscopic fields and currents are
obtained from the microscopic quantum dynamics.
The Nielsen–Olesen vortex solution is explicitly
obtained as an example. The final section is devoted
to conclusions.
Symmetry and Order in QFT:
A Dynamical Problem

QFT deals with systems with infinitely many degrees
of freedom. The fields used for their description are
operator fields whose mathematical significance is
fully specified only when the state space where they
operate is also assigned. This is the space of the
states, or physical phase, of the system under given
boundary conditions. A change in the boundary
conditions may result in the transition of the system
from one phase to another. For example, a change
of temperature from above to below the critical
temperature may induce the transition from the
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normal to the superconducting phase in a metal. The
identification of the state space where the field
operators have to be realized is thus a physically
nontrivial problem in QFT. In this respect, the QFT
structure is drastically different from the one of
quantum mechanics (QM). The reason is the
following.

The von Neumann theorem (1955) in QM states
that for systems with a finite number of degrees of
freedom all the irreducible representations of the
canonical commutation relations are unitarily
equivalent. Therefore, in QM the physical system
can only live in one single physical phase: unitary
equivalence means indeed physical equivalence and
thus there is no room (no representations) for
physically different phases. Such a situation drasti-
cally changes in QFT where systems with infinitely
many degrees of freedom are treated. In such a case,
the von Neumann theorem does not hold and
infinitely many unitarily inequivalent representa-
tions of the canonical commutation relations do in
fact exist (Umezawa 1993, Umezawa et al. 1982). It
is such richness of QFT that allows the description
of different physical phases.
QFT as a Two-Level Theory

In the perturbative approach, any quantum experi-
ment or observation can be schematized as a
scattering process where one prepares a set of free
(noninteracting) particles (incoming particles or in-
fields) which are then made to collide at some later
time in some region of space (spacetime region of
interaction). The products of the collision are
expected to emerge out of the interaction region as
free particles (outgoing particles or out-fields).
Correspondingly, one has the in-field and the out-
field state space. The interaction region is where the
dynamics operates: given the in-fields and the in-
states, the dynamics determines the out-fields and
the out-states.

The incoming particles and the outgoing ones
(also called quasiparticles in solid state physics) are
well distinguishable and localizable particles only far
away from the interaction region, at a time much
before (t =�1) and much after (t =þ1) the
interaction time: in- and out-fields are thus said to
be asymptotic fields, and for them the interaction
forces are assumed not to operate (switched off).

The only regions accessible to observations are
those far away (in space and in time) from the
interaction region, that is, the asymptotic regions
(the in- and out-regions). It is so since, at the
quantum level, observations performed in the inter-
action region or vacuum fluctuations occurring there
may drastically interfere with the interacting objects,
thus changing their nature. Besides the asymptotic
fields, one then also introduces dynamical or
Heisenberg fields, that is, the fields in terms of
which the dynamics is given. Since the interaction
region is precluded from observation, we do not
observe Heisenberg fields. Observables are thus
solely described in terms of asymptotic fields.

Summing up, QFT is a ‘‘two-level’’ theory: one level
is the interaction level where the dynamics is specified
by assigning the equations for the Heisenberg fields.
The other level is the physical level, the one of the
asymptotic fields and of the physical state space
directly accessible to observations. The equations for
the physical fields are equations for free fields,
describing the observed incoming/outgoing particles.

To be specific, let the Heisenberg operator fields
be generically denoted by  H(x) and the physical
operator fields by ’in(x). For definiteness, we choose
to work with the in-fields, although the set of out-
fields would work equally well. They are both
assumed to satisfy equal-time canonical (anti)-
commutation relations.

For brevity, we omit considerations on the renor-
malization procedure, which are not essential for the
conclusions we will reach. The Heisenberg field
equations and the free-field equations are written as

�ð@Þ HðxÞ ¼ J ½ H�ðxÞ ½1�

�ð@Þ’inðxÞ ¼ 0 ½2�

where �(@) is a differential operator, x � (t, x) and
J is some functional of the  H fields, describing the
interaction.

Equation [1] can be formally recast in the
following integral form (Yang–Feldman equation):

 HðxÞ ¼ ’inðxÞ þ ��1ð@Þ � J ½ H�ðxÞ ½3�

where � denotes convolution. The symbol ��1(@)
denotes formally the Green function for ’in(x). The
precise form of Green’s function is specified by the
boundary conditions. Equation [3] can be solved by
iteration, thus giving an expression for the Heisen-
berg fields  H(x) in terms of powers of the ’in(x)
fields; this is the Haag expansion in the LSZ
formalism (or ‘‘dynamical map’’ in the language of
Umezawa 1993 and Umezawa et al. 1982), which
might be formally written as

 HðxÞ ¼ F½x;’in� ½4�

(A (formal) closed form for the dynamical map is
obtained in the closed time path (CTP) formalism
(Blasone and Jizba 2002). Then the Haag expansion
[4] is directly applicable to both equilibrium and
nonequilibrium situations.)
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We stress that the equality in the dynamical map
[4] is a ‘‘weak’’ equality, which means that it must
be understood as an equality among matrix elements
computed in the Hilbert space of the physical
particles.

We observe that mathematical consistency in the
above procedure requires that the set of ’in fields
must be an irreducible set; however, it may happen
that not all the elements of the set are known from
the beginning. For example, there might be compo-
site (bound states) fields or even elementary quanta
whose existence is ignored in a first recognition.
Then the computation of the matrix elements in
physical states will lead to the detection of unex-
pected poles in the Green’s functions, which signal
the existence of the ignored quanta. One thus
introduces the fields corresponding to these quanta
and repeats the computation. This way of proceed-
ing is called the self- consistent method (Umezawa
1993, Umezawa et al. 1982). Thus it is not necessary
to have a one-to-one correspondence between the
sets { j

H} and {’i
in}, as it happens whenever the set

{’i
in} includes composite particles.
The Dynamical Rearrangement of Symmetry

As already mentioned, in QFT the Fock space for
the physical states is not unique since one may have
several physical phases, for example, for a metal the
normal phase and the superconducting phase, and so
on. Fock spaces describing different phases are
unitarily inequivalent spaces and correspondingly
we have different expectation values for certain
observables and even different irreducible sets of
physical quanta. Thus, finding the dynamical map
involves singling out the Fock space where the
dynamics has to be realized.

Let us now suppose that the Heisenberg field
equations are invariant under some group G of
transformations of  H:

 HðxÞ !  0HðxÞ ¼ g  HðxÞ½ � ½5�

with g 2 G. The symmetry is spontaneously broken
when the vacuum state in the Fock space H is not
invariant under the group G but only under one of
its subgroups (Umezawa 1993, Umezawa et al.
1982).

On the other hand, eqn [4] implies that when  H

is transformed as in [5], then

’inðxÞ ! ’0inðxÞ ¼ g0 ’inðxÞ½ � ½6�

with g0 belonging to some group of transformations
G0 and such that

g  HðxÞ½ � ¼ F g0 ’inðxÞ½ �½ � ½7�
When symmetry is spontaneously broken it is
G0 6¼ G, with G0 the group contraction of G; when
symmetry is not broken then G0= G.

Since G is the invariance group of the dynamics,
eqn [4] requires that G0 is the group under which
free fields equations are invariant, that is, also ’0in
is a solution of [2]. Since eqn [4] is a weak equality,
G0 depends on the choice of the Fock space H
among the physically realizable unitarily inequiva-
lent state spaces. Thus, we see that the (same)
original invariance of the dynamics may manifest
itself in different symmetry groups for the ’in fields
according to different choices of the physical state
space. Since this process is constrained by the
dynamical equations [1], it is called the dynamical
rearrangement of symmetry (Umezawa 1993,
Umezawa et al. 1982).

In conclusion, different ordering patterns appear
to be different manifestations of the same basic
dynamical invariance. The discovery of the process
of the dynamical rearrangement of symmetry leads
to a unified understanding of the dynamical genera-
tion of many observable ordered patterns. This is the
phenomenon of the dynamical generation of order.
The contraction of the symmetry group is the
mathematical structure controlling the dynamical
rearrangement of the symmetry. For a qualitative
presentation see Vitiello (2001).

One can now ask which ones are the carriers of
the ordering information among the system elemen-
tary constituents and how the long-range correla-
tions and the coherence observed in ordered patterns
are generated and sustained. The answer is in
the fact that SSB implies the appearance of bosons
(Goldstone 1961, Goldstone et al. 1962, Nambu
and Jona-Lasinio 1961), the so-called Nambu–
Goldstone (NG) modes or quanta. They manifest
as long-range correlations and thus they are respon-
sible of the above-mentioned change of scale, from
microscopic to macroscopic. The coherent boson
condensation of NG modes turns out to be the
mechanism by which order is generated, as we will
see in an explicit example in a later section.
The ‘‘Boson Transformation’’ Method

We now discuss the quantum origin of extended
objects (defects) and show how they naturally
emerge as macroscopic objects (inhomogeneous
condensates) from the quantum dynamics. At zero
temperature, the classical soliton solutions are then
recovered in the Born approximation. This approach
is known as the ‘‘boson transformation’’ method
(Umezawa 1993, Umezawa et al. 1982).
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The Boson Transformation Theorem

Let us consider, for simplicity, the case of a
dynamical model involving one scalar field  H and
one asymptotic field ’in satisfying eqns [1] and [2],
respectively.

As already remarked, the dynamical map is valid
only in a weak sense, that is, as a relation among matrix
elements. This implies that eqn [4] is not unique, since
different sets of asymptotic fields and the correspond-
ing Hilbert spaces can be used in its construction. Let us
indeed consider a c–number function f (x), satisfying
the ’in equations of motion [2]:

�ð@Þf ðxÞ ¼ 0 ½8�

The boson transformation theorem (Umezawa 1993,
Umezawa et al. 1982) states that the field

 
f
HðxÞ ¼ F x;’in þ f½ � ½9�

is also a solution of the Heisenberg equation [1].
The corresponding Yang–Feldman equation takes
the form

 
f
HðxÞ ¼ ’inðxÞ þ f ðxÞ þ ��1ð@Þ � J ½ f

H�ðxÞ ½10�

The difference between the two solutions  H and
 

f
H is only in the boundary conditions. An impor-

tant point is that the expansion in [9] is obtained
from that in [4] by the spacetime-dependent
translation

’inðxÞ ! ’inðxÞ þ f ðxÞ ½11�

The essence of the boson transformation theorem is
that the dynamics embodied in eqn [1] contains an
internal freedom, represented by the possible
choices of the function f (x), satisfying the free-
field equation [8].

We also observe that the transformation [11] is a
canonical transformation since it leaves invariant the
canonical form of commutation relations.

Let j0i denote the vacuum for the free field ’in.
The vacuum expectation value of eqn [10] gives

�f ðxÞ � h0j f
HðxÞj0i

¼ f ðxÞ þ 0 ��1ð@Þ � J ½ f
H�ðxÞ

h i��� ���0D E
½12�

The c–number field �f (x) is the order parameter. We
remark that it is fully determined by the quantum
dynamics. In the classical or Born approximation,
which consists in taking h0jJ [ f

H]j0i=J [� f ], that
is, neglecting all the contractions of the physical
fields, we define �

f
cl(x) � lim�h!0 �

f (x). In this limit,
we have

�ð@Þ� f
clðxÞ ¼ J ½�

f
cl�ðxÞ ½13�
that is, �
f
cl(x) provides the solution of the classical

Euler–Lagrange equation.
Beyond the classical level, in general, the form of

this equation changes. The Yang–Feldman equation
[10] gives not only the equation for the order
parameter, eqn [13], but also, at higher orders in
�h, the dynamics of the physical quanta in the
potential generated by the ‘‘macroscopic object’’
�f (x) (Umezawa 1993, Umezawa et al. 1982).

One can show (Umezawa 1993, Umezawa et al.
1982) that the class of solutions of eqn [8] which
lead to topologically nontrivial (i.e., carrying a
nonzero topological charge) solutions of eqn [13],
are those which have some sort of singularity with
respect to Fourier transform. These can be either
divergent singularities or topological singularities.
The first are associated to a divergence of f (x) for
jxj=1, at least in some direction. Topological
singularities are instead present when f (x) is not
single-valued, that is, it is path dependent. In both
cases, the macroscopic object described by the
order parameter, carries a nonzero topological
charge.

Topological Singularities and Massless Bosons

An important result is that the boson transformation
functions carrying topological singularities are only
allowed for massless bosons (Umezawa 1993,
Umezawa et al. 1982).

Consider a generic boson field �in satisfying the
equation

ð@ 2 þm2Þ�inðxÞ ¼ 0 ½14�

and suppose that the function f (x) for the boson
transformation �in(x)!�in(x)þ f (x) carries a topo-
logical singularity. It is then not single-valued and
thus path dependent:

Gþ��ðxÞ � ½@�; @�� f ðxÞ 6¼ 0; for certain�; �; x ½15�

On the other hand, @�f (x), which is related with
observables, is single-valued, that is, [@�, @�]
@�f (x) = 0. Recall that f (x) is solution of the �in

equation:

ð@ 2 þm2Þf ðxÞ ¼ 0 ½16�

From the definition of Gþ��(x) and the regularity of
@�f (x), it follows, by computing @�Gþ��(x), that

@�f ðxÞ ¼ 1

@ 2 þm2
@�Gþ��ðxÞ ½17�

This equation and the antisymmetric nature of
Gþ��(x) then lead to @ 2f (x) = 0, which in turn implies
m = 0. Thus, we conclude that [15] is only compa-
tible with massless equation for �in.
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The topological charge is defined as

NT ¼
Z

C

dl�@�f ¼
Z

S

dS��
��	@�@	f

¼ 1

2

Z
S

dS��Gþ�� ½18�

Here C is a contour enclosing the singularity and S a
surface with C as boundary. NT does not depend on
the path C provided this does not cross the
singularity. The dual tensor G��(x) is

G��ðxÞ ��1
2 �

����Gþ��ðxÞ ½19�

and satisfies the continuity equation

@�G��ðxÞ ¼ 0

, @�Gþ��ðxÞ þ @�Gþ��ðxÞ þ @�Gþ��ðxÞ ¼ 0 ½20�

Equation [20] completely characterizes the topolo-
gical singularity (Umezawa 1993, Umezawa et al.
1982).
An Example: The Anderson–Higgs–Kibble
Mechanism and the Vortex Solution

We consider a model of a complex scalar field �(x)
interacting with a gauge field A�(x) (Anderson 1958,
Higgs 1960, Kibble 1967). The lagrangian density
L[�(x),��(x), A�(x)] is invariant under the global
and the local U(1) gauge transformations (we do not
assume a particular form for the Lagrangian density,
so the following results are quite general):

�ðxÞ ! ei
�ðxÞ; A�ðxÞ ! A�ðxÞ ½21�

�ðxÞ ! eie0�ðxÞ�ðxÞ; A�ðxÞ ! A�ðxÞ þ @��ðxÞ ½22�

respectively, where �(x)!0 for jx0j!1 and/or
jxj!1 and e0 is the coupling constant. We work
in the Lorentz gauge @�A�(x)= 0. The generating
functional, including the gauge constraint, is
(Matsumoto et al. 1975a, b)

Z½ J;K� ¼ 1

N

Z
½dA��½d��½d���½dB�

� exp i S½A�;B; ��
� �

½23�

S ¼
Z

d4x
h
LðxÞ þ BðxÞ@�A�ðxÞ

þ K�ðxÞ�ðxÞ þ KðxÞ��ðxÞ

þ J�ðxÞA�ðxÞ þ i�j�ðxÞ � vj2
i

N ¼
Z
½dA��½d��½d���½dB�

� exp i

Z
d4x LðxÞ þ i�j�ðxÞ � vj2
� �� �
B(x) is an auxiliary field which implements the
gauge-fixing condition (Matsumoto et al. 1975a, b).
Notice the �-term where v is a complex number; its
rôle is to specify the condition of symmetry breaking
under which we want to compute the functional
integral and it may be given the physical meaning of
a small external field triggering the symmetry
breaking (Matsumoto et al. 1975a, b). The limit
�! 0 must be made at the end of the computations.
We will use the notation

hF½��i�;J;K�
1

N

Z
½dA��½d��½d���½dB�F½��

� exp iS½A�;B;��
� �

½24�

with hF[�]i��hF[�]i�,J=K=0 and hF[�]i� lim�!0

hF[�]i�.
The fields �, A�, and B appearing in the generating

functional are c-number fields. In the following, the
Heisenberg operator fields corresponding to them
will be denoted by �H, AH�, and BH, respectively.
Thus, the spontaneous symmetry breaking condition
is expressed by h0j�H(x)j0i � ~v 6¼ 0, with ~v constant.

Since in the functional integral formalism the
functional average of a given c-number field gives
the vacuum expectation value of the corresponding
operator field, for example, hF[�]i � h0jF[�H]j0i, we
have lim�!0h�(x)i� � h0j�H(x)j0i= ~v.

Let us introduce the following decompositions:

�ðxÞ ¼ 1ffiffiffi
2
p  ðxÞ þ i�ðxÞ½ �

KðxÞ ¼ 1ffiffiffi
2
p K1ðxÞ þ iK2ðxÞ½ �

�ðxÞ �  ðxÞ � h ðxÞi�
Note that h�(x)i� = 0 because of the invariance
under � !��.
The Goldstone Theorem

Since the functional integral [23] is invariant under
the global transformation [21], we have that
@Z[ J, K]=@
= 0 and subsequent derivatives with
respect to K1 and K2 lead to

h ðxÞi� ¼
ffiffiffi
2
p

�v

Z
d4yh�ðxÞ�ðyÞi�

¼
ffiffiffi
2
p

�v��ð�; 0Þ ½25�

In momentum space the propagator for the field �
has the general form

��ð0; pÞ ¼ lim
�!0

�
Z�

p2 �m2
� þ i�a�

þ (continuum contributions)

�
½26�
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Here Z� and a� are renormalization constants. The
integration in eqn [25] picks up the pole contribu-
tion at p2 = 0, and leads to

~v ¼
ffiffiffi
2
p Z�

a�
v, m� ¼ 0; ~v ¼ 0, m� 6¼ 0 ½27�

The Goldstone theorem (Goldstone 1961, Goldstone
et al. 1962) is thus proved: if the symmetry is
spontaneously broken (~v 6¼ 0), a massless mode must
exist, whose field is �(x), that is, the NG boson
mode. Since it is massless, it manifests as a long-
range correlation mode. (Notice that in the present
case of a complex scalar field model, the NG mode
is an elementary field. In other models, it may
appear as a bound state, for example, the magnon in
(anti)ferromagnets.) Note that

@

@v
h ðxÞi� ¼

ffiffiffi
2
p

�

Z
d4yh�ðxÞ�ðyÞi� ½28�

and because m� 6¼ 0, the right-hand side of this
equation vanishes in the limit �! 0; therefore, ~v is
independent of jvj, although the phase of jvj
determines the one of ~v (from eqn [25]): as in
ferromagnets, once an external magnetic field is
switched on, the system is magnetized independently
of the strength of the external field.

The Dynamical Map and the Field Equations

Observing that the change of variables [21] (and/or
[22]) does not affect the generating functional, we may
obtain the Ward–Takahashi identities. Also, using
B(x) ! B(x)þ �(x) in [23] gives h@�A�(x)i�, J, K = 0.
One then finds the following two-point function pole
structures (Matsumoto et al. 1975a, b):

hBðxÞ�ðyÞi ¼ lim
�!0

�i

ð2�Þ4
Z

d4p e�ipðx�yÞ e0~v

p2 þ i�a�

( )
½29�

hBðxÞA�ðyÞi ¼ @�x
i

ð2�Þ4
Z

d4p e�ipðx�yÞ 1

p2
½30�

hBðxÞBðyÞi ¼ lim
�!0

�i

ð2�Þ4
Z

d4p e�ipðx�yÞ ðe0~vÞ2

Z�

(

� 1

p2 þ i�a�
� 1

p2

� �

½31�

The absence of branch-cut singularities in propaga-
tors [29]–[31] suggests that B(x) obeys a free-field
equation. In addition, eqn [31] indicates that the
model contains a massless negative-norm state
(ghost) besides the NG massless mode �. Moreover,
it can be shown (Matsumoto et al. 1975a, b) that a
massive vector field U�

in also exists in the theory.
Note that because of the invariance (�, A�, B)!
(��, �A�, �B), all the other two-point functions
must vanish.

The dynamical maps expressing the Heisenberg
operator fields in terms of the asymptotic operator
fields are found to be (Matsumoto et al. 1975a, b)

�HðxÞ ¼ :exp i
Z1=2
�

~v
�inðxÞ

( )�
~vþ Z1=2

� �inðxÞ

þF½�in;U
�
in; @ð�in � binÞ�

�
: ½32�

A�
HðxÞ ¼Z

1=2
3 U�

inðxÞ þ
Z1=2
�

e0~v
@�binðxÞ

þ :F�½�in;U
�
in; @ð�in � binÞ�: ½33�

BHðxÞ ¼
e0~v

Z
1=2
�

½binðxÞ � �inðxÞ� þ c ½34�

where : . . . : denotes the normal ordering and the
functionals F and F� are to be determined within a
particular model. In eqns [32]–[34], �in denotes the
NG mode, bin the ghost mode, U�

in the massive
vector field, and �in the massive matter field. In eqn
[34] c is a c-number constant, whose value is
irrelevant since only derivatives of B appear in the
field equations (see below). Z3 represents the wave
function renormalization for U�

in. The corresponding
field equations are

@ 2�inðxÞ ¼ 0; @ 2binðxÞ ¼ 0

ð@ 2 þm2
�Þ�inðxÞ ¼ 0

½35�

ð@ 2 þm2
VÞU

�
inðxÞ ¼ 0; @�U�

inðxÞ ¼ 0 ½36�

with mV
2 = (Z3=Z�)(e0~v)2. The field equations for

BH and AH� read (Matsumoto et al. 1975a, b)

@ 2BHðxÞ ¼ 0; �@ 2AH�ðxÞ ¼ jH�ðxÞ� @�BHðxÞ ½37�

with jH�(x)=�L(x)=�A�
H(x). One may then require

that the current jH� is the only source of the gauge
field AH� in any observable process. This amounts to
impose the condition: phbj@�BH(x)jaip =0, that is,

ð�@ 2ÞphbjA0
H�ðxÞjaip¼ phbj jH�ðxÞjaip ½38�

where jaip and jbip denote two generic physical
states and A0�

H (x) � A�
H(x)� e0~v : @�bin(x):. Equa-

tions [38] are the classical Maxwell equations. The
condition phbj@�BH(x)jaip = 0 leads to the Gupta–
Bleuler–like condition

½�ð�Þin ðxÞ � b
ð�Þ
in ðxÞ�jaip ¼ 0 ½39�

where �(�)
in and b(�)

in are the positive-frequency parts
of the corresponding fields. Thus, we see that �in and
bin cannot participate in any observable reaction.
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This is confirmed by the fact that they are present
in the S-matrix in the combination (�in � bin)
(Matsumoto et al. 1975a, b). It is to be remarked,
however, that the NG boson does not disappear from
the theory: we shall see below that there are situations
in which the NG fields do have observable effects.

The Dynamical Rearrangement of Symmetry
and the Classical Fields and Currents

From eqns [32]–[33] we see that the local gauge
transformations of the Heisenberg fields

�HðxÞ! eie0�ðxÞ�HðxÞ
A�

HðxÞ!A�
HðxÞ þ @��ðxÞ; BHðxÞ!BHðxÞ

½40�

with @ 2�(x) = 0, are induced by the in-field
transformations

�inðxÞ ! �inðxÞ þ
e0~v

Z
1=2
�

�ðxÞ

binðxÞ ! binðxÞ þ
e0~v

Z
1=2
�

�ðxÞ

�inðxÞ ! �inðxÞ; U�
inðxÞ ! U�

inðxÞ

½41�

On the other hand, the global phase transformation
�H(x)! ei
�H(x) is induced by

�inðxÞ ! �inðxÞ þ
~v

Z
1=2
�


f ðxÞ; binðxÞ ! binðxÞ

�inðxÞ ! �inðxÞ; U�
inðxÞ ! U�

inðxÞ ½42�

with @ 2f (x) = 0 and the limit f (x)! 1 to be performed
at the end of computations. Note that under the above
transformations, the in-field equations and the
S-matrix are invariant and that BH is changed by an
irrelevant c-number (in the limit f ! 1).

Consider now the boson transformation
�in(x)!�in(x)þ (x): in local gauge theories the
boson transformation must be compatible with the
Heisenberg field equations but also with the physical
state condition [39]. Under the boson transforma-
tion with (x) = ~vZ�1=2

� 
f (x) and @ 2f (x) = 0, BH

changes as

BHðxÞ ! BHðxÞ �
e0~v2

Z�
f ðxÞ ½43�

eqn [38] is thus violated when the Gupta–Bleuler-
like condition is imposed. In order to restore it, the
shift in BH must be compensated by means of the
following transformation on U�

in:

U�
inðxÞ ! U�

inðxÞ þ Z
�1=2
3 a�ðxÞ; @�a�ðxÞ ¼ 0 ½44�

with a convenient c-number function a�(x). The
dynamical maps of the various Heisenberg operators
are not affected by [44] since they contain U�

in and
BH in a combination such that the changes of BH

and of U�
in compensate each other provided

ð@ 2 þm2
VÞa�ðxÞ ¼

m2
V

e0
@�f ðxÞ ½45�

Equation [45] thus obtained is the Maxwell equa-
tion for the massive potential vector a� (Matsumoto
et al. 1975a, b). The classical ground state current j�

turns out to be

j�ðxÞ � h0jj�HðxÞj0i ¼ m2
V a�ðxÞ � 1

e0
@�f ðxÞ

� �
½46�

The term m2
Va�(x) is the Meissner current, while

(m2
V=e0)@�f (x) is the boson current. The key point

here is that both the macroscopic field and current
are given in terms of the boson condensation
function f (x).

Two remarks are in order: first, note that the
terms proportional to @�f (x) are related to obser-
vable effects, for example, the boson current which
acts as the source of the classical field. Second, note
that the macroscopic ground state effects do not
occur for regular f (x)(Gþ��(x) = 0). In fact, from [45]
we obtain a�(x) = (1=e0)@�f (x) for regular f (x)
which implies zero classical current (j� = 0) and
zero classical field (F�� = @�a� � @�a�), since the
Meissner and the boson current cancel each other.

In conclusion, the vacuum current appears only
when f (x) has topological singularities and these can
be created only by condensation of massless bosons,
that is, when SSB occurs. This explains why
topological defects appear in the process of phase
transitions, where NG modes are present and
gradients in their condensate densities are nonzero
(Kibble 1976, Zurek 1997).

On the other hand, the appearance of spacetime
order parameter is no guarantee that persistent
ground state currents (and fields) will exist: if f (x)
is a regular function, the spacetime dependence of ~v
can be gauged away by an appropriate gauge
transformation.

Since, as already mentioned, the boson transfor-
mation with regular f (x) does not affect observable
quantities, the S-matrix is actually given by

S ¼ :S �in;U
�
in �

1

mV
@ð�in � binÞ

� �
: ½47�

This is indeed independent of the boson transforma-
tion with regular f (x):

S! S0 ¼ :S �in;U
�
in �

1

mV
@ð�in � binÞ

�

þZ
�1=2
3 ða� � 1

e0
@�f Þ

�
: ½48�
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since a�(x) = (1=e0)@�f (x) for regular f (x). However,
S0 6¼ S for singular f (x): S0 includes the interaction of
the quanta U�

in and �in with the classically behaving
macroscopic defects (Umezawa 1993, Umezawa
et al. 1982).
The Vortex Solution

Below we consider the example of the Nielsen–
Olesen vortex string solution. We show which one is
the boson function f (x) controlling the nonhomoge-
neous NG boson condensation in terms of which the
string solution is described. For brevity, we only
report the results of the computations. The detailed
derivation as well as the discussion of further
examples can be found in (Umezawa 1993,
Umezawa et al. 1982).

In the present U(1) problem, the electromagnetic
tensor and the vacuum current are (Umezawa 1993,
Umezawa et al. 1982, Matsumoto et al. 1975a, b)

F��ðxÞ ¼ @�a�ðxÞ � @�a�ðxÞ

¼ 2�
m2

V

e0

Z
d4x0�cðx� x0ÞGþ��ðx0Þ ½49�

j�ðxÞ ¼ �2�
m2

V

e0

Z
d4x0�cðx� x0Þ@�x0Gþ��ðx0Þ ½50�

respectively, and satisfy @�F��(x) =�j�(x). In these
equations,

�cðx�x0Þ ¼ 1

ð2�Þ4
Z

d4pe�ipðx�x0Þ 1

p2�m2
V þ i�

½51�

The line singularity for the vortex (or string)
solution can be parametrized by a single line
parameter 	 and by the time parameter � . A static
vortex solution is obtained by setting y0(� ,	)=� and
y(� ,	)=y(	), with y denoting the line coordinate.
Gþ��(x) is nonzero only on the line at y (we can
consider more lines but let us limit to only one line,
for simplicity). Thus, we have

G0iðxÞ ¼
Z

d	
dyið	Þ

d	
�3½x� yð	Þ� GijðxÞ ¼ 0

Gþij ðxÞ ¼��ijkG0kðxÞ; Gþ0iðxÞ ¼ 0

½52�

Equation [49] shows that these vortices are purely
magnetic. We obtain

@0f ðxÞ ¼ 0

@if ðxÞ ¼
1

ð2�Þ2
Z

d	�ijk
dykð	Þ

d	
@x

j

�
Z

d3p
eip�ðx�yð	ÞÞ

p2
½53�
that is, by using the identity (2�)�2
R

d3p(ei p�x=p2) =
1=2jxj,

rf ðxÞ ¼� 1

2

Z
d	

dykð	Þ
d	

^ rx
1

jx� yð	Þj ½54�

Note that r2f (x) = 0 is satisfied.
A straight infinitely long vortex is specified by

yi(	) = 	�i3 with �1 < 	 <1. The only nonvanish-
ing component of G��(x) are G03(x) = Gþ12(x) =
�(x1)�(x2). Equation [54] gives (Umezawa 1993,
Umezawa et al. 1982, Matsumoto 1975a, b)

@

@x1
f ðxÞ ¼ 1

2

Z
d	

@

@x2
½x2

1þx2
2þðx3�	Þ2��1=2

¼� x2

x2
1þx2

2

@

@x2
f ðxÞ ¼ x1

x2
1þx2

2

;
@

@x3
f ðxÞ ¼ 0

½55�

and then

f ðxÞ ¼ tan�1 x2

x1

� �
¼ 
ðxÞ ½56�

We have thus determined the boson transformation
function corresponding to a particular vortex solu-
tion. The vector potential is

a1ðxÞ ¼�
m2

V

2e0

Z
d4x0�cðx� x0Þ x02

x021 þ x022

a2ðxÞ ¼
m2

V

2e0

Z
d4x0�cðx� x0Þ x01

x021 þ x022
a3ðxÞ ¼ a0ðxÞ ¼ 0

½57�

and the only nonvanishing component of F��:

F12ðxÞ ¼ �2�
m2

V

e0

Z
d4x0�cðx� x0Þ�ðx01Þ�ðx02Þ

¼ m2
V

e0
K0 mV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q� �
½58�

Finally, the vacuum current eqn [50] is given by

j1ðxÞ ¼�
m3

V

e0

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q K1 mV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q� �

j2ðxÞ ¼
m3

V

e0

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q K1 mV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q� �

j3ðxÞ ¼ j0ðxÞ ¼ 0

½59�

We observe that these results are the same of the
Nielsen–Olesen vortex solution. Notice that we did
not specify the potential in our model but only the
invariance properties. Thus, the invariance proper-
ties of the dynamics determine the characteristics of
the topological solutions. The vortex solution
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manifests the original U(1) symmetry through the
cylindrical angle 
 which is the parameter of the
U(1) representation in the coordinate space.
Conclusions

We have discussed how topological defects arise as
inhomogeneous condensates in QFT. Topological
defects are shown to have a genuine quantum
nature. The approach reviewed here goes under the
name of ‘‘boson transformation method’’ and relies
on the existence of unitarily inequivalent representa-
tions of the field algebra in QFT.

Describing quantum fields with topological
defects amounts then to properly choose the physical
Fock space for representing the Heisenberg field
operators. Once the boundary conditions corre-
sponding to a particular soliton sector are found,
the Heisenberg field operators embodied with such
conditions contain the full information about the
defects, the quanta and their mutual interaction.
One can thus calculate Green’s functions for
particles in the presence of defects. The extension
to finite temperature is discussed in Blasone and
Jizba (2002) and Manka and Vitiello (1990).

As an example we have discussed a model with
U(1) gauge invariance and SSB and we have obtained
the Nielsen–Olesen vortex solution in terms of
localized condensation of Goldstone bosons. These
thus appear to play a physical role, although, in the
presence of gauge fields, they do not show up in the
physical spectrum as excitation quanta. The function
f (x) controlling the condensation of the NG bosons
must be singular in order to produce observable
effects. Boson transformations with regular f (x) only
amount to gauge transformations. For the treatment
of topological defects in nonabelian gauge theories,
see Manka and Vitiello (1990).

Finally, when there are no NG modes, as in the
case of the kink solution or the sine-Gordon
solution, the boson transformation function has to
carry divergence singularity at spatial infinity
(Umezawa 1993, Umezawa et al. 1982, Blasone
and Jizba 2002). The boson transformation has also
been discussed in connection with the Bäklund
transformation at a classical level and the confine-
ment of the constituent quanta in the coherent
condensation domain.

For further reading on quantum fields with
topological defects, see Blasone et al. (2006).
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Introduction

In general relativity, the gravitational field is
encoded in the Riemannian geometry of spacetime.
Much of the conceptual compactness and mathema-
tical elegance of the theory can be traced back to
this central idea. The encoding is also directly
responsible for the most dramatic ramifications of
the theory: the big bang, black holes, and gravita-
tional waves. However, it also leads one to the
conclusion that spacetime itself must end and
physics must come to a halt at the big bang and
inside black holes, where the gravitational field
becomes singular. But this reasoning ignores quan-
tum physics entirely. When the curvature becomes
large, of the order of 1=‘2

Pl = c3=G�h, quantum effects
dominate and predictions of general relativity can
no longer be trusted. In this ‘‘Planck regime,’’ one
must use an appropriate synthesis of general
relativity and quantum physics, that is, a quantum
gravity theory. The predictions of this theory are
likely to be quite different from those of general
relativity. In the real, quantum world, evolution may
be completely nonsingular. Physics may not come to
a halt and quantum theory could extend classical
spacetime.

There are a number of different approaches to
quantum gravity. One natural avenue is to retain the
interplay between gravity and geometry but now use
‘‘quantum’’ Riemannian geometry in place of the
standard, classical one. This is the key idea under-
lying loop quantum gravity. There are several
calculations which indicate that the well-known
failure of the standard perturbative approach to
quantum gravity may be primarily due to its basic
assumption that spacetime can be modeled as a
smooth continuum at all scales. In loop quantum
gravity, one adopts a nonperturbative approach.
There is no smooth metric in the background.
Geometry is not only dynamical but quantum
mechanical from ‘‘birth.’’ Its fundamental excita-
tions turn out to be one dimensional and polymer-
like. The smooth continuum is only a coarse-grained
approximation. While a fully satisfactory quantum
gravity theory still awaits us (in any approach),
detailed investigations have been carried out to
completion in simplified models – called mini- and
midi-superspaces. They show that quantum space-
time does not end at singularities. Rather, quantum
geometry serves as a ‘‘bridge’’ to another large
classical spacetime.

This article will focus on structural issues from
the perspective of mathematical physics. For com-
plementary perspectives and further details, see
Loop Quantum Gravity, Canonical General Relativity,
Quantum Cosmology, Black Hole Mechanics, and
Spin Foams in this Encyclopedia.
Basic Framework

The starting point is a Hamiltonian formulation of
general relativity based on spin connections
(Ashtekar 1987). Here, the phase space G consists
of canonically conjugate pairs (A, P), where A is a
connection on a 3-manifold M and P a 2-form, both
of which take values in the Lie algebra su(2). Since G
can also be thought of as the phase space of the
SU(2) Yang–Mills theory, in this approach there is a
unified kinematic framework for general relativity
that describes gravity and the gauge theories which
describe the other three basic forces of nature. The
connection A enables one to parallel transport chiral
spinors (such as the left-handed fermions of the
standard electroweak model) along curves in M. Its
curvature is directly related to the electric and
magnetic parts of the spacetime ‘‘Riemann tensor.’’
The dual P of P plays a double role (the dual is
defined via

R
M P ^ !=

R
M Py! for any 1-form !

on M). Being the momentum canonically conjugate
to A, it is analogous to the Yang–Mills electric field.
But (apart from a constant), it is also an orthonor-
mal triad (with density weight 1) on M and
therefore determines the positive-definite (‘‘spatial’’)
3-metric, and hence the Riemannian geometry of M.
This dual role of P is a reflection of the fact that
now SU(2) is the (double cover of the) group of
rotations of the orthonormal spatial triads on M
itself rather than of rotations in an ‘‘internal’’ space
associated with M.

To pass to quantum theory, one first constructs an
algebra of ‘‘elementary’’ functions on G (analogous
to the phase-space functions x and p in the case of a
particle) which are to have unambiguous operator
analogs. The holonomies

heðAÞ :¼ P exp�
Z

e

A ½1�

associated with a curve/edge e on M are (SU(2)-
valued) configuration functions on G. Similarly,
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given a 2-surface S on M, and an su(2)-valued (test)
function f on M,

PS; f :¼
Z

S

trðf PÞ ½2�

is a momentum function on G, where tr is over the
su(2) indices. (For simplicity of presentation, all
fields are assumed to be smooth and curves/edges e
and surfaces S, finite and piecewise analytic in a
specific sense. The extension to smooth curves and
surfaces was carried out by Bacz and Sawin,
Lewandowski and Thiemann, and Fleischhack. It is
technically more involved but the final results are
qualitatively the same.) The symplectic structure on
G enables one to calculate the Poisson brackets
{he, PS, f }. The result is a linear combination of
holonomies and can be written as a Lie derivative,

fhe;PS; fg ¼ LXS; f
he ½3�

where XS, f is a derivation on the ring generated by
holonomy functions, and can therefore be regarded
as a vector field on the configuration space A of
connections. This is a familiar situation in classical
mechanics of systems whose configuration space is a
finite-dimensional manifold. Functions he and vector
fields XS, f generate a Lie algebra. As in quantum
mechanics on manifolds, the first step is to promote
this algebra to a quantum algebra by demanding
that the commutator be given by i�h times the Lie
bracket. The result is a ?-algebra a , analogous to the
algebra generated by operators exp i�x̂ and p̂ in
quantum mechanics. By exponentiating the momen-
tum operators P̂S, f one obtains W , the analog of the
quantum-mechanical Weyl algebra generated by
exp i�x̂ and exp i�p̂.

The main task is to obtain the appropriate
representation of these algebras. In that representa-
tion, quantum Riemannian geometry can be probed
through the momentum operators P̂S, f , which
stem from classical orthonormal triads. As in
quantum mechanics on manifolds or simple field
theories in flat space, it is convenient to divide the
task into two parts. In the first, one focuses on the
algebra C generated by the configuration operators
ĥc and finds all its representations, and in the second
one considers the momentum operators P̂S, f to
restrict the freedom.

C is called the holonomy algebra. It is naturally
endowed with the structure of an abelian C ? algebra
(with identity), whence one can apply the powerful
machinery made available by the Gel’fand theory.
This theory tells us that C determines a unique
compact, Hausdorff space �A such that the C ? algebra
of all continuous functions on A is naturally
isomorphic to C . �A is called the Gel’fand spectrum
of C . It has been shown to consist of ‘‘generalized
connections’’ �A defined as follows: �A assigns to any
oriented edge e in M an element �A(e) of SU(2)
(a ‘‘holonomy’’) such that �A(e�1) = [�A(e)]�1; and, if
the endpoint of e1 is the starting point of e2, then
�A(e1 � e2) = �A(e1)� �A(e2). Clearly, every smooth con-
nection A is a generalized connection. In fact, the
space A of smooth connections has been shown to be
dense in �A (with respect to the natural Gel’fand
topology thereon). But �A has many more ‘‘distribu-
tional elements.’’ The Gel’fand theory guarantees that
every representation of the C ? algebra C is a direct
sum of representations of the following type: the
underlying Hilbert space is H= L2( �A, d�) for some
measure � on �A and (regarded as functions on �A)
elements of C act by multiplication. Since there are
many inequivalent measures on �A, there is a multi-
tude of representations of C . A key question is how
many of them can be extended to representations of
the full algebra a (or W) without having to introduce
any ‘‘background fields’’ which would compromise
diffeomorphism covariance. Quite surprisingly, the
requirement that the representation be cyclic with
respect to a state which is invariant under the action
of the (appropriately defined) group Diff M of
piecewise-analytic diffeomorphisms on M singles out
a unique irreducible representation. This result was
established for a by Lewandowski, Okołów, Sahl-
mann and Thiemann, and for W by Fleischhack. It is
the quantum geometry analog to the seminal results
by Segal and others that characterized the Fock
vacuum in Minkowskian field theories. However,
while that result assumes not only Poincaré invar-
iance but also specific (namely free) dynamics, it is
striking that the present uniqueness theorems make
no such restriction on dynamics. The requirement of
diffeomorphism invariance is surprisingly strong and
makes the ‘‘background-independent’’ quantum geo-
metry framework surprisingly tight.

This representation had been constructed by
Ashtekar, Baez, and Lewandowski some ten years
before its uniqueness was established. The under-
lying Hilbert space is given by H= L2( �A, d�o) where
�o is a diffeomorphism-invariant, faithful, regular
Borel measure on �A, constructed from the normal-
ized Haar measure on SU(2). Typical quantum states
can be visualized as follows. Fix: (1) a graph � on M
(by a graph on M we mean a set of a finite number
of embedded, oriented intervals called edges; if two
edges intersect, they do so only at one or both ends,
called vertices), and (2) a smooth function  on
[SU(2)]n. Then, the function

��ð�AÞ :¼  ð�Aðe1Þ; . . . ; �AðenÞÞ ½4�
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on �A is an element of H. Such states are said to be
‘‘cylindrical’’ with respect to the graph � and their
space is denoted by Cyl�. These are ‘‘typical states’’
in the sense that Cyl := [� Cyl� is dense in H.
Finally, as ensured by the Gel’fand theory, the
holonomy (or configuration) operators ĥe act just
by multiplication. The momentum operators P̂S, f act
as Lie derivatives: P̂S, f � =�i�hLXS, f

�.

Remark Given any graph � in M, and a labeling of
each of its edges by a nontrivial irreducible represen-
tation of SU(2) (i.e., by a nonzero half integer j), one
can construct a finite-dimensional Hilbert spaceH�, j,
which can be thought of as the state space of a spin
system ‘‘living on’’ the graph �. The full Hilbert space
admits a simple decomposition: H= ��, j H�, j. This
is called the spin-network decomposition. The geo-
metric operators discussed in the next section leave
eachH�, j invariant. Therefore, the availability of this
decomposition greatly simplifies the task of analyzing
their properties.
Geometric Operators

In the classical theory, E := 8�G�P has the inter-
pretation of an orthonormal triad field (or a
‘‘moving frame’’) on M (with density weight 1).
Here, � is a dimensionless, strictly positive number,
called the Barbero–Immirzi parameter, which arises
as follows. Because of emphasis on connections, in
the classical theory the first-order Palatini action is a
more natural starting point than the second-order
Einstein–Hilbert action. Now, there is a freedom to
add a term to the Palatini action which vanishes
when Bianchi identities are satisfied and therefore
does not change the equations of motion. � arises as
the coefficient of this term. In some respects � is
analogous to the � parameter of Yang–Mills theory.
Indeed, while theories corresponding to any permis-
sible values of � are related by a canonical
transformation classically, quantum mechanically
this transformation is not unitarily implementable.
Therefore, although there is a unique representation
of the algebra a (or W ), there is a one-parameter
family of inequivalent representations of the algebra
of geometric operators generated by suitable func-
tions of orthonormal triads E, each labeled by the
value of �. This is a genuine quantization ambiguity.
As with the � ambiguity in QCD, the actual value of
� in nature has to be determined experimentally.
The current strategy in quantum geometry is to fix
its value through a thought experiment involving
black hole thermodynamics (see below).

The basic object in quantum Riemannian geome-
try is the triad flux operator ÊS, f := 8�G� P̂S, f . It is
self-adjoint and all its eigenvalues are discrete. To
define other geometric operators such as the area
operator ÂS associated with a surface S or a volume
operator V̂R associated with a region R, one first
expresses the corresponding phase-space functions in
terms of the ‘‘elementary’’ functions ESi, fi

using
suitable surfaces Si and test functions fi and then
promotes ESi, fi

to operators. Even though the
classical expressions are typically nonpolynomial
functions of ESi, fi

, the final operators are all well
defined, self-adjoint and with purely discrete eigen-
values. Therefore, in the sense of the word used in
elementary quantum mechanics (e.g., of the hydro-
gen atom), one says that geometry is quantized.
Because the theory has no background metric or
indeed any other background field, all geometric
operators transform covariantly under the action of
the Diff M. This diffeomorphism covariance makes
the final expressions of operators rather simple. In
the case of the area operator, for example, the
action of ÂS on a state �� [4] depends entirely on
the points of intersection of the surface S and the
graph � and involves only right- and left-invariant
vector fields on copies of SU(2) associated with
edges of � which intersect S. In the case of the
volume operator V̂R, the action depends on the
vertices of � contained in R and, at each vertex,
involves the right- and left-invariant vector fields on
copies of SU(2) associated with edges that meet at
each vertex.

To display the explicit expressions of these
operators, let us first define on Cyl� three basic
operators Ĵ(v, e)

j , with j 2 {1, 2, 3}, associated with the
pair consisting of an edge e of � and a vertex v of e:

Ĵ
ðv;eÞ
j ��ð�AÞ ¼

i
d

dt
jt¼0 �ð. . . ;Ueð�AÞ expðt�jÞ; . . .Þ

if e begins at v

i
d

dt
jt¼0 �ð. . . ; expð�t�jÞUeð�AÞ; . . .Þ

if e ends at v

8>>>>>>><
>>>>>>>:

½5�

where �j denotes a basis in su(2) and ‘‘. . .’’ stands for
the rest of the arguments of �� which remain
unaffected. The quantum area operator As is
assigned to a finite two-dimensional submanifold S
in M. Given a cylindrical state we can always
represent it in the form [4] using a graph � adapted
to S, such that every edge e either intersects S at
exactly one endpoint, or is contained in the closure
�S, or does not intersect �S. For each vertex v in S of
the graph �, the family of edges intersecting v can be
divided into three classes: edges {e1, . . . , eu} lying on
one side (say ‘‘above’’) S, edges {euþ1, . . . , euþd} lying
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on the other side (say ‘‘below’’), and edges contained
in S. To each v we assign a generalized Laplace
operator

�S;v ¼� 	ij
Xu

I¼1

Ĵ
ðv;eIÞ
i �

Xuþd

I¼uþ1

Ĵ
ðv;eIÞ
i

 !

�
Xu

K¼1

Ĵ
ðv;eKÞ
j �

Xuþd

K¼uþ1

Ĵ
ðv;eKÞ
j

 !
½6�

where 	ij stands for �1=2 the Killing form on su(2).
Now, the action of the quantum area operator ÂS on
�� is defined as follows:

ÂS�� ¼ 4��‘2
Pl

X
v2S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��S;v

p
�� ½7�

The quantum area operator has played the most
important role in applications. Its complete spec-
trum is known in a closed form. Consider arbitrary
sets j(u)

I , j(d)
I , and j(uþd)

I of half-integers, subject to the
condition

j
ðuþdÞ
I 2 fjjðuÞI � j

ðdÞ
I j; jj

ðuÞ
I � j

ðdÞ
I j þ 1; . . . ; j

ðuÞ
I þ j

ðdÞ
I g ½8�

where I runs over any finite number of integers. The
general eigenvalues of the area operator are given by:

aS ¼ 4��‘2
Pl

X
I

�
2j
ðuÞ
I ð j

ðuÞ
I þ 1Þ þ 2j

ðdÞ
I ð j

ðdÞ
I þ 1Þ

� j
ðuþdÞ
I ð jðuþdÞ

I þ 1Þ
�1=2

½9�

On the physically interesting sector of SU(2)-
gauge-invariant subspace Hinv of H, the lowest
eigenvalue of ÂS – ‘‘the area gap’’ – depends on
some global properties of S. Specifically, it ‘‘knows’’
whether the surface is open, or a 2-sphere, or, if M is
a 3-torus, a (nontrivial) 2-torus in M. Finally, on
Hinv, one is often interested only in the subspace of
states ��, where � has no edges which lie within a
given surface S. Then, the expression of eigenvalues
simplifies considerably:

aS ¼ 8��‘2
Pl

X
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jIðjI þ 1Þ

p
½10�

To display the action of the quantum volume
operator V̂R, for each vertex v of a given graph �,
let us first define an operator q̂v on Cyl�.

q̂v ¼ð8��‘2PlÞ
3 1

48

�
X

e;e0;e00

ðe; e0; e00Þcijk Ĵ

ðv;eÞ
i Ĵ

ðv;e0Þ
j Ĵ

ðv;e00Þ
k ½11�

where e, e 0, and e 00 run over the set of edges
intersecting v, 
(e, e 0, e 00) takes values �1 or 0
depending on the orientation of the half-lines
tangent to the edges at v, [�i, �j] = ck
ij�k and the

indices are raised by the tensor 	ij. The action of the
quantum volume operator on a cylindrical state [4]
is then given by

V̂R�� ¼ �o

X
v2R

ffiffiffiffiffiffiffiffi
jq̂vj

p
:�� ½12�

Here, �o is an overall, independent of a graph,
constant resulting from an averaging.

The volume operator plays an unexpectedly
important role in the definition of both the gravita-
tional and matter contributions to the scalar
constraint operator which dictates dynamics.
Finally, a notable property of the volume operator
is the following. Let R(p, 
) be a family of neighbor-
hoods of a point p 2M. Then, as indicated above,
V̂R(p, 
)�� = 0 if � has no vertex in the neighborhood.
However, if � has a vertex at p

lim

!0

V̂Rðx;
Þ��

exists but is not necessarily zero. This is a reflection
of the ‘‘distributional’’ nature of quantum geometry.

Remark States �� 2 Cyl have support only on the
graph �. In particular, they are simply annihilated
by geometric operators such as ÂS and V̂R if the
support of the surface S and the region R does not
intersect the support of �. In this sense the
fundamental excitations of geometry are one dimen-
sional and geometry is polymer-like. States ��,
where � is just a ‘‘small graph,’’ are highly quantum
mechanical – like states in QED representing just a
few photons. Just as coherent states in QED require
an infinite superposition of such highly quantum
states, to obtain a semiclassical state approximating
a given classical geometry, one has to superpose a
very large number of such elementary states. More
precisely, in the Gel’fand triplet Cyl 	 H 	 Cyl?,
semiclassical states belong to the dual Cyl? of Cyl.
Applications

Since quantum Riemannian geometry underlies loop
quantum gravity and spin-foam models, all results
obtained in these frameworks can be regarded as its
applications. Among these, there are two which
have led to resolutions of long-standing issues. The
first concerns black hole entropy, and the second,
quantum nature of the big bang.

Black Holes

Seminal advances in fundamentals of black hole
physics in the mid-1970s suggested that the entropy
of large black holes is given by SBH = (ahor=4‘

2
Pl),
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where ahor is the horizon area. This immediately
raised a challenge to potential quantum gravity
theories: give a statistical mechanical derivation of
this relation. For familiar thermodynamic systems, a
statistical mechanical derivation begins with an
identification the microscopic degrees of freedom.
For a classical gas, these are carried by molecules;
for the black body radiation, by photons; and for a
ferromagnet, by Heisenberg spins. What about black
holes? The microscopic building blocks cannot be
gravitons because the discussion involves stationary
black holes. Furthermore, the number of micro-
scopic states is absolutely huge: some exp 1077 for a
solar mass black hole, a number that completely
dwarfs the number of states of systems one normally
encounters in statistical mechanics. Where does this
huge number come from? In loop quantum gravity,
this is the number of states of the ‘‘quantum horizon
geometry.’’

The idea behind the calculation can be heuristi-
cally explained using the ‘‘It from Bit’’ argument,
put forward by Wheeler in the 1990s. Divide the
black hole horizon into elementary cells, each with
one Planck unit of area, ‘2

Pl, and assign to each cell
two microstates. Then the total number of states N
is given by N = 2n, where n = (ahor=‘

2
Pl) is the

number of elementary cells, whence entropy is
given by S = lnN 
 ahor. Thus, apart from a
numerical coefficient, the entropy (It) is accounted
for by assigning two states (Bit) to each elementary
cell. This qualitative picture is simple and attractive.
However, the detailed derivation in quantum geo-
metry has several new features.

First, Wheeler’s argument would apply to any
2-surface, while in quantum geometry the surface
must represent a horizon in equilibrium. This
requirement is encoded in a certain boundary
condition that the canonically conjugate pair (A, P)
must satisfy at the surface and plays a crucial role in
the quantum theory. Second, the area of each
elementary cell is not a fixed multiple of ‘2Pl but is
given by [10], where I labels the elementary cells
and jI can be any half-integer (such that the sum is
within a small neighborhood of the classical area of
the black hole under consideration). Finally, the
number of quantum states associated with an
elementary cell labeled by jI is not 2 but (2jI þ 1).

The detailed theory of the quantum horizon
geometry and the standard statistical mechanical
reasoning is then used to calculate the entropy and
the temperature. For large black holes, the leading
contribution to entropy is proportional to the
horizon area, in agreement with quantum field
theory in curved spacetimes. (The subleading term
�(1=2) ln(ahor=‘

2
Pl) is a quantum gravity correction
to Hawking’s semiclassical result. This correction,
with the �1=2 factor, is robust in the sense that it
also arises in other approaches.) However, as one
would expect, the proportionality factor depends on
the Barbero–Immirzi parameter � and so far loop
quantum gravity does not have an independent way
to determine its value. The current strategy is to
determine � by requiring that, for the Schwarzschild
black hole, the leading term agrees exactly with
Hawking’s semiclassical answer. This requirement
implies that � is the root of algebraic equation and
its value is given by � � 0.2735. Now, quantum
geometry theory is completely fixed. One can
calculate entropy of other black holes, with angular
momentum and distortion. A nontrivial check on the
strategy is that for all these cases, the coefficient in
the leading-order term again agrees with Hawking’s
semiclassical result.

The detailed analysis involves a number of
structures of interest to mathematical physics. First,
the intrinsic horizon geometry is described by a U(1)
Chern–Simons theory on a punctured 2-sphere (the
horizon), the level k of the theory being given by
k = ahor=4��‘

2
Pl. The punctures are simply the inter-

sections of the excitations of the polymer geometry
in the bulk with the horizon 2-surface. Second,
because of the horizon boundary conditions, in the
classical theory the gauge group SU(2) is reduced to
U(1) at the horizon. At each puncture, it is further
reduced to the discrete subgroup Zk of U(1),
sometimes referred to as a ‘‘quantum U(1) group.’’
Third, the ‘‘surface phase space’’ associated with the
horizon is represented by a noncommutative torus.
Finally, the surface Chern–Simons theory is entirely
unrelated to the bulk quantum geometry theory but
the quantum horizon boundary condition requires
that the spectrum of a certain operator in the
Chern–Simons theory must be identical to that of
another operator in the bulk theory. The surprising
fact is that there is an exact agreement. Without this
seamless matching, a coherent description of the
quantum horizon geometry would not have been
possible.

The main weakness of this approach to black hole
entropy stems from the Barbero–Immirzi ambiguity.
The argument would be much more compelling if
the value of � were determined by independent
considerations, without reference to black hole
entropy. (By contrast, for extremal black holes,
string theory provides the correct coefficient without
any adjustable parameter. The AdS/CFT duality
hypothesis (as well as other semiquantitative) argu-
ments have been used to encompass certain black
holes which are away from extremality. But in these
cases, it is not known if the numerical coefficient is
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1/4 as in Hawking’s analysis.) It’s primary strengths
are twofold. First, the calculation encompasses all
realistic black holes – not just extremal or near-
extremal – including the astrophysical ones, which
may be highly distorted. Hairy black holes of
mathematical physics and cosmological horizons
are also encompassed. Second, in contrast to other
approaches, one works directly with the physical,
curved geometry around black holes rather than
with a flat-space system which has the same number
of states as the black hole of interest.
The Big Bang

Most of the work in physical cosmology is carried
out using spatially homogeneous and isotropic
models and perturbations thereon. Therefore, to
explore the quantum nature of the big bang, it is
natural to begin by assuming these symmetries.
Then the spacetime metric is determined simply by
the scale factor a(t) and matter fields �(t) which
depend only on time. Thus, because of symmetries,
one is left with only a finite number of degrees of
freedom. Therefore, field-theoretic difficulties are
bypassed and passage to quantum theory is simpli-
fied. This strategy was introduced already in the late
1960s and early 1970s by DeWitt and Misner.
Quantum Einstein’s equations now reduce to a
single differential equation of the type

@2

@a2
ðf ðaÞ�ða; �ÞÞ ¼ const: Ĥ� �ða; �Þ ½13�

on the wave function �(a,�), where Ĥ� is the matter
Hamiltonian and f (a) reflects the freedom in factor
ordering. Since the scale factor a vanishes at the big
bang, one has to analyze the equation and its
solutions near a = 0. Unfortunately, because of the
standard form of the matter Hamiltonian, coeffi-
cients in the equation diverge at a = 0 and the
evolution cannot be continued across the singularity
unless one introduces unphysical matter or a new
principle. A well-known example of new input is the
Hartle–Hawking boundary condition which posits
that the universe starts out without any boundary
and a metric with positive-definite signature and
later makes a transition to a Lorentzian metric.

Bojowald and others have shown that the situa-
tion is quite different in loop quantum cosmology
because quantum geometry effects make a qualita-
tive difference near the big bang. As in older
quantum cosmologies, one carries out a symmetry
reduction at the classical level. The final result
differs from older theories only in minor ways. In
the homogeneous, isotropic case, the freedom in the
choice of the connection is encoded in a single
function c(t) and, in that of the momentum/triad, in
another function p(t). The scale factor is given by
a2 = jpj. (The variable p itself can assume both signs;
positive if the triad is left handed and negative if it is
right handed. p vanishes at degenerate triads which
are permissible in this approach.) The system again
has only a finite number of degrees of freedom.
However, quantum theory turns out to be inequi-
valent to that used in older quantum cosmologies.

This surprising result comes about as follows.
Recall that in quantum geometry, one has well-
defined holonomy operators ĥ but there is no
operator corresponding to the connection itself. In
quantum mechanics, the analog would be for
operators Û(�) corresponding to the classical func-
tions exp i�x to exist but not be weakly continuous
in �; the operator x̂ would then not exist. Once the
requirement of weak continuity is dropped, von
Neumann’s uniqueness theorem no longer holds and
the Weyl algebra can have inequivalent irreducible
representations. The one used in loop quantum
cosmology is the direct analog of full quantum
geometry. While the space A of smooth connections
reduces just to the real line R, the space �A of
generalized connections reduces to the Bohr com-
pactification �RBohr of the real line. (This space was
introduced by the mathematician Harold Bohr (Nils’
brother) in his theory of almost-periodic functions.
It arises in the present application because holo-
nomies turn out to be almost periodic functions
of c.) The Hilbert space of states is thus
H= L2( �RBohr, d�o) where �o is the Haar measure
on (the abelian group) �RBohr. As in full quantum
geometry, the holonomies act by multiplication and
the triad/momentum operator p̂ via Lie derivatives.

To facilitate comparison with older quantum
cosmologies, it is convenient to use a representation
in which p̂ is diagonal. Then, quantum states are
functions �(p,�). But the Wheeler–DeWitt equation
is now replaced by a difference equation:

CþðpÞ�ðpþ 4po; �Þ þ CoðpÞ�ðp; �Þ
þ C�ðpÞ�ðp� 4poÞð�Þ ¼ const: Ĥ��ðp; �Þ ½14�

where po is determined by the lowest eigenvalue of the
area operator (‘‘area gap’’) and the coefficients C�(p)
and Co(p) are functions of p. In a backward ‘‘evolu-
tion,’’ given � at pþ 4 and p, such a ‘‘recursion
relation’’ determines � at p� 4, provided C� does not
vanish at p� 4. The coefficients are well behaved and
nowhere vanishing, whence the evolution does not stop
at any finite p, either in the past or in the future. Thus,
near p = 0 this equation is drastically different from the
Wheeler–DeWitt equation [13]. However, for large p –
that is, when the universe is large – it is well



236 Quantum Group Differentials, Bundles and Gauge Theory
approximated by [13] and smooth solutions of [13] are
approximate solutions of the fundamental discrete
equation [14] in a precise sense.

To complete quantization, one has to introduce a
suitable Hilbert space structure on the space of
solutions to [14], identify physically interesting
operators and analyze their properties. For simple
matter fields, this program has been completed.
With this machinery at hand, one begins with
semiclassical states which are peaked at configura-
tions approximating the classical universe at late
times (e.g., now) and evolves backwards. Numerical
simulations show that the state remains peaked at
the classical solution till very early times when the
matter density becomes of the order of Planck
density. This provides, in particular, a justification,
from first principles, for the assumption that space-
time can be taken to be classical even at the onset of
the inflationary era, just a few Planck times after the
(classical) big bang. While one would expect a result
along these lines to hold on physical grounds,
technically it is nontrivial to obtain semiclassicality
over such huge domains. However, in the Planck
regime near the big bang, there are major deviations
from the classical behavior. Effectively, gravity
becomes repulsive, the collapse is halted and then
the universe re-expands. Thus, rather than modify-
ing spacetime structure just in a tiny region near the
singularity, quantum geometry effects open a bridge
to another large classical universe. These are
dramatic modifications of the classical theory.

For over three decades, hopes have been expressed
that quantum gravity would provide new insights
into the true nature of the big bang. Thanks to
quantum geometry effects, these hopes have been
realized and many of the long-standing questions
have been answered. While the final picture has
some similarities with other approaches, (e.g.,
‘‘cyclic universes,’’ or pre-big-bang cosmology),
only in loop quantum cosmology is there a fully
deterministic evolution across what was the classical
big-bang. However, so far, detailed results have
been obtained only in simple models. The major
open issue is the inclusion of perturbations and
subsequent comparison with observations.

See also: Algebraic Approach to Quantum Field Theory;
Black Hole Mechanics; Canonical General Relativity;
Knot Invariants and Quantum Gravity; Loop Quantum
Gravity; Quantum Cosmology; Quantum Dynamics in
Loop Quantum Gravity; Quantum Fields Theory in
Curved Spacetime; Spacetime Topology, Causal Structure
and Singularities; Spin Foams; Wheeler–De Witt Theory.
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Introduction

Mathematics of classical gauge theories is contained
in the theory of principal and associated vector
bundles. Principal bundles describe pure gauge
fields and their transformations, while the asso-
ciated bundles contain matter fields. A structure
group of a bundle has a meaning of a gauge group,
while the base manifold is a spacetime for the
theory. In this article, we review the theory of
bundles in which a structure group is a quantum
group and base space or spacetime might be
noncommutative. To fully deal with geometric
aspects, we first review differential geometry of
quantum groups. Then we describe the theory of
quantum principal bundles, connections on such
bundles, gauge transformations, associated vector
bundles and their sections. We indicate that, for a
certain class of quantum principal bundles, sections
of an associated bundle become vector bundles of
noncommutative geometry à la Connes, that is,



finite projective modules. The theory is illustrated
by two explicit examples that can be viewed as
deformations of the classical magnetic monopole
and the instanton.

Differential Structures on Algebras

Algebraic Conventions

Throughout this article, A (P etc.,) will be an
associative unital complex algebra. To gain some
geometric intuition the reader can think of A as an
algebra of continuous complex functions on a
compact (Hausdorff) space X, C(X), with product
given by pointwise multiplication fg(x) = f (x)g(x),
and with the unit provided by a constant function
x 7! 1. The algebra C(X) is commutative, but, in
what follows, we do not assume that A is a
commutative algebra. By an A-bimodule we mean
a vector space with mutually commuting left and
right actions of A. All modules are unital (i.e., the
unit element of A acts trivially). On elements, the
multiplication in an algebra or an action of A on a
module is denoted by juxtaposition.

Differential Calculus on an Algebra

A first-order differential calculus on A is a pair
(�1(A), d), where �1(A) is an A-bimodule and
d : A!�1(A) is a linear map such that:

1. for all a, b2A, d(ab) = (da)bþ adb (the Leibniz
rule); and

2. every !2�1(A) can be written as !=
P

i aidbi for
some ai, bi 2A.

Elements of �1(A) are called differential 1-forms
and the map d is called an exterior derivative. As a
motivating example, take A = C(X) and �1(A) the
space of 1-forms on X (sections of the cotangent
bundle T�X), and d the usual exterior differential.
Higher-differential forms corresponding to (�1(A), d)
are defined as elements of a differential graded
algebra �(A). This is an algebra which can be
decomposed into the direct sum of A-bimodules
�n(A), that is, �(A) = A� �1(A)� �2(A)� � � � . In
addition to d : A!�1(A), there are maps dn : �n

(A)!�nþ1(A) such that, for all !n 2�n(A),
!k 2�k(A),

1. d1 � d = 0 and dnþ1 � dn = 0, n = 1, 2, . . . ;
2. !n!k 2�nþk(A); and
3. dnþk(!n!k) = (dn!n)!k þ (�1)n!n(dk!k).

Elements of �n(A) are known as ‘‘differential
n-forms.’’ �n(A) contains all linear combinations
of expressions a0 da1 da2 � � �dan with a0, . . . , an 2A.

One says that �(A) satisfies the ‘‘density
condition’’ if any element of �n(A) is of the
above form, for any n. To simplify notation, one
writes d for dn.

As an example of �(A), take A = C(X) and then
the exterior algebra �(X) for �(A). The exterior
algebra satisfies density condition as any n-form
can be written as f (x) ^ dg(x) ^ dh(x) ^ � � � . The
wedge product is anticommutative, but for a
noncommutative algebra A, the anticommutativity
of the product in �(A) cannot be generally
required.

The Universal Differential Calculus

Any algebra A comes equipped with a universal
differential calculus denoted by (�1A, d). �1A is def-
ined as the kernel of the multiplication map, that
is, �1A := {

P
i ai�bi2A�A j

P
i aibi =0}�A�A.

The derivative is defined by d(a)=1�a� a�1. The
n-forms are defined as �nA=�1A�A�1A �A � � �
�A�1A (n-copies of �1A). �nA can be identified
with a subspace of A�A� �� � �A (nþ1-copies of
A) consisting of all such elements that vanish upon
multiplication of any two consecutive factors. With
this identification, higher derivatives read

d
�X

i

ai
0� ai

1� � � � � ai
n

�
¼
Xnþ1

k¼0

X
i

ð�1Þkai
0� ai

1

� � � � � ai
k�1� 1� ai

k � � � � ai
n

The universal differential calculus satisfies the
density condition.

This calculus captures very little (if any) of the
geometry of the underlying algebra A, but it has the
universality property, that is, any differential calcu-
lus on A can be obtained as a quotient of �A.
In other words, any differential calculus �(A) is
fully determined by a system of A-sub-bimodules
Nn 2A�nþ1 (or homogeneous ideals in the algebra
�A), so that �n(A) = �nA=Nn. The differentials d in
�(A) are derived from universal differentials via the
canonical projections �n : �nA!�n(A).

Typical examples of algebras in quantum geome-
try are given by generators and relations, that is,
A=Chx1, . . . ,xni=hRi(x1, . . . ,xn)i, where Chx1, . . . ,xni
is a free algebra on generators xk and Ri(x1, . . . ,xn)
are polynomials, so that Ri(x1, . . . ,xn)=0 in A.
Correspondingly, the modules �n(A) are given by
generators and relations. If �(A) satisfies the density
condition, that the whole of �(A) must be generated
by some 1-forms. The sub-bimodules Nn contain
relations satisfied by these generators.
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�-Calculi

If A is a �-algebra, then a calculus is called a
‘‘�-calculus’’ provided �(A) is a graded �-algebra,
and d(��) = (d�)�, for all �2�(A).

Differential Structures on Quantum
Groups (Hopf Algebras)

Hopf Algebra Preliminaries

From now on, A is a Hopf algebra (quantum group),
with a coproduct � : A!A�A, counit " : A!C
and antipode S. We use Sweedler’s notation
�(a) =

P
a(1)� a(2). We also write Aþ= ker " (the

augmentation ideal).
For any algebra P, the convolution product of

linear maps f , g : A!P is a linear map f � g : A!P,
defined by f � g(a) =

P
f (a(1)) � g(a(2)). A map

f : A!P is said to be convolution invertible,
provided there exists f�1 : A!P such that
f � f�1 = f � f�1 = 1".

An A-coaction on a comodule V, % : V!V �A, is
denoted by %(v) =

P
v(0)� v(1). The right adjoint

coaction in A is a map

Ad : A!A�A;

AdðaÞ ¼
X

að2Þ � ðSað1ÞÞað3Þ

A subspace B of A is said to be ‘‘Ad-invariant’’
provided Ad(B) � B�A. For example, Aþ is such a
space.

Covariant Differential Calculi

For Hopf algebras one can study calculi that are
covariant with respect to �. For A = C[G] (an
algebra of functions on a Lie group), this corre-
sponds to the covariance of a differential structure
on G with respect to regular representations.

A first-order differential calculus �1(A) on a
quantum group A is said to be left-covariant, if
there exists a linear map �L : �1(A)!A��1(A)
(called a left coaction) such that, for all a, b2A,

�LðadbÞ ¼
X

að1Þbð1Þ � að2Þdbð2Þ

�1(A) is called a right-covariant differential calculus
if there exists a linear map �R : �1(A)!�1(A)�A
(called a right coaction) such that, for all a, b2A,

�RðadbÞ ¼
X

að1Þdbð1Þ � að2Þbð2Þ

If �1(A) is both left- and right-covariant, it is called
a ‘‘bicovariant differential calculus.’’ A bicovariant
�1(A) has a structure of a Hopf A-bimodule, that is,
it is an A-bimodule and an A-bicomodule such that
the coactions are compatible with actions.

The universal calculus on A is bicovariant with
coactions

�U
R

�X
i

ai� bi
�
¼
X

i

ai
ð1Þ � bi

ð1Þ � ai
ð2Þb

i
ð2Þ;

�U
L

�X
i

ai� bi
�
¼
X

i

ai
ð1Þb

i
ð1Þ � ai

ð2Þ � bi
ð2Þ

Since �1(A) = �1A=N for an A-sub-bimodule
N 2�1A, the calculus �1(A) is left (resp. right)
covariant if and only if �U

L (N) � A�N (resp.
�U

R(N) � N�A).

The Woronowicz Theorems

A form ! in a left-covariant differential calculus
�1(A) is said to be left-invariant provided
�L(!) = 1�!. �1(A) is a free A-module with basis
given by left-invariant forms, that is, one can choose
a set of left-invariant forms !i such that any 1-form
� can be uniquely written as a finite sum
�=
P

i ai!
i, ai 2A.

The first Woronowicz theorem states that there is
a one-to-one correspondence between left-covariant
calculi on A and right A-ideals Q � Aþ. The
correspondence is provided by the map

� : A�Q!N; a� q 7!
X

aSqð1Þ � qð2Þ

where N is such that �1(A) = (�1A)=N. The inverse of
� reads ��1(

P
ia

i� bi) =
P

i aibi
(1)� bi

(2). The map
� induces the map �� : Aþ=Q!�1(A), via
!([a]) = [�(1� a)] where [�] denotes cosets in
Aþ=Q and in �1(A) = (�1A)=N. This establishes a
one-to-one correspondence between the space
�1 = Aþ=Q and the space of left-invariant 1-forms in
�1(A). The dual space to �1, that is, the space of linear
functionals �1!C, is often termed a ‘‘quantum Lie
algebra’’ or a ‘‘quantum tangent space’’ corresponding
to a left-covariant calculus �1(A). The dimension of
�1 is known as a dimension of �1(A).

The definitions and analysis of right-covariant
differential calculi are done in a symmetric manner.
For a bicovariant calculus, a form ! that is both left-
and right-invariant, is termed a ‘‘bi-invariant’’ form.

The second Woronowicz theorem states a one-to-
one correspondence between bicovariant differential
calculi and Ad-invar iant A-ideals Q � A þ (cf. the
subsec tion ‘‘Hopf algebra prel iminaries ’’). The
correspondence is provided by the map � above.
For the universal calculus, Q is trivial, and hence
�1 = Aþ= ker (").

Higher-order Bicovariant Calculi

Given a first-order bicovariant calculus �1(A), one
constructs a braiding operator, known as the

238 Quantum Group Differentials, Bundles and Gauge Theory



‘‘Woronowicz braiding’’ � :�1(A)�A�1(A)!�1(A)
�A �1(A) by setting �(a!�A�)= a��A ! for all a2A,
and any left-invariant ! and right-invariant �, and then
extending it A-linearly to the whole of
�1(A)�A �1(A). This operator satisfies the braid
relation (id�A �) � (��A id) � (id�A �)= (��Aid) �
(id�A �) � (��Aid), and is invertible provided the
antipode S is invertible. The Woronowicz braiding is
used to define symmetric forms as those invariant
under � . One then defines exterior 2-forms as elements
of �1(A)�A�1(A)=ker (id� �), and introduces the
wedge product. The wedge product is not in general
anticommutative, but one does have !^ � =�� ^!
for bi-invariant !,�. This construction is extended to
higher forms and leads to the definition of the exterior
algebra �(A). To define exterior n-forms, one maps
any permutation on n-elements to the corresponding
element of the braid group generated by � and then
takes the quotient of the nth tensor power of �1(A) by
all elements corresponding to even permutations. The
differential d :A!�1(A) is extended to an exterior
differential in the whole of �(A) in the following way.
First, �1(A) is extended by a one-dimensional
A-bimodule generated by a form � that is required to
be bi-invariant. The resulting extended bimodule
(which, in general, is not a first-order differential
calculus, as � is not necessarily of the form

P
i ai dbi,

for some ai,bi2A) is then determined from the
relation da=�a� a� for all a2A. Higher exterior
derivative is then defined by d�=�^ �� ( � 1) n �^ �,
for any �2�n(A).

The algebra �(A) is a Z2-graded differential Hopf
algebra, that is, it has a coproduct such that

�ð! ^ �Þ ¼
X
ð�1Þj!ð2Þk�ð1Þj!ð1Þ ^ �ð1Þ �!ð2Þ ^ �ð2Þ

where j!(2)j etc., denotes the degree of a homo-
geneous component in the decomposition of �(!).
Furthermore,

�ðd!Þ ¼
X�

d!ð1Þ �!ð2Þ þ ð�1Þj!ð1Þj!ð1Þ � d!ð2Þ

�
On the 1-forms this coproduct is simply the sum
�Lþ�R.

Classification

There is no unique covariant differential calculus on A,
so classification of covariant differential calculi is an
important problem. For example, it is known that the
quantum group SUq(2) admits a left-covariant three-
dimensional calculus, but there is no three-dimen-
sional bicovariant calculus. On the other hand, there
are two four-dimensional bicovariant calculi on
SUq(2). Differential calculi are classified for standard
quantum groups such as SLq(N) or Spq(N).

General classification results are based on
the equivalence between the category of Hopf
bimodules of a finite-dimensional Hopf algebra
A and that of Yetter–Drinfeld or crossed modules
of A. These are the modules of the Drinfeld double
of A. As a result, in the case of a finite-dimensional
factorizable coquasitriangular Hopf algebra A with
a dual Hopf algebra H, the bicovariant �1(A) are
in one-to-one correspondence with two-sided ideals
in Hþ. If, in addition, A is semisimple, then
(coirreducible) calculi are in one-to-one correspon-
dence with nontrivial irreducible representations of
H. This can be extended to infinite-dimensional
algebras, provided one works over a field of formal
power series in the deformation parameter.

Quantum Group Principal Bundles

Quantum Principal Bundles

In classical geometry, a (topological) principal
bundle is a locally compact Hausdorff space with a
(continuous) free and proper action of a locally
compact group (e.g., a Lie group). In terms of
algebras of functions this gives rise to the following
structure. A is a Hopf algebra (the model is
functions on a group G), P is a right A-comodule
algebra with a coaction �P : P!P�A (the model
is functions on a total space X). Let
B = {b2P j�P(b) = b� 1} be the coinvariant sub-
algebra (the model is functions on a base manifold
M = X=G). Fix a bicovariant calculus �1(A), with
the corresponding Q and �1 = Aþ=Q as in the
subsec tion ‘‘The Woronow icz theore ms.’’ Take a
differential calculus �1(P) = �1P=NP such that:

1. ��1P(NP)�NP�A, where for all
P

i p
i�qi2�1P,

��1P

�X
i

pi� qi

�
¼
X

i

pi
ð0Þ � qi

ð0Þ � pi
ð1Þq

i
ð1Þ

2�1P�A

2. �̃(NP) � NP�Q, where

~� : �1P!P�Aþ;X
i

pi� qi 7!
X

i

pi�PðqiÞ ¼
X

i

piqi
ð0Þ � qi

ð1Þ

3. NB = NP \ �1B gives rise to a differential struc-
ture �1(B) = �1B=NB on B. Condition (1) ensures
that ��1P descends to a coaction ��1(P) :
�1(P)!�1(P)�A, while (2) allows for defining
a map

ver : �1ðPÞ!P��1; verð½!	Þ ¼ ½~�ð!Þ	
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Since B is a subalgebra of P, the P-bimodule

P�1ðBÞP :¼
nX

i

piðdbiÞqijpi; qi 2P; bi 2B
o

is a sub-bimodule of �1P, known as horizontal
forms. P is called a ‘‘quantum principal bundle’’
over B with quantum structure group A and calculi
�1(A) and �1(P) provided the following sequence;

0�!P�1ðBÞP�!�1ðPÞ�!ver
P��1�! 0

is exact. This definition reflects the geometric
content of principal bundles, but is not restricted
to any specific differential calculus. The surjectivity
of ver corresponds to the freeness of the (co)action,
while the condition ker (ver) = P�1(B)P corresponds
to identification of vertical vector fields as those that
are annihilated by horizontal forms.

The Universal Calculus Case

In the universal calculus case, both NP and Q in the
previous subsection are trivial, and ver = �̃. Uni-
versal horizontal forms P(�1B)P coincide with the
kernel of the canonical projection P�BP!P�P.
The exactness of the sequence in the last subsection
is equivalent to the requirement that the map

can : P�BP!P�A

p�Bq 7! p�PðqÞ ¼
X

pqð0Þ � qð1Þ

be bijective. In algebra, such an inclusion of algebras
B � P is known as a Hopf–Galois extension. Thus, a
geometric notion of a quantum principal bundle
with the universal calculus is the same as the
algebraic notion of a Hopf–Galois extension.

If (2) in the previous subsection is replaced by
stronger conditions �̃(NP) = NP�Q and (NP \
ker �̃) � P(�1B)P, then exactness of the sequence
in the previous subsection is equivalent to the
bijectivity of ‘‘can.’’ Thus, although defined in a
purely algebraic way, the notion of a Hopf–Galois
extension carries deep geometric meaning. It there-
fore makes sense to consider primarily Hopf–Galois
extensions and then specify differential structure in
such a way that this stronger version of (2) is
satisfied. Henceforth, unless specified otherwise, a
quantum principal bundle is taken with the uni-
versal differential calculus.

Quantum Homogeneous Bundles

Suppose that P is a Hopf algebra, and that there is a
Hopf algebra surjection � : P!A. This induces a
coaction of P on A via �P = (id� �) ��, where now

� is a coproduct in P. P is a quantum principal
A-bundle over the coinvariants B, provided ker � �
BþP, where Bþ= B \ Pþ. B is a left quantum
homogeneous space in the sense that �(B) � P�B,
and P is known as a quantum homogeneous bundle.
An example of this is the standard quantum
2-sphere – a quantum homogeneous space of
SUq (2) (see the subsec tion ‘‘The Dirac q-monopo le’’).
This construction reflects the classical construction of
a principal bundle over a homogeneous space, since
every homogeneous space of a group G can be
identified with a quotient G=H, where H � G is a
subgroup. Not every quantum homogeneous space
can be obtained in this way (e.g., nonstandard
quantum 2-spheres), as quantum groups P do not
have sufficiently many quantum subgroups A (in a
sense of Hopf algebra projections � : P!A). To study
gauge theory on general quantum homogeneous
spaces, more general notion of a bundle needs to be
develo ped (see the subsec tion ‘‘Gener alizations of
quan tum pr incipal bundles ’’).

A general differential calculus on a quantum
homogeneous bundle is specified by choosing a
left-covariant calculus on P with an ideal QP 2Pþ

such that (id� �) � Ad(QP) � QP�A. A bicovariant
calculus on A is then given by QA = �(QP).

Quantum Trivial Bundles

A quantum principal bundle (with the universal
differential calculus) is said to be ‘‘trivial’’ or ‘‘cleft’’
provided there exists a linear map � : A!P such that

1. �(1) = 1 (unitality);
2. �P � � = (�� id) �� (colinearity or covariance);

and
3. � is convolution invertible (cf. the subsection

‘‘Hop f algebra prelim inaries’’).

� is called a trivialization. In this case, P is
isomorphic to B�A as a left B-module and right
A-comodule via the map B�A!P, b� a 7! b�(a).
In particular, an A-covariant (i.e., colinear) algebra
map j : A!P is a trivialization (the convolution
inverse of j is j � S).

Based on trivial bundles, locally trivial bundles
can be constructed by choosing a compatible cover-
ing of B (in terms of ideals).

At this point, the reader should be warned that
the notion of a trivial quantum principal bundle
includes bundles which are not trivial classically
(i.e., do not correspond to functions on the
Cartesian product of spaces). As an example,
consider the Möbius strip viewed as a Z2-principal
bundle over the circle S1. Obviously, this is not a
trivial bundle (the Möbius strip is not isomorphic to
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S1 
Z2). It can be shown, however, that the
quantum principal bundle corresponding to the
Möbius strip has a trivialization � in the above
sense.

Generalizations of Quantum Principal Bundles

In the case of majority of quantum homogeneous
spaces , the map � in the su bsection ‘‘Quantum
homogene ous bundles ’’ is a coalgebra and right
P-module map, but not an algebra map. Thus, the
induced coaction is not an algebra map either. To
cover examples like these, one needs to introduce
a generalization of quantum principal bundles.
Consider an algebra P that is also a right comodule
of a coalgebra C with coaction �P. Define

B :¼
n

b2Pj8p2P;�PðbpÞ ¼ b�PðpÞ

¼
X

bpð0Þ � pð1Þ

o
B is a subalgebra of P. P is a principal coalgebra-
bundle over B or B � P is a coalgebra-Galois
extension provided the map

can : P� BP!P�C

p� Bq 7! p�PðqÞ ¼
X

pqð0Þ � qð1Þ

is bijective. This purely algebraic requirement
induces a rich symmetry structure on P, given in
terms of entwining, which allows one for developing
various differential geometric notions such as those
discussed in the next section. The lack of space does
not permit us to describe this theory here.

Connections, Gauge Transformations,
Matter Fields

Connections and Connection Forms

A ‘‘connection’’ in a quantum principal bundle with
calculi �1(P), �1(A) is a left P-linear map
� : �1(P)!�1(P) such that:

1. � �� = � (� is a projection);
2. ker � = P�1(B)P; and
3. ��1(P) �� = (�� id) ���1(P) (colinearity or

covariance).

The exact sequence in the subsection ‘‘Quantum
principal bundles’’ implies that � is a left P-linear
projection if and only if there exists a left P-linear
map 	 : P � �1!�1(P) such that ver � 	= id. Since
	 is left P-linear, it is fully specified by its action on
�1. This leads to the equivalent definition of a

connection as a connection form or a gauge field,
that is, a map ! : �1!�1(P) such that:

1. for all 
2�1, ver(!(
)) = 1�
; and
2. ��1(P) � != (!� id) � Ad1

� (Ad-covariance), where
Ad�1 is a projection of the adjoint coaction to �1,
that is, Ad�1 ([a]) = [Ad(a)] (well defined, because
Q is Ad-invariant for a bicovariant calculus, see
the subsection ‘‘The Woronowicz theorems’’).

The correspondence between connections and con-
nection 1-forms is given by the formulaY

ðpdqÞ ¼
X

pqð0Þ!ð½qð1Þ	Þ

In the universal differential calculus case, �1 = Aþ,
hence ! can be viewed as a map ! : A!�1P, such
that !(1) = 0. The map F! : A!�2P, given by
F! = d!þ ! � ! is called a ‘‘curvature’’ of !. The
curvature satisfies the Bianchi identity, dF! =
F! � !� ! � F!.

In the case of a trivial bundle with trivialization �
and universal calculus, any linear map � : A!�1B
such that �(1) = 0 defines a connection 1-form

! ¼ ��1 � d�þ ��1 � � � �

The corresponding curvature is F! = ��1 � F � � �,
where F � = d� þ � � �.

In the case of a quantum homogeneous bundle
with calculus determined by QP 2 Pþ and
QA = � (Q P ) (cf. the sub section ‘‘Quan tum homo-
geneous bundl es’’), a canonic al con nection form can
be assigned to any algebra map i : A!P such that

1. � � i = id (i-splits �);
2. "P � i = "A (co-unitality);
3. (id� �) � AdP � i = (i� id) � AdA (Ad-covariance);

and
4. i(QA) � QP (differentiability).

Explicitly, !([a]) =
P

(Si(a)(1))di(a)(2).

Covariant Derivative: Strong Connections

A covariant derivative associated to a connection �
is a map D : P!P�1(B)P, p 7! dp� �(dp). A covar-
iant derivative maps elements of P into horizontal
forms, since ker � = P�1(B)P, and satisfies the
Leibniz rule D(bp) = (db)pþ bDp, for all b2B,
p2P.

A connection is ‘‘strong’’ provided D(p)2�1(B)P.
A covariant derivative of a strong connection is a
connection on module P in the sense of Connes.
Furthermore, in the universal calculus case, and when
A has invertible antipode, the existence of strong
connections leads to rich gauge theory of associated
bundles (cf . the subsec tion ‘‘Assoc iated bundl es:
matter fields ’’). A connect ion in a trivia l bundle
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descr ibed in the su bsection ‘‘Conn ections and con-
nection forms’’ is strong (and every strong conn ection
in a trivial bundle is of this form). Assuming
invertibility of the antipode in A, a canonical
connection in a quantum homogeneous bundle
described in that subsection is strong provided Ad-
covariance (3) is replaced by conditions (id� �) �� �
i = (i� id) ��A (right covariance) and (�� id) �� �
i = (id� i) ��A (left covariance), where � is a
coproduct in P, and �A is a coproduct in A.

In the universal calculus case, the map D can
be extended to a map D : �1P!�2P via the
formula D( � ) = d�þ

P
�(0 ) ! (� (1) ). Then D � D( p) =P

p(0) F! ( p(1) ), where F! is the curvature of ! (cf. the
subsection ‘‘Connections and connection forms’’). This
explains the relationship between a curvature under-
stood as the square of a covariant derivative and F!.

Bundle Automorphisms and Gauge
Transformations

A quantum bundle automorphism is a left B-linear
right A-covariant (i.e., colinear) automorphism
F : P!P such that F(1) = 1. Bundle automorphisms
form a group with operation FG = G � F. This group
is isomorphic to the group G(P) of gauge transfor-
mations, that is, maps f : A!P that satisfy the
following conditions:

1. f (1A) = 1P (unitality);
2. �P � f = (f � id) � Ad (Ad-covariance); and
3. f is convolution invertible (cf. the subsection

‘‘Hop f algebra prelim inaries’’).

The product in G ( P) is the convolut ion product
(cf. the subsec tion ‘‘Hop f algebra preliminar ies’’).
The group of gauge transformations acts on the
space of (strong) connection forms ! via the formula

f . ! ¼ f � ! � f�1 þ f � df�1; 8f 2GðPÞ

This resembles the gauge transformation law of a
gauge field in the standard gauge theory. The curvature
transforms covariantly as F f.! = f � F! � f�1.

In the case of a trivial principal bundle, gauge
transformations correspond to a change of the
trivialization and can be identified with convolution-
invertible maps � : A!B such that �(1) = 1. A map
� : A !�1 B that induces a connection as in the
subsection ‘‘Connections and connection forms’’ is
transformed to � � � � ��1 þ � � d��1, and the curva-
ture F � 7! � � F � � ��1.

Associated Bundles: Matter Fields

Given a right A-comodule (corepresentation)
% : V!V�A one defines a quantum vector bundle
associated to P as

E ¼
nX

i

vi� pi 2V�P

����X
i

vi
ð0Þ � pi

ð0Þ � vi
ð1Þp

i
ð1Þ

¼
X

i

vi� pi� 1
o
� V �P

E is a right B-module with product (
P

iv
i� pi)b =P

i vi� pib. A right B-linear map s : E!B is called a
section of E. The space of sections �(E) is a left B-
module via (bs)(p) = bs(p).

The theory of associated bundles is particularly rich
when A has a bijective antipode and P has a strong
connection form !. In this case, �(E) is isomorphic to
the left B-module �% of maps  : V!P such that �P �
= (� id) � %. If V is finite dimensional, then �% is a
finite projective B-module, that is, it is a module of
sections of a noncommutative vector bundle in the
sense of Connes. The strong connection induces a map
r : �%!�1B� B�%, given by r()(v) = d(v)þP
(v(0))!(v(1)). r is a connection in the sense of

Connes (in a projective left B-module), that is, for all
b2B,2�%,r(b) = db� Bþ br().

In the case of a trivial bundle, �% can be identified
with the space of linear maps V!B. Thus, sections
of an associated bundle correspond to pullbacks of
matter fields, as in the classical local gauge theory
matter fields are defined as functions on a spacetime
with values in a representation (vector) space of the
gauge group.

The Dirac q-Monopole

This is an example of a strong connection in a
quantum homogeneous bundle (cf. the subsection
‘‘Qu antum homo geneous bundles ’’). P = SUq(2) is a
matrix Hopf �-algebra with matrix of generators

a �qc�

c a�

� �

and relations

ac ¼ qca; ac� ¼ qc�a; cc� ¼ c�c

a�aþ c�c ¼ 1; aa� þ q2cc� ¼ 1

where q is a real parameter. A = C[U(1)] is a Hopf
�-algebra generated by unitary and group-like u
(i.e., uu�= u�u = 1, �(u) = u� u). The �-projection
� : P!A is defined by �(a) = u. The coinvariant
subalgebra B is generated by x = cc�, z = ac�,
z�= ca�. The elements x and z satisfy relations

x� ¼ x; zx ¼ q2xz;

zz� ¼ q2xð1� q2xÞ; z�z ¼ xð1� xÞ
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Thus, B is the algebra of functions on the standard
quantum 2-sphere. A strong connection is obtained
from a bicovariant �-map i : A!P given by
i (un ) = an (cf. the subsec tions ‘‘Quan tum homoge-
neous bundles ,’’ ‘‘Co nnections an d connect ion
forms, ’’ and ‘‘Covari ant deri vative: strong conn ec-
tions’’). Explicitly, the connection form reads

!ðunÞ ¼
Xn

k¼0

n

k

� �
q�2

c�ka�n�kdðan�kckÞ

!ðu�nÞ ¼
Xn

k¼0

q2k n

k

� �
q�2

an�kckdðc�ka�n�kÞ

where the deformed binomial coefficients are
defined for any number x by

n

k

� �
x
¼ ðx

n � 1Þðxn�1 � 1Þ � � � ðxkþ1 � 1Þ
ðxn�k � 1Þðxn�k�1 � 1Þ � � � ðx� 1Þ

There is a family Vn, n2Z of one-dimensional
corepresentations of C[U(1)] with Vn = C and
%n(1) = 1� un, n � 0 and %n(1) = 1� u�n, n < 0. This
leads to the family of finite projective modules
�n = �% n as descr ibed in the subsecti on ‘‘Assoc iated
bundles : matter fields.’’ The Hermitian proje ctors
e(n) of these modules come out as, for n > 0,

eðnÞij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

i

� �
q�2

n

j

� �
q�2

s
an�icic�ja�n�j;

i; j ¼ 0; 1; . . . ; n

eð�nÞij ¼ qiþj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

i

� �
q�2

n

j

� �
q�2

s
c�ia�n�ian�jcj;

i; j ¼ 0; 1; . . . ; n

The e(n) describe q-monopoles of magnetic charge
�n. For example, the charge-1 projector explicitly
reads

1� x z�

z q2x

� �

and reduces to the usual charge-1 Dirac monopole
projector when q = 1. The covariant derivatives r
are Levi-Civita or Grassmann connections in mod-
ules �n corresponding to projectors e(n).

The q-Instanton

This is an example of a coalgebra bundle and the
associated vector bundle, which is a deformation of
an instanton (with instanton number 1). P = C[S7

q] is
the �-algebra of polynomial functions on the

quantum 7-sphere. As a �-algebra it is defined by
generators z1, z2, z3, z4 and relations

zizj ¼ qzjzi ðfor i < jÞ
z�j zi ¼ qziz

�
j ðfor i 6¼ jÞ

z�kzk ¼ zkz�k þ ð1� q2Þ
X
j<k

zjz
�
j ;

X
k¼1

zkz�k ¼ 1

where q2R. The coaction of the �-Hopf algebra
A = SUq(2) (cf. the previous subsection) on P is
constructed as follows. Start with the quantum group
Uq(4), generated by a matrix t = (tij)

4
i, j = 1 and view

C[S7
q] as a right quantum homogeneous space of Uq(4)

generated by the bottom row in t. Thus, there is a right
coaction of Uq(4) on C[S7

q] obtained by the restriction of
the coproduct in Uq(4). Next, project Uq(4) to SUq(2)
by a suitable coideal and a right ideal in Uq(4). The
corresponding canonical surjection r : Uq(4)! SUq(2)
is a coalgebra map, characterized as a right Uq(4)-
module map by r(t11t22 � qt12t21) = 1 and

rðtÞ ¼ u 0
0 u

� �
; �u ¼ u22 �u21

�u12 u11

� �

where u = (uij)
2
i, j = 1 is the matrix of generators

of SUq(2) (cf. the previous subsection). When
applied to the coaction of Uq(4) on C[S7

q], r induces
the required coaction �P : C[S7

q]!C[S7
q]� SUq(2).

Explicitly, the coaction comes out on generators
as �P(zj) =

P
i zi� r(tij). The coaction �P is not

an algebra map. The coinvariant subalgebra B is a
�-algebra generated by

a ¼ z1z�4 � z2z�3

b ¼ z1z3 þ q�1z2z4

R ¼ z1z�1 þ z2z�2

The elements a, a�, b, b�, R satisfy the following
relations:

Ra ¼ q�2aR; Rb ¼ q2bR

ab ¼ q3ba; ab� ¼ q�1b�a

aa� þ q2bb� ¼ Rð1� q2RÞ
aa� ¼ q2a�aþ ð1� q2ÞR2

b�b ¼ q4bb� þ ð1� q2ÞR

Hence B can be understood as a deformation of the
algebra of functions on the 4-sphere and is denoted
by C[	4

q]. One can show that the map ‘‘can’’ in the
subsec tion ‘‘Gener alizations of quantum princ ipal
bundles ’’ is bijective , hence there is an SUq(2)-
coalgebra principal bundle with the total space the
quantum 7-sphere C[S7

q] and the base space the
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quantum 4-sphere C[	4
q]. By abstract arguments

that involve cosemisimplicity of SUq(2), one can
prove that there exists a strong connection in this
bundle; this is the q-deformed instanton field. At the
time of writing this article, however, the explicit
form of this connection is not known.

On the other hand, following the classical con-
struction of an instanton, one can take the funda-
mental two-dimensional corepresentation V = C2 of
SUq(2) and explicitly construct q-instanton projection
with instanton number 1. Writing e1, e2 for the basis
of V, the coaction % : V!V � SUq(2) is given by

ðejÞ ¼
X

i

ei� uij

The associ ated bundl e (cf . the subsec tion ‘‘Asso-
ciated bundl es: matter fields ’’) is a finite pro jective
left module over C[	4

q]. The corresponding q-instan-
ton projector comes out as

q2R 0 qa q2b
0 q2R qb� �q3a�

qa� qb 1� R 0
q2b� �q3a 0 1� q4R

0
BB@

1
CCA

See also: Bicrossproduct Hopf Algebras and
Noncommutative Spacetime; Hopf Algebras and
q-Deformation Quantum Groups; Noncommutative Tori,
Yang–Mills, and String Theory.
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Introduction

When a current flows in a thin sample with a
transverse magnetic field B, the Lorentz force
deflects the trajectories of the charge carriers,
producing an excess charge on one side and a
charge deficiency on the other, and creating a
potential difference across the conductor perpendi-
cular to both the direct current and the magnetic
field. This is known as the Hall effect, in honour of
E H Hall, who, inspired by a remark of Maxwell,

first demonstrated it in thin samples of gold foil in
October 1879 (Hall’s subsequent measurements of
the potential difference showed that the carriers
could be positively or negatively charged for
different materials). A schematic diagram of Hall’s
experiment and the lateral separation of charges is
shown in Figure 1.

Equilibrium is reached when the magnetic force
balances that from the potential difference E due to
the displaced charge. When the charge carriers are
electrons, with the electron density n, and the
electron current J, this gives neE = JB. Comparison
with Ohm’s law, J = 	E, gives conductance (the
reciprocal of resistance) to be 	= ne=B. More
generally, considering the currents and fields as
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vectors, � is represented by a matrix. Rescaling by
the sample thickness �, the diagonal components of
�� give the direct conductivity �k and its off-
diagonal elements give the Hall conductivity:
�H = ��21. (For systems symmetric under 90� rota-
tions, �11 = �22 and �12 = ��21.) In quantum
theory, one usually works in terms of the filling
fraction �= n�h=eB and then �H = �e2=h.

In 1980 von Klitzing, Dorda, and Pepper dis-
covered that at very low temperatures in very high
magnetic fields, the Hall conductivity �H is quan-
tized as integral multiples of e2=�h, a fact known as
the integer quantum hall effect (IQHE). The integer
multiples were accurate to 1 part in 108, and the
effect was exceptionally robust against changes in
the geometry of the samples and in the experimental
parameters. Indeed, the unprecedented accuracy of
the effect led to its adoption as the international
standard for resistance in 1990.

More precisely, the Hall conductivity was no
longer proportional to the filling fraction �, but the
graph of �H against � displayed a sequence of jumps,
as shown in Figure 2. In this figure, the conductivity
has plateau at the integer multiples of e2=�h, and
jumps between them within fairly small ranges of
the filling fraction. Moreover, the direct conductiv-
ity vanishes where the Hall conductivity takes its
constant integral values.

These results raise numerous questions.

1. Why does the conductivity take such precise
integer values, and why are they so stable under
changes of the geometry and physical
parameters?

2. Why does the direct conductivity vanish, except
in regions where the Hall conductivity jumps
between integer values, and how are such jumps
possible?

Moreover, any theory must also explain why
these features are not present under the more normal
conditions of the classical Hall effect. The following
features seem to play a role, and in the case of the
first three, even in the classical effect.

1. As Hall discovered, the samples must be very thin
to exhibit even the classical effect. (Nowadays
they are often a surface layer between two
semiconductors.)

2. The samples are macroscopic and much larger
than the quantum wavelengths appearing in the
problem.

3. The electric field is small enough that nonlinear
effects are negligible.

4. The quantum effect appears only at a very low
temperature.

The first of these suggests that we should idealize
to the case where the motion of the charge carriers is
restricted to a two-dimensional region, and the
second that we may work in the thermodynamic
limit where the conducting surface is the whole
of R2. The third and fourth ensure both that the
linear Ohm’s law should be adequate, and also that
it should be enough to consider the limiting cases of
very weak electric fields and zero temperature.
Multiple limits of this sort raise delicate mathema-
tical issues. Indeed, many plausible models of the
effect turn out, on careful analysis, to predict
vanishing Hall conductivity.

A theoretical explanation of the quantization of
the conductivity was soon suggested by Laughlin.
Exploiting the apparent independence of sample
geometry, he considered a cylindrical conductor
where quantization followed on consideration of
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the flux tubes threading it. Laughlin’s choice of a
particular configuration precluded investigation of
the influence of changing geometry. This was soon
provided by Thouless, Kohmoto, Nightingale, and
de Nijs, who argued (from a lattice version of the
problem) that the conductivity could be identified
with the Chern character of a line bundle over a
Brillouin zone (a quotient of momentum space by
the action of the reciprocal crystal lattice), so that it
had to be integral and the stability of the effect was
a consequence of the topological nature of �.
Unfortunately, whilst suggestive, this explanation
worked only under the physically implausible con-
straint that the magnetic flux through a crystal cell
was rational, offered no explanation of the link
between the Hall and direct conductivities, and,
working with a periodic Hamiltonian, made no
allowance for the impurities and disorder usually
important in solid-state problems of this sort.

Notwithstanding these deficiencies, this model con-
tained important insights, which inspired Bellissard
to model the effect using Connes’ newly developed
noncommutative geometry (Bellissard 1986, Connes
1986). (Kunz produced a Hilbert space theory at about
the same time, but that has been rather less influential.)
Connes’ work turned out to contain all the relevant
concepts and tools needed to provide a good under-
standing of the effect, based on interpreting the
conductivity as a noncommutative Chern character
for a noncommutative version of the Brillouin zone. In
fact, the techniques of noncommutative geometry
seemed to fit the quantum Hall effect so well that
this has become one of the standard examples of the
theory.

Even whilst the theorists were struggling to
explain the experiments, observations by Tsui,
Störmer, and Gossard showed that, with suitable
care, fractional Hall conductivities could also be
observed, although these were far less stable than
those given by integers. One, therefore, distinguishes
between IQHE and the fractional quantum Hall
effect (FQHE), and this survey concentrates largely
on the former. One simplifying feature of the IQHE
is that it seems to be comprehensible at the level of
individual noninteracting electrons, whereas the
FQHE certainly involves some kind of interaction
and many-body theory.

This article presents an outline of the connection
between noncommutative differential geometry and
the IQHE, and concludes by discussing some of the
approaches to the FQHE, and some other applica-
tions of noncommutative geometry and mathema-
tical directions suggested by the theory. The sections
alternate between the physical model and the
mathematical abstraction from it.
There are good surveys of the area (Bellissard
et al. 1994, McCann 1998) explaining how the
mathematical model arises out of the physics, the
mathematical models themselves. As well as being
the standard reference for noncommutative geome-
try, Connes (1994) discusses the Hall effect. These
resources contain good bibliographies, which may
be consulted for further references.
Electron Motion in a Magnetic Field

The following discussion restricts attention to
motion in two dimensions, with electrons as the
charge carriers, and no interactions between them.
(The first condition is essential; the second could be
relaxed a little to allow sufficiently long-lived
quasi-particles.) A single free electron with mass
m and charge e moving in the x1–x2 plane with a
constant transverse magnetic field B in the positive
x3-direction, can be described by the Landau
Hamiltonian

HL ¼ jP � eAj2=2m ½1�

where A = 1
2 B� X is a magnetic vector potential that

gives rise to B. This problem is exactly solvable by,
for example, introducing K�= (K1

�, K2
�) = P 	 eA.

The components of Kþ and K� commute with each
other, but [K1

�, K2
�] =�i�heB. Comparison with the

harmonic oscillator shows that the energy spectrum of
HL = [(K1

þ)2 þ (K2
þ)2]=2m is {(nþ 1

2 )�heB=m: n 2 Z}.
Since HL commutes with the components of K�,
each of these Landau energy levels is infinitely
degenerate, and the filling fraction � measures
what proportion of states in the Landau levels are
filled. The frequency !c = eB=m is the cyclotron
frequency for classical circular orbits in the
magnetic field.

The degeneracy of the Landau Hamiltonian can
also be understood in terms of the magnetic
translations obtained by exponentiating the connec-
tion defined by the magnetic potential A: rj = @j þ
ieAj=�h = iKj

�=�h. More precisely, we set

UðaÞ ¼ expð�ia 
 rÞ ¼ expð�ia 
 K�=�hÞ ½2�

which clearly commutes with HL, expressing the
translational symmetry of this model. The curvature
[r1,r2] = B of the connection manifests itself in the
identities

UðaÞUðbÞ ¼ eð1=2Þi�Uðaþ bÞ ¼ ei�UðbÞUðaÞ ½3�

where �= eB 
 (a� b)=�h measures the magnetic flux
through the parallelogram spanned by a and b.
These show that U is a projective representation
of R2 with projective multiplier �(a, b) = exp ( 1

2 i�).
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The significance of this is that, unless � is an
integer multiple of 2�, U(a) and U(b) generate a
noncommutative algebra. This replaces the commu-
tative algebra of functions on two-dimensional
momentum space and leads naturally to a noncom-
mutative geometry.

The unembellished Landau Hamiltonian cannot
describe the Hall effect without adding an electric
potential eE 
 X to drive the current in the sample.
(Alternatively, and useful for the later discussion,
one could use the radiation gauge in which, instead
of introducing a scalar potential, a time-dependent
term is added to A so that E =�@A=@t.)

The quantum Hall effect also depends crucially on
the effects of impurities in the conducting material.
These can be modeled by adding a random potential
V! with ! in a compact probability space � to
obtain H! = HL þ eE 
 X þ V!(X). A continuous
function f on � can be interpreted as a random
variable, and its expectation ��(f ) gives a trace on
the C�-algebra C(�) (i.e., a positive linear functional
such that ��(AB) = ��(BA)).

Although the magnetic translations commute with
HL, they do not generally commute with the
potentials so they act on �, but, on the other hand,
the physics of a disordered system and its translates
should be the same, so we assume that the
probability measure and hence also �� are invariant
under magnetic translations. (As noted earlier, we
work in the thermodynamic limit, where the Hall
sample expands to fill R2, so we do not need to
worry about translations moving the sample itself.)
Then � with the magnetic translation action can be
interpreted as the noncommutative Brillouin zone.
(A space � can be reconstructed from the magnetic
translations of the resolvents of the Hamiltonians
(Bellisard et al. 1994).)

The current J may be defined as the functional
derivative of the Hamiltonian with respect to the
vector potential A or, in components, Jk = �kH =
�H=�Ak. For the Landau Hamiltonian, this gives

i�h�kHL ¼ ie�hðPk � eAkÞ=m ¼ e½Xk;HL� ½4�

a relation which persists for H = HL þ V(X) when-
ever the potential V is independent of A, so that
�kH =�ie[Xk, H]=�h = e dXk=dt, the charge times
velocity, as one might expect. The operator func-
tional calculus delivers a similar formula for deriva-
tions of the spectral projections of H. We have
�k = e@k=�h, where, in view of the commutation
relations, @k = �i[Xk, 
 ] can be regarded as a
momentum-space derivative, confirming that we
are dealing with the differential geometry of
momentum space.
We now wish to calculate the expected current
h Jki, in a thermal state with chemical potential 	 at
inverse temperature 
= 1=kT (where k is Boltz-
mann’s constant and the temperature is T (kelvin).
Using the Fermi–Dirac distribution, the grand
canonical expectation value is

h Jki ¼ tr 1þ e�
ðH�	Þ
� ��1

Jk

� �
½5�

Since the quantum Hall effect occurs at low tempera-
tures (large 
) and for weak fields, we formally
proceed to those limits. Then (1þ e�
(H�	))�1 tends to
the projection PF onto the states with energy less than
the Fermi energy EF in the absence of the electric
field. The limiting expected current is, therefore,
tr(PFJk) = tr(PF�kH), where H is now the Hamilto-
nian including the electric field (without which there
would be no current).

A detailed calculation of the Hall conductivity
using the Kubo–Greenwood formula shows that the
conductivity matrix is actually

�kj ¼ iðe2=�hÞtrðPF½@jPF; @kPF�Þ ½6�

In particular, this immediately implies that the direct
conductivity terms �jj vanish, as observation sug-
gested. The derivation of [6] requires great care, and
references may be found in the surveys, but a formal
argument in the next section may lend this expres-
sion some plausibility.
The Noncommutative Geometry

The principal ingredient for noncommutative geo-
metry is an algebra, and thus we shall now consider
a class of algebras broad enough to include the
physical example.

The action of the magnetic translations on �
defines automorphisms of the C�-algebra C(�),
which permit the construction of a twisted crossed-
product algebra, in which these automorphisms are
represented by conjugation. Because much of the
theory has been formulated with lattice approxima-
tions using Z2 rather than R2, it is useful to work
more generally with a separable locally compact
abelian group G with continuous multiplier �, and a
homomorphism � to automorphisms of a C�-algebra
A1 with trace �1, which will in practice be the
commutative algebra C(�) with ��. The twisted
crossed product A= C(A1, G,�) can be constructed
as the norm completion of the continuous compactly
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supported functions from G to A1 with the product,
adjoint and norm

ðf �gÞðxÞ ¼
Z

G

�ðy; x� yÞf ðyÞð�ygÞðx� yÞ dy ½7�

f �ðxÞ ¼ �ðx;�xÞ�1f ð�xÞ� ½8�

kfk ¼ max

Z
G

kf ðxÞkA1
dx;

Z
G

kf �ðxÞkA1
dx

� �
½9�

integration being with respect to the Haar measure.
The crossed-product algebra is noncommutative,
both because of the action of G and due to the
multiplier �. It has a trace �[f ] = �1[ f (0)] and, when
G = R2, has derivations given by @kf = �ixkf (x).

As an example, consider the case of periodic
potentials invariant under translation by vectors a
and b. Then the group G ffi Z2 generated by a and b
acts trivially on � and the crossed-product algebra is
just a product of A1 and the twisted group algebra
of complex-valued functions C(C, G,�), generated
by U(a) and U(b). We already noted that the algebra
is commutative only when the flux � 2 2�Z, in
which case it is just the convolution algebra of
Z2, which by Fourier transforming (effectively
setting U(a) = ei� and U(b) = ei
) is the algebra
C(T2), with torus coordinates � and 
. For fluxes
which are rational multiples of 2� we obtain a
matrix algebra, whilst irrational fluxes give an
infinite-dimensional irrational rotation algebra or
noncommutative torus, a standard example in
noncommutative geometry.

Any �-representation � of A1 on a Hilbert space
H� can be induced to a �-representation �� of the
twisted crossed product on H= L2(G,H�) by
setting

ð��ðf Þ ÞðxÞ

¼
Z

G

�ðx; y� xÞ�1�ð��xf Þðy� xÞ ðyÞ dy ½10�

for f 2 A and  2 H. When A1 = C(�), we may
take � to be a one-dimensional irreducible
�-representations given by evaluating the function
at a point ! 2 �.

When G = R2, it is easy to construct a Fredholm
module from ��. The space H2 =H� C2 has actions
�� of A on the first factor and of the Pauli spin
matrices �1,�2,�3, on the second. It may be
regarded as a graded module with grading operator
�3, and

F ¼ ðx2
1 þ x2

2Þ
�1=2ðx1�1 þ x2�2Þ ½11�
provides a Connes–Fredholm involution which
anticommutes with �3. Detailed technical results of
Connes show how to use the supertrace on H2 and
the Dixmier trace to interpret the physically impor-
tant quantities in this setting.

We now turn to the formal derivation of the key
alternative expression for the conductivity. In the
abstract algebraic setting, when p 2 A is a projec-
tion in the domain of a derivation � the derivative of
(1� p)p = 0 gives

0 ¼ �ðð1� pÞpÞ ¼ ð1� pÞ�ðpÞ � �ðpÞp ½12�

and then an easy calculation leads to

½p; ½�p; p�� ¼ 2pð�pÞp� ð�pÞp2 � p2ð�pÞ ¼ ��p ½13�

In the identity for elements a, b, c, and h 2 A

�ð½a; ½b; c��hÞ � �ðc½½h; a�; b�Þ
¼ �ð½a; ½b; c�h�Þ þ �ð½b; c½h; a��Þ ¼ 0 ½14�

we set a = c = p and b = �p to obtain

�ð½p; ½�p; p��hÞ ¼ �ðp½½h; p�; �p�Þ ½15�

Combining this with [12] when � � �= 0, one
obtains

�ðp�hÞ ¼ �ð�ðphÞÞ � �ð�ðpÞhÞ
¼ �ð½p; ½�p; p��hÞ ¼ �ðp½½h; p�; �p�Þ ½16�
The Hall Conductivity and Anderson
Localisation

Substituting p = PF and h = H in formula [16] would
give the current tr(PF[[H, PF], �PF]). Since �k is
proportional to the commutator with Xk, it is true
that tr � �k = 0, but, unfortunately, PF need not lie in
the domain of �k, and H is unbounded, further
compounding the difficulties. These are serious
problems, although the situation is not quite as
bad as it seems. Without the electrostatic term eE 
 X
in H, PF would have been a spectral projection with
which H would commute, so that

½H;PF� ¼ e½E 
 X ;PF� ¼ eEj½Xj;PF� ¼ ieEj@jPF ½17�

and H disappears from the formula, to be replaced
by @jPF. This would give the expected current
i(e2=�h)tr(PF[@jPF, @kPF])Ej, and the conductivity
matrix

�kj ¼ iðe2=�hÞtrðPF½@jPF; @kPF�Þ ½18�

given earlier (there is no need to scale by the
thickness in two dimensions).
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However it is derived, this expression for the
conductivity only makes sense under suitable condi-
tions, otherwise tr(PF[@jPF, @kPF]) might either be
undefined (because PF is not differentiable) or might
not be trace class. There is a simple condition
sufficient to handle both these difficulties, which
also leads to an interesting physical insight. From
the obvious inequality

0 � tr
�
PFð@1PF � i@2PFÞ�ð@1PF � i@2PFÞ

	
½19�

¼ tr PF ð@1PFÞ2 þ ð@2PFÞ2
� �h i

� i trðPF½@1PF; @2PF�Þ ½20�

and the fact that 1  PF, we deduce that

tr ð@1PFÞ2 þ ð@2PFÞ2
� �h i
 tr PF ð@1PFÞ2 þ ð@2PFÞ2

� �h i
 jtrðPF½@1PF; @2PF�Þj ½21�

Thus, if tr[((@1PF)2 þ (@2PF)2)] exists and is finite, then
our expression for the conductivity is well defined.
Mathematically, this is a Sobolev type condition. To
see the physical significance, we recall that @kPF =� i
[Xk, PF], so that the condition is equivalent to the
finiteness of tr[(X2

1þX2
2)PF

2]� tr[(X1PF)2þ (X2PF)2].
This condition imposes a requirement for some

localization in the system (when PF is a rank-1
projection, it reduces to the requirement that the
variance X2

1 þX2
2


 �
� X1h i2� X2h i2 be finite). This

links with a much older observation of Anderson that
the interference caused by impurities in a crystal,
which cancel at long range, should, at smaller
distances, cause localized clumping. The mathe-
matical development of this idea by Pastur provides
an appropriate tool for handling the conditions
for the valdiity of the conductivity formula. The
impurities generating Anderson localization are
provided in this model by the random potential
in the Hamiltonian. It also leads us to restrict
attention to the dense subalgebra A0 of f 2 A,
where �[(@1f )�(@1f )þ (@2f )�(@2f )] <1.
The Integral Quantum Hall Effect

Having identified the features of physical interest,
we can return to the abstract algebraic description
with conductivity i(e2=�h)�(p[@jp, @kp]). The key
observation is that this can be interpreted as the
Connes pairing between a cyclic cocycle c� on A0

and the projection p whose stable equivalence class
represents an element of the C�-algebraic K-theory,
K0(A). Such pairings give noncommutative Chern
characters. The cyclic cocycle is a trilinear form
defined on elements a0, a1, a2 2 A0 by

c� ða0; a1; a2Þ ¼ � ½a0ð�1a1�2a2 � �2a1�1a2Þ� ½22�

This is easily shown to be cyclic, c� (a0, a1, a2) =
c� (a1, a2, a0), and to satisfy the cyclic 2-cocycle
condition

c� ða0a1; a2; a3Þ � c� ða0; a1a2; a3Þ
þ c� ða0; a1; a2a3Þ � c� ða3a0; a1; a2Þ ¼ 0 ½23�

The Hall conductivity �21 = ic� (p, p, p)e2=�h can
now be interpreted as the noncommut ative
Chern character defined by the projection p.

This interpretation of the Hall conductivity clears
the way to prove that it is integral, and there are
several different routes to this.

One approach is to identify the conductivity with
some kind of index which is clearly integral.
Bellissard worked with the Fredholm module
where, by results of Connes, the Chern character is
interpreted as the index of the Fredholm operator
��(p)F��(p). Avron, Seiler and Simon have inter-
preted the conductivity as a relative index
dim [ ker (PF �QF � 1)]� dim [ ker (QF � PF � 1)] of
the projections PF and its conjugate QF = uPFu� by
an off-diagonal element u of F. This is particularly
interesting as the conjugation by u can be inter-
preted as a nonsingular gauge transformation of
exactly the kind introduced by Laughlin in his
original explanation of the quantum Hall effect in
terms of singular flux tubes piercing a cylindrical
conductor.

Xia suggested another approach rewriting A as a
repeated crossed product with R, which allows us to
calculate K0(A), using either Connes’ Thom iso-
morphism theorem or the Takai duality theorem for
stable algebras to get

K0ðAÞ ¼ K0

�
CðA1;G; �Þ

	
ffi K0ðA1Þ ½24�

which, when A1 = C(�), is just K0(�), leading to
identification as a topological index. For the simplest
case of � = T2, this gives K0(�) ffi Z2. The image of � ,
and so also c� , actually sits in just one component,
leading to quantization of the Hall conductivity.

The two questions posed in the introduction can
now be answered as follows: The Hall conductivity
can be identified with a topological index which can
take only integer values, and therefore does not
respond to continuous changes in any of the physical
parameters until the change brings the system into a
region where one of the background assumptions
fails, such as a breakdown in the localization
condition. The same conditions also ensure that the
direct current vanishes. Roughly speaking, the
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plateaus occur when the Fermi energy is in a gap in
the extended (nonlocalized) spectrum.

This brief overview has omitted many of the
interesting features of the detailed theory, which can
be found in the surveys, such as the fact that low-
lying energy levels do not contribute to the
conductivity, and Shubin’s theorem identifying �(p)
as the integrated density of states. Harper’s equation
describing a discrete lattice analog of the IQHE has
been a test-bed for many of the ideas, and various
results were first proved in that setting. The FQHE
was discovered during an unsuccessful search for a
Wigner crystal phase transition, but analysis of
discrete models provides strong evidence that Hall
conductors have very complicated phase diagrams.
The Fractional Quantum Hall Effect

As mentioned in the introduction, by the time IQHE
had been understood theoretically, it had been found
that, with appropriate care, fractional conductivities
could also be observed, although they were much less
precise and stable than the integer values, and the
plateaus less pronounced. Although there have been
many phenomenological explanations, there is as yet no
mathematical understanding from quantum field the-
ory as compelling as that for the integer effect. We shall
briefly summarize some of the main lines of attack.

The first explanation, again due to Laughlin, has also
provided the basis for many subsequent treatments of
the problem. The wave functions of the oscillator-like
Landau Hamiltonian can conveniently be represented
in the Bargmann–Segal Fock space of holomorphic
functions f on R2 � C which are square-integrable with
respect to a Gaussian measure. Incorporating the
measure into the functions, these have the form
f (z) exp(�jzj2=2). Many particle wave functions are
similarly realized in terms of holomorphic functions on
CN, and must be antisymmetric under odd permuta-
tions of the particles to describe fermions. This quickly
leads one to consider functions of the form

Y
r<s

ðzr � zsÞk exp �
X

j

jzjj2=2
 !

½25�

for odd integers k > 0, and their multiples by even
holomorphic functions. The lowest energy where such a
wave function occurs is when k = 1, and larger values of
k have the effect of dividing the Hall conductivity by k,
which produces fractional conductivities.

Halperin suggested quite early that counterflow-
ing currents in the interior of a sample would tend
to cancel, so that most of the current would be
carried near the edge of the sample. There are
several mathematical derivations of this, by, for
example, Macris, Martin, and Pulé, and by Fröhlich,
Graf, and Walcher. The K-theory of the boundary
and bulk of a sample can be linked by exact
sequences such as those of the commutative theory
(Kellendonk et al. 2000), and even in the IQHE
boundary and bulk conductivities can be used
(Schulz-Baldes et al. 2002).

It has been fairly clear that whilst the IQHE can
already be understood in terms of the motion of a
single electron, the fractional effect is a many-body
cooperative effect. One attempt to simplify the
description is to work with an incompressible quan-
tum fluid, and for edge currents one should study the
boundary theory of such a fluid, in which the
dominant contribution to the action is a Chern–Simons
term, with conductivity as a coefficient. For an annular
sample, this leads, in a suitable limit, to a chiral
Luttinger model on the boundary circles, which can
then be tackled mathematically using the representa-
tion theory of loop groups. This leads to some elegant
mathematics, including extensions to multiple coupled
bands, with conductivities described by Cartan
matrices, as explained in the International Congress
of Mathematicians (ICM) survey (Fröhlich 1995), and
in the review by Fröhlich and Studer (1993).

The theory of composite fermions provides another
physical approach in which field-theoretic effects result
in the electrons sharing their charges in such a way as to
produce fractional charges, and there is experimental
evidence of such fractional charges in studies of
tunneling from one edge to another. Then the FQHE
is easily understood by simply replacing the electron
charge e by e=k in the appropriate formulas.

Susskind has suggested combining noncommuta-
tive geometry with the theory of incompressible
quantum fluids, an idea taken up by Polychronakos
(2001). There are intriguing mathematical parallels
with work by Berest and Wilson on ideals in the
Weyl algebra and the Calogero–Moser model.
Further Developments

Bellissard and others have extended the use of
noncommutative geometrical methods into other
parts of solid-state theory, where they clarify a
number of the physical ideas. This is particularly
useful in the case of quasicrystals, which are not
easily handled by the conventional methods
(Bellissard et al. 2000). Some ideas in string theory
resemble higher-dimensional analogs, and higher-
dimensional versions of the quantum Hall effect
have also been studied by Hu and Zhang.

Finally, we conclude with some mathematical
extensions of the theory. We have seen that, for
periodic systems, the noncommutative Brillouin
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zone can be a noncommutative torus, and it is
possible to consider noncommutative versions of
Riemann surfaces of higher genera. Carey et al.
(1998) studied the effect in a noncommutative
hyperbolic geometry with a discrete group action,
generalizing the action of a Fuchsian group on the
unit disc. This provides a tractable example in which
one has an edge (albeit rather different from
the normal physical situations) and also examples
of a Hall effect in higher-genus noncommutative
Riemann surfaces closely related to those of Klimek
and Lesznewski. Natsumé and Nest have subse-
quently shown that these are deformation quantiza-
tions of the commutative Riemann surface theory in
the sense of Rieffel. Coverings of noncommutative
Riemann surfaces, which might provide an analoge
of composite fermions, have been investigated by
Marcolli and Mathai (1999, 2001).

See also: C�-Algebras and Their Classification;
Chern–Simons Models: Rigorous Results; Fractional
Quantum Hall Effect; Hopf Algebras and q-Deformation
Quantum Groups; Localization for Quasiperiodic
Potentials; Noncommutative Geometry and the Standard
Model; Noncommutative Tori, Yang–Mills, and String
Theory; Schrödinger Operators.
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Introduction

Scattering theory is concerned with the study of the
large-time behavior of solutions of the time-
dependent Schrödinger equation [1] for a system
with a Hamiltonian H:

i@u=@t ¼ Hu; uð0Þ ¼ f ½1�

Being a part of the perturbation theory, scattering
theory describes the asymptotics of u(t) as t!þ1
or t!�1 in terms of solutions of the Schrödinger
equation for a ‘‘free’’ system with a Hamiltonian H0.
Of course, eqn [1] has a unique solution
u(t) = exp (�iHt)f , while the solution of the
same equation with the operator H0 and the
initial data u0(0) = f0 is given by the formula
u0(t) = exp (�iH0t)f0. From the viewpoint of scat-
tering theory, the function u(t) has free asympto-
tics as t! �1 if for appropriate initial data f�0
eqn [2] holds:

lim
t!�1

kuðtÞ � u�0 ðtÞk ¼ 0 ½2�

Here and throughout this article a relation contain-
ing the signs ‘‘�’’ is understood as two indepen-
dent equalities. We emphasize that initial data f�0
are different for t!þ1 and t!�1 and
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u�0 (t) = exp (�iH0t)f�0 . Equation [2] leads to a
connection between the corresponding initial data
f�0 and f given by

f ¼ lim
t!�1

expðiHtÞ expð�iH0tÞf�0 ½3�

If f is an eigenvector of H, that is, Hf =�f , then
obviously u(t) = e�i�tf . On the contrary, if f belongs
to the (absolutely) continuous subspace of H, then
necessarily u(t) has the free asymptotics as t!�1.
This result is known as asymptotic completeness.

The Schrödinger operator H =��þ V(x) in the
space H= L2(Rd) with a real potential V decaying
at infinity is a typical Hamiltonian of scattering
theory. The operator H describes a particle in an
external potential V or two interacting particles.
Asymptotically (as t!þ1 or t!�1), particles
may either form a bound state or be free (a
scattering state). Of course, a bound (scattering)
state at �1 remains the same at þ1. To be more
precise, suppose that

jVðxÞj � Cð1þ jxjÞ�� ½4�

where � > 1. Then relation [2] can be justified with
the kinetic energy operator H0 =�� playing the
role of the unperturbed operator.

As discussed in Landau and Lifshitz (1965) (see
also Amrein et al. (1977), Pearson (1988), and Yafaev
(2000)), in scattering experiments one sends a beam
of particles of energy �> 0 in a direction !. Such a
beam is described by the plane wave

 0ðx;!; �Þ ¼ expðikh!; xiÞ; � ¼ k2 > 0

(which satisfies of course the free equation
�� 0 =� 0). The scattered particles are described
for large distances by the outgoing spherical wave

aðx̂; !;�Þjxj�ðd�1Þ=2 expðikjxjÞ

Here x̂ = xjxj�1 is the direction of observation and
the coefficient a(x̂,!;�) is known as the scattering
amplitude. This means that quantum particles
subject to a potential V(x) are described by the
solution  of eqn [5] with asymptotics [6] at infinity:

�� þ VðxÞ ¼ � ½5�

 ðx;!; �Þ ¼ expðikh!; xiÞ

þ aðx̂; !;�Þjxj�ðd�1Þ=2 expðikjxjÞ

þ o jxj�ðd�1Þ=2
� �

½6�

The existence of such solutions requires of course a
proof. The differential scattering crosssection
defined by eqn [7] gives us the part of particles
scattered in a solid angle dx̂:

d�ðx̂; !;�Þ ¼ jaðx̂; !;�Þj2dx̂ ½7�

As discussed below, the temporal asymptotics
of solutions of the time-dependent Schrödinger
equation [1] are closely related to the asymptotics
at large distances of solutions of the stationary
Schrödinger equation [5].
Time-Dependent Scattering Theory
and Møller Operators

If V(x)! 0 as jxj!1, then the essential spectrum
of the Schrödinger operator H =��þ V(x) covers
the whole positive half-line, whereas the negative
spectrum of H consists of eigenvalues accumulating,
perhaps, at the point zero only.

Scattering theory requires a more advanced
classification of the spectrum based on measure
theory. Consider a self-adjoint operator H defined
on domain D(H) in a Hilbert space H. Let E be its
spectral family. Then the space H can be decom-
posed into the orthogonal sum of invariant sub-
spaces H(p),H(sc) and H(ac). The subspace H(p) is
spanned by eigenvectors of H and the subspaces
H(sc),H(ac) are distinguished by the condition that
the measure (E(X)f , f ) (here X � R is a Borel set) is
singularly or absolutely continuous with respect to
the Lebesgue measure for all f 2 H(sc) or f 2 H(ac).
Typically (in applications to quantum-mechanical
problems) the singularly continuous part is absent,
that is, H(sc) = {0}. We denote by H(ac) the restriction
of H on its absolutely continuous subspace H(ac) and
by P(ac) the orthogonal projection on this subspace.
The same objects for the operator H0 will be
endowed with the index ‘‘0.’’

Equation [3] motivates the following fundamental
definition. The wave, or Møller, operator
W�= W�(H, H0) for a pair of self-adjoint operators
H0 and H is defined by eqn [8] provided that the
corresponding strong limit exists:

W� ¼ s-lim
t!�1

expðiHtÞ expð�iH0tÞPðacÞ
0 ½8�

The wave operator is isometric on H(ac)
0 and enjoys

the intertwining property

HW� ¼W�H0 ½9�

Therefore, its range Ran W� is contained in the
absolutely continuous subspaceH(ac) of the operator H.

The operator W�(H, H0) is said to be complete if
eqn [10] holds:

Ran W�ðH;H0Þ ¼ HðacÞ ½10�
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It is easy to see that the completeness of W�(H, H0)
is equivalent to the existence of the ‘‘inverse’’ wave
operator W�(H0, H). Thus, if the wave operator
W�(H, H0) exists and is complete, then the opera-
tors H(ac)

0 and H(ac) are unitarily equivalent. We
emphasize that scattering theory studies not arbi-
trary unitary equivalence but only the ‘‘canonical’’
one realized by the wave operators.

Along with the wave operators an important role
in scattering theory is played by the scattering
operator defined by eqn [11] where W�

þ is the
operator adjoint to Wþ:

S ¼ SðH;H0Þ ¼W�
þðH;H0ÞW�ðH;H0Þ ½11�

The operator S commutes with H0 and hence
reduces to multiplication by the operator function
S(�) = S(�; H, H0) in a representation of H(ac)

0 which
is diagonal for H(ac)

0 . The operator S(�) is known as
the scattering matrix. The scattering operator [11] is
unitary on the subspace H(ac)

0 provided the wave
operators W�(H, H0) exist and are complete. The
scattering operator S(H, H0) connects the asympto-
tics of the solutions of eqn [1] as t!�1 and as
t!þ1 in terms of the free problem, that is
S(H, H0) : f�0 7! fþ0 , where f�0 are the same as in eqn
[2]. The scattering operator and the scattering
matrix are usually of great interest in mathematical
physics problems, because they connect the ‘‘initial’’
and the ‘‘final’’ characteristics of the process
directly, bypassing its consideration for finite times.

The definition of the wave operators can be
extended to self-adjoint operators acting in different
spaces. Let H0 and H be self-adjoint operators in
Hilbert spaces H0 and H, respectively, and let
‘‘identification’’ J :H0!H be a bounded operator.
Then the wave operator W�= W�(H, H0; J) for the
triple H0, H, and J is defined by eqn [12] provided
again that the strong limit there exists:

W� ¼ s-lim
t!�1

expðiHtÞJ expð�iH0tÞPðacÞ
0 ½12�

Intertwining property [9] is preserved for wave
operator [12]. This operator is isometric on H(ac)

0 if
and only if

lim
t!�1

kJ expð�iH0tÞf0k ¼ kf0k

for all f0 2 H(ac)
0 . Since

s-lim
jtj!1

K expð�iH0tÞPðacÞ
0 ¼ 0

for a compact operator K, wave operators [12]
corresponding to identifications J1 and J2 coincide if
J2 � J1 is compact or, at least, the operators (J2 � J1)
E0(X) are compact for all bounded intervals X.
Consideration of wave operators [12] with J 6¼ I
may of course be of interest also in the case H0 =H.

It suffices to verify the existence of limits [8] or
[12] on some set dense in the absolutely continuous
subspace H(ac)

0 of the operator H0. The following
simple but convenient condition for the existence of
wave operators is usually called Cook’s criterion.
Suppose that H0 = H(ac)

0 and that the operator J
maps domain D(H0) of the operator H0 into D(H).
Let Z �1

0

kðHJ � JH0Þ expð�iH0tÞfkdt <1

for all f from some set D0 � D(H0) dense in H0.
Then the wave operator W�(H, H0; J) exists.

This result is often useful in applications since the
operator exp (�iH0t) is known explicitly. For
example, it works with J = I for the pair

H0 ¼ ��; H ¼ H0 þ VðxÞ ½13�

if V(x) satisfies estimate [4] with � > 1. On the
other hand, different proofs of the existence of the
wave operators W�(H0, H; J�) require new mathe-
matical tools. There are two essentially different
approaches in scattering theory: the trace-class and
smooth methods.
Time-Independent Scattering Theory

The approach in scattering theory relying on
definition [8] is called time dependent. An alter-
native possibility is to change the definition of wave
operators replacing the unitary groups by the
corresponding resolvents R0(z) = (H0 � z)�1 and
R(z) = (H � z)�1. They are related by a simple
identity

RðzÞ ¼ R0ðzÞ � R0ðzÞVRðzÞ
¼ R0ðzÞ � RðzÞVR0ðzÞ ½14�

where V = H �H0 and Im z 6¼ 0. In the stationary
approach in place of limits [8] one has to study
the boundary values (in a suitable topology) of the
resolvents as the spectral parameter z tends to the
real axis. An important advantage of the stationary
approach is that it gives convenient formulas for the
wave operators and the scattering matrix.

Let us discuss here the stationary formulation of
the scattering problem for operators [13] in the
Hilbert space H= L2(Rd) in terms of solutions of the
Schrödinger equation [5]. If V(x) satisfies estimate [4]
with � > (d þ 1)=2, then for all � > 0 and all unit
vectors ! 2 Sd�1, eqn [5] has the solution  (x;!,�)
with asymptotics [6] as jxj!1. Moreover, the
scattering amplitude a(x̂,!;�) belongs to the space
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L2(Sd�1) in the variable x̂ uniformly in ! 2 Sd�1, and
it can be expressed via  (x;!,�) by the formula

að�; !;�Þ ¼ ��dð�Þ
Z

Rd
e�ikh�;xiVðxÞ ðx;!; �Þ dx

where

�dð�Þ ¼ e��iðd�3Þ=42�1ð2�Þ�ðd�1Þ=2�ðd�3Þ=4

Let us define two sets of scattering solutions, or
eigenfunctions of the continuous spectrum, by the
formulas

 �ðx;!; �Þ ¼  ðx;!; �Þ and  þðx;!; �Þ
¼  ðx;�!; �Þ

In terms of boundary values of the resolvent, the
functions  �(!,�) can be constructed by the formula

 �ð!; �Þ ¼  0ð!; �Þ � Rð�� i0ÞV 0ð!; �Þ ½15�

Obviously, functions [15] satisfy eqn [5]. Using
resolvent identity [14], it is easy to derive the
Lippmann–Schwinger equation

 �ð!; �Þ ¼  0ð!; �Þ � R0ð�� i0ÞV �ð!; �Þ

for  �(!,�). Asymptotics [6] can be deduced from
the formula

ðR0ð�� i0Þf ÞðxÞ ¼ c�ð�Þð�0ð�Þf Þð�x̂Þjxj�ðd�1Þ=2

	 expð�ikjxjÞ þOðjxj�ðdþ1Þ=2Þ

where f 2 C10 (Rd), c�(�) = �1=2��1=4e�i�(d�3)=4 and
the operator �0(�) defined by eqn [16] is (up to the
numerical factor) the restriction of the Fourier
transform f̂ =F 0f onto the sphere of radius �1=2:

ð�0ð�Þf Þð!Þ ¼ 2�1=2�ðd�2Þ=4 f̂ ð�1=2!Þ; !2 Sd�1 ½16�

The wave operators W�(H,H0) can be con-
structed in terms of the solutions  �. Set �=�1=2!
(� is the momentum variable), write  �(x,�) instead
of  �(x;!,�), and consider two transformations

ðF�f Þð�Þ ¼ ð2�Þ�d=2
Z

Rd
 �ðx; �Þ f ðxÞ dx ½17�

(defined initially, e.g., on the Schwartz class S(Rd))
of the space L2(Rd) into itself. The operators F� can
be regarded as generalized Fourier transforms, and
both of them coincide with the usual Fourier
transform F 0 if V = 0. It follows from eqns [5],
[17] that under the action of F� the operator H goes
over into multiplication by j�j2, that is,

ðF�Hf Þð�Þ ¼ j�j2ðF�f Þð�Þ
Moreover, with the help of eqn [15], it can be
shown that F� is an isometry on H(ac), it is zero on
H
H(ac), and its range Ran F�= L2(Rd). This is
equivalent to eqns [18]:

F��F� ¼ PðacÞ; F�F�� ¼ I ½18�

Hence any function f 2 H(ac) admits the expansion
in the generalized Fourier integral

f ðxÞ ¼ ð2�Þ�d=2
Z

Rd
 �ðx; �ÞðF�f Þð�Þ d�

It can also be deduced from eqn [6] that the vector

F�� � F�0
� �

expð�ij�j2tÞf̂

tends to zero as t!�1 for an arbitrary f̂ 2 L2(Rd).
This implies the existence of the wave operators
W�= W�(H, H0) for pair [13] and gives the
representation

W� ¼ F��F 0 ½19�

Completeness of W� follows from eqn [19] and
the first equation in [18]. The second equality in
[18] is equivalent to the isometricity of W�.
Formula [19] is an example of a stationary
representation for the wave operator. It formally
implies that

W� 0ð!; �Þ ¼  �ð!; �Þ

which means that each wave operator establishes a
one-to-one correspondence between eigenfunctions of
the continuous spectrum of the operators H0 and H.

The main ideas of the stationary approach go
back to Friedrichs (1965), and Povzner. The inverse
problem of reconstruction of a potential V given the
scattering amplitude a (see eqn [6]) is treated in
Faddeev (1976).
The Trace-Class Method

Recall that the class S p, p� 1, consists of compact
operators T such that the norm

kTkp ¼
X

n

�p
nðjTjÞ

 !1=p

; jTj ¼ ðT �TÞ1=2

is finite. Eigenvalues �n(jTj) =: sn(T) of a non-
negative operator jTj are called singular numbers
of T. In particular, S 1 is the trace class and S 2 is the
Hilbert–Schmidt class.

The trace-class method (see Reed and Simon (1976)
or Yafaev (1992) for a detailed presentation) makes no
assumptions about the ‘‘unperturbed’’ operator H0. Its
basic result is the following theorem of Kato and
Rosenblum. If V = H �H0 belongs to the trace class
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S 1, then the wave operators W�(H, H0) exist and are
complete. In particular, the operators H(ac)

0 and H(ac)

are unitarily equivalent. This can be considered as a far
advanced extension of the H Weyl theorem, which
states the stability of the essential spectrum under
compact perturbations.

The condition V 2 S 1 in the Kato–Rosenblum
theorem cannot be relaxed in the framework of
operator ideals S p. This follows from the Weyl–von
Neumann–Kuroda theorem. Let H0 be an arbitrary
self-adjoint operator. For any p > 1 and any " > 0
there exists a self-adjoint operator V such that V 2 S p,
kVkp < " and the operator H = H0 þ V has purely
point spectrum. Of course, such an operator H has no
absolutely continuous part. At the same time, the
operator H0 may be absolutely continuous. In this
case, the wave operators W�(H, H0) do not exist.

Although sharp in the abstract framework, the
Kato–Rosenblum theorem cannot directly be applied
to the theory of differential operators where a
perturbation is usually an operator of multiplication
and hence is not even compact. We mention its two
generalizations applicable to this theory. The first,
the Birman–Kato–Kre�ın theorem, claims that the
wave operators W�(H, H0) exist and are complete
provided

RnðzÞ � Rn
0ðzÞ 2 S 1

for some n = 1, 2, . . . and all z with Im z 6¼ 0. The
second, the Birman theorem, asserts that the same is
true if D(H) =D(H0) or D(jHj1=2) =D(jH0j1=2) and

EðXÞðH �H0ÞE0ðXÞ 2 S 1

for all bounded intervals X.
The wave operators enjoy the following property

known as the Birman invariance principle. Suppose
that ’(H)� ’(H0) 2 S 1 for a real function ’ such
that its derivative ’0 is absolutely continuous and
’0(�) > 0. Then the wave operators W�(H, H0) exist
and eqn [20] holds:

W�ðH;H0Þ ¼W�ð’ðHÞ; ’ðH0ÞÞ ½20�

A direct generalization of the Kato–Rosenblum
theorem to the operators acting in different spaces is
due to Pearson. Suppose that H0 and H are self-
adjoint operators in spaces H0 and H, respectively,
J :H0!H is a bounded operator and V = HJ �
JH0 2 S 1. Then the wave operators W�(H, H0; J)
and W�(H0, H; J�) exist.

Although rather sophisticated, the proof relies
only on the following elementary lemma of Rosen-
blum. For a self-adjoint operator H, consider the set
R � H(ac) of elements f such that

r2
Hðf Þ :¼ ess sup dðEð�Þf ; f Þ=d� <1
If K :H!G (G is some Hilbert space) is a Hilbert–
Schmidt operator, then for all f 2 RZ 1

�1
kK expð�iHtÞfk2 dt � 2�r2

Hðf ÞkKk
2
2 ½21�

Moreover, the set R is dense in H(ac).
The Pearson theorem allows to simplify consider-

ably the original proofs of different generalizations
of the Kato–Rosenblum theorem.

A typical application of the trace-class theory is
the following result. Suppose that

H¼L2ðRdÞ; H0¼��þV0ðxÞ; H¼H0þVðxÞ ½22�

where the functions V0 and V are real, V0 2L1(Rd)
and V satisfies estimate [4] for some �>d. Then the
wave operators W�(H,H0) exist and are complete.
The Smooth Method

The smooth method (see Kuroda (1978), Reed and
Simon (1979), or Yafaev (1992), for a detailed
presentation) relies on a certain regularity of the
perturbation in the spectral representation of the
operator H0. There are different ways to understand
regularity. For example, in the Friedrichs–Faddeev
model H0 acts as multiplication by independent
variable in the space H= L2(�; N ), where � is an
interval and N is an auxiliary Hilbert space. The
perturbation V is an integral operator with suffi-
ciently smooth kernel.

Another possibility is to use the concept of H-
smoothness introduced by Kato. An H-bounded
operator K is called H-smooth if, for all f 2 D(H),Z 1

�1
kK expð�iHtÞfk2 dt � Ckfk2 ½23�

(cf. eqns [21] and [23]). Here and below, C are different
positive numbers whose precise values are inessential.
It is important that this definition admits equivalent
reformulations in terms of the resolvent or of the
spectral family. Thus, K is H-smooth if and only if

sup
�2R;">0

kKðRð�þ i"Þ � Rð�� i"ÞÞK�k <1

or if and only if

sup jXj�1kKEðXÞk2 <1

for all intervals X � R.
In applications the assumption of H-smoothness

of an operator K imposes too stringent conditions
on the operator H. In particular, the operator H is
necessarily absolutely continuous if kernel of K is
trivial. This assumption excludes eigenvalues and
other singular points in the spectrum of H, for
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example, the bottom of the continuous spectrum for
the Schrödinger operator with decaying potential or
edges of bands if the spectrum has the band
structure. The notion of local H-smoothness sug-
gested by Lavine is considerably more flexible. By
definition, K is called H-smooth on a Borel set X � R
if the operator KE(X) is H-smooth. Note that, under
the assumption

sup
�2X;">0

kKðRð�þ i"Þ � Rð�� i"ÞÞK�k <1 ½24�

the operator K is H-smooth on the closure of X.
The following Kato–Lavine theorem is simple but

very useful. Suppose that

HJ � JH0 ¼ K�K0

where the operators K0 and K are H0-smooth and
H-smooth, respectively, on an arbitrary compact
subinterval of some interval �. Then the wave
operators

W�ðH;H0; JE0ð�ÞÞ and W�ðH0;H; J�Eð�ÞÞ

exist (and are adjoint to each other).
This result cannot usually be applied directly since

the verification of H0- and especially of H-smooth-
ness may be a difficult problem. Let us briefly
explain how it can be done on the example of pair
[10], where the potential V(x) satisfies estimate [4]
for some � > 1. Let us start with the operator
H0 =��. Denote by L(l)

2 = L(l)
2 (Rd) the Hilbert

space with the norm kfkl = khxilfk, where hxi= (1þ
jxj2)1=2. Let the operator �0(�) be defined by
eqn [16], and let X � (0,1) be some compact
interval. Set N = L2(Sd�1). If f 2 L(l)

2 with l > 1=2,
then, by the Sobolev trace theorem,

k�0ð�ÞfkN � Ckfkl

k�0ð�Þf � �0ð�0ÞfkN � Cj�� �0j	kfkl

½25�

for an arbitrary 	 � l � 1=2,	 < 1 and all �,�0 2 X.
These estimates imply that the function

ðE0ð�Þf ; f Þ ¼
Z
j�j2<�

jf̂ ð�Þj2 d� ½26�

is differentiable and the derivative

dðE0ð�Þf ; f Þ=d� ¼ k�0ð�Þfk2
N ; f 2 L

ðlÞ
2 ; l > 1=2

is Hölder-continuous in � > 0 (uniformly in f,
kfkl � 1). Therefore, applying the Privalov theorem
to the Cauchy integral

ðR0ðzÞf ; f Þ ¼
Z 1

0

ð�� zÞ�1 dðE0ð�Þf ; f Þ

we obtain that the analytic operator function

R0ðzÞ ¼ hxi�lR0ðzÞhxi�l; l > 1=2
considered in the space H, is continuous in norm in
the closed complex plane C cut along (0,1) with
possible exception of the point z = 0. This implies
H0-smoothness of the operator hxi�l, l > 1=2, on all
compact intervals X � (0,1).

To obtain a similar result for the operator H,
we proceed from the resolvent identity [14].
Let R(z) = hxi�lR(z)hxi�l, and let B be the operator
of multiplication by the bounded function
(1þ jxj)�V(x). If

f þR0ðzÞBf ¼ 0

then  = R0(z)hxi�lBf satisfies the Schrödinger equa-
tion H = z . Since H is self-adjoint, this implies that
 = 0 and hence f = 0. Using eqn [14], we obtain that

RðzÞ ¼ ðI þR0ðzÞBÞ�1R0ðzÞ; Im z 6¼ 0 ½27�

because the inverse operator here exists by the
Fredholm alternative.

The operator function (I þR0(z)B)�1 is analytic
in the complex plane cut along (0,1) with possible
exception of poles (coinciding with eigenvalues of H)
on the negative half-axis. Moreover, (I þR0(z)B)�1

is continuous up to the cut except the set N � (0,1)
of � where at least one of the homogeneous equations

f þR0ð�� i0ÞBf ¼ 0 ½28�

has a nontrivial solution. It follows from eqn [27]
that the same is true for the operator function R(z).
It can be shown that the set N is closed and has the
Lebesgue measure zero. Let � = (0,1)nN ; then
� = [n �n where �n are disjoint open intervals. By
condition [24], the operator hxi�l, l > 1=2, is
H-smooth on any strictly interior subinterval of
every �n. Applying the Kato–Lavine theorem, we see
that the wave operators W�(H, H0; E0(�n)) and
W�(H0, H; E(�n)) exist for all n. Since E0(�) = I
and E(�) = P(ac), this implies the existence of
W�(H, H0) and W�(H0, H). Thus, the wave opera-
tors W�(H, H0) for pair [13] exist and are complete
if estimate [4] holds for some � > 1.

Compared to the trace-class method, conditions on
the perturbation V(x) are less restrictive, while the
class of admissible ‘‘free’’ problems is essentially more
narrow (in eqn [22] V0(x) is an arbitrary bounded
function). It is not known whether the wave
operators W�(H, H0) exist for all pairs [22] such
that V0 2 L1 and V satisfies [4] for some � > 1.

It is important that the smooth method allows one
to prove the absence of the singular continuous
spectrum. Note first that the continuity of R(z)
implies that the operator H is absolutely continuous
on the subspace E(�)H. Therefore, the singular
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positive spectrum of H is necessarily contained in N .
To prove that its continuous part is empty, it suffices
to check that the set N consists of eigenvalues of the
operator H. In terms of u = hxi�lBf , l = �=2, eqn
[28] can be rewritten as

uþ VR0ð�� i0Þu ¼ 0 ½29�

Multiplying this equation by R0(�� i0)u and taking
the imaginary part of the scalar product, we see that

� dðE0ð�Þu; uÞ=d� ¼ ImðR0ð�� i0Þu; uÞ ¼ 0

According to eqn [26], this implies that

ûð�Þ ¼ 0 for j�j ¼ �1=2 ½30�

It follows from eqn [29] that

 ¼ R0ð�� i0Þu ½31�

that is,  ̂(�) = (j�j2 � �� i0)�1û(�), is a formal
(because of the singularity of the denominator)
solution of Schrödinger equation [5]. Therefore, one
needs only to verify that  2 L2(Rd). Since u 2 L(l)

2 ,
where l = �=2, this is a direct consequence of [25] and
[30] if � > 2. In the general case, one uses that under
assumption [30] the function (j�j2 � �)�1û(�) belongs
to the space L(p)

2 for any p < l � 1. By virtue of
condition [4] where � > 1, eqn [29] now shows that
actually u 2 L(p)

2 for any p < l þ �� 1. Repeating
these arguments, we obtain, after n steps, that u 2
L(p)

2 for any p < l þ n(�� 1). For n large enough, this
implies that u 2 L(p)

2 for p > 1, and consequently
function [31] belongs to L2(Rd).

Similar arguments show that eigenvalues of H
have finite multiplicity and do not have positive
accumulation points. For the proof of boundedness
of the set of eigenvalues, one uses additionally the
estimate

kR0ð�� i0Þk ¼ Oð��1=2Þ; �!1 ½32�

Actually, according to Kato theorem the Schrödin-
ger operator H does not have positive eigenvalues.

There exists also a purely time-dependent
approach, the Enss method (see Perry (1983)),
which relies on an advanced study of the free
evolution operator exp (�iH0t).
The Scattering Matrix

The operator H0 =�� can of course be diagona-
lized by the classical Fourier transform. To put it
slightly differently, set

ðF0f Þð�Þ ¼ �0ð�Þf
where the operator �0(�) is defined by eqn [16].
Then

F0 : L2ðRdÞ ! L2ðRþ; N Þ; N ¼ L2ðSd�1Þ

is a unitary operator and (F0H0f )(�) =�(F0f )(�).
Under assumption [4] where � > 1, the scattering

operator S for pair [13] is defined by eqn [11]. It is
unitary on the space H= L2(Rd) and commutes
with the operator H0. It follows that (F0Sf )(�) =
S(�)(F0f )(�),� > 0, where the unitary operator
S(�) : N ! N is known as the scattering matrix. The
scattering matrix S(�) for the pair H0, H can be
computed in terms of the scattering amplitude.
Namely, S(�) acts in the space L2(Sd�1), and S(�)�
I is the integral operator whose kernel is the
scattering amplitude. More precisely,

ðSð�Þf Þð�Þ

¼ f ð�Þ þ 2i�1=2�dð�Þ
Z

Sd�1
að�; !;�Þf ð!Þ d!

In operator notation, this representation can be
rewritten as

Sð�Þ ¼ I � 2� i�0ð�ÞðV � VRð�þ i0ÞVÞ��0ð�Þ ½33�

The right-hand side here is correctly defined as a
bounded operator in the space N and is continuous
in � > 0. Moreover, the operator S(�)� I is compact
since �0(�)hxi�l :H! N is compact for l > 1=2 by
virtue of the Sobolev trace theorem.

It follows that the spectrum of the operator S(�)
consists of eigenvalues of finite multiplicity, except
possibly the point 1, lying on the unit circle and
accumulating at the point 1 only. In the general
case, eigenvalues of S(�) play the role of scattering
phases or shifts considered often for radial potentials
V(x) = V(jxj).

The scattering amplitude is singular on the
diagonal �=! only. Moreover, this singularity is
weaker for potentials with faster decay at infinity
(for � bigger). If � > (d þ 1)=2, then the operator
S(�)� I belongs to the Hilbert–Schmidt class. In this
case the total scattering cross section

�ð!;�Þ ¼
Z

Sd�1
jað�; !;�Þj2 d�

is finite for all energies � > 0 and all incident
directions ! 2 Sd�1. If � > d, then the operator
S(�)� I belongs to the trace class. In this case, the
scattering amplitude a(�,!;�) is a continuous func-
tion of �,! 2 Sd�1 (and � > 0). The unitarity of the
operator S(�) implies the optical theorem

�ð!;�Þ ¼ ��1=2Im ��1
d ð�Það!; !;�Þ

� �



258 Quantum Mechanical Scattering Theory
Using resolvent identity [14], one deduces from
eqn [33] the Born expansion

Sð�Þ ¼ I � 2� i
X1
n¼0

ð�1Þn�0ð�ÞVðR0ð�þ i0ÞVÞn��0ð�Þ

This series is norm-convergent for small potentials V
and according to estimate [32] for high energies �.
Long-Range Interactions

Potentials decaying at infinity as the Coulomb
potential

VðxÞ ¼ �jxj�1; d� 3

or slower are called long-range. More precisely, it is
required that

j@	VðxÞj � Cð1þ jxjÞ���j	j; � 2 ð0; 1� ½34�

for all derivatives of V up to some order. In the
long-range case, the wave operators W�(H, H0) do
not exist, and the asymptotic dynamics should be
properly modified. It can be done in a time-
dependent way either in the coordinate or momen-
tum representations. For example, in the coordinate
representation, the free evolution exp (�iH0t)
should be replaced in definition [8] of wave
operators by unitary operators U0(t) defined by

ðU0ðtÞf ÞðxÞ ¼ expði �ðx; tÞÞð2itÞ�d=2 f̂ ðx=ð2tÞÞ

where f̂ is the Fourier transform of f. For short-
range potentials we can set �(x, t) = (4t)�1jxj2. In the
long-range case the phase function �(x, t) should be
chosen as a (perhaps, approximate) solution of the
eikonal equation

@�=@t þ jr�j2 þ V ¼ 0

In particular, we can set

�ðx; tÞ ¼ ð4tÞ�1jxj2 � t

Z 1

0

VðsxÞ ds

if � > 1=2 in [34]. For the Coulomb potential,

�ðx; tÞ ¼ ð4tÞ�1jxj2 � �tjxj�1 ln jtj

(the singularity at x = 0 is inessential here). Thus,
both in short- and long-range cases solutions of the
time-dependent Schrödinger equation ‘‘live’’ in a
region of the configuration space where jxj is of
order jtj. Long-range potentials change only asymp-
totic phases of these solutions.

Another possibility is a time-independent modifi-
cation in the phase space. Let us consider wave
operators W�(H, H0; J), where J is a pseudodiffer-
ential operator,

ðJf ÞðxÞ ¼ ð2�Þ�d=2
Z

Rd
eihx;�i ei�ðx;�Þ
ðx; �Þf̂ ð�Þ d�

with oscillating symbol exp (i�(x, �))
(x, �). Due to the
conservation of energy, we may suppose that 
(x, �)

contains a factor  (j�j2) with  2 C10 (0,1). Set

’ðx; �Þ ¼ hx; �i þ �ðx; �Þ

The perturbation HJ � JH0 is also a pseudodiffer-
ential operator, and its symbol is short-range (it is
O(jxj�1�"), " > 0, as jxj!1) if exp (i’(x, �)) is an
approximate eigenfunction of the operator H corre-
sponding to the ‘‘eigenvalue’’ j�j2. This leads to the
eikonal equation

jrx’ðx; �Þj2 þ VðxÞ ¼ j�j2

The notorious difficulty (for d� 2) of this method is
that the eikonal equation does not have (even
approximate) solutions such that jrx�(x, �)j! 0 as
jxj!1 and the arising error term is short-range.
However, it is easy to construct functions ’=’�
satisfying these conditions if a conical neighborhood
of the direction �� is removed from Rd. For
example,

��ðx; �Þ ¼ �2�1

Z 1
0

Vðx� ��Þ � Vð���Þð Þ d�

if � > 1=2 in eqn [34]. Then the cutoff function

(x, �) = 
�(x, �) should be homogeneous of order
zero in the variable x and it should be equal to zero
in a neighborhood of the direction ��. We empha-
size that now we have a couple of different
identifications J = J�.

The long-range problem is essentially more diffi-
cult than the short-range one. The limiting absorp-
tion principle remains true in this case, but its proof
cannot be performed within perturbation theory.
The simplest proof relies on the Mourre estimate
(see Cycon et al. (1987)) for the commutator i[H, A]
of H with the generator of dilations

A ¼ �i
Xd

j¼1

ðxj@j þ @jxjÞ

The Mourre estimate affirms that, for all � > 0,

iEð��Þ½H;A�Eð��Þ� cð�ÞEð��Þ; cð�Þ > 0 ½35�

if �� = (�� ",�þ ") and " is small enough. For the
free operator H0, this estimate takes the form
i[H0, A] = 4H0 and can be regarded as a commutation
relation. Estimate [35] means that the observable

ðAe�iHtf ; e�iHtf Þ
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is a strictly increasing function of t for all f 2 H(ac).
The H-smoothness of the operator hxi�l, l > 1=2, is
deduced from this fact by some arguments of
abstract nature (they do not really use concrete
forms of the operators H and A).

However, the limiting absorption principle is not
sufficient for construction of scattering theory in the
long-range case, and it should be supplemented by
an additional estimate. To formulate it, denote by

ðr?uÞðxÞ ¼ ðruÞðxÞ � jxj�2hðruÞðxÞ; xix

the orthonal projection of a vector (ru)(x) on the
plane orthogonal to x. Then the operator
K = hxi�1=2r? is H-smooth on any compact X �
(0,1). This result is formulated as an estimate
(either on the resolvent or on the unitary group of
H), which we refer to as the radiation estimate. This
estimate is not very astonishing from the viewpoint
of analogy with the classical mechanics. Indeed, in
the case of free motion, the vector x(t) of the
position of a particle is directed asymptotically as its
momentum �. Regarded as a pseudodifferential
operator, r? has symbol � � jxj�2h�, xix, which
equals zero if x = � � for some � 2 R. Thus, r?
removes the part of the phase space where a classical
particle propagates. The proof of the radiation
estimate is based on the inequality

K�K � C0½H; @r� þ C1hxi�1��; @r ¼ @=@jxj

which can be obtained by a direct calculation. Since
the integral

i

Z t

0

ð½H; @r�e�iHsf ; e�iHsÞf Þ ds

¼ ð@r e�iHtf ; e�iHtf Þ � ð@rf ; f Þ

is bounded by C(X)kfk2 for f 2 E(X)f and
the operator hxi�(1þ�)=2 is H-smooth on X, this
implies H-smoothness of the operator KE(X).

Calculating the perturbation HJ� � J�H0, we see
that it is a sum of two pseudodifferential operators.
The first of them is short-range and thus can be
taken into account by the limiting absorption
principle. The symbol of the second one contains
first derivatives (in the variable x) of the cutoff
function 
�(x, �) and hence decreases at infinity as
jxj�1 only. This operator factorizes into a product of
H0- and H-smooth operators according to the
radiation estimate. Thus, all wave operators
W�(H, H0; J�) and W�(H0, H; J��) exist. These
operators are isometric since the operators J�
are in some sense close to unitary operators.
The isometricity of W�(H0, H; J��) is equivalent to
the completeness of W�(H, H0; J�).

Although the modified wave operators enjoy
basically the same properties as in the short-range
case, properties of the scattering matrices in the
short- and long-range cases are drastically different.
Here we note only that for long-range potentials,
due to a wild diagonal singularity of kernel of the
scattering matrix, its spectrum covers the whole unit
circle.

Different aspects of long-range scattering are
discussed in Dereziński and Gérard (1997), Pearson
(1988), Saitō (1979), and Yafaev (2000).

See also: N-Particle Quantum Scattering; Quantum
Dynamical Semigroups; Random Matrix Theory in
Physics; Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools; Schrödinger
Operators; Spectral Theory for Linear Operators.
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The Framework of Quantum Mechanics

In 1900, Max Planck initiated the quantum revolu-
tion by presenting the hypothesis that radiation is
emitted or absorbed only in ‘‘quanta,’’ each of
energy h�, for frequency � (where h was a new
fundamental constant of Nature). By this device, he
explained the precise shape of the puzzling black-
body spectrum. Then, in 1905, Albert Einstein
introduced the concept of the photon, according to
which light, of frequency � would, in appropriate
circumstances, behave as though it were constituted
as individual particles, each of energy h�, rather
than as continuous waves, and he was able to
explain the conundrum posed by the photoelectric
effect by this means. Later, in 1923, Prince Louis de
Broglie proposed that, conversely, all particles
behave like waves, the energy being Planck’s �h�
and the momentum being h��1, where � is the
wavelength, which was later strikingly confirmed in
a famous experiment of Davisson and Germer in
1927. Some years earlier, in 1913, Niels Bohr had
used another aspect of this curious quantum
‘‘discreteness,’’ explaining the stable electron orbits
in hydrogen by the assumption that (orbital) angular
momentum must be quantized in units of �h(= h=2�).

All this provided a very remarkable collection of
facts and concepts, albeit somewhat disjointed,
explaining a variety of previously baffling physical
phenomena, where a certain discreteness seemed to
be entering Nature at a fundamental level, where
previously there had been continuity, and where
there was an overriding theme of a confusion as to
whether – or in what circumstances – waves or
particles provide better pictures of reality. More-
over, no clear and consistent picture of an actual
‘‘quantum-level reality’’ as yet seemed to arise out of
all this. Then, in 1925, Heisenberg introduced his
‘‘matrix mechanics,’’ subsequently developed into a
more complete theory by Born, Heisenberg and
Jordan, and then more fully by Dirac. Some six
months after Heisenberg, in 1926, Schrödinger
introduced his very different-looking ‘‘wave
mechanics,’’ which he subsequently showed was
equivalent to Heisenberg’s scheme. These became
encompassed into a comprehensive framework
through the transformation theory of Dirac, which
he put together in his famous book The Principles of
Quantum Mechanics, first published in 1930. Later,
von Neumann set the framework on a more rigorous
basis in his 1932 book, Mathematische Grundlageen
der Quantenmechanik (later translated as Mathe-
matical Foundations of Quantum Mechanics, 1955).

This formalism, now well known to physicists, is
based on the presence of a quantum state j i
(Dirac’s ‘‘ket’’ notation being adopted here). In
Schrödinger’s description, j i is to evolve by unitary
evolution, according to the Schrödinger equation

i�h
@j i
@t
¼ Hj i

where H is the quantum Hamiltonian. The totality of
allowable states j i constitutes a Hilbert space H
and the Schrödinger equation provides a continuous
one-parameter family of unitary transformations of H.
The letter U is used here for the ‘‘quantum-level’’
evolution whereby the state j i evolves in time
according to this unitary Schrödinger evolution.
However, we must be careful not to demand an
interpretation of this evolution similar to that
which we adopt for a classical theory, such as is
provided by Maxwell’s equations for the electro-
magnetic field. In Maxwell’s theory, the evolution
that his equations provide is accepted as very
closely mirroring the actual way in which a
physically real electromagnetic field evolves with
time. In quantum mechanics, however, it is a highly
contentious matter how we should regard the
‘‘reality’’ of the unitarily evolving state j i.

One of the key difficulties resides in the fact that
the world that we actually observe about us rather
blatantly does not accord with such a unitarily
evolving j i. Indeed, the standard way that the
quantum formalism is to be interpreted is very far
from the mere following of such a picture. So long
as no ‘‘measurement’’ is deemed to have been taking
place, this U-evolution procedure would be adopted,
but upon measurement, the state is taken to behave
in a very different way, namely to ‘‘jump’’ instanta-
neously to some eigenstate j�i of the quantum
operator Q which is taken to represent the measure-
ment, with probability given by the Born rule

jh�j ij2

if we assume that both j i and j�i are normalized
(h j i= 1 = h�j�i); otherwise we can express this
probability simply as

h�j ih j�i
h j ih�j�i

(The operator Q is normally taken to be self-adjoint,
so that Q = Q� and its eigenvalues are real, but more
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generally complex eigenvalues are accommodated if
we allow Q to be normal, that is, QQ�= Q�Q. In
each case we require the eigenvectors of Q to span
the Hilbert space H.) This ‘‘evolution procedure’’ of
the quantum state is very different from U , owing
both to its discontinuity and its indeterminacy. The
letter R will be used for this, standing for the
‘‘reduction’’ of the quantum state (sometimes referred
to as the ‘‘collapse of the wave function’’). This
strange hybrid, whereby U and R are alternated, with
U holding between measurements and R holding at
measurements, is the standard procedure that is
pragmatically adopted in conventional quantum
mechanics, and which works so marvelously well,
with no known discrepancy between the theory and
observation. (In his classic account, von Neumann
(1932, 1955), ‘‘R’’ is referred to as his ‘‘process I’’
and ‘‘U ’’ as his ‘‘process II.’’) However, there appears
to be no consensus whatever about the relation
between this mathematical procedure and what is
‘‘really’’ going on in the physical world. This is the
kind of issue that will be of concern to us here.
Quantum Reality

The discussion here will be given only in the
Schrödinger picture, for the reason that the issues
appear to be clearer with this description. In the
Heisenberg picture, the state j i does not evolve in
time, and all dynamics is taken up in the time
evolution of the dynamical variables. But this
evolution does not refer to the evolution of specific
systems, the ‘‘state’’ of any particular system being
defined to remain constant in time. Since the
Schrödinger and Heisenberg pictures are deemed to
be equivalent (at least for the ‘‘normal’’ systems that
are under consideration here), we do not lose
anything substantial by sticking to Schrödinger’s
description, whereas there does seem to be a
significant gain in understanding of what the
formalism is actually telling us.

There are, however, many different attitudes that
are expressed as to the ‘‘reality’’ of j i. (There is an
unfortunate possibility of confusion here in the two
uses of the word ‘‘real’’ that come into the discussion
here. In the quantum formalism, the state is mathe-
matically a ‘‘complex’’ rather than a ‘‘real’’ entity,
whereas our present concern is not directly to do
with this, but with the ‘‘ontology’’ of the quantum
description.) According to what is commonly regarded
as the standard – ‘‘Copenhagen’’ – interpretation of
quantum mechanics (due primarily to Bohr,
Heisenberg, and Pauli), the quantum state j i is not
taken as a description of a quantum-level reality at all,
but merely as a description of the observer’s
knowledge of the of the quantum system under
consideration. According to this view, the ‘‘jumping’’
that the quantum state undergoes is regarded as
unsurprising, since it does not represent a sudden
change in the reality of the situation, but merely in the
observer’s knowledge, as new information becomes
available, when the result of some measurement
becomes known to the observer. According to this
view, there is no objective quantum reality described
by j i. Whether or not there might be some objective
quantum-level reality with some other mathematical
description seems to be left open by this viewpoint, but
the impression given is that there might well not be any
such quantum-level reality at all, in the sense that it
becomes meaningless to ask for a description of
‘‘actual reality’’ at quantum-relevant scales.

Of course some connection with the real world is
necessary, in order that the quantum formalism can
relate to the results of experiment. In the Copenha-
gen viewpoint, the experimenter’s measuring appa-
ratus is taken to be a classical-level entity, which can
be ascribed a real ontological status. When the
Geiger counter ‘‘clicks’’ or when the pointer
‘‘points’’ to some position on a dial, or when the
track in the cloud chamber ‘‘becomes visible’’ –
these are taken to be real events. The intervening
description in terms of a quantum state vector j i is
not ascribed a reality. The role of j i is merely to
provide a calculational procedure whereby the
different outcomes of an experiment can be assigned
probabilities. Reality comes about only when the
result of the measurement is manifested, not before.

A difficulty with this viewpoint is that it is hard to
draw a clear line between those entities which are
considered to have an actual reality, such as the
experimental apparatus or a human observer, and
the elemental constituents of those entities, which
are such things as electrons or protons or neutrons
or quarks, which are to be treated quantum
mechanically and therefore, on the ‘‘Copenhagen’’
view, their mathematical descriptions are denied
such an honored ontological status. Moreover, there
is no limit to the number of particles that can
partake in a quantum state. According to current
quantum mechanics, the most accurate mathemati-
cal procedure for describing a system with a large
number of particles would indeed be to use a
unitarily evolving quantum state. What reasons can
be presented for or against the viewpoint that this
gives us a reasonable description of an actual
reality? Can our perceived reality arise as some
kind of statistical limit when very large numbers of
constituents are involved?

Before entering into the more subtle and con-
tentious issues of the nature of ‘‘quantum reality,’’ it
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is appropriate that one of the very basic mathema-
tical aspects of the quantum formalism be addressed
first. It is an accepted aspect of the quantum
formalism that a state-vector such as j i should
not, in any case, be thought of as providing a unique
mathematical description of a ‘‘physical reality’’ for
the simple reason that j i and zj i, where z is any
nonzero complex number, describe precisely the
same physical situation. It is a common, but not
really necessary, practice to demand that j i be
normalized to unity: h j i= 1, in which case the
freedom in j i is reduced to the multiplication by a
phase factor j i 7! ei�j i. Either way, the physically
distinguishable states constitute a projective Hilbert
space PH, where each point of PH corresponds to a
one-dimensional linear subspace of the Hilbert space
H. The issue, therefore, is whether quantum reality
can be described in terms of the points of a
projective Hilbert space PH.

Reality in Spin-1/2 Systems

As a general comment, it seems that for systems with a
small number of degrees of freedom – that is, for a
Hilbert space Hn of small finite dimension n – it seems
more reasonable to assign a reality to the elements of
PHn than is the case when n is large. Let us begin with
a particularly simple case, where n = 2, and H2

describes the two-dimensional space of spin states of
a massive particle of spin 1/2, such as an electron,
proton, or quark, or suitable atom. Here we can take
as an orthonormal pair of basis states jÆi and j�i,
representing right-handed spin about the ‘‘up’’ and
‘‘down’’ directions, respectively. Clearly there is
nothing special about these particular directions, so
any other state of spin, of direction j�i say, is just as
‘‘real’’ as the original two. Indeed, we always find

j�i ¼ wjÆi þ zj�i

for some pair of complex numbers z and w (not both
zero). The different possible ratios z : w give us a
complex plane (of zw�1) compactified by a point at
infinity (where w = 0) – a ‘‘Riemann sphere’’ – which is
a realization of the complex projective 1-space PH2.

There does indeed seem to be something ‘‘real’’
about the spin state of such a spin-1/2 particle or
atom. We might imagine preparing the spin of
a suitable spin-1/2 atom using a Stern–Gerlach
apparatus (see Introductory Article: Quantum
Mechanics) oriented in some chosen direction. The
atom seems to ‘‘know’’ the direction of its spin,
because if we measure it again in the same direction
it has to be prepared to give us the answer ‘‘YES,’’ to
the second measurement, with certainty, and that
direction for its spin state is the only one that can
guarantee this answer. (We are, of course, consider-
ing only ‘‘ideal’’ measurements, for the purpose of
argument.) Moreover, we could imagine that
between the two measurements, some appropriate
magnetic field had been introduced so as to rotate
the spin direction in some very specific way, so that
the spin state is now some other direction such as
jÇi. By rotating our second Stern–Gerlach apparatus
to agree with this new direction, we must again get
certainty for the YES answer, the guaranteeing of
this by the rotated state seeming now to give a
‘‘reality’’ to this new state jÇi. The quantum
formalism does not allow us to ascertain an
unknown direction of spin. But it does allow for us
to ‘‘confirm’’ (or ‘‘refute’’) a proposed direction for
the spin state, in the sense that if the proposed
direction is incorrect, then there is a nonzero
probability of refutation. Only the correct direction
can be guaranteed to give the YES answer.
EPR–Bohm and Bell’s Theorem

For a pair of particles or atoms of spin 1/2, the issue
of the ‘‘reality’’ of spin states becomes less clear.
Consider, for example, the EPR–Bohm example
(where ‘‘EPR’’ stands for Einstein–Podolski–Rosen)
whereby an initial state of spin 0 decays into two
spin-1/2 atoms, traveling in opposite directions (east
E, and west W). If a suitable Stern–Gerlach apparatus
is set up to measure the spin of the atom at E, finding
an answer jÇi, say, then this immediately ensures
that the state at W is the oppositely pointing jªi,
which can subsequently be ‘‘confirmed’’ by measure-
ment at W. This, then, seems to provide a ‘‘reality’’
for the spin state jªi at W as soon as the E
measurement has been performed, but not before.
Now, let us suppose that some orientation different
from ª had actually been set up for the measurement
at W, namely that which would have given YES for
the direction �. This measurement can certainly give
the answer YES upon encountering jªi (with a
certain nonzero probability, namely (1þ cos �)=2,
where � is the angle between ª and �). So far, this
provides us with no problem with the ‘‘reality’’ of the
spin state of the atom at W, since it would have been
jªi before the measurement at W and would have
‘‘collapsed’’ (by the R-process) to j�i after the
measurement. But now suppose that the measure-
ment at W had actually been performed momentarily
before the measurement at E, rather than just
after it. Then there is no reason that the
W-measurement would encounter jªi, rather than
some other direction, but the result j�i of the
measurement at W now seems to force the state at
E to be j�i. Indeed, the two measurements, at E and
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at W, might have been spacelike separated, and
because of the requirements of special relativity there
would be no meaning to say which of the two
measurements – at E or at W – had ‘‘actually’’
occurred first. One seems to obtain a different picture
of ‘‘reality’’ depending on this ordering.

In fact, the calculations of probabilities come out
the same whichever picture is used, so if one asks
only for a calculational procedure for the probabil-
ities, rather than an actual picture of quantum
reality, these considerations are not problematic. But
they do provide profound difficulties for any view of
quantum reality that is entirely local. The difficulty
is made particularly clear in a theorem due to John
Bell (1964, 1966a, b) which showed that on the
basis of the assumptions of local realism, there are
particular relations between the conditional prob-
abilities, which must hold in any situation of this
kind; moreover, these inequalities can be violated in
various situations in standard quantum mechanics.
(See, most specifically, Clauser et al. (1969).) Several
experiments that were subsequently performed
(notably Aspect et al. (1982)) confirmed the expec-
tations of quantum mechanics, thereby presenting
profound difficulties for any local realistic model of
the world. There are also situations of this kind
which involve only yes/no questions, so that actual
probabilities do not need to be considered, see
Kochen and Specker (1967), Peres (1991), Hardy
(1993), Conway and Kochen (2002). Basically: if
one insists on realism, then one must give up
locality. Moreover, nonlocal realistic models, con-
sistent with the requirements of special relativity, are
not easy to construct (see Quantum Mechanics:
Generalizations), and have so far proved elusive.
Other Aspects of Quantum Nonlocality

Problems of this kind occur even at the more
elementary level of single particles, if one tries to
consider that an ordinary particle wave function
(position-space description of j i) might be just
some kind of ‘‘local disturbance,’’ like an ordinary
classical wave. Consider the wave function spread-
ing out from a localized source, to be detected at a
perpendicular screen some distance away. The
detection of the particle at any one place on the
screen immediately forbids the detection of that
particle at any other place on the screen, and if we
are to think of this information as being transmitted
as a classical signal to all other places on the screen,
then we are confronted with problems of super-
luminary communication. Again, any ‘‘realistic’’
picture of this process would require nonlocal
ingredients, which are difficult to square with the
requirements of special relativity. (It is possible that
these difficulties might be resolved within some kind
of nonlocal geometry, such as that supplied by
twistor theory (see Twistors; Twistor Theory: Some
Applications); see, particularly, Penrose (2005).)

These types of issues are made even more dramatic
and problematic in the procedure of ‘‘quantum
teleportation,’’ whereby the information in a quantum
state (e.g., the unknown actual direction � in some
quantum state j�i) can be transported from one
experimenter A to another one B, by merely
the sending of a small finite number of classical bits
of information from A to B, where before this classical
information is transmitted, A and B must each be in
possession of one member of an EPR pair. More
explicitly, we may suppose A (Alice) is presented with
a spin-1/2 state j�i, but is not told the direction �. She
has in her possession another spin-1/2 state which is an
EPR–Bohm partner of a spin-1/2 state in the posses-
sion of B (Bob). She combines this j�i with her EPR
atom and then performs a measurement which
distinguishes the four orthogonal ‘‘Bell states’’

0: jÆij�i � j�ijÆi
1: jÆijÆi � j�ij�i
2: jÆijÆi þ j�ij�i
3: jÆij�i þ j�ijÆi

where the first state in each product refers to her
unknown state and the second refers to her EPR
atom. The result of this measurement is conveyed to
Bob by an ordinary classical signal, coded by the
indicated numbers 0, 1, 2, 3. On receiving Alice’s
message, Bob takes the other member of the EPR
pair and performs the following rotation on it:

0: leave alone

1: 180� about x-axis

2: 180� about y-axis

3: 180� about z-axis

This achieves the successful ‘‘teleporting’’ of j�i
from A to B, despite the fact that only 2 bits of
classical information have been signaled. It is the
acausal EPR–Bohm connection that provides the
transmission of ‘‘quantum information’’ in a classi-
cally acausal way. Again, we see the essentially
nonlocal (or acausal) nature of any attempted
‘‘realistic’’ picture of quantum phenomena. It may
be regarded as inappropriate to use the term
‘‘information’’ for something that is propagated
acausally and cannot be directly used for signaling.
It has been suggested, accordingly, that a term such
as ‘‘quanglement’’ might be more appropriate to use
for this concept; see Penrose (2002, 2004).
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The preceding arguments illustrate how quantum
systems involving even just a few particles can exhibit
features quite unlike the ordinary behavior of classical
particles. This was pointed out by Schrödinger (1935),
and he referred to this key property of composite
quantum systems as ‘‘entanglement.’’ An entangled
quantum state (vector) is an element of a product
Hilbert space Hm� Hn which cannot be written as a
tensor product of elements j ij�i, with j i2 Hm and
j�i2 Hn, where Hm refers to one part of the system and
Hn refers to another part, usually taken to be physically
widely separated from the first. EPR systems are a
clear example, and we begin to see very nonclassical,
effectively nonlocal behavior with entangled systems
generally. A puzzling aspect of this is that the vast
majority of states are indeed entangled, and the more
parts that a system has, the more entangled it becomes
(where the generalization of this notion to more than
two parts is evident). One might have expected that
‘‘big’’ quantum systems with large numbers of parts
ought to behave more and more like classical systems
when they get larger and more complicated. However,
we see that this is very far from being the case. There is
no good reason why a large quantum system, left on its
own to evolve simply according to U should actually
resemble a classical system, except in very special
circumstances. Something of the nature of the R
process seems to be needed in order that classical
behaviour can ‘‘emerge.’’
Schrödinger’s Cat

To clarify the nature of the problem we must consider a
key feature of the U formalism, namely ‘‘linearity,’’
which is supposed to hold no matter how large or
complicated is the quantum system under considera-
tion. Recall the quantum superposition principle, which
allows us to construct arbitrary combinations of states

j i ¼ wj�i þ zj�i

from two given states j�i and j�i. Quantum linearity
tells us that if

j�i j�0i and j�i j�0i

where the symbol ‘‘ ’’ expresses how a state will
have evolved after a specified time period T, then

j i ¼ wj�i þ zj�i j 0i ¼ wj�0i þ zj�0i

Let us now consider how this might be applied in
a particular, rather outlandish situation. Let us
suppose that the j�i-evolution consists of a photon
going in one direction, encountering a detector,
which is connected to some murderous device which
kills a cat. The j�i-evolution, on the other hand,
consists of the photon going in some other direction,
missing the detector so that the murderous device is
not activated, and the cat is left alive. These two
alternatives would each be perfectly plausible
evolutions which might take place in the physical
world. Now, by use of a beam splitter (effectively a
‘‘half-silvered mirror’’) we can easily arrange for the
initial state of the photon to be the superposition
wj�i þ zj�i of the two. Then by quantum linearity
we find, as the final result, the superposed state
wj�0i þ zj�0i, in which the cat is in a superposition
of life and death (a ‘‘Schrödinger’s cat’’).

We note that the two individual final states j�0i
and j�0i would each involve not just the cat but also
its environment, fully entangled with the cat’s state,
and perhaps also some human observer looking at
the cat. In the latter case, j�0i would involve the
observer in a state of unhappily perceiving a dead
cat, and j�0i happily perceiving a live one. Two of
the ‘‘conventional standpoints’’ with regard to the
measurement problem are of relevance here. Accord-
ing to the standpoint of environmental decoherence,
the details of the environmental degrees of freedom
are completely inaccessible, and it is deemed to be
appropriate to construct a density matrix to describe
the situation, which is a partial trace D of the
quantity j ih j, constructed by tracing out over all
the environmental degrees of freedom:

D ¼ trace over environmentfj ih jg

The density matrix tends to be regarded as a more
appropriate quantity than the ket jyi to represent
the physical situation, although this represents
something of an ‘‘ontology shift’’ from the point of
view that was being held previously. Under appro-
priate assumptions, D may now be shown to attain a
form that is close to being diagonal in a basis with
respect to which the cat is either dead or alive, and
then, by a second ‘‘ontology shift’’ D is re-read as
describing a probability mixture of these two states.

According to the second ‘‘conventional standpoint’’
under consideration here, it is not logical to take this
detour through a density-matrix description, and
instead one should maintain a consistent ontology by
following the evolution of the state j i itself through-
out. The ‘‘real’’ resulting physical state is then taken to
be actually j 0i, which involves the superposition of a
dead and live cat. Of course this ‘‘reality’’ does not agree
with the reality that we actually perceive, so the position
is taken that a conscious mind would not actually be
able to function in such a superposed condition, and
would have to settle into a state of perception of either a
dead cat or a live one, these two alternatives occurring
with probabilities as given by the Born rule stated
above. It may be argued that this conclusion depends
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upon some appropriate theory of how conscious minds
actually perceive things, and this appears to be lacking.

A good many physicists might argue that none of
these attempts at resolution of the measurement
problem is satisfactory, including ‘‘Copenhagen,’’
although the latter at least has the advantage of
offering a pragmatic, if not fully logical, stance. Such
physicists might take the position that it is necessary
to move away from the precise version of quantum
theory that we have at present, and turn to one of its
modifications. Some major candidates for modifica-
tion are discussed in Quantum Mechanics: General-
izations. Most of these actually make predictions
that, at some stage, would differ from those of
standard quantum mechanics. So it becomes an
experimental matter to ascertain the plausibility of
these schemes. In addition, there are reinterpretations
which do not change quantum theory’s predictions,
such as the de Broglie–Bohm model. In this, there are
two levels of ‘‘reality,’’ a firmer one with a particle or
position-space ontology, and a secondary one con-
taining waves which guide the behavior at the firmer
level. It is clear, however, that these issues will
remain the subject of debate for many years to come.

See also: Functional Integration in Quantum Physics;
Normal Forms and Semiclassical Approximation;
Quantum Mechanics: Generalizations; Twistor Theory:
Some Applications [In Integrable Systems, Complex
Geometry and String Theory]; Twistors.
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Introduction

According to the so-called ‘‘Copenhagen Interpreta-
tion,’’ standard quantum theory is limited to describ-
ing experimental situations. It is at once remarkably
successful in its predictions, and remarkably ill-defined
in its conceptual structure: what is an experiment?
what physical objects do or do not require
quantization? how are the states realized in nature to
be characterized? how and when is the wave-function
‘‘collapse postulate’’ to be invoked? Because of its
success, one may suspect that quantum theory can be
promoted from a theory of measurement to a theory
of reality. But, that requires there to be an unambig-
uous specification (S) of the possible real states of
nature and their probabilities of being realized.

There are several approaches that attempt to
achieve S. The more conservative approaches (e.g.,
consistent histories, environmental decoherence,
many worlds) do not produce any predictions that
differ from the standard ones because they do not
tamper with the usual basic mathematical



formalism. Rather, they utilize structures compatible
with standard quantum theory to elucidate S. These
approaches, which will not be discussed in this
article, have arguably been less successful so far at
achieving S than approaches that introduce
significant alterations to quantum theory.

This article will largely deal with the two most
well-developed realistic models that reproduce
quantum theory in some limit and yield potentially
new and testable physics outside that limit. First, the
pilot-wave model, which will be discussed in the
broader context of ‘‘hidden-variables theories.’’
Second, the continuous spontaneous localization
(CSL) model, which describes wave-function col-
lapse as a physical process. Other related models
will also be discussed briefly.

Due to bibliographic space limitations, this article
contains a number of uncited references, of the form
‘‘[author] in [year].’’ Those in the next section can
be found in Valentini (2002b, 2004a,b) or at
www.arxiv.org. Those in the subsequent sections
can be found in Adler (2004), Bassi and Ghirardi
(2003), Pearle (1999) (or in subsequent papers by
these authors, or directly, at www.arxiv.org), and in
Wallstrom (1994).

Hidden Variables and Quantum
Nonequilibrium

A deterministic hidden-variables theory defines a
mapping !=!(M,�) from initial hidden parameters
� (defined, e.g., at the time of preparation of a
quantum state) to final outcomes ! of quantum
measurements. The mapping depends on macro-
scopic experimental settings M, and fixes the out-
come for each run of the experiment. Bell’s theorem
of 1964 shows that, for entangled quantum states of
widely separated systems, the mapping must be
nonlocal: some outcomes for (at least) one system
must depend on the setting for another distant
system.

In a viable theory, the statistics of quantum
measurement outcomes – over an ensemble of
experimental trials with fixed settings M – will
agree with quantum theory for some special dis-
tribution �QT(�) of hidden variables. For example,
expectation values will coincide with the predictions
of the Born rule

h!iQT �
Z

d� �QTð�Þ!ðM; �Þ ¼ trð�̂�̂Þ

for an appropriate density operator �̂ and Hermi-
tian observable �̂. (As is customary in this context,R

d� is to be understood as a generalized sum.)

However, given the mapping !=!(M,�) for indi-
vidual trials, one may, in principle, consider
nonstandard distributions �(�) 6¼ �QT(�) that yield
statistics outside the domain of ordinary quantum
theory (Valentini 1991, 2002a). We may say that
such distributions correspond to a state of quantum
nonequilibrium.

Quantum nonequilibrium is characterized by the
breakdown of a number of basic quantum con-
straints. In particular, nonlocal signals appear at the
statistical level. We shall first illustrate this for the
hidden-variables model of de Broglie and Bohm.
Then we shall generalize the discussion to all
(deterministic) hidden-variables theories.

At present there is no experimental evidence for
quantum nonequilibrium in nature. However, from
a hidden-variables perspective, it is natural to
explore the theoretical properties of nonequilibrium
distributions, and to search experimentally for the
statistical anomalies associated with them.

From this point of view, quantum theory is a
special case of a wider physics, much as thermal
physics is a special case of a wider (nonequilibrium)
physics. (The special distribution �QT(�) is analo-
gous to, say, Maxwell’s distribution of molecular
speeds.) Quantum physics may be compared with
the physics of global thermal equilibrium, which is
characterized by constraints – such as the impossi-
bility of converting heat into work (in the absence of
temperature differences) – that are not fundamental
but contingent on the state. Similarly, quantum
constraints such as statistical locality (the impossi-
bility of converting entanglement into a practical
signal) are seen as contingencies of �QT(�).

Pilot-Wave Theory

The de Broglie–Bohm ‘‘pilot-wave theory’’ – as it
was originally called by de Broglie, who first
presented it at the Fifth Solvay Congress in 1927 –
is the classic example of a deterministic hidden-
variables theory of broad scope (Bohm 1952, Bell
1987, Holland 1993). We shall use it to illustrate the
above ideas. Later, the discussion will be generalized
to arbitrary theories.

In pilot-wave dynamics, an individual closed
system with (configuration-space) wave function
�(X, t) satisfying the Schrödinger equation

i�h
@�

@t
¼ Ĥ� ½1�

has an actual configuration X(t) with velocity

_XðtÞ ¼ JðX; tÞ
j�ðX; tÞj2

½2�
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where J = J[�] = J(X, t) satisfies the continuity
equation

@j�j2

@t
þr � J ¼ 0 ½3�

(which follows from [1]). In quantum theory, J is the
‘‘probability current.’’ In pilot-wave theory, � is an
objective physical field (on configuration space)
guiding the motion of an individual system.

Here, the objective state (or ontology) for a closed
system is given by � and X. A probability distribu-
tion for X – discussed below – completes an
unambiguous specification S (as mentioned in the
introduction).

Pilot-wave dynamics may be applied to any
quantum system with a locally conserved current in
configuration space. Thus, X may represent a many-
body system, or the configuration of a continuous
field, or perhaps some other entity.

For example, at low energies, for a system of N
particles with positions xi(t) and masses
mi (i = 1, 2, . . . , N), with an external potential V,
[1] (with X � (x1, x2, . . . , xN)) reads

i�h
@�

@t
¼
XN
i¼1

� �h2

2mi
r2

i �þ V� ½4�

while [2] has components

dxi

dt
¼ �h

mi
Im
ri�

�

� �
¼ riS

mi
½5�

(where � = j�je(i=�h)S).
In general, [1] and [2] determine X(t) for an

individual system, given the initial conditions
X(0), �(X, 0) at t = 0. For an arbitrary initial
distribution P(X, 0), over an ensemble with the
same wave function �(X, 0), the evolution P(X, t)
of the distribution is given by the continuity
equation

@P

@t
þr � ðP _XÞ ¼ 0 ½6�

The outcome of an experiment is determined by
X(0), �(X, 0), which may be identified with �. For
an ensemble with the same �(X, 0), we have
�= X(0).

Quantum equilibrium From [3] and [6], if we
assume P(X, 0) = j�(X, 0)j2 at t = 0, we obtain
P(X, t) = j�(X, t)j2 – the Born-rule distribution of
configurations – at all times t.

Quantum measurements are, like any other
process, described and explained in terms of evol-
ving configurations. For measurement devices whose
pointer readings reduce to configurations, the

distribution of outcomes of quantum measurements
will match the statistical predictions of quantum
theory (Bohm 1952, Bell 1987, Dürr et al. 2003).
Thus, quantum theory emerges phenomenologically
for a ‘‘quantum equilibrium’’ ensemble with
distribution P(X, t) = j�(X, t)j2 (or �(�) = �QT(�)).

Quantum nonequilibrium In principle, as we saw
for general hidden-variables theories, we may con-
sider a nonequilibrium distribution P(X, 0) 6¼
j�(X, 0)j2 of initial configurations while retaining
the same deterministic dynamics [1], [2] for indivi-
dual systems (Valentini 1991). The time evolution of
P(X, t) will be determined by [6].

As we shall see, in appropriate circumstances
(with a sufficiently complicated velocity field _X), [6]
generates relaxation P!j�j2 on a coarse-grained
level, much as the analogous classical evolution on
phase space generates thermal relaxation. But for as
long as the ensemble is in nonequilibrium, the
statistics of outcomes of quantum measurements
will disagree with quantum theory.

Quantum nonequilibrium may have existed in the
very early universe, with relaxation to equilibrium
occurring soon after the big bang. Thus, a hidden-
variables analog of the classical thermodynamic
‘‘heat death of the universe’’ may have actually
taken place (Valentini 1991). Even so, relic cosmo-
logical particles that decoupled sufficiently early
could still be in nonequilibrium today, as suggested
by Valentini in 1996 and 2001. It has also been
speculated that nonequilibrium could be generated
in systems entangled with degrees of freedom behind
a black-hole event horizon (Valentini 2004a).

Experimental searches for nonequilibrium have
been proposed. Nonequilibrium could be detected
by the statistical analysis of random samples of
particles taken from a parent population of (for
example) relics from the early universe. Once the
parent distribution is known, the rest of the popula-
tion could be used as a resource, to perform tasks
that are currently impossible (Valentini 2002b).

H-Theorem: Relaxation to Equilibrium

Before discussing the potential uses of nonequili-
brium, we should first explain why all systems
probed so far have been found in the equilibrium
state P = j�j2. This distribution may be accounted
for along the lines of classical statistical mechanics,
noting that all currently accessible systems have had
a long and violent astrophysical history.

Dividing configuration space into small cells, and

introducing coarse-grained quantities �P, j�j2, a gen-

eral argument for relaxation �P!j�j2 is based on an
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analog of the classical coarse-graining H-theorem.
The coarse-grained H-function

�H ¼
Z

dX �P lnð�P=j�j2Þ ½7�

(minus the relative entropy of �P with respect to
j�j2) obeys the H-theorem (Valentini 1991)

�HðtÞ � �Hð0Þ

(assuming no initial fine-grained microstructure in P

and j�j2). Here, �H � 0 for all �P, j�j2 and �H = 0 if

and only if �P = j�j2 everywhere.
The H-theorem expresses the fact that P and j�j2

behave like two ‘‘fluids’’ that are ‘‘stirred’’ by the same
velocity field _X, so that P and j�j2 tend to become
indistinguishable on a coarse-grained level. Like its
classical analog, the theorem provides a general
understanding of how equilibrium is approached,
while not proving that equilibrium is actually
reached. (And of course, for some simple systems –
such as a particle in the ground state of a box, for
which the velocity field rS=m vanishes – there is no
relaxation at all.) A strict decrease of �H(t) immedi-
ately after t = 0 is guaranteed if _X0 � r(P0=j�0j2) has
nonzero spatial variance over a coarse-graining cell,
as shown by Valentini in 1992 and 2001.

A relaxation timescale � may be defined by
1=�2 � �(d2 �H=dt2)0= �H0. For a single particle with
quantum energy spread �E, a crude estimate given
by Valentini in 2001 yields � � (1=")�h2=m1=2(�E)3=2,
where " is the coarse-graining length. For wave
functions that are superpositions of many energy
eigenfunctions, the velocity field (generally) varies
rapidly, and detailed numerical simulations (in two
dimensions) show that relaxation occurs with an
approximately exponential decay �H(t) 	 �H0e�t=tc ,
with a time constant tc of order � (Valentini and
Westman 2005).

Equilibrium is then to be expected for particles
emerging from the violence of the big bang. The
possibility is still open that relics from very early
times may not have reached equilibrium before
decoupling.

Nonlocal Signaling

We now show how nonequilibrium, if it were ever
discovered, could be used for nonlocal signaling.

Pilot-wave dynamics is nonlocal. For a pair of
particles A, B with entangled wave function
�(xA, xB, t), the velocity _xA(t) =rAS(xA, xB, t)=mA

of A depends instantaneously on xB, and local
operations at B – such as switching on a potential –
instantaneously affect the motion of A. For an

ensemble P(xA, xB, t) = j�(xA, xB, t)j2, local opera-
tions at B have no statistical effect at A: the
individual nonlocal effects vanish upon averaging
over an equilibrium ensemble.

Nonlocality is (generally) hidden by statistical
noise only in quantum equilibrium. If instead
P(xA, xB, 0) 6¼ j�(xA, xB, 0)j2, a local change in the
Hamiltonian at B generally induces an instan-
taneous change in the marginal pA(xA, t) �R

d3xBP(xA, xB, t) at A. For example, in one dimen-
sion a sudden change ĤB! Ĥ0B in the Hamiltonian
at B induces a change �pA� pA(xA, t)� pA(xA, 0)
(for small t) (Valentini 1991),

�pA ¼ �
t2

4m

@

@xA

�
aðxAÞ

Z
dxB bðxBÞ


 PðxA; xB; 0Þ � j�ðxA; xB; 0Þj2

j�ðxA; xB; 0Þj2

�
½8�

(Here mA = mB = m, a(xA) depends on �(xA, xB, 0),
while b(xB) also depends on Ĥ0B and vanishes if
Ĥ0B = ĤB.) The signal is generally nonzero if
P0 6¼ j�0j2.

Nonlocal signals do not lead to causal paradoxes
if, at the hidden-variable level, there is a preferred
foliation of spacetime with a time parameter that
defines a fundamental causal sequence. Such sig-
nals, if they were observed, would define an
absolute simultaneity as discussed by Valentini in
1992 and 2005. Note that in pilot-wave field
theory, Lorentz invariance emerges as a phenom-
enological symmetry of the equilibrium state,
conditional on the structure of the field-theoretical
Hamiltonian (as discussed by Bohm and Hiley in
1984, Bohm, Hiley and Kaloyerou in 1987, and
Valentini in 1992 and 1996).

Subquantum Measurement

In principle, nonequilibrium particles could also be
used to perform ‘‘subquantum measurements’’ on
ordinary, equilibrium systems. We illustrate this
with an exactly solvable one-dimensional model
(Valentini 2002b).

Consider an apparatus ‘‘pointer’’ coordinate y,
with known wave function g0(y) and known
(ensemble) distribution �0(y) 6¼ g0(y)j j2, where �0(y)
has been deduced by statistical analysis of random
samples from a parent population with known wave
function g0(y). (We assume that relaxation may be
neglected: for example, if g0 is a box ground state,
_y = 0 and �0(y) is static.) Consider also a ‘‘system’’
coordinate x with known wave function  0(x) and
known distribution �0(x) =  0(x)j j2. If �0(y) is
arbitrarily narrow, x0 can be measured without
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disturbing  0(x), to arbitrary accuracy (violating the
uncertainty principle).

To do this, at t = 0 we switch on an interaction
Hamiltonian Ĥ = ax̂p̂y, where a is a constant and py

is canonically conjugate to y. For relatively large a,
we may neglect the Hamiltonians of x and y. For
� = �(x, y, t), we then have @�=@t =�ax@�=@y.
For �j j2 we have the continuity equation @j�j2=@t =
�ax@ �j j2=@y, which implies the hidden-variable
velocity fields _x = 0, _y = ax and trajectories x(t) = x0,
y(t) = y0 þ ax0t.

The initial product �0(x, y) = 0(x)g0(y) evolves
into �(x, y, t) = 0(x)g0(y� axt). For at! 0 (with a
large but fixed), �(x, y, t)! 0(x)g0(y) and  0(x) is
undisturbed: for small at, a standard quantum
pointer with the coordinate y would yield negligible
information about x0. Yet, for arbitrarily small at,
the hidden-variable pointer coordinate y(t) = y0 þ ax0t
does contain complete information about x0 (and
x(t) = x0). This ‘‘subquantum’’ information will be
visible to us if �0(y) is sufficiently narrow.

For, over an ensemble of similar experiments,
with initial joint distribution P0(x, y) =  0(x)j j2�0(y)
(equilibrium for x and nonequilibrium for y), the
continuity equation @P=@t =�ax@P=@y implies that
P(x, y, t) =  0(x)j j2�0(y� axt). If �0(y) is localized
around y = 0 (�0(y) = 0 for jyj > w=2), then a stan-
dard (faithful) measurement of y with result ymeas

will imply that x lies in the interval (ymeas=at �w=2at,
ymeas=at þw=2at) (so that P(x, y, t) 6¼ 0). Taking the
simultaneous limits at! 0, w! 0, with w=at! 0,
the midpoint ymeas=at! x0 (since ymeas = y0 þ ax0t
and y0j j � w=2), while the error w=2at! 0.

If w is arbitrarily small, a sequence of such
measurements will determine the hidden trajectory
x(t) without disturbing  (x, t), to arbitrary accuracy.

Subquantum Information and Computation

From a hidden-variables perspective, immense phy-
sical resources are hidden from us by equilibrium
statistical noise. Quantum nonequilibrium would
probably be as useful technologically as thermal or
chemical nonequilibrium.

Distinguishing nonorthogonal states In quantum
theory, nonorthogonal states  1j i,  2j i (h 1j 2i 6¼ 0)
cannot be distinguished without disturbing them.
This theorem breaks down in quantum nonequili-
brium (Valentini 2002b). For example, if  1j i,  2j i
are distinct states of a single spinless particle, then
the associated de Broglie–Bohm velocity fields will
in general be different, even if h 1j 2i 6¼ 0, and so
will the hidden-variable trajectories. Subquantum

measurement of the trajectories could then distin-
guish the states j 1i, j 2i.

Breaking quantum cryptography The security of
standard protocols for quantum key distribution
depends on the validity of the laws of quantum
theory. These protocols would become insecure
given the availability of nonequilibrium systems
(Valentini 2002b).

The protocols known as BB84 and B92 depend on
the impossibility of distinguishing nonorthogonal
quantum states without disturbing them. An eaves-
dropper in possession of nonequilibrium particles could
distinguish the nonorthogonal states being transmitted
between two parties, and so read the supposedly secret
key. Further, if subquantum measurements allow an
eavesdropper to predict quantum measurement out-
comes at each ‘‘wing’’ of a (bipartite) entangled state,
then the EPR (Einstein–Podolsky–Rosen) protocol also
becomes insecure.

Subquantum computation It has been suggested
that nonequilibrium physics would be computation-
ally more powerful than quantum theory, because of
the ability to distinguish nonorthogonal states
(Valentini 2002b). However, this ability depends
on the (less-than-quantum) dispersion w of the
nonequilibrium ensemble. A well-defined model of
computational complexity requires that the
resources be quantified in some way. Here, a key
question is how the required w scales with the size
of the computational task. So far, no rigorous results
are known.

Extension to All Deterministic
Hidden-Variables Theories

Let us now discuss arbitrary (deterministic) theories.

Nonlocal signaling Consider a pair of two-state
quantum systems A and B, which are widely
separated and in the singlet state. Quantum
measurements of observables �̂A � mA � ŝA, �̂B �
mB � ŝB (where mA, mB are unit vectors in Bloch
space and ŝA, ŝB are Pauli spin operators) yield
outcomes �A,�B =�1, in the ratio 1 : 1 at each
wing, with a correlation �̂A�̂Bh i=�mA �mB. Bell’s
theorem shows that for a hidden-variables theory to
reproduce this correlation – upon averaging over an
equilibrium ensemble with distribution �QT(�) – it
must take the nonlocal form

�A ¼ �AðmA;mB; �Þ; �B ¼ �BðmA;mB; �Þ ½9�

More precisely, to obtain �A�Bh iQT =�mA �mB

(where �A�Bh iQT�
R

d��QT(�)�A�B), at least one of
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�A,�B must depend on the measurement setting at
the distant wing. Without loss of generality, we
assume that �A depends on mB.

For an arbitrary nonequilibrium ensemble with
distribution �(�) 6¼ �QT(�), in general �A�Bh i �R

d� �(�)�A�B differs from �mA �mB, and the out-
comes �A,�B =�1 occur in a ratio different from 1 : 1.
Further, a change of setting mB!m0B at B will generally
induce a change in the outcome statistics at A, yielding a
nonlocal signal at the statistical level. To see this, note
that, in a nonlocal theory, the ‘‘transition sets’’

TAð�;þÞ � �j�AðmA;mB; �Þf ¼ �1;

�AðmA;m
0
B; �Þ ¼ þ1g

TAðþ;�Þ � �j�AðmA;mB; �Þf ¼ þ1;

�AðmA;m
0
B; �Þ ¼ �1g

cannot be empty for arbitrary settings. Yet, in quantum
equilibrium, the outcomes �A =�1 occur in the ratio
1 : 1 for all settings, so the transition sets must
have equal equilibrium measure, �QT[TA(�,þ)] =
�QT[TA(þ,�)] (d�QT � �QT(�)d�). That is, the
fraction of the equilibrium ensemble making the
transition �A =�1! �A =þ1 under mB!m0B must
equal the fraction making the reverse transition
�A =þ1! �A =�1. (This ‘‘detailed balancing’’ is
analogous to the principle of detailed balance in
statistical mechanics.) Since TA(�,þ), TA(þ,�) are
fixed by the deterministic mapping, they are indepen-
dent of the ensemble distribution �(�). Thus, for
�(�) 6¼ �QT(�), in general �[TA(�,þ)] 6¼ �[TA(þ,�)]
(d�� �(�)d�): the fraction of the nonequilibrium
ensemble making the transition �A =�1!�A =þ1
will not in general balance the fraction making the
reverse transition. The outcome ratio at A will then
change under mB!m0B and there will be an instanta-
neous signal at the statistical level from B to A
(Valentini 2002a).

Thus, in any deterministic hidden-variables
theory, nonequilibrium distributions �(�) 6¼ �QT(�)
generally allow entanglement to be used for non-
local signalling (just as, in ordinary statistical
physics, differences of temperature make it possible
to convert heat into work).

Experimental signature of nonequilibrium Quantum
expectations are additive, hc1�̂1 þ c2�̂2i= c1h�̂1iþ
c2h�̂2i, even for noncommuting observables
([�̂1, �̂2] 6¼ 0, with c1, c2 real). As emphasized by
Bell in 1966, this seemingly trivial consequence
of the (linearity of the) Born rule h�̂i= tr(�̂�̂) is
remarkable because it relates statistics from
distinct, ‘‘incompatible’’ experiments. In none-
quilibrium, such additivity generically breaks
down (Valentini 2004b).

Further, for a two-state system with observables
m � ŝ, the ‘‘dot-product’’ structure of the quantum
expectation m � ŝh i= tr(�̂m � ŝ) = m � P (for some
Bloch vector P) is equivalent to expectation
additivity (Valentini 2004b). Nonadditive expecta-
tions then provide a convenient signature of none-
quilibrium for any two-state system. For example,
the sinusoidal modulation of the quantum trans-
mission probability for a single photon through a
polarizer

pþQTð�Þ¼ 1
2 1þ m � ŝh ið Þ¼ 1

2 1þ P cos 2�ð Þ ½10�

(where an angle � on the Bloch sphere corresponds
to a physical angle � = �=2) will generically break
down in nonequilibrium. Deviations from [10]
would provide an unambiguous violation of quan-
tum theory (Valentini 2004b).

Such deviations were searched for by Papaliolios
in 1967, using laboratory photons and successive
polarization measurements over very short times, to
test a hidden-variables theory (distinct from pilot-
wave theory) due to Bohm and Bub (1966), in which
quantum measurements generate nonequilibrium for
short times. Experimentally, successive measure-
ments over timescales �10�13 s agreed with the
(quantum) sinusoidal modulation cos2 � to <�1%.
Similar tests might be performed with photons of a
more exotic origin.

Continuous Spontaneous Localization
Model (CSL)

The basic postulate of CSL is that the state vector
j , ti represents reality. Since, for example, in
describing a measurement, the usual Schrödinger
evolution readily takes a real state into a nonreal
state, that is, into a superposition of real states
(such as apparatus states describing different
experimental outcomes), CSL requires a modifica-
tion of Schrödinger’s evolution. To the Hamiltonian
is added a term which depends upon a classical
randomly fluctuating field w(x, t) and a mass-
density operator Â(x, t). This term acts to collapse
a superposition of states, which differ in their
spatial distribution of mass density, to one of these
states. The rate of collapse is very slow for a
superposition involving a few particles, but very
fast for a superposition of macroscopically different
states. Thus, very rapidly, what you see (in nature)
is what you get (from the theory). Each state vector
evolving under each w(x, t) corresponds to a
realizable state, and a rule is given for how to
associate a probability with each. In this way, an
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unambiguous specification S, as mentioned in the
introduction, is achieved.

Requirements for Stochastic Collapse Dynamics

Consider a normalized state vector j , ti=P
n 	n(t)jani(hanjan0 i= 
nn0 ) which undergoes a

stochastic dynamical collapse process. This means
that, starting from the initial superposition at t = 0,
for each run of the process, the squared amplitudes
xn(t) � j	n(t)j2 fluctuate until all but one vanish, that
is, xm(1) = 1, (x 6¼m(1) = 0) with probability xm(0).

This may be achieved simply, assuming negligible
effect of the usual Schrödinger evolution, if the
stochastic process enjoys the following properties
(Pearle 1979): X

n

xnðtÞ ¼ 1 ½11a�

xnðtÞ ¼ xnð0Þ ½11b�

xnð1Þxmð1Þ ¼ 0 for m 6¼ n ½11c�

where the overbar indicates the ensemble average at
the indicated time. The only way that a sum of
products of non-negative terms can vanish is for at
least one term in each product to vanish. Thus,
according to [11c], for each run, at least one of each
pair {xn(1), xm(1)}(n 6¼ m) must vanish. This
means that at most one xn(1) might not vanish
and, by [11a], applied at t =1, one xn(1) must not
vanish and, in fact, must equal 1: hence, each run
produces collapse. Now, let the probability of the
outcome {xn(1) = 1, x 6¼n(1) = 0} be denoted Pn. Since
xn(1) = 1 � Pn þ

P
m 6¼n 0 � Pm = Pn then, according to

the Martingale property [11b], applied at
t =1, Pn = xn(0): hence, the ensemble of runs pro-
duces the probability postulated by the usual ‘‘collapse
rule’’ of standard quantum theory.

A (nonquantum) stochastic process which obeys
these equations is the gambler’s ruin game. Suppose
one gambler initially possesses the fraction x1(0) of
their joint wealth, and the other has the fraction
x2(0). They toss a coin: heads, a dollar goes from
gambler 1 to gambler 2, tails the dollar goes the
other way. [11a] is satisfied since the sum of money
in the game remains constant, [11b] holds because it
is a fair game, and [11c] holds because each game
eventually ends. Thus, gambler i wins all the money
with probability xi(0).

CSL in Essence

Consider the (nonunitary) Schrödinger picture evo-
lution equation

j ; tiw¼T exp �
Z l

0

dt0fiĤ
 

þ ð4�Þ�1½wðt0Þ � 2�Â�2g
!
j ; 0i ½12�

where Ĥ is the usual Hamiltonian, w(t0) is an
arbitrary function of white noise class, Â is a
Hermitian operator (Âjani= anjani),� is a collapse
rate parameter, T is the time-ordering operator and
�h = 1. Associated with this, the probability rule

PtðwÞDw�wh ; tj ; tiw
Yt=dt

j¼0

dwðtjÞ=ð2��=dtÞ1=2 ½13�

is defined, which gives the probability that nature
chooses a noise which lies in the range {w(t0),w(t0)þ
dw(t0)} for 0� t0 � t (for calculational purposes,
time is discretized, with t0 =0).

Equations [12] and [13] contain the essential
features of CSL, and are all that is needed to discuss
the simplest collapse behavior. Set Ĥ = 0, so there is
no competition between collapse and the usual
Schrödinger evolution, and let the initial state vector
be j , 0i=

P
n 	njani. Equations [12] and [13]

become

j ; tiw ¼
X

n

	njani exp

�
�ð4�Þ�1

Z l

0

dt0½wðt0Þ

� 2�an�2
�

½14a�

PtðwÞ ¼
X

n

j	nj2 exp

�
�ð2�Þ�1

Z l

0

dt0½wðt0Þ

� 2�an�2
�

½14b�

When the unnormalized state vector in [14a] is
divided by P

1=2
t (w) and so normalized, the squared

amplitudes are

xnðtÞ ¼j	nj2 exp �ð2�Þ�1
�



Z t

0

dt0½wðt0Þ � 2�an�2
�
=PtðwÞ

which are readily shown to satisfy [11a], [11b], and

[11c] in the form x
1=2
n (1)x

1=2
m (1)=0(m 6¼ n) (which

does not change the argument in the last subsection,
but makes for an easier calculation). Thus, [14a] and
[14b] describe collapse dynamics.
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To describe collapse to a joint eigenstate of a set
of mutually commuting operators Âr, replace
(4�)�1[w(t0)� 2�Â]2 in the exponent of [12] byP

r (4�)�1[wr(t0)� 2�Âr]2. The interaction picture
state vector in this case is [12] multiplied by
exp (iĤt):

j ; tiw ¼T exp �ð4�Þ�1

Z l

0

dt0

 



X

r

½wrðt0Þ � 2�Ârðt0Þ�2
!
j ; 0i ½15�

where Âr(t0) � exp (iĤt0)Âr exp (�iĤt0). The density
matrix follows from [15], and [13]:

�̂ðtÞ �
Z

PtðwÞDwj ; tiw wh ; tj=PtðwÞ

¼ T exp

�
��=2

Z t

0

dt0



X

r

½Âr
Lðt0Þ � Âr

Rðt0Þ�
2

�
�̂ð0Þ ½16�

where Âr
L(t0)(Âr

R(t0)) appears to the left (right) of �̂(0),
and is time-ordered (time reverse-ordered). In the
example described by [14], the density matrix [16] is

�̂ðtÞ ¼
X
n;m

e�ð�t=2Þðan�amÞ2	n	
�
mjanihamj

which encapsulates the ensemble’s collapse behavior.

CSL

The CSL proposal (Pearle 1989) is that collapse is
engendered by distinctions between states at each
point of space, so the index r of Âr in [15]
becomes x,

j ; tiw ¼T exp �ð4�Þ�1

Z t

0

Z
dt0 dx0

�


½wðx0; t0Þ � 2�Âðx0; t0Þ�2
�
j ; 0i ½17�

and the distinction looked at is mass density. However,
one cannot make the choice Â(x, 0) = M̂(x), where
M̂(x) =

P
i mi�̂

y
i (x)�̂i(x) is the mass-density operator

(mi is the mass of the ith type of particle, so
me, mp, mn, . . . are the masses, respectively, of elec-
trons, protons, neutrons. . . , and �̂

y
i (x) is the creation

operator for such a particle at location x), because this
entails an infinite rate of energy increase of particles
([23] with a = 0). Instead, adapting a ‘‘Gaussian
smearing’’ idea from the Ghirardi et al. (1986)
spontaneous localization (SL) model (see the

subsection ‘‘Spontaneous localization model’’), choose
Âx as, essentially, proportional to the mass in a sphere
of radius a about x:

Âðx; tÞ� eiĤt 1

ð�a2Þ3=4



Z

dz
M̂ðzÞ
mp

e�ð2a2Þ�1ðx�zÞ2 e�iĤt ½18�

The parameter value choices of SL, � 	 10�16 s�1

(according to [17] and [18], the collapse rate for
protons) and a 	 10�5 cm are, so far, consistent with
experiment (see the next subsection), and will be
adopted here.

The density matrix associated with [17] is, as
in [16],

�̂ðtÞ ¼T exp

�
�ð�=2Þ

Z t

0

dt0 dx0½ÂLðx0; t0Þ

� ÂRðx0; t0Þ�2
�
�̂ð0Þ ½19�

which satisfies the differential equation

d�̂ðtÞ
dt
¼ ��

2

Z
dx0½Âðx0; tÞ; ½Âðx0; tÞ; �̂ðtÞ�� ½20�

of Lindblad–Kossakowski form.

Consequences of CSL

Since the state vector dynamics of CSL is different
from that of standard quantum theory, there are
phenomena for which the two make different
predictions, allowing for experimental tests. Con-
sider an N-particle system with position operators
X̂i(X̂ijxi= xijxi). Substitution of Â(x0) from [18] in
the Schrödinger picture version of [20], integration
over x0, and utilization of

f ðzÞM̂ðzÞjxi ¼
XN
i¼1

mif ðX̂iÞ
ðz� X̂iÞjxi

results in

d�̂ðtÞ
dt
¼�i½�̂ðtÞ; Ĥ� � �

2

XN
i¼1

XN
j¼1

mi

mp

mj

mp


 e�ð4a2Þ�1ðX̂Li�X̂LjÞ2 þ e�ð4a2Þ�1ðX̂Ri�X̂RjÞ2
h
� 2e�ð4a2Þ�1ðX̂Li�X̂RjÞ2

i
�̂ðtÞ ½21�

which is a useful form for calculations first
suggested by Pearle and Squires in 1994.

Interference Consider the collapse rate of an initial
state j�i=	1j1i þ 	2j2i, where j1i, j2i describe a
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clump of matter, of size a, at different locations
with separation �a. Electrons may be neglected
because of their small collapse rate compared to the
much more massive nucleons, and the nucleon mass
difference may be neglected. In using [21] to calculate
dh1j�̂(t)j2i=dt, since exp [�(4a2)�1(X̂i � X̂j)

2] 	 1
when acting on state j1i or j2i, and 	0 when X̂i

acts on j1i and X̂j acts on j2i, [21] yields, for N
nucleons, the collapse rate �N2:

dh1j�̂ðtÞj2i
dt

¼�ih1j½�̂ðtÞ; Ĥ�j2i � �N2h1j�̂ðtÞj2i ½22�

If the clump undergoes a two-slit interference
experiment, where the size and separation condi-
tions above are satisfied for a time �T, and if the
result agrees with the standard quantum theory
prediction to 1%, it also agrees with CSL provided
��1 > 100N2�T. So far, interference experiments
with N as large as 	103 have been performed, by
Nairz, Arndt, and Zeilinger in 2000. The SL value
of ��1 	 1016 would be testable, that is, the
quantum-predicted interference pattern would be
‘‘washed out’’ to 1% accuracy, if the clump were
an 	10�6 cm radius sphere of mercury, which
contains N 	 108 nucleons, interfered for
�T = 0.01 s. Currently envisioned but not yet
performed experiments (e.g., by Marshall, Simon,
Penrose, and Bouwmester in 2003) have been
analyzed (e.g., by Bassi, Ippoliti, and Adler in
2004 and by Adler in 2005), which involve a
superposition of a larger clump of matter in
slightly displaced positions, entangled with a
photon whose interference pattern is measured:
these proposed experiments are still too crude to
detect the SL value of �, or the gravitationally
based collapse rate proposed by Penrose in 1996
(see the next section and papers by Christian in
1999 and 2005).

Bound state excitation Collapse narrows wave
packets, thereby imparting energy to particles. If
Ĥ =

PN
i = 1 P̂2

i =2mi þ V̂(x1, . . . , xN), it is straight-
forward to calculate from [21] that

d

dt
hĤi� d

dt
tr½Ĥ�̂ðtÞ� ¼

XN
i¼1

3��h2

4mia2
½23�

For a nucleon, the mean rate of energy increase is
quite small, 	3
 10�25 eV s�1. However, deviations
from the mean can be significantly greater.

Equation [21] predicts excitation of atoms and
nuclei. Let jE0i be an initial bound energy
eigenstate. Expanding [21] in a power series in

(bound state size/a)2, the excitation rate of state
jEi is

� � dhEj�̂ðtÞjEi
dt

jt¼0

¼ �

2a2

*
E
���XN

i¼1

mi

mp
X̂i

���E0

+*
E0

���XN
i¼1

mi

mp
X̂i

���E
+

þOðsize=aÞ4 ½24�

Since jE0i, jEi are eigenstates of the center-of-mass
operator

PN
i = 1 miX̂i=

PN
i = 1 mi with eigenvalue 0, the

dipole contribution explicitly given in [24] vanishes
identically. This leaves the quadrupole contribution
as the leading term, which is too small to be
measured at present.

However, the choice of Â(x) as mass-density
operator was made only after experimental indica-
tion. Let gi replace mi=mp in [21] and [24], so that
�g2

i is the collapse rate for the ith particle. Then,
experiments looking for the radiation expected from
‘‘spontaneously’’ excited atoms and nuclei, in large
amounts of matter for a long time, as shown by
Collett, Pearle, Avignone, and Nussinov in 1995,
Pearle, Ring, Collar, and Avignone in 1999, and
Jones, Pearle, and Ring in 2004, have placed the
following limits:��� ge

gp
� me

mp

��� < 12me

mp
;
��� gn

gp
�mn

mp

��� < 3ðmn �mpÞ
mp

Random walk According to [17] and [13], the
center-of-mass wave packet, of a piece of matter of
size 	a or smaller, containing N nucleons, achieves
equilibrium size s in a characteristic time �s, and
undergoes a random walk through a root-mean-
square distance �Q:

s 	 a2�h

�mpN3

� �1=4

; �s 	
Nmps2

�h

�Q 	 �h�1=2t3=2

mpa

½25�

The results in [25] were obtained by Collett and
Pearle in 2003. These quantitative results can be
qualitatively understood as follows.

In time �t, the usual Schrödinger equation
expands a wave packet of size s to 	sþ
(�h=Nmps)�t. CSL collapse, by itself, narrows the
wave packet to 	s[1� �N2(s=a)2�t]. The condition
of no change in s is the result quoted above. �s is the
time it takes the Schrödinger evolution to expand a
wave packet near size s to size s: (�h=Nmps)�s 	 s.
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The t3=2 dependence of �Q arises because this is a
random walk without damping (unlike Brownian
motion, where �Q � t1=2). The mean energy
increase 	�N�h2m�1

p a�2t of [23] implies the root-
mean-square velocity increase 	 [��h2m�2

p a�2t]1=2,
whose product with t is �Q.

For example, a sphere of density 1 cm�3 and
radius 10�5 cm has s 	 4
 10�7 cm, �s 	 0.6 s and
�Q 	 5[t in days]3=2 cm. At the low pressure of
5
 10�17 torr at 4.2 K reported by Gabrielse’s
group in 1990, the mean collision time with gas
molecules is 	80 min, over which �Q 	 0.7 mm.
Thus, observation of this effect should be feasible.
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is not described by a modified Schrödinger equation
as is CSL.

Other Models

For a single (low-energy) particle, the polar decom-
position � = Re(i=�h)S of the Schrödinger equation
implies two real equations,

@R2

@t
þ = � R2 =S

m

� �
¼ 0 ½26

(the continuity equation for R2 = j�j2) and
Further Remarks

It is possible to define energy for the w(x, t) field so
that total energy is conserved: as the particles gain
energy, the w-field loses energy, as shown by Pearle
in 2005.

Attempts to construct a special-relativistic CSL-
type model have not yet succeeded, although
Pearle in 1990, 1992, and 1999, Ghirardi, Grassi,
and Pearle in 1990, and Nicrosini and Rimini in
2003 have made valiant attempts. The problem is
that the white noise field w(x, t) contains all
wavelengths and frequencies, exciting the vacuum
in lowest order in � to produce particles at the
unacceptable rate of infinite energy/per second per
cubic centimeter. Collapse models which utilize a
colored noise field w have a similar problem in
higher orders. In 2005, Pearle suggested a quasir-
elativistic model which reduces to CSL in the low-
speed limit.

CSL is a phenomenological model which describes
dynamical collapse so as to achieve S. Besides
needing decisive experimental verification, it needs
identification of the w(x, t) field with a physical
entity.

Other collapse models which have been investi-
gated are briefly described below.
Spontaneous Localization Model

The SL model of Ghirardi et al. (1986), although
superseded by CSL, is historically important and
conceptually valuable. Let Ĥ = 0 for simplicity, and
consider a single particle whose wave function at
time t is  (x, t). Over the next interval dt, with
probability 1� �dt, it does not change. With prob-
ability �dt it does change, by being ‘‘spontaneously
localized’’ or ‘‘hit.’’ A hit means that the new
(unnormalized) wave function suddenly becomes

 ðx; t þ dtÞ ¼  ðx; tÞð�a2Þ�3=4 e�ð2a2Þ�1ðx�zÞ2
with probability

�dt dz

Z
dxj ðx; t þ dtÞj2

Thus z, the ‘‘center’’ of the hit, is most likely to be
located where the wave function is large. For a single
particle in the superposition described in the subsec-
tion ‘‘Interference,’’ a single hit is overwhelmingly
likely to reduce the wave function to one or the other
location, with total probability j	ij2, at the rate �.

For an N-particle clump, it is considered that each
particle has the same independent probability, �dt,
of being hit. But, for the example in the subsection
‘‘Interference,’’ a single hit on any particle in one
location of the clump has the effect of multiplying
the wave function part describing the clump in the
other location by the tail of the Gaussian, thereby
collapsing the wave function at the rate �N.

By use of the Gaussian hit rather than a delta-
function hit, SL solves the problem of giving too
much energy to particles as mentioned in the
subsection ‘‘CSL.’’ By the hypothesis of independent
particle hits, SL also solves the problem of achieving
a slow collapse rate for a superposition of small
objects and a fast collapse rate for a superposition of
large objects. However, the hits on individual
particles destroys the (anti-) symmetry of wave
functions. The CSL collapse toward mass density
eigenstates removes that problem. Also, while SL
modifies the Schrödinger evolution of a wave
function, it involves discontinuous dynamics and so
�

@S

@t
þ ð=SÞ2

2m
þ V þQ ¼ 0 ½27�

where Q � �(�h2
=2m)r2R=R is the ‘‘quantum

potential.’’ (These equations have an obvious gen-
eralisation to higher-dimensional configuration
space.) In 1926, Madelung proposed that one should
start from [26] and [27] – regarded as hydrodyna-
mical equations for a classical charged fluid with
mass density mR2 and fluid velocity =S=m – and
construct � = Re(i=�h)S from the solutions.



This ‘‘hydrodynamical’’ interpretation suffers from
many difficulties, especially for many-body systems.
In any case, a criticism by Wallstrom (1994) seems
decisive: [26] and [27] (and their higher-dimensional
analogs) are not, in fact, equivalent to the Schrödin-
ger equation. For, as usually understood, the quan-
tum wave function � is a single-valued and
continuous complex field, which typically possesses
nodes (� = 0), in the neighborhood of which the
phase S is multivalued, with values differing by
integral multiples of 2��h. If one allows S in [26],
[27] to be multivalued, there is no reason why the
allowed values should differ by integral multiples of
2��h, and in general � will not be single-valued. On
the other hand, if one restricts S in [26], [27] to be
single-valued, one will exclude wave functions – such
as those of nonzero angular momentum – with a
multivalued phase. (This problem does not exist in
pilot-wave theory as we have presented it here, where
� is regarded as a basic entity.)

Stochastic mechanics, introduced by Fényes in 1952
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nd Nelson (1966), has particle trajectories x(t)
beying a ‘‘forward’’ stochastic differential equation
x(t) = b(x(t), t)dt þ dw(t), where b is a drift (equal to
he mean forward velocity) and w a Wiener process,
nd also a similar ‘‘backward’’ equation. Defining
he ‘‘current velocity’’ v = (1=2)(bþ b�), where b� is
he mean backward velocity, and using an appropriate
ime-symmetric definition of mean acceleration, one
ay impose a stochastic version of Newton’s second
w. If one assumes, in addition, that v is a gradient

v =rS=m for some S), then one obtains [26], [27]
ith R � ffiffiffi

�
p

, where � is the particle density.
efining � � ffiffiffi

�
p

e(i=�h)S, it appears that one recovers
he Schrödinger equation for the derived quantity �.
owever, again, there is no reason why S should

ave the specific multivalued structure required for
he phase of a single-valued complex field. It then
eems that, despite appearances, quantum theory
annot in fact be recovered from stochastic
echanics (Wallstrom 1994). The same problem

ccurs in models that use stochastic mechanics as an
termediate step (e.g., Markopoulou and Smolin in
004): the Schrödinger equation is obtained only for
xceptional, nodeless wave functions.
Bohm and Bub (1966) first proposed dynamical
ave-function collapse through deterministic evolu-

ion. Their collapse outcome is determined by the
alue of a Wiener–Siegel hidden variable (a variable
istributed uniformly over the unit hypersphere in a
ilbert space identical to that of the state vector). In

976, Pearle proposed dynamical wave-function col-
pse equations where the collapse outcome is deter-
ined by a random variable, and suggested (Pearle

979) that the modified Schrödinger equation be
formulated as an Itô stochastic differential equation,
a suggestion which has been widely followed. (The
equation for the state vector given here, which is
physically more transparent, has its time derivative
equivalent to a Stratonovich stochastic differential
equation, which is readily converted to the Itô form.)
The importance of requiring that the density matrix
describing collapse be of the Lindblad–Kossakowski
form was emphasized by Gisin in 1984 and Diosi in
1988. The stochastic differential Schrödinger equation
that achieves this was found independently by Diosi in
1988 and by Belavkin, Gisin, and Pearle in separate
papers in 1989 (see Ghirardi et al. 1990).

A gravitationally motivated stochastic collapse
dynamics was proposed by Diosi in 1989 (and some-
what corrected by Ghirardi et al. in 1990). Penrose
emphasized in 1996 that a quantum state, such as that
describing a mass in a superposition of two places, puts
the associated spacetime geometry also in a super-
position, and has argued that this should lead to wave-
function collapse. He suggests that the collapse time
should be ��h=�E, where �E is the gravitational
potential energy change obtained by actually displa-
cing two such masses: for example, the collapse time
	�h=(Gm2=R), where the mass is m, its size is R, and
the displacement is	R or larger. No specific dynamics
is offered, just the vision that this will be a property of
a correct future quantum theory of gravity.

Collapse to energy eigenstates was first proposed
by Bedford and Wang in 1975 and 1977 and, in the
context of stochastic collapse (e.g., [11] with Â = Ĥ),
by Milburn in 1991 and Hughston in 1996, but it has
been argued by Finkelstein in 1993 and Pearle in
2004 that such energy-driven collapse cannot give a
satisfactory picture of the macroscopic world.
Percival in 1995 and in a 1998 book, and Fivel in
1997 have discussed energy-driven collapse for
microscopic situations.

Adler (2004) has presented a classical theory
(a hidden-variables theory) from which it is argued
that quantum theory ‘‘emerges’’ at the ensemble level.
The classical variables are N 
N matrix field ampli-
tudes at points of space. They obey appropriate
classical Hamiltonian dynamical equations which he
calls ‘‘trace dynamics,’’ since the expressions for
Hamiltonian, Lagrangian, Poisson bracket, etc., have
the form of the trace of products of matrices and their
sums with constant coefficients. Using classical statis-
tical mechanics, canonical ensemble averages of
(suitably projected) products of fields are analyzed
and it is argued that they obey all the properties
associated with Wightman functions, from which
quantum field theory, and its nonrelativistic-limit
quantum mechanics, may be derived. As well as
obtaining the algebra of quantum theory in this way,



it is argued that statistical fluctuations around the
canonical ensemble can give rise to the behavior of
wave-function collapse, of the kind discussed here,
both energy-driven and CSL-type mass-density-driven
collapse so that, with the latter, comes the Born
probability interpretation of the algebra. The Hamil-
tonian needed for this theory to work is not provided
but, as the argument progresses, its necessary features
are delimited.

See also: Quantum Mechanics: Foundations.
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hÂii ¼: hijÂjii ½1�

Here Â is Hermitian operator on the Hilbert space
H of states. We use Dirac formalism. The above
mean is interpreted statistically. No other forms had
been known to possess a statistical interpretation in
standard quantum theory. One can, nonetheless, try
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Introduction

In quantum theory, the mean value of a certain
observable Â in a (pure) quantum state jii is defined
by the quadratic form:
to extend the notion of mean for normalized bilinear
expressions (Aharonov et al. 1988):

Aw ¼:
hf jÂjii
hf jii ½2�

However unusual is this structure, standard quan-
tum theory provides a plausible statistical interpre-
tation for it, too. The two pure states jii, jf i play the
roles of the prepared initial and the postselected
final states, respectively. The statistical interpreta-
tion relies upon the concept of weak measurement.
In a single weak measurement, the notorious
decoherence is chosen asymptotically small. In
physical terms, the coupling between the measured
state and the meter is assumed asymptotically weak.
The novel mean value [2] is called the (complex)
weak value.

The concept of quantum weak measurement
(Aharonov et al. 1988) provides particular
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conclusions on postselected ensembles. Weak mea-
surements have been instrumental in the interpreta-
tion of time-continuous quantum measurements on
single states as well. Yet, weak measurement itself
can properly be illuminated in the context of
classical statistics. Classical weak measurement as
well as postselection and time-continuous measure-
ment are straightforward concepts leading to con-
clusions that are natural in classical statistics. In
quantum context, the case is radically different and
certain paradoxical conclusions follow from weak
measurements. Therefore, we first introduce the
classical notion of weak measurement on postse-
lected ensembles and, alternatively, in time-contin-
uous measurement on a single state. Certain idioms
from statistical physics will be borrowed and certain
not genuinely quantum notions from quantum
theory will be anticipated. The quantum counterpart
of weak measurement, postselection, and continuous
measurement will be presented afterwards. The
apparent redundancy of the parallel presentations
is of reason: the reader can separate what is
common in classical and quantum weak measure-
ments from what is genuinely quantum.
Classical Weak Measurement

Given a normalized probability density �(X) over
the phase space {X}, which we call the state, the
mean value of a real function A(X) is defined as

hAi� ¼:

Z
dX A� ½3�

Let the outcome of an (unbiased) measurement of A
be denoted by a. Its stochastic expectation value
E[a] coincides with the mean [3]:

E½a� ¼ hAi� ½4�

Performing a large number N of independent
measurements of A on the elements of the ensemble
of identically prepared states, the arithmetic mean �a
of the outcomes yields a reliable estimate of E[a]
and, this way, of the theoretical mean hAi�.

Suppose, for concreteness, the measurement
outcome a is subject to a Gaussian stochastic
error of standard dispersion � > 0. The probability
distribution of a and the update of the state
corresponding to the Bayesian inference are
described as

pðaÞ ¼ G�ða� AÞh i� ½5�

�! 1

pðaÞG�ða� AÞ� ½6�
respectively. Here G� is the central Gaussian
distribution of variance �. Note that, as expected,
eqn [5] implies eqn [4]. Nonzero � means that the
measurement is nonideal, yet the expectation value
E[a] remains calculable reliably if the statistics N is
suitably large.

Suppose the spread of A in state � is finite:

�2
�A ¼: hA2i� � hAi

2
� <1 ½7�

Weak measurement will be defined in the asympto-
tic limit (eqns [8] and [9]) where both the stochastic
error of the measurement and the measurement
statistics go to infinity. It is crucial that their rate is
kept constant:

�;N !1 ½8�

�2 ¼:
�2

N
¼ const: ½9�

Obviously for asymptotically large �, the precision
of individual measurements becomes extremely
weak. This incapacity is fully compensated by the
asymptotically large statistics N. In the weak
measurement limit (eqns [8] and [9]), the probability
distribution pw of the arithmetic mean �a of the N
independent outcomes converges to a Gaussian
distribution:

pwð�aÞ ! G� �a� hAi�
� �

½10�

The Gaussian is centered at the mean hAi�, and the
variance of the Gaussian is given by the constant
rate [9]. Consequently, the mean [3] is reliably
calculable on a statistics N growing like ��2.

With an eye on quantum theory, we consider two
situations – postselection and time-continuous
measurement – of weak measurement in classical
statistics.
Postselection

For the preselected state �, we introduce postselec-
tion via the real function �(X), where 0 � � � 1.
The postselected mean value of a certain real
function A(X) is defined by

�hAi� ¼:
h�Ai�
h�i�

½11�

where h�i� is the rate of postselection. Postselection
means that after having obtained the outcome a
regarding the measurement of A, we measure the
function �, too, in ideal measurement with random
outcome � upon which we base the following
random decision. With probability �, we include
the current a into the statistics and we discard it
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with probability 1� �. Then the coincidence of E[a]
and �hAi�, as in eqn [4], remains valid:

E½a� ¼ �hAi� ½12�

Therefore, a large ensemble of postselected states
allows one to estimate the postselected mean �hAi�.

Classical postselection allows introducing the
effective postselected state:

�� ¼:
��

h�i�
½13�

Then the postselected mean [11] of A in state � can,
by eqn [14], be expressed as the common mean of A
in the effective postselected state ��:

�hAi� ¼ hAi� �
½14�

As we shall see later, quantum postselection is
more subtle and cannot be reduced to common
statistics, that is, to that without postselection. The
quantum counterpart of postselected mean does not
exist unless we combine postselection and weak
measurement.

Time-Continuous Measurement

For time-continuous measurement, one abandons the
ensemble of identical states. One supposes that a single
time-dependent state �t is undergoing an infinite
sequence of measurements (eqns [5] and [6]) of A
employed at times t = �t, t = 2�t, t = 3�t, . . . . The rate
� =: 1=�t goes to infinity together with the mean
squared error �2. Their rate is kept constant:

�; � !1 ½15�

g2 ¼:
�2

�
¼ const: ½16�

In the weak measurement limit (eqns [15] and [16]),
the infinite frequent weak measurements of A
constitute the model of time-continuous measure-
ment. Even the weak measurements will signifi-
cantly influence the original state �0, due to the
accumulated effect of the infinitely many Bayesian
updates [6]. The resulting theory of time-continuous
measurement is described by coupled Gaussian
processes [17] and [18] for the primitive function
�t of the time-dependent measurement outcome
and, respectively, for the time-dependent Bayesian
conditional state �t:

d�t ¼ hAi�t
dt þ g dWt ½17�

d�t ¼ g�1 A� hAi�t

� �
�t dWt ½18�

Here dWt is the Itô differential of the Wiener
process.
Equations [17] and [18] are the special case of the
Kushner–Stratonovich equations of time-continuous
Bayesian inference conditioned on the continuous
measurement of A yielding the time-dependent
outcome value at. Formal time derivatives of both
sides of eqn [17] yield the heuristic equation

at ¼ hAi�t
þ g�t ½19�

Accordingly, the current measurement outcome is
always equal to the current mean plus a term
proportional to standard white noise �t. This
plausible feature of the model survives in the
quantum context as well. As for the other equation
[18], it describes the gradual concentration of the
distribution �t in such a way that the variance ��t

A
tends to zero while hAi�t

tends to a random
asymptotic value. The details of the convergence
depend on the character of the continuously mea-
sured function A(X). Consider a stepwise A(X):

AðXÞ ¼
X
	

a	P	ðXÞ ½20�

The real values a	 are step heights all differing from
each other. The indicator functions P	 take values
0 or 1 and form a complete set of pairwise disjoint
functions on the phase space:X

	

P	 � 1 ½21�

P	P
 ¼ �	
P	 ½22�

In a single ideal measurement of A, the outcome a is
one of the a	’s singled out at random. The
probability distribution of the measurement out-
come and the corresponding Bayesian update of the
state are given by

p	 ¼ hP	i�0
½23�

�0 !
1

p	
P	�0 ¼: �	 ½24�

respectively. Equations [17] and [18] of time-
continuous measurement are a connatural time-
continuous resolution of the ‘‘sudden’’ ideal
measurement (eqns [23] and [24]) in a sense that
they reproduce it in the limit t ! 1. The states �	

are trivial stationary states of the eqn [18]. It can be
shown that they are indeed approached with
probability p	 for t ! 1.
Quantum Weak Measurement

In quantum theory, states in a given complex
Hilbert space H are represented by non-negative
density operators �̂, normalized by tr �̂= 1. Like the
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classical states �, the quantum state �̂ is interpreted
statistically, referring to an ensemble of states with
the same �̂. Given a Hermitian operator Â, called
observable, its theoretical mean value in state �̂ is
defined by

hÂi�̂ ¼ trðÂ�̂Þ ½25�

Let the outcome of an (unbiased) quantum measure-
ment of Â be denoted by a. Its stochastic expectation
value E[a] coincides with the mean [25]:

E½a� ¼ hÂi�̂ ½26�

Performing a large number N of independent
measurements of Â on the elements of the ensemble
of identically prepared states, the arithmetic mean �a
of the outcomes yields a reliable estimate of E[a]
and, this way, of the theoretical mean hÂi�̂. If the
measurement outcome a contains a Gaussian sto-
chastic error of standard dispersion �, then the
probability distribution of a and the update, called
collapse in quantum theory, of the state are
described by eqns [27] and [28], respectively. (We
adopt the notational convenience of physics litera-
ture to omit the unit operator Î from trivial
expressions like aÎ.)

pðaÞ ¼ G�ða� ÂÞ
D E

�̂
½27�

�̂! 1

pðaÞG
1=2
� ða� ÂÞ�̂G1=2

� ða� ÂÞ ½28�

Nonzero � means that the measurement is nonideal,
but the expectation value E[a] remains calculable
reliably if N is suitably large.

Weak quantum measurement, like its classical
counterpart, requires finite spread of the observable
Â on state �̂:

�2
�̂Â ¼: hÂ2i�̂ � hÂi

2
�̂ <1 ½29�

Weak quantum measurement, too, will be defined in
the asymptotic limit [8] introduced for classical weak
measurement. Single quantum measurements can no
more distinguish between the eigenvalues of Â. Yet,
the expectation value E[a] of the outcome a remains
calculable on a statistics N growing like ��2.

Both in quantum theory and classical statistics,
the emergence of nonideal measurements from ideal
ones is guaranteed by general theorems. For com-
pleteness of this article, we prove the emergence of
the nonideal quantum measurement (eqns [27] and
[28]) from the standard von Neumann theory of
ideal quantum measurements (von Neumann 1955).
The source of the statistical error of dispersion �
is associated with the state �̂M in the complex
Hilbert space L2 of a hypothetic meter. Suppose
R 2 (�1,1) is the position of the ‘‘pointer.’’ Let its
initial state �̂M be a pure central Gaussian state of
width �; then the density operator �̂M in Dirac
position basis takes the form

�̂M ¼
Z

dR

Z
dR0G1=2

� ðRÞG1=2
� ðR0ÞjRihR0j ½30�

We are looking for a certain dynamical interaction
to transmit the ‘‘value’’ of the observable Â onto the
pointer position R̂. To model the interaction, we
define the unitary transformation [31] to act on the
tensor space H�L2:

Û ¼ expðiÂ� K̂Þ ½31�

Here K̂ is the canonical momentum operator
conjugated to R̂:

expðiaK̂ÞjRi ¼ jRþ ai ½32�

The unitary operator Û transforms the initial
uncorrelated quantum state into the desired corre-
lated composite state:

�̂ ¼: Û�̂� �̂MÛy ½33�

Equations [30]–[33] yield the expression [34] for the
state �̂:

�̂ ¼
Z

dR

Z
dR0G1=2

� ðR� ÂÞ�̂G1=2
�

� ðR0 � ÂÞ � jRihR0j ½34�

Let us write the pointer’s coordinate operator R̂ into
the standard form [35] in Dirac position basis:

R̂ ¼
Z

dajaihaj ½35�

The notation anticipates that, when pointer R̂ is
measured ideally, the outcome a plays the role of the
nonideally measured value of the observable Â.
Indeed, let us consider the ideal von Neumann
measurement of the pointer position on the corre-
lated composite state �̂. The probability of the
outcome a and the collapse of the composite state
are given by the following standard equations:

pðaÞ ¼ tr ðÎ � jaihajÞ�̂
h i

½36�

�̂! 1

pðaÞ ðÎ � jaihajÞ�̂ðÎ � jaihajÞ
h i

½37�

respectively. We insert eqn [34] into eqns [36] and
[37]. Furthermore, we take the trace over L2 of both
sides of eqn [37]. In such a way, as expected, eqns
[36] and [37] of ideal measurement of R̂ yield the
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earlier postulated eqns [27] and [28] of nonideal
measurement of Â.
Quantum Postselection

A quantum postselection is defined by a Hermitian
operator satisfying 0̂ � �̂ � Î. The corresponding
postselected mean value of a certain observable Â is
defined by

�̂hÂi�̂ ¼: Re
h�̂Âi�̂
h�̂i�̂

½38�

The denominator h�̂i�̂ is the rate of quantum
postselection. Quantum postselection means that
after the measurement of Â, we measure the
observable �̂ in ideal quantum measurement and
we make a statistical decision on the basis of the
outcome �. With probability �, we include the case
in question into the statistics while we discard it
with probability 1� �. By analogy with the classical
case [12], one may ask whether the stochastic
expectation value E[a] of the postselected measure-
ment outcome does coincide with

E½a� ¼? �̂hÂi�̂ ½39�

Contrary to the classical case, the quantum equation
[39] does not hold. The quantum counterparts of
classical equations [12]–[14] do not exist at all.
Nonetheless, the quantum postselected mean �̂hÂi�̂
possesses statistical interpretation although
restricted to the context of weak quantum measure-
ments. In the weak measurement limit (eqns [8] and
[9]), a postselected analog of classical equation [10]
holds for the arithmetic mean �a of postselected weak
quantum measurements:

pwð�aÞ ! G� �a� �̂hÂi�̂
� �

½40�

The Gaussian is centered at the postselected mean

�̂hÂi�̂, and the variance of the Gaussian is given by the
constant rate [9]. Consequently, the mean [38]
becomes calculable on a statistics N growing like��2.

Since the statistical interpretation of the postse-
lected quantum mean [38] is only possible for weak
measurements, therefore �̂hÂi�̂ is called the (real)
weak value of Â. Consider the special case when
both the state �̂= jiihij and the postselected operator
�̂ = jf ihf j are pure states. Then the weak value

�̂hÂi�̂ takes, in usual notations, a particular form
[41] yielding the real part of the complex weak
value Aw [1]:

f hÂii ¼: Re
hf jÂjii
hf jii ½41�
The interpretation of postselection itself reduces to a
simple procedure. One performs the von Neumann
ideal measurement of the Hermitian projector jf ihf j,
then includes the case if the outcome is 1 and
discards it if the outcome is 0. The rate of
postselection is jhf jiij2. We note that a certain
statistical interpretation of Im Aw, too, exists
although it relies upon the details of the ‘‘meter.’’

We outline a heuristic proof of the central
equation [40]. One considers the nonideal measure-
ment (eqns [27] and [28]) of Â followed by the ideal
measurement of �̂. Then the joint distribution of the
corresponding outcomes is given by eqn [42]. The
probability distribution of the postselected outcomes
a is defined by eqn [43], and takes the concrete form
[44]. The constant N assures normalization:

pð�;aÞ ¼ tr �ð�� �̂ÞG1=2
� ða� ÂÞ�̂G1=2

� ða� ÂÞ
� �

½42�

pðaÞ ¼:
1

N

Z
�pð�; aÞ d� ½43�

pðaÞ ¼:
1

N G1=2
� ða� ÂÞ�̂G1=2

� ða� ÂÞ
D E

�̂
½44�

Suppose, for simplicity, that Â is bounded. When
� ! 1, eqn [44] yields the first two moments of
the outcome a:

E½a� ! �̂hÂi�̂ ½45�

E½a2� � �2 ½46�

Hence, by virtue of the central limit theorem, the
probability distribution [40] follows for the average
�a of postselected outcomes in the weak measurement
limit (eqns [8] and [9]).
Quantum Weak-Value Anomaly

Unlike in classical postselection, effective postse-
lected quantum states cannot be introduced. We can
ask whether eqn [47] defines a correct postselected
quantum state:

�̂?
�̂
¼: Herm

�̂�̂

h�̂i�̂
½47�

This pseudo-state satisfies the quantum counterpart
of the classical equation [14]:

�̂hÂi�̂ ¼ tr Â�̂?
�̂

� �
½48�

In general, however, the operator �̂?
�̂

is not a density
operator since it may be indefinite. Therefore, eqn
[47] does not define a quantum state. Equation [48]
does not guarantee that the quantum weak value
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�̂hÂi�̂ lies within the range of the eigenvalues of the
observable Â.

Let us see a simple example for such anomalous
weak values in the two-dimensional Hilbert space.
Consider the pure initial state given by eqn [49] and
the postselected pure state by eqn [50], where
� 2 [0,�] is a certain angular parameter.

jii ¼ 1ffiffiffi
2
p ei�=2

e�i�=2

� �
½49�

jf i ¼ 1ffiffiffi
2
p e�i�=2

ei�=2

� �
½50�

The probability of successful postselection is cos2 �.
If � 6¼ �=2, then the postselected pseudo-state
follows from eqn [47]:

�̂?
�̂
¼ 1

2
1 cos�1 �

cos�1� 1

� �
½51�

This matrix is indefinite unless �= 0, its two
eigenvalues are 1 	 cos�1 �. The smaller the post-
selection rate cos2 �, the larger is the violation of the
positivity of the pseudo-density operator. Let the
weakly measured observable take the form

Â ¼ 0 1
1 0

� �
½52�

Its eigenvalues are 	 1. We express its weak value
from eqns [41], [49], and [50] or, equivalently, from
eqns [48] and [51]:

f hÂii ¼
1

cos�
½53�

This weak value of Â lies outside the range of the
eigenvalues of Â. The anomaly can be arbitrarily
large if the rate cos2 � of postselection decreases.

Striking consequences follow from this anomaly
if we turn to the statistical interpretation. For
concreteness, suppose �= 2�=3 so that f hÂii = 2.
On average, 75% of the statistics N will be lost
in postselection. We learnt from eqn [40] that
the arithmetic mean �a of the postselected outcomes
of independent weak measurements converges
stochastically to the weak value upto the Gaussian
fluctuation �, as expressed symbolically by

�a ¼ 2	� ½54�

Let us approximate the asymptotically large error �
of our weak measurements by �= 10 which is
already well beyond the scale of the eigenvalues 	1
of the observable Â. The Gaussian error � derives
from eqn [9] after replacing N by the size of the
postselected statistics which is approximately N=4:

�2 ¼ 400=N ½55�

Accordingly, if N = 3600 independent quantum
measurements of precision �= 10 are performed
regarding the observable Â, then the arithmetic
mean �a of the �900 postselected outcomes a will be
2 	 0.33. This exceeds significantly the largest
eigenvalue of the measured observable Â. Quantum
postselection appears to bias the otherwise unbiased
nonideal weak measurements.

Quantum Time-Continuous Measurement

The mathematical construction of time-continuous
quantum measurement is similar to the classical one.
We consider the weak measurement limit (eqns [15]
and [16]) of an infinite sequence of nonideal
quantum measurements of the observable Â at
t = �t, 2�t, . . . , on the time-dependent state �̂t. The
resulting theory of time-continuous quantum mea-
surement is incorporated in the coupled stochastic
equations [56] and [57] for the primitive function �t

of the time-dependent outcome and the conditional
time-dependent state �̂t, respectively (Diósi 1988):

d�t ¼ hÂi�̂t
dt þ gdWt ½56�

d�̂t ¼� 1
8 g�2½Â; ½Â; �̂t�� dt

þ g�1 Herm Â� hÂi�̂t

� �
�̂t dWt ½57�

Equation [56] and its classical counterpart [17] are
perfectly similar. There is a remarkable difference
between eqn [57] and its classical counterpart [18].
In the latter, the stochastic average of the state is
constant: E[d�t] = 0, expressing the fact that classi-
cal measurements do not alter the original ensemble
if we ‘‘ignore’’ the outcomes of the measurements.
On the contrary, quantum measurements introduce
irreversible changes to the original ensemble, a
phenomenon called decoherence in the physics
literature. Equation [57] implies the closed linear
first-order differential equation [58] for the stochas-
tic average of the quantum state �̂t under time-
continuous measurement of the observable Â:

dE½�̂t�
dt
¼ �1

8g
�2½Â; ½Â;E½�̂t��� ½58�

This is the basic irreversible equation to model the
gradual loss of quantum coherence (decoherence)
under time-continuous measurement. In fact, the
very equation models decoherence under the influ-
ence of a large class of interactions, for example,
with thermal reservoirs or complex environments. In
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two-dimensional Hilbert space, for instance, we can
consider the initial pure state hij =: [ cos�, sin�] and
the time-continuous measurement of the diagonal
observable [59] on it. The solution of eqn [58] is
given by eqn [60]:

Â ¼ 1 0
0 �1

� �
½59�

E½�̂t� ¼
cos2 � e�t=4g2

cos � sin �

e�t=4g2
cos � sin � sin2 �

" #
½60�

The off-diagonal elements of this density matrix
go to zero, that is, the coherent superposition
represented by the initial pure state becomes an
incoherent mixture represented by the diagonal
density matrix �̂1.

Apart from the phenomenon of decoherence, the
stochastic equations show remarkable similarity
with the classical equations of time-continuous
measurement. The heuristic form of eqn [56] is
eqn [61] of invariable interpretation with respect
to the classical equation [19]:

at ¼ hÂi�̂t
þ g�t ½61�

Equation [57] describes what is called the time-
continuous collapse of the quantum state under
time-continuous quantum measurement of Â. For
concreteness, we assume discrete spectrum for Â and
consider the spectral expansion

Â ¼
X
	

a	P̂	 ½62�

The real values a	 are nondegenerate eigenvalues.
The Hermitian projectors P̂	 form a complete
orthogonal set: X

	

P̂	 � Î ½63�

P̂	P̂
 ¼ �	
P̂	 ½64�

In a single ideal measurement of Â, the outcome a is
one of the a	’s singled out at random. The
probability distribution of the measurement out-
come and the corresponding collapse of the state are
given by

p	 ¼ hP̂	i�̂0
½65�

�̂0 !
1

p	
P̂	�̂0P̂	 ¼: �̂	 ½66�

respectively. Equations [56] and [57] of continuous
measurements are an obvious time-continuous
resolution of the ‘‘sudden’’ ideal quantum measure-
ment (eqns [65] and [66]) in a sense that they
reproduce it in the limit t ! 1. The states �̂	 are
stationary states of eqn [57]. It can be shown that
they are indeed approached with probability p	 for
t!1 (Gisin 1984).
Related Contexts

In addition to the two particular examples as
in postselection and in time-continuous measure-
ment, respectively, presented above, the weak
measurement limit itself has further variants.
A most natural example is the usual thermodynamic
limit in standard statistical physics. Then weak
measurements concern a certain additive micro-
scopic observable (e.g., the spin) of each constituent
and the weak value represents the corresponding
additive macroscopic parameter (e.g., the magneti-
zation) in the infinite volume limit. This example
indicates that weak values have natural interpreta-
tion despite the apparent artificial conditions of
their definition. It is important that the weak value,
with or without postselection, plays the physical role
similar to that of the common mean hÂi�̂. If,
between their pre- and postselection, the states �̂
become weakly coupled with the state of another
quantum system via the observable Â, their average
influence will be as if Â took the weak value �̂hÂi�̂.
Weak measurements also open a specific loophole to
circumvent quantum limitations related to the
irreversible disturbances that quantum measure-
ments cause to the measured state. Noncommuting
observables become simultaneously measurable in
the weak limit: simultaneous weak values of non-
commuting observables will exist.

Literally, weak measurement had been coined
in 1988 for quantum measurements with (pre- and)
postselection, and became the tool of a certain time-
symmetric statistical interpretation of quantum states.
Foundational applications target the paradoxical
problem of pre- and retrodiction in quantum theory.
In a broad sense, however, the very principle of weak
measurement encapsulates the trade between asymp-
totically weak precision and asymptotically large
statistics. Its relevance in different fields has not yet
been fully explored and a growing number of founda-
tional, theoretical, and experimental applications are
being considered in the literature – predominantly in
the context of quantum physics. Since specialized
monographs or textbooks on quantum weak measure-
ment are not yet available, the reader is mostly referred
to research articles, like the recent one by Aharonov
and Botero (2005), covering many topics of postse-
lected quantum weak values.
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Nomenclature
a
 measurement outcome

�a
 arithmetic mean of measurement

outcomes

Â
 Hermitian operator, quantum observable

A(X)
 real phase-space function

E[ . . . ]
 stochastic expectation value

hf jÂjii
 matrix element

hf jii
 inner product

H
 Hilbert space

L2
 space of Lebesgue square-integrable

complex functions

p
 probability distribution

tr
 trace

Û
 unitary operator

Wt
 Wiener process

�t
 white noise process
�h. . .i�
 postselected mean value

�̂
 density operator

�(X)
 phase-space distribution

�
 direct product

y
 operator adjoint

j . . .i
 state vector

h. . . j
 adjoint state vector

h. . .i�
 mean value
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Introduction

This article concerns the nonrelativistic quantum
mechanics of isolated systems of n particles inter-
acting by means of a scalar potential, what we shall
call the ‘‘quantum n-body problem.’’ Such systems
are described by the kinetic-plus-potential
Hamiltonian,

H ¼ T þ V ¼
Xn

�¼1

jP�j2

2m�
þ VðR1; . . . ;RnÞ ½1�

where R�, P�,�= 1, . . . , n are the positions and
momenta of the n particles in three-dimensional
space, m� are the masses, and V is the potential
energy. This Hamiltonian also occurs in the
‘‘classical n-body problem,’’ in which V is usually
assumed to consist of the sum of the pairwise
gravitational interactions of the particles. In this
article, we shall only assume that V (hence H) is
invariant under translations, proper rotations, par-
ity, and permutations of identical particles. The
Hamiltonian H is also invariant under time reversal.
This Hamiltonian describes the dynamics of isolated
atoms, molecules, and nuclei, with varying degrees
of approximation, including the case of molecules in
the Born–Oppenheimer approximation, in which V
is the Born–Oppenheimer potential. We shall ignore
the spin of the particles, and treat the wave function
� as a scalar. We assume that � is an eigenfunction
of H, H� = E�. In practice, the value of n typically
ranges from 2 to several hundred. Often the cases
n = 3 and n = 4 are of special interest. In this article,
we shall assume that n 
 3, since n = 2 is the trivial
case of central-force motion. The quantum n-body
problem is not to be confused with the ‘‘quantum
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many-body problem,’’ which usually refers to the
quantum mechanics of large numbers of identical
particles, such as the electrons in a solid.

Of particular interest is the ‘‘reduction’’ of the
Hamiltonian [1], that is, the elimination of those
degrees of freedom that can be eliminated due to the
continuous symmetries of translations and rotations.
A basic problem is to write down the reduced
Hamiltonian and to make its analytical and geome-
trical properties clear. In the following we shall
present this reduction in two stages, dealing first with
the translations and second with the proper rotations.
In each stage, we shall describe the reduction first in
coordinate language and then in geometrical lan-
guage. The discrete symmetries of parity, time
reversal, and permutation of identical particles are
handled by standard methods of group representation
theory, and will not be discussed here.

There has been considerable interest in mathema-
tical circles in recent years in the reduction of
dynamical systems with symmetry, and the quantum
n-body problem is one of the most important such
systems from a physical standpoint. As such, the
basic theory of the quantum n-body problem has
received considerable attention in the physical
literature going back to the birth of quantum
mechanics, and continues to be of great practical
importance. This article and the bibliography
attempt to bridge these two centers of interest.
Reduction by Translations: Coordinate
Description

We begin with a coordinate description of the
reduction of the system [1] by translations. The
coordinates (R1, . . . , Rn) are coordinates on the con-
figuration space of the system, called the ‘‘original
configuration space’’ or OCS. The OCS is R3n. The
original system has 3n degrees of freedom. The
translation group acts on configuration space by
R� 7!R� þ �, for �= 1, . . . , n, where � is a displace-
ment vector. It acts on wave functions by
�(R1, . . . , Rn) 7!�(R1 � �, . . . , Rn � �).

To reduce the system by translations, we perform
a linear coordinate transformation on the OCS,
taking us from the original vectors (R1, . . . , Rn) to a
new set of n vectors (r1, . . . , rn�1, RCM), where RCM

is the center-of-mass position,

RCM ¼
1

M

Xn

�¼1

m�R� ½2�

where M =
P

� m� is the total mass of the system, and
the other n� 1 vectors of the new coordinate system,
(r1, . . . , rn�1), are required to be translationally
invariant, that is, independent linear functions of the
relative particle positions R� � R�. We denote the
momenta conjugate to (r1, . . . , rn�1, RCM) by
(p1, . . . , pn�1, PCM), of which PCM turns out to be the
total momentum of the system,

PCM ¼
Xn

�¼1

P� ½3�

Under such a coordinate transformation, the poten-
tial energy becomes simply a function of the n� 1
relative vectors, V(r1, . . . , rn�1), whereas the kinetic
energy becomes

T ¼ jPCMj2

2M
þ 1

2

Xn�1

�;�¼1

K��p� � p� ½4�

where K�� is a symmetric tensor (the ‘‘inverse mass
tensor’’).

The vectors (r1, . . . , rn�1) specify the positions of n
particles relative to their center of mass. As described
so far, these vectors need only be independent,
translationally invariant linear combinations of the
particle postitions. However, it is convenient to
choose them so that the inverse mass tensor becomes
proportional to the identity, K�� = (1=M)���. An
elegant way of doing this is the method of Jacobi
vectors, which involves splitting the original set of
particles into two nonempty subsets, which are then
split into smaller subsets, etc., until only subsets of a
single particle remain. The process can be represented
by a tree growing downward, with the original n
particles as the root, and the ends of the branches at
the bottom each containing one particle. Then the
vectors (r1, . . . , rn�1) (the Jacobi vectors) are chosen
to be proportional to the differences between the
centers of mass of the two subsets at each splitting.
With the right constants of proportionality, the
kinetic energy becomes

T ¼ 1

2M
jPCMj2 þ

1

2M

Xn�1

�¼0

jp�j
2 ½5�

Henceforth, we shall assume that the vectors
(r1, . . . , rn�1) are Jacobi vectors with conjugate
momenta (p1, . . . , pn�1).

The choice of Jacobi vectors is not unique. In the
first place, there is a discrete set of possible ways of
splitting the original set of n particles into subsets
(of forming trees), each of which leads to the same
form [5] of the kinetic energy. More generally, the
kinetic energy [5] is invariant under transformations

r 0� ¼
Xn�1

�¼1

Q�� r� ½6�
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where Q�� is an orthogonal matrix, Q 2 O(n� 1).
Such transformations are called ‘‘kinematic rota-
tions.’’ The discrete choices of trees in forming the
Jacobi vectors are equivalent to a discrete set of
kinematic rotations Q�� that map one standard
choice of Jacobi vectors into the others.

Since the momentum PCM of the center of mass
commutes with H, the eigenfunctions � of H can be
chosen to have the form

�ðR1; . . . ;RnÞ
¼ expðiRCM � PCM=�hÞ ðr1; . . . ; rn�1Þ ½7�

This causes  to be an eigenfunction of the
‘‘translation-reduced Hamiltonian,’’ Htr = Etr ,
where

Htr ¼
1

2M

Xn�1

�¼0

jp�j
2 þ Vðr1; . . . ; rn�1Þ ½8�

The kinetic energy of the center of mass,
jPCMj2=2M, has been discarded from both Htr and
Etr, which represent physically the energy of the
system about its center of mass.
Reduction by Translations: Geometrical
Description

The kinetic energy T in eqn [1] specifies a metric
ds2 =

P
� m�jdR�j2 on the OCS (=R3n). The transla-

tion group (=R3) acts freely on the OCS, with an
action that is generated by PCM. This action defines
an orthogonal decomposition of the OCS,
R3n = R3 �R3n�3, where R3 is the orbit of the origin
(the other orbits of the translation group action are
parallel spaces), and R3n�3 is the orthogonal subspace
(henceforth the ‘‘translation-reduced configuration
space’’ or TRCS for short). The TRCS is physically
the space of configurations relative to the center of
mass. The vectors (r1, . . . , rn�1) are coordinates on
the TRCS. The TRCS possesses a metric which is the
projection of the metric on the OCS onto the TRCS
by means of the translation group action. The metric
can be projected because translations preserve the
original metric (they are isometries). Jacobi vectors
are Euclidean coordinates on the TRCS with respect
to this metric.

The tree method of constructing Jacobi vectors
can be understood in terms of certain group actions
which take place as each subset of particles is split
into two further subsets. The group action in
question leaves the center of mass of the original
subset invariant, while moving the two new subsets
apart along a line. This motion in the configuration
space is orthogonal to all the other group actions
that are created in the process of splitting subsets of
particles, including the original action of the
translation group. Thus, each splitting of a subset
of particles generates a three-dimensional subspace
of the OCS, on which one of the r� are coordinates.
The conjugate momentum p� is the generator of the
group action moving the two new subsets apart. The
final result is that the OCS is decomposed into n
orthogonal, three-dimensional subspaces, one of
which contains the action of the original translation
group, and the others of which represent the
decomposition of the TRCS into n� 1, three-
dimensional orthogonal subspaces.

The TRCS can also be seen as a global section of a
flat, trivial, principal fiber bundle created by the
action of the translation group on the OCS.
Alternatively, the TRCS can be seen as the quotient
space, R3n=R3. The construction is fairly simple
because the translation group is Abelian.

The wave function  can be seen as a member of
the Hilbert space of wave functions on the TRCS,
upon which the reduced Hamiltonian Htr of eqn [8]
acts. Alternatively, it can be seen as the function
obtained by restricting � on the OCS to the TRCS,
where � has a dependence along the orbits of the
translation group given by exp (iRCM � PCM=�h), that
is, by an irreducible representation (irrep) of the
translation group.
Reduction by Rotations: Coordinate
Description

The Hamiltonian Htr acts on wave functions  
defined on the TRCS and has 3n� 3 degrees of
freedom. Consider a coordinate transformation to
eliminate further degrees of freedom due to the
rotational invariance. This coordinate transforma-
tion takes us from the Jacobi vectors {r�,�= 1, . . . ,
n� 1} to orientational and shape coordinates. Shape
coordinates are a set of 3n� 6 coordinates
{q�,�= 1, . . . , 3n� 6} that specify the shape of the
n-particle system, that is, they are 3n� 6 independent
functions of the interparticle distances (hence rota-
tionally invariant). We will call the space upon which
the q� are coordinates ‘‘shape space.’’ For example, in
the case of the three-body problem, shape space is the
space of all triangles.

As for orientational coordinates, to define them it
is necessary first to define a ‘‘body frame.’’ We
assume we are already given one frame, the ‘‘space
frame,’’ a fixed inertial frame. The body frame is a
3-frame attached in a conventional way to each shape
of the system of particles, which rotates with the
particles. The orientational coordinates, to be
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denoted by {�i, i = 1, 2, 3}, are three coordinates (e.g.,
Euler angles) specifying the SO(3) rotation that maps
the space frame into the body frame. We shall write
the new coordinates collectively as {�i, q�}.

There is a great deal of arbitrariness in the choice
of a body frame, since for a given shape a body frame
can be attached in many ways, the different choices
being related by proper rotations. The only require-
ment is that the body frame should change smoothly
as the shape changes. Popular choices for the body
frame are the principal axis and Eckart frames.

When the potential energy is transformed to the new
coordinates, it becomes a function only of the {q�},
that is, of the shape. The potential can be written as
V = V(q). V is a scalar field on shape space.

The transformation of the kinetic energy is more
complicated. When the (Euclidean) metric tensor on
the TRCS is transformed to orientational and shape
coordinates there results a (3n� 3)� (3n� 3) com-
ponent matrix which may be partitioned into blocks
according to the coordinates {�i, q�}, that is, accord-
ing to 3n� 3 = 3þ (3n� 6). This matrix cannot be
made diagonal or even block diagonal by any choice
of orientational or shape coordinates, or by any
choice of body frame.

The components of the metric tensor in the new
coordinates are conveniently expressed in terms of
three fields on shape space. The first is the moment-of-
inertia tensor E, which describes the 3� 3 upper block
of the metric tensor. Its components are given by

Eij ¼M
Xn�1

�¼1

jr�j2 �ij � r�ir�j

� �
½9�

The vectors and tensors in this equation can be
referred either to the space frame or the body frame,
but the body frame is more convenient because then
the components of the vectors r� are functions only
of the shape coordinates q�. Thus, the body frame
components Eij of the moment-of-inertia tensor
define a field on shape space.

The second field is the ‘‘gauge potential’’ A�, an
object with 3(3n� 6) components Ai

�, i = 1, 2, 3,
�= 1, . . . , 3n� 6, which describes the off-diagonal
blocks of the metric tensor. It is defined by

A� ¼ E�1 M
Xn�1

�¼1

r� �
@r�
@q�

 !
½10�

in which all vectors are understood to be referred to
the body frame (so the partial derivatives make
sense). The gauge potential A� is responsible for the
‘‘falling cat’’ phenomenon, in which a flexible body
of zero angular momentum nevertheless manages to
rotate.
The third field is the (3n� 6)� (3n� 6) lower
block of the metric tensor on the TRCS, an object
with two shape indices. It is given by

g�	 ¼M
Xn�1

�¼1

@r�
@q�
� @r�
@q	

� �
� A� � E � A	 ½11�

where again the vectors are referred to the body
frame. The notation suggests (correctly) that g�	 is
the metric tensor on shape space.

On transforming the wave function from the
Jacobi vectors to coordinates (�i, q�), it is convenient
to introduce a Jacobian factor,  (r1, . . . , rn�1) =
D1=4
(�i, q�), where D = (det E)(det g�	). This
causes the new wave function 
 to have the
normalization

Z
dR

Y3n�6

�¼1

dq�

 !
j
j2 ½12�

where dR is the Haar measure on the group SO(3).
The factor D depends only on the q�, not the �i.
Then the Schrödinger equation can be written as
Htr
= Etr
, where Htr is a differential operator
involving @=@�i and @=@q�.

The orientational derivatives @=@�i in Htr are
conveniently expressed in terms of the angular
momentum operator L. When acting on the original
wave function � on the OCS, the angular momen-
tum is

L ¼
Xn

�¼1

R� � P� ½13�

When this is transformed to the coordinates
(r1, . . . , rn�1, RCM), it becomes L = LCM þ Ltr,
where LCM = RCM � PCM, and

Ltr ¼
Xn�1

�¼1

r� � p� ½14�

Physically, Ltr is the angular momentum of the
system about the center of mass.

We shall henceforth drop the ‘‘tr’’ on Htr, Etr, and
Ltr, thereby restricting attention to the energy and
angular momentum about the center of mass.

The angular momentum L, when acting on wave
functions  (r1, . . . , rn�1) on the TRCS, is a vector of
differential operators involving @=@r�. When these
are transformed to orientational and shape coordi-
nates, the components of L become differential
operators involving only orientational derivatives,
@=@�i. There are no shape derivatives, @=@q�, since
L generates rotations, that is, changes in orientation,
not shape. Thus, one can solve for the operators
@=@�i in terms of the components of L. This is true
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both for the space and the body components of L,
although the differential operators are not the same
in the two cases. The space components of L satisfy
the usual angular momentum commutation rela-
tions, [Li, Lj] = i�h�ijk Lk, while the body components
of satisfy [Li, Lj] =�i�h�ijk Lk (with a minus sign
relative to the space commutation relations).

Thus, the Hamiltonian can be expressed in
terms of L and the shape momentum operators,
p� =�i�h@=@q�. The result is

H¼ 1
2 L � E�1 � Lþ 1

2 ðp� � L � A�Þg�	ðp	 � L � A	Þ
þ V2ðqÞ þ VðqÞ ½15�

where all vectors are referred to the body frame,
where g�	 is the contravariant metric tensor on
shape space, and where V2 is given by

V2 ¼
�h2

2
D�1=4 @

@q�
g�	

@D1=4

@q	

� �
½16�

V2 looks like a potential (it is a function of only q),
hence the notation, but physically it belongs to the
kinetic energy. It is sometimes called an ‘‘extrapoten-
tial.’’ It arises from nonclassical commutators in the
transformation of the kinetic energy (hence the �h2

dependence). The first term of eqn [15] is the kinetic
energy of rotation, also called the ‘‘vertical’’ kinetic
energy, the next two terms are the remainder of the
kinetic energy, somewhat imprecisely thought of as
the kinetic energy of vibrations or changes in shape,
also called the ‘‘horizontal kinetic energy,’’ and the
final term is the (true) potential, discussed above.

Since the Hamiltonian commutes with the angular
momentum, [H, L] = 0, 
 can be chosen to be
simultaneous eigenfunctions of L2 and Lz (the latter
being the space component), as well as of energy.
Let 
lm be these eigenfunctions, where l and m are
the quantum numbers of L2 and Lz, respectively.
Then by the transformation properties of 
 under
rotations, we can write


lmð�i; q�Þ ¼
Xþl

k¼�l

�lkðq�ÞDl
kmð�iÞ ½17�

where D is a standard rotation matrix and �lk are
functions only of q�. In these equations we use the
phase and other standard conventions of the theory of
rotations. The wave function � is a function only of q�

and can loosely be thought of as the wave function on
shape space. It is not a scalar like �,  , or 
, but rather
has 2l þ 1 components indexed by k.

The Schrödinger equation for � can be written
as H�= E�, where H has the same form as in
eqn [15], except that now the components of the
angular momentum Li are interpreted, no longer
as differential operators in �i, but as (2l þ 1)�
(2l þ 1) matrices that act on the ‘‘spinor’’ �. These
matrices are the transposes of the usual angular
momentum matrices in angular momentum theory,
that is, (Li)kk0 = hk0jLijki.

This is the final form of the Schrödinger equation
after all reductions by all continuous symmetries
have been carried out. The fully reduced system has
3n� 5 degrees of freedom (3n� 6 for the shape
coordinates, and one for the ‘‘spinor’’ index k).
Reduction by Rotations: Geometrical
Description

The proper rotation group SO(3) acts on the OCS
by R� 7!RR�, and on the TRCS by r� 7!Rr�, where
R 2 SO(3). Rotations acting on the OCS do not
commute with translations, but the action preserves
the translation fibers, and thus can be projected onto
the TRCS.

The action of SO(3) on the TRCS is effective but
not free, that is, most orbits are diffeomorphic to
SO(3), but a subset of measure zero (the ‘‘singular’’
orbits) are diffeomorphic to S2 or a single point.
Configurations of the n-particle system in which the
particles do not lie on a line (‘‘noncollinear shapes’’)
have SO(3) orbits, those in which the particles do lie
on a line but are not coincident have S2 orbits, and
the n-body collision (a single shape) has an orbit that
is a single point. Thus, the action of SO(3) on the
TRCS foliates the TRCS into a (3n� 6)-parameter
family of copies of SO(3), plus the singular orbits. If
we exclude the singular orbits, then the TRCS has the
structure of an SO(3) principal fiber bundle. In
general, the bundle is not trivial. Shape space may
be defined as the quotient space under the SO(3)
action. Omitting the singular shapes, shape space is
the base space of the bundle. The coordinates q�

introduced above are coordinates on shape space.
The singular shapes and orbits are physically acces-
sible, and there are important questions regarding the
behavior of the system in their neighborhood.

The definition of a body frame is equivalent to the
choice of a section of the fiber bundle, generally
only locally defined over some region of shape
space. A configuration (a point in the TRCS) on the
section defines an orientation of the n-particle
system for the given shape, which serves as a
reference orientation to which others can be
referred. We think of the reference orientation as
one in which the space and body frames coincide; in
other orientations of the same shape, the body frame
has been rotated with the body to a new orientation.
The choice of the section (body frame) allows us to
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impose coordinates on each (nonsingular) rotation
fiber, that is, we label points on the fiber by the
rotation that takes us from the section to the actual
configuration in question. This is why a choice of
body frame is necessary before defining orienta-
tional coordinates. Sections are only defined locally.
Popular choices of body frame, such as the principal
axis frame, imply multivalued sections, unless
branch cuts are introduced. Orientational coordi-
nates are simply coordinates on the group manifold
SO(3), transferred to the nonsingular rotation fibers,
with the group identity element mapped onto the
point where the fiber intersects the section.

The metric tensor determines much of the geome-
try of the reduction by rotations. Since the metric on
the TRCS is SO(3)-invariant, horizontal subspaces in
the SO(3) fiber bundle (the TRCS minus the singular
orbits) can be defined as the spaces orthogonal to the
fibers (hence orthogonal to the vertical subspaces).
This is a standard construction in Kaluza–Klein
theories, which reappears here. Thus, the bundle has
a connection, induced by the metric.

The moment-of-inertia tensor is the metric tensor
restricted to a fiber, evaluated in a basis of left-
(body frame) or right-invariant (space frame) vector
fields on SO(3), which are transported to the fibers
to create a basis of vertical vector fields.

The coordinate description of the connection is
the gauge potential A�, in which the � index refers
to shape coordinates q�, and the components of the
3-vector A refer to the standard set of left- or right-
invariant vector fields on SO(3). The coordinate
representative of the curvature 2-form is conveni-
ently denoted by B�	 , defined by

B�	 ¼
@A	

@q�
� @A�

@q	
� A� � A	 ½18�

where it is understood that body frame components
are used. Direct calculation shows that it is nonzero,
hence the fiber bundle is not flat, for any value of
n � 3. The curvature form B�	 appears in the
classical equation of motion and in the quantum
commutation relations.

The field B�	 satisfies differential equations on
shape space that have the form of Yang–Mills field
equations. It is interesting that the sources of this
field are singularities of the monopole type, located
on the singular shapes. In the case n = 3, the source
is a single monopole located at the three-body
collision, which is similar to a Dirac monopole in
electromagnetic theory.

The (3n� 6)-dimensional horizontal subspaces of
the TRCS are annihilated by three differential forms,
whose values on a velocity vector of the system are
the components of the classical angular momentum L
(body or space components, depending on the basis
of forms). Thus, horizontal motions are those for
which L = 0, and horizontal lifts of curves in shape
space are motions of the system with vanishing
angular momentum. Since angular momentum is
conserved, such motions are generated by the
classical equations of motion and are physically
allowed. For loops in shape space, the holonomy
generated by the horizontal lift is physically the
rotation that a flexible body experiences when it is
carried under conditions of vanishing angular
momentum from an initial shape, through intermedi-
ate shapes and back to the initial shape. An example
is the rotation generated by the ‘‘falling cat.’’

Since the metric on the TRCS is SO(3)-invariant,
it may be projected onto shape space, which there-
fore is a Riemannian manifold in its own right. The
projected metric is ds2 = g�	 dq� dq	. This metric is
not flat (the Riemann curvature tensor is nonzero
for all values n � 3). Geodesics in shape space have
horizontal lifts that are free particle motions (V = 0)
of zero angular momentum. Conversely, such
motions project onto geodesics on shape space.

A popular choice of body frame in molecular
physics is the Eckart frame, which has advantages
for the description of small vibrations and other
purposes. The section defining the Eckart frame is a
flat vector subspace of the TRCS of dimension 3n� 6
that is orthogonal (horizontal) to a particular fiber
(over an equilibrium shape) at a particular
orientation.

The geometrical meaning of eqn [17] is that
rotations act on a set of wave functions 
 that span
an irrep of SO(3) by multiplication by the represen-
tative element of the group. In standard physics
notation, l indexes the irrep, and m indexes the basis
vectors spanning the irrep. Thus, the values of these
wave functions at any point on the fiber are known
once their values are given at a reference point. A
convenient choice for the reference point is the point
on the section, and the wave functions �lk are simply
the values of the 
lm on this reference point (with a
change of notation, m! k). Thus, the wave func-
tions �lk are properly not ‘‘wave functions on shape
space,’’ but rather wave functions on the section.

Shape space in the case n = 3 is homeomorphic to
the region x3 � 0 of R3, and in the case n = 4 to R6.
A convenient tool for understanding the structure
of shape space is by its foliation under the action of
the kinematic rotations, eqn [5]. The kinematic
rotations commute with ordinary rotations, and
hence have an action on shape space. This action
preserves the eigenvalues of the moment-of-inertia
tensor.
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Concluding Remarks

The quantum n-body problem provides an interesting
example in which nonabelian gauge theories find
application in nonrelativistic quantum mechanics. The
fields E, A�, and g�	 , and fields derived from them such
as the curvature tensor B�	 and the Riemann curvature
tensor derived from g�	, satisfy a complex set of
differential equations on shape space that can be
derived by considering the vanishing of the Riemann
tensor on the TRCS. The resulting field equations are
useful in perturbation theory, for example, in the study
of small vibrations of a molecule. This means of
constructing field equations on the base space of a
bundle is standard in Kaluza–Klein theories, which are
an important line of thinking in modern attempts to
understand gauge field theories in particle physics.

The rotations generated by flexible bodies of vanish-
ing angular momentum (the ‘‘falling cat’’) are an
example of a ‘‘geometric phase,’’ that is, a nonabelian
generalization of ‘‘Berry’s phase.’’ It is interesting how
the associated gauge potential A� in this problem plays
a role in the dynamics of the n-particle system.

The Hamiltonian [15] is the starting point for
numerous practical calculations, for example, the
numerical evaluation of energy levels, cross-sections
and reaction rates in molecular physics. One can
compute, for example, chemical reaction rates for
molecular processes in atmospheric or astrophysical
contexts, where experiments would be difficult or
expensive. The numerical analysis of the Hamiltonian
[15] usually requires the introduction of a basis set and
the processing of large matrices. Current techniques
for basis set selection are not very satisfactory, and this
is an area where research into wavelets and numerical
analysis could have an impact.
See also: Bosons and Fermions in External Fields;
Gravitational N-Body Problem (Classical); Integrable
Systems: Overview.
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Introduction

The study of second-order phase transitions at
nonzero temperatures has a long and distinguished
history in statistical mechanics. Many key physical
phenomena, such as the loss of ferromagnetism
in iron at the Curie temperature or the critical
endpoint of CO2, are now understood in precise
quantitative detail. This understanding began in the
work of Onsager, and is based upon what may now
be called the Landau–Ginzburg–Wilson theory.
The content of this sophisticated theory may be sum-
marized in a few basic principles: (1) The collective
thermal fluctuations near second-order transitions
can be accurately described by simple classical
models, that is, quantum-mechanical effects can be
entirely neglected. (2) The classical models identify
an ‘‘order parameter,’’ a collective variable which
has to be treated on par with other thermodynamic
variables, and whose correlations exhibit distinct
behavior in the phases on either side of the
transition. (3) The thermal fluctuations of the
order parameter near the transition are controlled
by a continuum field theory whose structure is
usually completly dictated by simple symmetry
considerations.
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This article will not consider such nonzero
temperature phase transitions, but will instead
describe second-order phase transitions at the
absolute zero of temperature. Such transitions are
driven by quantum fluctuations mandated by the
Heisenberg uncertainty principle: one can imagine
moving across the quantum critical point by
effectively ‘‘tuning the value of Planck’s constant,
�h.’’ Clearly, quantum mechanics plays a central role
at such transitions, unlike the situation at nonzero
temperatures. The reader may object that absolute
zero is an idealization not realized by any experi-
mental system; hence, the study of quantum phase
transitions is a subject only of academic interest. As
we will illustrate below, knowledge of the zero-
temperature quantum critical points of a system is
often the key to understanding its finite-temperature
properties, and in some cases the influence of a zero-
temperature critical point can be detected at
temperatures as high as ambient room temperature.

We will begin in the following section by
introducing some simple lattice models which
exhibit quantum phase transitions. Next the theory
of the critical point in these models is based upon
a natural extension of the Landau–Ginzburg–Wilson
(LGW) method, and this will be presented. This
section will also describe the consequences of a zero-
temperature critical point on the nonzero tempera-
ture properties. Finally, we will consider more
complex models in which quantum interference
effects play a more subtle role, and which cannot
be described in the LGW framework: such quantum
critical points are likely to play a central role in
understanding many of the correlated electron
systems of current interest.
Simple Models

Quantum Ising Chain

This is a simple model of N qubits, labeled by the
index j = 1, . . . , N. On each ‘‘site’’ j there are two
qubit quantum states "j ij and #j ij (in practice, these
could be two magnetic states of an ion at site j in a
crystal). The Hilbert space therefore consists of 2N

states, each consisting of a tensor product of the
states on each site. We introduce the Pauli spin
operators, �̂�j , on each site j, with �= x, y, z:

�̂x ¼
0 1

1 0

� �
; �̂y ¼

0 �i

i 0

� �

�̂z ¼
1 0

0 �1

� � ½1�
These operators clearly act on the two states of the
qubit on site j, and the Pauli operators on different
sites commute.

The quantum Ising chain is defined by the simple
Hamiltonian

HI ¼ �J
XN�1

j¼1

�̂ z
j �̂

z
jþ1 � g J

XN
j¼1

�̂ x
j ½2�

where J > 0 sets the energy scale, and g � 0 is a
dimensionless coupling constant. In the thermody-
namic limit (N!1), the ground state of HI exhibits
a second-order quantum phase transition as g is
tuned across a critical value g = gc (for the specific
case of HI it is known that gc = 1), as we will now
illustrate.

First, consider the ground state of HI for g� 1.
At g = 0, there are two degenerate ‘‘ferromagnetically
ordered’’ ground states

*j i ¼
YN
j¼1

"j ij; +j i ¼
YN
j¼1

#j ij ½3�

Each of these states breaks a discrete ‘‘Ising’’
symmetry of the Hamiltonian rotations of all
spins by 180� about the x-axis. These states are
more succinctly characterized by defining the
ferromagnetic moment, N0, by

N0 ¼ *h j�̂z
j *j i ¼ � +h j�̂z

j +j i ½4�

At g = 0 we clearly have N0 = 1. A key point is
that in the thermodynamic limit, this simple picture
of the ground state survives for a finite range of
small g (indeed, for all g < gc), but with 0 < N0 < 1.
The quantum tunneling between the two ferromag-
netic ground states is exponentially small in N (and
so can be neglected in the thermodynamic limit),
and so the ground state remains 2-fold degenerate
and the discrete Ising symmetry remains broken.
The change in the wave functions of these states
from eqn [3] can be easily determined by perturba-
tion theory in g: these small g quantum fluctuations
reduce the value of N0 from unity but do not cause
the ferromagnetism to disappear.

Now consider the ground state of HI for g� 1.
At g =1 there is a single nondegenerate ground
state which fully preserves all symmetries of HI:

)i¼ 2�N=2
YN
j¼1

"j ijþ #j ij
� �

½5�

It is easy to verify that this state has no ferromagnetic
moment N0 =

�
)
���̂ z

j

��)i= 0. Further, perturbation
theory in 1=g shows that these features of the ground
state are preserved for a finite range of large g values



Figure 1 The coupled dimer antiferromagnet. Qubits (i.e.,

S = 1=2 spins) are placed on the sites, the A links are shown as

full lines, and the B links as dashed lines.
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(indeed, for all g > gc). One can visualize this ground
state as one in which strong quantum fluctuations
have destroyed the ferromagnetism, with the local
magnetic moments quantum tunneling between ‘‘up’’
and ‘‘down’’ on a timescale of order �h=J.

Given the very distinct signatures of the small g
and large g ground states, it is clear that the ground
state cannot evolve smoothly as a function of g.
These must be at least one point of nonanalyticity as
a function of g: for HI it is known that there is only
a single nonanalytic point, and this is at the location
of a second-order quantum phase transition at
g = gc = 1.

The character of the excitations above the ground
state also undergoes a qualitative change across the
quantum critical point. In both the g < gc and g > gc

phases, these excitations can be described in the
Landau quasiparticle scheme, that is, as super-
positions of nearly independent particle-like
excitations; a single well-isolated quasiparticle has
an infinite lifetime at low excitation energies.
However, the physical nature of the quasiparticles
is very different in the two phases. In the ferromag-
netic phase, with g < gc, the quasiparticles are
domain walls between regions of opposite
magnetization:

j; jþ 1j i ¼
Yj

k¼1

"j ik
YN
‘¼jþ1

#j i‘ ½6�

This is the exact wave function of a stationary
quasiparticle excitation between sites j and jþ 1 at
g = 0; for small nonzero g the quasiparticle acquires
a ‘‘cloud’’ of further spin-flips and also becomes
mobile. However its qualitative interpretation as a
domain wall between the two degenerate ground
states remains valid for all g < gc. In contrast, for
g > gc, there is no ferromagnetism, and the non-
degenerate paramagnetic state has a distinct quasi-
particle excitation:

jj i ¼ 2�N=2 "j ij� #j ij
� �Y

k 6¼j

�
"j ikþ #j ik

�
½7�

This is a stationary ‘‘flipped spin’’ quasiparticle at
site j, with its wave function exact at g =1. Again,
this quasiparticle is mobile and applicable for all
g > gc, but there is no smooth connection between
eqns [7] and [6].
Coupled Dimer Antiferromagnet

This model also involves qubits, but they are now
placed on the sites, j, of a two-dimensional square
lattice. Models in this class describe the magnetic
excitations of many experimentally important spin
gap compounds.

The Hamiltonian of the dimer antiferromagnet is
illustrated in Figure 1 and is given by

Hd¼ J
X
hjki2A

�̂x
j �̂

x
k þ �̂

y
j �̂

y
k þ �̂

z
j �̂

z
k

� �

þ J

g

X
hjki2B

�̂x
j �̂

x
k þ �̂

y
j �̂

y
k þ �̂

z
j �̂

z
k

� �
½8�

where J > 0 is the exchange constant, g � 1 is the
dimensionless coupling, and the set of nearest-
neighbor links A and B are defined in Figure 1. An
important property of Hd is that it is now invariant
under the full O(3) group of spin rotations under
which the �̂ � transform as ordinary vectors (in
contrast to the Z2 symmetry group of HI). In
analogy with HI, we will find that Hd undergoes a
quantum phase transition from a paramagnetic
phase which preserves all symmetries of the
Hamiltonian at large g, to an antiferromagnetic
phase which breaks the O(3) symmetry at small g.
This transition occurs at a critical value g = gc,
and the best current numerical estimate is
1=gc = 0.52337(3).

As in the previous section, we can establish the
existence of such a quantum phase transition by
contrasting the disparate physical properties at large
g with those at g � 1. At g =1 the exact ground
state of Hd is

spin gapj i ¼
Y
hjki2A

1ffiffiffi
2
p "j ij #j ik� #j ij "j ik
� �

½9�

and is illustrated in Figure 2. This state is non-
degenerate and invariant under spin rotations, and
so is a paramagnet: the qubits are paired into spin
singlet valence bonds across all the A links.

The excitations above the ground state are
created by breaking a valence bond, so that the
pair of spins form a spin triplet with total spin
S = 1 – this is illustrated in Figure 3. It costs a large
energy to create this excitation, and at finite g the
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Figure 2 The paramagnetic state of Hd for g > gc. The state

illustrated is the exact ground state for g =1, and it is

adiabatically connected to the ground state for all g > gc.

Figure 3 The triplon excitation of the g > gc paramagnet. The

stationary triplon is an eigenstate only for g =1 but it becomes

mobile for finite g.
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triplet can hop from link to link, creating a gapped
‘‘triplon’’ quasiparticle excitation. This is similar to
the large g paramagnet for HI, with the important
difference that each quasiparticle is now 3-fold
degenerate.

At g = 1, the ground state of Hd is not known
exactly. However, at this point Hd becomes equiva-
lent to the nearest-neighbor square lattice antiferro-
magnet, and this is known to have antiferromagnetic
order in the ground state, as illustrated in Figure 4.
This state is similar to the ferromagnetic ground
state of HI, with the difference that the magnetic
moment now acquires a staggered pattern on the
two sublattices, rather than the uniform moment of
the ferromagnet. Thus, in this ground state

hAFj�̂�j jAFi¼N0�jn� ½10�

where 0 < N0 < 1 is the antiferromagnetic moment,
�j =	1 identifies the two sublattices in Figure 4, and
n� is an arbitrary unit vector specifying the
Figure 4 Schematic of the ground state with antiferromagnetic

order with g < gc.
orientation of the spontaneous magnetic moment
which breaks the O(3) spin rotation invariance of
Hd. The excitations above this antiferromagnet are
also distinct from those of the paramagnet: they are
a doublet of spin waves consisting of a spatial
variation in the local orientation, n�, of the
antiferromagnetic order: the energy of this excita-
tion vanishes in the limit of long wavelengths, in
contrast to the finite energy gap of the triplon
excitation of the paramagnet.

As with HI, we can conclude from the distinct
characters of the ground states and excitations for
g� 1 and g � 1 that there must be a quantum
critical point at some intermediate g = gc.
Quantum Criticality

The simple considerations of the previous section
have given a rather complete description (based on
the quasiparticle picture) of the physics for g� gc

and g� gc. We turn, finally, to the region g � gc.
For the specific models discussed in the previous
section, a useful description is obtained by a method
that is a generalization of the LGW method
developed earlier for thermal phase transitions.
However, some aspects of the critical behavior
(e.g., the general forms of eqns [13]–[15]) will
apply also to the quantum critical point of the
section ‘‘Beyond LGW theory.’’

Following the canonical LGW strategy, we need
to identify a collective order parameter which
distinguishes the two phases. This is clearly given
by the ferromagnetic moment in eqn [4] for the
quantum Ising chain, and the antiferromagnetic
moment in eqn [10] for the coupled dimer antiferro-
magnet. We coarse-grain these moments over some
finite averaging region, and at long wavelengths this
yields a real order parameter field �a, with the index
a = 1, . . . , n. For the Ising case we have n = 1 and �a

is a measure of the local average of N0 as defined in
eqn [4]. For the antiferromagnet, a extends over the
three values x, y, z (so n = 3), and three components
of �a specify the magnitude and orientation of the
local antiferromagnetic order in eqn [10]; note the
average orientation of a specific spin at site j is �j

times the local value of �a.
The second step in the LGW approach is to write

down a general field theory for the order parameter,
consistent with all symmetries of the underlying
model. As we are dealing with a quantum transition,
the field theory has to extend over spacetime, with
the temporal fluctuations representing the sum over
histories in the Feynman path-integral approach.
With this reasoning, the proposed partition function



g

T

gc

0

Domain wall
quasiparticles

Quantum
critical

Flipped-spin
quasiparticles

Figure 5 Nonzero temperature phase diagram of H I: The

ferromagnetic order is present only at T = 0 on the shaded line
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for the vicinity of the critical point takes the
following form:

Z� ¼
Z
D�aðx; �Þ


 exp

	
�
Z

ddx d�

�
1

2
ð@��aÞ2
�

þ c2ðrx�aÞ2 þ s�2
a

�
þ u

4!
�2

a


 �2
��

½11�

Here � is imaginary time; there is an implied
summation over the n values of the index a, c is a
velocity, and s and u > 0 are coupling constants.
This is a field theory in d þ 1 spacetime dimensions,
in which the Ising chain corresponds to d = 1 and
the dimer antiferromagnet to d = 2. The quantum
phase transition is accessed by tuning the ‘‘mass’’ s:
there is a quantum critical point at s = sc and the
s< sc(s> sc) regions correspond to the g< gc(g> gc)
regions of the lattice models. The s< sc phase has
h�ai 6¼ 0 and this corresponds to the spontaneous
breaking of spin rotation symmetry noted in eqns [4]
and [10] for the lattice models. The s> sc phase is
the paramagnet with h�ai=0. The excitations in this
phase can be understood as small harmonic oscilla-
tions of �a about the point (in field space) �a =0. A
glance at eqn [11] shows that there are n such
oscillators for each wave vector. These oscillators
clearly constitute the g> gc quasiparticles found
earlier in eqn [7] for the Ising chain (with n=1)
and the triplon quasiparticle (with n=3) illustrated
in Figure 3 for the dimer antiferromagnet.

We have now seen that there is a perfect
correspondence between the phases of the quantum
field theory Z� and those of the lattice models HI

and Hd. The power of the representation in eqn [11]
is that it also allows us to get a simple description of
the quantum critical point. In particular, readers
may already have noticed that if we interpret the
temporal direction � in eqn [11] as another spatial
direction, then Z� is simply the classical partition
function for a thermal phase transition in a ferro-
magnet in d þ 1 dimensions: this is the canonical
model for which the LGW theory was originally
developed. We can now take over standard results
for this classical critical point, and obtain some
useful predictions for the quantum critical point of
Z�. It is useful to express these in terms of the
dynamic susceptibility defined by

	ðk; !Þ ¼ i

�h

Z
ddx



Z 1

0

dt �̂ðx; tÞ; �̂ð0; 0Þ
h iD E

T
e�ikxþi!t ½12�
Here �̂ is the Heisenberg field operator correspond-
ing to the path integral in eqn [11], the square
brackets represent a commutator, and the angular
brackets an average over the partition function at a
temperature T. The structure of 	 can be deduced
from the knowledge that the quantum correlators of
Z� are related by analytic continuation in time to
the corresponding correlators of the classical statis-
tical mechanics problem in d þ 1 dimensions. The
latter are known to diverge at the critical point as
�1=p2�� where p is the (d þ 1)-dimensional momen-
tum, � is defined to be the anomalous dimension of
the order parameter (�= 1=4 for the quantum Ising
chain). Knowing this, we can deduce the form of the
quantum correlator in eqn [12] at the zero-tempera-
ture quantum critical point

	ðk; !Þ � 1

ðc2k2 � !2Þ1��=2
; T ¼ 0; g ¼ gc ½13�

The most important property of eqn [13] is the
absence of a quasiparticle pole in the spectral
density. Instead, Im(	(k,!)) is nonzero for all ! > ck,
reflecting the presence of a continuum of critical
excitations. Thus the stable quasiparticles found at
low enough energies for all g 6¼ gc are absent at the
quantum critical point.

We now briefly discuss the nature of the phase
diagram for T > 0 with g near gc. In general, the
interplay between quantum and thermal fluctuations
near a quantum critical point can be quite compli-
cated, and we cannot discuss it in any detail here.
However, the physics of the quantum Ising chain is
relatively simple, and also captures many key
features found in more complex situations, and is
summarized in Figure 5. For all g 6¼ gc there is a
range of low temperatures (T <� jg� gcj) where the
long time dynamics can be described using a dilute
gas of thermally excited quasiparticles. Further, the
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dynamics of these quasiparticles is quasiclassical,
although we reiterate that the nature of the
quasiparticles is entirely distinct on opposite sides
of the quantum critical point. Most interesting,
however, is the novel quantum critical region,
T >� jg� gcj, where neither quasiparticle picture nor
a quasiclassical description are appropriate. Instead,
we have to understand the influence of temperature
on the critical continuum associated with eqn [13].
This is aided by scaling arguments which show that
the only important frequency scale which charac-
terizes the spectrum is kBT=�h, and the crossovers
near this scale are universal, that is, independent of
specific microscopic details of the lattice Hamilto-
nian. Consequently, the zero-momentum dynamic
susceptibility in the quantum critical region takes
the following form at small frequencies:

	ðk ¼ 0; !Þ � 1

T2��
1

ð1� i!=�RÞ
½14�

This has the structure of the response of an
overdamped oscillator, and the damping frequency,
�R, is given by the universal expression

�R ¼ 2 tan



16

� � kBT

�h
½15�

The numerical proportionality constant in eqn. [15]
is specific to the quantum Ising chain; other models
also obey eqn [15] but with a different numerical
value for this constant.
ggc

or

Antiferromagnetic
order VBS order

Figure 6 Phase diagram of Hs. Two possible VBS states are

shown: one which is the analog of Figure 2, and the other in

which spins form singlets in a plaquette pattern. Both VBS states

have a 4-fold degeneracy due to breaking of square lattice

symmetry. So the novel critical point at g = gc (described by Zz)
has the antiferromagnetic and VBS orders vanishing as it is

approached from either side: this coincident vanishing of orders

is generically forbidden in LGW theories.
Beyond LGW Theory

The quantum transitions discussed so far have
turned to have a critical theory identical to that
found for classical thermal transitions in d þ 1
dimensions. Over the last decade it has become
clear that there are numerous models, of key
physical importance, for which such a simple
classical correspondence does not exist. In these
models, quantum Berry phases are crucial in estab-
lishing the nature of the phases, and of the critical
boundaries between them. In less technical terms, a
signature of this subtlety is an important simplifying
feature which was crucial in the analyses of the
section ‘‘Simple models’’: both models had a
straightforward g!1 limit in which we were able
to write down a simple, nondegenerate, ground-state
wave function of the ‘‘disordered’’ paramagnet. In
many other models, identification of the disordered
phase is not as straightforward: specifying absence
of a particular magnetic order is not enough to
identify a quantum state, as we still need to write
down a suitable wave function. Often, subtle
quantum interference effects induce new types of
order in the disordered state, and such effects are
entirely absent in the LGW theory.

An important example of a system displaying such
phenomena is the S = 1=2 square lattice antiferro-
magnet with additional frustrating interactions. The
quantum degrees of freedom are identical to those of
the coupled dimer antiferromagnet, but the Hamil-
tonian preserves the full point-group symmetry of
the square lattice:

Hs ¼
X
j<k

Jjk �̂ x
j �̂

x
k þ �̂

y
j �̂

y
k þ �̂

z
j �̂

z
k

� �
þ � � � ½16�

Here the Jjk > 0 are short-range exchange interac-
tions which preserve the square lattice symmetry,
and the ellipses represent possible further multiple
spin terms. Now imagine tuning all the non-nearest-
neighbor terms as a function of some generic
coupling constant g. For small g, when Hs is nearly
the square lattice antiferromagnet, the ground state
has antiferromagnetic order as in Figure 4 and
eqn [10]. What is now the disordered ground state
for large g? One natural candidate is the spin-singlet
paramagnet in Figure 2. However, because all
nearest neighbor bonds of the square lattice are
now equivalent, the state in Figure 2 is degenerate
with three other states obtained by successive 90�

rotations about a lattice site. In other words, the
state in Figure 2, when transferred to the square
lattice, breaks the symmetry of lattice rotations by
90�. Consequently it has a new type of order, often
called valence-bond-solid (VBS) order. It is now
believed that a large class of models like Hs do
indeed exhibit a second-order quantum phase
transition between the antiferromagnetic state and
a VBS state – see Figure 6. Both the existence of VBS
order in the paramagnet, and of a second-order
quantum transition, are features that are not
predicted by LGW theory: these can only be
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understood by a careful study of quantum inter-
ference effects associated with Berry phases of spin
fluctuations about the antiferromagnetic state. We
will not enter into details of this analysis here, but will
conclude our discussion by writing down the theory so
obtained for the quantum critical point in Figure 6:

Zz ¼
Z
Dz�ðx; �ÞDA�ðx; �Þ


 exp �
Z

d2x d�

	
jð@� � iA�Þ

�
z�j2 þ sjz�j2

þ u

2
ðjz�j2Þ2 þ

1

2e2
ð����@�A�Þ2

��
½17�

Here �, �,� are spacetime indices which extend over
the two spatial directions and � , � is a spinor index
which extends over " , # , and z� is complex spinor
field. In comparing Zz to Z�, note that the vector
order parameter �a has been replaced by a spinor z�,
and these are related by �a = z��

a
�z, where �a are

the Pauli matrices. So the order parameter has
fractionalized into the z�. A second novel property
of Zz is the presence of a U(1) gauge field A�: this
gauge force emerges near the critical point, even
though the underlying model in eqn [16] only has
simple two spin interactions. Studies of fractiona-
lized critical theories like Zc in other models with
spin and/or charge excitations is an exciting avenue
for further theoretical research.

See also: Bose–Einstein Condensates; Boundary
Conformal Field Theory; Fractional Quantum Hall Effect;
Ginzburg–Landau Equation; High Tc Superconductor
Theory; Quantum Central-Limit Theorems; Quantum
Spin Systems; Quantum Statistical Mechanics: Overview.
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Introduction

The theory of quantum spin systems is concerned with
the properties of quantum systems with an infinite
number of degrees of freedom that each have a finite-
dimensional state space. Occasionally, one is specifically
interested in finite systems. Among the most common
examples, one has an n-dimensional Hilbert space
associated with each site of a d-dimensional lattice.

A model is normally defined by describing
a Hamiltonian or a family of Hamiltonians, which
are self-adjoint operators on the Hilbert space, and
one studies their spectrum, the eigenstates, the
equilibrium states, the system dynamics, and non-
equilibrium stationary states, etc.

More particularly, the term ‘‘quantum spin sys-
tem’’ often refers to such models where each degree
of freedom is thought of as a spin variable, that is,
there are three basic observables representing the
components of the spin, S1, S2, and S3, and these
components transform according to a unitary repre-
sentation of SU(2). The most commonly encountered
situation is where the system consists of N spins, each
associated with a fixed irreducible representation of
SU(2). One speaks of a spin-J model if this represen-
tation is the (2J þ 1)-dimensional one. The possible
values of J are 1/2, 1, 3/2, . . .

The spins are usually thought of as each being
associated with a site in a lattice, or more generally, a
vertex in a graph. In a condensed-matter-physics
model, each spin may be associated with an ion in a
crystalline lattice. Quantum spin systems are also used
in quantum information theory and quantum compu-
tation, and show up as abstract mathematical objects
in representation theory and quantum probability.

In this article we give a brief introduction to the
subject, starting with a very short review of its history.
The mathematical framework is sketched and the most
important definitions are given. Three sections, ‘‘Sym-
metries and symmetry breaking,’’ ‘‘Phase transitions,’’
and ‘‘Dynamics,’’ together cover the most important
aspects of quantum spin systems actively pursued today.
A Very Brief History

The introduction of quantum spin systems was the
result of the marriage of two developments during
the 1920s. The first was the realization that angular
momentum (hence, also the magnetic moment) is
quantized (Pauli 1920, Stern and Gerlach 1922) and
that particles such as the electron have an intrinsic
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angular momentum called spin (Compton 1921,
Goudsmit and Uhlenbeck 1925).

The second development was the attempt in
statistical mechanics to explain ferromagnetism and
the phase transition associated with it on the basis of a
microscopic theory (Lenz and Ising 1925). The
fundamental interaction between spins, the so-called
exchange operator which is a subtle consequence
of the Pauli exclusion principle, was introduced
independently by Dirac and Heisenberg in 1926.
With this discovery, it was realized that magnetism is
a quantum effect and that a fundamental theory
of magnetism requires the study of quantum-mechan-
ical models. This realization and a large amount of
subsequent work notwithstanding, some of the most
fundamental questions, such as a derivation of
ferromagnetism from first principles, remain open.

The first and most important quantum spin model
is the Heisenberg model, so named after Heisenberg.
It has been studied intensely ever since the early
1930s and its study has led to an impressive variety
of new ideas in both mathematics and physics. Here,
we limit ourselves to listing only some landmark
developments.

Spin waves were discovered independently by
Bloch and Slater in 1930 and they continue to play
an essential role in our understanding of the
excitation spectrum of quantum spin Hamiltonians.
In two papers published in 1956, Dyson advanced
the theory of spin waves by showing how interac-
tions between spin waves can be taken into account.

In 1931, Bethe introduced the famous Bethe
ansatz to show how the exact eigenvectors of the
spin-1/2 Heisenberg model on the one-dimensional
lattice can be found. This exact solution, directly
and indirectly, led to many important developments
in statistical mechanics, combinatorics, representa-
tion theory, quantum field theory and more.
Hulthén used the Bethe ansatz to compute the
ground-state energy of the antiferromagnetic spin-
1/2 Heisenberg chain in 1938.

In their famous 1961 paper, Lieb, Schultz, and
Mattis showed that some quantum spin models in
one dimension can be solved exactly by mapping
them into a problem of free fermions. This paper is
still one of the most cited in the field.

Robinson, in 1967, laid the foundation for the
mathematical framework, which we describe in the
next section. Using this framework, Araki estab-
lished the absence of phase transitions at positive
temperatures in a large class of one-dimensional
quantum spin models in 1969.

During the more recent decades, the mathematical
and computational techniques used to study quantum
spin models have fanned out in many directions.
When it was realized in the 1980s that the magnetic
properties of complex materials play an important role
in high-Tc superductivity, a variety of quantum spin
models studied in the literature proliferated. This
motivated a large number of theoretical and experi-
mental studies of materials with exotic properties that
are often based on quantum effects that do not have a
classical analog. An example of unexpected behavior is
the prediction by Haldane of the spin liquid ground
state of the spin-1 Heisenberg antiferromagnetic chain
in 1983. In the quest for a mathematical proof of this
prediction (a quest still ongoing today), Affleck,
Kennedy, Lieb, and Tasaki introduced the AKLT
model in 1987. They were able to prove that the
ground state of this model has all the characteristic
properties predicted by Haldane for the Heisenberg
chain: a unique ground state with exponential decay of
correlations and a spectral gap above the ground state.

There are also particle models that are defined on
a lattice, or more generally, a graph. Unlike spins,
particles can hop from one site to another. These
models are closely related to quantum spin systems
and, in some cases, are mathematically equivalent.
The best-known example of a model of lattice
fermions is the Hubbard model. Such systems are
not discussed further in this article.
Mathematical Framework

Quantum spin systems present an area of mathema-
tical physics where the demands of mathematical
rigor can be fully met and, in many cases, this can be
done without sacrificing the ability to include all
physically relevant models and phenomena. This
does not mean, however, that there are few open
problems remaining. But it does mean that, in
general, these open problems are precisely formu-
lated mathematical questions.

In this section we review the standard mathema-
tical framework for quantum spin systems, in which
the topics discussed in the subsequent section can be
given a precise mathematical formulation. It is
possible, however, to skip this section and read the
rest with only a physical or intuitive understanding
of the notions of observable, Hamiltonian,
dynamics, symmetry, ground state, etc.

The most common mathematical setup is as follows.
Let d � 1, and let L denote the family of finite subsets
of the d-dimensional integer lattice Zd. For simplicity
we will assume that the Hilbert space of the ‘‘spin’’
associated with each x 2 Zd has the same dimension
n � 2: H{x} ffi Cn. The Hilbert space associated with
the finite volume � 2 L is then H� =

N
x2�Hx. The

algebra of observables for the spin of site x consists of
the n� n complex matrices: A{x} ffiMn(C). For any
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� 2 L, the algebra of observables for the system in � is
given byA� =

N
x2�A{x}. The primary observables for

a quantum spin model are the spin-S matrices
S1, S2, and S3, where S is the half-integer such that
n = 2Sþ 1. They are defined as Hermitian matrices
satisfying the SU(2) commutation relations. Instead
of S1 and S2, one often works with the spin-raising
and -lowering operators, Sþ and S�, defined by the
relations S1 = (Sþ þ S�)=2, and S2 = (Sþ � S�)=(2i). In
terms of these, the SU(2) commutation relations are

½ Sþ; S�� ¼ 2S3; ½ S3; S�� ¼ �S� ½1�

where we have used the standard notation for the
commutator for two elements A and B in an algebra:
[A, B] = AB� BA. In the standard basis S3, Sþ, and
S� are given by the following matrices:

S3 ¼

S
S� 1

. .
.

�S

0
BB@

1
CCA

S�= (Sþ)�, and

Sþ ¼

0 cS

0 cS�1

. .
. . .

.

0 c�Sþ1

0

0
BBBBB@

1
CCCCCA

where, for m = �S, �Sþ 1, . . . , S,

cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ �mðm� 1Þ

p
In the case n = 2, one often works with the Pauli
matrices, 	1, 	2, 	3, simply related to the spin
matrices by 	 j = 2Sj, j = 1, 2, 3.

Most physical observables are expressed as finite
sums and products of the spin matrices
S j

x , j = 1, 2, 3, associated with the site x 2 �:

S j
x ¼

O
y2�

Ay

with Ax = Sj, and Ay = 1 if y 6¼ x.
The A� are finite-dimensional C�-algebras for the

usual operations of sum, product, and Hermitian
conjugation of matrices and with identity 1�.

If �0 	 �1, there is a natural embedding of A�0

into A�1
, given by

A�0
ffi A�0


 1�1n�0
	 A�1

The algebra of local observables is then defined by

Aloc ¼
[
�2L
A�
Its completion is the C�-algebra of quasilocal
observables, which we will simply denote by A.

The dynamics and symmetries of a quantum spin
model are described by (groups of) automorphisms
of the C�-algebra A, that is, bijective linear trans-
formations � on A that preserve the product and
� operations. Translation invariance, for example, is
expressed by the translation automorphisms �x, x 2
Zd, which map any subalgebra A� to A�þx, in the
natural way. They form a representation of the
additive group Zd on A.

A translation-invariant interaction, or potential,
defining a quantum spin model, is a map � :L ! A
with the following properties: for all X 2 L,
we have �(X) 2 AX, �(X) =�(X)�, and for x 2 Zd,
�(Xþ x) = �x(�(X)). An interaction is called finite
range if there exists R > 0 such that �(X) = 0
whenever diam(X) > R. The Hamiltonian in � is
the self-adjoint element of A� defined by

H� ¼
X
X	�

�ðXÞ

For the standard Heisenberg model the interaction is
given by

�ðfx; ygÞ ¼ �JSx � Sy; if jx� yj ¼ 1 ½2�

and �(X) = 0 in all other cases. Here, Sx � Sy is the
conventional notation for S1

xS1
y þ S2

xS2
y þ S3

xS3
y . The

magnitude of the coupling constant J sets a natural
unit of energy and is irrelevant from the mathema-
tical point of view. Its sign, however, determines
whether the model is ferromagnetic (J > 0), or
antiferromagnetic (J < 0). For the classical Heisen-
berg model, where the role of Sx is played by a unit
vector in R3, and which can be regarded, after
rescaling by a factor S�2, as the limit S!1 of the
quantum Heisenberg model, there is a simple trans-
formation relating the ferro- and antiferromagnetic
models (just map Sx to �Sx for all x in the even
sublattice of Zd). It is easy to see that there does not
exist an automorphism ofAmapping Sx to�Sx, since
that would be inconsistent with the commutation
relations [1]. Not only is there no exact mapping
between the ferro- and the antiferromagnetic models,
their ground states and equilibrium states have
radically different properties. See below for the
definitions and further discussion.

The dynamics (or time evolution), of the system in
finite volume � is the one-parameter group of
automorphisms of A� given by

�
ð�Þ
t ðAÞ ¼ eitH�Ae�itH� ; t 2 R
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For each t 2 R, �(�)
t is an automorphism of A and

the family {�(�)
t j t 2 R} forms a representation of the

additive group R.
Each �(�)

t can trivially be extended to an auto-
morphism on A, by tensoring with the identity map.
Under quite general conditions, �(�)

t converges
strongly as �! Zd in a suitable sense, that is, for
every A 2 A, the limit

lim
�"Zd

�
ð�Þ
t ðAÞ ¼ �tðAÞ

exists in the norm in A, and it can be shown that it
defines a strongly continuous one-parameter group
of automorphisms of A. � " Zd stands for any
sequence of � 2 L such that � eventually contains
any given element of L. A sufficient condition on the
potential � is that there exists � > 0 such that k�k�
is finite, with

k�k� ¼
X
X30

e�jXjk�ðXÞk ½3�

Here j � j denotes the number of elements in X. One
can show that, under the same conditions, � defined
on Aloc by

�ðAÞ ¼ lim
�"Zd
½H�;A�

is a norm-closable (unbounded) derivation on A and
that its closure is, up to a factor i, the generator of
{�t j t 2 R}, that is, formally

�t ¼ eit�

For the class of �with finite k�k� for some � > 0, Aloc

is a core of analytic vectors for �. This means that, for
each A 2 Aloc, the function t 7!�t(A) can be extended
to a function �z(A) analytic in a strip jIm zj < a
for some a > 0.

A state of the quantum spin system is a linear
functional on A such that !(A�A) � 0, for all A 2 A
(positivity), and !(1) = 1 (normalization). The res-
triction of ! to A�, for each � 2 L, is uniquely
determined by a density matrix, that is, �� 2 A�,
such that

!ðAÞ ¼ tr ��A; for all A 2 A�

where tr denotes the usual trace of matrices. �� is
non-negative definite and of unit trace. If the density
matrix is a one-dimensional projection, the state is
called a vector state, and can be identified with a
vector  2 H�, such that C = ran ��.

A ground state of the quantum spin system is a
state ! satisfying the local stability inequalties:

!ðA��ðAÞÞ � 0; for all A 2 Aloc ½4�
The states describing thermal equilibrium are
characterized by the Kubo–Martin–Schwinger
(KMS) condition: for any 
 � 0 (related to absolute
temperature by 
= 1=(kBT), where kB is the Boltz-
mann constant), ! is called 
-KMS if

!ðA�i
ðBÞÞ ¼ !ðBAÞ; for all A;B 2 Aloc ½5�

The most common way to construct ground states
and equilibrium states, namely solutions of [4] and [5],
respectively, is by taking thermodynamic limits of
finite-volume states with suitable boundary condi-
tions. A ground state of the finite-volume Hamiltonian
H� is a convex combination of vector states that are
eigenstates of H� belonging to its smallest eigenvalue.
The finite-volume equilibrium state at inverse tem-
perature 
 has density matrix �
 defined by

�
 ¼ Zð�; 
Þ�1e�
H�

where Z(�, 
) = tr e�
H� is called the partition
function. By considering limit points as
�! Zd, one can show that a quantum spin model
always has at least one ground state and at least one
equilibrium state for all 
.

In this section, the basic concepts have so far been
discussed in the most standard setup. Clearly, many
generalizations are possible: one can consider non-
translation-invariant models; models with random
potentials; the state spaces at each site may have
different dimensions; instead of Zd one can consider
other lattices or define models on arbitrary graphs;
one can allow interactions of infinite range that
satisfy weaker conditions than those imposed by the
finiteness of the norm [3], or restrict to subspaces of
the Hilbert space by imposing symmetries or
suitable hardcore conditions; and one can study
models with infinite-dimensional spins. Examples of
all these types of generalizations have been consid-
ered in the literature and have interesting
applications.
Symmetries and Symmetry Breaking

Many interesting properties of quantum spin sys-
tems are related to symmetries and symmetry
breaking. Symmetries of a quantum spin model are
realized as representations of groups, Lie algebras,
or quantum (group) algebras on the Hilbert space
and/or the observable algebra. The symmetry prop-
erty of the model is expressed by the fact that the
Hamiltonian (or the dynamics) commutes with this
representation. We briefly discuss the most common
symmetries.

Translation invariance. The translation auto-
morphisms �x have already been defined on the
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observable algebra of infinite quantum spin systems
on Zd. One can also define translation automorph-
isms for finite systems with periodic boundary
conditions, which are defined on the torus
Zd=TZd, where T = (T1, . . . , Td) is a positive integer
vector representing the periods.

Other graph automorphisms. In general, if G is a
group of automorphisms of the graph �, and
H� =

N
x2� Cn is the Hilbert space of a system of

identical spins defined on �, then, for each g 2 G, one
can define a unitary Ug on H� by linear extension of
Ug

N
’x =

N
’g�1(x), where ’x 2 Cn, for all x 2 �.

These unitaries form a representation of G. With the
unitaries one can immediately define automorphisms
of the algebra of observables: for A 2 A�, and U 2 A�

unitary, �(A) = U�AU defines an automorphism, and
if Ug is a group representation, the corresponding �g

will be, too. Common examples of graph automorph-
isms are the lattice symmetries of rotation and
reflection. Translation symmetry and other graph
automorphisms are often referred to collectively as
spatial symmetries.

Local symmetries (also called gauge symmetries).
Let G be a group and ug, g 2 G, a unitary repre-
sentation of G on Cn. Then, Ug =

N
x2� ug is a

representation on H�. The Heisenberg model [2], for
example, commutes with such a representation of
SU(2). It is often convenient, and generally equiva-
lent, to work with a representation of the Lie
algebra. In that case the SU(2) invariance of the
Heisenberg model is expressed by the fact that H�

commutes with the following three operators:

Si ¼
X
x2�

Si
x; i ¼ 1; 2; 3

Note: sometimes the Hamiltonian is only sym-
metric under certain combinations of spatial and
local symmetries. CP symmetry is an example.

For an automorphism � , we say that a state ! is
�-invariant if ! � � = � . If ! is �g-invariant for all
g 2 G, we say that ! is G-invariant.

It is easy to see that if a quantum spin model has a
symmetry G, then the set of all ground states or all

-KMS states will be G-invariant, meaning that if !
is in the set, then so is ! � �g, for all g 2 G. By a
suitable averaging procedure, it is usually easy to
establish that the sets of ground states or equili-
brium states contain at least one G-invariant
element.

An interesting situation occurs if the model is
G-invariant, but there are ground states or KMS
states that are not. This means that, for some
g 2 G, and some ! in the set (of ground states or
KMS states), ! � � 6¼ !. When this happens, one says
that there is spontaneous symmetry breaking, a
phenomenon that also plays an important role in
quantum field theory.

The famous Hohenberg–Mermin–Wagner theo-
rem, applied to quantum spin models, states that, as
long as the interactions do not have very long range
and the dimension of the lattice is 2 or less,
continuous symmetries cannot be spontaneously
broken in a 
-KMS state for any finite 
.

Quantum group symmetries. We restrict ourselves
to one important example: the SUq(2) invariance of
the spin-1/2 XXZ Heisenberg chain with
q 2 [0, 1], and with special boundary terms. The
Hamiltonian of the SUq(2)-invariant XXZ chain of
length L is given by

HL ¼
XL�1

x¼1

� 1

�
S1

xS1
xþ1 þ S2

xS2
xþ1

� �

� S3
xS3

xþ1 � 1=4
� �

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1���2
p

S3
xþ1 � S3

x

� �

where q 2 (0, 1] is related to the parameter � � 1
by the relation � = (qþ q�1)=2. When q = 0, HL is
equivalent to the Ising chain. Thus, the XXZ model
interpolates between the Ising model (the primordial
classical spin system) and the isotropic Heisenberg
model (the most widely studied quantum spin model).
In the limit of infinite spin (S!1), the model
converges to the classical Heisenberg model (XXZ
or isotropic). An interesting feature of the XXZ
model are its non-translation-invariant ground
states, called kink states.

In this family of models, one can see how aspects
of discreteness (quantized spins) and continuous
symmetry (SU(2), or quantum symmetry SUq(2)) are
present at the same time in the quantum Heisenberg
models, and the two classical limits (q! 0 and
S!1) can be used as a starting point to study its
properties.

Quantum group symmetry is not a special case of
invariance under the action of a group. There is no
group, but there is an algebra represented on the
Hilbert space of each spin, for which there is a good
definition of tensor product of representations, and
‘‘many’’ irreducible representations. In this example,
the representation of SUq(2) on H[1, L] commuting
with HL is generated by

S3 ¼
XL

x¼1

11 
 � � � 
 S3
x 
 1xþ1 
 � � � 1L

Sþ ¼
XL

x¼1

t1 
 � � � 
 tx�1 
 Sþx 
 1xþ1 
 � � � 1L

S� ¼
XL

x¼1

11 
 � � � 
 S�x 
 t�1
xþ1 
 � � � t�1

L
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where

t ¼ q�1 0
0 q

� �

Quantum group symmetries were discovered in
exactly solvable models, starting with the spin-1/2
XXZ chain. One can exploit their representation
theory to study the spectrum of the Hamiltonian in
very much the same way as ordinary symmetries.
The main restriction to its applicability is that the
tensor product structure of the representations is
inherently one-dimensional, that is, relying on an
ordering from left to right. For the infinite XXZ
chain the left-to-right and right-to-left orderings can
be combined to generate an infinite-dimensional
algebra, the quantum affine algebra Uq (̂sl2).
Phase Transitions

Quantum spin models of condensed matter physics
often have interesting ground states. Not only are
the ground states often a good approximation of the
low-temperature behavior of the real systems that
are modeled by it, and studying them is therefore
useful, it is in many cases also a challenging
mathematical problem. This is in contrast with
classical lattice models for which the ground states
are usually simple and easy to find. In more than
one way, ground states of quantum spin systems
display behavior similar to equilibrium states of
classical spin systems at positive temperature.

The spin-1/2 Heisenberg antiferromagnet on
� 	 Zd, with Hamiltonian

H� ¼
X

x;y;2�jx�yj¼1

Sx � Sy ½6�

is a case in point. Even in the one-dimensional case
(d = 1), and even though the model in that case is
exactly solvable by the Bethe ansatz, its ground state is
highly nontrivial. Analysis of the Bethe ansatz solution
(which is not fully rigorous) shows that spin–spin
correlation function decays to zero at infinity, but
slower than exponentially (roughly as inverse distance
squared). For d = 2, it is believed, but not mathemati-
cally proved, that the ground state has Néel order, that
is, long-range antiferromagnetic order, accompanied by
a spontaneous breaking of the SU(2) symmetry. Using
reflection positivity, Dyson, Lieb, and Simon were able
to prove the Néel order at sufficiently low temperature
(large 
), for d � 3 and all S � 1=2. This was later
extended to the ground state for d = 2 and S � 1, and
d � 3 and S � 1=2, that is, all the cases where Néel
order is expected except d = 2, S = 1=2.
In contrast, no proof of long-range order in the
Heisenberg ferromagnet at low temperature exists. This
is rather remarkable since proving long-range order in
the ground states of the ferromagnet is a trivial problem.

Of particular interest are the so-called quantum
phase transitions. These are phase transitions that
occur as a parameter in the Hamiltonian is varied and
which are driven by the competing effects of energy
and quantum fluctuations, rather than the balance
between energy and entropy which drives usual
equilibrium phase transitions. Since entropy does not
play a role, quantum phase transitions can be oberved
at zero temperature, that is, in the ground states.

An important example of a quantum phase
transition occurs in the two-or higher-dimensional
XY model with a magnetic field in the Z-direction.
It was proved by Kennedy, Lieb, and Shastry that, at
zero field, this model has off-diagonal long-range
order (ODLRO), and can be interpreted as a hard-
core Bose gas at half-filling. It is also clear that if the
magnetic field exceeds a critical value, hc, the model
has a simple ferromagnetically ordered ground state.
There are indications that there is ODLRO for all
jhj < hc. However, so far there is no proof that
ODLRO exists for any h 6¼ 0.

What makes the ground-state problem of quantum
spin systems interesting and difficult at the same time
is that ground states, in general, do not minimize the
expectation value of the interaction terms in the
Hamiltonian individually although, loosely speaking,
the expectation value of their sum (the Hamiltonian)
is minimized. However, there are interesting excep-
tions to this rule. Two examples are the AKLT model
and the ferromagnetic XXZ model.

The wide-ranging behavior of quantum spin models
has required an equally wide range of mathematical
approaches to study them. There is one group of
methods, however, that can make a claim of sub-
stantial generality: those that start from a representa-
tion of the partition function based on the Feynman–
Kac formula. Such representations turn a d-dimen-
sional quantum spin model into a (d þ 1)-dimensional
classical problem, albeit one with some special
features. This technique was pioneered by Ginibre in
1968 and was quickly adopted by a number of authors
to solve a variety of problems. Techniques borrowed
from classical statistical mechanics have been adapted
with great success to study ground states, the low-
temperature phase diagram, or the high-temperature
regime of quantum spin models that can be regarded as
perturbations of a classical system. More recently, it
was used to develop a quantum version of Pirogov–
Sinai theory which is applicable to a large class of
problems, including some with low-temperature
phases not related by symmetry.



Quantum Spin Systems 301
Dynamics

Another feature of quantum spin systems that makes
them mathematically richer than their classical
couterpart is the existence of a Hamiltonian
dynamics. Quite generally, the dynamics is well
defined in the thermodynamic limit as a strongly
continuous one-parameter group of automorphisms
of the C�-algebra of quasilocal observables. Strictly
speaking, a quantum spin model is actually defined
by its dynamics �t, or by its generator �, and not by
the potential �. Indeed, � is not uniquely determined
by �t. In particular, it is possible to incorporate
various types of boundary conditions into the
definition of �. This approach has proved very useful
in obtaining important structural results, such as the
proof by Araki of the uniqueness the KMS state at
any finite 
 in one dimension. Another example is a
characterization of equilibrium states by the energy–
entropy balance inequalities, which is both physically
appealing and mathematically useful: ! is a 
-KMS
state for a quantum spin model in the setting of the
section on the mathematical framework in this article
(and in fact also for more general quantum systems),
if and only if the inequality


!ðX��ðXÞÞ � !ðX�XÞ log
!ðX�XÞ
!ðXX�Þ

is satisfied for all X 2 Aloc. This characterization
and several related results were proved in a series of
works by various authors (mainly Roepstorff, Araki,
Fannes, Verbeure, and Sewell).

Detailed properties of the dynamics for specific
models are generally lacking. One could point to
the ‘‘immediate nonlocality’’ of the dynamics as
the main difficulty. By this, we mean that, except in
trivial cases, most local observables A 2 Aloc,
become nonlocal after an arbitrarily short time,
that is, �t(A) 62 Aloc, for any t 6¼ 0. This nonlocality
is not totally uncontrolled however. A result by
Lieb and Robinson establishes that, for models with
interactions that are sufficiently short range (e.g.,
finite range), the nonlocality propagates at a
bounded speed. More precisely, under quite general
conditions, there exist constants c, v > 0 such that,
for any two local observables A, B 2 A{0},

k½�tðAÞ; �xðBÞ�k  2kAkkBke�cðjxj�vjtjÞ

Attempts to understand the dynamics have gen-
erally been aimed at one of the two issues: return to
equilibrium from a perturbed state, and convergence
to a nonequilibrium steady state in the presence of
currents. Some interesting results have been
obtained although much remains to be done.
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Datta N, Fernández R, and Fröhlich J (1996) Low-temperature

phase diagrams of quantum lattice systems. I. Stability for
quantum perturbations of classical systems with finitely-many

ground states. Journal of Statistical Physics 84: 455–534.

Dyson F, Lieb EH, and Simon B (1978) Phase transitions in

quantum spin systems with isotropic and non-isotropic
interactions. Journal of Statistical Physics 18: 335–383.

Fannes M, Nachtergaele B, and Werner RF (1992) Finitely

correlated states on quantum spin chains. Communications
in Mathematical Physics 144: 443–490.

Kennedy T (1985) Long-range order in the anisotropic quantum

ferromagnetic Heisenberg model. Communications in Mathe-
matical Physics 100: 447–462.

Kennedy T and Nachtergaele B (1996) The Heisenberg model – a
bibliography. http://math.arizona.edu/�tgk/qs.html.

Kennedy T and Tasaki H (1992) Hidden symmetry breaking and

the Haldane phase in S = 1 quantum spin chains. Commu-
nications in Mathematical Physics 147: 431–484.

Lieb E, Schultz T, and Mattis D (1964) Two soluble models of an

antiferromagnetic chain. Annals of Physics (NY) 16: 407–466.

Matsui T (1990) Uniqueness of the translationally invariant
ground state in quantum spin systems. Communications in
Mathematical Physics 126: 453–467.

Mattis DC (1981, 1988) The Theory of Magnetism. I. Berlin:

Springer.
Simon B (1993) The Statistical Mechanics of Lattice Gases.

Volume I. Princeton: Princeton University Press.



302 Quantum Statistical Mechanics: Overview
Quantum Statistical Mechanics: Overview
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Introduction

Quantum theory actually started at the beginning of
the twentieth century as a many-body theory,
attempting to solve problems to which classical
physics gave unsatisfactory answers.

This article aims to follow the developments of
quantum statistical mechanics, hereafter called
QSM, staying close to the underlying physics and
sketching its methods and perspectives. The next
section outlines the historical path, and the first
achievements by Planck (1900) and Debye (1913);
the subsequent free quantum gas theory will be
recalled in the first original insights due to Fermi,
Dirac (1926) and Bose, Einstein (1924–25), when
many open problems began to find a coherent
treatment.

In this framework, an interesting new idea
appeared: the elementary units of the systems could
be ‘‘particles’’, in the usual or in a broad meaning, a
notion which includes photons, phonons, and
quasiparticles of current use in condensed matter
physics. The description of a classical harmonic
system through independent normal modes is an
example of a very fruitful use of collective variables.

The subsequent section will deal with more recent
achievements, related to the properties of quantum
N-body systems, which are fundamental for the
derivation of their macroscopic behavior. In parti-
cular, the works by Dyson–Lenard and Lieb–
Lebowitz on the stability of matter have to be
recalled: a system made of electrons and ions has a
thermodynamic behavior, thanks to the quantum
nature of its constituents, where the Pauli exclusion
principle plays an essential role.

We will then present relations that arise in
quantum field theory, that is, from the second
quantization methods; related technical and concep-
tual problems will also be presented briefly.

This is necessary for taking into account the
recent works and perspectives, which will be
considered in the last section. Here the new inputs
and challenges from outstanding achievements in
physics laboratories will be taken into account,
referring to some exactly solvable models which
help in understanding and in fixing the boundaries
of approximate methods.
The Crisis of Classical Physics:
The Quantum Free Gas

Let us briefly recall some of what Lord Kelvin called
the ‘‘nineteenth century clouds’’ over the physics
of that time (1884), and the subsequent new ideas,
(Gallavotti 1999).

It is well known that the classical Dulong–Petit law
of specific heat of solid crystals may be derived from
the model of point particles interacting through
harmonic forces; the equipartition of the mean energy
among the degrees of freedom implies, for N
particles, the linear dependence of the internal energy
UN on absolute temperature T, hence a constant heat
capacity CN (kB is the Boltzmann’s constant)

UN ¼ 6 � 1

2
NkBT; CN :¼ @UN

@T
¼ 3NkB ½1�

Experimentally this is relatively well satisfied at high
temperatures but it is violated for low T: one
observes that UN vanishes faster than linearly as T
goes to zero, so that CN vanishes. Moreover, the
contributions to the heat capacity from the internal
degrees of freedom of the molecular gases or from
the free electrons in conducting solids are negligible,
at room temperature: these degrees of freedom, in
spite of the equipartition principle, seem frozen.

The analysis of the blackbody radiation problem
from the classical point of view, that is, using
equipartition among the normal modes of the
electromagnetic field in the ‘‘black’’ cavity at
temperature T, gives the following dependence,
Rayleigh–Jeans law (1900), of the spectral energy
density u(�, T), on frequency � and temperature T
(c is the speed of light in vacuum):

uð�;TÞ ¼ 8��2

c3
kBT ½2�

The experimental curves for any positive T show a
maximum for a frequency �max(T) which increases
linearly with T according to Wien’s displacement
law (1893). The spectral energy density decreases
fast enough to zero as �!1 in such a way that the
overall (integrated) energy is (finite and) propor-
tional to T4, according to Stefan’s law (1879); the
agreement with the classical form holds for low
frequencies. The analytic form of the classical
u(�, T) in [2] does not present maxima and the
overall radiated energy is clearly divergent (this bad
behavior for large �, present in many formulas for
other models, sometimes in the corresponding
‘‘short-distance’’ form, is called an ‘‘ultraviolet
catastrophe’’).
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Figure 1 Dependence of the electromagnetic energy density
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The effort by M Planck (1900) to understand the
right dependence of u from � and T was based on a
thermodynamic argument about the possible
energy–entropy relation, and on an assumption
similar to the discretization rules on which the
‘‘old quantum theory’’ for the atomic structure is
based. The electromagnetic field is represented, via
Fourier analysis, as a set of infinitely many
independent harmonic oscillators, two for every
wave vector k, to take into account the polarization.
The frequency depends linearly on the wave number
k = jkj (linear dispersion law), and the spacing
becomes negligible for macroscopic dimensions of
the cavity. The key idea for computing the partition
function is the discretization of the phase space of
each oscillator (of frequency �=!=2�). Putting
there the adimensionalized Lebesgue measure
dp dq=h, where h is a constant with physical
dimensions of an action, we consider the regions
RE bounded by the constant-energy ellipses and
their areas jREj, and find

jREj ¼
Z

RE

dpdq

h
¼ 2�E

h!
¼ E

h�

If these adimensional areas have integer values, that
is, E = nh�, n = 0, 1, 2, . . . , the annular region (‘‘cell’’
Cn) between REn

and REnþ1
has unit area and so we

approximate the partition function with the series
(�= 1=(kBT), the ubiquitous parameter in statistical
mechanics, often called ‘‘inverse temperature’’)

Zdiscr¼
X

n

expð��nh�Þ¼ 1

1� expð��h�Þ

In this way, the probabilistic weight given to this
cell is

pðCnÞ¼
expð��nh�ÞP

j expð��jh�Þ
¼ expð��nh�Þð1� expð��h�ÞÞ ½3�

A well-defined value for the constant h (i.e., h =
6.626 . . . � 10�27 erg s, the Planck constant), com-
bined with the usual computation for the density of
states, gives a formula which quantitatively agrees
with experimental data (see Figure 1)

uð�;TÞ ¼ 8��2

c3

h�

expðh�=kBTÞ � 1
½4�

Moreover, for a certain range of parameters, that
is, such that �h�� 1, there is agreement with the
classical law.

The ‘‘quantum of light,’’ introduced by Einstein in
1905 in his work on photoelectric effect, was later
(1926) called photon by G N Lewis. The picture for
representing the radiating system was one of a gas
of noninteracting photons, carrying energy and
momentum, and being continuously created and
absorbed.

A slightly different approach was used about the
same time, for the problem of specific heat of
crystalline solids.

The simpler model considers N points on the
nodes of the lattice Z3, in a cubic box of side L, and
interacting through harmonic forces; similarly to the
radiation problem, the system is represented by a
collection of independent harmonic oscillators (nor-
mal modes), which are ‘‘quantized’’ as before: the
corresponding quanta were called phonons (by
Fraenkel, in 1932) for the role of the acoustic band
of frequencies. In this simplified approach (by
Debye, in 1913) the different phonons are deter-
mined by a finite set of wave vectors

k ¼ 2�

L
n; ni integer; i ¼ 1; 2; 3; jkj � kM

where the maximal modulus kM is such that the
total number of different k’s is 3N (degrees of
freedom).

Moreover, the frequency–wave number relation is
simplified too, extrapolating the low-frequency
(acoustic) linear relation �= jkjv0 (v0 is the sound
speed). In this way, the density of states which is
quadratic in the frequency, has a cutoff to zero at
the maximal frequency, �D, corresponding to
jkMj, with an associate temperature �D = h�D=kB

(Debye’s temperature). The expected energy UN in
the canonical ensemble, after the computation of the
canonical partition function, is given in term of the
Debye function D(�):

UN ¼ 3NkBTD
�

T

� �

DðyÞ :¼ 3

y3

Z y

0

x3dx

exp x� 1

½5�
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The agreement with experimental data, for the
specific heat of different materials (i.e., different
�D), at low and high temperatures, is rather good.
At low temperatures, one recovers the empirical T3

behavior (see Figure 2). More careful measurements
at low T put into evidence, for metallic solids, the
role of the conduction electrons: their contribution
to the heat capacity turns out to be linear in T, with
a coefficient such that at room temperature it is
much smaller than the lattice contribution, so that a
satisfactory agreement with the classical law is
found.

Soon after the beginning of quantum mechanics in
its modern form (1925–26), physicists considered
many-particle systems, dealing initially with the
simplest situations, with a relatively easy formal
apparatus, yet sufficient enough to understand in the
main lines the ‘‘anomalous,’’ that is, nonclassical,
behavior.

For a system of N free particles in a cubic box of
side L, quantum theory brings the labeling of the
one-particle states with the wave vectors k, recalling
the de Broglie relation for the momentum p = �hk,
with a possible additional spin (intrinsic angular
moment) label �

k¼ 2�

L
n; n 2 Z3nf0g

and the statistics of the particles: because of
indistinguishability, the wave function of several
identical particles has to be symmetric (B–E, Bose–
Einstein statistics) or antisymmetric (F–D, Fermi–
Dirac statistics) in the exchange of the particles. This
has the deep implication that no more than one
fermion shares the same quantum state.

We may here recall the spin–statistics connection,
which, in the framework of a local relativistic
theory, states that integer spin particles are bosons,
while particles with half-odd-integer spin are
fermions.
As the state is completely defined by the knowl-
edge of occupation numbers nk,�, we have the
simple and relevant statement on the ground states
for the N spinless bosons and N spin-1/2 fermion
systems are described by the statement:

B�E system : nk ¼ N�k;k0

F�D system : nk;� ¼ 1ðjkj � kFÞ8�
½6�

The constant kF (Fermi wave number), or the
equivalent pF = �hkF and "F = pF

2=2m (Fermi momen-
tum and energy, respectively) denotes the higher
occupied level. In the continuum approximation,
this implies the following relation between Fermi
energy "F and density �= N=L3:

"F ¼
�h2

2m
ð3�2�Þ2=3 ½7�

Going to the positive-temperature case, the grand
canonical partition function is computed by con-
sidering that occupation numbers are non-negative
integers for the B–E case and just 0 or 1 for the F–D
case. This implies the simple formulas, with obvious
meaning of symbols and leaving more details to the
vast literature (see Figure 3):

<nk;�>�;�

¼ 1

expð�ð"k��ÞÞ�1
; þ for F�D; � for B�E ½8�

It is useful to introduce the Fermi temperature
TF ="F=kB; using some realistic data, that is, for
common metals like copper, TF ranges roughly
between 104–105 K, that is, well above the ‘‘nor-
mal,’’ room temperatures: the quantum nature (i.e.,
quantum degeneracy) of the conduction electrons,
modeled as free electrons, is macroscopically visible
in normal conditions.
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The presence of an external field, like the periodic
one given by the ionic lattice of a crystal, changes
the situation in a relevant way, as the one-particle
spectrum generally gets a band structure, and the
allowed momenta are described in the reciprocal
lattice: the Fermi sphere becomes a surface, and its
structure is central for further developments.

For massive bosons, the strange superfluid fea-
tures of liquid 4He at low temperature, that is,
below the critical value 2.17 K, led F London, just
after Kapitza’s discovery in 1937, to speculate that
these were related to a macroscopic occupation of
the ground state (B–E condensation). A more
realistic model has to take into account interaction
between bosons (see last section) as the microscopic
interactions in superfluid liquid 4He are not
negligible.
Quantum N-Body Properties:
Second Quantization

The main step in analyzing a quantum N-body
system is its energy spectrum, and in particular its
ground state, as it may represent a good approxima-
tion of the low-temperature states: its structure, the
relations with possible symmetries of the Hamilto-
nian, its degeneracy, the dependence of its energy on
the number of particles, are further relevant ques-
tions. The last one is related to the possibility of
defining a thermodynamics for the system (Ruelle
1969). As a physically very interesting example,
consider a system of electrically charged particles, N
electrons with negative unit charge, and K atoms
with positive charge z, say, interacting through
electrostatic forces; the classical Coulomb potential
as a function of distance behaves badly, as it
diverges at zero and decreases slowly at infinity.
The first question is about the stability: thanks to
the exclusion principle, for the ground-state energy
E0

N, K an extensive estimate from below is valid:

E0
N;K 	 �c0ðN þ KzÞ

so that a finite-volume grand partition function
exists, while for the thermodynamic limit, which
involves large distances, we need more, that is,
charge neutrality, which allows for screening, and a
fast-decreasing effective interaction.

Let us see an example (quantum spin, Heisenberg
model) belonging to the class of lattice models,
where the identical microscopic elements are distin-
guishable by their fixed positions, that is, the nodes
of a lattice like Zd. To any site x 2 Zd is associated
a copy Hx of a (2sþ 1)-dimensional Hilbert space
H, where an irreducible unitary representation of
SU(2) is given, so that the nonzero values for s are
1=2, 1, 3=2, . . . . For any x, the generators
S	(x), (	= 1, 2, 3) satisfy the well-known commuta-
tion relations of the angular momentum; moreover,P

	 S	
2(x) = s(sþ 1)1, and operators related to

different sites commute. The ferromagnetic, iso-
tropic, next-neighbors, magnetic field Hamiltonian
for the finite system is

H� ¼ �J
X
<x;y>

SðxÞ � SðyÞ � h
X

x

S3ðxÞ ½9�

where J is the positive strength of the next-neighbors
coupling (<x, y> means that x and y are next
neighbors); h is the intensity of the magnetic field
oriented along the third axis. This model is consider-
ably studied even now with several variants regarding
possible anisotropies of the interaction, the possibly
infinite range of the interaction, and the sign of J, for
other (e.g., antiferromagnetic) couplings. Among the
relevant results, the Mermin–Wagner theorem, at
variance with the analogous classical spin model,
states the absence of spontaneous magnetization in
this zero-field model for d = 2 for any positive
temperature; this can also be formulated as absence
of symmetry breaking for this model (Fröhlich and
Pfister in 1981 shed more light on this point).

As mentioned earlier, a useful mathematical tool
for dealing with quantum systems of many particles
or quasiparticles, is the occupation-number repre-
sentation for the state of the system. The vector
space for a system with an indefinite number of
particles is the Fock space: it is the direct sum of all
spaces with any number of particles, starting with
the zero-particle, vacuum state. The operators which
connect these subspaces are the creation and
annihilation operators, very similar to the raising
and lowering operators introduced by Dirac for the
spectral analysis of the harmonic-oscillator Hamil-
tonian and the angular momentum, in the context of
one-particle quantum theory.

It is perhaps worth sketching the action of these
operators on the Fock space.

We consider spinless bosons first, as spin might
easily be taken into account, if necessary. We
suppose that a one-particle Hamiltonian has eigen-
functions labeled by a set of quantum numbers k,
say, as the wave vector for the purely kinetic one-
particle Hamiltonian. Let jnk1

, nk2
, . . . , nkp

> denote
a vector state with

P
i = 1,..., p nki

particles, where nki

denotes the number of particles with wave vector
ki, i = 1, . . . , p; j0 > denotes the no-particle, vacuum
state. We define the creation operators a
k as follows:

a
kj . . . nk; . . .i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
j . . . ; nk þ 1; . . .i ½10�
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Figure 4 Excitation spectrum for superfluids.
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Its adjoint ak is called the annihilation operator,
for its action on the vectors

akj . . . nk; . . .i ¼ ffiffiffiffiffi
nk

p j . . . ; nk � 1; . . .i ½11�

The operator a
k creates a new particle with that
momentum: for any k

a
kakj . . . nk; . . .i ¼ nkj . . . nk; . . .i

a
kak :¼ n̂k (the occupation-number operator)

The vacuum state belongs to Ker ak for any k, and
the whole space is generated by application of
creation operators on the vacuum state.

The following basic commutation relations, for
any k, k0, are valid:

½ak; a


k0 � ¼ �ðk; k

0Þ; ½ak; ak0 � ¼ ½a
k; a
k0 � ¼ 0 ½12�

For fermions, multiple occupancy is forbidden, so
that the analogous annihilation (	k) and creation
(	
k) operators satisfy anticommutation relations:

½	k;	


k0
�þ ¼ �ðk;k

0Þ; ½	k;	k0 �þ ¼ ½	
k;	
k0 �þ ¼ 0 ½13�

The presence of spin is dealt by an additional spin
label � to these symbols, and a �(�,�0), where
necessary.

The Hamiltonian for a system of particles, say
spinless bosons, in a box �, made of its kinetic part
together with a two-body (
v(x� y)) interaction, is
written in terms of the ‘‘field operators’’; if {�k(x)}
are the one-particle eigenfunctions of the single-
particle purely kinetic Hamiltonian for the spinless
case, and their complex conjugates are {�
k(x)}, we
define the fields

�ðxÞ ¼
X

k

�kðxÞak; �
ðxÞ ¼
X

k

�
kðxÞa
k ½14�

So that the full Hamiltonian is given by

H� ¼
Z

�

dx �
ðxÞ ��h2

2m

 !
��ðxÞ

þ 

Z

�

dx

Z
�

dy vðx� yÞ�
ðxÞ�ðxÞ�
ðyÞ�ðyÞ

½15�

We mention that a theoretical breakthrough in the
analysis of superfluidity was made by Bogoliubov
(1946), who, starting from the Hamiltonian in [15],
introduced the following Hamiltonian in the
momentum representation:

H� ¼
X

k

"ka
kak þ
1

2

X
k;k0;q

v̂qa
k�qa

k0þq

akak0 ½16�
where "k is the one-particle kinetic energy and v̂q is
the Fourier transform of the two-body potential.
To study the excitation spectrum above the ground
state, he introduced an approximation about the
persistency of a macroscopic occupation of the
ground state and a diagonalization procedure
leading to new quasiparticles with a characteristic
energy spectrum, linearly increasing near jkj= 0,
then presenting a positive minimum before the
subsequent increase (see Figure 4).
Some Mathematical Tools for
Macroscopic Quantum Systems

The formal apparatus of second quantization, born
in the context of the quantum field theory, brought
to statistical mechanics new ideas and techniques
and related difficulties. For instance, the renormali-
zation group was conceived in the 1970s to deal
both with critical phenomena (i.e., power singula-
rities of thermodynamic quantities around the
critical point) and with divergences in quantum
field theory. This subject is currently being devel-
oped and applied in models of quantum statistical
mechanics (QSM) (Benfatto and Gallavotti, 1995).

Another issue, which has again strong relations
with quantum field theory, is the algebraic formula-
tion of QSM. This point of view, which is well
suited for the analysis of infinitely extended quan-
tum systems, uses a unified, synthetic, and rigorous
language. The procedure for passing from a finite
quantum system to its infinitely extended version
deserves some attention.

It is well known that, for finite quantum systems,
say N particles in a box �, an observable is represented
by a self-adjoint operator A on a Hilbert spaceH�, and
the normalized elements {j >} of this space are the
pure states � which define the expectations

� ðAÞ :¼ < jA >
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The mixed states (mixtures) are defined by convex
combinations of pure states, the coefficients having
an obvious statistical meaning.

Among the observables, the Hamiltonian plays a
special role, as it generates the dynamics of the
system, which evolves the pure states through the
unitary group (Schrödinger picture)

 ðtÞ 	exp � itH�

�h

� �����
���� >

To the notion of equilibrium probability measure on
the phase space of a classical system, corresponds
the mixed state �H�,� such that

�H�;�ðAÞ :¼Z�;�
�1 trðexpð��H�ÞAÞ ½17�

The normalization factor Z�,� = tr( exp (�H��)) is
the canonical partition function.

Consider now the algebra A(�) of local observa-
bles; sending � to infinity, by induction, it is possible
to define the algebra A of quasilocal observables.
The main point is a set of algebraic relations like the
canonical commutation relations (CCRs) and the
canonical anticommutation relations (CARs) for
the creation/annihilation operators: the observables
of A, through the GNS (Gel’fand, Naimark, and
Segal) construction may be represented as operators
on the appropriate Hilbert spaces, depending on the
chosen state; the representations, at variance with
the finite case, might be inequivalent. It is possible to
define the equilibrium state for the infinite system
and how to insert in a natural way the possible
group invariance of the system (Rd or Zd, typically),
ending with characterization of the pure phases of
the system as the ergodic components in the
decomposition of an equilibrium state. These states
have the property that coarse-grained observables
have sharp values (Ruelle 1969, Sewell 2002): if
Avl(A) is the space average on scale l, that is, over
boxes of side l, for an ergodic state �,

lim
l!1

�ð½AvlðAÞ � �ðAÞ�2Þ ¼ 0

Another issue which is worth mentioning is the
characterization of equilibrium states through
the KMS (Kubo–Martin–Schwinger) condition. The
strong formal similarity between the finite-volume
quantum evolution operator 	t := exp(�itH�=�h)
and the statistical equilibrium density operator
exp(��H�), leads to the identity, valid for any
couple of bounded observables A and B, using the
short symbol < � >�, � for the expectations with
respect to the statistical operator:

<AtB>�;�¼<BAtþi�h�>�;� ½18�
This relation is suitably extended for infinite size,
and therefore defines a KMS state; it implies some
physically relevant properties like stability with
respect to local disturbances and dissipativity
(Sewell 2002).

A final issue in this section concerns another
formalism stemming from the Feynman path-integral
formulation of quantum mechanics: here a functional
integral represents the statistical equilibrium density
operator W� = exp(��H). For a d-dimensional sys-
tem of N particles in a potential field (X 2 RdN)
V = V(X) =

P
i<j �(xi � xj) and Hamiltonian H =

�(1=2) �þ V the Feynman–Kac formula which, for
a test function �, may be written as follows:

ðW��ÞðXÞ¼
Z

P�X;Yðd!Þ exp �
Z �

0

dsVð!ðsÞÞ�ðYÞdY

� �

where P�X, Y(d!) is the Wiener measure on the space
of paths {!(s), s 2 [0, �]}. For details on the con-
struction and several other related features on the
treatment of the different statistics, see Glimm and
Jaffe (1981).
New Problems and Challenges

In this final section, we recall some phenomena
which have been observed recently in physics
laboratories, and which presumably deserve con-
siderable efforts to overcome the heuristic level of
explanation. About this last point, it is worth
quoting a method that has been used to get results
even without clear justifications of the underlying
hypotheses, that is, the mean-field procedure. It
started with the Curie–Weiss theory of magnetism
and is based on the following drastic simplification:
the microscopic element of the system feels an
average interaction field due to other elements,
indipendently of the positions of the latter. This
method might provide relatively good results if the
range of the interaction is very large, and in fact, a
clear version with due limiting procedure was
introduced by Kac, and applied by Lebowitz and
Penrose in the 1960s for a microscopic derivation of
van der Waals equation, and soon extended by Lieb
to quantum systems.

We will briefly outline some aspects of three
recent achievements of condensed matter physics for
which modeling is still on the way of further
progress: the B–E condensation, the high-Tc super-
conductivity, and the fractional quantum Hall effect.
The first consists in trapping an ultracold (at less
than 50mK) dilute bosonic gas, for example,
104–107 atoms of 87Rb, finding experimental evi-
dence for Bose condensation. To understand the
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properties of this system, an important tool is the
Gross–Pitaevskii energy functional for the conden-
sate wave function �,

E½�� ¼
Z

dx
�h2

2m
jr�j2 þ VextðxÞj�j2 þ

g

2
j�j4

" #

where the quartic term represents the reduced
(mean-field) interaction among particles.

The second issue, that is, the high-temperature
superconductivity, certainly deserves much atten-
tion. It has been observed recently in some ceramic
materials well above 100 K, and a clear model which
takes into account the formation of pairs and the
peculiar isotropy–anisotropy aspects of the normal
conductivity and superconductivity is still lacking
(Mattis 2003).

Finally, let us consider the fractional quantum
Hall effect; recall that the integer version, that is, a
discretization of the Hall resistivity RH by multiples
of h=(e2), finds an explanation in terms of band
spectra, formation of magnetic Landau levels, and
localization from surface impurities, that is, without
taking into account direct interactions among
electrons.

The fractional discretization of RH (Störmer 1999)
has a theoretical interpretation, in terms of subtle
collective behavior of the two-dimensional semicon-
ductor electron system: the quasiparticles which
represent the excitations may behave as composite
fermions or bosons, or exhibit a fractional statistics
(see Fractional Quantum Hall Effect).

This brief excursion through these new fascinating
phenomena shows the rich interplay between theory
and experiments: these phenomena are a source of
new ideas and suggest new models for further
progress.
See also: Bose–Einstein Condensates; Dynamical
Systems and Thermodynamics; Exact Renormalization
Group; Falicov–Kimball Model; Fermionic Systems;
Finitely Correlated States; Fractional Quantum Hall
Effect; High Tc Superconductor Theory; Hubbard Model;
Quantum Phase Transitions; Quantum Spin Systems;
Stability of Matter.
Further Reading

Benfatto G and Gallavotti G (1995) Renormalization Group.
Princeton: Princeton University Press.

Gallavotti G (1999) Statistical Mechanics: A Short Treatise.
Berlin: Springer.

Glimm J and Jaffe A (1981) Quantum Physics. A Functional
Integral Point of View. New York: Springer.

Landau LD and Lifschitz EN (2000) Statistical Physics, Course of
Theoretical Physics, 3rd edn., vol 5. Parts I and II. Oxford:
Butterworth-Heinemann.

Mattis DC (2003) Statistical Mechanics Made Simple. NJ: World

Scientific.

Ruelle D (1969) Statistical Mechanics. Rigorous Results. New
York: Benjamin.

Sewell GL (2002) Quantum Mechanics and Its Emergent
Macrophysics. Princeton: Princeton University Press.

Sinai YaG (1982) Theory of Phase Transitions: Rigorous Results.
Budapest: Akadémiai Kiadó.
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Introduction: From Periodic
to Quasiperiodic Systems

Periodic systems occur in many branches of physics.
Their mathematical analysis was stimulated in
particular by the analysis of the periodic transla-
tional symmetry of crystals. The systematic study of
the compatibility between translational and crystal-
lographic point or reflection symmetry leads to the
concept of space group symmetry. Mathematical
crystallography in three dimensions (3D) culminated
in 1892 in the complete classification of the 230
space groups due to Fedorov and Schoenflies
(see Schwarzenberger (1980, pp. 132–135). One
characteristic property of periodic systems is that
their Fourier transform has a pure point spectrum.
Since the Fourier spectrum is experimentally acces-
sible through diffraction experiments, it provides
a main tool for the structure determination of
crystals.

With quantum mechanics in the twentieth cen-
tury, it became possible to describe crystal structures
quantitatively as ordered systems of atomic nuclei
and electrons with electromagnetic interactions.
The representation theory of crystallographic
space groups now opened the way to verify the



space group symmetry of atomic systems for
example from the band structure of crystals. It
was then believed that in physics atomic long-
range order is linked to periodicity and hence to
the paradigm of the 230 space groups in 3D.

Mathematical analysis beyond this paradigm
started independently in various directions. Bohr
(1925) studied quasiperiodic functions and their
Fourier transform. He interpreted them as restric-
tions of periodic functions in nD to their values on a
linear subspace of orientation irrational with respect
to a lattice. Mathematical crystallography in general
dimension n > 3, including point group symmetry,
was started around 1949 in work by Hermann and
by Zassenhaus (see Schwarzenberger (1980)), and
completed in 1978 for n = 4 in Brown et al. (1978).
A different route was taken by Penrose (1974). He
constructed an aperiodic tiling (covering without
gaps or overlaps) of the plane. Its tiles in two
rhombus shapes provide global 5-fold point symme-
try and make the tiling incompatible with any
periodic lattice in 2D. The connection between
Penrose’s aperiodic tiling and irrational subspaces
in periodic structures was made by de Bruijn (1981).
He interpreted the Penrose rhombus tiling as the
intersection of geometric objects from cells of a
hypercubic lattice in 5D with a 2D subspace,
irrational and invariant under 5-fold noncrystallo-
graphic point symmetry. Kramer and Neri (1984)
embedded the icosahedral group as a point group
into the hypercubic lattice in 6D and constructed a
3D irrational subspace invariant under the noncrys-
tallographic icosahedral point group. From intersec-
tions of boundaries of the hypercubic lattice cells
with this subspace, they constructed a 3D tiling of
global icosahedral point symmetry with two rhom-
bohedral tiles.

Shechtman et al. (1984) discovered in the system
AlMn diffraction patterns of icosahedral point
symmetry. Since icosahedral symmetry is incompa-
tible with a lattice in 3D, they concluded that there
exists atomic long-range order without a lattice. The
new paradigm of quasiperiodic long-range order in
quasicrystals was established and since then stimu-
lated a broad range of theoretical and experimental
research.

The interplay between the notions – (1) of
crystallographic symmetry in nD, n > 3, (2) of
subspaces invariant under a point group but
irrational and hence incompatible with a lattice,
and (3) of discrete geometric periodic objects in nD
providing quasiperiodic tilings on these subspaces –
forms the mathematical basis for a new quasiper-
iodic long-range order found in quasicrystals. The
present-day theory of quasicrystals offers the most

elaborate study of quasiperiodic systems. Therefore,
we shall focus in what follows on the concepts
developed in this theory.

In the following section, we briefly review basic
concepts of periodic systems and lattices in nD, their
classification in terms of point symmetry and space
groups, and their cell structure. In a section on
quasipe riodic point sets and funct ions, a quasiper-
iodic system is taken as a geometric object on an
irrational mD subspace in an n-dimensional space
and lattice. Noncrystallographic point symmetry is
shown to select the irrational subspace. Next,
scaling symmetry in quasiperiodic systems is demon-
strated. Then, examples of quasiperiodic systems
with point and scaling symmetry are given. The
penultimate section discusses quasiperiodic tilings
and their windows. Finally, the notion of a funda-
mental domain for quasiperiodic functions compa-
tible with a tiling is illustrated.

Concepts from Periodic Systems

A distribution f p(x) of geometric objects on Eucli-
dean space En (a real linear space equipped with
standard Euclidean scalar product h , i and metric)
with coordinates x 2 En is called ‘‘periodic’’ if it is
invariant under translations bi in n linearly indepen-
dent directions,

ðpÞ : f p : f pðxþ biÞ¼ f pðxÞ; i¼ 1; . . . ; n ½1�

The set of all translations on En forms the discrete
additive abelian translation group

T¼ b 2 En : b¼
Xn

i

mib
i; ðm1; . . . ;mnÞ 2 Zn

( )
½2�

Any orbit (set of all images of an initial point) under
the action T � En ! En yields a lattice � on En.
Since T acts fixpoint-free, there is a one-to-one
correspondence � $ T. A fundamental domain on
En is defined as a subset of points x 2 En which
contains a representative point from any orbit under
T. Such a fundamental domain can be chosen, for
example, as the unit cell of the lattice � or as the
Voronoi cell (eqn [5]). By eqn [1], the functional
values on En of a periodic function f p(x) are
completely determined from its values on a funda-
mental domain of En.

Given the lattice basis (b1, . . . , bn) of eqn [2]
in En, the vector components of the basis form the
n� n basis matrix B of �. The most general change
of the basis preserving the lattice is given by acting
with any element h of the general linear group
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Gl(n, Z), with integral matrix entries and determi-
nant �1, on the lattice basis,

Glðn;ZÞ 3 h : B!B0 ¼Bh ½3�

The crystallographic classification of inequivalent
lattices in En starts from Gl(n, Z). In addition to
translations, it employs crystallographic point sym-
metry operations, (Brown et al. 1978, p. 9). A
crystallographic point group operation of a lattice �
is a Euclidean isometry g which belongs to a group
G 3 g with representations D : G ! O(n, R) and
D : G ! Gl(n, Z) such that

G¼fg : DðgÞB¼BDðgÞg ½4�

The maximal crystallographic point group for given
lattice � is the holohedry of �. The group generated
by T, G is a space group which classifies the lattice.
For finer details in the classification of space groups,
we refer to Brown et al. (1978). For crystallography
in E3, this classification yields 230 space groups.
Crystallography in En is described in Schwarzenberger
(1980) and in Brown et al. (1978) where it is
elaborated for E4.

From a lattice � 2 En and from the Euclidean metric,
one constructs a cell structure as follows: the Voronoi
cell V(b), centered at a lattice point b 2 �, known in
physics as the Wigner–Seitz cell, is the set of points

VðbÞ¼ fx 2 En : jx� bj � jx� b0j; b0 2�g ½5�

Any Voronoi cell has a hierarchy of boundaries Xp

of dimension p, 0 � p � n which we denote as
p-boundaries.

The set of Voronoi cells at all lattice points form
the �-periodic Voronoi complex of � 2 En. The
Voronoi cells and complexes associated with a
lattice admit a notion of geometric duality. We
denote dual objects by a star, �. They are built from
convex hulls of sets of lattice points (Kramer and
Schlottmann 1989) as follows. A Voronoi p-boundary
Xp is shared by several Voronoi cells V(b) and
determines a set of lattice points

SðXpÞ : fb 2 � : Xp 2 VðbÞg ½6�

The boundary dual to Xp is defined as the convex
hull X�(n�p) := conv{b : b 2 S(Xp)}. X�(n�p) can be
shown to be an (n� p)-boundary of a dual
Delone cell. A Delone cell D is defined as the
convex hull of all lattice points whose Voronoi cells
share a single vertex, called a hole of the lattice.
Since these vertices fall into classes of orbits under
translations, they determine translationally inequi-
valent classes of Delone cells D�, D�, . . . .

Fourier analysis applied to a periodic function f p(x)
on En reduces to an n-fold Fourier series. The Fourier

spectrum is a pure point spectrum and the Fourier
coefficients can be referred to the points of a reciprocal
lattice �� (eqn [7]) in Fourier space E�n. We denote
objects belonging to this Fourier space by the index �.
The basis matrix B� of the reciprocal lattice �� 2 E�n

is obtained from B as the inverse transpose,

hb�i; bji¼ �ij$B� ¼ ðB�1ÞT ½7�

The values of the Fourier coefficients of f p(x) reduce
to integrals over the fundamental domain of the
lattice �. From eqns [4] and [7] it follows that the
orthogonal representation of a point group G in
coordinate and in Fourier space coincides. The
Fourier spectrum and its point symmetry in crystals
are observed in diffraction experiments.

Quasiperiodic Point Sets and Functions

Quasiperiodic functions are characterized from their
Fourier spectrum (Bohr 1925) by

(qp�) The Fourier point spectrum of a quasiper-
iodic function forms a Z-module M� of rank
n, n > m on Fourier space E�m.

A Z-module of rank n, n > m on E�m is defined as a set

M� ¼ b� : b� ¼
Xn

j

mjb
�i; ðm1; . . . ;mnÞ 2Zn

( )
½8�

with the Z-module basis (b�1, . . . , b�n) linearly
independent with respect to integral linear combina-
tions. The step from a lattice �� to a module M� is
nontrivial since the set of all module points becomes
dense on E�m. The Fourier coefficients of a
quasiperiodic function are assigned to the discrete
set of module points (eqn [8]).

Bohr in his analysis of quasiperiodic functions
(Bohr 1925, II, pp. 111–125) shows that a general
Z-module M� of rank n can be taken as the
projection to a subspace E�m of dimension m of a
(nonunique) lattice �� 2 E�n, n > m. It is convenient
to consider in Fourier space E�n an orthogonal
splitting which we denote as

E�n¼E�mk þE
�ðn�mÞ
? ;E�mk ? E

�ðn�mÞ
? ½9�

A characterization of a quasiperiodic function
f qp(x) on coordinate space is obtained as follows.
From �� one can construct with the help of eqn [7]
the lattice � := (��)� reciprocal to �� on a coordi-
nate space En and associate to it via the Fourier
series a quasiperiodic function on a coordinate
subspace Em

k of En = Em
k þ E(n�m)

? , equipped with a

Z-module M (eqn [11]). As a result one finds a
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characterization of a quasiperiodic function in
coordinate space:

(qp) A quasiperiodic function f qp(xk), xk 2 Em
k can

always be interpreted as the restriction to a
subspace Em

k of a �-periodic function f p(x)
on En,

En¼Em
k þE

ðn�mÞ
? ; x¼ xk þ x?

f pðxk þ c?Þ¼: f qpðxkÞ
½10�

In the interpretation (qp) (eqn [10]), the Z-modules
in Fourier space (eqn [8]) and in coordinate space
Em
k become projections of reciprocal lattices,

M� ¼ �kð��Þ;M¼ �kð�Þ ½11�

The linear independence of the module basis
enforces a splitting (eqn [9]), irrational with respect
to the lattice �� 2 E�n.

As in the classification of crystal lattices, point
symmetry plays a crucial role in the classification of
Z-modules for quasiperiodic systems like quasicrys-
tals. Noncrystallographic point groups G (with a
representation incompatible with any lattice) give
rise to quasiperiodic systems as follows:

(qp) Given a point group G with orthogonal
representations Dk : G!O(m, R), D? :G!O
(n�m, R) such that Dk is incompatible with
any lattice in Em

k , we now require in En instead
of eqn [10] a lattice � with basis B and a
representation D : G!Gl(n, Z) such that

DkðGÞ 0
0 D?ðGÞ

� �
B¼BDðGÞ ½12�

Equation [12] requires that the matrix B provides an
irrational reduction of the representation D(G) into
the two representations Dk(G), D?(G). Periodic
functions restricted as in the second line of eqn
[10] are quasiperiodic.

For any finite group G, a representation D(G)
allowing for lattice embedding can always be
constructed by the technique of induced representa-
tions. Its reduction into representations Dk(G),
D?(G) contained in this induced representation is
obtained by standard techniques. If Dk(G) is non-
crystallographic and inequivalent to D?(G), the
subspace decomposition (eqn [12]) is unique.

Quasiperiodic functions compatible with tilings
and their windows can be constructed from the dual
cell structure (eqns [5] and [6]) of the embedding
lattice (Kramer and Schlottmann 1989). Examples
are given in the sections ‘‘Point symm etry in
quasipe riodic syst ems’’ an d ‘‘Qu asiperi odic tilings
and their windows ’’.

Scaling and Quasiperiodicity

Quasiperiodic systems lack periodicity but can have
scaling symmetries originating from a non-Euclidean
extension of eqn [12].

Example 1: Scaling in the Square Lattice Z 2

We begin with the Fibonacci scaling on the square
lattice Z2 of E2. The symmetric matrix

h¼ 1 1
1 0

� �
2Glð2;ZÞ ½13�

has eigenvalues

�1¼ � ��1¼ � � þ1; �2¼ � :¼ð1þ
ffiffiffi
5
p
Þ=2 ½14�

Evaluation of the orthogonal eigenvectors allows us
to define a lattice basis B= (b1,b2) and rewrite the
eigenvalue equation similar to eqn [12] as

���1 0

0 �

" #
B¼B

1 1

1 0

� �

B¼
�

ffiffiffiffiffiffiffiffiffi
��þ3

5

q ffiffiffiffiffiffiffi
�þ2

5

q
ffiffiffiffiffiffiffi
�þ2

5

q ffiffiffiffiffiffiffiffiffi
��þ3

5

q
2
64

3
75

½15�

This relation shows that h with respect to the basis
B acts as a non-Euclidean point symmetry of the
square lattice and generates an infinite discrete
group. Equation [15] provides an orthogonal
splitting E2 = Ek þ E?. The element h acts on the
two subspaces as a discrete linear scaling by
���1, � , respectively. It maps points of Z2 in E2,
hence also their projections to Ek, into one
another.

Figure 1 shows the lattice basis from eqn [15].
We choose as fundamental domain of Z2 two
squares A, B whose boundaries are parallel or
perpendicular to Ek. A horizontal line Ek intersects
these two squares at vertical distances varying with
respect to their horizontal boundaries. The quasi-
periodic restriction f qp(xk) = f p(xk þ c?) of a
Z2-periodic function f p(x) to a line x = xk þ c?
picks up varying functional values on these sec-
tions. Clearly, one needs all the values of f p on its
fundamental domain in E2 to obtain all the values
taken by f qp.

Scaling symmetry appears in conjunction with
noncrystallographic point symmetry (cf. the follow-
ing section). Combined with quasiperiodic tilings, it
gives rise to a hierarchy of self-similar tilings whose
tiles scale with � .
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Point Symmetry in Quasiperiodic
Systems

Quasiperiodic systems with noncrystallographic
point symmetry provide the structure theory and
physics of quasicrystals. We illustrate the general
scheme (qp) of eqn [12] by examples of 5-fold and
icosahedral point symmetry. For generalizations, see
Janssen (1986).

Example 2: 5-Fold Point Symmetry from
the Root Lattice A4

The A4 root lattice basis in E4 may be derived (Baake
et al. 1990) from five orthonormal unit vectors
(e1, e2, e3, e4, e5) in E5 as

B ¼ ðb1; b2; b3; b4Þ
:¼ðe1 � e2; e2 � e3; e3 � e4; e4 � e5Þ ½16�

As the generator of the cyclic group C5 of 5-fold
rotations, we take the cyclic permutation (12345) in
cycle notation acting on the vectors (e1, e2, e3, e4, e5).

A possible choice of the basis for eqn [12] is the
irrational matrix

B ¼ ðb1;b2;b3;b4Þ

¼

1 c c0 c0 c

0 s s0 �s0 �s

1 c0 c c c0

0 s0 �s s �s0

2
6664

3
7775

1 0 0 0

�1 1 0 0

0 �1 1 0

0 0 �1 1

0 0 0 �1

2
6666664

3
7777775

c¼ cos
2�

5

� �
¼ � � 1

2
; s¼ sin

2�

5

� �
¼

ffiffiffiffiffiffiffiffiffiffiffi
� þ 2
p

2

c0 ¼ cos
4�

5

� �
¼ � �

2
; s0 ¼ sin

4�

5

� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffi
3� �
p

2

½17�

Equation [12] for the representation of the generator
(12345) of the cyclic group C5 becomes

c �s 0 0

s c 0 0

0 0 c0 �s0

0 0 s0 c0

2
6664

3
7775ðb1;b2;b3;b4Þ

¼ ðb1; b2; b3; b4Þ

0 0 0 �1

1 0 0 �1

0 1 0 �1

0 0 1 �1

2
6664

3
7775 ½18�

The left of eqn [18] generates two 2D inequivalent
representations of 5-fold planar rotations which are
incompatible with any 2D lattice.

The lattice A4 in addition has a scaling symmetry
with a factor � . The scaling transformation may be
expressed in terms of the basis (eqn [16]) and an
element h 2 Gl(4, Z) as

�� 0 0 0

0 �� 0 0

0 0 ��1 0

0 0 0 ��1

2
6664

3
7775ðb1; b2; b3; b4Þ

¼ ðb1; b2; b3; b4Þ

0 �1 0 1
0 �1 �1 1
1 �1 �1 0
1 0 �1 0

2
664

3
775 ½19�

It is easily verified that the operations of scaling and
of 5-fold rotation (eqns [19] and [18]) commute
with one another.

V ⊥ A

B

B
A

D

b 

2
b1

X1

X1

x ⊥

x

X i
*

X i
*

Figure 1 The square lattice with Fibonacci scaling. Lattice

points are black squares, holes white circles. The vectors

(b1, b2) indicate the lattice basis. The directions xk, x? of

scalings by ���1, � run horizontally and vertically, respectively.

Perpendicular and parallel projections V? of Voronoi and Dk of

Delone cells are attached to the lattice and hole points,

respectively. Two different pairs of dual 1-boundaries X1, X �1 of

Voronoi and Delone squares are marked on the right. The

product polytopes X �1, k � X1,? of their projections form two

squares A, B and yield a periodic tiling of E2. A single pair A, B

forms a fundamental domain of the lattice. The characteristic

functions on A, B are windows for the tiles. A general

quasiperiodic function f qp (xk) is the restriction of a periodic

function f p (x), defined on A, B, to its values on a horizontal line

x = xk þ c?. If the periodic function f p (x ) on A, B takes only

values independent of x?, its quasiperiodic restriction f qp (xk) :=
f p (xk þ c?) to this line repeats its values on the long and short

tiles Ak, Bk, respectively, of the standard Fibonacci tiling. Then

Ak, Bk form a fundamental domain for quasiperiodic functions

compatible with the tiling.
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Example 3: Icosahedral Point Symmetry from
Lattices � = Z 6, D6

The icosahedral group G = H3 has two inequivalent
3D noncrystallographic representations. H3 allows
for an induced embedding representation D : H3!
Gl(6, Z), (Kramer and Neri 1984, Kramer et al.
1992, Kramer and Papadopolos 1997) into a
hypercubic lattice � = Z6. This representation
reduces into two 3D orthogonal inequivalent irre-
ducible noncrystallographic representations Dk :
H3!O(3, R), D? : H3!O(3, R). The irrational
basis matrix of eqn [12] for � = Z6 becomes
(Kramer et al. 1992, p. 185, eqn (7))

B¼ðb1; b2; b3; b4; b5; b6Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ð� þ 2Þ

s
0 1 1 � 0 �

1 � � 0 1 0

� 0 0 1 � 1

0 � � 1 0 1

� 1 1 0 � 0

1 0 0 � 1 �

2
666666664

3
777777775

½20�

with � =�� , 1 =�1. The six basis vectors with
components in the upper three rows span the so-
called primitive icosahedral Z-module associated
with Dk in E3

k in the sense of eqn [11]. In this
space they point along the directions of six 5-fold
axes of the icosahedron.

A second lattice in E6 which admits icosahedral
point symmetry is the root lattice D6. The basis of
this root lattice, often denoted as the P-lattice, is
obtained from eqn [20] by a centering matrix
given in Kramer et al. (1992, p. 185, eqn (8)). The
corresponding Z-module is inequivalent to the
module projected from eqn [20]. The third
lattice of icosahedral point symmetry in E6 is
� = I := P� reciprocal to the root lattice D6. All
three icosahedral modules admit (powers of)
�-scaling.

Quasiperiodic Tilings and Their Windows

Quasiperiodic sets of points arise from the general
scheme (qp) (eqn [12]) by choosing particular
periodic functions in the embedding space En, called
the ‘‘windows,’’ whose intersections with Ek are the
quasiperiodic sets of points.

The window for the construction of a discrete
quasiperiodic point set based on eqn [12] is given by
the characteristic function �(x?) on the projection
V?(x?) := �?(V(b)) of the Voronoi cell (eqn [5]),
attached to any lattice point b 2 �.

Example 4: The Quasiperiodic Fibonacci Point Set

If in the Fibonacci system (Figure 1), one attaches to
any point b of the square lattice as a window the
characteristic function � of the perpendicular pro-
jection V?(b) of the unit square attached to b, the
function f qp(xk) becomes the standard quasiperiodic
Fibonacci sequence of points.

The dual cell geometry of Voronoi and Delone
cells and their dual boundaries (eqns [5] and [6])
allows us to construct dual canonical quasiperiodic
tilings (T , �), (T �, �) (Kramer and Schlottmann
1989). To this end one constructs from local projec-
tions of pairs of dual boundaries Xm, k, X�(n�m),? or
X�m, k, X(n�m),? the direct product polytopes Xm, k �
X�(n�m),? or X�k �X? called ‘‘klotz polytopes.’’ The

characteristic functions on these polytopes form the
windows for the tiles Xm, k, X�(n�m), k, respectively.

Example 5: The Quasiperiodic Fibonacci Tiling

The Voronoi cells V of the square lattice are squares
centered at lattice points, the Delone cells D are
squares centered at the vertices of Voronoi squares.
The product polytopes X�1,? �X1, k from projections
of dual 1-boundaries X�1, X1 of Delone and Voronoi
squares (cf. Figure 1) become the two types of square
windows A, B. If a parallel line section x = xk þ c?
crosses one of these squares, the tile Ak or Bk is
formed. The standard Fibonacci tiling results.

Example 6: Canonical Tilings from the Root
Lattices A4, D6

The two rhombus tiles of the planar quasiperiodic
Penrose pattern (Penrose 1974) (T , A4) are the projec-
tions of 2-boundaries of the Voronoi complex of the
root lattice A4 2 E4 (Baake et al. 1990). The triangle
tiles of the dual tiling (T �, A4) are shown in Figure 2.

They are projections of 2-boundaries from the
Delone complex of the same lattice. A full analysis
of dual Voronoi and Delone boundaries of the root
lattice D6 is given in Kramer et al. (1992). It leads to
icosahedral tilings (T , D6) and (T �, D6) of E3, (Kramer
et al. 1992, Kramer and Papadopolos 1997, Kramer
and Schlottmann 1989) and to models of icosahedral
quasicrystals.

Fundamental Domains for Quasiperiodic
Tilings

Canonical tilings allow us to construct quasiperiodic
functions equipped with a quasiperiodic counterpart
of fundamental domains or cells in crystals: assume
that the tiles of a tiling (T , �) all are translates in Em

of a finite minimal set of prototiles (X1, . . . , Xr).
Consider the class of quasiperiodic functions which
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take identical values on any translate of a prototile.
These values are prescribed on the finite set of
prototiles in Em which define a fundamental domain
for this class of quasiperiodic functions. Only this
class of quasiperiodic functions is compatible with
the tiling. It can be characterized in the scheme (qp)
(eqn [12]) by �-periodic functions on En whose
values on the tile windows of the previous section
are independent of the perpendicular coordinate. A
fundamental domain for the triangle tiling (T �, A4)
is given by the shaded parts in Figure 2. The
fundamental domain property appears in relation
with the theory of covering of quasiperiodic sets (see
Kramer and Papadopolos (2000)).

Example 7: Fundamental Domain
for the Fibonacci Tiling

Attach to the squares A, B in Figure 1 a periodic
function f p(x) with functional values independent of
the perpendicular coordinate x? within the two
squares. Consider the functional values f qp(xk) =
f p(xk þ c?) picked up on a parallel line. Clearly,
these values become independent of the perpendi-
cular coordinate of any intersection with a square
A, B. The general prescription of values on a
fundamental domain of � 2 E2 needed for a
quasiperiodic function reduces to a prescription of
its functional values in Ek on the fundamental
domain formed by the two prototiles Ak, Bk.

Conclusion

For quasiperiodic systems, the general construction
was introduced in the section ‘‘Quasiperiodic point
sets and functions’’, and illustrations were given in
four subsequent sections. Further reading resources are
provided by the references given at the end. Here, we
mention some of the many possible generalizations.

Bohr (1925) considers quasiperiodic as special
cases of almost periodic systems. The module of an
almost periodic function has a countable basis.

Moody (1997) discusses the notion of Meyer sets.
These describe discrete sets on locally compact
abelian groups and as particular cases encompass
quasiperiodic systems.

Lagarias (2000) studies aperiodic sets character-
ized by the following properties, shared with
periodic and quasiperiodic sets:

(ap1): inequivalent patches of points are volume
bounded,

(ap2): pure point Fourier spectrum,
(ap3): linear repetitivity of patches, and
(ap4): self-similarity.

See also: Compact Groups and Their Representations;
Finite Group Symmetry Breaking; Lie Groups: General
Theory; Localization for Quasiperiodic Potentials;
Symmetries and Conservation Laws; Symmetry and
Symmetry Breaking in Dynamical Systems.
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Determinants in Finite Dimensions

The determinant of a linear transformation
A : V�!W acting between finite-dimensional com-
plex vector spaces is an element det A of a complex
line LA. The abstract element det A is called the
Quillen determinant of A, and the complex line LA

is called the determinant line of A. A choice of
(linear) isomorphism

	 : LA�!C ½1�

associates to det A the complex number

det 	A :¼ 	ðdet AÞ 2 C ½2�

which can equivalently be written as the ratio

det 	A ¼ det A

	�1ð1Þ ½3�

taken in the one-dimensional complex vector space
LA relative to the canonical generator 	�1(1). It is
not necessarily the case that det A determines a
generator for LA; specifically, if dim V = m and
dim W = n, then det A = 0 if m 6¼ n (by ‘‘fiat’’), while
if m = n, then det A = 0 precisely when A is not
invertible. For the moment, set m = n.

For k 2 {0, 1, . . . , n} the kth exterior power opera-
tor is defined by

^k A :^kV�!^k W

^k Aðv1^v2^		 	^vkÞ :¼Av1^Av2^		 	^Avk ½4�

where v1, . . . ,vk 2V and ^0V :=C and ^0A := 1.
When k = n, DetV := ^n V and DetW := ^n W are
complex lines and the determinant line of A is

LA :¼ Det V� 
Det W ½5�

while for any basis {e1, . . . , en} for V, with dual basis
{e�1, . . . , e�n} for V�,

detA :¼ e�1 ^ 	 	 	 ^ e�n
 ð^nAÞðe1 ^ 	 	 	 ^ enÞ 2 LA ½6�

There is a canonical isomorphism for A 2Hom(V,W),
B 2Hom(U,V)

LAB ffi LA 
 LB ½7�

coming from the isomorphism

Det V� 
Det V�!C ½8�

defined by the canonical pairing Det V� �Det V!C,
and this preserves the determinant elements

det ðABÞ ! det A
 det B ½9�

The Classical Determinant

When V = W these constructions take on a more
familiar form. Then 	 can be chosen to be the
canonical isomorphism [8] and evaluation on
det A 2 LA outputs the classical determinant

det CA ¼
X



ð�1Þ
a1;
ð1Þ 	 	 	 an;
ðnÞ ½10�

where the sum is over permutations of {1, . . . , n} and
(ai, j) is the matrix of A with respect to any basis of V –
changing the basis may change the summands on the
right-hand side of [10], but not their sum. It is
fundamental that when V = W the classical determi-
nant is an intrinsic invariant of the operator A, inde-
pendent of the choice of basis for V; when V 6¼W that
is no longer so since there is then no canonical bilinear
pairing Det V� �Det W�!C; the choice of a non-
degenerate pairing is equivalent to a choice of 	 in [1].

The identification of [10] from [6] and [8]
amounts to the identity in Det V

ð^nAÞðe1 ^ 	 	 	 ^ enÞ ¼ det CA : e1 ^ 	 	 	 ^ en ½11�
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Since ^n(AB) = ^n A 	 ^nB, [11] in turn implies the
characterizing multiplicativity property of the classical
determinant

det CðABÞ ¼ detCA . det CB ½12�

for A, B 2 End(V), specializing the general fact in
[7]. Similarly, the group Gl(V, C) of invertible
elements of End(V) is identified with those A with
det C A 6¼ 0.

The classical determinant can also be thought of
in the following ways. First, the direct sum of the
operators defined in [4] yields the total exterior
power operator ^A : ^V �!^V on the exterior
algebra ^V =
n

k = 0 ^kV and this has trace

tr ð^AÞ ¼ det CðI þ AÞ ½13�

where I is the identity. Alternatively, one can do
something a little more sophisticated and use the
holomorphic functional calculus to define the
logarithm log� B of B 2 End(V) by

log� B ¼ i

2�

Z
��

log� � ðB� �IÞ�1 d� ½14�

Here log� � is the branch of the complex logarithm
defined by �� 2� < arg(�) � � and �� is a positively
oriented contour enclosing spec(B) but not any point
of the spectral cut R� = {rei� j r � 0}. Then, if B is
invertible,

tr ðlog� BÞ ¼ log� det CB ½15�

The Fredholm Determinant

The advantage of the constructions [13] and [15] is
that they extend to a restricted class of bounded linear
operators on infinite-dimensional Hilbert spaces. This
is consequent on the fact that both of the formulas [13]
and [15] are computed as operator traces.

(Recall that a trace on a Banach algebra B is a
linear functional � :B!C which has the property
�([a, b]) = 0 for all a, b in B, where [a, b] := ab� ba
is defined by the product structure on B. Since one
can define the logarithm log� b of an element b of B
with spectral cut R� by the formula [14], one in this
case obtains a determinant det� ,� (b) on such
elements by setting

log� det �;�ðbÞ ¼ �ðlog� bÞ ½16�

If a, b, ab 2 B have common spectral cuts �, the trace
property of � translates into the multiplicativity
property det � , �(ab) = det � , �(a)det � , �(b) via a version
of the Campbell–Hausdorff formula.)

The operator trace arises as follows. Let H be a
complex separable Hilbert space with inner product

< ,> , let C(H) be the algebra of compact operators
on H, and let

L1 ¼ A 2 CðHÞ j kAk2
1 :¼

X1
i¼1

�iðA�AÞ <1
( )

½17�

be the ideal of trace-class operators, where the sum
is over the real discrete eigenvalues �i(A

�A)& þ0 of
the compact self-adjoint operator A�A. For any
orthonormal basis {	j} of H the map

tr : L1�!C; A 7! tr ðAÞ :¼
X

j

<	j;A	j>

is a trace functional on L1(H), independent of the
choice of basis. Lidskii’s theorem states that

tr ðAÞ ¼
X

�2specðAÞ
� ½18�

with the sum over the eigenvalues of A counted up
to algebraic multiplicity; for general trace-class
operators this equality is highly nontrivial.

If A is trace class, then for each non-negative
integer k so is each of the exterior power operators
^kA : ^k H�!^k H, defined as in [4]. Following
[13], a determinant can therefore be defined on the
semigroup I þ L1 := {I þ A jA 2 L1} of determinant-
class operators by the absolutely convergent sum

det FðI þ AÞ :¼ tr ð^AÞ ¼ 1þ
X1
k¼1

tr ð^kAÞ ½19�

On the other hand, since tr is tracial and log� (I þ A)
defined by [14] is trace class, then according to [16],
there is a determinant given on invertible determinant-
class operators by

log� detFðI þ AÞ ¼ tr ðlog�ðI þ AÞÞ ½20�

which, as the left-hand side already suggests,
coincides with the Fredholm determinant.

The Fredholm determinant retains the character-
izing properties of the classical determinant in finite
dimensions, that detF : I þ L1�!C is multiplicative,

detF ðI þ AÞðI þ BÞð Þ ¼ detFðI þ AÞ detFðI þ BÞ;
A;B 2 L1 ½21�

and detF(I þ A) 6¼ 0 if and only if I þ A is invertible.
It is, moreover, essentially unique; any other multi-
plicative functional on I þ L1 is equal to some power
of the Fredholm determinant, or, equivalently, any
trace on L1 is a constant multiple of the operator
trace. The trace property, the operator trace, and the
multiplicativity of the Fredholm determinant do not,
however, persist to any functional extension of the
operator trace (resp. Fredholm determinant) on the
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space of pseudodifferential operators of any real
order acting on function spaces (fields over space-
time). In quantum physics, this is a primary cause of
anomalies. More precisely, determinants of differen-
tial operators arise in quantum field theories (QFTs)
and string theory through the formal evaluation of
their defining Feynman path integrals and the
calculation of certain stable quantum numbers,
which are in some sense ‘‘topological.’’

From the latter perspective, it is instructive to be
aware also of the following, third, construction of the
Fredholm determinant, which equates the existence
of a nontrivial determinant to the existence of
nontrivial topology of the general linear group.
First, in a surprising contrast to Gl(n, C), the general
linear group Gl(H) of an infinite-dimensional Hilbert
space H with the norm topology is contractible, and
hence topologically trivial. By transgression proper-
ties in cohomology, this implies any vector bundle
with structure group Gl(H) is isomorphic to the
trivial bundle. In order to recapture some topology
(and hence, in applications, some physics), it is
necessary to reduce to certain infinite-dimensional
subgroups of Gl(H). The most obvious one is the
group Gl(1) of of invertible operators differing from
the identity by an operator of finite rank. As the
inductive limit of the Gl(n, C), the cohomology and
homotopy groups of Gl(1) are a stable version of
those of Gl(n, C). Precisely, Gl(1) is torsion free and
its cohomology ring is an exterior algebra with odd
degree generators, while Bott (1959) periodicity
identifies �k(Gl(1)) to be isomorphic to Z if k is
odd and trivial if k is even. Topologically, it is
preferable to consider the closure of Gl(1) in Gl(H),
which yields the group Glcpt(H) of operators differing
from the identity by a compact operator, but this is
now a little ‘‘too large’’ for analysis and differential
geometry. Given our earlier comments, there is an
intermediate natural choice of the Banach Lie group
Gl1(H) of operators differing from the identity by a
trace-class operator (in fact, there is a tower of such
Schatten class groups). Moreover, the inclusions
Gl(1)  Gl1(H)  Glcpt(H) are homotopy equiva-
lences, and so the cohomology of Gl1(H) is just the
exterior algebra mentioned above

H�ðGl1ðHÞÞ ¼ ^ð!1; !3; !5; . . .Þ;
deg!j ¼ 2j� 1 ½22�

The advantage of considering Gl1(H) is that precise
analytical representatives for the classes !j can be
written down:

!j ¼
i

2�

� �j ðj� 1Þ!
ð2j� 1Þ! �2j�1

where

� ¼ tr ðZ�1dZÞ ½23�

is the 1-form on Gl1(H).
This equation makes sense because the derivative

dZ is trace class, and hence so is Z�1dZ. Now,
locally � = d log detF (Z), so that the 1-form !1

pulled back by a path � : S1!Gl1(H) is precisely the
winding number of the curve traced out in C� by the
function detF (�). In fact, this is just a special case of
the Bott periodicity theorem, which tells us that the
stable homotopy group �2j�1(Gl1(H)) is isomorphic to
Z and an isomorphism is defined by assigning to a map
f : S2j�1!Gl1(H) the integer

R
S2j�1 f �!j 2 Z (it is not

obvious a priori that it is an integer).
Notice that it was not necessary to have mentioned

the Fredholm determinant of Z at this point. Indeed,
the third definition of the Fredholm determinant is to
see it as the integral of the 1-form �, define

log� detFðIþ AÞ :¼
Z



� ½24�

where 
 : [0, 1]!Gl1(H) is any path with 
(0) = I
and 
(1) = I þ A; this uses the connectedness of
Gl1(H) and independence of the choice of 
, as
guaranteed by Bott periodicity.

Interestingly, this is closely tied in with the
Atiyah–Singer index theorem for elliptic pseudodif-
ferential operators (which in full generality uses the
Bott periodicity theorem). Here, there is the follow-
ing simple but quintessential version of that theorem
which links it to the winding number of the
determinant of the symbol of a differential operator

D ¼
X
�j�m

a�ðxÞD�
x ½25�

on Euclidean space Rn with �= (�1, . . . ,�n) a multi-
index of non-negative integers, j�j=�1 þ � � � þ �n,
and Dx = i@=@xi. Here D acts on C1(Rn, V) with V
a finite-dimensional complex vector space and
the coefficients of D are matrices varying smoothly
with x which are required to decay suitably fast,
D�

xa�(x)
�� ��= O(jxj�j�j) as jxj!1. If the symbol �D

of D, defined by

�Dðx; Þ ¼
X
�j�m

a�ðxÞ� ½26�

with = (1, . . . , n) 2 Rn, satisfies the ellipticity
condition of being invertible on the 2n� 1 sphere
S2n�1 in (x, ) space, then D is a Fredholm operator.
The index theorem then states

index ðDÞ ¼
Z

S2j�1

��Dð!nÞ
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the higher-dimensional analog of the winding
number of the determinant.

Fredholm Operators and Determinant
Line Bundles

The operators whose determinants are considered in
this article are all Fredholm operators. Recall that a
linear operator A : H1!H2 between Hilbert spaces
is Fredholm if it is invertible modulo compact
operators; that is, there is a ‘‘parametrix’’
Q : H2!H1 such that QA� I and AQ� I are
compact operators on H1 and H2, respectively.
Equivalently, the range A(H1) of A is closed in H2,
and the kernel Ker(A) = {	 2 H1 jA	= 0} and
cokernel Coker(A) = H2=A(H1) of A are finite
dimensional. (This is equally true for Banach and
Frechet spaces, we restrict our attention to Hilbert
spaces for brevity.) The space Fred of all such
Fredholm operators with the norm topology has the
homotopy type of the classifying space Z� BGl(1).
The first factor parametrizes the connected compo-
nents of Fred, two Fredholm operators are in the
same component if and only if they have the same
index

index ðAÞ ¼ dim KerðAÞ � dim CokerðAÞ

Mostly we restrict our attention to the connected
component Fred0 of operators of index zero. The
cohomology of Fred0 � BGl(1) is a polynomial
ring

H�ðFred0Þ ¼ R½ch1; ch2; ch3; . . .�

whose generators may be formally realized as the
even degree components of the Chern character of
an infinite-dimensional bundle over Fred0. In fact,
the generators !2j�1 of H�(Gl1(H)) are related to the
chj through transgression, see Chern and Simons
(1974). We shall be interested here in the first
generator ch1, a transgression of the Fredholm
determinant ‘‘winding number 1-form’’ !1, which
coincides with the real Chern class of a canonical
complex line bundle DET0!Fred0. The fiber of
DET0 at A 2 Fred0 is the determinant line Det(A) of
the Fredholm operator A, which is defined as
follows (Segal 2004).

Just as for finite-rank operators (see the subsec-
tion ‘‘Determ inant s in finite dimensi ons’’), the
determinant of a Fredholm operator A : H1!H2

exists abstractly not as a number but as an element
detA of a complex line Det(A). For simplicity, we
suppose that index (A) = 0. Elements of the

determinant line Det(A) are equivalence classes
[E,�] of pairs (E,�), where E : H1!H2 such that
A� E is trace class and relative to the equivalence
relation (Eq,�) � (E, det F(q)�) for q : H1!H1 of
determinant class and where detF (q) is the Fredholm
determinant of q. Complex multiplication on Det(A)
is defined by �[A,�] = [A,��]. The abstract, or
Quillen, determinant of A is the preferred element
det A := [A, 1] in Det(A).

Here are some essential properties of the determi-
nant line. First, det A is nonzero if and only if A is
invertible. Next, quotients of abstract determinants
in Det(A) are given by Fredholm determinants; for if
A1 : H1!H2, A2 : H1!H2 are Fredholm operators
such that Ai � A are trace class, then if A2 is
invertible we see that A�1

2 A1 is determinant class
and hence from the definition that

detðA1Þ
detðA2Þ

¼ detFðA�1
2 A1Þ ½27�

where the quotient on the left-hand side is taken in
Det(A). The principal functorial property of the
determinant line is that given a commutative
diagram with exact rows and Fredholm columns

0 �! H1 �! H01 �! H001 �! 0

#A #A0 #A00

0 �! H2 �! H02 �! H002 �! 0

½28�

then there is canonical isomorphism of complex
lines

DetðA0Þ ffi DetðAÞ �DetðA00Þ ½29�

preserving the Quillen determinants det (A0)$
det (A)� det (A00). A consequence of this property is
that given Fredholm operators A : H2!H3 and
B : H1!H2, then

DetðABÞ ffi DetðAÞ �DetðBÞ

with det (AB)$ det (A)� det (B), generalizing the
elementary property [9].

The principal context of interest for studying
determinant lines is the case where one has a
family A= {Ax j x 2 B} of Fredholm operators
parametrized by a manifold B, satisfying suitable
continuity properties, and one aims to make sense
of the determinant as a function A!C. It is then
of no difficulty to show that the corresponding
family of determinant lines DET(A) = [Det(Ax)
defines a complex line bundle over B endowed
with a canonical section det : B�!DET(A)
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assigning to x 2 B the Quillen determinant
det (Ax) 2 Det(Ax) (Quillen 1985, Segal 2004). To
identify the Quillen determinant section with a
function on A, we need to identify a trivialization
of the line bundle DET(A), giving a global basis
for the fibers. This is the same thing as giving a
n
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on(or never)vanishing section  : B!DET(A),
ith respect to which we have the regularized
eterminant function (cf. [3]):

x 7! det  ðAxÞ :¼
det ðAxÞ
 ðxÞ ½30�

f A is trivializable, so a nonzero section exists, there
ill be many such sections and some extra data is
eeded to fix a natural choice of  .
Each of the properties mentioned above for

eterminant lines carries forward to determinant
ne bundles in a natural way. In particular, one
asily deduces from [28], or from the exact
equence

0�!KerAx�!H1;x�!
Ax

H2;x�!CokerAx�! 0

hat if the kernels KerAx have constant dimension as
varies, then there is a canonical isomorphism

DetðAÞ ffi ^maxKerðAÞ� � ^maxCokerðAÞ ½31�

here Ker(A) is the finite-rank complex vector
undle over B with fiber KerAx, and Coker(A)
imilarly. The interesting feature here is that it
hows the determinant bundle to be the top
xterior power of the index bundle Ind(A) =
Ker(A)]� [Coker(A)] 2 K(B) in the even K-theory
f B, and in this sense determinant theory may be
een as a particular aspect of index theory –
nderstood is the very broadest sense; in fact,
he computation of determinants is usually a
onsiderably more complex and difficult task than
omputing an index.

eterminant Bundles for Differential
perators over Manifolds

he Quillen determinant has been of particular
terest in the case of families of Dirac operators.

uch a family is associated to a C1 fibration
: M�!B of closed boundaryless finite-dimensional
iemannian manifolds of even dimension. If there is
graded Hermitian vector bundle E= Eþ 
 E�!M

f Clifford modules, then from the Riemannian
tructure one can construct a Levi-Civita connection
n the vertical tangent bundle T(M=B) which can be
fted to a Clifford connection on E; for example, the
pinor connection if we have a family of spin
anifolds. This data yields a smooth family of
D
O

T
in
S
�
R
a
o
s
o
li
s
m

first-order elliptic differential operators D = {Dx :
C1(Mx; Eþx )�!C1(Mx; E�x ) j x 2 B} of chiral Dirac-
type, with Dx a Dirac-type operator acting over the
manifold Mx = ��1(x) parametrized by the fibration,
along with a determinant line bundle DET(D)!B
endowed with a canonical section x 7! det (Dx).
There are various contexts in mathematics and
physics in which one would like to assign to the
determinant section a naturally associated smooth
function (a regularized determinant) det reg : B�!C,
which can, for example, then be integrated. As
discussed in the previous section, this depends on
identifying a trivializing (nonzero) section of
DET(D). For such a section to exist, the first Chern
class c1(DET(D) 2 H2(B) must vanish, and this in
turn can be computed as a term in the Atiyah–Singer
(1984) index theorem for families. Indeed, this is
clear from the formal identification [31] which here
takes on a precise meaning.

The following simple example, which is the basic
topological anomaly computation in string theory,
may help to explain the type of computation. Let
Mx be a copy of � a compact Riemann surface, so
that M is a family of surfaces parametrized by B.
Let T = [Tx be the vertical complex tangent line
bundle on M, where Tx is the complex tangent line
bundle to Mx. Each fiber has an associated
@-operator @x which we couple to the Hermitian
bundle Ex := T�m

x for m a non-negative integer. In
this way, we get a family D� of @-operators coupled
to E= T�m whose index bundle is the element
Ind(D�) = f!(T

�m) 2 K(B). The Atiyah–Singer index
theorem for families in this situation coincides with
the Grothendieck–Riemann–Roch theorem and this
says that

chðf!ðT�mÞÞ ¼ f�ðchðT�mÞToddðTÞÞ

where ch is the Chern character class and Todd(T) is
the Todd class defined for a vector bundle F whose
first few terms are

ToddðFÞ ¼ 1þ 1
2 c1ðFÞ þ 1

12 c1ðFÞ2 þ � � �

and where f� : Hi(M)!Hi�1(B) is integration over
the fibers. That is, with = c1(T),

chðf!ðT�mÞÞ ¼ f� 1þm þ 1
2 m22 þ � � �

� ��
� 1þ 1

2  þ 1
12 

2 þ � � �
� ��

¼ f� 1þ mþ 1
2

� �
 þ 1

12 m2 þmþ 1
6

� ��
� 2 þ � � �

�
So we have

c1ðf!ðT�mÞÞ ¼ 1
12 ð6m2þ 6mþ 1Þf�ð2Þ 2H2ðBÞ ½32�



But for any element of K-theory, c1(E)=
c1(DET(E)), and so the left-hand side of [32] is the
first Chern class of the determinant line bundle
DET(D�). If we take, in particular, B=Conf(�), the
space of conformal classes of metrics on � (or
compact subsets of this space), and couple the
family D� to a background trivial real bundle of
rank d=2, or its negative in K-theory, then taking
m=1 [32] is easily seen to be modified to

c1ðD�;�d=2Þ¼
ðd � 26Þ

24
f�ð2Þ

It follows for this topological anomaly to vanish
one must have background spacetime of dimension
d = 26. The idea here is that Conf(�) is a
configuration space for bosonic strings in Rd

with the requirement that the determinant section
of the determinant line bundle be conformally
invariant, corresponding to the classical invariance
of the string Lagrangian defining the string path
integral from which the determinant arises. That
is, in order to evaluate the path integral on the
reduced configuration space, one requires a trivia-
lization of the determinant line bundle which
defines a conformally invariant regularized deter-
minant function. The above calculation says that
there is a topological obstruction to this occurring
when the background space dimension differs
from 26.

This is the most basic example of determinant
anomaly computations, which have acquired
considerably more sophisticated constructions in
modern versions of string theory and QFT. One
immediate deficiency in the approach explained so
far is that not all anomalies are topological and so
even though the first Chern class of the determinant
line bundle may vanish, there may still be local and
global obstructions to the existence of a determi-
nant function with the correct symmetry properties.
To be more precise, one needs to say not just that a
trivialization of the determinant line bundle for-
mally exists, but to actually be able to construct a
specific preferred trivialization. For this more
refined objective, one needs to know more about
the differential geometry of the determinant line.
One approach is to fix a canonical choice of
connection and, if the determinant bundle is
topologically trivial, to construct a determinant
section (up to phase) using the parallel transport
of the connection.

The principal contribution to such a theory was
made in a remarkable four page paper by Quillen
(1985) in which using zeta-function regularization
he presented a construction of a metric and

connection on the determinant line bundle for a
family of @-operators over a Riemann surface
coupled to a holomorphic vector bundle. (This is
the first paper one should read on determinant line
bundles; Quillen’s motivation, in fact, did not come
from physics but from a problem in number
theory.)

To outline this construction, which was extended
to general families of Dirac-type operators in Bismut
and Freed (1986), first we recall that if � is
an invertible Laplacian-type second-order elliptic
differential operator acting on the space of sections
of a vector bundle over a compact manifold of
dimension n, then it has a spectrum consisting of
real discrete eigenvalues {�} forming an unbounded
subset of the positive real line. The zeta function
of � is defined in the complex half-plane Re(s) >
n=2 by

�ð�; sÞ ¼ tr ð��sÞ ¼
X
�

��s; ReðsÞ > n

2

and extends to a meromorphic function of s on the
whole complex plane. It turns out that the extension
has no pole at s = 0 and this means that we may
define the zeta-function regularized determinant of
� by

det�ð�Þ :¼ exp � d

dsjs¼0
�ð�; sÞ

� �
since (d=ds)js = 0�

s = log� this formally represents a
regularized product of the eigenvalues of �. A
metric is now defined on the determinant line
bundle DET(D) by defining the norm square of the
element det (Dx) 2 Det(Dx) by

k detðDxÞk2 :¼ det�ðD�xDxÞ

over the subset B0 of x 2 B where Dx is invertible.
Elsewhere in B, one includes a factor defined by the
induced L2 metric in the kernel and cokernel. See
Quillen (1985) and Bismut and Freed (1986) for full
details.

A connection is defined by similarly constructing
a regularized version of the connection we would
define if we were working with finite-rank bundles.
First, one includes in the data associated to the
fibration � : M�!B defining the family of opera-
tors D a splitting of the tangent bundle
TM = T(M=B)
 ��(TB). This assumption and the
Riemannian geometry of the fibration yield a
connection r(�) defined along the fibers of the
fibration. The connection form over B0 is then
defined by

!ðxÞ¼ tr �ðD�1
x rð�ÞDxÞ
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where the zeta-regularized trace tr � is defined on a
vertical bundle endomorphism-valued 1 form x 7!Ax

on M by

tr �ðAxÞ :¼ fps¼0tr ðAx D�xDx

� ��sÞjmer

where the superscript indicates we are considering the
meromorphically extended form, and fps = 0(G(s))
means the finite part of a meromorphic function G
on C; that is, the constant term in the Laurent
expansion of G(s) near s = 0.

A theorem of Bismut and Freed, generalizing
Quillen’s original computation, computes the curva-
ture �(DET(D)) of this connection to be the 2-form
component in the local Atiyah–Singer families index
density. This is a refined version of the topological
version of that theorem which we utilized earlier; it
expresses the characteristic classes on B in terms of
specific canonical differential forms constructed by
integrating, along the fibers of the fibration,
canonically defined vertical characteristic forms.
More precisely, they prove the formula (Bismut
and Freed 1986 and Berline et al. 1992)

�ðDETðDÞÞ ¼ ð2�iÞ�n=2
Z

M=B

bAðM=BÞchðEÞ
 !

½2�

½33�

where (�)[2] 2 �2(B) means the 2-form component
of a differential form � on B. Here bA(M=B) =
det1=2((RM=B=2)= sinh (RM=B=2)) is the verticalbA-genus differential form, while ch(E) is the vertical
Chern character form associated to the curvature
form of the bundle E.

This theory seems a long way from the classical
theory of stable characteristic classes and the
Fredholm determinant discussed in earlier sections.
There are, however, interesting parallels which
may guide the search for an understanding of the
geometry of families of elliptic operators, of which
determinants form a component. The prototypical
situation where determinants arise in the quantiza-
tion of gauge theory is the following. Consider the
infinite-dimensional affine space A of connections
on a complex vector bundle E with structure
group G sitting over Sn the n-sphere. The Lie
group G is assumed to be compact. For each
connection A 2 A, we consider a Dirac operator
DA : C1(Sn, Sþ � E)�!C1(Sn, S� � E), where E is
a Hermitian vector bundle coupled to the spinor
bundles S�. The group G of based gauge transfor-
mations acts on A and symmetry properties of
conservation laws lead one to be interested in
constructing a determinant function on the quo-
tient space A=G. More precisely, g 2 G transforms
DA to Dg.A and by equivariance the Quillen

determinant section pushes down to a section of
a reduced determinant line bundle over A=G. As
seen earlier, the topological obstruction to realiz-
ing this determinant section as a function on A=G
can be computed from the Atiyah–Singer index
theorem for families applied to the corresponding
index bundle Ind(DA=G) in the K(A=G) by picking
out the degree-2 component in H2(A=G) of the
Chern character ch(Ind(DA=G)). On the other hand,
it turns out that this characteristic class is the
transgression of the element of H1(G, Z) defined by
the zeta-determinant trace

�� :¼ tr� D�ADg:A

� ��1
dG D�ADg:A

� �� �
:¼ fps¼0tr D�ADg:A

� ��1
dG D�ADg:A

� �
D�ADg:A

� ��sÞjmer

which counts the winding number of the zeta
determinant G�!C� defined by det�(D

�
ADg.A). This

provides an interesting parallel of the classical
theory descr ibed in the section ‘‘The Fredho lm
determi nant.’’ For more details of this and more
advanced ideas take a look at Singer (1985). (A
similar parallel holds between the topological
derivation of the conformal anomaly outlined at
the beginning of this section and what it called the
Polyakov multiplicative anomaly formula for the
zeta determinant of the Laplacian with respect to
conformal changes in the metric on the surface.)

Aspects of more recent work in this direction have
been the extension of the theory to manifolds with
boundary, and how it encodes into the structures of
topological and conformal field theories, see Segal
(2004) and Mickelsson and Scott (2001), and more
generally into M-theory (Freed and Moore 2004).

See also: Anomalies; Feynman Path Integrals;
Index Theorems; Regularization for Dynamical
�-Functions.
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Introduction

A classic question in probability theory, studied by
M Kac, S O Rice, and many others, is to find the
expected number and distribution of zeros or critical
points of a random polynomial. The same question
can be asked for random holomorphic functions or
sections of bundles, and are the subject of ‘‘random
algebraic geometry.’’

While this theory has many physical applications,
in this article we focus on a variation on a standard
question in the theory of disordered systems. This
is to find the expected distribution of minima of
a potential function randomly chosen from an
ensemble, which might be chosen to model a crystal
with impurities, a spin glass, or another disordered
system. Now whereas standard potentials are real-
valued functions, analogous functions in supersym-
metric theories, such as the superpotential and
the central charge, are holomorphic sections of a
line bundle. Thus, one is interested in finding the
distribution of critical points of a randomly chosen
holomorphic section.

Two related and much-studied problems of this
type are (1) the problem of finding attractor points
in the sense of Ferrara, Kallosh, and Strominger, and
(2) the problem of finding flux vacua as posed by
Giddings, Kachru, and Polchinski. These problems
involve a good deal of fascinating mathematics and
are good illustrations of the general theory.

A note on general references for further reading on
the subject of this article is in order. For background
on random algebraic geometry and some of its other
applications, as well as references in the text not
listed here, consult Edelman and Kostlan (1995) and
Zelditch (2001). The attractor problem is discussed in
Ferrara et al. (1995) and Moore (2004), while IIb flux
vacua were introduced in Giddings et al. (2002).
Background on Calabi–Yau manifolds can be found in
Cox and Katz (1999) and Gross et al. (2003).

Elementary Random Algebraic Geometry

Let us introduce this subject with the problem of
finding the expected distribution of zeros of a
random polynomial,

f ðzÞ ¼ c0 þ c1zþ � � � þ cNzN

We define a random polynomial to be a probability
measure on a space of polynomials. A natural choice
might be independent Gaussian measures on the
coefficients,

d� ½f � ¼ d�½c0; . . . ; cN� ¼
YN
i¼0

d2ci
�i

2�
e�jcij2=2�2

i ½1�

We still need to choose the variances. At first the
most natural choice would seem to be equal
variance for each coefficient, say �i = 1=2. We can
characterize this ensemble by its two-point
function,

Gðz1; �z2Þ � E½ f ðz1Þf �ð�z2Þ�

¼
Z

d�½ f � f ðz1Þf �ð�z2Þ

¼
XN
n¼0

ðz1�z2Þn

¼ 1� zNþ1
1 �zNþ1

2

1� z1�z2

We now define d�0(z) to be a measure with unit
weight at each solution of f (z) = 0, such that its
integral over a region in C counts the expected
number of zeros in that region. It can be written in
terms of the standard Dirac delta function, by
multiplication by a Jacobian factor,

d�0ðzÞ ¼ E½�ð2Þðf ðzÞÞ@f ðzÞ �@f �ð�zÞ� ½2�

To compute this expectation value, we introduce a
constrained two-point function,

Gf ðzÞ¼0ðz1, �z2Þ ¼
E½�ð2Þðf ðzÞÞ f ðz1Þ f �ð�z2Þ�

E½�ð2Þðf ðzÞÞ�

It could be explicitly computed by using the
constraint f (z) = 0 to solve for a coefficient ci in



the Gaussian integral, that is, projecting on the
linear subspace 0 =

P
ciz

i. The result, in terms of
G(z1, �z2), is

E½�ð2Þðf ðzÞÞ� ¼ 1

�Gðz;�zÞ

Gf ðzÞ¼0ðz1;�z2Þ¼Gðz1;�z2Þ �
Gðz1;�zÞGðz;�z2Þ

Gðz;�zÞ

as can be verified by considering

E½�ð2Þðf ðzÞÞ f ðzÞf �ð�z2Þ� / Gf ðzÞ¼0ðz;�z2Þ

¼ Gðz;�z2Þ �
Gðz;�zÞGðz;�z2Þ

Gðz;�zÞ ¼ 0

Using this, eqn [2] can be evaluated by taking
derivatives:

d�0ðzÞ ¼
1

Gðz;�zÞ lim
z1;z2!z

D1
�D2Gzðz1;�z2Þ

¼ 1

�
@ �@ log Gðz;�zÞ

For the constant variance ensemble eqn [2],

d�0ðzÞ ¼
d2z

�

1

ð1� z�zÞ2
� ðN þ 1Þ2ðz�zÞN

ð1� ðz�zÞNþ1Þ2

 !
½3�

We see that as N !1, the zeros concentrate on the
unit circle jzj= 1 (Hammersley 1954).

A similar formula can be derived for the distribu-
tion of roots of a real polynomial on the real axis,
using d�(t) = E[�(f (t))jdf=dtj]. One obtains (Kac
1943):

d�r
0ðtÞ ¼

dt

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1� t2Þ2
� ðN þ 1Þ2t2N

ð1� t2Nþ2Þ2

s

Integrating, one finds the expected number of real
zeros of a degree N random real polynomial is EN �
(2=�) log N, and as N !1 the zeros are concen-
trated at t = �1.

While concentration of measure is a fairly
generic property for random polynomials, it is by
no means universal. Let us consider another
Gaussian ensemble, with variance �n = N!=n!
(N � n)!. This choice leads to a particularly simple
two-point function,

Gðz;�zÞ ¼ ð1þ z�zÞN ½4�

and the distribution of zeros

d�0 ¼
1

�
@ �@ log G ¼ N d2z

�ð1þ z�zÞ2
½5�

Rather than concentrate the zeros, in this ensemble
zeros are uniformly distributed according to the

volume of the Fubini–Study (SU(2)-invariant) Kähler
metric

! ¼ @ �@K; K ¼ logð1þ z�zÞ

on complex projective space CP1.
We can better understand the different behaviors

in our two examples by focusing on a Hermitian
inner product (f , g) on function space, associated to
the measure eqn [1] by the formal expression

d�½f � ¼ ½Df � e�ðf; f Þ

In making this precise, let us generalize a bit further
and allow f to be a holomorphic section of a line
bundle L, say O(N) over CP1 in our examples. We
then choose an orthonormal basis of sections
(si, sj) = �ij, and write

f �
X

i

cisi ½6�

and

d�½f � ¼ 1

ð2�ÞN
YN
i¼1

d2ci e�jcij2=2

We can then compute the two-point function

Gðz1;�z2Þ � E½sðz1Þs�ð�z2Þ� ¼
XN
i¼1

siðz1Þs�i ð�z2Þ ½7�

and proceed as before.
In these terms, the simplest way to describe the

measure for our first example is that it follows from
the inner product on the unit circle,

ðf ; gÞ ¼
I
jzj¼1

dz

2�z
f �ðzÞgðzÞ

Thus, we might suspect that this has something to
do with the concentration of eqn [3] on the unit
circle. Indeed, this idea is made precise and general-
ized in Shiffman and Zelditch (2003).

Our second example belongs to a class of problems
in which M is compact and L positive. In this case,
the space H0(M,L) of holomorphic sections is finite
dimensional, so we can take the basis to consist of all
sections. Then, if M is in addition Kähler, we can
derive all the other data from a choice of Hermitian
metric h(f , g) on L. In particular, this determines a
Kähler form ! as the curvature of the metric
compatible connection, and thus a volume form
Vol! =!n=n!. We then define the inner product to be

ðf; gÞ ¼
Z
M

Vol ! hðf; gÞ

Thus, the measure equation [1] and the final distribu-
tion equation [2] are entirely determined by h. In
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these terms, the underlying reason for the simplicity of
eqn [5] is that we started with the SU(2)-invariant
metric h, so the final distribution must be invariant
as well. More generally, eqn [7] is a Szegö kernel.
Taking L=L	N

1 for N large, this has a known
asymptotic expansion, enabling a rather complete
treatment (Zelditch 2001).

Our two examples also make the larger point that
a wide variety of distributions are possible. Thus, to
get convincing results, we must put in some informa-
tion about the ensemble of random polynomials or
sections which appear in the problem at hand.

The basic computation we just discussed can be
vastly generalized to multiple variables, multipoint
correlation functions, many different ensembles, and
different counting problems. We will discuss the
distribution of critical points of holomorphic
sections below.
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ions one can ask about attractor points, and it
ould be very interesting to have a general method

o find them. As emphasized by G Moore, this is one
f the simplest problems arising from string theory
n which integrality (here due to charge quantiza-
ion) plays a central role, and thus it provides a
atural point of contact between string theory and
umber theory. For example, one might suspect that
ttractor Calabi–Yau’s are arithmetic, that is, are
rojective varieties whose defining equations live in
n algebraic number field. This can be shown to
lways be true for K3� T2, and there are
onjectures about when this is true more generally
Moore 2004).

A simpler problem is to characterize the distribu-
ion of attractor points in Mc(M). As these are
nfinite in number, one must introduce some
ontrol parameter. While the first idea which
ight come to mind is to bound the magnitude of

, since the intersection form on H3(M, Z) is
ntisymmetric, there is no natural way to do this.

better way to get a finite set is to bound the
eriod of �, and consider the attractor points
atisfying

Z2
max � jZð�; zÞj2 �

j
R

M � ^ �j2R
M � ^ ��

½9�

s an example of the type of result we will discuss
elow, one can show that for large Zmax, the density
f such attractor points asymptotically approaches
he Weil–Peterson volume form on Mc.

We now briefly review the origins of this problem,
n the physics of 1/2 BPS (Bogomoln’yi–Prasad–
ommerfield) black holes in N = 2 supergravity. We
egin by introducing local complex coordinates zi

n Mc(M). Physically, these can be thought of as
assless complex scalar fields. These sit in vector
ultiplets of N = 2 supersymmetry, so there must be

2, 1(M) vector potentials to serve as their bosonic
artners under supersymmetry. These appear
ecause the massless modes of the type IIb string
nclude various higher rank-p form gauge potentials,
n particular a self-dual 4-form which we denote C.
elf-duality means that dC = � dC up to nonlinear
erms, where � is the Hodge star operator in ten
imensions. Now, Kaluza–Klein reduction of this
-form potential produces b3(M) 1-form vector
otentials AI in four dimensions. Given an explicit
asis of 3-forms !I for H3(M, R) \H3(M, Z), this
ollows from the decomposition

C ¼
Xb3

I¼1

AI ^ !I þmassive modes
The Attractor Problem

We now turn to our physical problems. Both are
posed in the context of compactification of the type
IIb superstring theory on a Calabi–Yau 3-fold M.
This leads to a four-dimensional effective field
theory with N = 2 supersymmetry, determined by
the geometry of M.

Let us begin by stating the attractor problem
mathematically, and afterwards give its physical
background. We begin by reviewing a bit of the
theory of Calabi–Yau manifolds. By Yau’s proof of
the Calabi conjecture, the moduli space of Ricci-flat
metrics on M is determined by a choice of complex
structure on M, denote this J, and a choice of Kähler
class. Using deformation theory, it can be shown
that the moduli space of complex structures, denote
this Mc(M), is locally a complex manifold of
dimension h2, 1(M). A point J in Mc(M) picks out a
holomorphic 3-form �J 2 H3, 0(M, C), unique up to
an overall choice of normalization. The converse is
also true; this can be made precise by defining the
period map Mc(M)! P(H3(M, Z)	C) to be the
class of � in H3(M, Z)	C up to projective
equivalence. One can prove that the period map is
injective (the Torelli theorem), locally in general and
globally in certain cases such as the quintic in CP4.

Now, the data for the attractor problem is a charge,
a class � 2 H3(M, Z). An attractor point for � is then
a complex structure J on M such that

� 2 H3;0
J ðM;CÞ 
H0;3

J ðM;CÞ ½8�

This amounts to h2, 1 complex conditions on the h2, 1

complex structure moduli, so picks out isolated
points in Mc(M), the attractor points.
There are many mathematical and physical ques-
t
w
t
o
i
t
n
n
a
p
a
a
c
(

t
i
c
m
�
a
A
p
s

A
b
o
t

i
S
b
o
m
m
h
p
b
i
i
S
t
d
4
p
b
f



326 Random Algebraic Geometry, Attractors and Flux Vacua
However, because of the self-duality relation, only With some work, one can see that in the 1/2 BPS

half of these vector potentials are independent; the
other half are determined in terms of them by four-
dimensional electric–magnetic duality. Explicitly,
given the intersection form �ij on H3 	H3, we have

dAi ¼ �ij �4 dAj ½10�

where �4 denotes the Hodge star in d = 4. Thus we
have h2, 1 þ 1 independent vector potentials. One of
these sits in the N = 2 supergravity multiplet, and
the rest are the correct number to pair with the
complex structure moduli. We now consider 1/2 BPS
black hole solutions of this four-dimensional N = 2
theory. Choosing any S2 which surrounds the
horizon, we can define the charge � as the class in
H3(M, Z) which reproduces the corresponding mag-
netic charges

Qi ¼
1

2�

Z
S2

dAi �
Z

M

!i ^ �

Using eqn [10], this includes all charges.
One can show that the mass M of any charged

object in supergravity satisfies a BPS bound,

M2 � jZð�; zÞj2 ½11�

The quantity jZ(�; z)j2, defined in eqn [9], depends
explicitly on �, and implicitly on the complex
structure moduli z through �. A 1/2 BPS solution
by definition saturates this bound.

We now explain the ‘‘attractor paradox.’’
According to Bekenstein and Hawking, the entropy
of any black hole is proportional to the area of its
event horizon. This area can be found by finding
the black hole as an explicit solution of four-
dimensional supergravity, which clearly depends on
the charge �. In fact, we must fix boundary
conditions for all the fields at infinity, in particular
the complex structure moduli, to get a particular
black hole solution. Now, normally varying the
boundary conditions varies all the data of a
solution in a continuous way. On the other hand,
if the entropy has any microscopic interpretation as
the logarithm of the number of quantum states of
the black hole, one would expect eS to be integrally
quantized. Thus, it must remain fixed as the
boundary conditions on complex structure moduli
are varied, in contradiction with naive expectations
for the area of the horizon, and seemingly contra-
dicting Bekenstein and Hawking.

The resolution of this paradox is the attractor
mechanism. Let us work in coordinates for which
the four-dimensional metric takes the form

ds2 ¼ �f ðrÞ dt2 þ dr2þ AðrÞ
4�

d�2
S2
case, the equations of motion imply that as r
decreases, the complex structure moduli z follow
gradient flow with respect to jZ(�, z)j2 in eqn [11],
and the area A(r) of an S2 at radius r decreases.
Finally, at the horizon, z reaches a value z� at which
jZ(�, z�)j2 is a local minimum, and the area of
the event horizon is A = 4�jZ(�, z�)j2. Since z� is
determined by minimization, this area will not
change under small variations of the initial z,
resolving the paradox.

A little algebra shows that the problem of finding
nonzero critical points of jZ(�, z)j2 is equivalent to
that of finding critical points DiZ = 0 of the period
associated to �,

Z ¼
Z

M

� ^ � ½12�

usually called the central charge, with respect to the
covariant derivative

Di Z ¼ @i Zþ ð@i KÞZ ½13�

Here

e�K�
Z

� ^ �� ½14�

The mathematical significance of this rephrasing is
that K is a Kähler potential for the Weil–Peterson
Kähler metric on Mc(M), with Kähler form
!= @ �@K, and eqn [13] is the unique connection on
H(3, 0)(M, C) regarded as a line bundle over Mc(M),
whose curvature is �!. These facts can be used to
show that Di� provides a basis for H(2, 1)(M, C), so
that the critical point condition forces the projection
of � on H(2, 1) to vanish. This justifies our original
definition eqn [8].
Flux Vacua in IIb String Theory

We will not describe our second problem in as much
detail, but just give the analogous final formulation.
In this problem, a ‘‘choice of flux’’ is a pair of
elements of H3(M, Z), or equivalently a single
element

F 2 H3ðM;Z
 �ZÞ ½15�

where � 2 H � {� 2 CjIm� > 0} is the so-called
‘‘dilaton-axion.’’

A flux vacuum is then a choice of complex
structure J and � for which

F 2 H3;0
J ðM;CÞ 
H1;2

J ðM;CÞ ½16�

Now we have h2, 1 þ h0, 3 = h2, 1 þ 1 complex condi-
tions on the joint choice of h2, 1 complex structure



moduli and � , so this condition also picks out
special points, now in Mc �H.

The critical point formulation of this problem is
that of finding critical points of

W ¼
Z

� ^ F ½17�

under the covariant derivatives eqn [13] and

D�W ¼ @�W þ ð@�WÞZ

with K the sum of eqn [14] and the Kähler potential
�log Im� for the metric on the upper half-plane of
constant curvature �1.

This is a sort of complexified version of the
previous problem and arises naturally in IIb com-
pactification by postulating a nonzero value F for a
certain 3-form gauge field strength, the flux. The
quantity eqn [17] is the superpotential of the
resulting N = 1 supergravity theory, and it is a
standard fact in this context that supersymmetric
vacua (critical points of the effective potential) are
critical points of W in the sense we just stated.

We can again pose the question of finding the
distribution of flux vacua in Mc(M)�H. Besides
jWj2, which physically is one of the contributions to
the vacuum energy, we can also use the ‘‘length of
the flux’’

L ¼ 1

Im�

Z
Re F ^ Im F ½18�

as a control parameter, and count flux vacua for
which L  Lmax. In fact, this parameter arises
naturally in the actual IIb problem, as the ‘‘orienti-
fold three-plane charge.’’

What makes this problem particularly interesting
physically is that it (and its analogs in other string
theories) may bear on the solution of the cosmolo-
gical constant problem. This begins with Einstein’s
famous observation that the equations of general
relativity admit a one-parameter generalization,

R�	 � 1
2g�	R ¼ 8�T�	 þ �g�	

Physically, the cosmological constant � is the
vacuum energy, which in our flux problem takes
the form � = � � � �3jWj2 (the other terms are
inessential for us here).

Cosmological observations tell us that � is very small,
of the same order as the energy of matter in the present
era, about 10�122M4

Planck in Planck units. However, in a
generic theory of quantum gravity, including string
theory, quantum effects are expected to produce a large
vacuum energy, a priori of order M4

Planck. Finding an
explanation for why the theory of our universe is in this
sense nongeneric is the cosmological constant problem.

One of the standard solutions of this problem is
the ‘‘anthropic solution,’’ initiated in work of
Weinberg and others, and discussed in string theory
in Bousso and Polchinski (2000). Suppose that we
are discussing a theory with a large number of
vacuum states, all of which are otherwise candidates
to describe our universe, but which differ in �. If the
number of these vacuum states were sufficiently
large, the claim that a few of these states realize a
small � would not be surprising. But one might still
feel a need to explain why our universe is a vacuum
with small �, and not one of the multitude with
large �.

The anthropic argument is that, according to
accepted models for early cosmology, if the value of
j�j were even 100 times larger than what is
observed, galaxies and stars could not form. Thus,
the known laws of physics guarantee that we will
observe a universe with � within this bound; it is
irrelevant whether other possible vacuum states
‘‘exist’’ in any sense.

While such anthropic arguments are controversial,
one can avoid them in this case by simply asking
whether or not any vacuum state fits the observed
value of �. Given a precise definition of vacuum
state, this is a question of mathematics. Still,
answering it for any given vacuum state is extremely
difficult, as it would require computing � to 10�122

precision. But it is not out of reach to argue that out
of a large number of vacua, some of them are
expected to realize small �. For example, if we
could show that the number of otherwise physically
acceptable vacua was larger than 10122, and that the
distribution of � among these was approximately
uniform over the range (�M4

Planck, M4
Planck), we would

have made a good case for this expectation. This style
of reasoning can be vastly generalized and, given
favorable assumptions about the number of vacua in
a theory, could lead to falsifiable predictions inde-
pendent of any a priori assumptions about the choice
of vacuum state (Douglas 2003).

Asymptotic Counting Formulas

We have just defined two classes of physically
preferred points in the complex structure moduli
space of Calabi–Yau 3-folds, the attractor points
and the flux vacua. Both have simple definitions in
terms of Hodge structure, eqn [8] and eqn [16], and
both are also critical points of integral periods of the
holomorphic 3-form.

This second phrasing of the problem suggests the
following language. We define a random period of
the holomorphic 3-form to be the period for a
randomly chosen cycle in H3(M, Z) of the types we
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just discussed (real or complex, and with the
appropriate control parameters). We are then inter-
ested in the expected distribution of critical points
for a random period. This brings our problem into
the framework of random algebraic geometry.
Before proceeding to use this framework, let us
first point out some differences with the toy
problems we discussed. First, while eqn [12] and
eqn [17] are sums of the form eqn [6], we take not
an orthonormal basis but instead a basis si of
integral periods of �. Second, the coefficients ci are
not normally distributed but instead drawn from a
discrete uniform distribution, that is, correspond to
a choice of � in H3(M, Z) or F as in eqn [15],
satisfying the bounds on jZj or L. Finally, we do not
normalize the distribution (which is thus not a
probability measure) but instead take each choice
with unit weight.

These choices can of course be modified, but are
made in order to answer the question, ‘‘how many
attractor points (or flux vacua) sit within a specified
region of moduli space?’’ The answer we will get is a
density �(Zmax) or �(Lmax) on moduli space, such
that as the control parameter becomes large, the
number of critical points within a region R
asymptotes to

NðR; ZmaxÞ �
Z

R

�ðZmaxÞ

The key observation is that to get such asympto-
tics, we can start with a Gaussian random
element s of H3(M, R) or H3(M, C). In other
words, we neglect the integral quantization of
the charge or flux. Intuitively, this might be
expected to make little difference in the limit
that the charge or flux is large, and in fact one
can prove that this simplification reproduces the
leading large L or jZj asymptotics for the density
of critical points, using standard ideas in lattice
point counting.

This justifies starting with a two-point function
like eqn [7]. While the integral periods si of � can
be computed in principle (and have been in many
examples) by solving a system of linear PDEs, the
Picard–Fuchs equations, it turns out that one does
not need such detailed results. Rather, one can
use the following ansatz for the two-point
function,

Gðz1;�z2Þ ¼
Xb3

I¼1

�IJsIðz1Þs�J ð�z2Þ

¼
Z

M

�ðz1Þ ^ ��ð�z2Þ

¼ exp�Kðz1;�z2Þ

In words, the two-point function is the formal
continuation of the Kähler potential on Mc(M) to
independent holomorphic and antiholomorphic
variables. This incorporates the quadratic form
appearing in eqn [18] and can be used to count
sections with such a bound.

We can now follow the same strategy as before,
by introducing an expected density of critical
points,

d�ðzÞ ¼ E½�ðnÞðDisðzÞÞ�ðnÞð �Di�sð�zÞÞ j det
1i;j2n

Hijj� ½19�

where the ‘‘complex Hessian’’ H is the 2n� 2n
matrix of second derivatives

H � @i
�D�j�sðzÞ @iDjsðzÞ

�@�i
�D�j�sðzÞ �@�iDjsðzÞ

 !
½20�

(note that @Ds = DDs at a critical point). One can
then compute this density along the same lines.
The holomorphy of s implies that @i

�D�js =!i�js,
which is one simplification. Other geometric
simplifications follow from the fact that eqn [19]
depends only on s and a finite number of its
derivatives at the point z.

For the attractor problem, using the identity

DiDjs ¼ F ijk!
k�k �D�ks ¼ 0

from special geometry of Calabi–Yau 3-folds, the
Hessian becomes trivial, and detH = jsj2n. One thus
finds (Denef and Douglas 2004) that the asymptotic
density of attractor points with large jZj  Zmax in a
region R is

NðR; jZj  ZmaxÞ �
2nþ1

ðnþ 1Þ�n
Znþ1

max � volðRÞ

where vol(R) =
R

R !
n=n! is the volume of R in the

Weil–Peterson metric. The total volume is known to
be finite for Calabi–Yau 3-fold moduli spaces, and
thus so is the number of attractor points under this
bound.

The flux vacuum problem is complicated by the
fact that DDs is nonzero and thus the determinant
of the Hessian does not take a definite sign, and
implementing the absolute value in eqn [19] is
nontrivial. The result (Douglas, et al. 2004) is

�ðzÞ � 1

b3!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �ðzÞ

p Z
HðzÞ�C

j detðHH� � jxj2 � 1Þj

� eHt�ðzÞ�1H�jxj2dH dx

where H(z) is the subspace of Hessian matrices eqn
[20] obtainable from periods at the point z, and �(z)
is a covariance matrix computable from the period
data.
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A simpler lower bound for the number of
solutions can be obtained by instead computing the
index density

�IðzÞ ¼ E
h
�ðnÞðDisÞ�ðnÞð �Di�sÞ det

1i;j2n

Hij

i
½21�

so-called because it weighs the vacua with a Morse–
Witten sign factor. This admits a simple explicit
formula (Ashok and Douglas 2004),

IvacðR;L  LmaxÞ

� ð2�LmaxÞb3

�nþ1b3!

Z
R

detðR þ ! � 1Þ ½22�

where R is the (nþ 1)� (nþ 1)-dimensional matrix
of curvature 2-forms for the Weil–Peterson metric.

One might have guessed this density by the
following reasoning. If s had been a single-valued
section on a compact Mc (it is not), topological
arguments determine the total index to be [cnþ1(L 	
T�M)], and this is the simplest density constructed
solely from the metric and curvatures in the same
cohomology class.

It is not in general known whether this integral over
Calabi–Yau moduli space is finite, though this is true
in examples studied so far. One can also control jWj2
as well as other observables, and one finds that the
distribution of jWj2 among flux vacua is to a good
approximation uniform. Considering explicit exam-
ples, the prefactor in eqn [22] is of order 10100�10300,
so assuming that this factor dominates the integral, we
have justified the Bousso–Polchinski solution to the
cosmological constant problem in these models.

The finite L corrections to these formulas can be
estimated using van der Corput techniques, and are
suppressed by better than the naive L�1=2 or jZj�1 one
might have expected. However the asymptotic for-
mulas for the numbers of flux vacuum break down in
certain limits of moduli space, such as the large
complex structure limit. This is because eqn [18]
is an indefinite quadratic form, and the fact that
it bounds the number of solutions at all is somewhat
subtle. These points are discussed at length in
(Douglas et al. 2005).

Similar results have been obtained for a wide
variety of flux vacuum counting problems, with
constraints on the value of the effective potential at
the minimum, on the masses of scalar fields, on
scales of supersymmetry breaking, and so on. And in
principle, this is just the tip of an iceberg, as the

study of more or less any class of superstring vacua
leads to similar questions of counting and distribu-
tion, less well understood at present. Some of these
are discussed in Douglas (2003), Acharya et al.
(2005), Denef and Douglas (2005), Blumenhagen
et al. (2005).

See also: Black Hole Mechanics; Chaos and Attractors;
Compactification of Superstring Theory; Supergravity.
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Introduction

The concept of random dynamical system is a
comparatively recent development combining ideas
and methods from the well-developed areas of
probability theory and dynamical systems.

Let us consider a mathematical model of some
physical process given by the iterates Tk

0 =T0� � � �k �T0,
k� 1, of a smooth transformation T0 :M

’

of a
manifold into itself. A realization of the process
with initial condition x0 is modeled by the sequence
(Tk

0 (x0))k�1, the orbit of x0.
Due to our inaccurate knowledge of the particular

physical system or due to computational or theore-
tical limitations (e.g., lack of sufficient computa-
tional power, inefficient algorithms, or insufficiently
developed mathematical or physical theory), the
mathematical models never correspond exactly to
the phenomenon they are meant to model. More-
over, when considering practical systems, we cannot
avoid either external noise or measurement or
inaccuracy errors, so every realistic mathematical
model should allow for small errors along orbits not
to disturb the long-term behavior too much. To be
able to cope with unavoidable uncertainty about the
‘‘correct’’ parameter values, observed initial states
and even the specific mathematical formulation
involved, let randomness be embedded within the
model to begin with.

This article presents the most basic classes of
models, defines the general concept, and presents
some developments and examples of applications.

Dynamics with Noise

To model random perturbations of a transformation
T0, we may consider a transition from the
image T0(x) to some point according to a given
probability law, obtaining a Markov chain, or, if T0

depends on a parameter p, we may choose p at
random at each iteration, which also can be seen as
a Markov chain but whose transitions are strongly
correlated.

Random Noise

Given T0 : M

’

and a family {p(� j x) : x 2M} of
probability measures on M such that the support of
p(� j x) is close to T0(x), the random orbits are

sequences (xk)k�1 where each xkþ1 is a random
variable with law p(� j xk). This is a Markov
chain with state space M and transition probabilities
{p(� j x)}x2M. To extend the concept of invariant
measure of a transformation to this setting, a
probability measure � is said to be ‘‘stationary’’ if
�(A) =

R
p(A j x) d�(x) for every measurable (Borel)

subset A. This can be conveniently translated by
saying that the skew-product measure �� pN on
M�MN given by

dð�� pNÞðx0; x1; . . . ; xn; . . .Þ
¼ d�ðx0Þpðdx1 j x0Þ � � � pðdxnþ1 j xnÞ � � �

is invariant by the shift map S : M�MN ’

on the
space of orbits. Hence, we may use the ergodic
theorem and get that time averages of all continuous
observables ’ : M! R, that is, writing x = (xk)k�0

and

~’ðxÞ ¼ lim
n!þ1

1

n

Xn�1

k¼0

’ðxkÞ

¼ lim
n!þ1

1

n

Xn�1

k¼0

’ð�0ðSkðxÞÞÞ

exist for �� pN-almost all sequences x, where
�0 : M�MN !M is the natural projection on the
first coordinate. It is well known that stationary
measures always exist if the transition probabilities
p(� j x) depend continuously on x.

A function ’ : M! R is invariant if ’(x) =R
’(z)p(dz j x) for �-almost every x. We then say

that � is ergodic if every invariant function is
constant �-almost everywhere. Using the ergodic
theorem again, if � is ergodic, then ~’=

R
’ d�,

�-almost everywhere.
Stationary measures are the building blocks for

more sophisticated analysis involving, for example,
asymptotic sojourn times, Lyapunov exponents, decay
of correlations, entropy and/or dimensions, exit/
entrance times from/to subsets of M, to name just a
few frequent notions of dynamical and probabilistic/
statistical nature.

Example 1 (Random jumps). Given � > 0 and
T0 : M!M, let us define

p�ðA j xÞ ¼ mðA \ BðT0ðxÞ; �ÞÞ
mðBðT0ðxÞ; �ÞÞ

where m denotes some choice of Riemannian
volume form on M. Then p�; (� j x) is the normalized
volume restricted to the �-neighborhood of T0(x).
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This defines a family of transition probabilities
allowing the points to ‘‘jump’’ from T0(x) to any
point in the �-neighborhood of T0(x) following a
uniform distribution law.

Random Maps

Alternatively, we may choose maps T1, T2, . . . , Tk

independently at random near T0 according to a
probability law � on the space T(M) of maps, whose
support is close to T0 in some topology, and
consider sequences xk = Tk � � � � � T1(x0) obtained
through random iteration, k � 1, x0 2M.

This is again a Markov chain whose transition
probabilities are given for any x 2M by

pðA j xÞ ¼ � fT 2 TðMÞ: TðxÞ 2 Agð Þ

so this model may be reduced to the first one.
However, in the random-maps setting, we may
associate, with each random orbit, a sequence of
maps which are iterated, enabling us to use ‘‘robust
properties’’ of the transformation T0 (i.e., properties
which are known to hold for T0 and for every
nearby map T) to derive properties of the random
orbits.

Under some regularity conditions on the map
x 7! p(A j x) for every Borel subset A, it is possible
to represent random noise by random maps on
suitably chosen spaces of transformations. In fact,
the transition probability measures obtained in the
random-maps setting exhibit strong spatial correla-
tion: p( � j x) is close to p( � j y) as x is near y.

If we have a parametrized family T :U �M!M
of maps, we can specify the law � by giving a
probability � on U. Then with every sequence
T1, . . . , Tk, . . . of maps of the given family, we
associate a sequence !1, . . . ,!k, . . . of parameters in
U since

Tk � � � � � T1 ¼ T!k
� � � � � T!1

¼ Tk
!1;...;!k

for all k � 1, where we write T!(x) = T(!, x). In this
setting, the shift map S becomes a skew-product
transformation

S : M� UN ’ ðx; !Þ 7! T!1
ðxÞ; �ð!Þð Þ

to which many of the standard methods of dynami-
cal systems and ergodic theory can be applied,
yielding stronger results that can be interpreted in
random terms.

Example 2 (Parametric noise). Let T : P�M!M
be a smooth map where P, M are finite-dimensional
Riemannian manifolds. We fix p0 2 P, denote by m
some choice of Riemannian volume form on P, set

Tw(x) = T(w, x), and for every � > 0 write
�� = (m(B(p0, �))�1� (m jB(p0, �)), the normalized
restriction of m to the �-neighborhood of p0. Then
(Tw)w2P, together with ��, defines a random pertur-
bation of Tp0

, for every small enough � > 0.

Example 3 (Global additive perturbations). Let M
be a homogeneous space, that is, a compact
connected Lie group admitting an invariant
Riemannian metric. Fixing a neighborhood U of
the identity e 2M, we can define a map T : U �
M!M, (u, x) 7!Lu(T0(x)), where Lu(x) = u � x is
the left translation associated with u 2M. The
invariance of the metric means that left (and also
right) translations are isometries, hence fixing u 2 U
and taking any (x, v) 2 TM, we get

kDTuðxÞ � vk ¼ kDLuðT0ðxÞÞðDT0ðxÞ � vÞk
¼ kDT0ðxÞ � vk

In the particular case of M = Td, the d-dimensional
torus, we have Tu(x) = T0(x)þ u, and this simplest
case suggests the name ‘‘additive random pertur-
bations’’ for random perturbations defined using
families of maps of this type.

For the probability measure on U, we may
take ��, any probability measure supported in the
�-neighborhood of e and absolutely continuous
with respect to the Riemannian metric on M, for
any � > 0 small enough.

Example 4 (Local additive perturbations). If
M = Rd and U0 is a bounded open subset of M
strictly invariant under a diffeomorphism T0, that is,
closure (T0(U0)) � U0, then we can define an
isometric random perturbation setting:

(i) V = T0(U0) (so that closure (V) = closure
(T0(U0)) � U0);

(ii) G ’ Rd the group of translations of Rd; and
(iii) V a small enough neighborhood of 0 in G.

Then for v 2 V and x 2 V, we set Tv(x) = xþ v, with
the standard notation for vector addition, and
clearly Tv is an isometry. For ��, we may take any
probability measure on the �-neighborhood of 0,
supported in V and absolutely continuous with
respect to the volume in Rd, for every small enough
� > 0.

Random Perturbations of Flows

In the continuous-time case, the basic model to start
with is an ordinary differential equation
dXt = f (t, Xt)dt, where f : [0,þ1)! X (M) and
X (M) is the family of vector fields in M. We
embed randomness in the differential equation
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basically through ‘‘diffusion,’’ the perturbation is
given by white noise or Brownian motion ‘‘added’’
to the ordinary solution.

In this setting, assuming for simplicity that
M = Rn, the random orbits are solutions of stochas-
tic differential equations

dXt ¼ f ðt;XtÞdt þ � � �ðt;XtÞdWt;

0 � t � T; X0 ¼ Z

where Z is a random variable, �, T > 0 and both
f : [0, T]� Rn ! Rn and � : [0, T]� Rn ! L(Rk, Rn)
are measurable functions. The space of linear maps
Rk ! Rn is written on L(Rk, Rn) and Wt is the
white-noise process on Rk. The solution of this
equation is a stochastic process:

X : R � �!M ðt; !Þ 7!Xtð!Þ

for some (abstract) probability space �, given by

Xt ¼ Zþ
Z T

0

f ðs;XsÞdsþ
Z T

0

� � �ðs;XsÞdWs

where the last term is a stochastic integral in the
sense of Itô. Under reasonable conditions on f and �,
there exists a unique solution with continuous paths,
that is,

½0;þ1Þ 3 t 7! Xtð!Þ

is continuous for almost all ! 2 � (in general these
paths are nowhere differentiable).

Setting Z = �x0
, the probability measure concen-

trated on the point x0, the initial point of the path is
x0 with probability 1. We write Xt(!)x0 for paths of
this type. Hence, x 7! Xt(!)x defines a map
Xt(!) : M

’

which can be shown to be a home-
omorphism and even diffeomorphisms under suit-
able conditions on f and �. These maps satisfy a
cocycle property

X0ð!Þ ¼ IdM ðidentity map of MÞ
Xtþsð!Þ ¼ Xtð�ðsÞð!ÞÞ �Xsð!Þ

for s, t � 0 and ! 2 �, for a family of measure-
preserving transformations �(s) : (�, P)

’

on a
suitably chosen probability space (�, P). This
enables us to write the solution of this kind of
equations also as a skew product.

The Abstract Framework

The illustrative particular cases presented can all be
written in skew-product form as follows.

Let (�, P) be a given probability space, which will
be the model for the noise, and let T be time, which
usually means Zþ, Z (discrete, resp. invertible
system) or Rþ, R (continuous, resp. invertible

system). A random dynamical system is a skew
product

St : ��M

’

; ð!; xÞ 7! ð�ðtÞð!Þ; ’ðt; !ÞðxÞÞ

for all t 2 T, where � : T� �! � is a family
of measure-preserving maps �(t) : (�, P)

’

and
’ : T� ��M!M is a family of maps
’(t, !) : M

’

satisfying the cocycle property: for
s, t 2 T, ! 2 �,

’ð0; !Þ ¼ IdM

’ðt þ s; !Þ ¼ ’ðt; �ðsÞð!ÞÞ � ’ðs; !Þ

In this general setting an invariant measure for the
random dynamical system is any probability mea-
sure � on ��M which is St-invariant for all t 2 T
and whose marginal is P, that is, �(S�1

t (U)) =�(U)
and �(��1

� (U)) = P(U) for every measurable U �
��M, respectively, with �� : ��M! � the nat-
ural projection.

Example 5 In the setting of the previous examples
of random perturbations of maps, the product
measure 	= P� � on ��M, with � =UN, P = �N

�

and � any stationary measure, is clearly invariant.
However, not all invariant measures are product
measures of this type.

Naturally an invariant measure is ergodic if every
St-invariant function is �-almost everywhere
constant. That is, if  : ��M! R satisfies
 � St = �-almost everywhere for every t 2 T,
then  is �-almost everywhere constant.

Applications

The well-established applications of both probability
or stochastic differential equations (solution of
boundary value problems, optimal stopping, sto-
chastic control etc.) and dynamical systems (all
kinds of models of physical, economic or biological
phenomena, solutions of differential equations,
control systems etc.) will not be presented here.
Instead, this section focuses on topics where the
subject sheds new light on these areas.

Products of Random Matrices and the
Multiplicative Ergodic Theorem

The following celebrated result on products of
random matrices has far-reaching applications on
dynamical systems theory.

Let (Xn)n�0 be a sequence of independent and
identically distributed random variables on
the probability space (�, P) with values in
L(Rk, Rk) such that E( logþ kX1k) < þ1, where
logþ x = max {0, log x} and k � k is a given norm on

332 Random Dynamical Systems



L(Rk, Rk). Writing ’n(!) = Xn(!) � � � � �X1(!) for
all n � 1 and ! 2 � we obtain a cocycle. If we set

B ¼
�
ð!; yÞ 2 �� Rk : lim

n!þ1

1

n
log k’nð!Þyk

exists and is finite or is�1
�
;

�0 ¼ f! 2 � : ð!; yÞ 2 B for all y 2 Rkg

then �0 contains a subset �00 of full probability and
there exist random variables (which might take the
value �1) 
1 � 
2 � � � � � 
k with the following
properties.

1. Let I = {kþ 1 = i1 > i2 > � � � > ilþ1 = 1} be any
(l þ 1)-tuple of integers and then we define

�I ¼f! 2 �00 : 
ið!Þ ¼ 
jð!Þ; ih > i; j � ihþ1;

and 
ihð!Þ > 
ihþ1
ð!Þ for all 1 < h < lg

the set of elements where the sequence 
i jumps
exactly at the indexes in I. Then for
! 2 �I, 1<h � l,

�I;h ð!Þ ¼
�

y 2 Rk : lim
n!þ1

1

n
log k’nð!Þk � 
ihð!Þ

�

is a vector subspace with dimension ih�1 � 1.
2. Setting �I,kþ1(!) = {0}, then

lim
n!þ1

1

n
log k’nð!Þk ¼ 
ihð!Þ

for every y 2 �I,h(!)n�I,hþ1(!).
3. For all ! 2 �00 there exists the matrix

Að!Þ ¼ lim
n!þ1

’nð!Þð Þ	’nð!Þ½ 
1=2n

whose eigenvalues form the set {e
i : i = 1, . . . , k}.

The values of 
i are the random Lyapunov
characteristics and the corresponding subspaces are
analogous to random eigenspaces. If the sequence
(Xn)n�0 is ergodic, then the Lyapunov characteristics
become nonrandom constants, but the Lyapunov
subspaces are still random.

We can easily deduce the multiplicative ergodic
theorem for measure-preserving differentiable maps
(T0,�) on manifolds M from this result. For simplicity,
we assume that M � Rk and set p(A j x) = �T0(x)(A) = 1
if T0(x) 2 A and 0 otherwise. Then the measure �� pN

on M�MN is �-invariant (as defined earlier) and we
have that �0 � �= T0 � �0, where �0 : MN !M is the
projection on the first coordinate, and also (�0)	(��
pN) =�. Then, setting for n � 1

X : M! LðRk;RkÞ and Xn ¼ X � �0 � �n

x 7! DT0ðxÞ

we obtain a stationary sequence to which we can
apply the previous result, obtaining the existence of
Lyapunov exponents and of Lyapunov subspaces on
a full measure subset for any C1 measure-preserving
dynamical system.

By a standard extension of the previous setup, we
obtain a random version of the multiplicative ergodic
theorem. We take a family of skew-product maps
St : �� M

’

as in the section ‘‘The abstract frame-
work’’ with an invariant probability measure � and
such that ’(t, !) : M

’
is (for simplicity) a local

diffeomorphism. We then consider the stationary family

Xt : �! LðTMÞ; ! 7! D’ðt; !Þ : TM

’

t 2 T

where D’(t, !) is the tangent map to ’(t, !). This is
a cocycle since for all t, s 2 T, ! 2 � we have

Xðsþ t; !Þ ¼ Xðs; �ðtÞ!Þ �Xðt; !Þ

If we assume that

sup
0�t�1

sup
x2M

logþ kD’ðt; !ÞðxÞk
� �

2 L1ð�;PÞ

where k � k denotes the norm on the corresponding
space of linear maps given by the induced norm
(from the Riemannian metric) on the appropriate
tangent spaces, then we obtain a sequence of
random variables (which might take the value �1)

1 � 
2 � � � � � 
k, with k being the dimension of
M, such that

lim
t!þ1

1

t
log kXtð!; xÞyk ¼ 
ið!; xÞ

for every y 2 Ei!, x) = �i(!, x) n �iþ1(!, x) and
i = 1, . . . , kþ 1, where (�i(!, x))i is a sequence of
vector subspaces in TxM as before, measurable with
respect to (!, x). In this setting, the subspaces Ei(!, x)
and the Lyapunov exponents are invariant, that is,
for all t 2 T and �-almost every (!, x) 2 ��M, we
have


iðStð!; xÞÞ ¼ 
ið!; xÞ and EiðStð!; xÞÞ ¼ Eið!; xÞ

The dependence of Lyapunov exponents on the
map T0 has been a fruitful and central research
program in dynamical systems for decades extending
to the present day. The random multiplicative
ergodic theorem sets the stage for the study of the
stability of Lyapunov exponents under random
perturbations.

Stochastic Stability of Physical Measures

The development of the theory of dynamical systems
has shown that models involving expressions as
simple as quadratic polynomials (as the logistic
family or Hénon attractor), or autonomous ordinary
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differential equations with a hyperbolic singularity
of saddle type, as the Lorenz flow, exhibit sensitive
dependence on initial conditions, a common feature
of chaotic dynamics: small initial differences are
rapidly augmented as time passes, causing two
trajectories originally coming from practically indis-
tinguishable points to behave in a completely
different manner after a short while. Long-term
predictions based on such models are unfeasible,
since it is not possible to both specify initial
conditions with arbitrary accuracy and numerically
calculate with arbitrary precision.

Physical measures Inspired by an analogous situa-
tion of unpredictability faced in the field of
statistical mechanics/thermodynamics, researchers
focused on the statistics of the data provided by
the time averages of some observable (a continuous
function on the manifold) of the system. Time
averages are guaranteed to exist for a positive-
volume subset of initial states (also called an
observable subset) on the mathematical model if
the transformation, or the flow associated with the
ordinary differential equation, admits a smooth
invariant measure (a density) or a physical measure.

Indeed, if �0 is an ergodic invariant measure for the
transformation T0, then the ergodic theorem ensures
that for every �-integrable function ’ : M! R and
for �-almost every point x in the manifold M, the time
average ~’(x) = limn!þ1 n�1

Pn�1
j=0 ’(Tj

0(x)) exists and
equals the space average

R
’ d�0. A physical measure

� is an invariant probability measure for which it is
required that time averages of every continuous
function ’ exist for a positive Lebesgue measure
(volume) subset of the space and be equal to the space
average �(’).

We note that if � is a density, that is, absolutely
continuous with respect to the volume measure, then
the ergodic theorem ensures that � is physical.
However, not every physical measure is absolutely
continuous. To see why in a simple example, we
consider a singularity p of a vector field which is an
attracting fixed point (a sink), then the Dirac mass
�p concentrated on p is a physical probability
measure, since every orbit in the basin of attraction
of p will have asymptotic time averages for any
continuous observable ’ given by ’(p) = �p(’).

Physical measures need not be unique or even
exist in general but, when they do exist, it is
desirable that the set of points whose asymptotic
time averages are described by physical measures
(such a set is called the basin of the physical
measures) be of full Lebesgue measure – only an
exceptional set of points with zero volume would
not have a well-defined asymptotic behavior. This is

yet far from being proved for most dynamical
systems, in spite of much recent progress in this
direction.

There are robust examples of systems admitting
several physical measures whose basins together are
of full Lebesgue measure, where ‘‘robust’’ means
that there are whole open sets of maps of a manifold
in the C2 topology exhibiting these features. For
typical parametrized families of one-dimensional
unimodal maps (maps of the circle or of the interval
with a unique critical point), it is known that the
above scenario holds true for Lebesgue almost every
parameter. It is known that there are systems
admitting no physical measure, but the only known
cases are not robust, that is, there are systems
arbitrarily close which admit physical measures.

It is hoped that conclusions drawn from models
admitting physical measures to be effectively obser-
vable in the physical processes being modeled.
In order to lend more weight to this expectation,
researchers demand stability properties from such
invariant measures.

Stochastic stability There are two main issues
concerning a mathematical model, both from theo-
retical and practical standpoints. The first one is to
describe the asymptotic behavior of most orbits, that
is, to understand what happens to orbits when time
tends to infinity. The second and equally important
one is to ascertain whether the asymptotic behavior
is stable under small changes of the system, that is,
whether the limiting behavior is still essentially the
same after small changes to the law of evolution. In
fact, since models are always simplifications of the
real system (we cannot ever take into account the
whole state of the universe in any model), the lack
of stability considerably weakens the conclusions
drawn from such models, because some properties
might be specific to it and not in any way
resembling the real system.

Random dynamical systems come into play in this
setting when we need to check whether a given
model is stable under small random changes to the
law of evolution.

In more precise terms, we suppose that there is a
dynamical system (a transformation or a flow) admit-
ting a physical measure �0 and we take any random
dynamical system obtained from this one through the
introduction of small random perturbations on the
dynamics, as in Examples 1– 4 or in the section on
‘‘Random perturbations of flows,’’ with the noise level
� > 0 close to zero.

In this setting if, for any choice �� of invariant
measure for the random dynamical system for all
� > 0 small enough, the set of accumulation points of
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the family (��)�>0, when � tends to 0 – also known as
zero-noise limits – is formed by physical measures or,
more generally, by convex linear combinations of
physical measures, then the original unperturbed
dynamical system is stochastically stable.

This intuitively means that the asymptotic beha-
vior measured through time averages of continuous
observables for the random system is close to the
behavior of the unperturbed system.

Recent progress in one-dimensional dynamics has
shown that, for typical families (ft)t2(0,1) of maps of
the circle or of the interval having a unique critical
point, a full Lebesgue measure subset T of the set of
parameters is such that, for t 2 T, the dynamics of ft

admits a unique stochastically stable (under additive
noise type random perturbations) physical measure
�t whose basin has full measure in the ambient space
(either the circle or the interval). Therefore, models
involving one-dimensional unimodal maps typically
are stochastically stable.

In many settings (e.g., low-dimensional dynamical
systems), Lyapunov exponents can be given by time
averages of continuous functions – for example, the
time average of log kDT0k gives the biggest expo-
nent. In this case, stochastic stability directly implies
stability of the Lyapunov exponents under small
random perturbations of the dynamics.

Example 6 (Stochastically stable examples). Let
T0 : S1 ’

be a map such that 
, the Lebesgue (length)
measure on the circle, is T0-invariant and ergodic.
Then 
 is physical.

We consider the parametrized family Tt : S1 �
S1 ! S1, (t, x) 7! xþ t and a family of probability
measures �� = (
(��, �))�1 � (
 j (��, �)) given by the
normalized restriction of 
 to the �-neighborhood of
0, where we regard S1 as the Lie group R=Z and use
additive notation for the group operation. Since 
 is
Tt-invariant for every t 2 S1,
 is also an invariant
measure for the measure-preserving random system

S : ðS1 � �N; 
� �N
� Þ

’

for every � > 0, where � = (S1)N. Hence, (T0, 
)
is stochastically stable under additive noise
perturbations.

Concrete examples can be irrational rotations,
T0(x) = xþ � with � 2 RnQ, or expanding maps of
the circle, T0(x) = b � x for some b 2 N, n � 2.
Analogous examples exist in higher-dimensional tori.

Example 7 (Stochastic stability depends on the type
of noise). In spite of the straightforward method
for obtaining stochastic stability in Example 6, for
example, an expanding circle map T0(x) = 2 � x, we
can choose a continuous family of probability

measures �� such that the same map T0 is not
stochastically stable.

It is well known that 
 is the unique absolutely
continuous invariant measure for T0 and also the
unique physical measure. Given � > 0 small, let us
define transition probability measures as follows:

p�ð� j zÞ ¼

 j ½��ðzÞ � �; ��ðzÞ þ �


ð½��ðzÞ � �; ��ðzÞ þ �
Þ

where �� j (��, �) � 0, �� j [S1 n (�2�, 2�)] � T0, and
over (�2�,��] [ [�, 2�), we can define �� by inter-
polation in order that it be smooth.

In this setting, every random orbit starting at
(��, �) never leaves this neighborhood in the
future. Moreover, it is easy to see that every
random orbit eventually enters (��, �). Hence,
every invariant probability measure �� for this
Markov chain model is supported in [��, �]. Thus,
letting �! 0, we see that the only zero-noise limit
is �0, the Dirac mass concentrated at 0, which is
not a physical measure for T0.

This construction can be achieved in a random-
maps setting, but only in the C0 topology – it is not
possible to realize this Markov chain by random
maps that are C1 close to T0 for � near 0.

Characterization of Measures Satisfying
the Entropy Formula

Significant effort has been put in recent years in
extending important results from dynamical systems
to the random setting. Among many examples are:
the local conjugacy between the dynamics near a
hyperbolic fixed point and the action of the derivative
of the map on the tangent space, the stable/unstable
manifold theorems for hyperbolic invariant sets and
the notions and properties of metric and topological
entropy, dimensions and equilibrium states for
potentials on random (or fuzzy) sets.

The characterization of measures satisfying the
entropy formula is one important result whose
extension to the setting of iteration of independent
and identically distributed random maps has
recently had interesting new consequences back
into nonrandom dynamical systems.

Metric entropy for random perturbations Given a
probability measure � and a partition  of M, except
perhaps for a subset of �-null measure, the entropy
of � with respect to  is defined to be

H�ðÞ ¼ �
X
R2

�ðRÞ log�ðRÞ
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where the convention that 0 log 0 = 0 has been used.
Given another finite partition �, we write  _ � to
indicate the partition obtained through intersection
of every element of  with every element of �, and
analogously for any finite number of partitions. If �
is also a stationary measure for a random-maps
model (see the section ‘‘Random maps’’), then for
any finite measurable partition  of M,

h�ðÞ ¼ inf
n�1

1

n

Z
H�

_n�1

i¼0

Ti
!

� ��1
ð Þ

 !
dpNð!Þ

is finite and is called the entropy of the random
dynamical system with respect to  and to �.

We define h� = sup h�() as the metric entropy
of the random dynamical system, where the
supremo is taken over all �-measurable partitions.
An important point here is the following notion:
setting A the Borel �-algebra of M, we say that a
finite partition  of M is a random generating
partition for A if

_þ1
i¼0

ðTi
!Þ
�1ðÞ ¼ A

(except �-null sets) for pN-almost all ! 2 � =UN.
Then a classical result from ergodic theory ensures
that we can calculate the entropy using only a
random generating partition , that is, h� = h�().

The entropy formula There exists a general
relation ensuring that the entropy of a measure-
preserving differentiable transformation (T0,�) on a
compact Riemannian manifold is bounded from
above by the sum of the positive Lyapunov
exponents of T0

h�ðT0Þ �
Z X

iðxÞ>0


iðxÞ d�ðxÞ

The equality (entropy formula) was first shown
to hold for diffeomorphisms preserving a measure
equivalent to the Riemannian volume, and then the
measures satisfying the entropy formula were
characterized: for C2 diffeomorphisms the equality
holds if and only if the disintegration of � along the
unstable manifolds is formed by measures abso-
lutely continuous with respect to the Riemannian
volume restricted to those submanifolds. The
unstable manifolds are the submanifolds of M
everywhere tangent to the Lyapunov subspaces
corresponding to all positive Lyapunov exponents,
analogous to ‘‘integrating the distribution of Lya-
punov subspaces corresponding to positive expo-
nents’’ – this particular point is a main subject of

smooth ergodic theory for nonuniformly hyperbolic
dynamics.

Both the inequality and the characterization of
stationary measures satisfying the entropy formula
were extended to random iterations of independent
and identically distributed C2 maps (noninjective
and admitting critical points), and the inequality
reads

h� �
ZZ X


iðx;!Þ>0


iðx; !Þ d�ðxÞ dpNð!Þ

where the functions 
i are the random variables
provided by the random multiplicative ergodic
theorem.

Construction of Physical Measures
as Zero-Noise Limits

The characterization of measures which satisfy the
entropy formula enables us to construct physical
measures as zero-noise limits of random invariant
measures in some settings, outlined in the following,
obtaining in the process that the physical measures
so constructed are also stochastically stable.

The physical measures obtained in this manner
arguably are natural measures for the system, since
they are both stable under (certain types of)
random perturbations and describe the asymptotic
behavior of the system for a positive-volume subset
of initial conditions. This is a significant contribu-
tion to the state-of-the-art of present knowledge on
dynamics from the perspective of random dynami-
cal systems.

Hyperbolic measures and the entropy formula The
main idea is that an ergodic invariant measure � for
a diffeomorphism T0 which satisfies the entropy
formula and whose Lyapunov exponents are every-
where nonzero (known as hyperbolic measure)
necessarily is a physical measure for T0. This follows
from standard arguments of smooth nonuniformly
hyperbolic ergodic theory.

Indeed � satisfies the entropy formula if and only
if � disintegrates into densities along the unstable
submanifolds of T0. The unstable manifolds Wu(x)
are tangent to the subspace corresponding to every
positive Lyapunov exponent at �-almost every point
x, they are an invariant family, that is,
T0(Wu(x)) = Wu(x) for �-almost every x, and dis-
tances on them are uniformly contracted under
iteration by T�1

0 .
If the exponents along the complementary direc-

tions are nonzero, then they must be negative
and smooth ergodic theory ensures that there exist
stable manifolds, which are submanifolds Ws(x) of
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M everywhere tangent to the subspace of negative
Lyapunov exponents at �-almost every point x, form
a T0-invariant family (T0(Ws(x)) = Ws(x), �-almost
everywhere), and distances on them are uniformly
contracted under iteration by T0.

We still need to understand that time averages
are constant along both stable and unstable mani-
folds, and that the families of stable and unstable
manifolds are absolutely continuous, in order to
realize how a hyperbolic measure is a physical
measure.

Given y 2Ws(x), the time averages of x and y
coincide for continuous observables simply because
dist (Tn

0 (x), Tn
0 (y))! 0 when n! þ1. For unstable

manifolds, the same holds when considering time
averages for T�1

0 . Since forward and backward time
averages are equal �-almost everywhere, the set of
points having asymptotic time averages given by �
has positive Lebesgue measure if the set

B ¼
[
fWsðyÞ: y 2WuðxÞ \ suppð�Þg

has positive volume in M, for some x whose time
averages are well defined.

Now, stable and unstable manifolds are trans-
verse everywhere where they are defined, but they
are only defined �-almost everywhere and depend
measurably on the base point, so we cannot use
transversality arguments from differential topol-
ogy, in spite of Wu(x) \ supp(�) having positive
volume in Wu(x) by the existence of a smooth
disintegration of � along the unstable manifolds.
However, it is known for smooth (C2) transforma-
tions that the families of stable and unstable
manifolds are absolutely continuous, meaning
that projections along leaves preserve sets of zero
volume. This is precisely what is needed for
measure-theoretic arguments to show that B has
positive volume.

Zero-noise limits satisfying the entropy
formula Using the extension of the characteriza-
tion of measures satisfying the entropy formula
for the random-maps setting, we can build random
dynamical systems, which are small random pertur-
bations of a map T0, having invariant measures ��
satisfying the entropy formula for all sufficiently
small � > 0. Indeed, it is enough to construct small
random perturbations of T0 having absolutely
continuous invariant probability measures �� for all
small enough � > 0.

In order to obtain such random dynamical
systems, we choose families of maps T : U �M!
M and of probability measures (��)�>0 as in
Examples 3 and 4, where we assume that o 2 U, so

that T0 belongs to the family. Letting Tx(u) = T(u, x)
for all (u, x) 2 U �M, we then have that Tx(��) is
absolutely continuous. This means that sets of
perturbations of positive ��-measure send points of
M onto positive-volume subsets of M. Such a
perturbation can be constructed for every contin-
uous map of any manifold.

In this setting, any invariant probability measure
for the associated skew-product map S : ��M

’

of
the form �N

� � �� is such that �� is absolutely
continuous with respect to volume on M. Then the
entropy formula holds:

h�� ¼
ZZ X


iðx;!Þ>0


iðx; !Þ d��ðxÞ d�N
� ð!Þ

Having this and knowing the characterization of
measures satisfying the entropy formula, it is natural
to look for conditions under which we can guaran-
tee that the above inequality extends to any zero-
noise limit �0 of �� when �! 0. In this case, �0

satisfies the entropy formula for T0.
If, in addition, we are able to show that �0 is a

hyperbolic measure, then we obtain a physical measure
for T0 which is stochastically stable by construction.

These ideas can be carried out completely for
hyperbolic diffeomorphisms, that is, maps admitting
a continuous invariant splitting of the tangent space
into two sub-bundles E� F defined everywhere with
bounded angles, whose Lyapunov exponents are
negative along E and positive along F. Recently,
maps satisfying weaker conditions were shown to
admit stochastically stable physical measures follow-
ing the same ideas.

These ideas also have applications to the con-
struction and stochastic stability of physical measure
for strange attractors and for all mathematical
models involving ordinary differential equations or
iterations of maps.

See also: Dynamical Systems in Mathematical Physics:
An Illustration from Water Waves; Homeomorphisms and
Diffeomorphisms of the Circle; Lyapunov Exponents and
Strange Attractors; Nonequilibrium Statistical Mechanics
(Stationary): Overview; Random Walks in Random
Environments; Stochastic Differential Equations.

Further Reading

Arnold L (1998) Random Dynamical Systems. Berlin: Springer.
Billingsley P (1965) Ergodic Theory and Information. New York:

Wiley.

Billingsley P (1985) Probability and Measure, 3rd edn. New York:
Wiley.

Bonatti C, Dı́az L, and Viana M (2004) Dynamics Beyond
Hyperbolicity: A Global Geometric and Probabilistic Perspec-
tive. Berlin: Springer.

Random Dynamical Systems 337



Bonatti C, Dı́az L, and Viana M (2005) Dynamics Beyond
Uniform Hyperbolicity. A Global Geometric and Probabilistic
Perspective, Encyclopaedia of Mathematical Sciences, 102

Mathematical Physics III. Berlin: Springer.

Doob J (1953) Stochastic Processes. New York: Wiley.

Fathi A, Herman M-R, and Yoccoz J-C (1983) A proof of Pesin’s
stable manifold theorem. In: Palis J (ed.) Geometric Dynamics
(Rio de Janeiro, 1981), Lecture Notes in Mathematics,

vol. 1007, 177–215. Berlin: Springer.
Kifer Y (1986) Ergodic Theory of Random Perturbations.

Boston: Birkhäuser.

Kifer Y (1988) Random Perturbations of Dynamical Systems.
Boston: Birkhäuser.
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Introduction

We wish to study energy correlations of quantum
spectra. Suppose the spectrum of a quantum system
has been measured or calculated. All levels in the
total spectrum having the same quantum numbers
form one particular subspectrum. Its energy levels are
at positions xn, n = 1, 2, . . . , N, say. We assume that
N, the number of levels in this subspectrum, is large.
With a proper smoothing procedure, we obtain the
level density R1(x), that is, the probability density of
finding a level at the energy x. As indicated in the top
part of Figure 1, the level density R1(x) increases with
x for most physics systems. In the present context,
however, we are not so interested in the level density.
We want to measure the spectral correlations
independently of it. Hence, we have to remove the
level density from the subspectrum. This is referred to
as unfolding. We introduce a new dimensionless
energy scale  such that d= R1(x) dx. By construc-
tion, the resulting subspectrum in  has level density
unity, as shown schematically in the bottom part of
Figure 1. It is always understood that the energy
correlations are analyzed in the unfolded subspectra.

Surprisingly, a remarkable universality is found in
the spectral correlations of a large class of systems,
including nuclei, atoms, molecules, quantum chaotic

and disordered systems, and even quantum chromo-

dynamics on the lattice. Consider the nearest-
neighbor spacing distribution p(s). It is the prob-
ability density of finding two adjacent levels in
the distance s. If the positions of the levels are
uncorrelated, the nearest-neighbor spacing distribu-
tion can be shown to follow the Poisson law

pðPÞðsÞ¼ expð�sÞ ½1


While this is occasionally found, many more systems
show a rather different nearest-neighbor spacing
distribution, the Wigner surmise

pðWÞðsÞ¼ �

2
s exp � �

4
s2

� �
½2


As shown in Figure 2, the Wigner surmise excludes
degeneracies, p(W)(0) = 0, the levels repel each other.
This is only possible if they are correlated. Thus, the
Poisson law and the Wigner surmise reflect the absence
or the presence of energy correlations, respectively.

Now, the question arises: if these correlation
patterns are so frequently found in physics, is
there some simple, phenomenological model? –
Yes, random matrix theory (RMT) is precisely this.
To describe the absence of correlations, we choose,
in view of what has been said above, a diagonal
Hamiltonian

H¼ diagðx1; . . . ; xNÞ ½3


x

ξ

Figure 1 Original (top) and unfolded (bottom) spectrum.
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s
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p(
s)

Figure 2 Wigner surmise (solid) and Poisson law (dashed).
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whose elements, the eigenvalues xn, are uncorrelated
random numbers. To model the presence of correla-
tions, we insert off-diagonal matrix elements,

H¼
H11 � � � H1N

..

. ..
.

HN1 � � � HNN

2
64

3
75 ½4�

We require that H is real symmetric, HT = H. The
independent elements Hnm are random numbers.
The random matrix H is diagonalized to obtain the
energy levels xn, n = 1, 2, . . . , N. Indeed, a numerical
simulation shows that these two models yield, after
unfolding, the Poisson law and the Wigner surmise
for large N, that is, the absence or presence of
correlations. This is the most important insight into
the phenomenology of RMT.

In this article, we set up RMT in a more formal
way; we discuss analytical calculations of correla-
tion functions, demonstrate how this relates to
supersymmetry and stochastic field theory and
show the connection to chaos, and we briefly sketch
the numerous applications in many-body physics, in
disordered and mesoscopic systems, in models for
interacting fermions, and in quantum chromody-
namics. We also mention applications in other
fields, even beyond physics.
Random Matrix Theory

Classical Gaussian Ensembles

For now, we consider a system whose energy levels
are correlated. The N �N matrix H modeling it has
no fixed zeros but random entries everywhere. There
are three possible symmetry classes of random
matrices in standard Schrödinger quantum
mechanics. They are labeled by the Dyson index �.
If the system is not time-reversal invariant, H has to
be Hermitian and the random entries Hnm are
complex (�= 2). If time-reversal invariance holds,
two possibilities must be distinguished: if either the
system is rotational symmetric, or it has integer spin
and rotational symmetry is broken, the Hamilton
matrix H can be chosen to be real symmetric (�= 1).
This is the case in eqn [4]. If, on the other hand, the
system has half-integer spin and rotational symme-
try is broken, H is self-dual (�= 4) and the random
entries Hnm are 2� 2 quaternionic. The Dyson
index � is the dimension of the number field over
which H is constructed.

As we are interested in the eigenvalue correla-
tions, we diagonalize the random matrix, H =
U�1xU. Here, x = diag(x1, . . . , xN) is the diagonal
matrix of the N eigenvalues. For �= 4, every
eigenvalue is doubly degenerate. This is Kramers’
degeneracy. The diagonalizing matrix U is in the
orthogonal group O(N) for �= 1, in the unitary
group U(N) for �= 2 and in the unitary–symplectic
group USp(2N) for �= 4. Accordingly, the three
symmetry classes are referred to as orthogonal,
unitary, and symplectic.

We have not yet chosen the probability densities
for the random entries Hnm. To keep our assump-
tions about the system at a minimum, we treat all
entries on equal footing. This is achieved by
rotational invariance of the probability density
P(�)

N (H), not to be confused with the rotational
symmetry employed above to define the symmetry
classes. No basis for the matrices is preferred in any
way if we construct P(�)

N (H) from matrix invariants,
that is, from traces and determinants, such that it
depends only on the eigenvalues, P(�)

N (H) = P(�)
N (x). A

particularly convenient choice is the Gaussian

P
ð�Þ
N ðHÞ¼C

ð�Þ
N exp � �

4v2
tr H2

� �
½5�

where the constant v sets the energy scale and the
constant C(�)

N ensures normalization. The three
symmetry classes together with the probability
densities [5] define the Gaussian ensembles: the
Gaussian orthogonal (GOE), unitary (GUE) and
symplectic (GSE) ensemble for �= 1, 2, 4.

The phenomenology of the three Gaussian
ensembles differs considerably. The higher �, the
stronger the level repulsion between the eigenvalues
xn. Numerical simulation quickly shows that the
nearest-neighbor spacing distribution behaves like
p(�)(s) � s� for small spacings s. This also becomes
obvious by working out the differential probability
P(�)

N (H)d[H] of the random matrices H in eigenvalue–
angle coordinates x and U. Here, d[H] is the invariant
measure or volume element in the matrix space. When
writing d[�], we always mean the product of all
differentials of independent variables for the quantity
in the square brackets. Up to constants, we have

d½H� ¼ j�NðxÞj� d½x� d�ðUÞ ½6�

where d�(U) is, apart from certain phase contribu-
tions, the invariant or Haar measure on O(N), U(N),
or USp(2N), respectively. The Jacobian of the
transformation is the modulus of the Vandermonde
determinant

�NðxÞ ¼
Y
n<m

ðxn � xmÞ ½7�

raised to the power �. Thus, the differential
probability P(�)

N (H) d[H] vanishes whenever any
two eigenvalues xn degenerate. This is the level
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repulsion. It immediately explains the behavior of
the nearest-neighbor spacing distribution for small
spacings.

Additional symmetry constraints lead to new
random matrix ensembles relevant in physics, the
Andreev and the chiral Gaussian ensembles. If one
refers to the classical Gaussian ensembles, one
usually means the three ensembles introduced
above.

Correlation Functions

The probability density to find k energy levels at
positions x1, . . . , xk is the k-level correlation func-
tion R(�)

k (x1, . . . , xk). We find it by integrating out
N � k levels in the N-level differential probability
P(�)

N (H) d[H]. We also have to average over the
bases, that is, over the diagonalizing matrices U.
Due to rotational invariance, this simply yields the
group volume. Thus, we have

R
ð�Þ
k ðx1; . . . ; xkÞ

¼ N!

ðN � kÞ!

Z þ1
�1

dxkþ1 � � �
Z þ1
�1

dxNj�NðxÞj�Pð�ÞN ðxÞ ½8�

Once more, we used rotational invariance which
implies that P(�)

N (x) is invariant under permutation of
the levels xn. Since the same then also holds for the
correlation functions [8], it is convenient to normal-
ize them to the combinatorial factor in front of the
integrals. A constant ensuring this has been
absorbed into P(�)

N (x).
Remarkably, the integrals in eqn [8] can be done

in closed form. The GUE case (�= 2) is mathema-
tically the simplest, and one finds the determinant
structure

R
ð2Þ
k ðx1; . . . ; xkÞ¼ det½Kð2ÞN ðxp; xqÞ�p;q¼1;...;k ½9�

All entries of the determinant can be expressed in
terms of the kernel K(2)

N (xp, xq), which depends on
two energy arguments (xp, xq). Analogous but
more complicated formulae are valid for the
GOE (�= 1) and the GSE (�= 4), involving
quaternion determinants and integrals and deriva-
tives of the kernel.

As argued in the Introduction, we are interested in
the energy correlations on the unfolded energy scale.
The level density is formally the one-level correla-
tion function. For the three Gaussian ensembles it is,
to leading order in the level number N, the Wigner
semicircle

R
ð�Þ
1 ðx1Þ¼

1

2�v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Nv2 � x2

1

q
½10�

for jx1j � 2
ffiffiffiffiffi
N
p

v and zero for jx1j > 2
ffiffiffiffiffi
N
p

v. None of
the common systems in physics has such a level
density. When unfolding, we also want to take the
limit of infinitely many levels N!1 to remove
cutoff effects due to the finite dimension of the
random matrices. It suffices to stay in the center of
the semicircle where the mean level spacing is
D = 1=R(�)

1 (0) = �v=
ffiffiffiffiffi
N
p

. We introduce the dimen-
sionless energies �p = xp=D, p = 1, . . . , k, which have
to be held fixed when taking the limit N!1. The
unfolded correlation functions are given by

X
ð�Þ
k ð�1; . . . ; �kÞ¼ lim

N!1
DkR

ð�Þ
k ðD�1; . . . ;D�kÞ ½11�

As we are dealing with probability densities, the
Jacobians dxp=d�p enter the reformulation in the
new energy variables. This explains the factor Dk.
Unfolding makes the correlation functions transla-
tion invariant; they depend only on the differences
�p � �q. The unfolded correlation functions can be
written in a rather compact form. For the GUE
(�= 2), they read

X
ð2Þ
k ð�1; . . . ; �kÞ¼ det

sin �ð�p � �qÞ
�ð�p � �qÞ

� �
p;q¼1;...;k

½12�

There are similar, but more complicated, formulae
for the GOE (�= 1) and the GSE (�= 4). By
construction, one has X(�)

1 (�1) = 1.
It is useful to formulate the case where correla-

tions are absent, that is, the Poisson case, accord-
ingly. The level density R(P)

1 (x1) is simply N times the
(smooth) probability density chosen for the entries
in the diagonal matrix [4]. Lack of correlations
means that the k-level correlation function only
involves one-level correlations,

R
ðPÞ
k ðx1; . . . ; xkÞ ¼

N!

ðN � kÞ!Nk

Yk
p¼1

R
ðPÞ
1 ðxpÞ ½13�

The combinatorial factor is important, since we
always normalize to N!=(N � k)!. Hence, one finds

X
ðPÞ
k ð�1; . . . ; �kÞ ¼ 1 ½14�

for all unfolded correlation functions.
Statistical Observables

The unfolded correlation functions yield all statis-
tical observables. The two-level correlation function
X2(r) with r = �1 � �2 is of particular interest in
applications. If we do not write the superscript (�)
or (P), we mean either of the functions. For the
Gaussian ensembles, X(�)

2 (r) is shown in Figure 3.
One often writes X2(r) = 1� Y2(r). The two-level
cluster function Y2(r) nicely measures the deviation
from the uncorrelated Poisson case, where one has
X(P)

2 (r) = 1 and Y(P)
2 (r) = 0.
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Figure 3 Two-level correlation function X (�)
2 (r ) for GOE (solid),

GUE (dashed) and GSE (dotted).
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By construction, the average level number in an
interval of length L in the unfolded spectrum is L.
The level number variance �2(L) is shown to be an
average over the two-level cluster function,

�2ðLÞ¼L� 2

Z L

0

ðL� rÞY2ðrÞdr ½15�

We find L�
ffiffiffiffiffiffiffiffiffiffiffiffi
�2(L)

p
levels in an interval of length L.

In the uncorrelated Poisson case, one has �2(P)(L) = L.
This is just Poisson’s error law. For the Gaussian
ensembles �2(�)(L) behaves logarithmically for large L.
The spectrum is said to be more rigid than in the
Poisson case. As Figure 4 shows, the level number
variance probes longer distances in the spectrum, in
contrast to the nearest-neighbor spacing distribution.

Many more observables, also sensitive to higher
order, k > 2 correlations, have been defined. In
practice, however, one is often restricted to analyz-
ing two-level correlations. An exception is, to some
extent, the nearest-neighbor spacing distribution
p(s). It is the two-level correlation function with
the additional requirement that the two levels in
question are adjacent, that is, that there are no levels
between them. Thus, all correlation functions are
needed if one wishes to calculate the exact nearest-
neighbor spacing distribution p(�)(s) for the
Gaussian ensembles. These considerations explain
that we have X(�)

2 (s) ’ p(�)(s) for small s. But while
X(�)

2 (s) saturates for large s, p(�)(s) quickly goes to
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Figure 4 Level number variance �2(L) for GOE (solid) and

Poisson case (dashed).
zero in a Gaussian fashion. Thus, although the
nearest-neighbor spacing distribution mathemati-
cally involves all correlations, it makes in practice
only a meaningful statement about the two-level
correlations. Luckily, p(�)(s) differs only very slightly
from the heuristic Wigner surmise [2] (correspond-
ing to �= 1), respectively from its extensions
(corresponding to �= 2 and �= 4).

Ergodicity and Universality

We constructed the correlation functions as averages
over an ensemble of random matrices. But this is not
how we proceeded in the data analysis sketched in
the Introduction. There, we started from one single
spectrum with very many levels and obtained the
statistical observable just by sampling and, if
necessary, smoothing. Do these two averages, the
ensemble average and the spectral average, yield the
same? Indeed, one can show that the answer is
affirmative, if the level number N goes to infinity.
This is referred to as ergodicity in RMT.

Moreover, as already briefly indicated in the
Introduction, very many systems from different
areas of physics are well described by RMT. This
seems to be at odds with the Gaussian assumption
[5]. There is hardly any system whose Hamilton
matrix elements follow a Gaussian probability
density. The solution for this puzzle lies in the
unfolding. Indeed, it has been shown that almost all
functional forms of the probability density P(�)

N (H)
yield the same unfolded correlation functions, if no
new scale comparable to the mean level spacing is
present in P(�)

N (H). This is the mathematical side of
the empirically found universality.

Ergodicity and universality are of crucial impor-
tance for the applicability of RMT in data analysis.

Wave Functions

By modeling the Hamiltonian of a system with a
random matrix H, we do not only make an
assumption about the statistics of the energies, but
also about those of the wave functions. Because of
the eigenvalue equation Hun = xnun, n = 1, . . . , N,
the wave function belonging to the eigenenergy xn

is modeled by the eigenvector un. The columns of
the diagonalizing matrix U = [u1 u2 � � �uN] are these
eigenvectors. The probability density of the compo-
nents unm of the eigenvector un can be calculated
rather easily. For large N it approaches a Gaussian.
This is equivalent to the Porter–Thomas distribu-
tion. While wave functions are often not accessible
in an experiment, one can measure transition
amplitudes and widths, giving information about
the matrix elements of a transition operator and a
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projection of the wave functions onto a certain state
in Hilbert space. If the latter are represented by a
fixed matrix A or a fixed vector a, respectively, one
can calculate the RMT prediction for the probability
densities of the matrix elements uynAum or the
widths ayun from the probability density of the
eigenvectors.
Scattering Systems

It is important that RMT can be used as a powerful
tool in scattering theory, because the major part of
the experimental information about quantum sys-
tems comes from scattering experiments. Consider
an example from compound nucleus scattering. In
an accelerator, a proton is shot on a nucleus, with
which it forms a compound nucleus. This then
decays by emitting a neutron. More generally, the
ingoing channel � (the proton in our example)
connects to the interaction region (the nucleus),
which also connects to an outgoing channel � (the
neutron). There are � channels with channel wave
functions which are labeled �= 1, . . . , �. The
interaction region is described by an N �N
Hamiltonian matrix H whose eigenvalues xn are
bound-state energies labeled n = 1, . . . , N. The
dimension N is a cutoff which has to be taken to
infinity at the end of a calculation. The �� �
scattering matrix S contains the information about
how the ingoing channels are transformed into the
outgoing channels. The scattering matrix S is
unitary. Under certain and often justified assump-
tions, a scattering matrix element can be cast into
the form

S��¼ ��� � i2�Wy
�G
�1W� ½16�

The couplings Wn� between the bound states n and
the channels � are collected in the N � � matrix W,
W� is its �th column. The propagator G�1 is the
inverse of

G¼ z1N �H þ i�
X
� open

W�W
y
� ½17�

Here, z is the scattering energy and the summation
is only over channels which are open, that is,
accessible. Formula [16] has a clear intuitive inter-
pretation. The scattering region is entered through
channel �, the bound states of H become resonances
in the scattering process according to eqn [17], the
interaction region is left through channel �. This
formulation applies in many areas of physics. All
observables such as transmission coefficients, cross
sections, and others can be calculated from the
scattering matrix S.
We have not made any statistical assumptions yet.
Often, one can understand generic features of a
scattering system by assuming that the Hamiltonian
H is a random matrix, taken from one of the three
classical ensembles. This is one RMT approach used
in scattering theory.

Another RMT approach is based on the scattering
matrix itself, S is modeled by a �� � unitary
random matrix. Taking into account additional
symmetries, one arrives at the three circular ensem-
bles, circular orthogonal (COE), unitary (CUE) and
symplectic (CSE). They correspond to the three
classical Gaussian ensembles and are also labeled
with the Dyson index �= 1, 2, 4. The eigenphases of
the random scattering matrix correspond to the
eigenvalues of the random Hamiltonian matrix. The
unfolded correlation functions of the circular
ensembles are identical to those of the Gaussian
ensembles.
Supersymmetry

Apart from the symmetries, random matrices con-
tain nothing but random numbers. Thus, a certain
type of redundancy is present in RMT. Remarkably,
this redundancy can be removed, without losing any
piece of information by using supersymmetry, that
is, by a reformulation of the random matrix model
involving commuting and anticommuting variables.
For the sake of simplicity, we sketch the main ideas
for the GUE, but they apply to the GOE and the
GSE accordingly.

One defines the k-level correlation functions by
using the resolvent of the Schrödinger equation,

bRð2Þk ðx1; . . . ; xkÞ

¼ 1

�k

Z
P
ð2Þ
N ðHÞ

Yk

p¼1

tr
1

x�p �H
d½H� ½18�

The energies carry an imaginary increment x�p = xp �
i" and the limit " ! 0 has to be taken at the end of
the calculation. The k-level correlation functions
R(2)

k (x1, . . . , xk) as defined in eqn [8] can always be
obtained from the functions [18] by constructing a
linear combination of the bR(2)

k (x1, . . . , xk) in which
the signs of the imaginary increments are chosen
such that only the imaginary parts of the traces
contribute. Some trivial �-distributions have to be
removed. The k-level correlation functions [18]
can be written as the k-fold derivative

bRð2Þk ðx1; . . . ; xkÞ

¼ 1

ð2�Þk
@kQk

p¼1 @Jp

Z
ð2Þ
k ðxþ JÞ

					
J¼0

½19�
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of the generating function

Z
ð2Þ
k ðxþ JÞ

¼
Z

P
ð2Þ
N ðHÞ

Yk

p¼1

det x�p þ Jp �H
� �

det x�p � Jp �H
� � d½H� ½20�

which depends on the energies and k new source
variables Jp, p = 1, . . . , k, ordered in 2k� 2k diag-
onal matrices

x ¼ diagðx1; x1; . . . ; xk; xkÞ
J ¼ diagðþJ1;�J1; . . . ;þJk;�JkÞ

½21�

We notice the normalization Z(2)
k (x) = 1 at J = 0. The

generating function [20] is an integral over an
ordinary N �N matrix H. It can be exactly rewritten
as an integral over a 2k� 2k supermatrix � contain-
ing commuting and anticommuting variables,

Z
ð2Þ
k ðxþ JÞ

¼
Z

Q
ð2Þ
k ð�Þsdet�Nðx� þ J � �Þd½�� ½22�

The integrals over the commuting variables are of
the ordinary Riemann–Stiltjes type, while those over
the anticommuting variables are Berezin integrals.
The Gaussian probability density [5] is mapped onto
its counterpart in superspace

Q
ð2Þ
k ð�Þ ¼ c

ð2Þ
k exp � 1

2v2
str �2

� �
½23�

where c(2)
k is a normalization constant. The supertrace

str and the superdeterminant sdet generalize the
corresponding invariants for ordinary matrices. The
total number of integrations in eqn [22] is drastically
reduced as compared to eqn [20]. Importantly, it is
independent of the level number N which now only
appears as the negative power of the superdeterminant
in eqn [22], that is, as an explicit parameter. This most
convenient feature makes it possible to take the limit of
infinitely many levels by means of a saddle point
approximation to the generating function.

Loosely speaking, the supersymmetric formulation
can be viewed as an irreducible representation of RMT
which yields a clearer insight into the mathematical
structures. The same is true for applications in
scattering theory and in models for crossover transi-
tions to be discussed below. This explains why super-
symmetry is so often used in RMT calculations.

It should be emphasized that the rôle of super-
symmetry in RMT is quite different from the one in
high-energy physics, where the commuting and
anticommuting variables represent physical parti-
cles, bosons and fermions, respectively. This is not
so in the RMT context. The commuting and
anticommuting variables have no direct physics
interpretation; they appear simply as helpful math-
ematical devices to cast the RMT model into an
often much more convenient form.
Crossover Transitions

The RMT models discussed up to now describe
four extreme situations, the absence of correla-
tions in the Poisson case and the presence of
correlations as in the three fully rotational
invariant models GOE, GUE, and GSE. A real
physics system, however, is often between these
extreme situations. The corresponding RMT mod-
els can vary considerably, depending on the
specific situation. Nevertheless, those models in
which the random matrices for two extreme
situations are simply added with some weight are
useful in so many applications that they acquired a
rather generic standing. One writes

Hð	Þ ¼ Hð0Þ þ 	Hð�Þ ½24�

where H(0) is a random matrix drawn from an
ensemble with a completely arbitrary probability
density P(0)

N (H(0)). The case of a fixed matrix is
included, because one may choose a product of
�-distributions for the probability density. The
matrix H(�) is random and drawn from the classical
Gaussian ensembles with probability density
P(�)

N (H(�)) for �= 1, 2, 4. One requires that the
group diagonalizing H(0) is a subgroup of the one
diagonalizing H(�). The model [24] describes a
crossover transition. The weight 	 is referred to as
transition parameter. It is useful to choose the
spectral support of H(0) and H(�) equal. One can
then view 	 as the root-mean-square matrix element
of H(�). At 	= 0, one has the arbitrary ensemble.
The Gaussian ensembles are formally recovered in
the limit 	!1, to be taken in a proper way such
that the energies remain finite.

We are always interested in the unfolded correla-
tion functions. Thus, 	 has to be measured in units
of the mean level spacing D such that 
=	=D is
the physically relevant transition parameter. It
means that, depending on the numerical value of
D, even a small effect on the original energy scale
can have sizeable impact on the spectral statistics.
This is referred to as statistical enhancement. The
nearest-neighbor spacing distribution is already
very close to p(�)(s) for the Gaussian ensembles if

 is larger than 0.5 or so. In the long-range
observables such as the level number variance
�2(L), the deviation from the Gaussian ensemble
statistics becomes visible at interval lengths L
comparable to 
.
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Crossover transitions can be interpreted as diffu-
sion processes. With the fictitious time t =	2=2, the
probability density PN(x, t) of the eigenvalues x of
the total Hamilton matrix H = H(t) = H(	) satisfies
the diffusion equation

�xPNðx; tÞ¼
4

�

@

@t
PNðx; tÞ ½25�

where the probability density for the arbitrary
ensemble is the initial condition PN(x, 0) = P(0)

N (x).
The Laplacian

�x¼
XN
n¼1

@2

@x2
n

þ
X
n<m

�

xn � xm

@

@xn
� @

@xm

� �
½26�

lives in the curved space of the eigenvalues x. This
diffusion process is Dyson’s Brownian motion in
slightly simplified form. It has a rather general meaning
for harmonic analysis on symmetric spaces, connecting
to the spherical functions of Gelfand and Harish-
Chandra, Itzykson–Zuber integrals, and to Calogero–
Sutherland models of interacting particles. All this
generalizes to superspace. In the supersymmetric
version of Dyson’s Brownian motion the generating
function of the correlation functions is propagated,

�sZkðs; tÞ ¼
4

�

@

@t
Zkðs; tÞ ½27�

where the initial condition Zk(s, 0) = Z(0)
k (s) is the

generating function of the correlation functions for
the arbitrary ensemble. Here, s denotes the eigenva-
lues of some supermatrices, not to be confused with
the spacing between adjacent levels. Since the
Laplacian �s lives in this curved eigenvalue space,
this diffusion process establishes an intimate con-
nection to harmonic analysis on superspaces. Advan-
tageously, the diffusion [27] is the same on the
original and on the unfolded energy scales.
Fields of Application

Many-Body Systems

Numerous studies apply RMT to nuclear physics
which is also the field of its origin. If the total
number of nucleons, that is, protons and neutrons, is
not too small, nuclei show single-particle and
collective motion. Roughly speaking, the former is
decoherent out-of-phase motion of the nucleons
confined in the nucleus, while the latter is coherent
in-phase motion of all nucleons or of large groups of
them such that any additional individual motion of
the nucleons becomes largely irrelevant. It has been
shown empirically that the single-particle excitations
lead to GOE statistics, while collective excitations
produce different statistics, often of the Poisson type.
Mixed statistics as described by crossover transitions
are then of particular interest to investigate the
character of excitations. For example, one applies
the model [24] with H(0) drawn from a Poisson
ensemble and H(�) from a GOE. Another application
of crossover transitions is breaking of time-reversal
invariance in nuclei. Here, H(0) is from a GOE and
H(�) from a GUE. Indeed, a fit of spectral data to this
model yields an upper bound for the time-reversal
invariance violating root-mean-square matrix element
in nuclei. Yet another application is breaking of
symmetries such as parity or isospin. In the case of
two quantum numbers, positive and negative parity,
say, one chooses H(0) = diag(H(þ), H(�)) block-
diagonal with H(þ) and H(�) drawn from two
uncorrelated GOE and H(�) from a third uncorre-
lated GOE which breaks the block structure. Again,
root-mean-square matrix elements for symmetry
breaking have been derived from the data.

Nuclear excitation spectra are extracted from
scattering experiments. An analysis as described
above is only possible if the resonances are isolated.
Often, this is not the case and the resonance widths
are comparable to or even much larger than the mean
level spacing, making it impossible to obtain the
excitation energies directly from the cross sections.
One then analyzes the latter and their fluctuations as
measured and applies the concepts sketched above
for scattering systems. This approach has also been
successful for crossover transitions.

Due to the complexity of the nuclear many-body
problem, one has to use effective or phenomenological
interactions when calculating spectra. Hence, one often
studies whether the statistical features found in the
experimental data are also present in the calculated
spectra which result from the various models for nuclei.

Other many-body systems, such as complex atoms
and molecules, have also been studied with RMT
concepts, but the main focus has always been on nuclei.
Quantum Chaos

Originally, RMT was intended for modeling systems
with many degrees of freedom such as nuclei. Surpris-
ingly, RMT proved useful for systems with few degrees
of freedom as well. Most of these studies aim at
establishing a link between RMT and classical chaos.
Consider as an example the classical motion of a point-
like particle in a rectangle billiard. Ideal reflection at the
boundaries and absence of friction are assumed,
implying that the particle is reflected infinitely many
times. A second billiard is built by taking a rectangle
and replacing one corner with a quarter circle as shown
in Figure 5. The motion of the particle in this Sinai



Figure 5 The Sinai billiard.
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billiard is very different from the one in the rectangle.
The quarter circle acts like a convex mirror which
spreads out the rays of light upon reflection. This effect
accumulates, because the vast majority of the possible
trajectories hit the quarter circle infinitely many times
under different angles. This makes the motion in the
Sinai billiard classically chaotic, while the one in the
rectangle is classically regular. The rectangle is separ-
able and integrable, while this feature is destroyed in the
Sinai billiard. One now quantizes these billiard systems,
calculates the spectra, and analyzes their statistics. Up
to certain scales, the rectangle (for irrational squared
ratio of the side lengths) shows Poisson behavior, the
Sinai billiard yields GOE statistics.

A wealth of such empirical studies led to the Bohigas–
Giannoni–Schmit conjecture. We state it here not in its
original, but in a frequently used form: spectra of
systems whose classical analogues are fully chaotic
show correlation properties as modeled by the Gaussian
ensembles. The Berry–Tabor conjecture is complemen-
tary: spectra of systems whose classical analogs are fully
regular show correlation properties which are often
those of the Poisson type. As far as concrete physics
applications are concerned, these conjectures are well-
posed. From a strict mathematical viewpoint, they have
to be supplemented with certain conditions to exclude
exceptions such as Artin’s billiard. Due to the defnition
of this system on the hyperbolic plane, its quantum
version shows Poisson-like statistics, although the
classical dynamics is chaotic. Up to now, no general
and mathematically rigorous proofs could be given.
However, semiclassical reasoning involving periodic
orbit theory and, in particular, the Gutzwiller trace
formula, yields at least a heuristic understanding.

Quantum chaos has been studied in numerous
systems. An especially prominent example is the
Hydrogen atom put in a strong magnetic field,
which breaks the integrability and drives the
correlations towards the GOE limit.
Disordered and Mesoscopic Systems

An electron moving in a probe, a piece of wire, say, is
scattered many times at impurities in the material.
This renders the motion diffusive. In a statistical
model, one writes the Hamilton operator as a sum of
the kinetic part, that is, the Laplacian, and a white-
noise disorder potential V(r) with second moment

hVðrÞVðr 0Þi ¼ cV�
ðdÞðr � r 0Þ ½28�

Here, r is the position vector in d dimensions. The
constant cV determines the mean free time between
two scattering processes in relation to the density of
states. It is assumed that phase coherence is present
such that quantum effects are still significant. This
defines the mesoscopic regime. The average over the
disorder potential can be done with supersymmetry.
In fact, this is the context in which supersymmetric
techniques in statistical physics were developed,
before they were applied to RMT models. In the
case of weak disorder, the resulting field theory in
superspace for two-level correlations acquires the
form Z

d�ðQÞf ðQÞ exp �SðQÞð Þ ½29�

where f (Q) projects out the observable under
consideration and where S(Q) is the effective
Lagrangian

SðQÞ ¼ �
Z

str DðrQðrÞÞ2 þ i2rMQðrÞ
� �

ddr ½30�

This is the supersymmetric nonlinear � model. It is
used to study level correlations, but also to obtain
information about the conductance and conduc-
tance fluctuations when the probe is coupled to
external leads. The supermatrix field Q(r) is the
remainder of the disorder average, its matrix
dimension is four or eight, depending on the
symmetry class. This field is a Goldstone mode. It
does not directly represent a particle as often the
case in high-energy physics. The matrix Q(r) lives
in a coset space of certain supergroups. A tensor M
appears in the calculation, and r is the energy
difference on the unfolded scale, not to be confused
with the position vector r.

The first term in the effective Lagrangian invol-
ving a gradient squared is the kinetic term, it stems
from the Laplacian in the Hamiltonian. The con-
stant D is the classical diffusion constant for the
motion of the electron through the probe. The
second term is the ergodic term. In the limit of
zero dimensions, d! 0, the kinetic term vanishes
and the remaining ergodic term yields precisely the
unfolded two-level correlations of the Gaussian
ensembles. Thus, RMT can be viewed as the zero-
dimensional limit of field theory for disordered
systems. For d > 0, there is a competition between
the two terms. The diffusion constant D and the
system size determine an energy scale, the Thouless
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energy Ec, within which the spectral statistics is of
the Gaussian ensemble type and beyond which it
approaches the Poisson limit. In Figure 6, this is
schematically shown for the level number variance
�2(L), which bends from Gaussian ensemble to
Poisson behavior when L > Ec. This relates to the
crossover transitions in RMT. Gaussian ensemble
statistics means that the electron states extend over
the probe, while Poisson statistics implies their
spatial localization. Hence, the Thouless energy is
directly the dimensionless conductance.

A large number of issues in disordered and
mesoscopic systems have been studied with the
supersymmetric nonlinear � model. Most results
have been derived for quasi-one-dimensional sys-
tems. Through a proper discretization, a link is
established to models involving chains of random
matrices. As the conductance can be formulated in
terms of the scattering matrix, the experience with
RMT for scattering systems can be applied and
indeed leads to numerous new results.
Quantum Chromodynamics

Quarks interact by exchanging gluons. In quantum
chromodynamics, the gluons are described by gauge
fields. Relativistic quantum mechanics has to be
used. Analytical calculations are only possible after
some drastic assumptions and one must resort to
lattice gauge theory, that is, to demanding numerics,
to study the full problem.

The massless Dirac operator has chiral symmetry,
implying that all nonzero eigenvalues come in pairs
(�
n, þ
n) symmetrically around zero. In chiral
RMT, the Dirac operator is replaced with block
off-diagonal matrices

W¼ 0 Wb

Wy
b 0

� �
½31�
where Wb is a random matrix without further
symmetries. By construction, W has chiral symmetry.
The assumption underlying chiral RMT is that the
gauge fields effectively randomize the motion of the
quark. Indeed, this simple schematic model correctly
reproduces low-energy sum rules and spectral statis-
tics of lattice gauge calculations. Near the center of
the spectrum, there is a direct connection to the
partition function of quantum chromodynamics.
Furthermore, a similarity to disordered systems exists
and an analog of the Thouless energy could be found.

Other Fields

Of the wealth of further investigations, we can
mention but a few. RMT is in general useful for
wave phenomena of all kinds, including classical
ones. This has been shown for elastomechanical and
electromagnetic resonances.

An important field of application is quantum
gravity and matrix model aspects of string theory.
We decided not to go into this, because the reason
for the emergence of RMT concepts there is very
different from everything else discussed above.

RMT is also successful beyond physics. Not
surprisingly, it always received interest in mathema-
tical statistics, but, as already said, it also relates to
harmonic analysis. A connection to number theory
exists as well. The high-lying zeros of the Riemann �
function follow the GUE predictions over certain
interval lengths. Unfortunately, a deeper under-
standing is still lacking.

As the interest in statistical concepts grows, RMT
keeps finding new applications. Recently, one even
started using RMT for risk management in finance.

See also: Arithmetic Quantum Chaos; Chaos and
Attractors; Determinantal Random Fields; Free Probability
Theory; Growth Processes in Random Matrix Theory;
Hyperbolic Billiards; Integrable Systems in Random
Matrix Theory; Integrable Systems: Overview; Number
Theory in Physics; Ordinary Special Functions; Quantum
Chromodynamics; Quantum Mechanical Scattering
Theory; Random Partitions; Random Walks in Random
Environments; Semi-Classical Spectra and Closed
Orbits; Supermanifolds; Supersymmetry Methods in
Random Matrix Theory; Symmetry Classes in Random
Matrix Theory.
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Partitions

A partition of n is a monotone sequence of non-
negative integers,


 ¼ ð
1 
 
2 
 
3 
 � � � 
 0Þ

with sum n. The number n is also denoted by j
j and
is called the size of n. The number of nonzero terms
in 
 is called the length of 
 and often denoted by
‘(
). It is convenient to make the sequence 
 infinite
by adding a string of zeros at the end.

A geometric object associated to partition is its
diagram. The diagram of 
= (4, 2, 2, 1) is shown in
Figure 1. A larger diagram, flipped and rotated by 135�,
can be seen in Figure 2. Flipping the diagram introduces
an involution on the set of partitions of n known as
transposition. The transposed partition is denoted by
0.

Partitions serve as natural combinatorial labels for
many basic objects in mathematics and physics. For
example, partitions of n index both conjugacy classes
and irreducible representations of the symmetric
group S(n). Partitions 
 with ‘(
) � n index irredu-
cible polynomial representations of the general linear
group GL(n). More generally, the highest weight of a
rational representation of GL(n) can be naturally
viewed as two partitions of total length � n.

For an even more basic example, partitions 
 with

1 � m and ‘(
) � n are the same as upright lattice
paths making n steps up and m steps to the right
(just follow the boundary of 
). In particular, there
are nþm

n


 �
of such. By a variation on this theme,

partitions label the standard basis of fermionic Fock
space (Miwa et al. 2000). They also label a standard
basis of the bosonic Fock space.

In most instances, partitions naturally occur
together with some weight function. For example,
the dimension, dim 
, of an irreducible representation
of S(n), or some power of it, is what always appears in
harmonic analysis on S(n). By a theorem of Burnside,

MPlanchð
Þ ¼
ðdim 
Þ2

n!
½1�

is a probability measure on the set of partitions of n; it
is known as the Plancherel measure. Besides harmonic
analysis, there are many other contexts in which
it appears, for example, by a theorem of
Schensted (see Sagan (2001) and Stanley (1999)), the
distribution of the first part 
1 of a Plancherel random
partition 
 is the same as the distribution of the longest
increasing subsequence in a uniformly random permu-
tation of {1, 2, . . . , n}.
2

1.5

1

0.5

–2 –1 21

Figure 2 A Plancherel-random partition of 1000 and the limit

shape.



Partitions of n being just a finite set, one is often
interested in letting n ! 1. Even if the original
problem was not of a probabilistic origin, one can
still often benefit from adopting a probabilistic
viewpoint because of the intuition and techniques
that it brings. This is best illustrated by concrete
examples, which is what we now turn to. These
examples are not meant to be a panorama of
random partitions. This is an old and still rapidly
growing field and a simple list of all major
contributions will take more space than is allowed.
The books Kerov (2003), Pitman (n.d.) Sagan
(2001), and Stanley (1999) offer much more
information on the topics discussed below.

Plancherel Measure

Dimension of a Diagram

There are several formulas and interpretations
for the number dim� in [1]; see Sagan (2001) and
Stanley (1999). The one that often appears in the
context of growth processes is the following:
dim� is the number of ways to grow the diagram
� from the empty diagram ; by adding a square
at a time. That is, dim� is number of chains of
the form

; ¼ �ð0Þ � �ð1Þ � � � � � �ðn�1Þ � �ðnÞ ¼ �

where j�(k)j= k and � � � means inclusion of
diagrams.

From the classical formula

dim � ¼ j�j!Q
ð�i þ k� iÞ!

Y
i�j�k

ð�i � �j þ j� iÞ ½2�

where k is any number such that �kþ1 = 0, one sees
that the Plancherel measure is a discrete analog of
the eigenvalue density

e�ð1/2Þ
P

x2
i

Y
i<j

ðxi � xjÞ2

of a GUE random matrix (Mehta 1991). Indeed,
the first factor in [2], which looks like a multi-
nomial coefficient, is the analog of the Gaussian
weight. Kerov (2003) and Johansson were among
the first to recognize the analogy between Plan-
cherel measure and GUE. One comes across many
partition sums that are discrete analogs of random
matrix integrals.

The most compact formula for dim � is the hook
formula

dim�

j�j! ¼
Y
&2�

hð&Þ�1 ½3�

Here the product is over all squares & in the
diagram of � and

hð&Þ ¼ 1þ að&Þ þ lð&Þ

where a(&) and l(&) is the number of squares to the
right of the square & and below it, respectively.
(These are known as arm-length and leg-length.)

Limit Shape and Edge Scaling

When the diagram of � is very large, the logarithm
of the hook product approximates a double
integral. The analysis of the corresponding integral
plays the central role, (see Kerov (2003), chapter 3)
in the proof of the following law of large numbers
for the Plancherel measure.

Take the diagram of �, flip and rotate it as in Figure 1
and rescale by a factor of

ffiffiffi
n
p

so that it has unit area. In
this way one obtains a measure on continuous and, in
fact, Lipschitz functions. By a result of Logan and Shepp
and, independently, Vershik and Kerov these measures
converge as n!1 to the �-measure on a single
function �(x). This limit shape for the Plancherel
measure, is also plotted in Figure 2. Explicitly,

�ðxÞ ¼
2

�
x arcsinðx=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2
p� �

; jxj � 2

jxj; jxj > 2

8<
:

This is an analog of Wigner’s semicircle law (Mehta
1991) for spectra of random matrices. The Gaussian
correction to the limit shape was also found by
Kerov (2003).

The limit shape result can be refined to show
that �1=

ffiffiffi
n
p
! 2 in probability. Together with

Schensted’s theorem, this answers the question
posed by Ulam about the longest increasing
subsequence in a random permutation. Further
progress came in the work of Baik, Deift, and
Johansson (see Deift (2000)), who conjectured
(and proved for i = 1 and 2) that as n!1 the
joint distribution

�i � 2
ffiffiffi
n
p

n1=6
; i ¼ 1; 2; . . .

becomes exactly the same as the distribution of
largest eigenvalues of a GUE random matrix. In
particular, the longest increasing subsequence,
suitably scaled, is distributed exactly like the
largest eigenvalue. The distribution of the latter is
known as the Tracy–Widom distribution; it is
given in terms of a particular solution of the
Painlevé II equation. For more information about
the proof of the full conjecture, see Aldous and
Diaconis (1999), Deift (2000), and Okounkov
(2002).
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Correlation Functions

One way to prove the full BDJ conjecture is to use the
following exact formula first obtained in a more general
setting by Borodin and Olshanski (see Olshanski (2003),
and Okounkov (2002) for further generalizations).
Look at the downsteps of the zig-zag curve in Figure 2.
The x-coordinates of their midpoints are the numbers

Sð�Þ ¼ �i � iþ 1
2

� �
� Zþ 1

2 ½4�

The map � 7!S(�) makes a random partition a random
subset of Zþ 1

2, that is, a random point field on a lattice.
These random points should be treated like eigenvalues
of a random matrix. In particular, it is natural to consider
their correlations, that is, the probability that X � S(�)
for some fixed X � Zþ 1

2.
Many formulas work better if we replace the

Plancherel measures MPlanch, n on partitions of a
fixed number n by their Poisson average,

M� ¼ e��
X
n�0

�n

n!
MPlanch;n

Here � > 0 is a parameter. It equals the expected
size of �. For any finite set X, we have

Prob� X � Sð�Þð Þ ¼ det KBesselðxi; xj; �Þ
	 


xi;xj2X
½5�

where KBessel is the discrete Bessel kernel given by

KBesselðx;y;�Þ

¼
ffiffiffi
�

p Jx�1=2ð2
ffiffiffi
�
p
ÞJyþ1=2ð2

ffiffiffi
�
p
Þ� Jxþ1=2ð2

ffiffiffi
�
p
ÞJy�1=2ð2

ffiffiffi
�
p
Þ

x�y

Note that only Bessel function of integral order
enter this formula.

For large argument �, Jn(2
ffiffiffi
�
p

) has sine asymptotics
if n	 2

ffiffiffi
�
p

and Airy function asymptotics if n 

2
ffiffiffi
�
p

. Consequently, one gets the random matrix
behavior near the edge of the limit shape and
discrete sine kernel asymptotics of correlations in
the bulk of the limit shape.

Permutation Enumeration

A basic combinatorial problem is to count per-
mutations �1, . . . ,�p 2 S(n) of given cycle types
�(1), . . . ,�(p) such that

�1 � � ��p ¼ 1 ½6�

A geometric interpretation of this problem is to count
covers of the sphere S2 = CP1 branched over p given
points with monodromy �(1), . . . ,�(p). Elementary
character theory of S(n) gives (Jones 1998)

#f�i 2 C�ðiÞ ;
Y

�i ¼ 1g ¼
DY

f �ðiÞ
E

Planch
½7�

where C� is the conjugacy class with cycle type
� and

f �ð�Þ ¼ jC�j
���

dim �

is the central character of the irreducible representa-
tion �. Here ��� is the character of any � 2 C� in the
representation �.

Let � be of the form (��, 1, 1, . . . ) with �� fixed.
By a result of Kerov and Olshanski,

� n
j��j
��1

f �(�), is a
polynomial in � of degree j��j. See [11] for the
simplest example ��= (2), that is, for the central
character of a transposition. We thus recognize in
[7] a discrete analog of the GUE expectation of a
polynomial in traces of a random matrix. This
analogy becomes even clearer in the Gromov–Witten
theory of CP1, which can be viewed as taking into
account contributions of certain degenerate covers,
see Okounkov (2002).

There is a generalization, due to Burnside, of [7]
to counting branched covers of surfaces of any
genus g; see Jones (1998). The only modification
required is that a representation � is now counted
with the weight ( dim�)2�2g. For example, covers of
the torus correspond to a uniform measure on
partitions. In particular, the probability that two
random permutation from S(n) commute is p(n)/n!,
where p(n) is the number of partitions of n.

Generalizations of Plancherel Measure

Schur Functions and Cauchy Identity

Schur functions s�(x1, . . . , xn), where � is a parti-
tion with at most n parts, form a distinguished
linear basis of the algebra of symmetric polyno-
mials in x1, . . . , xn. Various definitions and many
remarkable properties of these function are dis-
cussed in, for example, Sagan (2001) and Stanley
(1999). One of them is that s�(x) is the trace of a
matrix with eigenvalues {xi} in an irreducible
GL(n) module with highest weight �. The follow-
ing stability of s�,

s�ðx1; . . . ; xn; 0Þ ¼ s�ðx1; . . . ; xnÞ; ‘ð�Þ � n

allows one to define Schur functions in infinitely
many variables. The formulas

p� ¼
X
�

���s�; s� ¼
X
�

���
zð�Þ p�

where

zð�Þ ¼ j�j!jC�j
¼ jAutð�Þj

Y
�i
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establish the transition between the basis of Schur
function and the basis of power sum functions

p� ¼
Y

p�i
; pk ¼

X
i

xk
i

In particular, the dimension function dim � is the
following specialization of the Schur function:

dim �

j�j! ¼ s� p1¼1; p2¼p3¼���¼0

��
We will discuss other important specializations of
Schur functions later.

A typical situation in which a random matrix
integral can be reduced to a sum over partition is
when one uses the Cauchy identity

1Q
ð1� xiyiÞ

¼ exp
X pkðxÞpkðyÞ

k

� 

¼
X
�

s�ðxÞs�ðyÞ ½8�

to expand the integrand in Schur function and
integrate term by term using, for example, the
orthogonality of characters or the identityZ

UðnÞ
s�ðAgBg�1Þ dg ¼ 1

dimn �
s�ðAÞs�ðBÞ ½9�

Here s�(A) denotes the Schur function in eigenvalues
of a matrix A, dg is the normalized Haar measure on
the unitary group U(n), and

dimn � ¼ s�ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
n times

Þ

is the dimension of irreducible GL(n) module V�

with highest weight �. The meaning of [9] is that
normalized characters are algebra homomorphisms
from the center of the group algebra of U(n) to
numbers. This method of converting a random
matrix problem to a random partition problem is
known as character expansion (see, e.g., Kazakov
(2001)).

Inspired by the Cauchy identity, one can general-
ize Plancherel measure to

MSchur ¼
Y
ð1� xiyiÞs�ðxÞs�ðyÞ

where x and y, or, equivalently, pk(x) and pk(y), are
viewed as parameters. This is known as the Schur
measure. If p1(x) = p2(y) =

ffiffiffi
�
p

and all other pk’s
vanish, we get MSchur = M�. Many properties of the
Plancherel measure can be generalized to Schur
measure, in particular, exact formulas for correla-
tion functions, description of the limit shape, etc.
(Okounkov 2002).

Dimension Functions

We already met the function dimn �. There is a
useful formula

dimn � ¼
Y
&2�

nþ cð&Þ
hð&Þ ½10�

where c((i, j)) = j� i is the content of the square & in
ith row and jth column. From [10] it is clear that dimn

makes sense for arbitrary complex values of n. The
corresponding specializations of the Schur measure

x ¼
ffiffiffi
�

p
; . . . ;

ffiffiffi
�

p
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

z times

; y ¼
ffiffiffi
�

p
; . . . ;

ffiffiffi
�

p
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

z0 times

where �, z, z0 are parameters, are related to
the so-called Z-measures and their theory is much-
developed (Olshanski 2003). As z, z0, ��1 !1 in
such a way that zz0� ! �0, we get M�0

in the limit.
The enumerative problems discussed in the section

‘‘Permutation enumeration’’ have analogs for the
unitary groups U(n) and, suitably interpreted, the
answers are the same with the dimension dimn �
replacing dim�. For example, instead of counting the
solutions to [6], one may be interested in the volume
of the set of p-tuples of unitary matrices with given
eigenvalues that multiply to 1. Geometrically, such
data arise as the monodromy of a flat unitary
connection over S2n{p points}, which is a U(n) analog
of a branched cover. The analog of Burnside’s
formula is Witten’s formula for the volumes of
moduli spaces of flat connections on a genus g
surface with given holonomy around p punctures,
(see, e.g., Witten (1991) and Woodward (2004)). It
involves summing normalized characters over all
representations V�, not necessarily polynomial, with
the weight (dim V�)2�2g. If additionally weighted by
a Gaussian of the form exp(�A(f 2(�)þ (n=2)j�j)),
where

f 2ð�Þ ¼
1

2

X
i

�i � iþ 1
2

� �2� �iþ 1
2

� �2
h i

¼
X
&2�

cð&Þ ½11�

this becomes Migdal’s formula for the partition
function of the 2D Yang–Mills theory, the positive
constant A being the area of the surface (see, e.g.,
Witten (1991) and Woodward (2004)).

A further generalization naturally arising in the
theory of quantum groups is the quantum dimension

dimn;q � ¼ s�ðq1�n; q3�n; . . . ; qn�3; qn�1Þ

¼
Y
&2�

qnþcð&Þ � q�n�cð&Þ

qhð&Þ � q�hð&Þ
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where q is a parameter (it is more common to use
dimn, q1=2 instead). Obviously, dimn, q ! dimn as q! 1.
The function dimn, q is an important building block of,
for example, quantum invariants of knots and 3-folds,
and various related objects (see, e.g., Bakalov and
Kirillov (2001)). The Verlinde formula (Bakalov and
Kirillov 2001) can be viewed as an analog of Burnside’s
formula with weight dimn, q . When q is a root of unity
the summation over � is naturally truncated to a
finite sum.

The next level of generalization is obtained by
deforming Schur function to Jack and, more generally,
Macdonald symmetric functions (Macdonald 1995).
In particular, the Jack polynomial analog of the
Plancherel measure is

MJackð�Þ

¼
Y
&2�

n!ðt1t2Þn

ððað&Þ þ 1Þt1 þ lð&Þt2Þðað&Þt1 þ ðlð&Þ þ 1Þt2Þ

where t1, t2 are parameters, and a(&) and l(&)
denote, as above, the arm- and leg-length of a
square &. This measure depends only on the ratio
t2=t1 which is the usual parameter of Jack poly-
nomials. To continue the analogy with random
matrices, this should be viewed as a general 	
analog of the Plancherel measure.

The measure MJack naturally arises in Atiyah–
Bott localization computations on the Hilbert
scheme of n points in C2. By definition, this
Hilbert scheme parametrizes ideals I � C[x, y] of
codimension n as linear spaces. The torus (C�)2

acts on it by rescaling x and y and the fixed points
of this action are

I� ¼ Span of xj�1yi�1
� �

ði;jÞ=2�

where � is a partition of n. The weight of this fixed
point in the Atiyah–Bott formula is proportional to
MJack(�), the parameters t1 and �t2 being the
standard torus weights. Corresponding formulas in
K-theory involve a Macdonald polynomial analog of
dim �.

Nekrasov defines the partition functions of N = 2
supersymmetric gauge theories by formally applying
the Atiyah–Bott localization formula to (noncom-
pact) instanton moduli spaces. The resulting expres-
sion is a sum over partitions with a weight which is
a generalization of MJack. In this way, random
partitions enter gauge theory. What is more,
statistical properties of these random partitions are
reflected in the dynamics of gauge theories. For
example, the limit shape turns out to be precisely the
Seiberg–Witten curve (see Nekrasov and Okounkov
(2003), Okounkov (2002), and also Nakajima and
Yoshioka (2003)).

Harmonic Functions on Young Graph

Definitions

Partitions form a natural directed graph Y, known
as Young graph, in which there is an edge from � to
� if � is obtained from � by adding a square. We
will denote this by �%�. Let 
 be a non-negative
function (called multiplicity) on edges of Y. A
function � on the vertices of Y is harmonic if it
satisfies

�ð�Þ ¼
X
�-�


ð�; �Þ�ð�Þ ½12�

for any �. For given edge multiplicities 
, non-
negative harmonic functions normalized by �(;) = 1
form a convex compact (with respect to pointwise
convergence) set, which we will denote by H(
). The
extreme points of H(
) are the indecomposable or
ergodic harmonic functions. They are the most
important ones. One defines

dim
 �=� ¼
X

�¼�0%�1%���%�j�j�j�j¼�

Y

ð�i; �iþ1Þ

and dim
 �= dim
 �=;. For example, if 
 � 1 then
dim
 �= dim�. Any function � 2 H(
) defines a
probability measure on partitions of fixed size
n, n = 0, 1, 2, . . . , by

M�;nð�Þ ¼ �ð�Þ dim
 �; j�j ¼ n ½13�

The mean value property [12] implies a certain
coherence of these measures for different values of
n, which, in general, does not hold for measures like
MSchur. Two multiplicity functions 
 and 
0 are
gauge equivalent if


0ð�; �Þ ¼ f ð�Þ
ð�; �Þf ð�Þ�1

for some function f. In this case, H(
) and H(
0) are
naturally isomorphic and the measures M� are the same.

First Example: Thoma Theorem

Let F be a central function on the infinite symmetric
group S(1) =

S
n S(n), normalized by F(1) = 1.

Restricted to S(n), F is a linear combination of
irreducible characters

FjSðnÞ ¼
X
j�j¼n

�ð�Þ��

The branching rule ��jS(n�1) =
P

�%� �
� implies that

the Fourier coefficients � are harmonic with respect
to 
 � 1. They are non-negative if and only if F is a
positive-definite function on S(1), which means that
the matrix (F(gig

�1
j )) is non-negative definite for any

{gi} � S(1). The description of all indecomposable
positive-definite central functions on S(1) was first
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obtained by Thoma (see Kerov (2003, 1998) and
Olshanski (2003)). Rephrased in our language, it
says that the functions

�ð�Þ ¼ s�jp1¼1;pk¼
P

k
i
þð�1Þkþ1

P
	k

i
;k>1

are the extreme points of H(1). Here i and 	i are
parameters satisfying

1 � 2 � � � � � 0; 	1 � 	2 � � � � � 0X
i þ 	i � 1

This set is known as the Thoma simplex. The origin
i = 	i = 0 corresponds to the Plancherel measure.

A general positive-definite central functions on
S(1) defines a measure on the Thoma simplex. This
measure can be interpreted as a point process on the
real line, for example, by placing particles at
positions {i} and {�	i}. Interesting central func-
tions lead to interesting processes (see Olshanski
(2003)).

Second Example: Kingman Theorem

Let � be a partition of the naturals N into disjoint
subsets. For any n = 1, 2, . . . , � defines the induced
partition �n of {1, . . . , n} and hence a partition �(�n)
of the number n. A measure M on partitions � is
called exchangeable if

Mð�nÞ ¼ �ð�ð�nÞÞ; n ¼ 1; 2; . . .

for some function � on Y. This implies that � is
harmonic for


Kð�; �Þ ¼ �k

where �= 1�12�2 � � � and �= 1�12�2 � � � k�k�1

(kþ 1)�kþ1þ1 � � � . The description of all exchange-
able measures M was first obtained by Kingman.
In our language, it says that the extreme points of
H(
K) are

�ð�Þ ¼ m�jp1¼1;pk¼
P

k
i
;k>1

where m� is the monomial symmetric function (sum
of all monomials with exponents �) and i are
parameters as before. The corresponding measure
M can be described as follows. Let Xi be a
sequence of independent, identically distributed
random variables such that {i} are the measures
of atoms of their distribution. This defines a
random partition � of N by putting i and j in the
same block of � if and only if Xi = Xj. A general
exchangeable measure M is then a convex linear
combination of M, which can be viewed as
making the common distribution of Xi also
random. See Pitman (n.d.) for a lot more about
Kingman’s theorem.

The multiplicities 
K are gauge equivalent to
multiplicities


VPð�; �Þ ¼ k�k ½14�
which arise in the study of probability measures on
virtual permutationsS (Olshanski 2003). By definition,

S ¼ lim
 �

SðnÞ

with respect to the maps S(n) ! S(n� 1) that delete n
from the disjoint cycle decomposition of a permutation
� 2 S(n). For n � 5, this is the unique map that
commutes with the right and left action of S(n� 1).
Thus, S has a natural S(1) S(1) action; however, it
is not a group. A measure M on S is central if it is
invariant under the action of the diagonal subgroup in
S(1) S(1). Let the push-forward ofM to S(n) give
mass �(�) to a permutation with cycle type �. It is then
easy to see that � is harmonic with respect to [14].
Thus, Kingman’s theorem gives a description of
ergodic central measures on S. For example, i = 0
corresponds to the �-measure at the identity.

Ergodic Method

A unified approach to this type of problems was
proposed and developed by Vershik and Kerov. It is
based on the following ergodic theorem. Let � be an
ergodic harmonic function. Then

�ð�Þ ¼ lim
dim
�=�

dim
�
; j�j ! 1 ½15�

for almost all � with respect to the measure [13]
(Kerov 2003). This is similar to approximating a
Gibbs measure in infinite volume by a sequence of
finite-volume Gibbs measures with appropriate
boundary conditions. The ratio on the RHS of [15]
is known as the Martin kernel. Its asymptotics as
j�j ! 1 plays the essential role.

Let us call a sequence {�(n)} of partitions of n
regular if the limit in [15] exists for all �. For 
 � 1,
Vershik and Kerov proved that {�(n)} is regular if
and only if the following limits exist:

�ðnÞi
n
! i;

�ðnÞ0i
n
! 	i ½16�

that is, if the rows and columns of �(n), scaled by n,
have a limit. In this case, the limit in [15] is the
harmonic function with Thoma parameters i and
	i. This simultaneously proves Thoma classification
and gives a law of large numbers for the correspond-
ing measures [13]. It also gives a transparent
geometric interpretation of Thoma parameters.
Note that the behavior [16] is very different from
the formation of a smooth limit shape that we saw
earlier. For a common generalization of this result
and Kingman’s theorem see Kerov (1998).
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See also: Determinantal Random Fields; Growth
Processes in Random Matrix Theory; Integrable Systems
in Random Matrix Theory; Random Matrix Theory in
Physics; Symmetry Classes in Random Matrix Theory.
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Introduction

Random walks provide a simple conventional model to
describe various transport processes, for example,
propagation of heat or diffusion of matter through a
medium (for a general reference see, e.g., Hughes
(1995)). However, in many practical cases, the medium
where the system evolves is highly irregular, due to
factors such as defects, impurities, fluctuations, etc. It is
natural to model such irregularities as ‘‘random
environment,’’ treating the observable sample as a
statistical realization of an ensemble, obtained by
choosing the local characteristics of the motion (e.g.,
transport coefficients and driving fields) at random,
according to a certain probability distribution.

In the random walks context, such models are
referred to as ‘‘random walks in random environ-
ments’’ (RWRE). This is a relatively new chapter
in applied probability and physics of disordered
systems initiated in the 1970s. Early interest in
RWRE models was motivated by some problems

in biology, crystallography, and metal physics, but
later applications have spread through numerous
areas (see review papers by Alexander et al. (1981),
Bouchaud and Georges (1990), and a comprehensive
monograph by Hughes (1996)). After 30 years of
extensive work, RWRE remain a very active area of
research, which has been a rich source of hard and
challenging questions and has already led to many
surprising discoveries, such as subdiffusive behavior,
trapping effects, localization, etc. It is fair to say that
the RWRE paradigm has become firmly established
in physics of random media, and its models, ideas,
methods, results, and general effects have become an
indispensable part of the standard tool kit of a
mathematical physicist.

One of the central problems in random media
theory is to establish conditions ensuring homogeniza-
tion, whereby a given stochastic system evolving in a
random medium can be adequately described, on some
spatial–temporal scale, using a suitable effective
system in a homogeneous (nonrandom) medium. In
particular, such systems would exhibit classical diffu-
sive behavior with effective drift and diffusion coeffi-
cient. Such an approximation, called ‘‘effective
medium approximation’’ (EMA), may be expected to
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be successful for systems exposed to a relatively small
disorder of the environment. However, in certain
circumstances, EMA may fail due to atypical environ-
ment configurations (‘‘large deviations’’) leading to
various anomalous effects. For instance, with small but
positive probability a realization of the environment
may create ‘‘traps’’ that would hold the particle for an
anomalously long time, resulting in the subdiffusive
behavior, with the mean square displacement growing
slower than linearly in time.

RWRE models have been studied by various
nonrigorous methods including Monte Carlo simu-
lations, series expansions, and the renormalization
group techniques (see more details in the above
references), but only a few models have been
analyzed rigorously, especially in dimensions greater
than one. The situation is much more satisfactory in
the one-dimensional case, where the mathematical
theory has matured and the RWRE dynamics has
been understood fairly well.

The goal of this article is to give a brief
introduction to the beautiful area of RWRE. The
principal model to be discussed is a random walk
with nearest-neighbor jumps in independent and
identically distributed (i.i.d.) random environment
in one dimension, although we shall also comment
on some generalizations. The focus is on rigorous
results; however, heuristics will be used freely to
motivate the ideas and explain the approaches and
proofs. In a few cases, sketches of the proofs have
been included, which should help appreciate the
flavor of the results and methods.

Ordinary Random Walks: A Reminder

To put our exposition in perspective, let us give
a brief account of a few basic concepts and
facts for ordinary random walks, that is, evolving
in a nonrandom environment (see further details in
Hughes (1995)). In such models, space is modeled
using a suitable graph, for example, a d-dimensional
integer lattice Zd, while time may be discrete or
continuous. The latter distinction is not essential,
and in this article we will mostly focus on the
discrete-time case. The random mechanism of
spatial motion is then determined by the given
transition probabilities (probabilities of jumps) at
each site of the graph. In the lattice case, it is usually
assumed that the walk is translation invariant, so
that at each step distribution of jumps is the same,
with no regard to the current location of the walk.

In one dimension (d = 1), the simple (nearest-
neighbor) random walk may move one step to right
or to the left at a time, with some probabilities p and
q = 1� p, respectively. An important assumption is

that only the current location of the walk determines
the random motion mechanism, whereas the past
history is not relevant. In terms of probability theory,
such a process is referred to as ‘‘Markov chain.’’ Thus,
assuming that the walk starts at the origin, its position
after n steps can be represented as the sum of
consecutive displacements, Xn = Z1 þ � � � þ Zn,
where Zi are independent random variables with the
same distribution P{Zi = 1} = p, P{Zi = �1} = q.

The strong law of large numbers (LLN) states that
almost surely (i.e., with probability 1)

lim
n!1

Xn

n
¼ EZ1¼ p� q; P-a.s. ½1�

where E denotes expectation (mean value) with respect
to P. This result shows that the random walk moves
with the asymptotic average velocity close to p� q. It
follows that if p� q 6¼ 0, then the process Xn, with
probability 1, will ultimately drift to infinity (more
precisely, þ1 if p� q > 0 and �1 if p� q < 0). In
particular, in this case, the random walk may return to
the origin (and in fact visit any site on Z) only finitely
many times. Such behavior is called ‘‘transient.’’
However, in the symmetric case (i.e., p = q = 0.5) the
average velocity vanishes, so the above argument fails.
In this case, the walk behavior appears to be more
complicated, as it makes increasingly large excursions
both to the right and to the left, so that
limn!1Xn = þ1, limn!1 Xn = �1 (P-a.s.). This
implies that a symmetric random walk in one dimen-
sion is ‘‘recurrent,’’ in that it visits the origin (and
indeed any site on Z) infinitely often. Moreover, it can
be shown to be ‘‘null-recurrent,’’ which means that the
expected time to return to the origin is infinite. That is
to say, return to the origin is guaranteed, but it takes
very long until this happens.

Fluctuations of the random walk can be char-
acterized further via the central limit theorem
(CLT), which amounts to saying that the probability
distribution of Xn is asymptotically normal, with
mean n(p� q) and variance 4npq:

lim
n!1

P
Xn � nðp� qÞffiffiffiffiffiffiffiffiffiffiffi

4npq
p � x

( )

¼ �ðxÞ:¼ 1ffiffiffiffiffiffi
2�
p

Z x

�1
e�y2=2 dy ½2�

These results can be extended to more general
walks in one dimension, and also to higher dimen-
sions. For instance, the criterion of recurrence for a
general one-dimensional random walk is that it is
unbiased, EðX1 �X0Þ= 0. In the two-dimensional
case, in addition one needs EjX1 �X0j2 <1. In
higher dimensions, any random walk (which does
not reduce to lower dimension) is transient.
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Random Environments and Random Walks

The definition of an RWRE involves two ingredi-
ents: (1) the environment, which is randomly chosen
but remains fixed throughout the time evolution,
and (2) the random walk, whose transition prob-
abilities are determined by the environment. The set
of environments (sample space) is denoted by
� = {!}, and we use P to denote the probability
distribution on this space. For each !2�, we define
the random walk in the environment ! as the (time-
homogeneous) Markov chain {Xt, t = 0, 1, 2, . . .g on
Zd with certain (random) transition probabilities

pðx; y; !Þ ¼ P!fX1 ¼ yjX0 ¼ xg ½3�

The probability measure P! that determines the
distribution of the random walk in a given environ-
ment ! is referred to as the ‘‘quenched’’ law. We
often use a subindex to indicate the initial position
of the walk, so that, for example, P!x{X0 = x} = 1.

By averaging the quenched probability P!x further,
with respect to the environment distribution, we
obtain the ‘‘annealed’’ measure Px = P�P!x , which
determines the probability law of the RWRE:

PxðAÞ ¼
Z

�

P!xðAÞ Pðd!Þ ¼ EP!xðAÞ ½4�

Expectation with respect to the annealed measure
Px will be denoted by Ex.

Equation [4] implies that if some property A of the
RWRE holds almost surely with respect to the
quenched law P!x for almost all environments (i.e.,
for all !2�0 such that P(�0) = 1), then this property is
also true with probability 1 under the annealed law Px.

Note that the random walk Xn is a Markov
chain only conditionally on the fixed environment
(i.e., with respect to P!x), but the Markov property
fails under the annealed measure Px. This is because
the past history cannot be neglected, as it tells what
information about the medium must be taken into
account when averaging with respect to environ-
ment. That is to say, the walk learns more about
the environment by taking more steps. (This idea
motivat es the method of ‘‘environ ment viewed from
the pa rticle,’’ see related section below. )

The simplest model is the nearest-neighbor one-
dimensional walk, with transition probabilities

pðx; y; !Þ ¼
px if y ¼ xþ 1

qx if y ¼ x� 1

0 otherwise

8<:
where px and qx = 1� px (x2Z) are random vari-
ables on the probability space (�, P). That is to say,
given the environment !2�, the random walk
currently at point x2Z will make a one-unit step

to the right, with probability px, or to the left, with
probability qx. Here the environment is determined
by the sequence of random variables {px}. For most
of the article, we assume that the random probabil-
ities {px, x2Z} are i.i.d., which is referred to as
‘‘i.i.d. environment.’’ Some extensions to more
general environments will be mentioned briefly in
the sect ion ‘‘Some generali zations and variatio ns.’’
The study of RWRE is simplified under the follow-
ing natural condition called ‘‘(uniform) ellipticity:’’

0 < � � px � 1� � < 1; x2Z; P-a.s. ½5�

which will be frequently assumed in the sequel.

Transience and Recurrence

In this section, we discuss a criterion for the RWRE
to be transient or recurrent. The following theorem
is due to Solomon (1975).

Theorem 1 Set �x := qx=px, x2Z, and � := E ln �0.

(i) If � 6¼ 0 then Xt is transient (P0-a.s.); moreover,
if � < 0 then limt!0 Xt =þ1, while if � > 0
then limt!0 Xt =�1 (P0-a.s.).

(ii) If �= 0 then Xt is recurrent (P0-a.s.); moreover,

lim
t!1

Xt ¼ þ1; lim
t!1

Xt ¼ �1; P0-a.s.

Let us sketch the proof. Consider the hitting times
Tx := min {t � 0 : Xt = x} and denote by fxy the
quenched first-passage probability from x to y:

fxy :¼P!xf1 � Ty <1g

Starting from 0, the first step of the walk may be
either to the right or to the left, hence by the
Markov property the return probability f00 can be
decomposed as

f00 ¼ p0f10 þ q0f�1;0 ½6�

To evaluate f10, for n � 1 set

ux� uðnÞx :¼P!xfT0 < Tng; 0 � x � n

which is the probability to reach 0 prior to n,
starting from x. Clearly,

f10 ¼ lim
n!1

u
ðnÞ
1 ½7�

Decomposition with respect to the first step yields
the difference equation

ux ¼ pxuxþ1 þ qxux�1; 0 < x < n ½8�

with the boundary conditions

u0 ¼ 1; un ¼ 0 ½9�
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Using px þ qx = 1, eqn [8] can be rewritten as

uxþ1 � ux ¼ �xðux � ux�1Þ

whence by iterations

uxþ1 � ux ¼ ðu1 � u0Þ
Yx

j¼1

�j ½10�

Summing over x and using the boundary conditions
[9] we obtain

1� u1¼
Xn�1

x¼0

Yx

j¼1

�j

 !�1

½11�

(if x = 0, the product over j is interpreted as 1). In
view of eqn [7] it follows that f10 = 1 if and only if
the right-hand side of eqn [11] tends to 0, that is,X1

x¼1

expðYxÞ ¼ 1; Yx :¼
Xx

j¼1

ln �j ½12�

Note that the random variables ln �j are i.i.d., hence
by the strong LLN

lim
x!1

Yx

x
¼ E ln �0� �; P-a.s.

That is, the general term of the series [12] for large x
behaves like exp (x�); hence, for � > 0 the condition
[12] holds true (and so f10 = 1), whereas for � < 0 it
fails (and so f10 < 1).

By interchanging the roles of px and qx, we also
have f�1, 0 < 1 if � > 0 and f�1, 0 = 1 if � < 0. From
eqn [6], it then follows that in both cases f00 < 1,
that is, the random walk is transient.

In the critical case, �= 0, by a general result from
probability theory, Yx � 0 for infinitely many x
(P-a.s.), and so the series in eqn [12] diverges.
Hence, f10 = 1 and, similarly, f�1, 0 = 1, so by eqn [6]
f00 = 1, that is, the random walk is recurrent.

It may be surprising that the critical parameter
appears in the form �= E ln �0, as it is probably
more natural to expect, by analogy with the
ordinary random walk, that the RWRE criterion
would be based on the mean drift, E(p0� q0). In the
next section, we will see that the sign of d may be
misleading.

A canonical model of RWRE is specified by the
assumption that the random variables px take only
two values, � and 1� �, with probabilities

Pfpx ¼ �g ¼ �; Pfpx ¼ 1� �g ¼ 1� � ½13�

where 0 < � < 1, 0 < � < 1. Here �= (2�� 1)�
ln (1þ (1� 2�)=�), and it is easy to see that, for
example, � < 0 if � < 1=2, � < 1=2 or � > 1=2,
� > 1=2. The recurrent region where �= 0 splits into
two lines, �= 1=2 and �= 1=2. Note that the first

case is degenerate and amounts to the ordinary
symmetric random walk, while the second one
(except where �= 1=2) corresponds to Sinai’s
proble m (see the section ‘‘Sin ai’s local ization’’). A
‘‘phase diagram’’ for this model, showing various
limiting regimes as a function of the parameters �,�,
is presented in Figure 1.

Asymptotic Velocity

In the transient case the walk escapes to infinity,
and it is reasonable to ask at what speed. For a
nonrandom environment, px� p, the answer is
given by the LLN, eqn [1]. For the simple
RWRE, the asymptotic velocity was obtained by
Solomon (1975). Note that by Jensen’s inequality,
(E�0)�1� E��1

0 .

Theorem 2 The limit v := limt!1Xt=t exists
(P0-a.s.) and is given by

v ¼

1� E�0

1þ E�0
if E�0 < 1

� 1� E��1
0

1þ E��1
0

if E��1
0 < 1

0 otherwise

8>>>>><>>>>>:
½14�

Thus, the RWRE has a well-defined nonzero
asymptotic velocity except when (E�0)�1 � 1 �
E��1

0 . For instance, in the canonical example
eqn [13] (see Figure 1), the criterion E�0 < 1 for
the velocity v to be positive amounts to the
condition that both (1��)=� and (1� �)=� lie on
the same side of point 1.

η < 0
υ > 0

η < 0
υ = 0

η > 0
υ = 0

η > 0
υ < 0α

1
2

α = 12

β =

1

β

0 1

Figure 1 Phase diagram for the canonical model, eqn [13]. In the

regions where � < 0 or � > 0, the RWRE is transient toþ1 or�1,

respectively. The recurrent case, �= 0, arises when �= 1=2 or

�= 1=2. The asymptotic velocity � := limt!0 xt=t is given by eqn

[14]. Adapted from Hughes BD (1996) Random Walks and Random

Environments. Volume 2: Random Environments, Ch. 6, p. 391.

Oxford: Clarendon, by permission of Oxford University Press.
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The key idea of the proof is to analyze the hitting
times Tn first, deducing results for the walk Xt later.
More specifically, set 	i = Ti�Ti�1, which is the time
to hit i after hitting i� 1 (providing that i > X0). If
X0 = 0 and n � 1, then Tn = 	1 þ � � � þ 	n. Note that
in fixed environment ! the random variables {	i} are
independent, since the quenched random walk ‘‘for-
gets’’ its past. Although there is no independence with
respect to the annealed probability measure P0, one
can show that, due to the i.i.d. property of the
environment, the sequence {	i} is ergodic and therefore
satisfies the LLN:

Tn

n
¼ 	1 þ � � � þ 	n

n
! E0	1; P0-a:s:

In turn, this implies

Xt

t
! 1

E0	1
; P0-a:s: ½15�

(the clue is to note that XTn
= n).

To compute the mean value E0	1, observe that

	1 ¼ 1fX1¼1g þ 1fX1¼�1gð1þ 	 00 þ 	 01Þ ½16�

where 1A is the indicator of event A and 	 00, 	 01
are, respectively, the times to get from �1 to 0 and
then from 0 to 1. Taking expectations in a fixed
environment !, we obtain

E!
0	1 ¼ p0 þ q0ð1þ E!

0	
0
0 þ E!

0	1Þ ½17�

and so

E!
0	1 ¼ 1þ �0 þ �0E!

0	
0
0 ½18�

Note that E!
0	
0
0 is a function of {px, x < 0} and

hence is independent of �0 = q0=p0. Averaging eqn
[18] over the environment and using E0	

0
0 = E0	1

yields

E0	1 ¼
1þ E�0

1� E�0
if E�0 < 1

1 if E�0 � 1

8<: ½19�

and by eqn [15] ‘‘half’’ of eqn [14] follows. The
other half, in terms of E��1

0 , can be obtained by
interchanging the roles of px and qx, whereby �0 is
replaced with ��1

0 .
Let us make a few remarks concerning Theorems

1 and 2. First of all, note that by Jensen’s inequality
E ln �0 � ln E�0, with a strict inequality whenever
�0 is nondegenerate. Therefore, it may be possible
that, with P0-probability 1, Xt!1 but Xt=t! 0
(see Figure 1). This is quite unusual as compared
to the ordinary random walk (see the subsection
‘‘Ordinary random w alks: a reminder’’), and
indicates some kind of slowdown in the transient
case.

Furthermore, by Jensen’s inequality

E�0 ¼ Ep�1
0 � 1 � ðEp0Þ�1 � 1

so eqn [14] implies that if E�0 < 1, then

0 < v � 2 Ep0 � 1 ¼ E ðp0 � q0Þ

and the inequality is strict if p0 is genuinely random
(i.e., does not reduce to a constant). Hence, the
asymptotic velocity v is less than the mean drift
E(p0� q0), which is yet another evidence of slow-
down. What is even more surprising is that it is
possible to have E(p0� q0) > 0 but �= E ln �0 > 0, so
that P0-a.s. Xt! �1 (although with velocity v = 0).
Indeed, following Sznitman (2004) suppose that

Pfp0 ¼ �g ¼ �; Pfp0 ¼ 
g ¼ 1� �

with � > 1=2. Then Ep0 � �� > 1=2 if 1 > � >
1=2�, hence E(p0� q0) = 2 Ep0 � 1 > 0. On the
other hand,

E ln �0¼� ln
1� �
�
þ ð1� �Þ ln 1� 




> 0

if 
 is sufficiently small.

Critical Exponent, Excursions, and Traps

Extending the previous analysis of the hitting times,
one can obtain useful information about the limit
distribution of Tn (and hence Xt). To appreciate
this, note that from the recursion eqn [16] it follows

	 s
1 ¼ 1fX1¼1g þ 1fX1¼�1gð1þ 	 00 þ 	 01Þ

s

and, similarly to [17],

E!
0	

s
1 ¼ p0 þ q0E!

0ð1þ 	 00 þ 	 01Þ
s

Taking here expectation E, one can deduce that
E0	

s
1 <1 if and only if E�s

0 < 1. Therefore, it is
natural to expect that the root � of the equation

E��0 ¼ 1 ½20�

plays the role of a critical exponent responsible for
the growth rate (and hence, for the type of the limit
distribution) of the sum Tn = 	1 þ � � � þ 	n. In parti-
cular, by analogy with sums of i.i.d. random
variables one can expect that if � > 2, then Tn is
asymptotically normal, with the standard scalingffiffiffi

n
p

, while for � < 2 the limit law of Tn is stable
(with index �) under scaling 	 n1=�.

Alternatively, eqn [20] can be obtained from
consideration of excursions of the random walk.
Let TL

11 be the left-excursion time from site 1, that is
the time to return to 1 after moving to the left at the
first step. If �= E ln �0 < 0, then TL

11 <1 (P0-a.s.).
Fixing an environment !, let w1 = E!

1TL
11 be the
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quenched mean duration of the excursion TL
11 and

observe that w1 = 1þ E!
0	1, where 	1 is the time to

get back to 1 after stepping to 0.
As a matter of fact, this representation and

eqn [19] imply that the annealed mean duration of
the left excursion, E0TL

11, is given by

Ew1 ¼
2

1� E�0
if E�0 < 1

1 if E�0 � 1

8<: ½21�

Note that in the latter case (and bearing in mind � < 0),
the random walk starting from 1 will eventually drift to
þ1, thus making only a finite number of visits to 0,
but the expected number of such visits is infinite.

In fact, our goal here is to characterize the
distribution of w1 under the law P. To this end,
observe that the excursion TL

11 involves at least two
steps (the first and the last ones) and, possibly,
several left excursions from 0, each with mean time
w0 = E!

0TL
00. Therefore,

w1 ¼ 2þ
X1
j¼1

qj
0p0ðjw0Þ ¼ 2þ �0w0 ½22�

By the translation invariance of the environment, the
random variables w1 and w0 have the same distribu-
tion. Furthermore, similarly to recursion [22], we
have w0 = 2þ ��1w�1. This implies that w0 is a
function of px with x � �1 only, and hence w0 and
�0 are independent random variables. Introducing the
Laplace transform �(s) = E exp (�sw1) and condition-
ing on �0, from eqn [22] we get the equation

�ðsÞ ¼ e�2sE�ðs�0Þ ½23�

Suppose that

1� �ðsÞ
 as�; s! 0

then eqn [23] amounts to

1� as� þ � � � ¼ ð1� 2sþ � � �Þð1� as� E��0 þ � � �Þ

Expanding the product on the right, one can see that
a solution with �= 1 is possible only if E�0 < 1, in
which case

a ¼ Ew1 ¼
2

1� E�0

We have already obtained this result in eqn [21].
The case � < 1 is possible if E��0 = 1, which is

exactly eqn [20]. Returning to w1, one expects a
slow decay of the distribution tail,

Pfw1 > tg
 bt�1=�; t!1

In particular, in this case the annealed mean
duration of the left excursion appears to be infinite.

Although the above considerations point to the
critical parameter �, eqn [20], which may be
expected to determine the slowdown scale, they
provide little explanation of a mechanism of the
slowdown phenomenon. Heuristically, it is natural
to attribute the slowdown effects to the presence of
‘‘traps’’ in the environment, which may be thought
of as regions that are easy to enter but hard to leave.
In the one-dimensional case, such a trap would
occur, for example, between two long series of
successive sites where the probabilities px are fairly
large (on the left) and small (on the right).

Remarkably, traps can be characterized quantita-
tively with regard to the properties of the random
environment, by linking them to certain large-
deviation effects (see Sznitman (2002, 2004)). The
key role in this analysis is played by the function
F(u) := ln E�u

0, u2R. Suppose that �= E ln �0 < 0
(so that by Theorem 1 the RWRE tends to
þ1, P0-a.s.) and also that E�0 > 1 and E��1

0 > 1
(so that by Theorem 2, v = 0). The latter means that
F(1) > 0 and F(�1) > 0, and since F is a smooth
strictly convex function and F(0) = 0, it follows that
there is the second root 0 < � < 1, so that F(�) = 0,
that is, E��0 = 1 (cf. eqn [20]).

Let us estimate the probability to have a trap in
U = [�L, L] where the RWRE will spend anoma-
lously long time. Using eqn [11], observe that

P!1fT0 < TLþ1g � 1� expf�LSLg

where SL:= L�1
PL

x = 1 ln �x! � < 0 as L!1.
However, due to large deviations SL may exceed
level  > 0 with probability

PfSL > g
 expf�LIðÞg; L!1

where I(x) := supu {ux� F(u)} is the Legendre trans-
form of F. We can optimize this estimate by
assuming that L � ln n and minimizing the ratio
I()=. Note that F(u) can be expressed via the
inverse Legendre transform, F(u) = supx {xu� I(x)},
and it is easy to see that if � := min>0 I()=, then
F(�) = 0, so � is the second (positive) root of F.

The ‘‘left’’ probability P!�1{T0 < T�L�1} is esti-
mated in a similar fashion, and one can deduce that
for some constants K > 0, c > 0, and any �0 > �, for
large n

P P!0 max
k�n
jXkj � K ln n

� �
� c

� �
� n��

0

That is to say, this is a bound on the probability to
see a trap centered at 0, of size 	 ln n, which will
retain the RWRE for at least time n. It can be
shown that, typically, there will be many such traps
both in [�n�

0
, 0] and [0, n�

0
], which will essentially
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prevent the RWRE from moving at distance n�
0

from the origin before time n. In particular, it
follows that limn!1Xn=n

�0 = 0 for any �0 > �, so
recalling that 0 < � < 1, we have indeed a sublinear
growth of Xn. This result is more informative as
compared to Theorem 2 (the case v = 0), and it
clarifies the role of traps (see more details in
Sznitman (2004)). The nontrivial behavior of the
RWRE on the precise growth scale, n�, is char-
acterized in the next section.

Limit Distributions

Considerations in the previous section suggest that
the exponent �, defined as the solution of eqn
[20], characterizes environments in terms of dura-
tion of left excursions. These heuristic arguments
are confirmed by a limit theorem by Kesten et al.
(1975), which specifies the slowdown scale. We
state here the most striking part of their result.
Denote lnþ u := max { ln u, 0}; by an arithmetic
distribution one means a probability law on R
concentrated on the set of points of the form
0, �c, �2c, . . . .

Theorem 3 Assume that �1 � �= E ln �0 < 0
and the distribution of ln �0 is nonarithmetic
(excluding a possible atom at �1). Suppose that
the root � of eqn [20] is such that 0 < � < 1 and
E��0 lnþ �0 <1. Then

lim
n!1

P0fn�1=�Tn � tg ¼ L�ðtÞ

lim
t!1

P0ft��Xt � xg ¼ 1� L�ðx�1=�Þ

where L�(�) is the distribution function of a stable
law with index �, concentrated on [0,1).

General information on stable laws can be found
in many probability books; we only mention here
that the Laplace transform of a stable distribution
on [0,1) with index � has the form �(s) =
exp {�Cs�}.

Kesten et al. (1975) also consider the case � � 1.
Note that for � > 1, we have E�0

< (E��
0
)1/� ¼ 1, so

v> 0 by eqn [14]. For example, if � > 2 then, as
expected (see the previous section), there exists a
nonrandom �2 > 0 such that

lim
n!1

P0
Tn � n=v

�
ffiffiffi
n
p � t

� �
¼�ðtÞ

lim
t!1

P0
Xt � tv

v3=2�
ffiffi
t
p � x

� �
¼�ðxÞ

Let us describe an elegant idea of the proof based
on a suitable renewal structure. (1) Let Un

i (i � n) be

the number of left excursions starting from i up to
time Tn, and note that Tn = nþ 2

P
i Un

i . Since the
walk is transient to þ1, the sum

P
i�0 Un

i is finite
(P0-a.s.) and so does not affect the limit. (2) Observe
that if the environment ! is fixed then the condi-
tional distribution of Un

j , given Un
jþ1, . . . , Un

n = 0, is
the same as the distribution of the sum of 1þUn

jþ1 i.i.d.
random variables V1, V2, . . . , each with geo-
metric distribution P!0{Vi = k} = pjq

k
j (k = 0, 1, 2, . . . ).

Therefore, the sum
Pn

i = 1 Un
i (read from right to

left) can be represented as
Pn� 1

t = 0 Zt, where Z0 =
0, Z1, Z2, . . . is a branching process (in random
environment {pj}) with one immigrant at each step
and the geometric offspring distribution with parameter
pj for each particle present at time j. (3) Consider
the successive ‘‘regeneration’’ times 	�k , at which
the process Zt vanishes. The partial sums
Wk :=

P
	�

k
�t<	�

kþ1
Zt form an i.i.d. sequence, and the

proof amounts to showing that the sum of Wk has a
stable limit of index �. (4) Finally, the distribution of
W0 can be approximated using M0:=

P1
t = 1

Qn� 1
j = 0 �j

(cf. eqn [11]), which is the quenched mean number of
total progeny of the immigrant at time t = 0. Using
Kesten’s renewal theorem, it can be checked that
P{M0 > x}
Kx�� as x!1, so M0 is in the domain
of attraction of a stable law with index �, and the
result follows.

Let us emphasize the significance of the regenera-
tion times 	�i . Returning to the original random
walk, one can see that these are times at which the
RWRE hits a new ‘‘record’’ on its way to þ1, never
to backtrack again. The same idea plays a crucial
role in the analysis of the RWRE in higher
dimen sions (see the sub sections ‘‘Zero–on e laws
and LLNs’’ and ‘‘Kalikow ’s condition and Sznit man’s
condit ion (T 0 )’’).

Final ly, note that the condit ion �1 � � < 0
allows P{p0 = 1} > 0, so the distribution of �0 may
have an atom at 0 (and hence ln �0 at �1). In view
of eqn [20], no atom is possible at þ1. The
restriction for the distribution of ln �0 to be
nonarithmetic is important. This will be illustrated
in the section ‘‘Diode model ,’’ where we discu ss the
model of random diodes.

Sinai’s Localization

The results discussed in the previous section indicate
that the less transient the RWRE is (i.e., the critical
exponent decreasing to zero), the slower it moves.
Sinai (1982) proved a remarkable theorem showing
that for the recurrent RWRE (i.e., with
�= E ln �0 = 0), the slowdown effect is exhibited in
a striking way.
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Theorem 4 Suppose that the environment {px} is
i.i.d. and elliptic, eqn [5], and assume that
E ln �0 = 0, with P{�0 = 1} < 1. Denote �2 := E ln2

�0, 0 < �2 <1. Then there exists a function
Wn = Wn(!) of the random environment such that
for any " > 0

lim
n!1

P0
�2Xn

ln2 n
�Wn

���� ���� > "

� �
¼ 0 ½24�

Moreover, Wn has a limit distribution:

lim
n!1

P Wn � xf g ¼ GðxÞ ½25�

and thus also the distribution of �2Xn= ln2 n under
P0 converges to the same distribution G(x).

Sinai’s theorem shows that in the recurrent case, the
RWRE considered on the spatial scale ln2 n becomes
localized near some random point (depending on the
environment only). This phenomenon, frequently
referred to as ‘‘Sinai’s localization,’’ indicates an
extremely strong slowdown of the motion as com-
pared with the ordinary diffusive behavior.

Following Révész (1990), let us explain heuristi-
cally why Xn is measured on the scale ln2 n. Rewrite
eqn [11] as

P!1fTn < T0g ¼ 1þ
Xn�1

x¼1

expðYxÞ
 !�1

½26�

where Yx is defined in eqn [12]. By the CLT, the
typical size of jYxj for large x is of order of

ffiffiffi
x
p

, and
so eqn [26] yields

P!1fTn < T0g	 expf�
ffiffiffi
n
p
g

This suggests that the walk started at site 1 will
make about exp {

ffiffiffi
n
p

} visits to the origin before
reaching level n. Therefore, the first passage to
site n takes at least time 	 exp {

ffiffiffi
n
p

}. In other
words, one may expect that a typical displace-
ment after n steps will be of order of ln2 n (cf. eqn
[24]). This argument also indicates, in the spirit
of the trapping mechanism of slowdown discussed
at the end of the section ‘‘Critical exponent,
excursions, a nd traps,’’ th at there i s typically a
trap of size 	 ln2 n, which retains the RWRE until
time n.

It has been shown (independently by H Kesten
and A O Golosov) that the limit in [25] coincides
with the distribution of a certain functional of the
standard Brownian motion, with the density
function

G0ðxÞ ¼ 2

�

X1
k¼0

ð�1Þk

2kþ 1
exp �ð2kþ 1Þ2�2

8
jxj

( )

Environment Viewed from the Particle

This important technique, dating back to Kozlov
and Molchanov (1984), has proved to be quite
efficient in the study of random motions in random
media. The basic idea is to focus on the evolution of
the environment viewed from the current position of
the walk.

Let � be the shift operator acting on the space of
environments � = {!} as follows:

! ¼ fpxg 7!
�

�! ¼ fpx�1g

Consider the process

!n :¼ �Xn!; !0 ¼ !

which describes the state of the environment from
the point of view of an observer moving along with
the random walk Xn. One can show that !n is a
Markov chain (with respect to both P!0 and P0), with
the transition kernel

Tð!; d!0Þ ¼ p0 ��!ðd!0Þ þ q0 ���1!ðd!0Þ ½27�

and the respective initial law �! or P (here �! is the
Dirac measure, i.e., unit mass at !).

This fact as it stands may not seem to be of any
practical use, since the state space of this Markov
chain is very complex. However, the great advan-
tage is that one can find an explicit invariant
probability Q for the kernel T (i.e., such that
QT = Q), which is absolutely continuous with
respect to P.

More specifically, assume that E�0 < 1 and set
Q = f (!)P, where (cf. eqn [14])

f ¼ v ð1þ �0Þ
X1
x¼0

Yx

j¼1

�j

v ¼ 1� E�0

1þ E�0

½28�

Using independence of {�x}, we noteZ
�

Qðd!Þ ¼ Ef ¼ ð1� E�0Þ
X1
x¼0

ðE�0Þx¼ 1

hence Q is a probability measure on �. Furthermore,
for any bounded measurable function g on � we
have

QTg ¼
Z

�

Tgð!ÞQðd!Þ ¼ Ef Tg

¼ E f p0 ðg  �Þ þ q0 ðg  ��1Þ
� �� 	

¼ E g ðp0f Þ  ��1 þ ðq0f Þ  �
� �� 	

½29�
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By eqn [28],

ðp0f Þ  ��1 ¼ vp�1ð1þ ��1Þ
X1
x¼0

Yx
j¼1

�j�1

¼ v 1þ �0

X1
x¼0

Yx

j¼1

�j

 !
¼ vþ �0

1þ �0
f

and similarly

ðq0f Þ  � ¼ �vþ 1

1þ �0
f

So from eqn [29] we obtain

QTg ¼ Eðgf Þ ¼
Z

�

gð!Þ Qðd!Þ ¼ Qg

which proves the invariance of Q.
To illustrate the environment method, let us

sketch the proof of Solomon’s result on the
asymptotic velocity (see Theorem 2). Set d(x,!) :=
E!

x(X1�X0) = px� qx. Noting that d(x,!) =
d(0, � x!), define

Dn :¼
Xn

i¼1

dðXi�1; !Þ ¼
Xn

i¼1

dð0; �Xi�1!Þ

Due to the Markov property, the process Mn:=
Xn�Dn is a martingale with respect to the natural
filtration F n = �{X1, . . . , Xn} and the law P!0,

E!
0 ½Mnþ1 j F n� ¼Mn; P!0-a.s.

and it has bounded jumps, jMn�Mn�1j � 2. By
general results, this implies Mn=n! 0 (P!0-a.s.).

On the other hand, by Birkhoff’s ergodic
theorem

lim
n!1

Dn

n
¼
Z

�

dð0; !Þ Qðd!Þ; P0-a.s.

The last integral is easily evaluated to yield

Eðp0 � q0Þf ¼ vE
X1
x¼0

Yx

j¼1

�jð1� �0Þ

¼ vð1� E�0Þ
X1
x¼0

ðE�0Þx¼ v

and the first part of the formula [14] follows.
The case E�0 � 1 can be handled using a

comparison argument (Sznitman 2004). Observe
that if px � ~px for all x then for the corresponding
random walks we have Xt � ~Xt (P!0 - a.s.). We now
define a suitable dominating random medium by
setting (for 
 > 0)

~px :¼ px

1þ 
 þ



1þ 
 � px

Then E ~�0 = Eq0=(p0 þ 
) < 1 if 
 is large enough,
so by the first part of the theorem, P!0 - a.s.,

lim
n!1

Xn

n
� lim

n!1

~Xn

n
¼ 1� E~�0

1þ E~�0
½30�

Note that E~�0 is a continuous function of 
 with
values in [0, E�0] 3 1, so there exists 
� such that
E~�0 attains the value 1. Passing to the limit in
eqn [30] as 
 " 
�, we obtain limn!1Xn=n � 0
(P!0 - a.s.). Similarly, we get the reverse inequality,
which proves the second part of the theorem.

A more prominent advantage of the environment
method is that it naturally leads to statements of CLT
type. A key step is to find a function H(x, t,!) =
x� vt þ h(x,!) (called ‘‘harmonic coordinate’’) such
that the process H(Xn, n,!) is a martingale. To this
end, by the Markov property it suffices to have

E!
Xn

HðXnþ1; nþ 1; !Þ ¼ HðXn; n; !Þ; P!0-a.s.

For �(x,!) := h(xþ 1,!)� h(x,!) this condition
leads to the equation

�ðx; !Þ¼ �x�ðx� 1; !Þ þ v� 1þ ð1þ vÞ�x

If E�0 < 1 (so that v > 0), there exists a bounded
solution

�ðx; !Þ ¼ v� 1þ 2v
X1
k¼0

Yk
i¼0

�x�i

and we note that �(x,!) = �(0, �x!) is a stationary
sequence with mean E�(x,!) = 0. Finally, setting
h(0,!) = 0 we find

hðx; !Þ ¼

Xx�1

k¼0

�ðk; !Þ; x > 0

�
X�x

k¼1

�ð�k; !Þ; x < 0

8>>>><>>>>:
As a result, we have the representation

Xn � nv ¼ HðXn; n; !Þ þ hðXn; !Þ ½31�

For a fixed !, one can apply a suitable CLT for
martingale differences to the martingale term in eqn
[31], while using that Xn
 nv (P0-a.s.), the second
term in eqn [31] is approximated by the sum

Pnv
k = 0

�(k,!), which can be handled via a CLT for stationary
sequences. This way, we arrive at the following result.

Theorem 5 Suppose that the environment is
elliptic, eqn [5], and such that E�2þ"

0 < 1 for some
" > 0 (which implies that E�0 < 1 and hence v > 0).
Then there exists a nonrandom �2 > 0 such that

lim
n!1

P0
Xn � nvffiffiffiffiffiffiffiffi

n�2
p � x

� �
¼ �ðxÞ
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Note that this theorem is parallel to the result by
Kesten et al. (1975) on asymptotic normality when
� > 2 (see the section ‘‘Limit distribu tions’’). The
moment assumptions in Theorem 5 are more
restrictive, but they can be relaxed. On the other
hand, Theorem 5 does not impose the nonarithmetic
condition on the distribution of the environment
(cf. Theorem 3). More importantly, the environment
method proves to be quite efficient in more general
situations, including non-i.i.d. environments and
higher dimensions (at least in some cases, e.g., for
random bonds RWRE and balanced RWRE dis-
cussed subsequently).

Diode Model

In the preceding sections (except in the section
‘‘Limi t distri butions ,’’ wher e howev er we were
limited to a nonarithmetic case), we assumed that
0 < px < 1 and therefore excluded the situation
where there are sites through which motion is
permitted in one direction only. Allowing for such
a possibility leads to the ‘‘diode model’’ (Solomon
1975). Specifically, suppose that

Pfpx ¼ �g ¼ �; Pfpx ¼ 1g ¼ 1� � ½32�

with 0 < � < 1, 0 < � < 1, so that with probability
� a point x 2 Z is a usual two-way site and with
probability 1�� it is a repelling barrier (‘‘diode’’),
through which passage is only possible from left to
right. This is an interesting example of statistically
inhomogeneous medium, where the particle motion
is strongly irreversible due to the presence of special
semipenetrable nodes. The principal mathematical
advantage of such a model is that the random walk
can be decomposed into independent excursions
from one diode to the next.

Due to diodes, the RWRE will eventually drift to
þ1. If � > 1=2, then on average it moves faster
than in a nonrandom environment with px� �. The
situation where � � 1=2 is potentially more inter-
esting, as then there is a competition between the
local drift of the walk to the left (in ordinary sites)
and the presence of repelling diodes on its way.
Note that E�0 =��, where � := (1� �)=�, so the
condition E�0 < 1 amounts to � > �=(1þ �). In this
case (which includes � > 1=2), formula [14] for the
asymptotic velocity applies.

As explain ed in the section ‘‘C ritical expon ent,
excurs ions, an d traps ,’’ the quen ched mean durati on
w of the left excursion has Laplace transform given
by eqn [23], which now reads

�ðsÞ ¼ e�2sf1� �þ ��ðs�Þg

This equation is easily solved by iterations:

�ðsÞ ¼ ð1� �Þ
X1
k¼0

�ke�stk

tk :¼ 2
Xk

j¼0

� j

½33�

hence the distribution of w is given by

Pfw ¼ tkg ¼ ð1� �Þ�k; k ¼ 0; 1; . . .

This result has a transparent probabilistic meaning.
In fact, the factor (1��)�k is the probability that
the nearest diode on the left of the starting point
occurs at distance kþ 1, whereas tk is the corre-
sponding mean excursion time. Note that formula
[33] for tk easily follows from the recursion tk = 2þ
�tk� 1 (cf. eqn [22]) with the boundary condition
t0 = 2.

A self-similar hierarchy of timescales [33] indi-
cates that the process will exhibit temporal oscilla-
tions. Indeed, for �� > 1 the average waiting time
until passing through a valley of ordinary sites of
length k is asymptotically proportional to tk
 2�k,
so one may expect the annealed mean displacement
E0Xn to have a local minimum at n	 tk. Passing to
logarithms, we note that ln tkþ1� ln tk
 ln �, which
suggests the occurrence of persistent oscillations on
the logarithmic timescale, with period ln � (see
Figure 2). This was confirmed by Bernasconi and
Schneider (1985) who showed that for �� > 1

E0Xn
 n�Fðln nÞ; n!1 ½34�

where �= � ln�= ln � < 1 is the solution of eqn [20]
and the function F is periodic with period ln � (see
Figure 2).

In contrast, for ��= 1 one has

E0Xn

n ln �

2 ln n
; n!1

and there are no oscillations of the above kind.
These results illuminate the earlier analysis of the

diode model by Solomon (1975), which in the main
has revealed the following. If ��= 1, then Xn

satisfies the strong LLN:

lim
n!1

Xn

n= ln n
¼ ln �

2
; P0-a.s.

while in the case �� > 1 the asymptotic behavior of
Xn is quite complicated and unusual: if ni!1 is a
sequence of integers such that { ln ni}! 
 (here
{a} = a� [a] denotes the fractional part of a), then
the distribution of n��i Xni

under P0 converges to a
nondegenerate distribution which depends on 
.
Thus, the very existence of the limiting distribution
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of Xn and the limit itself heavily depend on the
subsequence ni chosen to approach infinity.

This should be compared with a more ‘‘regular’’
result Theorem 3. Note that almost all the condi-
tions of this theorem are satisfied in the diode
model, except that here the distribution of ln �0 is
arithmetic (recall that the value ln �0 = �1 is
permissible), so it is the discreteness of the environ-
ment distribution that does not provide enough
‘‘mixing’’ and hence leads to such peculiar features
of the asymptotics.

Some Generalizations and Variations

Most of the results discussed above in the simplest
context of RWRE with nearest-neighbor jumps in an
i.i.d. random environment have been extended to
some other cases. One natural generalization is to
relax the i.i.d. assumption, for example, by con-
sidering stationary ergodic environments (see details
in Zeitouni (2004)). In this context, one relies on an
ergodic theorem instead of the usual strong LLN.
For instance, this way one readily obtains an
extension of Solomon’s criterion of transience versus
recurrence (see Theorem 1). Other examples include
an LLN (along with a formula for the asymptotic
velocity, cf. Theorem 2), a CLT and stable laws for
the asymptotic distribution of Xn (cf. Theorem 3),
and Sinai’s localization result for the recurrent
RWRE (cf. Theorem 4). Usually, however, ergodic
theorems cannot be applied directly (like, e.g., to
Xn, as the sequence Xn�Xn�1 is not stationary). In
this case, one rather uses the hitting times which
possess the desired stationarity (cf. the sections
‘‘Asym ptotic veloc ity’’ and ‘‘Critical expon ent,
excurs ions, and traps’’). In some situ ations, in
addition to stationarity, one needs suitable mixing

conditions in order to ensure enough decoupling
(e.g., in Sinai’s problem). The method of environ-
ment viewed from the particle (discussed earlier) is
also suited very well to dealing with stationarity.

In the remainder of this section, we describe some
other generalizations including RWRE with
bounded jumps, RWRE where randomness is
attached to bonds rather than sites, and continuous-
time (symmetric) RWRE driven by the randomized
master equation.

RWRE with Bounded Jumps

The previous discussion was restricted to the case of
RWRE with nearest-neighbor jumps. A natural
extension is RWRE with bounded jumps. Let L, R
be fixed natural numbers, and suppose that from
each site x2Z jumps are only possible to the sites
xþ i, i = �L, . . . , R, with (random) probabilities

pxðiÞ � 0;
XR

i¼�L

pxðiÞ ¼ 1 ½35�

We assume that the random vectors px(�) determin-
ing the environment are i.i.d. for different x2Z
(although many results can be extended to the
stationary ergodic case).

The study of asymptotic properties of such a
model is essentially more complex, as it involves
products of certain random matrices and hence must
use extensively the theory of Lyapunov exponents
(see details and further references in Brémont
(2004)). Lyapunov exponents, being natural analogs
of logarithms of eigenvalues, characterize the
asymptotic action of the product of random matrices
along (random) principal directions, as described by
Oseledec’s multiplicative ergodic theorem. In most
situations, however, the Lyapunov spectrum can
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Figure 2 Temporal oscillations for the diode model, eqn [32]. Here �= 0.3 and �= 1=0.09, so that �� > 1 and �= 1=2. The dots

represent an average of Monte Carlo simulations over 10 000 samples of the environment with a random walk of 200 000 steps in

each realization. The broken curve refers to the exact asymptotic solution [34]. The arrows indicate the simulated locations of the

minima tk , the asymptotic spacing of which is predicted to be ln � 	 241. Reproduced from Bernasconi J and Schneider WR (1982).

Diffusion on a one-dimensional lattice with random asymmetric transition rates. Journal of Physics A: Mathematical and General 15:

L729–L734, by permission of IOP Publishing Ltd.

Random Walks in Random Environments 363



only be accessed implicitly, which makes the
analysis rather hard.

To explain how random matrices arise here, let us first
consider a particular case R = 1, L � 1. Assume that
px(�L), px(1) � � > 0 for all x2Z (ellipticity condi-
tion, cf. eqn [5]), and consider the hitting probabilities
un : = P!n {T 0 <1 }, where T 0 := min { t � 0 :  Xt � 0}
(c f. t he s ect ion ‘‘Tr ansie nc e and r ecurr ence’’). B y
decomposing with respect to the first step, for n � 1
we obtain the difference equation

un ¼ pnð1Þunþ1 þ
XL

i¼0

pnð�iÞun�i ½36�

with the boundary conditions u0 = � � � = u�Lþ1 = 1.
Using that 1 = pn(1)þ

PL
i = 0 pn(�i), we can rewrite

eqn [36] as

pnð1Þ un � unþ1ð Þ ¼
XL

i¼1

pnð�iÞ un�i � unð Þ

or, equivalently,

vn ¼
XL

i¼1

bnðiÞvn�i ½37�

where vi := ui� uiþ1 and

bnðiÞ:¼
pnð�iÞ þ � � � þ pnð�LÞ

pnð1Þ
½38�

Recursion [37] can be written in a matrix form,
Vn = MnVn� 1, where Vn := (vn, . . . , vn�Lþ1)>,

Mn :¼

bnð1Þ � � � � � � bnðLÞ
1 . . . 0 0
..
. . .

. ..
. ..

.

0 � � � 1 0

0BB@
1CCA ½39�

and by iterations we get (cf. eqn [10])

Vn ¼Mn � � �M1V0; V0 ¼ ð1� u1; 0; . . . ;0Þ>

Note that Mn depends only on the transition
probability vector pn(�), and hence Mn � � �M1 is the
product of i.i.d. random (non-negative) matrices. By
Furstenberg–Kesten’s theorem, the limiting behavior
of such a product, as n!1, is controlled by the
largest Lyapunov exponent


1 :¼ lim
n!1

n�1 ln kMn . . . M1k ½40�

(by Kingman’s subadditive ergodic theorem, the limit
exists P-a.s. and is nonrandom). It follows that, P0-a.s.,
the RWRE Xn is transient if and only if 
1 6¼ 0, and
moreover, limn!1Xn ¼ þ1 (�1) when 
1 < 0 (> 0),
whereas limn!1Xn = �1, limn!1Xn = þ1 when

1 = 0.

For orientation, note that if pn(i) = p(i) are
nonrandom constants, then 
1 = ln�1, where �1 > 0
is the largest eigenvalue of M0, and so 
1 < 0 if and
only if �1 < 1. The latter means that the character-
istic polynomial ’(�) := det (M0��I) satisfies the
condition (�1)L’(1) > 0. To evaluate det (M0� I),
replace the first column by the sum of all columns
and expand to get ’(1) = (�1)L�1(b1 þ � � � þ bL).
Substituting expressions [38] it is easy to see that
the above condition amounts to p(1)�

PL
i = 1 ip�

(�i) > 0, that is, the mean drift of the random
walk is positive and hence Xn!þ1 a.s.

In the general case, L � 1, R � 1, similar con-
siderations lead to the following matrices of order
d := Lþ R� 1 (cf. eqn [39]):

Mn ¼

anðR� 1Þ � � � anð1Þ bnð1Þ � � � bnðLÞ
1 0 � � � � � � � � � 0

0 1 0 � � � � � � 0

..

. ..
. . .

. ..
. ..

. ..
.

..

. ..
. ..

. . .
. ..

. ..
.

0 � � � � � � 0 1 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
where bn(i) are given by eqn [38] and

anðiÞ :¼�
pnðiÞ þ � � � þ pnðRÞ

pnðRÞ

Suppose that the ellipticity condition is satisfied in
the form pn(i) � � > 0, i 6¼ 0, �L � i � R, and let

1 � 
2 � � � � � 
d be the (nonrandom) Lyapunov
exponents of {Mn}. The largest exponent 
1 is again
given by eqn [40], while other exponents are
determined recursively from the equalities


1 þ � � � þ 
k ¼ lim
n!1

n�1 ln k^kðMn � � �M1Þk

(1 � k � d). Here ^ denotes the external (antisym-
metric) product: x ^ y = �y ^ x (x, y2Rd), and
^kM acts on the external product space ^kRd,
generated by the canonical basis {ei1 ^ � � � ^ eik , 1 �
i1 < � � � < ik � d}, as follows:

^k Mðx1 ^ � � � ^ xkÞ :¼Mðx1Þ ^ � � � ^MðxkÞ

One can show that all exponents except 
R are
sign-definite: 
R� 1 > 0 > 
Rþ1. Moreover, it is the
sign of 
R that determines whether the RWRE is
transient or recurrent, the dichotomy being the same
as in the case R = 1 above (with 
1 replaced by 
R).
Let us also mention that an LLN and CLT can be
proved here (see Brémont (2004)).

In conclusion, let us point out an alternative
approach due to Bolthausen and Goldsheid (2000)
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who studied a more general RWRE on a strip
Z� {0, 1, . . . , m� 1}. The link between these two
models is given by the representation Xn = mYn þ Zn,
where m := max{L,R}, Yn2Z, Zn2 {0, . . . ,m�1}.
Random matrices arising here are constructed in-
directly using an auxiliary stationary sequence.
Even though these matrices are nonindependent,
thanks to their positivity the criterion of transience
can be given in terms of the sign of the largest
Lyapunov exponent, which is usually much easier to
deal with. An additional attractive feature of this
approach is that the condition px(R)> 0 (P-a.s.),
which was essential for the previous technique, can
be replaced with a more natural condition
P{px(R)> 0}> 0.

Random Bonds RWRE

Instead of having random probabilities of jumps
at each site, one could assign random weights
to bonds between the sites. For instance, the
transition probabilities px = p(x, xþ 1,!) can be
defined by

px ¼
cx; xþ1

cx�1;x þ cx; xþ1
½41�

where cx, xþ1 > 0 are i.i.d. random variables on the
environment space �.

The difference between the two models may not
seem very prominent, but the behavior of the walk
in the modified model [41] appears to be quite
differe nt. Indeed, worki ng as in the section ‘‘Tran-
sience and recurrence ,’’ we note that

�x ¼
qx

px
¼ cx�1;x

cx;xþ1

hence, exploiting formulas [11] and [41], we obtain,
P-a.s.,

1

1� u1
¼
Xn�1

x¼0

c01

cx;xþ1

 c01 n Ec�1

01 !1 ½42�

since Ec�1
01 > 0. Therefore, f00 = 1, that is, the

random walk is recurrent (P0-a.s.).
The method of environment viewed from the

particle can also be applied here (see Sznitman
(2004 )). Similarly to the section ‘‘Environm ent
viewed from the particl e,’’ we defin e a new prob-
ability measure Q = f (!) P using the density

f ð!Þ ¼ Z�1 c�1;0ð!Þ þ c01ð!Þ

 �

where Z = 2Ec01 is the normalizing constant (we
assume that Ec01 <1). One can check that Q is
invariant with respect to the transition kernel
eqn [41], and by similar arguments as in that

section, we obtain that limn!1Xn=n exists
(P!0-a.s.) and is given byZ

�

dð0; !Þ Qðd!Þ ¼ Z�1E c01 � c�1;0

� �
¼ 0

so the asymptotic velocity vanishes.
Furthermore, under suitable technical conditions

on the environment (e.g., c01 being bounded away
from 0 and 1, cf. eqn [5]), one can prove the
following CLT:

lim
n!1

P0
Xnffiffiffiffiffiffiffiffi
n�2
p � x

� �
¼ �ðxÞ ½43�

where �2 = (Ec01 � Ec�1
01 )�1. Note that �2 � 1 (with a

strict inequality if c01 is not reduced to a constant),
which indicates some slowdown in the spatial
spread of the random bonds RWRE, as compared
to the ordinary symmetric random walk.

Thus, there is a dramatic distinction between the
random bonds RWRE, which is recurrent and
diffusive, and the random sites RWRE, with a
much more complex asymptotics including both
transient and recurrent scenarios, slowdown effects,
and subdiffusive behavior. This can be explained
heuristically by noting that the random bonds
RWRE is reversible, that is, m(x)p(x, y) = m(y)�
p(y, x) for all x, y2Z, with m(x) := cx�1, x þ cx, xþ1

(this property also easily extends to multidimen-
sional versions). Hence, it appears impossible to
create extended traps which would retain the
particle for a very long time. Instead, the mechanism
of the diffusive slowdown in a reversible case is
associated with the natural variability of the
environment resulting in the occasional occurrence
of isolated ‘‘screening’’ bonds with an anomalously
small weight cx, xþ1.

Let us point out that the RWRE determined by
eqn [41] can be interpreted in terms of the random
conductivity model (see Hughes (1996)). Suppose
that each random variable cx, xþ1 attached to the
bond (x, xþ 1) has the meaning of the conductance
of this bond (the reciprocal, c�1

x, xþ1, being its
resistance). If a voltage drop V is applied across
the system of N successive bonds, say from 0
to N, then the same current I flows in each
of the conductors and by Ohm’s law we have
I = cx, xþ1 Vx, xþ1, where Vx, xþ1 is the voltage drop
across the corresponding bond. Hence

V ¼
XN
x¼0

Vx;xþ1 ¼ I
XN
x¼0

c�1
x;xþ1

which amounts to saying that the total resistance of
the system of consecutive elements is given by the
sum of the individual resistances. The effective
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conductivity of the finite system, �cN, is defined as
the average conductance per bond, so that

�c�1
N ¼

1

N

XN
x¼0

c�1
x;xþ1

and by the strong LLN, �c�1
N !Ec�1

01 as N!1 (P-a.s.).
Therefore, the effective conductivity of the infinite
system is given by �c = (Ec�1

01 )�1, and we note that
�c < Ec01 if the random medium is nondegenerate.

Returning to the random bonds RWRE, eqn [41],
it is easy to see that a site j is recurrent if and only if
the conductance cj,1 between x and 1 equals zero.
Using again Ohm’s law, we have (cf. eqn [42])

c�1
j;þ1 ¼

X1
x¼j

c�1
x;xþ1 ¼ 0; P-a.s.

and we recover the result about recurrence.

Continuous-Time RWRE

As in the discrete-time case, a random walk on Z with
continuous time is a homogeneous Markov chain
Xt, t2 [0,1), with state space Z and nearest-neighbor
(or at least bounded) jumps. The term ‘‘Markov’’ as
usual refers to the ‘‘lack of memory’’ property, which
amounts to saying that from the entire history of the
process development up to a given time, only the
current position of the walk is important for the future
evolution while all other information is irrelevant.

Since there is no smallest time unit as in the discrete-
time case, it is convenient to describe transitions of Xt

in terms of transition rates characterizing the
likelihood of various jumps during a very short time.
More precisely, if pxy(t) := P{Xt = y jX0 = x} are the
transition probabilities over time t, then for h! 0

pxyðhÞ ¼ cxyhþ oðhÞ ðx 6¼ yÞ
pxxðhÞ ¼ 1� h

X
y 6¼x

cxy þ oðhÞ ½44�

Equations for the functions pxy(t) can then be
derived by adapting the method of decomposition
commonly used for discrete-time Markov chains
(cf. the section ‘‘Trans ience and recurrence ’’). Here
it is more convenient to decompose with respect to
the ‘‘last’’ step, that is, by considering all possible
transitions during a small increment of time at the
end of the time interval [0, t þ h]. Using Markov
property and eqn [44] we can write

p0xðt þ hÞ ¼ h
X
y 6¼x

p0yðtÞ cyx

þ p0xðtÞ 1� h
X
y 6¼x

cxy

 !
þ oðhÞ

which in the limit h! 0 yields the master equation
(or Chapman–Kolmogorov’s forward equation)

d

dt
p0xðtÞ ¼

X
y 6¼x

cyxp0yðtÞ � cxyp0xðtÞ
� 	

p0xð0Þ ¼ �0ðxÞ
½45�

where �0(x) is the Kronecker symbol.
Continuous-time RWRE are therefore naturally

described via the randomized master equation, that
is, with random transition rates. The canonical
example, originally motivated by Dyson’s study of
the chain of harmonic oscillators with random
couplings, is a symmetric nearest-neighbor RWRE,
where the random transition rates cxy are nonzero
only for y = x�1 and satisfy the condition
cx, xþ1 = cxþ1, x, otherwise being i.i.d. (see Alexander
et al. (1981)). In this case, the problem [45] can be
formally solved using the Laplace transform, leading
to the equations

sþGþ0 þG�0 ¼ ½p̂0ðsÞ��1 ½46�

sþG�x þGþx ¼ 0 ðx 6¼ 0Þ ½47�

where G�
x , Gþx are defined as

G�x :¼ cx;x�1
p̂0xðsÞ � p̂0;x�1ðsÞ

p̂0xðsÞ
½48�

and p̂0x(s) :=
R1

0 p0x(t) e�stdt. From eqns [47] and
[48] one obtains the recursion

G�x ¼
1

cx;x�1
þ 1

sþGþx�1

� �1

x ¼ 0;�1;�2; . . .

½49�

The quantities G�0 are therefore expressed as infinite
continued fractions depending on s and the random
variables cx, x�1, cx, x�2, . . . . The function p̂00(s) can
then be found from eqn [46].

In its generality, the problem is far too hard, and
we shall only comment on how one can evaluate the
annealed mean

Ep̂00ðsÞ ¼ E sþGþ0 þG�0

 ��1

According to eqn [49], the random variables
Gþ0 , G�

0 are determined by the same algebraic
formula, but involve the rate coefficients from
different sides of site x, and hence are i.i.d.
Furthermore, eqn [49] implies that the random
variables Gþ0 , Gþ1 have the same distribution and,
moreover, Gþ1 and c01 are independent. Therefore,
eqn [49] may be used as an integral equation for the
unknown density function of Gþ0 . It can be proved
that the suitable solution exists and is unique, and
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although an explicit solution is not available, one
can obtain the asymptotics of small values of s,
thereby rendering information about the behavior of
p00(t) for large t. More specifically, one can show
that if c�:= (Ec�1

01 )�1 > 0, then

Ep̂00ðsÞ
 ð4c�sÞ�1=2; s! 0

and so by a Tauberian theorem

Ep00ðtÞ
 ð4�c�tÞ�1=2; t!1 ½50�

Note that asymptotics [50] appears to be the same
as for an ordinary symmetric random walk with
constant transition rates cx, xþ1 = cxþ1, x = c�, suggest-
ing that the latter provides an EMA for the RWRE
considered above.

This is further confirmed by the asymptotic
calculation of the annealed mean square displace-
ment, E0X2

t 
 2c�t as t!1 (Alexander et al. 1981).
Moreover, Kawazu and Kesten (1984) proved that
Xt is asymptotically normal:

lim
t!1

P0
Xtffiffiffiffiffiffiffiffiffi
2c�t
p � x

� �
¼ �ðxÞ ½51�

Therefore, if c� > 0, then the RWRE has the same
diffusive behavior as the corresponding ordered
system, with a well-defined diffusion constant
D = c�.

In the case where c�= 0 (i.e., Ec�1
01 =1), one may

expect that the RWRE exhibits subdiffusive beha-
vior. For example, if the density function of the
transition rates is modeled by

faðuÞ ¼ ð1� �Þ u��1f0<u<1g ð0 < � < 1Þ

then, as shown by Alexander et al. (1981),

Ep00ðtÞ
C�t�ð1��Þ=ð2��Þ

E0X2
t 
C0�t2ð1��Þ=ð2��Þ

In fact, Kawazu and Kesten (1984) proved that in
this case t��=(1þ�)Xt has a (non-Gaussian) limit
distribution as t!1.

To conclude the discussion of the continuous-
time case, let us point out that some useful
information about recurrence of Xt can be obtained
by considering an imbedded (discrete-time) random
walk ~Xn, defined as the position of Xt after n jumps.
Note that continuous-time Markov chains admit an
alternative description of their evolution in terms of
sojourn times and the distribution of transitions at a
jump. Namely, if the environment ! is fixed, then
the random sojourn time of Xt in each state x is
exponentially distributed with mean 1=cx, where
cx:=

P
y 6¼ x cxy, while the distribution of transitions

from x is given by the probabilities pxy = cxy=cx.

For the symmetric nearest-neighbor RWRE con-
sidered above, the transition probabilities of the
imbedded random walk are given by

px :¼ px;xþ1 ¼
cx;xþ1

cx�1;x þ cx;xþ1

qx :¼ px;x�1 ¼ 1� px

and we recognize here the transition law of a
random walk in the random bonds environment
considered in the previous subsection (cf. eqn [41]).
Recurrence and zero asymptotic velocity established
there are consistent with the results discussed in the
present section (e.g., note that the CLT for both Xn,
eqn [43], and Xt, eqn [51], does not involve any
centering). Let us point out, however, that a ‘‘naive’’
discretization of time using the mean sojourn time
appears to be incorrect, as this would lead to the
scaling t = n�1 with �1 := E(c�1, 0 þ c01)�1, while
from comparing the limit theorems in these two
cases, one can conclude that the true value of the
effective discretization step is given by
�� := (2c�)

�1 = (1=2)Ec�1
01. In fact, by the arith-

metic–harmonic mean inequality we have �� > �1,
which is a manifestation of the RWRE’s diffusive
slowdown.

RWRE in Higher Dimensions

Multidimensional RWRE with nearest-neighbor
jumps are defined in a similar fashion: from site
x2Zd the random walk can jump to one of the 2d
adjacent sites xþ e2Zd (such that jej= 1), with
probabilities px(e) � 0,

P
jej= 1 px(e) = 1, where the

random vectors px(�) are assumed to be i.i.d. for
different x2Zd. As usual, we will also impose the
condition of uniform ellipticity:

pxðeÞ � � > 0; P-a.s.

jej ¼ 1; x2Zd
½52�

In contrast to the one-dimensional case, theory of
RWRE in higher dimensions is far from maturity.
Possible asymptotic behaviors of the RWRE for d � 2
are not understood well enough, and many basic
questions remain open. For instance, no definitive
classification of the RWRE is available regarding
transience and recurrence. Similarly, LLN and CLT
have been proved only for a limited number of
specific models, while no general sharp results have
been obtained. On a more positive note, there has
been considerable progress in recent years in the so-
called ballistic case, where powerful techniques have
been developed (see Sznitman (2002, 2004) and
Zeitouni (2003, 2004)). Unfortunately, not much is
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known for nonballistic RWRE, apart from special
cases of balanced RWRE in d � 2 (Lawler 1982),
small isotropic perturbations of ordinary symmetric
random walks in d � 3 (Bricmont and Kupiainen
1991), and some examples based on combining
components of ordinary random walks and RWRE
in d � 7 (Bolthausen et al. 2003). In particular, there
are no examples of subdiffusive behavior in any
dimension d � 2, and in fact it is largely believed that
a CLT is always true in any uniformly elliptic, i.i.d.
random environment in dimensions d � 3, with
somewhat less certainty about d = 2. A heuristic
explanation for such a striking difference with the
case d = 1 is that due to a less restricted topology of
space in higher dimensions, it is much harder to force
the random walk to visit traps, and hence the
slowdown is not so pronounced.

In what follows, we give a brief account of some
of the known results and methods in this fast-
developing area (for further information and specific
references, see an extensive review by Zeitouni
(2004)).

Zero–One Laws and LLNs

A natural first step in a multidimensional context is
to explore the behavior of the random walk Xn as
projected on various one-dimensional straight lines.
Let us fix a test unit vector ‘2Rd, and consider the
process Z‘

n := Xn � ‘. Then for the events
A�‘ := { limn!1 Z‘

n = �1} one can show that

P0ðA‘ [ A�‘Þ 2 f0; 1g ½53�

That is to say, for each ‘ the probability that the
random walk escapes to infinity in the direction ‘ is
either 0 or 1.

Let us sketch the proof. We say that 	 is ‘‘record
time’’ if jZ‘

t j > jZ‘
kj for all k < t, and ‘‘regeneration

time’’ if in addition jZ‘
	 j � jZ‘

nj for all n � 	 . Note
that by the ellipticity condition [52], limn!1jZ‘

nj=
1 (P0-a.s.), hence there is an infinite sequence of
record times 0 = 	0 < 	1 < 	2 < � � � . If P0(A‘ [
A�‘)> 0, we can pick a subsequence of record
times 	 0i , each of which has a positive P0-
probability to be a regeneration time (because
otherwise jZ‘

nj would persistently backtrack
towards the origin and the event A‘ [ A�‘ could
not occur). Since the trials for different record
times are independent, it follows that a regenera-
tion time 	� occurs P0-a.s. Repeating this argu-
ment, we conclude that there exists an infinite
sequence of regeneration times 	�i , which implies
that jZ‘

nj!1 (P0-a.s.), that is, P(A‘ [ A�‘) = 1.
Regeneration structure introduced by the

sequence {	�i } plays a key role in further analysis

of the RWRE and is particularly useful for
proving an LLN and a CLT, due to the fact
that pieces of the random walk between con-
secutive regeneration times (and fragments of the
random environment involved thereby) are inde-
pendent and identically distributed (at least
starting from 	�1 ). In this vein, one can prove a
‘‘directional’’ version of the LLN, stating that for
each ‘ there exist deterministic v‘, v�‘ (possibly
zero) such that

lim
n!1

Z‘
n

n
¼ v‘ 1A‘

þ v�‘ 1A�‘ ; P0-a:s: ½54�

Note that if P0(A‘)2 {0, 1}, then eqn [54] in
conjunction with eqn [53] would readily imply

lim
n!1

Z‘
n

n
¼ v‘; P0-a:s: ½55�

Moreover, if P0(A‘)2 {0, 1} for any ‘, then there
exists a deterministic v (possibly zero) such that

lim
n!1

Xn

n
¼ v; P0-a:s: ½56�

Therefore, it is natural to ask if a zero–one law [53]
can be enhanced to that for the individual prob-
abilities P0(A‘). It is known that the answer is
affirmative for i.i.d. environments in d = 2, where
indeed P(A‘)2 {0, 1} for any ‘, with counterexamples
in certain stationary ergodic (but not uniformly
elliptic) environments. However, in the case d � 3
this is an open problem.

Kalikow’s Condition and Sznitman’s Condition (T0)

An RWRE is called ‘‘ballistic’’ (ballistic in direction ‘)
if v 6¼ 0 (v‘ 6¼ 0), see eqns [55] and [56]. In this
section, we describe conditions on the random
environment which ensure that the RWRE is ballistic.

Let U be a connected strict subset of Zd contain-
ing the origin. For x2U, denote by

gðx; !Þ :¼E!
0

XTU

n¼0

1fXn¼xg

the quenched mean number of visits to x prior to the
exit time TU := min {n � 0 : Xn =2U}. Consider an
auxiliary Markov chain bXn, which starts from 0,
makes nearest-neighbor jumps while in U, with
(nonrandom) probabilities

bpxðeÞ ¼
E gðx; !ÞpxðeÞ½ �

E gðx; !Þ½ � ; x2U ½57�

and is absorbed as soon as it first leaves U. Note
that the expectations in eqn [57] are finite; indeed, if
�x is the probability to return to x before leaving U,
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then, by the Markov property, the mean number of
returns is given byX1

k¼1

k�k
xð1� �xÞ ¼

�x

1� �x
<1

since, due to ellipticity, �x < 1.
An important property, highlighting the usefulness

of bXn, is that if bXn leaves U with probability 1, then the
same is true for the original RWRE Xn (under
the annealed law P0), and moreover, the
exit points bXT̂U

and XTU
have the same distribution

laws.
Let ‘2Rd, j‘j= 1. One says that Kalikow’s condi-

tion with respect to ‘ holds if the local drift of bXn in
the direction ‘ is uniformly bounded away from zero:

inf
U

inf
x2U

X
jej¼1

ðe � ‘Þ bpxðeÞ > 0 ½58�

A sufficient condition for [58] is, for example, that
for some � > 0

E ðdð0; !Þ � ‘Þþ
� �

� �E ðdð0; !Þ � ‘Þ�
� �

where d(0,!) = E!
0X1 and u� := max {�u, 0}.

A natural implication of Kalikow’s condition [58]
is that P0(A‘) = 1 and v‘ > 0 (see eqn [55]). More-
over, noting that eqn [58] also holds for all ‘0 in a
vicinity of ‘ and applying the above result with d
noncollinear vectors from that vicinity, we conclude
that under Kalikow’s condition there exists a
deterministic v 6¼ 0 such that Xn=n! v as n!1
(P0-a.s.). Furthermore, it can be proved that
(Xn� nv)=

ffiffiffi
n
p

converges in law to a Gaussian
distribution (see Sznitman (2004)).

It is not hard to check that in dimension d = 1
Kalikow’s condition is equivalent to v 6¼ 0 and
therefore characterizes completely all ballistic
walks. For d � 2, the situation is less clear; for
instance, it is not known if there exist RWRE with
P(A‘) > 0 and v‘ = 0 (of course, such RWRE cannot
satisfy Kalikow’s condition).

Sznitman (2004) has proposed a more compli-
cated transience condition (T0) involving certain
regeneration times 	�i similar to those described in
the previous subsection. An RWRE is said to satisfy
Sznitman’s condition (T0) relative to direction ‘ if
P0(A‘) = 1 and for some c > 0 and all 0 < 
 < 1

E0 exp
�

c sup
n�	�

1

jXnj

�
<1 ½59�

This condition provides a powerful control over 	�1
for d � 2 and in particular ensures that 	�1 has finite
moments of any order. This is in sharp contrast with
the one-dimensional case, and should be viewed as a
reflection of much weaker traps in dimensions d � 2.

Condition [59] can also be reformulated in terms of
the exit distribution of the RWRE from infinite thick
slabs ‘‘orthonormal’’ to directions ‘0 sufficiently close
to ‘. As it stands, the latter reformulation is difficult
to check, but Sznitman (2004) has developed a
remarkable ‘‘effective’’ criterion reducing the job to
a similar condition in finite boxes, which is much
more tractable and can be checked in a number of
cases.

In fact, condition (T0) follows from Kalikow’s
condition, but not the other way around. In the one-
dimensional case, condition (T0) (applied to ‘= 1 and
‘= �1) proves to be equivalent to the transient
behavior of the RWRE, which, as we have seen in
Theorem 2, may happen with v = 0, that is, in a
nonballistic scenario. The situation in d � 2 is quite
different, as condition (T0) implies that the RWRE is
ballistic in the direction ‘ (with v‘ > 0) and satisfies a
CLT (under P0). It is not known whether the ballistic
behavior for d � 2 is completely characterized by
condition (T0), although this is expected to be true.

Balanced RWRE

In this section we discuss a particular case of
nonballistic RWRE, for which LLN and CLT can
be proved. Following Lawler (1982), we say that an
RWRE is ‘‘balanced’’ if px(e) = px(�e) for all
x2Zd, jej= 1 (P-a.s.). In this case, the local drift
vanishes, d(x,!) = 0, hence the coordinate processes
Xi

n (i = 1, . . . , d) are martingales with respect to the
natural filtration F n = �{X0, . . . , Xn}. The quenched
covariance matrix of the increments �Xi

n :=
Xi

nþ1�Xi
n (i = 1, . . . , d) is given by

E!
0 �Xi

n�Xj
njF n

� �
¼ 2�ijpXn

ðeiÞ ½60�

Since the right-hand side of eqn [60] is uniformly
bounded, it follows that Xn=n! 0 (P0-a.s.). Further,
it can be proved that there exist deterministic positive
constants a1, . . . , ad such that for i ¼ 1, . . . , d

lim
n!1

1

n

Xn�1

k¼0

pXk
ðeiÞ ¼

ai

2
; P0-a.s. ½61�

Once this is proved, a multidimensional CLT for
martingale differences yields that Xn=

ffiffiffi
n
p

converges
in law to a Gaussian distribution with zero mean
and the covariances bij = �ijai.

The proof of [61] employs the method of environ-
ment viewed from the particle. Namely, define a
Markov chain !n := �Xn! with the transition kernel

Tð!; d!0Þ ¼
Xd

i¼1

p0ðeiÞ��!ðd!0Þ½

þ p0ð�eiÞ���1!ðd!0Þ�
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(cf. eqn [27]). The next step is to find a probability
measure Q on � invariant under T and absolutely
continuous with respect to P. Unlike the one-
dimensional case, however, an explicit form of Q is
not available, and Q is constructed indirectly as the
limit of invariant measures of certain periodic
modifications of the RWRE. Birkhoff’s ergodic
theorem then yields, P0-a.s.,

1

n

Xn�1

k¼0

pXk
ðei; !Þ ¼

1

n

Xn�1

k¼0

p0ðei; !kÞ

!
Z

�

p0ðei; !Þ Qðd!Þ � �

by the ellipticity condition [52], and eqn [61]
follows.

With regard to transience, balanced RWREs
admit a complete and simple classification. Namely,
it has been proved (see Zeitouni (2004)) that any
balanced RWRE is transient for d � 3 and recurrent
for d = 2 (P0-a.s.). It is interesting to note, however,
that these answers may be false for certain balanced
random walks in a fixed environment (P-probability
of such environments being zero, of course). Indeed,
examples can be constructed of balanced random
walks in Z2 and in Zd with d � 3, which are
transient and recurrent, respectively (Zeitouni
2004).

RWRE Based on Modification of Ordinary
Random Walks

A number of partial results are known for RWRE
constructed on the basis of ordinary random walks
via certain randomization of the environment. A
natural model is obtained by a small perturbation of
a simple symmetric random walk. To be more
precise, suppose that: (1) jpx(e)� 1=2dj < " for all
x2Zd and any jej= 1, where " > 0 is small enough;
(2) Epx(e) = 1=2d; (3) vectors px(�) are i.i.d. for
different x2Zd; and (4) the distribution of the
vector px(�) is isotropic, that is, invariant with
respect to permutations of its coordinates. Then for
d � 3 Bricmont and Kupiainen (1991) have proved
an LLN (with zero asymptotic velocity) and a
quenched CLT (with nondegenerate covariance
matrix). The proof is based on the renormalization
group method, which involves decimation in time
combined with a suitable spatial–temporal scaling.
This transformation replaces an RWRE by another
RWRE with weaker randomness, and it can be
shown that iterations converge to a Gaussian fixed
point.

Another class of examples is also built using small
perturbations of simple symmetric random walks, but
is anisotropic and exhibits ballistic behavior, providing

that the annealed local drift in some direction is strong
enough (see Sznitman (2004)). More precisely, sup-
pose that d � 3 and �2 (0, 1). Then there exists
"0 = "0(d, �) > 0 such that if jpx(e)� 1=2dj <
" (x2Zd, jej= 1) with 0 < " < "0, and for some e0

one has E[d(x,!) � e0] � "2.5� � (d = 3) or � "3� �

(d � 4), then Sznitman’s condition (T0) is satisfied
with respect to e0 and therefore the RWRE is ballistic
in the direction e0 (cf. the s ubsection ‘‘Kalikow’s
condition an d Sznitman’s c on ditio n (T0 )’’).

Examples of a different type are constructed in
dimensions d � 6 by letting the first d1 � 5 coordi-
nates of the RWRE Xn behave according to an
ordinary random walk, while the remaining
d2 = d� d1 coordinates are exposed to a random
environment (see Bolthausen et al. (2003)). One can
show that there exists a deterministic v (possibly
zero) such that Xn=n! v (P0-a.s.). Moreover, if
d1 � 13, then (Xn� nv)=

ffiffiffi
n
p

satisfies both quenched
and annealed CLT. Incidentally, such models can be
used to demonstrate the surprising features of the
multidimensional RWRE. For instance, for d � 7
one can construct an RWRE Xn such that the
annealed local drift does not vanish, Ed(x,!) 6¼ 0,
but the asymptotic velocity is zero, Xn=n! 0
(P0 - a.s.), and furthermore, if d � 15, then in this
example Xn=

ffiffiffi
n
p

satisfies a quenched CLT. (In fact,
one can construct such RWRE as small perturba-
tions of a simple symmetric walk.) On the other
hand, there exist examples (in high enough dimen-
sions) where the walk is ballistic with a velocity
which has an opposite direction to the annealed drift
Ed(x,!) 6¼ 0. These striking examples provide
‘‘experimental’’ evidence of many unusual properties
of the multidimensional RWRE, which, no doubt,
will be discovered in the years to come.

See also: Averaging Methods; Growth Processes in
Random Matrix Theory; Lagrangian Dispersion (Passive
Scalar); Random Dynamical Systems; Random Matrix
Theory in Physics; Stochastic Differential Equations;
Stochastic Loewner Evolutions.
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Introduction

One of the tasks of classical mechanics has always
been to identify those Hamiltonian systems which,
by their peculiar properties, are considered solvable.
The integrable systems of Liouville and the separ-
able systems of Jacobi can serve as representative
examples here. The bi-Hamiltonian geometry, a
branch of Poisson geometry dealing with a special
kind of deformation of Poisson bracket, suggests
two further classes of Hamiltonian systems – the
bi-Hamiltonian systems and the cyclic systems of
Levi-Civita. The purpose of this article is to
investigate the second class of systems mentioned
above, and to explain why they are relevant for
classical mechanics. (see Bi-Hamiltonian Methods in
Soliton Theory and Multi-Hamiltonian Systems for
further details).

To define a cyclic system of Levi-Civita, one
must consider a symplectic manifold (S,!) endowed
with a tensor field of type (1, 1), seen as an
endomorphism N : TS ! TS that obeys two

conditions. The first condition is that the vector-
valued 2-form

TNðX;YÞ ¼ ½NX;NY� �N½NX;Y� �N½X;NY�
þN2½X;Y�

(called the Nijenhuis torsion of N) vanishes identi-
cally. In this case N is termed a ‘‘recursion
operator.’’ The second condition is that

!0ðX;YÞ ¼ !ðNX;YÞ

is a closed 2-form. The manifolds where these
conditions are fulfilled are called !N manifolds.
On these manifolds, each Hamiltonian vector field
Xh is embedded into the distribution

Dh ¼ hXh;NXh;N
2Xh; . . .i

which is the minimal invariant distribution con-
taining Xh. This can be called the Levi-Civita
distribution generated by Xh. Experience has
shown that Dh is seldom integrable. The cyclic
systems of Levi-Civita are, by definition, the
generators of the integrable Levi-Civita distribu-
tions. Even though this notion is new in classical
mechanics, many interesting classical systems dis-
play this property.

The aim of this article is to show that the cyclic
systems of Levi-Civita are closely related to
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separable systems of Jacobi. To this end, the
article is organized in four sections, of which the
first three clarify the above-mentioned concepts. In
the s ec t ion ‘‘!N manifol d s, ’’ the i de a o f !N
manifolds is explained from the viewpoint of bi-
Ham iltonian geom etry. The section ‘‘Cotangent
bundles’’ show s that cotangent bundles provide a
large class of !N manifolds, proving that such
manifolds are not rare. Next, two basic examples
of cycl ic syst em s of Levi-Civita are presented.
Finally, the relation between cyclic systems of
Levi-Civita and separable systems of Jacobi is
explained briefly.

!N Manifolds

Let us consider a symplectic manifold (S,!) with its
Hamiltonian vector fields Xh defined by

!ðXh; �Þ ¼ �dh

and with the Poisson bracket

ff ; gg ¼ !ðXf ;XgÞ

Both the Hamiltonian vector fields and the functions
on S form a Lie algebra, and these algebras are
homomorphic, since

½Xf ;Xg� ¼ Xff ;gg

The bi-Hamiltonian geometry is the study of the
deformations of the Lie algebras which preserve the
above morphism.

We start from the deformations of the Poisson
algebra of functions, by replacing the bracket {f , g}
with the linear pencil

ff ; gg� ¼ ff ; gg þ �ff ; gg
0; � 2 R

The problem is to find {f , g}0 in such a way that the
linear pencil satisfies the Jacobi identity for any
value of the parameter �. To solve this problem it
is convenient to represent the bracket {f , g}0 in
the form

ff ; gg0 ¼ !0ðXf ;XgÞ

(which is analogous to the standard representation
of the Poisson bracket of S) and then to notice that
there exists a unique (1, 1) tensor field N : TS ! TS
such that

!0ðXf ;XgÞ ¼ !ðNXf ;XgÞ

Due to the skew-symmetry of !0, the tensor field N
must satisfy the condition

!ðNXf ;XgÞ ¼ !ðXf ;NXgÞ

To the first order in �, the Jacobi identity on {f , g}�
gives

fff ; gg; hg0 þ fff ; gg0; hg þ cyclic permutations ¼ 0

This condition entails a constraint on !0. One can
readily check that !0 must be a closed 2-form:

d!0 ¼ 0

In turn, this constraint imposes a condition on N.
The translation of the closure of !0 on N is

½NXf ;Xg� þ ½Xf ;NXg� �N½Xf ;Xg� ¼ Xff ;gg0

To the second order in �, the Jacobi identity on
{f , g}� gives

fff ; gg0; hg0 þ cyclic permutations ¼ 0

entailing the condition

½NXf ;NXg� ¼ NXff ;gg0

on N. Thus, the Jacobi identity is satisfied at any
order in � if and only if N is torsion free and !0 is a
closed 2-form. Hence, according to the definition
given in the ‘‘Introduction,’’ the manifold S is an !N
manifold.

It may be of interest to notice that the bracket

½X;Y�N ¼ ½NX;Y� þ ½X;NY� �N½X;Y�

is a new (deformed) commutator on vector fields,
since the torsion of N vanishes. The same is also
true for

½X;Y�� ¼ ½X;Y� þ �½X;Y�N
since the torsion of (Idþ �N) vanishes too. There-
fore, one can write

½Xf ;Xg�� ¼ Xff ;gg�

This formula shows that this process of deformation
is rigid. For each change of the Poisson bracket,
there is a deformation of the commutator of vector
fields such that the basic correspondence between
functions and Hamiltonian vector fields, established
by the symplectic form !, remains a Lie algebra
morphism.

The same phenomenon can be observed in
connection with the definition of Hamiltonian
vector field. If one introduces the pencil of 2-forms

!� ¼ !þ �!0

and the pencil of derivations

d� ¼ dþ �dN

where dN is the derivation of type d and degree 1
canonically associated with N according to the
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theory of graded derivations of Frölicher and
N

a

T
f
in
f
b
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ijenhuis, one can prove that

d2
� ¼ 0; d�!� ¼ 0
nd that

!�ðXh; �Þ ¼ �d�h

his means that, on an !N manifold, the symplectic
orm ! and the de Rham differential d are deformed

such a way that the basic relation between
unctions and Hamiltonian vector fields established
y ! holds true.
Cotangent Bundles

Cotangent bundles are a source of examples of !N
manifolds. The construction begins on the
base manifold Q. For any (1, 1) tensor field
L : TQ ! TQ with vanishing Nijenhuis torsion,
one constructs the deformed Liouville 1-form

�0 ¼
Xn

i¼1

yiL
�ðdxiÞ

and its exterior derivative

!0 ¼ d�0

It can be proved that !0 satisfies the conditions
explained in the previous section, and conclude
that T�Q, endowed with the pencil of 2-form
!� =!þ� !0, is an !N manifold.

A subclass of these structures merits attention. It
is related to the polynomials

sð�Þ ¼ �n � s1�
n�1 þ s2�

n�2 þ � � � þ sn

� �
the coefficients of which are functions on Q
satisfying the condition

ds1 ^ ds2 ^ � � � ^ dsn 6¼ 0

(almost) everywhere on Q. Moreover, it is con-
venient to assume that the roots (�1,�2, . . . ,�n) of
s(�) are distinct and real, so that they are
functionally independent and can be used as
coordinates on Q. Therefore, the choice of s(�) is
equivalent to fix a special system of coordinates on
Q, as it happens in R3 when one introduces the
elliptical coordinates as the roots of the
polynomial

sð�Þ ¼ ð�� aÞð�� bÞð�� cÞ

� 1þ x2

�� a
þ y2

�� b
þ z2

�� c

� �

The peculiarity of this situation is that there exists
a unique recursion operator L : TQ ! TQ whose
characteristic polynomial is s(�). Thus, the choice
of s(�) also determines an !N structure on T�Q
according to the previous prescription. The con-
clusion is that there is a relation between pencils
of Poisson brackets on T�Q and coordinate
systems on Q. This relation is the clue to
understand the geometry of separable systems of
Jacobi.
Cyclic Systems of Levi-Civita

The systems of coupled harmonic oscillators are the
first example of cyclic systems of Levi-Civita. Let us
consider, for simplicity, a system formed by only
two particles, with masses m1 and m2, moving on a
line under the action of an internal elastic force. The
Lagrangian of the system is

L ¼ 1
2 m1 _x2

1 þm2 _x2
2

� �
� 1

2 kðx1 � x2Þ2

and the equations of motion are

M€xþ Kx ¼ 0; x ¼ x1

x2

� �

where

M ¼ m1 0
0 m2

� �
; K ¼ k �k

�k k

� �

Under a change of coordinates, the entries of the
matrices M and K obey the transformation law of
the components of a second-order covariant tensor.
Therefore, the entries of the matrix L = M�1K are
the components of a tensor field of type (1, 1) on R2.
The defining equations of the associated endo-
morphism L : TR2 ! R2 are

L�ðdx1Þ ¼ !2
1ðdx2 � dx1Þ

L�ðdx2Þ ¼ !2
2ðdx1 � dx2Þ

if !2
1 = k=m1 and !2

2 = k=m2, and these equations
clearly show that L is torsion free. The same
argument holds for any system of coupled harmonic
oscillators. Therefore, the cotangent bundle asso-
ciated with any system of coupled harmonic
oscillators is an !N manifold.

To compute the tensor field N in our example,
one has to follow the prescription, passing from

�0 ¼ !2
1y1 � !2

2y2

� �
ðdx2 � dx1Þ

to

!0 ¼ !2
1 dy1 � !2

2 dy2

� �
^ ðdx2 � dx1Þ



and to

N
@

@x1

� �
¼ !2

1

@

@x1
� !2

2

@

@x2

N
@

@x2

� �
¼ �!2

1

@

@x1
þ !2

2

@

@x2

N
@

@y1

� �
¼ !2

1

@

@y1
� @

@y2

� �

N
@

@y2

� �
¼ !2

2 �
@

@y1
þ @

@y2

� �

The Levi-Civita distribution Dh is therefore spanned
by the vector fields

Xh ¼ k
y1

!2
1

@

@x1
þ y2

!2
2

@

@x2
þ ðx2 � x1Þ

@

@y1
� @

@y2

� �� �

NXh ¼ k y1 �
!2

1

!2
2

y2

� �
@

@x1
þ y2 �

!2
2

!2
1

y1

� �
@

@x2

�

þ !2
1 þ !2

2

� �
ðx2 � x1Þ

@

@y1
� @

@y2

� ��

related to the Hamiltonian

h ¼ y2
1

2m1
þ y2

2

2m2
þ 1

2
kðx1 � x2Þ2

of the system of coupled oscillators. Since
[Xh, NXh] = 0, the distribution is integrable; there-
fore, the system is a cyclic system of Levi-Civita.
This property holds for any system of coupled
harmonic oscillators. It will be apparent at the end
of this article that this result is due to the
eigenvectors of L defining the separation coordi-
nates of the coupled oscillators.

The second and final example of cyclic systems of
Levi-Civita is the Neumann system, that is, the
anisotropic harmonic oscillator on the sphere S2,
whose Lagrangian is

L ¼ 1
2 m _x2

1 þ _x2
2 þ _x2

3

� �
� 1

2 a1x2
1 þ a2x2

2 þ a3x2
3

� �
with the constraint

x2
1 þ x2

2 þ x2
3 ¼ 1

This constraint can be avoided by using the first two
Cartesian coordinates (x1, x2) as local coordinates
on S2. The Hamiltonian of the system can then be
written in the form

h ¼ 1
2 1þ x2

1

� �
y2

1 � x1x2y1y2

þ 1
2 1þ x2

2

� �
y2

2 þ 1
2 ða1 � a3Þx2

1

þ 1
2 ða2 � a3Þx2

2

where, for simplicity, m = 1. Formally one is back in
R2 as in the previous example, but the nonlinearity
of the equations of motion hinders us to readily see

the appropriate recursion operator L : TR2!TR2

to be used to construct the !N structure on T�R2.
Let us however recall that according to Neumann,
the system is separable in elliptical spherical (also
called spheroconical) coordinates, defined as the
roots of the restriction to S2 of the polynomial

sð�Þ ¼ ð�� aÞð�� bÞð�� cÞ x2
1

�� a
þ x2

2

�� b
þ x2

3

�� c

� �

¼�2 � ðs1�þ s2Þ

Let us, therefore, use this polynomial to construct
the unique recursion operator L having s(�) as its
characteristic polynomial. It is given by

L�ðds1Þ ¼ ds2 þ s1 ds1

L�ðds2Þ ¼ s2 ds1

or, after a brief computation, by

L�ðdx1Þ ¼ a1 dx1�x1 d 1
2ða1� a3Þx2

1þ 1
2 ða2� a3Þx2

2

� 	
L�ðdx2Þ ¼ a2 dx2�x2 d 1

2ða1� a3Þx2
1þ 1

2 ða2� a3Þx2
2

� 	
The situation stays the same as in the previous
example. Accordingly, the recursion operator N on
T�R2 is now given by

N� dx1 ¼ a1 dx1 � x1 df

N� dx2 ¼ a2 dx2 � x2 df

N� dy1 ¼ a1 dy1 � ða1 � a3Þx1 dgþ y1 df

N� dy2 ¼ a2 dy2 � ða2 � a3Þx2 dgþ y2 df

where the shorthand notations

f ¼ 1
2ða1 � a3Þx2

1 þ 1
2ða2 � a3Þx2

2

g ¼ x1y1 þ x2y2

have been used. The derivation dN, associated with
N, is accordingly defined by

dNx1 ¼N� dx1 ¼ a1 þ ða3 � a1Þx2
1

� 	
dx1

þ ða3 � a2Þx1x2 dx2

dNx2 ¼N� dx2 ¼ ða3 � a1Þx1x2 dx1

þ a2 þ ða3 � a2Þx2
2

� 	
dx2

dNy1 ¼N� dy1 ¼ ða3 � a1Þx1y2 � ða3 � a2Þx2y1½ � dx2

þ a1 þ ða3 � a1Þx2
1

� 	
dy1 þ ða3 � a1Þx1x2 dy2

dNy2 ¼N� dy2 ¼ ða3 � a2Þx2y1 � ða3 � a1Þx1y2½ � dx1

þ ða3 � a2Þx1x2 dy1 þ a2 þ ða3 � a2Þx2
2

� 	
dy2

on the coordinate functions. Recalling that dN

anticommutes with d, one can then easily check the
condition

ddNh ¼ ds1 ^ dh
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where s1 is the first coefficient of the polynomial
defining the elliptical spherical coordinates, and h is
the Hamiltonian of the Neumann system. By the
Frobenius theorem, this equation alone entails the
integrability of the distribution Dh, without the need
of computing Xh, NXh, and their commutator
[Xh, NXh]. Thus, it can be concluded that the
Neumann system too is a cyclic system of Levi-
Civita, and that the recursion operator N, generat-
ing the distribution Dh, is closely related to the
polynomial defining the separation coordinates of
the Neumann system.

Separable System of Jacobi

In 1838, Jacobi noticed that the Hamilton–Jacobi
equation

h x1; x2; . . . ; xn;
@W

@x1
; . . . ;

@W

@xn

� �
¼ e

of many Hamiltonian systems splits owing to an
appropriate choice of coordinates in a set of
ordinary differential equations. On account of
this property, these systems have been called
separable. In 1904, Levi-Civita gave a first partial
characterization of separable Hamiltonians by
means of his separability conditions. In a letter
addressed to Stäckel, he proved that h is separ-
able in a preassigned system of canonical coordi-
nates if and only if the conditions

@2h

@xj@xk

@h

@yj

@h

@yk
� @2h

@xj@yk

@h

@yj

@h

@xk

� @2h

@yj@xk

@h

@xj

@h

@yk
þ @2h

@yj@yk

@h

@xj

@h

@xk
¼ 0

are satisfied by h. One must notice the nontensorial
character of these conditions; they hold only in a
specific coordinate system, and if the coordinates are
changed, it is not possible to reconstruct the form of
the separability conditions in the new coordinates.
The nontensorial character is the major drawback of
the separability conditions of Levi-Civita, making
them practically useless in the search of separation
coordinates.

The contact between the theory of separable
system of Jacobi and the theory of cyclic systems
of Levi-Civita rests on two occurrences. The first is
the form of the integrability conditions of the
distribution Dh generated by any vector field Xh

on an !N manifold. Exploiting the Frobenius
integrability conditions and the properties of the
differential operator dN associated with the recur-
sion operator N, it can be proved that Dh is

integrable if and only if the 2-form ddNh vanishes
on Dh:

ddNh ¼ 0 on Dh

Suppose now that the dimension of Dh is maximal,
that is, equal to n = (1=2) dim S. Then Dh is spanned
by the n vector fields (Xh, NXh, . . . ,Nn�1Xh), and
the vanishing condition of ddNh on Dh turns out to
be equivalent to

ddNhðNjXh;N
kXhÞ ¼ 0

for any value of j and k from 0 to n� 1. Thus, the
number of separability conditions of h and the
number of integrability conditions of Dh are equal.
This circumstance strongly suggests that the two sets
of conditions are related. The nontensorial character
of the Levi-Civita conditions, compared with the
tensorial character of the integrability conditions of
Dh, further suggests that the former should be the
evaluation of the latter in a specific system of
coordinates. These coordinates are the ‘‘normal
coordinates’’ of an !N manifold, that will be
introduced in the following.

Assume that the minimal polynomial of N has
real and distinct roots (l1, . . . , ln). In this case, the
!N manifold is said to be semisimple. A two-
dimensional eigenspace is associated with each
root lk. Let us consider the distribution Ek spanned
by all the eigenvectors of N, except those
associated with lk. Since N is torsion free, each
distribution Ek is integrable. Let us fix the
attention on one of these distributions. It turns
out that its leaves are symplectic submanifolds of
codimension 2. So they are the level surfaces of a
pair of (local) functions which are not in involu-
tion. By collecting together the pairs of functions
associated with the n distributions (E1, . . . , En),
one obtains, at the end, a coordinate system
(�1,�1,�2,�2, . . . ,�n,�n) on S. Moreover, these
functions can be chosen in such a way to form a
system of canonical coordinates. The final result is
that, on a semisimple !N manifold, one can
construct a coordinate system such that

! ¼
Xn

j¼1

d�j ^ d�j

and

N�ðd�jÞ ¼ ljd�j

N�ðd�jÞ ¼ ljd�j

These coordinates are called the normal coordinates
(or sometimes, the Darboux–Nijenhuis coordinates) of
the !N manifold. One can prove that the separability
conditions of Levi-Civita are the integrability
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conditions of Dh, written in normal coordinates. This
result allows us to claim that the cyclic systems of Levi-
Civita on semisimple !N manifolds are all separable.

The reverse is also true. As has already been
shown in the example of the Neumann system, a
given separable system of Jacobi can be associated
with a recursion operator N in such a way that its
phase space (with the possible exclusion of a
singular locus) becomes an !N manifold, and the
Hamiltonian vector field Xh becomes a cyclic system
of Levi-Civita. A new interpretation of the process
of separation of variables follows from this result.
Indeed, to find separation coordinates for a given
system on a symplectic manifold S is equivalent to
deforming the Poisson bracket of S into a pencil

ff ; gg� ¼ ff ; gg þ �ff ; gg
0

in such a way that the recursion operator N defining
the pencil {f , g}� generates, with Xh, an integrable
distribution Dh. Therefore, classical mechanics is
deeply entangled with the theory of recursion opera-
tors, even if the insistence on the use of separation
coordinates has hidden this factor for a long time.

See also: Bi-Hamiltonian Methods in Soliton Theory;
Classical r-Matrices, Lie Bialgebras, and Poisson Lie
Groups; Integrable Systems and Algebraic Geometry;
Integrable Systems and Recursion Operators on
Symplectic and Jacobi Manifolds; Integrable Systems:
Overview; Multi-Hamiltonian Systems; Separation of

Variables for Differential Equations; Solitons and
Kac–Moody Lie Algebras.
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Phase Transitions in Lattice Systems

Introduction

Phase transitions are among the main objects of
equilibrium statistical mechanics, both classical and
quantum. There exist several approaches to the descrip-
tion of these phenomena. Their common point is that
the macroscopic behavior of a statistical mechanical
model can be different at the same values of the model
parameters. This corresponds to the multiplicity of
equilibrium phases, each of which has its own proper-
ties. In the mathematical formulation, models are

defined by interaction potentials and equilibrium phases
appear as states – positive linear functionals on algebras
of observables. In the classical case the states are defined
by means of the probability measures which satisfy
equilibrium conditions, formulated in terms of the
interaction potentials. Such measures are called Gibbs
measures and the corresponding states are called Gibbs
states. The observables are then integrable functions. In
the quantum case the states mostly are introduced by
means of the Kubo–Martin–Schwinger condition – a
quantum analog of the equilibrium conditions used for
classical models. The quantum observables constitute
noncommutative von Neumann algebras.

Infinite systems of particles studied in statistical
mechanics fall into two main groups. These are
continuous systems and lattice systems. In the latter
case, particles are attached to the points of various
crystalline lattices. In view of the specifics of our subject,
in this article we will deal with lattice systems only.
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One of the main problems of the mathematical
theory of phase transitions is to prove that the Gibbs
states of a given model can be multiple, that is, that
this model undergoes a phase transition. To solve
this problem one has to elaborate corresponding
mathematical tools. Typically, at high temperatures
(equivalently, for weak interactions), a model, which
undergoes a phase transition, has only one Gibbs
state. This state inherits all the symmetries possessed
by the interaction potentials. At low temperatures
this model has multiple Gibbs states, which may lose
the symmetries. In this case the phase transition is
accompanied by a symmetry breaking. Among the
symmetries important in the theory of lattice
systems, there is the invariance with respect to the
lattice translations. If the Gibbs state of a translation
invariant lattice model is unique, it ought to be
ergodic with respect to the group of lattice transla-
tions. This means in particular that the spacial
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orrelations in this state decay to zero at long
istances. Therefore, the lack of the latter property
ay indicate a phase transition. In a number of
ttice models, phase transitions can be established
y means of their special property – reflection
ositivity. The most important consequence of
eflection positivity are chessboard (another name
heckerboard) estimates, being extended versions of
ölder’s inequalities. The proof of a phase transi-

ion is then performed either by means of a
ombination of such estimates and contour methods,
r by means of infrared estimates obtained from the
hessboard estimates.
In this article we show how to prove phase

ransitions by means of the infrared estimates for
ome simple reflection positive models, both classi-
al and quantum. The details on the reflection
ositivity method in all its versions may be found
the literature listed at the end of the article. There
e also provide short bibliographic comments.
Nonergodicity and Infrared Estimates

The following heuristic arguments should give an idea
how to establish the nonergodicity of a Gibbs state by
means of infrared estimates. Let us consider a classical
ferromagnetic translation-invariant model. (Of
course, we assume that it possesses Gibbs states,
which for models with unbounded spins is a
nontrivial property. A particular case of this model
is descr ibed in more detail in the subsec tion ‘‘Gaus-
sian dominati on.’’) This model descr ibes the system
of interacting N-dimensional spins x‘ 2 RN, indexed
by the elements ‘ 2 Zd of the d-dimensional simple
cubic lattice. The interaction is pairwise, attractive,
nearest-neighbor, and invariant with respect to the
rotations in RN. Consider a translation-invariant
Gibbs state of this model, which always exists. Let
K(‘, ‘0), ‘, ‘0 2 Zd, be the expectation of the scalar
product (x‘, x‘0 ) of spins in this state. Then K(‘, ‘0) is
also translation invariant and hence may be written as

Kð‘;‘0Þ ¼ 1

ð2�Þd
Z
ð��;��d

bKðpÞeiðp;‘�‘0Þdp; i¼
ffiffiffiffiffiffiffi
�1
p

½1�

where the generalized function bK is defined by the
Fourier seriesbKðpÞ ¼ X

‘02Zd

Kð‘; ‘0Þe�iðp;‘�‘0Þ; p 2 ð��; ��d ½2�

As the model is ferromagnetic, K(‘, ‘0) � 0. The
Gibbs state is nonergodic if K(‘, ‘0) does not tend to
zero as j‘� ‘0j!1. In this case bK should be
singular at p = 0. SetbKðpÞ ¼ ð2�Þd��ðpÞ þ gðpÞ ½3�

where �(p) is the Dirac �-function and g(p) is regular
at p = 0. Then the Gibbs state is nonergodic if � 6¼ 0.
Suppose we know that g(p)� 0 and that the
following two estimates hold. The first one is

gðpÞ � �=Jjpj2; p 6¼ 0 ½4�

where � > 0 is a constant and J > 0 is the interaction
intensity multiplied by the inverse temperature �.
This is the infrared estimate. The second estimate is

Kð‘; ‘Þ � K > 0 ½5�

where K is independent of J. By these estimates and
[1], [2], we get

� � K� �

ð2�ÞdJ

Z
ð��;��d

dp

jpj2
½6�

For d � 3, the latter integral exists; hence, � > 0 for
J large enough, which means that the state we
consider is nonergodic.

The quantum case is more involved. The infrared
bounds are obtained not for functions like bK(p) but
for the so-called Duhamel two-point functions. Then
one has to prove a number of additional statements,
which finally lead to the proof of the result desired.
In the section on reflection positivity in quantum
systems we indicate how to do this for a simple
quantum spin model.
Reflection Positivity and Phase
Transitions in Classical Systems

We begin by studying reflection positive (RP)
functionals. Gibbs states of RP models are such
functionals.



Reflection Positive Functionals

Let � be a finite set of indices consisting of an
even number j�j of elements, which label real
variables x‘, ‘ 2 �. For �0 � �, we write
x�0 = (x‘)‘2�0 2 Rj�

0j. Suppose we are given a bijec-
tion � : �!�, � � �= id, such that the set � falls
into two disjoint parts �� with the property
� : �þ!��. Therefore, j�þj= j��j, and the map �
may be regarded as a reflection. For x� 2 Rj�j, we
set �(x�) = (x�(‘))‘2�. Now let A be an algebra of
functions A : Rj�j ! R. Then we define the map
# :A ! A by setting

#ðAÞðx�Þ ¼ Að�ðx�ÞÞ ½7�

Clearly, for all A, B 2 A and 	, 
 2 R,

#ð	Aþ 
BÞ ¼ 	#ðAÞ þ 
#ðBÞ
#ðA 	 BÞ ¼ #ðAÞ 	 #ðBÞ

½8�

By Aþ (respectively, A�), we denote the sub-
algebra of A consisting of functions dependent
on x�þ (respectively, x��). Then #(Aþ) =A� and
# � #= id.

Definition 1 A linear functional � :A!R is called
RP with respect to the maps � and #, if

8A 2 Aþ: �½A#ðAÞ� � 0 ½9�

Example 2 Let � be a Borel measure on the real
line (not necessarily positive), with respect to which
all real polynomials are integrable. Let also A be the
algebra of all real-valued polynomials on Rj�j, j�j
being even. Finally, let � and # be any of the maps
with the properties described above. Then the
functional

�ðAÞ ¼
Z

Rj�j
Aðx�Þ d��ðx�Þ

d��ðx�Þ ¼
Y
‘2�

d�ðx‘Þ
½10�

is RP. Indeed, let F : Rj�j=2!R be such that
A(x�) = F(x�þ ). Then

�½A#ðAÞ�¼
Z

Fðx�þÞ
Y
‘2�þ

d�ðx‘Þ 	
Z

Fðx��Þ
Y
‘2��

d�ðx‘Þ

¼
Z

Fðx�þÞ
Y
‘2�þ

d�ðx‘Þ
" #2

�0

In the above example the multiplicative structure of
the measure �� is crucial. It results in the positivity
of � with respect to all reflections. If one has just
one such reflection, the measure which defines �
may be decomposable onto two measures only. Let
�,A,�, and # be as above. Consider a Borel measure

 on Rj�j=2 such that every real-valued polynomial
on Rj�j=2 is -integrable.

Proposition 3 The functional

�ðAÞ ¼
Z

Rj�j
Aðx�Þ dðx�þÞ dðx��Þ ½11�

is RP.

In both these examples the states are symmetric,
that is,

�½A#ðBÞ� ¼ �½B#ðAÞ�; for all A;B 2 Aþ ½12�

In the sequel we shall suppose that all RP functionals
possess this property. Therefore, RP functionals obey
a Cauchy–Schwarz type inequality.

Lemma 4 If � is RP, then for any A, B 2 Aþ,

f�½A#ðBÞ�g2 � �½A#ðAÞ� 	 �½B#ðBÞ� ½13�

Proof For 	 2 R, by [8] we have

�½ðAþ 	BÞ#ðAþ 	BÞ�
¼ �½ðAþ 	BÞð#ðAÞ þ 	#ðBÞÞ� � 0

Since � is linear, the latter can be written as a
3-nomial, whose positivity for all 	 2 R is equivalent
to [13]. &

Now let an RP functional � be such that for

A;B;C1; . . . ;Cm;D1; . . . ;Dm 2 Aþ

there exists

� exp Aþ #ðBÞ þ
Xm
i¼1

Ci#ðDiÞ
 !" #

and that the seriesX1
n1;...;nm¼0

1

n1! 	 	 	nm!
	�f½C1#ðC1Þ�n1 	 	 	 ½Cm#ðCmÞ�nm


 exp½Aþ#ðBÞ�g ½14�

as well as the one with all Cis replaced by Dis
converge absolutely.

Lemma 5 Let the functional � and the functions
A, B, Ci, Di, i = 1, . . . , m, be as above. Then

� exp Aþ #ðBÞ þ
Xm
i¼1

Ci#ðDiÞ
 !" #( )2

� � exp Aþ #ðAÞ þ
Xm
i¼1

Ci#ðCiÞ
 !" #


 � exp Bþ #ðBÞ þ
Xm
i¼1

Di#ðDiÞ
 !" #

½15�
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Proof By the above assumptions

� exp Aþ #ðBÞ þ
Xm
i¼1

Ci#ðDiÞ
 !" #

¼ � F#ðGÞ exp
Xm
i¼1

Ci#ðDiÞ
 !" #

¼
X1

n1;...;nm¼0

1

n1! 	 	 	 nm!
	�½F#ðGÞ½C1#ðD1Þ�n1 	 	 	


 ½Cm#ðDmÞ�nm � ½16�

where F = eA, G = eB. Then by [13] and the Cauchy–
Schwarz inequality for sums we get

RHS½16�

�
X1

n1 ;...;nm¼0

1

n1! 	 	 	nm!
	�½F#ðFÞ½C1#ðC1Þ�n1 	 	 	 ½Cm#ðCmÞ�nm �

� �1=2


 1

n1! 	 	 	nm!
	�½G#ðGÞ½D1#ðD1Þ�n1 	 	 	 ½Dm#ðDmÞ�nm �

� �1=2

�
X1

n1 ;...;nm¼0

1

n1! 	 	 	nm!
	�½F#ðFÞ½C1#ðC1Þ�n1 	 	 	 ½Cm#ðCmÞ�nm �

( )1=2



X1

n1 ;...;nm¼0

1

n1! 	 	 	nm!
	�½G#ðGÞ½D1#ðD1Þ�n1 	 	 	 ½Dm#ðDmÞ�nm �

( )1=2

¼ � exp Aþ#ðAÞþ
Xm
i¼1

Ci#ðCiÞ
 !" #( )1=2


 � exp Bþ#ðBÞþ
Xm
i¼1

Di#ðDiÞ
 !" #( )1=2

which yields [15]. &

Main Estimate

Let � be a finite set and �0 be its nonempty subset.
Let also � and  be finite Borel measures on
RNj�j, N 2 N. For vectors b, c 2 RN, by (b, c) and
jbj, jcj we denote their scalar product

PN
k = 1 b(k)c(k)

and the corresponding norms, respectively. By x�

we denote (x‘)‘2�, x‘ 2 RN; hence, x� 2 RNj�j.

Lemma 6 Let the sets �, �0 and the measures �,  be
as above. Then for every (a‘)‘2�0 2 RNj�0 j and J � 0,Z

R2Nj�j
exp � J

2

X
‘2�0

jx‘�y‘�a‘j2
 !

d�ðx�Þdðy�Þ
" #2

�
Z

R2Nj�j
exp � J

2

X
‘2�0

jx‘�y‘j2
 !

d�ðx�Þd�ðy�Þ



Z

R2Nj�j
exp � J

2

X
‘2�0

jx‘�y‘j2
 !

dðx�Þdðy�Þ ½17�

Proof Take two copies of � and denote them by
��. Furthermore, by �0� � �� we denote the subsets
consisting of the elements of �0 � �. For an ‘ 2 �þ,
by �(‘) we denote its counterpart in ��. Then � is a
reflection and �(�0þ) = �0�. Let � = �þ [ ��, �0=

�0þ [ �0�, and A be the algebra of all polynomials
of (x�0 , y�0 ) 2 R2Nj�0 j. Note that x�0 may be regarded
as the pair (x�0þ

, x�0� ). Let Aþ (respectively, A�) be
the subalgebra of A consisting of the polynomials
which depend on x�0þ

, y�0þ
(respectively, x�0� , y�0�)

only. Introduce the measures

d~�ðx�Þ ¼ exp � J

2

X
‘2�0

jx‘j2
 !

d�ðx�Þ

d~ðx�Þ ¼ exp � J

2

X
‘2�0

jxj2‘

 !
dðx�Þ

and define the following functional on A:

�ðFÞ ¼
Z

R2Nj�j
Fðx�0 ; y�0 Þ d~�ðx�þÞ


 d~ðy�þÞ d~�ðx��Þ d~ðy��Þ ½18�

It has the same structure as the one described by
Proposition 3, hence is RP with respect to the map #
defined by the reflection �. Set

�� ¼
Z

RNj�j
d~�ðx�Þ; � ¼

Z
RNj�j

d~ðy�Þ ½19�

and

A � 0; B ¼ �J
X
‘2�0þ

1

2
ja‘j2 þ ða‘; y‘Þ

� �
C
ðkÞ
‘ ¼

ffiffi
J

p
x
ðkÞ
‘ ; D

ðkÞ
‘ ¼

ffiffi
J

p �
y
ðkÞ
‘ þ a

ðkÞ
‘

�
‘ 2 �0þ; k ¼ 1; . . . ;N

½20�

Then the left-hand side of [17] is

LHS ½17�

¼ 1

ð���Þ2

					�
"

exp

 
Aþ #ðBÞ

þ
X
‘2�0þ

XN
k¼1

C
ðkÞ
‘ #

�
D
ðkÞ
‘

�!#					
2

½21�

with � given by [18]. Applying [15] and taking into
account [19], we arrive at

LHS ½17�

� 1

ð���Þ2
Z

R2Nj�j
exp J

X
‘2�0þ

x‘x�ð‘Þ

0@ 1A

 d~�ðx�þÞ d~�ðx��Þ d~ðy�þÞ d~ðy��Þ



Z

R2Nj�j
exp J

X
‘2�0þ

y‘y�ð‘Þ

0@ 1A

 d~�ðx�þÞ d~�ðx��Þ d~ðy�þÞ d~ðy��Þ¼RHS ½17�

which completes the proof. &
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Gaussian Domination

Let � be a finite set, j�j even, and E be a set of
unordered pairs of elements of �, such that the
graph (�, E) is connected. If e 2 E connects given
‘, ‘0 2 �, we write e = h‘, ‘0i. We suppose that E
contains no loops h‘, ‘i. With each ‘ 2 � we
associate a random N-component vector x‘, called
spin. The joint probability distribution of the spins
(x‘)‘2� is defined by means of the local Gibbs
measure

d��ðx�Þ ¼
1

Z�
exp � J

2

X
h‘;‘0i2E

jx‘ � x‘0 j2
0@ 1Ad��ðx�Þ;

x� 2 RNj�j ½22�

Here the measure

d��ðx�Þ ¼
Y
‘2�

d�ðx‘Þ ½23�

describes the system if the interaction intensity
J equals zero. In general, J � 0, that is, the model
[22], [23] is ferromagnetic. The single-spin measure
� is a probability measure on RN and

Z�¼
Z

RNj�j
exp � J

2

X
h‘;‘0i2E

jx‘�x‘0 j2
0@ 1Ad��ðx�Þ ½24�

is the partition function. Set

Z�ðhÞ ¼
Z

RNj�j
exp � J

2

X
h‘;‘0i2E

jx‘ � x‘0 � h‘‘0 j2
0@ 1A


 d��ðx�Þ ½25�

where h‘‘0 = h‘0‘ 2 RN, h‘, ‘0i 2 E.

Definition 7 The model [22]–[23] admits Gaussian
domination if for all h = (h‘‘0 )h‘, ‘0i2E,

Z�ðhÞ � Z�ð0Þ ½26�

We prove that our model admits Gaussian domina-
tion if the graph satisfies the following:

Assumption 8 The set of edges E can be
decomposed

E ¼
[m
n¼1

En; En

\
En0 ¼ ;; if n 6¼ n0 ½27�

in such a way that for every n = 1, . . . , m, the graph
(�, EnEn) is disconnected and falls into two con-
nected components, (�(n)

þ , E(n)
þ ) and (�(n)

� , E(n)
� ), which

are isomorphic. This means that there exists a

bijection �n : �!�, �n � �n = id, such that
�n(�(n)

þ ) = �(n)
� and h�n(‘), �n(‘0)i 2 E(n)

� whenever
h‘, ‘0i 2 E(n)

þ . Finally, we assume that if h‘, ‘0i 2 En

and ‘ 2 �(n)
þ , then �n(‘) = ‘0.

By this assumption if h‘, ‘0i 2 En, then no other
elements of En can be of the form h‘, ‘00i or h‘00, ‘0i.
The basic example here is the torus which one obtains
from a rectangular box � � Zd, j�j even, by imposing
periodic conditions on its boundaries. The set of edges
is E = {h‘, ‘0ijj‘� ‘0j� = 1}, where j‘� ‘0j� is the
periodic distance on � (see the next subsection).
Then every plane which contains the center of the
torus and its axis cuts it out along a family of
edges onto two subgraphs with the property
desired (see Figure 1).

Theorem 9 The model [22]–[23] defined on the
graph obeying Assumption 8 admits Gaussian
domination.

Proof For �=�1, h = (h‘‘0)h‘, ‘0i2E, and n = 1, . . . , m,
we define the map

T�
n h


 �
‘‘0
¼

h‘‘0 ; if h‘; ‘0i 2 EðnÞ�
h�nð‘Þ�nð‘0Þ; if h‘; ‘0i 2 EðnÞ��
0; if h‘; ‘0i 2 En

8><>: ½28�

According to Assumption 8

Z�ðhÞ ¼
Z

RNj�j
exp � J

2

X
h‘;‘0i2E1

jx‘ � x‘0 � h‘‘0 j2
0@ 1A


 dþ
�
ð1Þ
þ

x
�
ð1Þ
þ

� �
d�

�
ð1Þ
�

x
�
ð1Þ
�

� �
½29�

where

d�
�
ð1Þ
�

x
�
ð1Þ
�

� �
¼ exp � J

2

X
h‘;‘0i2E

ð1Þ
�

jx‘�x‘0 �h‘‘0 j2
0@ 1Ad�

�
ð1Þ
�

x
�
ð1Þ
�

� �
;

�¼�1

Figure 1 The torus.
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Set

d�
�
ð1Þ
þ
ðx

�
ð1Þ
þ
Þ ¼ exp � J

2

X
h‘;‘0i2E

ð1Þ
þ

jx‘ � x‘0 � h�ð‘Þ�ð‘0Þj2

0B@
1CA


 d�
�
ð1Þ
þ
ðx

�
ð1Þ
þ
Þ

dþ
�
ð1Þ
�

x
�
ð1Þ
�

� �
¼ exp � J

2

X
h‘;‘0i2E

ð1Þ
þ

jx�ð‘Þ � x�ð‘0Þ � h‘‘0 j2

0B@
1CA


 d�
�
ð1Þ
�
ðx

�
ð1Þ
�
Þ

Then we apply here Lemma 6, with �0þ= {‘ 2
�(1)
þ jh‘, ‘0i 2 E1}, and obtain

½Z�ðhÞ�2 �
Z

RNj�j
exp � J

2

X
h‘;‘0i2E1

jx‘ � x‘0 j2
0@ 1A


 dþ
�
ð1Þ
þ



x

�
ð1Þ
þ

�
dþ

�
ð1Þ
�



x

�
ð1Þ
�

�


Z

RNj�j
exp � J

2

X
h‘;‘0i2E1

jx‘ � x‘0 j2
0@ 1A


 d�
�
ð1Þ
�



x

�
ð1Þ
�

�
d�

�
ð1Þ
þ



x

�
ð1Þ
þ

�
¼ Z�ðTþ1 hÞZ�ðT�1 hÞ

Next we estimate both Z�(T�1 h) employing E2 and
T�

2 . Repeating this procedure due times we finally
get

½Z�ðhÞ�2
m

�
Y

�1;...;�m¼�1

Z�ðT�m
m 	 	 	T

�1

1 hÞ¼ ½Z�ð0Þ�2
m

½30�

Note that T�m
m 	 	 	T

�1

1 h=0 for any h2RNjEj and any
sequence �1, . . . ,�m = �1, which follows from [27]
and [28]. &

As might be clear from the proof given above, the
local Gibbs state

��ðAÞ ¼
Z

RNj�j
Aðx�Þ d��ðx�Þ ½31�

defined by means of the measure [22], is RP
with respect to all reflections �n, n = 1, . . . , m.
Indeed, the functional defined by the product
measure

d~��ðx�Þ ¼
def

exp � J

2

X
‘2�

jx‘j2
 !

d��ðx�Þ ½32�

is RP (see Example 2). The Gibbs measure [22] can
be written as

d��ðx�Þ ¼
1

Z�ð0Þ
exp

Xm
n¼1

XN
k¼1

X
‘2�0þ;n

C
ðkÞ
‘ #n C

ðkÞ
‘

� �0@ 1A

 d~��ðx�Þ ½33�

where C(k)
‘ , k = 1, . . . , N, are the same as in [20] and

�0þ,n =def{‘ 2 �(n)
þ jh‘, ‘0i 2 En}. Then the reflection

positivity of the Gibbs state [31] can be obtained
along the line of arguments used for proving Lemma
6. It appears that this is the only possible way to
construct an RP functional from another RP
functional.

Repeated application of the estimate [15] also
yields

��

Y
‘2�

F‘ðx‘Þ
 !

�
Y
‘2�

��

Y
‘02�

F‘ðx‘0 Þ
 !" #1=j�j

½34�

which holds for any family of functions
{F‘ : RN! [0,þ1)}‘2�, for which the above
expressions make sense. The estimate [34] is a
chessboard estimate, which is a very important
element of the theory of phase transitions in
RP models. The estimate [26] may be obtained
from [34].

Infrared Bound

Let us show now how to derive the infrared
estimates from the Gaussian domination [26].
Consider the system of N-dimensional spins
indexed by the elements of Zd with the nearest-
neighbor ferromagnetic interaction and the sin-
gle-spin measure �. To construct the periodic
local Gibbs measure of this system, we take the
box

� ¼ ð�L;L�d
\

Zd; L 2 N ½35�

and impose periodic conditions on its boundaries.
This defines the periodic distance

j‘� ‘0j� ¼
Xd

j¼1

j‘j � ‘0jj
2
L

" #1=2

; ‘; ‘0 2 �

j‘j � ‘0jjL ¼ minfj‘j � ‘0jj; L� j‘j � ‘0jjg

½36�

and hence the set of edges E, being unordered
pairs h‘, ‘0i such that j‘� ‘0j� = 1. Thus, we have
the graph (�, E) and the measure [22]. This is the
periodic local Gibbs measure of our model. By
[31] it defines the periodic local Gibbs state ��.
We have included the inverse temperature � into J
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and assumed that the single-spin measure � is
rotation invariant. Let us introduce the Fourier
transformation

x̂ðpÞ ¼ 1ffiffiffiffiffiffi
j�j

p X
‘2�

x‘e
ið‘;pÞ

x‘ ¼
1ffiffiffiffiffiffi
j�j

p X
p2�

x̂ðpÞe�ið‘; pÞ
½37�

� ¼
�

p ¼ ðp1; . . . ; pdÞj pj ¼ ��þ
�

L
�j;

�j ¼ 1; . . . ; 2L; j ¼ 1; . . . ; d

�
½38�

Then we can set

bKðkÞ� ðpÞ ¼ �� x̂ðkÞðpÞx̂ðkÞð�pÞ
h i

bK�ðpÞ ¼
XN
k¼1

bKðkÞ� ðpÞ
½39�

Thereby, cf. [1], [2],

K�ð‘; ‘0Þ ¼
def
��½ðx‘; x‘0 Þ� ¼

1

j�j
X
p2�

bK�ðpÞeiðp;‘�‘0Þ ½40�

By construction, for any ‘0 2 �,

K�ð‘; ‘0Þ ¼ K�ð‘þ ‘0; ‘
0 þ ‘0Þ ½41�

where addition is componentwise modulo 2L. This
means that K�(‘, ‘0) is invariant with respect to the
translations on the corresponding torus. One can
show that K�(‘, ‘0) converges, as L!þ1, to K(‘, ‘0)
discussed in the Introduction. The corresponding
Gibbs state of the whole model is called the periodic
Gibbs state. By construction, it is translation
invariant. Set

EðpÞ ¼
Xd

j¼1

½1� cos pj�; p 2 ð��; ��d ½42�

Theorem 10 For all p 2 � n {0},

bK�ðpÞ �
N

2JEðpÞ ½43�

Proof Consider the function f (	) = Z�(	h), 	 2 R,
where Z�(h) is defined by [25]. By Theorem 9 it has
a maximum at 	= 0; hence,

f 00ð0Þ � 0 ½44�

Obviously, f 00(0) depends on h = (h‘‘0)h‘, ‘0i2E,
h‘‘0 2 RN. Let us choose h such that only the

first components h(1)
‘‘0 are nonzero. Then [44]

holds if

J
X

h‘1;‘
0
1
i2E

X
h‘2;‘02i2E

�� x
ð1Þ
‘1
�x

ð1Þ
‘0

1

� �
x
ð1Þ
‘2
�x

ð1Þ
‘0

2

� �h i
h
ð1Þ
‘1‘
0
1
h
ð1Þ
‘2‘
0
2

�
X
h‘;‘0i2E

h
ð1Þ
‘‘0

h i2
½45�

This means that the eigenvalues of the matrix of the
real quadratic form (with respect to h) defined by
the left-hand side of [45] do not exceed one. The
same ought to be true for the extension of this form
to the complex case. Let us show that the complex
eigenvectors h(1)

‘‘0 (p) of this matrix and the corre-
sponding eigenvalues �(p) are

h
ð1Þ
‘‘0 ðpÞ ¼ ðe

iðp;‘Þ � eiðp;‘0ÞÞ=
ffiffiffiffiffiffi
j�j

p
�ðpÞ ¼ 2JEðpÞbKð1Þ� ðpÞ

p 2 � ½46�

For j = 1, . . . , d, let �j 2 Zd be the unit vector with
the jth component equal to 1. Then for h‘, ‘0i 2 E,
there exists �j such that ‘� ‘0=��j. Since the edge
h‘, ‘0i is an unordered set, let us fix ‘0= ‘þ �j.
Thereby,

1

j�j1=2
X
h‘;‘0i2E

x
ð1Þ
‘ � x

ð1Þ
‘0

� ��
eiðp;‘Þ � eiðp;‘0Þ

�

¼ 2

j�j1=2
X
‘2�

Xd

j¼1

x
ð1Þ
‘ eiðp;‘Þ � x

ð1Þ
‘ eiðp;‘Þ cosðp; �jÞ

h i
¼ 2x̂ð1ÞðpÞEðpÞ

In view of [41], one has

��½x̂ð1ÞðpÞx̂ð1Þðp0Þ� ¼ �0;pþp0
bKð1Þ� ðpÞ

Then employing the latter two facts and [37], we get

J
X

h‘2;‘02i2E

�� x
ð1Þ
‘1
� x

ð1Þ
‘0

1

� �
x
ð1Þ
‘2
� x

ð1Þ
‘0

2

� �
h‘2‘02ðpÞ

h
¼ 2JEðpÞ�� x

ð1Þ
‘1
� x

ð1Þ
‘0

1

� �
x̂ð1ÞðpÞ

h i
¼ 2JEðpÞ 	 1

j�j1=2
X
p02�

�� x̂ð1Þðp0Þx̂ð1ÞðpÞ
h i


 e�iðp0;‘1Þ � e�iðp0;‘0
1
Þ

� �
¼ 2JEðpÞbKð1Þ� ðpÞh‘1‘01ðpÞ

which proves [46]. Then by [45] bK(1)
� (p) � 1=2JE(p),

for p 6¼ 0. The same holds for bK(k)
� (p), k = 2, . . . , N,

which by [39] yields [43]. &

The result just proved and the convergence of
K�(‘, ‘0)!K(‘, ‘0), as L!þ1, imply the infrared
bound [4]. It turns out that the estimate [43]
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may be used directly to prove the phase transi-
tion. Consider

P�¼
def 1

j�j2
X

‘1;‘22�

��½ðx‘1 ; x‘2Þ�

¼ ��
1

j�j
X
‘2�

x‘

					
					
2

0@ 1A � 0 ½47�

where � is the box [35]. By [40] and [41], we have

P� ¼
1

j�j
bK�ð0Þ ½48�

One can show that if P =
def

limL!þ1 P� is positive,
then there exist multiple Gibbs states. By [40], [41],
and [48], we get that for any ‘ 2 �,

K�ð‘; ‘Þ ¼ P� þ
1

j�j
X

p2�nf0g

bKðpÞ ½49�

Suppose that, cf. [5],

K�ð‘; ‘Þ � K > 0 ½50�

with K independent of � and J. Employing in [49]
this estimate and [43], and passing to the limit
L!þ1, we get

P � K� IðdÞN=2J ½51�

where

IðdÞ ¼def 1

ð2�Þd
Z
ð��;��d

dp

EðpÞ ½52�

which is finite for d � 3. Thereby, we have proved
the following:

Theorem 11 For the spin model [22], [23], there
exist multiple Gibbs states, and hence multiple
phases, if d � 3 and J > I (d)N=2K.

Finally, let us pay some attention to the estimate
[50], which is closely related with the properties of the
single-spin measure � (note that � played no role in
obtaining [26] and [43]). If it is the uniform measure
on the unit sphere SN�1 � RN, then K�(‘, ‘) = 1 and
[50] is trivial. In general, one has to employ some
technique to obtain such an estimate.

Reflection Positivity and Phase
Transitions in Quantum Systems

As in the classical case, the way of proving the phase
transition for appropriate models leads from an
estimate like [17] to Gaussian domination and then
to the infrared bound. However, here this way is
much more complicated, so in the frames of this

article we can only sketch its main elements basing
on the original paper by Dyson et al. (1978), where
the interested reader can find the details. As above,
we start by studying reflection positive functionals.

Reflection Positivity in Nonabelian Case

Again we consider a finite set �, j�j being even. For every
‘ 2 �, let a complex Hilbert space H‘ be given. This is
the single-spin physical Hilbert space for our quantum
system. We suppose that allH‘, ‘ 2 �, are the copies of a
certain finite-dimensional spaceH. The physical Hilbert
space H� corresponding to � is the tensor product of
H‘, ‘ 2 �. Let A� be the algebra of all linear operators
defined onH�. This is the algebra of observables in our
case; it is noncommutative (nonabelian) and contains the
unit element I – the identity operator. As above, � splits
into two subsets ��, which are the mirror images of each
other, that is, we are given a reflection � : �!�, such
that �(�þ) = ��. This allows us to introduce the
corresponding subalgebras A�� by setting the elements
ofAþ� to be of the form A� I, where A :H�þ !H�þ is a
linear operator and I is the identity operator on H�� .
Respectively, the elements of A�� are to be of the form
I � A. Then we define the map # :Aþ�!A

�
� as

#ðA� IÞ ¼ I � �A ½53�

where A 7! �A is complex (not Hermitian) conjugation; it
may be realized as transposing and taking Hermitian
conjugation. For A1, . . . , An 2 A, one has �A1 	 	 	 �An =
A1, 	 	 	An. We also suppose that # possesses the
properties [8]. A linear functional � :A� ! R is called
RP (with respect to the pair �,#) if it has the property [9].

Definition 12 A functional � is called generalized
reflection positive (GRP) if for any A1, . . . , An 2 Aþ� ,

�½A1#ðA1Þ 	 	 	An#ðAnÞ� � 0 ½54�

In principle, this notion differs from the reflection
positivity only in the nonabelian case. However, if
the algebras A�� commute (they do commute in our
case), a functional � is RP if and only if it is GRP.

Example 13 Let

�ðAÞ ¼ traceðAÞ; A 2 A� ½55�

Since the space H� is finite dimensional, this � is
well defined. It is GRP. Indeed, as the algebras A��
commute, we have

�½A1 � I 	 #ðA1 � IÞ 	 	 	An � I 	 #ðAn � IÞ�
¼ �½A1 � I 	 	 	An � I 	 #ðA1 � IÞ 	 	 	#ðAn � IÞ�
¼ �½A1 � I 	 	 	An � I 	 #ðA1 � I 	 	 	An � IÞ�
¼ trace½A1 	 	 	An� 	 trace½�A1 	 	 	 �An�
¼ trace½A1 	 	 	An�j j2� 0
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The Cauchy–Schwarz inequality [13] obviously
holds also in the quantum case. By means of this
inequality and the Trotter product formula

expðAþ BÞ ¼ lim
n!þ1

½expðA=nÞ expðB=nÞ�n ½56�

one can prove that every RP functional obeys an
estimate like [17]. Thereby, we have the following
analog of Lemma 6:

Lemma 14 Let A, B, C1, . . . , Cn 2 Aþ� be any self-
adjoint operators possessing real matrix representa-
tion and a1, . . . , am be any real numbers. Then

trace exp Aþ #ðBÞ �
Xm
n¼1

½Cn � #ðCnÞ � an�2
 !( )" #2

� trace exp Aþ #ðAÞ �
Xm
n¼1

½Cn � #ðCnÞ�2
 !( )


 trace exp Bþ #ðBÞ �
Xm
n¼1

½Cn � #ðCnÞ�2
 !( )

½57�

Gaussian Domination and Phase Transitions

To proceed further we need a concrete model with
finite-dimensional physical Hilbert spaces. As every
quantum model, it is defined by its Hamiltonian. Let
� � Z d be the box [35] and (� , E ) be the same
graph as in the sub section ‘‘Infrared bound.’’ The
periodic Hamiltonian of our model is

H� ¼
X
‘2�

Q‘ þ
1

2

X
h‘;‘0i2E

jS‘ � S‘0 j2 ½58�

where at each ‘ 2 � we have the copies Q‘,
S(1)
‘ , . . . , S(N)

‘ of N þ 1 basic operators, acting in the
Hilbert space H‘, and

jS‘ � S‘0 j2 ¼
XN
k¼1

S
ðkÞ
‘ � S

ðkÞ
‘0

� �2

The only condition we impose so far is that all these
operators can simultaneously be chosen as real
matrices. For h = (h‘‘0)h‘,‘0i2E 2 RNjEj, we set

Z�ðhÞ¼ trace

(
exp

 
��

X
‘2�

Q‘

��
2

X
h‘;‘0i2E

jS‘�S‘0 �h‘‘0 j2
!)

½59�

where �> 0 is the inverse temperature.

Theorem 15 For the model [58] and any
h = (h‘‘0)h‘, ‘0i2E 2 RNjEj,

Z�ðhÞ � Z�ð0Þ ½60�

The proof is performed by means of Lemma 14.
The periodic local Gibbs state of the model [58] at

the inverse temperature �, analogous to the state [31], is

��ðAÞ¼ tracefA expð��H�Þg=Z�ð0Þ; A2A� ½61�

As in the classical case, one can define the parameter
[47]. However, now the fact that limL!þ1P� > 0
does not yet imply the phase transition. One has to
prove a more general fact

lim
L0!þ1

lim
L!þ1

��
1

j�0j
X
‘2�0

S‘

					
					
2

0@ 1A8<:
9=; > 0 ½62�

where �0 is the box [35] of side 2L0. Furthermore, in
the quantum case the Gaussian domination [60]
does not lead directly to the estimate [43], which
yields [51]. Instead, one can get a bound like [43]
but for the Duhamel two-point function (DTF).
Given A, B 2 A�, their DTF is

ðA;BÞ ¼
Z 1

0

��ðAe�	�H�Be	�H�Þd	 ½63�

By means of [56] one can show that

ðA;BÞ¼ 1

Z�ð0Þ


 @2

@	@

trace½expð	Aþ
B��H�Þ�

� �
	¼
¼0

½64�

Let Ŝ(p)= (Ŝ(1)(p), . . . , Ŝ(N)(p)),p2�, be the Fourier
image of S‘, defined by [37], [38]. Then�

ŜðpÞ; Ŝð�pÞ
�
¼
XN
k¼1

�
ŜðkÞðpÞ; ŜðkÞð�pÞ

�
Theorem 16 For all p 2 �n{0}, it follows that�

ŜðpÞ; Ŝð�pÞ
�
� N

2�EðpÞ ½65�

To prove this statement one has to use the
Gaussian bound [60] exactly as in the case of
Theorem 10. The second derivative with respect to
	 gives the corresponding DTF (see [64]).

Now let us indicate how the infrared bound [65]
leads to the phase transition. To this end we use the
simplest quantum spin model with the Hamiltonian
[58], for which Q‘ = 0, N = 2, and S(k)

‘ , k = 1, 2,
being the copies of the Pauli matrices

Sð1Þ ¼ 0 1
1 0

� 
; Sð2Þ ¼ 1 0

0 �1

� 
Then

K
ðkÞ
� ð‘; ‘Þ ¼ �� S

ðkÞ
‘ 	 S

ðkÞ
‘

� �
¼ 1

for all ‘ 2 �; k ¼ 1; 2 ½66�
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which gives the bound K (see [50]). For A, B 2 A�,
by [A, B] we denote the commutator AB� BA. Set

�
ðkÞ
� ðpÞ ¼ �� ŜðkÞðpÞ; H�; Ŝ

ðkÞð�pÞ
h ih i� �

k ¼ 1; 2 ½67�

The phase transition in the model we consider can
be established by means of the following statement
(see Dyson 1978, Theorem 5.1).

Proposition 17 Suppose there exist �(k)(p), k = 1, 2,
p 2 (��,�]d such that, for all L 2 N,

�
ðkÞ
� ðpÞ � �ðkÞðpÞ; k ¼ 1; 2; p 2 � ½68�

Then the model undergoes a phase transition at a
certain finite � if d � 3 and

1

ð2�Þd
Z
ð��;��d

�ðkÞðpÞ
8EðpÞ

� �1=2

dp < 1 ½69�

for a certain, and hence for both, k = 1, 2.

Thus to prove the phase transition we have to
estimate �(k)

� (p), k = 1, 2. By means of the Cauchy–
Schwarz inequality, the estimate [69] may be
transformed into the following:

1

ð2�Þd
Z
ð��;��d

�ð1ÞðpÞ þ �ð2ÞðpÞ
h i

dp < 16=IðdÞ

where I (d) is the same as in [52]. The integral on
the left-hand side can be estimated from above by
8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d(d þ 1)

p
; hence, the latter inequality holds if

IðdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd þ 1Þ

q
< 2

which holds for all d � 3. In particular, I (3) � 0.505.
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Introduction

If A is a finite, say N 
N, matrix with
complex coefficients, the following easy equality
gives an expression for the polynomialQN

k = 1 (1� z�k) = det (Id� zA):

detðId� zAÞ ¼ exp �
X1
n¼1

zn

n
tr An

 !
½1�

(here, Id denotes the identity matrix and tr is the
trace of a matrix). Even in this trivial finite-
dimensional case, the z-radius of convergence of
the logarithm of the right-hand side only gives
information about the spectral radius (the modulus
of the largest eigenvalue) of A. The zeros of the
left-hand side (i.e., the inverses z = 1=�k of the
nonzero eigenvalues of A) can only be located
after extending holomorphically the right-hand
side. The purpose of this article is to discuss
some dynamical situations in which A is replaced
by a linear bounded operator L, acting on an
infinite-dimensional space, and for which a dyna-
mical determinant (or dynamical �-function), con-
structed from periodic orbits, takes the part of the
right-hand side. In the examples presented, L will
be a transfer operator associated to a weighted
discrete-time dynamical system: given a transfor-
mation f : M ! M on a compact manifold M and
a function g : M ! C, we set

L’ ¼ g 	 ’ � f�1 ½2�

(If f is not inversible, it is understood, e.g., that f
has at most finitely many inverse branches, and
that the right-hand side of [2] is the sum over
these inverse branches, see the next section.) We
let L act on a Banach space of functions or
distributions ’ on M. For suitable g (in particular
g = j det Tf�1j when this Jacobian makes sense), the
spectrum of L is related to the fine statistical
properties of the dynamics f: existence and
uniqueness of equilibrium states (related to the
maximal eigenvector of L), decay of correlations
(related to the spectral gap), limit laws, entro-
pies, etc: see, for example, Baladi (1998) or
Cvitanović et al. (2005). The operator L is not
always trace-class, indeed, it sometimes is not
compact on any reasonable space. Even worse, its
essential spectral radius may coincide with its
spectral radius. (Recall that the essential spectral
radius of a bounded linear operator L acting on a
Banach space is the infimum of those � > 0, such
that the spectrum of L outside of the disk of
radius � is a finite set of eigenvalues of finite
algebraic multiplicity.) However, various techni-
ques allow us to prove that a suitable dynamically
defined replacement for the right-hand side of [1]
extends holomorphically to a disk in which its
zeros describe at least part of the spectrum of L.
Some of these techniques have a ‘‘regularization’’
flavor, and we shall concentrate on them.

In the following section, we present the simplest
case: analytic expanding or hyperbolic dynamics,
for which no regularization is necessary and the
Grothendieck–Fredholm theory can be applied.
Next, we consider analytic situations where
finitely many neutral periodic orbits introduce
branch cuts in the dynamical determinant, and
see how to ‘‘regularize’’ them. Finally, we discuss a

386 Regularization for Dynamical �-Functions
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kneading operator regularization approach,
inspired by the work of Milnor and Thurston,
and applicable to dynamical systems with finite
smoothness.

Despite the terminology, none of the regulariza-
tion techniques discussed below match the following
‘‘�-regularization’’ formula:Y1

k¼1

ak ¼ exp � d

ds

X1
k¼1

a�s
k js¼0

 !
½3�

(For information about the above �-regularization
and its applications to physics, we refer, e.g., to
Elizalde 1995. See also Voros (1987) and Fried
(1986) for more geometrical approaches and further
references, e.g., to the work of Ray and Singer.)

We do not cover all aspects of dynamical
�-functions here. For more information and refer-
ences, we refer to our survey Baladi (1998), to the
more recent surveys by Pollicott (2001) and Ruelle
(2002), and also to the exhaustive account by
Cvitanović et al. (2005), which contains a rich
array of physical applications.
The Grothendieck–Fredholm Case

Let M be a real analytic compact manifold (e.g., the
circle or the d-torus), and let f : M ! M be real
analytic and g : M!C be analytic.

First suppose that f is uniformly expanding, that
is, there is � > 1 so that kTf (v)k � �kvk. (For
example, f (z) = z2 on the unit circle, or a small
analytic perturbation thereof.) Consider

Lf ; g’ðxÞ ¼
X

y: f ðyÞ¼x

gðyÞ’ðyÞ ½4�

(For example, with g(y) = 1=j det Tf (y)j or
1=j det Tf (y)js.) Ruelle (1976) proved that an
operator L0, which is essentially the same as Lf , g

(the difference, if any, arises from the use of Markov
partitions, especially in higher dimensions), acting
on a Banach space of holomorphic and bounded
functions, is not only compact, but is in fact a
nuclear operator in the sense of Grothendieck. In
particular, the traces of all its powers are well
defined, and the Grothendieck–Fredholm (Gohberg
et al. 2000) determinant

d0ðzÞ ¼ exp �
X1
n¼1

z n

n
trLn

0

 !
½5�

extends to an entire function of finite order, the
zeros of which are exactly the inverses of the
nonzero eigenvalues of L0. (The order of the zero
coincides with the algebraic multiplicity of the
eigenvalue.) Ruelle also proved that the traces can
be written as sums over periodic orbits:

trLn
0 ¼

X�
x: f nðxÞ¼x

Qn�1
k¼0 gðf kxÞ

j detðId� Tf�n
x Þj

where
P� means that the fixed points of f n lying in

the intersection of two or more elements of the
Markov partition must be counted two or more
times. (Note that if f n(x) = x, then this closed orbit
gives a natural inverse branch for f�n.) Taking into
account the periodic orbits on the boundaries of the
Markov partition, Ruelle expresses the following
‘‘dynamical determinant’’:

df; gðzÞ

¼ exp �
X1
n¼1

zn

n

X
x: f nðxÞ¼x

Qn�1
k¼0 gðf kxÞ

jdetðId� Tf�n
x Þj

24 35 ½6�

as an alternated product of determinants d0(z) as in [5].
The expression [6] is sometimes also called a

‘‘dynamical �-function,’’ but we prefer to reserve this
terminology for the following power series:

�f; gðzÞ ¼ exp þ
X1
n¼1

zn

n

X
x: f nðxÞ¼x

Yn�1

k¼0

gðf kxÞ

24 35 ½7�

It is not difficult to write �f , g(z) as (Baladi 1998) an
alternated product of determinants df , gi

, for
i = 0, . . . , d, and appropriate weights gi.

In fact, the results just described hold in more
generality, for example, for piecewise bijective and
analytic interval maps. Such maps, f, appear
naturally, for example, when considering Schottky
subgroups of PSL(2, Z). We mention the recent
work of Guillopé–Lin–Zworski (2004), who let the
transfer operator associated to such f and weights
gs(y) = 1=jf 0(y)js act (as trace-class operators) on
suitable Hilbert spaces of holomorphic functions.
This allows them to obtain precise estimates for the
number of zeros of s 7! df , gs

[1] in the complex
plane: these zeros are the resonances (in the sense of
the spectrum of the Laplacian).

Note that the nuclearity properties extend also to
the Gauss map f (x) = {1=x}, which has infinitely
many inverse branches, if the weight g has summa-
bility properties over the branches (e.g.,
gs(y) = j1=f 0(y)js, where s is a complex parameter,
with <s > 1=2). The dynamical determinant df , gs

(z)
for the transfer operator of the Gauss map is related
to the Selberg �-function (see e.g., Chang and Mayer
(2001) and references therein).

Next, assume that M and g are as before, but f is a
uniformly hyperbolic real analytic diffeomorphism.
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For example, M is the 2-torus and f is a small real
analytic perturbation of the linear automorphism

2 1
1 1

� �
More generally, we may assume that f is a real
analytic Anosov diffeomorphism, that is, there are
C � 1 and � > 1 such that the tangent bundle
decomposes as TM = Eu 	 Es, where the dynamical
bundles Eu and Es are Tf-invariant, with kTf njEsk 

C��n and kTf�njEuk 
 C��n for all n 2 Zþ. In
general, the smoothness of x 7!Eu(x) and Es(x) is
only Hölder. Under the very strong additional
assumption that Eu(x) and Es(x) are real analytic,
Ruelle (1976) (see also Fried (1986)) showed that
the power series df , g(z) can again be written as a
finite alternated product (this product being again
an artifact of the Markov partition) of entire
functions of finite order. For this, he constructed
auxiliary transfer operators associated to the
expanding (and analytic!) quotiented dynamics
acting on holomorphic functions on disks. The
analyticity assumption on the dynamical bundles
was later lifted by Rugh (1996) (see also Fried
(1995)), who let their transfer operators act on
Banach topological tensor products of spaces of
holomorphic functions on a disk with the dual of
such a space. In all these cases, the transfer
operator is a nuclear operator in the sense of
Grothendieck and no regularization is needed.
(More recent work of Kitaev (1999), when applied
to this analytic setting, shows that the ‘‘mero-
morphic’’ function df , g(z) in fact does not have
poles.)
Regularization and Intermittency

Consider the interval M = [0, 1], and f defined on M
by f (x) = f1(x) = x=(1� x) on [0, 1/2], and f (x) =
f2(x) = (1� x)=x on [1/2, 1]. (This is the Farey
map, which appears naturally when considering
continued fractions.) Each of the two branches is
an analytic bijection onto [0, 1]. The second branch
is expanding, but the first one, f1, has a (parabolic)
neutral fixed point at x = 0 (the expansion is
f (x) = xþ x2 þ x3 þ � � �). Let g = gs be an analytic
weight of the form g(y) = 1=jf 0(y)js for <s � 1=2. We
are interested in the spectrum of the operator Lf , g

associated with the pair (f , g) by [4]. Clearly, the
expression [6] is not a good candidate for an analog
of the Fredholm determinant of Lf , g. Rugh (1996)
introduced a Banach space B of functions in a
complex neighborhood of M, having a controlled
singularity at 0, and such that the spectral radius of
Lf , g on B is equal to 1, and such that the following
regularized determinant

df; gðzÞ

¼ exp �
X1
n¼1

z n

n

X
x2ð0;1�: f nðxÞ¼x

Q
n�1
k¼0 gsð f kxÞ
1� Tf�n

x

24 35 ½8�

is a holomorphic function in the cut complex plane
{z 2 C j z 62 [1,1)}. Furthermore, its zeros z in this
cut plane are in bijection with the spectrum of Lf , gjB
outside of the unit interval [0, 1], and this spectrum
consists of eigenvalues 1/z of finite multiplicities.
Finally, these eigenvalues can only accumulate at 0
or 1, although each point in the unit interval belongs
to the spectrum of Lf , g. In particular, the essential
spectral radius of Lf , g on B coincides with its
spectral radius.

Let us define the Banach space B and explain the
key ideas in the proof of the above result (Rugh’s
claim is in fact more general than the statement
above and applies to a class of maps f with neutral
fixed points). The starting point is the decomposition

Lf ; g ¼ L1 þ L2

where Li’=’ � f�1
i � j(f�1

i )0js. The operator L2 is of
the type discussed in the previous section, and it is
nuclear when acting, for example, on bounded
holomorphic functions in a complex neighborhood
of M. Since f1 is not expanding (because of the
parabolic fixed point at 0), other ideas must be used
to handle the operator L1. The change of coordinates
(this idea goes back to Fatou) w = 1=x replaces the
weak contraction f�1

1 by the translation w 7!wþ 1 in
a suitable domain containing a half-plane <w > w0.
In order to take into account the weight gs, it is
convenient to use the change of variables
�(w) =’(1=w) �w�2s. Indeed, in the new coordinates
the operator L1 reads as

M1�ðwÞ ¼ �ðwþ 1Þ

The next step consists in letting M1 act on the
Banach space Bw of Laplace transforms of
L1(Rþ, Lebesgue), that is, functions

�ðwÞ ¼
Z 1

0

e�ðw�w0Þt ðtÞ dt

with the induced norm k�kBw
=
R
j (t)j dt. SinceM1

maps  to e�t (t), it is not difficult to see that the
spectrum ofM1 on Bw (and thus ofL1 on the pullback
B of Bw by �, which consists of functions in a complex
neighborhood of [0,1], holomorphic in a sector at 0,
and with a possible, but controlled, singularity at 0) is
the closed unit interval. One can check that L2 is
nuclear on B. Composing a bounded operator with a



Regularization for Dynamical �-Functions 389
nuclear operator gives a nuclear operator. If 1=z 62
[0, 1], the resolvent (1� zL1)�1 is a bounded operator,
and therefore, for such z, the operator

PðzÞ :¼ zL2ð1� zL1Þ�1 ½9�

is nuclear on B. We view P(z) as a ‘‘regularized’’
version of Lf , g =L1 þ L2. Now, since

ð1� zLf ; gÞ�1 ¼ ð1� zðL1 þ L2ÞÞ�1

¼ ð1� zL1Þ�1 1� zL2ð1� zL1Þ�1
� ��1

it is not surprising that one can prove (Rugh 1996)
that the Fredholm determinant

u 7! det 1� L2ðu� L1Þ�1
� �

(which is holomorphic in u 62 [0, 1]) has as its zero set
sp(Lf , gjB) n [0, 1], and that this set consists in isolated
eigenvalues of finite multiplicity (equal to the order of
the corresponding zero) for Lf , g. Formally,

ð1� zL1Þ�1 ¼
X1
k¼0

z kL k
1 ½10�

so that the regularization we just described can be
viewed as mirroring an induction (or renormaliza-
tion) procedure, where the dynamics f is replaced by
the first-return map to the ‘‘chaotic’’ part of the
phase space [0, 1/2]. (For the Farey map, the induced
map is just the Gauss map.) The formal equality [10]
is also behind the fact that (Rugh 1996)

trPðzÞn ¼
X

x 6¼0: f nðxÞ¼x

Q
n�1
k¼0 gsðf kxÞ
1� Tf�n

x

An extension of this theory to the two-dimensional
setting has been obtained by Baladi, Pujals, and
Sambarino.
Regularization and Kneading
Determinants

Up to now we have only discussed analytic dynamical
systems, for which hyperbolicity (or uniform expan-
sion) guaranteed that the transfer operator (or a
regularized version thereof) was compact, even
nuclear, on a natural Banach space. When considering
hyperbolic invertible (or expanding noninvertible)
maps f, and weights g with ‘‘finite smoothness,’’ say
Cr for some finite r > 1, the transfer operator defined
by [2] or [4] is usually not compact on any infinite-
dimensional space. However, one can often prove a
‘‘Lasota–Yorke’’ type inequality (see e.g., Baladi
(1998)) which ensures that the essential spectral radius
�ess(Lf , g), defined in the ‘‘Introduction,’’ is strictly
smaller than the spectral radius. Then, the goal is to
prove that the dynamical determinant [6] defines a
holomorphic function in the disk of radius 1=�ess, and
that its zeros in this disk are exactly the inverses of the
eigenvalues of Lf , g. For uniformly expanding Cr maps
f on compact manifolds, and Cr weights, denoting by
� > 1 the expansion coefficient as in the section ‘‘The
Grothendieck–Fredholm case,’’ this goal was essen-
tially attained by Ruelle (1990). For Lf , g acting on the
Banach space of Cr functions on M, Ruelle proved
�ess(Lf , g) 
 ��r and was able to extend df , g(z) (and
interpret its zeros) in the disk of radius �r.

For Cr Anosov diffeomorphisms f, and Cr weights g,
Pollicott, Ruelle, Haydn, and others obtained important
results using the symbolic dynamics description (for
which the maximal smoothness which can be used is
r 
 1, because of the metric-space model). Later, Kitaev
(1999) was able to show that df , g(z) extends to a
holomorphic function in the disk of radius ��r=2,
but did not give any spectral interpretation of the
zeros of df , g(z). More recently, Liverani (2005) was able
to give such an interpretation, in a smaller disk however.

All the works mentioned in the previous paragraph
are based on some approximation scheme (Taylor
expansion style). In the early 1990s, a new approach,
with a regularization flavor, was launched (see e.g.,
Baladi and Ruelle (1996)), initially for piecewise
monotone interval maps. We present it next.

Consider a finite set of local homeomorphisms
 ! : U! !  !(U!), where each U! is a bounded
open interval of R, and of associated weight functions
g! which are continuous, of bounded variation, and
have support inside U!. For example, the  ! can be the
inverse branches of a single piecewise monotone
interval map f, and g! can be g �  ! for a single g.
(No contraction assumption is required on the  !:
their graph can even coincide with the diagonal on a
segment.) The transfer operator is now

M’ ¼
X
!

g! � ð’ �  !Þ

Ruelle obtained an estimate, noted bR, for the essential
spectral radius ofM acting on the Banach space BV of
functions of bounded variation. The main result of
Baladi and Ruelle (1996) links the eigenvalues of
M : BV ! BV outside of the disk of radius bR, with
the zeros of the following ‘‘sharp determinant’’:

det#ðId� zMÞ ¼ exp �
X1
n¼1

z n

n
tr#Mn

 !
½11�

where (with the understanding that y=jyj= 0 if y = 0)

tr#M¼
X
!

Z
1

2

 !ðxÞ � x

j !ðxÞ � xj dg!ðxÞ
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If the  ! are strict contractions which form the set
of inverse branches of a piecewise monotone interval
map f, and g! = g �  !, then integration by parts
together with the key property that

d
x

2jxj ¼ �; the Dirac delta at the origin of R

show that det#(Id� zM) = 1=�f , g(z) (recall [7]). If
one assumes instead only that the graph of each
admissible composition  n

w of n successive  !’s (with
n � 1) intersects the diagonal transversally, then

det#ðId� zMÞ

¼ exp �
X1
n¼1

zn

n

X
admissible n

w

X
x: n

wðxÞ¼x

L x;  n
w

� �24
�
Yn�1

k¼0

g!k
 k

wðxÞ
� �#

½12�

where L(x, ) 2 {�1, 1} is the Lefschetz number of a
transversal fixed point x = (x) (if  is C1 this is just
sgn (1�  0(x))). Therefore, we call the sharp determi-
nant det#(Id� zM) a Ruelle–Lefschetz (dynamical)
determinant. For a class of ‘‘unimodal’’ interval maps f
and constant weight g = 1, the expression [12] with
Lefschetz numbers, coming from the additional
transversality assumption, gives that det#(Id� zM)
is just 1=��(z), where the ‘‘negative �-function’’

��ðzÞ ¼ exp þ
X1
n¼1

zn

n
2#Fix�ðf nÞ � 1ð Þ

" #
½13�

is defined by counting (twice) the sets

Fix�ðf nÞ ¼ fxjf nðxÞ ¼ x; f strictly decreasing

in a neighborhood of xg

of ‘‘negative fixed points.’’ This negative �-function
was studied by Milnor and Thurston, who proved
the remarkable identity

ð��ðzÞÞ�1¼ detð1þ bDðzÞÞ
where bD(z) is a 1� 1 ‘‘matrix,’’ which is just a
power series in z with coefficients in {�1, 0,þ1},
given by the signed itinerary of the image of the
turning point (the so-called ‘‘kneading’’ data).

Returning now to the general setup  !, g!, the
crucial step in the proof of the spectral interpreta-
tion of the zeros of this Ruelle–Lefschetz determi-
nant consists in establishing the following
continuous version of the Milnor–Thurston identity:

det#ðId� zMÞ ¼ det �ðIdþ bDðzÞÞ ½14�

where the ‘‘kneading operator’’ bD(z) replaces (for-
mally) the finite kneading matrix of Milnor and
Thurston. In a suitable z-disk, one proves that this
operator bD(z) is a Hilbert–Schmidt operator on an
L2 space (its kernel is bounded and compactly
supported), thus allowing the use of regularized
determinants of order 2 (see e.g., Gohberg et al.
(2000)). By definition, det�(Idþ bD(z)) is the product of
this regularized determinant with the exponential of the
average of the kernel of bD(z) along the diagonal, which
is well defined. Another kneading operator, D(z), is
essential. If 1=z is not in the spectrum of M (on BV),
then D(z) is also Hilbert–Schmidt, and one can show
det�(Idþ bD(z)) = det�(IdþD(z))�1. The initial defini-
tions of bD(z) and D(z) were technical and we shall not
give them here. However, a more conceptual definition
of the D(z) was later implemented:

DðzÞ ¼ N ðId� zMÞ�1S ½15�

where N is an auxiliary transfer operator and S is
the convolution

S’ðxÞ ¼
Z

1

2

x� y

jx� yj’ðyÞ d�

where � is an auxiliary non-negative finite measure.
From [15], it becomes clear that the kneading
operator is a regularized (through the convolution
S) object which describes the inverse spectrum of the
transfer operator: the resolvent (Id� zM)�1 in [15]
means that poles can only appear if 1=z is an
eigenvalue. Since det�(Idþ bD(z)) = det�(IdþD(z))�1,
this can be translated into a statement for zeros of
det�(Idþ bD(z)). The Milnor–Thurston identity [14]
then implies that any zero of det#(Id� zM) is an
inverse eigenvalue of M.

The one-dimensional kneading regularization we
just presented is well understood. The higher-
dimensional theory is not as developed yet. Let
U! be now finitely many bounded open subsets of Rd,
 ! : U! !  !(U!) be local Cr homeomorphisms or
diffeomorphisms, while g! : U! ! C are compactly
supported Cr functions, for r � 1.

In 1995, A Kitaev wrote a two-page sketch proving a
higher-dimensional Milnor–Thurston formula, under
an additional transversality assumption. This assump-
tion guarantees that the set of fixed points of each fixed
period m is finite, so that the Ruelle–Lefschetz
determinant det#(Id� zM) can be defined through
[12]. Inspired by Kitaev’s unpublished note, Baillif
(2004) proved the following Milnor–Thurston formula:

det#ðId� zMÞ ¼
Yd�1

k¼0

det [ðIdþDkðzÞÞð�1Þkþ1

½16�

Here, the Dk(z) are kernel operators acting on (kþ 1)-
forms, constructed with the resolvent (Id� zMk)�1,
together with a convolution operator Sk, mapping
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(kþ 1)-forms to k-forms and which satisfies the
homotopy equation dS þ Sd = 1. The kernel �k(x, y)
of Sk has singularities of the form (x� y)=kx� ykd.
The transversality assumption allows Baillif to interpret
the determinant obtained by integrating the kernels
along the diagonal as a flat determinant in the sense of
Atiyah and Bott, whence the notation det[ in the right-
hand side of [16].

Baillif (2004) did not give a spectral interpretation
of zeros or poles of the sharp determinant [16], but
he noticed that for jzj very small, suitably high
iterates of the Dk(z) are trace-class on L2(Rd),
showing that the corresponding regularized determi-
nant has a nonzero radius of convergence under
weak assumptions. The spectral interpretation of the
sharp determinant [12] in arbitrary dimension, but
under additional assumptions, was subsequently
carried out by Baillif and the author of the present
article, giving a new proof of some of the results in
Ruelle (1990).

See also: Chaos and Attractors; Dynamical Systems and
Thermodynamics; Ergodic Theory; Hyperbolic Dynamical
Systems; Number Theory in Physics; Quantum
Ergodicity and Mixing of Eigenfunctions; Quillen
Determinant; Semi-Classical Spectra and Closed Orbits;
Spectral Theory for Linear Operators.
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Introduction

The description of phenomena at high energies
requires the investigation of relativistic wave equa-
tions, that is, equations which are invariant under
Lorentz transformations. Our discussion will be given
classically (i.e., nonquantum). A classification of the
wave equations may be based on the spin of the
particles (or physical fields), which was discovered
for the electron by Goudsmith and Uhlenbeck in
1925. For the greater part of physics, the three spin
numbers s = 0, 1=2, and 1 are sufficient; the respec-
tive equations named after their discoverers Klein–
Gordon, Dirac, and Proca for massive fields and
D’Alembert, Weyl, and Maxwell for massless fields,
respectively (see the following section).

In their original form, these equations look rather
different. However, their translation into spinor form
shows that the wave equations for bosons and fermions



have the same structure, if s > 0. Therefore, most of
the equations dealt with in this article are formulated
for spinor fields. (Strictly speaking, the exclusive use of
2-spinors restricts the relativistic invariance to the
proper Lorentz group SOþ(1, 3). However, all the
results presented here can be ‘‘translated back’’ into
tensor or bispinor form, respectively (Illge 1993).)
Relativistic wave equations for free fields with arbi-
trary spin s > 0 in Minkowski spacetime are discussed
in the section ‘‘Higher spin in Minkowski spac etime’’;
they were first given by Dirac (1936).

In the subsequent section, we explain how the field
theory can be extended to curved spacetimes. If a
Lagrangian is known, then there exists a well-known
mathematical procedure (‘‘Lagrange formalism’’) to
obtain the field equations, the energy–momentum
te ns or , e tc. A ll fie l d eq u at i on s fo r ‘‘lo w’’ s pin s � 1
arise from an action principle. Consequently, they can
be extended to curved spacetime by simply replacing the
flat metric and connection with their curved versions.

If s > 1, then the wave equations do not follow from
a variation principle without supplementary conditions.
Nevertheless, one can try to generalize the equations of
the section ‘‘Higher spin in Minkowski spacetime’’ to
curved spacetime by the ‘‘principle of minimal cou-
pling,’’ too. However, the arising equations are not
satisfactory, since there is an algebraic consistency
condition in curved space if s > 1 (Buchdahl 1962), and
another for charged fields in the presence of electro-
magnetism if s > 1=2 (Fierz and Pauli 1939).

There have been numerous attempts to avoid these
inconsistencies. As a rule, the alternative theories
require an extended spacetime structure or additional
new fields or they give up some important principle. An
extensive literature is devoted to just this problem –
unfortunately, a survey article or book is missing.

Finally, we present a possibility to describe fields
with arbitrary spin s > 0 within the framework of
Einstein’s general relativity without any auxiliary
fields and subsidiary conditions in a uniform manner.
The approach is based on irreducible representations
of type D(s, 0) and D(s� 1=2, 1=2) instead of
D(s=2, s=2) in the Fierz theory for bosons and
D(s=2þ 1=4, s=2� 1=4) in the Rarita–Schwinger
theory for fermions. It was first pointed out
by Buchdahl (1982) that this type of field equations
can be generalized to a curved spacetime if the mass is
positive. After a short time Wünsch (1985) simplified
them to their final form:

5A
P0’AB...E þm1�B...EP0 ¼ 0

rP0

ðA�B...EÞP0 �m2’AB...E ¼ 0
½1�

This system contains the well-known wave equa-
tions for low spin s = 1=2 and s = 1 as special cases.

By iteration we obtain second-order wave equations
of normal hyperbolic type. Further, Cauchy’s initial-
value problem is well posed and a Lagrangian is
known. For zero mass, we state the wave equations

rA
ðA0�jAjB0...E0Þ ¼ 0 ½2�

which are just the curved versions of the equations
for the potential of a massless field. They are
consistent in curved spacetime, too, and the Cauchy
problem is well posed (Illge 1988).

Last but not least, let us mention the esthetic
aspect. Equations [1] and [2] satisfy Dirac’s demand:
‘‘Physical laws should have mathematical beauty.’’

In the following, we assume that the spacetime
and all the spinor and tensor fields are of class C1.
All considerations are purely local. We will call a
symmetric (‘‘irreducible’’) spinor to be of type (n, k)
if and only if it has n unprimed and k primed indices
(irrespective of their position). Moreover, we use the
notations and conventions of Penrose and Rindler
(1984), especially for the curvature spinors �ABCD

and �ABA0B0 .

Wave Equations for Low Spin
in Minkowski Spacetime

The spin (or intrinsic angular momentum) of a
particle is found to be quantized. Its projection on
any fixed direction is an integer or half-integer
multiple of Planck’s constant �h; the only possible
values are

�s�h; ð�sþ 1Þ�h; . . . ; ðs� 1Þ�h; s�h

The spin quantum number s so defined can have one
of the values s = 0, 1=2, 1, 3=2, 2, . . . and is a
characteristic for all elementary particles along
with their mass m and electric charge e. The
particles with integer s are called ‘‘bosons,’’ those
with half-integer s ‘‘fermions.’’ The three numbers
s = 0, 1=2, and 1 are referred to as ‘‘low’’ spin; they
are sufficient for the greater part of physics.

The principle of first quantization associates a type
of field and a field equation to each type of elementary
particles. Massive particles, with rest mass m > 0, and
massless particles, with rest mass m = 0, are to be
distinguished. Accordingly, we obtain six linear wave
equations for s � 1, which read as follows in units
such that c = �h = 1 (see Table 1):

For the sake of simplicity, we consider only free
fields in Table 1; no source terms or interaction terms
appear here. The associated ‘‘free’’ Lagrangians are
given in Table 2.

Since the electromagnetic field tensor Fab satisfies the
first part of Maxwell’s equations @[cFab] = 0, it follows

392 Relativistic Wave Equations Including Higher Spin Fields



that a vector field Aa exists such that Fab = @aAb �
@bAa. This vector field is called the ‘‘electromagnetic
4-potential.’’ It is not uniquely determined by the field
Fab; the freedom in Aa is Aa ! Aa þ @a� where
� = �(x) is a real-valued function. This gauge transfor-
mation of Aa can be used, for example, to obtain the
Lorentz gauge condition @aAa = 0.

The wave equations listed in Table 1 look rather
different, but this formal disadvantage can be over-
come. To begin with, we remark that fermions
require spinors for their description. The Dirac and
Weyl equations are not describable by linear equa-
tions for tensor fields. On the other hand, bosons can
be described by spinors as well. All tensor equations
can be ‘‘translated’’ into spinor form using the mixed
spinor–tensor �a

AA0 . We will demonstrate this proce-
dure for the Proca field in some detail.

The (possibly complex) skew-symmetric tensor
Hab and the vector Ua have the spinor equivalents

Hab�
a
AA0�

b
BB0 ¼ ’AB"A0B0 þ �A0B0"AB

Ua�
a
AA0 ¼ �AA0

Table 1 Relativistic wave equations for low spin s = 0, 1=2, and 1

Spin, mass Wave equation Associated particles

s = 0, m > 0 Klein–Gordon eqn. Scalar mesons

(&þm2)u = 0 �, �, K , . . .

s = 0, m = 0 D’Alembert eqn. –

&u = 0

s = 1=2, m > 0 Dirac eqn. Leptons e,�, �

@A
A0’A þ imffiffi

2
p �A0 = 0 Baryons p, n, �, �, �, . . .

@A0

A �A0 � imffiffi
2
p ’A = 0

s = 1=2, m = 0 Weyl eqn. Massless(?) neutrinos

@A
A0	A = 0 	e , 	�, 	�

s = 1, m > 0 Proca eqn. Vector mesons

Hab = @aUb � @bUa 
,!, , �, . . .
@cHca þm2Ua = 0

s = 1, m = 0 Maxwell eqn. Photon �

@½aFbc�= 0

@aF ab = 0

Table 2 The Lagrangian densities for free (i.e., noninteracting)

fields with low spin

Field Lagrangian density

Scalar field L = 1
2 f(@au)(@au)�m2u2g

Dirac field L = iffiffi
2
p (��A@

AA0�A0 þ �’B 0@BB 0’
B � ’B@BB 0 �’

B0

��A0@
AA0 ��A)þm(��A’

A þ �’A0�A0 )

Weyl field L = iffiffi
2
p (�	A0@

AA0	A � 	A@
AA0 �	A0 )

Proca field L = 1
4 HabHab � Hab@½aUb� þ m2

2 UaUa

Maxwell field L = �1
4 FabF ab = �(@½aAb�(@

½aAb�)
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here ’ and � are both symmetric spinors:

AB =’(AB), �A0B0 = �(A0B0). After a straightforward
alculation the Proca equation yields

@C0

ðA�BÞC0 þ ’AB ¼ 0; @C0

ðA0�B0ÞC þ �A0B0 ¼ 0

@C
A0’CA þ @C0

A �C0A0 þm2�AA0 ¼ 0

Further, from the equation @[cHab] = 0, we obtain
C0

A �A0C0 = @C
A0’AC; thus, the first and second summand

n the third equation are equal. Consequently, we find
he following spinor form of the Proca equations:

@C
A0’CA þ

m2

2
�AA0 ¼ 0; @C0

ðA�BÞC0 þ ’AB ¼ 0

@C0

A �C0A0 þ
m2

2
�AA0 ¼ 0; @C0

ðA0�B0ÞC þ �A0B0 ¼ 0

½3�

f the tensor fields H and U are real, then we have

A0B0 = �’A0B0 ,�AA0 = ��AA0 , and the second pair of equa-

ions is just the complex conjugate of the first.

Now it is readily seen that the Dirac and Proca
quations have the same structure. They are coupled
irst-order systems of differential equations for pairs
f spinor fields. The only decisive difference is that
he spinors have one index if s = 1=2 and two indices
f s = 1.

We obtain a similar result for Maxwell fields. The
eal tensor Fab has the spinor equivalent

Fab�
a
AA0�

b
BB0 ¼ ’AB"A0B0 þ �’A0B0"AB

ith a symmetric spinor ’AB. The spinor form of
axwell’s equations is (Penrose and Rindler 1984)

@A
A0’AB ¼ 0 ½4�

nd has the same structure as the Weyl equation.
Here we found an example for the power and utility

f spinor techniques since they allow the formulation
f the wave equations for bosons and fermions in a
niform manner. Only the cases m > 0 and m = 0 are
o be distinguished. Moreover, the above results
uggest the way for generalizing the wave equations
o higher spin. Therefore, we can already end the
iscussion of the fields with low spin and take them as
pecial cases of those with arbitrary spin.

igher Spin in Minkowski Spacetime

assive Fields

elativistic wave equations for particles with arbi-
rary spin were first considered by Dirac (1936). His
quations read
w
’
c

@
i
t

I

�

t

e
f
o
t
i

r

w
M

a

o
o
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@A
P0’AB...DQ0...T 0 þm1�B...DP0Q0...T 0 ¼ 0

@P0

A �B...DP0Q0...T 0 �m2’AB...DQ0...T 0 ¼ 0
½5�



where the spinors ’ and � are of type (n, k) and
(n� 1, kþ 1), respectively (corresponding to irredu-
cible representations of the restricted Lorentz group
SOþ(1, 3)). The constants m1 and m2 are mass
parameters (m2 = �2m1m2) and the spin s is one
half of the total number of indices of each spinor,
s = (1=2)(nþ k). As in the preceding section, we
assume that electromagnetism and other interactions
are absent. We should mention that equations for
higher spin were not motivated by observations or
empirical facts in that period of time, because only a
few elementary particles were known (proton,
neutron, electron, positron, and photon), and all of
them have low spin (see Table 1). Since that time,
particles with s > 1 were found in nature, for
example, resonances in scattering experiments.

The system [5] allows a uniform description of free
fields with arbitrary spin s > 0, including Dirac and
Proca fields, as we know from the preceding section.
(Remark: The symmetrization in eqns [3] can be
omitted since the vector field U is divergence-free
as a consequence of the second Proca equation.)
Various other field equations proposed subsequently
can be comprehended as its special cases (Corson
1953). Examples are the Rarita–Schwinger equations
for fermions: if they are written in terms of 2-spinors,
then one obtains just the system [5] where the spinor
’ is of type (sþ 1=2, s� 1=2) and the spinor � is of
type (s� 1=2, sþ 1=2).

If we apply @P0

E to the first of the equations in [5]
and use the second, we obtain

ð&þm2Þ’AB...DQ0...T 0 ¼ 0 ½6a�

since the second derivatives commute in flat space-
times. Similarly,

ð&þm2Þ�B...DP0Q0...T 0 ¼ 0 ½6b�

so both fields ’ and � satisfy a Klein–Gordon type
equation. Moreover, eqns [5] imply that each of ’
and � is divergence-free

@AQ0’AB...DQ0...T 0 ¼ 0 ¼ @BP0�B...DP0Q0...T0 ½7�

if they have at least one index of each kind.
In a sense, this procedure can be reversed. Let a

symmetric spinor field ’ be given that satisfies [6a]
and [7]. (Remark: A significant example is the Fierz
system

ð&þm2ÞUab...d ¼ 0; @aUab...d ¼ 0

for a symmetric, tracefree tensor field U, since the
spinor equivalent of U is of type (k, k).)

Define

�B...DP0Q0...T0 :¼ @A
P0’AB...DQ0...T0
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massless free-field equation for spin (1/2)n is then
taken to be

@A
A0’AB...E ¼ 0 ½8

More precisely, the solutions of [8] represent left-
handed massless particles with helicity �(1=2)n�h
whereas the solutions of the complex-conjugate
form of this equation are right-handed particles
(helicity þ (1=2)n�h). Recall that the Weyl equation
(n = 1) and the source-free Maxwell equation (n = 2)
have this form. (Remark: The Bianchi identity in
Einstein spaces also falls in this category, with the
Weyl spinor �ABCD taking the place of ’. . .
Moreover, we may think of [8] with n = 4 as the
Then � is symmetric in all its indices since ’ is
divergence-free. Further, we obtain

@P0

E �B...DP0Q0...T 0 ¼ @P0

E @
A
P0’AB...DQ0...T 0

� � 1

2
&’EB...DQ0...T 0

¼ m2

2
’EB...DQ0...T 0

since ’ satisfies the Klein–Gordon equation [6a].
Consequently, the pair (’,�) satisfies a system [5].
Obviously, this procedure can be continued: define

�C...DO0P0Q0...T 0 :¼ @B
O0�B...DP0Q0...T0

etc. We obtain a sequence of spinors of type
(0, 2s), (1, 2s� 1), . . . , (2s, 0) each of which is
obtainable from its immediate neighbors by a
differentiation contracted on one index. Together,
these spinors form an invariant exact set (Penrose
and Rindler 1984).

The just given arguments show that there is an
ambiguity in the system [5]. The spin s fixes only
the total number of indices of ’ and �. However,
their partition into primed and unprimed ones is
not a priori fixed. Therefore, we can choose a
‘‘convenient’’ partition for the respective needs.

Massless Fields

If m = 0, then the Dirac system [5] is decoupled.
Therefore, we have to state a single equation for a
single field. Let ’ be a spinor field of type (n, 0). The

�

,

.

gauge-invariant equation for the weak vacuum
gravitational field.)

The massless field equation [8] can be solved
using methods of twistor geometry. Moreover, there
is an explicit integral formula for representing
massless free fields in terms of arbitrarily chosen
null data on a light cone (Penrose and Rindler 1984,
1986, Ward and Wells 1990). We do not discuss
eqns [8] in detail since they are generally incon-
sistent in curved spacetimes if n > 2 (see the next



section). We only indicate that each solution of [8]
satisfies the second-order wave equation

&’AB...E ¼ 0

Maxwell’s equations imply the existence of an
electr omagne tic potent ial (cf. section ‘‘Wav e equa-
tions for low spin in Minkow ski spacetim e’’). This
concept can be generalized to higher spin.
A ‘‘potential’’ for a spinor field ’AB...E of type
(n, 0) is a spinor field �AB0...E0 of type (1, n� 1) such
that

@A
ðA0�jAjB0...E0Þ ¼ 0 ½9�

and

’AB...E ¼ @B0

ðB � � � @E0

E �AÞB0...E0 ½10�

One can check in a straightforward manner that a
spinor field ’ that is given by [9] and [10] satisfies
the massless equation [8]. If n > 1, there is a gauge
freedom in these potentials; it turns out to be
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�AB0...E0 ! �AB0...E0 þ @AðB0!C0...E0Þ

for any spinor field ! of type (0, n� 2). Further-
more, the general massless field ’ can locally be
expressed in this way (Penrose and Rindler 1986).

Wave Equations in Curved Spacetimes,
Consistency Conditions

First of all we emphasize that Hamilton’s principle
of stationary action is extremely important in field
theories (see, e.g., Schmutzer (1968)). Assume that
the Lagrangian L contains at most first derivatives

of a field  � : L = L( �(x), @a �(x)). ‘‘Special rela-
tivity’’ states that L is invariant under Lorentz
transformations. The Euler–Lagrange equations
with respect to variation of  � read

@L

@ �
� @a

@L

@ð@a �Þ
¼ 0 ½11�

and these are the field equations that  � is required to
satisfy.

In ‘‘general relativity,’’ the Lagrangian L has to be
generally covariant. So we have L = L( �(x),
ra �(x)) and the Euler–Lagrange equations

@L

@ �
�ra

@L

@ðra �Þ
¼ 0 ½12�

emerge. If we assume that the Lagrangian L does
not contain the curvature tensors and their deriva-
tives explicitly and compare [11] and [12], then it is
easily seen how the wave equations in curved
spacetime can be obtained: by simply replacing the
flat metric and connection with their curved
versions. This procedure is called the ‘‘principle of
minimal coupling.’’

All equations for low spin in Minkowski
spacetime are the Euler–Lagrange equations of a
variation principle (see Table 2). Consequently, they
can be extended to curved spacetime by simply using
the principle of minimal coupling. The arising
equations are perfectly acceptable. No complications
arise, and so we do not repeat them in this section.

If s > 1, then neither the massive nor the massless
wave equations follow from a variation principle
without supplementary conditions. Nevertheless, we
can try to generalize the equations of the previous
section to a curved spacetime by formally replacing
the flat metric and connection with their curved
versions, too. However, serious problems arise:

Let us first consider massless fields of helicity
�(1=2)n�h. The principle of minimal coupling yields

rA
A0’AB...E ¼ 0 ½13�

If we apply rA0

F to this equation, we obtain

rA0

F rA
A0’AB...E ¼ 0

Since the covariant derivatives do not commute
with each other, the term on the left-hand side is not
completely symmetric in the unprimed indices.
Therefore, this equation can be decomposed into
two nontrivial irreducible parts if n > 1: symmetri-
zation yields the covariant D’Alembert equation

rara’B...EF ¼ 0

as required, while antisymmetrization yields by use
of the spinor Ricci identities

ðn� 2Þ�KLM
ðC’D...EÞKLM ¼ 0 ½14�

where �ABCD is the Weyl spinor. If n > 2 and the
spacetime is not conformally flat, then this algebraic
consistency condition effectively renders eqn [13]
useless as physical field equations.

If m > 0, the situation is not better. In somewhat
similar way, we obtain the algebraic consistency
conditions

ðn� 2Þ�KLM
ðC’D...EÞKLMQ0P0...T 0

þ k�KLX0
ðQ0’jKLC...EjP0...T 0ÞX0 ¼ 0 ðn> 1Þ

ðk� 1Þ��X0Y 0Z0
ðS0�jB...DX0Y 0Z0 jT 0...U0Þ

þ ðn� 1Þ�ðBKX0Y 0�C...DÞKX0Y 0S0T 0...U0 ¼ 0 ðk> 0Þ

½15�

if the spinor field ’ is of type (n,k) (Buchdahl 1962).
We remark that similar consistency conditions

occur if we have no gravitation, but an interaction
with an electromagnetic field. Then the partial



derivative is to be replaced by Da = @a � ieAa and
we obtain consistency conditions like [14] and
[15], where the curvature spinors are to be
replaced by the electromagnetic spinor (Fierz and
Pauli 1939).

So far one is left with the problem: ‘‘Find the
‘correct’ laws for arbitrary spin, that means field
equations which coincide with the well-known
approved ones for low spin and which remain
consistent even for higher spin when electromagnet-
ism and/or gravitation is coupled!’’

An extensive literature is devoted to just this
problem. Let us briefly sketch some means by which
the authors tried to solve it:

� derivation of the desired field equations from a
variation principle where the original spinor fields
are supplemented by auxiliary fields;
� extension of the four-dimensional spacetime geome-

try to a richer one: higher number of dimensions,
complexification, addition of torsion, nonmetrical
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connection, . . . ;
� replacement of the algebra of spinors by some

richer algebra;
� disclaim of the principle of minimal coupling; and
� supergravity theories.

Some of these attempts are able to solve the problem,
at least partially. But, as a rule, they pay a price of
new difficulties. In the next section, we offer ‘‘good’’
equations for arbitrary s > 0 within the conventional
framework of the minimal coupling principle and of
a curved spacetime background.

Wave Equations for Arbitrary Spin
without Consistency Conditions

Massive Fields

The ansatz which leads to the desired result is
surprisingly simple. We avoid the ambiguity in the
Dirac system [5] that has been discussed earlier as
well as any consistency condition if we state the
wave equations

rA
P0’AB...E þm1�B...EP0 ¼ 0

rP0

ðA�B...EÞP0 �m2’AB...E ¼ 0
½16�

This system was first proposed by Wünsch (1985);
it is equivalent to a pair of equations given by
Buchdahl (1982) which contains the Weyl spinor
explicitly. As before, ’ and � are symmetric spinor
fields, ’ has n unprimed indices (and no one else!)
and the constants m1, m2 are mass parameters
(m2 = �2m1m2). We assume m1 6¼ 0 in this section.
Obviously, the Dirac and Proca equations are
special cases of [16], choose n = 1 and n = 2,
respectively. (Remark: An electromagnetic field can
be included in [16] by ra ! Da =ra � ieAa, and
the equations remain consistent (Illge 1993).)

First of all, we remark that eqns [16] are the Euler–
Lagrange equations of an action principle. The
existence of a Lagrangian is plausible since the
number of equations and the number of degrees of
freedom are equal. We do not state the Lagrangian,
the energy–momentum tensor, and the current vector
in this article and refer the reader to Illge (1993).

If n > 1, we can apply rBP0 to the first equation of
[16] and obtain using the spinor Ricci identities:

rBP0�BC...EP0 ¼ �
1

m1
rBP0rA

P0’ABC...E

¼ � n� 2

m1
�KLM

ðC’D...EÞKLM ½17�

Hence the divergence of � vanishes if n = 2 or if the
spacetime is conformally flat. These are exactly the
cases where the symmetrization in the second
equation of [16] can be omitted.

Now we are going to derive the second-order
equations for ’ and �. Substituting

�BC...EP0 ¼ �
1

m1
rA

P0’AB...E ½18�

into the second equation of [16], we obtain, after a
bit of algebra,

rara’AB...E � 2ðn� 1Þ�KL
ðAB’C...EÞKL

þ nþ 2

12
Rþm2

� �
’AB...E ¼ 0 ½19�

This is a linear second-order equation of normal
hyperbolic type for the spinor field ’. It can be used
to solve Cauchy’s problem for the system [16].

Similarily, we get a second-order equation for �:

rara�B...EP0 � 2ðn� 1Þ� K W 0

ðB P0 �C...EÞKW 0

þ R

4
þm2

� �
�B...EP0

¼ 2
n� 1

n
rðBP0rKW 0

�C...EÞKW 0 ½20�

Seemingly this is not an equation of hyperbolic
type if n > 1. However, the second derivatives of �
on the right-hand side of [20] can be eliminated
using [17]. Therefore, if the spinor field ’ is
already known by solving [19], then [20] is an
equation of Klein–Gordon type, too. However, it
is generally inhomogeneous if n > 2. A wave
equation that contains the spinor field � alone
exists only if n = 1, n = 2, or the spacetime is
conformally flat.
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Now we are going to discuss the ‘‘Cauchy
problem’’ for the wave equations [16] (for details
see Wünsch (1985)). Let a spacelike hypersurface S
be given and let na denote the future-directed unit
normal vector on S and rn = nara. The local
Cauchy problem is to find a solution (’,�) of [16]
with given Cauchy data ’0,�0 on S.

In general, the initial data ’0 and �0 cannot be
prescribed arbitrarily. Suppose that a solution (’,�)
of [16] does exist. Then the differential equations
have to be satisfied on S, too. Thus, we obtain

ðrn’AB...EÞjS ¼ 2nA0

A
~rF

A0’B...EF þm1�B...EA0
� �

jS ½21�

where the differential operator r~AA0 =rAA0 �
nAA0rn is just the tangential part of rAA0 with
respect to S. Therefore, the right-hand side of [21]
is completely determined by the initial data. Now
the symmetry of the solution ’AB...E implies the
symmetry of rn’AB...E. Consequently, the right-
hand side of [21] has to be symmetric with respect
to the unprimed indices and so we obtain the
following constraints for the initial data if ’ has at
least two indices:

nBA0 ~rF
A0’

0
B...EF þm1�

0
B...EA0

� �
jS¼ 0 ½22�

Now we can state:

Theorem 1 If the Cauchy data ’0and �0 satisfy the
constraints [22], then the Cauchy problem has a
unique solution in a neighborhood of S.

For each differential equation of hyperbolic type
we can ask the question whether the wave propaga-
tion is ‘‘sharp,’’ that is, free of tails. If this property
is valid we say that the equation satisfies ‘‘Huygens’
principle’’ (for an exact definition, see, e.g., Wünsch
(1994)). Using invariant Taylor expansions of
the parallel propagator and of the Riesz kernels in
normal coordinates we can prove (Wünsch 1985):

Theorem 2 The massive wave equations [16] for
spin s > 0 satisfy Huygens’ principle if and only
if the spacetime is of constant curvature and
R = �(6m2=s).

Massless Fields
In the preceding section, we have seen that the
premise m1 6¼ 0 is decisive for the consistency of
[16] if s > 1. This fact agrees with the result of the
previous section, that eqn [13] is inconsistent if
s > 1 and the spacetime is not conformally flat. On
the other hand, m2 = 0 is possible. Therefore we
state the wave equations

rA
ðA0�jAjB0...E0Þ ¼ 0 ½23�
for a spinor field � of type (1, n� 1). This is just
eqn [9] for the potential of a massless field. We will
show that [23] is a satisfactory equation in a
generally curved spacetime (Illge 1988). Unfortu-
nately, no Lagrangian has been found if n > 1.

To begin with, we remark that there is a gauge
freedom in curved spacetimes, too, since the
solution � of [23] cannot be uniquely determined
if n > 1. We use this freedom to prescribe the
divergence of �. So let an arbitrary spinor field
! of type (0, n� 2) be given. We consider eqns
[23] and

rAB0�AB0C0...E0 ¼ !C0...E0

or, together,

rA
A0�AB0...E0 ¼ �

n� 1

n
"A0ðB0!C0...E0Þ ½24�

If we apply rA0

B to this equation, we obtain using the
spinor Ricci identities

rara�BB0...E0 � 2ðn� 1Þ� K W0

B ðB0 �jKjC0...E0ÞW 0 þR

4
�BB0...E0

¼ 2ðn� 1Þ
n

rBðB0!C0...E0Þ ½25�

This is a linear second-order equation of normal
hyperbolic type for the spinor field � (cf. [20]).

Now let us discuss some particular cases. If n = 1,
then [23] is just the Weyl equation itself. Therefore,
the equations for the field and its potential are
identical and there is no gauge freedom. If n = 2,
then the spinor field �AA0 is a (complex) vector field
and eqn [23] yields

rA
ðA0�jAjB0Þ ¼ 0

The gauge field ! is just a scalar function, especially
we can choose != 0 (Lorentz gauge). As in eqn [10]
we define the field spinor as

’AB ¼ rB0

ðA�BÞB0

Since we have the identity

rA
B0rA0

ðB�AÞA0 ¼ rA0

B rA
ðB0�jAjA0Þ

for arbitrary spinor fields �AA0 (which must not have
additional free indices!), the spinor field ’AB satisfies
the massless free-field equation

rA
B0’AB ¼ 0

If n > 2, we can define a field ’AB...E via the
relation [10], too, replacing the partial with the
covariant derivatives. But the field equation for
’AB...E becomes more complicated than [13]. This
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fact is not surprising, since eqn [23] is a consistent
one, whereas [13] is inconsistent.

We continue with some remarks on ‘‘conformal
rescalings of the metric.’’ The equations for massless
fields have to be invariant with respect to such
transformations. Therefore, the ‘‘curved space’’
scalar wave equation is

&þ R

6

� �
’ ¼ 0 ½26�

Further, the equations

rA
ðA0�jAB...EjB0...F0Þ ¼ 0 ½27�

for any spinor field � of type (n, k) are conformally
invariant (Penrose and Rindler 1984). Especially,
eqns [23] for the massless potential and [13] for the
massless field have this property.

We mention a further special case of [27]. If � is of
type (kþ 1, k), then these equations are consistent,
too (Frauendiener and Sparling 1999). The Cauchy
problem is well posed and a Lagrangian is known.
Unfortunately, the solutions do not satisfy a wave
equation of second order if k > 0.

We conclude with the discussion of the Cauchy
problem for eqn [24]. As in the preceding section, let
a spacelike hypersurface S and initial data �0 on S
be given. We can state:

Theorem 3 If a symmetric spinor field ! of type
(0, n� 2) is given, then there exists a neighborhood
of S in which eqn [24] has one and only one solution
satisfying �jS = �0.

The proof is given in Illge (1988). We emphasize
that there are no constraints on the Cauchy data for
the massless equation [24].

In contrast to massive fields we are far away from
an answer to the question whether Huygens princi-
ple is valid for the massless equations. A particular
result is Wünsch (1994):

Theorem 4 Huygen’s principle for the conformally
invariant scalar wave equation [26], the Weyl, and
the Maxwell equations is valid only for conformally
flat and plane wave metrics within the classes of
centrally symmetric, recurrent, (2, 2)-decomposable,
Petrov type N, III or D spacetimes as well as those
with r[aRb]c = 0.

See also: Clifford Algebras and Their Representations;
Dirac Fields in Gravitation and Nonabelian Gauge
Theory; Euclidean Field Theory; Evolution Equations:
Linear and Nonlinear; Spinors and Spin Coefficients;
Standard Model of Particle Physics; Twistors.
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Introduction

Quantum field theories (QFTs) provide a natural
framework for quantum theories that obey the
principles of special relativity. Among their most
striking features are ultraviolet (UV) divergences,
which at first sight invalidate the existence of the
theories. The divergences arise from Fourier modes
of very high wave number, and hence from the
structure of the theories at very short distances. In
the very restricted class of theories called ‘‘renorma-
lizable,’’ the divergences may be removed by a
singular redefinition of the parameters of the theory.
This is the process of renormalization that defines a
QFT as a nontrivial limit of a theory with a UV
cutoff.

A very important QFT is the standard model, an
accurate and successful theory for all the known
interactions except gravity. Calculations using
renormalization and related methods are vital to
the theory’s success.

The basic idea of renormalization predates QFT.
Suppose we treat an observed electron as a
combination of a bare electron of mass m0 and the
associated classical electromagnetic field down to a
radius a. The observed mass of the electron is its
bare mass plus the energy in the field (divided by c2).
The field energy is substantial, for example, 0.7 MeV
when a = 10�15 m, and it diverges when a! 0. The
observed mass, 0.5 MeV, is the sum of the large
(or infinite) field contribution compensated by a
negative and large (or infinite) bare mass. This
calculation needs replacing by a more correct
version for short distances, of course, but it remains
a good motivation.

In this article, we review the theory of renorma-
lization in its classic form, as applied to weak-
coupling perturbation theory, or Feynman graphs. It
is this method, rather than the Wilsonian approach
(see Exact Renormalization Group), that is typically
used in practice for perturbative calculations in the
standard model, especially its QCD part.

Much of the emphasis is on weak-coupling
perturbation theory, where there are well-known
algorithmic rules for performing calculations and
renormalization. Applications (see Quantum Chro-
modynamics for some important nontrivial examples)
involve further related results, such as the operator
product expansion, factorization theorems, and the
renormalization group (RG), to go far beyond simple
fixed-order perturbation theory. The construction of
fully rigorous mathematical treatments for the exact
theory is a topic of future research.
Formulation of QFT

A QFT is specified by its Lagrangian density.
A simple example is �4 theory:

L¼? ð@�Þ
2

2
�m2�2

2
� ��

4

4!
½1�

where �(x) =�(t, x) is a single component Hermitian
field. The Lagrangian density and the resulting
equation of motion, @2�þm2�þ (1=6)��3 = 0, are
local; they involve only products of fields at the
same spacetime point. Such locality is characteristic
of relativistic theories, where otherwise it is difficult
or impossible to preserve causality, but it is also the
source of the UV divergences. The question mark
over the equality symbol in eqn [1] is a reminder
that renormalization of UV divergences will force us
to modify the equation.

The Feynman rules for perturbation theory are
given by a free propagator i=(p2 �m2 þ i0) and an
interaction vertex �i�. Although we will usually
work in four spacetime dimensions, it is useful also
to consider the theory in a general spacetime
dimensionality n, where the coupling has energy
dimension [�] = E4�n. We use ‘‘natural units,’’ that
is, with �h = c = 1. The ‘‘i0’’ in the propagator i=(p2 �
m2 þ i0) symbolizes the location of the pole relative
to the integration contour; it is often written as i�.

The primary targets of calculations are the
vacuum expectation values of time-ordered products
of �; in QFT these are called the Green functions of
the theory. From these can be reconstructed the
scattering matrix, scattering cross sections, and
other measurable quantities.
One-Loop Calculations

Low-order graphs for the connected and amputated
four-point Green function are shown in Figure 1.
Each one-loop graph has the form

�i�2Iðp2Þ

¼? �
2

2

Z
d4k

ð2�Þ4
1

ðk2�m2þ i0Þ½ðp�kÞ2�m2þ i0�
½2�

where p is a combination of external momenta.
There is a divergence from where the loop



3A+ + + ++ O(λ3)

Figure 2 One-loop approximation to renormalized connected

and amputated four-point function, with counter-term.

+ + O(λ3)+ +

Figure 1 One-loop approximation to connected and amputated

four-point function, before renormalization.

400 Renormalization: General Theory
momentum k goes to infinity. We define the degree
of divergence, �, by counting powers of k at large k,
to get �=0. In an n-dimensional spacetime we
would have �=n�4. The integral is divergent
whenever �� 0. Comparing the dimensions of the
one-loop and tree graphs shows that � equals the
negative of the energy dimension of the coupling �.
Thus, the dimensionlessness of � at the physical
spacetime dimension is equivalent to the integral
being just divergent.

The infinity in the integral implies that the theory
in its naive formulation is not defined. With the aid
of RG methods, it has been shown that the problem
is with the complete theory, not just perturbation
theory.

The divergence only arises because we use a
continuum spacetime. So suppose that we formulate
the theory initially on a lattice of spacing a (in space
or spacetime). Our loop graph is now

�i�2Iðp; m; aÞ

¼ ��
2

32�4

Z
d4k Sðk;m; aÞ Sðp� k;m; aÞ ½3�

where the free propagator S(k, m; a) approaches the
usual value i=(k2 �m2 þ i0) when k is much smaller
than 1=a, and it falls off more rapidly for large k.
The basic observation that propels the renormaliza-
tion program is that the divergence as a! 0 is
independent of p. This is most easily seen by
differentiating once with respect to p, after which
the integral is convergent when a = 0, because the
differentiated integral has degree of divergence �1.

Thus we can cancel the divergence in eqn [2] by
replacing the coupling in the first term in Figure 1,
by the so-called bare coupling

�0 ¼ �þ 3AðaÞ�2 þOð�3Þ ½4�

Here A(a) is chosen so that the renormalized value
of our one-loop graph,

�i�2IRðp2;m2Þ ¼ �i�2 lim
a!0
½Iðp; m; aÞ þ AðaÞ� ½5�

exists, at a = 0, with A(a) in fact being real valued.
The factor 3 multiplying A(a) in eqn [4] is because
there are three one-loop graphs, with equal diver-
gent parts. The replacement for the coupling is made
in the tree graph in Figure 1, but not yet at the
vertices of the other graphs, because at the moment
we are only doing a calculation accurate to order �2;
the appropriate expansion parameter of the theory is
the finite renormalized coupling �, held fixed as
a! 0. We call the extra term in eqn [5] a counter-
term. The diagrams for the correct renormalized
calculation are represented in Figure 2, which has a
counter-term graph compared with Figure 1.

In the physics terminology, used here, the cutting-
off of the divergence by using a modified theory is
called a regularization. This contrasts with the
mathematics literature, where ‘‘regularized integral’’
usually means the same as a physicist’s ‘‘renorma-
lized integral.’’

There is always freedom to add a finite term to a
counter-term. When we discuss the RG, we will see
that this corresponds to a reorganization of the
perturbation expansion and provides a powerful
tool for improving perturbatively based calculations,
especially in QCD. Contrary to the impression given
in some parts of the literature, it is not necessary
that a renormalized mass equal a corresponding
physical particle mass, with similar statements for
coupling and field renormalization. While such a
prescription is common and natural in a simple
theory like QED, it is by no means required and
certainly may not always be best. If nothing else, the
correspondence between fields and stable particles
may be poor or nonexistent (as in QCD).

One classic possibility is to subtract the value of
the graph at p = 0, a prescription associated with
Bogoliubov, Parasiuk, and Hepp (BPH), which
leads to

�i�2IR;BPHðp2Þ

¼ �i�2

32�2

Z 1

0

dx ln 1� p2xð1� xÞ=m2
� �

½6�

In obtaining this from [2], we used a standard
Feynman parameter formula,

1

AB
¼
Z 1

0

dx
1

½Axþ Bð1� xÞ�2
½7�

to combine the propagator denominators, after
which the integral over the momentum variable
k is elementary. We then obtain the renormalized
one-loop (four-point and amputated) Green function

�i�� i�2 IRðsÞ þ IRðtÞ þ IRðuÞ½ � þOð�3Þ ½8�

where s, t, and u are the three standard Mandelstam
invariants for the Green function. (For a 2! 2
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scattering process, or a corresponding off-shell
Green function, in which particles of momenta p1

and p2 scatter to particles of momenta p01 and p02,
the Mandelstam variables are defined as s = (p1 þ
p2)2, t = (p1 � p01)2, and u = (p1 � p02)2.)

In the general case, with a nonzero degree of
divergence, the divergent part of an integral is a
polynomial in p and m of degree D, where D is the
smallest positive integer less than or equal to �. In a
higher spacetime dimension, this implies that renor-
malization of the original, momentum-independent,
interaction vertex is not sufficient to cancel the
divergences. We would need higher derivative terms,
and this is evidence that the theory is not renorma-
lizable in higher than 4 spacetime dimensions. Even
so, the terms needed would be local, because of the
polynomiality in p.
Complete Formulation of
Renormalization Program

The full renormalization program motivated by
example calculations is:

� the theory is regulated to cut off the divergences;
� the numerical value of each coefficient in L is

allowed to depend on the regulator parameter
(e.g., a); and
� these dependences are adjusted so that finite

results for Green functions are obtained after
removal of the regulator.

In �4 theory, we therefore replace L by

L ¼ Z

2
ð@�Þ2 � Zm2

0

2
�2 � Z2�0

4!
�4 ½9�

with the bare parameters, Z, m0 and �0, having a
regulator dependence such that Green functions of �
are finite at a = 0.

The slightly odd labeling of the coefficients in
eqn [9] arises because observables like cross sections
are invariant under a redefinition of the field by a
factor. In terms of the bare field �0 =def

ffiffiffiffi
Z
p

�, we have

L ¼ 1

2
ð@�0Þ2 �

m2
0

2
�2

0 �
�0

4!
�4

0 ½10�

The unit coefficient of (1=2)(@�0)2 implies that �0

has canonical commutation relations (in the regu-
lated theory). This provides a natural standard for
the normalization of the bare mass m0 and the bare
coupling �0.

All terms in L have coefficients with dimension
zero or larger. This is commonly characterized by
saying that the terms L ‘‘have dimension 4 or less,’’
which refers to the products of field operators and
derivatives in each term. A generalization of the
power-counting analysis shows that if we start with
a theory whose L only has terms of dimension 4 or
less, then no terms of higher dimension are needed
as counter-terms, at least not in perturbation theory.
This is a very powerful restriction on self-contained
QFTs, and was critical in the discovery of the
standard model.

Sometimes it is found that the description of some
piece of physics appears to need higher-dimension
operators, as was the case originally with weak-
interaction physics. The lack of renormalizability of
such theories indicates that they cannot be complete,
and an upper bound on the scale of their applic-
ability can be computed, for example, a few
hundred GeV for the four-fermion theory of weak
interactions. Eventually, this theory was superseded
by the renormalizable Weinberg–Salam theory of
weak interactions, now a part of the standard
model, to which the four-fermion theory provides a
low-energy approximation for charged current weak
interactions.

Certain operators of allowed dimensions are
missing in eqn [9]: the unit operator, and � and
�3. Symmetry under the transformation �!��
implies that Green functions with an odd number of
fields vanish, so that no � and �3 counter-terms are
needed. Divergences with the unit operator do
appear, but not for ordinary Green functions. In
gravitational physics, the coefficient of the unit
operator gives renormalization of the cosmological
constant.

To implement renormalized perturbation theory,
we partition L (nonuniquely) as

L ¼ Lfree þ Lbasic interaction þ Lcounter-term ½11�

where the free, the basic interaction, and the
counter-term Lagrangians are

Lfree ¼
1

2
ð@�Þ2 �m2

2
�2 ½12�

Lbasic interaction ¼ �
�

4!
�4 ½13�

Lcounter-term¼
Z� 1

2
ð@�Þ2 � ðZm2

0 �m2Þ
2

�2

� ðZ
2�0 � �Þ

4!
�4 ½14�

The renormalized coupling and mass, � and m, are to
be fixed and finite when the UV regulator is removed.
Both the basic interaction and the counter-terms are
treated as interactions. First we compute ‘‘basic
graphs’’ for Green functions using only the basic
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interaction. The counter-terms are expanded in
powers of �, and then all graphs involving counter-
term vertices at the chosen order in � are added to the
calculation. The counter-terms are arranged to cancel
all the divergences, so that the UV regulator can be
removed, with m and � held fixed. The counter-terms
cancel the parts of the basic Feynman graphs asso-
ciated with large loop momenta. An algorithmic
specification of the otherwise arbitrary finite parts of
the counter-terms is called a renormalization prescrip-
tion or a renormalization scheme. Thus, it gives a
definite relation between the renormalized and bare
parameters, and hence a definite specification of the
partitioning of L into its three parts.

It has been proved that this procedure works to all
orders in �, with corresponding results for other
theories. Even in the absence of fully rigorous
nonperturbative proofs, it appears clear that the results
extend beyond perturbation theory, at least in asymp-
totically free theories like QCD: see the discussion on
Wilsonian RG (see Exact Renormalization Group).
Dimensional Regularization
and Minimal Subtraction

The final result for renormalized graphs does not
depend on the particular regularization procedure.
A particularly convenient procedure, especially in
QCD, is dimensional regularization, where diver-
gences are removed by going to a low spacetime
dimension n. To make a useful regularization method,
n is treated as a continuous variable, n = 4� 2�.

Great advantages of the method are that it
preserves Poincaré invariance and many other
symmetries (including the gauge symmetry of
QCD), and that Feynman graph calculations are
minimally more complicated than for finite graphs
at n = 4, particularly when all the lines are massless,
as in many QCD calculations.

Although there is no such object as a genuine
vector space of finite noninteger dimension, it is
possible to construct an operation that behaves as if
it were an integration over such a space. The
operation was proved unique by Wilson, and
explicit constructions have been made, so that
consistency is assured at the level of all Feynman
graphs. Whether a satisfactory definition beyond
perturbation theory exists remains to be determined.

It is convenient to arrange that the renormalized
coupling is dimensionless in the regulated theory.
This is done by changing the normalization of � with
the aid of an extra parameter, the unit of mass �:

�0 ¼ �2� �þ counter-termsð Þ ½15�
with � and � being held fixed when ��! 0. (Thus,
the basic interaction in eqn [13] is changed to
���2��4=4!.) Then for the one-loop graph of eqn [2],
dimensionally regularized Feynman parameter meth-
ods give

�i�2Iðp; m; �Þ ¼ i�2

32�2
ð4�Þ��ð�Þ

�
Z 1

0

dx
m2 � p2xð1� xÞ � i0

�2

� ���
½16�

A natural renormalization procedure is to subtract
the pole at �= 0, but it is convenient to accompany
this with other factors to remove some universally
occurring finite terms. So MS renormalization
(‘‘modified minimal subtraction’’) is defined by
using the counter-term

�iAð�Þ�2 ¼ �i
�2S�

32�2�
½17�

where S� =def(4� e��E )�, with �E = 0.5772 . . . being the
Euler constant. This gives a renormalized integral (at
�= 0)

� i�2

32�2

Z 1

0

dx ln
m2 � p2xð1� xÞ

�2

� �
½18�

which can be evaluated easily. A particularly simple
result is obtained at m = 0:

i�2

32�2
� ln
�p2

�2
þ 2

� �
½19�

This formula symptomizes important and very
useful algorithmic simplifications in the higher-
order massless calculations common in QCD.

The MS scheme amounts to a de facto standard
for QCD. At higher orders a factor of S�

L is used in
the counter-terms, with L being the number of
loops.
Coordinate Space

Quantum fields are written as if they are functions
of x, but they are in fact distributions or generalized
functions, with quantum-mechanical operator
values. This indicates that using products of fields
is dangerous and in need of careful definition. The
relation with ordinary distribution theory is simplest
in the coordinate-space version of Feynman graphs.
Indeed in the 1950s, Bogoliubov and Shirkov
formulated renormalization as a problem of
defining products of the singular numeric-valued
distributions in coordinate-space Feynman graphs;
theirs was perhaps the best treatment of renormali-
zation in that era.
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For example, the coordinate-space version of
eqn [5] is

��2 lim
a!0

Z
d4x d4y f ðx; yÞ

� 1
2

~Sðx� y; m; aÞ2 þ iAðaÞ�ð4Þðx� yÞ
h i

½20�

where x and y are the coordinates for the interaction
vertices, f (x, y) is the product of external-line free
propagators, and ~S(x� y; m, a) is the coordinate-
space free propagator, which at a = 0 has a
singularity

1

4�2½�ðx� yÞ2 þ i0�
½21�

as (x� y)2! 0. We see in eqn [20] a version of the
Hadamard finite part of a divergent integral, and
renormalization theory generalizes this to particular
kinds of arbitrarily high-dimension integrals. The
physical realization and justification of the use of
the finite-part procedure is in terms of renormaliza-
tion of parameters in the Lagrangian; this also gives
the procedure a significance that goes beyond the
integrals themselves and involves the full nonpertur-
bative formulation of QFT.
General Counter-Term Formulation

We have written L as a basic Lagrangian density
plus counter-terms, and have seen in an example
how to cancel divergences at one-loop order. In this
section, we will see how the procedure works to all
orders. The central mathematical tool is Bogoliubov’s
R-operation. Here the counter-terms are expanded
as a sum of terms, one for each basic one-particle
irreducible (1PI) graph with a non-negative degree
of divergence. To each basic graph for a Green
function is added a set of counter-term graphs
associated with divergences for subgraphs. The
central theorem of renormalization is that this
procedure does in fact remove all the UV diver-
gences, with the form of the counter-terms being
determined by the simple computation of the degree
of divergence for 1PI graphs.

To see the essential difficulty to be solved, consider
a two-loop graph like the first one in Figure 3. Its
divergence is not a polynomial in external momenta,
and is therefore not canceled by an allowed counter-
term. This is shown by differentiation with respect to
2A B+ +

Figure 3 A two-loop graph and its counter-terms. The label B

indicates that it is the two-loop overall counter-term for this graph.
external momenta, which does not produce a finite
result because of the divergent one-loop subgraph.
But for consistency of the theory, the one-loop
counter-terms already computed must be themselves
put into loop graphs. Among others, this gives the
second graph of Figure 3, where the cross denotes
that a counter-term contribution is used. The
contribution used here is actually 2/3 of the total
one-loop counter-term, for reasons of symmetry
factors that are not fully evident at first sight. The
remainder of the one-loop coupling renormalization
cancels a subdivergence in another two-loop graph.
It is readily shown that the divergence of the sum of
the first two graphs in Figure 3 is momentum
independent, and thus can be canceled by a vertex
counter-term.

This method is fully general, and is formalized in
the Bogoliubov R-operation, which gives a recursive
specification of the renormalized value R(G) of a
graph G:

RðGÞ ¼def
Gþ

X
f�1;...;�ng

Gj�i!Cð�iÞ ½22�

The sum is over all sets of nonintersecting 1PI
subgraphs of G, and the notation Gj�i!C(�i)

denotes
G with all the subgraphs �i replaced by associated
counter-terms C(�i). The counter-term C(�) of a 1PI
graph � has the form

Cð�Þ ¼def � T � þ counter-termsð
for subdivergencesÞ ½23�

Here T is an operation that extracts the divergent
part of its argument and whose precise definition
gives the renormalization scheme. For example, in
minimal subtraction we define

Tð�Þ ¼ pole part at � ¼ 0 of � ½24�

We formalize the term inside parentheses in eqn
[23] as

�Rð�Þ ¼def
� þ counterterms for subdivergences

¼ � þ
X

f�1;...;�ng

0
Gj�i!Cð�iÞ ½25�

where the prime on the
P0 denotes that we sum over

all sets of nonintersecting 1PI subgraphs except for
the case that there is a single �i equal to the whole
graph (i.e., the term with n = 1 and �1 = � is
omitted).

Note that, for the MS scheme, we define the T
operation to be applied to a factor of constant
dimension obtained by taking the appropriate power
of �� outside of the pole-part operation. Moreover,
it is not a strict pole-part operation; instead each
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pole is to be multiplied by S�
L, where L is the

number of loops, and S� is defined after eqn [17].
Equations [22]–[25] give a recursive construction

of the renormalization of an arbitrary graph. The
recursion starts on one-loop graphs, since they have
no subdivergences, that is, C(�) =�T(�) for a one-
loop 1PI graph.

Each counter-term C(�) is implemented as a
contribution to the counter-term Lagrangian. The
Feynman rules ensure that once C(�) has been
computed, it appears as a vertex in bigger graphs
in such a way as to give exactly the counter-terms
for subdivergences used in the R-operation. It has
been proved that the R-operation does in fact give
finite results for Feynman graphs, and that basic
power counting in exactly the same fashion as at
one-loop determines the relevant operators.

In early treatments of renormalization, a problem
was caused by graphs like Figure 4. This graph has
three divergent subgraphs which overlap, rather
than being nested. Within the R-operation approach,
such cases are no harder to deal with than merely
nested divergences.

The recursive specification of R-operation can be
converted to a nonrecursive formulation by the
forest formula of Zavyalov and Stepanov, later
rediscovered by Zimmerman. It is normally the
recursive formulation that is suited to all-orders
proofs.

Whether these results, proved to all orders of
perturbation theory, genuinely extend to the com-
plete theory is not so easy to answer, certainly in a
realistic four-dimensional QFT. One illuminating
case is of a nonrelativistic quantum mechanics
model with a delta-function potential in a two-
dimensional space. Renormalization can be applied
just as in field theory, but the model can also be
treated exactly, and it has been shown that the
results agree with perturbation theory.

Perturbation series in relativistic QFTs can at best
be expected to be asymptotic, not convergent. So
instead of a radius of convergence, we should talk
about a region of applicability of a weak-coupling
expansion. In a direct calculation of counter-terms,
etc., the radius of applicability shrinks to zero as the
regulator is removed. However, we can deduce the
expansion for a renormalized quantity, whose
expansion is expected to have a nonzero range of
applicability. We can therefore appeal to the
uniqueness of power series expansions to allow the
Figure 4 Graph with overlapping divergent subgraphs.
calculation, at intermediate stages, to use bare
quantities that are divergent as the regulator is
removed.
Renormalizability, Non-Renormalizability,
and Super-Renormalizability

The basic power-counting method shows that if a
theory with conventional fields (at n = 4) has only
operators of dimension 4 or less in its L, then the
necessary counter-term operators are also of dimen-
sion 4 or less. So if we start with a Lagrangian with
all possible such operators, given the field content,
then the theory is renormalizable. This is not the
whole story, as we will see in the discussion of gauge
theories.

If we start with a Lagrangian containing operators
of dimension higher than 4, then renormalization
requires operators of ever higher dimension as
counter-terms when one goes to higher orders in
perturbation theory. Therefore, such a theory is said
to be perturbatively non-renormalizable. Some very
powerful methods of cancelation or some nonper-
turbative effects are needed to evade this result.

In the case of dimension-4 interactions, there is
only a finite set of operators given the set of basic
fields, but divergences occur at arbitrarily high
orders in perturbation theory. If, instead, all the
operators have at most dimension 3, then only a
finite number of graphs need counter-terms. Such
theories are called super-renormalizable. The diver-
gent graphs also occur as subgraphs inside bigger
graphs, of course. There is only one such theory in a
four-dimensional spacetime: �3 theory, which suf-
fers from an energy density that is unbounded from
below, so it is not physical. In lower spacetime
dimension, where the requirements on operator
dimension are different, there are many more
known super-renormalizable theories, some with a
very rigorous proof of existence.

All the above characterizations rely primarily on
perturbative analysis, so they are subject to being
not quite accurate in an exact theory, but they form
a guide to the relevant issues.
Renormalization and Symmetries:
Gauge Theories

In most physical applications, we are interested in
QFTs whose Lagrangian is restricted to obey certain
symmetry requirements. Are these symmetries pre-
served by renormalization? That is, is the Lagran-
gian with all necessary counter-terms still invariant
under the symmetry?
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We first discuss nonchiral symmetries; these are
symmetries in which the left-handed and right-
handed parts of Dirac fields transform identically.

For Poincaré invariance and simple global internal
symmetries, it is simplest to use a regulator, like
dimensional regularization, which respects the sym-
metries. Then it is easily shown that the symmetries
are preserved under renormalization. This holds
even if the internal symmetries are spontaneously
broken (as happens with a ‘‘wrong-sign mass term,’’
e.g., negative m2 in eqn [1]).

The case of local gauge symmetries is harder. But
their preservation is more important, because gauge
theories contain vector fields which, without a gauge
symmetry, generally give unphysical features to the
theory. For perturbation theory, BRST quantization
is usually used, in which, instead of gauge symme-
try, there is a BRST supersymmetry. This is
manifested at the Green function level by Slavnov–
Taylor identities that are more complicated, in
general, than the Ward identities for simple global
symmetries and for abelian local symmetries.

Dimensional regularization preserves these
symmetries and the Slavnov–Taylor identities. More-
over, the R-operation still produces finite results with
local counter-terms, but cancelations and relations
occur between divergences for different graphs in
order to preserve the symmetry. A simple example is
QED, which has an abelian U(1) gauge symmetry, and
whose gauge-invariant Lagrangian is

L ¼ � 1
4 @�A

ð0Þ
	 � @	Að0Þ�

� �2

þ � 0 i��@� � e0Að0Þ� �m0

� �
 0 ½26�

At the level of individual divergent 1PI graphs,
we get counter-terms proportional to A�

2 and to
(A�

2)2, operators not present in the gauge-invariant
Lagrangian. The Ward identities and Slavnov–Taylor
identities show that these counter-terms cancel when
they are summed over all graphs at a given order of
renormalized perturbation theory. Moreover, the
renormalization of coupling and the gauge field are
inverse, so that e0A(0)

� equals the corresponding
object with renormalized quantities, ��eA�. Natu-
rally, sums of contributions to a counter-term in
L can only be quantified with use of a regulator.

In nonabelian theories, the gauge-invariance proper-
ties are not just the absence of certain terms in L but
quantitative relations between the coefficients of terms
with different numbers of fields. Even so, the argument
with Slavnov–Taylor identities generalizes appropri-
ately and proves renormalizability of QCD, for
example. But note that the relation concerning the
product of the coupling and the gauge field does not
generally hold; the form of the gauge transformation is
itself renormalized, in a certain sense.
Anomalies

Chiral symmetries, as in the weak-interaction part of
the gauge symmetry of the standard model, are
much harder to deal with. Chiral symmetries are
ones for which the left-handed and right-handed
components of Dirac field transform independently
under different components of the symmetry group,
local or global as the case may be. Occasionally,
some or other of the left-handed or right-handed
components may not even be present.

In general, chiral symmetries are not preserved by
regularization, at least not without some other
pathology. At best one can adjust the finite parts of
counter-terms such that in the limit of the removal of
the regulator, the Ward or Slavnov–Taylor identities
hold. But in general, this cannot be done consistently,
and the theory is said to suffer from an anomaly. In
the case of chiral gauge theories, the presence of an
anomaly prevents the (candidate) theory from being
valid. A dramatic and nontrivial result (Adler–
Bardeen theorem and some nontrivial generaliza-
tions) is that if chiral anomalies cancel at the
one-loop level, then they cancel at all orders.

Similar results, but more difficult ones, hold for
supersymmetries.

The anomaly cancelation conditions in the standard
model lead to constraints that relate the lepton content
to the quark content in each generation. For example,
given the existence of the b quark, and the 
 and 	

leptons (of masses around 4.5 GeV, 1.8 GeV, and zero
respectively), it was strongly predicted on the grounds
of anomaly cancelation that there must be a t quark
partner of the b to complete the third generation of
quark doublets. This prediction was much later
vindicated by the discovery of the much heavier top
quark with mt ’ 175 GeV.
Renormalization Schemes

A precise definition of the counter-terms entails
a specification of the renormalization prescription
(or scheme), so that the finite parts of the counter-
terms are determined. This apparently induces extra
arbitrariness in the results. However, in the �4

Lagrangian (for example), there are really only two
independent parameters. (A scaling of the field does
not affect any observables, so we do not count Z as
a parameter here.) Thus, at fixed regulator para-
meter a or �, renormalization actually just gives a
reparametrization of a two-parameter collection of
theories. A renormalization prescription gives the
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change of variables between bare and renormalized
parameters, a rather singular transformation when
the regulator is removed. If we have two different
prescriptions, we can deduce a transformation
between the renormalized parameters in the two
schemes. The renormalized mass and coupling m1

and �1 in one scheme can be obtained as functions
of their values m2 and �2 in the other scheme, with
the bare parameters, and hence the physics, being
the same in both schemes. Since these are renorma-
lized parameters, the removal of the regulator leaves
the transformation well behaved.

Generalization to all renormalizable theories is
immediate.
Renormalization Group and Applications
and Generalizations

One part of the choice of renormalization scheme is
that of a scale parameter such as the unit of mass � of
the MS scheme. The physical predictions of the theory
are invariant if a change of � is accompanied by a
suitable change of the renormalized parameters, now
considered as �-dependent parameters �(�) and m(�).
These are called the effective, or running, coupling and
mass. The transformation of the parametrization of
the theory is called an RG transformation.

The bare coupling and mass �0 and m0 are RG
invariant, and this can be used to obtain equations
for the RG evolution of the effective parameters
from the perturbatively computed counter-terms.
For example, in �4 theory, we have (in the
renormalized theory after removal of the regulator)

d�

d ln�2
¼ �ð�Þ ½27�

with �(�) = 3�2=(16�2)þO(�3). As exemplified in
eqns. [18] and [19], Feynman diagrams depend
logarithmically on �. By choosing � to be comparable
to the physical external momentum scale, we remove
possible large logarithms in this and higher orders.
Thus, provided that the effective coupling at this scale
is weak, we get an effective perturbation expansion.

This is a basic technique for exploiting perturba-
tion theory in QCD, for the strong interactions,
where the interactions are not automatically weak.
In this theory the RG � function is negative so that
the coupling decreases to zero as �!1; this is the
asymptotic freedom of QCD.

A closely related method is that associated with
the Callan–Symanzik equation, which is a formula-
tion of a Ward identity for anomalously broken
scale invariance. However, RG methods are the
actually used ones, normally, even if sometimes an
RG equation is incorrectly labeled as a Callan–
Symanzik equation.

The elementary use of the RG is not sufficient for
most interesting processes, which involve a set of
widely different scales. Then more powerful theo-
rems come into play. Typical are the factorization
theorems of QCD (see Quantum Chromodynamics).
These express differential cross sections for certain
important reactions as a product of quantities that
involve a single scale:

d�¼C Q; �; �ð�Þð Þ � f m; �; �ð�Þð Þ
þ small correction ½28�

The product is typically a matrix or a convolution
product. The factors obey nontrivial RG equations,
and these enable different values of � to be used in
the different factors. Predictions arise because some
factors and the kernels of the RG equation are
perturbatively calculable, with a weak effective
coupling. Other factors, such as f in eqn [28], are
not perturbative. These are quantities with names
like ‘‘parton distribution functions,’’ and they are
universal between many different processes. Thus,
the nonperturbative functions can be measured in a
limited set of reactions and used to predict cross
sections for many other reactions with the aid of
calculations of the perturbative factors.

Ultimately, this whole area depends on physical
phenomena associated with renormalization.
Concluding Remarks

The actual ability to remove the divergences in
certain QFTs to produce consistent, finite, and
nontrivial theories is a quite dramatic result. More-
over, associated with the integrals that give the
divergences is behavior of the kind that is analyzed
with RG methods and generalizations. So the
properties of QFTs associated with renormalization
get tightly coupled to many interesting consequences
of the theories, most notably in QCD.

QFTs are actually very abstruse and difficult
theories; only certain aspects currently lend them-
selves to practical calculations. So the reader should
not assume that all aspects of their rigorous
mathematical treatment are perfect. Experience,
both within the theories and in their comparison
with experiment, indicates, nevertheless, that we
have a good approximation to the truth.

When one examines the mathematics associated
with the R-operation and its generalizations with
factorization theorems, there are clearly present
some interesting mathematical structures that are
not yet formulated in their most general terms. Some
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indications of this can be seen in the work by
Connes and Kreimer (see Hopf Algebra Structure of
Renormalizable Quantum Field Theory), where it is
seen that renormalization is associated with a Hopf
algebra structure for Feynman graphs.

With such a deep subject, it is not surprising that
it lends itself to other approaches, notably the
Connes–Kreimer one and the Wilsonian one (see
Exact Renormalization Group). Readers new to the
subject should not be surprised if it is difficult to get
a fully unified view of these different approaches.
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Renormalization Group
and Condensed Matter

Statistical mechanical systems at critical points
exhibit scaling laws of order parameters, susceptibi-
lities, and other observables. The exponents of these
laws are universal, that is, independent of most
details of the system. For example, the liquid–gas
transition for real gases has the same exponents as
the magnetization transition in the three-dimensional
Ising model.

The renormalization group (RG) was developed
by Kadanoff, Wilson, and Wegner, to understand
these critical phenomena (Domb and Green 1976).
The central idea is that the system becomes scale
invariant at the critical point, which makes it
natural to average over degrees of freedom on
increasing length scales successively in the
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calculation of the partition function. This leads to a
map between effective interactions associated to
different length scales. Thus, the focus shifts from
the analysis of a single interaction to that of a flow
on a space of interactions. This space is in general
much larger than the original formulation of the
model would suggest: the description of long-
distance or low-energy properties may be in terms
of variables that were not even present in the
original formulation of the system. Phenomeno-
logically, this corresponds to the emergence of
collective degrees of freedom.

Condensed matter theory is itself already an
effective theory, and its ‘‘microscopic’’ formulation
gets inputs from the underlying theories, which
determine in particular the statistics of the particles
and their interactions at the scale of atomic energies.
At much lower-energy scales, which are relevant for
low-temperature phenomena in condensed matter,
collective excitations of different, sometimes exotic,
statistics may emerge, but the starting point is given
naturally in terms of fermionic and bosonic parti-
cles. For this reason, the discussion given below will
be split in these two cases.

A major difference between high-energy and
condensed matter systems is that the latter have a
well-defined Hamiltonian which can be used to
define the finite-volume ensembles of quantum
statistical mechanics and which determines the time
evolution, as well as various analyticity properties.

The relevant spatial dimensions in condensed
matter are d � 3, but some results in higher
dimensions relevant for the development of the
method will also be discussed below. The cases
d = 1 and d = 2 have always been of mathematical
interest but in recent years have become important
for the theory of new materials.

Some interesting topics cannot be covered here
due to space restrictions, notably the application of
renormalization methods to membrane theory (see
Wiese (2001)) and renormalization methods for
operators (see Bach et al. (1998)).
The Renormalization Group

In this section we briefly describe the setup of two
important versions of the RG, namely the block spin
RG and the RG based on scale decompositions of
singular covariances.

Block spin RG

Let � be a finite lattice, for example, a finite subset
of Zd. For the following, it is convenient to take �
to be a cube of side-length LK for L > 1 and some
large K. Let T be a set and �� = {� : �!T } be the
set of spin configurations. Common examples for
the target space T are T = {�1, 1} for the Ising
model, T = SN�1 for the O(N) model, and T = Rn

for unbounded spins. Let S� : ��!R,� 7! S�(�) be
an interaction and

Zð�; S�Þ ¼
Z Y

x2�

d�ðxÞe�S�ð�Þ ½1�

In the unbounded case, S� is assumed to grow
sufficiently fast for j�j!1, so that Z exists; for the
case of a finite set T, the integral is replaced by a
sum. Denote the corresponding Boltzmann factor by
�(�, S�),

�ð�; S�Þð�Þ ¼
1

Zð�; S�Þ
e�S�ð�Þ ½2�

The block spin transformation consists of an
integration step and a rescaling step. Divide the
lattice into cubic blocks of side-length L and define
a new lattice �0 by associating one lattice site of the
new lattice to each L-block of the old lattice. For
any �0 : �0 !T, let

�0ð�0Þ ¼
Z Y

x2�

d�ðxÞPð�0; �Þe�S�ð�Þ ½3�

where P(�0,�) � 0 and
R Q

x02�0d�
0(x0)P(�0,�) = 1

for all �, so that �0 remains a probability distribu-
tion. Since �0 is positive, one defines

S0�0 ð�0Þ ¼ � log �0ð�0Þ ½4�

By construction, the partition function is invariant:
Z(�0, S0�0) = Z(�, S�). The new lattice �0 has spacing L;
now rescale to make it a unit lattice. This completes
the RG step in finite volume.

In an algorithmic sense, the ‘‘blocking rule’’
P(�0,�) can be viewed as a transition probability of
a configuration � to a configuration �0. P may be
deterministic, that is, simply fix �0 as a function
of �. From the intuition of averaging over local
fluctuations, �0 is often taken to be some average of
�(x) at x in a block around x0, hence the name.

Obviously, the thus defined RG transformation
often cannot be iterated arbitrarily, since in every
application, the number of points of the lattice shrinks
by a factor Ld, so that after K iterations, a lattice with
only a single point is left over. It is necessary to take the
infinite-volume limit L!1 to obtain a map that
operates from a space to itself. However, [4] can
become problematic in that limit: Gibbs measures �
can map to measures �0 whose large-deviation proper-
ties differ from those of Gibbs measures. The discus-
sion of this problem and its solution is reviewed in
Bricmont and Kupiainen (2001). The problem can be
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solved in different ways, relaxing conditions on Gibbs
measures or, in the Ising model, changing the descrip-
tion from the spins to the contours. The crucial point is
that the difficulties arise only because [4] is applied
globally, that is, to every �0. The set of bad �0 has very
small probability.

Block spin methods have been used in mathema-
tical construction of quantum field theories, for
example, in the work of Gawedzki and Kupiainen
(1985) and Balaban (1988) (see the subsection
‘‘Field theory and statistical mechanics’’). The
above-mentioned problem was avoided there by
not taking a logarithm in the so-called large-field
region (which has very small probability).
Scale Decomposition RG

The generating functionals of quantum field theory
and quantum statistical mechanics can be cast into
the form

ZðC;V; �Þ¼
Z

d�Cð�0Þ e�Vð�0þ�Þ ½5�

Here d�C denotes the Gaussian measure with covar-
iance C, and V is the two-body interaction between the
particles. The field variables are real or complex for
bosons and Grassmann-valued for fermions. Differ-
entiating log Z with respect to the external field �
generates the connected amputated correlation func-
tions. The covariance determines the free propagation
of particles; the interaction their collisions.

In most cases, such functional integrals are a priori
ill-defined, even if V is small (and bounded from
below) because the covariance C is singular. That is,
the integral kernel C(X, X0) of the operator C either
diverges as jx� x0j! 0 (ultraviolet (UV) problem) or
C(X, X0) has a slow decay as jx� x0j!1 (infrared
(IR) problem). In our notational convention, X may,
in addition to the configuration variable x, also
contain discrete indices of the fields, such as a spin or
color index. The dependence of C on x and x0 is
assumed to be of the form x� x0. A typical example
is the massless Gaussian field in d dimensions, where
C is the inverse Fourier transform of Ĉ(k) = 1=k2,
k 2 Rd, which has both a UV and an IR problem, or
its lattice analog,

D̂ðkÞ ¼ 2

a2

Xd

i¼1

ð1� cosðakiÞ
 !�1

with a the lattice constant, which has only an IR
problem. A typical interaction is of the type

Vð�Þ ¼
Z

dX dY ��ðXÞ�ðXÞvðX;YÞ ��ðYÞ�ðYÞ ½6�
Again, we assume that the potential v depends on x
and y only via x� y, so that translation invariance
holds. In both UV and IR cases, naive perturbation
theory fails even as a formal power series. That is,
writing V =�V0, with a coupling constant � which is
treated as a formal expansion parameter, the singu-
larity of C leads to termwise divergences in the series.
The theory is called perturbatively renormalizable if
all divergences can be removed by posing counter-
terms of certain types, which are fixed by physically
sensible renormalization conditions. Identifying the
UV renormalizable theories was a breakthrough in
high-energy physics. The IR renormalization problem
is different, and in some respects harder, because
there is almost no freedom to put counter-terms: the
microscopic model is given from the start. This will
be discussed in more detail below for an example.

A much more ambitious, and largely open, project
is to do this renormalization nonperturbatively, that
is, to treat � as a real (typically, small) parameter.
Some results will be discussed below.

The RG is set up by a scale decomposition
C =

P
j Cj. In the example of the massless Gaussian

field, one would take each Ĉj to be a C1 function
supported in the region {k 2 Rd : Mj � k2 �Mjþ1},
where M > 1 is a fixed constant, and the summation
over j runs over Z.

The scale decomposition of C leads to a represen-
tation of [5] by an iteration of Gaussian convolution
integrals with covariances Cj, hence a sequence of
effective interactions Vj, defined recursively by

e�Vjð�Þ ¼
Z

d�Cjþ1
ð�0Þ e�Vjþ1ð�0þ�Þ; V0 ¼ V ½7�

For a singular covariance, the scale decomposition is
an infinite sum. A formal object like [5] is now
regularized by starting with a finite sum, that is,
imposing a UV and IR cutoff, which is mathemati-
cally well defined, and then taking limits of the thus
defined objects. Again, in condensed matter applica-
tions, imposing an IR cutoff is an operation that
needs to be justified, for example, by showing that
taking the limit as the cutoff is removed commutes
with the infinite-volume limit.

Note that the RG map, which is the iteration
Vj 7!Vj�1, goes to lower and lower j, corresponding
to longer and longer length scales. The convention
that the iteration starts at some fixed j, for example,
j = 0, is appropriate for IR problems. In UV
problems, the iteration would start at some large
JUV, which defines a UV cutoff and is taken to
infinity, to remove the cutoff, at the end.

A variant using a continuous scale decomposition,
C =

R
ds _Cs, originally due to Wegner and Houghton,

became very popular after Polchinski (1984) used it
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to give a short argument for perturbative renorma-
lizability. Polchinski’s equation, the analog of the
recursion [7], reads

@V

@s
¼ �1

2
eV� _Cs

e�V ¼ 1

2
� _Cs

V � 1

2

�V

��
; _Cs

�V

��

� �
½8�

Here

�C ¼
�

��
;C

�

��

� �

denotes the Laplacian in field space associated to the
covariance C. Polchinski’s argument has been devel-
oped into a mathematical tool that applies to many
models. For an introduction to perturbative renor-
malization using this method, see Salmhofer (1998).
Equations of the type [8] have also been very useful
beyond perturbation theory: much work has been
done based on the beautiful representation of Mayer
expansions found in Brydges and Kennedy (1987)
using RG equations.

Mathematical Structure and Difficulties

The RG flow is thus, depending on the implementa-
tion, either a sequence or a continuous flow of
interactions. Setting up this flow in mathematical
terms is not easy and indeed part of the mathema-
tical RG analysis is to find a suitable space of
interactions that is left invariant by the successive
convolutions, and then to control the RG iteration.
A serious problem is the proliferation of interac-
tions: already a single application of the RG
transformation [7] maps a simple interaction, such
as [6], to a nonlocal functional of the fields,

Vjð�Þ ¼
X
m�0

Z
dX1 � � � dXm

� vðjÞm ðX1; . . . ;XmÞ�ðX1Þ � � ��ðXmÞ ½9�

Already for perturbative renormalization, one needs
to extract local terms, calculate their flow more
explicitly, and control the power counting of the
remainder. The convergence of the series is not an
issue in formal perturbation theory because in every
finite order r in �, the sum over m is finite.

For nonperturbative renormalization, however,
the problem is much more serious. For bosonic
systems, the expansion in powers of the fields in
[9] is divergent, and one needs a split into small-
field and large-field regions and cluster expansions
to obtain a well-defined sequence of effective
actions (Gawedzki and Kupiainen 1985, Feldman
et al. 1987, Rivassean 1993). That is, the local
parts are extracted and treated explicitly only in
the small-field region, and this is combined with
estimates on the rareness of large-field regions
using cluster expansions. For fermions, the expan-
sion in powers of the fields can be proved to
converge for regular, summable covariances, which
leads to substantial technical simplifications.

The spatial proliferation of interactions is absent
only in certain one-dimensional and in specially
constructed higher-dimensional models, the so-
called ‘‘hierarchical models.’’ In these models, the
search for an RG fixed point is still a nonlinear
fixed-point problem, whose treatment leads to
interesting mathematical results.

This article will be restricted to the mathema-
tical use of the RG both in perturbative and
nonperturbative quantum field theory of con-
densed matter systems. Many nonrigorous but
very interesting applications have also come out
of this method, showing that it also works well in
practice, but they will not be reviewed here. Before
discussing condensed matter systems, the pioneer-
ing works done on the mathematical RG, which
were largely motivated by high-energy physics,
will be reviewed briefly, as they laid the founda-
tion of much of the technique used later in the
condensed matter case.
Field Theory and Statistical Mechanics

Because of the close connection between quantum
field theory and statistical mechanics given by
formulas of the Feynman–Kac type, a significant
amount of work on the mathematical RG focused
on models of classical statistical mechanics in
connection with field theories and gauge theories.
Here we mention some of the pioneering results in
that field.

The scale decomposition method was developed
in a mathematical form and applied to perturbative
UV renormalization of scalar field theories, as well
as nonperturbative analysis of some models, by
Gallavotti and Nicolò (Gallavotti 1985).

Infrared �4 theory in four dimensions was
constructed using block spin methods (Gawedzki
and Kupiainen 1985) and scale decomposition RG
(Feldman et al. 1987). An essential feature of the �4

4

model is its IR asymptotic freedom, meaning that
the local part of the effective quartic interaction
tends to zero in the IR limit.

Block spin methods were used by Balaban (1988)
to construct gauge theories in three and four
dimensions. For gauge theories, the block spin RG
has the major advantage that it allows to define a
gauge-invariant RG flow. The scale decomposition
violates gauge invariance, which creates substantial
technical problems (Rivasseau 1993).
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Condensed Matter: Fermions

Starting with the seminal work of Feldman and
Trubowitz (1990, 1991) and Benfatto and
Gallavotti (1995), this field has become one of the
most successful applications of the mathematical
RG. We use this example to discuss the scale
decomposition method in a bit more detail.

We shall mainly focus on models in d � 2
dimensions (the case d = 1 is described in detail in
Benfatto and Gallavotti (1995)). The system is put
into a finite (very large) box � of side-length L. For
simplicity we take periodic boundary conditions.
The Hilbert space for spin-1/2 electrons is the
fermionic Fock space F =

L
n�0

Vn L2(�, C2). The
grand canonical ensemble in finite volume is given
by the density operator �= Z�1e��(H��N), with the
Hamiltonian H and the number operator N, in the
usual second quantized form. The parameter
�= T�1 is the inverse temperature and the chemical
potential � is an auxiliary parameter used to fix the
average particle number.

The grand canonical trace defining the ensemble
can be rewritten in functional-integral form. It takes
the form [5], but now d�C stands for a Grassmann
Gaussian ‘‘measure,’’ which is really only a linear
functional (for definitions, see, e.g., Salmhofer
(1998, chapter 4 and appendix B)). A two-body
interaction corresponds to a quartic interaction
polynomial V, as in [6]. The covariance is (in the
infinite-volume limit L!1)

Cð�;xÞ ¼ 1

�

X
!2MF

Z
dk

ð2	Þd
eiðk�x�!�ÞĈð!; kÞ

Ĉð!; kÞ ¼ 1

i!� eðkÞ

½10�

where � 2 (0,�] is a Euclidian time variable and k
is the spatial momentum. The summation over !
runs over the set of fermionic Matsubara frequen-
cies MF = 	T(2Zþ 1). The function e(k) = "(k)� �,
where "(k) is the band function given by the single-
particle term in the Hamiltonian. For a lattice
system, k 2 Bd, the momentum space torus (e.g.,
for the lattice Zd,Bd = Rd=2	Zd); for a continuous
system, k 2 Rd, hence there is a spatial UV
problem. Electrons in a crystal have a natural
spatial UV cutoff (see Salmhofer (1998, chapter 4)
for a discussion) so we assume in the following
that there is either a UV cutoff or that the system is
on a lattice. A nonperturbative definition of the
functional integral involves a limit from discrete
times (by the Trotter product formula); see, for
example, Salmhofer (1998) or Feldman et al.
(2003, 2004).
Perturbative Renormalization

Renormalization of the Fermi surface at zero
temperature In the limit T! 0, the Matsubara
frequency ! becomes a real variable, hence the
propagator has a singularity at != 0 and k 2 S,
where S = {k : e(k) = 0}, a codimension-1 subset of
Bd, is the Fermi surface. The existence of a Fermi
surface which does not degenerate to a point is a
characteristic feature of systems showing metallic
behavior.

The singularity implies that Ĉ 62 Lp(R � Bd) for
any p � 2. Because terms of the typeZ

d!

Z
dkFð!; kÞĈð!; kÞ

�
Yp�1

i¼1

Tið!; kÞĈð!; kÞ
� �

½11�

appear for all p � 1 in the formal perturbation
expansion, with functions Ti and F that do not
vanish on the singularity set of C, the perturbation
expansion for observables is termwise divergent.
The deeper reason for these problems is that the
interaction shifts the Fermi surface so that the true
propagator has a singularity of the form
G(!, k) = (i!� e(k)� 
(!, k))�1. If the self-energy 

is a sufficiently regular function, G has the same
integrability properties as C, but the singularity of G
is on the set ~S = {k : e(k)þ 
(0, k) = 0} (the singular-
ity in ! remains at != 0).

Let 1 =
P

j�0 �j(!, k) be a C1 partition of unity
such that

for j < 0 supp �j � fð!; kÞ : �0Mj�2

� ji!� eðkÞj � �0Mjg ½12�

where M > 1 and �0 is a fixed constant (an energy
scale determined by the global properties of the
function e; see Salmhofer (1998, chapter 4)). The
corresponding covariances Ĉj = Ĉ�j

have the prop-
erties that for j < 0, kĈjk1 � const.Mj and kĈjk1 �
const.M�j. Using these bounds and expanding
v(j)

m =
P

r�1 v(j)
m, r�

r, one can derive estimates for the
coefficient functions v(j)

m, r.
Of course, the scale decomposition by itself does

not solve the problem of the moving singularity. It
only allows us to pinpoint the problematic terms in
the expansion. To construct the self-energy 
, as
well as all higher Green functions, a two-step
method is used (Feldman and Trubowitz 1990,
1991, Feldman et al. 1996, 2000). First, a counter-
term function K which modifies e is introduced, so
that all two-point insertions Ti get subtracted on
the Fermi surface, hence replaced by ~Ti(!, k) =
Ti(!, k)� Ti(0, k0), with k0 obtained from k by a
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projection to the Fermi surface (Feldman and
Trubouitz 1990, 1991). Consequently, the ~Ti vanish
linearly on the Fermi surface, so that the integral over
k in [11] converges. The effect of the counter-term
function K can be described less technically: it fixes
the Fermi surface to be S, the zero set of e. Thus, K
forces S to be the Fermi surface of the interacting
system. To achieve this, K must be chosen a function
of e, k, and �V. In contrast to the situation for
covariances with point singularities, the function K
will, for a nontrivial Fermi surface, be very different
from the original e. It can, however, be constructed to
all orders in perturbation theory for a large class of
Fermi surfaces. More precisely, one can prove: if e 2
C2(Bd, R), v̂ 2 C2(Bd, R), and the Fermi surface S
contains no points k with re(k) = 0 and no flat sides,
then K =

P
r �

rKr exists as a formal power series in �
and the map e 7! eþ K is locally injective on this set
of e’s (Feldman et al. 1996, 2000). With this counter-
term, the order-r m-point functions on scale j satisfy
the bounds

v̂ðjÞm;r

��� ���
1
� wm;rM

ð4�mÞj=2jjjr

and

v̂ðjÞm;r

��� ���
1
� ~wm;r ½13�

with constants wm, r and ~wm, r. Here v̂(j)
m, r is the

Fourier transform of v(j)
m, r (see [9], with the momen-

tum conservation delta function from translation
invariance removed.

Equation [13] implies that in the RG sense, the
two-point function is relevant, the four-point func-
tion is marginal, and all higher m-point functions
are irrelevant.

In one dimension, the Fermi ‘‘surface’’ reduces to
two points which are related by a symmetry, so the
counter-term function K is just a constant, that is, an
adjustment of the chemical potential �, which is
justified because � is only an auxiliary parameter
used to fix the average value of the particle number.
The counter-term function is a constant also in
higher dimensions in the special case e(k) = k2 � �:
there, rotational symmetry implies that K can be
chosen independent of k (if v is also rotationally
symmetric). However, in the generic case of non-
spherical Fermi surfaces, K depends nontrivially
on k, and an inversion problem arises: adding the
counter-term changes the model. To obtain the
Green functions of a model with a given dispersion
relation and interaction (E, V), one needs to show
that given E in a suitable set, the equation

eðkÞ þ Kð�; e;VÞðkÞ ¼ EðkÞ ½14�
has a unique solution. If this is done, the procedure
for renormalization is as follows. For a model given
by dispersion relation and interaction (E, V), solve
[14], then add and subtract e in the kinetic term.
This automatically puts K = E� e as a counter-term,
and the expansion is now set up automatically with
the right counter-term. The function K describes
the shift from the Fermi surface of the free system (the
zero set of E) to that of the interacting system
(the zero set of e). Proving that K is sufficiently
regular and solving [14] is nontrivial. Uniqueness of
the solution follows from the above stated properties
of K as a function of e. Existence was shown for a
class of Fermi surfaces with strictly positive curva-
ture in Feldman et al. (1996, 2000), to every order
in perturbation theory. This implies a bijective
relation between the Fermi surfaces of the free and
the interacting model.
Positive temperature and the zero-limit temperature
One advantage of the functional-integral approach
is that the setup at positive temperatures is identical
to that at zero temperature, save for the discreteness
of the set MF at T > 0. Because 0 62MF, the
temperature effectively provides an IR cutoff, so
that all term-by-term divergences are regularized in
a natural way. However, renormalization is still
necessary because the temperature is a physical
parameter and unrenormalized expansions give
disastrous bounds for the behavior of observables
as functions of the temperature. Renormalization
carries over essentially unchanged (the counter-term
function is constructed slightly differently).

Because j!j � 	=� for all ! 2MF, [12] implies
supp �j = ; for j < �J�, where

J� ¼ logM

��0
	

½15�

Thus, the scale decomposition is now a finite sum
over 0 � j � �J�. This restriction is inessential for
the problem of renormalizing the Fermi surface, but
it puts a cutoff on the marginal growth of the four-
point function: [15] and [13] imply that

kv̂ðjÞm;rk1 � ~wm;r log
��0
	

� �r

½16�

If one can show that ~wm, r � ABr with constants A
and B, this implies that perturbation theory con-
verges for j�j log (��0=	) < B�1. Such a bound has
been shown using constructive methods (Disertori
and Rivasseau 2000, Feldman et al. 2003, 2004) (see
below). The logarithm of � is due to the Cooper
instability (see Feldman and Trubowitz (1990,
1991) and Salmhofer (1998, section 4.5)).
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The application of renormalization at positive
temperature also led to the solution of a longstanding
puzzle in solid-state physics, namely the (seeming)
discontinuity of the results of perturbation theory as a
function of the temperature claimed in the early
literature. When renormalization is done correctly,
there is no discontinuity in the temperature.

Nonperturbative Renormalization for Fermions

It is a remarkable feature of fermionic field theories
that for a covariance for which kĈk1 and kCk1 are
both finite, the effective action defined in [7] exists
and is analytic in the fields and in the original
interaction V, thanks to determinant bounds. For a
V as in [6], with �v weak and of short range, the
skeleton functions (where all relevant m-point
functions are projected back to their initial values
in the RG iteration) satisfy

kv̂ðjÞm k1 � const:kĈjk�ðm=2Þþ1
1 kCjk�1

1 ½17�

For the many-electron covariance [10], with a
positively curved Cd Fermi surface and with the
scale decomposition [12], kĈjk1 is of order Mj and
kCjk1 is of order M�j(dþ1)=2. The right-hand side of
[17] then contains M(dþ3�m)j=2, which agrees (up to
logarithms) with the perturbative power-counting
bounds [13] only for d = 1. In dimension d = 2, the
method has been refined by dividing the Fermi
surface into angular sectors. The corresponding
sectorized propagators have a better decay bound
kCjk1, but the trade-off is sector sums at every
vertex. Momentum conservation restricts these
sector sums sufficiently in two dimensions to allow
for good power-counting bounds. This has allowed
for the construction of an interesting class of
interacting fermionic models.

The major results obtained with the RG method
are as follows.

Luttinger liquid behavior at zero temperature was
proved for one-dimensional models with a repulsive
interaction (Benfatto and Gallavotti 1995).

Fermi liquid behavior in the region where
j�j log (��0)	 1 was proved for the two-
dimensional model with e(k) = k2 � 1, a local poten-
tial V, and a UV cutoff both on k and the Matsubara
frequencies ! in Disertori and Rivasseau (2000).

A two-dimensional model with a band function
e(k) that is nonsymmetric under k!�k and a
general short-range interaction was proved to be a
Fermi liquid at zero temperature (Feldman et al.
2003, 2004). Due to the asymmetry under k!�k,
the Cooper instability can be proved to be absent. In
Feldman et al. (2003, 2004), a counter-term func-
tion as in Feldman et al. (1996, 2000) was used. The
nonperturbative proof of the corresponding inver-
sion theorem remains open.

In d = 3, the proof of Fermi liquid behavior remains
an open problem, despite some partial results.
Condensed Matter: Bosons

Recent advances in quantum optice, in particular the
trapping of ultracold atoms, have led to the
experimental realization of Bose–Einstein condensa-
tion (BEC), which caused a surge of theoretical and
mathematical works. For bosons, the definition of
the ensembles is similar to, but more involved than
in, the fermionic case. On a formal level, the
functional-integral representation is analogous to
fermions, except that the fields are not Grassmann
fields but complex fields, and the covariance is given
by a sum as in [10], but now the summation over !
runs over the bosonic Matsubara frequencies
MB = 2	TZ. The existence of even the free partition
function in finite volume restricts the chemical
potential (for free particles, � < infk "(k) must
hold). Note that C is complex and Gaussian
measures with complex covariances exist in infinite
dimensions only under rather restricted conditions,
which are not satisfied by [10]. This is inessential for
perturbative studies, where everything can be
reduced to finite-dimensional integrals involving
the covariance, but a nonperturbative definition of
functional integrals for such systems requires again a
carefully regularized (e.g., discrete-time) definition
of the functional integral.

Bose–Einstein Condensation

The problem was treated to all orders in perturba-
tion theory at positive particle density � > 0 by
Benfatto (Benfatto and Gallavotti 1995). The initial
interaction is again quartic, "(k) = k2, and one
considers the problem at zero temperature, in the
limit �! 0�, which is the limit in which BEC occurs
for free particles. The interaction is expected to
change the value of �, given the density, so a
chemical potential term is included in the action, to
give the interaction

Vð�Þ ¼
Z

d�dxdyj�ð�; xÞj2vðx� yÞj�ð�; yÞj2

þ 
Z

d�dxj�ð�; xÞj2 ½18�

After writing �(� , x) = � þ ’(� , x), where � is indepen-
dent of � and x, the density condition becomes
�= j�j2.  now needs to be chosen such that the
free energy has a minimum at �=

ffiffiffi
�
p

. This can be
reformulated in terms of the self-energy of the boson.
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Benfatto uses the RG to prove that the propagator of
the interacting system no longer has the singularity
structure (i!� k2)�1 but instead (!2 þ c2k2)�1, where
c is a constant. This requires a nontrivial analysis of
Ward identities in the RG flow.

BEC has been proved in the Gross–Pitaevskii limit
(Lieb et al. 2002). In the present formulation, this limit
corresponds to an infinite-volume limit L!1 where
the density � is taken to zero as an inverse power of L.
A nonperturbative proof of BEC at fixed positive
particle density remains an open problem.
Superconductivity

Superconductivity (SC) occurs in fermionic systems,
but it happens at energy scales where the relevant
excitations have bosonic character: the Cooper pairs
are bosons. In the RG framework, they arise naturally
when the fermionic RG flow discussed above is
stopped before it leaves the weak-coupling region
and the dominant Cooper pairing term is rewritten by
a Hubbard–Stratonovich transformation. The fer-
mions can then be integrated over, resulting in the
typical Mexican hat potential of an O(2) nonlinear
sigma model. Effectively, one now has to deal with a
problem similar to the one for BEC, but the action is
considerably more complicated.
The Nonlinear Sigma Models

The prototypical model, into whose universality
class both examples mentioned above fall, is that
of O(N) nonlinear sigma models: both BEC and SC
can be reformulated as spontaneous symmetry
breaking (SSB) in the O(2) model in dimensions
d � 3. For d = 2, long-range order is possible only at
zero temperature because only then does the time
direction truly represent a third dimension, prevent-
ing the Mermin–Wagner theorem from applying.

SSB has been proved for lattice O(N) models by
reflection positivity and Gaussian domination meth-
ods (Fröhlich et al. 1976). The elegance and
simplicity of this method is unsurpassed, but only
very special actions satisfy reflection positivity, so
that the method cannot be used for the effective
actions obtained in condensed matter models.
Results in the direction of proving SSB in O(N)
models for d � 3 by RG methods, which apply to
much more general actions, have been obtained by
Balaban (1995).

See also: Bose–Einstein Condensates; Fermionic
Systems; High Tc Superconductor Theory; Holomorphic
Dynamics; Operator Product Expansion in Quantum
Field Theory; Perturbative Renormalization Theory and
BRST; Phase Transition Dynamics; Reflection Positivity
and Phase Transitions.
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N Burq, Université Paris-Sud, Orsay, France

ª 2006 Elsevier Ltd. All rights reserved.
Introduction

In quantum mechanics and wave propagation,
eigenvalues (and eigenfunctions) appear naturally
as they describe the behavior of a quantum
system (or the vibration of a structure). There
are however some cases where these simple
notions do not suffice and one has to appeal to
the more subtle notion of resonances. For
example, if the vibration of a drum is well
understood in terms of eigenvalues (the audible
frequencies) and eigenfunctions (the correspond-
ing vibrating modes), the notion of resonances is
necessary to understand the propagation of waves
in the exterior of a bounded obstacle. Another
example (taken from Zworski (2002)) which
allows us to understand both the similarities of
resonances with eigenvalues and their differences
is the following: consider the motion of a
classical particle submitted to a force field
deriving from the potential V1(x) on a bounded
interval as shown in Figure 1a. If the classical
momentum is denoted by �, then the classical
energy is given by

E ¼ j�j2 þ V1ðxÞ

and the classical motion is given by the relations of
Hamiltonian mechanics:

_x ¼ @E

@�
¼ 2�; _� ¼ � @E

@x
¼ �V 0ðxÞ

Since energy is conserved, if the initial energy is
smaller than the top of the barrier, then the classical
particle bounces forever in the well. Now we can
consider the same example with the potential V2(x)
on R as shown in Figure 1b. Of course, if the
particle is initially inside the well (with the same
energy as before), the classical motion remains the
same.
(b)

π00

E

(a)

π

Figure 1a, b A particle trapped in a well.
On the quantum mechanics point of view, both
systems are described by the Hamiltonians

Hi ¼ �h2 d2

dx2
þ ViðxÞ

acting on L2([�1, 1]) (with boundary conditions) and
L2(R), respectively. In the first case, H1 has a discrete
spectrum, �j, h 2 R with eigenfunctions ej, h(x), j 2 N,
and the time evolution of the system is given by

eitH1u ¼
X

j

eit�j;huj;h � ej;h ½1�

where uj, h � ej, h is the orthogonal projection of u on
the eigenspace Cej, h. In the second case, H2 has no
square integrable eigenfunction, and no simple
description as [1] can consequently hold. However
as h! 0, the correspondence principle tells us that
quantum mechanics should get close to classical
mechanics. Since for both quantum problems the
classical limit is the same (at least for initial states
confined in the well with energy E), we expect that
for the second potential there should exist a
quantum state corresponding to the classical one.
In fact, this is indeed the case and one can show that
there exist resonant states ej, h associated to reso-
nances Ej, h which are solution of the equation

H2ej;h � Ej;hej;h; Ej;h � E

are not square integrable, but still have moderate
growth at infinity and are confined in the interior of
the well (see sections ‘‘Definition’’ and ‘‘Location of
resonances’’). On the other hand, the first quantum
system is confined, whereas the second one is not and
we know that even for initial states confined in the
well, tunneling effect allows the quantum particle to
escape to infinity. This fact should be described by
the theory as a main difference between eigenvalues
and resonances. This is indeed the case as the
resonances Ej, h are not real (contrarily to eigenvalues
of self-adjoint operators) but have a nonvanishing
imaginary part (see section ‘‘Resonance-free regions’’)

Im Ej;h � e�C=h

If we assume that a similar description as [1] still
holds for the second system, at least locally in space
(see section ‘‘Resonances and time asymptotics’’),
then, for time t >> eC=h, the factor eitEh becomes
very small (the quantum particle has left the well
due to tunneling effect).

There have been several studies on resonances and
scattering theory and the presentation here cannot be
complete. For a more in-depth presentation, one can
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consult the books by Lax and Phillips (1989) and
Hislop and Sigal (1987), or the reviews on resonances
by Vodev (2001) and Zworski (1994) for example.
Definition

There are different (equivalent) definitions of reso-
nances. The most elegant is certainly the Helffer and
Sjöstrand (1986) definition (see also the presentation
of complex scaling by Combes et al. (1984) and the
very general ‘‘black box’’ framework by Sjöstrand and
Zworski (1991)). However, it requires a few prerequi-
sites and we preferred to stick to the more elementary
(but less general) resolvent point of view. The starting
point for this definition of resonances is the fact that
the eigenvalues of a (self-adjoint) operator P are the
points where P is not injective. The more general
resonances will be the points where the operator is not
invertible (on suitable spaces).

More precisely, consider a perturbation of the
Laplace operator on Rn, P0(h) =�h2� in the following
sense: let � � Rd be a (possibly empty) smooth obstacle
whose complementary, � = �c, is connected. Consider
a classical self-adjoint operator defined on L2(�):

Phu ¼ ð�h2�þ VðxÞÞu ½2�

with boundary conditions (Dirichlet)

u j@�¼ 0 ½3�

(Neumann boundary conditions could be used too).
This setting contains both the Schrödinger operator
(Ph =�h2�þ V(x)� E on � = Rn) and the Helmoltz
equation with Dirichlet conditions, in the exterior of
an obstacle (waves at large frequencies: P =��� �2;
in this case, define h = ��1 and Ph =�h2�), which we
shall define as acoustical scattering.

We assume that P is a perturbation of P0, that is,
V! 0, jxj! þ1 sufficiently fast (see Sjöstrand and
Zworski (1991) for the very general black box
assumptions). For example, this perturbation
assumption is fulfilled if V has compact support.
Then the resolvent Ph(z) = (Ph � z)�1 is well defined
for Im z 6¼ 0 as a bounded operator from L2(�) to

H2ð�Þ \H1
0ð�Þ

(because the operator Ph is self-adjoint). However, it
is not bounded for z > 0 on L2(�) because the
essential spectrum of Ph is precisely the semiaxis z >
0, but it admits a meromorphic continuation from
Im z > 0 toward the lower half-plane:

RhðzÞ : L2ð�Þcomp ! L2ð�Þloc

The poles of this resolvent Rh are by definition the
semiclassical resonances, Ressc(Ph).
Remark 1 In the case of acoustical scattering
(P =��� �2, � = h�1), the introduction of the addi-
tional parameter z is pointless and one works
directly with the parameter � = h�1 ffiffiffi

z
p

. In that case
the resolvent R(�)(��� �2)�1 is well defined for
Im � < 0, the essential spectrum is precisely the axis
� 2 R and the resolvent admits a meromorphic
continuation from Im z < 0 toward the upper half-
plane (with possibly a cut at 0):

Rð�Þ : L2ð�Þcomp ! L2ð�Þloc

The acoustic resonances are by definition the poles
of this meromorphic continuation. They are related
to semiclassical resonances by the relation

Ressc ¼ h
ffiffiffiffiffiffiffiffiffiffiffi
Resac

p
It can also be shown that if z is a resonance, there
exists an associated resonant state ez such that

ðPh � zÞez ¼ 0

the function ez satisfies Sommerfeld radiation con-
ditions (in polar coordinates (r,�) 2 [0,þ1)�Sn�1)

jh@re� i
ffiffiffi
z
p

ej � Cjei
ffiffi
z
p

rj=r1þn=2

and the function

ez

1þ rð1=2Þþ�
ei
ffiffi
z
p

r

is square integrable.
Resonance-Free Regions

The very first result about resonance-free regions is
based on Rellich uniqueness theorem (uniqueness for
solutions of elliptic second-order equations) and says
that there are no real resonances (except possibly 0).
The more precise determination of resonance-free
regions (originally in acoustical scattering) has been a
subject of study from the 1960s and it has motivated a
large range of works from the multiplier methods of
Morawetz (1975) to the general propagation of
singularity theorem of Melrose and Sjöstrand (1978).
To state the main result in this direction, we need the
notion of nontrapping perturbation.

Definition 1 A generalized bicharacteristic at energy
E(x(s), �(s)) is an integral curve of the Hamiltonian field

Hp ¼
@p

@�

@

@x
� @p

@x

@

@�

of the principal symbol p(x, �) = j�j2 þV(x) of the
operator P, included in the characteristic set
p(x, �) = E and which, when hitting the boundary of
the obstacle, reflects according to the laws of
geometric optics (see (Melrose and Sjöstrand 1978)).
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The operator P (or by extension the obstacle in the
case of acoustic scattering) is said to be nontrapping
at energy E if all generalized bicharacteristics go to
the infinity:

lim
s!�1

jxðsÞj ¼ þ1

The operator P (or by extension the obstacle in the
case of acoustic scattering) is said to be nontrapping
near energy E if P is nontrapping at energy E0 for E0

in a neighborhood of E.

The following result was obtained in different
generalities by Morawetz (1975), Melrose and
Sjöstrand (1978), and others.

Theorem 1 Assume that the operator P is nontrap-
ping near energy E. Then for any N > 0 there exist
h0 > 0 such that for 0 < h < h0 there are no
resonances in the set

fz; jIm zj � �Nh logðhÞg

In the case of analytic geometries (and coefficients),
this result (see Bardos et al. 1987) can be improved to

Theorem 2 Assume that the operator P is non
trapping. Then there exist � > 0, N0 > 0 and h0 > 0
such that for 0 < h < h0 there are no resonances in
the set

fz; jIm zj � N0h1�ð1=3Þg \ fjz� Ej � �g

Remark 2 In the case of acoustical scattering, with
the new definition of resonances, � = h�1 ffiffiffi

z
p

, the
resonance-free zones have respectively the forms

fz; jIm zj � �N logðjzjÞ; jzj >> 1g
fz; jIm zj � N0jzj1=3; jzj >> 1g

In the case of trapping perturbations, the first result
was obtained by Burq (1998).

Theorem 3 There exist C > 0 and h0 > 0 such that
for 0 < h < h0 there are no resonances in the set

fz; jIm zj � N0 e�C=hg \ fjz� Ej � �g
Resonances and Time Asymptotics

The relationship between eigenfunctions/eigen-
values and time asymptotics is straightforward.
This is no longer the case for resonances. For
nontrapping problems however, this question has
been studied in the late 1960s by Lax and Phillips
(1989) and Vainberg (1968). In particular, this
approach was decisive to study the local energy
decay in acoustical scattering. As a consequence of
Theorem 1, we have
Theorem 4 If the acoustical problem is nontrap-
ping, then there exist C,� > 0 such that for any
solution of the wave equation

&u¼ 0; ujt¼0¼ u0; @tujt¼0¼ u1; uj�D
¼ 0;

@u

@n
j�N
¼ 0

with compactly supported initial data (u0,u1) (in a
fixed compact), one has

ElocðuÞ

¼
Z

�\fjxj�C

jruj2 þ j@tuj2

�
Ce��t if the space dimension is even

C

td
if the space dimension is odd

8<
: ½4�

Trapping perturbations were investigated more
recently. In that case, the local energy decays, but the
rate cannot be uniform. The first trapping example in
acoustic scattering was studied by Ikawa (1983): the
obstacle is the union of a finite number (and at least
two) convex bodies. In that case, one has

Theorem 5 For any � > 0 there exists C > 0 such
that for any initial data supported in a fixed
compact set

ElocðuÞðtÞ � Ce��tkðu0; u1Þk2
Dðð1��Þð1þ�Þ=2Þ

where D((1��)(1þ�)=2) is the domain of the
operator (1��)(1þ�)=2. Remark that the norm in
D((1��)1=2) is the natural energy and consequently
the estimate above exhibits a loss of � derivatives.
For strongly trapping perturbations, the results are
worse. They are consequences of Theorem 3.

Theorem 6 For any k there exists Ck > 0 such that
for any initial data supported in a fixed compact set

ElocðuÞðtÞ �
Ck

logðtÞ2k
kðu0; u1Þk2

Dðð1��Þð1þkÞ=2Þ

One can also obtain real asymptotic expansions in
terms of resonances (see the work by Tang and
Zworski (2000)).

Theorem 7 Let � 2 C1c (Rn) and  2 C1c ((0,1))
and let chsupp  = [a, b]. There exists 0 < 	 <
c(h) < 2	 such that for every M > M0 there exists
L = L(M), and we have

�e�it
ðPÞ=h� ðPÞ ¼
X

z2�ðhÞ\ResðPÞ
�Resðe�it
ð	Þ=h

�Rð	;hÞ;zÞ� ðPÞ
þOH!Hðh1Þ; for t > h�L

�ðhÞ ¼ða� cðhÞ;bþ cðhÞÞ � i½0;hMÞ

½5�
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where Res(f ( 	 ), z) denotes the residue of a mer-
omorphic family of operators, f, at z.

The function c(h) depends on the distribution of
resonances: roughly speaking we cannot ‘‘cut’’
through a dense cloud of resonances. Even in the
very well understood case of the modular surface
there is, currently at least, a need for some
nonexplicit grouping of terms. The same ideas can
be applied to acoustic scattering.
Trace Formulas

Trace formulas provide a description of the classical/
quantum correspondence: one side is given by the trace
of a certain function of the operator f (Ph), whereas the
other side is described in terms of classical objects
(closed orbits of the classical flow). In the case of
discrete eigenvalues, the question is relatively simple
and can be solved by using the spectral theorem. In the
case of continuous spectrum, the problem is much more
subtle (self-adjoint operators with continuous spectrum
behave in some ways as non-normal operators). It has
been studied by Lax and Phillips (1989), Bardos et al.
(1982), and Melrose (1982). More recently, Sjöstrand
(1997) introduced a local notion of trace formulas.

Let W � � be an open precompact subsets of
ei[�2�0, 0]]0, þ1[. Assume that the intersections I
and J of W and � with the real axis are intervals and
that � is simply connected.

Theorem 8 Let f (z, h) be a family of holomorphic
functions on z 2 � such that jfj�nWj � 1. Let � 2
C10 (R) equal to 1 on a neighborhood of I. Then

Trace �fð Þ Phð Þ � �fð Þ �h2�
� �� �

¼
X

� a resonance of Ph\�

f �; hð Þ þ O h�nð Þ

The use of this result with a clever choice of functions f
allows Sjöstrand to show that an analytic singularity of
the function E 7!Vol({x; V(x) 
 E}) (observe that if V
is bounded, this function vanishes for large E and
consequently it has analytic singularities) gives a lower
bound for � a neighborhood of E

]ResðPhÞ \ � 
 ch�n

which coincides with the upper bound (see Zworski
(2002) and the references given there).
Location of Resonances

In some particular cases, one can expect to have a
precise description of the location of resonances.
This is the case in Ikawa’s example in acoustic
scattering where the obstacle is the union of two
disjoint convex bodies. In this case, the line
minimizing the distance, d, between the bodies is
trapped. However, this trapped trajectory is isolated
and of hyperbolic type (unstable). Ikawa (1983) and
Gérard (1988) have obtained:

Theorem 9 There exist geometric positive constants
kp!þ1 as p! þ1 such that all resonances
located above the line Im z 
 �C (C arbitrary large
but fixed) have an asymptotic expansion

� � �j;p þ
X

l

al;p�
�l=2
j;p þOð��1j;p Þ; j! þ1

where the approximate resonances

�j;p ¼ j
�

d
� ikp

are located on horizontal lines.

Another example is when the obstacle is convex.
This example is nontrapping and Sjöstrand and
Zworski (1999) are able to prove that the resonances
in any region Im z 
 Njzj1=3 (N arbitrary large) are
asymptotically distributed near cubic curves

Cj ¼ fz 2 C; Im z ¼ �cjjzj1=3g
Finally, the last main example where one can give a
precise asymptotic for resonances is when there
exists a stable (elliptic) periodic trajectory for the
Hamiltonian flow. In that case it had been known
from the 1960s (see the works by Babič (1968)) that
one can construct quasimodes, that is, compactly
supported approximate solutions of the eigenfunc-
tions equation:

ðPh � EhÞej ¼ Oðh1Þ
It is only recently that Tang and Zworski (1998) and
Stefanov (1999) proved that these quasimodes
constructions imply the existence of resonances
asymptotic to Eh, h! 0.

See also: h-Pseudodifferential Operators and
Applications; Semi-Classical Spectra and Closed Orbits.
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Introduction

Riemann surfaces were first studied as the natural
domain of definition of (multivalued) holomorphic
or meromorphic functions. They were the starting
point for the development of the theory of
real and complex manifolds (see Weyl (1997)).
Nowadays, Riemann surfaces are simply defined
as one-dimensional complex manifolds (see the
next section). Compact Riemann surfaces can
be embedded into projective spaces and are thus,
by virtue of Chow’s theorem, algebraic curves. By
uniformization theory, the universal cover of
a connected Riemann surface is either the unit
disk, the complex plane, or the Riemann sphere
(see the section ‘‘Uniformization’’).

This article discusses the basic theory of compact
Riemann surfaces, such as their topology, their
periods, and the definition of the Jacobian variety.
Studying the zeros and poles of meromorphic
functions leads to the notion of divisors and linear
systems. In modern language this can be rephrased
in terms of line bundles, resp. locally free sheaves
(see the section ‘‘Divisors, linear systems, and line
bundles’’). One of the fundamental results is the
Riemann–Roch theorem which expresses the
difference between the dimension of a linear system
and that of its adjoint system in terms of the degree
of the linear system and the genus of the curve. This
theorem has been vastly generalized and is truly one
of the cornerstones of algebraic geometry.
A formulation of this result and a discussion of
some of its applications are also discussed.



A study of the subsets of the Jacobians parame-
trizing linear systems of given degree and dimension
leads to Brill–Noether theory, which is discussed in
the section ‘‘Brill–N oether theory .’’ This is follow ed
by a brief introduction to the theory of equations
and syzygies of canonical curves.

Moduli spaces play a central role in the theory
of complex variables and in algebraic geometry.
Arguably, the most important of these is the
moduli space of curves of genus g. This and
related moduli problems are treated in the section
‘‘Moduli of compact Riemann s urfaces.’’ I n parti-
cular, the space of stable maps is closely related to
quantum cohomology. Finally, we present a brief
discussion of the Verlinde formula and conformal
blocks.

Basic Definitions

Riemann surfaces are one-dimensional complex
manifolds. An n-dimensional complex manifold
M is a topological Hausdorff space (i.e., for any
two points x 6¼ y on M, there are disjoint open
neighborhoods containing x and y), which has a
countable basis for its topology, together with a
complex atlas A. The latter is an open covering
(U�)�2A together with homeomorphisms f� : U� !
V� � Cn, where the U� are open subsets of M and
the V� are open sets in Cn. The main requirement
is that these charts are holomorphically compati-
ble, that is, for U� \U� 6¼ ;, the map shown in
Figure 1,

f� � f�1
� jf�ðU�\U�Þ : f�ðU� \U�Þ ! f�ðU� \U�Þ � Cn

is biholomorphic. A map h : M! N between two
complex manifolds is holomorphic if it is so with
respect to the local charts. This means the following:

for each point x 2M, there are charts
f M
� : UM

� !VM
� � Cn near x and f N

� : UN
� ! VN

� �
Cm near h(x) with h(UM

� ) � UN
� such that the map

shown in Figure 2

f N
� � h � ðf M

� Þ
�1 : VM

� ! VN
� � Cm

is holomorphic (one checks easily that this does not
depend on the choice of the charts).

A Riemann surface is a one-dimensional com-
plex manifold. Trivial examples are given by open
sets in C (where one chart suffices). Another
example is the Riemann sphere Ĉ = C [ {1},
which can be covered by the two charts given by
z 6¼ 1 and z 6¼ 0. Both of these charts are home-
omorphic to C with the transition function given
by z 7! 1=z. Historically, Riemann surfaces were
viewed as (branched) coverings of C or of the
sphere, where they appear as the natural domain
of definition of multivalued holomorphic or
meromorphic functions.

Uniformization

If M is a Riemann surface, then its universal
covering ~M is again a Riemann surface. The
connected and simply connected Riemann surfaces
can be fully classified. Let

E ¼ fz 2 C; jzj < 1g

be the unit disk and Ĉ = C [ {1} the Riemann
sphere. The latter can be identified with the complex
projective line P1

C.

Theorem 1 (Generalized Riemann mapping
theorem). Every connected and simply connected
Riemann surface is biholomorphically equivalent

Uα

Uβ

fα fβ

Vα ⊂ Cn Vβ ⊂ Cn

M

fβ ° fα
–1

Figure 1 Charts of a complex manifold.

x h(x)

M N

h

Uα
M Uβ

N

fβ
N

fβ  ° h ° (fα   )
–1N M

fα
M

Vβ  ⊂ CnNVα  ⊂ CmM

Figure 2 Holomorphic map between manifolds.
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to the unit disk E, the complex plane C, or the
Riemann sphere Ĉ.

This theorem was proved rigorously by Koebe
and Poincaré at the beginning of the twentieth
century.

Compact Riemann Surfaces

The topological structure of a compact Riemann
surface C is determined by its genus g (Figure 3).
Topologically, a Riemann surface of genus g is a
sphere with g handles or, equivalently, a torus with
g holes.

Analytically, the genus can be characterized as the
maximal number of linearly independent holo-
morphi c form s on C (see also the section ‘‘The
Riem ann–Roc h theore m an d ap plications’’).

There exists a very close link with algebraic
geometry: every compact Riemann surface C can
be embedded into some projective space Pn

C (in
fact already into P3

C). By Chow’s theorem, C is
then a (projective) algebraic variety, that is, it can
be described by finitely many homogeneous equa-
tions. It should be noted that such a phenomenon
is special to complex dimension 1. The crucial
point is that one can always construct a non-
constant meromorphic function on a Riemann
surface (e.g., by Dirichlet’s principle). Given such
a function, it is not difficult to find a projective
embedding of a compact Riemann surface C. On
the other hand, it is easy to construct a compact
two-dimensional torus T = C2=L for some suitably
chosen lattice L, which cannot be embedded into
any projective space Pn

C.
The dichotomy Riemann surface/algebraic curve

arises from different points of view: analysts think
of a real two-dimensional surface with a Rieman-
nian metric which, via isothermal coordinates,
defines a holomorphic structure, whereas algebraic
geometers think of a complex one-dimensional
object.

In this article, the expressions compact Riemann
surface and (projective) algebraic curve are both
used interchangeably. The choice depends on
which expression is more commonly used in the
part of the theory which is discussed in the
relevant section.

Periods and the Jacobian

On a compact Riemann surface C of genus g, there
exist 2g homologically independent paths, that is,
H1(C, Z) ffi Z2g.

Let �1, . . . ,�2g be a basis of H1(C, Z) and
let !1, . . . ,!g be a basis of the space of holomorphic
1-forms on C. Integrating these forms over the paths
�1, . . . , �2g defines the period matrix

� ¼

R
�1
!1 � � �

R
�2g
!1

..

. ..
.R

�1
!g � � �

R
�2g
!g

0
BB@

1
CCA

If Q = (�i, �j) is the intersection matrix of the paths
�1, . . . , �2g, then � satisfies the Riemann bilinear
relations

�Q�t ¼ 0;
ffiffiffiffiffiffiffi
�1
p

�Q�
t
> 0 ½1�

where the latter condition means positive definite.
One can choose (see Figure 4) �1, . . . , �2g such that

Q ¼ J ¼
0 1g

�1g 0

� �

where 1g is the g� g unit matrix. Moreover,
!1, . . . ,!g can be chosen such that

� ¼
1 � � � 0 �11 � � � �1g

..

. . .
. ..

. ..
. ..

.

0 � � � 1 �g1 � � � �gg

0
B@

1
CA

Let

�0 ¼ ð�ijÞ1	i; j	g

Then the Riemann bilinear relations [1] become

�0 ¼ �t
0; Im �t

0 > 0

that is, �0 is an element of the Siegel upper half-
space

Hg ¼ � 2Matðg� g;CÞ; � ¼ � t; Im � > 0f g

The matrix �0 is defined by the Riemann surface C
only up to the action of the symplectic group

Spð2g;ZÞ ¼ M 2Matð2g� 2g;ZÞ; MJMt ¼ Jf g

g = 0 g = 1 genus g

Figure 3 Genus of Riemann surfaces.

γ4γ3 γ2γ1

Figure 4 Homology of a compact Riemann surface.
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which acts on the Siegel space Hg by

M ¼ A B
C D

� �
: � 7! ðA� þ BÞðC� þDÞ�1

Here A, . . . , D are g� g blocks.
The rows of the matrix � define a rank-2g lattice

L� in Cg and the Jacobian of C is the torus

JðCÞ ¼ Cg=L�

More intrinsically, one can define J(C) as follows.
Let H0(C,!C) be the space of holomorphic differ-
ential forms on C. Then, integration over cycles
defines a monomorphism

H1ðC;ZÞ ! H0ðC; !CÞ


� 7!
Z
�

and

JðCÞ ¼ H0ðC; !CÞ
=H1ðC;ZÞ

For a fixed base point P0 2 C, the Abel–Jacobi
map is defined by

u : C! JðCÞ

P 7!
Z P

P0

!1; . . . ;

Z P

P0

!g

� �

Here, the integration is taken over some path
from P0 to P. Obviously, the integral depends on
the choice of this path, but since J(C) was
obtained by dividing out the periods given by
integrating over a basis of H1(C, Z), the map is
well defined.

Let Cd be the dth Cartesian product of C, that is,
the set of all ordered d-tuples (P1, . . . , Pd). Then, u
defines a map

ud : Cd ! JðCÞ
ðP1; . . . ;PdÞ 7! uðP1Þ þ � � � þ uðPdÞ

where þ is the usual addition on the torus J(C).
If d = g�1, then

� ¼ Imðug�1Þ � JðCÞ

is a hypersurface (i.e., has codimension 1 in J(C))
and is called a theta divisor. A different choice of the
base point P0 results in a translation of the theta
divisor. Using the theta divisor, one can show that
J(C) is an abelian variety, that is, J(C) can be
embedded into some projective space Pn

C. The pair
(J(C), �) is a principally polarized abelian variety
and Torelli’s theorem states that C can be
reconstructed from its Jacobian J(C) and the theta
divisor �.

Divisors, Linear Systems,
and Line Bundles

A divisor D on C is a formal sum

D ¼ n1P1 þ � � � þ nkPk; Pi 2 C; ni 2 Z

The degree of D is defined as

deg D ¼ n1 þ � � � þ nk

and D is called ‘‘effective’’ if all ni � 0. Every
meromorphic function f 6¼ 0 defines a divisor

ðf Þ ¼ f0 � f1

where f0 are the zeros of f and f1 the poles (each
counted with multiplicity). Divisors of the form (f ) are
called principal divisors and the degree of any principal
divisor is 0 (see the next section). Two divisors D1 and
D2 are called linearly equivalent (D1 � D2) if their
difference is a principal divisor, that is,

D1 �D2 ¼ ðf Þ

for some meromorphic function f 6¼ 0. This defines
an equivalence relation on the group Div(C) of all
divisors on C. Since principal divisors have degree 0,
the notion of degree also makes sense for classes of
linearly equivalent divisors. We define the divisor
class group of C by

ClðCÞ ¼ DivðCÞ=�

The degree map defines an exact sequence

0! Cl0ðCÞ ! ClðCÞ
deg
! Z! 0

where Cl0(C) is the subgroup of Cl(C) of divisor
classes of degree 0.

Let Cd be the set of unordered d-tuples of points
on C, that is,

Cd ¼ Cd=Sd

where the symmetric group Sd acts on the Cartesian
product Cd by permutation. This is again a smooth
projective variety and the Abel–Jacobi map
ud : Cd ! J(C) clearly factors through a map

ud : Cd ! JðCÞ

The fibers of this map are of particular interest.

Theorem 2 (Abel). Two effective divisors D1 and
D2 on C of the same degree d are linearly equivalent
if and only if ud(D1) = ud(D2).

One normally denotes the inverse image of ud(D) by

jDj ¼ u�1
d ðudðDÞÞ ¼ D0; D0 � 0;D0 � Df g

Note that the latter description also makes sense if
D itself is not necessarily effective. One calls jDj the
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complete linear system defined by the divisor D. If
deg D < 0, then automatically jDj= ;, but the
converse is not necessarily true. Let MC be the
field of meromorphic (or equivalently rational)
functions on C. Then, one defines

LðDÞ ¼ f 2 MC; ðf Þ � �Df g

This is a C-vector space and it is not difficult to see
that L(D) has finite dimension. To every function
0 6¼ f 2 L(D), one can associate the effective divisor

Df ¼ ðf Þ þD � 0

Clearly, Df � D and every effective divisor with this
property arises in this way. This gives a bijection

PðLðDÞÞ ¼ jDj

showing that the complete linear system jDj has the
structure of a projective space. A linear system is a
projective subspace of some complete linear system jDj.

Clearly, the map ud : Cd ! J(C) can be extended
to the set Divd(C) of degree d divisors and Abel’s
theorem then states that this map factors through
Cld(C), that is, that we have a commutative diagram

Divd(C ) Cld(C )

J(C )
ud ud

where ud is injective.

Theorem 3 (Jacobi’s Inversion Theorem). The
map ud is surjective and hence induces an isomorphism

ud : CldðCÞ ffi JðCÞ

It should be noted that the definition of the maps
ud depends on the choice of a base point P0 2 C.
Hence, the maps ud are not canonical, with the
exception of the isomorphism u0 : Cl0(C) ffi J(C)
where the choice of P0 drops out.

The concepts of divisors and linear systems can be
rephrased in the language of line bundles. A (holo-
morphic) vector bundle on a complex manifold M is a
complex manifold E together with a projection
p : E ! M which is a locally trivial Cr-bundle. This
means that an open covering (U�)�2A of M and local
trivializations

p–1(Uα) Uα × C
r

Uα

pα prUα

≅ pα

exist, such that the transition maps

’� � ’�1
� jðU�\U�Þ�Cr :

ðU� \U�Þ �Cr ! ðU� \U�Þ �Cr

are fiberwise linear isomorphisms. If M is connected,
then r is constant and is called the rank of the vector
bundle. A line bundle is simply a rank-1 vector bundle.

Alternatively, one can view vector bundles as
locally free OM-modules, where OM denotes the
structure sheaf of holomorphic (or in the algebro-
geometric setting regular) functions on M. An
OM-module E is called locally free of rank r, if an
open covering (U�)�2A of M exists such that EjU�

ffi
Or

U�
. The transition functions of a locally free sheaf

can be used to define a vector bundle and vice versa,
and hence the concepts of vector bundles and locally
free sheaves can be used interchangeably. The open
coverings U� can be viewed either in the complex
topology, or, if M is an algebraic variety, in
the Zariski topology, thus leading to either holo-
morphic vector bundles (locally free sheaves in the
C-topology) or algebraic vector bundles (locally free
sheaves in the Zariski topology). Clearly, every
algebraic vector bundle defines a holomorphic
vector bundle. Conversely, on a projective variety
M, Serre’s GAGA theorem (géométrie algébriques et
géométrie analytique), a vast generalization of
Chow’s theorem, states that there exists a bijection
between the equivalence classes of algebraic and
holomorphic vector bundles (locally free sheaves).

The Picard group Pic M is the set of all isomorph-
ism classes of line bundles on M. The tensor product
defines a group structure on Pic M where the neutral
element is the trivial line bundle OM and the inverse
of a line bundle L is its dual bundle L
, which is also
denoted by L�1. For this reason, locally free sheaves
of rank 1 are also called invertible sheaves.

We now return to the case of a compact Riemann
surface (algebraic curve) C. The concept of line
bundles and divisors can be translated into each
other. If D =

P
niPi is a divisor on C and U an open

set, then we denote by DU the restriction of D to U,
that is, the divisor consisting of all points Pi 2 U
with multiplicity ni. One then defines a locally free
sheaf (line bundle) L(D) by

LðDÞðUÞ ¼ f 2 MCðUÞ; ðf Þ � �DUf g

To see that this is locally free, it is enough to
consider for each point Pi a neighborhood Ui on
which a holomorphic function ti exists, which
vanishes only at Pi and there of order 1 (i.e., it is a
local parameter near the point Pi). Then,

LðDÞðUiÞ ¼ t�ni

i OUi
ffi OUi

This correspondence defines a map

Div C! Pic C

D 7!LðDÞ

Riemann Surfaces 423



It is not hard to show that:

1. every line bundle L 2 Pic C is of the form L=
L(D) for some divisor D on the curve C;

2. D1 � D2 () L(D1) ffi L(D2);
3. L(D1)� L(D2) ffi L(D1 þD2); and
4. L(�D) ffi L(D)�1.

Hence, there is an isomorphism of abelian groups

ClðCÞ ffi Pic C

This correspondence allows to define the degree of a
line bundle L. In the complex analytic setting this
can also be interpreted as follows. Let O
C be the
sheaf of nowhere-vanishing functions. Using cocycles,
one easily identifies

H1ðC;O
CÞ ffi Pic C

and the exponential sequence

0! Z! OC!
expO
C ! 0

induces an exact sequence

0! H1ðC;ZÞ ! H1ðC;OCÞ
! H1ðC;O
CÞ ¼ Pic C! H2ðC;ZÞ

The last map in this exact sequence associates to
each line bundle L its first Chern class c1(L) 2
H2(C, Z) ffi Z, which can be identified with the
degree of L. Hence, the subgroup Pic0 C of degree 0
line bundles on C is isomorphic to

Pic0 C ffi H1ðC;OCÞ=H1ðC;ZÞ

Altogether there are identifications

Pic0 C ffi Cl0 C ffi JðCÞ

The Riemann–Roch Theorem
and Applications

For every divisor D on a compact Riemann surface C,
the discussion of the preceding section shows that there
is an identification of finite-dimensional vector spaces

LðDÞ ¼ H0ðC;LðDÞÞ

where H0(C,L(D)) is the space of global sections of
the line bundle L(D). One defines

lðDÞ ¼ dimC LðDÞ

It is a crucial question in the theory of compact Riemann
surfaces to study the dimension l(D) as D varies.

The canonical bundle !C of C is defined as the dual
of the tangent bundle of C. Its global sections are
holomorphic 1-forms. Every divisor KC on C with
!C =L(KC) is called (a) canonical divisor. The

canonical divisors are the divisors of the meromorphic
1-forms on C, whereas the effective canonical divisors
correspond to the divisors of holomorphic 1-forms
(here, we simply write a 1-form locally as f (z) dz and
define a divisor by taking the zeros, resp. poles of f (z)).
By abuse of notation, we also denote the divisor class
corresponding to canonical divisors by KC. There is a
natural identification

PðH0ðC; !CÞÞ ¼ jKCj

For a divisor D, the index of speciality is defined by

iðDÞ ¼ lðKC �DÞ ¼ dimC LðKC �DÞ

The linear system jKC �Dj is called the adjoint
system of jDj. A crucial role is played by the

Theorem 4 (Riemann–Roch). For any divisor D on a
compact Riemann surface C of genus g, the equality

lðDÞ � iðDÞ ¼ deg Dþ 1� g ½2�

holds.

This can also be written in terms of line bundles.
If L is any line bundle, then we denote the
dimension of the space of global sections by

h0ðLÞ ¼ dimC H0ðC;LÞ

Then, the Riemann–Roch theorem can be written as

h0ðLÞ � h0ð!C � L�1Þ ¼ degL þ 1� g ½3�

This can be written yet again in a different way, if
we use sheaf cohomology. By Serre duality, there is
an isomorphism of cohomology groups

H1ðC;LÞ ffi H0ðC; !C � L�1Þ


and hence if we set

h1ðLÞ¼ dimC H1ðC;LÞ

then [3] reads

h0ðLÞ � h1ðLÞ ¼ degL þ 1� g ½4�

Whereas [2] is the classical formulation of the
Riemann–Roch theorem, formula [4] is the formula-
tion which is more suitable for generalizations.
From this point of view, the classical Riemann–
Roch theorem is a combination of the cohomologi-
cal formulation [4] together with Serre duality.

The Riemann–Roch theorem has been vastly gen-
eralized. This was first achieved by Hirzebruch who
proved what is nowadays called the Hirzebruch–
Riemann–Roch theorem for vector bundles on projec-
tive manifolds. A further generalization is due to
Grothendieck, who proved a ‘‘relative’’ version invol-
ving maps between varieties. Nowadays, theorems like
the Hirzebruch–Riemann–Roch theorem can be
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viewed as special cases of the Atiyah–Singer index
theorem for elliptic operators. The latter also contains
the Gauss–Bonnet theorem from differential geometry
as a special case. Moreover, Serre duality holds in
much greater generality, namely for coherent sheaves
on projective varieties.

Applying the Riemann–Roch theorem [3] to the
zero divisor D = 0, resp. the trivial line bundle OC,
one obtains

h0ð!CÞ ¼ g ½5�

that is, the number of independent global holo-
morphic 1-forms equals the genus of the curve C.
Similarly, for D = KC, resp. L=!C, we find from [3]
and [5] that

deg KC ¼ 2g� 2

These relations show, how the Riemann–Roch
theorem links analytic, resp. algebraic, invariants
with the topology of the curve C.

Finally, if deg D > 2g� 2, then deg(KC �D) < 0
and hence i(D) = l(KC �D) = 0 and [2] becomes

lðDÞ ¼ deg Dþ 1� g if deg D > 2g� 2

which is Riemann’s original version of the theorem.
Classically, linear series arose in the study of

projective embeddings of algebraic curves. For a
nonzero effective divisor

D ¼
Xk

i¼1

niPi; ni > 0

the support of D is defined by

suppðDÞ ¼ P1; . . . ;Pkf g

A complete linear system jDj is called base point
free, if no point P exists which is in the support of
every divisor D0 2 jDj. This is the same as saying
that for every P 2 C a section s 2 H0(C,L(D)) exists
which does not vanish at P. Let jDj be base point
free and let s0, . . . , sn 2 H0(C,L(D)) be a basis of the
space of sections. Then, one obtains a map

’jDj : C! PðH0ðC;LðDÞÞÞ ¼ Pn

P 7! ðs0ðPÞ : . . . : snðPÞÞ

The divisors D0 2 jDj are then exactly the pullbacks
of the hyperplanes H of Pn under the map ’jDj. Note
that the map ’jDj as defined here depends on the
choice of the basis s0, . . . , sn, but any two such
choices only differ by an automorphism of Pn. We
say that jDj, resp. the associated line bundle
L=L(D), is very ample if ’jDj defines an
embedding. Using the Riemann–Roch theorem, it is
not difficult to prove:

Proposition 1 Let D be a divisor of degree d on the
curve C. Then

(i) jDj is base point free if d � 2g and
(ii) jDj is very ample if d � 2gþ 1.

If the genus g(C) � 2, then one can prove that jKCj
is base point free and consider the canonical map

’jKCj : C! Pg�1

A curve C is called hyperelliptic if there exists a
surjective map f : C ! P1 which is a covering of
degree 2. In genus 2 every curve is hyperelliptic,
whereas for genus g � 3 hyperelliptic curves are
special. The connection with the canonical map is
given by

Theorem 5 (Clifford). Let C be a curve of genus
g � 2. Then the canonical map is an embedding if
and only if C is not hyperelliptic.

We end this section by stating Hurwitz’s theorem:
Let f : C! D be a surjective holomorphic map
between compact Riemann surfaces (if f is not
constant then it is automatically surjective). Then,
near a point P 2 C the map f is given in local
analytic coordinates by f (t) = tnP and we call f
‘‘ramified’’ of order nP if nP > 1. The ramification
divisor of f is defined as

R ¼
X
P2C

ðnP � 1ÞP

Note that this is a finite sum. If we define

f 
ðQÞ ¼
X

P2f�1ðQÞ
nPP

then one can show that

deg f ¼ deg f 
ðQÞ ¼
X

P2f�1ðQÞ
nP

is independent of the point Q. This number is called
the degree of the map f. (This should not be
confused with the degree deg(f ) of the principal
divisor (f ) defined by f.) In fact, applying the above
equality to the map f : C! P1 associated to a
nonconstant meromorphic function f shows that
the degree of the principal divisor (f ) is zero, since

degðf Þ ¼ deg f 
ð0Þ � deg f 
ð1Þ ¼ 0

Theorem 6 (Hurwitz). Let f : C ! D be a surjec-
tive holomorphic map between compact Riemann
surfaces of genus g(C) and g(D), respectively. Then,

2gðCÞ � 2 ¼ deg f � ð2gðDÞ � 2Þ þ deg R

where R is the ramification divisor.
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Brill–Noether Theory

In this section, we state the main results of Brill–
Noether theory. For a divisor D on a curve C we
denote by

rðDÞ ¼ lðDÞ � 1

the projective dimension of the complete linear
system jDj. The principal objects of Brill–Noether
theory are the sets Wr

d � Cld(C) = Picd(C) given by

Wr
dðCÞ ¼ D; deg D ¼ d; rðDÞ � rf g

These sets are subvarieties of Cld(C) = Picd(C).
We denote by gr

d a linear system (not necessarily
complete) of degree d and projective dimension r.
Closely related to the varieties Wr

d are the sets

Gr
dðCÞ ¼ �; � is a gr

d on C
� �

These sets also have a natural structure as a projective
variety. Clearly, there are maps Gr

d(C) ! Wr
d(C).

If g = g(C) is the genus of the curve C, then the
Brill–Noether number is defined as

�ðg; r; dÞ ¼ g� ðrþ 1Þðg� d þ rÞ

Its significance is that it is the expected dimension of
the varieties Gr

d(C). The two basic results of Brill–
Noether theory are:

Theorem 7 (Existence Theorem). Let C be a curve
of genus g. Let d, r be integers such that d � 1, r � 0,
and �(g, r, d) � 0. Then Gr

d(C) and hence Wr
d(C) are

nonempty and every component of Gr
d(C) has dimen-

sion at least �. If r � d � g, then the same is true
for Wr

d(C).

Theorem 8 (Connectedness Theorem). Let C be
a curve of genus g and d, r integers such that d � 1,
r � 0, and �(g, r, d) � 1. Then Gr

d(C) and hence also
Wr

d(C) are connected.

The above theorems hold for all curves C. There
are other theorems which only hold for general
curves (where general means outside a countable
union of proper subvarieties in the moduli space, see
the section ‘‘Modul i of compact Riem ann surfa ces’’).

Theorem 9 (Dimension Theorem). Let C be a
general curve of genus g and d � 1, r � 0 integers. If
�(g, r, d) < 0, then Gr

d(C) = ;. If � � 0, then every
component of Gr

d(C) has dimension �.

Theorem 10 (Smoothness Theorem). Let C be a
general curve of genus g and d � 1, r � 0. Then,
Gr

d(C) is smooth of dimension �. If � � 1, then
Gr

d(C) and hence Wr
d(C) are irreducible.

Brill–Noether theory started with a paper of Brill
and Noether in 1873. It was, however, only from
the 1970s onwards that the main theorems could be
proved rigorously, due to the work of Griffiths,
Harris, Kleiman, Mumford, and many others. For
an extensive treatment of the theory, as well as a list
of references, the reader is referred to Arbarello
et al. (1985).

Green’s Conjecture

In recent years, much progress was achieved in
understanding the equations of canonical curves. If
the curve C is not hyperelliptic, then the canonical
map ’jKCj : C ! Pg�1 defines an embedding. We
shall, in this case, identify C with its image in Pg�1

and call this a canonical curve. The Clifford index
(for a precise definition see Lazarsfeld (1989)) is a
first measure of how special a curve C is with
respect to the canonical map. Hyperelliptic curves,
where the canonical map fails to be an embedding,
have, by definition, Clifford index 0. The two next
special cases are plane quintic curves (they have
a g2

5) and trigonal curves. A curve C is called
trigonal, if there is a 3 : 1 map C ! P1, in which
case C has a g1

3. More generally, the gonality of a
curve C is the minimal degree of a surjective map
C ! P1. Plane quintics and trigonal curves are
precisely the curves which have Clifford index 1.

Theorem 11 (Enriques–Babbage). If C � P g�1 is a
canonical curve, then C is either defined by quad-
ratic equations, or it is trigonal or isomorphic to a
plane quintic curve (i.e., it has Clifford index 1).

One can now ask more refined questions about
the equations defining canonical curves and the
relations (syzygies) among these equations. This
leads to looking at the minimal free resolution of a
canonical curve C, which is of the form

0 IC jOPg�1ð�jÞ�0j � � �  jOPg�1ð�jÞ�kj 0

Here, IC is the ideal sheaf of C and OPg�1 (n) is the
nth power of the dual of the Hopf bundle (or
tautological sub-bundle) on Pg�1 if n � 0,
resp. the jnjth power of the Hopf bundle if n <
0. The �ij(C) are called the Betti numbers of C.
The Green conjecture predicts a link between the
nonvanishing of certain Betti numbers and geo-
metric properties of the canonical curve, such as
the existence of multisecants. Recently, C Voisin
and M Teixidor have proved the Green conjecture
for general curves of given gonality (see Beauville
(2003)).
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Moduli of Compact Riemann Surfaces

As a set, the moduli space of compact Riemann
surfaces of genus g is defined as

Mg ¼ C; C is a compactf
Riemann surface of genus gg=ffi

For genus g = 0, the only Riemann surface is the
Riemann sphere Ĉ = P1 and hence M0 consists of
one point only. Every Riemann surface of genus 1 is
a torus

E ¼ C=L

for some lattice L, which can be written in the form

L� ¼ Z� þZ; Im � > 0

Two elliptic curves E� = C=L� and E� 0 = C=L� 0 are
isomorphic if and only if a matrix

M ¼ a b
c d

� �
2 SLð2;ZÞ

exists with

� 0 ¼ a� þ b

c� þ d

This proves that

M1 ¼ H1=SLð2;ZÞ

and this construction also shows that M1 can itself
be given the structure of a Riemann surface. Using
the j-function, one obtains that

M1 ffi C

The situation is considerably more complicated for
genus g � 2. The space of infinitesimal deformations
of a curve C is given by H1(C, TC) where TC is the
tangent bundle. By Serre duality

H1ðC;TCÞ ffi H0ðC; !�2
C Þ



and by Riemann’s theorem it then follows that

dim H1ðC;TCÞ ¼ dim H0ðC; !�2
C Þ ¼ 3g� 3

This shows that a curve of genus g depends on
3g� 3 parameters or moduli, a dimension count
which was first performed by Riemann.

In genus 2 every curve has the hyperelliptic
involution, and for a general curve of genus 2 this
is the only automorphism. In genus g � 3 the
general curve has no automorphisms, but some
curves do. The order of the automorphism group is
bounded by 84(g� 1). The existence of automorph-
ism for some curves means that Mg is not a
manifold, but has singularities. The singularities
are, however, fairly mild. Locally, Mg always

looks like C3g�3=G near the origin, where G is a
finite group acting linearly on C3g�3. One expresses
this by saying that Mg has only finite quotient
singularities. A space with this property is also
sometimes referred to as a V-manifold or an
orbifold. Moreover, Mg is a quasiprojective variety,
that is, a Zariski-open subset of a projective variety.
As the above parameter count implies, the dimen-
sion of Mg is 3g� 3. At this point it can also be
clarified what is meant by a general curve in the
context of Brill–Noether theory: a property is said to
hold for the general curve in Brill–Noether theory if
it holds outside a countable number of proper
subvarieties of Mg.

It is often useful to work with projective, rather
than quasiprojective, varieties. This means that one
wants to compactifyMg to a projective variety Mg,
preferably in such a way that the points one adds
still correspond to geometric objects. The crucial
concept in this context is that of a stable curve. A
stable curve of genus g is a one-dimensional
projective variety with the following properties:

1. C is connected (but not necessarily irreducible),
2. C has at most nodal singularities (i.e., two local

analytic branches meet transversally),
3. the arithmetic genus pa(C) = h1(C,OC) = g, and
4. the automorphism group Aut(C) of C is finite.

The last of these conditions is equivalent to the
following: if a component of C is an elliptic curve,
then this must either meet another component or
have a node, and if a component is a rational curve,
then this component must either have at least two
nodes or one node and intersect another component,
or it is smooth and has at least three points of
intersection with other components.

It should be noted that, in contrast to the previous
illustrations, Figure 5 is drawn from the complex
point of view, that is, the curves appear as one-
dimensional objects.

The concept of stable curves leads to what is
generally known as the Deligne–Mumford compac-
tification of Mg:

Mg ¼ fC; C is a stable curve of genus gg=ffi

g = 0g = 2

Figure 5 An example of a stable curve of genus 3.
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Theorem 12 (Deligne–Mumford, Knudsen). Mg is
an irreducible, projective variety of dimension 3g� 3
with only finite quotient singularities.

The spaces Mg have been studied intensively over
the last 30 years. From the point of view of
classification, an important question is to determine
the Kodaira dimension of these spaces.

Theorem 13 (Harris–Mumford, Eisenbud–Harris).
The moduli spaces Mg are of general type for
g > 23.

On the other hand, it is known that Mg is
rational for g 	 6, unirational for g 	 14, and has
negative Kodaira dimension for g 	 16.

A further topic is to understand the cohomology
of Mg, resp. the Chow ring, and to compute the
intersection theory on Mg. For these topics we refer
the reader to Vakil (2003).

Closely related is the moduli problem of stable
n-pointed curves. A stable n-pointed curve (Figure 6)
is an (nþ 1)-tuple (C, x1, . . . , xn), where C is a
connected nodal curve and x1, . . . , xn are smooth
points of C with the stability condition that the
automorphism group of (C, x1, . . . , xn) is finite.
These curves can be parametrized by a coarse
moduli space Mg, n. These spaces share many
properties of the spaces Mg: they are irreducible,
projective varieties with finite quotient singularities
and of dimension 3g� 3þ n.

A further development, which has become very
important in recent years, is that of moduli spaces of
stable maps. These were introduced by Kontsevich in
the context of quantum cohomology. To define stable
maps, one first fixes a projective variety X and then
considers (nþ 2)-tuples (C, x1, . . . , xn, f ) where
(C, x1, . . . , xn) is an n-pointed curve of genus g and
f : C ! X a map. The stability condition is, that this
object allows only finitely many automorphisms
’ : C! C, fixing the marked points x1, . . . , xn, such
that f � ’= f . In order to obtain meaningful moduli
spaces, one also fixes a class � 2 H2(X, Z). One then
asks for a space parametrizing all stable (nþ 2)-tuples
(C, x1, . . . , xn, f ) with the additional property that
f
[C] = �. This construction is best treated in the
language of stacks, and one can show that this moduli

problem gives rise to a proper Deligne–Mumford stack
Mg, n(X, �). In general, this stack is very complicated,
it need not be connected, can be very singular, and may
have several components of different dimensions. Its
expected dimension is

exp : dimMg; nðX; �Þ

¼ ðdim X� 3Þð1� gÞ þ nþ
Z
�

c1ðTXÞ

Quantum cohomology can now be rephrased as
intersection theory on the stack Mg, n(X, �). In
general, these stacks do not have the expected
dimension. For this reason, Behrend and Fantechi
(1997) have constructed a virtual fundamental class of
the right dimension, which is the correct tool for the
intersection theory which gives the algebro-geometric
definition of quantum cohomology. In addition to this,
there is also a symplectic formulation. It was shown by
B Siebert that both approaches coincide.

Verlinde Formula and Conformal Blocks

The study of vector bundles (locally free sheaves) on
a compact Riemann surface is an area of research in
its own right. For a rank-r bundle E, the slope of E is
defined by

�ðEÞ ¼ deg E
r

where the degree of E is defined as the degree of the
line bundle

Vr E= det E. The bundle E is called
stable, resp. semistable, if

�ðFÞ < �ðEÞ; resp: �ðFÞ 	 �ðEÞ

for every proper sub-bundle {0} $ F $ E. Let C be a
compact Riemann surface of genus g � 2 and let
SUC(r) be the moduli space of semistable rank-r vector
bundles with trivial determinant det E=OC. This is
a projective variety of dimension (r2 � 1)(g� 1).
It contains a smooth open set, whose points corres-
pond to the isomorphism classes of stable vector
bundles. The complement of this set is in general the
singular locus of SUC(r) and its points correspond to
direct sums of line bundles of degree 0. These are the
so-called graded objects of the semistable, but not
stable, bundles. By a theorem of Narasimhan and
Seshadri, the points of SUC(r) are also in one-to-one
correspondence with the isomorphism classes of
representations 	1(C) ! SU(r).

Let L 2 Picg�1(C) be any line bundle of degree
g� 1 on C. Then, the set

�L ¼ E 2 SUCðrÞ; dim H0ðC; E � LÞ > 0
� �

g = 2 g = 0

g = 0

Figure 6 An example of marked stable curve.
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is a Cartier divisor on SUC(r) and thus defines a line
bundle L on SUC(r). This is a natural generalization
of the construction of the classical theta divisor. The
line bundle L generates the Picard group of the
moduli space SUC(r).

Theorem 14 (Verlinde Formula). If C has genus g
and k is a positive integer, then

dim H0ðSUCðrÞ;LkÞ

¼ r

rþ k

� �g X
StT¼f1;...;rþkg

jSj¼r

Y
s2S
t2T

��� sin 	 s� t

rþ k

���g�1

This formula was first found by Verlinde in the context
of conformal field theory. Due to this relationship, the
spaces H0(SUC(r), Lk) are also called conformal
blocks. These spaces can also be defined for principal
bundles. Rigorous proofs for the general case of the
Verlinde formula are due to Beauville–Laszlo and
Faltings. For a survey, see Beauville (1995).

See also: Characteristic Classes; Cohomology Theories;
Index Theorems; Mirror Symmetry: a Geometric Survey;
Moduli Spaces: An Introduction; Polygonal Billiards;
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Introduction

The Riemann–Hilbert (RH) method in mathematical
physics and analysis consists in reducing a particular
problem to the problem of reconstruction of an
analytic, scalar- or matrix-valued function in the
complex plane from a prescribed jump across a
given curve. More precisely, let an oriented contour
� be given in the complex 
-plane. The contour �
may have points of self-intersections, and it may

consist of several connected components; typical
contours appearing in applications to integrable
systems are shown in Figure 1.

The orientation of an arc in � defines the þ
and the � side of �. Suppose in addition that we
are given a map v : �!GL(N, C) with v, v�1 2
L1(�). The (normalized) RH problem determined
by the pair (�, v) consists in finding an N �N

Figure 1 Typical contours for RH problems.
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matrix-valued function m(�) with the following
properties:

mð�Þ is analytic in Cn� ½1a�

mþð�Þ ¼ m�ð�Þvð�Þ for � 2 �

where mþð�Þðm�ð�ÞÞ is the limit

of m from theþ ð�Þ side of � ½1b�

mð�Þ ! I (identity matrix) as �!1 ½1c�

The precise sense in which the limit at 1 and the
boundary values m� are attained are technical
matter that should be specified for each given RH
problem (�, v).

Concerning the name RH problem we note that
in literature (particularly, in the theory of bound-
ary values of analytic functions), the problem of
reconstructing a function from its jump across a
curve is often called the Hilbert boundary-value
problem. The closely related problem of analytic
matrix factorization (given � and v, find G(�)
analytic and nondegenerate in Cn� such that
GþG�= v on �) is sometimes called the Riemann
problem. The name ‘‘RH problem’’ is also
attributed to the reconstruction of a Fuchsian
system with given poles and a given monodromy
group.

In applications, the jump matrix v also depends
on certain parameters, in which the original problem
at hand is naturally formulated (e.g., v = v(�; x, t) in
applications to the integrable nonlinear differential
equations in dimension 1þ 1, with x being the space
variable and t the time variable), and the main
concern is the behavior of the solution of the RH
problem, m(�; x, t), as a function of x and t.
Particular interest is in the behavior of m(�; x, t) as
x and t become large.

In the scalar case, N = 1, rewriting the original
multiplicative jump condition in the additive form

log mþð�Þ ¼ log mþð�Þ þ log vð�Þ

and using the Cauchy–Plemelj–Sokhotskii formula
give an explicit integral representation for the
solution

mð�Þ ¼ exp
1

2�i

Z
�

log vð�Þ
�� � d�

� �
½2�

(in the case of nonzero index, � log vj� 6¼ 0, formula
[2] admits a suitable modification).

A generic (nonabelian) matrix RH problem
cannot be solved explicitly in terms of contour
integrals; however, it can always be reduced to a
system of linear singular-integral equations, thus
linearizing an originally nonlinear system.
The main benefit of reducing an originally non-
linear problem to the analytic factorization of a
given matrix function arises in asymptotic analysis.
Typically, the dependence of the jump matrix on the
external parameters (say, x and t) is oscillatory. In
analogy of asymptotic evaluation of oscillatory
contour integrals via the classical method of steepest
descent, in the asymptotic evaluation of the solution
m(�; x, t) of the matrix RH problem as x, t!1, the
nonlinear steepest-descent method examines the
analytic structure of the jump matrix v(�; x, t) in
order to deform the contour � to contours where
the oscillatory factors become exponentially small as
x, t!1, and hence the original RH problem
reduces to a collection of local RH problems
associated with the relevant points of stationary
phase. Although the method has (in the matrix case)
noncommutative and nonlinear elements, the final
result of the analysis is as efficient as the asymptotic
evaluation of the oscillatory integrals.
Dressing Method

The RH method allows describing the solution of a
differential system independently of the theory of
differential equations. The solution might be expli-
cit, that is, given in terms of elementary or elliptic or
abelian functions and contour integrals of such
functions. In general (transcendental) case, the
solution can be represented in terms of the solution
of certain linear singular integral equations.

In the modern theory of integrable systems, a
system of nonlinear differential equations is often
called integrable if it can be represented as a
compatibility condition of an auxiliary overdeter-
mined linear system of differential equations called a
Lax pair of the given nonlinear system (actually it
might involve more than two linear equations). In
order that the compatibility condition represents a
nontrivial nonlinear system of equations, the Lax
pair is required to depend rationally on an auxiliary
parameter (called a spectral parameter). The RH
problem formulated in the complex plane of the
spectral parameter allows, given a particular solu-
tion of the compatibility equations, to construct
directly new solutions of the compatibility system by
‘‘dressing’’ the initial one.

For example, let D(x,�), x 2 Rn,� 2 C be an N �N
diagonal, polynomial in � with smooth coefficients,
function such that aj := @D=@xj are polynomials in
� of degree dj. Then �0 := exp D(x,�) solves the
system of linear equations @�0=@xj = aj�0, whose
compatibility conditions @2�0=@xj@xk = @2�0=@xk@xj

are trivially satisfied. Given a contour � and a smooth
function v, consider the matrix RH problem [1]



Riemann–Hilbert Methods in Integrable Systems 431
with the jump matrix ~v(�; x) := expD(x,�)v(�)
exp�D(x,�). Let m(�; x) be the solution of this RH
problem. Then (Djm)þ= (Djm)�~v, where Djf :=
@f=@xj þ [aj, f ] with [a, b] := ab� ba. The Liouville
theorem implies that (Djm)m�1 is an entire function
which is o(�dj) as �!1. Setting �(x,�) := m(�; x)
exp D(x,�) gives the system of linear equations

@�

@xj
¼ aj þ

X
k<dj

�kqjkðxÞ � Rjðx; �Þ� ½3�

the compatibility conditions for which are

@Rk

@xj
� @Rj

@xk
¼ ½Rj;Rk� ½4�

Equating coefficients of various powers of � in [4]
gives a (generally) nonlinear system of partial
differential equations for the coefficient matrices
qjk. Thus, given D(x,�), the RH problem, if it is
solvable, maps the pair (�, v) to solutions of [4].

Specializing to n = 2 with variables (x, t) 2 R2, the
overdetermined system of linear equations and the
corresponding compatibility conditions are

�x ¼ U�; �t ¼ V� ½5�

and

Ut � Vx þ ½U;V� ¼ 0 ½6�

respectively. Conditions [6] are sometimes called the
zero-curvature conditions.

Equations [5] and [6] with U and V depending
rationally on the spectral parameter � represents the
integrable nonlinear systems in 1þ 1 dimension. A
typical example of such a system is the (defocusing)
nonlinear Schrödinger (NLS) equation

iqt þ qxx � 2jqj2q ¼ 0 ½7�

Starting from the RH problem with the 2� 2 jump
matrix

vð�; x; tÞ ¼ ei��3=2vð�Þe�i��3=2 ½8�

where �(�; x, t) =�t�2 þ x�,�3 = diag{1, �1}, and
v(�) satisfies the involution �3v�(�)�3 = v( ��),
expanding out the limit of the solution of the RH
problem as �!1

mð�; x; tÞ ¼ I þm1ðx; tÞ
�

þ o
1

�

� �
½9�

and arguing as above gives [5], with

U ¼ i��3

2
þ

0 q

�q 0

 !
½10�

and q =�i(m1)12, whereas the compatibility condi-
tion [6] reduces to [7].
The relation between the RH problem and the
differential equations [5] is local in x and t; it is based
only on the unique solvability of the RH problem,
the Liouville theorem, and the explicit dependence of
the jump matrix in x and t. The uniqueness of the
solution of an RH problem is basically provided by
the Liouville theorem: the ratio m(1)(m(2))�1 of any
two solutions is analytic in Cn� and continuous
across � and is therefore identically equal to I by the
normalization condition [1c].

On the other hand, there are no completely
general effective criteria for the solvability. Never-
theless, many RH problems seen in applications to
integrable systems satisfy the following sufficient
condition: if � is symmetric with respect to R and
contains R, and if, in addition, v�(�) = v( ��) for � 2
�nR and Re v(�)>0 for � 2 R, then the RH
problem is solvable.

For nonlinear equations supporting solitons, the
RH problem appears naturally in a more general
setting, as a meromorphic factorization problem,
where m in [1] is sought to be a (piecewise)
meromorphic function, with additionally prescribed
poles and respective residue conditions. Alterna-
tively, in the Riemann factorization problem
GþG�= v, one assumes that G degenerates at
some given points �1, . . . ,�n 2 �þ and �1, . . . ,�n 2
��, where C = �þ [ �� [ �, and prescribes two sets
of subspaces, Im Gj�= �j

and Ker Gj�=�j
. In the case

v � I, the solution of the factorization problem with
zeros (meromorphic RH problem) is purely alge-
braic, and gives formulas describing multisoliton
solutions. In the general case, v 6� I, the mero-
morphic RH problem can be algebraically converted
to a holomorphic RH problem, by subsequently
removing the poles with the help of the Blaschke–
Potapov factors.

Alternatively, a meromorphic RH problem can be
converted to a holomorphic one by adding to � an
additional contour �aux enclosing all the poles,
interpolating the constants involved in the residue
conditions inside the region surrounded by �aux, and
defining a new jump matrix on �aux using the
interpolant and the Blaschke–Potapov factors.

RH problems formulated on the complex plane C
correspond typically to solutions of relevant non-
linear problems decaying at infinity. For other types
of boundary conditions (e.g., nonzero constants or
periodic or quasiperiodic boundary conditions), the
corresponding RH problem is naturally formulated
on a Riemann surface. For example, the RH
problem associated with finite density conditions
q(x, t)! �ei�� as x!�1 for the NLS equation [7]
is naturally formulated on the two-sheet Riemann
surface of the function k(�) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�2

p
with
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the contour � consisting of the points (�, "), where
j�j � 2� and "=�1 marks the surface sheet.
Inverse-Scattering Transform

The inverse-scattering transform method for solving
initial-value problems for integrable nonlinear equa-
tions written as the compatibility conditions [6] for
linear equations [5] consists in the following: starting
from the given initial data, solve the direct problem,
that is, determine appropriate eigenfunctions (solu-
tions of the differential x-equation in the Lax pair [5])
having well-controlled analytic properties as functions
of the auxiliary (spectral) parameter � and the
associated spectral functions of �; then, by virtue of
the t-equations in the Lax pair [5], the associated
functions evolve in a simple, explicit way. Finally,
using the explicit evolution of the spectral functions,
solve the inverse problem of finding the associated
coefficients in the x-equation, which, by [5], evolve
according to the given nonlinear equation and thus
solve the Cauchy problem for this equation. The last
step in this procedure, the inverse-scattering problem,
can be effectively solved by reformulating it as an RH
problem, which in turn can be related to a system of
singular integral equations. The classical Gelfand–
Levitan–Marchenko integral equation of the inverse-
scattering problem is the Fourier transform of some
special cases of these singular integral equations.

To fix ideas, consider the initial-value problem for
the NLS equation [7], where the data q(x, t = 0) =
q0(x) have sufficient smooth and decay as jxj!1.
For each � 2 CnR, one constructs solutions �(x,�)
of �x = U� with U given by [10], having the
properties

mðx; �Þ :¼ �ðx; �Þ exp
�ix��3

2

� �
! I as x!�1

and m(x,�) is bounded as x!1. For each fixed x,
the 2� 2 matrix function m(x,�) solves the RH
problem in �, where � = R and the jump matrix is

v ¼ vð�; xÞ ¼ 1� jrð�Þj2 rð�Þ ei�x

��rð�Þ e�i�x 1

 !
½11�

Here r(�) is the reflection coefficient of q0(x).
The direct scattering map R is described by

mapping q 7! r,

q 7!mðx; �Þ ¼ mðx; �; qÞ 7! vð�; xÞ 7! r ¼ RðqÞ

By virtue of the t-equations in [5], if q(t) = q(x, t)
solves the NLS equation, then r(t) =R(q( 	 , t)) evolves
as r(t) = r(t,�) = e�it�2

r0(�), where r0 =R(q0). Given
r, the inverse-scattering map R�1 is obtained by
solving the normalized RH problem (RHP) with the
jump matrix [11] and evaluating its solution m(x,�) as
�!1 [9]:

r 7! v 7!RHP 7!mðx; �Þ
¼ mðx; �; rÞ 7!m1ðxÞ 7! qðxÞ
¼ �iðm1ðxÞÞ12

and thus

qðx; tÞ ¼ R�1 eixð	Þ�itð	Þ2rð	Þ
� 	

½12�

The mathematical rigor to this scheme is provided
by the general theory of analytic matrix factoriza-
tion making use of the relation between the
factorization problem and certain singular integral
equations; this relation can be established with the
help of the Cauchy operators

Chð�Þ ¼
Z

�

hð�Þ
�� �

d�

2�i
; � 2 Cn�

and

C�hð�Þ ¼ lim
�0!�

�02ð�Þ�side of �

ðChÞð�0Þ

For a very general class of contours, the Cauchy
operators C� : Lp!Lp, 1 < p <1, are bounded,
Cþ � C�= I, and Cþ þ C�=�H, where

Hhð�Þ :¼ lim
"!0

Z
�

j���j>"

hð�Þ
�� �

d�

�i

is the Hilbert transform.
The map R is often considered as a nonlinear

Fourier-type map; this point of view is supported by
the fact that R is a bijection between the corre-
sponding Schwartz spaces of functions. Making use
of the Lp or Hölder theory of the Cauchy operators
and the related factorization problems, it is possible
to analyze the action of R and R�1 in various
functional spaces. This also requires making more
precise the definition of the RH problem: for fixed
1 < p <1, given � and v such that v, v�1 2
L1(�!GL(N, C)), we say that m� solves an RH
Lp-problem if m� 2 I þ @C(Lp) and mþ(�) =
m�(�)v(�) for � 2 �. Here a pair of Lp(�)-functions
f� 2 @C(Lp) if there exists a unique function
h2Lp(�) such that f�(�) = (C�h)(�). Then f (�) =
Ch(�), � 2 Cn�, is called the extension of f� off �.

Given a factorization of v = (v�)�1vþ= (I �w�)�1

(I þwþ) on � with v�, (v�)�1 2 Lp, the basic
associated singular integral operator is defined by

Cwh :¼ Cþðhw�Þ þ C�ðhwþÞ

If the operator I � Cw is invertible on Lp(�), with
� 2 I þ Lp(�), solving (I � Cw)m = I, then m(�) =
I þ (C(�(wþ þw�)))(�) is the unique solution of the
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RH problem (�, v). Although the operator Cw need
not be compact, in many cases it is Fredholm with
zero index. Then the existence of (I � Cw)�1 is
equivalent to the solvability of the RH problem
(�, v), and the normalized RH problem (m! I as
�!1) has a unique solution if and only if the
corresponding homogeneous RH problem (with
m! 0 as �!1) has only the trivial solution
(vanishing lemma).

The most complete theory for RH problem relative
to simple contours is the theory when v is in an
inverse, closed, decomposing Banach algebra A, that
is, the algebra of continuous functions with the
Hilbert transform bounded in it such that if f 2 A,
then f�1 2 A. For contours with self-intersections, the
RH factorization theory is formulated in terms of a
pair of decomposing algebras: choosing the orienta-
tion of the contour in such a way that it divides the
�-plane into two disjoint regions, �þ and ��, and
each arc of � forms part of the positively oriented
boundary of �þ, the functions in the þ (�) algebra
are continuous up to the boundary in each connected
component of �þ (��).

The choice of functional spaces in the RH problem
should be based on the integrable system at hand. For
example, an integrable flow connected to the scatter-
ing problem for �x = U�, with U defined by [10],
has in general the form eit�p�3v(�)e�it�p�3 (Ablowitz–
Kaup–Newell–Segur (AKNS) hierarchy) in the scat-
tering space (for the NLS equation, p = 2), so that
appropriate spaces are L2((1þ x2) dx) \Hp�1 for
q( 	 , t) and L2((1þ j�j2p�2)jd�j) \H1 as the scatter-
ing space. Deift and Zhou showed that in this case
the scattering map R and the inverse-scattering map
R�1 indeed involve no ‘‘loss’’ of smoothness or decay.

A generalization of the inverse-scattering trans-
form method to the initial boundary-value problems
for integrable nonlinear equations (on the half-line
or on a finite interval with respect to the space
variable x) can be also developed on the basis of the
RH problem formalism. It this case, the construction
of the corresponding RH problem involves simulta-
neous spectral analysis of the both linear equations
in the Lax pair [5]. The boundary values generate an
additional set of spectral functions, which generally
makes the construction of the associated RH
problem more complicated than in the case of the
corresponding initial-value problem (particularly,
the contour is to be enhanced by adding the part
coming from the spectral analysis of the t-equation);
however, this RH problem again depends explicitly
on x and t, which makes it possible to develop
relevant techniques (such as the nonlinear steepest-
descent method for the asymptotic analysis) in the
same spirit as in the case of initial-value problems.
An RH problem may be viewed as a special case
in a more general setting of problems of recon-
structing an analytic function from the known
structure of its singularities. The departure from
analyticity of a function m of the complex variable
� can be described in terms of the ‘‘d-bar’’
derivative, @m=@ ��. If @m=@ �� can be linearly related
to m itself, then the use of the extension of
Cauchy’s formula

mð�Þ ¼ 1

2�i

Z
D

d� ^ d��
1

�� �
@m

@ ��
þ 1

2�i

Z
@D

d�
mð�Þ
�� �

leads to a linear integral equation for m. This is the
case for some multidimensional (2þ 1) nonlinear
integrable equations. For example, for the Kadomtsev–
Petviashvili-I equation (the two-dimensional general-
ization of the Korteweg–de Vries equation) (qt þ
6qqx þ qxxx)x = 3qyy, the appropriate eigenfunctions
are still sectionally meromorphic, but their jumps
across a contour are connected nonlocally to m on
the contour, which leads to nonlocal RH problem of
the type

mþð�Þ ¼ m�ð�Þ þ
Z

�

d�m�ð�Þf ð�; �Þ; � 2 �

with given f (�,�) (analogue of scattering data).
Contrarily, the eigenfunctions for the Kadomtsev–
Petviashvili-II equation (qt þ 6qqx þ qxxx)x =�3qyy

are nowhere analytic, with @m=@ �� related to m by

@m

@ ��
ð�Þ ¼ FðRe�; Im�Þmð���Þ; � 2 C
Nonlinear Steepest-Descent Method

The nonlinear steepest-descent method is based on a
direct asymptotic analysis of the relevant RH
problem; it is general and algorithmic in the sense
that it does not require a priori information (anzatz)
about the form of the solution of the asymptotic
problem. However, the noncommutativity of the
matrix setting requires developing rather sophisti-
cated technical ideas, which, in particular, enable an
explicit solution of the associated local RH problems.

To fix ideas, let us again consider the NLS
equation. The dependence of the jump matrix
v(�; x, t) on x and t is oscillatory; it is the same as
in the integral

qðx; tÞ ¼ 1ffiffiffiffiffiffi
2�
p

Z
R

eiðx��t�2Þq̂0ð�Þd� ½13�

which solves the initial-value problem for the
linearized version of [7]:

iqt þ qxx ¼ 0; qðx; 0Þ ¼ q0ðxÞ ½14�
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Re iθ < 0

λ 0

Figure 3 Signature table.
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(here q̂0(�) is the Fourier transform of the initial data
q0). The main contribution to [13] as jxj and t tend to
1 comes from the point of stationary phase of
ei(x��t�2), that is, the point �=�0 = x=2t, for which

d

d�
ðx�� t�2Þ ¼ 0

If q̂0(�) is analytic in a strip jIm�j < ", then one can
use Cauchy’s theorem to deform [13] to an integral
on a contour �" such that jei(x��t�2)j decreases rapidly
on �" away from �=�0. Hence, as t!1, the
problem localizes to a neighborhood of �=�0; this
constitutes the standard method of steepest descent.

In the spirit of the oscillatory contour integral
case, the nonlinear steepest-descent method for an
oscillatory RH problem introduced by Deift and
Zhou consists in the following: deform the contour
and (rationally) approximate the jump matrix in
order to obtain an RH problem with a jump matrix
that decays to the identity away from stationary
phase points; then, rescaling the problem near the
stationary phase points, obtain a (local) RH problem
with a piecewise constant jump matrix, which can
be solved in closed form, usually in terms of certain
special functions.

The contour deformation means the following.
Suppose that the jump matrix of an RH problem
(�, v) has a factorization v = b�1

� v1bþ between two
points on �, where bþ(b�) has holomorphic and
nondegenerating continuation to the part �þ(��) of a
disk � supported by these points, see Figure 2a. Then
the contour � may be deformed to the contour
�0= � [ @�, and the jump matrices across �0 may be
defined as indicated in Figure 2b. If m solves the RH
problem (�, v), then m0 defined by m0= mb�1

� in ��

and m0= m outside � solves the deformed RH
problem associated with �0.

The appropriate factorization of v given by [8]
and the contour deformation are to be chosen in
accordance with signature table; for the NLS
equation, it is given in Figure 3. The key step is to
move algebraically the factors e�i� in v(�; x, t) into
regions of the complex plane, where they are
exponentially decreasing as t!1. The jump matrix
admits two algebraic factorizations:
Σ, ν

Ω+

Ω– 

ν

ν1

b+

ν

b–

(a) (b)

–1

Figure 2 Deformation of an RH problem.
v ¼
�

1� jrj2 rei�

��re�i� 1

�

¼
�

1 rei�

0 1

�� 1 0

��re�i� 1

�
ð� > �0Þ

¼
 1 0

� �re�i�

1� jrj2
1

!  1� jrj2 0

0 1
1� jrj2

!

�
1 rei�

1� jrj2

0 1

0
B@

1
CA ð� < �0Þ

The diagonal factors (1� jrj2)�1 can be removed by
conjugating v by 	�3

� , where 	(�) solves the scalar,
normalized RH problem on R : 	þ= 	�(1� jrj2) for
� < �0 and 	þ= 	� for � > �0; the solution of the
latter can be written in a closed form:

	ð�Þ ¼ exp
1

2�i

Z �0

�1

logð1� jrð�Þj2Þ
�� � d�

( )

Then ~m := m	��3 solves the RH problem across
� = R, with the jump matrix

~v ¼
�

1 r	2 ei�

0 1

� � 1 0

��r	�2 e�i� 1

�
ð� > �0Þ

¼
 1 0

��r	�2
� e�i�

1� jrj2
1

!  
1

r	2
þ ei�

1� jrj2

0 1

!
ð� < �0Þ

Replacing r,�r, etc., by appropriate rational approx-
imations [r], [�r], matching at � ¼ �0,

~mþ

�
1 0

�½�r�	�2 e�i� 1

�

can be continued to the sector above Rþ þ �0 and

~m�

�
1 ½r�	2ei�

0 1

�
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can be continued to the sector below Rþ þ �0, where
the factors e�i� are exponentially decreasing. Doing the
same for the appropriate factors on R� þ �0, we
obtain an RH problem on a cross, say, (�0 þ ei�=4R) [
(�0 þ e�i�=4R). As t!1, the RH problem then
localizes at �0.

Performing an appropriate scaling, a straightfor-
ward computation shows that, as t!1, the
problem reduces to an RH problem with the jump
matrix that does not depend on � (it is determined
by r(�0)), which make it possible to solve this
problem explicitly (in terms of the parabolic cylinder
functions, in the case of the NLS equation). Using
explicit asymptotics for these functions and control-
ling the error terms, it is possible to obtain the
uniform (for all x 2 R) asymptotics for the solution
of the initial-value problem for the NLS equation
with q0 2 L2((1þ x2) dx) \H1 of the form

qðx; tÞ ¼ t�1=2
ð�0Þ expðix2=ð4tÞ � i�ð�0Þ log 2tÞ
þOðt�ð1=2þ�ÞÞ

for any fixed 0 < � < 1=4, where 
 and � are given
in terms of r =R(q0):

�ð�Þ ¼ � 1

2�
logð1� jrð�Þj2Þ

j
ð�Þj2¼ �ð�Þ
2

and

arg
ð�Þ ¼ 1

�

Z �

�1
logð�� �Þ dðlogð1� jrð�Þj2ÞÞ

þ �
4
þ arg �ði�ð�ÞÞ þ arg rð�Þ

The method can be used to obtain asymptotic
expansions to all orders. Also, for nonlinear equa-
tions supporting solitons, the soliton part of the
asymptotics can be incorporated via the dressing
method.

Further applications include long-time asympto-
tics for near-integrable systems, such as the per-
turbed NLS equation iqt þ qxx � 2jqj2q� "jqjlq = 0
for l > 2 and " > 0, and the small-dispersion limits
of integrable equations (e.g., for the Korteweg–
de Vries equation qt � 6qqx þ "2qxxx = 0 with small
dispersion " & 0).

The RH formalism makes possible a comprehen-
sive global asymptotic analysis of the Painlevé
transcendents (which, due to their increasing role
in the modern mathematical physics, should be
considered as new nonlinear special functions),
including explicit connection formulas, as x
approaches relevant critical points along different
directions in the complex plane.

The development of the RH method in the theory
of integrable systems caused emerging new analytic
and algebraic ideas for other branches of mathe-
matics and theoretical physics. The recent examples
are the study of the asymptotics in the theory of
orthogonal polynomials and random matrices and in
combinatories (random permutations).

See also: Boundary-Value Problems for Integrable
Equations; �	 Approach to Integrable Systems; Integrable
Systems and Algebraic Geometry; Integrable Systems
and the Inverse Scattering Method; Integrable Systems:
Overview; Nonlinear Schrödinger Equations; Painlevé
Equations; Twistor Theory: Some Applications [in
Integrable Systems, Complex Geometry and String
Theory]; Riemann–Hilbert Problem.
Further Reading

Ablowitz MJ and Clarkson PA (1991) Solitons, Nonlinear

Evolution Equations and Inverse Scatting, London Math.
Soc., Lecture Notes Series, vol. 149. Cambridge: Cambridge

University Press.

Beals R, Deift PA, and Tomei C (1988) Direct and Inverse
Scattering on the Line. Mathematical Surveys and Mono-
graphs 28. Providence, RI: American Mathematical Society.

Belokolos ED, Bobenko AI, Enol’skii VZ, and Its AR (1994)

Algebro-Geometric Approach to Nonlinear Integrable
Equations. Springer Series in Nonlinear Dynamics. Berlin:

Springer.

Deift PA (1999) Orthogonal Polynomials and Random Matrices:

A Riemann–Hilbert Approach. Courant Lecture Notes in
Mathematics, vol. 3. New York: CIMS.

Deift PA and Zhou X (2003) Long-time asymptotics for solutions

of the NLS equation with initial data in a weighted Sobolev

space. Communications on Pure and Applied Mathematics
56(8): 1029–1077.

Deift PA, Its AR, and Zhou X (1993) Long-time asymptotics for

integrable nonlinear wave equations. In: Fokas AS and
Zakharov VE (eds.) Important Developments in Soliton
Theory, pp. 181–204. Berlin: Springer.

Faddeev LD and Takhtajan LA (1987) Hamiltonian Methods in
the Theory of Solitons. Berlin: Springer.

Fokas AS (2000) On the integrability of linear and nonlinear

partial differential equations. Journal of Mathematical Physics
41: 4188–4237.

Its AR (2003) The Riemann–Hilbert problem and integrable
systems. Notices of the AMS 50(11): 1389–1400.

Novikov SP, Manakov SV, Pitaevskii LP, and Zakharov VE

(1984) Theory of Solitons. The Inverse Scattering Method.
New York: Consultants Bureau.

Zhou X (1989) The Riemann–Hilbert problem and inverse

scattering. Journal on Mathematical Analysis. Society for
Industrial and Applied Mathematics (SIAM) 20: 966–986.



436 Riemann–Hilbert Problem
Riemann–Hilbert Problem
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Regular and Fuchsian Linear Systems
on the Riemann Sphere

Consider a system of ordinary linear differential
equations with time belonging to the Riemann
sphere CP1 = C [1:

dX=dt ¼ AðtÞX ½1�

The n� n matrix A is meromorphic on CP1, with
poles at a1, . . . , apþ1; the dependent variables X form
an n� n matrix. One can assume that 1 is not
among the poles aj and it is not a pole of the 1-form
A(t)dt (this can be achieved by a fractionally-linear
transformation of t).

P Deligne has introduced a terminology of
meromorphic connections and sections which is
often preferred in modern literature to the one of
meromorphic linear systems and their solutions, and
there is a one-to-one correspondence between the
two languages.

Definition 1 System [1] is regular at the pole aj if
its solutions have a moderate (or polynomial)
growth rate there, that is, for every sector S centered
at aj and not containing other poles of the system
and for every solution X restricted to S there exists
Nj 2 R such that kX(t � aj)k= O(jt � ajjNj ) for all
t 2 S. System [1] is regular if it is regular at all poles
aj. System [1] is Fuchsian if its poles are logarithmic
(i.e., of first order). Every Fuchsian system is
regular.

Remark 2 The opening of the sector S might be
>2�. Restricting to a sector is necessary because the
solutions are, in general, ramified at the poles aj and
by turning around the poles much faster than
approaching them one can obtain any growth rate.

A Fuchsian system can be presented in the form

dX=dt ¼
Xpþ1

j¼1

Aj=ðt � ajÞ
 !

X; Aj 2 glðn;CÞ ½2�

The sum of its matrices-residua Aj is 0, that is,

A1 þ � � � þ Apþ1 ¼ 0 ½3�

(recall that 1 is not a pole of the system).

Remark 3 The linear equation (with meromorphic
coefficients)

Pn
j = 0 aj(t)x

(j) = 0 is Fuchsian if aj has
poles of order only �n� j. A linear equation is
Fuchsian if and only if it is regular. The best-studied
Fuchsian equations are the hypergeometric one and
its generalizations and the Jordan–Pochhammer
equation.

The linear change of the dependent variables

X 7!WðtÞX ½4�

(where W is meromorphic on CP1) makes system [2]
undergo the gauge transformation

A! �W�1ðdW=dtÞ þW�1AW ½5�

(Most often one requires W to be holomorphic and
holomorphically invertible for t 6¼ aj, j = 1, . . . , pþ 1,
so that no new singular points appear in the system.)
This transformation preserves regularity but not
necessarily being Fuchsian. The only invariant under
the group of linear transformations [4] is the
monodromy group of the system.

Definition 4 Set � = CP1n{a1, . . . , apþ1}. Fix a
base point a0 2 � and a matrix B 2 GL(n, C).
Consider a closed contour � with base point a0

and bypassing the poles of the system. The mono-
dromy operator of system [1] defined by this
contour is the linear operator M acting on the
solution space of the system which maps the
solution X with Xjt = a0

= B into the value of its
analytic continuation along �. Notation: X 7!� XM.
The monodromy operator depends only on the class
of homotopy equivalence of �.

The monodromy group is the subgroup of
GL(n, C) generated by all monodromy operators. It
is defined only up to conjugacy due to the freedom
to choose a0 and B.

Definition 5 Define the product (concatenation)
�1�2 of two paths �1, �2 in � (where the end of �1

coincides with the beginning of �2) as the path
obtained by running �1 first and �2 next.

Remark 6 The monodromy group is an antirepre-
sentation of the fundamental group �1(�) into
GL(n, C) because one has

X 7!�1
XM1 7!

�2
XM2M1 ½6�

that is, the concatenation �1�2 of the two contours
defines the monodromy operator M2M1. In the text,
the monodromy group is referred to as to a
representation, not an antirepresentation.

One usually chooses a standard set of generators
of �1(�) (see Figure 1) defined by contours
�j, j = 1, . . . , pþ 1, where �j consists of a segment



a1

a2

a0 ap + 1

Figure 1 The standard set of generators.
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[a0, a0j] (a0j being a point close to aj), of a small
circumference run counterclockwise (centered at aj,
passing through a0j and containing inside no pole of
the system other than aj), and of the segment [a0j, a0].
Thus, �j is freely homotopic to a small loop
circumventing counterclockwise aj (and no other
pole ai). The indices of the poles are chosen such
that the indices of the contours increase from 1 to
pþ 1 when one turns around a0 clockwise.

For the standard choice of the contours the
generators Mj satisfy the relation

M1 . . . Mpþ1 ¼ I ½7�

Indeed, the concatenation of contours �pþ1. . .�1 is
homotopy equivalent to 0 and equality [7] results
from Remark 6.

Remarks 7

(i) If the matrix-residuum Aj of a Fuchsian system
has no eigenvalues differing by a nonzero
integer, then the monodromy operator Mj

defined as above is conjugate to exp (2�iAj). It
is always true that the eigenvalues �k, j of Mj

equal exp (2�i�k, j), where �k, j are the eigenva-
lues of Aj.

(ii) If the generators Mj of the monodromy group
are defined after a standard set of contours �j,
then they are conjugate to the corresponding
operators Lj of local monodromy, that is, when
the poles aj are circumvented counterclockwise
along small loops. The operators Lj of a regular
system can be computed (up to conjugacy)
algorithmically – one first makes the system
Fuchsian at aj by means of a change [4] and
then carries out the computation. Thus,
Mj = Q�1

j LjQj for some Qj 2 GL(n, C) and the
difficulty when computing the monodromy
group of system [1] consists in computing the
matrices Qj which is a transcendental problem.

(iii) As will be noted in Theorem 9, every compo-
nent of every solution to a regular linear system
is a function of the class of Nilsson, that is,
representable as a convergent (on sectors) seriesP

k2N, 1�i�n, 0���n�1 ai, k, �t
�iþk ln� t,�i 2 C, ai, k, �

2 C.

Example 8 The Fuchsian system dX=dt = (A=t)X,
A 2 gl(n, C), has two poles – at 0 and at 1,
with matrices-residua A and �A. Any solution
is of the form X = exp (A ln t)G, G 2 GL(n, C).
To compute the local monodromy around 0, change
the argument of t by 2�i. This results in ln t 7!
ln t þ 2�i and X 7!XG�1 exp (2�iA)G, that is the
monodromy operator at 0 equals G�1 exp (2�iA)G
(and in the same way the one at 1 equals
G�1 exp (�2�iA)G).
Formulation and History of the Problem

The Riemann–Hilbert problem (or Hilbert’s twenty-
first problem) is formulated as follows:

Prove that for any set of points a1, . . . , apþ1 2 CP1

and for any set of matrices M1, . . . , Mp 2 GL(n, C)
there exists a Fuchsian linear system with poles
at and only at a1, . . . , apþ1 for which the correspond-
ing monodromy operators are M1, . . . , Mp,
Mpþ1 = (M1 . . . Mp)�1.

Historically, the Riemann–Hilbert problem was
first stated for Fuchsian equations, not for systems –
Riemann mentions in a note at the end of the 1850s
the problem how to reconstruct a Fuchsian equation
from its monodromy representation and Hilbert
includes it in 1900 as the twenty-first problem on
his list in a formulation mentioning equations and
not systems. However, the number of parameters
necessary to parametrize a Fuchsian equation is, in
general, smaller than the one necessary to parame-
trize a monodromy group generated by p matrices.
Therefore, one has to allow the presence of
additional apparent singularities in the equation,
that is, singularities the monodromy around which is
trivial.

It had been believed for a long time that the
Riemann–Hilbert problem has a positive solution
for any n 2 N, after J. Plemelj in 1908 gave a proof
with a gap. In his proof, Plemelj tries to reduce the
Riemann–Hilbert problem to the so-called homo-
geneous Hilbert boundary-value problem of the
theory of singular integral equations. It follows
from the correct part of the proof that if one of
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the monodromy operators of system [1] is diagonal-
izable, then system [1] is equivalent to a Fuchsian
one; this is due to Yu S Il’yashenko. (In particular, if
one allows just one additional apparent singularity,
then the Riemann–Hilbert problem is positively
solvable. The author has shown that the result still
holds if one of the monodromy operators has one
Jordan block of size 2 and n� 2 Jordan blocks of
size 1. The result is sharp – it would be false if one
allows one Jordan block of size �3 or two blocks of
size 2.) It also follows that any finitely generated
subgroup of GL(n, C) is the monodromy group of a
regular system with prescribed poles which is
Fuchsian at all the poles with the possible exception
of one (where the system is regular) which can be
chosen among them at random.

After the publication of Plemelj’s result, the
interest shifted basically towards the question how
to construct a Fuchsian system given the mono-
dromy operators Mj. At the end of the 1920s
IA Lappo-Danilevskii expressed the solutions to a
Fuchsian system as series of the monodromy
operators. These series are convergent for mono-
dromy operators close to the identity matrix and for
such operators one can express the residua Aj of the
Fuchsian system as convergent series of the mono-
dromy operators.

In 1956 BL Krylov proved that the Riemann–
Hilbert problem is solvable for n = p = 2 by con-
structing a Fuchsian system after its monodromy
group. In 1983 NP Erugin did the same in the case
n = 2, p = 3, and established a connection between
the Riemann–Hilbert problem and Painlevé’s
equations.

In 1957 H Röhrl reformulated the problem in
terms of fibre bundles. His approach is more
geometric; however, it does not require the system
realizing a given monodromy group to be Fuchsian,
but only regular.

In 1978 W Dekkers considered the particular case
n = 2 of the Riemann–Hilbert problem, and gave a
positive answer to it. The gap in Plemelj’s proof was
detected in the 1980s by AT Kohn and YuS
Il’yashenko.

It was proved by AA Bolibrukh in 1989 that, for
n � 3, the problem has a negative answer. For n = 3,
the answer is negative precisely for those couples
(monodromy group, set of poles) for which each
monodromy operator M1, . . . , Mpþ1 is conjugate to
a Jordan block of size 3, the monodromy group is
reducible, with an invariant subspace or factor-space
of dimension 2, the monodromy sub- or factor-
representation corresponding to it is irreducible and
cannot be realized by a Fuchsian system having all
its matrices-residua conjugate to Jordan blocks of
size 2. In Bolibrukh’s work, the last condition is
formulated in a different (but equivalent) way using
the notion of Fuchsian weight.
The New Setting of the Problem

After the negative answer to the Riemann–Hilbert
problem for n � 3, it is reasonable to reformulate it
as follows:

Find necessary and/or sufficient conditions for the
choice of the monodromy operators M1, . . . , Mp and
the points a1, . . . , apþ1 so that there should exist a
Fuchsian system with poles at and only at the given
points and whose monodromy operators Mj should
be the given ones.

In the new setting of the Riemann–Hilbert pro-
blem, the answer is positive if the monodromy group
is irreducible (for any positions of the poles aj). This
has been first proved by Bolibrukh for n = 3 and then
independently by the author and by him for any n.

Bolibrukh found many examples of couples
(reducible monodromy group, poles) for which the
answer to the Riemann–Hilbert problem is nega-
tive. For n = 3, the negative answer is due to
possible ‘‘bad position’’ of the poles and a small
shift from this position while keeping the same
monodromy group leads to a couple for which the
answer is positive. For n � 4, there are couples
where the negative answer is due to arithmetic
properties of the eigenvalues of the matrices-
residua and the corresponding monodromy groups
are not realizable by Fuchsian systems for any
position of the poles. During the last years of his
life, Bolibrukh studied upper-triangular mono-
dromy representations and found other examples
with negative answer to the Riemann–Hilbert
problem.

Bolibrukh also found some sufficient conditions
for the positive resolvability of the Riemann–Hilbert
problem in the case of a reducible monodromy
group. For example, suppose that the monodromy
group is a semidirect sum:

Mj ¼
M1

j �
0 M2

j

 !

where the matrices Mi
j (of size li � li, i = 1, 2) define

the representations �i. Suppose that the representa-
tion �2 is realizable by a Fuchsian system, that the
representation �1 is irreducible, and that one of the
matrices Mj is block-diagonal, with left upper block
of size s� s, where s � l1. Then for any choice of the
poles aj the monodromy group can be realized by
some Fuchsian system.
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Bolibrukh also gave an estimation upon the
number m of additional apparent singularities in a
Fuchsian equation which are sufficient to realize a
given irreducible monodromy group. It follows from
his result that

m � nðn� 1Þðp� 1Þ
2

þ 1� n

One can ask the question what the codimension of
the subset in the space (monodromy group, poles) is
which provides the negative answer to the Riemann–
Hilbert problem in its initial setting. The (author’s)
answer for p � 3 is 2p(n� 1), and for n � 7 this
codimension is attained only at couples (mono-
dromy group, poles) for which every monodromy
operator Mj is conjugate to a Jordan block of size n,
the group has an invariant subspace or factor-space
of dimension n� 1, the corresponding sub- or
factor-representation is irreducible and cannot be
realized by a Fuchsian system in which all matrices-
residua are conjugate to Jordan blocks of size n� 1.
For n � 6 there are examples where the same
codimension is attained (but cannot be decreased)
on other couples as well.
Levelt’s Result and Bolibrukh’s Method

In 1961, AHM Levelt described the form of the
solution to a regular system at its pole. His result is
in the core of Bolibrukh’s method for solving the
Riemann–Hilbert problem.

Theorem 9 In the neighborhood of a pole, the
solution to a regular linear system is representable in
the form

X ¼ Ujðt � ajÞðt � ajÞDjðt � ajÞEjGj ½8�

where the matrix Uj is holomorphic in a neigh-
borhood of 0, Dj = diag(’1, j, . . . ,’n, j),’n, j 2 Z,
det Gj 6¼ 0. The matrix Ej is in upper-triangular
form and the real parts of its eigenvalues belong to
[0, 1) (by definition, (t � aj)

Ej = eEj ln (t�aj)). The num-
bers ’k, j satisfy the condition [10] formulated
below. They are valuations in the eigenspaces of
the monodromy operator Mj (i.e., in the maximal
subspaces invariant for Mj on which it acts as an
operator with a single eigenvalue).

A regular system is Fuchsian at aj if and only if

det Ujð0Þ 6¼ 0 ½9�

The condition on ’k, j can be formulated as follows: let
Ej have one and the same eigenvalue in the rows with
indices s1 < s2 < � � � < sq. Then one has

’s1; j � ’s2; j � � � � � ’sq; j ½10�
Remark 10 Denote by 	k, j the diagonal entries
(i.e., the eigenvalues) of the matrix Ej. Then the
sums 	k, j þ ’k, j are the eigenvalues of the matrix-
residuum Aj at aj.

In proving that the Riemann–Hilbert problem is
positively solved in the case of an irreducible mono-
dromy group, Bolibrukh (or the author) uses the
correct part of Plemelj’s proof – namely, that the given
monodromy group can be realized by a regular system
which is Fuchsian at all poles but one. After this, a
suitable change [4] is sought which makes the system
Fuchsian at the last pole. The criterium to be Fuchsian
is provided by the above theorem; one checks how the
matrices Dj, that is, the exponents ’k, j and the
matrices Uj change as a result of the transformation
[4]. This is easier (one has only to multiply to the left
by W(t)) than to see how the matrix A(t) of system [1]
changes because one has conjugation in rule [5]. This
idea is also due to Bolibrukh.

When Bolibrukh obtains the negative answer to
the Riemann–Hilbert problem in some case of
reducible monodromy group, he often uses the
following two propositions:

Proposition 11 The sum
P
	k, j þ ’k, j relative to a

subspace of the solution space invariant for all
monodromy operators is a non-positive integer.

In particular, the sum of all exponents 	k, j þ ’k, j

is a non-positive integer which is 0 if and only if the
system is Fuchsian.

Proposition 12 If some component of some col-
umn of some matrix solution to a regular system is
identically equal to 0, then the monodromy group of
the system is reducible.

A reducible monodromy group can be conjugated
to a block upper-triangular form, with the diagonal
blocks defining irreducible representations. Thus, the
Riemann–Hilbert problem for reducible monodromy
groups makes necessary the answer to the question
‘‘given the set of poles aj, for which sets of exponents
’k, j can a given irreducible monodromy group be
realized by such a Fuchsian system?’’ For n � 2, an
irreducible monodromy group can be a priori realized
by infinitely many Fuchsian systems, with different
sets of exponents ’k, j. Consider the case when these
exponents are fixed for j 6¼ 1; suppose that a1 = 0.
The author has shown that then infinitely many of
the a priori possible choices of the exponents ’k, 1

cannot be realized by Fuchsian systems if and only if
the given monodromy group is realized by a Fuchsian
system which is obtained from another one via the
change of time t 7! tk=(bktk þ bk�1tk�1 þ � � � þ b0),
bi 2 C, b0 6¼ 0, k 2 N�, k > 1. This change increases
the number of poles.
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Further Developments – The
Deligne–Simpson Problem

The Riemann–Hilbert problem can be generalized for
irregular systems as follows. One asks whether for
given poles aj there exists a linear system of ordinary
differential equations on the Riemann sphere with
these and only these poles which is Fuchsian at the
regular singular points, which has prescribed formal
normal forms, formal monodromies and Stokes
multipliers at the irregular singular points, and
which has a prescribed global monodromy.

The Riemann–Hilbert problem has been consid-
ered in some papers (of H Esnault, E Vieweg, and C
Hertling) in the context of algebraic curves of higher
genus instead of CP1.

The study of the so-called Riemann–Hilbert
correspondence between the category of holonomic
D-modules and the one of perverse sheaves with
constructible cohomology has been initiated in the
works of J Bernstein in the algebraic aspect and of
M Sato, T Kawai, and M Kashiwara in the analytic
one. This has been done in the case of a variety of
arbitrary dimension (not necessarily CP1), with
codimension one pole divisor. Perversity has been
defined by P Deligne, M Goresky, and R MacPher-
son. Regularity has been defined by M Kashiwara in
the analytic aspect and by Z Mebkhout in the
geometric one. Important contributions in the
domain are due to Ph Maisonobe, M Merle, N
Nitsure, C Sabbah, and the list is far from being
exhaustive. The Riemann–Hilbert correspondence
plays an important role in other trends of mathe-
matics as well.

The Deligne–Simpson problem is formulated like
this: Give necessary and sufficient conditions upon
the choice of the conjugacy classes cj 	 gl(n, C) or
Cj 	 GL(n, C) so that there should exist an irredu-
cible (i.e., without proper invariant subspace)
(pþ 1)-tuple of matrices Aj 2 cj satisfying [3] or of
matrices Mj satisfying [7].

The problem was stated in the 1980s by P Deligne
for matrices Mj and in the 1990s by the author for
matrices Aj. C Simpson was the first to obtain results
towards its resolution in the case of matrices Mj. The
problem admits the following geometric interpretation
in the case of matrices Mj: For which (pþ 1)-tuples of
local monodromies does there exist an irreducible
global monodromy with such local monodromies?

For generic eigenvalues the problem has found a
complete solution in the author’s papers in the form of
a criterium upon the Jordan normal forms defined by
the conjugacy classes. The author has treated the case
of nilpotent matrices Aj and the one of unipotent
matrices Mj as well. For matrices Aj, the problem has
been completely solved (for any eigenvalues) by W
Crawley-Boevey. The case of matrices Aj with p = 2
has been treated by O Gleizer using results of A
Klyachko. The case when the matrices Mj are unitary
is considered in papers of S Agnihotri, P Belkale, I
Biswas, C Teleman, and C Woodward. Several cases of
finite groups have been considered by M Dettweiler, S
Reiter, K Strambach, J Thompson, and H Völklein.
The important rigid case has been studied by NM
Katz. Y Haraoka has considered the problem in the
context of linear systems in Okubo’s normal form.
One can find details in an author’s survey on the
Deligne–Simpson problem (Kostov, 2004).

See also: Affine Quantum Groups; Bicrossproduct Hopf
Algebras and Non-Commutative Spacetime; Einstein
Equations: Exact Solutions; Holonomic Quantum Fields;
Integrable Systems: Overview; Isomonodromic
Deformations; Leray–Schauder Theory and Mapping
Degree; Painlevé Equations; Riemann–Hilbert Methods
in Integrable Systems; Twistors; WDVV Equations and
Frobenius Manifolds.
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des Sciences à Paris, 143–148.

Kostov VP (1999) The Deligne–Simpson problem. C.R. Acad. Sci.
Paris, t. 329 Série I, 657–662.

Kostov VP (2004) The Deligne–Simpson problem – a survey.
Journal of Algebra 281: 83–108.
Levelt AHM (1961) Hypergeometric functions. Indagationes
Mathematicae 23: 361–401.
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Riemannian Holonomy Groups

Let (M, g) be a Riemannian n-manifold. The
holonomy group Hol(g) is a Lie subgroup of O(n),
a global invariant of g which measures the constant
tensors S on M preserved by the Levi-Civita
connection r of g. The most well-known examples
of metrics with special holonomy are Kähler metrics,
with Hol(g) 
 U(m) 	 O(2m). A Kähler manifold
(M, g) also carries a complex structure J and Kähler
2-form ! with rJ =r!= 0.

The classification of Riemannian holonomy
groups gives a list of interesting special Riemannian
geometries such as Calabi–Yau manifolds and the
exceptional holonomy groups G2 and Spin(7), all of
which are important in physics. These geometries
have many features in common with Kähler geome-
try, and are characterized by the existence of
constant exterior forms.

General Properties of Holonomy Groups

Let M be a connected manifold of dimension n and g a
Riemannian metric on M, with Levi-Civita connec-
tion r, regarded as a connection on the tangent
bundle TM of M. Suppose � : [0, 1]!M is a smooth
path, with �(0) = x and �(1) = y. Let s be a smooth
section of ��(TM), so that s : [0, 1]!TM with s(t) 2
T�(t)M for each t 2 [0, 1]. Then we say that s is
parallel if r�̇(t)s(t) = 0 for all t 2 [0, 1], where �̇(t) is

d

dt
�ðtÞ 2 T�ðtÞM

For each v 2 TxM, there is a unique parallel
section s of ��(TM) with s(0) = v. Define a map
P� : TxM!TyM by P�(v) = s(1). Then P� is well
defined and linear, and is called the parallel
transport map along �. This easily generalizes
to continuous, piecewise-smooth paths �. As
rg = 0, we see that P� : TxM!TyM is orthogonal
with respect to the metric g on TxM and TyM.

Definition 1 Fix a point x 2M. � is said to be loop
based at x if � : [0, 1]!M is a continuous, piece-
wise-smooth path with �(0) = �(1) = x. If � is a loop
based at x, then the parallel transport map P� lies in
O(TxM), the group of orthogonal linear transforma-
tions of TxM. Define the (Riemannian) holonomy
group Holx(g) of g based at x to be

HolxðgÞ ¼ P�: � is a loop based at x
� �


 OðTxMÞ ½1�

Here are some elementary properties of Holx(g).
The only difficult part is showing that Holx(g) is a
(closed) Lie subgroup.

Theorem 2 Holx(g) is a Lie subgroup of O(TxM),
which is closed and connected if M is simply
connected, but need not be closed or connected
otherwise. Let x, y 2M, and suppose � : [0, 1]!M
is a continuous, piecewise-smooth path with
�(0) = x and �(1) = y, so that P� : TxM!TyM. Then

P� HolxðgÞP�1
� ¼ HolyðgÞ ½2�

By choosing an orthonormal basis for TxM we
can identify O(TxM) with the Lie group O(n), and
so identify Holx(g) with a Lie subgroup of O(n).
Changing the basis changes the subgroups by
conjugation by an element of O(n). Thus, Holx(g)
may be regarded as a Lie subgroup of O(n) defined
up to conjugation. Equation [2] shows that in this
sense, Holx(g) is independent of the base point x.
Therefore, we omit the subscript x and write
Hol(g) for the holonomy group of g, regarded as
a subgroup of O(n) defined up to conjugation.

It is significant that Hol(g) is a global invariant of g,
that is, it does not vary from point to point like
local invariants of g such as the curvature. Generic
metrics g on M have Hol(g) = SO(n) if M is
orientable, and Hol(g) = O(n) otherwise. But some
special metrics g can have Hol(g) a proper
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subgroup of SO(n) or O(n). Then M carries some
extra geometric structures compatible with g.

Broadly, the smaller Hol(g) is as a subgroup of
O(n), the more special g is, and the more extra
geometric structures there are. Therefore, under-
standing and classifying the possible holonomy
groups gives a family of interesting special Rieman-
nian geometries, such as Kähler geometry. All of
these special geometries have cropped up in physics.

Define the holonomy algebra hol(g) to be the Lie
algebra of Hol(g), regarded as a Lie subalgebra of
o(n), defined up to the adjoint action of O(n).
Define holx(g) to be the Lie algebra of Holx(g), as a
Lie subalgebra of o(TxM) ffi �2T�xM. The holonomy
algebra hol(g) is intimately connected with the
Riemann curvature tensor Rabcd = gaeR

e
bcd of g.

Theorem 3 The Riemann curvature tensor Rabcd

lies in S2holx(g) at x, where holx(g) is regarded as a
subspace of �2T�xM. It also satisfies the first and
second Bianchi identities

Rabcd þ Radbc þ Racdb ¼ 0 ½3�

reRabcd þrcRabde þrdRabec ¼ 0 ½4�

A related result is the Ambrose–Singer holonomy
theorem, which, roughly speaking, says that holx(g)
may be reconstructed from Rabcdjy for all y 2M,
moved to x by parallel transport.

If (M, g) and (N, h) are Riemannian manifolds, the
product M�N carries a product metric g� h. It is
easy to show that Hol(g� h) = Hol(g)�Hol(h). A
Riemannian manifold (M, g) is called reducible if
every point has an open neighborhood isometric to a
Riemannian product and irreducible otherwise.

Theorem 4 Let (M, g) be Riemannian n-manifold.
Then the natural representation of Hol(g) on Rn is
reducible if and only if g is reducible.

There is a class of Riemannian manifolds called
the ‘‘Riemannian symmetric spaces’’ which are
important in the theory of Riemannian holonomy
groups. A Riemannian symmetric space is a
special kind of Riemannian manifold with a
transitive isometry group. The theory of sym-
metric spaces was worked out by Élie Cartan in
the 1920s, who classified them completely, using
his own classification of Lie groups and their
representations.

A Riemannian metric g is called ‘‘locally sym-
metric’’ if reRabcd 	 0, and ‘‘nonsymmetric’’ other-
wise. Every locally symmetric metric is locally
isometric to a Riemannian symmetric space. The
relevance of symmetric spaces to holonomy groups
is that many possible holonomy groups are the
holonomy group of a Riemannian symmetric space,
but are not realized by any nonsymmetric metric.
Therefore, by restricting attention to nonsymmetric
metrics, one considerably reduces the number of
possible Riemannian holonomy groups.

A tensor S on M is constant if rS = 0. An
important property of Hol(g) is that it determines
the constant tensors on M.

Theorem 5 Let (M, g) be a Riemannian manifold,
with Levi-Civita connection r. Fix x 2M, so
that Holx(g) acts on TxM, and so on the tensor
powers

Nk TxM

Nl T�xM. Suppose S 2 C1

(
Nk TM


Nl T�M) is a constant tensor. Then Sjx
is fixed by the action of Holx(g). Conversely,
if Sjx 2

Nk TxM

Nl T�xM is fixed by Holx(g),

it extends to a unique constant tensor
S 2 C1(

Nk TM

Nl T�M).

The main idea in the proof is that if S is a constant
tensor and � : [0, 1]!M is a path from x to y, then
P�(Sjx) = Sjy, that is, ‘‘constant tensors are invariant
under parallel transport.’’ In particular, they are
invariant under parallel transport around closed
loops based at x, and so under elements of Holx(g).

Berger’s Classification of Holonomy Groups

Berger classified Riemannian holonomy groups in
1955.

Theorem 6 Let M be a simply connected,
n-dimensional manifold, and g an irreducible, non-
symmetric Riemannian metric on M. Then

(i) Hol(g) = SO(n),
(ii) n = 2m and Hol(g) = SU(m) or U(m),

(iii) n = 4m and Hol(g) = Sp(m) or Sp(m)Sp(1),
(iv) n = 7 and Hol(g) = G2, or
(v) n = 8 and Hol(g) = Spin(7).

To simplify the classification, Berger makes three
assumptions: M is simply connected, g is irreducible,
and g is nonsymmetric. We can make M simply
connected by passing to the ‘‘universal cover.’’ The
holonomy group of a reducible metric is a product
of holonomy groups of irreducible metrics, and the
holonomy groups of locally symmetric metrics
follow from Cartan’s classification of Riemannian
symmetric spaces. Thus, these three assumptions can
easily be removed.

Here is a sketch of Berger’s proof of Theorem 6.
As M is simply connected, Theorem 2 shows Hol(g)
is a closed, connected Lie subgroup of SO(n), and
since g is irreducible, Theorem 4 shows the
representation of Hol(g) on Rn is irreducible. So,
suppose that H is a closed, connected subgroup of
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SO(n) acting irreducibly on Rn, with Lie algebra h.
The classification of all such H follows from the
classification of Lie groups (and is of considerable
complexity). Berger’s method was to take the list of
all such groups H, and to apply two tests to each
possibility to find out if it could be a holonomy
group. The only groups H which passed both tests
are those in the theorem.

Berger’s tests are algebraic and involve the
curvature tensor. Suppose that Rabcd is the Riemann
curvature of a metric g with Hol(g) = H. Then
Theorem 3 gives Rabcd 2 S2h, and the first Bianchi
identity [3] applies. But if h has large codimension in
o(n), then the vector space RH of elements of S2h
satisfying [3] will be small, or even zero. However,
the ‘‘Ambrose–Singer holonomy theorem’’ shows that
RH must be big enough to generate h. For many of the
candidate groups H, this does not hold, and so H
cannot be a holonomy group. This is the first test.

Now reRabcd lies in (Rn)� 
RH, and also satisfies
the second Bianchi identity, eqn [4]. Frequently,
these imply that rR = 0, so that g is locally
symmetric. Therefore, we may exclude such H, and
this is Berger’s second test.

Berger’s proof does not show that the groups on
his list actually occur as Riemannian holonomy
groups – only that no others do. It is now known,
though this took another thirty years to find out,
that all possibilities in Theorem 6 do occur.

The Groups on Berger’s List

Here are some brief remarks about each group on
Berger’s list.

(i) SO(n) is the holonomy group of generic
Riemannian metrics.

(ii) Riemannian metrics g with Hol(g) � U(m) are
called ‘‘Kähler metrics.’’ Kähler metrics are a natural
class of metrics on complex manifolds, and generic
Kähler metrics on a given complex manifold have
holonomy U(m).

Metrics g with Hol(g) = SU(m) are called Calabi–
Yau metrics. Since SU(m) is a subgroup of U(m), all
Calabi–Yau metrics are Kähler. If g is Kähler and M
is simply connected, then Hol(g) � SU(m) if and
only if g is Ricci-flat. Thus, Calabi–Yau metrics are
locally more or less the same as Ricci-flat Kähler
metrics.

If (M, J) is a compact complex manifold with
trivial canonical bundle admitting Kähler metrics,
then Yau’s solution of the Calabi conjecture gives a
unique Ricci-flat Kähler metric in each canonical
class. This gives a way to construct many examples
of Calabi–Yau manifolds, and explains why these
have been named after them.
(iii) Metrics g with Hol(g) = Sp(m) are called
‘‘hyper-Kähler.’’ As Sp(m) � SU(2m) � U(2m), hyper-
Kähler metrics are Ricci-flat and Kähler.

Metrics g with holonomy group Sp(m)Sp(1) for
m � 2 are called ‘‘quaternionic Kähler.’’ (Note that
quaternionic Kähler metrics are not in fact Kähler.)
They are Einstein, but not Ricci-flat.

(iv), (v) G2 and Spin(7) are the exceptional cases,
so they are called the ‘‘exceptional holonomy
groups.’’ Metrics with these holonomy groups are
Ricci-flat.

The groups can be understood in terms of the four
division algebras: the real numbers R, the complex
numbers C, the quaternions H, and the octonions or
Cayley numbers O.

� SO(n) is a group of automorphisms of Rn.
� U(m) and SU(m) are groups of automorphisms of Cm.
� Sp(m) and Sp(m) Sp(1) are automorphism groups

of Hm.
� G2 is the automorphism group of Im O ffi R7.

Spin(7) is a group of automorphisms of O ffi R8,
preserving part of the structure on O.
The Exceptional Holonomy Groups

For some time after Berger’s classification, the
exceptional holonomy groups remained a mystery.
In 1987, Bryant used the theory of exterior
differential systems to show that locally there exist
many metrics with these holonomy groups, and gave
some explicit, incomplete examples. Then in 1989,
Bryant and Salamon found explicit, complete
metrics with holonomy G2 and Spin(7) on non-
compact manifolds. In 1994–95, the author con-
structed the first examples of metrics with holonomy
G2 and Spin(7) on compact manifolds. For more
information on exceptional holonomy, see Joyce
(2000, 2002).

The Holonomy Group G2

Let (x1, . . . , x7) be coordinates on R7. Write dxij...l

for the exterior form dxi ^ dxj ^    ^ dxl on R7.
Define a metric g0, a 3-form ’0, and a 4-form �’0

on R7 by

g0 ¼ dx2
1 þ    þ dx2

7

’0 ¼ dx123 þ dx145 þ dx167 þ dx246

� dx257 � dx347 � dx356

�’0 ¼ dx4567 þ dx2367 þ dx2345 þ dx1357

� dx1346 � dx1256 � dx1247

½5�

The subgroup of GL(7, R) preserving ’0 is the
exceptional Lie group G2. It also preserves g0, � ’0,
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and the orientation on R7. It is a compact,
semisimple, 14-dimensional Lie group, a subgroup
of SO(7).

A G2-structure on a 7-manifold M is a principal
sub-bundle of the frame bundle of M, with
structure group G2. Each G2-structure gives rise
to a 3-form ’ and a metric g on M, such that every
tangent space of M admits an isomorphism with R7

identifying ’ and g with ’0 and g0, respectively. By
an abuse of notation, (’, g) can be referred to as a
G2-structure.

Proposition 7 Let M be a 7-manifold and (’, g) a
G2-structure on M. Then the following are
equivalent:

(i) Hol(g) � G2, and ’ is the induced 3-form;
(ii) r’= 0 on M, where r is the Levi-Civita

connection of g; and
(iii) d’= d(�’) = 0 on M.

The equations d’= d(�’) = 0 look like linear
partial differential equations on ’. However, it is
better to consider them as nonlinear, for the
following reason. The 3-form ’ determines the
metric g, and g gives the Hodge star � on M. So
�’ is a nonlinear function of ’, and d(�’) = 0 a
nonlinear equation. Thus, constructing and study-
ing G2-manifolds come down to studying solu-
tions of nonlinear elliptic partial differential
equations.

Note that Hol(g) � G2 if and only if r’= 0
follows from Theorem 5. We call r’ the
‘‘torsion’’ of the G2-structure (’, g), and when
r’= 0 the G2-structure is ‘‘torsion-free.’’ A triple
(M,’, g) is called a G2-manifold if M is a
7-manifold and (’, g) a torsion-free G2-structure
on M. If g has holonomy Hol(g) � G2, then g is
Ricci-flat.

Theorem 8 Let M be a compact 7-manifold, and
suppose that (’, g) is a torsion-free G2-structure on M.
Then Hol(g) = G2 if and only if �1(M) is finite. In
this case, the moduli space of metrics with holon-
omy G2 on M, up to diffeomorphisms isotopic to
the identity, is a smooth manifold of dimension
b3(M).
The Holonomy Group Spin(7)

Let R8 have coordinates (x1, . . . , x8). Define a
4-form �0 on R8 by

�0 ¼ dx1234þ dx1256þ dx1278þ dx1357� dx1368

� dx1458� dx1467 � dx2358 � dx2367 � dx2457

þ dx2468 þ dx3456 þ dx3478 þ dx5678 ½6�
The subgroup of GL(8, R) preserving �0 is the
holonomy group Spin(7). It also preserves the
orientation on R8 and the Euclidean metric
g0 = dx2

1 þ    þ dx2
8. It is a compact, semisimple,

21-dimensional Lie group, a subgroup of SO(8).
A Spin(7)-structure on an 8-manifold M gives rise

to a 4-form � and a metric g on M, such that each
tangent space of M admits an isomorphism with R8

identifying � and g with �0 and g0, respectively. By
an abuse of notation, the pair (�, g) is referred to as
a Spin(7)-structure.

Proposition 9 Let M be an 8-manifold and (�, g) a
Spin(7)-structure on M. Then the following are
equivalent:

(i) Hol(g) � Spin(7) and � is the induced 4-form;
(ii) r� = 0 on M, where r is the Levi-Civita

connection of g; and
(iii) d� = 0 on M.

We call r� the torsion of the Spin(7)-structure
(�, g), and (�, g) torsion free if r� = 0. A triple
(M,�, g) is called a Spin(7)-manifold if M is an 8-
manifold and (�, g) a torsion-free Spin(7)-structure
on M. If g has holonomy Hol(g) � Spin(7), then g is
Ricci-flat.

Here is a result on compact 8-manifolds with
holonomy Spin(7).

Theorem 10 Let (M, �, g) be a compact Spin(7)-
manifold. Then, Hol(g) = Spin(7) if and only if M is
simply connected, and b3(M)þ b4

þ(M) = b2(M)þ
2b4
�(M)þ 25. In this case, the moduli space of

metrics with holonomy Spin(7) on M, up to
diffeomorphisms isotopic to the identity, is a smooth
manifold of dimension 1þ b4

�(M).

The inclusions between the holonomy groups
SU(m), G2, Spin(7) are

SUð2Þ �! SUð3Þ �! G2

# # #
SUð2Þ � SUð2Þ �! SUð4Þ �! Spinð7Þ

½7�

The meaning of the above equation is illustrated
by using the inclusion SU(3) ,!G2. As SU(3) acts
on C3, it also acts on R �C3 ffi R7, taking the
SU(3)-action on R to be trivial. Thus, we embed
SU(3) as a subgroup of GL(7, R). It turns out
that SU(3) is contained in the subgroup G2 of
GL(7, R) defined in the section ‘‘The holonomy
group G2.’’
Constructing Compact G2- and Spin(7)-Manifolds

The author’s method of constructing compact
7-manifolds with holonomy G2 is based on the
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Kummer construction for Calabi–Yau metrics
on the K3 surface and may be divided into four
steps.

Step 1. Let T7 be the 7-torus and (’0, g0) a flat
G2-structure on T7. Choose a finite group � of
isometries of T7 preserving (’0, g0). Then the quotient
T7=� is a singular, compact 7-manifold, an orbifold.

Step 2. For certain special groups �, there is a
method to resolve the singularities of T7=� in a natural
way, using complex geometry. We get a nonsingular,
compact 7-manifold M, together with a map � : M!
T7=�, the resolving map.

Step 3. On M, we explicitly write down a one-
parameter family of G2-structures (’t, gt) depending
on t 2 (0, �). They are not torsion free, but have
small torsion when t is small. As t! 0, the
G2-structure (’t, gt) converges to the singular
G2-structure ��(’0, g0).

Step 4. We prove using analysis that for suffi-
ciently small t, the G2-structure (’t, gt) on M, with
small torsion, can be deformed to a G2-structure
(’’t, g̃t), with zero torsion. Finally, it is shown that g̃t

is a metric with holonomy G2 on the compact
7-manifold M.

We explain the first two steps in greater detail.
For Step 1, an example of a suitable group � is given
here.

Example 11 Let (x1, . . . , x7) be coordinates on
T7 = R7=Z7, where xi 2 R=Z. Let (’0, g0) be the
flat G2-structure on T7 defined by [5]. Let �,�, and
� be the involutions of T7 defined by

� : ðx1; . . . ; x7Þ
7!ðx1; x2; x3;�x4;�x5;�x6;�x7Þ ½8�

� : ðx1; . . . ; x7Þ
7!ðx1;�x2;�x3; x4; x5;

1
2� x6;�x7Þ ½9�

� : ðx1; . . . ; x7Þ
7! �x1; x2;�x3; x4;

1
2�x5; x6;

1
2� x7

� �
½10�

By inspection, �, �, and � preserve (’0, g0),
because of the careful choice of exactly which signs
to change. Also, �2 = �2 = �2 = 1, and �, �, and �
commute. Thus, they generate a group
� = h�,�, �i ffi Z3

2 of isometries of T7 preserving
the flat G2-structure (’0, g0).

Having chosen a lattice � and finite group �, the
quotient T7=� is an orbifold, a singular manifold
with only quotient singularities. The singularities of
T7=� come from the fixed points of nonidentity
elements of �. We now describe the singularities in
the example.

Lemma 12 In Example 11, ��, ��, ��, and ���
have no fixed points on T7. The fixed points of
�,�,� are each 16 copies of T3. The singular set S of
T7=� is a disjoint union of 12 copies of T3, 4 copies
from each of �,�, �. Each component of S is a
singularity modeled on that of T3 �C2={�1}.

The most important consideration in choosing �
is that we should be able to resolve the singula-
rities of T7=� within holonomy G2, in Step 2. We
have no idea how to resolve general orbifold
singularities of G2-manifolds. However, after fifty
years of hard work we understand well how to
resolve orbifold singularities of Calabi–Yau mani-
folds, with holonomy SU(m). This is done by a
combination of algebraic geometry, which pro-
duces the underlying complex manifold by a
crepant resolution, and Calabi–Yau analysis,
which produces the Ricci-flat Kähler metric on
this complex manifold.

Now the holonomy groups SU(2) and SU(3) are
subgroups of G2, as in [7]. Our tactic in Step 2 is to
ensure that all of the singular set S of T7=� can
locally be resolved with holonomy SU(2) or SU(3),
and then use Calabi–Yau geometry to do this. In
particular, suppose each connected component of S
is isomorphic to either

1. T3 �C2=G, for G a finite subgroup of SU(2); or
2. S1 �C3=G, for G a finite subgroup of SU(3)

acting freely on C3n{0}.

One can use complex algebraic geometry to find a
crepant resolution X of C2=G or Y of C3=G. Then
T3 �X or S1 � Y gives a local model for how to
resolve the corresponding component of S in T7=�.
Thus we construct a nonsingular, compact 7-mani-
fold M by using the patches T3 �X or S1 � Y to
repair the singularities of T7=�. In the case of
Example 11, this means gluing 12 copies of T3 �X
into T7=�, where X is the blow-up of C2={�1} at its
singular point.

By considering different groups � acting on T7,
and also by finding topologically distinct resolu-
tions M1, . . . , Mk of the same orbifold T7=�, we
can construct many compact Riemannian 7-mani-
folds with holonomy G2. A good number of
examples are given in Joyce (2000, chapter 12).
Figure 1 displays the 252 different sets of Betti
numbers of compact, simply connected 7-mani-
folds with holonomy G2 constructed there
together with 5 more sets from Kovalev. It
seems likely to the author that the Betti numbers
given in Figure 1 are only a small proportion of
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Figure 1 Betti numbers (b2, b3) of compact G2-manifolds. (From Joyce (2000) and Kovalev (2003).)
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the Betti numbers of all compact 7-manifolds with
holonomy G2.

A different construction of compact 7-manifolds
with holonomy G2 was given by Kovalev (2003),
involving gluing together asymptotically cylindrical
Calabi–Yau 3-folds. Compact 8-manifolds with
holonomy Spin(7) were constructed by the author
using two different methods: first, by resolving
singularities of torus orbifolds T8=� in a similar way
to the G2 case (though the details are different and
more difficult), and second, by resolving Y=h�i for Y
a Calabi–Yau 4-orbifold with singularities of a
special kind, and � an antiholomorphic isometric
involution of Y. Details can be found in Joyce (2000).

See also: Calibrated Geometry and Special Lagrangian
Submanifolds.
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Introduction

Many problems arising in science and engineering
call for the solving of the Euler equations of
functionals, that is, equations of the form

G0ðuÞ ¼ 0 ½1�

where G(u) is a C1-functional (usually representing
the energy) arising from the given data. As an
illustration, the equation

��uðxÞ¼ f ðx; uðxÞÞ

is the Euler equation of the functional

GðuÞ ¼ 1

2
kruk2 �

Z
Fðx; uðxÞÞ dx

on an appropriate space, where

Fðx; tÞ ¼
Z t

0

f ðx; sÞ ds ½2�

and the norm is that of L2. The solving of the Euler
equations is tantamount to finding critical points of
the corresponding functional. The classical approach
was to look for maxima or minima. If one is looking
for a minimum, it is not sufficient to know that the
functional is bounded from below, as is easily
checked. However, one can show that there is a
sequence satisfying

GðukÞ ! a; G0ðukÞ ! 0 ½3�

for a = inf G. If the sequence has a convergent
subsequence, this will produce a minimum.

However, when extrema do not exist, there is no
clear way of obtaining critical points. In particular,
this happens when the functional is not bounded
from either above or below. Until recently, there
was no organized procedure for producing critical
points which are not extrema. We shall describe an
approach which is very useful in such cases.
To illustrate the technique, we consider the
problem of finding a solution of

�u00ðxÞ þ uðxÞ ¼ f ðx; uðxÞÞ ½4�

x 2 I = [0, 2�], under the conditions

uð0Þ ¼ uð2�Þ; u0ð0Þ ¼ u0ð2�Þ ½5�

We assume that the function f(x, t) is continuous in
I � R and is periodic in x with period 2�. The
approach begins by asking the question, ‘‘does there
exist a differentiable function G from a space H to
R such that [4], [5] are equivalent to [1]?’’ It is
hoped that one can mimic the methods of calculus to
find critical points and thus solve [1].

Actually, we are asking the following: does there exist
a mapping G from a space H to R such that G has a
critical point u satisfying G0(u) =�u00þ u� f (x, u(x))?

In order to solve the problem one has to

1. find G(u) such that

ðG0ðuÞ; vÞH ¼ ðu; vÞH � ðf ð�; uÞ; vÞ ½6�

holds for each u, v 2 H,
2. show that there is a function u(x) such that

G0(u) = 0,
3. show that u00 exists in I,
4. show that [1] implies [4].

We used the notation

ðu; vÞ ¼
Z 2�

0

uðxÞvðxÞ dx

In order to carry out the procedure, we assume
that for each R > 0 there is a constant CR such that

jf ðx; tÞj � CR; x 2 I; t 2 R; jtj � R ½7�

This assumption is used to carry out step (1). We define

GðuÞ ¼ 1

2
kuk2

H �
Z 2�

0

Fðx; uðxÞÞ dx ½8�

where F(x, t) is given by [2] and we take H to be the
completion of C1(I) with respect to the norm

kukH ¼ ðku0k
2 þ kuk2Þ1=2 ½9�

where kuk2 = (u, u). We have
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Theorem 1 If f(x, t) satisfies [7], then G(u) given
by [8] is continuously differentiable and satisfies [6].

Once we have reduced the problem to solving [1],
we can search for critical points. The easiest type to
locate are ‘‘saddle points’’ which are local minima in
some directions and local maxima in all others. For
instance, we obtain theorems such as

Theorem 2 Assume that

jf ðx; tÞj � Cðjtj þ 1Þ; x 2 I; t 2 R

2Fðx; tÞ=t2 ! �ðxÞ a.e. as jtj ! 1
½10�

with �(x) satisfying

1þ n2 � �ðxÞ � 1þ ðnþ 1Þ2

1þ n2 6� �ðxÞ 6� 1þ ðnþ 1Þ2
½11�

and n an integer �0. If G(u) is given by [8], then
there is a u0 2 H such that

G0ðu0Þ ¼ 0 ½12�

In particular, u0 is a solution of [4] and [5] in the
usual sense.

In proving this theorem, we shall make use of

Theorem 3 Let M, N be closed subspaces of a
Hilbert space E such that M = N?. Assume that at
least one of these subspaces is finite dimensional.
Let G be a continuously differentiable functional on
E satisfying

m0 ¼ sup
v2N

inf
w2M

GðvþwÞ 6¼ �1 ½13�

and

m1 ¼ inf
w2M

sup
v2N

GðvþwÞ 6¼ 1 ½14�

Then there is a sequence {uk} 	 E such that

GðukÞ ! c; m0 � c � m1; G0ðukÞ ! 0 ½15�

Theorem 3 allows us to obtain solutions if we can
find subspaces of H such that [13] and [14] hold. We
use it to give the proof of Theorem 2.
Proof. Note that

kuk2
H ¼

X
ð1þ k2Þj�kj2; u 2 H ½16�

where the �k are given by

�k ¼ ðu; �’kÞ; k ¼ 0;
1;
2; . . . ½17�

and

’kðxÞ ¼
1ffiffiffiffiffiffi
2�
p eikx; k ¼ 0;
1;
2; . . . ½18�
Let

N ¼ fu 2 H : �k ¼ 0 for jkj > ng

Thus,

kuk2
H ¼

X
jkj�n

ð1þ k2Þj�kj2

� ð1þ n2Þkuk2; u 2 N ½19�

Let

M ¼ fu 2 H : �k ¼ 0 for jkj � ng

In this case,

kuk2
H ¼

X
jkj�nþ1

ð1þ k2Þj�kj2

� ð1þ ðnþ 1Þ2Þkuk2; u 2M ½20�

Note that M, N are closed subspaces of H and that
M = N?. Note also that N is finite dimensional. If
we consider the functional [8], it is not difficult to
show that [11] implies

inf
M

G > �1; sup
N

G <1 ½21�

We are now in a position to apply Theorem 3. This
produces a saddle point satisfying [1]. &
Minimax

Theorem 3 is very useful when extrema do not exist, but
it is not always applicable. One is then forced to search
for other ways of obtaining critical points. Again, one is
faced with the fact that there is no systematic method of
finding them. A useful idea is to try to find sets that
separate the functional. By this we mean the following:

Definition 1 Two sets A, B separate the functional
G(u) if

a0 :¼ sup
A

G � b0 :¼ inf
B

G ½22�

We would like to find sets A and B such that [22]
will imply

9u : GðuÞ � b0; G0ðuÞ ¼ 0 ½23�

This is too much to expect since even semibounded-
ness does not imply the existence of an extremum.
Consequently, we weaken our requirements and
look for sets A, B such that [22] implies

GðukÞ ! a; G0ðukÞ ! 0 ½24�

with a � b0. This leads to

Definition 2 We shall say that the set A links the
set B if [22] implies [24] with a � b0 for every C1

functional G(u).
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Of course, [24] is a far cry from [23], but if, for
example, the sequence [24] has a convergent
subsequence, then [24] implies [23]. Whether or
not [24] implies [23] is a property of the functional
G(u). We state this as

Definition 3 We say that G(u) satisfies the Palais–
Smale (PS) condition if [24] always implies [23].

The usual way of verifying this is to show that
every sequence satisfying [24] has a convergent
subsequence (there are other ways).

All of this leads to

Theorem 4 If G satisfies the PS condition and is
separated by a pair of linking sets, then it has a
critical point satisfying [23].

This theorem cannot be applied until one knows if
there are linking sets and functionals that satisfy the
PS condition. Fortunately, they exist. Examples and
sufficient conditions for A to link B are found in the
literature. Obviously, the weaker the conditions, the
more pairs will qualify. To date, the conditions
described in the next section allow all known
examples.
The Details

Let E be a Banach space, and let � be the set of all
continuous maps � = �(t) from E� [0, 1] to E such
that

1. �(0) = I, the identity map;
2. for each t 2 [0, 1), �(t) is a homeomorphism of E

onto E and ��1(t) 2 C(E� [0, 1), E);
3. �(1)E is a single point in E and �(t)A converges

uniformly to �(1)E as t ! 1 for each bounded
set A 	 E; and

4. for each t0 2 [0, 1) and each bounded set A 	 E,

sup
0�t�t0;u2A

fk�ðtÞuk þ k��1ðtÞukg <1 ½25�

We have the following

Theorem 5 A sufficient condition for A to link B is

(i) A \ B =� and
(ii) for each � 2 � there is a t 2 (0, 1] such that

�ðtÞA \ B 6¼ �

Theorem 6 Let G be a C1-functional on E, and let

A, B be subsets of E such that A, B satisfy [22] and
the hypotheses of Theorem 5. Assume that

a :¼ inf
�2�

sup
0�s�1;u2A

Gð�ðsÞuÞ ½26�
is finite. Let  (t) be a positive, locally Lipschitz
continuous function on [0,1) such thatZ 1

0

 ðrÞ dr ¼ 1 ½27�

Then there is a sequence {uk} 	 E such that

GðukÞ ! a; G0ðukÞ= ðkukkÞ ! 0 ½28�

If a = b0, then we can also require that

dðuk;BÞ ! 0 ½29�

Corollary 1 Under the hypotheses of Theorem 6
there is a sequence {uk} 	 E such that

GðukÞ ! a; ð1þ kukkÞG0ðukÞ ! 0 ½30�

Proof. We merely take  (u) = 1=(1þ kuk) in
Theorem 6. &

A useful criterion for finding linking subsets is

Theorem 7 Let F be a continuous map from a
Banach space E to Rn, and let Q 	 E be such that
F0 = FjQ is a homeomorphism of Q onto the closure
of a bounded open subset � of Rn. If p 2 �, then
F�1

0 (@�) links F�1(p).
Some Examples

The following are examples of sets that link.

Example 1 Let M, N be closed subspaces such that
E = M�N (with one finite dimensional). Let

BR ¼ fu 2 E : kuk < Rg

and take A = @BR \N, B = M. Then A links B.
To see this, we identify N with some Rn and take
� = BR \N, Q = ��. For u 2 E, we write

u ¼ vþw; v 2 N; w 2M ½31�

and take F to be the projection

Fu ¼ v

Since FjQ = I and M = F�1(0), we see from Theorem 7
that A links B.

Example 2 We take M, N as in Example 1. Let
w0 6¼ 0 be an element of M, and take

A ¼fv 2 N : kvk � Rg
[ fsw0 þ v : v 2 N; s � 0; ksw0 þ vk ¼ Rg

B ¼ @B� \M; 0 < � < R:

Then A links B. Again we identify N with some Rn,
and we may assume kw0k= 1. Let

Q ¼ fsw0 þ v : v 2 N; s � 0; ksw0 þ vk � Rg
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Then A = @Q in Rnþ1. If u is given by [31], we
define

Fu ¼ vþ kwkw0

Then FjQ = I and B = F�1(�w0). We can now apply
Theorem 7 to conclude that A links B.

Example 3 Take M, N as before and let v0 6¼ 0 be
an element of N. We write N = {v0}�N0. We take

A ¼fv0 2 N0 : kv0k � Rg
[ fsv0 þ v0 : v0 2 N0; s � 0; ksv0 þ v0k ¼ Rg

B ¼fw 2M : kwk � �g
[ fsv0 þw : w 2M; s � 0; ksv0 þwk ¼ �g

where 0 < � < R. Then A links B. To see this, we let

Q ¼ fsv0 þ v0 : v0 2 N0; s � 0; ksv0 þ v0k � Rg

and reason as before. For simplicity, we assume that
kv0k= 1, E is a Hilbert space and that the splitting
E = N0 � {v0}�M is orthogonal. If

u ¼ v0 þwþ sv0; v0 2 N0; w 2M; s 2 R ½32�

we define

FðuÞ ¼ v0 þ sþ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � kwk2

q� �
v0; kwk � �

¼ v0 þ ðsþ �Þv0; kwk > �

Note that FjQ = I while F�1(�v0) is precisely the set
B. Hence we can conclude via Theorem 7 that A
links B.

Example 4 This is the same as Example 3 with A
replaced by A = @BR \N. The proof is the same
with Q replaced by Q = �BR \N.

Example 5 Let M, N be as in Example 1. Take
A = @B� \N, and let v0 be any element in @B1 \N.
Take B to be the set of all u of the form

u ¼ wþ sv0; w 2M

satisfying any of the following:

(i) kwk � R, s = 0,
(ii) kwk � R, s = 2R0, and
(iii) kwk= R, 0 � s � 2R0

where 0 < � < min (R, R0). Then A links B. To see
this, take N = {v0}�N0. Then any u 2 E can be
written in the form [32]. Define

FðuÞ ¼ v0 þ R0 �max
R0

R
kwk; js� R0j

� �� �
v0

and Q = �B� \N. Again we may identify N with
some Rn. Then F 2 C(E, N) and FjQ = I. Moreover,
A = F�1(0). Hence, A links B by Theorem 7.
Example 6 Let M, N be as in Example 1. Let v0

be in @B1 \N and write N = {v0}�N0. Let
A = @B� \N, Q = �B� \N, and

B ¼fw 2M : kwk � Rg

[ fwþ sv0 : w 2M; s � 0; kwþ sv0k ¼ Rg

where 0 < � < R. Then A links B. To see this, write
u = wþ v0 þ sv0, w 2M, v0 2 N0, s 2 R and take

FðuÞ ¼ ðcR�maxfckwþ sv0k; jcR� sjgÞv0 þ v0

where c = �=(R� �). Then F is the identity operator
on Q, and F�1(0) = B. Apply Theorem 7.
Some Applications

Many elliptic semilinear problems can be described
in the following way. Let � be a domain in Rn, and
let A be a self-adjoint operator on L2(�). We assume
that A � �0 > 0 and that

C10 ð�Þ 	 D :¼ DðA1=2Þ 	 Hm; 2ð�Þ ½33�

for some m > 0, where C10 (�) denotes the set of test
functions in � (i.e., infinitely differentiable functions
with compact supports in �), and Hm, 2(�) denotes
the Sobolev space. If m is an integer, the norm in
Hm, 2(�) is given by

kukm; 2 :¼
X
j�j�m

kD�uk2

0
@

1
A

1=2

½34�

Here D� represents the generic derivative of order
j�j and the norm on the right-hand side of [34] is
that of L2(�). We shall not assume that m is an
integer.

Let q be any number satisfying

2 � q � 2n=ðn� 2mÞ; 2m < n

2 � q <1; n � 2m

and let f (x, t) be a continuous function on �� R.
We make the following assumptions.

Assumption A The function f (x, t) satisfies

jf ðx; tÞj � V0ðxÞqjtjq�1 þ V0ðxÞW0ðxÞ ½35�

and

f ðx; tÞ=V0ðxÞq ¼ oðjtjq�1Þ as jtj ! 1 ½36�

where V0(x) > 0 is a function in Lq(�) such that

kV0ukq � CkukD; u 2 D ½37�
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and W0 is a function in Lq0(�). Here

kukq :¼
Z

�

juðxÞjq dx

� �1=q

½38�

kukD :¼ kA1=2uk ½39�

and q0= q=(q� 1). With the norm [39], D becomes
a Hilbert space. Define G and F by [8] and [2]. It
follows that G is a continuously differentiable
functional on the whole of D.

We assume further that

Hðx; tÞ ¼ 2Fðx; tÞ � tf ðx; tÞ

� �W1ðxÞ 2 L1ð�Þ; x 2 �; t 2 R ½40�

and

Hðx; tÞ ! 1 a:e: as jtj ! 1 ½41�

Moreover, we assume that there are functions
V(x), W(x) 2 L2(�) such that multiplication by
V(x) is a compact operator from D to L2(�) and

Fðx; tÞ � CðVðxÞ2jtj2 þ VðxÞWðxÞjtjÞ ½42�

We wish to obtain a solution of

Au ¼ f ðx; uÞ; u 2 D ½43�

By a solution of [43] we shall mean a function u 2 D
such that

ðu; vÞD ¼ ðf ð�; uÞ; vÞ; v 2 D ½44�

If f (x, u) is in L2(�), then a solution of [44] is in D(A)
and solves [43] in the classical sense. Otherwise we call
it a weak or semistrong solution. We have

Theorem 8 Let A be a self-adjoint operator in
L2(�) such that A � �0 > 0 and [33] holds for some
m > 0. Assume that �0 is an eigenvalue of A with
eigenfunction ’0. Assume also

2Fðx; tÞ � �0t2; jtj � � for some � > 0 ½45�

and

2Fðx; tÞ � �0t2 �W0ðxÞ; t > 0; x 2 � ½46�

where W0 2 L1(�). Assume that f (x, t) satisfies [35],
[36], [40], [41], and [42]. Then [43] has a solution
u 6¼ 0.

Proof. Under the hypotheses of the theorem, it
is known that the following alternative holds: either

(i) there is an infinite number of y(x) 2 D(A)n{0}
such that

Ay ¼ f ðx; yÞ ¼ �0y ½47�
or
(ii) for each 	 > 0 sufficiently small, there is an " > 0
such that

GðuÞ � "; kukD ¼ 	 ½48�

We may assume that option (ii) holds, for otherwise
we are done. By [46] we have

GðR’0Þ � R2ðk’0k2
D � �0k’0k2Þ þ

Z
�

W0ðxÞ dx

¼
Z

�

W0ðxÞ dx

By Theorem 6, there is a sequence satisfying [28].
Taking  (r) = 1=(rþ 1), we conclude that there is a
sequence {uk} 	 D such that

GðukÞ ! c; m0 � c � m1;

ð1þ kukkDÞG0ðukÞ ! 0 ½49�

In particular, we have

kukk2
D � 2

Z
�

Fðx; ukÞ dx! c ½50�

and

kukk2
D � ðf ð�; xkÞ; ukÞ ! 0 ½51�

Consequently,

Z
�

Hðx; ukÞ dx! �c ½52�

These imply

Z
�

Hðx; ukÞ dx � K ½53�

If 	k = kukkD !1, let ~uk = uk=	k. Then k~ukkD = 1.
Consequently, there is a renamed subsequence such
that ~uk ! ~u weakly in D, strongly in L2(�), and a.e.
in �. We have from [42]

1 �ðm1 þ �Þ=	2
k

þ 2C

Z
�

fVðxÞ2~u2
k þ VðxÞWðxÞj~ukj	�1

k g dx

Consequently,

1 � 2C

Z
�

VðxÞ2~u2 dx ½54�

This shows that ~u 6� 0. Let �0 be the subset of � on
which ~u 6¼ 0. Then

jukðxÞj ¼ 	kj~ukðxÞj ! 1; x 2 �0 ½55�
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If �1 = �n�0, then we haveZ
�

Hðx; ukÞ dx ¼
Z

�0

þ
Z

�1

�
Z

�0

Hðx; ukÞ dx

�
Z

�1

W1ðxÞ dx!1 ½56�

This contradicts [53], and we see that 	k = kukkD is
bounded. Once we know that the 	k are bounded,
we can apply well-known theorems to obtain the
desired conclusion. &

Remark 1 It should be noted that the crucial
element in the proof of Theorem 8 was [51]. If we
had been dealing with an ordinary Palais–Smale
sequence, we could only conclude that

kukk2
D � ðf ð�; ukÞ; ukÞ ¼ oð	kÞ

which would imply onlyZ
�

Hðx; ukÞ dx ¼ oð	kÞ

This would not contradict [56], and the argument
would not go through.

As another application, we wish to solve

�x00ðtÞ ¼ rxVðt; xðtÞÞ ½57�

where

xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ ½58�

is a map from I = [0, 2�] to Rn such that each
component xj(t) is a periodic function in H1 with
period 2�, and the function

Vðt; xÞ ¼ Vðt; x1; . . . ;xnÞ

is continuous from Rnþ1 to R with a gradient

rxVðt; xÞ ¼ ð@V=@x1; . . . ; @V=@xnÞ

2 CðRnþ1;RnÞ
½59�

For each x 2 Rn, the function V(t, x) is periodic in t
with period 2�. We shall study this problem under
the following assumptions:

1. 0 � Vðt; xÞ � Cðjxj2 þ 1Þ

t 2 I; x 2 Rn

2. There are constants m > 0,� � 3m2=2�2 such that

Vðt; xÞ � �; jxj � m; t 2 I; x 2 Rn

3. There are constants � > 1=2 and C such that

Vðt; xÞ � �jxj2
when

jxj > C; t 2 I; x 2 Rn

4. The function given by

Hðt; xÞ ¼ 2Vðt; xÞ � rxVðt; xÞ � x ½60�

satisfies

Hðt; xÞ �WðtÞ 2 L1ðIÞ; jxj � C ½61�

t 2 I, x2Rn, and

Hðt; xÞ ! �1 as jxj ! 1 ½62�

We have

Theorem 9 Under the above hypotheses, the
system [57] has a nonconstant solution.

Proof. Let X be the set of vector functions x(t)
described above. It is a Hilbert space with norm
satisfying

kxk2
X ¼

Xn

j¼1

kxjk2
H1

We also write

kxk2 ¼
Xn

j¼1

kxjk2

where k � k is the L2(I) norm. Let

N ¼ fxðtÞ 2 X : xjðtÞ � constant; 1 � j � ng

and M = N?. The dimension of N is n, and
X = M�N. The following is easily proved.

Lemma 1 If x 2M, then

kxk2
1 �

�

6
kx0k2

and

kxk � kx0k

We define

GðxÞ ¼ kx0k2 � 2

Z
I

Vðt; xðtÞÞ dt; x 2 X ½63�

For each x 2 X write x = vþw, where v 2 N, w 2M.
For convenience, we shall use the following equivalent
norm for X:

kxk2
X ¼ kw0k

2 þ kvk2

If x 2M and

kx0k2 ¼ 	2 ¼ 6

�
m2

then Lemma 1 implies that kxk1 � m, and we have
by Hypothesis 2 that V(t, x) � �.



Saddle Point Problems 453
Hence,

GðxÞ � kx0k2 � 2

Z
jxj<m

� dt

� 	2 � 2�ð2�Þ � 0 ½64�

Note that Hypothesis 3 is equivalent to

Vðt; xÞ � �jxj2 � C; t 2 I; x 2 Rn ½65�

for some constant C. Next, let

yðtÞ ¼ vþ sw0

where v 2 N, s � 0, and

w0 ¼ ðsin t; 0; . . . ; 0Þ

Then w0 2M, and

kw0k2 ¼ kw00k
2 ¼ �

Note that

kyk2 ¼ kvk2 þ s2� ¼ 2�jvj2 þ �s2

Consequently,

GðyÞ ¼ s2kw00k
2 � 2

Z
I

Vðt; yðtÞÞ dt

� �s2 � 2�

Z
I

jyðtÞj2 dt þ 2�C

¼ �s2 � 2�ðkvk2 þ �s2Þ þ 2�C

� ð1� 2�Þ�s2 � 4��jvj2 þ 2�C

! �1 as s2 þ jvj2 !1

We also note that Hypothesis 1 implies

GðvÞ � 0; v 2 N ½66�

Take

A ¼ fv 2 N : kvk � Rg
[ fsw0 þ v : v 2 N; s � 0; ksw0 þ vkX ¼ Rg

B ¼ @B	 \M; 0 < 	 ¼ 6m2=� < R

where

B
 ¼ fx 2 X : kxkX < 
g

By Example 2, A links B. Moreover, if R is
sufficiently large,

sup
A

G ¼ 0 � inf
B

G ½67�

Hence, we may conclude that there is a sequence
{x(k)} 	 X such that

GðxðkÞÞ ! c � 0; ð1þ kxðkÞkXÞG0ðxðkÞÞ ! 0
Hence,

GðxðkÞÞ ¼ k½xðkÞ�0k2

� 2

Z
I

Vðt; xðkÞðtÞÞ dt! c � 0 ½68�

ðG0ðxðkÞÞ; zÞ=2 ¼ ð½xðkÞ�0; z0Þ

�
Z

I

rxVðt; xðkÞÞ � zðtÞ dt! 0; z 2 X ½69�

and

ðG0ðxðkÞÞ; xðkÞÞ=2 ¼ k½xðkÞ�0k2

�
Z

I

rxVðt; xðkÞÞ � xðkÞ dt! 0 ½70�

If

	k ¼ kxðkÞkX � C

then there is a renamed subsequence such that x(k)

converges to a limit x 2 X weakly in X and
uniformly on I. From [69] we see that

ðG0ðxÞ; zÞ=2 ¼ ðx0; z0Þ

�
Z

I

rxVðt; xðtÞÞ � zðtÞ dt ¼ 0; z 2 X

from which we conclude easily that x is a solution of
[57]. From [68], we see that

GðxÞ � c � 0

showing that x(t) is not a constant. For if c > 0 and
x 2 N, then

GðxÞ ¼ �2

Z
I

Vðt; xðtÞÞ dt � 0

If c = 0, we see that x 2 B by Theorem 6. Hence,
x 2M. If

	k ¼ kxðkÞkX !1

let ~x(k) = x(k)=	k. Then, k~x(k)kX = 1. Let ~x(k) = ~w(k) þ
~v(k), where ~w(k)2M and ~v(k)2 N. There is a renamed
subsequence such that ~x(k) converges uniformly in I to
a limit ~x and k[~x(k)]0k ! r and k~x(k)k ! � , where r2 þ
�2 = 1. From [68] and [70], we obtain

k½~xðkÞ�0k2 � 2

Z
I

Vðt; xðkÞðtÞÞ dt=	2
k ! 0

and

k½~xðkÞ�0k2 �
Z

I

rxVðt; xðkÞÞ � xðkÞ dt=	2
k ! 0

Thus,

2

Z
I

Vðt; xðkÞðtÞÞ dt=	2
k ! r2 ½71�
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and Z
I

rxVðt; xðkÞÞ � xðkÞ dt=	2
k ! r2 ½72�

Hence, Z
I

Hðt; xðkÞðtÞÞ dt=	2
k ! 0 ½73�

By Hypothesis 3, the left-hand side of [71] is

�2�k~xðkÞk2 � 4�C=	2
k

Thus,

r2 � 2��2 ¼ 2�ð1� r2Þ

showing that r > 0. Hence, ~x(t) 6� 0. Let �0 	 I
be the set on which [~x(t)] 6¼ 0. The measure of
�0 is positive. Thus, jx(k)(t)j ! 1 as k!1 for
t 2 �0. Hence,Z

I

Hðt; xðkÞðtÞÞ dt

�
Z

�0

Hðt; xðkÞðtÞÞ dt þ
Z

In�0

WðtÞ dt! �1

contrary to Hypothesis 4. Thus, the 	k are bounded,
and the proof is complete. &
Superlinear Problems

Consider the problem

��u ¼ f ðx; uÞ; x 2 �; u ¼ 0 on @� ½74�

where � 	 Rn is a bounded domain whose bound-
ary is a smooth manifold, and f (x, t) is a continuous
function on ��� R. This semilinear Dirichlet pro-
blem has been studied by many authors. It is called
‘‘sublinear’’ if there is a constant C such that

jf ðx; tÞj � Cðjtj þ 1Þ; x 2 �; t 2 R

Otherwise, it is called ‘‘superlinear’’. Assume

(a1) There are constants c1, c2 � 0 such that

jf ðx; tÞj � c1 þ c2jtjs

where 0 � s < (nþ 2)=(n� 2) if n > 2.
(a2) f (x, t) = o(jtj) as t ! 0.
(a3) Either

Fðx; tÞ=t2 !1 as t!1

or

Fðx; tÞ=t2 !1 as t! �1:

We have
Theorem 10 Under hypotheses (a1)�(a3) the
boundary-value problem

��u ¼ �f ðx; uÞ; x 2 �; u ¼ 0 on @� ½75�

has a nontrivial solution for almost every positive �.

Unfortunately, this theorem does not give any
information for any specific �. It still leaves open the
problem of solving [74]. For this purpose, we add
the assumption

(a4) There are constants � > 2, r � 0 such that

�Fðx; tÞ � tf ðx; tÞ � Cðt2 þ 1Þ; jtj � r ½76�

We have

Theorem 11 Under hypotheses (a1)�(a4) problem
[74] has a nontrivial solution.

We also have

Theorem 12 If we replace hypothesis (a4) with

(a04) The function �H(x, t) is convex in t,

then the problem [74] has at least one nontrivial
solution.
Weak Linking

It is not clear if it is possible for A to link B if neither is
contained in a finite-dimensional manifold. For
instance, if E = M�N, where M, N are closed
infinite-dimensional subspaces of E and BR is the ball
centered at the origin of radius R in E, it is unknown if
the set A = M \ @BR links B = N. (If either M or N is
finite dimensional, then A does link B.) Unfortunately,
this is the situation which arises in some important
applications including Hamiltonian systems, the wave
equation and elliptic systems, to name a few.

We now consider linking when both M and N are
infinite dimensional and G0 has some additional
continuity property. A property that is very useful is
that of weak-to-weak continuity:

uk ! u weakly in E

¼) G0ðukÞ ! G0ðuÞ weakly ½77�

We make the following definition:

Definition 3 A subset A of a Banach space E links
a subset B of E ‘‘weakly’’ if for every G 2 C1(E, R)
satisfying [77] and

a0 :¼ sup
A

G � b0 :¼ inf
B

G ½78�

there is a sequence {uk} 	 E and a constant c such
that

b0 � c <1 ½79�
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and

GðukÞ ! c; G0ðukÞ ! 0 ½80�

We have the following counterpart of Theorem 7.

Theorem 13 Let E be a separable Hilbert space,
and let G be a continuous functional on E with a
continuous derivative satisfying [77]. Let N be a
closed subspace of E, and let Q be a bounded open
subset of N containing the point p. Let F be a
continuous map of E onto N such that

(i) FjQ = I, and
(ii) For each finite-dimensional subspace S 6¼ {0} of

E containing p, there is a finite-dimensional
subspace S0 6¼ {0} of N containing p such that

v 2 �Q \ S0; w 2 S ¼) FðvþwÞ 2 S0 ½81�

Set A = @Q, B = F�1(p). If

a1 ¼ sup
�Q

G <1 ½82�

and [22] holds, then there is a sequence {uk} 	 E
such that [24] holds with a � a1.

Theorem 13 states that if Q, F, p satisfy the
hypotheses of that theorem, then A = @Q links
B = F�1(p) weakly. It follows from this theorem
that all sets A, B known to link when one of the
subspaces M, N is finite dimensional will link
weakly even when M, N are both infinite
dimensional.

Now we give some applications of Theorem 13 to
semilinear boundary-value problems. Let � be a
domain in Rn and let A be a self–adjoint operator in
L2(�) having 0 in its resolvent set (thus, there is an
interval (a, b) in its resolvent set satisfying
a < 0 < b). Let f (x, t) be a continuous function on
��R such that

jf ðx; tÞj � VðxÞ2jtj þWðxÞVðxÞ ½83�

x 2 �, t 2 R, and

f ðx; tÞ=t! �
ðxÞ as t! 
1 ½84�

where V, W 2 L2(�), and multiplication by V(x) >
0 is a compact operator from D = D(jAj1=2) to
L2(�). Let

M ¼
Z 1

b

dEð�ÞD; N ¼
Z a

�1
dEð�ÞD

where {E(�)} is the spectral measure of A. Then M, N
are invariant subspaces for A and D = M�N. If

�ðu; vÞ ¼
Z

�

ð�þuþ � ��u�Þv dx ½85�
�(u) =�(u, u), then we assume that

�ðvÞ � ðAv; vÞ; v 2 N ½86�

ðAw;wÞ � �ðwÞ; w 2M ½87�

We also assume that the only solution of

Au ¼ �þuþ � ��u� ½88�

is u � 0, where u
= max {
u, 0}. We have

Theorem 14 Under the above hypotheses there is
at least one solution of

Au ¼ f ðx; uÞ; u 2 DðAÞ ½89�

Next, we consider an application concerning
radially symmetric solutions for the problem

utt ��u ¼ f ðt; x; uÞ; t 2 R; x 2 BR ½90�

uðt; xÞ ¼ 0; t 2 R; x 2 @BR ½91�

uðt þ T;xÞ ¼ uðt; xÞ; t 2 R; x 2 BR ½92�

where BR = {x 2 Rn : jxj < R}. We assume that the
ratio R=T is rational. Let

8R=T ¼ a=b ½93�

where a, b are relatively prime positive integers. It
can be shown that

n 6� 3 ðmodð4; aÞÞ ½94�

implies that the linear problem corresponding to
[90]–[92] has no essential spectrum. If

n � 3 ðmodð4; aÞÞ ½95�

then the essential spectrum of the linear operator
consists of precisely one point

�0 ¼ �ðn� 3Þðn� 1Þ=4R2 ½96�

Consider the case

f ðt; r; sÞ ¼ �sþ pðt; r; sÞ ½97�

where � is a point in the resolvent set, r = jxj, and

jpðt; r; sÞj � Cðjsj� þ 1Þ; s 2 R ½98�

for some number � < 1. We then have

Theorem 15 If [94] holds, then [90]–[92] have a
weak rotationally invariant solution. If [95] holds
and �0 < �, assume in addition that p(t, r, s) is
nondecreasing in s. If � < �0, assume that p(t, r, s) is
nonincreasing in s. Then [90]–[92] have a weak
rotationally invariant solution.
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Physical Motivation and Mathematical
Setting

The primary connection of relativistic quantum field
theory to experimental physics is through scattering
theory, that is, the theory of the collision of elementary
(or compound) particles. It is therefore a central topic
in quantum field theory and has attracted the attention
of leading mathematical physicists. Although a great
deal of progress has been made in the mathematically
rigorous understanding of the subject, there are
important matters which are still unclear, some of
which will be indicated below.

In the paradigmatic scattering experiment, several
particles, which are initially sufficiently distant from
each other that the idealization that they are not
mutually interacting is physically reasonable,
approach each other and interact (collide) in a region
of microscopic extent. The products of this collision
then fly apart until they are sufficiently well separated
that the approximation of noninteraction is again
reasonable. The initial and final states of the objects in
the scattering experiment are therefore to be modeled
by states of noninteracting, that is, free, fields, which
are mathematically represented on Fock space. Typi-
cally, what is measured in such experiments is the
probability distribution (cross section) for the transi-
tions from a specified state of the incoming particles to
a specified state of the outgoing particles.
It should be mentioned that until the late 1950s,
the scattering theory of relativistic quantum particles
relied upon ideas from nonrelativistic quantum-
mechanical scattering theory (interaction representa-
tion, adiabatic limit, etc.), which were invalid in the
relativistic context. Only with the advent of axio-
matic quantum field theory did it become possible to
properly formulate the concepts and mathematical
techniques which will be outlined here.

Scattering theory can be rigorously formulated
either in the context of quantum fields satisfying
the Wightman axioms (Streater and Wightman 1964)
or in terms of local algebras satisfying the Haag–
Kastler–Araki axioms (Haag 1992). In brief, the
relation between these two settings may be described
as follows: in the Wightman setting, the theory is
formulated in terms of operator-valued distributions �
on Minkowski space, the quantum fields, which act on
the physical state space. These fields, integrated with
test functions f having support in a given region O of
spacetime (only four-dimensional Minkowski space
R4 will be treated here), �(f ) =

R
d4x f (x)�(x), form

under the operations of addition, multiplication, and
Hermitian conjugation a polynomial �-algebraP(O) of
unbounded operators. In the Haag–Kastler–Araki
setting, one proceeds from these algebras to algebras
A(O) of bounded operators which, roughly speaking,
are formed by the bounded functions A of the
operators �(f ). This step requires some mathematical
care, but these subtleties will not be discussed here. As
the statements and proofs of the results in these two
frameworks differ only in technical details, the theory
is presented here in the more convenient setting of
algebras of bounded operators (C�-algebras).

Central to the theory is the notion of a particle,
which, in fact, is a quite complex concept, the full
nature of which is not completely understood, cf.
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below. In order to maintain the focus on the
essential points, we consider in the subsequent
sections primarily a single massive particle of integer
spin s, that is, a boson. In standard scattering theory
based upon Wigner’s characterization, this particle
is simply identified with an irreducible unitary
representation U1 of the identity component P"þ of
the Poincaré group with spin s and mass m > 0. The
Hilbert space H1 upon which U1(P"þ) acts is called
the one-particle space and determines the possible
states of a single particle, alone in the universe.
Assuming that configurations of several such parti-
cles do not interact, one can proceed by a standard
construction to a Fock space describing freely
propagating multiple particle states,

HF ¼
M
n2N0

Hn

whereH0 = C andHn is the n-fold symmetrized direct
product of H1 with itself. This space is spanned by
vectors �1 � � � � � �n, where � denotes the symme-
trized tensor product, representing an n-particle state
wherein the kth particle is in the state �k 2
H1, k = 1, . . . , n. The representation U1(P"þ) induces
a unitary representation UF(P"þ) on HF by

UFð�Þ �1� �� ���nð Þ¼: U1ð�Þ�1� �� ��U1ð�Þ�n ½1�

In interacting theories, the states in the correspond-
ing physical Hilbert space H do not have such an a
priori interpretation in physical terms, however. It is
the primary goal of scattering theory to identify in H
those vectors which describe, at asymptotic times,
incoming, respectively, outgoing, configurations of
freely moving particles. Mathematically, this amounts
to the construction of certain specific isometries
(generalized Møller operators), �in and �out, mapping
HF onto subspaces Hin � H and Hout � H, respec-
tively, and intertwining the unitary actions of the
Poincaré group on HF and H. The resulting vectors

�1� � � � ��nð Þin=out¼: �in=out �1� � � � ��nð Þ 2 H ½2�

are interpreted as incoming and outgoing particle
configurations in scattering processes wherein the
kth particle is in the state �k 2 H1.

If, in a theory, the equality Hin =Hout holds, then
every incoming scattering state evolves, after the
collision processes at finite times, into an outgoing
scattering state. It is then physically meaningful to
define on this space of states the scattering matrix,
setting S = �in�out�. Physical data such as collision
cross sections can be derived from S and the corre-
sponding transition amplitudes h(�1 � � � � � �m)in,
(�01 � � � � � �0n)outi, respectively, by a standard proce-
dure. It should be noted, however, that neither the
above physically mandatory equality of state spaces nor
the more stringent requirement that every state has an
interpretation in terms of incoming and outgoing
scattering states, that is, H=Hin =Hout (asymptotic
completeness), has been fully established in any inter-
acting relativistic field theoretic model so far. This
intriguing problem will be touched upon in the last
section of this article.

Before going into details, let us state the few
physically motivated postulates entering into the
analysis. As discussed, the point of departure is a
family of algebras A(O), more precisely a net,
associated with the open subregions O of Min-
kowski space and acting on H. Restricting attention
to the case of bosons, we may assume that this net is
local in the sense that if O1 is spacelike separated
from O2, then all elements of A(O1) commute with
all elements of A(O2). (In the presence of fermions,
these algebras contain also fermionic operators
which anticommute.) This is the mathematical
expression of the principle of Einstein causality.
The unitary representation U of P"þ acting on H is
assumed to satisfy the relativistic spectrum condition
(positivity of energy in all Lorentz frames) and, in
the sense of equality of sets, U(�)A(O)U(�)�1 =
A(�O) for all � 2 P"þ and regions O, where �O
denotes the Poincaré transformed region. It is also
assumed that the subspace of U(P"þ)-invariant
vectors is spanned by a single unit vector �,
representing the vacuum, which has the Reeh–
Schlieder property, that is, each set of vectors
A(O)� is dense in H. These standing assumptions
will subsequently be amended by further conditions
concerning the particle content of the theory.
Haag–Ruelle Theory

Haag and Ruelle were the first to establish the
existence of scattering states within this general
framework (Jost 1965); further substantial improve-
ments are due to Araki and Hepp (Araki 1999). In all
of these investigations, the arguments were given for
quantum field theories with associated particles (in
the Wigner sense) which have strictly positive mass
m > 0 and for which m is an isolated eigenvalue of
the mass operator (upper and lower mass gap).
Moreover, it was assumed that states of a single
particle can be created from the vacuum by local
operations. In physical terms, these assumptions
allow only for theories with short-range interactions
and particles carrying strictly localizable charges.

In view of these limitations, Haag–Ruelle theory
has been developed in a number of different
directions. By now, the scattering theory of massive
particles is under complete control, including also
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particles carrying nonlocalizable (gauge or topo-
logical) charges and particles having exotic statistics
(anyons, plektons) which can appear in theories in
low spacetime dimensions. Due to constraints of
space, these results must go without further men-
tion; we refer the interested reader to the articles
Buchholz and Fredenhagen (1982) and Fredenhagen
et al. (1996). Theories of massless particles and of
particles carrying charges of electric or magnetic
type (infraparticles) will be discussed in subsequent
sections.

We outline here a recent generalization of Haag–
Ruelle scattering theory presented in Dybalski
(2005), which covers massive particles with localiz-
able charges without relying on any further con-
straints on the mass spectrum. In particular, the
scattering of electrically neutral, stable particles
fulfilling a sharp dispersion law in the presence of
massless particles is included (e.g., neutral atoms in
their ground states). Mathematically, this assump-
tion can be expressed by the requirement that there
exists a subspace H1 � H such that the restriction of
U(P"þ) to H1 is a representation of mass m > 0. We
denote by P1 the projection in H onto H1.

To establish notation, let O be a bounded space-
time region and let A 2 A(O) be any operator such
that P1A� 6¼ 0. The existence of such localized (in
brief, local) operators amounts to the assumption
that the particle carries a localizable charge. That
the particle is stable, that is, completely decouples
from the underlying continuum states, can be cast
into a condition first stated by Herbst: for all
sufficiently small � > 0

kE�ð1� P1ÞA�k � c�� ½3�

for some constants c, � > 0, where E� is the projec-
tion onto the spectral subspace of the mass operator
corresponding to spectrum in the interval (m� �,
mþ �). In the case originally considered by Haag
and Ruelle, where m is isolated from the rest of the
mass spectrum, this condition is certainly satisfied.

Setting A(x)¼: U(x)AU(x)�1, where U(x) is the
unitary implementing the spacetime translation
x = (x0, x) (the velocity of light and Planck’s
constant are set equal to 1 in what follows), one
puts, for t 6¼ 0,

Atðf Þ ¼
Z

d4x gtðx0Þfxo
ðxÞAðxÞ ½4�

Here x0 7! gt(x0)¼: g((x0 � t)=jtj�)=jtj� induces a
time averaging about t, g being any test function
which integrates to 1 and whose Fourier transform
has compact support, and 1=(1þ �) < � < 1 with �
as above. The Fourier transform of fx0

is given by
ffx0
(p)¼: ef (p) e�ix0!( p), where f is some test function

on R3 with ef (p) having compact support, and
!(p) = (p2 þm2)1=2. Note that (x0, x) 7! fx0

(x) is a
solution of the Klein–Gordon equation of mass m.

With these assumptions, it follows by a straight-
forward application of the harmonic analysis of
unitary groups that in the sense of strong conver-
gence At(f )�!P1A(f )� and At(f )��! 0 as t!	1,
where A(f ) =

R
d3x f (x)A(0, x). Hence, the opera-

tors At(f ) may be thought of as creation operators
and their adjoints as annihilation operators. These
operators are the basic ingredients in the construc-
tion of scattering states. Choosing local operators
Ak as above and test functions f (k) with disjoint
compact supports in momentum space,
k = 1, . . . , n, the scattering states are obtained as
limits of the Haag–Ruelle approximants

A1tðf ð1ÞÞ � � �Antðf ðnÞÞ� ½5�

Roughly speaking, the operators Akt(f
(k)) are loca-

lized in spacelike separated regions at asymptotic
times t, due to the support properties of the Fourier
transforms of the functions f (k). Hence they com-
mute asymptotically because of locality and, by the
clustering properties of the vacuum state, the above
vector becomes a product state of single-particle
states. In order to prove convergence, one proceeds,
in analogy to Cook’s method in quantum-mechanical
scattering theory, to the time derivatives,

@tA1tðf ð1ÞÞ � � �Antðf ðnÞÞ�

¼
X
k 6¼l

A1tðf ð1ÞÞ � � � ½@tAktðf ðkÞÞ;Altðf ðlÞÞ� � � �Antðf ðnÞÞ�

þ
X

k

A1tðf ð1ÞÞ � � �_
k
� � �Antðf ðnÞÞ@tAktðf ðkÞÞ� ½6�

where
k
_ denotes omission of Akt(f

(k)). Employing
techniques of Araki and Hepp, one can prove that
the terms in the first summation on the right-hand
side (RHS) of [6], involving commutators, decay
rapidly in norm as t approaches infinity because of
locality, as indicated above. By applying condition
[3] and the fact that the vectors @tAkt(f

(k))� do not
have a component in the single-particle space H1,
the terms in the second summation on the RHS of
[6] can be shown to decay in norm like jtj��(1þ�).
Thus, the norm of the vector [6] is integrable in t,
implying the existence of the strong limits

P1A1ðf ð1ÞÞ�� � � � � P1Anðf ðnÞÞ�
� �in=out

¼: lim
t!
1

A1tðf ð1ÞÞ � � �Antðf ðnÞÞ� ½7�
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As indicated by the notation, these limits depend
only on the single-particle vectors P1Ak(f (k))� 2 H1,
k = 1, . . . , n, but not on the specific choice of
operators and test functions. In order to establish
their Fock structure, one employs results on cluster-
ing properties of vacuum correlation functions in
theories without strictly positive minimal mass.
Using this, one can compute inner products of
arbitrary asymptotic states and verify that the maps

P1A1ðf ð1ÞÞ�� � � � � P1Anðf ðnÞÞ�
� �
7! P1A1ðf ð1ÞÞ�� � � � � P1Anðf ðnÞÞ�
� �in=out

½8�

extend by linearity to isomorphisms �in=out from the
Fock space HF onto the subspaces Hin=out � H
generated by the collision states. Moreover, the
asymptotic states transform under the Poincaré
transformations U(P"þ) as

Uð�Þ P1A1ðf ð1ÞÞ�� � � � � P1Anðf ðnÞÞ�
� �in=out

¼ U1ð�ÞP1A1ðf ð1ÞÞ�� � � � �
�
�U1ð�ÞP1Anðf ðnÞÞ�

�in=out
½9�

Thus, the isomorphisms �in=out intertwine the action
of the Poincaré group on HF and Hin=out. We
summarize these results, which are vital for the
physical interpretation of the underlying theory, in
the following theorem.

Theorem 1 Consider a theory of a particle of mass
m>0 which satisfies the standing assumptions and
the stability condition [3]. Then there exist canoni-
cal isometries �in=out, mapping the Fock space HF

based on the single-particle space H1 onto subspaces
Hin=out � H of incoming and outgoing scattering
states. Moreover, these isometries intertwine the
action of the Poincaré transformations on the
respective spaces.

Since the scattering states have been identified
with Fock space, asymptotic creation and annihila-
tion operators act on Hin=out in a natural manner.
This point will be explained in the following section.
LSZ Formalism

Prior to the results of Haag and Ruelle, an axiomatic
approach to scattering theory was developed by
Lehmann, Symanzik, and Zimmermann (LSZ),
based on time-ordered vacuum expectation values
of quantum fields. The relative advantage of their
approach with respect to Haag–Ruelle theory is that
useful reduction formulas for the S-matrix greatly
facilitate computations, in particular in perturba-
tion theory. Moreover, these formulas are the
starting point of general studies of the momentum
space analyticity properties of the S-matrix (disper-
sion relations), as outlined in Dispersion Relations
(cf. also Iagolnitzer (1993)). Within the present
general setting, the LSZ method was established by
Hepp.

For simplicity of discussion, we consider again a
single particle type of mass m > 0 and integer spin s,
subject to condition [3]. According to the results of
the preceding section, one then can consistently
define asymptotic creation operators on the scatter-
ing states, setting

Aðf Þin=out P1A1ðf ð1ÞÞ�� � � � � P1Anðf ðnÞÞ�
� �in=out

¼: lim
t!
1

Atðf Þ P1A1ðf ð1ÞÞ�� � � � � P1Anðf ðnÞÞ�
� �in=out

¼
�

P1Aðf Þ�� P1A1ðf ð1ÞÞ�� � � �

� P1Anðf ðnÞÞ�
�in=out

½10�

Similarly, one obtains the corresponding asymptotic
annihilation operators,

Aðf Þin=out� P1A1ðf ð1ÞÞ���� ��P1Anðf ðnÞÞ�
� �in=out

¼ lim
t!
1

Atðf Þ� P1A1ðf ð1ÞÞ���� �
�

�P1Anðf ðnÞÞ�
�in=out

¼ 0 ½11�

where the latter equality holds if the Fourier trans-
forms of the functions f , f (1), . . . , f (n), have disjoint
supports. We mention as an aside that, by replacing
the time-averaging function g in the definition of
At(f ) by a delta function, the above formulas still
hold. But the convergence is then to be understood
in the weak Hilbert space topology. In this form, the
above relations were anticipated by LSZ (asymptotic
condition).

It is straightforward to proceed from these
relations to reduction formulas. Let B be any local
operator. Then one has, in the sense of matrix
elements between outgoing and incoming scattering
states,

BAðf Þin�Aðf Þout B¼ lim
t!1

BAðf�tÞ�AðftÞBð Þ

¼ lim
t!1

Z
d4xf�tðxÞBAðxÞ�

Z
d4xftðxÞAðxÞB

� �
½12�

ft(x)¼: gt(x0)f (x0)(vec(x)). Because of the (essential)
support properties of the functions f	t, the contribu-
tions to the latter integrals arise, for asymptotic t,
from spacetime points x where the localization
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regions of A(x) and B have a negative timelike (first
term), respectively, positive timelike (second term)
distance. One may therefore proceed from the
products of these operators to the time-ordered
products T(BA(x)), where T(BA(x))= A(x)B if the
localization region of A(x) lies in the future of that
of B, and T(BA(x))=BA(x) if it lies in the past. It is
noteworthy that a precise definition of the time
ordering for finite x is irrelevant in the present
context – any reasonable interpolation between the
above relations will do. Similarly, one can define
time-ordered products for an arbitrary number of
local operators. The preceding limit can then be
recast into

lim
t!1

Z
d4xðf�tðxÞ � ftðxÞÞTðBAðxÞÞ ½13�

The latter expression has a particularly simple form in
momentum space. Proceeding to the Fourier trans-
forms of f	t and noticing that, in the limit of large t,

ff�tðpÞ � eftðpÞ
� �

= p0 � !ðpÞð Þ

�!�2�ief ðpÞ �ðp0 � !ðpÞÞ ½14�

one gets

BAðf Þin � Aðf ÞoutB

¼ �2�i

Z
d3pef ðpÞ p0 � !ðpÞð Þ

� TðBeAð�pÞÞ
���
p0¼!ðpÞ

½15�

Here T(BeA(p)) denotes the Fourier transform of
T(BA(x)), and it can be shown that the restriction of
(p0 � !(p))T(BeA(�p)) to the manifold {p 2 R4: p0 =
!(p)} (the ‘‘mass shell’’) is meaningful in the sense of
distributions on R3. By the same token, one obtains

Aðf Þout�B� BAðf Þin�

¼ �2�i

Z
d3pef ðpÞ p0 � !ðpÞð ÞTðfA�ðpÞBÞ����

p0¼!ðpÞ
½16�

Similar relations, involving an arbitrary number of
asymptotic creation and annihilation operators, can
be established by analogous considerations. Taking
matrix elements of these relations in the vacuum state
and recalling the action of the asymptotic creation
and annihilation operators on scattering states, one
arrives at the following result, which is central in all
applications of scattering theory.

Theorem 2 Consider the theory of a particle of
mass m > 0 subject to the conditions stated in the
preceding sections and let f (1), . . . , f (n) be any family
of test functions whose Fourier transforms have
compact and nonoverlapping supports. Then
P1A1ðf ð1ÞÞ�� � � � � P1Akðf ðkÞÞ�
� �out

;
D

P1Akþ1ðf ðkþ1ÞÞ�� � � � � P1Anðf ðnÞÞ�
� �in

�

¼ ð�2�iÞn
Z
� � �
Z

d3p1 � � � d3pn
gf ð1Þðp1Þ � � �

�gf ðkÞðpkÞ gf ðkþ1Þðpkþ1Þ � � �gf ðnÞðpnÞ

�
Yn

i¼1

pi0 � !ðpiÞð Þ �;T fA�1ðp1Þ � � �
�D

� fA�kðpkÞgAkþ1ð�pkþ1Þ � � �

�fAnð�pnÞ�
�E���j¼1;...;n

pj0
¼!ðpjÞ

½17�

in an obvious notation.

Thus, the kernels of the scattering amplitudes in
momentum space are obtained by restricting the (by
the factor

Qn
i = 1 (pi0 � !(pi))) amputated Fourier

transforms of the vacuum expectation values of the
time-ordered products to the positive and negative
mass shells, respectively. These are the famous LSZ
reduction formulas, which provide a convenient link
between the time-ordered (Green’s) functions of a
theory and its asymptotic particle interpretation.
Asymptotic Particle Counters

The preceding construction of scattering states
applies to a significant class of theories; but even if
one restricts attention to the case of massive
particles, it does not cover all situations of physical
interest. For an essential input in the construction is
the existence of local operators interpolating
between the vacuum and the single-particle states.
There may be no such operators at one’s disposal,
however, either because the particle in question
carries a nonlocalizable charge, or because the given
family of operators is too small. The latter case
appears, for example, in gauge theories, where in
general only the observables are fixed by the
principle of local gauge invariance, and the physical
particle content as well as the corresponding inter-
polating operators are not known from the outset.
As observables create from the vacuum only neutral
states, the above construction of scattering states
then fails if charged particles are present. Never-
theless, thinking in physical terms, one would expect
that the observables contain all relevant information
in order to determine the features of scattering
states, in particular their collision cross section. That
this is indeed the case was first shown by Araki and
Haag (Araki 1999).

In scattering experiments, the measured data are
provided by detectors (e.g., particle counters) and
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coincidence arrangements of detectors. Essential
features of detectors are their lack of response in
the vacuum state and their macroscopic localization.
Hence, within the present mathematical setting, a
general detector is represented by a positive operator
C on the physical Hilbert space H such that C� = 0.
Because of the Reeh–Schlieder theorem, these con-
ditions cannot be satisfied by local operators.
However, they can be fulfilled by ‘‘almost-local’’
operators. Examples of such operators are easy to
produce, putting C = L�L with

L ¼
Z

d4x f ðxÞAðxÞ ½18�

where A is any local operator and f any test function
whose Fourier transform has compact support in the
complement of the closed forward light cone (and
hence in the complement of the energy momentum
spectrum of the theory). In view of the properties of
f and the invariance of � under translations, it
follows that C = L�L annihilates the vacuum and
can be approximated with arbitrary precision by
local operators. The algebra generated by these
operators C will be denoted by C.

When preparing a scattering experiment, the first
thing one must do with a detector is to calibrate it,
that is, test its response to sources of single-particle
states. Within the mathematical setting, this
amounts to computing the matrix elements of C in
states � 2 H1:

h�;C�i ¼
Z Z

d3p d3q �ðpÞ�ðqÞ hpjCjqi ½19�

Here p 7!�(p) is the momentum space wave func-
tion of �, h�jCj�i is the kernel of C in the single-
particle space H1, and we have omitted (summations
over) indices labeling internal degrees of freedom of
the particle, if any. The relevant information about
C is encoded in its kernel. As a matter of fact, one
only needs to know its restriction to the diagonal,
p 7! hpjCjpi. It is called the sensitivity function of C
and can be shown to be regular under quite general
circumstances (Araki 1999, Buchholz and Fredenhagen
1982).

Given a state � 2 H for which the expectation
value h�, C(x))�i differs significantly from 0, one
concludes that this state deviates from the vacuum
in a region about x. For finite x, this does not mean,
however, that � has a particle interpretation at x.
For that spacetime point may, for example, be just
the location of a collision center. Yet, if one
proceeds to asymptotic times, one expects, in view
of the spreading of wave packets, that the prob-
ability of finding two or more particles in the same
spacetime region is dominated by the single-particle
contributions. It is this physical insight which
justifies the expectation that the detectors C(x)
become particle counters at asymptotic times.
Accordingly, one considers for asymptotic t the
operators

CtðhÞ¼
:
Z

d3xhðx=tÞCðt;xÞ ½20�

where h is any test function on R3. The role of the
integral is to sum up all single-particle contributions
with velocities in the support of h in order to
compensate for the decreasing probability of finding
such particles at asymptotic times t about the
localization center of the detector. That these ideas
are consistent was demonstrated by Araki and Haag,
who established the following result (Araki 1999).

Theorem 3 Consider, as before, the theory of a
massive particle. Let C(1), . . . , C(n) 2 C be any family
of detector operators and let h(1), . . . , h(n) be any
family of test functions on R3. Then, for any state
�out 2 Hout of finite energy,

lim
t!1

�out;C
ð1Þ
t ðhð1ÞÞ � � �C

ðnÞ
t ðhðnÞÞ�out

D E
¼
Z
� � �
Z

d3p1 � � �d3pn �out; 	outðp1Þ � � � 	outðpnÞ�outh i

�
Yn
k¼1

hðpk=!ðpkÞÞhpkjCðkÞjpki ½21�

where 	out(p) is the momentum space density (the
product of creation and annihilation operators) of
outgoing particles of momentum p, and (summa-
tions over) possible indices labeling internal degrees
of freedom of the particle are omitted. An analogous
relation holds for incoming scattering states at
negative asymptotic times.

This result shows, first of all, that the scattering
states have indeed the desired interpretation with
regard to the observables, as anticipated in the
preceding sections. Since the assertion holds for all
scattering states of finite energy, one may replace in the
above theorem the outgoing scattering states by any
state of finite energy, if the theory is asymptotically
complete, that is, H=Hin =Hout. Then choosing, in
particular, any incoming scattering state and making
use of the arbitrariness of the test functions h(k) as well
as the knowledge of the sensitivity functions of the
detector operators, one can compute the probability
distributions of outgoing particle momenta in this state,
and thereby the corresponding collision cross sections.

The question of how to construct certain specific
incoming scattering states by using only local
observables was not settled by Araki and Haag,



462 Scattering in Relativistic Quantum Field Theory: Fundamental Concepts and Tools
however. A general method to that effect was
outlined in Buchholz et al. (1991). As a matter of
fact, for that method only the knowledge of states in
the subspace of neutral states is required. Yet in this
approach one would need for the computation of,
say, elastic collision cross sections of charged
particles the vacuum correlation functions involving
at least eight local observables. This practical
disadvantage of increased computational complexity
of the method is offset by the conceptual advantage
of making no appeal to quantities which are a priori
nonobservable.
Massless Particles
and Huygens’ Principle

The preceding general methods of scattering theory
apply only to massive particles. Yet taking advan-
tage of the salient fact that massless particles always
move with the speed of light, Buchholz succeeded in
establishing a scattering theory also for such
particles (Haag 1992). Moreover, his arguments
lead to a quantum version of Huygens’ principle.

As in the case of massive particles, one assumes
that there is a subspace H1 � H corresponding to a
representation of U(P"þ) of mass m = 0 and, for
simplicity, integer helicity; moreover, there must
exist local operators interpolating between the
vacuum and the single-particle states. These
assumptions cover, in particular, the important
examples of the photon and of Goldstone particles.
Picking any suitable local operator A interpolating
between � and some vector in H1, one sets, in
analogy to [4],

At¼:
Z

d4x gtðx0Þ

� ð�1=2�Þ"ðx0Þ �ðx2
0 � x2Þ@0 AðxÞ ½22�

Here gt(x0)¼: (1=j ln tj) g((x0 � t)=j ln tj) with g as in
[4], and the solution of the Klein–Gordon equation
in [4] has been replaced by the fundamental solution
of the wave equation; furthermore, @0A(x) denotes
the derivative of A(x) with respect to x0. Then, once
again, the strong limit of At� as t ! 	1 is P1A�,
with P1 the projection onto H1.

In order to establish the convergence of At as in
the LSZ approach, one now uses the fact that these
operators are, at asymptotic times t, localized in the
complement of some forward, respectively, back-
ward, light cone. Because of locality, they therefore
commute with all operators which are localized in
the interior of the respective cones. More specifi-
cally, let O � R4 be the localization region of A and
let O	 � R4 be the two regions having a positive,
respectively, negative, timelike distance from all
points in O. Then, for any operator B which is
compactly localized in O	, respectively, one obtains
limt!	1 AtB� = limt!	1 BAt� = BP1A�. This
relation establishes the existence of the limits

Ain=out ¼ lim
t!
1

At ½23�

on the (by the Reeh–Schlieder property) dense sets of
vectors {B� : B 2 A(O
)} � H. It requires some
more detailed analysis to prove that the limits have
all of the properties of a (smeared) free massless
field, whose translates x 7!Ain=out(x) satisfy the wave
equation and have c-number commutation relations.
From these free fields, one can then proceed to
asymptotic creation and annihilation operators and
construct asymptotic Fock spaces Hin=out � H of
massless particles and a corresponding scattering
matrix as in the massive case. The details of this
construction can be found in the original article, cf.
Haag (1992).

It also follows from these arguments that the
asymptotic fields Ain=out of massless particles ema-
nating from a region O, that is, for which the
underlying interpolating operators A are localized in
O, commute with all operators localized in O
,
respectively. This result may be understood as an
expression of Huygens’ principle. More precisely,
denoting by Ain=out(O) the algebras of bounded
operators generated by the asymptotic fields Ain=out,
respectively, one arrives at the following quantum
version of Huygens’ principle.

Theorem 4 Consider a theory of massless particles
as described above and let Ain=out(O) be the algebras
generated by massless asymptotic fields Ain=out with
A 2 A(O). Then

and

AinðOÞ � AðO�Þ0

AoutðOÞ � AðOþÞ0
½24�

Here the prime denotes the set of bounded operators
commuting with all elements of the respective
algebras (i.e., their commutants).
Beyond Wigner’s Concept of Particle

There is by now ample evidence that Wigner’s
concept of particle is too narrow in order to cover
all particle-like structures appearing in quantum
field theory. Examples are the partons which show
up in nonabelian gauge theories at very small
spacetime scales as constituents of hadrons, but
which do not appear at large scales due to the
confining forces. Their mathematical description



Scattering in Relativistic Quantum Field Theory: Fundamental Concepts and Tools 463
requires a quite different treatment, which cannot be
discussed here. But even at large scales, Wigner’s
concept does not cover all stable particle-like
systems, the most prominent examples being parti-
cles carrying an abelian gauge charge, such as the
electron and the proton, which are inevitably
accompanied by infinite clouds of (‘‘on-shell’’)
massless particles.

The latter problem was discussed first by Schroer,
who coined the term ‘‘infraparticle’’ for such
systems. Later, Buchholz showed in full generality
that, as a consequence of Gauss’ law, pure states
with an abelian gauge charge can neither have a
sharp mass nor carry a unitary representation of the
Lorentz group, thereby uncovering the simple origin
of results found by explicit computations, notably in
quantum electrodynamics (Steinmann 2000). Thus,
one is faced with the question of an appropriate
mathematical characterization of infraparticles
which generalizes the concept of particle invented
by Wigner. Some significant steps in this direction
were taken by Fröhlich, Morchio, and Strocchi, who
based a definition of infraparticles on a detailed
spectral analysis of the energy–momentum opera-
tors. For an account of these developments and
further references, cf. Haag (1992).

We outline here an approach, originated by Buch-
holz, which covers all stable particle-like structures
appearing in quantum field theory at asymptotic times.
It is based on Dirac’s idea of improper particle states
with sharp energy and momentum. In the standard
(rigged Hilbert space) approach to giving mathema-
tical meaning to these quantities, one regards them as
vector-valued distributions, whereby one tacitly
assumes that the improper states can coherently be
superimposed so as to yield normalizable states. This
assumption is valid in the case of Wigner particles but
fails in the case of infraparticles. A more adequate
method of converting the improper states into normal-
izable ones is based on the idea of acting on them with
suitable localizing operators. In the case of quantum
mechanics, one could take as a localizing operator any
sufficiently rapidly decreasing function of the position
operator. It would map the improper ‘‘plane-wave
states’’ of sharp momentum into finitely localized
states which thereby become normalizable. In quan-
tum mechanics, these two approaches can be shown to
be mathematically equivalent. The situation is differ-
ent, however, in quantum field theory.

In quantum field theory, the appropriate localiz-
ing operators L are of the form [18]. They constitute
a (nonclosed) left ideal L in the C�-algebra A
generated by all local operators. Improper particle
states of sharp energy–momentum p can then be
defined as linear maps j�ip :L ! H satisfying
UðxÞjLip ¼ eipxjLðxÞip; L 2 L ½25�

It is instructive to (formally) replace L here by the
identity operator, making it clear that this relation
indeed defines improper states of sharp energy–
momentum.

In theories of massive particles, one can always find
localizing operators L 2 L such that their images
jLip 2 H are states with a sharp mass. This is the
situation covered in Wigner’s approach. In theories
with long-range forces there are, in general, no such
operators, however, since the process of localization
inevitably leads to the production of low-energy
massless particles. Yet improper states of sharp momen-
tum still exist in this situation, thereby leading to a
meaningful generalization of Wigner’s particle concept.

That this characterization of particles covers all
situations of physical interest can be justified in the
general setting of relativistic quantum field theory as
follows. Picking gt as in [4] and any vector � 2 H
with finite energy, one can show that the functionals
	t, t 2 R, given by

	tðL�LÞ¼
:
Z

d4x gtðx0Þ h�; ðL�LÞðxÞ�i; L 2 L ½26�

are well defined and form an equicontinuous family
with respect to a certain natural locally convex
topology on the algebra C=L�L. This family of
functionals therefore has, as t ! 	1, weak-� limit
points, denoted by 
. The functionals 
 are positive
on C but not normalizable. (Technically speaking,
they are weights on the underlying algebra A.) Any
such 
 induces a positive-semidefinite scalar product
on the left ideal L given by

hL1 jL2i¼: 
ðL�1L2Þ; L1;L2 2 L ½27�

After quotienting out elements of zero norm and
taking the completion, one obtains a Hilbert space
and a linear map L 7! jLi from L into that space.
Moreover, the spacetime translations act on this
space by a unitary representation satisfying the
relativistic spectrum condition.

It is instructive to compute these functionals and
maps in theories of massive particles. Making use of
relation [21] one obtains, with a slight change of
notation,

hL1 jL2i ¼
Z

d�ðpÞ hp jL�1L2jp i ½28�

where � is a measure giving the probability density
of finding at asymptotic times in state � a particle of
energy–momentum p. Once again, possible summa-
tions over different particle types and internal
degrees of freedom have been omitted here. Thus,
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setting jLip¼
:

L jpi, one concludes that the map
L 7! jLi can be decomposed into a direct integral of
improper particle states of sharp energy–momen-
tum, j�i=

R
� d�(p)1=2j�ip. It is crucial that this result

can also be established without any a priori input
about the nature of the particle content of the
theory, thereby providing evidence of the universal
nature of the concept of improper particle states of
sharp momentum, as outlined here.

Theorem 5 Consider a relativistic quantum field
theory satisfying the standing assumptions. Then the
maps L 7! jLi defined above can be decomposed into
improper particle states of sharp energy–momentum p,

j�i ¼
Z
�

d�ðpÞ1=2j�ip ½29�

where � is some measure depending on the state �
and the respective time limit taken.

It is noteworthy that whenever the space of
improper particle states corresponding to fixed
energy–momentum p is finite dimensional (finite
particle multiplets), then in the corresponding Hilbert
space there exists a continuous unitary representation
of the little group of p. This implies that improper
momentum eigenstates of mass m = (p2)1=2 > 0 carry
definite (half)integer spin, in accordance with Wigner’s
classification. However, if m = 0, the helicity need not
be quantized, in contrast to Wigner’s results.

Though a general scattering theory based on
improper particle states has not yet been developed,
some progress has been made in Buchholz et al.
(1991). There it is outlined how inclusive collision
cross sections of scattering states, where an unde-
termined number of low-energy massless particles
remains unobserved, can be defined in the presence
of long-range forces, in spite of the fact that a
meaningful scattering matrix may not exist.
Asymptotic Completeness

Whereas the description of the asymptotic particle
features of any relativistic quantum field theory can be
based on an arsenal of powerful methods, the question
of when such a theory has a complete particle
interpretation remains open to date. Even in concrete
models there exist only partial results, cf. Iagolnitzer
(1993) for a comprehensive review of the current state
of the art. This situation is in striking contrast to the
case of quantum mechanics, where the problem of
asymptotic completeness has been completely settled.

One may trace the difficulties in quantum field
theory back to the possible formation of superselection
sectors (Haag 1992) and the resulting complex particle
structures, which cannot appear in quantum-mechan-
ical systems with a finite number of degrees of freedom.
Thus, the first step in establishing a complete particle
interpretation in a quantum field theory has to be the
determination of its full particle content. Here the
methods outlined in the preceding section provide a
systematic tool. From the resulting data, one must then
reconstruct the full physical Hilbert space of the theory
comprising all superselection sectors. For theories in
which only massive particles appear, such a construc-
tion has been established in Buchholz and Fredenhagen
(1982), and it has been shown that the resulting Hilbert
space contains all scattering states. The question of
completeness can then be recast into the familiar
problem of the unitarity of the scattering matrix. It is
believed that phase space (nuclearity) properties of the
theory are of relevance here (Haag 1992).

However, in theories with long-range forces, where
a meaningful scattering matrix may not exist, this
strategy is bound to fail. Nonetheless, as in most high-
energy scattering experiments, only some very specific
aspects of the particle interpretation are really tested –
one may think of other meaningful formulations of
completeness. The interpretation of most scattering
experiments relies on the existence of conservation
laws, such as those for energy and momentum. If a
state has a complete particle interpretation, it ought to
be possible to fully recover its energy, say, from its
asymptotic particle content, that is, there should be no
contributions to its total energy which do not manifest
themselves asymptotically in the form of particles.
Now the mean energy–momentum of a state � 2 H is
given by h�, P�i, P being the energy–momentum
operators, and the mean energy–momentum contained
in its asymptotic particle content is

R
d�(p)p, where �

is the measure appearing in the decomposition [29].
Hence, in case of a complete particle interpretation,
the following should hold:

h�;P�i ¼
Z

d�ðpÞp ½30�

Similar relations should also hold for other con-
served quantities which can be attributed to parti-
cles, such as charge, spin, etc. It seems that such a
weak condition of asymptotic completeness suffices
for a consistent interpretation of most scattering
experiments. One may conjecture that relation [30]
and its generalizations hold in all theories admitting
a local stress–energy tensor and local currents
corresponding to the charges.

See also: Algebraic Approach to Quantum Field Theory;
Axiomatic Quantum Field Theory; Dispersion Relations;
Perturbation Theory and its Techniques; Quantum
Chromodynamics; Quantum Field Theory in Curved
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Spacetime; Quantum Mechanical Scattering Theory;
Scattering, Asymptotic Completeness and Bound States;
Scattering in Relativistic Quantum Field Theory: The
Analytic Program.
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Introduction to the Analytic Structures
of Quantum Field Theory

The importance of complex variables and of the
concept of analyticity in theoretical physics finds
one of its best illustrations in the analytic structure
of relativistic quantum field theory (QFT). The latter
have been investigated from several viewpoints in
the last 50 years, according to the successive
progress in QFT.

In the two main axiomatic frameworks of QFT,
namely the one based on Wightman axioms (for a
short presentation, see Dispersion Relations and also
Axiomatic Quantum Field Theory) and the Haag,
Kastler, and Araki theory of ‘‘local observables’’ (see
Algebraic Approach to Quantum Field Theory),
there are general justifications of analyticity proper-
ties for relevant ‘‘N-point structure functions’’ both
in complexified spacetime variables and in complex-
ified energy–momentum variables.

In the Wightman framework, relativistic quantum
fields are operator-valued distributions �j(x) on four-
dimensional Minkowski spacetime that transform
covariantly under a unitary representation of the
Poincaré group in the Hilbert space of states. The
basic quantities of QFT are (tempered) distributions
on R4N of the form <�, �(x1) � � ��(xN)�0>, which
depend on pairs of states �, �0, belonging to the
Hilbert space of the QFT considered: they can be
called N-point structure functions of the field � ‘‘in
x-space,’’ namely in Minkowski spacetime (here, for
brevity, we assume that the system is defined in terms
of a single quantum field). In parallel, it is important to
consider the Fourier transform �̃(p) =

R
eip�x�(x) dx of

the field in the Minkowskian energy–momentum
space (p � x¼: p0x0 � p � x denoting the Minkowskian
scalar product). The corresponding quantities
<�, �̃(p1) � � � �̃(pN)�0> , can then be called N-point
structure functions of the field � ‘‘in p-space,’’ namely
in energy–momentum space.

In the algebraic QFT framework, each basic
local observable B affiliated to a certain bounded
region of spacetime O generates a Haag–Kastler–
Araki quantum field B(x) by the action of
the translations of spacetime, namely B(x)¼:
U(x)BU(x)�1. Here U(x) denotes the unitary repre-
sentation of the group of spacetime translations in
the Hilbert space of states: B(x) is affiliated to the
translated region O(x) = {y; y� x 2 O}. Then again
one can consider N-point structure functions of the
theory of the form <�, B(x1) � � �B(xN)�0> and
<�, ~B(p1) � � � ~B(pN)�0> .

To summarize the situation as it occurs in both
cases, one can say the following:

1. A certain postulate of relativistic causality
implies the analyticity of structure functions of
a certain class, often called ‘‘Green functions,’’
in the complex energy–momentum variables
kj = pj þ iqj, in particular for purely imaginary
energies.

2. ‘‘Stability properties’’ of the states �, �0 such as a
‘‘bounded energy content’’ of these states imply
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the analyticity of the previous structure functions
in the complex spacetime variables, in particular
for purely imaginary times.

In both cases, analyticity is obtained as a basic pro-
perty of the Fourier–Laplace transformation in several
variables. Let Vþ denote the forward cone of the
Minkowskian space (Vþ ¼: �V� ¼: {x; x2¼: x � x > 0,
x0 > 0}) and let

~f ðpþ iqÞ ¼
Z

Vþa

eiðpþiqÞ�x f ðxÞdx ½1�

gðxþ iyÞ ¼ ð2�Þ�4

Z
Vþp

e�ipðxþiyÞ~gðpÞdp ½2�

be the associated reciprocal Fourier formulas,
applied, respectively, to functions f (x) with support
contained in the translated forward cone Vþa =�aþ
Vþ, a 2 Vþ (or in its closure), and to functions ~g(p)
with support contained in the translated forward
cone VþP =�Pþ Vþ, P 2 Vþ of energy–momentum
space (or in its closure). Then in view of the
convergence properties of the previous integrals, one
easily checks that ~f (k) is holomorphic with possible
exponential increase in the imaginary directions
controlled by the bound eq�a in the tube domain
T þ= R4 þ iVþ; similarly, g(z) is holomorphic with
an increase controlled by the exponential bound e�y�P

in the tube domain T �= R4 þ iV�.
On the one hand, for each N the structure functions

<�, �̃(p1) � � � �̃(pN)�0> (or <�, ~B(p1) � � � ~B(pN)�0>)
have conical support properties of the previous type in
the variables pj, as a consequence of the relativistic
shape of the energy–momentum spectrum. In both
axiomatic frameworks, in fact, one postulates that
there is a state of zero energy–momentum �, called the
vacuum, and that the energy–momentum spectrum �,
namely the joint spectrum of the generators P� of the
Lie algebra of the group U(x), is contained in the
closure of Vþ: this is the so-called spectral condition.
A more refined assumption introduced for the require-
ments in particle physics is that � contains discrete
parts localized on sheets of (mass-shell) hyperboloids
inside Vþ. These support properties in p-space imply
that the corresponding inverse Fourier transforms
<�,�(x1) � � ��(xN)�0> are boundary values of holo-
morphic functions in appropriate tube domains of the
complex space variables (z1, . . . ,zn).

On the other hand, in order to exhibit structure
functions with conical support properties in x-space,
one needs to build appropriate algebraic combina-
tions of functions <�, �(xj1 ) � � ��(xjN )�0> with
permuted arguments in order to take the benefit of
the causality postulate, which is always formulated
in terms of the commutator of two field operators.
There are two versions of this postulate. In the
Wightman framework, causality is expressed by the
condition of local commutativity or microcausality,

½�ðx1Þ;�ðx2Þ� ¼ 0 for ðx1 � x2Þ2 < 0 ½3�

In the algebraic QFT framework, causality is
expressed by a similar property in terms of any
field B(x) generated by a local observable B¼: B(0)
affiliated to a region of spacetime enclosed in a
given ‘‘double cone’’ Ob = Vþb \ (�Vþb ). The corres-
ponding expression of causality is

½Bðx1Þ;Bðx2Þ� ¼ 0

for ðx1 � x2Þ =2 ðVþa [ ð�Vþa Þ ½4�

for all a such that a > 2b.
So, we see that basically, causality and spectral

condition generate analyticity respectively in com-
plexified p-space and x-space. However, the situa-
tion is more intricate, since for each N there are
always several holomorphic branches (two in the
case N = 2) in the variables (z1, . . . , zn) and also in
the variables (k1, . . . , kn): each of these two sets is
obtained essentially by permutations of the N vector
variables. The important point is that these various
branches can be seen to ‘‘communicate together,’’
thanks to the existence of ‘‘coincidence regions’’ of
their boundary values on the reals. Here again the
roles played by causality and stability are symmetric
(but inverted): while causality produces coincidence
regions for the holomorphic functions in complex
spacetime, spectral conditions produce coincidence
regions for the holomorphic functions in complex
energy–momentum space.

In view of a basic theorem of several complex
variable analysis, called the edge-of-the-wedge the-
orem (see below in (4)), the two sets of commu-
nicating holomorphic branches actually define by
mutual analytic continuation two holomorphic

function H�, �0

N (k1, . . . , kN) and W�, �0

N (z1, . . . , zN) in

respective domains D�, �0

N and ��, �0

N . However, these
two primitive domains are not natural holomorphy
domains (a phenomenon which is particular to
complex geometry in several variables). The prob-
lem of finding their holomorphy envelopes, namely

the smallest domains D̂�, �0

N and �̂�, �0

N in which any
functions holomorphic in the primitive domains can
be analytically continued, is the idealistic purpose of
what has been called the analytic program of
axiomatic QFT. So, we see that there is an analytic
program in x-space and there is an analytic program
in p-space. In practice, except for the case N = 2,
where the complete answer is known, only a partial
knowledge of the holomorphy envelopes has been
obtained.
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The analytic program in p-space, which is the
only one to be described in the rest of this article,
was often considered as physically more interesting,
in view of the fact that it aims to establish
analyticity properties of the scattering kernels on
the complex mass shell. As a matter of fact, an
important part of it concerns the derivation of the
analyticity domains of dispersion relations for two-
particle scattering amplitudes. This part is important
from the historical viewpoint as well as from
conceptual, physical, and pedagogical viewpoints
(the reader may find it useful to first check the
article Dispersion Relations, which illustrates how a
structure function of the form H�, �0

2 (k1, k2) can be
used for that purpose with a suitable choice of the
states � and �0). In the general development of the
analytic program (in x-space as well as in p-space),
it is recommended to consider the infinite set of
structure functions HN ¼

:
H�, �

N (k1, . . . , kN) and
WN ¼

: W�, �
N (z1, . . . , zN) where � is the privileged

vacuum state of the theory, in view of the fact that
each of these sets characterizes entirely the field
theory considered.

Before shifting to the analytic program in p-space,
we would like to mention various points of interest
of the analytic program in x-space:

1. Various results of this program have been
extensively used for proving fundamental prop-
erties of QFT, such as the PCT-invariance
theorem, the spin–statistics connection, etc.
A good part of these can be found in the
books by Streater and Wightman (1980) and by
Jost (1965).

2. The functions HN and WN are holomorphic in
their respective p-space and x-space ‘‘Euclidean
subspaces.’’ To make this clear, let us assume
that a Lorentz frame has been chosen once for
all; the linear subspace of complex spacetime
(resp. energy–momentum) vectors of the form
z = (iy0, x) (resp. k = (iq0, p)) is called the ‘‘Eucli-
dean subspace’’ of the corresponding complex
Minkowskian space, in view of the fact that the
quadratic form z2¼: z � z =�(y2

0 þ x2) (resp.
k2¼: k � k =�(q2

0 þ p2)) has a definite (negative)
sign on that subspace. Then it has been estab-
lished that (for each N) the restrictions of HN

andWN to the corresponding N-vector Euclidean
subspaces are the Fourier transforms of each
other. This fact participates in the foundation of
the Euclidean formulation of QFT or ‘‘QFT at
imaginary times’’; the latter has provided many
important results in QFT, in particular for the
rigorous study of field models (initiated by
Glimm and Jaffe in the 1970s).
3. A more recent extension of QFT called thermal
QFT (TQFT), which aims to study the behavior of
quantum fields in a thermal bath, can be described
in terms of a modified analytic program. In the
latter, the spectral condition is replaced by the
so-called KMS condition, which prescribes x-space
analyticity properties of a particular type for the
structure functions WN: it requires analyticity
together with periodicity conditions with respect
to imaginary times, the period being the inverse of
the temperature (see Thermal Quantum Field
Theory). The usual analytic structure for the
theories with vacuum and spectral conditions is
recovered in the zero-temperature limit.

4. In more recent investigations concerning quan-
tum fields on (holomorphic) curved spacetimes,
analyticity properties of the structure functions
similar to those of thermal QFT can be estab-
lished. This is the case in particular with de Sitter
spacetime, for which a notion of ‘‘temperature of
geometrical origin’’ is most simply exhibited.

In this article, an account of the general analytic
program of axiomatic QFT in complex energy–
momentum space will be presented; it will describe
some of the methods which have been used for
establishing analyticity properties of the N-point
structure functions of QFT and corresponding proper-
ties of the (n! n0)-particle collision processes, for all
n, n0 such that n � 2, n0 � 2, nþ n0= N. (For a more
detailed study, in particular concerning the microlocal
methods, see the book by Iagolnitzer (1992)).

Concerning the important case N = 4, this article
gives complements to the results described in the
article Dispersion Relations. In fact, the program
allows one to justify other important analytic
structures of the four-point functions and of two-
particle scattering functions. They concern

� the field-theoretical basis of analyticity in the
complexified variable of angular momentum, first
introduced and developed in potential theory
(Regge 1959);
� the Bethe–Salpeter (BS-) type structure (based on

the additional postulate of asymptotic complete-
ness), which is a relativistic field-theoretical gen-
eralization of the Lippmann–Schwinger structure
of nonrelativistic scattering theory (for Schrödinger
equations with Yukawa-type potentials).

The latter allows one to introduce the concept of
composite particle in the field-theoretical framework
(including bound states and unstable particles or
‘‘resonances’’) and also the concept of ‘‘Regge
particle,’’ thanks to complex angular momentum
analysis.
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Various Aspects of the General
Analytic Program of QFT in Complex
Energy–Momentum Space

The N-Point Structure Functions of QFT

It is proved in the Wightman QFT axiomatic frame-
work that any QFT is completely characterized by the
(infinite) sequence of its ‘‘N-point functions’’ or
‘‘vacuum expectation values’’ (also called ‘‘Wightman
functions’’)

WNðx1; . . . ; xNÞ¼
:
< �;�ðx1Þ � � ��ðxNÞ� >

which are tempered distributions on R4N satisfying a
set of general properties that can be split up into
linear and nonlinear conditions. (This is known as
the Wightman reconstruction theorem).

Linear conditions Each individual N-point func-
tion satisfies three sets of linear conditions which
result, respectively, from:

1. Poincaré invariance: typically, for every Poincaré
transformation g of Minkowski spacetime

WNðx1; . . . ; xNÞ ¼WNðgx1; . . . ; gxNÞ

in particular, the WN are invariant under space-
time translations and therefore defined on the
quotient subspace R4(N�1)¼: R4N=R4 of the differ-
ences xj � xk.

2. Microcausality: support conditions on commu-
tator functions of the following form:

Cðj;jþ1Þðx1; . . . ;xnÞ¼
:

WNðx1; . . . ;xj;xjþ1; . . . ;xNÞ
�WNðx1; . . . ;xjþ1;

xj; . . . ;xNÞ ¼ 0

in the region of R4N defined by (xj�xjþ1)2 < 0.
3. Spectral condition: support conditions on the

Fourier transform ~WN(p1, . . . , pN) = �(p1 þ � � � þ
pN)� ŵN(p1, . . . , pN�1) of WN, which assert that
ŵN(p1, . . . , pN�1) = 0 if either one of the follow-
ing conditions is fulfilled: p1 þ � � � þ pj 62 �, for
j = 1, . . . , N � 1.

For each N, one can then construct a set of
distributions R(�)

N (x1, . . . , xN), called ‘‘generalized
retarded functions’’ (Araki, Ruelle, Steinmann,
1960 (see Iagolnitzer (1992, ref. [EGS])) which are
appropriate linear combinations of multiple com-
mutator functions built from WN and multiplied by
products of Heaviside step-functions �(xj,0 � xk,0) of
the differences of time coordinates. Each of these
distributions R(�)

N (x1, . . . , xN) has its support con-
tained in a convex salient cone C�. This construction
can be seen as a generalization of the decomposition
[23] of the commutator C�, �0 in the article
Dispersion Relations. Then in view of the Laplace-
transform theorem in several variables, the Fourier
transform ~R(�)

N (p1, . . . , pN) = �(p1 þ � � � þ pN)�
~r(�)

N ([p]N) is such that ~r(�)
N ([p]N) is the boundary value

of a holomorphic function ~r(�), (c)
N ([k]N) defined in a

tube T � = R4(N�1) þ i~C�. Here [k]N = [p]N þ i[q]N

belongs to a 4(N � 1)-dimensional complex linear
space M(c)

N : this is the set of complex vectors
[k]N ¼

:
(k1, . . . , kN) such that k1 þ � � � þ kN = 0. ~C� is

the dual cone of C� in the real (4(N � 1)-dimen-
sional) [q]N-space. Geometrically, each cone ~C� is
defined in terms of a certain ‘‘cell’’ of [q]N-space
which is defined by prescribing consistent conditions
of the form "JqJ 2 Vþ with qJ =

P
j2J qj and "J =�1

for all proper subsets J of the set {1, 2, . . . , N}.
This is the expression of the microcausality postu-
late (summarized in [3] or [4]) in complex energy–
momentum space. Concerning the difference
between the two formulations [3] and [4], one can
see that there is no geometrical difference concern-
ing the analyticity domains, but differences for the
type of increase of the structure functions in their
tube domains: in the case of [3], they are bounded
by powers of the energy–momenta, while in the case
of [4] they may have an exponential increase
governed by factors of the type eq�a.

For each N, the linear space generated by all the
distributions ~r(�)

N ([ p]N) is constrained by a set of
linear relations (called Steinmann relations) which
result from algebraic expressions of discontinuities
of the following type, called (generalized) ‘‘absorp-
tive parts,’’

~r
ð�Þ
N ð½p�NÞ � ~r

ð�0Þ
N ð½ p�NÞ

¼< �; ½~Rð�1Þ
J1
ð½ p�ðJ1ÞÞ; ~R

ð�2Þ
J2
ð½ p�ðJ2ÞÞ�� > ½5�

for all pairs of adjacent cells (�,�0)( J1, J2) in the
following sense: � and �0 only differ by changing the
value of "J1

=�"J2
, ( J1, J2) denoting any given

partition of the set {1, 2, . . . , N}. In [5], the symbols
~R(�i)

Ji
denote generalized retarded operators of lower

order and the argument [ p](J) stands for the set of
independent 4-momenta { pj; j 2 J}. Formula [5] may
be seen as an N-point generalization of formula [26]
of Dispersion Relations for the case when the state
� = �0 is replaced by �.

Then by applying to [5] the same argument based
on spectral condition as in the exploitation of
eqn [26] in Dispersion Relations, one concludes
that the two distributions ~r(�)

N and ~r(�0)
N coincide on

an open set R�,�0 of the form p2
J1

= p2
J2
< M2

J1
, where

pJ1
¼:
P

j2J1
pj =� pJ2

. It then follows from the gen-

eral ‘‘oblique edge-of-the-wedge theorem’’ (Epstein,
1960; see below) that the two corresponding
holomorphic functions ~r(�), (c)

N ([k]N) and ~r(�0), (c)
N ([k]N)
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have a common analytic continuation in the union of
their tubes together with a certain complex ‘‘connecting
set,’’ bordered by R�,�0 . Since this argument applies to
all pairs (�,�0)( J1, J2), the following important property
holds (see Iagolnitzer (1992, refs. [B2], [EGS])):

Theorem 1

(i) All the holomorphic functions ~r(�), (c)
N ([k]N)

admit a common analytic continuation
HN([k]N), called the N-point structure function
(or Green function) of the given quantum field
in complex energy–momentum space. It is
holomorphic in a ‘‘primitive domain’’ DN of
M(c)

N , which is the union of all tubes T �
together with complex ‘‘connecting sets’’ bor-
dered by all the coincidence regions R�,�0

defined previously.
(ii) For each N the complex domain DN contains the

whole Euclidean subspace EN of M(c)
N , which is

the set of all complex vectors [k]N = (k1, . . . , kN)
such that kj = (kj, 0, kj); kj, 0 = iqj, 0, kj = pJ for
j = 1, 2, . . . , N. (This Euclidean subspace depends
on the choice of a given Lorentz frame in
Minkowski spacetime.)

Positivity Conditions The Hilbert space framework
which underlies the axioms of QFT implies (an
infinite set of) positivity inequalities on the N-point
structure functions of the fields. As a typical
example related to the previous formula [5] when
jJ1j= jJ2j= N=2 (for N even), one can mention the
positive-definiteness property of the absorptive parts
for appropriate pairs of adjacent cells (�1,�2 =
��1)(J1, J2), which simply expresses the positivity of
the following Hilbertian squared norm:����
Z

f ð½ p�ð J2ÞÞf ð½ p�ð J1ÞÞ½~r
ð�Þ
N ð½ p�NÞ

� ~r
ð�0Þ
N ð½ p�NÞ�d½ p�ð J1Þd½ p�ð J2Þ

����
¼
Z

f ð½ p�ð J1ÞÞ~R
ð�1Þ
J ð½p�ð J1ÞÞ� > d½p�ð J1Þ

����
����
2

� 0 ½6�

Scattering Kernels of General (n!n0)-Particle
Collisions and General Reduction Formulas

The presentation of (2! 2)-particle scattering ker-
nels in the article Dispersion Relations can be
generalized to arbitrary (n! n0)-particle collision
processes, involving n incoming massive particles
(n � 2) and n0 outgoing massive particles (n0 � 2).
The big ‘‘scattering matrix’’ or ‘‘S-matrix’’ in the
Hilbert space of states is the collection of all partial
scattering matrices Sn, n0 or of the equivalent kernels
Sn, n0 (pn, in; pn0, out), defined by a straightforward gen-
eralization of formula [20] of the quoted article:

Sn;n0 ðf̂n;in; ĝn0;outÞ

¼
Z
Mn;n0

f̂n;inðpn;inÞĝn0;outðpn0;outÞ

� Sn;n0 ðpn;in; pn0;outÞ�n
mðpn;inÞ�n0

mðpn0;outÞ ½7�

Here we have considered for simplicity the case of
collisions involving a single type of particle with
mass m. In the arguments of the wave packets, the
kernel, and the measures (�n

m,�n0

m), pn, in and pn0, out,
respectively, denote the sets of incoming and
outgoing 4-momenta (p1, . . . , pn) and (p01, . . . , p0n0)
which all belong to the physical mass shell
Hþm = {p; p 2 Vþ, p2 = m2}. By supplementing these
mass-shell constraints with the relativistic law of
conservation of total energy–momentum p1 þ � � � þ
pn = p01 þ � � � þ p0n0 , one obtains the definition of the
mass-shell manifold Mn, n0 of (n! n0)-particle colli-
sion processes.

We shall reserve the name of scattering kernel (or
scattering amplitude), denoted by Tn, n0(pn, in; pn0, out),
to the so-called ‘‘connected component’’ of the
S-matrix kernel Sn, n0(pn, in; pn0, out). By analogy with
the definition of T in terms of S for the two-particle
collision processes (see Dispersion Relations) Tn, n0 is
defined by a recursive algorithm, which amounts to
subtract from Sn, n0 all the components of the
(n! n0)-collision processes that are decomposable
into independent collision processes involving smal-
ler number of particles, according to all admissible
partitions of the numbers n and n0.

For any given N, let us consider all the ‘‘affiliated’’
scattering kernels Tn, n0 such that nþ n0= N and whose
corresponding collision processes, also called
‘‘channels,’’ are deduced from one another by the
relevant exchange of incoming particles and
outgoing antiparticles (e.g., �1 þ �2 þ �3!�4 þ
�5 þ �6, �1 þ �2!�3 þ�4 þ �5 þ �6, and �1 þ
�3! �2 þ �4 þ �5 þ �6). There exist general reduc-
tion formulas according to which all these scattering
kernels are restrictions to the mass-shell manifoldM(N)

of appropriate boundary values of the (so-called)
‘‘amputated N-point function’’ ĤN(k1, . . . , kN)¼:
(k2

1 �m2) � � � (k2
N �m2)�HN(k1, . . . , kN). More pre-

cisely, these reduction formulas can be written as
follows:

Tn;n0 ð�pn;in; pn0;outÞjMð�Þ
ðNÞ
¼ Ĥ

ð�Þ
N ðp1; . . . ; pNÞjMð�Þ

ðNÞ
½8�

In the latter, Ĥ(�)
N denotes a certain boundary value of

ĤN on the reals: it is equal to a generalized retarded
function ~r(�)

N ([p]N) which depends in a specific way
on a region of the mass shell, called M(�)

(N), in which
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the (n! n0)-channel is considered. The important
thing to be noted in [8] is the sign convention which
attributes the notation �pj to the momentum of any
incoming particle and therefore implies that pj

belongs to the negative sheet of hyperboloid H�m¼
:

�Hþm. This is the price to pay for expressing
symmetrically the energy–momentum conservation
law as p1 þ p2 þ � � � þ pN = 0 (according to the QFT
formalism), but it also displays, as a nice feature,
the fact that all the affiliated scattering kernels
Tn, n0 such that nþ n0= N are located on the
various connected components of the mass shell
M(N)(pj 2 Hm; j = 1, 2, . . . , N): the choice of the
sheet H�m or Hþm of Hm is exactly linked to the
incoming or outgoing character of the particle
considered.

Remark 1 The reduction formulas are more usually
expressed in terms of the Fourier transforms of the
(connected parts of the) N-point amputated chronolo-
gical functions �N([p]N) (see Scattering in Relativistic
Quantum Field Theory: Fundamental Concepts and
Tools). As a matter of fact, the latter coincide with the
boundary values ~r(�)

N ([p]N) of HN in the corresponding
relevant regionsM(�)

(N).

Remark 2 Coming back to the case of two-particle
scattering amplitudes (i.e., n = n0= 2, N = 4), one
can see that the general study presented here implies
the consideration of the four-point function
H4(k1, k2, k3, k4), which is a holomorphic function
of three independent complex 4-momenta (since
k1 þ k2 þ k3 þ k4 = 0). In that case, the domain D4

contains 32 tubes T� which are specified by triplets
of conditions such as q1 2 Vþ, q2 2 Vþ, q3 2 Vþ, or
�q1 2 Vþ, q1 þ q2 2 Vþ, q1 þ q3 2 Vþ, and those
obtained by permutations of the subscripts
(1, 2, 3, 4) and also by a global substitution of the
cone V� to Vþ.

Remark 3 The logical path from the postulates of
QFT to the analyticity properties of two-particle
scattering amplitudes that has been followed in the
article Dispersion Relations can be seen as a partial
exploitation of the general analyticity properties of
the four-point function: one was specially interested
there in the analyticity properties of H4 in a single
4-momentum k1 =�k3 (at fixed real values of
p2 =�p4). The ‘‘partial reduction formula’’ [27] of
Dispersion Relations corresponds to the restriction
of eqn [8] (for N = 4) to the linear submanifold
(p1 =�p3, p2 =�p4). It may also be worthwhile to
stress the fact that, in spite of the exponential
bounds on H4 implied by the postulates of algebraic
QFT, it has been possible to prove that the
scattering function is still bounded by a power of s
in its cut-plane (or crossing) domain; the dispersion
relations with two subtractions are still justified in
that case (Epstein, Glaser, Martin, 1969 (see Martin
(1969, preprint))).

Off-Shell Character of DN : Nontriviality of the
Analytic Structure of the Scattering Kernels

One can now see that for each value of N(N � 4)
the situation created by complex geometry in the
space C4(N�1) of [k]N is a mere generalization of the
one described in a simple situation in the article
Dispersion Relations.

1. There exists a fundamental (3N � 4)-dimensional
complex submanifold, namely the complex mass
shell M(c)

(N) defined by the equations k2
j = m2;

j = 1, . . . , N, which connects together the various
real mass-shell components M(�)

(N) interpreted as
the various physical regions of a set of affiliated
(n! n0)-collision processes. The problem of
proving the ‘‘analyticity of (n! n0)-scattering
functions’’ thus amounts to constructing such
holomorphic functions on the complex manifold
M(c)

(N), whose boundary values on the various real
regions M(�)

(N) would reproduce the relevant
scattering kernels Tn, n0 (�pn, in; pn0, out).

2. All the tubes T � which generate the primitive
domain DN are off-shell domains, namely their
intersections with M(c)

(N) are empty. This simply
comes from the fact that the conditions qj 2 V�

(included in their definition) and k2
j = m2 > 0 are

incompatible. One can also check that adding the
coincidence regions R�,�0 between adjacent tubes
does not improve the situation. However, one
can state as a relevant scope the following
program.

3. Linear program (so-called because it only relies
on the linear conditions presented in the section
‘‘N-point structure functions of QFT’’): find parts
of the holomorphy envelope of DN (possibly
improved by the exploitation of the Steinmann
relations) whose intersections with the complex
mass shell M(c)

(N) are nonempty. In the best case,
show that such intersections can exist which
connect two different regions M(�)

(N) together,
which means ‘‘proving the crossing property
between these two regions.’’

4. We shall see in the following that, except for the
case N = 4, the results of this linear program
have been rather disappointing as far as reaching
the complex mass shell is concerned; however,
other interesting analytic structures also coming
from positivity conditions and from the addi-
tional postulate of asymptotic completeness have
been investigated under the general name of
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nonlinear program. The ‘‘synergy’’ created by the
combination of these two programs remains, to a
large extent, to be explored.

Results of Analytic Completion
in the ‘‘Linear Program’’

We can only outline here some of the geometrical
methods which allow one to compute parts of the
holomorphy envelopes of the domains DN. One
important method, which may be used after apply-
ing suitable conformal mappings, reduces to the
following basic theorem.

The tube theorem The holomorphy envelope of a
‘‘tube domain’’ of the form TB = Rn þ iB, where B is
an arbitrary domain in Rn called the basis of the
tube, is the convex tube TB̂ = Rn þ iB̂, where B̂ is the
convex hull of B.

The opposite or oblique edge-of-the-wedge theo-
rem (Epstein 1960 (see Streater and Wightman
(1980, ch. 2, ref. 18))) is a refined local version of
the tube theorem, in which the basis B is of the form
B = C1 [ C2, where C1, C2 are two disjoint (opposite
or nonopposite) cones with apex at the origin
and where TB is replaced by a pair of ‘‘local tubes’’
(T(loc)

C1
, T(loc)

C2
). Here the adjective ‘‘local’’ means that

the real parts of the variables are confined in a given
open set U (which can be arbitrarily small). The
connectedness of TB is now replaced by the
consideration of any pair of functions (f1, f2)
holomorphic in these local tubes whose boundary
values on their common real set U coincide. The
result is that f1 and f2 admit a common analytic
continuation f in a local tube T(loc)

C , where C is the
convex hull of C1 [ C2. In the case of opposite cones
(C1 =�C2), f is then analytic in the real set U, while
in the general oblique case f is only analytic in a
complex connecting set bordered by U (namely a set
which connects T(loc)

C1
and T(loc)

C2
). There exists an

extended version of the edge-of-the-wedge theorem
in which the boundary values of f1 and f2 are only
defined as distributions.

For simplicity, we shall just give a very rough
classification of the type of results obtained. We
shall distinguish:

� analyticity domains in the space of several
(possibly all) variables: they can be of global
type or of microlocal type, namely restricted to
complex neighborhoods of real points;
� analyticity domains in special families of one-

dimensional complex manifolds; and
� combinations of one-dimensional results which

generate domains in several variables by a refined
use of the tube theorem, called the Malgrange–
Zerner ‘‘flat tube theorem,’’ or ‘‘flat edge-of-the-
wedge theorem.’’ In the latter, the local tubes
T(loc)

C1
and T(loc)

C2
of f1 and f2 reduce to one-variable

domains of the upper half-plane in separate
variables z1 = x1 þ iy1, z2 = x2 þ iy2 but with a
common range of real parts (x1, x2) 2 U. The data
f1(z1, x2) and f2(x1, z2) have coinciding boundary
values (f1(x1, x2) = f2(x1, x2)) in the limit (y1! 0,
y2! 0). The result is again the existence of a
common analytic continuation to f1 and f2, which
is a function of two complex variables f (z1, z2) in
the intersection of the quadrant (y1 > 0, y2 > 0)
with a complex neighborhood of U. (Note that
this result of complex analysis still holds when the
real boundary values of the holomorphic func-
tions have singularities, namely are only defined
in the sense of distributions).

Global analyticity properties The following prop-
erty (discovered by Streater for three-point func-
tions) looks like an extension of the tube theorem.
The holomorphy envelope of the union of two tubes
T �, T �0 corresponding to adjacent pairs of cells
(�,�0)(J1, J2) together with a complex connecting set
bordered by R�,�0 = {[ p]N; p2

J1
< m2

J1
} is the convex

hull T �,�0 of the union of these tubes minus the
following analytic hypersurface �J1

which can be
called ‘‘a cut’’: �J1

= {[k]N: k2
J1

= m2
J1
þ 	, 	 � 0}. The

interest of this result (although it remains by itself an
off-shell result) is that it can generate larger cut-
domains by additional analytic completions, which
may have intersections with the complex mass shell
(see below for the case N = 4).

Microlocal analyticity properties In the case of the
four-point function Ĥ4, it is possible to consider
opposite cut-domains of the previous type, for which
�J1

= �{1, 2} is the energy-cut of the channel (1, 2 !
3, 4), and for which the spectral conditions prescribe
an ‘‘edge-of-the-wedge situation’’ in the neighbor-
hood of the corresponding mass-shell component
M(1, 2! 3, 4). The result is that H4 is proved to be
holomorphic in a full complex cut-neighborhood of
M(1, 2! 3, 4) in the ambient complex energy–momen-
tum space. The intersection of this local domain
with the complex mass shell M(c)

(4) is of course a full
complex cut-neighborhood ofM(1, 2! 3, 4) inM(c)

(4), and
this proves that the corresponding scattering amplitude
is the boundary value of an analytic scattering function
defined as the restriction F̂(s, t)¼: Ĥ4jM(c)

(4)
of Ĥ4: it is

holomorphic in a domain of complex (s, t) space
deprived from the s–cut.

In the general case N > 4, the results are less
spectacular, although a more sophisticated microlocal
method involving a ‘‘generalized edge-of-the-wedge
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theorem’’ has been applied. This method, which was
one of the three methods at the origin of the chapter
of mathematics called microlocal analysis (the other
two being Hörmander’s ‘‘analytic wave-front’’
method and Sato’s ‘‘microfunctions’’ method) is
based on a local version of the Fourier–Laplace
transformation called the FBI transformation (see,
e.g., the book on ‘‘hypo-analytic structures’’ by
Treves (1992) and in the present context the article
‘‘Causality and local analyticity’’ by Bros and
Iagolnitzer (1973) (see Iagolnitzer (1992, ref.
[BI1]))).

A first positive result (obtained at first by Hepp in
1965) is the fact that the various real boundary
values of ĤN admit well-defined restrictions as
tempered distributions on the corresponding (real)
mass shell M(N); this result is in fact crucial for the
rigorous proof of general reduction formulas. How-
ever, (according to Bros, Epstein, Glaser, 1972 (see
Iagolnitzer (1992, ref. [BEG2])) the local existence
of an analytic scattering function in M(c)

(N) is not
ensured at all points of the mass shell, but only in
certain regions. A rather favourable situation still
occurs for (2! 3)-particle collision amplitudes (i.e.,
for N = 5), but in the general case there are large
regions of the mass shell where it is only possible to
prove (at least in this linear program) that the
amplitude is a sum of a limited number of boundary
values of analytic functions, defined in local domains
of M(c)

(N) (see in this connection, Iagolnitzer (1992)).

Analyticity at fixed total energy in momentum
transfer variables A remarkably simple situation
had already been exploited before the general
analysis of HN leading to Theorem 1 was carried
out. It is the section of the domain of the N-point
function in the space of the ‘‘initial relative
4-momentum’’ k = (k1 � k2)=2 of the s-channel
with initial 4-momenta (k1, k2), when the total
energy–momentum P =�(k1 þ k2) with P2 = s is
kept fixed and real. The remaining 4-momenta
p3, . . . , pN such that p3 þ � � � þ pN = P are also kept
fixed and real. Consider the case when P is (positive)
timelike and such that s � 4m2. Then it can be seen
that one obtains analyticity of (a certain ‘‘1-vector
restriction’’ of) HN with respect to the vector variable
k in the union of the two opposite tubes T þ= R4 þ
iVþ, T �= R4 þ iV�. Moreover, an edge-of-the-
wedge situation holds in view of the spectral coin-
cidence region of the form k2

1 = (�P=2þ k)2 < M2
1,

k2
2 = (�P=2� k)2 < M2

2. The corresponding holomor-
phy envelope is given by a Jost–Lehmann–Dyson
domain (see Dispersion Relations), whose section by
the complex mass shell k2

1 = k2
2 = m2 turns out

to give a ‘‘spherical tube domain’’ of the form
{k; k=pþ iq; k.P=0, k2 =�s=4þm2; jq2j< b2}. The
(2! N�2)-particle scattering kernel is therefore the
boundary value of a scattering function holomorphic
in the previous spherical domain of complex k-space.
In the special case of the two-particle scattering
amplitude F(s, t), one checks that the previous domain
yields for each s, s� 4m2, an ellipse of analyticity for
F̂(s, t) in the t-plane with foci at t =0 and u=4m2�
s� t =0; this ellipse is called the Lehmann ellipse. (We
have considered for simplicity the case of a single type
of particle with mass m and two-particle threshold at
2m.) In fact, the squared momentum transfer t is equal
to (k�k0)2, if k0= (k3�k4)=2 denotes the ‘‘final
relative momentum’’ of the s-channel, which was
here taken to be fixed and real. Moreover, by a similar
argument the corresponding absorptive part, namely
the discontinuity across the s-cut of the scattering
amplitude, can be shown to be holomorphic in a larger
ellipse with the same foci called the large Lehmann
ellipse.

It is interesting to compare the previous result
with the one that one obtains when the fixed vector
P is chosen to be spacelike, namely when s has a
negative, namely ‘‘unphysical’’ value with respect to
the distinguished channel (1, 2! 3, 4). For that case,
the exploitation of the primitive domain D4 shows
that for all negative (unphysical) values 
i = k2

i < 0;
i = 1, 2, 3, 4, of the squared mass variables, the
function Ĥ4 is holomorphic in a cut-plane of the
variable t, where the cuts are the t-cut (t = 4m2 þ 	,
	 � 0) and the u-cut (u = 4m2 � s� t = 4m2 þ 	0,
	0 � 0). This cut-plane has of course to be compared
with the off- shell cut-plane domain �
 at the basis
of the proof of dispersion relations (see Dispersion
Relations). Here, however, the choice of the squared
momentum transfer t as the variable of analyticity
allows one to shift to another interpretation in terms
of the concept of angular momentum.
Analyticity in the complex angular momentum
variable In all the situations previously considered
for the case N = 4, one can see that at fixed real
values of the squared energy s and of the squared
masses 
= {
i; i = 1, 2, 3, 4}, the complex initial and
final relative 4-momenta k and k0 have directions
which vary on the complexified sphere S(c). More-
over, the corresponding restriction of Ĥ4 to that
sphere turns out to be always well defined and
analytic on the real part of that sphere: it therefore
defines a kernel on the sphere, which, in view of
Poincaré invariance, is invariant under the rotations
and therefore admits a convergent expansion in
Legendre polynomials. Let us call h‘(s; 
) the
corresponding sequence of Legendre coefficients.
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In the first case considered above, this sequence
coincides (all 
i being equal to m2) with what the
physicists call the set of partial waves f‘(s) of the
scattering amplitude. The analyticity of Ĥ4 on a
complex spherical tube of S(c), namely of F̂(s, t) in
the Lehmann ellipse, is then equivalent to a certain
exponential decrease property with respect to ‘ of
the sequence of partial waves.

In the second case, where s and the 
i are negative, it
can be seen that the sphere S describes 4-momentum
configurations which all belong to a certain Euclidean
subspace E4 of M(c)

4 . But this situation is much more
favourable from the viewpoint of analyticity, since Ĥ4

can be seen to be holomorphic on the full complex
submanifold S(c) � S(c) minus two sets �t and �u

which correspond to the t- and u-cuts of the
complex t-plane. Then this larger analyticity prop-
erty turns out to be equivalent to the fact that the
sequence h‘(s; 
) admits an interpolation ~H(�; s; 
)
holomorphic in a certain half-plane of the form
Re � > ‘0 such that for all integers ‘ > ‘0 one has:
~H(‘; s; 
) = h‘(s; 
). The value of ‘0 is linked to the
power bound at large momenta that must be
satisfied by Ĥ4 as a consequence of the temperate-
ness property included in the Wightman axiomatic
framework (Bros and Viano 2000).

Of course, this nice analytic structure in a
complex angular momentum variable could extend
to the set of physical partial waves f‘(s) if one could
establish the analytic continuation of F̂(s, t) in a cut-
plane of t containing the Lehmann ellipses, but this
seems out of the possibilities at least of the linear
program.
The ‘‘Nonlinear Program’’ and
Its Two Main Aspects

The extension of the analyticity domains by positivity
and the derivation of bounds by unitarity Positivity
conditions of the form [6] have been extensively
applied to the case N = 4 (namely for subsets J with
two elements). The main result (Martin 1969) consists
in the possibility of differentiating the forward disper-
sion relations with respect to t and, as a consequence,
to enlarge the analyticity domain in t at fixed s: the
Lehmann ellipse, whose size shrinks to zero when s
tends to infinity, can then be replaced by an ellipse
(i.e., the Martin ellipse) whose maximal point
t = tmax > 0 is fixed when s goes to infinity. This
justifies the extension of dispersion relations in s to
positive values of t; then in a second step the use of
unitarity relations for the partial waves allows one to
obtain Froissart-type bounds on the scattering ampli-
tudes (see Martin (1969)).
Asymptotic completeness and BS-type structural
analysis The BS equations have been at first
introduced as identities of formal series in the
perturbative approach of QFT, and the idea of
considering such identities as exact equations having
a conceptual content in the general axiomatic
framework of QFT has been introduced and devel-
oped by Symanzik in 1960. However, it took a long
time before its integration in the analytic program of
QFT (Bros 1970 (see Iagolnitzer (1992, ref. [B1]))).
These developments belong to the nonlinear pro-
gram since they rely on quadratic integral equations
between the various N-point functions, which
express the postulate of asymptotic completeness
via the use of appropriate reduction formulas.

For brevity, the general set of BS-type equations
for the N-point functions with N > 4 will not be
presented. The simplest BS-type equation, which
concerns the four-point function, can be written as
follows:

Ĥ4ðK; k; k0Þ ¼ BðK; k; k0Þ þ ðĤ4 	s BÞðK; k; k0Þ ½9�

where

ðĤ4 	s BÞðK; k; k0Þ

¼
Z

�

Ĥ4ðK; k; k00ÞBðK; k00; k0ÞG K

2
þ k00

� �

�G
K

2
� k00

� �
d4k00 ½10�

In the latter, the s-channel is privileged, with
s = K2, K =�(k1 þ k2); Ĥ4 is seen as a K-dependent
kernel (k and k0 are the initial and final relative
4-momenta already defined), and the new object B
to be studied is also a K-dependent kernel. The
function G(k) is holomorphic in k2 in a cut-plane
except for a pole at k2 = m2 which plays a crucial
role. (It is essentially the ‘‘propagator’’ or two-point
function of the field theory considered). Apart from
pathologies due to the Fredholm alternative, the
correspondence between Ĥ4 and B is one-to-one, but
the peculiarity concerns the integration cycle � of
[10]: it is a complex cycle of real dimension 4, which
coincides with the Euclidean space of the vector
variable k00 when all the 4-momenta are Euclidean,
and can always be distorted inside the analyticity
domain of Ĥ4 together with the external variables.
The exploitation of the Fredholm equation in
complex space with ‘‘floating integration cycles’’
then implies that B is holomorphic at least in the
primitive domain of Ĥ4.

An important geometrical aspect of the integra-
tion on the cycle � in [10] is the fact that this cycle is
‘‘pinched’’ between the pair of poles of the functions
G when K2 tends to its threshold value (s = 4m2).
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The type of mathematical concept encountered here
is closely related to those used in the study of
analyticity properties and Landau singularities of the
Feynman amplitudes in the perturbative approach of
QFT (in this connection, see the books by Hwa and
Teplitz (1966) and by F Pham (2005) and references
therein).

The first basic result is that it is equivalent for Ĥ4

to satisfy an asymptotic completeness equation in
the pure two-particle region 4m2 < s < 9m2 and for
B to satisfy the following property called two-
particle irreducibility: B satisfies dispersion relations
in s such that the s-cut begins at the three-particle
threshold: s = 9m2.

The consequence of this extended analyticity
property of B is that it generates the following type
of analyticity properties for Ĥ4:

1. The existence of a two-sheeted analytic structure
for Ĥ4 over a domain of the s-plane containing
the interval 4m2 
 s < 9m2, with a square-root-
type branch point at the threshold s = 4m2.

2. Composite particles. There exists a Fredholm-
type expression

Ĥ4ðK; k; k0Þ ¼ NðK; k; k0Þ
DðK2Þ ½11�

where N and D are expressed in terms of B via
Fredholm determinants, which shows that in its
second sheet Ĥ4 may have poles in s = K2,
generated by the zeros of D. These poles are
interpreted as resonances or unstable particles.
The generation of real poles in the first sheet (i.e.,
bound states) is also possible under special
spectral assumptions of QFT.

3. Complex angular momentum diagonalization of
BS-type equations (Bros and Viano 2000, 2003).
The operation 	s in the BS-type equation [9]
contains not only an integration over squared-
mass variables, but also a convolution product on
the sphere S; the latter is transformed into a
product by the Legendre expansion of four-point
functions described previously in the subsection
‘‘Analyticity in the complex angular momentum
variable.’’ As a result, there is a partially
diagonalized transform of eqn [9] in terms of
the functions ~H(�; s; 
) and ~B(�; s; 
), which
allows one to write a Fredholm formula similar
to [11], namely

~Hð�; s; 
Þ ¼
~Nð�; s; 
Þ

~Dð�; sÞ
½12�

Then under suitable increase assumptions on B,
there may exist a half-plane of the form Re � >
‘1 (with ‘1 < ‘0) such that ~H(�; s; 
) admits poles
in the joint variables � and s, corresponding to
the concept of Regge particle: the composite
particles introduced in (2) might then be inte-
grated in the Regge particle, although they
manifest themselves physically only for integral
values ‘ of � with the corresponding spin
interpretation. Of course, this scenario is by no
means proven to hold in the general analytic
program of QFT, but we have seen that the
relevant ‘‘embryonary structures’’ are concep-
tually built-in, so that the phenomenon might
hopefully be produced in a definite quantum field
model.

4. Byproducts of BS-type structural analysis for
N = 5 and N = 6. Relativistic exact structural
equations for (3! 3)-particle collision ampli-
tudes, which generalize the Faddeev structural
equations of nonrelativistic potential theory,
have been shown to be valid in the energy
region of ‘‘elastic’’ collisions (i.e., with total
energy bounded by 4m); relevant Landau singu-
larities of tree diagrams and triangular diagrams
have been exhibited as a by-product in this
low-energy region (Bros, and also Combescure,
Dunlop in two-dimensional field models, 1981
(see Iagolnitzer (1992, refs. [B3], [B4], [CD]))).
Moreover, crossing domains on the complex mass
shell for (2! 3)-particle collision amplitudes have
been obtained (Bros 1986 (see Iagolnitzer (1992,
ref. [B1]))) by conjointly using (N = 5) BS-type
equations together with analytic completion prop-
erties (see, e.g., the ‘‘Crossing lemma’’ in Dispersion
Relations).

See also: Algebraic Approach to Quantum Field Theory;
Axiomatic Quantum Field Theory; Dispersion Relations;
Scattering, Asymptotic Completeness and Bound States;
Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools; Thermal Quantum
Field Theory.
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Pham F (2005) Intégrales singulières. Paris: EDP Sciences/CNRS
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Introduction

Relativistic quantum field theory (QFT) has been
mainly developed since the 1950s in the perturba-
tive framework. Quantities of interest then appear
as infinite sums of Feynman integrals, correspond-
ing to infinite series expansions with respect to
couplings. This approach has led to basic successes
for practical purposes, but suffered due to crucial
defects from conceptual and mathematical view-
points. First, individual terms were a priori infinite:
this was solved by perturbative renormalization.
However, even so, the series remain divergent. Two
rigorous approaches have been developed since the
1960s. The axiomatic approach aims to establish a
general framework independent of any particular
model (Lagrangian interaction) and to analyze
general properties that can be derived in that
framework from basic principles. The ‘‘construc-
tive’’ approach aims to rigorously establish the
existence of nontrivial QFT models (theories) and
to directly analyze their properties. Some of the
fundamental bases are described in this encyclope-
dia in the articles by J Bros, D Buchholz and
J Summers, and by G Gallavotti, respectively. This
article aims to a deeper study of particle analysis
and scattering of theories. In contrast to the articles
by Buchholz and Summers and G Gallavotti, it is
restricted to massive theories, a rather strong
restriction, but for the latter goes much beyond in
particle analysis.

From a purely physical viewpoint, results remain
limited: the models rigorously defined so far are
weakly coupled models in spacetime dimensions 2
or 3, results on bound states depend on specific
kinematical factors in these dimensions, proofs
of asymptotic completeness (AC) are not yet
complete, . . . . On the positive side, we might say
that the analysis and results are of interest from both
conceptual and physical viewpoints; on the other
hand, these works have also largely been related and
have contributed to important, purely mathematical
developments, for example, in the domain of
analytic functions of several complex variables,
microlocal analysis, . . . .

The general framework of QFT based on
Wightman axioms is introduced in the next
section. Massive theories are characterized in that
framework by a condition on the mass spectrum.
Haag–Ruelle asymptotic theory then allows one to
define, in the Hilbert space H of states, two
subspaces Hin and Hout corresponding to states
that are asymptotically tangent, before and after
interactions, respectively, to free-particle states. The
AC condition H=Hin =Hout introduces a further
important implicit particle content in the theory.
Collision amplitudes or scattering functions are then
well defined in the space of on-mass-shell initial and
final energy–momenta (satisfying energy–momen-
tum conservation). The LSZ ‘‘reduction formulas’’
give their link with chronological functions of the
fields.

Basic properties of scattering amplitudes that
follow from the Wightman axioms are then out-
lined. In particular, these axioms allow one to define
the ‘‘N-point functions,’’ which are analytic in a
domain of complex energy–momentum space con-
taining the Euclidean region (imaginary energy
components), and from which chronological and
scattering functions can be recovered. Other results
at that stage include the on-shell physical sheet
analyticity properties of four-point functions, as also
general asymptotic causality and local analyticity
properties for N � 4.

Next, we describe results derived from AC and
regularity conditions on analyticity and asymptotic
causality in terms of particles. In particular, the
analysis of the links between analyticity properties
of irreducible kernels (satisfying Bethe–Salpeter type
equations) and AC in low-energy regions are
included, following ideas of K Symanzik.

The final three sections are devoted to the analysis
of models.

Models of QFT have been rigorously defined in
Euclidean spacetime, through cluster and, more
generally, phase-space expansions which are shown



to be convergent at small coupling (and replace the
nonconvergent expansions, of perturbative QFT).
Examples of such models are the super-renormalizable
massive ’4 models in dimensions 2 or 3 (in the
1970s) and the ‘‘just renormalizable’’ massive
(fermionic) Gross–Neveu model – in dimension 2 –
in the 1980s. The N-point functions of these models
can be shown to have exponential fall-off in
Euclidean spacetime. By the usual Fourier–Laplace
transform theorem, one obtains in turn analyticity
properties in corresponding regions away from the
Euclidean energy–momentum space.

On the other hand, à la Osterwalder–Schrader
properties can be established in Euclidean spacetime.
By analytic continuation from imaginary to real
times, it is in turn shown that a corresponding
nontrivial theory satisfying the Wightman axioms is
recovered on the Minkowskian side. This analysis is
omitted here. However, no information is obtained
in that way on the mass spectrum, AC, energy–
momentum space analyticity, . . . . Such results can
be obtained through the use of irreducible kernels.
This was initiated by T Spencer in the 1970s and
then developed along the same line (Spencer and
Zirilli, Dimock and Eckmann, Koch, Combescure,
and Dunlop). We outline here the more general
approach of the present authors. In the latter,
irreducible kernels are directly defined through
‘‘higher-order’’ cluster expansions which are again
convergent at sufficiently small coupling. They are
shown to satisfy exponential fall-off in Euclidean
spacetime with rates better than those of the
N-point functions, and hence corresponding analy-
ticity in larger regions around (and away from) the
Euclidean energy–momentum space. Results will
then be established by analytic continuation, from
the Euclidean up to the Minkowskian energy–
momentum space, of structure equations that
express the N-point functions in terms of irreducible
kernels. These structure equations are infinite series
expansions, with again convergence properties at
small coupling. In the cases N = 2 and N = 4 (even
theories), the re-summation of these structure equa-
tions give, respectively, the Lippmann–Schwinger and
Bethe–Salpeter (BS) integral equations (up to some
regularization).

The one-particle irreducible (1PI) two-point
kernel G1 is analytic up to s = (2m)2 � ", where "
is small at small coupling (s is the squared center of
mass energy of the channel). A simple argument
then allows one to show analyticity of the actual
two-point function in the same region up to a pole
at k2 = m2

ph: this shows the existence of a first basic
physical mass mph (close at small coupling to the
bare mass m). In a free theory (zero coupling) with

one mass m, there is only one corresponding
particle. At small coupling, the existence of other
(stable) particles is not a priori expected; never-
theless, we will see that such particles (two-particle
bound states) will occur in some models in view of
kinematical threshold effects.

The 2PI four-point kernel G2 is shown to be
analytic up to s = (4m)2 � " in an even theory. On
the other hand, it satisfies a (regularized) BS
equati on. In a way analogous to the sect ion ‘‘AC
and analyt icity,’’ starti ng here from the an alyticity of
G2, the actual four-point function F is in turn
analytic or meromorphic in that region up to the cut
at s � 4m2, and the discontinuity formula associated
with AC in the low-energy region is obtained.

For some models (depending on the signs of some
couplings), it will be shown that F has a pole in the
physical sheet, below the two-particle threshold (at a
distance from it which tends to zero as the coupling
itself tends to zero). This pole then corresponds to a
further stable particle.

More generally, and up to some technical pro-
blems, the structure equations should allow one to
derive various discontinuity formulas of N-point
functions including those associated with AC in
increasingly higher-energy regions. Asymptotic caus-
ality in terms of particles and related analyticity
properties (Landau singularities . . .) should also
follow. However, in this approach, results should
be obtained only for very small couplings as the
energy region considered increases.

Note: Notations used are different in the next
two sections on the one hand, and the final three
sections on the other. These notations follow the
use of, respectively, axiomatic and constructive
field theory; for instance, x and p are real on
the Minkowskian side in the next two sections
whereas they are real on the Euclidean side in the
last three sections. The mass m in the next two
sections is a physical mass, whereas it is a bare
mass in the last three sections (where a physical
mass is noted mph).

The General Framework of Massive
Field Theories

We denote by x = (x0, x) a (real) point in Minkowski
spacetime with respective time and space components
x0 and x (in a given Lorentz frame); x2 = x2

0 � x2.
Besides the usual spacetime dimension d = 4, possible
values 2 or 3 will also be considered. In all that
follows, the unit system is such that the velocity c of
light is equal to 1. Energy–momentum variables, dual
(by Fourier transformation) to time and space
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variables, respectively, are denoted by p = (p0, p);
p2 = p2

0 � p2.
We describe below the Wightman axiomatic

framework, though alternative ones such as ‘‘local
quantum physics’’ based on the Araki–Haag–Kastler
axioms may be used similarly for present purposes.
For simplicity, unless otherwise stated, we consider
a theory with only one basic (neutral, scalar) field A;
A is defined on spacetime as an operator-valued
distribution: for each test function f , A(f ) (formallyR

A(x)f (x)dx) is an operator in a Hilbert space H of
states. A physical state is represented by a (normal-
ized) vector in H modulo scalar multiples. It has to
be physically understood as ‘‘sub specie aeternitatis’’
(i.e., ‘‘with all its evolution,’’ the Heisenberg picture
of quantum mechanics being always adopted). It is
assumed that there exists in H a representation of the
Poincaré group (semidirect product of pure Lorentz
transformations and spacetime translations).

The Wightman axioms include:

1. local commutativity: A(x) and A(y) commute if
x� y is spacelike: (x� y)2 < 0.

2. the spectral condition ( = positivity of the energy
in relativistic form): the spectrum of the energy–
momentum operators (infinitesimal generators of
spacetime translations) is contained in the cone
Vþ(p2 � 0, p0 � 0). In a massive theory, the
spectrum is more precisely assumed to be
contained in the union of the origin (that will
correspond to the vacuum vector introduced
next), of one or more discrete mass-shell hyper-
boloids Hþ(mi)(p

2 = m2
i , p0 > 0) with strictly

positive masses mi, and of a continuum. For
simplicity, and unless otherwise stated, we con-
sider in this section a theory with only one mass
m and a continuum starting at 2m (but this will
not be so in a theory with ‘‘two-particle bound
states’’). This condition introduces a first (partial)
particle content of the theory. In models, physical
masses will not be introduced at the outset but
will have to be determined.

3. existence in H of a vacuum vector �, which is the
only invariant vector under Poincaré transforma-
tions up to scalar multiples; it is moreover assumed
that the vector space generated by the action of field
operators on the vacuum is dense in H.

4. Poincaré covariance of the theory.

Subspaces Hin and Hout of H can be defined by
limiting procedures. To that purpose, one considers
test functions fj, t(x) with Fourier transforms of
the form ~fj(p)ei(po�[p2þm2]1=2)t, where the functions ~fj

have their supports in a neighborhood of the mass-
shell Hþ(m). It can then be shown that vectors of the
form �t = A(f1, t)A(f2, t) � � �A(fn, t)� converge to

limits in H when t! �1, respectively, and that
these limits depend only on the mass-shell restric-
tions of the test functions ~fjjHþ(m)

.
Hin and Hout are interpreted physically as sub-

spaces of states that are ‘‘asymptotically tangent’’
before, respectively, after the interactions, to free-
particle states with particles of mass m. They are in
fact both isomorphic to the free-particle Fock space
F , namely the direct sum of n-particle spaces of
‘‘wave functions’’ depending on n on mass-shell
energy–momenta p1, p2, . . . , pn.

AC is the assertion that H=Hin =Hout, that is,
that each state in H is asymptotically tangent to a
free-particle state, with particles of mass m, both
before and after interactions (the two free-particle
states are different if there are interactions). This
condition cannot be expected to always hold in the
general framework introduced above, even if we
restrict our attention to ‘‘physically reasonable’’
theories in which states of H are asymptotically
tangent to free-particle states before and after
interactions: the absence of other stable particles
with different masses is not guaranteed. For
instance, even if A is ‘‘neutral,’’ the action of field
operators on the vacuum might generate pairs of
‘‘charged’’ particles with opposite charges, whatever
‘‘charge’’ one might imagine. Individual charged
particles cannot occur in the neutral space H and
their mass thus does not appear in the spectral
condition. Hence, such states of pairs of charged
particles will not belong to Hin or Hout although
they belong to H. However, if the set of charged
particles is known, it can be shown that the above
framework might be enlarged by defining charged
fields, in such a way that AC might still be valid in
the enlarged framework (see the article of Buchholz
and Summers). For simplicity, we restrict below our
attention to the simplest theories in which AC holds
in the way stated above.

If AC holds, it is shown that there exists a linear
operator S from H to H, called ‘‘collision operator’’
or ‘‘S-matrix,’’ that relates the ‘‘initial’’ and ‘‘final’’
free-particle states to which a state in H is tangent
before and after interactions, respectively; if AC
does not hold, S can also be defined as in operator in
F . Collision amplitudes or scattering functions are
the energy–momentum kernels of S for given
numbers m and n of initial and final particles. As
easily seen, they are well-defined distributions on the
space of all initial and final on-shell energy–
momenta. For convenience, we will denote by pk

the physical energy–momentum of a final particle
with index k(pk 2 Hþ(m)), and by �pk the physical
energy–momentum of an initial particle
(�pk 2 Hþ(m)).
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Wightman Functions, Chronological Functions,
and LSZ Reduction Formulas

The N-point Wightman ‘‘functions’’ WN are defined
as the vacuum expectation values (VEVs) of the
products of N field operators, namely:

WNðx1; x2; . . . ; xNÞ
¼< �;Aðx1ÞAðx2Þ � � �AðxNÞ� >

The chronological functions TN are the VEVs of the
chronological products of the fields A(x1), . . . ,
A(xN): in the latter, fields are ordered according to
decreasing values of the time components of the
points xk. TN is essentially well defined due to local
commutativity with, however, problems not treated
here at coinciding points.

~TN(p1, . . . , pN) will denote the Fourier transform
of TN. In view of the invariance of the theory under
spacetime translations, functions above are invariant
under global spacetime translation of all points xk

together. Hence, their Fourier transforms contain an
energy–momentum conservation (e.m.c.) delta func-
tion �(p1 þ p2 þ � � � þ pN). Connected N-point func-
tions are defined by induction (over N) via a
formula expressing each (nonconnected) function
as the sum of the corresponding connected function
and of products of connected functions depending
on subsets of points. In contrast to nonconnected
functions, the analysis shows that connected func-
tions in energy–momentum space do not contain in
general e.m.c. delta functions involving subsets of
energy–momenta.

It can be shown that the two-point function
~T2(p1, p2) = �(p1 þ p2)~T2(p1) has a pole of the form
1=(p2

1 �m2) and that ~TN has similar poles for each
energy–momentum variable pk on the mass-shell. The
connected, amputated chronological function ~T

amp, c

N is
defined by multiplying (~TN)connected = ~Tc

N (for N � 2)
by the product of all factors p2

k �m2 that cancel these
poles. It is then shown that it can be restricted as a
distribution to the mass-shell of any physical process
with m initial and n final particles, with mþ n = N,
and that this restriction coincides with the collision
amplitude of the process. A process is here character-
ized by fixing the initial and final indices.

The analyticity properties of interest (described
below) will apply to the connected functions after
factoring out their global e.m.c. delta functions.

The Analytic N-point Functions

The Wightman axioms (without so far AC) yield
general analyticity, as also asymptotic causality,
properties that we now describe. The analysis is
essentially based on the interplay of support proper-
ties in x-space arising from local commutativity and

the definition of chronological operators, and sup-
port properties in p-space due to the spectral
condition. Support properties in x-space apply to
cell and more general ‘‘paracell’’ functions which are
VEVs of adequate combinations of products of
‘‘partial’’ chronological operators. It is shown that
each such function has support in x-space in a closed
cone CS (with apex at the origin). Moreover, for cell
functions, the cone CS is convex and salient. Hence,
in view of the usual Laplace transform theorem, the
cell function in p-space (after Fourier transforma-
tion) is the boundary value of a function analytic in
complex space in the tube Re p arbitrary, Im p in the
open dual cone ~CS of CS. It is also shown that, near
any real point P = (P1, . . . , PN), the chronological
function in p-space coincides with one or more cell
functions.

Together with support properties in p-space
arising from the spectral condition and the use of
coincidence relations between some cell functions (in
adequate real regions in p-space), one then shows
the existence, for each N, of a well-defined, unique
analytic function FN, called the ‘‘analytic N-point
function,’’ whose domain of analyticity, the ‘‘primi-
tive domain of analyticity,’’ in complex p-space
contains all the tubes T S associated with the cell
functions. It also contains in particular a complex
neighborhood of the Euclidean energy–momentum
space which consists of energy momenta Pk with
real Pk and imaginary energies (Pk)0. Moreover, the
chronological function ~Tamp, c

N is the boundary value
of FN at all real points P, from imaginary directions
which include those of the convex envelope of the
cones ~CS associated with cell functions that coincide
locally with ~T amp, c

N .
However, the primitive domain has an empty

intersection with the complex mass-shell, and thus
gives no result on analyticity properties of collision
amplitudes on the (real or complex) mass-shell. For
N = 4, it has been possible to largely extend the
primitive domain (which is not a ‘‘natural domain of
holomorphy’’) by computing (parts of) its holomorphy
envelope, which now has a nonempty intersection
with the complex mass shell. It is shown in turn that
the four-point function F4 can be restricted to the
complex mass-shell in a one-sheeted domain, called
the ‘‘physical sheet,’’ that admits each (real) physical
region on its boundary (there is here one physical
region for each choice of the two initial and the two
final indices, the corresponding physical regions being
disconnected from each other). In each physical
region, the collision amplitude is the boundary value
of the mass-shell restriction of F4, from the corre-
sponding half-space of ‘‘þi"’’ directions Im s > 0,
where s is the (squared) energy of the process.
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The analyticity domain on the complex mass-shell
contains paths of analytic continuation between the
various physical regions (‘‘crossing property’’) and
admits cuts sij real � (2m)2 covering the various
physical regions. From these analyticity properties in
the physical sheet, one can also derive ‘‘dispersion
relations’’ (see Dispersion Relations).

Asymptotic causality and analyticity
properties for N � 4

No similar result has been achieved at N > 4, and as
a matter of fact, no similar result is expected if the
AC condition is not assumed. The best results
achieved so far are decompositions of the collision
amplitude, in various parts of its physical region, as
a sum of boundary values of functions analytic in
domains of the complex mass-shell. In contrast to
the case N = 4, the sum reduces to one term only in
a certain subset of the physical region. Near other
points, the N-point analytic function cannot be
restricted locally to the complex mass-shell, though
it can be decomposed as a sum of terms which,
individually, are locally analytic in a larger domain
that intersects the complex mass-shell.

These analyticity properties for N � 4 are a direct
consequence of (and equivalent to) an asymptotic
causality property that we now outline. Let fk, � (p)
be, for each index k, a test function of the form

fk;�ðpÞ ¼ eip:�uk e��� jpk�Pkj2

where each uk is a point in spacetime, Pk is a given
on-shell energy–momentum, and � will be a space-
time dilatation parameter (� > 0). It is well localized
in p-space around the point Pk and its Fourier
transform is well localized in x-space around the
point �uk up to an exponential fall-off of width

ffiffiffiffiffiffi
��
p

which is small compared to � as �!1.
We now consider the action of the (connected,

amputated) chronological function on such test
functions. A configuration u = (u1, . . . , uN) will be
called ‘‘noncausal’’ at P = (P1, . . . , PN) if this action
decays exponentially as �!1. In mathematical
terms, u is then outside the ‘‘essential support’’ or
‘‘microsupport’’ at P. The asymptotic causality
property established, has roughly the following
content: the only possible causal configurations u
at P are those for which energy–momentum can be
transferred from the initial to the final points in
future cones. Moreover, at least two initial ‘‘extre-
mal’’ points must coincide, as also two extremal
final points. The simplest example is the case N = 4;
if, for example, indices 1,2 are initial and 3, 4 final,
then the only a priori possible causal situations are
such that u3 = u4 is in the future cone of u1 = u2 (in

this particular case Lorentz invariance implies that
u3 � u1 must be proportional to P3 þ P4). In more
general cases, the possible causal configurations u
depend on P.

AC and Analyticity

Asymptotic Causality in Terms of Particles
and Landau Singularities

As a matter of fact, a better causality property ‘‘in
terms of particles’’ – which is the best possible
one – is expected for ‘‘physically reasonable’’
theories if the (stable) particles of the theory are
known. (By physically reasonable, we mean the
absence of ‘‘à la Martin’’ pathologies such as the
occurrence of an infinite number of unstable
particles with arbitrary long lifetime). That prop-
erty expresses the idea that the only causal
configurations u at P are those for which the
energy–momentum can be transferred from the
initial to the final points via intermediate stable
particles in accordance with classical laws: there
should exist a classical connected multiple scatter-
ing diagram in spacetime joining the initial and
final points uk, with physical on-shell energy–
momenta for each intermediate particle and
energy–momentum conservation at each (point-
wise) interaction vertex.

This property, if it holds, yields in turn (and is
equivalent to) improved analyticity of the analytic
N-point function near real physical regions: the (on-
shell) collision amplitude is the boundary value of a
unique analytic function in its physical region, at
least away from some ‘‘exceptional points.’’ The
boundary value (namely the collision amplitude) is
moreover analytic outside Landau surfaces Lþ(�) of
connected multiple scattering graphs �; and along
these surfaces (which are in general smooth
codimension-1 surfaces), it is in general obtained
from well-specified ‘‘þi"’’ directions (that depend in
general on the real point P of Lþ).

Exceptional points are those that lie at the
intersection of two (or several) surfaces Lþ(�1),
Lþ(�2) . . . , with opposite causal directions, and
hence having no þi" directions in common (in the
on-shell framework). Such points do not occur at
N = 4 for two-body processes, in which case the
surfaces Lþ are the n-particle thresholds s = (nm)2,
with n � 2, s = (p1 þ p2)2. They do occur more
generally: in a 3! 3 process, 1,2,3 initial, 4,5,6
final, this is the case of all points P such that
�P1 = P4, �P2 = P5, �P3 = P6 which all belong to
the Landau surfaces of the two graphs �1, �2, with
only one internal line joining two interaction
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vertices: in the case of �1, (resp., �2), the first vertex
involves the external particles 1, 2, 4 (resp., 1, 3, 5),
while the second one involves 3, 5, 6 (resp., 2, 4, 6).
If moreover P1, P2, P3 lie in a common plane,
previous points P also lie on surfaces Lþ of
‘‘triangle’’ graphs with again opposite causal
directions at P. The fact that þi� directions are
opposite can equally be checked for the corre-
sponding Feynman integrals of perturbative field
theory.

Remark The above points are no longer exceptional
in spacetime dimension 2. In fact, all surfaces
Lþ mentioned then coincide with the (on-shell)
codimension-1 surface �p1 = p4,�p2 = p5,�p3 = p6,
with two opposite causal directions. The previous
asymptotic causality property, together with a further
‘‘causal factorization’’ property for causal configura-
tions, then yields along that surface an actual
factorization of the three-body (nonconnected)
S-matrix into a product of two-body scattering
functions modulo an analytic background. The latter
vanishes outside the surface, hence is identically zero,
for some special two-dimensional models.

In the absence of the AC condition, one clearly
sees why the above causality in terms of particles
cannot be established: as we have seen, there is
a priori no control on the stable particles of the
theory and on their masses, and pathologies such as
those mentioned above cannot be excluded. Hope-
fully, the first problem should be solved if AC is
assumed, and the second one should be removed by
adequate regularity assumptions. This is the pur-
pose of the so-called axiomatic nonlinear program,
in which one also wishes to examine further
problems, for example, analytic continuation into
unphysical sheets, with the occurrence of possible
unstable particle poles and other singularities,
nature of singularities, possible multiparticle dis-
persion relations, . . . . , to cite only a few. Results so
far remain limited but provide a first insight into
such problems.

The Nonlinear Axiomatic Program

Results described below are based on discontinuity
formulas arising from – and essentially equivalent in
adequate energy regions to – AC, together with
some regularity conditions. They can be established
either with or without the introduction of adequate
‘‘irreducible’’ kernels. The methods rely on some
general preliminary results on Fredholm theory in
complex space (and with complex parameters).
Irreducible kernels are defined through integral
(Fredholm type) equations, first in the Euclidean

region (imaginary energies) and then by local
distortions of integration contours allowing one to
reach the Minkowskian region. From discontinuity
formulas and algebraic arguments, these irreducible
kernels are shown to have analyticity (or meromor-
phy) properties associated with the physical idea of
irreducibility (see examples below).

Results obtained so far with or without irreduci-
ble kernels are comparable in the simplest cases.
However, the method based on irreducible kernels
gives more refined results and seems best adapted to
‘‘extricate’’ the analytic structure of N-point func-
tions for N > 4.

N = 4, Two-Body Processes in the
Low-Energy Region

By even theory, we mean theories in which N-point
function vanishes identically for N odd.

Standard results on two-body processes with
initial (resp., final) energy–momenta p1, p2 (resp.,
p01, p02) in the low-energy region (2m)2 � s < (3m)2

(s = (p1 þ p2)2 = (p01 þ p02)2) are based on the ‘‘off-
shell unitarity equation’’

Fþ � F� ¼ Fþ ? F� ½1�

where Fþ(p1, p2; p01, p02) and F�(p1, p2; p01, p02) denote,
respectively, the þi" and �i" boundary values of the
four-point function F4 from above or below the cut
s � (2m)2 in the physical sheet, and ? denotes on-
shell convolution over two intermediate energy–
momenta. This relation is a direct consequence of
AC for s less than (3m)2, or less than (4m)2 in an
even theory. When the four external energy–momen-
tum vectors p1, p2, p01, p02 are put on the mass shell
(on both sides of that relation), one recovers the usual
elastic unitarity relation for the collision amplitude
Tþ and its complex conjugate T�:

Tþ � T� ¼ Tþ ? T�

In the exploitation of these relations outlined below,
a regularity condition is moreover needed, for
example, the continuity of Fþ in the low-energy
region.

By considering the unitarity equation as a Fredholm
equation for Tþ at fixed s (in the complex mass
shell), one obtains the following result: Tþ can be
analytically continued as a meromorphic function
of s through the cut (in the low-energy region) in a
two-sheeted (d even) or multisheeted (d odd)
domain around the two-particle threshold. Possible
poles in the second sheet (generated by Fredholm
theory) will correspond physically to unstable
particles. The singularity at the two-particle thresh-
old is of the square-root type in s for d even, or in
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1=log s for d odd. The difference between the two
cases is due to the power (d � 1)=2 of s, integer or
half-integer, in the kinematical factor arising from
on-shell convolution. This result can also be
extended to the off-shell function F4 by applying a
further argument of analytic continuation making
use of the off-shell unitarity equation.

Restricting now our attention to an even theory
(for simplicity), a similar result also follows from the
introduction of a two 2PI BS type kernel G
satisfying (and here defined from F through) a
regularized BS equation of the form

F ¼ Gþ F �M G ½2�

where �M denotes convolution over two intermedi-
ate energy–momenta with two-point functions on
the internal lines and a regularization factor in order
to avoid convergence problems at infinity (G then
depends on the choice of this factor but its proper-
ties and the subsequent analysis do not). Alterna-
tively, one may also introduce a kernel satisfying a
renormalized BS equation, but this is not useful for
present purposes.

Starting from the above discontinuity formula [1],
one shows in turn that G is indeed ‘‘2PI’’ in the
analytic sense:

Gþ ¼ G� ½3�

in the low-energy region. More precisely, G is
analytic or meromorphic (with poles that may arise
from Fredholm theory) in a domain that includes the
two-particle threshold s = (2m)2, in contrast to F
itself.

The proof of [3] is based on the relation
independent of M (and thus leaving the M depen-
dence implicit).

�þ � �� ¼ ? ½4�

(which is a nontrivial adaptation of the decomposi-
tion of a mass-shell delta function as a sum of plus
and minus i" poles). A simple algebraic argument
then shows essentially the equivalence between the
discontinuity formulas [1] and [3].

In turn, assuming that G has no poles, this
analyticity allows one to recover the two-sheetedness
(d even) or multisheetedness (d odd, singularity in
1=log) of F, in view of the BS type equation.

N = 6, 3–3 Process in the Low-Energy Region
(Even Theory)

The result, in the neighborhood of the 3–3 physical
region, is here a ‘‘structure equation’’ expressing the
3–3 function F in the low-energy region as a sum of
‘‘à la Feynman contributions’’ associated with

graphs with one internal line and with triangle
graphs, with two-point functions on internal lines
and four-point functions at each vertex, plus a
remainder R. The latter is shown to be a boundary
value from þi" directions Im s positive, where
s = (p1 þ p2 þ p3)2, p1, p2, p3 denoting the energy–
momentum vectors of the initial particles. Further
regularity conditions are needed to recover its local
physical region analyticity. The various explicit
contributions that we have just mentioned yield the
actual physical region Landau singularities expected
in the low-energy 3–3 physical region.

A more refined result, in the approach based on
irreducible kernels outlined below, applies in a
larger region and then includes further à la Feynman
contributions associated with 2-loop and 3-loop
diagrams (the latter do not contribute to ‘‘effective’’
singularities in the neighborhood of the physical
region).

The first result can be established from disconti-
nuity formulas for the three-point function around
two-particle thresholds, arising from AC, and
‘‘microsupport’’ analysis of all terms involved. In
the approach based on irreducible kernels, it is
useful to introduce in particular a 3PI kernel G3

that, in contrast to the 3–3 function, will be analytic
or meromorphic in a domain including the three-
particle threshold. To that purpose, an adequate set
of integral equations is introduced and the three-
particle irreducibility of G3 in ‘‘the analytic sense’’ is
then established. In turn it provides the complete
structure equation mentioned above.

More General Analysis

There are so far only preliminary steps in more
general situations, in view of (difficult) technical
problems involved and the need of ad hoc regularity
assumption at each stage. As already mentioned, the
approach based on irreducible kernels seems best
adapted. The analysis should clearly involve more
general irreducible kernels with various irreducibil-
ity properties with respect to various channels (and
not only with respect to the basic channel consid-
ered such as the 3–3 channel in the case above).
From a heuristic viewpoint, one may first consider
to that purpose adequate formal expansions into
(infinite) sums of ‘‘à la Feynman contributions’’
adapted to the energy regions under investigation.
These à la Feynman contributions will involve
adequate irreducible kernels in the graphical sense
at each vertex, and the above expansions correspond
formally to the best possible regroupings of
Feynman integrals with respect to the energy region
considered. From such expansions, one might
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determine adequate sets of integral equations allow-
ing one, together with regularity assumptions, to
carry out an analysis similar to above.

The Models

A Euclidean field-theoretical model can be defined
by a probability measure d�(’) on the space of
tempered distributions ’ in Euclidean spacetime,
whose moments verify the Osterwalder–Schrader (or
similar) axioms. The moments of d� are, for each N,
the Euclidean (Schwinger) N-point functions:

Sðx1; . . . ; xNÞ ¼
Z
’ðx1Þ � � �’ðxNÞ d�ð’Þ ½5�

In what follows, the measure d� will be a
perturbed Gaussian measure which, for the massive
’4 model with a volume cutoff � and an ultraviolet
cutoff �, is given in d dimensions by

d��;� ¼ e
��ð�Þ

R
�
’4ðzÞ dzþað�Þ

R
�
’2ðzÞdz

d	�ð’Þ=Z�;� ½6�

where Z�, � is the normalization factor and where
d	�(’) is the Gaussian measure of mean zero
(
R
’ d	= 0) and covariance

Cðx� y; �Þ ¼
Z

ddp eipðx�yÞ e�p2=�2

=ð
ð�Þp2 þm2Þ

where by convention m is called the bare mass.
For d = 2 or 3 one can show that, for �(�) =�

small enough (depending on m) and 
(�) = 1, there
exists a function a(�) (a(�) = O(�) as �! 0) such
that, for any set of N distinct points, the function
S(x1, . . . , xN) = lim�, �!1 S�, �(x1, . . . , xN) exists, is
not Gaussian (hence does not correspond to a trivial,
free theory), and satisfies the Osterwalder–Schrader
axioms. The connected part S(x1, . . . , xN)connected has
the following perturbative series:

lim
�;�!1

X
n

ð�1Þn

n!

Z
’ðx1Þ . . .’ðxNÞ

	
Z

�

½�’4 � að�Þ’2�ðzÞ dz

� �n

d	�;�ð’Þ
��
connected

½7�

which is the (divergent) sum of the connected
renormalized (Euclidean) Feynman graphs.

The study of the perturbative series leads to the
distinction of:

1. the super-renormalizable theories, where it is
possible to take �(�), 
(�) not depending on �.
In dimension 2, all the models where �’4 is
replaced by

c2p’
2pþ c2p�1’

2p�1þ�� �þ c5’
5þ�’4þ c3’

3 ½8�

also exist provided that c2p > 0 is small enough
depending on m and on the other coefficient c’s
and �, and

2. the just renormalizable theories where �(�) (and
possibly 
(�)) depend in general on �. In models
mentioned below �(�)! 0 as �!1; this char-
acterizes ‘‘asymptotic freedom.’’

The proof of the existence of the N-point
functions makes use of Taylor type expansions
with remainder. The first orders are used to compute
�(�), 
(�), a(�). The idea is to consider the functional
integral [5] – at �, � finite – as an integral over
roughly ��d ‘‘degrees of freedom’’ which are weakly
coupled. This corresponds to a decomposition of the
phase space (with cutoff both in x-space (the box �)
and in p-space (roughly jpj < �)). The coupling
between different regions in x-space comes from
the propagators C�; the coupling between different
frequencies in p-space comes from the ’4 term (the
interaction vertex). The expansion is then, for each
degree of freedom, a finite expansion in the coupling
between this degree and the others so that, even if
the expansion is perturbative up to the order ��d,
the bound on each term is qualitatively the one on a
product of ��d finite order-independent expansions,
the order of which can be fixed uniformly in � (and
depending only on �). To achieve this program, the
propagator linking two points of distance of order L
must have a decrease of order e�L�1jx�yj, that is, have
momentum larger than L�1, so that one must
localize both in x-space and p-space ; for example,
the smallest cells of phase space correspond to fields
’ localized in x, p-spaces, the x-boxes being of side
��1 and the p-localization consisting of values such
that roughly (�=2) � jpj � �. More generally, a
generic cell (of index i) corresponds to fields ’ at
point x and momentum p, with x in a box of side
2i��1 and 2�i�1� < jpj < 2�i�.

These expansions are mimicking the à la Wilson
renormalization group. For just renormalizable theo-
ries (where �(�) depends on �), one is led to introduce
the effective coupling constant �(2�i�) whose pertur-
bative expansion is the value at momentum zero of
the sum of all the (connected, amputated) four-point
functions containing only propagators of momentum
(roughly) bigger than 2�i� (plus �(�) which in fact
tends to zero as �!1).

Then by small coupling we mean a theory where
�(2�i�)=
(2�i�)2 is small for all i.

By convention we write �ren, 
ren, aren for the
effective parameters of the theory at zero
momentum.

The expansion obtained expresses Sconnected as a
sum of terms each of them being associated to a
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given set of phase-space cells which are ‘‘connected’’
together by ‘‘links’’ that are either propagators or
vertices. Each term decreases exponentially with the
difference imax � imin of the upper and lower indices
of the phase-space cells involved. Moreover, each set
must contain the cells associated to the fields
’(x1) � � �’(xN) whose indices are fixed by the order
of magnitude of the distances between the points.
On the other hand, the difference between the
theory of cutoff � and the one of cutoff 2� are
terms containing at least one cell of momentum of
order �; these terms are thus small like
cst(x1, . . . , xN)e�(cst)�, so that the limit as �!1
exists.

So far, the ‘‘construction’’ of models is possible
only at small coupling, apart from special cases. The
’4 theory in dimension 4 is just renormalizable
(from the perturbative viewpoint) but the above
condition of small coupling cannot be achieved (and
it is generally believed that this model cannot be
defined as a nontrivial theory). A just renormaliz-
able model has been shown to exist, namely the
Gross–Neveu model which is a fermionic theory in
dimension 2. The elementary particle physics models
are just renormalizable but their construction has
not been completed so far (in particular in view
of the confinement problem). See Constructive
Quantum Field Theory for details.

To state the result in a form convenient for our
purposes here, we introduce a splitting of the
covariance in two parts:

Cðx� y;�Þ ¼ CMðx� y;�Þ þC>Mðx� y;�Þ; M > m

~CMðp;�Þ ¼ ðe�p2=�2

=p2 þm2Þ � ðe�p2=�2

=p2 þM2Þ

so that CM(x� y) behaves like C at large distances but
has an ultraviolet cutoff of size M, and jC>M(x� y)j �
e�Mjx�yj decreases exponentially depending on the
(technical) choice of M. Let d	M(’) be the Gaussian
measure of covariance CM.

One divides also � in unit cubes and obtains for
the connected N-point function an expansion as a
sum over connected trees; a tree T is composed of
lines ‘ and vertices v; each line joins two vertices or
one of the external points x1, . . . , xN and a vertex;
moreover, there are no loops.

To each line ‘ is associated a propagator
CM(z‘, z0‘) = CM(‘).

To each vertex v are associated:

1. two subsets Iv, I0v of {‘},
2. a connected set Xv of unit cubes such that all the

z‘, ‘ 2 Iv and all the z0‘, ‘ 2 I0v are contained in
Xv; jXvj is the volume of Xv, and

3. a kernel KXv
({z, z0}v;’)

Finally, the external points are by convention z‘
points; then:

S�;�ðx1; . . . ; xNÞconnected

¼
Z

d	Mð’Þ
X

T

1

jTj!
X
fXvg

nonoverlapping

	
Z � Y

‘
z‘ not external

dz‘

��Y
‘2T

dz0‘CMð‘Þ
�

	
Y
v2T

KXv
ðfz; z0gv;’Þ ½9�

where for coupling small enough:Z
d	Mð’Þ

Y
v2T

jKXv
ðfz;z0gv;’Þj �

Y
v2T

e�Mð1��ÞjXvj ½10�

The X’s are 2	 2 nonoverlapping; however, it will
suffice to sum over all X’s (without restriction) to
get a bound showing the convergence of the
expansion as �!1. In this formula the K(. ,’)’s
are still coupled by the measure d	M(’); all the
nonperturbativity is hidden in the K’s (in particular
the contribution of momentum bigger than M).

As a consequence of [9] and if a(�,�) has been
chosen such that aren = 0, for M large enough and at
small coupling (depending on M, m):

jSðx; yÞconnectedj

� jCMðx� yÞj þ
Z

dz01dz02jCMðx� z01Þ

	 e�Mð1��Þjz0
1
�z0

2
jCMðz02 � yÞj þ � � �

� ðcstÞe�mð1��Þjx�yj ½11�

More generally, the connected N-point function
satisfies

jSðx1; . . . ; xNÞconnectedj � cst e�mð1��Þdðx1;...;xNÞ ½12�

where d(x1, . . . , xN) is the length of the smallest tree
joining x1, . . . , xN, with possibly intermediate points.

The Irreducible Kernels

The 1PI Kernel and a Lippmann–Schwinger Equation

To then show that a theory – if the perturbation series
heuristically shows it – contains only one particle of
mass smaller than 2m(1� �), it is necessary to expand
further the coupling between the K’s in [9]. Each
perturbative step relatively to this coupling will
generate a sum of terms such that in each one there is
a ‘‘new’’ propagator CM between two K’s.

The fact that in [9] the X’s are nonoverlapping
has the consequence that an expansion where for
each pair of KX the number of propagators CM
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remains bounded (say by nþ 1) is convergent (for
small enough couplings depending on m, n); this is
because, for a given X, the others must be farther
and farther as their number increases, and in view of
the exponential decrease (in x-space) of CM.

We then consider the expansion where we have
further expanded the two-point function S(x, y) such
that each term can be decomposed in the channel
x! y in CM propagators and 1PI contributions (in
the sense that any line cutting such a 1PI contribu-
tion (and outside the X0s) cuts at least two
propagators); that means that these 1PI contribu-
tions are no longer coupled by the d	M(’) measure.
They are made of propagators and of KX which still
have nonoverlapping restrictions; the latter are
straightforwardly expanded using a kind of (con-
vergent) Mayer expansion; the result is finally a
Lippmann–Schwinger type equation:

Sðx; yÞconnected¼CMðx� yÞ þ
Z

dz1 dz2 CMðx� z1Þ

	G1ðz1; z2ÞCMðz2 � yÞ þ � � � ½13�

or

Sðx; yÞconnected ¼ CM

X
p�0

½G1CM�p
" #

ðx; yÞ

which is equivalent to

Sconnected ¼ CM þ CMG1CM þ CMG1Sconnected ½14�

where G1 is a 1PI kernel that satisfies the bound

jG1ðt; uÞj � �rene�2mð1��Þjt�uj ½15�

In Fourier transform, eqn [14] becomes

FðpÞ¼ ~CMðpÞ þ ~CMðpÞ ~G1ðpÞ~CMðpÞ
þ ~CMðpÞG1ðpÞFðpÞ ½16�

Denoting by �(pþ q) F(p, q) the Fourier transform of
S(x, y)connected, we can then compute F(p):

FðpÞ ¼ ðp2 þm2Þ½~CM þ ~CM
~G1�ðpÞ

ðp2 þm2Þ � ðp2 þm2Þ~CM
~G1ðpÞ

½17�

where (p2 þm2)~CM(p)! (1�m2=M2) as p! 0 and
j ~G1(p)j � �ren cst(m) so that (as expected) F has no
pole in the Euclidean region at small coupling; but,
as will be seen in the next section, it has a pole
outside the Euclidean region.

The 2PI Kernel and a BS Equation

From the previous discussion, it is clear that one can
extract from [9] as many propagators as we want
between kernels KX. If one considers a splitting of
the external points in incoming x1, . . . , xp and

outgoing xpþ1, . . . , xN points, this defines a channel.
One then obtains nPI kernels (in the given channel).
In the same way as above, one obtains a relevant
structure equation; this equation makes sense only
if the kernels KX have a decrease corresponding to
n-particle irreducibility; to that purpose we take
M > nm. The expansion converges for couplings
small enough depending on m and n.

In the case n = 2 this gives a kind of BS equation
(the Lippmann–Schwinger equation corresponding
to the case n = 1); if we restrict, for simplicity, the
analysis to even theories one is led to jump directly
to the case n = 3:

Sðx1; x2; x3; x4Þconnected

¼
Z

dz1 dt1 dz2 dt2ð�MÞðx1; x2; z1; t1Þ

	G2ðz1; t1; z2; t2Þð�MÞðz2; t2; x3; x4Þ þ � � � ½18�

S ¼ �M

X
p�1

½G2�M�p

or

S ¼ �MG2 �M þ �M G2S ½19�

where

ð�MÞðx1; x2; x3; x4Þ ¼ Sðx1; x3ÞSðx2; x4Þ
þ Sðx1; x4ÞSðx2; x3Þ

and where

jG2ðt1; t2; u1; u2Þj
� �ren expf�4mð1� �Þmax

i;j
ðjti � ujjÞg ½20�

Equation [19] once amputated, and after Fourier
transformation, is eqn [2].

More General Irreducible Kernels
and Structure Equations

Irreducible kernels with various degrees of irreduci-
bility in various channels can be defined in a similar
way. Corresponding expansions of N-point func-
tions follow, in terms of integrals involving these
kernels and two-point functions. These kernels are
again convergent at small coupling (! 0 as their
irreducibility !1) as well as the corresponding
structure equations (which generalize eqn [18]).

Analyticity, AC, and Bound States

As explained in the introduction, we now proceed
by analytic continuation away from the Euclidean
region in complex energy–momentum space.
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First, it is easily seen that the two-point function
is analytic in the region s < (2m)2 � � apart from a
pole at s = m2

ph which defines the physical mass
mph (m2

ph is the zero in p2 of the denominator in
formula [17]). In view of the bounds of the previous
two sections, mph is close to the ‘‘bare’’ mass m.

The 2PI kernel, for even theories, is shown, again by
Laplace transform theorem, to be analytic and bounded
in domains around and away from the Euclidean region
up to s = (4m)2 � �, and is of the order of �ren.

As we ha ve seen in the section ‘‘AC an d
analyt icity,’’ the analytic ity of G2 entails the analytic
structure of F (two-sheeted or multisheeted at the
threshold). On the other hand, further poles of F can
be generated by the BS integral equation [2] in the
physical or unphysical sheets. If a pole in the
physical sheet occurs at s < (2mph)2 real, it will
correspond to a new particle in the theory, namely a
two-particle bound state.

AC in the Low-Energy Region

The analysis of possible bound states, which will be
presented in the following, will show that there
might be at most one two-particle bound state of
mass mB < 2mph which tends to 2mph as the
couplings tends to zero.

On the other hand, for even theories, in view of
the analyticity properties of the two-point function
and of the 2PI kernel G2, equation [1] holds in the
region (2m2

ph) < s < (4mph)2 � �, where 
 is on-shell
convolution with particles of mass mph.

If there is no two-particle bound state, this
characterizes the AC of the theory for s < (4mph)2 � �.

If there is a bound state of mass mB, AC is
established only in the region s < (3mph)2 � �.

For non-even theories, the analysis is similar but
requires the introduction of new irreducible kernels
in view of the fact that the non-evenness opens new
channels. AC in all cases can be established, for
small couplings, up to s < (3mph)2 � �.

Analysis of Possible Two-Particle Bound States
for Even Theories at Small Coupling

It can be checked that such poles of F, if there are,
either lie far away in the unphysical sheet(s) or are
close to the two-particle threshold (s = (2mph)2).
This is due to the convergence, at small coupling, of
the Neumann series F = G2 þG2 �M G2 þ � � � . Indi-
vidual terms G2 �M � � � �M G2 are, in fact, defined
away from the Euclidean region by analytic con-
tinuation in a two-sheeted (d even) or multisheeted
(d odd) domain around the threshold: to that
purpose locally distorted integration contours (initi-
ally the Euclidean region) are introduced as in the

section ‘‘A C and analytic ity,’’ so as to avo id the pole
singularities of the two-point functions involved in
�M, the threshold singularities being due to the
pinching of this contour between the two poles as
s! (2mph)2. If a fixed neighborhood of the thresh-
old is excluded, one does obtain uniform bounds of
the form (cst �ren)q (for a term with q factors G2) in
any bounded domain, which ensures the conver-
gence of the Neumann series.

It remains to study the neighborhood of the
threshold. To that purpose, the following method
is convenient. One shows that the convolution
operator �M can be written in the form

�M ¼ gð s Þ 
 þr ½ 21�

where 
 is, as in the section ‘‘AC and analyticit y,’’
on-shell convolution for s > (2mph)2 or is obtained
by analytic continuation for complex value of s
around the threshold; g(s) = 1=2 for d even and, if d
is odd, g(s) = (i=2�) log �, where �= 4m2

ph � s. In
view of this definition of g(s), the operator r is
regular: it is an analytic one-sheeted operation
around the threshold (this is equivalent to [4]), and
it has no pole singularities. This property of r can
be established by geometric methods or by an
explicit evaluation.

It is then useful to introduce a new kernel U
linked to G2 by the integral equation

U ¼ G2 þUrG2 ½22�

In view of the regularity and bounds of r and G2,
one sees (e.g., by a series expansion) that U, like G2,
is analytic in a neighborhood of the threshold and
behaves in the same way at small �ren.

By a simple algebraic argument F and U are
related by the integral equations

F ¼ U þ gðsÞU 
 F ¼ U þ gðsÞF 
U ½23�

Two-dimensional models We start the analysis with
the case d = 2. The mass shell is trivial in this case; let f
be the restriction of F to the mass shell; it depends only
on s = (p3 þ p4)2 due to the mass shell and e.m.c.
constraints (as also Lorentz invariance). On the mass
shell, the operation 
 becomes a mere multiplication
and the integral equation [23] becomes

f ðsÞ ¼ uðsÞ þ 1

aðsÞ f ðsÞuðsÞ ½24�

where u is the mass shell restriction of U and the
factor a(s) arising from 
 is of the form
a(s) = cst s1=2�1=2,�= (2mph)2 � s, which gives

f ðsÞ ¼ aðsÞuðsÞ
aðsÞ � uðsÞ ½25�
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In turn one obtains

F ¼ U þ
Uj jU

aðsÞ � uðsÞ ½26�

where Uj (resp., jU) is U with p3, p4 (resp., p1, p2)
restricted to the mass shell. Equation [26] comple-
tely characterizes the local structure of F in view of
the local analyticity of U.

The analysis of the possible poles follows from the
fact that U is equal to G2 up to higher order in �ren;
on the other hand, G2 is equal to a first known term
plus higher-order corrections in �ren (if we expand in
�ren the expression for G2 obtained in the previous
section), so that the leading contribution of u(s) is
known and the results follow.

For a theory (see [8]) containing a �ren’
4 term there is

exactly one pole, which corresponds to the zero of a(s)�
u(s), lying in the region (2mph)2 � � < s < (2mph)2.
This pole is either in the physical sheet for �ren < 0 or in
the second sheet if �ren > 0. In the case �ren < 0, this
pole corresponds to a two-particle bound state of
physical mass mB which tends to 2mph as �ren! 0.

In a model without ’4 term (�ren = 0) the lowest-
order contribution to G2, hence to U, is in general of
the order of the square of the leading coupling, in
which case there is always one bound state.

The treatment of the fermionic Gross–Neveu
model, which involves spin and color indices, is
analogous, with minor modifications. Equations now
involve, in the two-particle region, 4	 4 matrices;
poles of F are now the zeros of det (a(s)I �m(s)u(s)),
where m(s) is the 4	 4 matrix obtained from 2	 2
residue matrices (whose leading matrix elements are
explicitly computable). The detailed analysis, which
requires the consideration of different channels
(various color and spin indices) is omitted.

Three-dimensional models The results are similar:
F is decomposed as F0 þ F00, where F0 is the ‘= 0
‘‘partial wave component’’ of F, namely F0= (1=2�)R

F d, where  is the ‘‘scattering angle’’ of the
channel; its complement F00 is shown to be locally
bounded in view of a further factor �. The analysis
is then analogous to the case d = 2 with a(s) now
behaving like cst= log � as �! 0. There is, a priori,
either no pole, or one pole in the physical sheet at
s = m2

B < (2mph)2 with mB = 2mph þO(e�cst=�ren ),
depending again on the signs of the couplings. For
the existing even models such as the ’4 model, there
is no pole, hence no two-particle bound state.

Four-dimensional models The existence of the ’4

model in dimension 4 is doubtful. If a four-
dimensional model were defined, and if the 2PI
kernel G2 of a massive channel could be defined and
shown to satisfy analyticity properties analogous to

above, there would be no two-particle bound state at
small coupling. In fact, the kinematical factor �(d�3)=2

(for d even) generated by the mass shell convolution
is no longer equal to ��1=2 as in the d = 2 case but
now to �1=2. As a consequence, the Neumann series
giving F in terms of G2 is convergent also in the
neighborhood of the two-particle threshold.

Non-even theories The analysis for the non-even
theories follows similar lines. As already mentioned,
the analysis requires the introduction of new irredu-
cible kernels. For the models �’4 þ c3’

3, which do
exist at small couplings in dimensions 2 and 3, there
will be either exactly one or no two-particle bound
state, depending on the respective values of �, c3.

Structure Equations and AC in
Higher-Energy Regions

The structure equations of the previous section provide,
after analytical continuation away from the Euclidean
region, a rigorous version of the analysis presented at
the end of the section ‘‘AC a nd analyticity .’’ The
irreducible kernels can here be defined in a direct way
following the previous section, together with their
analyticity properties. One has then to derive the
discontinuity formulas that in turn characterize AC.
This program has been carried out in the 3! 3 particle
region, and partly in the general case. It seems possible
to complete general proofs up to some technical
(difficult) problems. As already mentioned, in this
approach, the coupling should be taken smaller and
smaller as the energy region considered increases.

See also: Axiomatic Quantum Field Theory; Constructive
Quantum Field Theory; Dispersion Relations; Dynamical
Systems in Mathematical Physics: An Illustration from
Water Waves; Perturbation Theory and its Techniques;
Quantum Chromodynamics; Scattering in Relativistic
Quantum Field Theory: Fundamental Concepts and
Tools; Scattering in Relativistic Quantum Field Theory:
the Analytic Program; Schrödinger operators.
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Schrödinger operators are linear partial differential
operators of the form

HV ¼ ��þ VðxÞ ½1�

acting on a suitable dense domain dom(HV) � L2(�)
in the Hilbert space of square-integrable functions
on a spatial domain � � Rd, where d 2 N. Here,
H0 =�� =�

Pd
	= 1 @

2=@x2
	 is (minus) the Laplacian

on �, and the potential V : �! R acts as a multi-
plication operator, [V ](x) := V(x) (x).

Historical Origin and Relation
to Theoretical Physics

In 1926, Schrödinger formulated quantum theory as
wave mechanics and proved later that it is equiva-
lent to Heisenberg’s matrix mechanics. He proposed
that the state of a physical system at time t 2 R is
given by a normalized wave function  t 2 L2(�)
whose dynamics is determined by a linear Cauchy
problem:  0 is the state at time t = 0, and for t > 0,
it evolves according to

i
@ t

@t
¼ H  t ½2�

the Schrödinger equation. More generally,  0 is a
normalized element of a Hilbert space H, and
the Hamiltonian HV is a self-adjoint operator,
that is, dom(HV) = dom(H
V) � H and HV = H
V on
dom(HV). Formally, eqn [2] is solved by the
evolution operator or propagator exp(�itHV) in
the form  t = exp(�itHV) 0. The self-adjointness
of HV insures the existence and unitarity of
the propagator exp(�itHV), for all t 2 R, so
k tk= k 0k= 1. For physics, this unitarity is crucial,
because k tk2 is interpreted as the total probability
of the system to be at time t in some state in H. The

general validity of eqn [2] as the fundamental
dynamical law of all physical theories, including,
for example, nonrelativistic and (special) relativistic
quantum mechanics, quantum field theory, and
string theory, deserves appreciation.

If the physical system under consideration is a
nonrelativistic point particle of mass m > 0 in a
potential eV : Rd ! R, then, according to the princi-
ples of classical (Newtonian) mechanics, its state is
determined by its momentum p 2 Rd and its posi-
tion x 2 Rd, its kinetic energy is (1=2m)p2, its
potential energy is eV(x), and the dynamics is given
by the Hamiltonian flow generated by the
Hamiltonian function Hclass(p, x) = (1=2m)p2 þ eV(x).
Schrödinger derived the Hamiltonian (operator)

H = �(�h2=2m)�þ eV(x) in [2] from the replace-
ment of the momentum p 2 Rd by the momentum
operator �i�hrx. This prescription is called quanti-
zation and is further discussed in the section
‘‘Quantization and semiclassical limit.’’ The
Schrödinger operator HV in [1] is then obtained after
an additional unitary rescaling,  (x) 7!�d=2 (�x),

by � := �h(2m)�1=2, and a redefinition V(x) := eV(x=�)
of the potential.

For more details, we refer the reader to
Schrödinger (1926) and Messiah (1962).

Self-Adjointness

Led by the requirement of unitarity of the propa-
gator, the domain dom(HV) in [1] is usually chosen
such that HV is self-adjoint, which, in turn, is most
often established by means of the Kato–Rellich
perturbation theory, briefly described below. If
V � 0, then H0 equals the Laplacian ��, which
is a positive self-adjoint operator, provided
dom(H0) = W2

b.c.(�) is the second Sobolev space
with suitable conditions on the boundary @� of �.
Typical examples are dom(H0) = W2(Rd), for
� = Rd, and W2

Dir(�) and W2
Neu(�) with Dirichlet

or Neumann boundary conditions on @�, respec-
tively, in case that � is a bounded, open domain in
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Rd with smooth boundary @�. Starting from this
situation, V is required to be relatively H0-bounded,
that is, that M(V, r) := V(��þ r1)�1 defines
(extends to) a bounded operator on L2(�), for any
r > 0. If limr!1 kM(V, r)k< 1, then HV is self-
adjoint on dom(H0) and semibounded, that is, the
infimum inf �(HV) of its spectrum �(HV) is finite; in
other words, HV � c1, for some c 2 R, as a
quadratic form. (The semiboundedness corresponds
to quasidissipativity, as a generator of the semigroup
exp(��HV).)

A fairly large class of potentials fulfilling these
requirements is defined by

lim
�&0

sup
x2�

Z
jx�yj��

jx� yj4�dVðyÞ2 ddy

( )
¼ 0 ½3�

for d 6¼ 4, and with jx� yj4�d replaced by (ln jx�
yj)�1, for d = 4. For d � 3, [3] is equivalent to the
uniform local square integrability of V, that is,
supx2�

R
jx�yj�1 V(y)2 ddy <1. Note that [3] allows

for local singularities of V, provided they are not too
severe; in this respect, quantum mechanics is more
general than classical mechanics. Equation [3] is a
sufficient condition for HV =��þ V to be self-
adjoint on dom(��) because limr!1 kM(V, r)k= 0.
Moreover, as eqn [3] only misses some borderline
cases, it is also almost necessary for the self-
adjointness of HV . By means of Kato’s inequality, the
conditions on V, especially on its positive part
Vþ := maxfV, 0g, can be further relaxed. Also, if one
realizes HV as the Friedrichs extension of a semi-
bounded quadratic form, the conditions to impose on
V are milder. One possibly loses, however, control
over the operator domain dom(HV), and typically
dom(��) is only a core for HV .

For further details on self-adjointness, we refer the
reader to Reed and Simon (1980a, b), Kato (1976),
and Cycon et al. (1987).

Spectral Analysis

The self-adjointness of HV establishes a functional
calculus, generalizing the notion of diagonalizability of
finite-dimensional self-adjoint matrices: there exists a
unitary transformation W : L2(�)! L2(�(HV), d�)
such that HV acts on elements ’ of L2(�(HV), d�HV

)
as a multiplication operator, [HV’](!) =!’(!). The
spectral measure �HV

decomposes into an absolutely
continuous (ac) part �HV , ac, a pure point (pp) part
�HV , pp, and a singular continuous (sc) part �HV , sc,
mutual disjointly supported on the ac spectrum
�ac(HV), the pp spectrum �pp(HV), and the sc
spectrum �sc(HV) � R, respectively, whose union is
the spectrum �(HV) of HV . There is an additional

decomposition of the spectrum of HV into the discrete
spectrum �disc(HV), which consists of all isolated
eigenvalues of HV of finite multiplicity, and its
complement �ess(HV) = Rn�disc(HV), the essential
spectrum of HV , as its residual spectrum is void. One
of the main goals of the spectral analysis is to
determine the spectral measure for a given potential
V as precisely as possible.

In many applications, � = Rd and the potential V in
HV is not only relatively H0-bounded, but even
relatively H0-compact, that is, M(V, 1) is compact. In
this case, limr!1 kM(V, r)k= 0, insuring self-
adjointness on dom(H0) and semiboundedness of HV .
Moreover, a theorem of Weyl implies that its essential
spectrum agrees with the one of H0, that is, with the
positive half-axis Rþ0 , and the discrete spectrum is
contained in the negative half-axis R�. If, furthermore,
(H0 þ 1)�1 [x 	 rV(x)](H0 þ 1)�1 is compact, then the
essential spectrum on the positive half-axis is purely
absolutely continuous, �ess(HV) \Rþ= �ac(HV) \
Rþ, and hence �disc(HV) � �pp(HV) � �disc(HV) [
{0}; the singular continuous spectrum is void.

We remark that the absence of singular contin-
uous spectrum is not understood. Indeed, it is
possible to explicitly construct potentials V such
that H(V) has singular continuous spectrum. In
terms of the Baire category, singular continuous
spectrum is even typical. The appearance of singular
continuous spectrum can, perhaps, be easier
understood in terms of the dynamical properties of
exp [�itHV], rather than the spectral analysis of its
generator HV : Singular continuous spectrum occurs
when initially localized states are not bound states,
but move out to infinity very slowly.

The reader is referred to Simon (2000), Reed and
Simon (1980a, b) and Cycon et al. (1987) for further
detail.

Properties of Eigenfunctions

Let us assume � = Rd, that V � 0 is nonpositive,
fulfills [3], and that limjxj!1 V(x) = 0. From the
statements in the last section we conclude that
HV =��þ V(x) is semibounded, that the essential
spectrum is the positive half-axis and that all
eigenvalues are negative and of finite multiplicity,
possibly accumulating only at 0. We collect some
properties of the eigenfunctions  j 2 L2(Rd) with
corresponding eigenvalue ej < 0, that is, HV j =
ej j. The smallest eigenvalue e0 := inf �(HV) (coin-
ciding with the bottom of the spectrum) is simple,
and the corresponding eigenfunction  0(x) > 0 is
strictly positive a.e. Elliptic regularity implies that at
a given point x 2 Rd, the eigenfunction  j is almost
2 � d/2 degrees more regular than V. For example,
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if V 2 Ck[B2�(x)], for some � > 0, then  j 2
Ckþ‘[B"(x)], for all ‘ < 2� d=2. Agmon estimates
(originally obtained by S’nol and also known in
mathematical physics as Combes–Thomas argu-
ment) furthermore show that, for unbounded �,
the eigenfunction  j decays exponentially: j j(x)j �
C�e��jxj, for any 0 < � < ej.

For more details, see Reed and Simon (1978,
1980a, b) and Cycon et al. (1987).

One Dimension and Sturm–Liouville
Theory

For d = 1, the stationary Schrödinger equation
reduces to a second-order ordinary differential
equation known as a Sturm–Liouville problem,

� 00ðxÞ þ VðxÞ ðxÞ ¼ E ðxÞ ½4�

on L2([a,b]), with V 2L1([a,b)] and independent
boundary conditions at �1� a< b�1, say. Equa-
tion [4] admits an almost explicit solution by means of
the Prüfer transformation defined by ’(x) :=

arctan[ (x)= 0(x)] and R(x) := ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 (x)2þ 0(x)2

q �
.

The key point about the Prüfer transformation is that it
effectively reduces the second-order differential equa-
tion [4] into a (nonlinear) first-order equation for ’,

’0ðxÞ ¼ E� VðxÞð Þ sin2½’ðxÞ� þ cos2½’ðxÞ� ½5�

Note that [5] does not involve R and that the
boundary conditions on  and  0 at a and b can be
easily expressed in terms of ’(a) and ’(b). More-
over, having determined ’ on [a, b] from [5], the
function R is immediately obtained by integrating
R0(x) = [1þ V(x)� E] sin [’(x)] cos [’(x)]. In case of
a bounded interval, �1 < a < b <1, or a confin-
ing potential, limx!
1 V(x) =1, it is not difficult to
derive from [5] the following basic facts: the
spectrum of H(V) consists only of simple eigenva-
lues E0 < E1 < E2 < 	 	 	 with limn!1 En =1. More-
over, the corresponding eigenfunction  n 6¼ 0,
n 2 N0, with H(V) n = En n, has precisely n zeros,
and Sturm’s oscillation theorem holds.

See Amrein et al. (2005) for more details.

Quantization and Semiclassical Limit

The quantization procedure postulated by Schrödinger
is the replacement of the classical momentum p 2 Rd

by the quantum-mechanical momentum operator
�i�hrx. It is known (and, in fact, easy to see,
cf. Messiah (1962)) that the classical Hamiltonian
equation of motions is invariant under symplectic
transformations, but Schrödinger’s quantization

procedure does not commute with symplectic
changes of the classical variables. The question of
the geometrically sound definition of quantization,
with a general d-dimensional manifold replacing
the spatial domain �, has attracted many mathe-
maticians and has led to the mathematical fields
of geometric quantization and deformation
quantization.

It is remarkable, however, that Schrödinger himself
discovered already in his early paper the fact that
classical dynamics derives as the scaling limit �h! 0
from quantum mechanics. The systematic study of
the convergence of wave functions and of operators
and their spectral properties is known as semiclassical
analysis, which is nowadays considered to be part of
microlocal analysis. We illustrate the type of results
one obtains by the following example on � = Rd.

Let F 2 C10 (R; R) be a smooth characteristic
function, compactly supported in an interval I � R�

away from the essential spectrum of the semiclassi-
cal Schrödinger operator H�h =��h2�þ V with a
smooth potential V 2 C10 (Rd) of compact support.
We define the operator F[Hh] by functional calculus
(note that I � �d(HV) and F[Hh] is of trace class).

Let, furthermore, A�h =
P
j�j�M a�(x)@�x be a differ-

ential operator representing an observable. Then
tr{AhF[Hh]}, which exists because the eigenfunctions
of H�h are smooth and decay exponentially, is, up to
normalization, interpreted to be the expectation of the
observable A�h in the state represented by the spectral
projection of H�h in I, approximated by F[Hh].

Semiclassical analysis then yields an asymptotic
expansion of the form

tr{AhF½Hh�} = �h�d c0 þ c1�hþ 	 	 	 þ cn�hn þ oð�hnÞð Þ

for arbitrarily large integers n 2 N. The leading-
order coefficient c0 is determined by Bohr’s corre-
spondence principle,

tr Ah F½H�h�f g

¼
Z

R2d
a½x; p�F½ p2 þ VðxÞ� dp dy

ð2��hÞd

þ o ð2��hÞ�d
� �

½6�

Semiclassical analysis thus provides the mathemati-
cal link between quantum and classical mechanics.
The proof of [6] usually involves pseudodifferential
and/or Fourier integral operators, depending on the
method. Advanced topics in semiclassical analysis
studied more recently are the construction of
quasimodes, that is, wave functions  E, �h, n which
solve the eigenvalue problem (H�h � E) E, �h, n = O(�hn)
up to errors of order �hn, for arbitrarily large n 2 N,
and the relation between semiclassical asymptotics
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and the KAM (Kolmogorov–Arnold–Moser) theory
from classical mechanics.

For more details, see Dimassi and Sjöstrand
(1999), and Robert (1987). See also Stability Theory
and KAM, KAM Theory and Celestial Mechanics in
this encyclopedia.

Lieb–Thirring Inequalities

Lieb–Thirring inequalities are estimates on eigenva-
lue sums of H�V =��� V(x), where V � 0 is
assumed to be non-negative (note that we changed
the sign of V) and vanishing at 1; the most
important examples for these sums are the number
of eigenvalues below a given �E � 0 and the sum of
its negative eigenvalues, counting multiplicities.
More generally, denoting by [	]þ := max {	, 0} the
positive part of 	 2 R, Lieb–Thirring inequalities are
estimates on tr{[�E�H�V]
þ}, for 
 � 0. The num-
ber of eigenvalues below �E is then obtained in the
limit 
 ! 0, and the sum of the negative eigenvalues
corresponds to E = 0 and 
= 1. We henceforth
assume E = 0, for simplicity. A guess inspired by
[6] with F[	] := [�	]
þ, A = 1, and �h = 1 then is that
tr{[�H�V]
þ} is approximately given byZ

R2d
VðxÞ � p2
� �


þ
ddx ddp

ð2�Þd

¼ CSCð
; dÞ
Z

Rd
VðxÞðd=2Þþ
 ddx ½7�

for a suitable constant CSC(
, d) > 0 depending only
on 
 and d (but not on V). While this guess is
wrong, it is nevertheless a useful guiding principle.
Namely, in a rather large range of 
 and d, there
exist constants CLT(
, d) > 0 such that

trf½�H�V �
þg

� CLTð
; dÞ
Z

Rd
VðxÞðd=2Þþ
 ddx ½8�

for all V � 0, for which the right-hand side is finite
(with the understanding that this finiteness also
insure that [�H�V]
þ is trace class, in the first place).

Of course, CLT(
, d) � CSC(
, d), by [6]. The
Lieb–Thirring conjecture, which is still open today,
says that the best possible choice of CLT(1, 3) equals
CSC(1, 3) in the physically most relevant case 
= 1
and d = 3. It is known that CLT(
, d) > CSC(
, d), for

 < 1 or d < 3.

Lieb–Thirring estimates have been derived for
various modifications of the original model, depend-
ing on the application. One of these are pseudor-
elativistic Hamiltonians of the form H = T(p)� V,
where T(p) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, with m � 0, another one

includes an external magnetic field, for example,
H = (p� A)2 � V (see the next and the last section).

The reader is referred to Thirring (1997), Reed and
Simon (1978), and Simon (1979) for further details.

Magnetic Schrödinger Operators

Magnetic Schrödinger operators are Hamiltonians
of the form

HmcðA;VÞ¼ p� AðxÞð Þ2�VðxÞ
on L2ðR3Þ ½9�

or

HPauliðA;VÞ¼ s 	 p� AðxÞð Þ½ �2�VðxÞ
on L2ðR3Þ �C2 ½10�

where V is the (electrostatic) potential; as before,
A : R3 ! R3 is the vector potential of the magnetic
field B = � ^A, and s = (�1,�2,�3) are the Pauli
matrices. Hmc(A, V) and Hpauli(A, V) generate the
dynamics of a particle moving in an external electro-
magnetic field of spin s = 0 and spin s = 1=2, respec-
tively. The operator HPauli(A, V) is usually called Pauli
Hamiltonian, and we refer to Hmc(A, V) as the
magnetic Hamiltonian. To keep the exposition simple,
we assume henceforth that A� and @�A� are uniformly
bounded, which suffices to prove the self-adjointness
of both Hamiltonians.

At a first glance, the magnetic and the Pauli
Hamiltonians may seem to differ only marginally,
but in fact, some of their spectral properties are
fundamentally different.

1. The magnetic Hamiltonian fulfills the diamagnetic
inequality, je��Hmc(A, V)(x, y)j � e��Hmc(0, V)(x, y), for
almost all x, y 2 R3, where m(x, y) denotes the
integral kernel of an operator m. As a consequence,
inf �[Hmc(A, V)] � inf �[Hmc(0, V)] = inf �[H(V)],
and the quadratic form of the magnetic Hamilto-
nian is semibounded, for all choices of A, provided
H(V) is.

2. If inf �[Hmc(A, V)] is an eigenvalue, the diamag-
netic inequality reflects the fact that the corre-
sponding eigenvector is not positive or of
constant phase. The determination of the nodal
set of eigenfunctions is a difficult task on its own.

3. For V = 0, the diamagnetic inequality and the
minimax principle imply that p� A has no zero
eigenvalue.

4. The diamagnetic inequality fails to hold for the
Pauli Hamiltonian. On the contrary, if A is
carefully adjusted in Hmc(A, �Zjxj�1), and Z is
sufficiently large, then the corresponding
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quadratic form may assume arbitrarily small
values (even if the corresponding field energy is
added).

5. For many choices of A, the (Dirac) operator
s 	 (p� A) has a nontrivial kernel.

From (1)–(4) it is clear that the proof of stability of
matter (see the next section) in presence of a
magnetic field is more difficult than in absence of it.
This can be illustrated by the fact that magnetic Lieb–
Thirring inequalities, being the natural analog of eqn
[8], are more involved to derive than the original
estimate [8]. The currently best bound is of the form

trf½�H�V �
þg

� CmLT

Z
Rd

n
½VðxÞ�5=2þ þ jBðxÞj ½VðxÞ�

3=2
þ

þ jBðxÞj þ LcðxÞ�2
� �

LcðxÞ�1½VðxÞ�þ
o

ddx ½11�

for some universal CmLT <1, where Lc(x) is a local
length scale associated with B. It is nonlocal in x
and somewhat reminiscent of a maximal function.

We further remark that if restricted to two
dimensions, d = 2, both the magnetic and the Pauli
Hamiltonians play an important role in the theory of
the (integer) quantum Hall effect.

For more details, see Simon (1979), Cycon et al.
(1987), Rauch and Simon (1997), and Erdös and
Solovej (2004). See also the article Quantum Hall
Effect in this encyclopedia.

N-Body Schrödinger Operators

The origin of quantum mechanics is atomic (K = 1
below) or molecular (K � 2) physics. If we regard
the nuclei of the molecule as fixed point charges
Z := (Z1, . . . , ZK) > 0 at respective positions
R := (R1, . . . , RK) 2 R3, then the Hamiltonian (in
convenient units) of this molecule with N 2 N
electrons is the following Schrödinger operator:

HNðZ;RÞ ¼
XN
n¼1

��n �
XK

k¼1

Zk

jxn � Rkj

( )

þ
X

1�m<n�N

1

jxm � xnj
½12�

defined on H(N) :=
VN

n = 1 L2[R3 Z2] � L2[(R3 
Z2)N], the space of totally antisymmetric, square-
integrable wave functions in N space–spin variables
(x1,�1), . . . , (xN,�N) 2 R3 Z2. The antisymmetry
of the wave function accounts for the fact that
electrons are fermions and is of crucial importance.
Note that the number N of electrons is possibly very
large. It is clear that we cannot expect to carry out

the spectral analysis of this Schrödinger operator
directly, but rather only suitable approximations.

In spite of the fact that HN(Z, R) was one of the
basic operators of quantum mechanics from its very
beginning in the late 1920s, HN(Z, R) was, strictly
speaking, not known to be self-adjoint before Kato
developed the perturbation theory (described in the
section ‘‘Self-adjointness’’) some 20 years later, which
then also yielded the semiboundedness of HN(Z, R).
So, the ground-state energy EN(Z, R) := inf �[HN

(Z, R)] > �1 is finite. From the HVZ (Hunziker–
van Winter–Zishlin) theorem follows that inf �ess[HN

(Z, R)] = EN�1(Z, R), which particularly implies that
EN(Z, R) is monotonically decreasing in N and
negative (because E1(Z, R) < 0).

It is known that EN(Z, R) = ENþ1(Z, R) and that
HN(Z, R) has no eigenvalue, for N � 2Ztot þ 1,
where Ztot :=

PK
k = 1 Zk is the total nuclear charge

of the atom. On the other hand, it is known that
EN(Z, R) is an eigenvalue, provided N < Ztot. Thus,
defining Ncrit to be the smallest number such that
EN(Z, R) is not an eigenvalue, for all N � Ncrit, that
is, Ncrit is the maximal number of electrons the
molecule can bind, we have that Ztot � Ncrit �
2Ztot þ 1. In increasing precision, asymptotic neu-
trality, Ncrit = Ztot þ R(Ztot), with R(Ztot) = o(Ztot)
and R(Z) = o(Z5=7), was shown for atoms and for
molecules, respectively. The ionization conjecture
states that Ncrit � Ztot þ C, for some universal
constant C. It is still open for the full model
represented by HN(Z, R), but has been proved in
the Hartree–Fock approximation. It has been proved
in the Hartree–Fock approximation by Solovej.

The semiboundedness of HN(Z, R), for fixed Z, R,
and N, alone does not rule out a physical collapse of
the matter described by HN(Z, R), but the stronger
property of stability of matter does. It holds if there
exists a constant C, possibly depending on Z, such that

ENðZ;RÞ þ
X

1�k<‘�K

Zk Z‘

jRk � R‘j
� �CðN þ KÞ ½13�

that is, if the ground-state energy plus the repulsive
electrostatic energy of the nuclei is bounded below
by a constant times the total number N þ K of
particles in the system. Equation [13] was shown to
hold for HN(Z, R).

In connection with stability of matter, Thomas–
Fermi theory and the question of the limit of large
nuclear charge came into the focus of research. For
simplicity, we restrict ourselves to atoms, K = 1, that
is, there is one nucleus of charge Z := Z1 at the
origin, R1 = 0, and we consider E(Z) := minN2N

EN(Z, 0) (which amounts to fixing N := Ncrit). An
asymptotic expansion for E(Z) of increasing
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precision in Z was obtained by ever-finer estimates;
presently, one knows that

EðZÞ ¼ETF Z7=3 þ 1
4 Z2 þ CDS Z5=3 þ oðZ5=3Þ ½14�

where the leading contribution ETFZ7=3 is the
Thomas–Fermi energy, (1=4)Z2 is the Scott correc-
tion, and CDSZ

5=3 is the Dirac–Schwinger term. The
computation of this last term requires semiclassical
analys is sketc hed in the sect ion ‘‘Quan tization and
semiclass ical limit.’’

For more details, see Cycon et al. (1987), Rauch
and Simon (1997), Thirring (1997), and Solovej
(2003). See also the article Stability of Matter in this
encyclopedia.

Scattering Theory

The study of the properties of the propagator
exp(�itH) of a self-adjoint operator H = H�, as
t!1, is the concern of scattering theory. To
obtain a well-defined mathematical object in this
limit, it is necessary to compose exp(�itH) with
the inverse of some explicitly accessible compar-
ison dynamics before passing to the limit t!1. If
V is a short-range potential, that is, V is relatively
H0-compact and jV(x)j � Cjxj��, for some � > 1
and C <1, then the comparison dynamics appro-
priate for HV is generated by H0: the wave
operators �
 are defined as the strong limits

�
 :¼ lim
t!
1

e�itHV e
itH0 ½15�

A general technique in scattering theory to prove the
existence of such limits is Cook’s argument, which
formally amounts to an application of the funda-
mental theorem of calculus. For example, for the
existence of �þ, one writes

�þ � 1 ¼
Z 1

0

dt
d

dt
e�itHV eitH0
	 
� �

¼ �i

Z 1
0

dt fe�itHV V eitH0g ½16�

and additionally proves the absolute integrability of
t 7! e�itHV VeitH0’, for ’ in a dense subset of H, like
dom(H0) = dom(HV).

Research in scattering theory in the past two
decades or so was focused around the question of
asymptotic completeness, which is a mathematically
precise formulation

Ran�þ ¼ Ran�� ¼ H?ppðHVÞ ½17�

of the physical expectation that the states in H are
either bound states (eigenvectors) of HV or

scattering states (states in the range of �
) of HV .
The intertwining property HV�
= �
H0 (which
easily follows from [15]) implies that the restriction
of HV to Ran�
 is unitarily equivalent to H0, hence
Ran�
 � Hac(HV) � H?pp(HV). The difficult part of
the proof of asymptotic completeness is to show that
H?pp(HV) � Ran�
.

Much effort has been spent to prove asymptotic
completeness for N-body Schrödinger operators on
H(N) :=

NN
n = 1 L2(R3) of the form

HNðVÞ ¼
XN
n¼1

��n

2 mn
þVðxÞ

with VðxÞ :¼
X

1�m<n�N

Vmnðxm � xnÞ ½18�

where each pair potential Vmn obeys j@�y Vmn(y)j �
C(1þ jyj)���j�j, with � 2 Nd

0 being a multi-index. If
� > 1 for all m 6¼ n then V is called a short-range
potential. Conversely, if 0 < � � 1 then V is a long-
range potential. Note that even though each Vmn

decays at infinity, jxj2 = x2
1 þ x2

2 þ 	 	 	 þ x2
n !1

alone does not imply that V(x)!1. In fact, physical
intuition tells us that for a cluster C of N particles,
whose dynamics is generated by HN(V), several
scenarios for the long-time asymptotic behavior of
the evolution are possible:

1. The N particles stay together in their cluster C
whose center of mass moves in space at constant
velocity.

2. The cluster breaks up into two (or even more)
subclusters, C1 and C2, of N1 and N2 = N �N1

particles, respectively, whose centers of mass drift
apart from each other at constant velocities (in
the short-range case). For each subcluster C1 and
C2, both scenarios may appear again, after wait-
ing sufficiently longer.

3. In the limit t!1, possibly after going through
(1) and (2) several times, the initial cluster C is
broken up into 1 � K � N subclusters
C1, . . . , CK, whose centers of mass drift apart
from each other at constant velocities according
to a free and independent dynamics of their
centers of mass.

In some sense, asymptotic completeness says that
nothing else than (1)–(3) can possibly happen.
(Strictly speaking, asymptotic completeness is a
statement about the limit t ! 1 and only
involves (3) – the actual behavior of exp [�itHV]
at intermediate times in terms of (1)–(3) is beyond
the reach of current mathematics.) It is a key
insight of scattering theory that the asymptotics of
the time evolution in the sense of (3) is completely
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characterized by the asymptotic velocity defined
by the strong limit

Pþ :¼ lim
t!1

e�itHNðVÞ x

t
eitHNðVÞ

� �
½19�

It is a nontrivial fact that Pþ exists, commutes with
HN(V), and that bound states are precisely the states
with zero asymptotic velocity, while states with
nonzero asymptotic velocity are scattering states in
Ran�
. This then implies asymptotic completeness
for short-range potentials. The proof of this dichot-
omy builds essentially upon positive commutator or
Mourre estimates. Given an interval J localized (in
energy) away from any eigenvalue of any possible
subcluster configuration C1, . . . , CK (called thresh-
olds), the Mourre estimate asserts the existence of a
positive constant M > 0 and a compact operator
R 2 B(H(N)) such that

1J i½HNðVÞ;A� 1J �M1J � R ½20�

as a quadratic form, for some suitable operator
A. This operator A is often chosen to be the
dilation generator A = (1=2){p 	 xþ x 	 p} or a var-
iant thereof.

Again, the proof of asymptotic completeness for
long-range potentials is still more difficult and has
been carried out only for � >

ffiffiffi
3
p
� 1. The addi-

tional problem is the comparison dynamics of the
relative motion of the clusters C1 and C2 in (2),
which is not the free one; the clusters rather
influence each other even at large distances.

For more details, see Reed and Simon (1980c) and
Derezinski and Gérard (1997). See also the articles
Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools, Scattering,
Asymptotic Completeness and Bound States in this
encyclopedia.

Random Schrödinger Operators

Schrödinger operators H(V!) on L2(Rd) or ‘2(Zd)
with a random potential V! are called random
Schrödinger operators. (If H(V!) acts on ‘2(Zd),
then the (continuum) Laplacian �� is replaced by the
discrete Laplacian on Zd defined by [��discf ](x)=Pd

�=1 {2f (x)� f (x� e�)� f (xþ e�).) More precisely,
given a probability space (�,P,�) and a random
variable �3! 7!V!, the family {H(V!)}!2� defines
an operator-valued random variable that we refer to
as a random Schrödinger operator. Random quantum
systems are physically relevant as models for amor-
phous materials, and for solids in very heterogenous
external fields or coupled to quantized fields. Suitable
ergodicity assumptions on !!V! ensure that the
domain of H! and even many spectral properties (in

particular, the spectrum �(H(V!))�R itself) are
independent of ! P-almost surely. For example,
assuming an independent, identical distribution
(i.i.d.) of V! in the discrete case on Zd, one arrives
at the Anderson model, which has been most
thoroughly studied. Its counterpart for continuum
models is a Poisson-distributed V!. A model which
also has ergodic properties, although deterministic, is
the Hofstadter or the Mathieu problem. Most
research has been focused on localization, that is,
spatial decay properties of the resolvent {H(	V!)�
E}�1(x,y) of H(	V!), as jx�yj!1, and particularly
the question of presence or absence of exponential
decay (localization), as this is an important indicator
for the transport properties of the material under
consideration. Exponential localization of eigenstates
has been established for d=1 or strong disorder or
sufficiently high energies E� 1. Localization is also
intimately related to bounds on moments of the form
kx�=2 tk�C�t�. The study of the asymptotic dis-
tribution of eigenvalues close to the lowest threshold
leads to the so-called Lifshitz tails.

The reader is referred to Figotin and Pastur
(1992), Cycon et al. (1987), and Stollmann (2001).

(Pseudo)relativistic Schrödinger
Operators

Schrödinger operators of the form H(V) = p2 þ V(x)
do not observe the invariance principles of (special)
relativity, as their derivation is based in classical
(Newtonian) mechanics. The free Dirac operator
D := a 	 pþm� (here, �� and � are self-adjoint
4 4 matrices) possesses the desired relativistic
invariance, but it is not semibounded, and the
definition of an interacting Dirac operator is
notoriously difficult (and unsolved). The replace-
ment of the kinetic energy (1=2m)p2 by the Klein–
Gordon operator

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is a step towards

relativistic invariance, which, at the same time,
yields a positive operator. This replacement may
also be viewed as the restriction of the free Dirac
operator to its positive-energy subspace. The virtue
of this replacement is that it immediately allows for
the study of interacting N-particle operators,

Hrel
N ðZ;RÞ¼

XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��n þm2

p
�
XK

k¼1

Zk

jxn � Rkj

( )

þ
X

1�‘<n�N

1

jx‘ � xnj
½21�

much like in [12]. Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
� jpj, as p!1,

the pseudorelativistic kinetic energy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
can
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balance only less severe local singularities of the
potential V than the nonrelativistic kinetic energy
(1=2m)p2. Indeed, already the quadratic formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

� gjxj�1 on C10 (R3) associated to a hydro-
gen-like atom is unbounded from below if g > 2=�.
Hence, the stability of matter becomes a more subtle
property of pseudorelativistic matter. The relaxation
of the restriction onto the positive subspace of the free
Dirac operator also got into the focus of research.

For more details, we refer the reader to Thirring
(1997).

See also: Deformation Quantization; Elliptic Differential
Equations: Linear Theory; h-Pseudodifferential Operators
and Applications; Localization for Quasiperiodic
Potentials; Nonlinear Schrödinger Equations; Normal
Forms and Semiclassical Approximation; N-Particle
Quantum Scattering; Quantum Hall Effect; Quantum
Mechanical Scattering Theory; Scattering, Asymptotic
Completeness and Bound States; Stability of Matter;
Stationary Phase Approximation.
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Introduction

Topological quantum field theories (TQFTs) provide
powerful tools to probe topology of manifolds,
specifically in low dimensions. This is achieved by
incorporating very large gauge symmetries in the
theory which lead to gauge-invariant sectors with
only topological degrees of freedom. These theories

are of two kinds: (1) Schwarz type and (2) Witten
type.

In a Witten-type topological field theory, action is a
BRST exact form, so is the stress energy tensor T�� so
that their functional averages are zero (Witten 1988).
The BRST charge is associated with a certain shift
symmetry. The topological observables form cohomo-
logical classes and semiclassical approximation turns
out to be exact. In four dimensions, such theories
involving Yang–Mills gauge fields provide a field-
theoretic representation for Donaldson invariants.

On the other hand, Schwarz-type TQFTs are
described by local action functionals which are not
total derivatives but are explicitly independent of
metric (Schwarz 1978, 1979, 1987, Witten 1989).
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The examples of such theories are topological
Chern–Simons (CS) theories and BF theories.

Metric independence of the action S of a Schwarz-
type gauge theory implies that stress–energy tensor
is zero:

� S

� g��
� T�� ¼ 0

More generally, in the gauge-fixed version of such
theories, stress–energy can be BRST exact, where
BRST charge corresponds to gauge fixing in contrast
to Witten-type theories where corresponding BRST
charge corresponds to a combination of shift
symmetry and gauge symmetry. There are no local
propagating degrees of freedom; the only degrees of
freedom are topological. Expectation values of
metric-independent operators W are also indepen-
dent of the metric:

�hWi
�g��

¼ 0

Three-dimensional CS theories are of particular
interest, for these provide a framework for the study
of knots and links in any 3-manifold. Pioneering
indications of the fact that topological invariants
can be found in such a setting came in very early
when A S Schwarz demonstrated that a particular
topological invariant, Ray–Singer analytic torsion
(which is equivalent to combinatorial Reidemeister–
Franz torsion) can be interpreted in terms of the
partition function of a quantum gauge field theory
(Schwarz 1978, 1979). In particular, in the weak-
coupling limit of CS theory of gauge group G on a
manifold M, contribution from each topologically
distinct flat connection (characterized by the equiva-
lence classes of homomorphisms: �1(M)! G) to the
partition function is given by metric-independent
Ray–Singer torsion of the flat connection up to a
phase. This phase factor is also a topological
invariant of framed 3-manifold M (Witten 1989).
It was Schwarz who first discussed CS theory as a
topological field theory and also conjectured that
the well-known Jones polynomial may be related to
it (Schwarz 1987). In his famous paper Witten
(1989) not only demonstrated this connection, but
also set up a general field-theoretic framework to
study the topological properties of knots and links in
any arbitrary 3-manifold. In addition, this frame-
work provides a method of obtaining some new
manifold invariants. As discussed by A Achúcaro
and P K Townsend, CS theory also describes gravity
in three-dimensional spacetime (Carlip 2003).

BF theories in three dimensions provide another
framework for field-theoretic description of
topological properties of knots and links. These
theories with bilinear action in fields can also be
defined in higher dimensions. In particular in D = 4,
BF theory, besides describing two-dimensional gen-
eralizations of knots and links, also provides a field-
theoretic interpretation of Donaldson invariants.
This provides a connection of these theories with
Witten-type TQFTs of Yang–Mills gauge fields. We
shall not discuss BF theories in the following and
refer to the article BF Theories in this Encyclopedia.

Witten (1995) has also formulated CS theories in
three complex dimensions described in terms of
holomorphic 1-forms. Such a theory on Calabi–Yau
spaces can be interpreted as a string theory in terms
of a Witten-type topological field theory of a sigma
model coupled to gravity. General topological sigma
models in Batalin–Vilkovisky formalism have been
constructed by Alexandrov et al. (1997). This is a
Schwarz-type theory. However, in its gauge-fixed
version, it can also be interpreted as a Witten-type
theory. This construction provides a general for-
mulation from which numerous topological field
theories emerge. In particular, the Witten A and B
models and also multidimensional CS theories are
special cases of this construction.

In the following, we shall survey three-dimensional
CS theory as a description of knots/links, indicate
how manifold invariants can be constructed from
invariants for framed links, and also discuss its
application to three-dimensional gravity.
Three-Dimensional CS Theory with
Gauge Group U(1)

The simplest Schwarz-type topological field theory is
the U(1) CS theory described by the action:

S ¼ � 1

8�

Z
M

A dA ½1�

where A is a connection 1-form A = A�dx� andM is
the 3-manifold, which we shall take to be S3 for the
discussion below. The action has no dependence on
the metric. Besides being the U(1) gauge invariant, it
is also general coordinate invariant.

In quantum CS field theory, we are interested in
the functional averages of gauge-invariant and
metric-independent functionals W[A]:

hW½A�i ¼ 1

Z

Z
½DA�W½A� expfikSg

Z ¼
Z
½DA� expfikSg

½2�

This theory captures some of the simple, but
interesting, topological properties of knots and links
in three dimensions. For a knot K, we associate a knot
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operator
H

K A which is gauge invariant and also does
not depend on the metric of the 3-manifold. Then for
a link made of two knots K1 and K2, we have the loop
correlation function h

H
K1

A
H

K2
Ai, which can be

evaluated in terms of two-point correlator
hA�(x)A�(y)i in R3 (with flat metric). This correlator
in Lorentz gauge (@�A� = 0) is:

hA�ðxÞA�ðyÞi¼
i

k
����
ðx� yÞ�

jx� yj3

so that for two distinct knots K1 and K2I
K1

A

I
K2

A

� �
¼ 4�i

k
LðK1;K2Þ ½3�

where

LðK1;K2Þ ¼
1

4�

I
K1

I
K2

dx�dy�����
ðx� yÞ�

jx� yj3

This integral is the well-known topological invariant
called ‘‘Gauss linking number’’ of two distinct
closed curves. It is an integer measuring the number
of times one knot K1 goes through the other knot
K2. Linking number does not depend on the
location, size, or shape of the knots. In electro-
dynamics, it has the physical interpretation of work
done to move a monopole around a knot while
electric current runs through the other knot.

Abelian CS theory also provides a field-theoretic
representation for another topological quantity
called ‘‘self-linking number,’’ also known as ‘‘fram-
ing number,’’ of the knot. It is related to the
functional average of h

H
K A

H
K Ai where two loop

integrals are over the same knot. Coincidence
singularity is avoided by a topological loop-splitting
regularization. For a knot K given by x�(s) para-
metrized along the length of the knot by s, we
associate another closed curve Kf given by
y�(s) = x�(s)þ � n�(s), where � is a small parameter
and n�(s) is a principal normal to the curve at s. The
coincidence limit is then obtained at the end by
taking the limit �! 0. Such a limiting procedure is
called framing and knot Kf is the ‘‘frame’’ of knot K.
Linking number of the knot K and its frame Kf is the
self-linking number of the knot:

SLðK; n�Þ ¼ 1

4�

I I
dx� dy�

����ðx� yÞ�

jx� yj3

Hence coincidence two loop correlator isI
K

A

I
K

A

� �
¼ 4�i

k
SLðK; n�Þ ½4�

Notice that the self-linking number of a knot is
independent of the regularization parameter �, but
does depend on the topological character of the
normal vector field n�(s). It is also related to two
geometric quantities called ‘‘twist’’ T(K) and ‘‘writhe’’
w(K) through a theorem due to Calugareanu:

SLðKÞ ¼ TðKÞ þ !ðKÞ ½5�

where

TðKÞ ¼ 1

2�

I
K

ds ����
dx�

ds
n�

dx�

ds

!ðKÞ ¼ 1

4�

I
K

ds

I
K

dt ����
de�

ds

de�

dt
e�

Here

e�ðs; tÞ ¼ y�ðtÞ � y�ðsÞ
jyðtÞ � yðsÞj

is a unit map from K� K�! S2 and n�(s) is a normal
unit vector field. T(K) and !(K) are not in general
integers and represent the amount of twist and coiling
of the knot. These are not topological invariants but
their sum, self-linking number, is indeed always an
integer and a topological invariant. This result has
found interesting applications in the studies of the
action of enzymes on circular DNA.
Nonabelian CS Theories

Nonabelian CS theories provide far more informa-
tion about the topological properties of the mani-
folds as well as knots and links.

Nonabelian CS theory in a 3-manifold M (which
as in last section is taken to be S3) is described by
the action functional

S ¼ 1

4�

Z
M

tr A ^ dAþ 2
3A ^ A ^ A

� �
½6�

where A is a gauge field 1-form which takes its value
in the Lie algebra LG of a compact semisimple Lie
group G. For example, we may take this group to be
SU(N) and A = AaTa, where Ta is the fundamental
N-dimensional representation with trTaTb = �1=2�ab.
Under homotopically nontrivial gauge transforma-
tions this action is not invariant, but changes by an
amount 2�n where integers n are the winding
numbers characterizing the gauge transformations
which fall in homotopic classes given by �3(G) =Z
for a compact semisimple group G. However, for
quantum theory what is relevant is exp[ikS] which
is invariant even under homotopically nontrivial
gauge transformations provided the coupling k
takes integer values. This quantized nature of the
coupling was pointed out by Deser et al. (1982a, b)
(and also they were first to introduce the non-
abelian CS term as a gauge-invariant topological
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mass term in gauge theories). So for integer k, the
quantum field theory we discuss here is gauge
invariant.

The topological operators are Wilson loop opera-
tors for an oriented knot K:

WR½K� ¼ tr P exp

I
K

AR ½7�

where AR = AaTa
R with Ta

R as the representation
matrices of a finite-dimensional representation R of
the LG. P stands for the path ordering of the
exponential. The observable Wilson link operator
for a link L =

Sn
1 Ki, carrying representations Ri on

the respective component knots, is

WR1R2���Rn L½ � ¼
Yn

1

WRi ½Ki� ½8�

Expectation values of these operators are:

VR1;R2���Rn
½L� ¼

R
½DA�WR1���Rn

½L�eikSR
½DA�eikS

½9�

The measure [DA] has to be metric independent.
These expectation values depend not only on the
isotopy of the link L but also on the set of the
representations {Ri}. These can be evaluated in
principle nonperturbatively. For example, when
LG= su(N) and each of the component knot of the
links carries the fundamental N-dimensional repre-
sentation, the Wilson link expectation values satisfy
a recursion relation involving three link diagrams
which are identical except for one crossing where
they differ as over crossing (Lþ), under crossing
(L�), and no crossing (L0) as shown in the Figure 1.

The expectation values of these links are related
as (Witten 1989):

qN=2VN½Lþ� � q�N=2VN½L��

¼ q1=2 � q�1=2
� �

VN½L0� ½10�

where

q ¼ exp
2�i

kþN

	 


This is precisely the well-known skein relation for
the HOMFLY polynomial. The famous Jones one-
variable polynomial (whose two-variable
L+ L 0 L –

Figure 1 Skein related links.
generalization is the HOMFLY polynomial) corre-
sponds to the case of spin-1/2 representation of
SU(2) CS theory: V2[L] = Jones polynomial [L], up
to an overall normalization. These skein relations
are sufficient to recursively find all the expectation
values of links with only fundamental representation
on the components. To obtain invariants for any
other representation, more general methods have to
be developed. A complete and explicit solution of
the CS field theory is thus obtained. One such
method has been reviewed in Kaul (1999). The
method makes use of the following important
statement:

Proposition: CS theory on a 3-manifold M
with boundary � is described by a WZNW
(Wess–Zumino–Novikov–Witten) conformal field
theory (CFT) on the boundary (Figure 2).

Using the same identification, functional average
for Wilson lines ending at n points on the boundary
� is obtained from WZNW field theory on the
boundary with n punctures carrying representations
Ri (Figure 3):

We can represent CS functional integral as a
vector (Witten 1989) in the Hilbert space H
associated with the n-point vacuum expectation
values of primary fields in WZNW conformal field
theory on the boundary �. Next, to obtain a
complete and explicit nonperturbative solution of
the CS theory, the theory of knots and links and
their connection to braids is invoked.
Σ Σ

Figure 3 CS functional integrals with Wilson lines and CFT on

punctured boundary.
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Knots/Links and Braids

Braids have an intimate connection with knots and
links which can be summarized as follows:

1. An n-braid is a collection of nonintersecting
strands connecting n points on a horizontal rod
to n points on another horizontal rod below
strictly excluding any backward traversing of the
strands. A general braid can be written as a word
in terms of elementary braid generators.

2. We associate representations Ri of the group with
the strands as their colors. We also put an
orientation on each strand. When all the repre-
sentations are identical and also all strands are
unoriented, we get ordinary braids, otherwise we
get colored oriented braids.

3. The colored oriented braids form a groupoid
where product of the different braids is obtained
by joining them with both colors and orientations
matching on the joined strands. Unoriented
monochromatic braids form a group.

4. A knot/link can be formed from a given braid by
a process called platting. We connect adjacent
strands namely the (2iþ 1)th strand to 2ith
strand carrying the same color and opposite
orientations in both the rods of an even-strand
braid (Figure 4a).

There is a theorem due to Birman which states
that all colored oriented knots/links can be
obtained through platting. This construction is
not unique.

5. There is another construction associated with
braids which relates them to knots and links. We
obtain a closure of a braid by connecting the ends
of the first, second, third, . . . strands from above
to those of the respective first, second, third, . . .
strands from below as shown in the Figure 4b.
There is theorem due to Alexander which states
that any knot or link can be obtained as a closure
of a braid, though again not uniquely.

Link Invariants

This connection of braids to knots and links can be
used to construct link invariants, say in S3. To do so,
(a) (b)

Figure 4 (a) Platting and (b) closure of braids.
two nonintersecting 3-balls are removed from the
3-manifold S3 to obtain a manifold with two S2

boundaries. Then we arrange 2n Wilson lines of, say
SU(N) CS theory, as a 2n-strand oriented braid
carrying representations Ri in this manifold. The CS
functional integral over this manifold is a state in
the tensor product of the Hilbert spaces H1 �H2

associated with conformal field theory on the two
boundaries. These boundaries have 2n punctures
carrying the set of representations {Ri} and {R0i},
respectively, the two sets being permutations of each
other. This state can be expanded in terms of some
convenient basis given by the conformal blocks for
the 2n-point correlation functions of SU(N)k

WZNW conformal field theory. The duality of
these correlation functions represents the transfor-
mation between different bases for the Hilbert
space. Their monodromy properties allow us to
write down representations of the braid generators.
Since an arbitrary braid is just a word in terms of
these generators, this construction provides us a
matrix representation B({Ri}, {R0j}) for the colored
oriented braid in the manifold with two S2 bound-
aries. Then we plat this braid by gluing two balls B1

and B2 with Wilson lines as shown in Figure 5.
Each of the two caps again represents a state

j ({Rj})i in the Hilbert space associated with the
conformal field theory on punctured boundary (S2).
Platting of the braid then simply is the matrix
element of braid representation B({Ri}, {R0j}) with
respect to these states j ({Ri})i and j ({R0j})i corre-
sponding to two caps B1, B2. Thus, for a link in S3

the invariant is given by the following theorem:

Theorem The vacuum expectation value of Wilson
loop operator of a link L constructed from platting
of a colored oriented 2n braid with representation
B({Ri}, {R0j}) is given by (Kaul 1999):

V½L� ¼ h ðfRigÞjBðfRig; fR0jgÞj ðfR0jgÞi ½11�

This theorem can be used to calculate the
invariant for any arbitrary link. For an unknot U
B({Ri}, {Ri })′

B1 B2

ψ({Rj })〉′〈ψ({Rj})⏐ ⏐

Figure 5 Construction of the link invariant.
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carrying an N-dimensional representation in an
SU(N) CS theory, the knot invariant is:

VN½U� ¼ ½N�; where ½N� ¼ qN=2 � q�N=2

q1=2 � q�1=2

Wilson link expectation values calculated this way
depend on the regularization, that is, the definition
of framing used in defining coincident loop correla-
tors. One such regularization usually used is the
standard framing, where the frame for every knot is
so chosen that its self-linking number is zero.

The procedure outlined here has been used for
explicit computations of knot/link invariants. This
has led to answers to several questions of knot
theory. One such question relates to distinguishing
chirality of knots (Kaul 1999). In this context, newer
invariants constructed with arbitrary representations
living on the knots are more powerful than the older
polynomial invariants. For example, invariants with
spin-3/2 representation in an SU(2) CS theory are
sensitive to chirality of many knots which otherwise
is not detected by Jones, HOMFLY, and Kauffman
polynomials. However, invariants obtained from CS
theories do not distinguish all chiral knots. There is
a class of links known as ‘‘mutants’’ which are not
distinguished by CS link invariants (Kaul 1999). A
mutant link is obtained by removing a portion of
weaving pattern in a link and then gluing it back
after rotating it about any one of three orthogonal
axes by an amount �.

The CS invariants of knots and links can also be
used to construct special 3-manifold invariants.
Hence, CS theory provides an important tool to
study these.
Manifold Invariants from CS Theory

Different 3-manifolds can be constructed through a
procedure called ‘‘surgery of framed knots and
links’’ in S3 (Lickorish–Wallace theorem). This
construction is not unique. That is, there are many
framed knots and links which give the same
manifold. However, rules of this equivalence are
known: these are called ‘‘Kirby moves.’’

Classification of 3-manifolds would involve find-
ing a method of associating a quantity with the
manifold obtained by surgery on the corresponding
framed knot/link on S3. If the Kirby moves on the
framed knot/link leave this quantity unchanged,
then it is a 3-manifold invariant. Knot/link invar-
iants of nonabelian CS theories provide a method of
finding such 3-manifold invariants. Equivalently,
this procedure gives an algebraic meaning to the
surgery construction of 3-manifolds. Details of this
method for generating manifold invariants are given
in Kaul (1999) and Kaul and Ramadevi (2001).

Surgery of Framed Knots/Links and Kirby Moves

As discussed earlier, frame of a knot K is an
associated closed curve Kf going along the length
of the knot wrapping around it certain number of
times. Self-linking number (also called framing
number) is equal to the linking number of the knot
with its frame. There are several ways of fixing this
framing. The ‘‘standard’’ framing is one in which the
frame number of the knot, that is, the linking
number of the knot and its frame is zero. On the
other hand, ‘‘vertical’’ framing is obtained by
choosing the frame vertically above the knot
projected on to a plane. In such a frame, the framing
number of a knot is the same as its crossing number.
In constructing the 3-manifold invariants from CS
theories, we need vertical framing. The framing
number may be denoted by writing the integer by
the side of knot. We denote a framed r-component
link by [L, f ] where framing f = (n(1), n(2), . . . , n(r))
is a set of integers denoting the framing number of
component knots K1, K2, . . . , Kr in the link L.

According to the Lickorish–Wallace theorem,
surgery over links with vertical framing in S3 yields
all the 3-manifolds. This surgery is performed in the
following way.

Take a framed r-component link [L, f ] in S3.
Thicken the component knots K1, K2, . . . , Kr such
that the solid tubes N1, N2, . . . , Nr so obtained are
nonintersecting. Then the compliment S3 �
(N1 þN2 þ � � � þNr) will have r toral boundaries.
On the ith toral boundary, we imagine an
appropriate curve winding n(i) times around the
meridian and once along the longitude. Perform a
modular transformation so that this curve bounds
a disk. This construction is done with each of the
toral boundaries. The tubes N1, N2, . . . , Nr are
then glued back in to the respective gaps. This
surgery thus yields a new 3-manifold. This
construction is not unique. The rules of equiva-
lence for surgery on framed knots/links in S3 are
two independent Kirby moves.
Kirby move I Take an arbitrary r-component
framed link [L, f ] in S3 and consider a curve C
with framing number þ1 going around the unlinked
strands of L as in Figure 6a. We refer to this (rþ 1)-
component link as H[X], where X represents a
weaving pattern of the strands. Kirby move I
consists of twisting the disk enclosed by C in the
clockwise direction from below by an amount 2�.
This twisting thereby introduces new crossings



X

+1
C

n(i )

X

n ′(i )

H [X ] U [X ](b)(a)

Figure 6 Kirby move I.
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between the curve C and the strands enclosed by it.
Then the curve C is removed giving us a new
r-component link U[X] of Figure 6b. Framing
numbers n0(i) of the component knots in link U[X]
are related to the framing number n(i) of framed link
[L, f ] as n0(i) = n(i)� (L(Ki, C))2, where L(Ki, C) is
the linking number of knot Ki and closed curve C.
The surgery of the framed links in Figures 6a and 6b
will give the same 3-manifold.

Inverse Kirby move I involves removal of a curve
C with framing number �1 (instead of þ1) after
making one complete anticlockwise twist from
below on the disk enclosed by C. In the process the
unlinked strands get twisted in the anticlockwise
direction leading to changed framing numbers
n0(i) = n(i)þ (L(Ki, C))2 of the component knots Ki.

Kirby move II This move consists of removing a
disjoint unknot C with framing �1 from framed link
[L, f ] without changing the rest of the link as in
Figure 7. Surgery of the two links in Figure 7 will
give the same manifold.

Inverse Kirby move II involves removal of a
disjoint unknot with framing þ1 (instead of �1)
from a framed link.

3-Manifold Invariants

Now a 3-manifold invariant can be constructed by
an appropriate combination of the invariants of
framed links in such a way that this algebraic
expression is unchanged under the Kirby moves. We
Z Z

C

–1

Figure 7 Kirby move II.
need for this purpose invariants for links in S3 with
vertical framing.

Let M be the manifold obtained from surgery
of an r-component framed link [L, f ] in S3. Then
a manifold invariant F̂(G)[M] is given as a linear
combination of the framed link invariants V(G)

R1,..., Rr

[L, f ], with representations R1, R2, . . . , Rr living on
component knots, obtained from CS theory based
on a compact semisimple group G:

F̂ðGÞ½M� ¼ ��	½L;f �
X

R1;... Rr

Yr

i¼1

�Ri

 !

� V
ðGÞ
R1;R2;...;Rr

½L; f � ½12�

Here 	[L, f ] is the signature of the linking matrix
and �Ri

= S0Ri
, �= ei�c=4, where c is the central

charge of the associated WZNW conformal field
theory and S0Ri

denotes the matrix element of the
modular matrix S. General S-matrix elements for
any compact group are given by

SR1R2
¼ð�iÞðd�rÞ=2jL!=Lj�1=2ðkþCvÞ�1=2

�
X
!2W

�ð!Þexp
�2�i

kþCv
ð!ð�R1

þ �Þ;�R2
þ �Þ

	 


where W denotes the Weyl group and its elements !
are words constructed using the generator s�i

– that
is, !=

Q
i s�i

and �(!)= (�1)‘(!) with ‘(!) as length of
the word. Here �Ri

’s denotes the highest weights of
the representations Ri’s and � is the Weyl vector. The
action of the Weyl generator s� on a weight �R is

s�ð�RÞ ¼ �R � 2�
ð�R; �Þ
ð�; �Þ

and jL!=Lj is the ratio of weight and coroot lattices
(equal to the determinant of the Cartan matrix for
simply laced algebras). Also Cv is quadratic Casimir
invariant for the adjoint representation.

It is important to stress that the expression
F̂(G)[M] is unchanged under both Kirby moves I
and II (for detailed proof, see Kaul (1999) and Kaul
and Ramadevi (2001)). Notice that for every
compact gauge group, we have a new 3-manifold
invariant.
Few examples of 3-manifolds Table 1 lists the
algebraic expressions of this invariant calculated
explicitly from the formula in eqn [12] for a few
3-manifolds. All these examples can be constructed
by surgery on an unknot U(f ) with different frame
numbers f.

In Table 1 L[p, q] stands for Lens spaces of the
type (p, q) and CR is the quadratic Casimir invariant



Table 1 Invariants for some simple manifolds

U(f ) M F̂ (G)[M]

U(0) S2 � S1 1=S00

U(�1) S3 1

U(þ2) RP3 ��1
P
R

S0R q2CR S0R

S00

U(þp) L[p, 1] ��1
P
R

S0R qpCR S0R

S00
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for representation R of the Lie algebra of the gauge
group G.

Partition function of a CS theory on M is also an
invariant characterizing the 3-manifold. This has
been calculated for several manifolds by different
methods. Invariant F̂(G)[M] listed above for various
manifolds is related to the CS partition function
Z(G)[M]: F̂(G)[M] = S�1

00 Z(G)[M]. So the method of
constructing 3-manifold invariants above can also
be used to calculate the partition function of CS
theories.
3D Gravity and CS Theory

Three-dimensional CS theory also provides a
description of gravity. The 3D gravity including
cosmological constant has been first discussed by
Deser and Jackiw (1984). The action with cosmolo-
gical constant � =�1=‘2 is:

S ¼ 1

16�G

Z
M

d3x
ffiffiffiffiffiffiffi�g
p

R� 2�ð Þ ½13�

G is the Newton’s constant, g�� is the metric on the
3-manifold M, and R is scalar curvature. Solutions
of Einstein equations of motion have a constant
positive (negative) curvature if � is positive (nega-
tive). It is also well known that there are no
dynamical degrees of freedom for gravity in dimen-
sions D 	 3; it is indeed described by topological
field theories. The gravity action above can be
rewritten as a CS gauge theory in first-order
formulation (Carlip 2003). For triads ea

� and spin
connection !a

� of Euclidean gravity, we define
1-forms e = ea

�Ta dx�,!=!a
�Tadx�, which have

values in the Lie algebra of SU(2) whose generators
are Ta = i	 a=2 with 	 a as three Pauli matrices.
In terms of these we define two gauge field 1-forms
A and �A as:

A ¼ ie

‘
þ !

	 

; �A ¼ ie

‘
� !

	 


Then the Euclidean gravity action can be written
in terms of two CS actions, SCS[A] and SCS[�A], as

S ¼ kSCS½A� � kSCS½�A� ½14�
where the coupling constant k = ‘=(4G) for negative
cosmological constant � =�1=‘2. The gauge group
for this theory is SL(2, C). Infinitesimal diffeo-
morphisms are described by field-dependent gauge
transformations. The corresponding gauge group for
Minkowski gravity with negative cosmological con-
stant � is SO(2, R)� SO(2, R). For positive �, one
gets SO(3, 1) and SO(4) for Minkowski and Euclidean
metrics, respectively. For � = 0, we have ISO(2, 1)
(ISO(3)) as the gauge group for Minkowski
(Euclidean) gravity. Hence, the sign of cosmological
constant determines the gauge group of the CS
theory.

Identification of 3D gravity with CS theory can be
used with some advantage to find the partition
function for a black hole in 3D gravity with negative
cosmological constant. This in turn yields an
expression for entropy of the black hole.
BTZ Black Hole and Its Partition Function

Only for negative � we have a black hole solution of
the Einstein’s equations. This solution, known as the
BTZ black hole (Carlip 2003), in Euclidean gravity
is given by the metric

ds2
E¼ �Mþ r2

l2
� J2

4r2

	 

d
2

þ �Mþ r2

l2
� J2

4r2

	 
�1

dr2 þ r2 d�� J

2r
d


	 
2

It is specified by two parameters M and J (the mass
and angular momentum). By a coordinate transfor-
mation, this metric can be rewritten as ds2

E =
(l2=z2)(dx2 þ dy2 þ dz2), with z > 0. This is the 3D
upper-half hyperbolic space and can be rewritten
using spherical polar coordinates as

ds2
E ¼

l2

R2 sin2 �
dR2 þ R2d2 þ R2 sin2 d�2
� �

We have the identifications (R, ,�) 
 (R exp {2�rþ=l},
þ {2�r�=l},�) where rþ and r� are the outer and
inner horizon radii, respectively. It is clear from this
identification that topologically the metric corre-
sponds to a solid torus. Functional integral over
this manifold represents a state in the Hilbert space
specified by the mass and angular momentum. It is
the microcanonical ensemble partition function and
its logarithm is the entropy of the black hole.

To evaluate this partition function, the connection
1-form is kept at a constant value on the toroidal
boundary through a gauge transformation. We
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define local coordinates on the torus boundary
z = xþ 
y such that

R
a dz = 1,

R
b dz = 
 , where

a (b) stands for the contractible (noncontractible)
cycle of solid torus and 
 = 
1 þ i
2 is the modular
parameter of the boundary torus. Then connection
describing the black hole is

A¼ �i� ~u


2
dzþ i� u


2
dz

	 

T3 ½15�

where u and ~u are canonically conjugate with
commutation relation: [~u, u] = (2=�)
2(kþ 2)�1.
These are related to black hole parameters
through holonomies of gauge field A around the
a- and b-cycles (for a classical black hole solution
� = 2�):

u ¼� i

2�
�i�
 þ 2�ðrþ þ ijr�jÞ

l

	 


~u ¼� i

2�
�i��
 þ 2�ðrþ þ ijr�jÞ

l

	 


For a fixed value of connection, namely u, the
functional integral is described by a state  0 with no
Wilson line in the bulk. The states with Wilson line
carrying spin j=2 are given by Labastida and
Ramallo:

 jðu; 
Þ ¼ exp
�k

4
2
u2

� �
�jðu; 
Þ

where the Weyl–Kac characters for affine su(2)

�jðu; 
Þ ¼
�
ðkþ2Þ
jþ1 ðu; 
Þ ��

ðkþ2Þ
�j�1 ðu; 
Þ

�2
1ðu; 
Þ ��2

�1ðu; 
Þ

and � functions are defined by

�k
�ðu; 
Þ ¼

X
n2Z

exp 2�ik nþ �

2k

� �2

þ nþ �

2k

� �
u

 �� �

Given the collection of states  j, we write the
partition function by choosing an appropriate
ensemble for fixed mass and angular momentum.
This black hole partition function is:

ZBH ¼
Z

d�ð
; �
Þ
Xk

j¼0

ð jð0; 
ÞÞ� jðu; 
Þ
�����

�����
2

where modular invariant measure is d�(
 , �
) =
d
 d�
=
2

2 . This integral can be worked out for large
black hole mass and zero angular momentum in
saddle-point approximation. The computation yields
(Govindarajan et al. 2001):

ZBH ¼
l2

r2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
8rþG

�l2

r
exp

2�rþ
4G

	 

þ � � � ½16�

This gives not only the leading Bekenstein–Hawking
behavior of the black hole entropy S but also a
subleading logarithmic term:

S ¼ ln ZBH ¼
2�rþ
4G
� 3

2
ln

2�rþ
4G
þ � � �

This is an interesting application of CS theory to
3D gravity. In fact, three-dimensional CS theory also
has applications in the study of black holes in four-
dimensional gravity: the boundary degrees of free-
dom of a black hole in 4D are also described by an
SU(2) CS theory. This allows a calculation of the
degrees of freedom of, for example, Schwarzschild
black hole. For large area black holes, this in turn
results in an expression for the entropy which, besides
a Bekenstein–Hawking area term, has a logarithmic
area correction with same coefficient �3=2 as above.
This suggests a universal, dimension-independent,
nature of the these logarithmic corrections.

See also: BF Theories; The Jones Polynomial; Knot
Theory and Physics; Large-N and Topological Strings;
Quantum 3-Manifold Invariants; Topological Quantum
Field Theory: Overview.
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Introduction

Gauge theory is the cornerstone of the standard
model of elementary particles. The original motiva-
tion for studying supersymmetric gauge theories was
phenomenological (such as the hierarchy problem).
They display a large number of interesting phenom-
ena and become the models for the dynamics of
strongly coupled field theories. They also offer
valuable insights to nonsupersymmetric models. In
N = 1 gauge theory, the low-energy effective super-
potential is holomorphic both in the superfields and
in the coupling constants. This powerful holomor-
phy principle, together with symmetry and various
limits, often determines the effective superpotential
completely. Such theories often have quantum
moduli spaces where the classical singularities are
smoothed out, continuous interpolation between
Higgs and confinement phases, massless composite
mesons and baryons, and dual theories weakly
coupled at low energy. For N = 2 pure gauge theory,
the low-energy effective theory is an abelian gauge
theory in which both the kinetic term and the
coupling constant are determined by a holomorphic
prepotential. The electric–magnetic duality is in the
ambiguity of the low-energy description. Much
physical information, such as the coupling constant,
the Kähler metric on the quantum moduli, the
monodromy around the singularities, can be incor-
porated in a family of elliptic curves. This low-
energy exact solution is also useful to topological
field theory that can be obtained from the N = 2
theory by twisting. Much of the above was the work
of Seiberg and Witten in the mid-1990s. In this
article, we review some of the fascinating aspects of
N = 1 and N = 2 supersymmetric gauge theories.
N = 1 Gauge Theory and Seiberg Dualities

N = 1 Yang–Mills Theory and QCD

Let G be a compact Lie group and let P be a principal
G-bundle over the Minkowski space R3, 1. In pure
gauge theory, the dynamical variable is a connection A
in P; two connections are equivalent if they are related
by a gauge transformation. Let F 2 �2(R3, 1, ad P) be
the curvature of A. It decomposes into the self-dual and
anti-self-dual parts, that is, F = Fþ þ F�, where
F�= (1=2)(F �

ffiffiffiffiffiffi
�1
p

� F). With a suitably normalized
nondegenerate bilinear form h�,�i on the Lie algebra g,
the classical action is

SYM½A� ¼
Z

R3;1
� 1

2g2
hF ^ �Fiþ 

16�2
hF ^ Fi

¼
Z

R3;1
� 


8�
hFþ ^ Fþi� �


8�
hF� ^ F�i

Here g > 0 is the coupling constant and  2 R, the
 angle, and


 ¼ 

2�
þ 4�

ffiffiffiffiffiffiffi
�1
p

g2

is a complex number in the upper-half plane that
incorporates both. Classically, the theory is con-
formally invariant and the dynamics is independent
of the -term. At the quantum level, (mod2�)
appears in the path integral and parametrizes
inequivalent vacua. The coupling constant runs as
energy � varies, satisfying the renormalization group
equation

�
dg

d�
¼ � b0

ð4�Þ2
g3þ oðg5Þ

where the right-hand side is called the �-function
�(g). This introduces, when b0 6¼ 0, a mass scale �
given by

ð�=�Þb0 ¼ e�8�2=gð�Þ2



up to one-loop. Consequently, the classical scale
invariance is lost. It is convenient to redefine � as a
complex quantity such that

ð�=�Þb0 ¼ e2�
ffiffiffiffiffi
�1
p

�ð�Þ

For pure gauge theory, b0 = (11=3)�h, where �h is the
dual Coxeter number of g. At high energy (�!1),
the coupling becomes weak (g! 0); this is known as
asymptotic freedom. On the contrary, the interac-
tion becomes strong at low energy. It is believed that
the theory exhibits confinement and has a mass gap.

QCD, or quantum chromodynamics, is gauge
theory coupled to matter fields. Suppose the boson
� and the fermion  are in the (complex) representa-
tions Rb and Rf of G, respectively. That is, � 2
�(P�G Rb), or � is a section of the bundle P�G Rb,
and  2 �(S	 (P�G Rf )), where S is the spinor
bundle over R3, 1. The classical action is

SQCD½A;�; �¼SYM½A�

þ 1

g2

Z
d4x

1

2
jr�j2þ

ffiffiffiffiffiffiffi
�1
p

ð ;r= Þþ � � �

where r is the covariant derivative, r= is the Dirac
operator coupled to A, and we have omitted possible
mass and potential terms. The quantum theory
depends sensitively on the representations Rb and
Rf . In the �-function, we have

b0 ¼ 11
3

�h� 1
6�ðRbÞ � 2

3�ðRfÞ

where �(R) is the Dynkin index of a representation
R. If b0 < 0, the theory is free in the infrared but
strongly interacting in the ultraviolet. If b0 > 0, the
converse is true; in particular, the theory exhibits
asymptotic freedom. If b0 = 0, the situation depends
on the sign of the two or higher-loop contributions.

Pure N = 1 supersymmetric gauge theory is one on
the superspace R3, 1j(2, 2) with a constraint that the
curvature vanishes in the odd directions. The
dynamical variables are in the superfield strength
W, a 1j(1, 0)-form valued in ad P. In components,
the theory is gauge field coupled to a Majorana or
Weyl fermion in the adjoint representation. Let S �

be spinor bundles of positive (negative) chiralities,
respectively, and let 	 be a section of Sþ 	 adP. The
action, written both in superspace and in ordinary
spacetime, is

SN¼1
SYM½A; 	� ¼

1

4�
Im

Z
d4x d2� �hW;Wi

� �

¼ SYM½A� þ
1

g2

Z
d4x

ffiffiffiffiffiffiffi
�1
p

h�	;r=þ	i

Since b0 = 3�h, the theory is asymptotically free but
strongly coupled at low energy. Classically, the
theory has a U(1)R chiral symmetry. However, due
to anomaly, only the subgroup Z2�h survives at the
quantum level. Instanton effect yields gaugino
condensation h		i 
 �3. The symmetry is thus
further broken to Z2, resulting �h inequivalent vacua.

The N = 1 QCD has additional chiral superfields
� in a representation R, including the bosons � 2
�(P�G R) and the fermions  2 �(Sþ 	 (P�G R)).
In the absence of superpotential, the action is

SN¼1
SQCD½A; 	; �;  � ¼ SN¼1

SYM½A; 	�

þ 1

g2

Z
d4x d2� d2 �� 1

2j�j
2

In components, the second term is

1

g2

Z
d4x 1

2jr�j
2 þ

ffiffiffiffiffiffiffi
�1
p

ð ;r=þ Þ � 1
2�
�jDj2 þ � � �

� �

where D : R! g� is the moment map of the
Hamiltonian G-action on R, and we have omitted
other terms containing fermionic fields. The
moduli space of classical vacua is the symplectic
quotient D�1(0)=G = R==G. It is the same as the
Kähler quotient Rs=GC, where the stable subset
Rs = {� 2 RjGC � � \D�1(0) 6¼ ;} is open and dense in
R. Again, the quantum theory depends on the
representation R. Since b0 = 3�h� (1=2)�(R), the theory
is asymptotically free, infrared free, scale invariant (to
one-loop) when �(R) < 6�h, �(R) > 6�h, �(R) = 6�h,
respectively. The moduli space may be lifted by a
superpotential or modified by other quantum effects.

SU(Nc) Theories at Low Energy

We now consider N = 1 QCD with G = SU(Nc); Nc

is the number of colors. The matter field consists of
Nf copies of quarks Qi(1 � i � Nf ) in the funda-
mental representation of SU(Nc) and Nf copies of
antiquarks Q0i0 (1 � i0 � Nf ) in the conjugate repre-
sentation. Using the isomorphism of s u (Nc) with its
dual, the moment map is

DðQ;Q0Þ ¼ traceless part of
ffiffiffiffiffiffiffi
�1
p

ðQQy �Q0Q0yÞ

So (Q, Q0) 2 D�1(0) if and only if QQy �Q
0y

= cINc

for some c 2 R. If Nf < Nc, then c = 0 and

Q;Q0 


a1

. .
.

aNf

0
BB@

1
CCA
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for some ak � 0. Generically, these ak > 0 and the
gauge group SU(Nc) is broken to SU(Nc �Nf ). If
Nf � Nc, then

Q 

a1

. .
.

aNc

0
B@

1
CA; Q0 


a01
. .

.

a0Nc

0
B@

1
CA

where ak, a 0k � 0 satisfy a2
k � a 0k

2 = c for some c 2 R.
The gauge group is completely broken. The low-
energy superfields are the mesons Mi

i0 = QiQ0i0 and, if
Nf � Nc, the baryons

BiNcþ1���iNf
¼ 1

Nc!

i1���iNf

Qi1 � � �QiNc

B0
i0
Ncþ1

...i0
Nf ¼ 1

Nc!



i0
1
���i0

Nf Q0i0
1
� � �Q0i0

Nc

When Nf < Nc, Affleck et al. (1984) found a
dynamically generated superpotential

WeffðM̂Þ ¼ ðNc �Nf Þ
�3Nc�Nf

det M

� �1=ðNc�Nf Þ

generated by instanton effect when Nf = Nc � 1 and by
gaugino condensation in the unbroken SU(Nc �Nf )
theory when Nf < Nc � 1. It is also the unique super-
potential (up to a multiplicative constant) that is
consistent with the global and supersymmetry. The
potential pushes the vacuum to infinity. Therefore,
contrary to the classical picture, theories with Nf < Nc

do not have a vacuum at the quantum level.
When Nf � 3Nc, the theory is not strongly inter-

acting at low energy, and perturbation methods are
reliable. (When Nf = 3Nc, the two-loop contribution
to the �-function is negative.) We now look at the
range Nc � Nf < 3Nc. The cases Nf = Nc, Nc þ 1
and Nc þ 2 � Nf < 3Nc were studied in Seiberg
(1994) and Seiberg (1995), respectively.

When Nf = Nc, the classical moduli space is
det M = BB0. The quantum theory at low energy
consists of the fields M, B, B0 satisfying the
constraint det M� BB0= �2Nc . The quantum moduli
space is smooth everywhere, and there are no
additional massless particles. So the gluons are
heavy throughout the moduli space. This is due to
confinement near the origin, where the interaction is
strong, and due to the Higgs mechanism far out in
the flat direction, where the classical picture is a
good approximation. We see a smooth transition
between these two effects.

When Nf = Nc þ 1, there is a dynamically gener-
ated superpotential

Weff ¼
1

�2Nc�1
ðB0MB� det MÞ

The stationary points of Weff are at BB0 � ^NcM = 0,
BM = 0, MB0= 0; these are precisely the constraints
that the classical configuration satisfies. However,
the moduli space is interpreted differently: it is
embedded into a larger space, and the constraints
are satisfied only at stationary points. At the
singularity hMi= 0, the whole global symmetry
group is unbroken, and B, B0 are the new massless
fields resolving the singularity. So we have a
continuous transition between confinement (without
chiral symmetry breaking) and the Higgs mechanism
in the semiclassical regime.

When Nc þ 2 � Nf � (3=2)Nc, the original theory,
called the electric theory, is still strongly coupled in
the infrared. Seiberg (1995) proposed that there is a
dual, magnetic theory, which is infrared free. The
two theories are different classically, but are
equivalent at the quantum level. The dual theory
is an N = 1SU( ~Nc) gauge theory with ~Nc = Nf �Nc,
coupled to dual quarks ~Qi, ~Q0i

0
, where 1 � i; i0 �

Nf are flavor indices. In addition, the mesons Mi
i0

become fundamental fields. They are not coupled to
the SU( ~Nc) gauge field but interact with the dual
quarks through the superpotential

W ¼ ��1Mi
i0

~Qi
~Q0i

0

The two theories have the same global symmetry
and the same gauge-invariant operators. The dual
quarks are fundamental in the magnetic theory but
are solitonic excitations in the electric theory. At
high energy, the electric theory is asymptotically
free, while the magnetic theory is strongly coupled.
At low energies, the converse is true. Therefore,
reliable perturbative calculations can be performed
by choosing an appropriate weakly coupled
theory.

When (3=2)Nc < Nf < 3Nc, the theory has a
nontrivial infrared fixed point. This is because up
to two-loop,

�ðgÞ ¼ � g3

16�2
ð3Nc �Nf Þ

þ g5

128�4
2NcNf � 3N2

c �
Nf

Nc

� �
þ oðg7Þ

There is a solution g� > 0 to �(g) = 0. We have
�(g) < 0 when 0 < g < g�,�(g) > 0 when g > g�. In
the infrared limit, the coupling constant flows to
g= g�, where we have a nontrivial, interacting
superconformal theory in four dimensions. The
conformal dimension becomes anomalous and is
equal to 3/2 of the charge of the chiral U(1)R; for
example, that of the meson ��1M is 3(Nf �
Nc)=Nf > 1 in this range.
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Other Classical Gauge Groups

We now consider N = 1 supersymmetric gauge
theory and QCD with gauge groups Sp(Nc) and
SO(Nc). The Sp(Nc) theories, studied by Intriligator
and Pouliot (1995), are the simplest examples of
the N = 1 theories. We take 2Nf chiral superfields
Qi(i = 1, . . . , 2Nf ) in the fundamental representation
C2Nc ffi HNc of Sp(Nc). The number of copies must
be even so that the quantum theory is free from
global gauge anomaly. The gauge-invariant quanti-
ties are the mesons Mij = Qa

i Q
b
j !ab, where ! is

the symplectic form on C2Nc , subject to a constraint

1,..., 2Ncþ2M1, 2 � � �M2Ncþ1, 2Ncþ2 = 0. Using the
decomposition u (2Nc) = sp(Nc)�

ffiffiffiffiffiffi
�1
p

{H-self-adjoint
matrices}, the moment map D(Q) is the projection offfiffiffiffiffiffi
�1
p

QQy on sp(Nc). So D(Q) = 0 implies

Q 

a1

. .
.

aminfNc;Nf g

0
B@

1
CA	 1 0

0 1

� �

where ak � 0. At a generic point of the classical
moduli space, the gauge group is broken to Sp(Nc �
Nf ) if Nc > Nf ; it is completely broken if Nc � Nf .

Since b0 = 3(Nc þ 1)�Nf , the quantum theory is
infrared free if Nf � 3(Nc þ 1). (When b0 = 0, the
two-loop �-function is negative.) When Nf � Nc,
there is a dynamically generated superpotential

Weff ¼ðNc þ 1�Nf Þ

� 2Nc�1�3ðNcþ1Þ�Nf

Pf M

� �1=ðNcþ1�Nf Þ

pushing the vacuum to infinity.
When Nf = Nc, the classical moduli space PfM = 0

has singularities. The quantum moduli space is
Pf M = 2Nc�1�2(Ncþ1). The singularity is smoothed
out and there are no light fields other than the
mesons M. When Nf = Nc þ 1, all components of M
become dynamical in the low-energy theory, and
there is a superpotential

Weff ¼ �
Pf M

2Nc�1�2Ncþ1

At the most singular point hMi= 0, the global
symmetry is unbroken, and all the light fields in M
become massless. In both cases, there is a transition
between confinement and Higgs mechanism.

When Nc þ 3 � Nf � (3=2)(Nc þ 1), there is a
dual, magnetic theory which is free in the infrared.
The dual theory has 2Nf quarks ~Qi in the funda-
mental representation of Sp( ~Nc), where ~Nc = Nf �
Nc � 2. In addition, the mesons Mij become elemen-
tary and couple to ~Q through a superpotential
W = (2�)�1Mij

~Qia ~Qjb!̃ab, where !̃ is the symplectic

formonC2 ~Nc . When (3=2)(Nc þ 1) < Nf < 3(Nc þ 1),
the theory flows to an interacting superconformal field
theory in the infrared.

Theories with the SO(Nc) gauge group were
studied by Seiberg (1995) and by Intriligator and
Seiberg (1995). Since the fundamental representa-
tion is real, there is no constraint on the number Nf

of quarks Qi(1 � i � Nf ). The gauge invariants are
the mesons Mij = Qi

aQj
b�

ab and, if Nf � Nc, the
baryons BiNcþ1���iNf

= 
i1���iNf
Qi1 � � �QiNc =Nc! They

satisfy rank M � Nc and BB = ^Nc M. Using the
decomposition u(Nc) = so(Nc)�

ffiffiffiffiffiffi
�1
p

{R-self-adjoint
matrices}, the moment map D(Q) is the projectionffiffiffiffiffiffi
�1
p

QQy on so(Nc). If D(Q) = 0, then up to gauge
and global symmetries, Q is of the form

Q 


a1

. .
.

ar

0
BBB@

1
CCCA

where a1, . . . , ar > 0 if r = rank Q � Nc and
a1, . . . , aNc�1 > 0 and aNc

6¼ 0 if r = Nc. Generically,
the gauge group is broken to SO(Nc �Nf ) if Nc �
Nf þ 2 and is totally broken if Nc < Nf þ 2.

We have b0 = 3(Nc � 2)�Nf if Nc � 5. For
Nc = 4, the group is (SU(2)� SU(2))=Z2 and
b0 = 6�Nf for each SU(2) factor. If Nc = 3, the
group is SU(2)=Z2b0 = 6� 2Nf . The theory is
asymptotically free if Nf > 3(Nc � 2) and infrared
free if Nf � 3(Nc � 2).

When Nf � Nc � 5, there is a dynamically gener-
ated superpotential

Weff ¼
1

2
ðNc � 2�Nf Þ

� 16�3ðNc�2Þ�Nf

det M

� �1=ðNc�2�Nf Þ

lifting the classical vacuum degeneracy. The coeffi-
cient is fixed by mass deformation and by matching
the SU(4) theory when Nc = 6.

When Nf = Nc � 4, the unbroken gauge group is
SO(4) = (SU(2)� SU(2))=Z2 on the generic point of
the moduli space. The superpotential of the original
theory is

Weff ¼ 2ð
þ þ 
�Þ
�2ðNc�1Þ

det M

� �1=2

where the choices 
þ, 
�=�1 correspond to the fact
that each of the SU(2) theory has two vacua. There
are two physically inequivalent branches: 
þ= 
�
and 
þ=�
�. For 
þ= 
�, the superpotential pushes
the vacuum to infinity. For 
þ=�
�,Weff = 0. In the
quantum theory, the singularity is smoothed out and
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all the massless fermions are in M, even at the origin
of the moduli space. Hence the quarks are confined.

When Nf = Nc � 3, the unbroken gauge group is
SO(3) and the theory has two branches with

Weff ¼ 4ð1þ 
Þ�
2Nc�3

det M

where 
=�1. For 
= 1, the quantum theory has no
vacuum. For 
=�1, Weff = 0, but there are addi-
tional light fields ~Qi coupling to M via the super-
potential W 
 (2�)�1Mij ~Qi

~Qj near M = 0.
When Nf = Nc � 2, the low-energy theory is related

to the N = 2 gauge theory and will be addressed in the
subsection ‘‘Seiberg–Witten’s low-energy solution.’’

When Nf � Nc � 1, we define a dual, magnetic
theory whose gauge group is SO( ~Nc), where
~Nc = Nf �Nc þ 4. There are Nf dual quarks ~Qi(1 �
i � Nf ) in the fundamental representation. This
theory is infrared free if Nf � (3=2)(Nc � 2). In the
effective theory, the mesons Mij become fundamen-
tal and couple with the dual quarks through a
superpotential W = (2�)�1Mij ~Qi

~Qj if Nf � Nc; there
is an additional term det M=64�2Nc�5 if Nf = Nc � 1.
When (3=2)(Nc � 2) < Nf < 3(Nc � 2), the theory
flows to an interacting superconformal field theory in
the infrared.

N = 2 Gauge Theory and Seiberg–Witten
Duality

N = 2 Yang–Mills Theory

Pure N = 2 supersymmetric gauge theory is a special
case of N = 1 QCD when R = gC is the (complex-
ified) adjoint representation of G. The moment map
is D(�) = (1=2

ffiffiffiffiffiffi
�1
p

)[�, ��] 2 g ffi g�(� 2 g). Since the
fermionic fields 	 and  are sections of the same
bundle, there is a second set of supersymmetry
transformations by interchanging the roles of 	 and
 . This makes the theory N = 2 supersymmetric.
The classical action is

SN¼2
SYM½A; 	;  ; �� ¼ SYM½A�

þ 1

g2

Z
d4x

ffiffiffiffiffiffiffi
�1
p

ðh �	;r=	i

þ h � ;r= iÞ þ 1

2
jr�j2

þ
ffiffiffiffiffiffiffi
�1
p

ðh ��; ½	;  �i þ h�; ½ �	; � �iÞ

� 1

8
j½�; ���j2

The energy reaches the minimum when � takes a
constant value � 2 gC that can be conjugated by G
to the Cartan subalgebra tC. (t is the Lie algebra of
the maximal torus T.) The classical moduli space is

gC=GC = tC=W, where W is the Weyl group. At a
generic � 2 tC, the gauge group is broken to T by
the Higgs mechanism. Classically, the massless
degrees of freedom are excitations of � and
components of the gauge field in t. So the low-
energy physics can be described by these massless
fields. However, the moduli space is singular when �
is on the walls of the Weyl chambers. At these
values, the unbroken gauge group is larger and there
are extra massless fields that resolve the
singularities.

Since b0 = 2�h > 0, the quantum theory is asymp-
totically free but strongly interacting at low energy.
It can be shown that N = 1 supersymmetry already
forbids a dynamically generated superpotential on
tC=W. Therefore, the vacuum degeneracy is not
lifted and the quantum moduli space is still a
continuum. However, there are corrections to the
part of classical moduli space where strong interac-
tions occur. The quantum theory has a dynamically
generated mass scale �. We pick the renormalization
scale � to be j�j, the typical energy scale where
spontaneous symmetry breaking occurs. Far away
from the origin, that is, when j�j � j�j, the theory is
weakly interacting and the classical description of
the moduli space is a good approximation. How-
ever, when j�j is comparable to j�j, the classical
language and perturbation methods fail due to
strong interaction. At �= 0, the full gauge symmetry
is restored classically. But since the theory becomes
strongly interacting at low energy, it cannot be the
low-energy solution of the original theory.

The classical U(1)R symmetry extends to U(2)R,
mixing 	 and  . The U(1)R subgroup in U(2)R is
anomalous except for a subgroup Z4�h. So we have a
global SU(2)R �Z2

Z4�h symmetry at the quantum
level. This is consistent with a continuous moduli
space of vacua, if the group SU(2)R is to act
nontrivially. Also, the space is not a single orbit of
the global symmetry group. The generator of Z4�h
acts on tC by a phase e��

ffiffiffiffi
�1
p

=�h. The group Z4�h is
spontaneously broken to the subgroup which
acts trivially on tC=W.

We study the general form of low-energy effective
Lagrangian that is consistent with N = 2 super-
symmetry. We assume that the quantum effect does
not modify the topology of the moduli space tC=W,
though it may alter the singularity and its nature.
Suppose U is the quantum moduli. At a generic
point in U, the residual gauge group is T. In the
N = 1 language, the theory is a supersymmetric
gauged sigma model with target space U. It contains
N = 1 vector multiplets WI and chiral multiplets �I,
where 1 � I � r, r = dim T being the rank of G.
N = 1 supersymmetry requires that U is Kähler, with
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possible singularities where the effective theory
breaks down. N = 2 supersymmetry requires further
that U is special Kähler, that is, there is a flat,
torsion-free connection r on TU such that the
Kähler form ! is parallel and such that drJ = 0,
where the complex structure J is viewed as a 1-form
valued in TU. See, for example, Freed (1999).
Locally, there is a holomorphic prepotential F and
special coordinates {zI}. Let ~zI = @F=@zI be the dual
coordinates and let �IJ = @2F=@zI@zJ = @~zI=@zJ. Then
K = Im(~zI�z

I) is a Kähler potential and != (
ffiffiffiffiffiffi
�1
p

=2)
Im(�IJ)dzI ^ d�zJ is the Kähler form. The effective
action is

SN¼2
eff ½W;�� ¼ 1

4�
Im

Z
d4x d2� 1

2�IJð�ÞðWI;WJÞ
�

þ
Z

d4x d2�d2 ��Kð�Þ
�

Note that both the coupling constants �IJ and the
metric Im�IJ on U are determined by a holomorphic
function F , which is the hallmark of N = 2
supersymmetry.

In the bare theory with abelian gauge group T, the
action is given by choosing F 0(�) = (1=2)�IJh�I, �Ji,
where the �IJ (and hence the metric Im�IJ) are
constants. Due to one-loop and instanton effects,
F is no longer quadratic in the effective theory.
Since � varies on U, it cannot be holomorphic
(except at a few singular points), single valued, and
having a positive-definite imaginary part. The
solution to this apparent contradiction is that each
set of special coordinates and the expression of F is
valid only in part of U. Solving the N = 2 gauge
theory at low energy means understanding the
singularity of U in the strong coupling regime and
obtaining the explicit form of F or �IJ in various
regions of the moduli space.

Seiberg–Witten’s Low-Energy Solution

We consider N = 2 gauge theory with G = SU(2).
The Cartan subalgebra is t ffi C; each a 2 C deter-
mines an element �= (1=2)

�
a 0
0 �a

�
in t. The Weyl

group W ffi Z2 acts on C by a 7! � a. The moduli
space of classical vacua is the u-plane C=Z2

parametrized by u = tr�2 = (1=2)a2. When u 6¼ 0,
the gauge group is broken to U(1). The generator
of Z4�h = Z8 � U(1)R acts as a 7!

ffiffiffiffiffiffi
�1
p

a, u 7! �u.
The Z8 symmetry is broken to Z4; the quotient
Z2 = Z8=Z4 acts on the u-plane by u 7! � u.

Abelian gauge theory and N = 4 supersymmetric
gauge theory exhibit exact electric–magnetic duality
in the sense that the quantum theories are identical
if the coupling constant � undergoes an SL(2, Z)
transformation. Seiberg and Witten (1994a, b)

proposed that this is so for the low-energy effective
theory of the N = 2 gauge theory. An SL(2, Z)
transformation maps one description of the low-
energy theory to another, exchanging electricity and
magnetism. It is however not an exact duality of the
full SU(2) theory. Rather, duality is in the ambiguity
of the choice of the low-energy description. More
precisely, � is a section of a flat SL(2, Z) bundle over
U. Thus, � is multivalued and exists as a function in
local charts only. So we must use different Lagran-
gians in different regions of the u-plane. Around the
singularities where � is not defined, nontrivial
monodromy can appear.

Away from infinity, the electric theory is strongly
interacting but the magnetic theory is infrared free.
The dual field is ~a = dF (a)=da, and �eff(u) = d~a=da.
The group SL(2, Z) is generated by

P ¼
�1 0

0 �1

� �
; S ¼

0 1

�1 0

� �

T ¼
1 1

0 1

� �

To see its action on
�

~a
a

�
, we use the central

extension of the N = 2 super-Poincaré algebra. In
the classical theory, the central charge is Z = (ne þ
�nm)a from the boundary terms at infinity. As the
electric–magnetic duality transformation S inter-
changes ne and nm, we have for any � 2 SL(2, Z),
� : (nm, ne) 7! (nm, ne)�

�1. When nm = 0, the classical
formula Z = nea is valid. Invariance of Z under
SL(2, Z) requires that Z = nm~aþ nea at the quan-
tum level and that SL(2, Z) acts on

�
~a
a

�
homo-

geneously as a column vector.
When u = (1=2)a2 is large, perturbation is reliable.

The classical and one-loop results are a(u) 
ffiffiffiffiffiffi
2u
p

, ~a 
 (
ffiffiffiffiffiffi
�1
p

=�)a log a2. As u goes around infinity,
the fields transforms as a 7! �a, ~a 7! �~aþ 2a. The
monodromy is M1= PT�2. The mass M of a
monopole state is bounded by M2 = P�P� � jZj2,
which is precisely the Bogomol’nyi bound. Now as a
consequence of the N = 2 supersymmetry, it receives
no quantum corrections as long as supersymmetry is
not broken at the quantum level. The states that
saturate the bound are the BPS states. The BPS
spectrum at u 2 U is a subset of H1(Eu, Z) ffi Z2

containing the pairs (nm, ne) realized by the dyon
charges. Near infinity, the condition is that either
ne =�1, nm = 0 (for W� particles) or nm =�1 (for
monopoles or dyons). This spectrum is invariant
under the monodromy M1.

The nontrivial holonomy at infinity implies the
existence of at least one singularity at a finite value
u = u0, where extra particles become massless.
Seiberg and Witten (1994a, b) propose that these
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particles are collective excitations in the perturbative
regime. Suppose along a path connecting u0 and
some base point near infinity, a monopole of charges
(�1, ne) = (0, 1)(T�neS�1)�1 becomes massless at u0.
Then by the renormalization group analysis
and duality, the monodromy at u0 is Mu0

= (T�neS�1)
T2(T�neS�1)�1. It turns out that there are two
singularities u =��2 with monodromies M�2 =
ST2S�1 and M��2 = (TS)T2(TS)�1. The particles that
become massless at��2 are of charges (nm, ne) = (1, 0)
and (1,�1), respectively. The only BPS states in the
strong coupling regime are those which become
massless at the singularities; the others decay as u
deforms towards strong interaction.

The monodromies M��2 , M1 (or any two of
them) generate the subgroup �(2). The family of
elliptic curves with these monodromies can be
identified with y2 = (x� �2)(xþ �2)(x� u) called
the Seiberg–Witten curve. The singularities are at
u =��2 and u =1, where the curve degenerates.
Let

	 ¼
ffiffiffi
2
p

2�

y dx

x2 � �4

be the Seiberg–Witten differential (of second kind on
the total space E). Then in a suitable basis (,�) of
H1(Eu=U, Z), we have a =

R
 	, ~a =

R
� 	. At a

singularity, if �= nm� þ ne is a vanishing cycle,
then the dyon of charges (nm, ne) becomes massless.
This is because its central charge is Z = nm~aþ
nea =

R
� 	. The monodromy at a singularity where �

is a vanishing cycle is given by the Picard–Lefshetz
formula M: � 7! � � 2(� � �)�. At u =��2, the van-
ishing cycles are � and � � , respectively.

We return to the N = 1 SO(Nc) gauge theory with
Nf = Nc � 2. At a generic point in the moduli space,
the gauge group is broken to SO(2), which is
abelian. Much of the above discussion applies to
this case. By N = 1 supersymmetry, the effective
coupling �eff is holomorphic in M but is not single
valued. In fact, �eff depends on u = det M, which is
invariant under the (anomaly free) SU(Nf ) symme-
try. For large u, we have e2�

ffiffiffiffi
�1
p

�eff = �4Nc�8=u2 and
the monodromy around infinity is M1= PT�2.
On the other hand, a large expectation value
of M of rank Nc � 3 breaks the gauge group to
SO(3) and the theory is the N = 2 theory discussed
earlier. Using these facts, Intriligator and Seiberg
(1995) identified the family of elliptic curves as
y2 = x(x� 16�2Nc�4)(x� u). There are two singula-
rities with inequivalent physics. At u = 0, the mono-
dromy is ST2S�1. A pair of monopoles ~Q� becomes
massless. They couple with M through the super-
potential W 
 (2�)�1Mij ~Qi

~Qj. At u = 16�2Nc�4, the

monodromy is (T2S)T2(T2S)�1. A pair of dyons E� of
charges �1 become massless. The effective action is
Weff 
 (u� 16�2Nc�4)EþE�.

Topological gauge theory is a twisted version of
N = 2 Yang–Mills theory in which the observables
at high energy are the Donaldson invariants. The
work of Seiberg and Witten (1994a, b) yields new
insight to it and has a tremendous impact on the
geometry of 4-manifolds. See Witten (1994) for the
initial steps.

After the work of Seiberg and Witten (1994a, b),
there has been much progress on theories with other
gauge groups. If the gauge group is a compact Lie
group of rank r, the u-plane is replaced by tC=W;
the singularities are modified by quantum effects.
The duality group is Sp(2r, Z) or its subgroup of
finite index, acting on the coupling matrix � = (�IJ)
by fractional linear transformations. For example, for
G = SU(Nc), the moduli space is parametrized by
gauge invariants u2, . . . , uNc

defined by det (xI � �) =
xNc �

PNc

i = 2 uix
Nc�i = PNc

(x, ui). Classically, the sin-
gular locus is a simple singularity of type ANc�1. At
the quantum level, the singularity consists of two
copies of such locus shifted by ��n in the un

direction. The monodromies correspond to a family
of hyperelliptic curves y2 = PNc

(x, ui)
2 � �2Nc of

genus Nc � 1. The Seiberg–Witten differential is

	 ¼
ffiffiffi
2
p

�
ffiffiffiffiffiffiffi
�1
p @PNcðx; uiÞ

@x

x dx

y
þ @ð� � �Þ

The Nc � 1 independent eigenvalues ai of � and
their duals ~ai = @F=@ai are the periods of 	 along
the 2Nc � 2 homology cycles in the curve. For more
details, the reader is referred to Klemm et al. (1995)
and Argyes and Faraggi (1995).

N = 2 QCD

N = 2 supersymmetric QCD is N = 2 Yang–Mills
theory coupled to N = 2 matter. The latter consists
of N = 1 superfields Q that form a quarternionic
representation R of the gauge group G. The space R
has a G-invariant hyper-Kähler structure. The
hyper-Kähler moment map �H: R! g� 	 Im H con-
sists of a real moment map �R: R! g� for the
Kähler structure and a complex moment map
�C: R! (g�)C for the holomorphic symplectic
structure. As an N = 1 theory, the matter superfields
are valued in R� gC with a D-term D(Q, �) =
�R(Q)þ (1=2

ffiffiffiffiffiffi
�1
p

)[�, ��] and a superpotential
W(Q, �) =

ffiffiffi
2
p
h�C(Q), �i þm(Q), where the mass

term m is a G-invariant quadratic form on R. The
classical moduli space of vacua has two branches.
On the Coulomb branch where Q = 0 and � 6¼ 0,
the unbroken gauge group is abelian and the
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photons are massless. If Q 6¼ 0 exists in the flat
directions, the gauge group is broken according to
the value of Q; these are the Higgs branches. If
m = 0, the moduli space of classical vacua is the
hyper-Kähler quotient ��1

H (0)=G. The branches of
two types touch at the origin, where the full gauge
group is restored, and at other subvarieties in R. The
global symmetry is the subgroup of U(R) that
commutes with the G-action on R and preserves
m; it contains U(2)R.

Quantum mechanically, such a theory is free
from local gauge anomalies. Consistency under large
gauge transformations puts a torsion condition on R,
such as �(R) = 0(mod 2). Since b0 = 2�h� (1=2)�(R),
the theory is asymptotically free if �(R) < 4�h. If
�(R) = 4�h, the quantum theory is scale invariant up
to one-loop (and hence to all loops), and is expected
to be so nonperturbatively. If �(R) > 4�h, the quan-
tum theory may not be defined but it can be the low-
energy solution of another asymptotically free theory.
Due to the axial anomaly, the U(2)R global symmetry
reduces to the subgroup SU(2)R �Z2

Z4�h��(R). The
metric on the Coulomb branch can be corrected by
quantum effects, but those on the Higgs branches do
not change because of the uniqueness of the hyper-
Kähler metric. In the quantum theory, the Higgs
branches still touch the Coulomb branch, but the
photons of the Coulomb branch are the only massless
gauge bosons at the point where they meet.

When G = SU(Nc) we take Nf quarks
Qi(i = 1, . . . , Nf ) in the fundamental representation
and Nf antiquarks ~Qi(i = 1, . . . , Nf ) in the complex-
conjugate representation. The moment map is the
same as in N = 1 QCD whereas the superpotential
is W =

ffiffiffi
2
p

~Qi�Qi þ
P

i mi
~QiQ

i. Consider the case
G = SU(2) as in Seiberg and Witten (1994b). Since
b0 = 4�Nf , the asymptotically free theories have
Nf � 3 whereas the Nf = 4 theory is scale invariant.
As the representations on Qi and ~Qi are isomorphic,
the classical global symmetry is O(2Nf )� U(2)R

when all mi = 0. The appearance of the even number
of fundamental representations is necessary for the
consistency of the theory at the quantum level. The
U(1)R symmetry is anomalous if Nf 6¼ 4. When Nf > 0,
SO(2Nf ) is anomaly free, whereas O(2Nf )=SO(2Nf ) =
Z2 is anomalous. The anomaly free subgroup of Z2 �
U(1)R is Z4(4�Nf ). Its Z2 subgroup acts in the same way
as Z2 � Z(SO(2Nf )). A nonzero expectation value of
u = tr�2 further breaks the symmetry to Z4. The
quotient group that acts effectively on the u-plane (the
Coulomb branch) is Z4�Nf

if Nf > 0 and Z2 if Nf = 0.
When Nf = 4, the U(1)R symmetry is anomaly free but
Z2 = O(8)=SO(8) is still anomalous.

The Nf = 0 theory is the N = 2 pure gauge theory.
In order to compare it to the Nf > 0 theories, we

multiply ne by 2 so that it has integer values on Qi

and ~Qi, and divide a by 2 to preserve the formula
Z = nm~aþ nea. The monodromies around the singu-
larities become M�2 = STS�1, M��2 = (T2S)T(T2S)�1,
M1= PT�4. They generate the subgroup �0(4) of
SL(2, Z). The coupling constant is

� ¼ �

�
þ 8�

ffiffiffiffiffiffiffi
�1
p

g2

The Seiberg–Witten curve is y2 = x3 � ux2 þ
(1=4)�4

0x, related to the earlier one y2 = (x� u)(x2 �
�4

0) by an isogeny. Here and below, �Nf
is the

dynamically generated scale.
For Nf > 0, we consider the case with zero bare

masses. The simplest BPS-saturated states are the
elementary quarks with mass

ffiffiffi
2
p
jaj, which form

the vector representation of SO(2Nf ). In addition, the
quarks have fermion zero modes in the monopole
background. When nm = 1, each SU(2) doublet of
quarks has one zero mode. With Nf hypermultiplet,
there are 2Nf zero modes in the vector representation
of SO(2Nf ). Upon quantization, the quantum states
are in the spinor representation. So the flavor
symmetry is really Spin(2Nf ). The spectrum may
also include states with nm > 1. For Nf = 2, 3, 4, the
center Z(Spin(2Nf )) are Z2 �Z2, Z4, Z2 �Z2,
whose generators act on states of charges (nm, ne)
by ((�1)neþnm, (�1)ne ),

ffiffiffiffiffiffi
�1
p nmþ2ne

, ((�1)nm, (�1)ne ),
respectively.

Suppose at a singularity on the u-plane, the low-
energy theory is QED with k hypermultiplets. Let mi

be the bare mass and Si, the U(1) charge of the ith
hypermultiplet. With the expectation value of �, the
actual masses are j

ffiffiffi
2
p

aþmij(1 � i � k). As the states
form a small representation of the N = 2 algebra, the
central charge is modified as Z = nm~aþ neaþ S �
m=

ffiffiffi
2
p

, where m = (m1, . . . , mk) and S = (S1, . . . , Sk).
Under a duality transformation M 2 SL(2, Z), the
column vector (m=

ffiffiffi
2
p

, ~a, a) is multiplied by a matrix
of the form M̂ =

�
Ik 0
� M

�
. (For example, if M = T, M̂

can be derived by one-loop analysis.) So the row
vector W = (S, nm, ne) transforms as W 7!WM̂�1. The
transformation on (nm, ne) is not homogeneous when
there are hypermultiplets. This phenomenon persists
even when all the bare masses mi are zero.

When Nf = 1, the global symmetry of the u-plane
is Z3. There are three singularities related by this
symmetry, where monopoles with charges (nm, ne) =
(1, 0), (1, 1), and (1, 2) become massless. The low-
energy theory at each singularity is QED with a
single light hypermultiplet. Besides the photon, no
other flat directions exist. This is consistent with the
absence of Higgs branch in the original theory.
The monodromies at the singularities are STS�1,
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(TS)T(TS)�1, (T2S)T(T2S)�1, respectively, and the
corresponding Seiberg–Witten family of curves is
y2 = x2(x� u)� (1=64)�6

1. The Seiberg–Witten dif-
ferential is

	 ¼ �
ffiffiffi
2
p

4�

y dx

x2

When Nf = 2, there are two singularities related by
the global symmetry Z2 of the u-plane. The massless
states at one singularity have (nm, ne) = (1, 0) and
form a spinor representation of SO(4) while those at
the other have (nm, ne) = (1, 1) and form the other
spinor representation. The low-energy theory at each
singularity is QED with two light hypermultiplets.
There are additional flat directions along which
SO(4)� SU(2)R is broken. They form the two Higgs
branches that touch the u-plane at the two singula-
rities rather than at the origin. The metric and pattern
of symmetry breaking are the same as classically.
The monodromies are ST2S�1, (TS)T2(TS)�1. The
Seiberg–Witten curve is y2 = (x2 � u)� (1=64)�4

2)
(x� u) and the differential is

	 ¼ �
ffiffiffi
2
p

4�

y dx

x2 � �4
2=64

When Nf = 3, the u-plane has no global symme-
try. There are two singularities. At one of them, a
single monopole bound state with (nm, ne) = (2, 1)
becomes massless and there are no other light
particles. At the other singularity, the massless states
have (nm, ne) = (1, 0) and form a (four-dimensional)
spinor representation of SO(6) with a definite
chirality. Thus, the low-energy theory is QED with
four light hypermultiplets. Along the flat directions,
the SO(6)� SU(2)R symmetry is further broken.
This corresponds to a single Higgs branch touching
the u-plane at the singularity. Again, the metric on
the Higgs branch is not modified by quantum
effects. The monodromies at the two singularities
are (ST2S)T(ST2S)�1 and ST4S�1, respectively. The
Seiberg–Witten curve is y2 = x2(x� u)� (1=64)
�2

3(x� u)2 and the differential is

	 ¼
ffiffiffi
2
p

��3
log yþ

ffiffiffiffiffiffiffi
�1
p �3

8
x� u� 32

�2
3

x2

� �� �
dx

When Nf = 4, the theory is characterized by
classical coupling constant � , and there are no
corrections to a = (1=2)

ffiffiffiffiffiffi
2u
p

, ~a = �a. There is only
one singularity at u = 0, where the monodromy is P.
Seiberg and Witten (1994b) postulate that the full
quantum theory is SL(2, Z) invariant, just like the
N = 4 pure gauge theory. The elementary

hypermultiplet has (nm, ne) = (0, 1) and form the
vector representation v of SO(8). Fermion zero
modes give rise to hypermultiplets with
(nm, ne) = (1, 0), (1, 1) that transform under the spinor
representations s, c of Spin(8). SL(2, Z) acts on the
spectrum via a homomorphism onto the outer-auto-
morphism group S3 of Spin(8), which then permutes v,
s, and c. So duality is mixed in an interesting way with
the SO(8) triality. In v, s, and c, the center Z2 �Z2

acts as ((�1)nm, (�1)ne ) = (1,�1), (�1, 1), (�1,�1),
respectively. The full SL(2, Z) invariance predicts the
existence of multimonopole bound states: for every
pair of relatively prime integers (p, q), there are eight
states with (nm, ne) = (p, q) that form a representation
of Spin(8) on which the center acts as ((�1)p, (�1)q).

Solutions when the bare masses are nonzero are
also obtained by Seiberg and Witten (1994b). The
masses can be deformed to relate theories with
different values of Nf . N = 2 QCD with a general
classical gauge group has also been studied. By
adding to these theories a mass term m tr �2

that explicitly breaks the supersymmetry to N = 1,
the dualities of Seiberg can be recovered. For
SU(Nc), SO(Nc) and Sp(2Nc) gauge groups,
see Hanany and Oz (1995), Argyes et al. (1996),
Argyes et al. (1997) and references therein.

See also: Anomalies; Brane Construction of Gauge
Theories; Donaldson–Witten Theory; Duality in
Topological Quantum Field Theory; Effective Field
Theories; Electric–Magnetic Duality; Floer Homology;
Gauge Theories from Strings; Gauge Theory:
Mathematical Applications; Nonperturbative and
Topological Aspects of Gauge Theory; Quantum
Chromodynamics; Topological Quantum Field Theory:
Overview; Supersymmetric Particle Models.
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Introduction

The purpose of this article is to describe the so-
called ‘‘semiclassical trace formula’’ (SCTF) relating
the ‘‘spectrum’’ of a semiclassical Hamiltonian to
the ‘‘periods of closed orbits’’ of its classical limit.
SCTF formula expresses the asymptotic behavior as
�h! 0 (�h = h=2�) of the regularized density of states
as a sum of oscillatory contributions associated to
the closed orbits of the classical limit.

We will mainly present the case of the Schrödin-
ger operator on a Riemannian manifold which
contains the purely Riemannian case.

We start with a section about the history of the
subject. We then give a statement of the results and
a heuristic proof using Feynman integrals. This
proof can be transformed into a mathematical
proof which we will not give here. After that we
describe some applications of the SCTF.

About the History

SCTF has several origins: on one side, Selberg
trace formula (1956) is an exact summation formula
concerning the case of locally symmetric spaces; this
formula was interpreted by H Huber as a formula
relating eigenvalues of the Laplace operator and
lengths of closed geodesics (also called the ‘‘lengths
spectrum’’) on a closed surface of curvature �1.

On the other side, around 1970, two groups of
physicists developed independently asymptotic trace
formulas:

� M Gutzwiller for the Schrödinger operator,
using the quasiclassical approximation of the
Green function (the ‘‘van Vleck’s formula’’); it
is interesting to note that the word ‘‘trace
formula’’ is not written, but Gutzwiller instead
speaks of a new ‘‘quantization method’’ (the old
one being ‘‘Einstein–Brillouin–Keller (EBK)’’ or
‘‘Bohr–Sommerfeld rules’’).
� R Balian and C Bloch, for the eigenfrequencies of

a cavity, use what they call a ‘‘multiple reflection
expansion.’’ They asked about a possible applica-
tion to Kac’s problem.

At the same time, under the influence of Mark
Kac’s famous paper ‘‘Can one hear the shape of a
drum?,’’ mathematicians became quite interested in
inverse spectral problems, mainly using heat kernel
expansions (for the state of the art around 1970, see
Berger et al. (1971)).

The SCTF was put into its final mathematical
form for the Laplace operator on closed manifolds
by three groups of people around 1973–75:

� Y Colin de Verdière in his thesis was using the
short-time expansion of the Schrödinger kernel
and an approximate Feynman path integral. He
proved that the spectrum of the Laplace operator
determines generically the lengths of closed
geodesics.
� J Chazarain derived the qualitative form of the

trace for the wave kernel using Fourier integral
operators.
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� Using the full power of the symbolic calculus of
Fourier integral operators, H Duistermaat and
V Guillemin were able to compute the main term
of the singularity from the Poincaré map of the
closed orbit. Their paper became a canonical
reference on the subject.

After that, people were able to extend SCTF to:

� general semiclassical Hamiltonians (Helffer–
Robert, Guillemin–Uribe, Meinrenken),
� manifolds with boundary (Guillemin–Melrose),
� surfaces with conical singularities and polygonal

billiards (Hillairet), and
� several commuting operators (Charbonnel–

Popov).

Recently, some researchers have remarked about the
nonprincipal terms in the singularities expansion
which come from the semiclassical Birkhoff normal
form (Zelditch, Guillemin).
Selberg Trace Formula

We consider a compact hyperbolic surface X.
‘‘Hyperbolic’’ means that the Riemannian metric is
locally (dx2 þ dy2)=y2 or is of constant curvature
�1. Such a surface is the quotient X = H=� where �
is a discrete co-compact subgroup of the group of
isometries of the Poincaré half-plane H. Closed
geodesics of X are in bijective correspondence with
nontrivial conjugacy classes of �. More precisely,
the set of loops C(S1, X) splits into connected
components associated to conjugacy classes and
each component of nontrivial loops contains exactly
one periodic geodesic.

Theorem 1 (Selberg trace formula). If � is a real-
valued function on R whose Fourier transform �̂ is
compactly supported and �j = 1=4þ �2

j is the spec-
trum of the Laplace operator on X, we have:

X1
j¼1

�ð�� �jÞ ¼
A

2�

Z
R

�ð�þ sÞs tanh�s ds

þ
X
�2P

X1
n¼1

l�
2� sinhðnl�=2Þ

� Reð�̂ðnl�Þein�l� Þ

where A is the area of X, P the set of primitive
conjugacy classes of � and, for � 2 P, l� is the length
of the unique closed geodesic associated to �.

A nice recent presentation of the Selberg trace
formula can be found in Marklof (2003).
Semiclassical Schrödinger Operators
on Riemannian Manifolds

If (X, g) is a (possibly noncompact) Riemannian
manifold and V : X!R a smooth function which
satisfies lim infx!1 V(x) = E1 > �1, the differential
operator Ĥ = (1=2)�h2�þ V is semibounded from
below and admits self-adjoint extensions. For all
those extensions, the spectrum is discrete in the interval
e �1, E1d and eigenfunctions Ĥ’j = Ej’j are loca-
lized in the domain V � Ej. If X is compact and V = 0,
we recover the case of the Laplace operator.

We will denote this part of the spectrum by

inf V < E1ð�hÞ < E2ð�hÞ � � � � � Ejð�hÞ � � � � < E1

For the Laplace operator, we have Ej = �h2�j, where
�1 � �2 � � � � � �j � � � � is the spectrum of the
Laplace operator.

The SCTF can also be derived the same way for
Schrödinger operators with magnetic field. One can
even extend it to Hamiltonian systems which are not
obtained by Legendre transform from a regular
Lagrangian. In this case, Morse indices have to be
replaced by the more general Maslov indices.
Classical Dynamics

Newton Flows

Euler–Lagrange equations for the Lagrangian
L(x, v) := (1=2)kvk2

g � V(x) admit a Hamiltonian
formulation on T?X whose energy is given by
H = (1=2)k�k2

g þ V(x). We will denote by XH the
Hamiltonian vector field

XH :¼
X

j

@H

@�j
@xj
� @H

@xj
@�j

Preservation of H by the dynamics shows immedi-
ately that the Hamiltonian flow �t restricted to H <
E1 is complete.

The Hamiltonian H is the ‘‘classical limit’’ of Ĥ;
in more technical terms, H is the semiclassical
principal symbol of Ĥ.

If V = 0, H = (1=2)gij�i�j and the flow is the geo-
desic flow.
Periodic Orbits
Definition 1 A periodic orbit (�, T) (also denoted
p.o.) of the Hamiltonian H consists of an orbit �
of XH which is homeomorphic to a circle and
a nonzero real number T so that �T(z) = z for all
z 2 �. We will denote by T0(�) > 0 (the primitive
period) the smallest T > 0 for which �T(z) = z.
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If (T, E) are given, WT, E is the set of z’s so that
H(z) = E and �T(z) = z.

� The (linear) Poincaré map �� of a p.o. (�, T) with
H(�) = E: we restrict the flow to SE := {H = E}
and take a hypersurface � inside SE transversal to
� at the point z0. The associated return map P is a
local diffeomorphism fixing z0. Its linearization
�� := P0(z0) is the linear Poincaré map, an
inversible (symplectic) endomorphism of the
tangent space Tz0

�.
� The Morse index �(�): p.o. (�, T) is a critical point

of the action integral
R T

0 L(�(s), �̇ (s)) ds on the
manifold C1(R=TZ, X). It always has a
finite Morse index (Milnor 1967) which is denoted
by �(�). For general Hamiltonian systems, the Morse
index is replaced by the Conley–Zehnder index.
� The nullity index 	(�) is the dimension of the

space of infinitesimal deformations of the p.o. �
by p.o. of the same energy and period. We always
have 	(�) � 1 and 	(�) = 1þ dim ker (Id� ��).

Example 1 (Geodesic flows)

� Riemannian manifold with sectional curvature <0:
in this case, we have for all periodic geodesics
�(�) = 0, 	(�) = 1.
� Generic metrics: for a generic metric on a closed

manifold, we have 	(�) = 1 for all periodic
geodesics.
� For flat tori of dimension d: we have �(�) = 0 and
	(�) = d.
� For sphere of dimension 2 with constant curva-

ture: if �n is the nth iterate of the great circle, we
have �(�n) = 2jnj and 	(�n) = 3.

It is a beautiful result of J-P Serre that any pair of
points on a closed Riemannian manifold are end-
points of infinitely many distinct geodesics. Count-
ing geometrically distinct periodic geodesics is much
harder especially for simple manifolds like the
spheres. It is now known that every closed Riemannian
manifold admits infinitely many geometrically distinct
periodic geodesics (at least, in some cases, for
generic metrics, (Berger 2000 chap. V). There exists
significant knowledge concerning more general
Hamiltonian systems as well.
Nondegeneracy

There are several possible nondegeneracy assump-
tions. They can be formulated ‘‘à la Morse–Bott’’
(critical point of action integrals) or purely
symplectically.

Definition 2 Two submanifolds Y and Z of X
intersect cleanly iff Y \ Z is a manifold whose
tangent space is the intersection of the tangent
spaces of Y and Z.

Fixed points of a smooth map are clean if the
graph of the map intersects the diagonal cleanly.

Definition 3 We will denote by (ND) the following
property of the p.o. (�0, T0): the fixed points of the
associated (nonlinear) Poincaré map P are clean.

The set WT, E is ND if all p.o.’s inside are ND.
WT, E is then a manifold of dimension 	(�).

Example 2

� Generic case: 	= 1; (ND) is equivalent to ‘‘1 is
not an eigenvalue of the linear Poincaré map.’’
In this case, we can deform the p.o. smoothly by
moving the energy. This family of p.o.’s is called
a cylinder of p.o.’s. The period T(E) is then a
smooth function of E.
� Completely integrable systems: 	= d; (ND) is then a

consequence of the so-called ‘‘isoenergetic KAM
condition’’: assuming the Hamiltonian is expressed
as H(I1, . . . , Id) using action-angle coordinates, this
condition is that the mapping I! [rH(I)] from the
energy surface H = E into the projective space is a
local diffeomorphism. This condition implies that
Diophantine invariant tori are not destructed by a
small perturbation of the Hamiltonian.
� Maximally degenerated systems: it is the case

where all orbits are periodic (	= 2d � 1). For
example, the two-body problem with Newtonian
potential and the geodesic flows on compact
rank-1 symmetric spaces.
Canonical Measures and Symplectic Reduction

Under the hypothesis (ND), the manifold WT, E admits
a canonical measure �c, invariant by �t. In the case
	= 1, this measure is given by jdtj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(Id� �)

p
.

By using a Poincaré section, it is enough to
understand the following fact: if A is a symplectic
linear map, the space ker (Id� A) admits a canonical
Lebesgue measure.

We start with the following construction: let L1

and L2 be two Lagrangian subspaces of a symplectic
space E and !j, j = 1, 2, be half-densities on Lj,
denoted by !j 2 �1=2(Lj). If W = L1 \ L2, we have
the following canonical isomorphisms: �1=2(Lj) =
�1=2(W)	 �1=2(Lj=W). So �1=2(L1)	 �1=2(L2) =
�1=2(L1=W)	�1=2(L2=W)	�1(W). Mj = Lj=W are
two Lagrangian subspaces of the reduced space
Wo=W whose intersection is 0. Hence, by using
the Liouville measure on it, we get �1=2(M1)	
�1=2(M2) = C. Hence, we get a density !1 ? !2

on W. It turns out that the previous calculation is one
of the main algebraic pieces of the symbolic calculus of
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Fourier integral operators and the density !1 ? !2

arises in stationary-phase computations.
The graph of a symplectic map is equipped with a

half-density by pullback of the Liouville half-
density. So we can apply the previous construction
to the intersection of the graph of A and the graph
of the identity map.

Actions
Definition 4 If (�, T) is a p.o., we define the
following quantity which is called action of �:

Að�Þ ¼
Z
�

� dx

In the (ND) case, A(�) is constant on each connected
component of WT, E.

In the generic case and if T 0(E) 6¼ 0 (cylinder of
p.o.), p.o.’s of the cylinder are also parametrized
by T (i.e., we note by �E the p.o. of the cylinder of
energy E and �T the p.o. of period T). If
a(E) = A(�E) and b(T) =�

R T
0 L(�T(s), _�T(s))ds, a(E)

and b(T) are Legendre transforms of each other.

Playing with Spectral Densities

We will define the ‘‘regularized spectral densities.’’
The general idea is as follows: we want to study an
�h-dependent sequence of numbers Ej(�h) (a spectrum)
in some interval [a, b]. We introduce a non negative
function � 2 S(R) which satisfies

R
�(t)dt = 1, and

also D�, ", �h(E) =
P
�"(E� Ej), where �"(E) =

"�1�(E="). It gives the analysis of the spectrum at
the scale ". Of course, we will adapt the scaling "
to the small parameter �h. If the scaling is of the size
of the mean spacing of the spectrum, we will get a
very precise resolution of the spectrum.

The general philosophy is:

� If �h is the semiclassical parameter of a semiclassi-
cal Hamiltonian, the mean spacing of the eigen-
values is of order �hd (Weyl’s law). The trace
formula gives the asymptotic behavior of
D�, ", h(E) for " 
 �h (and hence " >> �E except
if d = 1). This behavior is not ‘‘universal’’ and
thus contains a significant amount information of
(in our case, on periodic trajectories).
� Better resolution of the spectrum needs the use of

the long-time behavior of the classical dynamics and
is conjecturally universal. It means that eigenvalues
seen at very small scale behave like eigenvalues of an
ensemble of random matrices, the most common one
being the Wigner Gaussian orthogonal ensemble
(GOE) and Gaussian unitary ensemble (GUE).

We fix some interval [a, b] with b < E1.
We define D(E) :=
P

a�Ej�b 
(Ej) as the sum of
Dirac measures at the points Ej and its h-Fourier
transform as

ZðtÞ ¼ trace0ðe�itĤ=�hÞ :¼
X 0

expð�itEj=�hÞ ½1�

where
P0 is the sum over Ej 2 [a, b].

The Duistermaat–Guillemin trick relates the
previous behavior to asymptotics of the regularized
density of eigenvalues. Let us give a function � 2
S(R) so that �̂(t) =

R
e�itE�(E)dE is compactly

supported and

�̂ðtÞ ¼ 1þOðt1Þ; t! 0 ½2�

(all moments of � vanish). We introduce, for E 2
[a, b], D�(E) :=

P0
j

1
�h �(E� Ej=�h). D�(E) is indepen-

dent modulo O(h1) of a, b. We have

D�ðEÞ ¼
1

2��h

Z
�̂ðtÞZðtÞ dt

The idea is now to start from a semiclassical
approximation of U(t) = e�itĤ=�h and to insert it into
eqn [1]. We need only a uniform approximation of
U(t) for t 2 Support(�̂). From the asymptotic expan-
sion of Z(t), we will deduce the asymptotic expan-
sion of D�, the regularized eigenvalue density.
The Smoothed Density of States

The following statement expressing the smoothed
density of eigenvalues is the main result of the
subject. Under the (ND) assumption, it gives the
existence of an asymptotic expansion for D�(E):

Theorem 2 If E is not a critical value of H and the
(ND) condition is satisfied for all p.o.’s of energy
E 2 [a, b] and period inside the support of �̂,

D�ðEÞ ¼ DWeylðEÞ þ
X

DWðT;EÞ þOðh1Þ ½3�

where:

(i)

DWeylðEÞ ¼ ð2��hÞ�d
X1
j¼0

ajðEÞ�hj

 !
with a0(E) =
R

H = E dL=dH

(ii) The sum is over all the manifolds WT, E so that

T 2 Support(�̂).
(iii)

DWðT;EÞ ¼
"

ð2�i�hÞð	ð�Þþ1Þ=2 e�i�ð�Þ�=2

� eiAð�Þ=�h
X
j�0

bjðEÞ�hj
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with
b0ðEÞ ¼ �̂ðTÞ
Z

WT;E

d�c

" ¼
1 if T 0ðEÞ > 0

i if T 0ðEÞ < 0

�

If 	(�) = 1, we get b0 = �̂(T�)T0jdet(Id���)j�1=2.
The Weyl Expansion

If Support(�̂) is contained in [�Tmin, Tmin], where
Tmin is the smallest period of a p.o. � with H(�) = E,
and, if E is not a critical value of H, formula [3]
reduces to

D�ðEÞ 
 ð2��hÞ�d
X1
j¼0

ajðEÞ�hj

 !

From the previous formula, it is possible to deduce
the following estimates:

Theorem 3 If a, b are not critical values of H:

#fjja � Ejð�hÞ � bg
¼ ð2��hÞ�dvolumeða � H � bÞð1þOð�hÞÞ

This remainder estimate is optimal and was first
shown in rather great generality by Hörmander
(1968).
Derivation from the Feynman Integral

The Feynman Integral

R Feynman (Feynman and Hibbs 1965) found
a geometric representation of the propagator,
that is, the kernel p(t, x, y) of the unitary group
exp (�itĤ=�h) using an integral (FPI := Feynman path
integral) on the manifold �t, x, y := {� : [0, t]!
Xj�(0) = x, �(t) = y} of paths from x to y in the
time t; if L(�, �̇) is the Lagrangian, we have, for
t > 0:

pðt; x; yÞ ¼
Z

�t;x;y

exp
i

�h

Z t

0

Lð�ðsÞ; _�ðsÞÞ ds

� �
jd�j

where jd�j is a ‘‘Riemannian measure’’ on the
manifold �t, x, y with the natural Riemannian
structure.

There is no justification FPI as a useful mathema-
tical tool. Nevertheless, FPI gives good heuristics
and right formulas.
The Trace and Loop Manifolds

Let us try a formal calculation of the partition
function and its semiclassical limit. We get

ZðtÞ ¼
Z

X

jdxj
Z

�x;x;t

exp
i

�h

Z t

0

Lð�ðsÞ; _�ðsÞÞds

� �
jd�j

If we denote by �t the manifold of paths
� : R=tZ ! X, (loops) and we apply Fubini (sic !),
we get

ZðtÞ ¼
Z

�t

exp
i

�h

Z t

0

Lð�ðsÞ; _�ðsÞÞ ds

� �
jd�j
The Semiclassical Limit

We want to apply stationary phase in order to get
the asymptotic expansion of Z(t); critical points of
Jt : �t ! R are the p.o.’s of the Euler–Lagrange flow
and hence of the Hamiltonian flow of period t. We
require the ND assumption (Morse–Bott), the Morse
index, and the determinant of the Hessian:

1. The ND assumption is the original Morse–Bott
one in Morse theory: we have smooth manifolds
of critical points and the Hessian is transversally
ND.

2. The Morse index is the Morse index of the action
functional on periodic loops: L(�) :=

R t
0 L(�(s),

�̇(s))ds.
3. The Hessian is associated to a periodic Sturm–

Liouville operator for which many regulariza-
tions have already been proposed.

In this manner, we get a sum of contributions
given by the components Wj, t of Wt:

ZjðtÞ ¼ ðihÞ�	j=2eði=�hÞLð�Þcjð�hÞ

with cj(�h) 

P1

l = 0 cj, l�h
l and

cj;0 ¼
e�i�ð�=2Þ

j
j1=2

where � is the Morse index and 
 is a regularized
determinant.
The Integrable Case

As observed by Berry–Tabor, the trace formula in
this case comes from Poisson summation formula
using action-angle coordinates. Asymptotic of the
eigenvalues to any order can then be given in the so-
called quantum integrable case by Bohr–Sommerfeld
rules.
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The Maximally Degenerated Case

Let us assume that (X, g) is a compact Riemannian
manifold for which all geodesics have the same
smallest period T0 = 2�. Then we have the following
clustering property:

Theorem 4 There exists some constant C and some
integer � so that

(i) the spectrum of � is contained in the union of
the intervals

Ik ¼ kþ �
4

� �2
�C; kþ �

4

� �2
þC

� 	
;

k ¼ 1; 2; . . .

(ii) N(k) = #Spectrum(�) \ Ik is a polynomial func-
tion of k for k large enough.

The property (ii) is consequence of the trace
formula.
Applications to the Inverse
Spectral Problem

We will now restrict ourselves to the case of the
Laplace operator on a compact Riemannian mani-
fold (X, g). The main result is as follows:

Theorem 5 (Colin de Verdière). If X is given, there
exists a generic subset GX, in the sense of Baire
category, of the set of smooth Riemannian metrics on
X, so that, if g 2 GX, the length spectrum of (X, g) can
be recovered from the Laplace spectrum. The set GX

contains all metrics with <0 sectional curvature and
(conjecturally) all metrics with<0 sectional curvature.

We can take for GX the set of metrics for which all
periodic geodesics are nondegenerate and the length
spectrum is simple.

Some cancelations may occur between the asympto-
tic expansions of two ND periodic trajectories with the
same actions if the Morse indices differ by 2 mod 4.
The Case with Boundary

If (X, g) is a smooth compact manifold with boundary,
one introduces the broken geodesic flow by extending
the trajectories by reflection on the boundary. SCTFs
have been extended to that case by Guillemin and
Melrose. Periodic geodesics which are transversal to
the boundary contribute to the density of states in the
same way as for periodic manifolds. Periodic geodesics
inside the boundary are in general accumulation of
periodic geodesics near the boundary: their contribu-
tions is therefore very complicated analytically.
Bifurcations

Let us denote by CH � R2
T, E, the set of pairs (T,E)

for which WT, E is not empty. The previous results
apply to the ‘‘smooth’’ part of the set CH. Among
other interesting points are points (0,E) with critical
value E of H (Brummelhuis–Paul–Uribe) and points
corresponding to bifurcation of p.o. when moving
the energy.

Detailed studies of some of these points have been
done, for example, the results of suitable applica-
tions of the theory of singularities of functions
of finitely many variables, their deformations (catas-
trophe theory), and applications to stationary-phase
method, and a significant body of knowledge on
these subjects now exists.
SCTF and Eigenvalue Statistics

One of the main open mathematical problems is:
‘‘can one really use appropriate forms of the SCTF
as quantization rules and use it in order to derive
eigenvalues statistics?’’

This problem is related to the fine-scale study of the
eigenvalue spacings (" << �h). It is one of the important
unsolved problems of the so-called ‘‘quantum chaos.’’
Many people think that progress in this field will allow
us to solve the Bohigas–Giannoni–Schmit conjecture:
‘‘if the geodesic flow is hyperbolic, eigenvalue distribu-
tion follows random matrix asymptotics.’’

See also: Billiards in Bounded Convex Domains;
h-Pseudodifferential Operators and Applications;
Quantum Ergodicity and Mixing of Eigenfunctions;
Random Matrix Theory in Physics; Regularization for
Dynamical Zeta Functions; Resonances.
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Introduction

A semilinear wave equation is an equation of the
form

&u ¼ Fðu; u0Þ; u : �  R �Rn ! R ½1�

where F : Rnþ2 ! R is a smooth function, the
d’Alembert operator & is defined as

&¼D2
t �D2

x1
� � ��D2

xn
; Dt ¼

@

@t
; Dxj

¼ @

@xj
½2�

and u0 denotes the vector of all first-order deriva-
tives of u:

u0 ¼ ðDtu;Dx1
u; . . . ;Dxn

uÞ � ðut; ux1
; . . . ; uxn

Þ

Sometimes the term ‘‘semilinear’’ is used in a more
restrictive sense and refers to the special class of
equations

&u¼ f ðuÞ ½3�

The very particular case f (u) =�mu, m > 0, corres-
ponds to the Klein–Gordon equation, used to model
relativistic particles. True nonlinear terms of the form
f (u) =�mu� u3, m � 0 (meson equation), or
f (u) =�sin u (sine-Gordon equation) have been pro-
posed as models of self-interacting fields with a local
interaction. Notice that for the physical applications it
is natural to consider complex-valued functions u(t, x);
in the general case of eqn [1], this actually means that
we are considering a 2� 2 system in <u and =u.
However, the natural physical requirement of gauge
invariance restricts the possible nonlinearities to the
functions satisfying the condition

f ðei�uÞ ¼ f ðuÞei�; 8 � 2 R ½4�
Thus, in particular f (0) = 0 and we see that f must
be of the form f (u) = g(juj2)u for some g. Since the
gauge-invariant wave equation

&u ¼ gðjuj2Þu ½5�

has essentially the same properties as the real-valued
equation [3], it is not too restrictive to study only
real-valued functions as we shall mostly do in the
following.

The more general equations of the form [1],
involving the derivatives of u, are encountered in
several physical theories, including the nonlinear
-models and general relativity.

However, beyond the concrete physical applica-
tions, eqn [1] is important since it is a simplified but
relevant model of much more general equations and
systems of mathematical physics; despite its simple
structure, the semilinear wave equation presents
already all the main difficulties and phenomena of
nonlinear wave interaction, and it represents an
ideal laboratory for such problems.

In this article we plan to give a concise but, as far
as possible, comprehensive review of the main
research directions concerning eqn [1], and in
particular we shall focus on the global existence of
both large and small nonlinear waves, and the
problem of local existence for low-regularity solu-
tions. A large part of the theory extends to nonlinear
perturbations of the form &u = F(u, u0, u00) and to
the fully nonlinear case; we have no space here to
give an account of these developments and we must
refer the reader to the books and papers cited in the
‘‘Further reading’’ section.
Classical Results

Equations [1] and [3] are hyperbolic with respect to
the variable t. This is a precise way of stating that
the ‘‘correct’’ problem for it is an initial-value
problem (IVP) with data at some fixed time, or



more generally on some spacelike surface: this
means that we assign two functions u0(x), u1(x),
called the ‘‘initial data,’’ and we look for a function
u(t, x) satisfying the IVP:

&u¼ Fðu;u0Þ; uð0;xÞ ¼ u0ðxÞ; utð0;xÞ ¼ u1ðxÞ ½6�

This setting is in agreement with the physical picture
of an evolution problem: the data represent the
complete state of a system at a fixed time, and they
uniquely determine the evolution of the system,
which is described by the differential equation.

This rough statement of the problem is sufficient
when working with smooth functions, as in the
classical approach. By purely classical methods, that
is, energy inequalities and nonlinear estimates, it is
not difficult to prove the following local existence
result, where Hk = Hk(Rn) denotes the Sobolev
space of functions with k derivatives in L2(Rn):

Theorem 1 Assume F is C1. Let (u0, u1) 2 Hk�
Hk�1 for some k > 1þ n=2. Then there exists a time
T = T(ku0kHk þ ku1kHk�1 ) > 0 such that problem
[6] has a unique solution belonging to (u, ut) 2
C([�T, T]; Hk)� C([�T, T]; Hk�1).

If F = F(u) depends only on u, the result holds for
all k > n=2.

Proof We decided to include a sketchy but com-
plete proof of this result since it shows the basic
approach to nonlinear wave equations: many results
of the theory, even some of the most delicate ones,
are obtained by suitable variations of the contrac-
tion method, and are similar in spirit to this classical
theorem.

Assume for a moment that the equation is linear
so that F = F(t, x) is a given smooth function of (t, x).
F
s
s

w

N
C
t
in
a
r

f
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or the linear equation &u = F, we can construct a
olution u using explicit formulas. Moreover, u do not change. Notice that K(x0, R) is the cone with

atisfies the energy inequality

EkðtÞ 	 Ekð0Þ þ
Z t

0

kFðs; �ÞkHk�1 ds ½7�

here the energy Ek(t) is defined as

EkðtÞ ¼ kuðt; �ÞkHk þ kutðt; �ÞkHk�1 ½8�

ow we introduce the space XT = C([�T, T]; Hk) \
1([�T, T]; Hk�1), the space YT = C([�T, T]; Hk�1),

he mapping � : F! u that takes the function F(t, x)
to the solution of &u = F (with fixed data u0, u1),

nd the mapping �(u) = F(u, u0) which is the original
ight-hand side of the equation.

The energy inequality tells us that � is bounded
rom YT to XT . Actually, for M large enough with
respect to Ek(0) (the Hk norm of the data), � takes
any ball BY(0, N) of YT into the ball BX(0, MþNT)
of XT . Moreover, if we apply [7] to the difference of
two equations &u = F and &v = G, we also see that
� is Lipschitz continuous from YT to XT , with a
Lipschitz constant CT.

On the other hand, �(u) = F(u, u0) takes XT to YT ,
provided k > 1þ n=2; we can even say that it is
Lipschitz continuous from BX(0, M) to BY(0, C(M))
for some function C(M), with a Lipschitz constant
C1(M) also depending on M. This follows easily
from Moser type estimates like

kFðu; u0ÞkHk�1 	 �ðkukL1ÞkukHk ; k >
n

2
þ 1

or

kFðuÞkHk 	 �ðkukL1ÞkukHk ; k >
n

2

Now it is easy to conclude: the composition � 
�
maps XT into itself, and actually is a contraction of
BX(0, M) into itself provided M is large enough with
respect to the data, and T is small enough with
respect to M. The unique fixed point is the required
solution. &

The wave operator has an additional important
property called the finite speed of propagation,
which can be stated as follows: given the IVP

&u ¼ 0; uð0; xÞ ¼ u0ðxÞ; utð0; xÞ ¼ u1ðxÞ

if we modify the data ‘‘outside’’ a ball B(x0, R) � Rn,
the values of the solution inside the cone

Kðx0;RÞ ¼ fðt; xÞ : t � 0; jx� x0j < R� tg

basis B(x0, R) and tip (R, x0); the slope of its mantle
represents the speed of propagation of the signals,
which for the wave operator & is equal to 1. The
property extends without modification to the semi-
linear problem [6], at least for the smooth solutions
given by Theorem 1. Actually, it is not difficult to
modify the proof of the theorem to work on cones
instead of bands [�T, T]� Rn; in other words, given
a ball B = B(x0, R), we can assign two data
u0 2 Hk(B), u1 2 Hk�1(B)(k > n=2þ 1) and prove
the existence of a local solution on the cone
K(x0, R) for some time interval t 2 [0, T].

In general, the finite speed of propagation allows
us to localize in space most of the results and the
estimates; as a rule of thumb, we expect that what is
true on a band [0, T]� Rn should also be true on
any truncated cone K(x0, R) \ {0 	 t 	 T}.



Symmetries

The linear wave equation can be written as the
Euler–Lagrange equation of a suitable Lagrangian.
This is still true for the semilinear perturbations of
the form

&uþ f ðuÞ¼ 0 ½9�

Indeed, denoting with F(s) =
R s

0 f (�) d� the primitive
of f, the Lagrangian of [9] is

LðuÞ¼
Z Z

�1

2
jutj2þ

1

2
jrxuj2þFðuÞ

� �
dtdx ½10�

The functional L is not positive definite; hence, the
variational approach gives only weak results. How-
ever, this point of view allows us to apply Noether’s
principle: any invariance of the functional is related
to a conservation law of the equation. These
conserved quantities can also be obtained by taking
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the product of the equation by a suitable multiplier,
although this method is far from obvious in many
cases. We describe here this circle of ideas briefly.

The functional L is invariant under the Poincaré
group, generated by time and space translations and
the Lorentz transformations (� > 1, c 6¼ 0):

t 7! �t � xj=cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1
p ; xj 7!

�xj � ctffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1
p ½11�

The infinitesimal generators of the translations are
simply the partial derivatives Dt and Dxj . The Lorentz
transformations can be decomposed as a rotation
followed by a boost, and indeed a corresponding
complete set of infinitesimal generators are the operators

�jk ¼ xjDk � xkDj; �j ¼ xjDt þ tDj ½12�

All the operators in the Poincaré group commute
with & exactly.
The conservation law related to time translations
(time derivative) is the fundamental ‘‘conservation of
energy’’

EðtÞ ¼
Z

1

2
u2

t þ
1

2
jrxuj2 þ FðuÞ

� �
dx ¼ Eð0Þ ½13�

while spatial translations (spatial derivatives) lead to
the conservation of momentaZ

utuxj
dx ¼ const:; j ¼ 1; . . . ; n

On the other hand, infinitesimal rotations and
boost [12] are connected to the conservation of
angular momentaZ

xkDju� xjDku
� �

�Dtu dx ¼ const:;

j; k ¼ 1; . . . ; n ½14�
and Z
xkeðuÞþDku Dtu½ �dx¼ const:;

k¼ 1; . . . ;n ½15�

where

eðuÞ ¼ 1
2u

2
t þ 1

2jrxuj2 þ FðuÞ ½16�

is the energy density.
The Poincaré group does not exhaust the invar-

iance properties of the free wave equation. Among
the other transformations which commute or almost
commute with &, we mention the spacetime dilations
and inversions (which together with translations and
Lorentz transformations generate the larger confor-
mal group), the scaling u 7! �u, the spatial dilations,
and, in the complex-valued case, the gauge transfor-
mation u 7! ei�u. In this way several useful conserva-
tion laws can be obtained, including the conformal
energy identities of K Morawetz.
Strichartz Estimates

Energy estimates are very useful tools but they have
some major shortcomings. The main one is clearly
the large number of derivatives necessary to estimate
the nonlinear term. This is why the modern theory
of semilinear wave equations relies mainly on
different tools, which go under the umbrella name
of Strichartz estimates and express the decay
properties of solutions when measured in Lp or
related norms. In this section we summarize these
estimates in their most general form, and try to give
a feeling of the techniques involved.

Consider the following IVP for a homogeneous
linear wave equation:

&u ¼ 0; uð0; xÞ ¼ 0; utð0; xÞ ¼ f ðxÞ ½17�

The conservation of energy states that

kutðt; �Þk2
L2 þ krxuðt; �Þk2

L2 � kfk2
L2 ½18�

for all times t. Thus, we see that L2-type norms of
the solution do not decay. The interesting fact is that
if we measure the solution u in a different Lp-norm,
p > 2, the norm decays as t!1, and the decay is
fastest for the L1-norm.

To appreciate the dispersive phenomena at their
best, let us assume that the Fourier transform of the
data is localized in an annulus of order 1:

supp f̂ ð�Þ � f1=2 	 j�j 	 2g ½19�
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Then the corresponding solution u(t, x) has the same
property, and we see that

kukL2 ¼ kûkL2 	 2kj�jûkL2 � 2krukL2 	 4kukL2

We condense the last line in the shorthand notation

kukL2 ’ krukL2

We shall also write

kvkX�<kwkY () kvkX 	 CkwkY for some C

We can now rewrite the conservation of energy
[20] in a very simple form; for localized data (and
hence a localized solution) as in [19], we have

kuðt; �ÞkL2�< kfkL2 ½20�

The basic L1-estimate for a solution of [17] with
localized data as in [19] is simply

kuðt; �ÞkL1 �< t�ðn�1Þ=2kfkL1 ½21�

This estimate is well known since the 1960s; it can
be proved easily by several techniques, notably by
the stationary-phase method. Property [21] mea-
sures the fact that as time increases, the total
energy of the solution remains constant but spreads
over a region of increasing volume, due to the
propagation of waves. If we interpolate between
[20] and [21], we obtain the full set of dispersive
estimates

kuðt; �ÞkLq�< t�ðn�1Þð1=2�1=qÞkfkLp

1

q
þ 1

p
¼ 1; 2 	 q 	 1

½22�

Recall that we are working with localized solutions
on the annulus j�j � 1; it is easy to extend the
above estimates to general solutions by a rescaling
argument, exploiting the fact that, if u(t, x) is a
solution of the homogeneous wave equation,
u(�t,�x) is also a solution for any constant �.
Indeed, if f̂ (and hence û) is supported in the
annulus 2j�1 	 j�j 	 2jþ1, j 2 Z, by rescaling [21],
we obtain

kuðt; �ÞkL1 �< t�ðn�1Þ=22jðn�1Þ=2kfkL1 ½23�

If f is any smooth function, not localized in
frequency, we can still write it as a series

f ¼
X
j2Z

fj

where supp f̂j � {2j�1 	 j�j 	 2jþ1}. The quantity

kfk _Bs
1;1
¼
X
j2Z

2jskfjkL1
is by definition the _Bs
1,1 Besov norm of f. Thus,

summing the estimates [23] over j, we conclude that
a general solution of [17] satisfies the dispersive
estimate

kuðt; �ÞjL1 �< t�ðn�1Þ=2kfk _B
ðn�1Þ=2
1;1

½24�

The Strichartz estimates can be obtained as a
consequence of the above dispersive estimates, plus
some subtle functional analytic arguments. In the
general form we give here, they were proved by
J Ginibre and G Velo, and in the most difficult
endpoint cases by Keel and T Tao. The solution of
the homogeneous problem [17] studied above can be
written as

uðt; xÞ ¼ sinðtjDjÞ
jDj f ; jDj � F�1j�jF

(here F denotes the Fourier transform). On the
other hand, the solution of the complete nonhomo-
geneous problem

&u ¼ Fðt;xÞ; uð0;xÞ ¼ u0; utð0;xÞ ¼ u1ðxÞ ½25�

can be written by Duhamel’s formula as

uðt;xÞ ¼ @

@t

sinðtjDjÞ
jDj u0 þ

sinðtjDjÞ
jDj u1

þ
Z t

0

sinððt � sÞjDjÞ
jDj f ds

and we see that the above estimates [22] apply to all
the operators appearing here. If we consider problem
[25] and we assume that the data F(t, x), u0, u1 are
localized in frequency so that F̂(t, �), û0, û1 have
support in the annulus j�j � 1, the Strichartz estimate
takes the following form:

kukLp
I
Lq�< ku0kL2 þ ku1kL2 þ kFkL

~p0
I

L~q0 ½26�

Here the dimension is n � 2; Lp
I Lq denotes the space

with norm

kukLp
I
Lq ¼

Z
I

kuðt; �Þkp
LqðRnÞ dt

� �1=p

; I ¼ ½0;T�

or I ¼ R

the indices p, q satisfy the conditions

1

p
þ 1

q

n� 1

2
	 1

2

n� 1

2
;

p 2 ½2;1�; ðn; p; qÞ 6¼ ð3; 2;1Þ ½27�

while ~p, ~q satisfy an identical condition (and p0

denotes the conjugate index to p). The constant in
inequality [26] is uniform with respect to the
interval I.



To get the most general form of the estimates,
some additional function space trickery is required.
As before, a simple rescaling argument extends
estimate [26] to the case of data F, u0, u1, whose
spatial Fourier transforms are localized in the
annulus 2j�1 	 j�j 	 2jþ1; we obtain

2jð1=pþn=qÞkukLp
I
Lq�< 2jn=2ku0kL2

þ 2jðn=2�1Þku1kL2

þ 2jð1=~p0þn=~q0�2ÞkFk
L

~p0
I

L~q0

Finally, if the data are arbitrary, we may decompose
them as series of localized functions, and summing
the corresponding estimates we obtain the general
Strichartz estimates for the wave equation [25]: for
all (p, q) and (~p, ~q) as in [27],

kuk
Lp

I
_B

1=pþn=q

q;2
�<ku0k _Hn=2 þ ku1k _Hn=2�1

þ kFk
L

~p0
I

_B
1=~p0þn=~q0�2

~q0 ;2
½28�

Here, given a decomposition f =
P

j2Z fj, the
homogeneous Besov and Sobolev norms are defined,
respectively, by the identities (obvious modification
for r =1):

kfkr
_Bs

q;r
¼
X
j2Z

2jsrkfjkr
Lq ;

kuk _Hs ¼ kj�jsûkL2 ’ kuk _Bs
2;2

It is easy to convert the estimates [28] into a form
that uses only the more traditional norms

kfk _Hs
q
� kjDjsfkLq ; jDj� � F�1j�j�F

since by the Besov–Sobolev embedding we have

_Bs
q;2 � _Hs

q for 2 	 q <1;
_Bs

q;2  _Hs
q for 1 < q 	 2

Notice that if we apply to the equation and the
data the operator jDj� =F�1j�j�F , which commutes
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with &, the Strichartz estimate [28] can be rewritten
in an apparently more general form:

kuk
Lp

I
_B

1=pþn=qþ�
q;2

�< ku0k _H
n=2þ�

þku1k _H
n=2�1þ� þkFk

L
~p0
I

_B
1=~p0þn=~q0�2þ�
~q0 ;2

½29�

In particular, it is possible to choose the indices in
such a way that no derivatives appear on u and F:
this choice gives

kukLpðRnþ1Þ �< ku0k _H1=2 þ ku1k _H�1=2 þ kFkLp0 ðRnþ1Þ

p ¼ 2ðnþ 1Þ
n� 1

which is the estimate originally proved by Strichartz.
Global Large Waves

As for ordinary differential equations (ODEs), the
local solutions constructed in Theorem 1 can be
extended to a maximal time interval [0, T�], and a
natural question arises: are these maximal solutions
global, that is, is T�=1?

For generic nonlinearities and large data, the
answer is negative; in a dramatic way, in general
the norm ku(t, � )kL1 is unbounded as t"T� <1.
The reason for this is simple: using the finite speed
of propagation, we can localize the equation and
work on a cone; then if we take constant functions
as initial data, the solution inside the cone does not
depend on x, and the equation restricted to the cone
effectively reduces to an ODE:

&u ¼ f ðuÞ () y00ðtÞ ¼ f ðyÞ;
yðtÞ � uðt; xÞ ½30�

By this remark it is elementary to construct solutions
of the IVP [6] that blow up in a finite time.

This construction does not apply if the equation
has some positive conserved quantity. Indeed, con-
sider a general gauge-invariant equation

&uþ gðjuj2Þu ¼ 0;

uð0;xÞ ¼ u0ðxÞ; utð0; xÞ ¼ u1ðxÞ
½31�

for some smooth function g(s). Writing G(s) =R s
0 g(�) d�, multiplying the equation by ut, and

integrating over Rn, it is easy to check that the
nonlinear energy

EðtÞ ¼
Z
jutj2 þ jrxuj2 þGðjuj2Þ
h i

dx � Eð0Þ ½32�

is constant in time, provided the solution u is
smooth enough. When G(s) has no definite sign,
we can proceed as above and construct solutions
that blow up in finite time; this is usually called the
‘‘focusing’’ case. However, if we assume that
G(s) � 0 (‘‘defocusing’’ case), the energy E(t) is
non-negative. The corresponding ODE, which is
y00 þ g(y2)y = 0, has only global solutions, and one
may guess that also the solutions of [31] can be
extended to global ones.

This innocent-looking guess turns out to be one of
the most difficult problems of the theory of nonlinear
waves, and is actually largely unsolved at present.

The only general result for eqns [31] is Segal’s
theorem, stating that the IVP has always a global
weak solution:

Theorem 2 Let g(s) be a C1 non-negative function
on [0,þ1), write G(s) =

R s
0 g(�) d� and assume that

for some constant C

sgðs2Þ 	 CGðs2Þ; lim
s!þ1

GðsÞ ¼ þ1 ½33�



Then for any (u0, u1) 2 H1 � L2 such that G(ju0j2)
2 L1, the IVP [31] has a global solution u(t, x) in the
sense of distributions, such that u0 2 L1 (R, L2(Rn))
and F(u) 2 L1(R, L1(Rn)).

The proof (see Shatah and Struwe (1998)) is
delicate but elementary in spirit: by truncating the
nonlinear term, we can approximate the problem at
hand with a sequence of problems with global
solution; then the conservation law [32] yields
some extra compactness, which allows us to extract
a subsequence converging to a solution of the
original equation.

Thus we see that, despite its generality, this result
does not shed much light on the difficulties of the
problem. Indeed, the weak solution obtained might
not be unique, nor smooth, and in these questions
the real obstruction to solving [31] is hidden.

Notice that in the one-dimensional case n = 1 the
solution is always unique and smooth when the data
are smooth, since in this case E(t) controls the L1-
norm of u. For higher dimensions n � 2, something
more can be proved if we assume that the nonlinear
term has a polynomial growth:

sgðs2Þ ¼ jsjp�1s for s large; p > 1 ½34�

In particular, the defocusing wave equation with a
power nonlinearity

&uþ jujp�1u ¼ 0 ½35�

has been studied extensively. Notice that when p is
close to 1, the term jujp�1u becomes singular near 0;
this introduces additional difficulties in the problem;
for this reason, it is better to consider a smooth term
as in [34].

We can summarize the best-known results con-
cerning [31] under [34] as follows. Let p0(n) be the
number

p0ð1Þ ¼ p0ð2Þ ¼ 1

p0ðnÞ ¼ 1þ 4

n� 2
for n � 3

Then

� in the subcritical case 1 	 p < p0(n), for any data
(u0, u1) 2 H1 � L2, there exists a unique solution
u 2 C(R; H1) such that u0 2 C(R; L2);
� the same result holds in the critical case p = p0(n)

for n � 3; and
� when 3 	 n 	 7, 1 	 p 	 p0(n), the solution is

smoother if the data are smoother.

These results have been achieved in the course of
more than 30 years through the works of several
authors (it is indispensable to mention at least the
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names of K Jörgens, I Segal, W Strauss, W von
Wahl, P Brenner, H Pecher, J Ginibre, G Velo,
R Glassey and the more recent contributions of
J Shatah, M Struwe, L Kapitanski, M Grillakis,
omitting many others). Actually modern proofs are
remarkably simple, and are based again on a
variation of the fixed-point argument. Roughly
speaking, the linear equation &uþ g(jvj2)v = 0
defines a mapping v 7! u; the Strichartz estimates
localized on a cone imply that this mapping is
Lipschitz continuous in suitable spaces, the Lipschitz
constant being estimated by the nonlinear energy of
the solution restricted to the cone. In order to show
that this mapping is actually a contraction, it is
sufficient to prove that the localized energy tends to
zero near the tip of the cone, that is, it cannot
concentrate at a point. Once this is known, it is easy
to continue the solution beyond any maximal time
of existence and prove the global existence and
uniqueness of the solution.

In the supercritical case p > p0(n), very little is
known at present; there is some indication that the
problem is much more unstable than in the
subcritical case (Kumlin, Brenner, Lebeau), and
there is some numerical evidence in the same
direction.

Global Small Waves

It was noted already in the 1960s (Segal, Strauss)
that the equation in dimension n � 2

&u¼ f ðuÞ; uð0;xÞ ¼ "u0ðxÞ; utð0;xÞ ¼ "u1ðxÞ
f ðuÞ ¼Oðjuj�Þ for u� 0

with small data can be considered as a perturbation of
the free wave equation and admits global solutions.
The phenomenon may be regarded as follows: the
wave operator tends to spread waves and reduce their
size (see [21]); the nonlinear term tends to concen-
trate the peaks and make them higher, but at the same
time it makes small waves smaller. If the rate of
dispersion is fast enough, the initial data are small
enough, and the power of the nonlinear term is high
enough, the peaks have no time to concentrate, and
the solution quickly flattens out to 0. Notice that in
dimension 1 there is no dispersion, and this kind of
mechanism does not occur.

It was, however, F John who initiated the modern
study of this question by giving the complete picture
in dimension 3: for the IVP

&u ¼ juj�; uð0; xÞ ¼ "u0ðxÞ
utð0; xÞ ¼ "u1ðxÞ; n ¼ 3



he proved that, for fixed u0, u1 2 C10 ,

� if � > 1þ
ffiffiffi
2
p

and " is small enough, the solution
is global and
� if 1 < � < 1þ

ffiffiffi
2
p

and the data are not identically
zero, the solutions blow up in a finite time for all "
(i.e., the L1-norm is unbounded).

Later Schaeffer proved that blow-up occurs also at
the critical value �= 1þ

ffiffiffi
2
p

.
W Strauss guessed the correct critical value for all

dimensions – �0(n) is the positive root of the
algebraic equation

n� 1

2
� � nþ 1

2

� �
� ¼ 1

and conjectured that the same picture as in dimen-
sion 3 is valid for all dimensions n � 2.

Soon Sideris proved that, for 1 < � < �0(n) and the
quite general and small data, one always has blow-up.
Also it was proved by Klainerman, Shatah, Christo-
doulou, and others that the positive part of the
conjecture was true for � > �0(n), with a small gap
near the critical value. The gap was closed by
Georgiev, Lindblad, Sogge, who proved global exis-
tence for all � > �0(n). We also mention that the
solution at the critical value �= �0(n) always seems to
blow up; this is settled for low dimension (Schaeffer,
Yordanov, Zhang and others), but the question is still
not completely clear for large dimensions.

This problem has spurred a great deal of
creativity, eventually leading to very fruitful results:
the different approaches have proved useful in a
variety of problems, sometimes quite different from
the original semilinear equation. We mention a few:

� The weighted estimates of F John are estimates of
the solution in spacetime Lp norms with weights
of the form (1þ jtj þ jxj)�(1þ ktj � jxk)	. An
extension of this method was also used in the
final complete proof of the conjecture.
� The vector field approach of S Klainerman. If we

regard energy estimates as norms generated by the
plain derivatives, it is natural to extend them to
more general norms generated by vector fields
commuting, or quasicommuting, with the wave
operator. The conservation of energy expressed in
these generalized norms has a built-in decay that
allows us to prove global existence of small waves.
This circle of ideas led very far, and we might even
regard Christodoulou and Klainerman’s proof of
the stability of Minkowski space for the Einstein
equation as an extreme consequence of this
approach.
� The normal forms of J Shatah. The idea is to

apply a nonlinear (and nonlocal) transformation
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Fðu0Þ ¼ aQ0ðu0Þþ
0	j<k	3

cjk Qjkðu0ÞþOðju0j3Þ ½36�

which is called a ‘‘null structure’’. Here a,cjk are
constants, and the quadratic forms Q are the
following:

Q0ðu0Þ ¼ jDtuj2 � jDx1uj2 � jDx2uj2 � jDx3uj2 ½37�

Q0jðu0Þ ¼ Dt u �Dxju�Dxju �Dtu; j ¼ 1; 2; 3 ½38�

Qjkðu0Þ ¼ Dxj
u �Dxk

u�Dxk
u �Dxj

u

j; k ¼ 1; 2; 3; j < k
½39�
to the equation in order to increase the power �.
This method is effective for a variety of equations,
including the semilinear wave, Klein–Gordon, and
Schrödinger equations.
� The conformal transform method of D Christo-

doulou. The Penrose transform takes the wave
operator on R1þn to the wave operator on a
bounded subset of R � Sn, the so-called Einstein
diamond (here Sn is the n-dimensional sphere).
Thanks to the fact that a problem of global
existence is converted into a problem of local
existence, the proof reduces to showing that the
lifespan of the local solution becomes large
enough to cover the whole diamond when "
decreases.

A similar theory has been developed for the more
general semilinear equation

&u ¼ Fðu; u0Þ; Fðu; u0Þ ¼ Oðju; u0j�Þ for u � 0

but the results are less complete. The general picture
is similar: for � � 2 when n � 4, and for � � 3 when
n = 3, one has global small solutions, while for �
close to 1 one in general has blow-up.

A very interesting phenomenon in this context
was discovered by S Klainerman: some nonlinea-
rities with a special structure, called ‘‘null struc-
ture,’’ behave better than the others. This structure
is clearly related to the wave operator, and in the
end it can be precisely explained in terms of
interaction of waves in phase space. We illustrate
these ideas in the most interesting special case.
Consider the equation in three dimensions

&u ¼ FðDtu;DxuÞ; F ¼ Oðju0j�Þ; n ¼ 3

In the ‘‘cubic’’ case �= 3, one has global existence
for all data small enough. On the other hand, in the
‘‘quadratic’’ case �= 2, it is possible to construct
examples where the solution blows up in a finite
time no matter how small the data. Now, assume
that the nonlinear term has the following structure:X



Then the problem has a global solution for all small
enough data. The extensions and applications of this
idea are v ery wid e (see the ‘‘Furth er readi ng’’ section
for further information). Another situation where
the null structure plays an important role is
discussed in the next section.

Low Regularity

Theorem 1, although optimal in the classical frame-
work, is not satisfactory for a few reasons. From a
physicist’s point of view, requiring n=2þ 1 deriva-
tives of the data is not meaningful, since the
measurable quantities involve only low-order deri-
vatives, the most important one being the energy,
that is, the H1-norm of the solution. Moreover, the
wave equation has a rich set of conserved quantities,
symmetries and decay properties which may be
useful to prove stronger results, and in particular the
global existence. However, many of these structures
appear only at a low-regularity level (H1 or even
Lp); in order to exploit them it is essential to work
with low-regularity solutions.

As an example, if we were able to prove Theorem 1
for k = 1, then we could deduce that the local
solutions can be extended to global ones in all cases
when the H1-norm is conserved. For instance, this
would allow us to solve globally the equations of
the form

&uþG0ðjuj2Þu ¼ 0; GðsÞ � 0

The problem of the lowest value of s such that
a unique local solution exists in Hs is quite
difficult, and still not completely solved. In order
to state the results we precise the definition of
solution as follows: the IVP is said to be locally
well posed in Hs, if, for all (u0, u1) in a bounded
set B of Hs �Hs�1, there exist a T > 0, a Banach
space XT (depending on B) continuously
embedded in C([0, T]; Hs), and a unique solution
u 2 XT , such that the map (u0, u1) 7! u is contin-
uous from B to XT .

For the wave equation with a power nonlinearity

&u ¼ jujp ½40�

or more generally

&u ¼ FðuÞ; FðuÞ ¼ 0

jFðuÞ � FðvÞj 	 Cju� vjðjujp�1 þ jvjp�1Þ
½41�

the picture is almost complete. Indeed, by using the
scaling

t 7!�t; x 7! �x ½42�

and the Lorentz transformation

t 7! �t � x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1
p ; x 7! t � �x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p ½43�

it is possible to show by explicit constructions that

� the equation is not locally well posed for p(n=2� s) 	
(n=2þ 2� s) (scaling) and
� the equation is not locally well posed for p(n=4þ

1=4� s) 	 n=4þ 5=4� s (Lorentz).

On the positive side, local well-posedness has been
almost fully proved in the complementary region of
indices, with the exception of a tiny spot near the
endpoint s = 0, p = (nþ 5)=(nþ 1) where the pro-
blem is still open (and the conjecture is that the
equation is ill posed for indices in that region).
These results are due to several authors, among the
others we cite C Kenig, G Ponce, L Vega,
H Lindblad, C Sogge, L Kapitanski, and T Tao.

When the nonlinearity depends also on the first-
order derivatives of u, the situation becomes more
complex. In the general case, the best result
available is still the local existence theorem
(Theorem 1); the only possible refinement is the
use of fractional Sobolev spaces Hs, but in general
local solvability only holds for s > n=2þ 1. If we
assume that F = F(u0) is a quadratic form in the
first-order derivatives, a clever use of Strichartz
estimates allows us to prove local solvability down
to s > n=2þ 1=2 for n � 3 and s > 7=4 for n = 2
(Ponce and Sideris).

However, exactly as in the case of the small
nonlinear waves examined in the previous section, if
the nonlinear term has a null structure the result can
be improved. Indeed, when F(u0) is a combination of
the forms [37]–[39], then local solvability and
uniqueness can be proved for all s > n=2, as in the
case of a nonlinear term of the type F(u). This result
is due to Klainerman, Machedon, and Selberg.
Again, the proof is based on a variation of the
contraction method; the additional ingredient here
is the use of suitable function spaces, which are
the counterpart for the wave equation of the spaces
used by Bourgain in the study of the nonlinear
Schrödinger equation. The norm of these spaces is
defined as follows:

kukHs;� � kh�ishjtj � j�ji�euð
; �ÞkL2ðRnþ1Þ

where h�i= (1þ j�j2)1=2 and eu is the spacetime
Fourier transform of u(t, x). The wave operator can
be regarded as a spacetime Fourier multiplier of the
form 
2 � j�j2 = (jtj � j�j)(jtj þ j�j), and we see that
‘‘inverting’’ the operator & has a regularizing effect
in the scale of Hs, � spaces, since it decreases both
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s and � by one unit. Substantiating this formal
argument and complementing it with suitable esti-
mates for the nonlinear term requires some hard work,
which is contained in the theory of bilinear estimates
developed by Klainerman and his school.

See also: Evolution Equations: Linear and Nonlinear;
Symmetric Hyperbolic Systems and Shock Waves; Wave
Equations and Diffraction.
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Introduction

The method of separation of variables (SoV) is a
way of finding particular and general solutions of
certain types of partial differential equations (PDEs).
Its main idea is to consider the additive ansatz
u(x) =

P
i wi(x

i,�) or the multiplicative ansatz
u(x) =

Q
i ui(x

i,�) for a solution of a PDE that
allows for reducing this PDE to a set of (uncoupled)
ordinary differential equations (ODEs) for the
unknown functions wi(x

i,�) or ui(x
i,�) of one

variable xi, where x = (x1, . . . , xn). Locally, the
additive ansatz is, through the change of variables
u(x) = exp(

P
i wi(x

i,�)), equivalent to the multi-
plicative ansatz.

Many well-known equations of mathematical
physics such as the heat equation, the wave

equation, the Schrödinger equation, and the
Hamilton–Jacobi equation are solved by separating
variables in suitably chosen systems of coordinates.

Fourier Method

The SoV method can be attributed to Fourier
(1945), who solved the heat equation

@tu ¼ @xxu ½1�

for distribution of temperature u(x, t) in a one-
dimensional metal rod (of length L) by looking
first for special solutions of the product type
u(x, t) = X(x)T(t). This ansatz, substituted to [1],
reduces it to two ODEs: @tT =�k2T and @xxX =
�k2X that can be solved by quadratures:

TkðtÞ ¼ Ae�k2t; XkðxÞ ¼ B cosðkxÞ þ C sinðkxÞ

Due to linearity of [1], any formal linear combina-
tion u(x, t) =

P
k ckXk(x)Tk(t) is again a solution of

the heat equation and can be used for solving an
initial boundary-value problem (IBVP). For instance,

526 Separation of Variables for Differential Equations
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in the case of the IBVP on the interval 0 � x � L
and with zero boundary conditions

@tu ¼ @xxu;

uð0; tÞ ¼ uðL; tÞ ¼ 0;

uðx; 0Þ ¼ f ðxÞ;

0 < t;0 < x < L

0 < t

0 < x < L

only a countable set of values for the separation
constant k is admissible: kn = (n�=L), n = 1, 2, . . . .
Then the general solution has the form of the
Fourier series

uðx; tÞ ¼
X1
n¼1

cn exp �k2
nt

� �
sinðknxÞ

where the coefficients cn are given by the integrals

cn ¼
2

L

Z L

0

f ðxÞ sinðknxÞ dx

The sequence of functions sin(knx) is complete on
the interval [0, L]. That means that any regular
(continuous and differentiable) initial data function
f (x) such that f (0) = f (L) = 0 can be uniquely
expressed as an infinite convergent sum of the
orthogonal set of functions sin(knx). The study of
mathematical properties of the Fourier expansion
gave rise to the classical theory of Fourier series and
Fourier integrals.
Separability of PDEs in General Setting

A general setting for an additive separability of a
single, usually nonlinear, PDE has been developed
by Levi-Civita (1904) and by Kalnins and Miller
(1980) (see also Miller (1983)). Let

Hðx1; . . . ; xn; u; ui; uij; uijk; . . .Þ ¼ E

1 � i; j; k � n ½2�

be a finite-order PDE for an unknown function u(x),
where ui(x) = @xiu, uij = @xj@xiu, etc., and E is a
constant. A separable solution u(x) =

P
i Wi(x

i)
satisfies the simpler equation

E ¼ Hðx; u; ui; uii; . . .Þ � H½x; u� ½3�

where all mixed derivatives uij, etc., disappear. If a
separable solution is admissible by eqn [2], then the
function H(x; u, ui, uii, . . .) has to satisfy a set of
integrability conditions following from the total
derivatives of [3]. Let

Di ¼ @xi þ ui;1@u þ ui; 2@ui;1
þ � � � þ ui;miþ1@ui;mi

� eDi þ ui;miþ1@ui;mi

(where ui, 1 = ui, ui, jþ1 = @xiui, j, etc., and mi is the
largest number l such that @ui, l

H 6¼ 0) denote the
operator of total derivative with respect to (w.r.t.) xi;
then, DiH[x, u] = 0 or

ui;miþ1 ¼ �
eDiH

Hui;mi

where Hui, mi
= @ui, mi

H. The integrability conditions
Djui, miþ1 = 0, j 6¼ i, give rise to a large set of
differential conditions to be satisfied by H[x, u]:

Hui;mi
Huj;mj

eDi
eDjH

� �
þHui;mi uj;mj

eDiH
� � eDjH

� �
¼ Huj;mj

eDiH
� � eDjHui;mi

� �
þHui;mi

eDjH
� � eDiHuj;mj

� �
½4�

In general, the conditions [4] are restrictions for
both H and the form of a particular separable
solution u(x). If [4] is satisfied identically w.r.t. all
u, uk, l, we say that the corresponding coordinate
system xi is a regular separable coordinate system;
then the PDE [3] admits a (

P
i mi þ 1)-parameter

family of separable solutions. Most cases considered
in literature are regular; since then the separable
solution is usually sufficiently general for solving
various IBVPs.

A given PDE, however, usually does not satisfy
[4]; since these equations are not of tensorial type,
the natural question arises if there exists a suitable
change of coordinates y(x) such that the transformed
PDE satisfies [4]. Such separation coordinates may
or may not exist; it is usually very difficult to decide.

Here and in what follows, we speak about
separability of a single (scalar) PDE. The theory of
separability of systems of PDEs is still not developed
fully, although it is of relevance in the theory of
Maxwell equations and of the Dirac equation.

We present here the most classical part of SoV theory:
orthogonal separability of the Hamilton–Jacobi
equation for geodesic motions on Riemannian
manifolds.
Configurational Separation
of Hamilton–Jacobi Equation
on Riemannian Manifolds

Around 1842, C G J Jacobi invented the method of
generating function for solving the canonical
Hamilton equations

_x ¼ @Hðx; yÞ
@y

; _y ¼ � @Hðx; yÞ
@x

x ¼ ðx1; . . . ; xnÞ y ¼ ðy1; . . . ; ynÞ
½5�

where H(x, y) is a Hamiltonian and dot denotes the
time derivative (Landau and Lifshitz 1976). In this
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method, one looks for a generating function W(x,�)
of a canonical transformation

y ¼ @Wðx; �Þ
@x

; � ¼ @Wðx; �Þ
@�

that transforms Hamiltonian equations [5] into simple
equations for the new variables � 2 Rn, � 2 Rn. Since
the transformation is canonical, the transformed
equations are again Hamiltonian with the new
Hamiltonian eH(�,�) = H(x(�,�), y(�,�)). If we
choose this transformation so that eH(�,�) =�1, then
the transformed Hamilton equations become

_� ¼ @
eHð�; �Þ
@�

¼ ð1; 0; . . . ; 0Þ

_� ¼ � @
eHð�; �Þ
@�

¼ 0

so that �(t) = (t þ �10, �20, . . . , �n0), �(t) =
(�10, . . . ,�n0) = const. and the solution x(t), y(t) of
the Hamilton equations [5] is then given implicitly
by the equations

�ðtÞ ¼ @WðxðtÞ; �Þ
@�

; yðtÞ ¼ @WðxðtÞ; �Þ
@x

Since

y ¼ @Wðx; �Þ
@x

the generating function W(x, �) has to satisfy (identi-
cally w.r.t. (x, �)) the first-order nonlinear PDE

H x;
@Wðx; �Þ

@x

� �
¼ �1 ½6�

This equation is called the Hamilton–Jacobi
equation for the generating function W(x,�). It is
solved when its complete integral W(x,�), complete
means that

det
@2Wðx; �Þ
@xi@�j

� �
6¼ 0

depending on n independent constants � is known.
In general, it is very difficult to find solutions of [6].
The most important method is the method of
separation of variables when one looks for a
solution in the form W(x,�) =

Pn
k = 1 Wk(xk,�)

which is a sum of n functions Wk(xk,�), each
depending on a single variable xk and, possibly, all
constants a. If the Hamilton–Jacobi equation [6]
admits such a solution, then integrating this
equation is reduced to integrating n (uncoupled)
first-order ODEs for functions Wk(xk,�). The
constants �k acquire then the meaning of integration
constants.
A separable solution W(x,�) of [6] exists when-
ever the Hamiltonian H(x, y) satisfies (identically)
the integrability conditions [4] which in this case
acquire the (nonlinear) form

LijðHÞ � @iH@jH@
i@jH þ @iH@jH@i@jH

� @iH@
jH@i@jH � @iH@jH@i@

jH

¼ 0 for all i; j ¼ 1; . . . ; n ½7�

(@i = @=@xi, @i = @=@yi) found by Levi-Civita (1904).
In classical mechanics the most important

Hamiltonians are natural ones:

Hðx; yÞ ¼ 1

2

X
i;j

gijðxÞyiyj þ VðxÞ � Gþ V ½8�

They are defined on the cotangent bundle T�Q of a
configurational Riemannian manifold Q with the
metric tensor g. The function G is the geodesic
Hamiltonian associated with the metric tensor g. For
such natural Hamiltonians, the Levi-Civita condition
Lij(Gþ V) = 0 splits into the condition Lij(G) = 0
and a condition for the potential V(x). The condition
Lij(G) = 0, depending solely on the kinetic energy
term, is thus a necessary condition for coordinates xi

on Q to be separation coordinates for [8].
In the fundamental case of orthogonal separation

(i.e., when gij = 0 for i 6¼ j), the Levi-Civita condi-
tions Lij(Gþ V) = 0 read

@i@jg
kk � @i ln gjj

� �
@jg

kk

� @j ln gii
� �

@ig
kk ¼ 0; i 6¼ j ½9�

@i@jV � @i ln gjj
� �

@jV

� @j ln gii
� �

@iV ¼ 0; i 6¼ j ½10�

The main questions arising here are

1. What is the algebraic form of orthogonally
separable Riemannian metrics?

2. What is the form of separable coordinates on
Riemannian manifolds?

The first question is answered by the Stäckel
theorem (Stäckel 1891) that provides an algebraic
characterization of orthogonal separability of a
natural Hamiltonian H = Gþ V.

Theorem 1 The Hamilton–Jacobi equation for the
natural Hamiltonian

H ¼ Gþ V ¼ 1

2

X
i

giiðxÞy2
i þ VðxÞ
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is separable in the (orthogonal) coordinates x if and
only if

(i) There exists a matrix � = [’ij(x
i)], det (�) 6¼ 0

(so that the row i depends only on xi) such that
[g11, . . . , gnn] is the first row of the inverse
matrix � = ��1.

(ii) The potential V has the form V(x) =
P

i giifi(x
i),

where each fi(x
i) is a function of one variable xi

only.

Such matrix � is called a Stäckel matrix.

Proof If

g11; . . . ; gnn
� 	 ’11ðx1Þ � � � ’1nðx1Þ

..

. . .
. ..

.

’n1ðxnÞ � � � ’nnðxnÞ

2
664

3
775

¼ 1; 0; . . . ; 0½ � ½11�

then the Hamilton–Jacobi equation for H can be
written as

1

2

X
i

gii @W

@xi

� �2

þ
X

i

giifiðxiÞ ¼ �1

¼ �1

X
i

gii’i1ðxiÞ þ �2

X
i

gii’i2ðxiÞ

þ � � � þ �n

X
i

gii’inðxiÞ ½12�

This equation admits an additively separable
solution W =

P
i Wi(x

i), where the functions Wi

satisfy n ODEs (separation equations):

1

2

@Wi

@xi

� �2

þ fiðxiÞ

¼ �1’i1ðxiÞ þ �2’i2ðxiÞ þ � � � þ �n’inðxiÞ
i ¼ 1; . . . ; n ½13�

By differentiating [13] w.r.t. �j, we get

’ijðxiÞ ¼ @Wi

@xi

@2Wi

@xi@�j

and thus

det ’ijðxiÞ
� 	

¼ @W1

@x1
. . .

@Wn

@xn
det

@2W

@xi@�j

� �
6¼ 0

so that W =
P

i Wi(x
i) is indeed a complete integral of

the Hamilton–Jacobi equation [12]. Conversely, if
W =

P
i Wi(x

i) is a complete integral of the Hamilton–
Jacobi equation [12], then by differentiating it w.r.t. �j

we get for j = 1

X
i

gii @Wi

@xi

@2Wi

@xi@�j
¼ 1
and

X
i

gii @Wi

@xi

@2Wi

@xi@�j
¼ 0

(for j = 2, . . . , n), that is, the condition [11] for the
Stäckel matrix

� ¼ @Wi

@xi

@2Wi

@xi@�j


 �

Further, we see that

V ¼ �1 �
1

2

X
i

gii @xiWið Þ2

¼ 1

2

X
i

gii �1’i1ðxiÞ � 1

2
@xiWið Þ2


 �

¼
X

i

giifiðxiÞ &

Remark 2 The Stäckel characterization of orthogo-
nal separability is equivalent to Levi-Civita conditions
[9] and [10]. It is in fact a solution of these conditions.

Remark 3 With every Stäckel matrix, one can
relate a family of n quadratic in momenta Hamilto-
nians defined by n rows of the inverse Stäckel matrix
� = ��1 = [ kr]:

Hk ¼
1

2

Xn

r¼1

 kry
2
r ; k ¼ 1; . . . ; n ½14�

(so that H1 = G). These Hamiltonians are linearly
and functionally independent; they Poisson-
commute (so that they form a Liouville integrable
system) and are all diagonal so that they have
common eigenvectors.

These properties are the main ingredients of an
intrinsic (coordinate-independent) characterization
of separable geodesic Hamiltonians G in terms of
involutive Killing tensors that is due to works of
Eisenhart (1934), Kalnins and Miller (1980), and
Benenti (1997).

Theorem 4 A necessary and sufficient condition
for the existence of an orthogonal additive separable
coordinate system x for the Hamilton–Jacobi
equation of the geodesic Hamiltonian H1 = G
on an n-dimensional (pseudo)-Riemannian manifold
is that there exist n quadratic forms
Hr =

Pn
i, j hij

r (x)yiyj such that

(i) They all Poisson-commute: {Hr, Hs} = 0, 1 � r,
s � n.

(ii) The set {Hr}
n
r = 1 is linearly independent.

(iii) There is a basis {!(j)}
n
j = 1 of n simultaneous

eigenforms for all Hr.
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If conditions(i)–(iii) are satisfied then there exist
functions gj(x) such that !(j) = gjdxj, j = 1, . . . , n.

This theorem has been further simplified
by Benenti (1997), who has shown that for separ-
ability it is sufficient that gij admits a single Killing
2-tensor with simple eigenvalues and normal eigen-
vectors. He has also explained the role of ignorable
coordinates.

These results are key ingredients of an answer to the
question (2). Eisenhart (1934), starting from the fact
that every separable geodesic Hamiltonian H = G
admits n quadratic (w.r.t. momenta yi) integrals of
motion, derived a set of nonlinear PDEs characterizing
separable Riemannian metrics. He has solved these
equations for spaces of constant curvature. This
solution is the basis of the Kalnins and Miller’s
(1986) diagrammatic classification of all orthogonal
separation coordinates on Rn and the sphere Sn.
Separable coordinates on the Minkowski space Mn

have not been classified yet.
Since the work of Robertson (1927) and Eisenhart

(1934), it is known that in Rn, Sn and, in general, in
the space with diagonal Ricci tensor, the (additive)
separability of Hamilton–Jacobi equation for the
natural Hamiltonian H = Gþ V is equivalent
to multiplicative separability of the stationary
Schrödinger equation with the same potential V:

ð�þ VðxÞÞ�ðxÞ ¼ E�ðxÞ ½15�

where

� ¼
Xn

i;j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p @i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

q
gij@j

� �

is the Laplace–Beltrami operator. Usually, multi-
plicative separated solutions �(x) =

Qn
i = 1 �i(x) is

considered but the change of the dependent variable
u = ln � transforms it into an additive separable
solution. If we restrict our considerations to ortho-
gonal separation coordinates (gij = 0 for i 6¼ j), eqn
[15] becomes

Xn

i¼1

�
gii uii þ u2

i

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgÞ
p @i

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgÞ
q

gii

�
ui

�
þ VðxÞ ¼ E

where ui = @iu, uii = @i@iu. The integrability condi-
tions [4] for regular separation lead to the Levi-Civita
condition [9] on the components gii of the metric
tensor, upon comparison of the coefficients at u2

i .
The coefficients at uii yield the Robertson condition

@i@j ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

q
gii

� �
¼ 0; i 6¼ j
and the constant terms in [4] give the Levi-Civita
equation [10] meaning that V(x) =

Pn
i = 1 giifi(x

i).
Eisenhart has shown that the Robertson condition is
equivalent to the requirement that the Ricci tensor is
diagonal: Rij = 0, i 6¼ j in variables x so that the
Robertson condition is satisfied automatically in the
Euclidean space, in spaces of constant curvature and in
Einstein spaces. Thus every orthogonal coordinate
system permitting multiplicative separation of the
Schrödinger equation corresponds to the Stäckel form.

Jacobi Problem of Separability

In order to apply the separability theory to physical
Hamiltonians H = (1=2)p2 þ V(q), p = (p1, . . . , pn),
q = (q1, . . . , qn), it is essential to solve the following
problem: ‘‘given a potential V(q), decide if there
exists a point transformation x(q) to some curvi-
linear coordinates x such that the Hamilton–Jacobi
equation associated with H is separable in coordi-
nates x, and if such transformation exists, determine
it and solve the obtained Hamilton–Jacobi
equation.’’

This problem has been raised by Jacobi (1884) in
connection with the problem of finding geodesic
motions on a 3-axial ellipsoid. For solving this
problem Jacobi introduced his ‘‘remarkable change
of coordinates’’ to the generalized elliptic coordi-
nates x(q) defined through zeros of the rational
function

1þ
Xn

i¼1

ðqiÞ2

ðz� �iÞ
�
Q

jðz� xjÞQ
iðz� �iÞ

½16�

where the constants �i > 0 are all different. From
the graph of the left-hand side of [16], it is easy to
see that there are exactly n simple, real zeros. For
given values of elliptic coordinates xj, the values of
(qi)2 are uniquely determined as residues at �i while
Cartesian coordinates qi are determined uniquely
only in each n-tant of Rn.

The Jacobi elliptic coordinates play a pivotal role
in orthogonal separability on Rn and Sn since they
are the mother of all other separation coordinates
that can be obtained through proper and improper
degenerations of �i’s. By using these coordinates
Jacobi solved not only the geodesic motions on the
ellipsoid but also the motion on the ellipsoid under
the action of harmonic potential V(q) = (1=2)q2. He
has also found separation coordinates for a system
of three interacting particles on the line known
today as the Calogero system. In general, however,
Jacobi considered the problem of finding separation
coordinates for a given potential V(q) to be very
difficult. In Vörlesungen über Dynamik, ch. 26, he
writes: ‘‘The main difficulty in integrating a given
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differential equation lies in introducing convenient
variables, which there is no rule for finding. There-
fore, we must travel the reverse path and after
finding some notable substitution, look for problems
to which it can be successfully applied’’. This
statement had a profound influence on further
development of SoV theory that concentrated on
characterizing separable Hamiltonians (as expressed
in terms of separation coordinates) and on describ-
ing and classifying separation coordinates.

The original problem of Jacobi of finding separa-
tion variables for a given natural Hamiltonian has
been taken up by Rauch-Wojciechowski (1986),
who found a characterization of separable potentials
V(q) in terms of Cartesian coordinates qi. Its
invariant geometric form has been given by Benenti.
A complete criterion of separability that allows for
an effective testing and calculation of separation
coordinates (if they exist) for V(q) has been solved
by Waksjö and Rauch-Wojciechowski (2003). This
criterion is directly applicable to the problem of
finding SoV for the Schrödinger equation.

Criterion of Separability for n = 2

The criterion of separability for n = 2 can be read
from the Bertrand–Darboux theorem.

Theorem 5 (Bertrand–Darboux). For the
Hamiltonian:

H = 1
2 p2

1 þ p2
2

� �
þ Vðq1; q2Þ

the following statements are equivalent:

(i) H has a functionally independent integral of
motion {H, K} = 0 of the form

K ¼ aq2
2 þ bq2 þ c

� �
p2

1 þ
�
aq2

1 þ ebq1 þ ec�p2
2

þ
�
� 2aq1q2 � bq1 � ebq2 þ d

�
p1p2

þ kðq1; q2Þ

(ii) The potential V(q1, q2) satisfies the following linear
second-order PDE with quadratic coefficients

0 ¼ 2
�
aq2

2 � aq2
1 þ bq2 � ebq1 þ c� ec�@1@2V

þ ð�2aq1q2 � bq1 � ebq2 þ dÞ @2
2V � @2

1V
� �

þ ð6aq2 þ 3bÞ@1V � ð6aq1 þ 3ebÞ@2V ½17�

where a, b, eb, c,ec, d are some constants,
@1 = @q1

, @2 = @q2
.

(iii) The Hamilton–Jacobi equation for H is separ-
able in one of the four orthogonal coordinate
systems in the plane: elliptic, parabolic, polar,
or Cartesian.
Remark 6 If the potential V(q1, q2) is separable,
then it admits an integral of motion K that is
quadratic w.r.t. momenta and V satisfies (identically
w.r.t. q1, q2) eqn [17] for certain values of the
undetermined constants a, b, eb, c,ec, d. Since coeffi-
cients at linearly independent expressions of q1, q2

have to be equal to zero, the parameters
a, b, eb, c,ec, d have to satisfy a set of linear, algebraic,
homogeneous equations. If there is a nonzero
solution for a, b, eb, c,ec, d, then there exists an
integral of motion K and separation coordinates
can be determined as characteristic variables for
equation [17].

Example 7 Separable cases of the Henon–Heiles
potential

V ¼ 1
2 !1q2

1 þ !2q2
2

� �
þ �q2

1q2 � 1
3 �q3

2

By substituting this form of V into [17], we get two
sets of admissible solutions for parameters �, �,
!1, !2: (i) �= ��, !1 =!2 with V separable in
rotated (by �=4) Cartesian coordinates; (ii)
�= �6�, !1, !2-arbitrary with V separable in the
shifted parabolic coordinates. In case (ii) eqn [17]
becomes

2 q2 �
1

4�
ð4!1 � !2Þ

� �
@1@2V

þ q1 @2
2V � @2

1V
� �

þ 3@1V ¼ 0

and in its characteristic coordinates defined as
q1 =

ffiffiffiffiffi
�	
p

, q2 = (1=2)(� � 	)þ (1=4�)(4!1 � !2) it
takes the form (� � 	)@�@	V þ @�V þ @	V = 0 solved
by V(�, 	) = (� þ 	)2[f (�)þ g(	)] which is separable
in the parabolic coordinates.
Effective Criterion of Separability
for Arbitrary Dimension

For n > 2, a similar theorem characterizing separ-
ability in generalized elliptic coordinates has been
formulated by Rauch-Wojciechowski (1986).

Theorem 8 (Elliptic Bertrand–Darboux). For a
natural Hamiltonian H = (1=2)p2 þ V(q), the
following statements are equivalent:

(i) H has n global, functionally independent and
involutive integrals of motion {H, Ki} = 0,
{Ki, Kj} = 0, i, j = 1, . . . , n, having the form

Ki ¼
Xn

r¼1;r 6¼i

ð�i � �rÞ�1l2ir þ p2
i þ kiðqÞ

lir ¼ qipr � qrpi ½18�
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(ii) The potential V satisfies the following system of
linear second-order PDEs

ð�i � �jÞ@i@jV �=ijð2þ <ÞV ¼ 0

i; j ¼ 1; . . . ; n; i 6¼ j ½19�

�i@i=jkV þ �j@j=kiV þ �k@k=ijV ¼ 0

all i; j; k different ½20�

where =ij = qi@j � qj@i, <=
Pn

r = 1 qr@r.
(iii) The Hamilton–Jacobi equation for H is separ-

able in the generalized elliptic coordinates [16]
with parameters �i.

Remark 9 Equations [19]–[20] follow from the
compatibility conditions that mixed derivatives of
ki(q) calculated from the conditions {H, Kr} = 0, are
equal. This leads to an overdetermined system [19]–[20]
of PDEs for V(q). Equations [19]–[20] are not linearly
independent but we keep both sets [19]–[20] in the
formulation of this theorem because eqns [19] give rise
to the basic Bertrand–Darboux equations [21] used in
the criterion of separability while eqns [20] give rise to
cyclic Bertrand–Darboux equations [22] used for testing
the level of spherical symmetry in the potential.

For testing elliptic separability of any given potential
V(q), it is necessary to introduce into eqns [19] and
[20] the freedom of choice of the Euclidean reference
frame (as described by the Euclidean transformationeq = At(q� b), A 2 SO(n), b 2 Rn). By substituting it
into [19]–[20], omitting tildes and summing over one
of the indices, we obtain new equations

0 ¼
Xn

k¼1

�qiqk þ �iqk þ �kqi þ 
ikð Þ@k@jV
�

� �qjqk þ �jqk þ �kqj þ 
jk

� �
@k@iV

þ 3 �qi þ �ið Þ@jV � �qj þ �j

� �
@iV

� ��
i; j ¼ 1; . . . ; n; i 6¼ j ½21�

0 ¼
Xn

l¼1


ilqj � 
jlqi

� �
@k@lV þ 
jlqk � 
klqj

� �
@i@lV

�
þ 
klqi � 
ilqkð Þ@j@lV

�
½22�

with the new coefficients �, �i, 
ij that are uncon-
strained despite that the orthogonal matrix A
satisfies the quadratic algebraic constraint AAt = I.

Theorem 8 provides the following test of elliptic
separability for a potential V(q) given in Cartesian
coordinates.

1. Insert V(q) into the Bertrand–Darboux equations
[21]. This gives a system of linear, homogeneous,
algebraic equations for the unknown parameters
�, �i, 
ij. If �= 0, then V(q) is not separable in
elliptic coordinates.

2. If � 6¼ 0, set b =���1�, S = bbt � ��1
 and
diagonalize S: S = A diag(�1, . . . ,�n)At. If some
eigenvalues �i coincide, then V(q) is not separ-
able in elliptic coordinates. Otherwise V(q) is
separable in the elliptic coordinates
x = (x1, . . . , xn) given by

1þ
Xn

i¼1

ðeqiÞ2

ðz� �iÞ
�
Q

jðz� xjÞQ
iðz� �iÞ

(compare with [16]), where q = Aeqþ b, with b and
A found as above.

If �= 0, � 6¼ 0, then there exists a similar
algorithm for separability in generalized parabolic
coordinates and for �= 0, �= 0, 
 6¼ tI, we
have separability in Cartesian coordinates if all �i

are different. For giving an idea of what happens
when degenerations occur, consider the case
�= 0, �= 0. Then the Bertrand–Darboux equations
[21] are Euclidean equivalent to the canonical form
(�i � �j) @i@jV = 0 and if all �i are different,
then equations @i@jV = 0 imply that V(q) is a
sum of functions of one variable only:
V(q) =

Pn
i = 1 Vi(q

i).
The main problem is to handle all possible

degenerations when certain �’s coincide. Let
�1 = � � � =�j < �jþ1 < � � � < �n, where 1 < j < n.
Then V(q) = Vj(q

1, . . . , qj)þVjþ1(qjþ1)þ � � � þ
Vn(qn) which means that variables qjþ1, . . . , qn

separate off while the potential Vj(q
1, . . . , qj) has to

be tested again on Rj with the use of eqns [21].
Degenerations for � 6¼ 0 or � 6¼ 0 are more compli-
cated and the cyclic Bertrand–Darboux equations
[22] have to be used. They unfold the level of
spherical degeneracy of spheres and embedded sub-
spheres. A complete analysis of all possible degenera-
tions is technical. It requires considering of all possible
degenerations of the sequences �1 < � � � < �n and of
the related equations [21]–[22] for the potential V(q).
It has been proved by Waksjö and
Rauch-Wojciechowski (2003) that there is a one-to-
one correspondence between all possible sets of PDEs
[21]–[22] characterizing separable potentials and all
possible types of Riemannian metrics (in the Kalnins
and Miller (1986) classification of all separable
coordinates on Rn and Sn) so that no completely
separable case is missed. The most important is that
after maximally n steps separation coordinates are
always determined (if they exist) by a sequential use of
the Bertrand–Darboux and cyclic Bertrand–Darboux
equations [21]–[22].
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Separation of Eigenvalues Problems

Eigenvalues problems (in a given domain D) of the
form

�wðqÞ þ ��ðqÞwðqÞ ¼ 0; � > 0 ½23�

(where � is the Laplace operator) arise when sepa-
rating the wave equation �(q)utt = �u and the diffu-
sion equation �(q)ut = �u (Courant and Hilbert 1989).
The multiplicative ansatz u(q, t) = w(q)g(t) yields
eqn [23] together with €g =�g or _g =�g. The problem
[23] is also used for solving the inhomogeneous
equation �u = f with the zero boundary condition
uj@D = 0. In general, the properties of the eigenvalues�i

and of the corresponding eigenfunctions wi of the
problem [23] depend on the regularity requirements for
wi and on the boundary conditions at @D.

For the zero boundary conditions w(q)j@D = 0, one
seeks a nontrivial (w 6¼ 0) solution having in the
region D continuous first- and second-order deriva-
tives. General theorems (Courant and Hilbert 1989)
state that for such problems there exists a growing
sequence {�i}

n
i = 1 of positive eigenvalues �i such that

�i !1 as i increases, and that there is a related
sequence of normalized eigenfunctions

ffiffiffi
�
p

w1,ffiffiffi
�
p

w2, . . . that form a complete weighted-orthogonal
(in the sense that

R
D �wiwj = �ij, i, j = 1, 2, . . .) system

of functions so that every regular initial function
(q) with (q)j@D = 0 may be expanded in terms of
the eigenfunctions wm in an absolutely and uni-
formly convergent series (q) =

P1
m = 1 cmwm(q) with

cm =
R

D �wm. This makes it possible to express a
solution of the IBVP for the wave or for the diffusion
equation with zero boundary conditions:

�ðqÞutt ¼ �u respectively �ðqÞut ¼ �u

uðq; tÞj@D ¼ 0; uðq; t ¼ 0Þ ¼ ðqÞ ½24�

as a convergent infinite series u(q, t) =P1
m = 1 cmwm(q)gm(t), where gm(t) satisfy €g =�g

respectively _g =�g. Further determination of proper-
ties of the eigenfunctions wn is possible only in
special domains D when the problem [23] can be
reduced to one-dimensional eigenvalue problems by
separating variables in some suitable coordinates.

Example 10 Consider the spherical domain
r2 = x2 þ y2 þ z2 � 1. Equation [23] with � ¼ 1
attains in the spherical coordinates (r,’, �) the form

�wþ �w � 1

r2 sin �

�
@rðr2 sin � @rwÞ þ @’

1

sin �
@’w

� �

þ @�ðsin � @�wÞ
�
þ �w ¼ 0
The ansatz w = f (r)Y(�,’) gives the separated
equation

r2f 0
� �0þ�r2f

f
¼� 1

Y sin �

�
@’

1

sin �
@’Y

� �

þ @� sin � @�Yð Þ
�

so that its both sides must be equal to a constant �.
Continuity of Y implies that it has to be periodic in ’
(with period 2�) and regular at �= 0, �= �. It can
only be satisfied for �= n(nþ 1). The left-hand side of
the above equation yields then (r2f ‘0)0 � n(nþ 1)f þ
�r2f = 0. Solutions that are regular at r = 0 are the
Bessel functions (1=

ffiffi
r
p

)Jnþ(1=2)(
ffiffiffi
�
p

r). The equation for
spherical harmonics

1

Y sin �
@’

1

sin �
@’Y

� �
þ @� sin � @�Yð Þ

� �

þ nðnþ 1ÞY ¼ 0

can be further multiplicatively separated by assum-
ing Y = �(�)�(’). The function P(z = cos �) = �(�)
satisfies then the Legendre equation

1� z2
� �

P0ðzÞ
� �0þ nðnþ 1Þ � �

1� z2

� �
PðzÞ ¼ 0

P(z) is regular at z =	1 only when �= k2,
k = 0, 1, 2, . . . . The function �(’) satisfies then
�00= �k2� with solutions �k(’) = ak cos (k’)þ bk

sin (k’). The full solution of the eigenvalue problem
�wþ �w = 0 has the form of an infinite series

wmðr; ’; �Þ ¼
X1
n¼0

1ffiffi
r
p Jnþð1=2Þ

ffiffiffiffiffiffiffiffiffi
�m;n

p
r

� �
an;0Pðcos �Þ
�

þ
Xn

k¼1

an;k cosðk�Þ þ bn;k sinðk�Þ
� �

� Pn;kðcos �Þ�

where the constants �m, n, m = 1, 2, . . . , are determined
by the transcendental equation Jnþ(1=2)(

ffiffiffi
�
p

) = 0 that
follows from the boundary condition u(q, t)j@D = 0.

Almost all BVPs that can be reduced to one-
dimensional eigenvalue problems may be considered
as a special or limiting case of the Lame problem
where the boundary @D is given by pieces of confocal
quadrics corresponding to some separation coordi-
nates. If D = {q(x) 2 R3 : x0

i � xi � x1
i , i = 1, 2, 3} is a

domain defined by parametrizing q with the elliptic
coordinates xi given by [16], then the eigenvalue
problem �wþ �w = 0 splits into three one-
dimensional equations of the form

’ðsÞY 00ðsÞ þ 1
2’
0ðsÞY 0ðsÞ þ ð�sþ �ÞYðsÞ ¼ 0
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where ’(s) = 4(s� e1)(s� e2)(s� e3) and ei are para-
meters of the elliptic coordinates. This is the Lame
equation; its solutions define new transcendental func-
tions that depend on the choice of the constants �,�.

The approach presented here extends to diverse
modifications such as vibrations with forcing term
�w(q)þ �w(q) = f (q), vibrations of a nonhomogen-
eousmedium �w(q)þ ��(q)w(q) = 0, the stationary
Schrödinger equation �w(q)þ V(q)w(q) =�w(q)
whenever the functions �(q), f (q), V(q) are compatible
with the separation coordinates.

Separation equations for the second-order BVP
are the source of one-dimensional eigenvalue pro-
blems of the Sturm–Liouville type

pðsÞu0ð Þ0�qðsÞuþ ��ðsÞu ¼ 0

with singularities that may occur at the endpoints of
the fundamental domain. Majority of orthogonal
polynomials and special functions appearing in math-
ematical physics are solutions of Sturm–Liouville
problems.

In the complex domain the study of singularities
of Laurent series solutions of the same equations led
to development of theory of linear ODEs with
singular points of the Fuchs class and the Böcher
class.
Constructive Approach to Separability
of Liouville Integrable Systems

In the constructive approach to separability, one
considers simultaneously all Hamilton–Jacobi equa-
tions following from a set of n, functionally
independent, commuting integrals H1(x, y), . . . ,
Hn(x, y), {Hi, Hj} = 0, that define a Liouville inte-
grable system (Sklyanin 1995).

One starts with the separation equations, a set
of n decoupled ODEs for the functions Wi(xi, �)
depending on one variable xi and parametric
� 2 Rn:

fi xi; yi ¼
@Wiðxi; �Þ

@xi
;�

� �
¼ 0 ½25�

Assume that the dependence on �i is essential (i.e.,
that det(@fi=@�j) 6¼ 0) so that we can resolve eqns
[25] w.r.t. �i so that �i = Hi(x, y) for some functions
Hi. If the functions Wi(xi,�) solve [25] identically
w.r.t. x and �, then the function W(x,�) =Pn

i = 1 Wi(xi,�) is simultaneously an additively
separable solution of eqns [25] and of the equations

�i�
x;�

Hi x; y ¼ @Wðx; �Þ
@x

� �
; i ¼ 1; . . . ; n ½26�
since solving [25] w.r.t. � is a purely algebraic
operation. We can treat eqns [26] as a set of
simultaneously separable (in the canonical variables
(x, y)) Hamilton–Jacobi equations related to the
Hamiltonians Hi. Assume now that

det
@2W

@xi @�j

� �
¼ det

@2Wi

@xi @�j

� �
6¼ 0

i.e. that W is a complete integral for [26]. Then the
Hamiltonians Hi(x, y) =�i Poisson-commute since
�i can be treated as new canonical variables
obtained by the canonical transformation (x, y) !
(�,�) given by

y ¼ @Wðx; �Þ
@x

; � ¼ @Wðx; �Þ
@�

Thus, any solvable w.r.t. � set of separation relations
[25] defines a Liouville integrable system.

If we perform a canonical transformation from
(x, y) to new variables (q, p), then the new set of
commuting Hamiltonians eHi(q, p) = Hi(x(q, p),
y(q, p)) is also called separable.

The main problem for any given set of commuting
Hamiltonians eHi(q, p) is to decide if there exists a
canonical transformation (q, p)! (x, y) to the
separation variables (x, y) so that the related
Hamilton–Jacobi equations [26] are simultaneously
separable. An answer to this problem is known for
integrable Hamiltonians solvable through the spec-
tral curve method (Sklyanin 1995) and for the whole
class of natural Hamiltonians discussed earlier.

This approach brings new, wider perspective to the
classical separability mechanism stated in the Stäckel
theorem. It contains majority of all known separable
Hamiltonian systems. For example, if we specify the
separation relations [25] to be affine in �i,

Xn

k¼1

fikðxi; yiÞ�k ¼ giðxi; yiÞ; i ¼ 1; . . . ; n ½27�

then [27] are called generalized Stäckel separability
conditions. To recover the explicit form of Hamilto-
nians Hk =�k, it is enough to solve relations [27] w.r.t.
�k. It has been proved that the Stäckel Hamiltonians in
[27] constitute a quasi-bi-Hamiltonian chain. If we
specify further relations [27] by assuming that func-
tions fik do not depend on yi and functions gi are
quadratic in yi, then we obtain the classical Stäckel
separability conditions (see Theorem 1)

Xn

k¼1

fikðxiÞ�k ¼
1

2
giðxiÞy2

i þ hiðxiÞ ½28�
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that can be solved for �k yielding

�kðx; yÞ ¼
1

2

Xn

i¼1

��1
� �

ik
y2

i þ
hiðxiÞ
giðxiÞ

� �

that is, the Stäckel Hamiltonians [14] with the Stäckel
matrix � = [’ik], where ’ik = fik(xi)=gi(xi). By speci-
fying [28] further, we obtain separation relations

xn�1
i �1 þ xn�2

i �2 þ � � � þ �n ¼ 1
2gðxiÞy2

i þ hðxiÞ

which give the so-called Benenti systems associated
with conformal Killing tensors and cofactor pair
systems.

Relations [27], with gi(xi, yi) depending exponen-
tially on momenta y, contain several well-known
systems such as periodic Toda lattice, the KdV
dressing chain, and the Ruijsenaar–Schneider sys-
tem. Relations with gi cubic in momenta y yield
stationary flows of Boussinesq hierarchy and integr-
able systems on the loop algebra sl(3).

See also: Boundary-Value Problems for Integrable
Equations; Calogero–Moser–Sutherland Systems of
Nonrelativistic and Relativistic Type; Elliptic Differential
Equations: Linear Theory; Evolution Equations: Linear
and Nonlinear; Integrable Systems: Overview; Multi-
Hamiltonian Systems; Ordinary Special Functions;
Recursion Operators in Classical Mechanics; Toda Lattices.
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Separatrices are asymptotic manifolds in dynamical
systems. However, this term is applied usually in the
case of a small dimension of the phase space, where
these manifolds are hypersurfaces. In the context of
separatrix splitting manifolds asymptotic to hyper-
bolic tori are usually considered, where tori of
dimension 0 and 1 are called equilibrium positions
and periodic trajectories, respectively. A separatrix
can be stable (asymptotic as t!þ1) and unstable
(asymptotic as t!�1).
In this article we consider the case of systems with
finite-dimensional phase space. Basically we deal with
nonautonomous Hamiltonian systems 2�-periodic in
time. However, it is useful to keep in mind the fact
that the cases of autonomous Hamiltonian systems
and symplectic maps are dynamically the same. Some
results for non-Hamiltonian perturbations will also
be presented. Hamiltonian systems with one-
and-a-half or two degrees of freedom as well as
area-preserving two-dimensional maps are especially
important for us because the results on the separatrix
splitting in this case are more clear and complete.
Dynamics in such systems is essentially the same.
Below we call these systems two dimensional.

We assume that all systems are at least C1-smooth.
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Poincaré Integral

Consider a Liouville integrable Hamiltonian system.
Then any separatrix either goes to infinity or joins
two hyperbolic tori. From a dynamical point of
view, the latter case is more interesting. If these tori
are different, the situation is called heteroclinic,
otherwise homoclinic. Poincaré was the first to
notice that after a generic perturbation stable and
unstable separatrices become different submanifolds
of the phase space. This phenomenon is called the
separatrix splitting.

Poincaré (1987) considered perturbations of
separatrices homoclinic to a periodic solution in a
Hamiltonian system with one-and-a-half degrees of
freedom. In this case the system has the form

_x ¼ @H

@y
; _y ¼ � @H

@x
; ðx; yÞ 2D � R2 ½1�

where D is an open domain and

Hðx; y; t; "Þ ¼ H0ðx; yÞ þ "H1ðx; y; tÞ þOð"2Þ ½2�

We assume that H is 2�-periodic in t and " is a
small parameter. Let (x0, y0)2D be an equilibrium
position for the unperturbed ("= 0) system:
grad H0(x0, y0) = 0. Without loss of generality,
(x0, y0) = 0. In the extended phase space D�T
(T = {t mod 2�} is a one-dimensional torus) instead
of the equilibrium we have a 2�-periodic solution
0�T. Suppose that the equilibrium (and therefore,
the periodic solution) is hyperbolic and the corre-
sponding stable and unstable separatrices �s, u are
doubled: �s = �u = �. Let �(t) be a natural para-
metrization of �, that is, (x(t), y(t)) = �(t) is a
solution of eqns [1]. In the extended phase space,
we have the asymptotic surface

ð�ðt þ �Þ; tÞ; t2T; � 2R

For small values of ", the perturbed system has a
hyperbolic periodic solution (�"(t), t), �"(t) = O(")2D
and the separatrices

ð�s;u
" ðt; �Þ; tÞ; �s;u

0 ðt; �Þ ¼ �ðt þ �Þ

Since the addition to the Hamiltonian of a function,
depending only on t and ", does not change the
dynamics, without loss of generality we can assume
that H1(0, 0, t) � 0. Hence the Poincaré integral

Pð�Þ ¼
Z þ1
�1

H1ð�ðt þ �Þ; tÞ dt

converges. The function P carries all information on
the separatrix splitting in the first approximation
in ".
Periodicity of H1 in t implies 2�-periodicity of
P(�). There is also the following obvious identity:

dPð�Þ
d�

¼
Z þ1
�1
fH0;H1gð�ðt þ �Þ; tÞ dt

where { , } is the Poisson bracket.
Melnikov Integral

Melnikov (1963) considered general (not necessarily
Hamiltonian) 2�-periodic in t perturbations:

_x ¼ @H0

@y
þ "v1ðx; y; tÞ þOð"2Þ

_y ¼ � @H0

@x
þ "v2ðx; y; tÞ þOð"2Þ

In this case, information on the separatrix splitting
in the first approximation is contained in the
Melnikov integral

Mð�Þ ¼
Z þ1
�1

vH0ð�ðt þ �Þ; tÞ dt

where vH0 = v1@H0=@xþ v2@H0=@y.
Note that if the vector field v is Hamiltonian and

H1 is the corresponding Hamiltonian function, we
have: vH0 =�{H0, H1}. Hence in Hamiltonian
systems we have: M(�) =�dP(�)=d� .

A multidimensional version of the Melnikov
integral is presented in Wiggins (1988).
Geometric Meaning of M(�)

Let �T be a compact piece of the unperturbed
separatrix

�T ¼ fðx; yÞ 2D: ðx; yÞ ¼ �ðtÞ; jtj � Tg

Then for any T > 0 there exists a neighborhood U of
�T and symplectic coordinates (time–energy coordi-
nates) � , h on U such that the section of the perturbed
separatrices �s, u

" by the plane {t = 0} is as follows:

�s;u
" jt¼0 ¼ fð�; hÞ : h ¼ hs;u

" ð�Þg

where

1. hu
" (�) = O("2),

2. hs
"(�) =�"M(�)þO("2).
Moreover, let gt

" : D!D be the phase flow of
the perturbed system. The map g2�

" is called the
Poincaré map. The following statement holds.

3. For any two points z0, z1 2U such that z1 = g2�
" (z0),

let (�0, h0) and (�1, h1) be their time–energy
coordinates. Then

�1 ¼ �0 þ 2�þOð"Þ; h1 ¼ h0 þOð"Þ
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Figure 1 Perturbed separatrices in time–energy coordinates.
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Existence of such coordinates has several
corollaries.
	 If P is not identically constant, the separatrices

split and this splitting is of the first order in ".
	 Let �
 be a simple zero of M. Then the

perturbed separatrices intersect transversally at
a point z
(") with time–energy coordinates
(�
 þO("), O("2), t = 0). Such a point z
(") is
called a transversal homoclinic point. It gen-
erates a doubly asymptotic solution in the
perturbed system.
	 Consider a lobe domain L(�
, ") bounded by two

segments of separatrices on the section {t = 0}
(see Figure 1). Let another ‘‘corner point’’ of the
lobe L(�
, ") correspond to the simple zero � 0
 of
M. Then the symplectic area of L(�
, ") equals

ALð�
; "Þ ¼ �"
Z � 0


�


Mð�Þ d� þOð"2Þ

A Standard Example

Consider as an example a pendulum with periodi-
cally oscillating suspension point. The Hamiltonian
of the system can be presented in the form

Hðx; y; t; "Þ ¼ 1
2 y2 þ �2 cos xþ "�ðtÞ cos x ½3�

where � is the ‘‘internal’’ frequency of the pendulum.
The function � is 2�-periodic in time. Hence the
frequency of the suspension point oscillation equals
1. In this case, the unperturbed homoclinic solution
�(t) can be computed explicitly. In particular,

cosðxðtÞÞ ¼ 1� 2 cosh�2ð�tÞ

Therefore, P(�) =
R þ1
�1 �(t)(cos (x(tþ �))� 1) dt. For

example, if �(t) = cos t, we have

Pð�Þ ¼ � 2� cos �

�2 sinhð�=2�Þ

In this case, different lobes have the same area

AL ¼
4"�

�2 sinhð�=2�Þ þOð"2Þ
Multidimensional Case

Multidimensional generalization of the Poincaré–
Melnikov construction is strongly connected to the
concept of a (partially) hyperbolic torus. Let
(M,!, H) be a Hamiltonian system on the 2m-
dimensional symplectic manifold (M,!).

An invariant n-torus N �M (0 � n < m) is called
hyperbolic if there exist coordinates x, y, z on M in a
neighborhood of N such that

1. y = (y1, . . . , yn), x = (x1, . . . , xn) mod 2�,
z = (zs, zu), zs, u = (zs, u

1 , . . . , zs, u
l ), lþ n = m;

2. != dy ^ dxþ dzu ^ dzs;
3. N = {(x, y, z) : y = 0, z = 0}; and
4. H = h�, yiþ (1=2)hAy, yiþ hzu, �(x)zsiþO3(y, z),

where � 2Rn is a constant vector, A is a constant
n� n matrix, � is an l� l matrix such that
�(x)þ�T(x) is positive definite for any x mod 2�,
the symbol O3 denotes terms of order not less than
3, and ha, bi=

P
ajbj.

If det A 6¼ 0, the torus is called nondegenerate. If �
is Diophantine, that is, for some �,	> 0 and any
0 6¼ k2Zn

jh�; kij � �jkj�	

the torus N is called Diophantine. The coordinates
(x, y, z) are called canonical for N.

Now suppose that the Hamiltonian H depends
smoothly on the parameter ":

H ¼ H0 þ "H1 þOð"2Þ

and for "= 0 the system is Liouville integrable with
the commuting first integrals F1, . . . , Fm:

fFj; Fkg ¼ 0; 1 � j; k � m

Let M0 = {F1 = � � � = Fm = 0} �M be their zero
common level and let N �M be an n-dimensional
nondegenerate Diophantine hyperbolic torus. The
torus N generates the invariant Lagrangian asymp-
totic manifolds �s, u �M. Suppose that the separa-
trices are doubled, that is, there is a Lagrangian
manifold � � �s \ �u.

Consider the perturbed Hamiltonian H = H0þ
"H1þO("2). The torus N as well as the asymptotic
manifolds �s, u survive the perturbation. Let N" be the
corresponding hyperbolic torus in the perturbed
system and �s, u

" its asymptotic manifolds: N" and
�s, u
" depend smoothly on " and N0 = N, �s, u

0 = �s, u.
Let the function 
(x) satisfy the equation

h�; @
ðxÞ=@xi þH1ðx; 0; 0Þ

¼ 1

ð2�Þn
Z

Tn
H1ðx; 0; 0Þ dx
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This equation has a smooth solution unique up to an
additive constant.

Consider a solution of the unperturbed Hamiltonian
equations �(t) � �. Let I�j , I�j, l, 1 � j, l � m be the
following quantities (Treschev 1994):

I�j ¼ lim
T!þ1

�
�
Z T

�T

fFj;H1gð�ðtÞÞ dt

þ fFj; 
gð�ð�TÞÞ � fFj; 
gð�ðTÞÞ
�

I�j;l ¼ lim
T!þ1

�
�
Z T

�T

fFj; fFl;H1ggð�ðtÞÞ dt

þ fFjfFl; 
ggð�ð�TÞÞ

� fFjfFl; 
ggð�ðTÞÞ
�

The numbers I�j , I�j, l play the role of the first and
second derivatives of the Poincaré integral at some
point.

If any of the quantities I�j , I�j, l does not vanish,
the asymptotic manifolds �s, u split. Moreover, sup-
pose that I�1 = � � � = I�m = 0 and the rank of the matrix
(I�j, l) equals m� 1. Then for small values of ", the
manifolds �s and �u intersect transversally on the
energy level at points of the solution �"(t), where
�"! � as "! 0.
Poincaré Integral in Multidimensional
Case

Suppose that the Hamiltonian from the previous
section equals

Hðx; y; u; v; t; "Þ¼H0ðy; u; vÞ þ "H1ðx; y; u; v; tÞ
þOð"2Þ

Here x = (x1, . . . ,xn)mod2�, y= (y1, . . . ,yn)2Rn, and
(u,v)2R2. The symplectic structure != dy^ dxþ
dv^ du.

We assume that in the unperturbed integrable
system the variables separate:

H0ðy; u; vÞ ¼ FðyÞ þ f ðu; vÞ

and the system with one degree of freedom and
Hamiltonian f has a hyperbolic equilibrium
(u, v) = 0 with a homoclinic solution �(t). Any torus

Nðy0Þ ¼ fðx; y; u; v; tÞ: y ¼ y0; u ¼ v ¼ 0g

is a hyperbolic torus of the unperturbed system with
frequency vector

�ðy0Þ

1

0
@

1
A; �ðyÞ ¼ @F=@y
Suppose that N = N(0) is Diophantine and non-
degenerate. Then in the perturbed system there is
smooth in " hyperbolic torus N", N0 = N. Consider
the Poincaré function

Pð�; �Þ ¼
Z þ1
�1

�
H1ð� þ �ðt þ �Þ; 0; �ðt þ �Þ; tÞ

�H1ð� þ �ðt þ �Þ; 0; 0; 0; tÞ
�

dt

Obviously, P(�, �) is 2�-periodic in � and � .
If P is not identically constant, asymptotic

surfaces of N" split in the first approximation in ".
Nondegenerate critical points of P correspond to
transversal homoclinic solutions of the perturbed
system.

Other results on the splitting of multidimensional
asymptotic manifolds are presented in Arnol’d et al.
(1988) and Lochak et al. (2003).
Exponentially Small Separatrix Splitting

If in the unperturbed (integrable) system there are no
asymptotic manifolds, they can appear after a
perturbation. Consider, for example, perturbation
of a real-analytic Liouville integrable system near a
simple resonance:

_x ¼ @H

@y
; _y ¼ @H

@x
; x2Tm; y2D � Rm

Hðx; y; t; "Þ ¼ H0ðyÞ þ "H1ðx; y; t; "Þ

As usual, we assume 2�-periodicity in t. A simple
resonance corresponds to a value of the action
variable y = y0 such that the frequency vector

�̂ ¼
�0

1

0
@

1
A; �0 ¼ @H0

@y
ðy0Þ 2Rm

(here 1 is the frequency, corresponding to the time
variable) admits only one resonance. More precisely,
there exists a nonzero k̂2Zmþ1, satisfying hk̂, �̂i= 0
and any k2Zmþ 1 such that hk, �̂i= 0 is collinear
with k̂.

Without loss of generality, we can assume that
y0 = 0 and �0 =

�
0e� �, e� 2Rm�1. Then the vector

�=
� e�

1

�
2Rm is nonresonant.

In a
ffiffiffi
"
p

-neighborhood of the resonance we have a
system with fast variables X = (x2, . . . , xm, t) mod 2�
and slow variables Y = (x1, "�1=2y1, . . . , "�1=2ym)
variables:

_Y ¼ Oð
ffiffiffi
"
p
Þ; _X ¼ � þOð

ffiffiffi
"
p
Þ ½4�

If the frequency vector � is Diophantine, by using
the Neishtadt averaging procedure, we can reduce
the dependence of the right-hand sides of eqns [4] on
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the fast variables to exponentially small in " terms.
This means that there exist new symplectic variables

P ¼ Y þOð
ffiffiffi
"
p
Þ; Q ¼ XþOð

ffiffiffi
"
p
Þ

(new time coincides with the old one) such that
system [4] takes the form

_P ¼
ffiffiffi
"
p

FðP;
ffiffiffi
"
p
Þ þO

�
expð�a"�bÞ

�
_Q ¼ � þ

ffiffiffi
"
p

GðP;
ffiffiffi
"
p
Þ þO

�
expð�a"�bÞ

�
with positive constants a, b.

If we neglect the exponentially small reminders,
the system turns out to be integrable. Generically, it
has a family of hyperbolic m-tori of the form
{(P, Q): P = const.} with doubled asymptotic mani-
folds. However, the terms O(exp (�a"�b)) generic-
ally cannot be removed completely. They produce
an exponentially small splitting of the asymptotic
manifolds. This splitting implies nonintegrability,
chaotic behavior, Arnol’d diffusion, and other
dynamical effects.

It is important to note that exponentially small
splitting appears only in the analytic case. In smooth
systems the splitting is much stronger.

Unfortunately, at present there are no quantitative
methods for studying such splittings except obvious
upper estimates and the case of two-dimensional
systems.
Exponentially Small Splitting
in Two-Dimensional Systems

The main results on exponentially small separatrix
splitting were obtained by Lasutkin and his students
(Gelfreich and others). Another effective approach
was proposed by Treschev. There are no general
theorems in this situation; however, many examples
were studied. We discuss the splitting in the
pendulum with rapidly oscillating suspension point.
The Hamiltonian of the system has the form

H ¼ 1
2 y2 þ ð1þ 2b cosðt="ÞÞ cos x

(cf. [3]). For any value of " the circle
{(x, y, t): x = y = 0} is a periodic trajectory. For
small "> 0 the trajectory is hyperbolic.

Poincaré integral can be formally written in this
system. It predicts the area of lobes 16�b"�1 e��(2")�1

.
However, there is no reason to expect that this
asymptotics of the splitting is correct. Indeed, its
value is exponentially small in ", while the error of the
Poincaré–Melnikov method is in general quadratic in
the perturbation. To obtain correct asymptotics of the
separatrix splitting, one has to study singularities of
the solutions with respect to complex time. Area of
lobes in this system equals (Treschev 1997)

AL ¼ 4bf ðb; "Þ"�1 e��ð2"Þ
�1

Here f (b, "), " � 0 is a smooth function. The func-
tion f (b, 0) is even and entire. It can be computed
numerically as a solution of a problem which does
not contain ". The value f (0, 0) = 4� corresponds to
the Poincaré integral, but the function f (b, 0) is not
constant. It is possible to prove that f can be
expanded in a power series in ". Apparently, this
series diverges for any b 6¼ 0.
Separatrix Splitting and Dynamics

1. Separatrix splitting can be regarded as an obstacle
to the integrability of the perturbed system. How-
ever, this statement needs some comments.
Doubled asymptotic surfaces in an integrable
Hamiltonian system can have self-intersections. In
the case of equilibrium, such intersections can even
be transversal. In the literature, there is no general
result saying that separatrix splitting implies non-
integrability. Some particular cases (studied by
Kozlov, Ziglin, Bolotin, and others) are presented
in Arnol’d et al. (1989). For example, in the two-
dimensional case, this is seen to be true.

2. Conceptual reason for the nonintegrability, dis-
cussed in the previous item, is a complicated
dynamics near the splitted separatrices. In many
situations, it is possible to find in this domain a
Smale horseshoe. This implies positive topological
entropy, existence of nontrivial hyperbolic sets,
symbolic dynamics, etc.

3. Consider a near-integrable area-preserving two-
dimensional map. In the perturbed system in the
vicinity of the splitted separatrices of a hyperbolic
fixed point z" the so-called stochastic layer is
formed. Here we mean the domain bounded by
invariant curves, closest to the separatrices. An
important quantity, describing the rate of chaos, is
the area of the stochastic layer ASL("). It turns out
(Treschev 1998b) thatASL(") is connected with the
area of the largest lobeAL(") by the simple formula

c1ASLð"Þ <
ALð"Þ log ALð"Þð Þ

log2 �
< c2ASLð"Þ

with some constants c1, c2 > 0, where � is the
largest multiplier (Lyapunov exponent) of the fixed
point z0.

4. Let ẑ be a hyperbolic fixed point of an area-
preserving two-dimensional map. The point ẑ
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divides the corresponding separatrices �s, u in 4
branches �s

1, 2 and �u
1, 2. Suppose that the pair of

branches �s
j and �u

l satisfies the following
conditions:

	 �s
j and �u

l lie in a compact invariant domain;
	 �s

j and �u
l do not coincide and intersect at a

homoclinic point.

Then the closures �
s

j , �
u

l are compact invariant
sets. Very little is known about these sets. For
example, it is not known if their measure is positive.
However, by using the Poincaré recurrence theorem,
it is possible to prove (Treschev 1998a) that �

s

j = �
u

l .

See also: Averaging Methods; Billiards in Bounded Convex
Domains; Hamiltonian Systems: Obstructions to Integrability;
Hamiltonian Systems: Stability and Instability Theory.
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Introduction

The rubric ‘‘several complex variables’’ is attached to a
wide area of mathematics which involves the study of
holomorphic phenomena in dimensions higher than
one. In this area there are viewpoints, methods and
results which range from those on the analytic side,
where analytic techniques of partial differential equa-
tions (PDEs) are involved, to those of algebraic geometry
which pertain to varieties defined over finite fields. Here
we outline selected basic methods which are aimed at
understanding global geometric phenomena. Detailed
presentations of most results discussed here can be
found in the basic texts (Demailly, Grauert and
Fritzsche 2001, Griffiths and Harris 1978, Grauert et
al. 1994, Grauert and Remmert 1979, 1984).
Domains in Cn

Complex analysis begins with the study of
holomorphic functions on domains D in Cn.
These are smooth complex-valued functions f
which satisfy

�@f :¼
X @f

@�zi
d�zi ¼ 0

Some results from the one-dimensional theory extend
to the case where n > 1. However, even at the early
stages of development, one sees that there are many
new phenomena in the higher-dimensional setting.

Extending Results from the One-Dimensional
Theory

For local results one may restrict considerations to
functions f which are holomorphic in a neighbor-
hood of 0 2 Cn. The restriction of f to, for example,
any complex line through 0 is holomorphic, and
therefore the maximum principle can be immedi-
ately transferred to the higher-dimensional setting.

The zero-set V(f ) of a nonconstant holomorphic
function is one-codimensional over the complex
numbers (two-codimensional over the reals). Thus
the identity principle must be formulated in a
different way from its one-dimensional version. For
example, under the usual connectivity assumptions,
if f vanishes on a set E with Hausdorff dimension
bigger than 2n� 2, then it vanishes identically. Here
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is another useful version: if M is a real submanifold
such that the real tangent space TzM generates the
full complex tangent space at one of its points, that
is, TzMþ iTzM = TzC

n, and f jM � 0, then f � 0.
In the one-dimensional theory, after choosing

appropriate holomorphic coordinates, f (z) = zk for
some k. This local normal form implies that
nonconstant holomorphic functions are open map-
pings. Positive results in the mapping theory of
several complex variables are discussed below. The
simple example F : C2 ! C2, (z, w)! (z, zw), shows
that the open mapping theorem cannot be trans-
ferred without further assumptions.

The local normal-form theorem in several com-
plex variables is called the ‘‘Weierstraß preparation
theorem.’’ It states that after appropriate normal-
ization of the coordinates, f is locally the product of
a nonvanishing holomorphic function with a
‘‘polynomial’’

Pðz; z0Þ= zk þ ak�1ðz0Þzk�1 þ � � � þ a0ðz0Þ

where z is a single complex variable, z0 denotes the
remaining n� 1 variables, and the coefficients are
holomorphic in z0. This is a strong inductive device
for the local theory.

If D is a product D = D1 � � � � �Dn of relatively
compact domains in the complex plane C, then
repeated integration transfers the one-variable
Cauchy integral formula from the Di to D. The
resulting integral is over the product bd(D1)� � � � �
bd(Dn) of the boundaries which is topologically a
small set in bd(D). Complex analytically it is, however,
large in the sense of the above identity principle.

It follows from, for example, the n-variable
Cauchy integral formula that holomorphic functions
agree with their convergent power series develop-
ments. As in the one-variable theory, the appro-
priate topology on the space O(D) of holomorphic
functions on D is that of uniform convergence on
compact subsets. In this way O(D) is equipped with
the topology of a Fréchet space.
First Theorems on Analytic Continuation

Analytic continuation is a fundamental phenomenon
in complex geometry. One type of continuation
theorem which is known in the one-variable theory
is of the following type: If E is a small closed set in
D and f 2 O(DnE) is a holomorphic function which
satisfies some growth condition near E, then it
extends holomorphically to D. The notion ‘‘small’’
can be discussed in terms of measure, but it is more
appropriate to discuss it in complex analytic terms.

An analytic subset A of D is locally the common
zero set {a 2 D; f1(a) = � � � = fm(a) = 0} of finitely
many holomorphic functions. A function g on A is
said to be holomorphic if at each a 2 A it is the
restriction of a holomorphic function on some
neighborhood of a in D. There is an appropriate
notion of an irreducible component of A. If A is
irreducible, it contains a dense open set Areg, which
is a connected k-dimensional complex manifold,
that is, at each of its points a there are functions
f1, . . . , fk which define a map F := (f1, . . . , fk), which
is a holomorphic diffeomorphism of Areg onto an
open set in Ck. The boundary Asing is the set of
singular points of A, which is a lower-dimensional
analytic set. The dimension of an analytic set is the
maximum of the dimensions of its irreducible
components.

Here are typical examples of theorems on con-
tinuing holomorphic functions across small analytic
sets E. If codim E � 2, then every function which is
holomorphic on DnE extends to a holomorphic
function on D. The same is true of meromorphic
functions, that is, functions which are locally
defined as quotients m = f=g of holomorphic func-
tions. If f is holomorphic on D, then g := 1=f is
holomorphic outside the analytic set E := V(f ).
Thus g cannot be holomorphically continued across
this one-codimensional set. However, Riemann’s
Hebbarkeitssatz is valid in several complex vari-
ables: if f is locally bounded outside an analytic
subset E of any positive codimension, then it extends
holomorphically to D.

With a bit of care, continuation results of this type
can be proved for (reduced) complex spaces. These
are defined as paracompact Hausdorff spaces which
possess charts (U�,’�), where the local home-
omorphism ’� identifies the open set U� with a
closed analytic subset A� of a domain D� in some
Cn� . As indicated above, a continuous function on
A� is holomorphic if at each point it can be
holomorphically extended to some neighborhood of
that point in D�. Finally, just as in the case of
manifolds, the compatibility between charts is guar-
anteed by requiring that coordinate change
’�� : U�� ! U�� is biholomorphic, that is, it is a
homeomorphism so that it and its inverse are given by
holomorphic functions as F = (f1, . . . , fm). The discus-
sion of irreducible components, sets of singularities,
and dimension for complex spaces goes exactly in the
same way as that above for analytic sets.

If E is everywhere at least two-codimensional,
then the above result on continuation of mero-
morphic functions holds in complete generality. The
Hebbarkeitssatz requires the additional condition
that the complex space is normal. In many situations
this causes no problem at all, because, in general,
there is a canonically defined associated normal
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complex space ~X and a proper, surjective, finite-
fibered holomorphic map ~X! X which is biholo-
morphic outside a nowhere-dense proper analytic
subset. Difficulties can be overcome by simply lifting
functions to this normalization and applying the
Hebbarkeitssatz.

Continuation theorems of Hartogs-type reflect the
fact that complex analysis in dimensions larger than
one is really quite different from the one-variable
version. The following is such a theorem. Let (z, w) be
the standard coordinates in C2 and think of the z-axis
as a parameter space for geometric figures in the
w-plane. For example, let Dz := {(z, w) : jwj < 1} be
a disk and Az := {(z, w) : 1� " < jwj < 1} be an
annulus. An example of a Hartogs figure H in C2

is the union of the family of disks Dz for jzj < 1� �
with the family Az of annuli for 1� � � jzj < 1.
One should visualize the moving disks which
suddenly change to moving annuli. One speaks of
filling in the Hartogs figure to obtain the polydisk
Ĥ := {(z, w); jzj, jwj < 1}. Hartogs’ continuation the-
orem states that a function which is holomorphic
on H extends holomorphically to Ĥ.

Cartan–Thullen Theorem

One of the major developments in complex analysis
in several variables was the realization that certain
convexity concepts lie behind the strong continua-
tion properties. At the analytic level one such is
defined as follows by the full algebra of holo-
morphic functions O(D). If K is a compact subset of
D, then its holomorphic convex hull K̂ is defined as
the intersection of the sets P(f ) := {p 2 D : jf (p)j �
jf jK} as f runs through O(D). One says that D is
holomorphically convex if K̂ is compact for every
compact subset K of D.

The theorem of H. Cartan and Thullen relates this
concept to analytic continuation phenomena as
follows. A domain D is said to be a domain of
holomorphy if, given a divergent sequence {zn} 	 D,
there exists f 2 O(D) which is unbounded along it.
In other words, the phenomenon of being able to
extend all holomorphic functions on D to a truly
larger domain D̂ does not occur. The Cartan–
Thullen theorem states that D is a domain of
holomorphy if and only if it is holomorphically
convex. In the next paragraph the relation between
this type of convexity and a certain complex
geometric convexity of the boundary bd(D) will be
indicated.

Levi Theorem and the Levi Problem

Consider a smooth (local) real hypersurface �
containing 0 2 Cn with n > 1. It is the zero-set
{�= 0} in some neighborhood U of 0 of a smooth
function with d� 6¼ 0 on U. This is viewed as a piece
of a boundary of a domain D, where U \D = {� < 0}.
The real tangent space T0� = Ker(d�(0)) contains a
unique maximal (one-codimensional) complex sub-
space TC

0 � = Ker(@�(0)) = H. The signature of the
restriction of the complex Hessian (or Levi form) i@ �@�
to H is a biholomorphic invariant of �. In this
notation the Hessian is a real alternating 2-form
which is compatible with the complex structure, and
its signature is defined to be the signature of the
associated symmetric form.

If the restriction of this Levi form to the complex
tangent space has a negative eigenvalue, that is, if
the boundary bd(D) has a certain degree of
concavity, then there is a map F : �! U of the
unit disk � which is biholomorphic onto its image
with F(0) = 0 and otherwise F(cl(�)) 	 D. The
reader can imagine pushing the image of this map
into the domain to obtain a family of disks which
are in the domain, and pushing it in the outward
pointing direction to obtain annuli which are also in
the domain. Making this precise, one builds a
(higher-dimensional) Hartogs figure H at the base
point 0 so that Ĥ is an open neighborhood of 0. In
particular this proves the theorem of E. E. Levi:
every function holomorphic on U \D extends to a
neighborhood of 0. This can be globally formulated
as follows:

Theorem If D is a domain of holomorphy with
smooth boundary in Cn, then bd(D) is Levi-
pseudoconvex.

Here the terminology Levi-pseudoconvex is used to
denote the condition that the restriction of the Levi
form to the complex tangent space of every
boundary point is positive semidefinite.

One of the guiding problems of complex analysis
in higher dimensions is the Levi problem. This is the
converse statement to that of the Levi’s theorem:

Levi Problem Is a domain D with smooth Levi-
pseudoconvex boundary in a complex manifold
necessarily a domain of holomorphy?

Stated in this form it is not true, but for domains
in Cn it is true. As will be sketched below, under
stronger assumptions on the Levi form it is almost
true. However, there are still interesting open
problems in complex analysis which are related to
the Levi problem.
Bounded Domains and Their Automorphisms

The unit disk in the complex plane is particularly
important, because, with the exceptions of projective
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space P1(C), the complex plane C, the punctured
plane Cn{0}, and compact complex tori, it is the
universal cover of every (connected) one-dimensional
complex manifold.

In higher dimensions it should first be underlined
that, without some further condition, there is no
best bounded domain in Cn. For example, two
randomly chosen small perturbations of the unit ball
B2 := {(z, w); jzj2 þ jwj2 < 1}, with, for example, real
analytic boundary, are not biholomorphically
equivalent.

On the other hand, the following theorem of
H. Cartan shows that bounded domains D are good
candidates for covering spaces:

Theorem Equipped with the compact open topol-
ogy, the group Aut(D) of holomorphic automorph-
isms of D is a Lie group acting properly on D.

The notion of a proper group action of a
topological group on a topological space is funda-
mental and should be underlined. It means that if
{xn} is a convergent sequence in the space where the
group is acting, then a sequence of group elements
{gn}, with the property that {gn(xn)} is convergent,
itself possesses a convergent subsequence. As a
consequence, isotropy groups are compact and
orbits are closed.

In the context of bounded domains D this implies
that if � is a discrete subgroup of Aut(D), then
X = D=� carries a natural structure of a complex
space. If in addition � is acting freely, something
that, with minor modifications, can be arranged,
then X is a complex manifold.

Many nontrivial compact complex manifolds arise
as quotients D=� of bounded domains. Even very
concrete quotients, for example, where D = B2, are
extremely interesting. Conversely, if Aut(D) contains
a discrete subgroup � so that D=� is compact, then
D is probably very special. For example, it is known
to be holomorphically convex!

Any compact quotient X = D=� of a bounded
domain is projective algebraic in the sense that it can
be realized as a complex (algebraic) submanifold of
some complex projective space. In fact the embed-
ding can be given by quite special �-invariant
holomorphic tensors on D, and this in turn implies
that X is of general type (see below). For further
details, in particular on Cartan’s theorem on the
automorphism group of a bounded domain, the
reader is referred to Narasimhan (1971).
Stein Manifolds

The founding fathers of the first phase of ‘‘modern
complex analysis’’ (Cartan, Oka, and Thullen)
realized that domains of holomorphy form the
basic class of spaces where it would be possible to
solve the important problems of the subject con-
cerning the existence of holomorphic or mero-
morphic functions with reasonably prescribed
properties. In fact, Oka formulated a principle
which more or less states that if a complex analytic
problem which is well formulated on a domain of
holomorphy has a continuous solution, then it
should have a holomorphic solution. Given the
flexibility of continuous functions and the rigidity
of holomorphic functions, this would seem impos-
sible but in fact is true!

Beginning in the late 1930s, Stein worked on
problems related to this Oka principle, in particular
on those related to what we would now call the
algebraic topological aspects of the subject, and he
was led to formulate conditions on a general
complex manifold X which should hold if problems
of the above type are to be solved. First, his axiom
of holomorphic convexity was simply that, given a
divergent sequence {xn} in X, there should be a
function f 2 O(X) such that {f (xn)} is unbounded.
Secondly, holomorphic functions should separate
points in the sense that, given distinct points x1, x2 2
X, there exists f 2 O(X) with f (x1) 6¼ f (x2). Finally,
globally defined holomorphic functions should give
local coordinates. Assuming that X is n-dimensional,
this means that, given a point x 2 X, there exist
f1, . . . , fn 2 O(X) such that df1(x) ^ � � � ^ dfn(x) 6¼ 0.

Assuming Stein’s axioms, Cartan and Serre then
produced a powerful theory in the context of sheaf
cohomology which proved certain vanishing theo-
rems that led to the desired existence theorems. This
theory and typical applications are sketched below.
Before going into this, we would like to mention
that Grauert’s version of the Cartan–Serre theory
requires only very weak versions of Stein’s axioms:
(1) The connected component containing K of the
holomorphic convex hull K̂ of every compact set
should be compact. (2) Given x 2 X, there are
functions f1, . . . , fm 2 O(X) so that x is an isolated
point in the fiber of the map F := (f1, . . . , fm) : X!
Cm. Of course the results also hold for complex
spaces.

Holomorphically convex domains in Cn are Stein
manifolds, and since closed complex manifolds of
Stein manifolds are Stein, it follows that any
complex submanifold of Cn is Stein. In particular,
affine varieties are Stein spaces. Remmert’s theorem
states the converse: an n-dimensional Stein manifold
can be embedded as a closed complex submanifold
of C2nþ1. A nontrivial result of Behnke and Stein
implies that every noncompact Riemann surface is
also Stein.
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Basic Formalism

The following first Cousin problem is typical of those
which can be solved by Stein theory. Let X be a
complex manifold which is covered by open sets Ui.
Suppose that on each such set a meromorphic function
mi is given so that on the overlap Uij := Ui \Uj the
difference mij = mj �mi =: fij is holomorphic. This
means that the distribution of polar parts of these
functions is well defined. The question is whether or
not there exists a globally defined meromorphic
function m 2M(X) with these prescribed polar
parts, that is, with m�mi =: fi 2 O(Ui).

If one applies the Oka principle, this problem can
be easily solved. For this one can assume that the
covering is locally finite and take �i to be a partition
of unity subordinate to the cover. Using standard
shrinking and cut-off arguments, one extends the fij

to the full space X as smooth functions so that the
alternating cocycle relations fij þ fjk þ fki = 0 and
fij =�fji still hold. Then fj :=

P
�kfjk is a smooth

function on Uj which satisfies fj � fi = fij on the
overlap Uij. It follows that f := mi þ fi = mj þ fj is a
globally well-defined ‘‘smooth’’ function with the
prescribed polar parts. The Oka principle would
then imply that there is a globally defined mero-
morphic function with the same property.

The basic sheaf cohomological formalism for
Stein theory can be seen in the above argument.
Suppose that instead of applying extension and cut-
off techniques from the smooth category, we could
answer positively the question ‘‘given the holo-
morphic functions {fij} on the Uij, do there exist
holomorphic functions {fi} on the Ui such that fj �
fi = fij on the Uij?’’ Then we would immediately have
the desired globally defined meromorphic function
m := mi þ fi. This question is exactly the question of
whether or not the Cech cohomology class of the
alternating cocycle {fij} vanishes.

Let us quickly summarize the language of Cech
cohomology. A presheaf of abelian groups is a
mapping U! S(U) which associates to every open
subset of X an abelian group. Typical examples are
U ! O(U), U ! C1(U), U ! H
(U, Z), . . . . The
last example which associates to U its topological
cohomology does not localize well in terms of
following the basic axioms for a sheaf: (1) Given a
covering {Ui} of an open subset U of X and elements
si 2 S(Ui) with sj � si = 0 on Uij, there exists s 2 S(U)
with sjUi = si. (2) If s, t 2 S(U) are such that
sjUi = tjUi for all i, then s = t. For this we have
assumed that the restriction mappings have been
built into the definition of a presheaf.

Associated to a sheaf S on X and a covering
U = {Ui} is the space of alternating q-cocycles
Cq(U, S), which is the set of alternating maps �
from the set of (qþ 1)-fold indices of the form
(i0, . . . , iq) 7! si0,..., iq 2 S(Ui0,..., iq). Here Ui0,..., iq := Ui0

\ � � � \Uiq . The boundary mapping � : Cq ! Cqþ1 is

defined by �(�)i0,...iqþ1
=
P

k (�1)ksi0,..., ik�1, ikþ1,..., iqþ1
. It

follows that �2 = 0, and H
(U, S) is defined to be the
cohomology of the associated complex.

In any consideration it is necessary to refine
coverings, shrink, etc., and therefore one goes to
the limit H
(X,S) over all refinements of the
coverings. The script notation S is used to denote
that we have then localized the sheaf to the germ
level. Due to a theorem of Leray one can, however,
always take a suitable covering so that
Hq(U,S) = Hq(X,S) for all q, where now S(U)
satisfies the above axioms.

One of the important facts in this cohomology
theory is that a short exact sequence of sheaves 0!
S0 ! S ! S00 ! 0 yields a long exact sequence

0! H0ðX;S0Þ ! H0ðX;SÞ ! H0ðX;S00Þ
! H1ðX;S0Þ ! H1ðX;SÞ ! H1ðX;S00Þ ! � � �

in cohomology.
A fundamental theorem of Stein theory, Theorem

B, states that for the basic analytic sheaves S of
complex analysis, the so-called coherent sheaves, all
cohomology spaces Hq(X,S) vanish for all q � 1. In
the above example of the first Cousin problem the
desired vanishing is that of H1(U,O).

Coherent Sheaves

Numerous important sheaves in complex analysis
are associated to vector bundles on complex mani-
folds. A holomorphic vector bundle � : E! X over a
complex manifold is a holomorphic surjective
maximal rank fibration. Every fiber Ex := ��1(x) is
a complex vector space, and the vector space
structure is defined holomorphically over X. For
example, addition is a holomorphic map E�X E! E.
Such bundles are locally trivial, that is, there is a
covering {Ui} of the base such that ��1(Ui) is
isomorphic to Ui �Cr and on the overlap the gluing
maps in the fibers are holomorphic maps ’ij : Uij !
GLn(C). The number r is called the rank of the
bundle. Holomorphic bundles of rank 1 are referred to
as holomorphic line bundles. Of course all of these
definitions make sense in other categories, for exam-
ple, topological, smooth, real analytic, etc.

A holomorphic section of E over an open set U
is a holomorphic map s : U! E with � � s = IdU.
The space of these sections is denoted by E(U), and
the map U! E(U) defines a sheaf which is locally
just Or

X. It is therefore called a locally free sheaf of



Several Complex Variables: Basic Geometric Theory 545
O-modules. Conversely, by taking bases of a locally
free sheaf S on the open sets where it is isomorphic
to a direct sum Or, one builds an associated
holomorphic vector bundle E so that E=S.

It is not possible to restrict our attention to these
locally free sheaves or equivalently to holomorphic
vector bundles. One important reason is that images
of holomorphic vector bundle maps are not necessa-
rily vector bundles. A related reason is that the sheaf
of ideals of holomorphic functions which vanish on
a given analytic set A is not always a vector bundle.
This is caused by the presence of singularities in A.
There are many other reasons, but these should
suffice for this sketch.

The sheaves S that arise naturally in complex
analysis are almost vector bundles. If X is the base
complex manifold or complex space under consid-
eration, then S will come from a vector bundle on
some big open subset X0 whose boundary is an
analytic set X1, and then on the irreducible
components of X1 it will come from vector bundles
on such big open sets, etc. These sheaves are called
coherent analytic sheaves of OX-modules. The
correct algebraic definition is that locally there
exists an exact sequence

0! Opd ! � � � ! Op1 ! Op0 ! S ! 0 ½1�

of sheaves of O-modules. This implies in particular
that, although S might not be locally free, it is
locally finitely generated, and the relations among
the generators are also finitely generated.
Selected Theorems

The following efficiently formulated fundamental
theorem contains a great deal of information about
Stein manifolds.

Theorem B A complex space X is Stein if and only
if for every coherent sheaf S of OX-modules
Hq(X,S) = 0 for all q � 1.

Since S is a sheaf, it follows that H0(X,S) =S(X).
This is referred to as the space of sections of S over
X. As a result of Theorem B, we are able to
construct sections with prescribed properties. Let us
give two concrete applications (there are many
more!).

Example Let A be a closed analytic subset of a
Stein space X, and let I denote the subsheaf of OX

which consists of those functions which vanish on A.
Note that this must be defined for every open subset
U of X. Then we have the short exact sequence 0!
I ! OX ! OX=I ! 0. The restriction of OX=I to
A is called the (reduced) structure sheaf OA of A. In
other words, for U open in A the space OA(U)
should be regarded as the space of holomorphic
functions on U.

Now, I is a coherent sheaf on X and therefore by
Theorem B the cohomology group H1(X, I ) vanishes.
Consequently, the associated long exact sequence in
cohomology implies that the restriction mapping
OX(X)! OA(A) is surjective. This special case of
Theorem A means that every (global!) holomorphic
function on A is the restriction of a holomorphic
function on X. ^

Example Let us consider the multiplicative (second)
Cousin problem. In this case meromorphic functions
mi are given on the open subsets Ui of a covering U
with the property that mi = fijmj, where fij is holo-
morphic and nowhere vanishing on the overlap Uij.
This is a distribution D of the zero and polar parts of
meromorphic functions, which in complex geometry is
called a divisor, and the interesting question is whether
or not there exists a globally defined meromorphic
function which has D as its divisor.

Now we note that GL1(C) = C
 and thus
fij : Uij ! C
 defines a line bundle L on X and we
regard it as an element of the space H1(X,O
) of
equivalence classes of line bundles on X. Here O

is the sheaf of nowhere-vanishing holomorphic
functions on X. It is not even a sheaf of O-modules;
therefore coherence is not discussed in this case.

The long exact sequence in cohomology associated
to the short exact sequence 0! Z�!O�!exp O
 ! 1
yields an element c1(L) 2 H2(X, Z), which is a purely
topological invariant. It is called the Chern class of L,
and one knows that L is topologically trivial if and
only if c1(L) = 0.

Coming back to the Cousin II problem, using the
same argument as in the Cousin I problem, we can
solve it if and only if we can find nowhere-vanishing
functions fi 2 O
(Ui) with fi = fijfj. This is equivalent
to finding a nowhere-vanishing section of L. But a
line bundle has a nowhere-vanishing section if and
only if it is isomorphic to the trivial bundle. In other
words, the Cousin II problem can be solved for a
given divisor D if and only if the associated line
bundle L(D) is trivial in H1(X,O
). For this, a
necessary condition is that the Chern class c1(L(D))
vanishes. But if X is Stein, this is also sufficient,
because the vanishing of H1(X,O) together with the
long exact sequence in cohomology shows that
H1(X,O
)�!c1 H2(X, Z) is injective.

Hence, in this case we have the following precise
formulation of the Oka principle: ‘‘A given divisor
D on a Stein manifold is the divisor of a globally
defined meromorphic function if and only if the
associated line bundle is topologically trivial.’’ ^
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A slightly refined statement from that above is the
fact that on a Stein manifold the space of topologi-
cal line bundles is the same as the space of
holomorphic line bundles. In the case of (higher
rank) vector bundles this is a deep and important
theorem of Grauert. It can be formulated as follows.

Grauert’s Oka principle On a Stein space the map
F : Vectholo(X)! Vecttop(X) from the space of holo-
morphic vector bundles to the space of topological
vector bundles which forgets the complex structure
is bijective.

In closing this section, a few words concerning the
proofs of the major theorems, for example, Theorem B,
should be mentioned. In all cases one must solve
something like an additive Cousin problem and one
first does this on special relatively compact subsets. For
this step there are at least two different ways to
proceed. One is to delicately piece together solutions
which are known to exist on very special polyhedral-
type domains or build up from lower-dimensional
pieces of such.

Another method is to solve certain systems of PDEs
on relatively compact domains where control at the
boundary is given by the positivity of the Levi-form.
An example of how such PDEs occur can already be
seen at the level of the above Cousin I problem. At the
point where we have solved it topologically, that is, the
holomorphic cocycle {fij} is a coboundary fij = fj � fi of
smooth functions, we observe that since �@fij = 0, it
follows that �= �@fi is a globally defined (0, 1)-form. It
is �@-closed, that is, the compatibility condition for
solving the system �@u =� is fulfilled. If this system can
be solved, then we use the solution u to adjust the
topological solutions of the Cousin problem by
replacing fi by fi � u. We still have fij = fj � fi, but
now the fi are holomorphic on Ui.

To obtain the global solution to a Cousin-type
problem, one exhausts the Stein space by the special
relatively compact subsets Un where, by one method
or another, we have solved the problem with
solutions sn. One would like to say that the sn

converge to a global solution s. However, there is no
way to a priori guarantee this without making some
sort of estimates. One main way of handling this
problem is to adjust the solutions as n!1 by an
approximation procedure. For this one needs to
know that holomorphic objects, for example, func-
tions on Un, can be approximated on Un by objects
of the same type which are defined on the bigger set
Unþ1. This Runge-type theorem, which is a non-
trivial ingredient in the whole theory, requires the
introduction of an appropriate Fréchet structure on
the spaces of sections of a coherent sheaf. This is in
itself a point that needs some attention.
Montel’s Theorem and Fredholm
Mappings

If U is an open subset of a complex space X, then
O(U) has the Fréchet topology of convergence on
compact subsets K defined by the seminorms j � jK.
Using resolutions of type (1) above, one shows that
the space of sections S(U) of every coherent sheaf S
also possesses a canonical Fréchet topology. This is
then extended to the spaces Cq(U,S), and conse-
quently one is able to equip the cohomology spaces
Hq(X,S) with (often non-Hausdorff) quotient
topology.

Elements of such cohomology groups can be
regarded as obstructions to solving complex analytic
problems. One often expects such obstructions, and
is satisfied whenever it can be shown if there are
only finitely many, that is, a finiteness theorem of
the type dim Hq(X,S) <1 is desirable. Here we
sketch two finiteness theorems which hold in
seemingly different contexts, but their proofs are
based on one principle: use the compactness
guaranteed by Montel’s theorem as the necessary
input for the Fredholm theorem in the context of
Fréchet spaces.

Recall that a continuous linear map T : E! F
between topological vector spaces is said to be
compact if there is an open neighborhood U of 0 2 E
such that T(U) is relatively compact in F. If Y is a
relatively compact open subset of a complex space
X, then Montel’s theorem states that the restriction
map rX

Y :O(X)! O(Y) is compact. This can be
extended to coherent sheaves, and using the Fred-
holm theorem for certain natural restriction and
boundary maps, one proves the following funda-
mental fact.

Lemma 1 If the restriction map rX
Y : Hq(X,S)!

Hq(Y,S) is surjective, then Hq(Y,S) is finite
dimensional.

Since the methods for the proof are basic in complex
analysis, we outline it here. Take a covering ~U of X
such that Hq(U,S) = Hq(X,S). Then intersect its
elements with Y to obtain a covering ~U of Y. Finally,
refine that covering with refinement mapping 	 to a
covering V of Y such that Hq(V,S) = Hq(X,S) and so
that Ui contains V	(i) as a relatively compact subset
for all i. Let Zq(U,S) denote the kernel of
the boundary map � for the covering U, and consider
the map Zq(U,S) Cq�1(V,S)! Cq(V,S) which is
the direct sum 	  � of the restriction and boundary
maps. By assumption it is surjective. Since � is the
difference of this map and the compact map 	 ,
L Schwartz’s version of the Fredholm theorem for
Fréchet spaces implies that its image is of finite
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codimension, that is, Hq(Y,S) = Hq(V,S) is finite
dimensional.

Applying this Lemma in the case of compact
spaces where X = Y, one has the following theorem
of Cartan and Serre:

Theorem If X is a compact complex space and S is
a coherent sheaf on X, then dim Hq(X,S) <1 for
all q.

Grauert made use of this technique in solving the
Levi problem for a strongly pseudoconvex relatively
compact domain D with smooth boundary in a
complex manifold X. Here strongly pseudoconvex
means that the restriction of the Levi form to the
complex tangent space of every boundary point is
positive definite. To do this he sequentially made
‘‘bumps’’ at boundary points to obtain a finite
sequence of domains D = D0 	 D1 	 � � � 	 Dm in
such a way that the restriction mappings at the
level of qth cohomology, q � 1, are all surjective
and such that at the last step D is relatively
compact in Dm. Applying the above Lemma,
dim Hq(D,S) <1. Using another bumping proce-
dure, it then follows that D is holomorphically
convex and, in fact, that D is almost Stein.

This last statement means that one can guarantee
that O(D) separates points outside of some compact
subset which could contain compact subvarietes on
which the global holomorphic functions are constant.
In this situation one can apply Remmert’s reduction
theorem which implies that there is a canonically
defined proper surjective holomorphic map � : D! Z
to a Stein space which is biholomorphic outside of
finitely many fibers. One says that, in order to obtain
the Stein space Z, finitely many compact analytic
subsets must be blown down to points.

The above mentioned reduction theorem is a
general result which applies to any holomorphically
convex complex space X. For this one observes that
if X is holomorphically convex, then for x 2 X the
level set L(x) := {y 2 X; f (y) = f (x) for all f 2 O(X)}
is a compact analytic subset of X. One then defines
an equivalence relation: x � y if and only if the
connected component of L(x) containing x and that
of L(y) which contains y are the same. One then
equips X=� with the quotient topology and proves
that the canonical quotient � : X! X=�=: Z is
proper. Finally, for U open in Z one defines
OZ(U) =OX(��1(U)) and proves that, equipped
with this structure, Z is a Stein space. This Remmert
reduction is universal with respect to holomorphic
maps to holomorphically separable complex spaces,
that is, if ’ : X! Y and OY(Y) separates the points
of Y, then there exists a uniquely defined holo-
morphic map 	’ : Z! Y so that 	’ � �=’. It should
be noted that, even if the original space X is a
complex manifold, the associated Stein space Z may
be singular. This reflects the fact that it is difficult to
avoid singularities in complex geometry.
Mapping Theory

Above we have attempted to make it clear that
holomorphic maps play a central role in complex
geometry. It is even important to regard a holo-
morphic function as a map. Here we outline the
basic background necessary for dealing with maps
and then state three basic theorems which involve
proper holomorphic mappings.

Basic Facts

A holomorphic map F : X! Y between (reduced)
complex spaces is a continuous map which can be
represented locally as a holomorphic map between
analytic subsets of the spaces in which X and Y are
locally embedded. In other words, F is the restriction
of a map F = (f1, . . . , fm) which is defined by
holomorphic functions.

If X is irreducible and X and Y are one-
dimensional, then a nonconstant holomorphic map
F : X! Y is an open mapping. This statement is far
from being true in the higher-dimensional setting.
The reader need only consider the example
F : C2 ! C2, (z, w)! (zw, z).

Despite the fact that holomorphic maps can be
quite complicated, they have properties that in
certain respects render them tenable. Let us sketch
these in the case where X is irreducible. First, one
notes that every fiber F�1(y) is a closed analytic
subset of X. One defines rankx F to be the codimen-
sion at x of the fiber F�1(F(x)) at x. Then
rank F := max {rankx F; x 2 X}. It then can be
shown that {x 2 X; rankx F � k} is a closed analytic
subset of X for every k. Applying this for
k = rank F � 1 we see that, outside a proper closed
analytic subset, F has constant maximal rank.

If F : X! Y has constant rank k in a neighbor-
hood of some point x 2 X, then one can choose
neighborhoods U of x in X and V of F(x) in Y so
that FjU maps U onto a closed analytic subset of Y.
By restricting F to the sets where it has lower rank
and applying this local-image theorem, it follows
that the local images of the set where F has lower
rank are at least two dimensions smaller than those
of top rank. Conversely, the fiber dimension
dF(x) := dimx F�1(F(x)) is semicontinuous in the
sense that dF(x) � dF(z) for all z near x. Finally, we
note that if Y is m-dimensional, then F : X! Y is an
open map if and only if it is of constant rank m.
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Proper Mappings

By definition a mapping F : X! Y between topolo-
gical spaces is proper if and only if the inverse image
F�1(K) of an arbitrary compact subset in Y is
compact in X. This is a more delicate condition
than meets the eye. For example, if F : X! Y is a
proper map and one removes one point from some
fiber, then it is normally no longer proper! On the
other hand, the restriction of a proper map to a
closed subset is still proper.

Remmert’s ‘‘Proper mapping theorem’’ is the first
basic theorem on proper holomorphic maps:

Theorem The image of a proper holomorphic map
F : X! Y is a closed analytic subset of Y.

Given another basic theorem of complex analysis,
the reader can imagine how this might be proved.
This is the continuation theorem for analytic sets
due to Remmert and Stein:

If X is a complex space and Y is a closed analytic
subset with dimy Y � k for all y 2 Y and Z is a closed
analytic subset of the complement XnY with dimz Z �
kþ 1 at all z 2 Z, then the topological closure cl(Z) of
Z in X is a closed analytic subset of X with E = cl(Z)n
Z = cl(Z) \ Y a proper analytic subset of cl(Z).

Similar results hold for more general complex
analytic objects. For example, closed positive cur-
rents with (locally) finite volume can be continued
across any proper analytic subset (Skoda 1982). A
sketch of the proof of the proper mapping theorem
(for X irreducible) goes as follows. From the
assumption that F is proper, the image F(X)
is closed. If F has constant rank k, then, by the
local result stated above, its image is everywhere
locally a k-dimensional analytic set. Since the image
is closed, the desired result follows. If rank F = k
and E := {x 2 X; rankxF < k} 6¼ ;, then by induction
F(E) is a closed analytic subset of dimension at
most k� 2. Let A := F�1(E) and apply the
previous discussion for constant rank maps to
Fj(XnA) : XnA! YnE. The image is a closed
k-dimensional analytic subset of YnE and its
Remmert–Stein extension is the full image F(X).

In this framework the Stein factorization theorem
is an important tool. Here F : X! Y is again a
proper holomorphic map which we may now
assume to be surjective. Analogous to the construc-
tion of the reduction of a holomorphically convex
space, one says that two points in X are equivalent
if they are in the same connected component of an
F-fiber. This is indeed an equivalence relation, and
the quotient Z := X=� is a complex space equipped
with the direct image sheaf. Thus one decomposes F
into two maps X! Z! Y, where X! Z is a
canonically associated surjective map with con-
nected fiber, and Z! Y is a finite map.

This geometric proper mapping theorem is a preview
of one of the deepest results in complex analysis:
Grauert’s direct image theorem. This concerns the
images of sheaves, not just the images of points. For this,
given a sheaf S on X one defines the qth direct image
sheaf on Y as the sheaf associated to the presheaf which
attaches to an open set U in Y the cohomology space
Hq(F�1(U),S). Grauert’s ‘‘Bildgarbensatz’’ states the
following: ‘‘If F : X! Y is a proper holomorphic map,
then all direct image sheaves of any coherent sheaf on X
are coherent on Y.’’
Complex Analysis and Algebraic
Geometry

The interplay between these subjects has motivated
research and produced deep results on both sides.
Here we indicate just a few results of the type which
show that objects which are a priori of an analytic
nature are in fact algebraic geometric.

Projective Varieties

Let us begin with the algebraic geometric side of the
picture where we consider algebraic subvarieties X of
projective space Pn(C). If [z0 : z1 : � � � : zn] are homo-
geneous coordinates of Pn, such a variety is the
simultaneous zero-set, X := V(P1, . . . , Pm), of finitely
many (holomorphic) homogeneous polynomials
Pi = Pi(z0, . . . , zm). Chow’s theorem states that in this
context there are no further analytic phenomena:

Theorem Closed complex analytic subsets of pro-
jective space Pn(C) are algebraic subvarieties.

This observation has numerous consequences. For
example, if F : X! Y is a holomorphic map between
algebraic varieties, then, by applying Chow’s theorem
to its graph, it follows that F is algebraic.

Chow’s theorem can be proved via an application
of the Remmert–Stein theorem in a very simple
situation. For this, let � : Cnþ1n{0}! Pn(C) be the
standard projection, and let Z := ��1(X). Since Z is
positive dimensional, by the Remmert–Stein theorem it
can be extended to an analytic subset of Cnþ1. The
resulting subvariety K(X) (the cone over X) is invariant
by the C
-action which is defined by v! 
v for 
 2
C
. If f is a holomorphic function on Cnþ1 which
vanishes on K(X), then we develop it in homogeneous
polynomials f =

P
Pd and note that


(f )(z) = f (
z) =
P

dPd also vanishes for all 
.

Hence, all Pd vanish identically and therefore the
ideal of holomorphic functions which vanish on K(X)
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is generated by the homogeneous polynomials which
vanish on K(X) and consequently finitely many of
these define X as a subvariety of Pn(C).

Complements of subvarieties in projective varieties
occur in numerous applications and are important
objects in complex geometry. Even complements PnnY
of subvarieties Y in the full projective space are not
well understood. If Y is the intersection of a compact
projective variety X with a projective hyperplane, that
is, Y is a hyperplane section, then XnY is affine. If Y is
q-codimensional in X, then XnY possesses a certain
degree of Levi convexity and general theorems of
Andreotti and Grauert (1962) on the finiteness and
vanishing of cohomology indeed apply. However, not
nearly as much is understood in this case as in the case
of a hyperplane section.
Kodaira Embedding Theorem

Given that analytic subvarieties of projective space
are algebraic, one would like to understand whether
a given compact complex manifold or complex
space can be realized as such a subvariety. Kodaira’s
theorem is a prototype of such an embedding
theorem. Most often one formulates projective
embedding theorems in the language of bundles.

For this, observe that if L! X is a holomorphic
line bundle over a compact complex manifold, then
its space �(X, L) of holomorphic sections is a finite-
dimensional vector space V. The zero-set of a section
s 2 V is a one-codimensional subvariety of X.
Let us restrict our attention to bundles which are
generated by their sections which for line bundles
simply means that for every x 2 X there is some
section s 2 V with s(x) 6¼ 0. It then follows that for
every x 2 X the space Hx := {x 2 X; s(x) = 0} is a
one-codimensional vector subspace of V. Thus L
defines a holomorphic map ’L : X! P(V
), x 7!Hx.
Note that we must go to the projective space P(V
),
because a linear function defining such an Hx is only
unique up to a complex multiple.

Projective embedding theorems state that under
certain conditions on L the map ’L is a holomorphic
embedding, that is, it is injective and is everywhere
of maximal rank in the analytic sense that its
differential has maximal rank. Here we outline a
complex analytic approach of Grauert for proving
embedding theorems. It makes strong use of the
complex geometry of bundle spaces.

Let L! X be a holomorphic line bundle over a
compact complex manifold. A Hermitian bundle metric
is a smoothly varying metric h in the fibers of L. This
defines a norm function v 7! jvj2 := h(v, v) on the
bundle space L. One says that L is positive if the tubular
neighborhood T := {v 2 L; jvj3< 1} is strongly
pseudoconcave, that is, when regarded from outside
T, its boundary is strongly pseudoconvex.

To prove an embedding theorem, one must
produce sections with prescribed properties. Sections
of powers Lk are closely related to holomorphic
functions on the dual bundle space L
. This is due to
the fact that if � : L! X is the bundle projection,
��1(U�) ffi U� �C is a local trivialization, and z� is
a fiber coordinate, then a holomorphic function f on
L
 has a Taylor series development

f ðvÞ=
X

s�ðnÞð�ðvÞÞzn
�ðvÞ

The function f is well defined on L. Hence, the
transformation law for the zn

� must be canceled out
by a transformation law for the coefficient functions
s�(n). This implies that the s�(n) are sections of Ln.
Hence, proving the existence of sections in the
powers of L with prescribed properties amounts to
the same thing as proving the existence of holo-
morphic funtions on L
 with analogous properties.

The positivity assumption on L is equivalent to
assuming that the tubular neighborhoods of the zero-
section in L
 defined by the norm function associated
to the dual metric are strongly pseudoconvex. The
solution to the Levi problem, which was sketched
above, then shows that L
 is holomorphically convex,
and its Remmert reduction is achieved by simply
blowing down its zero-section. In other words, L
 is
essentially a Stein manifold, and using Stein theory, it
is possible to produce enough holomorphic functions
on L to show that some power Lk defines a
holomorphic embedding ’Lk : X! P(�(X, Lk)
).
Bundles with this property are said to be ample, and
thus we have outlined the following fact: ‘‘a line
bundle which is Grauert-positive is ample.’’

It should be underlined that we defined the Chern
class of L as the image in H2(X, Z) of its equivalence
class in H1(X,O
), that is, in this formulation the
Chern class is a Cech cohomology class. It is, however,
often more useful to consider it as a deRham class
where it lies in the (1, 1)-part of H2

deR(X, C). If h is a
bundle metric as above, then the Levi form of the norm
function is a representative �c1(L, h) of the Chern
class of L
. Thus c1(L, h) is an integral (1, 1)-form
which represents c1(L). It is called the Chern form of L
associated to the metric h. The following is Kodaira’s
formulation of his embedding theorem:

Theorem A line bundle L is ample if and only if it
possesses a metric h so that c1(L, h) is positive definite.

Kodaira’s proof of this fact follows from his
vanishing theorem (see Several Complex Variables:
Compact Manifolds) in the same way the example
of Theorem A was derived from Theorem B in the
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first example in the subsection ‘‘Selected theorems.’’
That an ample bundle is positive follows immedi-
ately from the fact that if ’Lk is an embedding, then
its pullback of the (positive) hyperplane bundle on
projective space agrees with Lk.

Finally, one asks the question ‘‘under what natural
conditions can one construct a bundle L which is
positive?’’ The following is an example of an answer
which is related to geometric quantization.

Suppose that X is a compact complex manifold
equipped with a symplectic structure !, that is, ! is
a d-closed, nondegenerate 2-form. One says that ! is
Kählerian if it is compatible with the complex
structure J in the sense that !(Jv, Jw) =!(v, w) and
!(Jv, v) > 0 for every v and w in every tangent space
of X. Note that if L is a positive line bundle, then it
possesses a Hermitian metric h such that != c1(L, h)
is a Kählerian structure on X.

It should be underlined that there are Kähler
manifolds without positive bundles, for example,
every compact complex torus T = Cn=� possesses
the Kählerian structure which comes from the
standard linear structure on Cn. However, for n > 1
most such tori are not projective algebraic and
therefore do not have positive bundles.

If, on the other hand, the Kählerian structure is
integral, a condition that is automatic for the Chern
form c1(L, h) of a bundle, then there is indeed a line
bundle L! X equipped with a Hermitian metric h
such that c1(L, h) =!. The condition of integrality can
be formulated in terms of the integrals of ! over
homology classes being integral or that its deRham
class is in the image of the deRham isomorphism from
the Cech cohomology H2(X, Z)�C to H2

de R(X, C).
Coupling this with the embedding theorem for positive
bundles, we have the following theorem of Kodaira:

Theorem If (X,!) is Kählerian and ! is integral,
then X is projective algebraic.

This result has been refined in the following
important way (a conjecture of Grauert and
Riemenschneider proved with different methods by
Siu (1984) and by Demailly (1985)): the same result
holds if ! is only assumed to be semipositive and
positive in at least one point.

For Grauert’s proof of the Kodaira embedding
theorem and a number of other important and
beautiful results, we recommend the original paper
(Grauert 1962).
Quotients of Bounded Domains

Let D be a bounded domain in Cn and � be a discrete
subgroup of Aut(D) which is acting freely on D with a
compact quotient X := D=�. For � 2 � let J(�, z) be the
determinant of the Jacobian d�=dz and, given a
holomorphic function f, consider (at least formally)
the Poincaré series

P
f (�(z))J(�, z)k of weight k. If f is

bounded and k � 2, then this series converges to a
holomorphic function P(f ) on D which satisfies the
transformation rule P(f ) (�(z)) = J(�, z)�kP(f )(z).

Now the differential volume form � := dz1 ^ � � � ^
dzn transforms in the opposite way (for k = 1).
Therefore s(f ) = P(f )(�)k is a �-invariant section of
the kth power of the determinant bundle
K := �nT
D of the holomorphic cotangent bundle
of D. In other words, s(f ) 2 �(X, Kk). Since the
choice of f may be varied to show that there are
sufficiently many sections to separate points and to
guarantee the maximal rank condition, it follows
that the canonical bundle K of X is ample. Compact
complex manifolds with ample canonical bundle are
examples of manifolds which are said to be of
general type (see Several Complex Variables: Compact
Manifolds). Thus, this construction with Poincaré
series proves the following: ‘‘Every compact quotient
D=� of a bounded domain is of general type and is
in particular projective algebraic.’’

See also: Gauge Theoretic Invariants of 4-Manifolds;
Moduli Spaces: An Introduction; Riemann Surfaces;
Several Complex Variables: Compact Manifolds; Twistor
Theory: Some Applications [in Integrable Systems,
Complex Geometry and String Theory].
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Introduction

The aim of this article is to give an overview of the
classification theory of compact complex manifolds.
Very roughly, compact manifolds can be divided
into three disjoint classes:

� Projective manifolds, that is, manifolds which can
be embedded into some projective space, or
manifolds birational to those, usually called
Moishezon manifolds. These manifolds are treated
by algebraic geometric methods, but very often
transcendental methods are also indispensable.
� Compact (nonalgebraic) Kähler manifolds, that is,

manifolds carrying a positive closed (1, 1)-form,
or manifolds bimeromorphic to those. This class
is treated mainly by transcendental methods from
complex analysis and complex differential geo-
metry. However, some algebraic methods are also
of use here.
� General compact manifolds which are not bimer-

omorphic to Kähler manifolds. For two reasons
we will essentially ignore this class in our survey.
First, because of the lack of methods, not much is
known, for example, there is still no complete
classification of compact complex surfaces, and it
is still unknown whether or not the 6-sphere
carries a complex structure. And second, for the
purpose of this encyclopedia, this class seems to
be less important.

The main problems of classification theory can be
described as follows.

� Birational classification: describe all projective
(Kähler) manifolds up to birational (bimeromorphic)
equivalence; find good models in every equivalence
class. This includes the study of invariants.
� Biholomorphic classification: classify all projec-

tive (Kähler) manifolds with some nice property,
for example, curvature, many symmetries, etc.
� Topological classification and moduli: study all

complex structures on a given topological manifold –
including the study of topological invariants of
complex manifolds; describe complex structures
up to deformations and describe moduli spaces.
� Symmetries: describe group actions and invariants –

this is deeply related with the moduli problem.
In this article we will assume familiarity with
basic notions and methods from several complex
variables and/or algebraic geometry. In particular
we refer to Several Complex Variables: Basic
Geometric Theory in this encyclopedia.

We first note some standard notation used in this
article. If X is a complex manifold of dimension n,
then TX will denote its holomorphic tangent bundle
and �

p
X the sheaf of holomorphic p-forms, that is,

the sheaf of sections of the bundle
Vp T�X. The

bundle
Vn T�X is usually denoted by KX, the

canonical bundle of X and its sheaf of sections is
the dualizing sheaf !X, but frequently we will not
distinguish between vector bundles and their sheaves
of sections. An effective (Cartier) divisor on a
normal space X is a finite linear combinationP

niYi, where ni > 0 and Yi � X are irreducible
reduced subvarieties of codimension, which are
locally given by one equation. If L is a line bundle,
then instead of L�m we often write mL. If X is a
compact variety and E a vector bundle or coherent
sheaf, then the dimension of the finite-dimensional
vector space Hq(X, E) will be denoted by hq(X, E).
Birational Classification

Two compact manifolds X and Y are bimeromor-
phically equivalent, if there exist nowhere dense
analytic subsets A � X and B � Y and a biholo-
morphic map XnA!YnB such that the closure of
the graph is an analytic set in X� Y. In case X and
Y are algebraic, one rather says that X and Y are
birationally equivalent. This induces an isomorph-
ism between the function fields of X and Y. If X and
Y are projective or Moishezon(see below), then
conversely an isomorphism of their function fields
induces a birational equivalence between X and Y.
Important examples are blow-ups of submanifolds;
locally they can be described as follows. Suppose
that locally X is an open set U � Cn with coordi-
nates z1, . . . , zn and that A � X is given by
z1 = � � � = zm = 0. Then the blow-up X̂!X is the
submanifold X̂ � U � Pn�m�1 given by the
equations

yjti � yitj ¼ 0

where tj are homogeneous coordinates in Pn�m�1.
The Chow lemma says that any birational – even

rational – maps can be dominated by a sequence of
blow-ups with smooth centers. Recently other
factorizations (‘‘weak factorization,’’ using blow-
ups and blow-downs) have been established.
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A projective manifold is a compact manifold which
is a submanifold of some projective space PN. Of
course, a projective manifold can be embedded into
projective spaces in many ways. According to Chow’s
theorem (see Several Complex Variables: Basic
Geometric Theory), X � PN is automatically given
by polynomial equations and is therefore an algebraic
variety. This is part of Serre’s GAGA principle which
roughly says that all global analytic objects on a
projective manifold, for example, vector bundles or
coherent sheaves and their cohomology are auto-
matically algebraic. A compact manifold which is
bimeromorphically equivalent to a projective mani-
fold is called a Moishezon manifold. These arise
naturally, for example, as quotient of group actions,
compactifications, etc.

The most important birational invariant of com-
pact manifolds is certainly the Kodaira dimension
�(X). It is defined in three steps:

� �(X) =�1 iff h0(mKX) = 0 for all m 	 1.
� �(X) = 0 iff h0(mKX) 
 1 for all m, and

h0(mKX) = 1 for some m.
� In all other cases we can consider the meromorphic

map fm : X ! PN(m) associated to H0(mKX) for all
those m for which h0(mKX) 	 2. Let Vm denote
the (closure of the) image of fm. Then �(X) is
defined to be the maximal possible dim Vm.

Recall that fm is defined by [s0 : � � � : sN] for a given
base si of H0(mKX), cf. Several Complex Variables:
Basic Geometric Theory.

In the same way one defines the Kodaira (or
Iitaka) dimension �(L) of a holomorphic line bundle
L (instead of L = KX).

We are now going to describe geometrically the
different birational equivalence classes and how to
single out nice models in each class. Using methods
in characteristic p, Miyaoka and Mori proved the
following theorem:

Theorem 1 Let X be a projective manifold and
suppose that through a general point x 2 X there is a
curve C such that KX � C < 0. Then X is uniruled, that
is, there is a family of rational curves covering X.

A rational curve is simply the image of noncon-
stant map f : P1!X. It is a simple matter to prove
that uniruled manifolds have �(X) =�1, but the
converse is an important open problem. A step
towards this conjecture has recently been made by
Boucksom et al. (2004) if KX is not pseudoeffective,
that is, KX ‘‘cannot be approximated by effective
divisors,’’ then X is uniruled. Here one also finds a
discussion of the case when KX is pseudoeffective.

Mori theory is central in birational geometry.
To state the main results in this theory, we recall the
notion of ampleness: a line bundle L is ample if L
carries a metric of positive curvature. Alternatively
some tensor power of L has enough global section to
separate points and tangents and there gives an
embedding into some projective space; see Several
Complex Variables: Basic Geometric Theory for
more details. The notion of nefness, which is in a
certain sense the degenerate version of ampleness,
plays a central role in Mori theory: a line bundle or
divisor L is nef if

L � C ¼ degðLjCÞ 	 0

for all curves C � X. Examples are those L carrying
a metric of semipositive curvature, but the converse
is not true. However, if L is nef, there exists for all
positive � > 0 a metric h� with curvature �� > ��!,
where ! is a fixed positive form. In this context
singular metrics on L are also important. Locally
they are given by e�’ with a locally integrable
weight function ’ and they still have a curvature
current �. If L has a singular metric with �
bounded from below as current by a Kähler form,
then L is big, that is, �(L) = dim X, the birational
version of ampleness. If one simply has � 	 0 as
current, then L is pseudoeffective (and vice versa).
All these positivity notions only depend on the
Chern class c1(L) of L and therefore one considers
the ample cone

Kamp � ðH1;1ðXÞ \H2ðX;ZÞÞ � R

and the cone of curves

NEðXÞ � ðHn�1;n�1ðXÞ \H2n�2ðX;ZÞÞ �R

The ample cone is by definition the closed cone of
nef divisors, the interior being the ample classes,
while the cone of curves is the closed cone generated
by the fundamental classes of irreducible curves.

A basic result says that these cones are dual to
each other. The structure of NE(X) in the part
where KX is negative is very nice; one has the
following cone theorem:

Theorem 2 NE(X) is locally finite polyhedral in
the half-space {KX < 0}; the (geometrically) extremal
rays contain classes of rational curves.

A ray R = Rþ[a] is said to be extremal in a closed
cone K if the following holds: given b, c 2 K with
bþ c 2 R, then b, c 2 R. Given such an extremal ray
R � NE(X), one can find an ample line bundle H
and a rational number t such that KX þ tH is nef
and KX þ tH � R = 0. Using the Kawamata–Viehweg
vanishing theorem, a generalization of Kodaira’s
vanishing theorem, which is one of the technical
corner stones of the theory, one proves the so-called
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Base point free theorem Some multiple of KX þ tH
is spanned by global sections and therefore defines a
holomorphic map f : X!Y to some normal projec-
tive variety Y contracting exactly those curves whose
classes belong to R.

These maps are called ‘‘contractions of extremal
rays’’ or ‘‘Mori contractions.’’ In dimension 2 they
are classical: either X = P2 and f is the constant
map, or f is a P1-bundle or f is birational and the
contraction of a P1 with normal bundle O(�1), that
is, f contracts a (�1)-curve. In particular Y is again
smooth. In the first two cases X has a very precise
structure, but in the third birational case one
proceeds by asking whether or not KY is nef. If it
is not nef, we start again by choosing the contrac-
tion of an extremal ray; if KY is nef, then a
fundamental result says that a multiple of KY is
spanned. The class of manifolds with this property
will be discussed later.

The situation in higher dimensions is much more
complicated. For example, Y need no longer be
smooth. However the singularities which appear are
rather special.

Definition 1 A normal variety X is said to have
only terminal singularities if first some multiple of
the canonical (Weil) divisor KX is a Cartier divisor,
that is, a line bundle (one says that X is
Q-Gorenstein) and second if for some (hence for
every) resolution of singularities � : X!X the
following holds:

KX̂ ¼ �
�ðKXÞ þ

X
aiEi

where the Ei run over the irreducible �-exceptional
divisors and the ai are strictly positive.

A brief remark concerning Weil divisors is in
order: a Weil divisor is a finite linear combinationP

aiYi with Yi irreducible of codimension 1, but Yi

is not necessarily locally defined by one equation.
Recall that if each Yi is given locally by one
equation, then the Weil divisor is Cartier. On a
smooth variety these notions coincide.

One important consequence is that �(X) =�(X̂) in
case of terminal singularities, which is completely
false for arbitrary singularities. Also notice that
terminal singularities are rational: Rq��(OX̂) = 0 for
q 	 1. Terminal singularities occur in codimension
at least 3. Thus they are not present on surfaces. In
dimension 3 terminal singularities are well under-
stood. The main point in this context is that for a
birational Mori contraction the image Y often has
terminal singularities.

Now the scheme of Mori theory is the following.
Start with a projective manifold X. If KX is nef, we
stop; this class is discussed later. If KX is not nef,
then perform a Mori contraction f : X!Y. There
are two cases:

� If dim Y < dim X, then the general fiber F is a
manifold with ample �KF, that is, a Fano
manifold (discussed in the next section). Here we
stop and observe that �(X) =�1. Of course one
can still investigate Y and try to say more on the
structure of the fibration f.
� If dim Y = dim X, then Y has terminal singularities –

unless f is a small contraction which means that no
divisors are contracted. Thus if f is not small, we may
attempt to proceed by substituting X by Y.

As a result one must develop the entire theory for
varieties with terminal singularities. The big pro-
blem arises from small contractions f. In that case
KY cannot be Q-Cartier and the machinery stops. So
new methods are required. At this stage, other
aspects of the theory lead one to attempt a certain
surgery procedure which should improve the situa-
tion and allow one to continue as above. The
expected surgery Y * Y 0, which takes place in
codimension at least 2, is a ‘‘flip.’’ The idea is that
we should substitute a small set, namely the
exceptional set of a small contraction, by some
other small set (on which the canonical bundle will
be positive) to improve the situation. Of course Y 0

should possess only terminal singularities. The
existence of flips is very deep and has been proved
by S Mori in dimension 3. Moreover, there cannot
be an infinite sequence of flips, at least in dimension
at most 4.

In summary, by performing contractions and flips
one constructs from X a birational model X0 with
terminal singularities such that either

� KX0 is nef in which case we call X0 a minimal
model for X, or
� X0 admits a Fano fibration f 0 : X0 !Y 0 (discussed

below), in which case �(X) =�(X0) =�1.

Up to now, Mori theory (via the work of
Kawamata, Kollár, Mori, Reid, Shokurov, and
others) works well in dimension 3 (and possibly in
the near future in dimension 4) but in higher
dimensions there are big problems with the existence
of flips. Of course there might be completely
different and possibly less precise ways to construct
a minimal model. One way is to consider the
canonical ring R of a manifold of general type:

R ¼
X

H0ðmKXÞ

If R is finitely generated as C-algebra, then
Proj(R) would be at least a canonical model which
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has slightly more complicated singularities than a
minimal model. However, it is known that this
‘‘finite generatedness problem’’ is equivalent to the
existence of minimal models. On the other hand, if
X is of general type with KX nef (hence essentially
ample) or more generally when some positive
multiple mKX is generated by global sections, then
R is finitely generated.

We now must discuss the case of a nef canonical
bundle. The behavior is predicted by the

Abundance conjecture. If X has only terminal
singularities and KX is nef, then some multiple
mKX is spanned.

Up to now this conjecture is known only in
dimension 3 (Kawamata, Kollár, Miyaoka). In
higher dimensions it is even unknown if there is a
single section in some multiple mKX. If mKX is
spanned, one considers the Stein factorization
f : X!Y of the associated map, which is called the
Iitaka fibration (if not birational) and we have
dim Y =�(X) by definition. The general fiber F is a
variety with KF � 0, a class discussed in the next
section. If f is birational, then Y will be slightly
singular (so-called canonical singularities) and KY

will be ample. Essentially we are in the case of
negative Ricci curvature.

Everything that was outlined above holds for
projective manifolds. In the Kähler case one would
expect the same picture, but the methods completely
fail, and new, analytic methods must be found. Only
very few results are known in this context.

We come back to the case of a Fano fibration
f : X!Y. By definition the anticanoical bundle �KX

is relatively ample so that the general fiber is a Fano
variety. In this case there are no constraints on Y.

To see how much of the geometry of X is dictated
by the rational curves, one considers the so-called
rational quotient of X. Here we identify two very
general points on X if they can be joined by a chain
of rational curves. In that way we obtain the
rational quotient

f : X * Y

This map is merely meromorphic, but has the
remarkable property of being ‘‘almost holo-
morphic,’’ that is, the set of indeterminacies does
not project onto Y. In other words, one has nice
compact fibers not meeting the indeterminacy set. If
Y is just a point, then all points of X can be joined
by chains of rational curves and X is called
rationally connected. This notion is clearly biration-
ally invariant.

A deep theorem of Graber–Harris–Starr states
that, given a Fano fibration (or a fibration with
rationally connected fibers) f : X!Y, then X is
rationally connected if and only if Y is.

Manifolds Xn which are birational to Pn are
called rational. If there merely exists a surjective
(‘‘dominant’’) rational map Pn * X, then X is said
to be unirational. Of course rational (resp. unira-
tional) manifolds are rationally connected, but to
decide whether a given manifold is rational/uni-
rational is often a very deep problem. Therefore,
rational connectedness is often viewed as a practical
substitute for (uni)rationality.

Often it is very important to compute the Kodaira
dimension of fiber spaces. Let us fix a holomorphic
surjective map f : X!Y between projective mani-
folds and we suppose f has connected fibers. Then
the so-called conjecture Cnm states that

�ðXÞ 	 �ðFÞ þ �ðYÞ

where F is the general fiber of f. This conjecture is
known in many cases, for example, when the
general fiber is of general type, but it is wide open
in general. It is deeply related to the existence of
minimal models (Kawamata).
Biholomorphic Classification

In this section we discuss manifolds X with

� ample anticanonical bundles�KX (Fano manifolds),
� trivial canonical bundles, and
� ample canonical bundles KX.

Due to the solution of the Calabi conjecture by
Yau and Aubin, these classes are characterized by a
Kähler metric of positive (resp. zero, resp. negative)
Ricci curvature. In principle, in view of the results of
Mori theory, one should rather consider varieties
with terminal singularities, but we ignore this aspect
completely. Philosophically, up to birational equiva-
lence all manifolds are via fibrations somehow
composed of those classes via fibrations, possibly
also up to étale coverings.

Examples of Fano manifolds are hypersurfaces of
degree at most nþ 1 in Pnþ1, Grassmannians, or
more generally homogenenous varieties G/P with G
semisimple and P a parabolic subgroup. Fano
manifolds are simply connected. This can be seen
either by classical differential geometric methods
using a Kähler metric of positive curvature or via the
fundamental

Theorem 3 Fano manifolds are rationally
connected.

The only known proof of this fact uses, as in the
uniruled criterion mentioned above, characteristic p
methods. By just using complex methods it is not



Several Complex Variables: Compact Manifolds 555
known how to construct a single rational curve (of
course, in concrete examples the rational curves are
seen immediately). One still has to observe that
rationally connected manifolds are simply con-
nected, which is not so surprising, since rational
curves lift to the universal cover.

At least in principle, Fano manifolds can be
classified:

Theorem 4 There are only finitely many families of
Fano manifolds in every dimension.

A family (of Fano manifolds) is a submersion
� :X ! S (with S irreducible) such that all fibers are
Fano manifolds. The essential step is to bound (�KX)n.
An actual classification has been carried out only
in dimension up to 3; in dimension 2 one finds
P2, P1 � P1 and the so-called del Pezzo surfaces (P2

blown up in at most eight points in general position).
In dimension 3 there are already 17 families of Fano
3-folds with b2 = 1 and 88 families with b2 	 2.

An extremely hard question is to decide whether a
given Fano manifold is rational or unirational. Even
in dimension 3 this is not completely decided.

The next class to be discussed are the manifolds
with trivial canonical class KX. This means that
there is a holomorphic n-form without zeros
(n = dim X). Important examples are tori and
hypersurface in Pnþ1 of degree nþ 2. Simply
connected manifolds with trivial canonical bundles
are further divided into irreducible Calabi–Yau
manifolds and irreducible symplectic manifolds.
The first class is defined by requiring that there are
no holomorphic p-forms for p < dim X whereas the
second is characterized by the existence of a
holomorphic 2-form of everywhere maximal rank.
A completely different characterization is by holonomy:
an irreducible Calabi–Yau manifold has SU-holonomy
whereas irreducible symplectic manifolds have
Sp-holonomy (with respect to a suitable Kähler metric).

The splitting theorem of Beauville–Bogomolov–
Kobayashi says

Theorem 5 Let X be a projective (or compact
Kähler) manifold with trivial canonical bundle.
Then there exists a finite unbranched cover ~X!X
such that

X ¼ A� �Xi � �Yj

with A a torus, Xi irreducible Calabi–Yau, and Yj

irreducible symplectic.

The key to the proof of this theorem is the
existence of a Ricci-flat Kähler metric on X, a
Kähler–Einstein metric with zero Ricci curvature.
Actually one has a stronger result: instead of
assuming KX to be trivial, just assume that
c1(X) = 0 in H2(X, R). Then there exists a finite
unramified cover X!X such that K~X is trivial. In
view of Mori theory, normal projective varieties X
with at most terminal singularities and KX � 0 (i.e.,
KX � C = 0 for all curves) should also be investigated.
It is expected that similar structure theorems hold;
in particular �1(X) should be finite. The main
difficulty is that there are no differential methods
available; on the other hand an algebraic proof even
for the splitting theorem in the smooth case is
unknown.

Calabi–Yau manifolds play an important role in
string theory and mirror symmetry (see Mirror
Symmetry: A Geometric Survey). Here we mention
two basic problems. The first is the problem of
boundedness:

Are there only finitely many families of Calabi–
Yau manifolds in any dimension?

This problem is wide open; in particular one
might ask:

Is the Hodge number h1, 2 bounded for Calabi–
Yau 3-folds?

The other problem asks for the existence of
rational curves. In all known examples there are
rational curves, but a general existence proof is not
known. The case where b2(X) = 1 seems to be
particularly difficult. If b2(X) 	 2, then in may
cases one can hope to find a fibration or a birational
map, at least for 3-folds. Given such a map, the
existence of rational curves is simple. For example,
if D � X is an irreducible hypersurface which is not
nef, choose H ample and consider the a priori
positive real number p such that Dþ pH is on the
boundary of the ample cone. Then actually p is
rational and a suitable multiple m(Dþ pH) is
spanned and defines a contraction on X. This
comes from ‘‘logarithmic Mori theory.’’

The above splitting theorem exhibits a torus
factor and all holomorphic 1-forms on X come
from this torus. This principle generalizes: given any
projective or compact Kähler manifold X, there
exists a ‘‘universal object,’’ the Albanese torus

AlbðXÞ ¼ H0ð�1
XÞ
�=H1ðX;ZÞ

(which is algebraic if X is) together with a
holomorphic map

� : X!AlbðXÞ

the Albanese map. This Albanese map is given by
integrating 1-forms and is often far from being
surjective. The important property is now that,
given a holomorphic 1-form ! on X, there exists a
holomorphic 1-form � on the Albanese torus such
that !=��(�). The universal property reads as
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follows: every map X!T to a torus factors via an
affine map Alb(X)!T.

There is a nonabelian analog, the so-called
Shafarevich map, but at the moment this map is
only known to be meromorphic. It is an important
tool to study the fundamental group �1(X). We refer
to Campana (1996) and Kollár (1995).

In the following, Chern classes of holomorphic
vector bundles will be important. Let X be a
compact complex manifold and E a holomorphic
vector bundle on X. The jth Chern class of E is an
element

cjðEÞ 2 H2jðX;QÞ \Hj;jðXÞ

It can be defined, for example, by putting a Hermitian
metric on E, computing the curvature of the canonical
connection compatible with both the metric and the
holomorphic structure and then by applying certain
linear operators coming from symmetric functions
such as determinant and trace. Actually Chern classes
can be attached to every complex topological vector
bundle on a topological manifold; then cj(E) will
simply live in H2j(X, R). There is also a purely
algebraic construction by Grothendieck. We refer, for
example, to Fulton (1984) as well as for a discussion of
the elementary functorial properties of Chern classes.
Here we just recall that for a rank-r vector bundle E the
first Chern class

c1ðEÞ ¼ c1

^
E

� �

where the Chern class of the line bundle
Vr E as

given in Several Complex Variables: Basic Geo-
metric Theory actually lives in H2(X, Z).

Finally we discuss manifolds with ample canonical
class KX. Here moduli question often plays a central
role. Moduli spaces of surfaces with fixed c2

1 and c2

are very intensively studied (by Catanese, Ciliberto,
and others). Here, without going into details, we
will concentrate on the very interesting topic of
Kähler–Einstein metrics.

A Kähler metric ! is said to be Kähler–Einstein, if
its Ricci curvature Ric(!) is proportional to !. The
proportionality factor � can be taken to be�1, 0, 1. In
case KX is ample or trivial, Kähler–Einstein metrics
always exist by Yau and Aubin (cases �=�1, resp.
�= 0). However if X is Fano, there are obstructions,
and a Kähler–Einstein metric does not always exist.
An important consequence of the existence of a
Kähler–Einstein metric on a manifold Xn with ample
canonical class is the Miyaoka–Yau inequality:

c2
1!

n�2 
 2nþ 1

n
!n�2
In case of equality, X is covered by the
n-dimensional unit ball.

The same inequality holds in case KX = 0, and as a
consequence the Chern class c2(X) is in some sense
semipositive. If c2(X) = 0, then some finite unrami-
fied cover of X is a torus.

There is an interesting relation to stability. Recall
that a vector bundle E on a compact Kähler
manifold Xn is semistable with respect to a given
Kähler form !, if for all proper coherent subsheaves
F � E of rank-r the following inequality holds:

c1ðFÞ � !n�1

r

 c1ðEÞ � !n�1

n

In case of strict inequality, E is said to be stable.
The basic observation is now that the tangent

bundle of a manifold with a Kähler–Einstein metric
is semistable (with respect to the Kähler–Einstein
metric). It is expected that Fano manifolds with
b2 = 1 have (semi?-)stable tangent bundles, although
in certain situations they do not admit a Kähler–
Einstein metric.

Again the first two Chern classes of a semistable
vector bundle fulfill an inequality:

c2
1ðEÞ � !n�2 
 2r

r� 1
c2ðEÞ � !n�2

Equally important, semistable bundles with fixed
numerical data form moduli spaces, this being the
origin of the stability notion (Mumford). In this
context, the notion of an Hermite–Einstein bundle is
also important. Given a holomorphic vector bundle
E with a Hermitian metric h, there is a unique
connection Fh on E compatible both with h and the
complex structure. Fh is a (1,1)-form with values in
End(E). Now suppose (X,!) is Kähler and let �Fh be
the contraction of Fh with !. Then (E, h) is said to
Hermite–Einstein on (X,!), if

�Fh ¼ �id

with some constant � and id: E!E the identity.
Notice that (X,!) is Kähler–Einstein if (TX, h) is
Hermite–Einstein over (X,!) with h the Kähler
metric with Kähler form !. It is not so difficult to
see that Hermite–Einstein bundles are semistable
(with respect to the underlying Kähler form) and
actually are directs sum of stable Hermite–Einstein
bundles. Conversely, a very deep theorem of
Uhlenbeck–Yau says that every stable vector bundle
on a compact Kähler manifold is Hermite–Einstein.
This is known as the Kobayashi–Hitchin correspon-
dence; see Lübke and Teleman (1995).
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Topology, Invariants and Cohomology

Besides the Kodaira dimension there are other
important invariants of compact complex manifolds.
Of course there are topological invariants such as the
Betti number bi(X) = dim Hi(X, R) or the fundamen-
tal group �1(X). The fundamental group has been
studied intensively in the last decade. A central
question asks which groups can occur as fundamental
groups of compact Kähler manifolds; another pro-
blem is the so-called Shafarevitch conjecture which
says that the universal cover of a compact Kähler
manifold should be holomorphically convex. We
refer to Campana (1996) and Kollár (1995).

The plurigenera,

PmðXÞ ¼ dim h0ðmKXÞ

are also extremely important. Here, Siu recently
proved that Pm(X) is constant in families of
projective manifolds. Other important invariants are
h0(X, (�1

X)�m). For example, it is conjectured that if

h0ðX; �1
X

� ��mÞ ¼ 0

for all positive m, then X is rationally connected.
Tensor powers of the cotangent bundle somehow
capture more of the structure of X than the Kodaria
dimension but they are more difficult to treat. The
relevance of the dimensions

h0 X;�p
X

� �
of holomorphic forms is easier to understand. More
generally one has the Hodge numbers

hp;qðXÞ ¼ dim Hq X;�p
X

� �
For compact Kähler manifolds, the Hodge decom-
position states

HrðX;CÞ ¼
M

pþq¼r

Hp;qðXÞ

Furthermore, Hodge duality,

Hp;qðXÞ ¼ Hq;pðXÞ

holds. These results form a cornerstone for the
geometry of compact Kähler manifolds and the
starting point of Hodge theory. Hodge theory is,
for example, extremely important in the study of
families of manifolds and moduli.

Concerning the topology of projective (Kähler)
manifolds, the following two questions are very
basic.

� Which invariants are topological (or diffeo-
morphic) invariants?
� What are the projective or Kähler structures on a

given compact topological manifold?
Concerning the first, Hodge decomposition
implies that the irregularity h0(�1

X) is actually a
topological invariant. However it is unknown
whether the number of holomorphic 2-forms is a
topological invariant of Kähler 3-folds. Both ques-
tions have been intensively studied in dimension 2.
However, in higher dimensions almost nothing is
known. For example, it is not known whether there
is projective manifold of general type of even
dimension which is homeomorphic to a quadric,
that is, a hypersurface of degree 2 in projective
space.

Other important tools in the study of projective/
Kähler manifolds are listed below.

� Cohomological methods: Riemann–Roch theorem
and holomorphic Morse inequalities; vanishing
theorems (Kodaira, Kawamata–Viehweg, etc.);
Serre duality. References: Demailly (2000),
Demailly and Lazarsfeld, Fulton (1984), Grauert
et al. (1994), Lazarsfeld (2004).
� L2 methods: extension theorems, singular metrics,

multiplier ideals, etc. Reference: Demailly and
Lazarsfeld (2001), Lazarsfeld (2004).
� Theory of currents. Reference: Demailly 2000.
� Cycle space and Douady space, resp. Chow

scheme and Hilbert scheme. Reference: Fulton
1984, Grauert 1994, Kollár 1996.

We restrict our remarks on just one of these
topics, vanishing theorems. The classical Kodaira–
Nakano vanishing theorem says that if X is a
compact manifold of dimension n with a positive
(ample) line bundle L, then

HqðX;L� �pÞ ¼ 0

for pþ q > n. This is usually proved via harmonic
theory, that is, by representing the cohomology
space by harmonic (p, q)-forms with values in L
and by computing integrals of these forms. For
many purposes, for example, for Mori theory, it is
important to generalize this to a line bundle which
have some positivity properties but which are not
ample. This works only for p = n, however this is
the most important part of the Kodaira–Nakano
vanishing. The Kawamata–Viehweg vanishing theo-
rem in its most basic version says that given a nef
and big line bundle L, then Kodaira vanishing still
holds:

HqðX;L� KXÞ ¼ 0

for q 	 1. But actually it is not necessary to assume
L nef, in fact the following is true. Let

D ¼
X

aiDi
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be an effective Q-divisor, that is, all ai are positive
rational numbers. Let haii be the fractional part of ai

and suppose that the Q-divisor
P
haiiDi has normal

crossings. Let daie be the roundup of ai and put
L =

P
daieDi. If D is big and nef, then

HqðX;L� KXÞ ¼ 0

for q 	 1. Of course L itself need not be nef! This
generalization is technically very important and yields
substantial freedom for birational manipulations. We
refer to Kawamata et al. (1987) and Lazarsfeld (2004).
Even this is not the end of the story: the Kawamata–
Viehweg theorem is embedded in the broader context
of the Nadel vanishing theorem where multiplier ideal
sheaves come into the play. See Demailly and
Lazarsfeld and Lazarsfeld (2004).
Homogeneous Manifolds

In this section we consider vector fields and
holomorphic group actions on compact (Kähler)
manifolds. Our main reference is Huckleberry
(1990) with further literature given there.

We denote by Aut(X) the group of holomorphic
automorphisms of the compact manifold X (well
known to be a complex Lie group), and by
G := Aut0(X) the connected component containing
the identity. The tangent space at any point of
Aut0(X) can naturally be identified with H0(X, TX),
the (finite-dimensional) space of holomorphic
vector fields on X. In fact, by integration, a
vector field determines a one-parameter group of
automorphisms.

One says that X is homogeneous if G acts
transitively on X. Therefore, one can write

X ¼ G=H

where H is the isotropy subgroup of any point
x0 2 X, that is, the subgroup of automorphisms
fixed x0. Conversely one can take a complex Lie
group G and a closed subgroup H and form the
quotient G/H which is again a complex manifold
and in fact homogeneous (of course not necessarily
compact).

Going back to a compact manifold X, the
condition to be homogenenous can be rephrased by
saying that the tangent bundle is generated by
global sections, that is, if x 2 X and e 2 TX, x, then
there exists v 2 H0(X, TX) such that v(x) = e. The
easiest case is when TX is trivial. If X is Kähler, this
is exactly the case when X is torus, X = Cn=� with
� ’ Z2n a lattice, but without the Kähler assump-
tion there are many more examples (the so-called
parallelizable manifolds).
More generally, let us consider the case that the
compact Kähler manifold X admits a vector field v
without zeros, but X is not required to be homo-
geneous. Then a theorem of Lieberman says that
there is a finite unramified cover f : X!X and a
splitting

~X ’ F � T

with T a torus, such that f �(v) is the pullback of a
vector field on T. On the other hand, if v has a zero,
then a classical theorem of Rosenlicht says that X is
covered by rational curves, that is, X is uniruled. In
particular �(X) =�1. Notice also that a manifold
of general type can never carry a vector field, in
other words, the automorphism group is discrete,
even finite.

Coming back to compact homogeneous Kähler
manifolds, the first thing to study is the Albanese
map. The Borel–Remmert theorem says that

X ’ T �Q

where T is the Albanese torus. This is proved using a
maximal compact subgroup K � G and by some
averaging process over K. Moreover, Q is a rational
homogeneous manifold. The structure of Q is more
precisely the following. One can write Q = S=P with
S a semisimple Lie group and P � S parabolic,
which means that P contains a maximal connected
solvable subgroup (the so-called Borel subgroup).
The main ingredients of the proof are the Tits
fibration, the Levi–Malcev decomposition of a Lie
group into its radical and a semisimple group, and
the Borel fixed point theorem:

Theorem 6 Let G � GLn(C) be a connected
solvable subgroup and X � Pn�1 be a G-stable
subvariety. Then G has a fixed point on X.

In the homogenenous Kähler case, the rationality of
Q is seen by exhibiting an open subset in Q which is
algebraically isomorphic to Cn.

Now things come down to classify all rational
homogenenous manifold S/P which is of course
classical. Notice that all rational homogeneous
manifolds are Fano. One knows that a rational
homogeneous manifold with Betti number b2 	 2
can be fibered over another rational homogenenous
manifold with fibers rational homogeneous – this is
actually a fiber bundle. The case that b2 = 1 can be
rephrased by saying that P is maximal parabolic.
This fiber bundle might not be trivial as shown by
the projectivized tangent bundle P(TPn

).
Compact Hermitian symmetric spaces form a

particularly interesting subclass of homogeneous
Kähler manifolds. A manifold equipped with a
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Hermitian metric is called Hermitian symmetric, if for
every x 2 X there exists an involutive holomorphic
isometry fixing x. Mok has shown the remarkable fact
that the simply connected compact Hermitian sym-
metric spaces are exactly those simply connected
compact manifolds carrying a Kähler metric with
semipositive holomorphic bisectional curvature. The
only manifold having a metric with positive holo-
morphic bisectional curvature is Pn (Siu-Yau, Mori).

See also: Classical Groups and Homogeneous Spaces;
Einstein Manifolds; Mirror Symmetry: A Geometric
Survey; Moduli Spaces: An Introduction; Riemann
Surfaces; Several Complex Variables: Basic Geometric
Theory; Topological Sigma Models; Twistor Theory:
Some Applications [in Integrable Systems, Complex
Geometry and String Theory].
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Introduction

In the standard model of cosmology, the expanding
universe of galaxies is described by a Friedman–
Robertson–Walker (FRW) metric, which in spherical
coordinates has a line element given by (Blau and Guth
1987, Weinberg 1972)

ds2¼�dt2þR2ðtÞ
�

dr2

1�kr2
þ r2½d	2þ sin2 	d
2�

�
½1�
In this model, which accounts for things on the
largest length scale, the universe is approximated by a
space of uniform density and pressure at each fixed
time, and the expansion rate is determined by the
cosmological scale factor R(t) that evolves according
to the Einstein equations. Astronomical observations
show that the galaxies are uniform on a scale of
about one billion light years, and the expansion is
critical – that is, k=0 in [1] – and so, according to
[1], on the largest scale, the universe is infinite flat
Euclidian space R3 at each fixed time. Matching the
Hubble constant to its observed values, and invoking
the Einstein equations, the FRW model implies that
the entire infinite universe R3 emerged all at once
from a singularity (R=0), some 14 billion years ago,
and this event is referred to as the big bang.

http://www-fourier.ujf-grenoble.fr/ demailly.
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In this article, which summarizes the work of the
authors in Smoller and Temple (1995, 2003), we
describe a two-parameter family of exact solutions
of the Einstein equations that refine the FRW metric
by a spherical shock wave cutoff. In these exact
solutions, the expanding FRW metric is reduced to a
region of finite extent and finite total mass at each
fixed time, and this FRW region is bounded by an
entropy-satisfying shock wave that emerges from the
origin (the center of the explosion), at the instant of
the big bang, t = 0. The shock wave, which marks
the leading edge of the FRW expansion, propagates
outward into a larger ambient spacetime from time
t = 0 onward. Thus, in this refinement of the FRW
metric, the big bang that set the galaxies in motion
is an explosion of finite mass that looks more like a
classical shock wave explosion than does the big
bang of the standard model. (The fact that the entire
infinite space R3 emerges at the instant of the big
bang, is, loosely speaking, a consequence of the
Copernican principle, the principle that the Earth is
not in a special place in the universe on the largest
scale of things. With a shock wave present, the
Copernican principle is violated, in the sense that
the Earth then has a special position relative to the
shock wave. But, of course, in these shock wave
refinements of the FRW metric, there is a spacetime
on the other side of the shock wave, beyond the
galaxies, and so the scale of uniformity of the FRW
metric, the scale on which the density of the galaxies
is uniform, is no longer the largest length scale.)

In order to construct a mathematically simple
family of shock wave refinements of the FRW metric
that meet the Einstein equations exactly, we assume
k = 0 (critical expansion), and we restrict to the case
that the sound speed in the fluid on the FRW side of
the shock wave is constant. That is, we assume an
FRW equation of state p = ��, where �, the square
of the sound speed

ffiffiffiffiffiffiffiffiffiffiffiffiffi
@p=@�

p
, is constant, 0 < � � c2.

At �= c2=3, this catches the important equation of
state p = (c2=3)� which is correct at the earliest stage
of big bang physics (Weinberg 1972). Also, as �
ranges from 0 to c2, we obtain qualitatively correct
approximations to general equations of state.
Taking c = 1 (we use the convention that c = 1, and
Newton’s constant G= 1 when convenient), the
family of solutions is then determined by two
parameters, 0 < � � 1 and r� � 0. The second
parameter, r�, is the FRW radial coordinate r of
the shock in the limit t! 0, the instant of the
big bang. (Since, when k = 0, the FRW metric is
invariant under the rescaling r! �r and R! ��1R,
we fix the radial coordinate r by fixing the scale
factor � with the condition that R(t0) = 1 for some
time t0, say present time.) The FRW radial
coordinate r is singular with respect to radial
arclength r̄ = rR at the big bang R = 0, so setting
r� > 0 does not place the shock wave away from the
origin at time t = 0. The distance from the FRW
center to the shock wave tends to zero in the limit
t! 0 even when r� > 0. In the limit r� ! 1, we
recover from the family of solutions the usual
(infinite) FRW metric with equation of state p = �� –
that is, we recover the standard FRW metric in the
limit that the shock wave is infinitely far out. In this
sense our family of exact solutions of the Einstein
equations considered here represents a two-parameter
refinement of the standard FRW metric.

The exact solutions for the case r�= 0 were first
constructed in Smoller and Temple (1995) (see also
the notes by Smoller and Temple (1999)), and are
qualitatively different from the solutions when r� > 0,
which were constructed later in Smoller and
Temple (2003). The difference is that, when r�= 0,
the shock wave lies closer than one Hubble length
from the center of the FRW spacetime throughout
its motion (Smoller and Temple 2000), but when
r� > 0, the shock wave emerges at the big bang at a
distance beyond one Hubble length. (The Hubble
length depends on time, and tends to zero as t! 0.)
We show in Smoller and Temple (2003) that one
Hubble length, equal to c=H, where H = _R=R, is a
critical length scale in a k = 0 FRW metric because
the total mass inside one Hubble length has a
Schwarzschild radius equal exactly to one Hubble
length. (Since c=H is a good estimate for the age of
the universe, it follows that the Hubble length c=H
is approximately the distance of light travel starting
at the big bang up until the present time. In this
sense, the Hubble length is a rough estimate for the
distance to the further most objects visible in the
universe.) That is, one Hubble length marks precisely
the distance at which the Schwarzschild radius r̄s � 2M
of the mass M inside a radial shock wave at distance
r̄ from the FRW center, crosses from inside (r̄s < r̄)
to outside (r̄s > r̄) the shock wave. If the shock wave
is at a distance closer than one Hubble length from
the FRW center, then 2M < r̄ and we say that the
solution lies outside the black hole, but if the shock
wave is at a distance greater than one Hubble
length, then 2M > r̄ at the shock, and we say that
the solution lies ‘‘inside’’ the black hole. Since M
increases like r̄3, it follows that 2M < r̄ for r̄
sufficiently small, and 2M > r̄ for r̄ sufficiently
large, so there must be a critical radius at which
2M = r̄, and we show in what follows (see also
Smoller and Temple (2003)) that when k = 0, this
critical radius is exactly the Hubble length. When
the parameter r�= 0, the family of solutions for 0 <
� � 1 starts at the big bang, and evolves thereafter
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‘‘outside’’ the black hole, satisfying 2M=r̄ < 1 every-
where from t = 0 onward. But, when r� > 0, the
shock wave is further out than one Hubble length
at the instant of the big bang, and the solution
begins with 2M=r̄ > 1 at the shock wave. From this
time onward, the spacetime expands until even-
tually the Hubble length catches up to the shock
wave at 2M=r̄ = 1, and then passes the shock wave,
making 2M=r̄ < 1 thereafter. Thus, when r� > 0,
the whole spacetime begins inside the black hole
(with 2M=r̄ > 1 for sufficiently large r̄), but
eventually evolves to a solution outside the black
hole. The time when r̄ = 2M actually marks the
event horizon of a white hole (the time reversal of
a black hole) in the ambient spacetime beyond the
shock wave. We show that, when r� > 0, the time
when the Hubble length catches up to the shock
wave comes after the time when the shock wave
comes into view at the FRW center, and when
2M = r̄ (assuming t is so large that we can neglect
the pressure from this time onward), the whole
solution emerges from the white hole as a finite
ball of mass expanding into empty space, satisfying
2M=r̄ < 1 everywhere thereafter. In fact, when r� > 0,
the zero pressure Oppenheimer–Snyder solution
outside the black hole gives the large-time asymp-
totics of the solution (Oppenheimer and Snyder
1939, Smoller and Temple 1988, 2004 and the
comments after Theorems 6–8 below).

The exact solutions in the case r�= 0 give a
general-relativistic version of an explosion into a
static, singular, isothermal sphere of gas, qualita-
tively similar to the corresponding classical explo-
sion outside the black hole (Smoller and Temple
1995). The main difference physically between the
cases r� > 0 and r�= 0 is that, when r� > 0 (the case
when the shock wave emerges from the big bang at a
distance beyond one Hubble length), a large region
of uniform expansion is created behind the shock
wave at the instant of the big bang. Thus, when r� > 0,
lightlike information about the shock wave
propagates inward from the wave, rather than
outward from the center, as is the case when r�= 0
and the shock lies inside one Hubble length. (One
can imagine that when r� > 0, the shock wave can
get out through a great deal of matter early on when
everything is dense and compressed, and still not
violate the speed of light bound. Thus, when r� > 0,
the shock wave ‘‘thermalizes,’’ or more accurately
‘‘makes uniform,’’ a large region at the center, early
on in the explosion.) It follows that, when r� > 0,
an observer positioned in the FRW spacetime inside
the shock wave will see exactly what the standard
model of cosmology predicts, up until the time when
the shock wave comes into view in the far field. In
this sense, the case r� > 0 gives a black hole
cosmology that refines the standard FRW model of
cosmology to the case of finite mass. One of the
surprising differences between the case r�= 0 and the
case r� > 0 is that, when r� > 0, the important
equation of state p = �/3 comes out of the analysis as
special at the big bang. When r� > 0, the shock
wave emerges at the instant of the big bang at a
finite nonzero speed (the speed of light) only for the
special value �= 1/3. In this case, the equation of
state on both sides of the shock wave tends to the
correct relation p = �/3 as t! 0, and the shock
wave decelerates to subluminous speed for all
positive times thereafter (see Smoller and Temple
(2003) and Theorem 8 below).

In all cases 0 < � � 1, r� � 0, the spacetime
metric that lies beyond the shock wave is taken to
be a metric of Tolmann–Oppenheimer–Volkoff
(TOV) form (Oppenheimar and Volkoff 1939):

ds2 ¼�Bð�rÞd�t2þA�1ð�rÞd�r2þ�r2½d�2þ sin2 �d�2� ½2�

The metric [2] is in standard Schwarzschild coordi-
nates (diagonal with radial coordinate equal to the
area of the spheres of symmetry), and the metric
components depend only on the radial coordinate r̄.
Barred coordinates are used to distinguish TOV
coordinates from unbarred FRW coordinates for
shock matching. The mass function M(r̄) enters as a
metric component through the relation

A ¼ 1� 2Mð�rÞ
�r

½3�

The TOV metric [2] has a very different character
depending on whether A > 0 or A < 0; that is,
depending on whether the solution lies outside the
black hole or inside the black hole. In the case A > 0,
r̄ is a spacelike coordinate, and the TOV metric
describes a static fluid sphere in general relativity.
(When A > 0, for example, the metric [2] is the
starting point for the stability limits of Buchdahl
and Chandresekhar for stars (Weinberg 1972,
Smoller and Temple 1997, 1998).) When A < 0, r̄
is the timelike coordinate, and [2] is a dynamical metric
that evolves in time. The exact shock wave solutions are
obtained by taking r̄ = R(t)r to match the spheres of
symmetry, and then matching the metrics [1] and [2] at
an interface r̄ = r̄(t) across which the metrics are
Lipschitz continuous. This can be done in general.
In order for the interface to be a physically mean-
ingful shock surface, we use the result in Theorem 4
below (see Smoller and Temple (1994)) that a single
additional conservation constraint is sufficient to rule
out �-function sources at the shock (the Einstein
equations G =�T are second order in the metric, and
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so �-function sources will in general be present at a
Lipschitz continuous matching of metrics), and
guarantee that the matched metric solves the Einstein
equations in the weak sense. The Lipschitz matching
of the metrics, together with the conservation
constraint, leads to a system of ordinary differential
equations (ODEs) that determine the shock position,
together with the TOV density and pressure at the
shock. Since the TOV metric depends only on r̄, the
equations thus determine the TOV spacetime beyond
the shock wave. To obtain a physically meaningful
outgoing shock wave, we impose the constriant p̄ � ��
to ensure that the equation of state on the TOV side
of the shock is physically reasonable, and as the
entropy condition we impose the condition that the
shock be compressive. For an outgoing shock wave,
this is the condition � > ��, p > p̄, that the pressure
and density be larger on the side of the shock that
receives the mass flux – the FRW side when the
shock wave is propagating away from the FRW
center. This condition breaks the time-reversal sym-
metry of the equations, and is sufficient to rule out
rarefaction shocks in classical gas dynamics (Smoller
1983, Smoller and Temple 2003). The ODEs,
together with the equation-of-state bound and the
conservation and entropy constraints, determine a
unique solution of the ODEs for every 0 < � � 1 and
r̄� � 0, and this provides the two-parameter family of
solutions discussed here (Smoller and Temple 1995,
2003). The Lipschitz matching of the metrics implies
that the total mass M is continuous across the
interface, and so when r� > 0, the total mass of the
entire solution, inside and outside the shock wave, is
finite at each time t > 0, and both the FRW and
TOV spacetimes emerge at the big bang. The total
mass M on the FRW side of the shock has the
meaning of total mass inside the radius r̄ at fixed
time, but on the TOV side of the shock, M does not
evolve according to equations that give it the
interpretation as a total mass because the metric is
inside the black hole. Nevertheless, after the space-
time emerges from the black hole, the total mass
takes on its usual meaning outside the black
hole, and time asymptotically the big bang ends
with an expansion of finite total mass in the usual
sense. Thus, when r� > 0, our shock wave refine-
ment of the FRW metric leads to a big bang of
finite total mass.

A final comment is in order regarding our overall
philosophy. The family of exact shock wave solutions
described here are rough models in the sense that
the equation of state on the FRW side satisfies the
condition �= const., and the equation of state on the
TOV side is determined by the equations, and
therefore cannot be imposed. Nevertheless, the
bounds on the equations of state imply that the
equations of state are qualitatively reasonable, and
we expect that this family of solutions will capture
the gross dynamics of solutions when more general
equations of state are imposed. For more general
equations of state, other waves, such as rarefaction
waves and entropy waves, would need to be present
to meet the conservation constraint, and thereby
mediate the transition across the shock wave. Such
transitional waves would be very difficult to model in
an exact solution. But, the fact that we can find
global solutions that meet our physical bounds, and
that are qualitatively the same for all values of � 2
(0,1] and all initial shock positions, strongly suggests
that such a shock wave would be the dominant wave
in a large class of problems.

In the next section, the FRW solution is derived
for the case �= const., and the Hubble length is
discussed as a critical length scale. Subsequently,
the general theorems in Smoller and Temple (1994)
for matching gravitational metrics across shock
waves are employed. This is followed by a discus-
sion of the construction of the family of solutions in
the case r�= 0. Finally, the case r� > 0 is discussed.
(Details can be found in Smoller and Temple (1995,
2003, 2004).)
The FRW Metric

According to Einstein’s theory of general relativity,
all properties of the gravitational field are deter-
mined by a Lorentzian spacetime metric tensor g,
whose line element in a given coordinate system
x = (x0, . . . , x3) is given by

ds2 ¼ gijdxidxj ½4�

(We use the Einstein summation convention,
whereby repeated up–down indices are assumed
summed from 0 to 3.) The components gij of the
gravitational metric g satisfy the Einstein equations

Gij ¼ �Tij; Tij ¼ ð�c2 þ pÞwiwj þ pgij ½5�

where we assume that the stress-energy tensor T
corresponds to that of a perfect fluid. Here G is the
Einstein curvature tensor,

� ¼ 8	G
c4

½6�

is the coupling constant, G is Newton’s gravitational
constant, c is the speed of light, �c2 is the energy
density, p is the pressure, and w = (w0, . . . , w3) are
the components of the 4-velocity of the fluid (cf.
Weinberg 1972), and again we use the convention
that c = 1 and G= 1 when convenient.
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Putting the metric ansatz [1] into the Einstein
equations [5] gives the equations for the FRW metric
(Weinberg 1972),

H2 ¼
_R

R

 !2
¼ �

3
�� k

R2
½7�

and

_� ¼ �3ðpþ �ÞH ½8�

The unknown quantities R, �, and p are assumed to
be functions of the FRW coordinate time t alone, and
the ‘‘dot’’ denotes differentiation with respect to t.

To verify that the Hubble length r̄crit = 1=H is the
limit for FRW–TOV shock matching outside a black
hole, write the FRW metric [1] in standard
Schwarzschild coordinates x = (r̄, t̄), where the
metric takes the form

ds2 ¼ �Bð�r;�tÞd�t2 þ Að�r;�tÞ�1d�r2 þ �r2d�2 ½9�

and the mass function M(r̄, t̄) is defined through the
relation

A ¼ 1� 2M

�r
½10�

It is well known that a general spherically symmetric
metric can be transformed to the form [9] by
coordinate transformation (see Weinberg (1972) and
Groah and Temple (2004)). Substituting r̄ = Rr into
[1] and diagonalizing the resulting metric, we obtain
(see Smoller and Temple (2004) for details)

ds2 ¼ � 1

 2

1� kr2

1� kr2 �H2�r2

� �
d�t2

þ 1

1� kr2 �H2�r2

� �
d�r2 þ �r2d�2 ½11�

where  is an integrating factor that solves the
equation

@

@�r
 

1� kr2 �H2�r2

1� kr2

� �
� @

@t
 

H�r

1� kr2

� �
¼ 0 ½12�

and the time coordinate t̄ = t̄(t, r̄) is defined by the
exact differential

d�t ¼  
1� kr2 �H2�r2

1� kr2

� �
dt þ  

H�r

1� kr2

� �
d�r ½13�

Now using [10] in [7], it follows that

Mðt;�rÞ ¼ �
2

Z �r

0

�ðtÞs2ds ¼ 1

3

�

2
��r3 ½14�

Since in the FRW metric, r̄ = Rr measures arclength
along radial geodesics at fixed time, we see from
[14] that M(t, r̄) has the physical interpretation as
the total mass inside radius r̄ at time t in the FRW
metric. Restricting to the case of critical expansion
k = 0, we see from [7], [14], and [13] that r̄ = H�1 is
equivalent to 2M=r̄ = 1, and so at fixed time t, the
following equivalences are valid:

�r ¼ H�1 iff
2M

�r
¼ 1 iff A ¼ 0 ½15�

We conclude that r̄ = H�1 is the critical length scale
for the FRW metric at fixed time t in the sense that
A = 1� 2M=r̄ changes sign at r̄ = H�1, and so the
universe lies inside a black hole beyond r̄ = H�1, as
claimed above. Now, we proved in Smoller and
Temple (1998) that the standard TOV metric out-
side the black hole cannot be continued into A = 0
except in the very special case �= 0. (It takes an
infinite pressure to hold up a static configuration at
the event horizon of a black hole.) Thus, shock
matching beyond one Hubble length requires a
metric of a different character, and for this purpose,
we introduce the TOV metric inside the black hole –
a metric of TOV form, with A < 0, whose fluid is
comoving with the timelike radial coordinate
r̄ (Smoller and Temple 2004).

The Hubble length r̄crit = c=H is also the critical
distance at which the outward expansion of the FRW
metric exactly cancels the inward advance of a radial
light ray impinging on an observer positioned at the
origin of a k = 0 FRW metric. Indeed, by [1], a light
ray traveling radially inward toward the center of an
FRW coordinate system satisfies the condition

c2 dt2 ¼ R2 dr2 ½16�

so that

d�r

dt
¼ _Rrþ R_r ¼ H�r� c ¼ H �r� c

H

� �
> 0 ½17�

if and only if

�r >
c

H

Thus, the arclength distance from the origin to an
inward moving light ray at fixed time t in a k = 0
FRW metric will actually increase as long as the light
ray lies beyond the Hubble length. An inward moving
light ray will, however, eventually cross the Hubble
length and reach the origin in finite proper time, due
to the increase in the Hubble length with time.

We now calculate the infinite redshift limit in terms
of the Hubble length. It is well known that light emitted
at (te, re) at wavelength 
e in an FRW spacetime will be
observed at (t0, r0) at wavelength 
0 if

R0

Re
¼ 
0


e
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Moreover, the redshift factor z is defined by

z ¼ 
0


e
� 1

Thus, infinite redshifting occurs in the limit Re ! 0,
where R = 0, t = 0 is the big bang. Consider now a
light ray emitted at the instant of the big bang, and
observed at the FRW origin at present time t = t0.
Let r1 denote the FRW coordinate at time t! 0 of
the furthest objects that can be observed at the FRW
origin before time t = t0. Then r1 marks the position
of objects at time t = 0 whose radiation would be
observed as infinitly redshifted (assuming no scatter-
ing). Note then that a shock wave emanating from
r̄ = 0 at the instant of the big bang, will be observed at
the FRW origin before present time t = t0 only if its
position r at the instant of the big bang satisfies the
condition r < r1. To estimate r1, note first that from
[16] it follows that an incoming radial light ray in an
FRW metric follows a lightlike trajectory r = r(t) if

r� re ¼ �
Z t

te

d�

Rð�Þ

and thus

r1 ¼
Z t0

0

d�

Rð�Þ ½18�

Using this, the following theorem can be proved
(Smoller and Temple 2004).

Theorem 1 If the pressure p satisfies the bounds

0 � p � 1
3 � ½19�

then, for any equation of state, the age of the
universe t0 and the infinite red shift limit r1 are
bounded in terms of the Hubble length by

1

2H0
� t0 �

2

3H0
½20�

1

H0
� r1 �

2

H0
½21�

(We have assumed in Theorem 1 that R = 0 when
t = 0 and R = 1 when t = t0, H = H0.)

The next theorem gives closed-form solutions of
the FRW equations [7], [8] in the case when
�= const. As a special case, we recover the bounds
in [20] and [21] from the cases �= 0 and 1/3.

Theorem 2 Assume k = 0 and the equation of state

p ¼ �� ½22�

where � is taken to be constant,

0 � � � 1
then (assuming an expanding universe _R > 0), the
solution of system [7], [8] satisfying R = 0 at t = 0
and R = 1 at t = t0 is given by

� ¼ 4

3�ð1þ �Þ2
1

t2
½23�

R ¼ t

t0

� �2=½3ð1þ�Þ�
½24�

H

H0
¼ t0

t
½25�

Moreover, the age of the universe t0 and the infinite
red shift limit r1 are given exactly in terms of the
Hubble length by

t0 ¼
2

3ð1þ �Þ
1

H0
½26�

r1 ¼
2

1þ 3�

1

H0
½27�

From [27] we conclude that a shock wave will be
observed at the FRW origin before present time
t = t0 only if its position r at the instant of the big
bang satisfies the condition

r <
2

1þ 3�

1

H0

Note that r1 ranges from one-half to two Hubble
lengths as � ranges from 1 to 0, taking the
intermediate value of one Hubble length at �= 1=3
(cf. [21]).

Note that using [23] and [24] in [14], it follows
that

M ¼ �
2

Z �r

0

�ðtÞs2ds

¼ 2�r3

9ð1þ �Þ2t
2=ð1þ�Þ
0

t�2�=ð1þ�Þ ½28�

so _M < 0 if � > 0. It follows that if p = ��,
�= const. > 0, then the total mass inside radius
r = const. decreases in time.
The General Theory of Shock Matching

The matching of the FRW and TOV metrics in the next
two sections is based on the following theorems that
were derived in Smoller and Temple (1994) (Theorems
3 and 4 apply to non-lightlike shock surfaces. The
lightlike case was discussed by Scott (2002).)

Theorem 3 Let � denote a smooth, three-dimen-
sional shock surface in spacetime with spacelike



Shock Wave Refinement of the Friedman–Robertson–Walker Metric 565
normal vector n relative to the spacetime metric g;
let K denote the second fundamental form on �; and
let G denote the Einstein curvature tensor. Assume
that the components gij of the gravitational metric g
are smooth on either side of � (continuous up to the
boundary on either side separately), and Lipschitz
continuous across � in some fixed coordinate
system. Then the following statements are
equivalent:

(i) [K] = 0 at each point of �.
(ii) The curvature tensors Ri

jkl and Gij, viewed as
second-order operators on the metric compo-
nents gij, produce no �-function sources on �.

(iii) For each point P 2 �, there exists a C1,1

coordinate transformation defined in a neigh-
borhood of P, such that, in the new coordinates
(which can be taken to be the Gaussian normal
coordinates for the surface), the metric compo-
nents are C1,1 functions of these coordinates.

(iv) For each P 2 �, there exists a coordinate frame
that is locally Lorentzian at P, and can be
reached within the class of C1,1 coordinate
transformations.

Moreover, if any one of these equivalencies hold,
then the Rankine–Hugoniot jump conditions,
[G]�i n� = 0 (which express the weak form of con-
servation of energy and momentum across � when
G =�T), hold at each point on �.

Here [f] denotes the jump in the quantity f across
� (this being determined by the metric separately on
each side of � because gij is only Lipschitz
continuous across �), and by C1,1 we mean that
the first derivatives are Lipschitz continuous.

In the case of spherical symmetry, the following
stronger result holds. In this case, the jump condi-
tions [Gij]ni = 0, which express the weak form of
conservation across a shock surface, are implied by a
single condition [Gij]ninj = 0, so long as the shock is
non-null, and the areas of the spheres of symmetry
match smoothly at the shock and change mono-
tonically as the shock evolves. Note that, in general,
assuming that the angular variables are identified
across the shock, we expect conservation to entail
two conditions, one for the time and one for the
radial components. The fact that the smooth
matching of the spheres of symmetry reduces
conservation to one condition can be interpreted as
an instance of the general principle that directions of
smoothness in the metric imply directions of
conservation of the sources.

Theorem 4 Assume that g and ḡ are two spheri-
cally symmetric metrics that match Lipschitz con-
tinuously across a three-dimensional shock interface
� to form the matched metric g [ ḡ. That is, assume
that g and ḡ are Lorentzian metrics given by

ds2 ¼ �aðt; rÞdt2 þ bðt; rÞdr2 þ cðt; rÞd�2 ½29�

and

d�s2 ¼ ��að�t;�rÞd�t2 þ �bð�t;�rÞd�r2 þ �cð�t;�rÞd�2 ½30�

and that there exists a smooth coordinate transforma-
tion � : (t, r)! (t̄, r̄), defined in a neighborhood of a
shock surface � given by r = r(t), such that the metrics
agree on �. (We implicitly assume that � and ’ are
continuous across the surface.) Assume that

cðt; rÞ ¼ �cð�ðt; rÞÞ ½31�

in an open neighborhood of the shock surface �, so
that, in particular, the areas of the 2-spheres of
symmetry in the barred and unbarred metrics agree
on the shock surface. Assume also that the shock
surface r = r(t) in unbarred coordinates is mapped to
the surface r̄ = r̄(t̄) by (t̄, r̄(t̄)) = �(t, r(t)). Assume,
finally, that the normal n to � is non-null, and that

nðcÞ 6¼ 0 ½32�

where n(c) denotes the derivative of the function c in
the direction of the vector n. Then the following are
equivalent to the statement that the components of
the metric g [ ḡ in any Gaussian normal coordinate
system are C1,1 functions of these coordinates across
the surface �:

½Gi
j�ni ¼ 0 ½33�

½Gij�ninj ¼ 0 ½34�

½K� ¼ 0 ½35�

Here again, [f ] = f̄� f denotes the jump in the
quantity f across �, and K is the second fundamental
form on the shock surface.

We assume in Theorem 4 that the areas of the
2-spheres of symmetry change monotonically in the
direction normal to the surface. For example, if
c = r2, then @c=@t = 0, so the assumption n(c) 6¼ 0 is
valid except when n = @=@t, in which case the rays
of the shock surface would be spacelike. Thus, the
shock speed would be faster than the speed of light
if our assumption n(c) 6¼ 0 failed in the case c = r2.
FRW–TOV Shock Matching Outside the
Black Hole – The Case r �= 0

To construct the family of shock wave solutions for
parameter values 0 < � � 1 and r�= 0, we match
the exact solution [23]–[25] of the FRW metric [1]
to the TOV metric [2] outside the black hole,
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assuming A > 0. In this case, we can bypass the
problem of deriving and solving the ODEs for the
shock surface and constraints discussed above, by
actually deriving the exact solution of the Einstein
equations of TOV form that meets these equations.
This exact solution represents the general-relativistic
version of a static, singular isothermal sphere –
singular because it has an inverse square density
profile, and isothermal because the relationship
between the density and pressure is p̄ = ����, ��= const.

Assuming the stress tensor for a perfect fluid, and
assuming that the density and pressure depend only
on r̄, the Einstein equations for the TOV metric [2]
outside the black hole (i.e., when A = 1� 2M=r̄ > 0)
are equivalent to the Oppenheimer–Volkoff system

dM

d�r
¼ 4	�r2�� ½36�

��r2 d

d�r
�p ¼GM�� 1þ

�p

��

� �

� 1þ 4	�r3�p

M

� �
1� 2GM

�r

� ��1

½37�

Integrating [36], we obtain the usual interpretation
of M as the total mass inside radius r̄,

Mð�rÞ ¼
Z �r

0

4	�2��ð�Þd� ½38�

The metric component B�B(r̄) is determined from ��
and M through the equation

B0ð�rÞ
B
¼ �2

�p0ð�rÞ
�pþ ��

½39�

Assuming

�p ¼ ����; ��ð�rÞ ¼ 

�r2
½40�

for some constants �� and , and substituting into
[3], we obtain

Mð�rÞ ¼ 4	�r ½41�

Putting [40] and [41] into [37] and simplifying yields
the identity

 ¼ 1

2	G
��

1þ 6��þ ��2

� �
½42�

From [38] we obtain

A ¼ 1� 8	G < 1 ½43�

Applying [39] leads to

B ¼ B0
��

��0

� ��2��=ð1þ��Þ
¼ B0

�r

�r0

� �4��=ð1þ��Þ
½44�
By rescaling the time coordinate, we can take B0 = 1
at r̄0 = 1, in which case [44] reduces to

B ¼ �r4��=ð1þ��Þ ½45�

We conclude that when [42] holds, [40]–[43] and
[44] provide an exact solution of the Einstein field
equations of TOV type, for each 0 � �� � 1. (In this
case, an exact solution of TOV type was first found
by Tolman (1939), and rediscovered in the case
��= 1=3 by Misner and Zapolsky (cf. Weinberg
(1972 p. 320)).) By [43], these solutions are defined
outside the black hole, since 2M=r̄ < 1. When
��= 1=3, [42] yields = 3=56	G (cf. Weinberg
(1972, equation (11.4.13))).

To match the FRW exact solution [23]–[25] with
equation of state p = �� to the TOV exact solution
[40]–[45] with equation of state p̄ = ���� across a
shock interface, we first set r̄ = Rr to match the
spheres of symmetry, and then match the timelike
and spacelike components of the corresponding
metrics in standard Schwarzschild coordinates. The
matching of the dr̄2 coefficient A�1 yields the
conservation of mass condition that implicitly gives
the shock surface r̄ = r̄(t),

Mð�rÞ ¼ 4	

3
�ðtÞ�r3 ½46�

Using this together with [41] gives the following two
relations that hold at the shock surface:

�r ¼
ffiffiffiffiffiffiffiffi
3

�ðtÞ

s

� ¼ 3

4	

M

�rðtÞ3
¼ 3

�rðtÞ2
¼ 3�� ½47�

Matching the coefficient B of dt̄2 on the shock
surface determines the integrating factor  in a
neighborhood of the shock surface by assigning
initial conditions for [44]. Finally, the conservation
constraint [Tij]ninj = 0 leads to the single condition

0 ¼ð1�AÞð�þ �pÞðpþ ��Þ2

þ 1� 1

A

� �
ð��þ �pÞð�þ pÞ2þðp� �pÞð�� ��Þ2 ½48�

which upon using p =�� and p̄ = ���� is satisfied
assuming the condition

�� ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�2 þ 54�þ 49

p
� 3

2�� 7
2 � Hð�Þ ½49�

Alternatively, we can solve for � in [49] and write
this relation as

� ¼ ��ð��þ 7Þ
3ð1� ��Þ ½50�
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This guarantees that conservation holds across the
shock surface, and so it follows from Theorem 4 that
all of the equivalencies in Theorem 3 hold across the
shock surface. Note that H(0) = 0, and to leading
order ��= (3�/7)þO(�2) as �! 0. Within the
physical region 0 � �, �� � 1, H0(�) > 0, �� < �, and
H(1=3) =

ffiffiffiffiffiffi
17
p

� 4 	 0.1231, H(1) =
ffiffiffiffiffiffiffiffi
112
p

=2 � 5 	
0.2915.

Using the exact formulas for the FRW metric in
[23]–[25], and setting R0 = 1 at �= �0, t = t0, we
obtain the following exact formulas for the shock
position:

�rðtÞ ¼ �t ½51�

rðtÞ ¼ �rðtÞRðtÞ�1 ¼ �tð1þ3�Þ=ð3þ3�Þ ½52�

where

� ¼ 3ð1þ �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��

1þ 6��þ ��2

r

� ¼ �ð1þ3�Þ=ð3þ3�Þ 3

�0

� �1=ð3þ3�Þ
½53�

It follows from [41] that A > 0, and from [52] that
r�= limt!0 r(t) = 0. The entropy condition that the
shock wave be compressive follows from the fact
that ��= H(�) < �. Thus, we conclude that for each
0 < � � 1, r�= 0, the solutions constructed in
[40]–[53] define a one-parameter family of shock
wave solutions that evolve everywhere outside
the black hole, which implies that the distance
from the shock wave to the FRW center is less than
one Hubble length for all t > 0.

Using [51] and [52], one can determine the shock
speed, and check when the Lax characteristic
condition (Smoller 1983) holds at the shock. The
result is the following theorem. (Note that even
when the shock speed is larger than c, only the
wave, and not the sound speeds or any other
physical motion, exceeds the speed of light. See Scott
(2002) for the case when the shock speed is equal to the
speed of light.) The reader is referred to Smoller and
Temple (1995) for details.

Theorem 5 There exist values 0 < �1 < �2 < 1,
(�1 	 0.458, �2 =

ffiffiffi
5
p

=3 	 0.745), such that, for
0 < � � 1, the Lax characteristic condition holds at
the shock if and only if 0 < � < �1; and the shock
speed is less than the speed of light if and only if
0 < � < �2.

The explicit solution in the case r�= 0 can be
interpreted as a general-relativistic version of a
shock wave explosion into a static, singular,
isothermal sphere, known in the Newtonian case as
a simple model for star formation (Smoller and
Temple 2000). As the scenario goes, a star begins as
a diffuse cloud of gas. The cloud slowly contracts
under its own gravitational force by radiating energy
out through the gas cloud as gravitational potential
energy is converted into kinetic energy. This
contraction continues until the gas cloud reaches
the point where the mean free path for transmission
of light is small enough that light is scattered,
instead of being transmitted, through the cloud. The
scattering of light within the gas cloud has the effect
of equalizing the temperature within the cloud, and
at this point the gas begins to drift toward the most
compact configuration of the density that balances
the pressure when the equation of state is isother-
mal. This configuration is a static, singular, iso-
thermal sphere, the general-relativistic version of
which is the exact TOV solution beyond the shock
wave when r�= 0. This solution in the Newtonian
case is also inverse square in the density and
pressure, and so the density tends to infinity at the
center of the sphere. Eventually, the high densities at
the center ingnite thermonuclear reactions. The
result is a shock wave explosion emanating from
the center of the sphere, and this signifies the birth
of the star. The exact solutions when r�= 0
represent a general-relativistic version of such a
shock wave explosion.
Shock Wave Solutions Inside the Black
Hole – The Case r � > 0

When the shock wave is beyond one Hubble length
from the FRW center, we obtain a family of shock
wave solutions for each 0 < � � 1 and r� > 0 by
shock matching the FRW metric [1] to a TOV
metric of form [2] under the assumption that

Að�rÞ ¼ 1� 2Mð�rÞ
�r
� 1�Nð�rÞ < 0 ½54�

In this case, r̄ is the timelike variable. Assuming that
the stress tensor T is taken to be that of a perfect
fluid comoving with the TOV metric, the Einstein
equations G =�T, inside the black hole, take the
form (see Smoller and Temple (2004) for details)

�p0 ¼
�pþ ��

2

N0

N � 1
½55�

N0 ¼ � N

�r
þ ��p�r

� �
½56�

B0

B
¼ � 1

N � 1

N

�r
þ ���

� �
½57�
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The system [55]–[57] defines the simplest class of
gravitational metrics that contain matter, evolve
inside the black hole, and such that the mass function
M(r̄) <1 at each fixed time r̄. System [55]–[57] for
A < 0 differs substantially from the TOV equations
for A > 0 because, for example, the energy density
T00 is equated with the timelike component Grr when
A < 0, but with Gtt when A > 0. In particular, this
implies that, inside the black hole, the mass function
M(r̄) does not have the interpretation as a total mass
inside the radius r̄ as it does outside the black hole.

Equations [56], [57] do not have the same
character as [54], [55] and the relation p̄ = ���� with
��= const. is inconsistent with [56], [57] together with
the conservation constraint and the FRW assumption
p = �� for shock matching. Thus, instead of looking
for an exact solution of [56], [57] ahead of time, as in
the case r�= 0, we assume the FRW solution [23]–
[25], and derive the ODEs that describe the TOV
metrics that match this FRW metric Lipschitz-
continuously across a shock surface, and then impose
the conservation, entropy, and equation of state
constraints at the end. Matching a given k = 0 FRW
metric to a TOV metric inside the black hole across a
shock interface leads to the system of ODEs, (see
Smoller and Temple (2004) for details),

du

dN
¼� ð1þ uÞ

2ð1þ 3uÞN

� �

� ð3u� 1Þð�� uÞN þ 6uð1þ uÞ
ð�� uÞN þ ð1þ uÞ

� �
½58�

d�r

dN
¼ � 1

1þ 3u

�r

N
½59�

with conservation constraint

v ¼ ��ð1þ uÞ þ ð�� uÞN
ð1þ uÞ þ ð�� uÞN ½60�

where

u ¼
�p

�
; v ¼ ��

�
; � ¼ p

�
½61�

Here � and p denote the (known) FRW density and
pressure, and all variables are evaluated at the
shock. Solutions of [58]–[60] determine the
(unknown) TOV metrics that match the given
FRW metric Lipschitz-continuously across a shock
interface, such that conservation of energy and
momentum hold across the shock, and such that
there are no �-function sources at the shock (Israel
1966, Smoller and Temple 1997). Note that the
dependence of [58]–[60] on the FRW metric is only
through the variable �, and so the advantage of
taking �= const. is that the whole solution is
determined by the inhomogeneous scalar equation
[58] when �= const. We take as the entropy
constraint the condition that

0 < �p < p; 0 < �� < � ½62�

and to insure a physically reasonable solution, we
impose the equation of state constriant on the TOV
side of the shock (this is equivalent to the dominant
energy condition (Blau and Guth 1987))

0 < �p < �� ½63�

Condition [62] implies that outgoing shock waves
are compressive. Inequalities [62] and [63] are both
implied by the single condition (Smoller and Temple
2004),

1

N
<

1� u

1þ u

� �
�� u

�þ u

� �
½64�

Since � is constant, eqn [58] uncouples from [59],
and thus solutions of system [58]–[60] are deter-
mined by the scalar nonautonomous equation [58].
Making the change of variable S = 1=N, which
transforms the ‘‘big bang’’ N !1 over to a rest
point at S! 0, we obtain

du

dS
¼ ð1þ uÞ

2ð1þ 3uÞS

� �

� ð3u�1Þð��uÞþ 6uð1þuÞS
ð�� uÞþ ð1þuÞS

� �
½65�

Note that the conditions N > 1 and 0 < p̄ < p
restrict the domain of [65] to the region 0 < u <
� < 1, 0 < S < 1. The next theorem gives the exis-
tence of solutions for 0 < � � 1, r� > 0, inside the
black hole (Smoller and Temple 2003).

Theorem 6 For every �, 0 < � < 1, there exists a
unique solution u�(S) of [65], such that [64] holds
on the solution for all S, 0 < S < 1, and on this
solution, 0 < u�(S) < ū, limS!0 u�(S) = ū, where

�u ¼Min 1=3; �f g ½66�

and

lim
S!1

�p ¼ 0 ¼ lim
S!1

�� ½67�

For each of these solutions u�(S), the shock position
is determined by the solution of [59], which in turn
is determined uniquely by an initial condition which
can be taken to be the FRW radial position of the
shock wave at the instant of the big bang,

r� ¼ lim
S!0

rðSÞ > 0 ½68�

Concerning the shock speed, we have
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Theorem 7 Let 0 < � < 1. Then the shock wave is
everywhere subluminous, that is, the shock speed
s�(S) � s(u�(S)) < 1 for all 0 < S � 1, if and only if
� � 1=3.

Concerning the shock speed near the big bang
S = 0, the following is true:

Theorem 8 The shock speed at the big bang S = 0
is given by

lim
S!0

s�ðSÞ ¼ 0; � < 1=3 ½69�

lim
S!0

s�ðSÞ ¼ 1; � > 1=3 ½70�

lim
S!0

s�ðSÞ ¼ 1; � ¼ 1=3 ½71�

Theorem 8 shows that the equation of state
p = �/3 plays a special role in the analysis when r� > 0,
and only for this equation of state does the shock
wave emerge at the big bang at a finite nonzero
speed, the speed of light. Moreover, [66] implies that
in this case, the correct relation p̄=��= �� is also
achieved in the limit S! 0. The result [67] implies
that (neglecting the pressure p at this time onward),
the solution continues to a k = 0 Oppenheimer–
Snyder solution outside the black hole for S > 1.

It follows that the shock wave will first become
visible at the FRW center r̄ = 0 at the moment
t = t0, (R(t0) = 1), when the Hubble length
H�1

0 = H�1(t0) satisfies

1

H0
¼ 1þ 3�

2
r� ½72�

where r� is the FRW position of the shock at the
instant of the big bang. At this time, the number of
Hubble lengths

ffiffiffiffiffi
N
p

0 from the FRW center to the
shock wave at time t = t0 can be estimated by

1 � 2

1þ 3�
�

ffiffiffiffiffi
N
p

0 �
2

1þ 3�
e
ffiffiffiffi
3�
p

ð1þ3�Þ=ð1þ�Þð Þ

Thus, in particular, the shock wave will still lie
beyond the Hubble length 1=H0 at the FRW time t0

when it first becomes visible. Furthermore, the time
tcrit > t0 at which the shock wave will emerge from
the white hole given that t0 is the first instant at
which the shock becomes visible at the FRW center,
can be estimated by

2

1þ 3�
e�=4 � tcrit

t0
� 2

1þ 3�
e2
ffiffiffiffi
3�
p

=ð1þ�Þ ½73�

for 0 < � � 1=3, and by the better estimate

e
ffiffi
6
p

=4 � tcrit

t0
� e3=2 ½74�
in the case �= 1=3. Inequalities [73], [74] imply, for
example, that at the Oppenheimer–Snyder limit �= 0,ffiffiffiffiffiffiffi

N0

p
¼ 2;

tcrit

t0
¼ 2

and in the limit �= 1=3,

1:8 � tcrit

t0
� 4:5; 1 <

ffiffiffiffiffiffiffi
N0

p
� 4:5

We can conclude that at the moment t0 when the
shock wave first becomes visible at the FRW center,
the shock wave must lie within 4.5 Hubble lengths of
the FRW center. Throughout the expansion up until
this time, the expanding universe must lie entirely
within a white hole – the universe will eventually
emerge from this white hole, but not until some later
time tcrit, where tcrit does not exceed 4.5t0.
Conclusion

We believe that the existence of a wave at the
leading edge of the expansion of the galaxies is the
most likely possibility. The alternatives are that
either the universe of expanding galaxies goes on out
to infinity, or else the universe is not simply
connected. Although the first possibility has been
believed for most of the history of cosmology based
on the Friedmann universe, we find this implausible
and arbitrary in light of the shock wave refinements
of the FRW metric discussed here. The second
possibility, that the universe is not simply connected,
has received considerable attention recently (Klarreich
2003). However, since we have not seen, and
cannot create, any non-simply-connected 3-spaces
on any other length scale, and since there is no
observational evidence to support this, we view this
as less likely than the existence of a wave at the leading
edge of the expansion of the galaxies, left over from the
big bang. Recent analysis of the microwave back-
ground radiation data shows a cutoff in the angular
frequencies consistent with a length scale of around
one Hubble length (Andy Abrecht, private commu-
nication). This certainly makes one wonder whether
this cutoff is evidence of a wave at this length scale,
especially given the consistency of this possibility
with the case r� > 0 of the family of exact solutions
discussed here.
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Introduction

The nature of the low-temperature spin glass phase in
short-range models remains one of the central problems
in the statistical mechanics of disordered systems (Binder
and Young 1986, Chowdhury 1986, Mézard et al. 1987,
Stein 1989, Fischer and Hertz 1991, Dotsenko 2001,
Newman and Stein 2003). While many of the basic
questions remain unanswered, analytical and rigorous
work over the past decade have greatly streamlined the
number of possible scenarios for pure state structure and
organization at low temperatures, and have clarified the
thermodynamic behavior of these systems.

The unifying concept behind this work is that of
the ‘‘metastate.’’ It arose independently in two
different constructions (Aizenman and Wehr 1990,
Newman and Stein 1996b), which were later shown
to be equivalent (Newman and Stein 1998a). The
metastate is a probability measure on the space of
all thermodynamic states. Its usefulness arises in
situations where multiple ‘‘competing’’ pure states
may be present. In such situations it may be
difficult to construct individual states in a measur-
able and canonical way; the metastate avoids this
difficulty by focusing instead on the statistical
properties of the states.

An important aspect of the metastate approach is
that it relates, by its very construction (Newman and
Stein 1996b), the observed behavior of a system in
large but finite volumes with its thermodynamic
properties. It therefore serves as a (possibly indis-
pensable) tool for analyzing and understanding both
the infinite-volume and finite-volume properties of a
system, particularly in cases where a straightforward
interpolation between the two may be incorrect, or
their relation otherwise difficult to analyze.

We will focus on the Edwards–Anderson (EA)
Ising spin glass model (Edwards and Anderson
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1975), although most of our discussion is relevant to
a much larger class of realistic models. The EA
model is described by the Hamiltonian

HJ ¼ �
X
hx;yi

Jxy�x�y ½1�

where J denotes a particular realization of all of the
couplings Jxy and the brackets indicate that the sum is
over nearest-neighbor pairs only, with x, y 2 Zd. We
will take Ising spins �x = �1; although this will affect
the details of our discussion, it is unimportant for our
main conclusions. The couplings Jxy are quenched,
independent, identically distributed random variables
whose common distribution � is symmetric about zero.
States and Metastates

We are interested in both finite-volume and infinite-
volume Gibbs states. For the cube of length scale L,
�L = {�L, �L þ1, . . . , L}d, we define HJ , L to be
the restriction of the EA Hamiltonian to �L with a
specified boundary condition such as free, fixed, or
periodic. Then the finite-volume Gibbs distribution
�(L)
J = �(L)

J ,� on �L (at inverse temperature �= 1=T) is

�
ðLÞ
J ;�ð�Þ ¼ Z�1

L exp ��HJ ;Lð�Þ
� �

½2�

where the partition function ZL(�) is such that
the sum of �(L)

J ,� over all � yields 1. (In this and all
succeeding definitions, the dependence on spatial
dimension d will be suppressed.)

Thermodynamic states are described by infinite-
volume Gibbs measures. At fixed inverse temperature
� and coupling realization J , a thermodynamic state
�J ,� is the limit, as L!1, of some sequence of such
finite-volume measures (each with a specified bound-
ary condition, which may remain the same or may
change with L). A thermodynamic state �J ,� can also
be characterized intrinsically through the Dobrushin–
Lanford–Ruelle (DLR) equations (see, e.g., Georgii
1988): for any �L, the conditional distribution of �J ,�

(conditioned on the sigma-field generated by
{�x : x 2 Zdn�L} is �(L),�

J ,� , where � is given by the
conditioned values of �x for x on the boundary of �L.

Consider now the set G=G(J ,�) of all thermo-
dynamic states at a fixed (J ,�). The set of extremal,
or pure, Gibbs states is defined by

ex G ¼G n a�1 þ ð1� aÞ�2 :f
a 2 ð0; 1Þ; �1; �2 2 G; �1 6¼ �2g ½3�

and the number of pure states N (J ,�) at (J ,�) is the
cardinality jex Gj of ex G. It is not hard to show that, in
any d and for a.e. J , the following two statements are
true: (1) N = 1 at sufficiently low � > 0; (2) at any
fixed �,N is constant a.s. with respect to the J ’s. (The
last assertion follows from the measurability and
translation invariance of N , and the translation
ergodicity of the disorder distribution of J .)

A pure state �� (where � is a pure-state index) can
also be intrinsically characterized by a ‘‘clustering
property’’; for two-point correlation functions, this
reads

h�x�yi�� � h�xi��h�yi�� ! 0 ½4�

as jx� yj ! 1. A simple observation (Newman and
Stein 1992), with important consequences for spin
glasses, is that if many pure states exist, a sequence
of �(L)

J , �’s, with boundary conditions and L’s chosen
independently of J , will generally not have a
(single) limit. We call this phenomenon ‘‘chaotic
size dependence’’ (CSD).

We will be interested in the properties of ex G at
low temperatures. If the spin-flip symmetry present
in the EA Hamiltonian equation [1] is spontaneously
broken above some dimension d0 and below some
temperature Tc(d), there will be at least a pair of
pure states such that their even-spin correlations
are identical and their odd-spin correlations have the
opposite sign. Assuming that such broken spin-flip
symmetry indeed exists for d > d0 and T < Tc(d), the
question of whether there exists more than one
such pair (of spin-flip related extremal infinite-
volume Gibbs distributions) is a central unresolved
issue for the EA and related models. If many such
pairs should exist, we can ask about the structure of
their relations with one another, and how this
structure would manifest itself in large but finite
volumes. To do this, we use an approach, introduced
by Newman and Stein (1996b), to study inhomoge-
neous and other systems with many competing pure
states. This approach, based on an analogy with
chaotic dynamical systems, requires the construction
of a new thermodynamic quantity which is called the
‘‘metastate’’ – a probability measure �J on the
thermodynamic states. The metastate allows an
understanding of CSD by analyzing the way in
which �(L)

J ,� ‘‘samples’’ from its various possible limits
as L!1.

The analogy with chaotic dynamical systems can
be understood as follows. In dynamical systems, the
chaotic motion along a deterministic orbit is
analyzed in terms of some appropriately selected
probability measure, invariant under the dynamics.
Time along the orbit is replaced, in our context, by
L and the phase space of the dynamical system is
replaced by the space of Gibbs states.

Newman and Stein (1996b) considered a ‘‘micro-
canonical ensemble’’ (as always, at fixed �, which
will hereafter be suppressed for ease of notation) �N

in which each of the finite-volume Gibbs states
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�(L1)
J , �(L2)

J , . . . , �(LN)
J has weight N�1. The ensemble

�N converges to a metastate �J as N !1, in the
following sense: for every (nice) function g on states
(e.g., a function of finitely many correlations),

lim
N!1

N�1
XN
‘¼1

gð�ðL‘ÞÞ ¼
Z

gð�Þ d�J ð�Þ ½5�

The information contained in �J effectively specifies
the fraction of cube sizes L‘ which the system spends
in different (possibly mixed) thermodynamic states �
as ‘!1.

A different, but in the end equivalent, approach
based on J -randomness is due to Aizenman and
Wehr (1990). Here one considers the random pair
(J ,�(L)

J ), defined on the underlying probability space
of J , and takes the limit �y (with conditional
distribution �yJ , given J ), via finite-dimensional
distributions along some subsequence. The details
are omitted here, and the reader is referred to the
work by Aizenman and Wehr (1990) and Newman
and Stein (1998a). We note, however, the important
result that a ‘‘deterministic’’ subsequence of volumes
can be found on which [5] is valid and also (J , �(L)

J )
converges, with �yJ =�J (Newman and Stein
1998a).

In what follows we use the term ‘‘metastate’’ as
shorthand for the �J constructed using periodic
boundary conditions on a sequence of volumes
chosen independently of the couplings, and along
which �J =�yJ . We choose periodic boundary
conditions for specificity; the results and claims
discussed are expected to be independent of the
boundary conditions used, as long as they are
chosen independently of the couplings.
Low-Temperature Structure
of the EA Model

There have been several scenarios proposed for the
spin-glass phase of the Edwards–Anderson model at
sufficiently low temperature and high dimension.
These remain speculative, because it has not even
been proved that a phase transition from the high-
temperature phase exists at positive temperature in
any finite dimension.

As noted earlier, at sufficiently high temperature
in any dimension (and at all nonzero temperatures in
one and presumably two dimensions, although the
latter assertion has not been proved), there is a
unique Gibbs state. It is conceivable that this
remains the case in all dimensions and at all nonzero
temperatures, in which case the metastate �J is, for
a.e. J , supported on a single, pure Gibbs state �J .
(It is important to note, however, that in principle
such a trivial metastate could occur even if N > 1;
indeed, just such a situation of ‘‘weak uniqueness’’
(van Enter and Fröhlich 1985, Campanino et al.
1987) happens in very long range spin glasses at
high temperatures (Fröhlich and Zegarlinski 1987,
Gandolfi et al. 1993).)

A phase transition has been proved to exist
(Aizenman et al. 1987) in the Sherrington–
Kirkpatrick (SK) model (Sherrington and Kirkpa-
trick 1975), which is the infinite-range version of
the EA model. Numerical (Ogielski 1985, Ogielski
and Morgenstern 1985, Binder and Young 1986,
Kawashima and Young 1996) and some analytical
(Fisher and Singh 1990, Thill and Hilhorst 1996) work
has led to a general consensus that above some
dimension (typically around three or four) there does
exist a positive-temperature phase transition below
which spin-flip symmetry is broken, that is, in which
pure states come in pairs, as discussed below eqn [4].
Because much of the literature has focused on this
possibility, we assume it in what follows, and the
metastate approach turns out to be highly useful in
restricting the scenarios that can occur. The simplest
such scenario is a two-state picture in which, below the
transition temperature Tc, there exists a single pair of
global flip-related pure states ��J and ���J . In this case,
there is no CSD for periodic boundary conditions and
the metastate can be written as

�J ¼ �1
2�
�
J þ

1
2�
��
J

½6�

That is, the metastate is supported on a single
(mixed) thermodynamic state.

The two-state scenario that has received the most
attention in the literature is the ‘‘droplet/scaling’’
picture (McMillan 1984, Fisher and Huse 1986,
1988, Bray and Moore 1985). In this picture a low-
energy excitation above the ground state in �L is a
droplet whose surface area scales as lds , with l �
O(L) and ds < d, and whose surface energy scales as
l	, with 	 > 0 (in dimensions where Tc > 0). More
recently, an alternative picture has arisen (Krzakala
and Martin 2000, Palassini and Young 2000) in
which the low-energy excitations differ from those
of droplet/scaling, in that their energies scale as l	

0
,

with 	0= 0.
The low-temperature picture that has perhaps

generated the most attention in the literature is
the replica symmetry breaking (RSB) scenario
(Binder and Young 1986, Marinari et al. 1994,
1997, Franz et al. 1998, Marinari et al. 2000,
Marinari and Parisi 2000, 2001, Dotsenko 2001),
which assumes a rather complicated pure-state
structure, inspired by Parisi’s solution of the SK
model (Parisi 1979, 1983, Mézard et al. 1984,
1987). This is a many-state picture (N =1 for a.e.
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J ) in which the ordering is described in terms of the
‘‘overlaps’’ between states. There has been some
ambiguity in how to describe such a picture for
short-range models; the prevailing, or standard,
view. Consider any reasonably constructed thermo-
dynamic state �J (see Newman and Stein (1998a)
for more details) – e.g., the ‘‘average’’ over the
metastate �J

�J ¼
Z

� d�J ð�Þ ½7�

Now choose � and � 0 from the product distribu-
tion �J (�)�J (� 0). The overlap Q is defined as

Q ¼ lim
L!1

j�Lj�1
X
x2�L

�x�
0
x ½8�

and PJ (q) is defined to be its probability
distribution.

In the standard RSB picture, �J is a mixture of
infinitely many pure states, each with a specific
J -dependent weight W:

�J ð�Þ ¼
X
�

W�
J �

�
J ð�Þ ½9�

If � is drawn from ��J and � 0 from ��J , then the
expression in eqn [8] equals its thermal mean,

q��J ¼ lim
L!1

j�Lj�1
X
x2�L

h�xi�h�xi� ½10�

and hence PJ is given by

PJ ðqÞ ¼
X
�;�

W�
JW�

J �ðq� q��J Þ ½11�

The ‘‘self-overlap,’’ or EA order parameter, is given
by qEA = q��J and (at fixed T) is thought to be
independent of both � and J (with probability 1).

According to the standard RSB scenario, the W�
J ’s

and q��J ’s are non-self-averaging (i.e., J -dependent)
quantities, except for �= � or its global flip, where
q��J = �qEA. The average Ps(q) of PJ (q) over the
disorder distribution of J is predicted to be a
mixture of two delta-function components at �qEA

and a continuous part between them. However, it
was proved by Newman and Stein (1996c) that this
scenario cannot occur, because of the translation
invariance of PJ (q) and the translation ergodicity of
the disorder distribution. Nevertheless, the metastate
approach suggests an alternative, nonstandard, RSB
scenario, which is described next.

The idea behind the nonstandard RSB picture
(referred to by us as the nonstandard SK picture in
earlier papers) is to produce the finite-volume
behavior of the SK model to the maximum extent
possible. We therefore assume in this picture that in
each �L, the finite-volume Gibbs state �(L)
J is well

approximated deep in the interior by a mixed
thermodynamic state �(L), decomposable into many
pure states ��L

(explicit dependence on J is
suppressed for ease of notation). More precisely,
each � in �J satisfies

� ¼
X
��

W��

� ���
½12�

and is presumed to have a nontrivial overlap
distribution for �,� 0 from �(�)�(� 0):

P�ðqÞ ¼
X
��;��

W��

� W��

� � q� q����

� �
½13�

as did �J in the standard RSB picture.
Because �J , like its counterpart �J in the standard

SK picture, is translation covariant, the resulting
ensemble of overlap distributions P� is independent
of J . Because of the CSD present in this scenario,
the overlap distribution for �(L)

J varies with L, no
matter how large L becomes. So, instead of
averaging the overlap distribution over J , the
averaging must now be done over the states �
within the metastate �J , all at fixed J :

PnsðqÞ ¼
Z

P�ðqÞ�J ð�Þd� ½14�

The Pns(q) is the same for a.e. J , and has a form
analogous to the Ps(q) in the standard RSB picture.

However, the nonstandard RSB scenario seems
rather unlikely to occur in any natural setting,
because of the following result:

Theorem Newman and Stein 1998b). (Consider
two metastates constructed along (the same) deter-
ministic sequence of �L’s, using two different
sequences of flip-related, coupling-independent
boundary conditions (such as periodic and antiper-
iodic). Then with probability one, these two
metastates are the same.

The proof is given by Newman and Stein (1998b),
but the essential idea can be easily described here.
As discussed earlier, �J =�

y
J ; but �yJ is constructed

by a limit of finite-dimensional distributions, which
means averaging over other couplings including the
ones near the system boundary, and hence gives the
same metastate for two flip-related boundary
conditions.

This invariance with respect to different sequences
of periodic and antiperiodic boundary conditions
means essentially that the frequency of appearance
of various thermodynamic states �(L) in finite
volumes �L is independent of the choice of
boundary conditions. Moreover, this same
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invariance property holds among any two sequences
of fixed boundary conditions (and the fixed bound-
ary condition of choice may even be allowed to vary
arbitrarily along any single sequence of volumes)! It
follows that, with respect to changes of boundary
conditions, the metastate is extraordinarily robust.

This should rule out all but the simplest overlap
structures, and in particular the nonstandard RSB
and related pictures (for a full discussion,
see Newman and Stein 1998b). It is therefore
natural to ask whether the property of metastate
invariance allows any many-state picture.

There is one such picture, namely the ‘‘chaotic pairs’’
picture, which is fully consistent with metastate
invariance (our belief is that it is the only many-state
picture that fits naturally and easily into results
obtained about the metastate.)

Here the periodic boundary condition metastate is
supported on infinitely many pairs of pure states,
but instead of eqn [12] one has

� ¼ ð1=2Þ���
þ ð1=2Þ����

½15�

with overlap

P� ¼ ð1=2Þ� q� qEAÞ þ ð1=2Þ�ðqþ qEAð Þ ½16�

So there is CSD in the states but not in the overlaps,
which have the same form as a two-state picture in
every volume. The difference is that, while in the latter
case, one has the ‘‘same’’ pair of states in every volume,
in chaotic pairs the pure-state pair varies chaotically as
volume changes. If the chaotic pairs picture is to be
consistent with metastate invariance in a natural way,
then the number of pure-state pairs should be
‘‘uncountable.’’ This allows for a ‘‘uniform’’ distribu-
tion (within the metastate) over all of the pure states,
and invariance of the metastate with respect to
boundary conditions could follow naturally.
Open Questions

We have discussed how the metastate approach to the
EA spin glass has narrowed considerably the set of
possible scenarios for low-temperature ordering in any
finite dimension, should broken spin-flip symmetry
occur. The remaining possibilities are either a two-state
scenario, such as droplet/scaling, or the chaotic-pairs
picture if there exist many pure states at some (�, d).
Both have simple overlap structures. The metastate
approach appears to rule out more complicated
scenarios such as RSB, in which the approximate
pure-state decomposition in a typical large, finite
volume is a nontrivial mixture of many pure-state pairs.

Of course, this does not answer the question of
which, if either, of the remaining pictures actually
does occur in real spin glasses. In this section we list
a number of open questions relevant to the above
discussion.

Open Question 1 Determine whether a phase
transition occurs in any finite dimension greater
than one. If it does, find the lower critical dimension.

Existence of a phase transition does not necessa-
rily imply two or more pure states below Tc. It could
happen, for example, that in some dimension there
exists a single pure state at all nonzero temperatures,
with two-point spin correlations decaying exponen-
tially above Tc and more slowly (e.g., as a power
law) below Tc. This leads to:

Open Question 2 If there does exist a phase
transition above some lower critical dimension,
determine whether the low-temperature spin-glass
phase exhibits broken spin-flip symmetry.

If broken symmetry does occur in some dimen-
sion, then of course an obvious open question is to
determine the number of pure-state pairs, and hence
the nature of ordering at low temperature. A
(possibly) easier question (but still very difficult),
and one which does not rely on knowing whether a
phase transition occurs, is to determine the zero-
temperature – i.e., ground state – properties of spin
glasses as a function of dimensionality. A ground
state is an infinite-volume spin configuration whose
energy (governed by eqn [1]) cannot be lowered by
flipping any finite subset of spins. That is, all ground
state spin configurations must satisfy the constraintX

x;yh i2C
Jxy�x�y � 0 ½17�

along any closed loop C in the dual lattice.
Open Question 3 How many ground state pairs is
the T = 0 periodic boundary condition metastate
supported on, as a function of d?

The answer is known to be one for 1D, and a partial
result (Newman and Stein 2000, 2001a) points
towards the answer being one for 2D as well. There
are no rigorous, or even heuristic (except based on
underlying ‘‘ansätze’’) arguments in higher dimension.

An interesting – but unrealistic – spin-glass model
in which the ground state structure can be exactly
solved (although not yet completely rigorously) was
proposed by the authors (Newman and Stein 1994,
1996a) (see also Banavar 1994). This ‘‘highly
disordered’’ spin glass is one in which the coupling
magnitudes scale nonlinearly with the volume (and so
are no longer distributed independently of the
volume, although they remain independent and
identically distributed for each volume). The model
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displays a transition in ground state multiplicity:
below eight dimensions, it has only a single pair of
ground states, while above eight it has uncountably
many such pairs. The mechanism behind the transi-
tion arises from a mapping to invasion percolation
and minimal spanning trees (Lenormand and Bories
1980, Chandler et al. 1982, Wilkinson and Will-
emsen 1983): the number of ground state pairs can be
shown to equal 2N , whereN =N (d) is the number of
distinct global components in the ‘‘minimal spanning
forest.’’ The zero-temperature free boundary condi-
tion metastate above eight dimensions is supported
on a uniform distribution (in a natural sense) on
uncountably many ground state pairs.

Interestingly, the high-dimensional ground state
multiplicity in this model can be shown to be
unaffected by the presence of frustration, although
frustration still plays an interesting role: it leads to
the appearance of chaotic size dependence when free
boundary conditions are used.

Returning to the more difficult problem of ground
state multiplicity in the EA model, we note as a final
remark that there could, in principle, exist ground
state pairs that are not in the support of metastates
generated through the use of coupling-independent
boundary conditions. If such states exist, they may
be of some interest mathematically, but are not
expected to play any significant physical role. A
discussion of these putative ‘‘invisible states’’ is
given by Newman and Stein (2003).

Open Question 4 If there exists broken spin-flip
symmetry at a range of positive temperatures in
some dimensions, then what is the number of pure-
state pairs as a function of (�, d)?

Again, the answer to this is not known above one
dimension; indeed, the prerequisite existence of
spontaneously broken spin-flip symmetry has not
been proved in any dimension. A speculative paper
by the authors (Newman and Stein 2001b), using a
variant of the highly disordered model, suggests that
there is at most one pair of pure states in the EA
model below eight dimensions; but no rigorous
arguments are known at this time.
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Introduction

The sine-Gordon equation

@2

@x2
� @2

@t2

� �
� ¼ sin � ½1�

may be viewed as a prototype for a nonlinear
integrable field theory. It is manifestly invariant
under spacetime translations and Lorentz boosts,

ðx; tÞ 7! ðx� �; t � �Þ
ðx; tÞ 7! ðx cosh 	� t sinh 	; t cosh 	� x sinh 	Þ

½2�
It shares this relativistic invariance property with the
linear Klein–Gordon equation, which is obtained
upon replacing sin� by �. (The name sine-Gordon
equation is derived from this relation, and was
introduced by Kruskal.) The sine-Gordon equation
can also be defined and studied in the form

@2

@u @v
~� ¼ sin ~�; ~�ðu; vÞ ¼ �ðt; xÞ ½3�

where

u ¼ ðxþ tÞ=2; v ¼ ðx� tÞ=2 ½4�

are the so-called light-cone variables.
There are two interpretations of the field �(t, x)

that are quite different, both from a physical and
from a mathematical viewpoint. The first one
consists in viewing it as a real-valued function, so
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that [1] is simply a nonlinear PDE in two variables.
In the second version, one views �(t, x) as an
operator-valued distribution on a Hilbert space.
(Thus, one should smear �(t, x) with a test function
f (t, x) in Schwartz space to obtain a genuine
operator on the Hilbert space.) In spite of their
different character, the classical and quantum field
theory versions have several striking features in
common, including the presence of an infinite
number of conservation laws and the occurrence of
solitonic excitations.

The classical sine-Gordon equation has been used
as a model for various wave phenomena, including
the propagation of dislocations in crystals, phase
differences across Josephson junctions, torsion
waves in strings and pendula, and waves along
lipid membranes. It was already studied in the
nineteenth century in connection with the theory of
pseudospherical surfaces. The quantum version is
used as a simple model for solid-state excitations.

The designation ‘‘sine-Gordon’’ is also used for
various equations that generalize [1] or bear
resemblance to it. These include the so-called
homogeneous and symmetric space sine-Gordon
models, discrete and supersymmetric versions, and
generalizations to higher-dimensional spacetimes
(i.e., in [1] the spatial derivative is replaced by the
Laplace operator in several variables). In this
contribution we focus on [1], however.

Our main goal is to discuss the integrability and
solitonic properties, both at the classical and at the
quantum level. First, we sketch the inverse-scattering
transform (IST) solution to the Cauchy problem for
[1]. Following Faddeev and Takhtajan, we emphasize
the interpretation of the IST as an action-angle
transformation for an infinite-dimensional Hamilto-
nian system. Next, the particle-like solutions are
surveyed by using a description in terms of variables
that may be viewed as relativistic action-angle
coordinates. This is followed by a section on the
quantum field theory version, paying special atten-
tion to the factorized scattering that is the quantum
analog of the solitonic classical scattering. Finally, we
sketch the intimate relation between the N-particle
subspaces of the classical and quantum sine-Gordon
field theory and certain integrable relativistic systems
of N point particles on the line.
The Classical Version: An Integrable
Hamiltonian System

In order to tie in the hyperbolic evolution equation
[1] with the notion of infinite-dimensional integrable
system, it is necessary to restrict attention to initial
data �(0, x) =�(x) and @t�(0, x) = �(x) with special
properties. First of all, the energy functional

H ¼
Z 1
�1

1

2
�ðxÞ2 þ 1

2
@x�ðxÞ2 þ ð1� cos�ðxÞÞ

� �
dx

½5�

and symplectic form

! ¼
Z 1
�1

d�ðxÞ ^ d�ðxÞ dx ½6�

should be well defined on the phase space of initial
data. Indeed, in that case [1] amounts to the
Hamilton equation associated to [5] via [6].

Second, there exists a sequence of functionals

I2lþ1ð�; �Þ; l 2 Z ½7�

that formally Poisson-commute with H and among
themselves.

In particular, H equals 2(I1 þ I�1), whereas
2(I1 � I�1) equals the momentum functional

P ¼ �
Z 1
�1

�ðxÞ@x�ðxÞ dx ½8�

The functional I2lþ1 contains x-derivatives of order
up to j2l þ 1j, so one needs to require that the
functions @x�(x) and �(x) be smooth and that all of
their derivatives have sufficient decrease for
x!�1.

A natural choice guaranteeing the latter require-
ments is

@x�ðxÞ; �ðxÞ 2 SRðRÞ ½9�

where SR(R) denotes the Schwartz space of
real-valued functions on the line. To render the integral
over 1� cos�(x) (and similar integrals occurring for
the sequence [7]) finite, one also needs to require

�ðxÞ! 2�k�; x!�1; k� 2Z ½10�

On this phase space � of initial data, the Cauchy
problem for the evolution equation [1] is not only
well posed, but can be solved in explicit form by
using the IST. More generally, the Hamiltonians
I2lþ1 give rise to evolution equations that are
simultaneously solved via the IST, yielding an
infinite sequence of commuting Hamiltonian flows
on �.

Before sketching the overall picture resulting from
the IST, it should be mentioned at this point that [1]
admits explicit solutions of interest that do not
belong to �. First, there is a class of algebro-
geometric solutions that have no limits as x!�1.
These solutions can be obtained via finite-gap
integration methods, yielding formulas involving
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the Riemann theta functions associated to compact
Riemann surfaces. Second, there are the tachyon
solutions. They arise from the particle-like solutions
that do belong to � by the transformation

�ðt; xÞ!�ðx; tÞ þ � ½11�

(Observe that the equation of motion [1] is invariant
under [11], whereas due to the finite-energy require-
ment [10] this is not true for solutions evolving in �.)

The IST via which the above Cauchy problem can
be solved starts from an auxiliary system of two
linear ordinary differential equations involving
�(0, x) and @t�(0, x). It is beyond our scope to
describe the system in detail. The results derived
from it, however, are to a large extent the same as
those obtained via a simpler auxiliary linear opera-
tor that is associated to the light-cone Cauchy
problem. The latter operator is of the Ablowitz–
Kaup–Newell–Segur (AKNS) form. That is, the
linear operator is an ordinary differential operator
of Dirac type given by

L ¼
i d

dx �iq

ir �i d
dx

 !
½12�

where the external potentials r(u) and q(u) depend
on the evolution equation at hand. For the light-
cone sine-Gordon equation [3], one needs to choose

r ¼ �q ¼ ð@u
~�Þðu;0Þ=2 ½13�

In both settings, the associated spectral features
are invariant under the sine-Gordon evolution and
all of the evolutions generated by the Hamiltonians
I2lþ1, yielding the so-called isospectral flows. More
specifically, if the initial data give rise to bound-state
solutions of the linear problem (square-integrable
wave functions), then the corresponding eigenvalues
are time independent. Furthermore, due to the decay
requirements on the potential in the linear system,
there exist scattering solutions with plane-wave
asymptotics for all initial data in �. A suitable
normalization leads to the so-called Jost solutions
�(x,�). (Here � is the spectral parameter, which
varies over the real line for scattering solutions.)
Their x! �1 asymptotics is encoded in transition
coefficients a(�) and b(�), with a(�) and jb(�)j being
time independent, whereas arg b(�) has a linear
dependence on time when the potential evolves
according to the sine-Gordon equation. The bound
states correspond to special �-values �1, . . . , �N with
positive imaginary part (namely the zeros of the
coefficient a(�), which is analytic in the upper-half
�-plane); their normalization coefficients �1, . . . , �N

have an essentially linear time evolution, just
as b(�).
The crux of the IST is now that the potentials can
be reconstructed from the spectral data

fbð�Þ; �1; . . . ; �N; �1; . . . ; �Ng ½14�

by solving a linear integral equation of Gelfand–
Levitan–Marchenko (GLM) type. (Alternatively,
Riemann–Hilbert problem techniques can be used.)
Hence, the nonlinear Cauchy problem can be
replaced by the far simpler linear problems of
determining the spectral data [14] of a linear
operator (the direct problem) and then solving the
linear GLM equation for the time-evolved scattering
data (the inverse problem).

From the Hamiltonian perspective, the IST may
be reinterpreted as a transformation to action-angle
variables. The action variables are defined in terms
of jb(�)j and �1, . . . ,�N. They are time independent
under the sine-Gordon and higher Hamiltonian
flows. The angle variables are arg b(�) and suitable
functions of the normalization coefficients. They
depend linearly on the evolution times of the flows.
The Hamiltonians can be explicitly expressed in
action variables.

Next, we point out that there is a large subspace
of Cauchy data (�(x), �(x)) that do not give rise to
bound states in the auxiliary linear problem. The
associated solutions are the so-called radiation
solutions: they decrease to 0 for large times. These
solutions can be obtained from the inverse transform
involving the GLM equation by only taking b(�)
into account.

The other extreme is to choose b(�) = 0 and
arbitrary bound states and normalization coeffi-
cients in the GLM equation. This special case of
vanishing reflection leads to the particle-like solu-
tions that are studied in the next section. For general
Cauchy data, one has both b(�) 6¼ 0 and a finite
number of bound states. These so-called mixed
solutions have a radiation component (encoded in
b(�)) which decays for asymptotic times, whereas
the bound states show up for t! �1 as isolated
solitons, antisolitons, and breathers.
Classical Solitons, Antisolitons,
and Breathers

Just as for other classical soliton equations, the case
of reflectionless data can be handled in complete
detail, since the GLM equation reduces to an N �N
system of linear equations. The case N = 1 yields the
1-soliton and 1-antisoliton solutions. Resting at the
origin, these one-particle solutions are given by

�4 arctanðe�xÞ ½15�
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and have energy 8 (cf. [5]). (We normalize all
solutions by requiring

lim
x!1

�ðt; xÞ ¼ 0 ½16�

Note that one can add arbitrary multiples of 2�
without changing the energy H [5].) A spatial
translation and Lorentz boost then yields the general
solutions

��ðt; xÞ
¼ �4 arctanðexpðq� x cosh �þ t sinh �ÞÞ ½17�

with energy 8 cosh � and momentum 8 sinh � (cf. [8]).
Defining the topological charge of a solution

(with normalization [16]) by

Q ¼ 1

2�
lim

x!�1
�ðt; xÞ ½18�

the different charges Q = 1 and Q = �1 of the
soliton and antisoliton reflect a signature associated
to the special value of the spectral parameter on the
imaginary axis for which a bound state in the linear
problem occurs. More generally, for bound-state
eigenvalues on the imaginary axis these signatures
must be specified in the IST setting, a point glossed
over in the previous section.

Bound states in the linear problem can also arise
from �-values off the imaginary axis, which come in
pairs ia� b, with a, b > 0. Such pairs give rise to
solutions containing breathers, which can be viewed as
bound states of a soliton and an antisoliton. The one-
breather solution breathing at the origin is given by

4 arctan cot 	
sinðt sin 	Þ

coshðx cos 	Þ

� �
; 	 2 ð0; �=2Þ ½19�

and has energy 16 cos 	. A spacetime translation and
Lorentz boost then yields the general solution

�bðt;xÞ

¼ 4 arctan cot	
sin½�
=2þ sin	ðtcosh��xsinh�Þ�
cosh½y=2� cos	ðxcosh�� t sinh�Þ�

� �
½20�

which has energy 16cosh�cos	 and momentum
16sinh�cos	. It may be obtained by analytic
continuation from the solution describing a collision
between a soliton with velocity tanh�1 and an
antisoliton with velocity tanh�2, taking �2 <�1.
The latter is given by

�þ�ðt;xÞ

¼ 4 arctan cothðð�1��2Þ=2Þ
sinhðð�1��2Þ=2Þ
coshðð�1þ�2Þ=2Þ

� �

�2 <�1 ½21�
where

�j ¼ qj � x cosh �j þ t sinh �j; qj; �j 2 R ½22�

and �b results from �þ� by substituting

�1
2
! �� i	; q1

2
!ðy� i
Þ=2 ½23�

(For the case �1 < �2, one needs an extra minus sign
on the right-hand side of [21].)

There is yet another possibility for an eigenvalue
on the imaginary axis we have not mentioned thus
far: it may have an arbitrary multiplicity, giving rise
to the so-called multipole solutions. This is illu-
strated by the breather solution �b: when one sets

= �2q0	 and lets 	 tend to 0, one obtains a
solution

�sepðt; xÞ

¼ 4 arctan
q0 þ t cosh �� x sinh �

cosh½y=2� x cosh �þ t sinh ��

� �
½24�

From a physical viewpoint, the soliton and anti-
soliton have just enough energy to prevent a bound
state from being formed. Notice that in this case the
distance between soliton and antisoliton diverges
logarithmically in jtj as t! �1, whereas for �þ�
one obtains linear increase.

The 2-soliton and 2-antisoliton solutions can also be
obtained by analytic continuation of �þ�. They read

��� ¼ � 4 arctan

�
cothðð�1 � �2Þ=2Þ

� coshðð�1 � �2Þ=2Þ
sinhðð�1 þ �2Þ=2Þ

�
; �2 < �1 ½25�

where �j is given by [22]. Thus, they arise by
taking q2! q2 þ i� and q1! q1 þ i� in [21], resp.
The equal-signature eigenvalues corresponding to
these two solutions cannot collide and move off
the imaginary axis; physically speaking, equal-
charge particles repel each other. The energy and
momentum of the solutions [25] and [21] are given
by 8 cosh �1 þ 8 cosh �2 and 8 sinh �1 þ 8 sinh �2,
respectively.

Up to scale factors, the above variables �1, �2 and
�, 	 are the action variables resulting from the IST,
whereas q1, q2 and y, 
 are the canonically con-
jugated angle variables. Accordingly, the time and
space translation flows (generated by H [5] and P
[8], resp.) shift the angles linearly in the evolution
parameters t and x.

We conclude this section with a description of the
N-soliton solution and its large time asymptotics. It
can be expressed in terms of the N �N matrix

Ljk ¼ expð�jÞ
Q

l 6¼j j cothðð�j � �lÞ=2Þj
coshðð�j � �kÞ=2Þ

½26�
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where �j is given by [22] with

q1; . . . ; qN 2 R; �N < � � � < �1 ½27�

Specifically, one has

�Nþðt; xÞ ¼4 tr arctan ðLÞ
¼ � 2i lnðj1N þ iLj=j1N � iLjÞ

¼ � 2i ln 1þ
XN
l¼1

ilSlðLÞ
 !

=c:c:

 !
½28�

where Sl is the lth symmetric function of L. Using
Cauchy’s identity, one obtains the explicit formula

Sl ¼
X

I�f1;...;Ng
jIj¼l

exp
X
j2I

�j

 !Y
j2I
k=2I

j cothðð�j � �kÞ=2Þj ½29�

In order to specify the t! �1 asymptotics of �Nþ,
we introduce the 1-soliton solutions

��j ðt; xÞ ¼ 4 arctanðexpð�j ��j=2ÞÞ ½30�

where

�j ¼
X
k<j

�
X
k>j

0
@

1
A�ð�j � �kÞ ½31�

�ð�Þ ¼ ln cothð�=2Þ2
� �

½32�

Then, one has

sup
x2R

�Nþðt; xÞ �
XN
j¼1

��j ðt; xÞ
�����

����� ¼ Oðexpð�jtjrÞÞ

t! �1 ½33�

where the decay rate is given by

r ¼ min
j6¼k
ðcoshð�jÞj tanh �j � tanh �kjÞ ½34�

Thus, the soliton profile with velocity tanh �j incurs
a shift �j= cosh �j as a result of the collision. The
factor 1= cosh �j may be viewed as a Lorentz
contraction factor.
The Quantum Version: A Soliton
Quantum Field Theory

From a perturbation-theoretic viewpoint, the quan-
tum sine-Gordon Hamiltonian is given by

H ¼
Z 1
�1

:
1

2
ð@t�Þ2 þ

1

2
ð@x�Þ2

�

þm2

�2
ð1� cos��Þ

�
: dx; m; � > 0 ½35�
Here, �(0, x) is a neutral Klein–Gordon field with
mass m and the double dots denote a suitable
ordering prescription. The associated equation of
motion

�xx � �tt ¼
m2

�
sin �� ½36�

is equivalent to [1] on the classical level, but not on
the quantum level. (If �(t, x) is a classical solution to
[36], then ��(t=m, x=m) solves [1].) This difference
is due to the extremely singular character of
interacting relativistic quantum field theory, a
context in which ‘‘solving’’ the field theory has
slowly acquired a meaning that is vastly different
from the classical notion. Indeed, one can at best
hope to verify [36] in the sense of expectation values
in suitable quantum states, and this is precisely what
has been achieved within the form-factor program
sketched later on.

From the perspective of functional analysis, the
existence of a well-defined Wightman field theory with
all of the features mentioned below is wide open. More
precisely, beginning with pioneering work by Fröhlich
some 30 years ago, various authors have contributed
to a mathematically rigorous construction of a sine-
Gordon quantum field theory version, but to date it
seems not feasible to verify that the resulting Wight-
man field theory has any of the explicit features we are
going to sketch. (For example, not even the free
character of the field theory for �2 = 4� has been
established; cf. below.)

That said, we proceed to sketch some highlights
of the impressive, but partly heuristic lore that has
been assembled in a great many theoretical physics
papers. A key result we begin with is the equivalence
to a field theory that looks very different at face
value. This is the massive Thirring model, formally
given by the Hamiltonian

HT ¼
Z 1
�1

: �	ð�i
5@x þ 
0MÞ�þ g

2
ðJ2

0 � J2
1Þ

� �
: dx

M 2 ð0;1Þ; g 2 R ½37�

Here, �(0, x) is the charged Dirac field with mass M
and the double dots stand for normal ordering. For
the 
-algebra, one may choose


0 ¼
0 1

1 0

� �
; 
1 ¼

0 �1

1 0

� �


5 ¼ 
0
1 ¼
1 0

0 �1

� �
½38�

and J� is the Dirac current,

J0 ¼ �	�; J1 ¼ �	
�1 0
0 1

� �
� ½39�
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The equivalence argument (due to Coleman) consists
in showing that the quantities

� �

2�
��@

��;
m2

�2
: cos �� : ½40�

in the sine-Gordon theory have the same vacuum
expectation values (in perturbation theory) as the
massive Thirring quantities

: J� :; �M : �	
0� : ½41�

resp., provided the parameters are related by

4�

�2
¼ 1þ g

�
½42�

This yields an equivalence between the charge-0
sector of the massive Thirring model and the sector
of the sine-Gordon theory obtained by the action of
the fields [40] on the vacuum vector. But the
charged sectors of the Thirring model can also be
viewed as new sectors in the sine-Gordon theory,
obtained by a solitonic field construction (first
performed by Mandelstam).

In this picture, the fermions and antifermions in
the massive Thirring model correspond to new
excitations in the sine-Gordon theory, the quantum
solitons and antisolitons. The latter are viewed as
coherent states of the sine-Gordon ‘‘mesons’’ in the
vacuum sector, the rest masses being related by

M ¼ 8m

�2
1� �

2

8�

� �
½43�

in the semiclassical limit �2! 0.
Even at the formal level involved in the corre-

spondence, the theories are not believed to exist for
�2 > 8� and g < ��=2, since there is positivity
breakdown for this range of couplings. The free
Dirac case g = 0 corresponds to �2 = 4�. In parti-
cular, there is no interaction between the sine-
Gordon solitons and antisolitons for this �-value.
In the range �2 2 (4�, 8�) there is interaction, but
bound soliton–antisoliton pairs (quantum breathers,
alias sine-Gordon mesons) do not occur.

By contrast, for �2 < 4� there exist breathers with
rest masses

mn ¼ 2M sinðnþ 1Þ�; � 
 m=2M;

nþ 1 ¼ 1; 2; . . . ;L < �=2� ½44�

Thus, the ‘‘particle spectrum’’ consists of solitons
and antisolitons with mass M and mesons C1, . . . ,CL

with masses m1, . . . ,mL given by [44]. The latter
formula was first established by semiclassical quan-
tization of the classical breathers (Dashen–
Hasslacher–Neveu), and ever since is usually called
the DHN formula. Notice that for � near zero m1 and
m are nearly equal, and that for �2 � 4� there are no
longer any sine-Gordon mesons present in the theory.

A priori, the existence of infinitely many classical
conserved Hamiltonians does not even formally
imply the same feature for the quantum field theory,
as anomalies may occur. For the sine-Gordon and
massive Thirring cases, anomalies have been shown
to be absent, however. This entails not only that the
number of solitons, antisolitons, and breathers in a
scattering process is conserved, but also that the set
of incoming rapidities equals the set of outgoing
rapidities.

The latter stability features and the DHN formula
[44] are corroborated by the S-matrix, which is
known in complete detail. The two-body amplitudes
involving solitons and antisolitons can be written in
terms of the function

uðzÞ

¼ exp i

Z
0

1 dx

x

sinhð�� �=2Þx
sinh�x cosh �x=2

sin 2xz

� �
½45�

They are given by

ðuþþ; tþ�; rþ�; u��Þð�Þ

¼ uð�=2Þ 1;
sinhð��=2�Þ

sinhð�ði�� �Þ=2�Þ ;
�

i sinð�2=2�Þ
sinhð�ði�� �Þ=2�Þ ; 1

�
½46�

where � denotes the rapidity difference. (Due to
fermion statistics, one gets only one amplitude for a
soliton or antisoliton pair. But a soliton and an
antisoliton have opposite charge, so they can be
distinguished. In that case, therefore, the notion of
reflection and transmission coefficients makes sense.)

The S-matrix involving an arbitrary number of
solitons, antisolitons, and their bound states is also
explicitly known. The amplitudes involving no
breathers are readily described in terms of the above
two-body amplitudes. Indeed, the S-matrix factorizes
as a sum of products of the amplitudes [46], yielding a
picture of particles scattering independently in pairs,
just as at the classical level. The factorization can be
performed irrespective of the temporal ordering
assumed for the pair scattering processes, since the
four functions occurring inside the parentheses of
[46] satisfy the Yang–Baxter equations.

Roughly speaking, the S-matrix for processes invol-
ving breathers can be calculated by analytic continua-
tion from the soliton–antisoliton S-matrix. The details
are however quite substantial. We only add that
scattering amplitudes involving solely breathers can
be expressed using only hyperbolic functions.
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Since the 1980s, a lot of information has also
been gathered concerning matrix elements of
suitable sine-Gordon field quantities between
special quantum states (form factors). Unfortu-
nately, the correlation functions involve infinite
sums of form factors that are quite difficult to
control analytically. Hence, it is not known whether
the correlation functions associated with the form
factors give rise to a Wightman field theory with
the usual axiomatic properties.
The Relation to Relativistic
Calogero–Moser Systems

The behavior of the special classical solutions
discussed earlier is very similar to that of classical
point particles. Furthermore, the picture of classical
solitons, antisolitons, and their bound states scatter-
ing independently in pairs is essentially preserved on
the quantum level, just as one would expect for the
quantization of an integrable particle system.

Next, we note that from the quantum viewpoint
there is no physical distinction between wave
functions and point particles, whereas a classical
wave is a physical entity that is clearly very different
from a point particle. Even so, it is a natural
question whether there exist classical Hamiltonian
systems of N point particles on the line whose
physical characteristics (charges, bound states, scat-
tering, etc.) are the same as those of the particle-like
sine-Gordon solutions. If so, a second question is
equally obvious: does the quantum version of the
N-particle systems still have the same features as
that of the quantum sine-Gordon excitations?

As we now sketch, the first question has been
answered in the affirmative, whereas the second one
has not been completely answered yet. However, all
of the information on the pertinent quantum
N-particle systems collected thus far points to an
affirmative answer. The systems at issue are relati-
vistic versions of the well-known nonrelativistic
Calogero–Moser N-particle systems.

To begin with the classical two-particle system, its
Hamiltonian is given by

H ¼ ðcosh p1 þ cosh p2Þ cothððx1 � x2Þ=2Þ ½47�

on the phase space

� ¼ fðx; pÞ 2 R4jx2 < x1g; ! ¼ dx ^ dp ½48�

Taking x2! x2 þ i� yields the particle–antiparticle
Hamiltonian

~H ¼ ðcosh p1 þ cosh p2Þj tanhððx1 � x2Þ=2Þj ½49�
on the phase space

~� ¼ fðx; pÞ 2 R4g; ! ¼ dx ^ dp ½50�

The two-antiparticle Hamiltonian is again given by
[47] and [48]. The interaction potential in [47] is
repulsive, whereas it is attractive in [49]. Hence, any
initial point in � gives rise to a scattering state,
whereas points in �̃ yield scattering states if and
only if the reduced Hamiltonian

~Hr ¼ cosh pj tanhðx=2Þj; p ¼ ðp1 � p2Þ=2
x ¼ x1 � x2 ½51�

satisfies ~Hr > 1. More specifically, in both cases the
distance jx1(t)� x2(t)j increases linearly as t!�1,
the scattering (position shift) being encoded by the
same function [32] as for the sine-Gordon solitons.
The phase-space points on the separatrix { ~Hr = 1}
have the same temporal asymptotics as the multipole
solution [24], whereas the bound-state oscillations
for ~Hr < 1 match those of the breathers [20].

More generally, the Hamiltonian for Nþ particles
and N� antiparticles is given by the function

XNþ
j¼1

coshðpþj Þ
YNþ
k¼1
k6¼j

j cothððxþj � xþk Þ=2Þj

�
YN�
l¼1

j tanhððxþj � x�l Þ=2Þj þ
XN�
l¼1

coshðp�l Þ

�
YN�
m¼1
m6¼l

j cothððx�l � x�mÞ=2Þj

�
YNþ
j¼1

j tanhððx�l � xþj Þ=2Þj ½52�

on the phase space

�Nþ;N�

¼
n
ðxþ; pþÞ 2 R2Nþ ; ðx�; p�Þ

2 R2N� jxþNþ < � � � < xþ1 ; x
�
N�

< � � � < x�1

o
½53�

!Nþ;N� ¼ dxþ ^ dpþ þ dx� ^ dp� ½54�

This defining Hamiltonian can be supplemented by
(Nþ þN� � 1) independent Hamiltonians that pair-
wise commute. The action-angle map of this integr-
able system can be used to relate the scattering and
bound-state behavior to that of the sine-Gordon
solutions from an earlier section, yielding an exact
correspondence. Indeed, the variables we used to
describe the particle-like sine-Gordon solutions
amount to the action-angle variables associated to
[52]. Moreover, the matrix L [26] with t = x = 0
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equals the Lax matrix for the N-particle system, which
is the manifestation of a remarkable self-duality
property of the equal-charge case. There is an equally
close relation between the general particle-like solu-
tions and the general systems encoded in [52].

As a matter of fact, the connection can be further
strengthened by introducing spacetime trajectories
for the solitons, antisolitons, and breathers, which
are defined in terms of the evolution of an initial
point in �Nþ,N� under the time translation generator
[52] and the space translation generator, obtained
from [52] by the replacement cosh ! sinh . These
point particle and antiparticle trajectories make it
possible to follow the motion of the solitons,
antisolitons, and breathers during the temporal
interval in which the nonlinear interaction takes
place, whereas for large times the trajectories are
located at the (then) clearly discernible positions of
the individual solitons, antisolitons, and breathers.

Before sketching the soliton-particle correspon-
dence at the quantum level, we add a remark on the
finite-gap solutions of the classical sine-Gordon
equation, already mentioned in the paragraph
containing [11]. These solutions may be viewed as
generalizations of the particle-like solutions dis-
cussed earlier, and they can also be obtained via
relativistic N-particle Calogero–Moser systems. The
pertinent systems are generalizations of the hyper-
bolic systems just described to the elliptic level.

Turning now to the quantum level, we begin by
mentioning that the Poisson-commuting Hamilto-
nians admit a quantization in terms of commuting
analytic difference operators. This involves a special
ordering choice of the p-dependent and x-dependent
factors in the classical Hamiltonians, which is
required to preserve commutativity. The resulting
quantum two-body problem can be explicitly solved
in terms of a generalization of the Gauss hypergeo-
metric function. For the case of equal charges, the
scattering is encoded in the sine-Gordon amplitudes
u��(�) (cf. [45] and [46]). For the unequal-charge
case, one should distinguish an even and odd
channel. The scattering on these channels is encoded
in the sine-Gordon amplitudes tþ�(�)� rþ�(�).
Moreover, the bound-state spectrum agrees with
the DHN formula [44] and the bound-state wave
functions are given by hyperbolic functions.

As a consequence of these results, the physics
encoded in the two-body subspace of the sine-
Gordon quantum field theory is indistinguishable
from that of the corresponding two-body relativistic
Calogero–Moser systems. To extend this equivalence
to the arbitrary-N case, one needs first of all
sufficiently explicit solutions to the N-body
Schrödinger equation. To date, this has only been
achieved for the case of N equal charges and the
special couplings for which the reflection amplitude
rþ� vanishes. The asymptotics of the pertinent
solutions is factorized in terms of u��(�), in agree-
ment with the sine-Gordon picture.

See also: Bäcklund Transformations; Boundary-Value
Problems for Integrable Equations; Calogero–
Moser–Sutherland Systems of Nonrelativistic and
Relativistic Type; Infinite-dimensional Hamiltonian
Systems; Integrability and Quantum Field Theory;
Integrable Systems and Discrete Geometry; Integrable
Systems and Inverse Scattering Method; Integrable
Systems: Overview; Ljusternik–Schnirelman Theory;
Solitons and Other Extended Field Configurations;
Solitons and Kac–Moody Lie Algebras; Symmetries and
Conservation Laws; Two-Dimensional Models;
Yang–Baxter Equations.
Further Reading

Ablowitz MJ, Kaup DJ, Newell AC, and Segur H (1974) The

inverse scattering transform – Fourier analysis for nonlinear

problems. Studies in Applied Mathematics 53: 249–315.
Coleman S (1977) Classical lumps and their quantum descen-

dants. In: Zichichi A (ed.) New Phenomena in Subnuclear
Physics, Proceedings Erice 1975, pp. 297–421. New York:

Plenum.
Faddeev LD and Takhtajan LA (1987) Hamiltonian Methods in

the Theory of Solitons. Berlin: Springer.

Flaschka HF and Newell AC (1975) Integrable systems of
nonlinear evolution equations. In: Moser J (ed.) Dynamical
Systems, Theory and Applications, Lecture Notes in Physics,

vol. 38, pp. 355–440. Berlin: Springer.

Karowski M (1979) Exact S-matrices and form factors in 1þ1
dimensional field theoretic models with soliton behaviour.

Physics Reports 49: 229–237.

Ruijsenaars SNM (2001) Sine-Gordon solitons vs. Calogero–

Moser particles. In: Pakuliak S and von Gehlen G (eds.)
Proceedings of the Kiev NATO Advanced Study Institute
Integrable Structures of Exactly Solvable Two-Dimensional
Models of Quantum Field Theory, NATO Science Series, vol. 35,

pp. 273–292. Dordrecht: Kluwer.
Scott AC, Chu FYF, and McLaughlin DW (1973) The soliton: a

new concept in applied science. Proceedings of the Institute of
Electrical and Electronics Engineers 61: 1443–1483.

Smirnov FA (1992) Form Factors in Completely Integrable

Models of Quantum Field Theory. Advanced Series in
Mathematical Physics, vol. 14. Singapore: World Scientific.

Thacker HB (1981) Exact integrability in quantum field theory
and statistical systems. Reviews of Modern Physics 53:

253–285.

Zamolodchikov AB and Zamolodchikov AlB (1979) Factorized

S-matrices in two dimensions as the exact solutions of certain
relativistic quantum field theory models. Annals of Physics
(NY) 120: 253–291.



584 Singularities of the Ricci Flow
Singularities of the Ricci Flow

M Anderson, State University of New York at
Stony Brook, Stony Brook, NY, USA

ª 2006 Elsevier Ltd. All rights reserved.
Introduction

Fix a closed n-dimensional manifold M, and let M
be the space of Riemannian metrics on M. As in the
reasoning leading to the Einstein equations in
general relativity, there is basically a unique simple
and natural vector field on the space M. Namely, the
tangent space TgM consists of symmetric bilinear
forms; besides multiples of the metric itself, the Ricci
curvature Ricg of g is the only symmetric form that
depends on at most the second derivatives of the
metric, and is invariant under coordinate changes,
that is, a (0, 2)-tensor formed from the metric. Thus,
consider

Xg ¼ �Ricg þ �g

where �,� are scalars. Setting �=�2, the corre-
sponding equation for the flow of X is

d

dt
gðtÞ ¼ �2RicgðtÞ þ �gðtÞ ½1�

The Ricci flow, introduced by Hamilton (1982), is
obtained by setting �= 0:

d

dt
gðtÞ ¼ �2RicgðtÞ ½2�

Rescaling the metric and time variable t transforms
[2] into [1], with �=�(t). For example, rescaling the
Ricci flow [2] so that the volume of (M, g(t)) is
preserved leads to the flow equation [1] with
�= 2

H
R, twice the mean value of the scalar

curvature R.
The Ricci flow [2] bears some relation with the

metric part of the �-function or renormalization
group (RG) flow equation

d

dt
gðtÞ ¼ �ðgðtÞÞ

for the two-dimensional sigma model of maps
�2 !M. The �-function is a vector field on M,
invariant under diffeomorphisms, which has an
expansion of the form

��ðgÞ ¼ Ricg þ "Riem2 þ � � �

where Riem2 is quadratic in the Riemann curvature
tensor. The Ricci flow corresponds to the one-loop
term or semiclassical limit in the RG flow
(cf. D’Hoker (1999) and Friedan (1985)).
Recently, G Perelman (2002, 2003a, b) has deve-
loped new insights into the geometry of the Ricci flow
which has led to a solution of long-standing mathe-
matical conjectures on the structure of 3-manifolds,
namely the Thurston geometrization conjecture
(Thurston 1982), and hence the Poincaré conjecture.
Basic Properties of the Ricci Flow

In charts where the coordinate functions are locally
defined harmonic functions in the metric g(t), [2]
takes the form

d

dt
gij ¼ �gij þQijðg; @gÞ

where � is the Laplace operator on functions with
respect to the metric g = g(t) and Q is a lower-order
term quadratic in g and its first-order partial
derivatives. This is a nonlinear heat-type equation
for gij and leads to the existence and uniqueness of
solutions to the Ricci flow on some time interval
starting at any smooth initial metric. This is the
reason for the minus sign in [2]; a plus sign gives a
backwards heat-type equation, which has no solu-
tions in general.

The flow [2] gives a natural method to try to
construct canonical metrics on the manifold M.
Stationary points of the flow [2] are Ricci-flat
metrics, while stationary points of the flow [1] are
(Riemannian) Einstein metrics, where Ricg = (R=n)g,
with R the scalar curvature of g. One of Hamilton’s
motivations for studying the Ricci flow were results
on an analogous question for nonlinear sigma
models. Consider maps f between Riemannian
manifolds M, N with Lagrangian given by the
Dirichlet energy. Eells–Sampson studied the heat
equation for this action and proved that when the
target N has nonpositive curvature, the flow exists
for all time and converges to a stationary point of
the action, that is, a harmonic map f1 : M! N. The
idea is to see if an analogous program can be
developed on the space of metrics M.

There are a number of well-known obstructions to
the existence of Einstein metrics on manifolds, in
particular, in dimensions 3 and 4. Thus, the Ricci
flow will not exist for all time on a general
manifold. Hence, it must develop singularities. A
fundamental issue is to try to relate the structure of
the singularities of the flow with the topology of the
underlying manifold M.

A few simple qualitative features of the Ricci flow
[2] are as follows: if Ric(x, t) > 0, then the flow
contracts the metric g(t) near x, to the future, while
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if Ric(x, t) < 0, then the flow expands g(t) near x. At
a general point, there will be directions of positive
and negative Ricci curvature, along which the metric
locally contracts or expands. The flow preserves
product structures of metrics, and preserves the
isometry group of the initial metric.

The form of [2] shows that the Ricci flow
continues as long as Ricci curvature remains
bounded. On a bounded time interval where Ricg(t)

is bounded, the metrics g(t) are quasi-isometric, that
is, they have bounded distortion compared with the
initial metric g(0). Thus, one needs to consider
evolution equations for the curvature, induced by
the flow for the metric. The simplest of these is the
evolution equation for the scalar curvature R:

d

dt
R ¼ �Rþ 2jRicj2 ½3�

Evaluating [3] at a point realizing the minimum Rmin

of R on M shows that Rmin is monotone nondecreas-
ing along the flow. In particular, the Ricci flow
preserves positive scalar curvature. Moreover, if
Rmin(0) > 0, then

t � n

2Rminð0Þ
½4�

Thus, the Ricci flow exists only up to a maximal
time T � n=2Rmin(0) when Rmin(0) > 0. In contrast,
in regions where the Ricci curvature stays negative
definite, the flow exists for infinite time.

The evolution of the Ricci curvature has the same
general form as [3]:

d

dt
Rij ¼ �Rij þ eQij ½5�

The expression for eQ is much more complicated
than the Ricci curvature term in [3] but involves
only quadratic expressions in the curvature.
However, eQ involves the full Riemann curvature
tensor Riem of g, and not just the Ricci curvature (as
[3] involves Ricci and not just scalar curvature). An
important feature of dimension 3 is that the full
Riemann curvature Riem is determined algebraically
by the Ricci curvature. So the Ricci flow has a much
better chance of ‘‘working’’ in dimension 3. For
example, an analysis of eQ shows that the Ricci flow
preserves positive Ricci curvature in dimension 3; if
Ricg(0) > 0, then Ricg(t) > 0, for t > 0. This is not the
case in higher dimensions. On the other hand, in any
dimension >2, the Ricci flow does not preserve
negative Ricci curvature, or even a general lower
bound Ric � ��, for � > 0. For the remainder of the
article, we usually assume then that dim M = 3.

The first basic result on the Ricci flow is the
following, due to Hamilton (1982).
Space-form theorem. If g(0) is a metric of positive
Ricci curvature on a 3-manifold M, then the volume
normalized Ricci flow exists for all time, and
converges to the round metric on S3=�, where � is
a finite subgroup of SO(4), acting freely on S3.

Thus, the Ricci flow ‘‘geometrizes’’ 3-manifolds of
positive Ricci curvature. There are two further
important structural results on the Ricci flow.

Curvature pinching estimate (Hamilton 1982,
Ivey 1993). For g(t) a solution to the Ricci flow on
a closed 3-manifold M, there is a nonincreasing
function � : (�1,1)! R, tending to 0 at 1, and a
constant C, depending only on g(0), such that,

Riemðx; tÞ � �C� �ðRðx; tÞÞ � jRðx; tÞj ½6�

This estimate does not imply a lower bound on
Riem(x, t) uniform in time. However, when com-
bined with the fact that the scalar curvature R(x, t)
is uniformly bounded below (cf. [3]), it implies that
jRiemj(x, t)� 1 only where R(x, t)� 1. To control
the size of jRiemj, it thus suffices to obtain just an upper
bound on R. This is remarkable, since the scalar
curvature is a much weaker invariant of the metric
than the full curvature. Moreover, at points where the
curvature is sufficiently large, [6] shows that
Riem(x, t)=R(x, t)���, for � small. Thus, if one scales
the metric to make R(x, t)=1, then Riem(x, t)���. In
such a scale, the metric then has almost non-negative
curvature near (x, t).

Harnack estimate (Hamilton 1982). Let (N, g(t))
be a solution to the Ricci flow with bounded and
non-negative curvature Riem � 0, and suppose g(t)
is a complete Riemannian metric on N. Then for
0 < t1 � t2,

Rðx2; t2Þ �
t1

t2
exp �

d2
t1
ðx1; x2Þ

2ðt2 � t1Þ

 !
Rðx1; t1Þ ½7�

where dt1
is the distance function on (M, gt1

). This
allows one to control the geometry of the solution at
different spacetime points, given control at an initial
point.
Singularity Formation

The deeper analysis of the Ricci flow is concerned
with the singularities that arise in finite time.
Equation [3] shows that the Ricci flow will not
exist for arbitrarily long time in general. In the case
of initial metrics with positive Ricci curvature, this is
resolved by rescaling the Ricci flow to constant
volume. However, the general situation is necessarily
much more complicated. For example, any manifold
which is a connected sum of S3=� or S2 � S1 factors
has metrics of positive scalar curvature. For obvious
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topological reasons, the volume normalized Ricci
flow then cannot converge nicely to a round metric;
even the renormalized flow must develop
singularities.

The usual method to understand the structure of
singularities, particularly in geometric PDEs, is to
rescale or renormalize the solution on a sequence
converging to the singularity to make the solution
bounded, and try to pass to a limit of the
renormalization. Such a limit solution models the
singularity formation, and one hopes (or expects)
that the singularity models have special features
making them much simpler than an arbitrary
solution of the flow.

A singularity forms for the Ricci flow only where
the curvature becomes unbounded. Suppose then
that �2

i = jRiemj(xi, ti)!1, on a sequence of points
xi 2M, and times ti ! T <1. Consider the
rescaled or blow-up metrics and times

�gið�tiÞ ¼ �2
i �
	
i gðtÞ; �ti ¼ �2

i ðt � tiÞ ½8�

where �i are diffeomorphisms giving local dilations
of the manifold near xi by the factor �i.

The flow �gi is also a solution of the Ricci flow,
and has bounded curvature at (xi, 0). For suitable
choices of xi and ti, the curvature will be bounded
near xi, and for nearby times to the past, �ti � 0; for
example, one might choose points (xi, ti) where the
curvature is maximal on (M, g(t)), t � ti.

The rescaling [8] expands all distances by the
factor �i, and time by the factor �2

i . Thus, in
effect one is studying very small regions, of
spatial size on the order of ri =��1

i about (xi, ti),
and ‘‘using a microscope’’ to examine the small-
scale features in this region on a scale of size
about 1.

A limit solution of the Ricci flow, defined at least
locally in space and time, will exist provided that the
local volumes of the rescalings are bounded below
(Gromov compactness). In terms of the original
unscaled flow, this requires that the metric g(t)
should not be locally collapsed on the scale of its
curvature, that is,

vol Bxi
ðri; tiÞ � �rn

i ½9�

for some fixed but arbitrary � > 0. A maximal
connected limit (N, �g(�t), x) containing the base point
x = lim xi, is then called a ‘‘singularity model.’’
Observe that the topology of the limit N may well
be distinct from the original manifold M, most of
which may have been blown off to infinity in the
rescaling.

To see the potential usefulness of this process,
suppose one does have local noncollapse on the scale
of the curvature, and that base points of maximal
curvature in space and time t � ti have been chosen.
At least in a subsequence, one then obtains a limit
solution to the Ricci flow (N, �g(�t), x), based at x,
defined at least for times (�1, 0], with �g(�t) a
complete Riemannian metric on N. Such solutions
are called ancient solutions of the Ricci flow. The
estimate [6] shows that the limit has non-negative
curvature in dimension 3, and so [7] holds on N.
Thus, the limit is indeed quite special. The topology
of complete manifolds N of non-negative curvature
is completely understood in dimension 3. If N is
noncompact, then N is diffeomorphic to R3, S2 � R,
or a quotient of these spaces. If N is compact, then
a slightly stronger form of the space-form theo-
rem implies N is diffeomorphic to S3=�, S2 � S1, or
S2 �Z2

S1.
The study of the formation of singularities in

the Ricci flow was initiated by Hamilton (1995).
Recently, Perelman has obtained an essentially
complete understanding of the singularity behavior
of the Ricci flow, at least in dimension 3.
Perelman’s Work

Noncollapse

Consider the Einstein–Hilbert action

RðgÞ ¼
Z

M

RðgÞ dVg ½10�

as a functional on M. Critical points of R are Ricci-
flat metrics. It is natural and tempting to try to
relate the Ricci flow with the gradient flow of R
(with respect to a natural L2 metric on the space M).
However, it has long been recognized that this
cannot be done directly. In fact, the gradient flow of
R does not even exist, since it implies a backwards
heat-type equation for the scalar curvature R
(similar to [3] but with a minus sign before �).

Consider however the following functional
extending R:

Fðg; f Þ ¼
Z

M

ðRþ jrf j2Þe�f dVg ½11�

as a functional on the larger space M� C1(M, R), or
equivalently a family of functionals on M, parame-
trized by C1(M, R). The functional [11] also arises in
string theory as the low-energy effective action; the
scalar field f is called the dilaton. Fix any smooth
measure dm on M and define the Perelman coupling
by requiring that (g, f ) satisfy

e�f dVg ¼ dm ½12�
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The resulting functional

Fmðg; f Þ ¼
Z

M

ðRþ jrf j2Þ dm ½13�

becomes a functional on M. (This coupling does not
appear to have been considered in string theory.)
The L2 gradient flow of Fm is given simply by

deg
dt
¼�2ðRic~g þ eD2f Þ ½14�

where eD2f is the Hessian of f with respect to eg. The
evolution equation [14] for eg is just the Ricci flow [2]
modified by an infinitesimal diffeomorphism:eD2f = (d=dt)(�	teg), where (d=dt)�t = frf . Thus, the
gradient flow of F m is the Ricci flow, up to
diffeomorphisms. The evolution equation for the
scalar field f,

ft ¼ �e�f � eR ½15�

is a backward heat equation (balancing the forward
evolution of the volume form of eg(t)). Thus, this
flow will not exist for general f, going forward in t.
However, one of the basic points of view is to let the
(pure) Ricci flow [2] flow for a time t0 > 0. At t0,
one may then take an arbitrary f = f (t0) and flow
this f backward in time (� = t0 � t) to obtain an
initial value f (0) for f. The choice of f (t0) deter-
mines, together with the choice of volume form of
g(0)), (or g(t0)), the measure dm and so the choice
of F m. The process of passing from F to Fm

corresponds to a reduction of the symmetry group of
all diffeomorphisms D of F to the group D0 of
volume-preserving diffeomorphisms; the quotient
space D=D0 has been decoupled into a space
C1(M, R) of parameters.

The functionals F m are not scale invariant. To
achieve scale invariance, Perelman includes an
explicit insertion of the scale parameter, related to
time, by setting

Wðg; f ; �Þ ¼
Z

�ðjrf j2 þ RÞ þ f � n
� �
� ð4	�Þ�n=2 e�f dV ½16�

with coupling so that dm = (4	�)�n=2 e�f dV is fixed.
The entropy functional W is invariant under
simultaneous rescaling of � and g, and �t = �1.
Again, the gradient flow of W is the Ricci flow
modulo diffeomorphisms and rescalings and the
stationary points of the gradient flow are the
gradient Ricci solitons,

Ricg þD2f � 1

2�
g ¼ 0
for which the metrics evolve by diffeomorphisms
and rescalings. Gradient solitons arise naturally as
singularity models, due to the rescalings and
diffeomorphisms in the blow-up procedure [8]. An
important example is the cigar soliton on R2 � R,
(or R2 � S1),

g ¼ ð1þ r2Þ�1gEucl þ ds2 ½17�

Perelman then uses the scalar field f to probe the
geometry of g(t). For instance, the collapse or
noncollapse of the metric g(t) near a point x 2M
can be detected from the size of W(g(t)) by choosing
e�f to be an approximation to a delta function
centered at (x, t). The more collapsed g(t) is near x,
the more negative the value of W(g(t)). The collapse
of the metric g(t) on any scale in finite time is then
ruled out by combining this with the fact that the
entropy functional W is increasing along the Ricci
flow.

Much more detailed information can be obtained
by studying the path integral associated to the
evolution equation [15] for f, given by

Lð
Þ ¼
Z



ffiffiffi
�
p
½j _
ð�Þj2 þ Rð
ð�ÞÞ� d�

where R and j
̇(�)j are computed with respect to the
evolving metrics g(�). In particular, the study of the
geodesics and the associated variational theory of
the length functional L are important in under-
standing the geometry of the Ricci flow near the
singularities.
Singularity Models

A major accomplishment of Perelman is essentially a
classification of all complete singularity models
(N, g(t)) that arise in finite time. In the simple case
where N is compact, then as noted above, N is
diffeomorphic to S3=�, S2 � S1, or S2 �Z2

S1.
In the much more important case where N is

complete and noncompact, Perelman proves that the
geometry of N near infinity is that of a union of
"-necks. Thus, at time 0, and at points x with
r(x) = dist(x, x0)� 1, for a fixed base point x0, a
region of radius "�1 about x, in the scale where
R(x) = 1, is "-close to such a region in the standard
round product metric on S2 �R; " may be made
arbitrarily small by choosing r(x) sufficiently large.
For example, this shows that the cigar soliton [17]
cannot arise as a singularity model. Moreover, this
structure also holds on a time interval on the order
of "�1 to the past, so that on such regions the
solution is close to the (backwards) evolving Ricci
flow on S2 � R.
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Perelman shows that this structural result for the
singularity models themselves also holds for the
solution g(t) very near any singularity time T. Thus,
at any base point (x, t) where the curvature is
sufficiently large, the rescaling as in [8] of the
spacetime by the curvature is smoothly close, on
large compact domains, to corresponding large
domains in a complete singularity model. The
‘‘ideal’’ complete singularity models do actually
describe the geometry and topology near any
singularity. Consequently, one has a detailed under-
standing of the small-scale geometry and topology in
a neighborhood of every point where the curvature
is large on (M, g(t)), for t near T.

The main consequence of this analysis is the
existence of canonical, almost round 2-spheres S2 in
any region of (M, g(t)) where the curvature is
sufficiently large; the radius of the S2’s is on the
order of the curvature radius. One then disconnects
the manifold M into pieces, by cutting M along a
judicious choice of such 2-spheres, and gluing in
round 3-balls in a natural way. This surgery process
allows one to excise out the regions of (M, g(t))
where the Ricci flow is almost singular, and thus
leads to a naturally defined Ricci flow with surgery,
valid for all times t 2 [0,1).

The surgery process disconnects the original
connected 3-manifold M into a collection of disjoint
(connected) 3-manifolds Mi, with the Ricci flow
running on each. However, topologically, there is a
canonical relation between M and the components
Mi; M is the connected sum of {Mi}. An analysis of
the long-time behavior of the volume-normalized
Ricci flow confirms the expectation that the flow
approaches a fixed point, that is, an Einstein metric,
or collapses along 3-manifolds admitting an S1

fibration. This then leads to the proof of Thurston’s
geometrization conjecture for 3-manifolds and
consequently the proof of the Poincaré conjecture.
It gives a full classification of all closed 3-manifolds,
much like the classification of surfaces given by the
classical uniformization theorem.

See also: Einstein Manifolds; Evolution Equations: Linear
and Nonlinear; Minimal Submanifolds; Renormalization:
General Theory; Topological Sigma Models.
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Introduction

Dynamical systems first developed from the geometry
of Newton’s equations (see Goodstein and Goodstein
(1997)) and the question of the stability of the solar
system motivated further researches inspired by
celestial mechanics (cf. Siegel and Moser (1971)).
Then dynamical systems developed intensively from
stability theory (Lyapunov’s theory) to generic proper-
ties (based on functional analysis techniques,) hyper-
bolic structures (Anosov’s flows, Smale axiom A) and
to perturbation theory (Pugh’s closing lemma, KAM
theorem). There are many links with ergodic theory
dating back to Birkhoff’s ergodic theorem (motivated
by Boltzmann–Gibbs contributions to thermody-
namics). These aspects have been developed in several
articles of the encyclopedia (see Generic Properties of
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Dynamical Systems; Ergodic Theory; Hyperbolic
Dynamical Systems). This article develops another
aspect of dynamical systems, namely bifurcation
theory. In contrast, the mathematics involved relates
more to local analytic geometry in the broad sense and
provides local models like normal forms, uses blow-up
techniques and asymptotic developments. This con-
tains the singularity theory of functions (related to
singularities of gradient flows). A recent development
of the whole subject deals with bifurcation theory of
fast-slow systems.
Singularity Theory of Functions

A singular point of a gradient dynamics

dx

dt
¼ grad VðxÞ

is a critical point of the function V. Assume that the
function V: U!R is defined and infinitely differ-
entiable on an open set U. Let x0 2 U be a critical
point of V.

Definition 1 The critical point x0 is said to be of
Morse type if the Hessian of V at x0 : D2

xV(x0) is of
maximal rank n. The corank of a singular point x0 is
the corank of the matrix D2

xV(x0).

Denote by O the local ring of germs of C1

functions at point x0.

Definition 2 The Jacobian ideal of the function V
at x0, denoted as Jac(V), is the ideal generated in
the ring O by the partial derivatives of
V: @V=@xi, i = 1, . . . , n, considered as elements of
the local ring O.

The singularity (or the singular point) is isolated if

dimRO=JacðVÞ <1

In that case, the Milnor number is defined as the
dimension

� ¼ dimRO=JacðVÞ

Local models of singularities at a point are simple
expressions that germs of functions singular at this
point have in local coordinates.

R Thom proposed to focus more particularly on the
singularities whose Milnor number is less than or
equal to 4 and whose corank is less than or equal to 2.

The list of local models V�(x) of functions whose
singularities at 0 display a Milnor number less than
or equal to 4 and a corank less than or equal to 2 is
the following:

V�(x) = 1
3 x3 þ �1x, the fold,

V�(x) = 1
4 x4 þ 1

2 �1x2 þ �2x, the cusp,
V�(x) = 1
5 x5 þ 1

3�1x3 þ 1
2�2x2 þ �3x, the swallow tail,

V�(x) = 1
6 x6 þ 1

4 �1x4 þ 1
3 �2x3 þ 1

2 �3x2 þ �4x, the
butterfly,

V�(x) = x3 � 3xy2 þ �1(x2 þ y2)þ �2xþ �3y, the
elliptic umbilic,

V�(x) = x3 þ y3 þ �1xyþ �2xþ �3y, the hyperbolic
umbilic, and

V�(x) = y4 þ x2yþ �1x2 þ �2y2 þ �3xþ �4y, the
parabolic umbilic.

Consider more particularly the first four cases.
The ‘‘state equation’’ defines the critical points of V�:

@V�

@x
¼ 0

which contains the subset of the stable equilibrium
points of the associated gradient dynamics. The
nature of these equilibrium states changes at points
contained in the set defined by the equation

@2V�

@x2
¼ 0

The projection of this set on the space of parameters
contains the set of values of the parameters for which
the equilibrium position is susceptible to change of
topological type (in other terms to undergo a bifurca-
tion). This set is called the catastrophe set (see Figure 1).

Consider now the case of umbilics where there are
two state equations:

@V

@x
¼ @V

@y
¼ 0

The catastrophe set S is determined by one further
equation:

Hess V ¼ @
2V

@x2

@2V

@y2
� @2V

@x@y

� �2

¼ 0

In both cases of hyperbolic and elliptic umbilics, the set
S is a singular surface. For the last case of the parabolic
umbilic, the set S is of dimension 3 and again it is only
possible to represent it by a family of its sections by a
variable hyperplane (see Figure 2).

All possible deformations (in the space of func-
tions) of a function with an isolated singularity can
be induced by a single �-dimensional family of
deformations named the ‘‘universal deformation.’’ In
general, the ‘‘codimension’’ of a bifurcation is the
minimal number of parameters needed to display all
possible phase diagrams of all possible unfoldings.
Several deep mathematical techniques, like the
Malgrange division theorem and preparation theo-
rem, allowed J Mather to prove the theorem (local,
then global) of existence of the universal unfolding.
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The theory of unfoldings of singularities can be
used, for instance, to provide asymptotic expression
of stationary phase integrals when critical points of
the phase are not of Morse type. This relates to
monodromy, Bernstein polynomials, Milnor fibra-
tion near a singular point, and simultaneous local
models of forms and functions (cf. Malgrange
(1974)) and see Feynman Path Integrals).
Singularity Theory of Vector Fields

Transcritical Bifurcation

The transcritical bifurcation is the standard mechan-
ism for changes in stability. The local model is given by

_x ¼ rx� x2

For r < 0, there is an unstable fixed point at x�= r
and a stable fixed point at x�= 0. As r increases, the
unstable and the stable fixed points coalesce when
r = 0 and when r > 0, they exchange their stability.
A simplified model of the essential physics of a laser
is due to Haken (1983). It is given by

_n ¼ GnN � kn

were n is the number of photons in the laser field, N is
the number of excited atoms, and the gain term comes
from the process of stimulated emission which occurs
at a rate proportional to the product n.N. Further-
more, the number of excited atoms drops down by the
emission of photons N = N0 � �n. Then we obtain

_n ¼ ðGN0 � kÞn� �Gn2

This model displays a transcritical bifurcation, which
explains in elementary terms the laser threshold.
Pitchfork Bifurcation

The local model for supercritical pitchfork bifurca-
tion is

_x ¼ rx� x3
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When the parameter r < 0, it displays one stable
equilibrium position. As r increases, this equilibrium
bifurcates (for r > 0) into two stable equilibria and
an unstable equilibrium. Its drawing suggests ‘‘the
pitchfork.’’ In case of subcritical pitchfork
bifurcation

_x ¼ rxþ x3

there is a single stable state for r < 0 that bifurcates
into two stable states and one unstable as r > 0.

Normal Forms

Local analysis of vector fields proceeds with local
models called normal forms. A local vector field
near a singular point (zero) is seen as a derivation of
the local ring of functions which preserves the
unique maximal ideal (of the functions which vanish
at the singular point). It yields a linear operator of
the finite-dimensional vector spaces of truncated
Taylor expansions of functions. This leads to
decomposition of the vector fields into semisimple
and nilpotent parts (at the level of formal series). A
normal form is a formal coordinate system in which
the semisimple part is linear. If the vector field
preserves a structure (like volume form or symplec-
tic form) the change of coordinates which brings it
to its normal form is also (volume-preserving,
symplectic). The simplicity of the normal form
depends on the number of allowed resonances for
the eigenvalues of the first-order jet of the vector
field at the singular point. The best-known example
is the Birkhoff normal form of Hamiltonian vector
fields that we recall now, but we should also
mention the Sternberg normal form of volume-
preserving vector fields.

Local analysis of a Hamiltonian vector field under
symplectic changes of coordinates is the same as the
local analysis of functions (namely its associated
Hamiltonian). Birkhoff normal form deals with the
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case of a Hamiltonian that is a perturbation at the
origin:

H0ðpÞ ¼
Xm
j¼1

�j pj

pj ¼ x2
j þ y2

j ; j ¼ 1; . . . ;m

where the symplectic form is

! ¼
Xm
j¼1

dxj ^ dyj

If the eigenvalues �j are assumed to be independent
over the integers (no resonances), then there is
a formal system of symplectic coordinates p̂j, q̂j,
j = 1, . . . , m, called action-angle variables, in which
the Hamiltonian only depends of the action variables
p̂j. Such a coordinate system is generically divergent
because, under generic assumptions on the 3-jet of
the Hamiltonian, the system displays isolated periodic
orbits in any neighborhood of the origin (see Moser,
Vey, Francoise). Normal forms are normally used in
applications (e.g., Nekhoroshev theorem, Hopf bifur-
cation theorem) in their truncated versions. Birkhoff
normal form was conjectured (A Weinstein) to enter
in the asymptotic expansion of the fundamental
solution of the wave equation on a Riemannian
manifold near elliptic geodesics. This conjecture was
recently proved by V Guillemin.
Stability Theory of Hamiltonian Systems,
Nekhoroshev Theorem, Arnol’d Diffusion

The generic divergence of the Birkhoff normal form does
not allow one to conclude about the stability of the
elliptic singular point. In the case where it is convergent,
the motion is trapped inside invariant tori (conservation
of the actions). The KAM theorem (see Gallavotti
(1983)) provides the existence of many invariant tori
but, except in low dimensions, this does not exclude the
existence of trajectories that would escape to infinity.
Arnol’d indeed provided a mechanism and examples of
such situations (this is now called Arnol’d diffusion) (see
Introductory Articles: Classical Mechanics). This diffu-
sion process needs some time, which is estimated below
by a theorem of Nekhoroshev.

Consider the Hamiltonian

H�ðp; qÞ ¼ hðpÞ þ �f ðp; qÞ

where h(p) is strictly convex, analytic, anisochro-
nous on the closure U of an open bounded region U
of Rm and the perturbation f (p, q) is analytic on U �
Rm. Nekhoroshev’s theorem tells that there are
positive constants a, b, d, g, � such that for any initial
data p0, q0, the actions p do not change by more
than a�g before a time bounded below by �eb=�d (see
Gallavotti (1983)).

Bifurcations of Periodic Orbits

Consider a one-parameter family of vector fields X�

of class Ck, k � 3,

_x ¼ Fðx; �Þ

Assume that X�(0) = 0 and that the linear part of the
vector field at 0 has two complex-conjugated
eigenvalues �(�) and �(�) such that Re(�(�)) > 0
for � > 0, Re(�(0)) = 0 and (Re(�(�)))=d�j�= 0 6¼ 0.
Then, for � > 0 but small enough, the vector field
X� has a periodic orbit �� which tends to 0 as �
tends to 0.

This bifurcation of codimension 1 is named Hopf
bifurcation and it occurs in many models.

When several oscillators (conservative or dissipa-
tive) are weakly coupled, they may display fre-
quency locking (existence of an attractive periodic
orbit) phase locking, and synchronization. The fact
that we always see the same face of the Moon from
the Earth can be explained by a synchronization of
the rotation of the Moon onto itself with its rotation
around the Earth. Synchronization also plays a
fundamental role in living organisms (e.g., heart,
population dynamics: see D Attenborough’s movie
‘‘The Trials of Life’’). It is sometimes possible to be
convinced of synchronization via computer experi-
ments, but the main theoretical approach is due to
Malkin. See Bifurcations of Periodic Orbits, where a
full mathematical proof is included.

Homoclinic Bifurcation, Newhouse’s Phenomenon

Homoclinic bifurcation occurs in the family X� at
the bifurcation value of the parameter �= 0 if X0

displays a singular orbit which tends to 0 both for
t!þ1 and for t!�1. In dimension 2, if � is
slightly deformed around 0, one periodic orbit may
appear (or disappear). For planar systems, the
Bogdanov–Takens bifurcation is the codimension-2
bifurcation, which mixes the homoclinic and the
Hopf bifurcations. In dimension 3, more complicated
phase diagrams may occur (such as in the Shilnikov
bifurcation) with the appearance of infinitely many
periodic orbits or homoclinic loops (in a stable way:
Newhouse phenomenon). This eventually gives rise to
strange attractors (the Roessler attractor).

The Poincaré Center-Focus Problem, Local
Hilbert’s 16th Problem, Abel Equations, Algebraic
Moments

Hopf bifurcation theory for two-dimensional sys-
tems deals with the first case of a general situation
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often referred to as degeneracies of Hopf bifurca-
tions or alternatively Hopf–Takens bifurcations.
Consider more generally a planar vector field,
tangent at the origin to a linear focus:

_x ¼ yþ �xþ f ðx; yÞ
_y ¼ �xþ �yþ gðx; yÞ

The Poincaré center-focus problem asks for
necessary and sufficient conditions on the perturba-
tion terms so that all orbits are periodic in a
neighborhood of the origin. This problem is still
pending in the case, for instance, where f and g are
homogeneous of degrees 4 and 5. It was solved a
long time ago for degrees 2 and 3. Part (b) of
Hilbert’s 16th Problem asks for finding a bound in
terms of the degrees of polynomial perturbations for
the number of limit cycles (isolated periodic orbits)
in the neighborhood of the origin. In the case of
homogeneous perturbations, a Cherkas transforma-
tion allows the reduction of both problems to the
so-called one-dimensional periodic Abel equations:

dy=dx ¼ pðxÞy2 þ qðxÞy3

where p and q are trigonometric polynomials in x.
A perturbative approach was developed for several
years and yields a theory of algebraic moments
related to Livsic’s generalized problem of moments.
Fast–Slow Systems

Fast–slow systems

� _x ¼ f ðx; yÞ; _y ¼ gðx; yÞ

are characterized by the existence of two timescales.
Variables x are called fast variables and y are called
slow variables. Different approximation techniques
can be used (averaging method, multiscale approach
(see Multiscale Approaches)). The behavior of
solutions is approximated as follows (when the
scale � is small). The orbit jumps to an attractor of
the fast dynamics. This attractor may eventually lose
its stability and/or bifurcate as time evolves. Then
the orbit jumps to another attractor of the fast
dynamics. Once again, this attractor may evolve/
bifurcate/disappear, depending on the slow variables
y. This explains why bifurcation theory enters in the
process in a crucial way, and it has to be adapted to
this special context where some new phenomena may
occur (e.g., singular Hopf bifurcation theory,
Canards, etc.). Fundamental tools to be used in this
context are Takens theorem, Fenichel central mani-
fold theorem, blowing-up (Dumortier–Roussarie).
Excitability is also an important feature which occurs
in some fast–slow systems. Consider initial data in a
neighborhood of an excitable attractive point. For some
initial data, the orbit goes very quickly to the attractor.
For some others instead (usually below some threshold),
the orbit undergoes a long incursion in the phase
diagram before turning back to the attractive point.

Singular Hopf bifurcation, hysteresis, and excit-
ability can, for instance, occur in the electrodissolu-
tion and passivation of iron in sulfuric acid
(see Alligood et al. (1997)).

Sometimes, the orbit leaves the neighborhood of a
first attractor to jump to a second one and then this
second one disappears and the orbit jumps back to
the initial attractor as the slow variables have
undergone a cycle. This is called a hysteresis cycle.
In case one of the attractors is a point while the
other is an attractive periodic orbit, it may lead to
bursting oscillations. These oscillations are charac-
terized by the periodic succession of silent phases
(attractor of the fast dynamics) and active (pulsatile)
phases (periodic attractor of the fast dynamics).
They are ubiquitous in physiology, where they were
first discovered and can be also observed in physics
(laser beams) and in population dynamics.
Example

The Hindmarsh–Rose model displays bursting
oscillations:

� _x ¼ y� x3 þ 3x2 þ I � z

� _y ¼ 1� 5x2 � y

_z ¼ sðx� x1Þ � z

The fast dynamics is two dimensional. For some values
of the parameters, it displays an attractive node, a
saddle and a repulsive focus. Under the slow variation
of z, the fast dynamics displays a saddle–node
bifurcation, a Hopf bifurcation from which emerges
a stable limit cycle which disappears into a homoclinic
bifurcation. The fast–slow system undergoes a hyster-
esis loop which yields to bursting oscillations.
Conclusions

Over the past three decades, mathematical tech-
niques gathered under the names of singularity
theory and bifurcation theory of dynamical systems
have offered a powerful means to explore nonlinear
phenomena in diverse settings. These include
mechanical vibrations, lasers, superconducting cir-
cuits, and chemical oscillators. Many such instances
are further developed in this encyclopedia.
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Introduction

Solitons and Kac–Moody Lie algebras were born at
almost the same time in the 1960s, although they
did not have a connection at first. They both have
roots in the history of mathematics. From the 1970s
on, they became intersection points for many
(previously known and new) results.

The notion of solitons has many facets and it is
difficult to give a mathematically precise definition;
closely related to solitons is the notion of ‘‘com-
pletely integrable systems.’’ The latter is usually used
in a much broader sense.

The terminology ‘‘soliton’’ was originally used for
a particular phenomenon in shallow water waves.
Now, in its broadest sense, it is used to represent an
area of research relating to this particular phenom-
enon in direct or indirect ways. From the viewpoint
of solitons, particular solutions of differential
equations are of special interest. Although particular
solutions have been studied for a long time, interest
in them was overshadowed by the method of
functional analysis in the 1950s. In the late nine-
teenth century, in parallel with the theory
of algebraic functions, several studies undertook
the solution of mechanical problems by elliptic or
hyperelliptic integrals. Subsequently, however, there
was a drop in activity in this area of work.

Originally it was hoped that this kind of phenom-
enon could be used for practical applications. No
mention of practical application of solitons will be
made in this article.

First we list several topics which constitute the
main body of the notion of solitons in the early
stages; we will then explain relations with Kac–
Moody Lie algebras.
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Birth of Solitons

The name ‘‘soliton’’ itself was coined by Martin D
Kruskal around 1965. It was originally employed for
the solitary wave solution Korteweg–de Vries (KdV)
equation

ut � 1
4 ð6uux þ uxxxÞ ¼ 0; u ¼ uðx; tÞ ½1�

The coefficients here are not important. We can
change them arbitrarily. The unknown function u,
or rather �u, represents the height of the wave.

The solitary wave solution in question is given by

uðx; tÞ ¼ �2c sech2 ffiffiffi
c
p
ðx� ct � dÞ

� �
½2�

This is a traveling-wave solution with the height of
the wave proportional to the speed. This is one
feature of the nonlinearity of this differential
equation.

A reason for this nomenclature comes from the
particle-like property of solitary wave observed via
numerical computations. That is, if we have two
solitons [2] with different speeds, with the faster one
on the left and the slower one on the right, then after
some time they collide and their shapes are distorted.
After a long enough time, they are separated and
recover their original shapes, the only difference
being in the change of the phase shift d in [2].

Solitary waves in shallow water (like a canal)
were first observed by Scott Russell in Scotland in
the middle of the nineteenth century. Differential
equations which possess solitary waves in shallow
water as solutions were sought after Scott Russell’s
report. Boussinesq derived one (now called the
Boussinesq equation, which contains second partial
derivatives with respect to time) from the Euler
equation of water wave; then in 1895 Korteweg and
his student de Vries derived the KdV equation. They
also showed that the KdV equation possesses
solutions expressible in terms of elliptic functions.

In the 1960s Kruskal and Zabusky carried out
numerical computations for the Fermi–Pasta–Ulam
problem; they also came across the KdV equation
and found the aforementioned phenomenon.
Inverse-Scattering Method

Kruskal and his co-workers further pursued the
origin of the particle-like property of solitons and
proposed the so-called inverse-scattering method.

The inverse problem of scattering theory of the
one-dimensional Schrödinger operator

L ¼ � d

dx

� �2

þ uðxÞ
was studied by Gelfand–Dikii, Marchenko, and
Krein in the 1950s, motivated by scattering theory
in quantum mechanics.

It gives a one-to-one correspondence between rapidly
decreasing potentials u(x) and scattering data which
consist of discrete eigenvalues ��2

j and normalization
cj, j = 1, . . . , n, of the eigenfunctions corresponding to
them and the reflection coefficient r(�). The reflection
coefficient represents the ratio of reflection of the unit
plane wave ei�x by the potential field. The scattering
data {r(�), �j, ci, j = 1, . . . , n} are a mathematical ideali-
zation of observable data in quantum scattering. The
procedure of reconstructing a potential from given
scattering data is called the inverse problem. The heart
of this procedure is solving an integral equation (the
Gelfand–Dikii–Marchenko equation). In the reflection-
less case (r(�) = 0), this integral equation reduces to a
system of linear algebraic equations.

Kruskal and co-workers found that the scattering
data of these operators with solutions of [1] as
potentials depend very simply on t:

�jðtÞ ¼ �jð0Þ; cjðtÞ ¼ cjð0Þ e2i�3t

rð�; tÞ ¼ rð�; 0Þ e2i�3t
½3�

It was realized at the same time that soliton solutions
correspond to a reflectionless potential (r(�) = 0) with
only one discrete eigenvalue, while reflectionless
potentials correspond to a nonlinear ‘‘superposition’’
of soliton solutions (called multisoliton solutions) and
describe the interaction of solitons.

As was pointed out by Zakharov and others, the
inverse-scattering method has an intimate relation
with the Riemann–Hilbert problem.
Lax Representation

Looking at this invariance of the spectrum, Lax
reformulated the KdV equation [1] as an evolution
equation for the one-dimensional Schrödinger operator:

dL

dt
¼ ½A;L�; L¼ d

dx

� �2

þ u

A¼ @

@x

� �3

þ 3

4
u
@

@x
þ @

@x
u

� � ½4�

Here we have changed the sign of the operator for
later convenience. This form of representation
together with the inverse-scattering method gave a
framework for finding nonlinear differential (differ-
ence) equations that have solutions with properties
similar to solitons (soliton equations).

Among such are the sine-Gordon equation

utt � uxx ¼ sin u
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the nonlinear Schrödinger equation

iut þ uxx þ juj2u ¼ 0

the modified KdV equation

ut � 1
6 6u2ux þ uxxx

� �
¼ 0

the Toda lattice equation

dQn

dt
¼ Pn

dPn

dt
¼ �exp Qn �Qnþ1ð Þ þ exp Qn�1 �Qnð Þ

½5�

and so on. The first three are obtained by replacing
L by a 2� 2 matrix differential operator of first
order. For eqn [5], the linear operator corresponding
to L in the case of the KdV equation is a difference
operator of order 2 and has a connection with the
theory of orthogonal polynomials in one variable as
well as with the theory of moment problems.

Later it was remarked that the differential
operator A in eqn [4] is nothing but the differential
operator part of the fractional power of
L: A = (L3=2)þ. By replacing A in [4] by (L(2nþ1)=2)þ
we obtain higher (nth) KdV equations.
Basic Representations of Affine
Lie Algebras

In the 1960s Kac and Moody introduced indepen-
dently a class of infinite-dimensional Lie algebras
which are in many respects close to finite-dimensional
semisimple Lie algebras. Each of them is constructed
for a given generalized Cartan matrix (GCM),

C ¼ aij

� �
; aii ¼ 2; aij � 0 for i 6¼ j

and if aij ¼ 0 then aji ¼ 0 ½6�

There is a special class of Kac–Moody Lie algebras
that are now called affine Lie algebras. They
correspond to positive-semidefinite GCM and are
realized as central extensions of loop algebras
(current algebras)

C½�; ��1� � g

of finite-dimensional semisimple Lie algebras g.
They have many applications in physics, in parti-
cular as current algebras. The Sugawara construc-
tion in current algebra plays an essential role in
conformal field theory. Note that finite-dimensional
semisimple Lie algebras correspond to positive-
definite GCMs.

In the late 1970s, there was interest in construct-
ing representations of these algebras after the
general theory of representations was constructed.
Among them was the work of Lepowsky–Wilson,
who constructed basic representations of the affine
Lie algebra A(1)

1 (= bsl2) using differential operators of
infinite order in infinitely many variables. These
operators were called vertex operators by Garland,
in view of the resemblance to objects in string
theory. Character formulas for these new Lie
algebras were intensively studied and many combi-
natorial identities were (re)derived.
Geometric Interpretation

How do Kac–Moody Lie algebras enter into this
picture?

In the early stages of the history of solitons
Kac–Moody Lie algebras appeared rather artifi-
cially. Some authors tried to understand solitons
from geometric viewpoints. A typical example is the
sine-Gordon equation. This equation appears as the
Gauß–Codazzi equation in the theory of embeddings
of two-dimensional surfaces of constant negative
curvature into three-dimensional Euclidean space,
while the Gauß–Weingarten equation is the linear
equation that appears in the Lax representation of
the sine-Gordon equation. Another approach of a
geometric nature, involving the prolongation struc-
ture, was the direction initiated by Wahlquist–
Estabrook. In this approach, the Lie algebra
appeared in a natural way, although the nature of
such Lie algebras was not so clear. This direction of
research is close in spirit to the method of Cartan for
treating partial differential equations.

Several authors considered generalizations of the
Toda lattice equation. Bogoyavlenskii and others
observed that the original Toda lattice equation [5]
is related to the Cartan matrix of the affine Lie
algebra of type A. Viewed in this way, it was
straightforward to generalize the Toda lattice
equation to Cartan matrices of another type of
affine Lie algebras and also to ordinary Cartan
matrices. These were typical appearances of Kac–
Moody Lie algebras in the theory of solitons; they
were used to produce soliton equations. The climax
of this is the work of Drinfel’d–Sokolov.

It needed some time to understand another role of
affine Lie algebras in the theory of solitons.
Bäcklund Transformation

In the theory of two-dimensional surfaces of
constant negative curvature, a method of obtaining
another surface of constant negative curvature from
the given one with some parameter was known by
the work of Bäcklund. If we apply this to the trivial
solutions u = 0 of the sine-Gordon equation, we
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obtain a one-soliton solution of the sine-Gordon
equation. From this fact, the transformation of
solutions of soliton equations to other solutions is
called a Bäcklund transformation. The original
Darboux transformation is a special case of a
Bäcklund transformation.
Hamiltonian Formalism

Another discovery of Gardner–Greene–Kruskal–
Miura was the Hamiltonian structure of the KdV
equation. In the process of showing the existence of
infinitely many conservation laws, they used the
so-called Miura transformation, which relates the
KdV and the modified KdV equation. Faddeev–
Zakharov showed that the transformation to
scattering data is a canonical transformation, and
conserved quantities are obtained from the expan-
sion of the reflection coefficients.

Gelfand–Dikii studied Hamiltonian structures of
the KdV equation using the formal variational
calculus they initiated.

M Adler was the first to try to study the KdV
equation by using the orbit method known for
finite-dimensional Lie algebras. It was known by the
works of Kostant and Kirillov or even earlier by Lie
that the co-adjoint orbits of Lie algebras admit
symplectic structures (the Kostant–Kirillov bracket).
Adler considered the algebra of pseudodifferential
operators in one variable. This acquires the structure
of Lie algebra by the commutation relation. This
algebra admits a natural triangular decomposition
by order. He showed that the KdV equation can be
viewed as a Hamiltonian system in the co-adjoint
orbit of the one-dimensional Schrödinger operator
with the Kostant–Kirillov bracket. By introducing
the notion of residue of pseudodifferential operators
he rederived conserved quantities. The work of
Drinfeld–Sokolov can be regarded as a thorough
generalization of this direction. Hamiltonian struc-
tures of the KdV equation and other soliton
equations are now understood in this way.

The method is also applicable to finite-dimensional
Lie algebras. Symes, Kostant, and others treated the
finite Toda lattice in this way.

The motion of tops, including that of Kovalevs-
kaya, was also studied in this way.
Hirota’s Method

There was another approach to soliton equations, quite
different from the above. This was the method initiated
by Hirota. He placed stress on the form of multisoliton
solutions of the KdV equation, the sine-Gordon
equation, and so on. He made a dependent-variable
transformation of the KdV equation [1],

u ¼ 2
d

dx

� �
log f

This form naturally arises when we reconstruct the
potential of the one-dimensional Schrödinger
operator from the scattering data by solving the
Gelfand–Dikii–Marchenko integral equation. In this
new dependent variable, eqn [1] takes the following
form:

D4
x � 4Dx Dt

� �
f ðx; tÞ � f ðx; tÞ ¼ 0

where the operator Dx is defined by

Dxðf � gÞ ¼
d

dx0
f ðxþ x0Þ gðx� x0Þj x0¼0 ½7�

This operator is called Hirota’s bilinear differential
operator. In such transformed form, he tried to solve
the resulting equation in a perturbative way,

f ¼ 1þ
Xn

j¼1

expð2pjxþ 2p3t þ qjÞ

þ
X

1�j<k�n

cij expð2ðpj þ pkÞx

þ 2ðp3
j þ p3

kÞt þ qj þ qkÞ þ � � � ½8�

It is rather miraculous that in the soliton equation
case we can truncate such a perturbative procedure
at a finite point. The number of steps corresponds to
the number of solitons.

Most of the soliton equations are rewritten in
bilinear form with such bilinear differentiation after
a suitable dependent-variable transformation. (Some
equations need several new dependent variables.)
Once we have a differential equation in Hirota’s
bilinear differential form, it always has two-soliton
solutions.

Up to 1980, keywords characterizing solitons
were; inverse-scattering method, Bäcklund trans-
formation, multisolitons, Hirota’s method, quasi-
periodic solutions, etc. No explicit mention was
made of representation theory.
Hierarchy of Soliton Equations

As was stated above, soliton equations viewed as
Hamiltonian systems have infinitely many conserva-
tion laws. This implies that we can introduce infinitely
many independent time variables consistently. From
this viewpoint, it is natural to consider the KdV
equation and its higher-order analogs simultaneously.
They have many properties in common. For example,
the t-dependence of the scattering data of the higher
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KdV equation is given by replacing �3 by �2nþ1 and �3
j

by �2nþ1
j in eqn [3]. The totality of soliton equations

organized in this way is called a hierarchy of soliton
equations; in the KdV case, it is called the KdV
hierarchy. This notion of hierarchy was introduced by
M Sato. He tried to understand the nature of the
bilinear method of Hirota. First, he counted the
number of Hirota bilinear operators of given degree
for hierarchies of soliton equations. For the number of
bilinear equations, M Sato and Y Sato made extensive
computations and made many conjectures that involve
eumeration of partitions.
Kadomtsev–Petviashvili Hierarchy

Although it was included in a family of soliton
equations slightly later, the Kadomtsev–Petviashvili
(KP) equation is a soliton equation in three
independent variables, which first appeared in
plasma physics:

3
4 uyy�

�
ut � 1

4 ð6uux þ uxxxÞ
�
¼ 0 ½9�

For this equation we have to replace the Lax
representation by	

@

@x

� �2

þ u� @

@y
;

@

@x

� �3

þ 3

2
u
@

@x
þ v� @

@t



¼0 ½10�

This form of representation was introduced by
Zakharov–Shabat. Sometimes it is referred to as
the zero-curvature representation or the Zakharov–
Shabat representation. The KP equation is universal
in the sense that it contains the KdV equation [1]
and the Boussinesq equation as special cases. If u
does not depend on y, resp. t, this gives the KdV,
resp. the Boussinesq equation.
Work of Sato

Sato stressed the importance of the study of the KP
equation. He first introduced the KP hierarchy.
Instead of the one-dimensional Schrödinger operator
in the KdV case consider a pseudo- (micro)
differential operator of first order,

L ¼ @ þ u2ðxÞ@�1 þ u3ðxÞ@�3 þ � � �

@ ¼ @

@x1
; x ¼ ðx1; x2; x3; . . .Þ

½11�

Setting Bn = (Ln)þ, the KP hierarchy is defined by
the Zakharov–Shabat representation

@

@xm
� Bm;

@

@xn
� Bn

	 

¼ 0; m; n ¼ 2; 3; . . .
If we assume that L2 is a differential operator, we
have the KdV hierarchy and the constraint that L3 is
a differential operator gives the Boussinesq
hierarchy. This process is called reduction.

Sato found that character polynomials (Schur
functions) solve the KP hierarchy and, based on
this observation, he created the theory of the
infinite-dimensional (universal) Grassmann manifold
and showed that the Hirota bilinear equations are
nothing but the Plücker relations for this Grassmann
manifold.

Sato also gave an (infinite-dimensional) determi-
nantal formula for Hirota’s dependent variable and
called the latter the �-function. Using this
�-function, the wave function (the eigenfunction
corresponding to the KP hierarchy) is expressed as

wðx; kÞ¼ exp
X1
n¼1

xnkn

 !
�ðx� �ðk�1ÞÞ

�ðxÞ

�ðkÞ¼ k;
k2

2
;
k3

3
; . . .

� �
Lw¼ kw

½12�

where L is given by eqn [11].
Affine Lie Algebras as Infinitesimal
Transformation Groups for Soliton
Equations

Date–Jimbo–Kashiwara–Miwa found another rela-
tion among soliton equations and affine Lie alge-
bras. After noticing some similarity between the
formula in the paper by Lepowsky–Wilson on the
Rogers–Ramanujan identity using the vertex opera-
tors for A(1)

1 and the formula in the computation of
numbers of bilinear operators in Sato’s paper, they
applied the vertex operator for A(1)

1 ,

XðpÞ¼ exp
X1
j¼1

2x2j�1p2j�1

 !

� exp �
X
j¼1

2

jp2j�1

@

@x2j�1

 !

to 1 (which is the simplest �-function for the KdV
hierarchy), where p is a parameter. They found that
the result is the �-function corresponding to the one-
soliton solution of the KP hierarchy. They also
found that successive application of X(p)’s to 1
produced all multisoliton �-functions. Therefore,
applications of vertex operators are precisely
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Bäcklund transformations. This implies that the
affine Lie algebra A(1)

1 is the infinitesimal transfor-
mation group for solutions of the KdV hierarchy.

After this discovery, it was realized that the
totality of �-functions of the KdV hierarchy is
the group orbit of the highest weight vector (=1)
of the basic representation of A(1)

1 .
The vertex operators for the KP hierarchy were

also found:

Xðp; qÞ¼ exp
X1
j¼1

xjðpj þ qjÞ
 !

� exp �
X
j¼1

1

jpj
þ 1

jqj

� �
@

@xj

 !

If we put q =�p, the vertex operator for A(1)
1 ([12])

is recovered.
Viewed in this way the Lie algebra corresponding

to the KP hierarchy is gl1(=A1). And an embed-
ding of A(1)

1 into A1 was also found. Subsequently,
the method using free fermions (Clifford algebras)
was established. Frenkel–Kac had already used free
fermions to construct basic representations. In this
approach, the �-functions are defined as vacuum
expectation values. Based on this connection with
affine Lie algebras, many conjectures of Sato on the
number of bilinear equations are (re)proved by using
specialized characters of affine Lie algebras.

The use of free fermions was exploited by
Ishibashi–Matsuo–Ooguri to relate soliton equations
with conformal field theory on Riemann surfaces.
This aspect was further studied by Tsuchiya–Ueno–
Yamada using D-modules.

Once such a viewpoint was established, it was
easy to construct soliton equations corresponding to
other affine Lie algebras. Hierarchies similar to the
KP hierarchies (the simplest equation contains three
variables) were also found, which correspond to Lie
algebras like go1, sp1 (the BKP hierarchy, the CKP
hierarchy, and so on).

Summarizing these developments, we can say that
affine Lie algebras, or slightly larger ones like gl1,
appear naturally as infinitesimal transformation
groups for soliton equations and the solution spaces
are the (completed) group orbits of highest weight
vector �-functions of level-1 representations. The
Hirota bilinear equations are the equations describ-
ing these orbits (analogs of Plücker relations).

Soon afterwards, the notion of �-functions was
introduced in the study of Painlevé equations by
Okamoto, revealing Hamiltonian structures in
Painlevé equations.
The Method of Drinfeld–Sokolov

The KdV or the KP hierarchies are related to scalar
linear differential operators. A parallel treatment
using matrix differential operators is also possible.
In fact, the nonlinear Schrödinger equation, modi-
fied KdV equation, the sine-Gordon equation, etc.,
are treated in this way.

Drinfel’d and Sokolov gave a general framework
along these lines. The first step is to choose the starting
(matrix-valued) linear differential operator of order
one. For that they use the language of Lie algebras.

Let us start with a matrix realization of a Lie
algebra (for an affine Lie algebra, the elements are
Laurent polynomials in one variable). Consider a
linear differential operator of the following form:

L ¼ d

dx
þ qðxÞ þ �

where q(x) is an element of the Borel subalgebra and �
is a sum of positive Chevalley generators in the case of
affine Lie algebras. By using gauge transformations
(adjoint group), they consider several normal forms.
One normal form is obtained by choosing a node of
the corresponding Dynkin diagram. The resulting
matrix system is equivalent to the one obtained by
scalar Lax representation (or a slight generalization of
it). In this way, the generalized KdV equations for
affine Lie algebras are obtained. Another normal form
is to make q h-valued. Soliton equations obtained in
this way are called the modified KdV equations. This is
a generalization of the Miura transformation. They
also comment on the construction of partially mod-
ified soliton equations, which correspond to taking
various parabolic subalgebras. The Hamiltonian
formalism is also treated from their viewpoint.

In summary, in their approach affine algebras are
used to construct soliton equations, or one can say
that they consider the space of initial values of
soliton equations.

They also discuss two-dimensional Toda lattices
in their setting and show that modified equations in
their sense are symmetries of the two-dimensional
Toda lattices.
Common Features of the Roles of Affine
Lie Algebras in Solitons

In �-function approach as well as in the method
of Drinfeld–Sokolov, the existence of triangular
decomposition of Lie algebras was essential. In the
former case, it was basic when considering highest-
weight representations and, for the latter, it was
used for the setup.
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Special Solutions of Soliton Equations
(Multisoliton and Rational Solutions)

One of the characteristic features of soliton equa-
tions is that they allow rich special solutions.
Multisoliton solutions were the starting point of
the whole story. They directly relate to vertex
operators of affine Lie algebras.

Rational solutions (in terms of �-function poly-
nomial solutions) can be viewed as degenerations of
multisoliton solutions. Motions of poles (or zeros) of
the solutions are interesting. Airault–McKean–Moser
studied the motion of poles of rational solutions of
the KdV equation and found that they are identical to
the motion of particles on a line (Calogero–Moser–
Sutherland system). This viewpoint has now been
generalized by Veselov and others.

Another discovery of Sato was that polynomial
�-functions of the KP hierarchy are precisely Schur
functions (character polynomials).

In accordance with the process of reduction,
polynomial �-functions of the KdV hierarchy are
Schur functions of special type.
Quasiperiodic Solutions of
Soliton Equations

As mentioned above, the KdV equation admits
solutions expressible in terms of elliptic functions.
Dubrovin–Novikov and Its–Matveev, almost at the
same time, studied solutions of the KdV equation
with periodic initial condition.

To the Sturm–Liouville (i.e., one-dimensional
Schrödinger) operator with periodic potential

L ¼ @

@x

� �2

þ uðxÞ; uðxþ lÞ¼ uðxÞ

there corresponds the discriminant, which is an
entire function of the spectral parameter. Its zeros
represent the periodic and antiperiodic spectrum �j

of the operator:

LfjðxÞ¼�jfjðxÞ; fjðxþ lÞ¼ � fjðxÞ

It turns out that, except for a finite number of zeros,
other zeros are double. Such a potential is called a
finite-zone potential. These zones correspond to the
spectrum of the operator in the L2-sense. To a finite-
zone potential u(x) there corresponds a hyperelliptic
curve

�2 ¼
Y2n

j¼0

�� �j

� �
with simple zeros �j of the discriminant as zeros of
polynomials defining the curve. If we consider the
Dirichlet boundary value problem for the operator L,

Lf ¼ �; f
f ðs; �Þ ¼ 0 ¼ f ðsþ l; �Þ

the eigenvalues are discrete and each eigenvalue �j is
located in a zone:

�2j�1 � �jðsÞ � �2j

So, for the double zeros (�2j�1 =�2j), the corre-
sponding Dirichlet eigenvalue �j(s) does not depend
on s.

Dubrovin–Novikov also showed that a finite-zone
potential is a stationary solution of the higher-order
KdV equation (the order being equal to the number
of nontrivial zones) and the n-zonal potentials form
a finite-dimensional integrable system. In other
words, the linear operators L, An defining the nth
order KdV equations commute,

L;An½ � ¼ 0

In passing, it was later found that such a pair of
commuting linear differential operators was first
studied by Burchnall–Chaundy in the 1920s.
H F Baker remarked on the corresponding simulta-
neous eigenfunctions by relating them to multi-
plicative functions on algebraic curves.
The Work of Krichever

Krichever reversed the above argument, utilizing the
properties of corresponding eigenfunctions as a
function of the spectral parameter. In this approach,
we start with a compact Riemann surface C
(= nonsingular algebraic curve) of genus g. Here
we apply his method to the KP hierarchy. Take a
point P0 on C together with the inverse of a local
parameter k�1. Also take a general divisor � on C of
degree g. Consider a function  (x, P), x = (x1, x2, . . .),
with the following properties:

1.  is meromorphic on CnP0 with the pole divisor
�, and

2. near P0, behaves like

 ðx;PÞ¼ exp
X1
j¼1

xjk
j

 !
1þOðk�1Þ
� �

Such a  exists uniquely and can be constructed
using the theory of abelian integrals and the Jacobi
problems on algebraic curves. Such a function was
called the Baker–Akhiezer function, since Akhiezer
constructed it by using abelian integrals and Jacobi’s



Solitons and Kac–Moody Lie Algebras 601
problem in his study of moment problems (ortho-
gonal polynomials).

It was later realized that Schur had much earlier
considered such functions in the study of ordinary
differential equations.

It is easy to show that such a function satisfies the
following linear differential equations:

@

@xn
 ¼ @

@x1

� �n

þ
Xn�1

j¼0

ujðxÞ
@

@x1

� �j
 !

 ; n¼ 2;3; . . .

In this way, we obtain a solution of the KP
hierarchy.

If there exists a rational function f (P) on C with
poles only at P0 with singular part kn, can be
factorized as

 ðx;PÞ¼ exp f ðPÞ 0ðx0;PÞ

where x0 indicates the set of variables other than xn.
Consequently, we have

@

@xn
 ðx;PÞ¼ f ðPÞ ðx;PÞ

In this way, for a hyperelliptic curve C and a
branch point of it, viewed as the double cover of
CP1, we recover the case of the KdV hierarchy.

Multisolitons correspond to rational algebraic
curves with ordinary double points, while rational
solutions correspond to further degeneration.

The study of quasiperiodic solutions of soliton
equations revealed an intimate relationship with
the theory of algebraic curves. One particular out-
come was the characterization of Jacobian varieties
among abelian varieties. This was originally posed
by Schottky and subsequently reformulated by
S P Novikov using soliton equations (Schottky
problem, Novikov conjecture). This problem was
solved through studies by Shiota, Mulase, and
Arbarello–De Concini.

Another aspect was finding commutative subalge-
bras in the ring of linear differential operators. This
problem is related to the theory of stable vector
bundles on algebraic curves.
Similarity Solutions of Soliton Equations

Ablowitz and Segur have shown that the Painlevé
transcendent of the second kind solves the KdV
equation as a similarity solution. This was the
starting point of the study of similarity solutions of
soliton equations.

Flaschka and Newell tried to construct the theory of
multisimilarity solutions. As a by-product, they
discussed modulation of the KdV equation by using
the averaging method of Whitham. This opens the
way to study the quasiclassical limit of soliton
equations. This aspect was further studied by Dubro-
vin and others in connection with topological field
theory.

Quite recently, Noumi and Yamada gave a general-
ization of the Painlevé equation in many variables by
using the idea of similarity solutions of soliton
equations. In the work of Noumi–Yamada, the affine
Weyl group and �-functions play an essential role in
constructing generalizations of the Painlevé equation.
The shift or the unit of difference corresponds to
imaginary null roots of affine Lie algebras. The idea is
further applied to elliptic Painlevé equations.
Integrable Many-Body Problems

As mentioned in relation with the rational solutions
of soliton equations, the theory of integrable many-
body problems has an intimate relationship with
the theory of solitons. Recently, Veselov and his
co-workers introduced the notion of Baker–Akhiezer
functions of many variables. This concerns a
commutative subring of differential operators in
many variables. The structure of vector bundles on
algebraic varieties of higher dimensions is quite
different from that of algebraic curves. For this
reason, a naı̈ve generalization of soliton equations to
higher dimensions is not possible. Veselov and
others have set up a class of functions which they
call multidimensional Baker–Akhiezer functions.
They are defined by giving a finite set of vectors in
a Euclidean space. The first problem is the existence.
For the existence of the multidimensional Baker–
Akhiezer function the set must satisfy several
constraints. This is quite different from the case of
solitons. Root systems satisfy these constraints and
the corresponding Baker–Akhiezer function becomes
the common eigenfunction of linear differential
operators appearing in the Calogero–Sutherland–
Moser model corresponding to root systems.
Ball–Box Systems

Satsuma–Takahashi found a soliton-like phenom-
enon in cellular automata. It took much time for a
mathematical explanation of this. Now it is under-
stand that these systems are obtained by a limiting
procedure from soliton equations. Sometimes this is
called ultra-discretization. The system thus obtained
can also be obtained from the theory of crystal bases
of affine Lie algebras. They are now called ball–box
systems.
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Other Topics

A quantized version of the inverse-scattering method
was initiated by Faddeev and his co-workers, which
makes a connection with two-dimensional solvable
lattice models and produced the notion of quantum
groups. Through the Bethe ansatz, another relation
of two-dimensional lattice models and ball–box
systems has been discussed.

See also: Affine Quantum Groups; Bäcklund
Transformations; Bi-Hamiltonian Methods in Soliton
Theory; Coherent States; Current Algebra; Integrable
Systems and Algebraic Geometry; Integrable Systems:
Overview; Multi-Hamiltonian Systems; Painlevé
Equations; Partial Differential Equations: Some Examples;
q-Special Functions; Recursion Operators in Classical
Mechanics; Sine-Gordon Equation; Toda Lattices.
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Introduction

A soliton is a localized lump (or string or wall, etc.)
of energy, which can move without distortion,
dispersion, or dissipation, and which is stable under
perturbations (and collisions with other solitons). The
word was coined by Zabusky and Kruskal in 1965 to
describe a solitary wave with particle-like properties
(as in electron, proton, etc.). Solitons are relevant to
numerous areas of physics – condensed matter,
cosmology, fluids/plasmas, biophysics (e.g., DNA),
nuclear physics, high-energy physics, etc. Mathema-
tically, they are modeled as solutions of appropriate
partial differential equations.

Systems which admit solitons may be classified
according to the mechanism by which stability is
ensured. Such mechanisms include complete integr-
ability, nontrivial topology plus dynamical balan-
cing, and Q-balls/breathers.
Sometimes the term ‘‘soliton’’ is used in a
restricted sense, to refer to stable localized lumps
which have purely elastic interactions: solitons
which collide without any radiation being emitted.
This is possible only in very special systems, namely,
those that are completely integrable. For these
systems, soliton stability (and the elasticity of
collisions) arises from a number of characteristic
properties, including a precise balance between
dispersion and nonlinearity, solvability by the
inverse scattering transform from linear data, infi-
nitely many conserved quantities, a Lax formulation
(associated linear problem), and Bäcklund transfor-
mations. Examples of such integrable soliton sys-
tems are the sine-Gordon, Korteweg–deVries, and
nonlinear Schrödinger equations.

The category of topological solitons is the most
varied, and includes such examples as kinks,
vortices, monopoles, skyrmions, and instantons.
The requirement of dynamical balancing for these
can be understood in terms of Derrick’s theorem,
which provides necessary conditions for a classical
field theory to admit static localized solutions. The
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Derrick argument involves studying what
happens to the energy of a field when one changes
the scale of space. If one has a scalar field (or
multiplet of scalar fields) �, and/or a gauge field F��,
then the static energy E is the sum of terms such as

E0 ¼
Z

Vð�Þ dnx; Ed ¼
Z

TdðDj�Þ dnx;

EF ¼
Z

FjkFjk dnx

where each integral is over (n-dimensional) space
Rn, Dj� denotes the covariant spatial derivative of �,
and Td(�j) is a real-valued polynomial of degree d.
In particular, for example, we could have T2(Dj�) =
(Dj�)(Dj�), the standard gradient term. Under the
dilation xj 7! �xj, these functionals transform as

E0 7!��nE0; Ed 7! �d�nEd; EF 7!�4�nEF

In order to have a static solution (critical point of
the static energy functional), one needs to have a zero
exponent on �, and/or a balance between positive and
negative exponents. A negative exponent indicates a
compressing force (tending to implode a localized
lump), whereas a positive exponent indicates an
expanding force; so to have a static lump solution,
these two forces have to balance each other. For
n = 1, a system involving only a scalar field, with
terms of the form E0 and E2, can admit static solitons
(e.g., kinks); the scaling argument implies a virial
theorem, which in this case says that E0 = E2. For
n = 2, one can have a scalar system with only E2,
since in this case the relevant exponent is zero (e.g.,
the two-dimensional sigma model). Another n = 2
example is that of vortices in the abelian Higgs model,
where the energy contains terms E0, E2, and EF. For
n = 3, interesting systems have E2 together with either
E4 (e.g., skyrmions) or EF (e.g., monopoles). An E0

term is optional in these cases; its presence affects, in
particular, the long-range properties of the solitons.
For n = 4, one can have instantons in a pure gauge
theory (term EF only).

It should be noted that if there are no restrictions on
the fields � and Aj (such as those arising, e.g., from
nontrivial topology), then there is a more obvious mode
of instability, which will inevitably be present: � 7!��
and/or Aj 7!�Aj, where 0 � � � 1. In other words, the
fields can simply be scaled away altogether, so that the
height of the soliton (and its energy) go smoothly to
zero. This can be prevented by nontrivial topology.

Another way of preventing solitons from shrink-
ing is to allow the field to have some ‘‘internal’’ time
dependence, so that it is stationary rather than
static. For example, one could allow the complex
scalar field � to have the form �= exp (i!t), where
 is independent of time t. This leads to something
like a centrifugal force, which can have a stabilizing
effect in the absence of Skyrme or magnetic terms.
The corresponding solitons are Q-balls.
Kinks and Breathers

The simplest topological solitons are kinks, in
systems involving a real-valued scalar field �(x) in
one spatial dimension. The dynamics is governed by
the Lagrangian density

L ¼ 1
2

�
ð�tÞ2 � ð�xÞ2 �Wð�Þ2

�
where W(�) is a (fixed) smooth function. The system
can admit kinks if W(�) has at least two zeros, for
example, W(A) = W(B) = 0 with W(�) > 0 for A <
� < B. Two well-known systems are: sine-Gordon
(where W(�) = 2 sin (�=2), A = 0, and B = 2�) and �4

(where W(�) = 1� �2, A =�1, and B = 1). The corre-
sponding field equations are the Euler–Lagrange equa-
tions for L; for example, the sine-Gordon equation is

�tt � �xx þ sin � ¼ 0 ½1�

Configurations satisfying the boundary condi-
tions �! A as x! �1 and �! B as x!1 are
called kinks (and the corresponding ones with
x =1 and x =�1 interchanged are antikinks).
For kink (or antikink) configurations, there is a
lower bound, called the Bogomol’nyi bound, on the
static energy E[�]; for kink boundary conditions,
we have

E½�� ¼ 1

2

Z 1
�1
ð�xÞ2 þWð�Þ2
h i

dx

¼ 1

2

Z 1
�1

�x �Wð�Þ½ �2 dxþ
Z 1
�1

Wð�Þ�x dx

�
Z B

A

Wð�Þ d�

with equality if and only if the Bogomol’nyi equation

d�

dx
¼Wð�Þ ½2�

is satisfied. A static solution of the Bogomol’nyi
equation is a kink solution – it is a static minimum
of the energy functional in the kink sector. For
example, for the sine-Gordon system, we get E[�] �
8, with equality for the sine-Gordon kink

�ðxÞ ¼ 4 tan�1 expðx� x0Þ

while for the �4 system, we get E[�] � 4=3, with
equality for the phi-four kink

�ðxÞ ¼ tanhðx� x0Þ
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These kinks are stable topological solitons; the
nontrivial topology corresponds to the fact that the
boundary value of �(t, x) at x =1 is different from
that at x =�1. With trivial boundary conditions
(say �! A as x! �1), stable static solitons are
unlikely to exist, but solitons with periodic time
dependence (which in this context are called breath-
ers) may exist. For example, the sine-Gordon
equation and the nonlinear Schrödinger equation,
both, admit breathers – but these owe their existence
to complete integrability. By contrast, the �4 system
(which is not integrable) does not admit breathers; a
collision between a �4 kink and an antikink (with
suitable impact speed) produces a long-lived state
which looks like a breather, but eventually decays
into radiation.

In lattice systems, however, breathers are more
generic. In a one-dimensional lattice system, the
continuous space R is replaced by the lattice Z, so
�(t, x) is replaced by �n(t), where n 2 Z. The
Lagrangian is

L ¼ 1

2

X
n

ð _�nÞ2 � h�2ð�nþ1 � �nÞ2 �Wð�nÞ
h i

where h is a positive parameter, corresponding to the
dimensionless ratio between the lattice spacing and the
size of a kink. The continuum limit is h ! 0. This
system admits kink solutions as in the continuum case;
and for h large enough, it admits breathers as well, but
these disappear as h becomes small.

Interpreted in three dimensions, the kink becomes
a domain wall separating two regions in which the
order parameter � takes distinct values; this has
applications in such diverse areas as cosmology and
condensed matter physics.
Sigma Models and Skyrmions

In a sigma model or Skyrme system, the field is a
map � from spacetime to a Riemannian manifold M;
generally, M is taken to be a Lie group or a
symmetric space. The energy density of a static
field can be constructed as follows (the Lorentz-
invariant extension of this gives a relativistic
Lagrangian for fields on spacetime). Let �a be local
coordinates on the m-dimensional manifold M, let
hab denote the metric of M, and let xj denote the
spatial coordinates on space Rn. An m�m matrix D
is defined by

Da
b ¼ ð@j�

cÞhacð@j�
bÞ

where @j denotes derivatives with respect to the xj.
Then the invariants E2 = tr(D) = j@j�

aj2 and
E4 = (1=2)[(tr D)2 � tr(D2)] can be terms in the
energy density, as well as a zeroth-order term
E0 = V(�a) not involving derivatives of �. A term
of the form E4 is called a Skyrme term.

The boundary condition on field configurations
is that � tends to some constant value �0 2M as
jxj ! 1 in Rn. From the topological point of view,
this compactifies Rn to Sn. In other words, � extends
to a map from Sn to M; and such maps are classified
topologically by the homotopy group �n(M). For
topological solitons to exist, this group has to be
nontrivial.

In one spatial dimension (n = 1) with M = S1 (say),
the expression E4 is identically zero, and we just have
kink-type systems such as sine-Gordon. The simplest
two-dimensional example (n = 2) is the O(3) sigma
model, which has M = S2 with its standard metric. In
this system, the field is often expressed as a unit
3-vector field f = (�1,�2,�3), with E2 = (@jf) � (@jf).
Here the configurations are classified topologically by
their degree (or winding number, or topological
charge) N 2 �2(S2) ffi Z, which equals

N ¼ 1

4�

Z
f � @1f � @2f dx1 dx2

Instead of f, it is often convenient to use a single
complex-valued function W related to f by the
stereographic projection W = (�1 þ i�2)=(1� �3). In
terms of W, the formula for the degree N is

N ¼ i

2�

Z
W1W2 �W2W1

ð1þ jWj2Þ2
dx1 dx2

and the static energy is (with z = x1 þ ix2)

E ¼
Z
E2 d2x

¼ 8

Z jWzj2 þ jWzj2

ð1þ jWj2Þ2
d2x

¼ 16

Z jWzj2

ð1þ jWj2Þ2
d2xþ 8

Z jWzj2 � jWzj2

ð1þ jWj2Þ2
d2x

¼ 16

Z jWzj2

ð1þ jWj2Þ2
d2xþ 8�N

From this, one sees that E satisfies the Bogomol’nyi
bound E � 8�N, and that minimal-energy solutions
correspond to solutions of the Cauchy–Riemann
equations Wz = 0. To have finite energy, W(z) has to
be a rational function, and so solutions with wind-
ing number N correspond to rational meromorphic
functions W(z), of degree jNj. (If N < 0, then W is a
rational function of z.) The energy is scale invariant
(conformally invariant), and consequently these
solutions are not solitons – they are not quite stable,
since their size is not fixed. Adding terms E4 and E0
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to the energy density fixes the soliton size, and the
resulting two-dimensional Skyrme systems admit
true topological solitons.

The three-dimensional case (n = 3), with M being
a simple Lie group, is the original Skyrme model of
nuclear physics. If M = SU(2), then the integer N 2
�3(SU(2)) ffi Z is interpreted as the baryon number.
The (quantum) excitations of the �-field correspond
to the pions, whereas the (semiclassical) solitons
correspond to the nucleons. This model emerges as
an effective theory of quantum chromodynamics
(QCD), in the limit where the number of colors is
large. If we express the field as a function U(xj)
taking values in a Lie group, then Lj = U�1@jU takes
values in the corresponding Lie algebra, and E2 and
E4 take the form

E2 ¼ �1
2 trðLjLjÞ

E4 ¼ � 1
16 tr ½Lj;Lk�½Lj;Lk�

� �
The static energy density in the basic Skyrme system
is the sum of these two terms. The static energy
satisfies a Bogomol’nyi bound E � 12�2jNj, and it is
believed that stable solitons (skyrmions) exist for
each value of N. Classical skyrmions have been
investigated numerically; for values of N up to 
25,
they turn out to resemble polyhedral shells. Com-
parison with nucleon phenomenology requires semi-
classical quantization, and this leads to results which
are at least qualitatively correct.

A variant of the Skyrme model is the Skyrme–
Faddeev system, which has n = 3 and M = S2; the
solitons in this case resemble loops which can be
linked or knotted, and which are classified by their
Hopf number N 2 �3(S2). In this case, the energy
satisfies a lower bound of the form E � cN3=4.
Numerical experiments indicate that for each N,
there is a minimal-energy solution with Hopf
number N, and with energy close to this topological
lower bound.
Abelian Higgs Vortices

Vortices live in two spatial dimensions; viewed in
three dimensions, they are string-like. Two of their
applications are as cosmic strings and as magnetic
flux tubes in superconductors. They occur as static
topological solitons in the the abelian Higgs model
(or Ginzburg–Landau model), and involve a mag-
netic field B = @1A2 � @2A1, coupled to a complex
scalar field �, on the plane R2. The energy density is

E ¼ 1
2 ðDj�ÞðDj�Þ þ 1

2 B2 þ 1
8�ð1� j�j

2Þ2 ½3�
where Dj� := @j�� iAj�, and where � is a positive
constant. The boundary conditions are

Dj� ¼ 0; B ¼ 0; j�j ¼ 1 ½4�

as r!1. If we consider a very large circle C on R2,
so that [4] holds on C, then �jC is a map from the
circle C to the circle of unit radius in the complex
plane, and therefore it has an integer winding
number N. Thus configurations are labeled by this
vortex number N.

Note that if E vanishes, then B = 0 and j�j= 1: the
gauge symmetry is spontaneously broken, and the
photon ‘‘acquires a mass’’: this is a standard
example of spontaneous symmetry breaking.

The total magnetic flux
R

B d2x equals 2�N; a
proof of this is as follows. Let � be the usual polar
coordinate around C. Because j�j= 1 on C, we can
write �= exp [if (�)] for some function f; this f need
not be single-valued, but must satisfy f (2�)�
f (0) = 2�N with N being an integer (in order that
� be single-valued). In fact, this defines the winding
number. Now since Dj�= @j�� iAj�= 0 on C,
we have

Aj ¼ �i��1@j� ¼ @jf

on C. So, using Stokes’ theorem, we getZ
R2

B d2x ¼
Z

C

Aj dxj

¼
Z 2�

0

df

d�
d�

¼ 2�N

If �= 1, then the total energy E =
R
E d2x

satisfies the Bogomol’nyi bound E � �N; E = �N
if and only if a set of partial differential equations
(the Bogomol’nyi equations) are satisfied. Since
like charges repel, the magnetic force between
vortices is repulsive. However, there is also a
force from the Higgs field, and this is attractive.
The balance between the two forces is determined
by �: if � > 1, the vortices repel each other;
whereas if � < 1, the vortices attract. In the
critical case �= 1, the force between vortices is
exactly balanced, and there exist static multi-
vortex solutions. In fact, one has the following:
given N points in the plane, there exists an
N-vortex solution of the Bogomol’nyi equations
(and hence of the full field equations) with �
vanishing at the chosen points (and nowhere
else). All static solutions are of this form. These
solutions cannot, however, be written down
explicitly in terms of elementary functions (except
of course for N = 0).
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Monopoles

The abelian Higgs model does not admit three-
dimensional solitons, but a nonabelian generaliza-
tion does – such nonabelian Higgs solitons are called
magnetic monopoles. The field content, in the
simplest version, is as follows. First, there is a
gauge (Yang–Mills) field F�� , with gauge potential
A�, and with the gauge group being a simple Lie
group G. Second, there is a Higgs scalar field �,
transforming under the adjoint representation of G
(thus � takes values in the Lie algebra of G). For
simplicity, G is taken to be SU(2) in what follows.
So we may write A� = iAa

�	a, F�� = iFa
��	a, and

�= i�a	a, where 	a are the Pauli matrices. The
energy of static (@0�= 0 = @0Aj), purely magnetic
(A0 = 0) configurations is

E¼
Z �

1
2Ba

j B
a
j þ 1

2ðDj�ÞaðDj�Þaþ 1
4�ð1��

a�aÞ2
�
d3x

where Ba
j = (1=2)
jklFkl is the magnetic field. The

boundary conditions are Ba
j ! 0 and �a�a ! 1 as

r!1; so � restricted to a large spatial 2-sphere
becomes a map from S2 to the unit 2-sphere in the
Lie algebra su(2), and as such it has a degree N 2Z.
An analytic expression for N isZ

Ba
j ðDj�Þa d3x ¼ 2�N ½5�

At long range, the field resembles an isolated
magnetic pole (a Dirac magnetic monopole), with
magnetic charge 2�N. Asymptotically, the SU(2)
gauge symmetry is spontaneously broken to U(1),
which is interpreted as the electromagnetic gauge
group.

In 1974, it was observed that this system admits a
smooth, finite-energy, stable, spherically symmetric
N = 1 solution – this is the ’t Hooft–Polyakov
monopole. There is a Bogomol’nyi lower bound on
the energy E: from 0 � (BþD�)2 = B2 þ (D�)2 þ
2B �D�, we get

E � 2�N þ
Z

1
4�ð1� �

a�aÞ2 d3x ½6�

where [5] has been used. The inequality [6] is
saturated if and only if the Prasad–Sommerfield
limit �= 0 is used, and the Bogomol’nyi equations

ðDj�Þa ¼ �Ba
j ½7�

hold. The corresponding solitons are called
Bogomol’nyi–Prasad–Sommerfield (BPS) monopoles.

The Bogomol’nyi equations [7], together with the
boundary conditions described above, form a com-
pletely integrable elliptic system of partial differen-
tial equations. For any positive integer N, the space
of BPS monopoles of charge N, with gauge freedom
factored out, is parametrized by a (4N � 1)-dimen-
sional manifold MN. This is the moduli space of N
monopoles. Roughly speaking, each monopole has a
position in space (three parameters) plus a phase
(one parameter), making a total of 4jNj parameters;
an overall phase can be removed by a gauge
transformation, leaving (4jNj � 1) parameters. In
fact, it is often useful to retain the overall phase, and
to work with the corresponding 4jNj-dimensional
manifold fMN. This manifold has a natural metric,
which corresponds to the expression for the kinetic
energy of the system. A point in fMN represents an
N-monopole configuration, and the slow-motion
dynamics of N monopoles corresponds to geodesics
on fMN; this is the geodesic approximation of
monopole dynamics.

The N = 1 monopole is spherically symmetric, and
the corresponding fields take a simple form; for
example, the Higgs field of a 1-monopole located at
r = 0 is

�a ¼ cothð2rÞ
r

� 1

2r2

� �
xa

For N > 1, the expressions tend to be less explicit;
but monopole solutions can nevertheless be char-
acterized in a fairly complete way. The Bogomol’nyi
equations [7] are a dimensional reduction of the self-
dual Yang–Mills equations in R4, and BPS mono-
poles correspond to holomorphic vector bundles
over a certain two-dimensional complex manifold
(‘‘mini-twistor space’’). This leads to various other
characterizations of monopole solutions, for exam-
ple, in terms of certain curves (‘‘spectral curves’’) on
mini-twistor space, and in terms of solutions of a set
of ordinary differential equations called the Nahm
equations. Having all these descriptions enables one
to deduce much about the monopole moduli space,
and to characterize many monopole solutions. In
particular, there are explicit solutions of the Nahm
equations involving elliptic functions, which corre-
spond to monopoles with certain discrete symme-
tries, such as a 3-monopole with tetrahedral
symmetry, and a 4-monopole with the appearance
and symmetries of a cube.
Yang–Mills Instantons

Consider gauge fields in four-dimensional Euclidean
space R4, with gauge group G. For simplicity, in
what follows, G is taken to be SU(2); one can extend
much of the structure to more general groups, for
example, the simple Lie groups. Let A� and F��
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denote the gauge potential and gauge field. The
Yang–Mills action is

S ¼ � 1

4

Z
tr F��F��
� �

d4x ½8�

where we assume a boundary condition, at infinity
in R4, such that this integral converges. The Euler–
Lagrange equations which describe critical points of
the functional S are the Yang–Mills equations

D�F�� ¼ 0 ½9�

Finite-action Yang–Mills fields are called instantons.
The Euclidean action [8] is used in the path-integral
approach to quantum gauge field theory; therefore,
instantons are crucial in understanding the path
integral.

The dual of the field tensor F�� is

�F�� ¼ 1
2 "����F��

The gauge field is self-dual if �F�� = F��, and anti-
self-dual if �F�� =�F�� . In view of the Bianchi
identity D� � F�� = 0, any self-dual or anti-self-dual
gauge field is automatically a solution of the Yang–
Mills equations [9]. This fact also follows from the
discussion below, where we see that self-dual
instantons give local minima of the action.

The Yang–Mills action (and Yang–Mills equa-
tions) are conformally invariant; any finite-action
solution of the Yang–Mills equations on R4 extends
smoothly to the conformal compactification S4.
Gauge fields on S4, with gauge group SU(2), are
classified topologically by an integer N, namely, the
second Chern number

N ¼ c2 ¼ �
1

8�2

Z
tr F�� � F��
� �

d4x ½10�

From [8] and [10] a topological lower bound on the
action is given as follows:

0 � �
Z

tr F�� � �F��
� �

F�� � �F��
� �

d4x

¼ 8S� 16�2N

and so S � 2�2N, with equality if and only if the
field is self-dual. If N < 0, we get S � 2�2jNj, with
equality if and only if F is anti-self-dual. So the self-
dual (or anti-self-dual) fields minimize the action in
each topological class.

For the remainder of this section, we restrict to self-
dual instantons with instanton number N > 0. The
space (moduli space) of such instantons, with gauge
equivalence factored out, is an (8N � 3)-dimensional
real manifold. In principle, all these gauge fields can
be constructed using algebraic-geometry (twistor)
methods: instantons correspond to holomorphic vector
bundles over complex projective 3-space (twistor
space). One large class of solutions which can be
written out explicitly is as follows: for N = 1 and
N = 2 it gives all instantons, while for N � 3 it gives a
(5N þ 4)-dimensional subfamily of the full (8N � 3)-
dimensional solution space. The gauge potentials in
this class have the form

A� ¼ i	��@� log � ½11�

where the 	�� are constant matrices (antisymmetric
in ��) defined in terms of the Pauli matrices 	a by

	10 ¼ 	23 ¼ 1
2	1

	20 ¼ 	31 ¼ 1
2	2

	30 ¼ 	12 ¼ 1
2	3

The real-valued function �=�(x�) is a solution of
the four-dimensional Laplace equation given by

�ðx�Þ ¼
XN
k¼0

�k

ðx� � x�kÞðx� � x�kÞ

where the x�k are N þ 1 distinct points in R4, and the
�k are N þ 1 positive constants: a total of 5N þ 5
parameters. It is clear from [11] that the overall
scale of � is irrelevant, leaving a (5N þ 4)-parameter
family. For N = 1 and N = 2, symmetries reduce the
parameter count further, to 5 and 13, respectively.
Although � has poles at the points x = xk, the gauge
potentials are smooth (possibly after a gauge
transformation).

Finally, it is worth noting that (as one might
expect) there is a gravitational analog of the gauge-
theoretic structures described here. In other words,
one has self-dual gravitational instantons – these are
four-dimensional Riemannian spaces for which the
conformal-curvature tensor (the Weyl tensor) is
self-dual, and the Ricci tensor satisfies Einstein’s
equations R�� = �g�� . As before, such spaces
can be constructed using a twistor-geometrical
correspondence.
Q-Balls

A Q-ball (or nontopological soliton) is a soliton
which has a periodic time dependence in a degree of
freedom which corresponds to a global symmetry.
The simplest class of Q-ball systems involves a
complex scalar field �, with an invariance under the
constant phase transformation � 7! ei��; the Q-balls
are soliton solutions of the form

�ðt; xÞ ¼ ei!t ðxÞ ½12�
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where  (x) is a complex scalar field depending only
on the spatial variables x. The best-known case is
the 1-soliton solution

�ðt; xÞ ¼ a
ffiffiffi
2
p

expðia2tÞsechðaxÞ

of the nonlinear Schrödinger equation i�t þ �xxþ
�j�j2 = 0.

More generally, consider a system (in n spatial
dimensions) with Lagrangian

L ¼ 1
2 ð@��Þð@

��Þ �Uðj�jÞ

where �(x�) is a complex-valued field. Associated
with the global phase symmetry is the conserved
Noether charge Q =

R
Im( ���t) dnx. Minimizing the

energy of a configuration subject to Q being fixed
implies that � has the form [12]. Without loss of
generality, we may take ! � 0. Note that Q =!I,
where I =

R
j j2 dnx. The energy of a configuration

of the form [12] is E = Eq þ Ek þ Ep, where

Eq ¼
1

2

Z
j@j j2 dnx

Ek ¼ 1
2 I!2 ¼ 1

2 Q2=I

Ep ¼
Z

Uðj jÞdnx

Let us take U(0) = 0 = U0(0), with the field satisfying
the boundary condition  ! 0 as r ! 1.

A stationary Q-lump is a critical point of the
energy functional E[ ], subject to Q having some
fixed value. The usual (Derrick) scaling argument
shows that any stationary Q-lump must satisfy

ð2� nÞEq � nEp þ nEk ¼ 0 ½13�

For simplicity, in what follows, let us take n � 3.
Define m > 0 by U00(0) = m2; then, near spatial
infinity, the Euler–Lagrange equations give r2 �
(m2 � !2) = 0. So, in order to satisfy the boundary
condition  ! 0 as r ! 1, we need ! < m.

It is clear from [13] that if U � (1=2)m2j j2
everywhere, then there can be no solution. So
K = min[2U(j j)=j j2] has to satisfy K < m2. Also,
we have
Ep ¼
Z

U � 1
2 KI ¼ ðK=!2ÞEk > ðK=!2ÞEp ½14�

where the final inequality comes from [13]. As a
consequence, we see that !2 is restricted to the range

K < !2 < m2 ½15�

An example which has been studied in some detail is
U(f ) = f 2[1þ (1� f 2)2]; here m2 = 4 and K = 2, so
the range of frequency for Q-balls in this system isffiffiffi

2
p

< ! < 2. The dynamics of Q-balls in systems
such as these turns out to be quite complicated.

See also: Abelian Higgs Vortices; Homoclinic
Phenomena; Integrable Systems: Overview; Instantons:
Topological Aspects; Noncommutative Geometry from
Strings; Sine-Gordon Equation; Topological Defects and
Their Homotopy Classification.
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Introduction

Two key issues of classical and quantum informa-
tion theory are storage and transmission of informa-
tion. An information source produces some outputs
(or signals) more frequently than others. Due to this
redundancy, one can reduce the amount of space
needed for its storage without compromising on its
content. This data compression is done by a suitable
encoding of the output of the source. In contrast, in
the transmission of information through a channel,
it is often advantageous to add redundancy to a
message, in order to combat the effects of noise.
This is done in the form of error-correcting codes.
The amount of redundancy which needs to be added
to the original message depends on how much noise
is present in the channel (see, e.g., Nielson and
Chuang (2000)). Hence, redundancy plays comple-
mentary roles in data compression and transmission
of data through a noisy channel. In this review we
focus only on data compression in quantum infor-
mation theory.

In classical information theory, Shannon showed
that there is a natural limit to the amount of
compression that can be achieved. It is given by
the Shannon entropy. The analogous concept in
quantum information theory is the von Neumann
entropy. Here, we review some of the main results
of quantum data compression and the significance of
the von Neumann entropy in this context.

The review is structured as follows. We first give
a brief introduction to the Shannon entropy and
classical data compression. This is followed by a
discussion of quantum entropy and the idea behind
quantum source coding. We elaborate on data
compression schemes for three different classes of
quantum sources, namely memoryless sources,
ergodic sources, and sources modeled by Gibbs
states of quantum spin systems. In the bulk of the
review, we concentrate on source-dependent, fixed-
length coding schemes. We conclude with a brief
discussion of universal and variable-length coding.
We would like to point out that this review article
is by no means complete. Due to a restriction on its
length, we had to leave out various important
aspects and developments of quantum source
coding.
Classical Data Compression

Entropy and Source Coding

A simple model of a classical information source
consists of a sequence of discrete random variables
X1, X2, . . . , Xn, whose values represent the output of
the source. Each random variable Xi, 1 � i � n,
takes values xi from a finite set, the source alphabet
X . Hence, X(n):= (X1, . . . , Xn) takes values x(n):=
(x1, . . . , xn) 2 Xn. We recall the definition of entropy
(or information content) of a source.

If the discrete random variables X1, . . . , Xn which
take values from a finite alphabet X have joint
probabilities

PðX1 ¼ x1; . . . ;Xn ¼ xnÞ ¼ pnðx1; . . . ; xnÞ

then the Shannon entropy of this source is defined by

HðX1; . . . ;XnÞ
¼ �

X
x12X
� � �
X
xn2X

pnðx1; . . . ; xnÞ

� log pnðx1; . . . ; xnÞ ½1�

Here and in the following, the logarithm is taken to
the base 2. This is because the fundamental unit of
classical information is a ‘‘bit,’’ which takes two
values 0 and 1. Notice that H(X1, . . . , Xn) in fact
only depends on the (joint) probability mass func-
tion (p.m.f.) pn and can also be denoted as H(pn).

There are several other concepts of entropy, for
example, relative entropy, conditional entropy, and
mutual information. See, for example, Cover and
Thomas (1991) and Nielson and Chuang (2000). It
is easy to see that

1. 0 � H(X1, . . . , Xn) � n log jXj, where jXj denotes
the number of letters in the alphabet X . Two
other important properties are as follows:

2. H(X1, . . . , Xn) is jointly concave in X1, . . . , Xn

and
3. H(X1, . . . ,Xn)�H(X1, . . . ,Xm)þH(Xmþ1, . . . ,Xn)

for m< n.

The latter property is called subadditivity.
In the next section, analogous quantities are

introduced for quantum information and the corre-
sponding properties are stated.

Suppose that the random variables X1, X2, . . . , Xn

are independent and identically distributed (i.i.d.).
Then the entropy of each random variable modeling
the source is the same and can be denoted by H(X).
From the point of view of classical information
theory, the Shannon entropy has an important
operational definition. It quantifies the minimal



610 Source Coding in Quantum Information Theory
physical resources needed to store data from a
classical information source and provides a limit to
which data can be compressed reliably (i.e., in a
manner in which the original data can be recovered
later with a low probability of error). Shannon
showed that the original data can be reliably
obtained from the compressed version only if the
rate of compression is greater than the Shannon
entropy. This result is formulated in Shannon’s
noiseless channel coding theorem (Shannon 1918,
Cover and Thomas 1991, Nielson and Chuang
2000) given later.
The Asymptotic Equipartition Property

The main idea behind Shannon’s noiseless channel
coding theorem is to divide the possible values
x1, x2, . . . , xn of random variables X1, . . . , Xn into
two classes – one consisting of sequences which have
a high probability of occurrence, known as ‘‘typical
sequences,’’ and the other consisting of sequences
which occur rarely, known as ‘‘atypical sequences.’’
The idea is that there are far fewer typical sequences
than the total number of possible sequences, but
they occur with high probability. The existence
of typical sequences follows from the so-called
‘‘asymptotic equipartition property’’:

Theorem 1 (AEP). If X1, X2, X3, . . . are i.i.d.
random variables with p.m.f. p(x), then

� 1

n
log pnðX1; . . . ;XnÞ�!

P
HðXÞ ½2�

where H(X) is the Shannon entropy for a single
variable, and pn(X1, . . . , Xn) denotes the random
variable taking values pn(x1, . . . , xn) =

Qn
i = 1 p(xi)

with probabilities pn(x1, . . . , xn).

This theorem has been generalized to the case of
sequences of dependent variables (Xn)n2Z which are
ergodic for the shift transformation defined below.
It is easiest to formulate this for an information
stream which extends from �1 to þ1:

Definition A sequence (Xn)n2Z is called ‘‘stationary’’
if for any n1 < n2 and any xn1

, . . . , xn2
2 X ,

PðXn1
¼ xn1

; . . . ;Xn2
¼ xn2

Þ
¼ PðXn1þ1¼ xn1

; . . . ;Xn2þ1 ¼ xn2
Þ

We define the shift transformation � by

� ðxnÞn2Z

� �
¼ðx0nÞn2Z; x0n ¼ xn�1 ½3�

Then (Xn)n2Z is called ‘‘ergodic’’ if it is stationary
and if every subset A � XZ such that �(A) = A has
probability 0 or 1, that is, P((Xn)n2Z 2 A) = 0 or 1.
It is known that (Xn)n2Z is ergodic if and only if
its probability distribution is extremal in the set of
invariant probability measures. The generalization
of Theorem 1 (McMillan 1953, Breiman 1957) now
reads:

Theorem 2 (Shannon–McMillan–Breiman theo-
rem). Suppose that the sequence (Xn)n2Z is
ergodic. Then

lim
n!1

� 1

n
log pnðX1; . . . ;XnÞ

� �
¼ hKS

with probability 1

½4�

where hKS is the Kolmogorov–Sinai entropy defined by

hKS¼ lim
n!1

1

n
HðX1; . . . ;XnÞ¼ inf

n

1

n
HðX1; . . . ;XnÞ ½5�

Remark. It follows from the subadditivity property
(3) above that the sequence (1=n)H(pn) is decreas-
ing, and it is obviously bounded below by 0.

We now define the set of typical sequences (or more
precisely, �-typical sequences) as follows:

Definition Let X1, . . . , Xn be i.i.d. random vari-
ables with p.m.f. p(x). Given � > 0, �-typical set T(n)

�

is the set of sequences (x1 . . . xn) for which

2�nðHðXÞþ�Þ � pðx1 . . . xnÞ� 2�nðHðXÞ��Þ ½6�

In the case of an ergodic sequence, H(X) is replaced
by hKS in [6].

Let jT(n)
� j denote the total number of typical

sequences and P{T(n)
� } denote the probability of the

typical set. Then the following is an easy conse-
quence of Theorem 1.

Theorem 3 (Theorem of typical sequences). For
any � > 0 9n0(�)>0 such that 8n � n0(�) the follow-
ing hold:

(i) P{T(n)
� } > 1� � and

(ii) (1� �)2n(H(X)��) � jT(n)
� j � 2n(H(X)þ�)

Shannon’s Noiseless Channel Coding Theorem

Shannon’s noiseless channel coding theorem is a
simple application of the theorem of typical
sequences and says that the optimal rate at which
one can reliably compress data from an i.i.d.
classical information source is given by the Shannon
entropy H(X) of the source.

A ‘‘compression scheme’’ Cn of rate R maps
possible sequences x = (x1, . . . , xn) to a binary string
of length dnRe: Cn : x 7! y = (y1, . . . , ydnRe), where
xi 2 X ; jXj= d and yi 2 {0, 1} 81 � i � dnRe. The
corresponding decompression scheme takes the dnRe
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compressed bits and maps them back to a string of n
letters from the alphabet X : Dn : y 2 {0, 1}dnRe 7! x0=
(x01, . . . , x0n). A compression–decompression scheme
is said to be ‘‘reliable’’ if the probability that x0 6¼ x
tends to 0 as n!1. Shannon’s noiseless channel
coding theorem (Shannon 1918, Cover and Thomas
1991) now states

Theorem 4 (Shannon). Suppose that {Xi} is an i.i.d.
information source, with Xi 	 p(x) and Shannon
entropy H(X). If R > H(X) then there exists a
reliable compression scheme of rate R for the
source. Conversely, any compression scheme with
rate R < H(X) is not reliable.

Proof (sketch). Suppose R > H(X). Choose � > 0
such that H(X)þ � < R. Consider the set T(n)

� of
typical sequences. The method of compression is
then to examine the output of the source, to see if it
belongs to T(n)

� . If the output is a typical sequence,
then we compress the data by simply storing an
index for the particular sequence using dnRe bits in
the obvious way. If the input string is not typical,
then we compress the string to some fixed dnRe bit
string, for example, (00 . . . 000). In this case, data
compression effectively fails, but, in spite of this, the
compression–decompression scheme succeeds with
probability tending to 1 as n!1, since by Theorem 3
the probability of atypical sequences can be made
small by choosing n large enough.

If R < H(X), then any compression scheme of rate
R is not reliable. This also follows from Theorem 3
by the following argument. Let S(n) be a collection
of sequences x(n) of size jS(n)j � 2dnRe. Then the
subset of atypical sequences in S(n) is highly
improbable, whereas the corresponding subset of
typical sequences has probability bounded by
2nR2�nH(X)! 0 as n!1. &
Quantum Data Compression

Quantum Sources and Entropy

In quantum information processing systems, infor-
mation is stored in quantum states of physical
systems. The most general description of a quantum
state is provided by a density matrix.

A ‘‘density matrix’’ � is a positive semidefinite
operator on a Hilbert space H, with tr�= 1, and the
expected value of an operator A on H is given by

�ðAÞ ¼ tr ð�AÞ ½7�

The functional � onM=B(H), the algebra of linear
operators on H, is positive (i.e., �(A) � 0, if A � 0)
and maps the identity I 2 M to 1. Such a functional
is also called a state. Conversely, given such a state
on a finite-dimensional algebra M, there exists a
unique density matrix �� such that [7] holds, so the
concepts can be used interchangeably. (This is not
true in the infinite-dimensional case.)

The quantum analog of the Shannon entropy is
called the von Neumann entropy. For any quantum
state � (or equivalently ��), it is defined by

Sð�Þ 
 Sð��Þ :¼ �tr �� log ��
� �

½8�

Here we use log to denote log2 and define 0 log
0 
 0, as for the Shannon entropy. Let the density
matrix �� have a spectral decomposition

�� ¼
Xd

i¼1

�ij iih ij ½9�

Here {j ii} is the set of eigenvectors of ��. They
form an orthonormal basis of the Hilbert space H.
By the fact that �� is positive definite and has trace 1,
the eigenvalues �i of �� determine a probability
distribution. When expressed in terms of the �i, the
von Neumann entropy of � reduces to the Shannon
entropy corresponding to this probability distribu-
tion (henceforth, the subscript � of �� will be
omitted): S(�) = H(�), where �= {�1, . . . ,�d}.

The von Neumann entropy has properties analo-
gous to H(X1, . . . , Xn), in particular (Ohya and Petz
1993, Nielson and Chuang 2000)

1. 0 � S(�) � log(dim (H));
2. S(�) is concave in �; and
3. if � is a state on H=H1 �H2 then S(�)� S(�1)þ

S(�2) if �1 and �2 are the restrictions of � to
H1 � I and I �H2 respectively.

A ‘‘quantum information source’’ in general is
defined by a sequence of density matrices �(n) on
Hilbert spaces Hn of increasing dimensions Nn given
by a decomposition

�ðnÞ ¼
X

k

p
ðnÞ
k j�

ðnÞ
k ih�

ðnÞ
k j ½10�

where the states j�(n)
k i are interpreted as the signal

states, and the numbers p(n)
k � 0 with

P
k p(n)

k = 1, as
their probabilities of occurrence. The vectors j�(n)

k i2
Hn need not be mutually orthogonal.

Compression–Decompression
Scheme and Fidelity

To compress data from such a source one encodes
each signal state j�(n)

k i by a state e� (n)
k 2 B( eHn) where

dim eHn = dc(n) < Nn. Thus, a compression scheme
is a map C(n) : j�(n)

k ih�
(n)
k j 7! e� (n)

k 2 B( eHn). The statee� (n)
k is referred to as the compressed state. A

corresponding decompression scheme is a map
D(n):B( eHn) 7!B(Hn). Both C(n) and D(n) must be
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completely positive maps. In particular, this implies
that D(n) must be of the form

DðnÞð�Þ ¼
X

i

Di�D
�
i ½11�

for linear operators Di : eHn 7!Hn such thatP
i D�i Di = I (see Nielson and Chuang 2000).

Obviously, in order to achieve the maximum
possible compression of Hilbert space dimensions
per signal state, the goal must be to make the
dimension dc(n) as small as possible, subject to the
condition that the information carried in the signal
states can be retrieved with high accuracy upon
decompression.

The ‘‘rate of compression’’ is defined as

Rn :¼ logðdim eHnÞ
logðdim HnÞ

¼ log dcðnÞ
log Nn

It is natural to consider the original Hilbert space
Hn to be the n-qubit space. In this case Nn = 2n and
hence log Nn = n. As in the case of classical data
compression, we are interested in finding the
optimal limiting rate of data compression, which in
this case is given by

R1 :¼ lim
n!1

log dcðnÞ
n

½12�

Unlike classical signals, quantum signal states are
not completely distinguishable. This is because they
are, in general, not mutually orthogonal. As a result,
perfectly reconstructing a quantum signal state from
its compressed version is often an impossible task
and therefore too stringent a requirement for the
reliability of a compression–decompression scheme.
Instead, a reasonable requirement is that a state can
be reconstructed from the compressed version which
is nearly indistinguishable from the original signal
state. A measure of indistinguishability useful for
this purpose is the average fidelity defined as
follows:

Fn :¼
X

k

p
ðnÞ
k h�

ðnÞ
k jD

ðnÞðe� ðnÞk Þj�
ðnÞ
k i ½13�

This fidelity satisfies 0 � Fn � 1 and Fn = 1 if
and only if D(n)(e� (n)

k ) = j�(n)
k ih�

(n)
k j for all k. A

compression–decompression scheme is said to be
reliable if Fn! 1 as n!1.

The key idea behind data compression is the fact
that some signal states have a higher probability of
occurrence than others (these states playing a role
analogous to the typical sequences of classical
information theory). These signal states span a
subspace of the original Hilbert space of the source
and is referred to as the typical subspace.
Schumacher’s Theorem for Memoryless
Quantum Sources

The notion of a typical subspace was first
introduced in the context of quantum information
theory by Schumacher (1995) in his seminal paper.
He considered the simplest class of quantum
information sources, namely quantum memoryless
or i.i.d sources. For such a source the density matrix
�(n), defined through [10], acts on a tensor product
Hilbert space Hn =H�n and is itself given by a
tensor product

�ðnÞ ¼ ��n ½14�

Here H is a fixed Hilbert space (representing an
elementary quantum subsystem) and � is a density
matrix acting on H; for example, H can be a single
qubit Hilbert space, in which case dim H= 2,Hn is
the Hilbert space of n qubits and � is the density
matrix of a single qubit. If the spectral decomposi-
tion of � is given by

� ¼
XdimH

i¼1

qij�iih�ij ½15�

then the eigenvalues and eigenvectors of �(n) are
given by

�
ðnÞ
k ¼ qk1

qk2
. . . qkn

½16�

and

j ðnÞk i ¼ j�k1
i � j�k2

i � � � � � j�kn
i ½17�

Thus, we can write the spectral decomposition of
the density matrix �(n) of an i.i.d. source as

�ðnÞ ¼
X

k

�
ðnÞ
k j 

ðnÞ
k ih 

ðnÞ
k j ½18�

where the sum is over all possible sequences
k = (k1 . . . kn), with each ki taking (dim H) values.
Hence, we see that the eigenvalues �(n) are labeled
by a classical sequence of indices k = k1 . . . kn.

The von Neumann entropy of such a source is
given by

Sð�ðnÞÞ 
 Sð��nÞ ¼ nSð�Þ¼ nHðXÞ ½19�

where X is the classical random variable with
probability distribution {qi}.

Let T�
(n) be the classical typical subset of indices

(k1 . . . kn) for which

� 1

n
log qk1

. . . qkn

� �
� Sð�Þ

���� ���� � � ½20�

as in the theorem of typical sequences. Defining
T �(n) as the space spanned by the eigenvectors j (n)

k i
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with k 2 T�
(n) then immediately yields the quantum

analog of the theorem of typical sequences – Theorem
4 given below. We refer to T (n)

� as the typical subspace
(or more precisely, the �–typical subspace).

Theorem 4 (Typical subspace theorem). Fix � > 0.
Then for any � > 0 9 n0(�) > 0 such that 8n � n0(�)
and �(n) = ��n, the following are true:

(i) Tr(P(n)
� �

(n)) > 1� � and
(ii) (1� �)2n(S(�)��) � dim (T (n)

� )� 2n(S(�)þ�), where
P(n)
� is the orthogonal projection onto the

subspace T (n)
� .

Note that tr (P(n)
� �

(n)) gives the probability of the
typical subspace. As tr(P(n)

� �
(n)) approaches unity for

n sufficiently large, T (n)
� carries almost all the weight

of �(n). Let T (n)?
� denote the orthocomplement of the

typical subspace, that is, for any pair of vectors
j i2 T (n)

� and j�i2 T (n)?
� , h�j i= 0. It follows from

the above theorem that the probability of a signal
state belonging to T (n)?

� can be made arbitrarily
small for n sufficiently large.

Let P(n)
� denote the orthogonal projection onto the

typical subspace T (n)
� . The encoding (compression)

of the signal states j�(n)
k i of [10], is done in the

following manner. C(n) : j�(n)
k i h�

(n)
k j 7! e� (n)

k , where

~�
ðnÞ
k :¼ 	2

kj~�
ðnÞ
k ih~�

ðnÞ
k j þ 
2

kj�0ih�0j ½21�

Here

j~�ðnÞk i :¼
P
ðnÞ
� j�ðnÞk i

kPðnÞ� j�ðnÞk ik

	k :¼ kPðnÞ� j�
ðnÞ
k ik; 
k ¼ kðI � PðnÞ� Þj�

ðnÞ
k ik

½22�

and j�0i is any fixed state in T (n)
� .

Obviously ~�(n)
k 2 B(T (n)

� ), and hence the typical
subspace T (n)

� plays the role of the compressed space.
The decompression D(n)(e� (n)

k ) is defined as the
extension of e� (n)

k on T (n)
� to Hn:

DðnÞ e� ðnÞk

� �
¼ e� ðnÞk  0

The fidelity of this compression–decompression
scheme satisfies

Fn ¼
X

k

p
ðnÞ
k

	
�
ðnÞ
k j~�

ðnÞ
k j�

ðnÞ
k



¼
X

k

p
ðnÞ
k 	2

kjh�
ðnÞ
k j~�

ðnÞ
k ij

2 þ 
2
kjh�

ðnÞ
k j�0ij2

h i
�
X

k

p
ðnÞ
k 	2

kjh�
ðnÞ
k j~�

ðnÞ
k ij

2 ¼
X

k

p
ðnÞ
k 	4

k

�
X

k

p
ðnÞ
k ð2	

2
k � 1Þ ¼ 2An � 1 ½23�

where An = tr(P(n)
� �n).
Using the typical subspace theorem, Schumacher
(1995) proved the following analog of Shannon’s
noiseless channel coding theorem for memoryless
quantum information sources:

Theorem 5 (Schumacher’s quantum coding theo-
rem). Let {�n,Hn} be an i.i.d. quantum source:
�n = ��n and Hn =H�n. If R > S(�), then there exists
a reliable compression scheme of rate R. If R < S(�),
then any compression scheme of rate R is not reliable.

Proof

(i) R > S(�). Choose � > 0 such that R > S(�)þ �.
For a given � > 0, choose the typical subspace as
above and choose n large enough so that (i) and (ii)
in the typical subspace theorem hold. In particular,
An = tr(P(n)

� �n)>1� �. Thus, the fidelity tends to 1
as n!1.

(ii) Suppose R < S(�). Let the compression map
be C(n). We may assume that eHn is a subspace of Hn

with dim eHn = 2nR. We denote the projection ontoeHn as ePn and let ~�(n)
k = C(n)(j�(n)

k i h�
(n)
k j). Since

~�(n)
k is concentrated on eHn, we have ~�(n)

k � ePn

and hence D(n)(~�(n)
k ) � D(n)(ePn), for any decompres-

sion map D(n). Inserting into the definition of the
fidelity, we then have

F �
X

k

p
ðnÞ
k h�

ðnÞ
k jD

ðnÞðePnÞj�ðnÞk i¼ tr �ðnÞDðnÞðePnÞ
� �

�
X

k2T
ðnÞ
�

�
ðnÞ
k h 

ðnÞ
k jD

ðnÞðePnÞj ðnÞk i þ
X

k =2T
ðnÞ
�

�
ðnÞ
k ½24�

By the typical subspace theorem, the latter sum
tends to 0 as n!1, and in the sum over k 2 T(n)

�

we have �(n)
k � 2�n(S(�)��). The first sum can therefore

be bounded as follows:X
k2T

ðnÞ
�

�
ðnÞ
k h 

ðnÞ
k jD

ðnÞðePnÞj ðnÞk i

� 2�nðSð�Þ��Þ
X

k

h ðnÞk jD
ðnÞðePnÞj ðnÞk i

¼ 2�nðSð�Þ��Þtr DðnÞðePnÞ
� �

¼ 2�nðSð�Þ��Þtr
X

i

Di
ePnD�i

 !
¼ 2�nðSð�Þ��Þ2nR ½25�

by the cyclic property of the trace and the fact thatP
i D�i Di = I and dim eHn = 2nR. h

Even for a quantum source with memory, reliable
data compression is achieved by looking for a
typical subspace T (n)

� of the Hilbert space Hn for a
given � > 0. In the following subsections, we discuss
two different classes of such sources for which one
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can find typical subspaces T (n)
� such that the fidelity

Fn tends to 1 as n!1.
Ergodic Quantum Sources

A quantum generalization of classical ergodic
sources is defined as follows. First consider the
analog of an infinite sequence of random variables
which is a state on the infinite tensor product of a
finite-dimensional �-algebra M. The latter is given
by the norm closure of the increasing sequence of
finite tensor products

M1 ¼
[
n

�n
k¼�nM ½26�

A translation-invariant state �1 onM1 is said to be
ergodic if it cannot be decomposed as a (nontrivial)
convex combination of other translation-invariant
states. The analog of the Kolmogorov–Sinai entropy
[5] for an ergodic state �1 is called the mean
entropy and is given by

SMð�1Þ ¼ lim
n!1

1

n
Sð�nÞ ¼ inf

n2N

1

n
Sð�nÞ ½27�

where �n is the restriction of �1 to Mn :=M�n.
Following Hiai and Petz (1991), we define the
following quantity for any state � on an arbitrary
finite-dimensional �-algebra M and a given � > 0:


�ð�Þ ¼ infflog trðqÞ : q 2M; q� ¼ q;

q2 ¼ q; �ðqÞ�1� �g ½28�

We also define a state �1 on M1 to be completely
ergodic if it is ergodic under transformations onM1,
induced by l-fold shifts on Z, for arbitrary l 2 N. The
following theorem is due to Hiai and Petz (1991),
who proved it in a slightly more general setting:

Theorem 6 (Hiai and Petz). Suppose that �1 is a
completely ergodic state onM1 and d := dimM <1,
and set �n =�1

(

Mn
. Then, for any � > 0, the following

hold:

(i) lim sup
1

�ð�nÞ� SMð�1Þ ½29�
n!1 n

(ii) lim inf
n!1

1

�ð�nÞ� SMð�1Þ � � log d ½30�
n

Proof of (i) Choose r > SM(�1) and let � < r�
SM(�1) and h = r� �. By the definition of SM(�1),
there exists l 2 N such that S(�l) < l h. Let {jeii}l d

i = 1

be an orthonormal set of eigenvectors of ��l
, with

corresponding eigenvalues �i, that is, let

��l
¼
Xl d

i¼1

�ipi ½31�
where pi = jeiiheij is the projection onto jeii, be the
spectral decomposition for ��l

. Denote the spectrum
X = {�i}

l d
i = 1. For n 2 N, introduce the probability

measures �n on Xn by

�nðAÞ ¼ �nlðqAÞ ½32�

where, for any A � Xn, the projection qA is defined by

qA ¼
X

ð�i1
;...;�in Þ2A

pi1� . . .� pin ½33�

Similarly, we define �1 on XZ. The sequence of
random variables (Xn)n2Z with distribution �1 is
then ergodic since �1 is completely ergodic (and
hence l-ergodic).

By the Shannon–McMillan–Breiman theorem
(Theorem 2),

� 1

n
log �nðfðx1; . . . ; xnÞgÞ ! hKS ½34�

almost surely w.r.t. �1, where hKS is the Kolmogorov–
Sinai entropy. The latter is given by hKS = limn!1
(1=n)Hn = infn2N ð1/nÞHn, where

Hn ¼�
X

ðx1;...;xnÞ2Xn

�nðfðx1; . . . ; xnÞgÞ

� log �nðfðx1; . . . ; xnÞgÞ ½35�

Notice in particular that

hKS � H1 ¼ Sð�lÞ< lh ½36�

If let T(n)
� be the (typical) subset of Xn such that

� 1

n
log �nðfðx1; . . . ; xnÞgÞ2ðhKS � �; hKS þ �Þ ½37�

for (x1, . . . , xn)2 T(n)
� then we have �1(T(n)

� ) � 1� �
for n large enough. Moreover, since �n({(x1, . . . , xn)}) �
e�n(hKSþ�) for all (x1, . . . , xn)2 T(n)

� , and the total
measure is 1,

jTðnÞ� j � enðhKSþ�Þ � enðl hþ�Þ ½38�

It follows that tr(qT(n)
�

) � en(l hþ�) whereas �nl(qT(n)
�

) =
�n(T(n)

� ) � 1� � and we conclude that

1

nl

�ð�nlÞ�

nðl hþ �Þ
nl

< r ½39�

from which [29] follows upon taking n!1, since
r > SM(�1) was arbitrary. (Notice that 
�(�n) is
decreasing in n since Mn �Mnþ1.) &

Proof of (ii) Given �, � > 0 and n 2 N, choose a
projection qn with �n(qn) � 1� � and log tr(qn) <

�(�n)þ �. Since SM(�1) = inf (1=n)S(�n) we have
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SM(�1) � (1=n)S(�n). We now use the following
lemma:

Lemma 7 If � is a state on a finite-dimensional
�-algebra M, and q 2 M is a projection, then

Sð�Þ � HðpÞ þ �ðqÞ log trðqÞ
þ ð1� �ðqÞÞ log trð1� qÞ ½40�

where H(p) =�p log p� (1� p) log (1� p) (the bin-
ary entropy) with p =�(q).

Proof First notice that if [��, q] = 0 then the result
[40] follows from the simple inequality:

�
Xm
i¼1

~�i log ~�i � log m if
Xm
i¼1

~�i ¼ 1 ½41�

Indeed, diagonalizing ��, the eigenvalues �i divide into
two subsets with corresponding eigenvectors belong-
ing to the range of q, respectively, its complement.
Considering the first set, we have, if m = dim (Ran(q)),
and taking ~�i =�i=(

Pm
i = 1 �i) in [41],

�
Xm
i¼1

�i log �i � �
Xm
i¼1

�i

 !
log

1

m

Xm
i¼1

�i

 !
¼ �trðq��Þ log trðq��Þ � log trðqÞ

� �
Adding the analogous inequality for the part of the
spectrum corresponding to 1� q, we obtain [40].

In the general case, that is, if [��, q] 6¼ 0, define
the unitary u = 2q� 1 and the state

�0ðxÞ ¼ 1
2 ½�ðxÞ þ �ðuxuÞ� ½42�

Then [��0 , q] = 0 and by concavity of S(�) and the
result for the previous case

HðXÞ þ �ðqÞ log trðqÞ
þ ð1� �ðqÞÞ log trð1� qÞ � Sð�0Þ � Sð�Þ ½43�

since �0(q) =�(q). &

Continuing with the proof of (ii), we conclude that

Sð�nÞ � HðpÞ þ �nðqnÞ log trðqnÞ
þ ð1� �ðqnÞÞ log trð1� qnÞ
� 1þ 
�ð�nÞ þ �þ �n log d

Dividing by n and taking the limit we obtain (30).
&

It follows from this theorem that we can define a
typical subspace in the same way as in Schumacher’s
theorem. Indeed, given � > 0 and � > 0, we have
that for n large enough, there exists a subspace T (n)

�

equal to the range of a projection qn such that
�n(qn) > 1� � and en(SM(�1)�� log d��)< dim (T (n)

� ) =
tr(qn)< en(SM(�1)þ�). The proof of the quantum
analog of the Shannon–McMillan theorem is then
similar to that of Schumacher’s theorem (Petz and
Mosonyi 2001, Bjelaković et al. 2004):

Theorem 8 Let �1 be a completely ergodic
stationary state on the infinite tensor product
algebra M1. If R > SM(�1), then for any decom-
position of the form

�ðnÞ ¼
X

p
ðnÞ
k j�

ðnÞ
k i h�

ðnÞ
k j ½44�

there exists a reliable quantum code of rate R.
Conversely, if R < SM(�1) then any quantum
compression–decompression scheme of rate R is
not reliable.

Remarks Theorem 6 also holds for higher-
dimensional information streams, with essentially
the same proof. (The existence of the mean entropy
is more complicated in that case.) The condition of
complete ergodicity in this theorem is unnecessary.
Indeed, Bjelaković et al. (2004) showed that the
result remains valid (also in more than one dimen-
sions) if the state �1 of the source is simply ergodic.
They achieved this by decomposing a general
ergodic state into a finite number of l-ergodic states,
and then applying the above strategy to each. It
should also be mentioned that a weaker version of
Theorem 6 was proved by King and Lesniewski
(1998). They considered the entropy of an asso-
ciated classical source, but did not show that this
classical entropy can be optimized to approximate
the von Neumann entropy. This had in fact already
been proved by Hiai and Petz (1991). The relevance
of the latter work for quantum information theory
was finally pointed out by Mosonyi and Petz (2001).
Source Coding for Quantum
Spin Systems

In this section we consider a class of quantum
sources modeled by Gibbs states of a finite strongly
interacting quantum spin system in � � Zd with
d � 2. Due to the interaction between spins, the
density matrix of the source is not given by a tensor
product of the density matrices of the individual
spins and hence the quantum information source is
non-i.i.d. We consider the density matrix to be
written in the standard Gibbsian form:

�!;� ¼ e�
H!
�

�!;�
½45�

where 
 > 0 is the inverse temperature. Here !
denotes the boundary condition, that is, the config-
uration of the spins in �c = Zdn�, and H!

� is the
Hamiltonian acting on the spin system in � under
this boundary condition. (see Datta and Suhov (2002)
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for precise definitions of these quantities). The
denominator on the right-hand side of [45] is the
partition function.

Note that any faithful density matrix can be
written in the form [45] for some self-adjoint
operator H!

� with discrete spectrum, such that
e�
H!

� is trace class. However, we consider H!
� to

be a small quantum perturbation of a classical
Hamiltonian and require it to satisfy certain
hypotheses (see Datta and Suhov (2002)). In
particular, we assume that H� = H0� þ �V�, where
(1) H0� is a classical, finite-range, translation-
invariant Hamiltonian with a finite number of
periodic ground states, and the excitations of these
ground states have an energy proportional to the
size of their boundaries (Peierls condition); (2) �V�

is a translation-invariant, exponentially decaying,
quantum perturbation, � being the perturbation
parameter. These hypotheses ensure that the quan-
tum Pirogov–Sinai theory of phase transitions in
lattice systems (see, e.g., Datta et al. (1996)) applies.

The power of quantum Pirogov–Sinai theory is
such that, in proving reliable data compression for
such sources, we do not need to invoke the concept
of ergodicity.

Using the concavity of the von Neumann entropy
S(�!, �), one can prove that the von Neumann
entropy rate (or mean entropy) of the source

h :¼ lim
�%Zd

Sð�!;�Þ
j�j

exists. For a general van Hove sequence, this follows
from the strong subadditivity of the von Neumann
entropy (see, e.g., Ohya and Petz (1993)).

Let �!, � have a spectral decomposition

�!;� ¼
X

j

�jj jih jj

where the eigenvalues �j, 1 � j � 2j�j, and the
corresponding eigenstates j ji, depend on ! and �.
Let P!, � denote the probability distribution {�j} and
consider a random variable K!, � which takes a value
�j with probability �j:

K!;�ð jÞ ¼ �j; P!;�ðK!;�¼�jÞ ¼ �j

The data compression limit is related to asympto-
tical properties of the random variables K!, � as
�% Zd. As in the case of i.i.d. sources, we prove
the reliability of data compression by first proving
the existence of a typical subspace. The latter
follows from Theorem 9 below. The proof of this
crucial theorem relies on results of quantum
Pirogov–Sinai theory (Datta et al. 1996).
Theorem 9 Under the above assumptions, for 

large and � small enough, for all � > 0

lim
�%Zd

P !;�
����1

j�j log K!;� � h
��� � � �

¼ lim
�%Zd

X
j

�j�fj�j�j�1 log�j�hj��g ¼ 1 ½46�

where �{...} denotes an indicator function.

Theorem 9 is essentially a law of large numbers
for random variables (�log K!, �). The statement of
the theorem can be alternatively expressed as
follows. For any � > 0,

lim
�%Zd

P !;� 2�j�jðhþ�Þ � K!;� � 2�j�jðh��Þ
� �

¼ 1 ½47�

Thus, we can define a typical subspace T !,�
� by

T !;�� :¼ span fj ji :2�j�jðhþ�Þ � �j � 2�j�jðh��Þg ½48�

It clearly satisfies the analogs of (i) and (ii) of the
typical subspace theorem, which implies as before
that a compression scheme of rate R is reliable if and
only if R > h.

Universal and Variable Length Data Compression

Thus far we discussed source-dependent data com-
pression for various classes of quantum sources. In
each case data compression relied on the identifica-
tion of the typical subspace of the source, which in
turn required a knowledge of its density matrix. In
classical information theory, there exists a general-
ization of the theorem of typical sequences due to
Csiszár and Körner (1981) where the typical set is
universal, in that it is typical for every possible
probability distribution with a given entropy. This
result was used by Jozsa et al. (1998) to construct a
universal compression scheme for quantum i.i.d
sources with a given von Neumann entropy S using
a counting argument for symmetric subspaces. This
was generalized to ergodic sources by Kaltchenko
and Yang (2003) along the lines of Theorem 6.
Hayashi and Matsumoto (2002) supplemented the
work of Jozsa et al. (1998) with an estimation of the
eigenvalues of the source (using the measurement
smearing technique) to show that a reliable compres-
sion scheme exists for any quantum i.i.d source,
independent of the value of its von Neumann entropy
S, the limiting rate of compression being given by S. If
one admits variable length coding, the Lempel–Ziv
algorithm gives a completely universal compression
scheme, independent of the value of the entropy, in
the classical case (Cover and Thomas 1991). This
algorithm was generalized to the quantum case for
i.i.d sources by Jozsa and Presnell (2003), and to
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sources modeled by Gibbs states of free bosons or
fermions on a lattice by Johnson and Suhov (2002).

Another important question is the efficiency of the
various coding schemes. The above-mentioned
schemes for quantum i.i.d. sources are not efficient,
in the sense that they have no polynomial time
implementation. Recently, it was shown by Bennett
et al. (2004) that an efficient, universal compression
scheme for i.i.d sources can be constructed by
employing quantum state tomography.
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The Value of Topological Reasoning
in General Relativity

Solving the equations of Einstein’s general relativity
(see General Relativity: Overview) can be an exceed-
ingly complicated business; it is commonly found
necessary to resort to numerical solutions involving
very complex computer codes (see Computational
Methods in General Relativity: The Theory). The
essential content of the basic equations of the theory
itself is, however, something that can be phrased in
simple geometrical terms, using only basic concepts
of differential geometry (see General Relativity:
Overview). By virtue of this, it is sometimes the
case, in general relativity, that geometrical arguments
of various kinds – including purely topological ones
(i.e., arguments depending only upon the properties
of continuity or smoothness) – can be used to great
effect to obtain results that are not readily accessible
by standard procedures of differential equation
theory or by direct numerical calculation.

One particularly significant family of situations
where this kind of argument has a key role to play is
in the important issue of the singularities that arise
in many solutions of the Einstein equations, in
which spacetime curvatures may be expected to
diverge to infinity. These are exemplified, particu-
larly, by two important classes of solutions of the



H
or

iz
on

Observer

H
or

iz
on

S
in

gu
la

rit
y

Collapsing
matter

Figure 1 Spacetime diagram of collapse to a black hole.

(One spatial dimension is suppressed.) Matter collapses inwards,

through the 3-surface that becomes the (absolute) event horizon.

No matter or information can escape the hole once it has been

formed. The null cones are tangent to the horizon and allow

matter or signals to pass inwards but not outwards. An external

observer cannot see inside the hole, but only the matter – vastly

dimmed and redshifted – just before it enters the hole.

(Reproduced with permission from Penrose R. (2004) The Road

to Reality : a Complete Guide to the Laws of the Universe.

London: Jonathan Cape.)
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Einstein field equations in which singularities arise.
In the first instance, we have cosmological models,
which tend to exhibit the presence of an initial
singularity referred to as the ‘‘Big Bang,’’ as was first
noted in the standard Friedmann models (which are
solutions of the Einstein equations with simple
matter sources; see Cosmology: Mathematical
Aspects). Secondly, we find a final singularity (for
local observers) at the endpoint of gravitational
collapse to a black hole (where in the relevant
region, outside the collapsing matter, Einstein’s
vacuum equations are normally taken to hold). In
either case, there are canonical exact models, in
which considerable symmetry is assumed, and where
the models indeed become singular at places where
the spacetime curvature diverges to infinity. For
many years (prior to 1965), there had been much
debate as to whether these singularities were an
inevitable feature of the general physical situation
under consideration, or whether the presence of
singularities might be an artifact of the assumed
high symmetry. The use of topological-type argu-
ments has established that, in general terms, the
occurrence of a singularity is not merely an artifact
of symmetry, and cannot generally be removed by
the introduction of small (finite) perturbations.

Let us first consider the standard picture, put
forward in 1939 by Oppenheimer and Snyder (OS),
of the gravitational collapse of an over-massive star
to a black hole; see Figure 1 (and see Stationary
Black Holes). This assumes exact spherical symme-
try. The region external to the matter is described by
the well-known Schwarzschild solution of the
Einstein vacuum equations, appropriately extended
to inside the ‘‘Schwarzschild radius’’ r = 2mG=c2

(G being Newton’s gravitational constant and c, the
speed of light, and where m is the total mass of
the collapsing material; from now, for convenience,
we choose units so that G = c = 1). In Figure 1,
this internal extension is conveniently expressed
using Eddington–Finkelstein coordinates (r, v, �,�)
(see Eddington (1924) and Finkelstein (1958)),
where v = t þ rþ 2m log (r� 2m), the metric form
being

ds2 ¼ð1� 2m=rÞdv2 � 2dvdr

� r2ðd�2 þ sin2 �d�2Þ

(The signature convention þ��� is being adopted
here; see General Relativity: Overview.) We find
that, in this model, there is a singularity (at r = 0) at
the future endpoint of each world line of collapsing
matter. Moreover, no future-timelike line starting
inside the horizon can avoid reaching the singularity
when we try to extend it, as a timelike curve,
indefinitely into the future, where the ‘‘horizon’’ is
the three-dimensional region obtained by rotating,
over the (�,�) 2-sphere, the null (lightlike) line
which is r = 2m outside the matter region and which
is the extension of this line, as a null line, into the
past until it meets the axis. It is easy to see that any
observer’s world line within this horizon is indeed
trapped in this sense.

The question naturally arises: how representative
is this model? Here, the singularity occurs at the
center (r = 0), the place where all the matter is
directed, and where it all reaches without rebound-
ing. So it may be regarded as unsurprising that the
density becomes infinite there. Now, let us suppose
that the collapsing material is not exactly spherically
symmetrical. Even if it is only slightly (though
finitely) perturbed away from this symmetrical
situation, having slight (but finite) transverse
motions, the collapsing matter is now not all
directed exactly towards the center, as it is in the
OS model. One might imagine that the singularity
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could now be avoided, the different portions of
matter just ‘‘missing’’ each other and then being
finally flung out again, after some complicated
motions, where the density and spacetime curvatures
might well become large but presumably still finite.
To follow such an irregular collapse in full detail
would present a very difficult task, and one would
have to carry it out by numerical means. As yet,
despite enormous advances in computational tech-
nique, a fully effective simulation of such a
‘‘generic’’ collapse is still not in hand. In any case,
it is hard to make a convincing case as to whether or
not a singularity arises, because as soon as metric or
curvature quantities begin to diverge, the computa-
tion becomes fundamentally unreliable and simply
‘‘gives up.’’ So we cannot really tell whether the
failure is due to some genuine divergence or whether
it is an artifact. It is thus fortunate that other
mathematical techniques are available. Indeed, by
use of a differential–topological–causal argument,
we find that such perturbations do not help, at least
so long as they are small enough not to alter the
general character of the collapse, which we find has
an ‘‘unstoppable’’ character, so long as a certain
criterion is satisfied its early stages.
Trapped Surfaces

But how are we to characterize the collapse as
‘‘unstoppable,’’ where no symmetries are to be
assumed, and the simple picture illustrated in
Figure 1 cannot be appealed to? A convenient
characterization is the presence of what is called a
‘‘trapped surface.’’ This notion generalizes a key
feature of the 0 < r < 2m region inside the horizon
of the vacuum (Eddington–Finkelstein) picture of
Figure 1. To understand what this feature is,
consider fixing a point s in the vacuum region of
the (v, r)-plane of Figure 1. We must, of course, bear
in mind that, because this plane is to be ‘‘rotated’’
about the central vertical axis (r = 0) by letting � and
� vary as coordinates on a 2-sphere S2, the point s
actually describes a closed 2-surface S (coordina-
tized by � and �) with topology S2 (so S is
intrinsically an ordinary 2-sphere). We shall be
concerned with the region Iþ(S), which is the
(chronological) ‘‘future’’ of S, that is, the locus of
points q for which a timelike curve exists having a
future endpoint at q and a past endpoint on S. We
shall also be interested, particularly, in the boundary
@Iþ(S) of Iþ(S). This boundary is described, in
Figure 1, by the pair of null curves v = const. and
2rþ 4m log (r� 2m) = const., proceeding into the
future from s (and rotated in � and �). The region
Iþ(S) itself is represented by that part of Figure 1
which lies between these null curves.

We observe that, in this symmetrical case (s being
chosen in the vacuum region), a characterization of s
as being ‘‘trapped,’’ in the sense that it lies in a
region that is within the horizon, is that the future
tangents to these null curves both point ‘‘inwards,’’
in the sense of decreasing r. Since r is the metric
radius of the S2 of rotation, so that the element of
surface area of this sphere is proportional to r2, it
follows that the surface area of the boundary @Iþ(S)
reduces, on both branches, as we move away from S

into the future. The three-dimensional region @Iþ(S)
consists of two null surfaces joined along S, in
the sense that their Lorentzian normals are null
4-vectors. For each fixed value of � and �, this
normal is a tangent to one or other of the two null
curves of Figure 1, starting at s. For a trapped s,
these normals point in the direction of decreasing r,
and it follows that the divergence of these normals is
negative (so � > 0 in what follows below).

In the general case, it is this property of negativity
of the divergence, at S, of both sets of Lorentzian
normals (i.e., of null tangents to @Iþ(S)), that
characterizes S as a trapped surface, where in the
general case we must also prescribe S to be compact
and spacelike. But now there are to be no assump-
tions of symmetry whatever. Such a characterization
is stable against small, but finite, perturbations of
the location of S, within the spacetime manifold M,
and also against small, but finite, perturbations of M
itself.

We can think of a trapped surface in more direct
physical/geometrical terms. Imagine a flash of light
emitted all over some spacelike compact spherical
surface such as S, but now in ordinary flat space-
time, where for simplicity we suppose that S is
situated in some spacelike (flat) 3-hypersurface H, of
constant time t = 0. There will be one component to
the flash proceeding outwards and another proceed-
ing inwards. Provided that S is convex, the outgoing
flash will represent an initial increase of the surface
area at every point of S and the ingoing flash, an
initial decrease. In four-dimensional spacetime
terms, we express this as positivity of the divergence
of the outward null normal and the negativity of the
divergence of the inward one. The characteristic
feature of a trapped surface is that whereas the
ingoing flash will still have an initially reducing
surface area, the ‘‘outgoing’’ flash now has the
curious property that its surface area is also initially
decreasing, this holding at every point of S.

Locally, this is not particularly strange. For a
surface wiggling in and out, we are quite likely to
find portions of ingoing flash with increasing area,
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and portions of outgoing flash with decreasing area.
An extreme case in Minkowski spacetime has S as the
intersection of two past light cones. All the null
normals to S point along the generators of these past
cones, and therefore all converge into the future. Such
a surface S (indeed spacelike) looks ‘‘trapped’’ every-
where locally, but fails to count as trapped, not being
compact. Since there is nothing causally extreme about
Minkowski space, it is appropriate not to count such
surfaces as ‘‘trapped.’’ What is the peculiar about a
trapped surface is that both ingoing and outgoing
flashes are initially decreasing in area, over the entire
compact S. (N. B. Hawking and Ellis (1973) adopt a
slightly different terminology; the term ‘‘trapped,’’
used here, refers to their ‘‘closed trapped.’’)
The Null Raychaudhuri Equation

What do we deduce from the existence of a trapped
surface? A glance at Figure 1 gives us some
indication of the trouble. As we trace @Iþ(S) into
the future, we find that its cross-sectional area
continues to decrease, until becoming zero at the
central singularity. This last feature need not reflect
closely what happens in more general cases, with no
spherical symmetry. But the reduction in surface
area is a general property. This is the first point to
appreciate in a theorem (Penrose 1965, 1968,
Hawking and Ellis 1973) which indicates the
profoundly disturbing physical implications of the
existence of a trapped surface in physically realistic
gravitational collapse, according to Einstein’s gen-
eral relativity. The surface-area reduction arises
from a result known as ‘‘Raychaudhuri’s equation,’’
in the case of null rays – where we refer to this as
the ‘‘Sachs’’ equations. We come to this next.

Although many different notations are used to
express the needed quantities, we can here conve-
niently employ the spin-coefficient formalism, as
described elsewhere in this Encyclopedia (see Spi-
nors and Spin Coefficients).

Suppose that we have a congruence (smooth three-
parameter family) of rays (null geodesics) in four-
dimensional spacetime. Let ‘a be a real future-null
vector, tangent to a null geodesic � of the congruence,
and let mb be complex-null, also defined along �,
where its real and imginary parts are unit vectors
spanning a 2-surface element orthogonal to ‘a at each
point of �, so we have

‘a‘
a ¼ 0; ‘ama ¼ 0;

mam
a ¼ 0; �mama ¼ �1;

‘a ¼ �‘a
where it is assumed that each of ‘a, ma is parallel-
propagated along �:

‘ara ‘
b ¼ 0; ‘ara mb ¼ 0

(ra denoting covariant derivative). The spin-coefficient
quantities

� ¼ ma �mbra ‘b and � ¼ mambra ‘b

are of importance. Here, the real part of �measures the
convergence of the congruence and the imaginary part
defines its rotation; � measures its shear, where the
argument of � defines the direction (perpendicular
to �) of the axis of shear, and whose strength is defined
by j�j (see Penrose and Rindler (1986) for a graphic
description of these quantities). Defining propagation
derivative along � by

D ¼ ‘ara

we can write the Sachs equations as

D� ¼ �2 þ ���þ �

D� ¼ 2��þ�

where � =�(1=2)Rab‘
a‘b and � = Cabcd‘

amb‘cmd,
conventions for the Ricci tensor Rab and the Weyl
tensor Cabcd being those of General Relativity:
Overview (and of Penrose and Rindler (1984)). We
note that it is the real Ricci component � which
governs the propagation of the divergence and the
complex Weyl component � which governs the
propagation of shear, though there are some non-
linear terms. The quantity � is normally taken non-
negative, since it measures the energy flux across �
(with, in fact � = 4�GTab‘

a‘b, where Tab is the
energy tensor). The condition that � � 0 at all points
of spacetime and for all null directions ‘a, is called
the ‘‘weak energy condition.’’ (Again there is a minor
discrepancy with Hawking and Ellis (1973) who
adopt a somewhat stronger ‘‘weak energy condition,’’
which is the above but where ‘a is also allowed to be
future-timelike. Unfortunately, with this terminology,
their ‘‘weak energy condition’’ is not strictly weaker
than their ‘‘strong energy condition.’’)

It will now be assumed that � is real:

� ¼ ��

which is always the case for propagation along the
generators of a null hypersurface. The weak energy
condition then has an important implication for us.
We find that if A is an element of 2-surface area
within the plane spanned by the real and imaginary
parts of ma, then (this area element being propa-
gated by D along the lines �)

DA1=2 ¼ ��A1=2
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As a consequence, assuming � � 0,

D2A1=2 ¼ �ð���þ �ÞA1=2 � 0

This tells us that once the divergence (��) becomes
negative, then the area element must reduce to zero
sometime in the future along �, assuming that � is
future-null-complete in the sense that it extends to
indefinitely large values of an affine parameter u
defined along it, where an affine parameter asso-
ciated with the parallel-propagated ‘a satisfies

‘arau ¼ 1

Such a place where the cross-sectional area pinches
down to zero is a singularity of the congruence or null
hypersurface, referred to as a ‘‘caustic.’’ (There are
also terminological confusions arising from different
authors defining the term ‘‘caustic’’ in slightly
different ways. The terminology used here is slightly
discrepant from that of Arnol’d (1992) (Chapter 3).)

From this property, it follows that if we have a
trapped surface S, then every generator of @Iþ(S), if
extended indefinitely into the future, must eventually
encounter a caustic. This, so far, tells us nothing about
actual singularities in the spacetime M; even Minkowski
space contains many null hypersurfaces with multitudes
of caustic points. However, caustics do tell us some-
thing significant about sets like @Iþ(S), which are the
boundaries of future sets, and we come to this shortly.

Causality Properties

First, consider the basic causal relations. If a an b
are two points of M, then if there is a nontrivial
future-timelike curve in M from a to b we say that a
‘‘chronologically’’ precedes b and write

a� b

(so it would be possible for some observer’s world line
to encounter first a and then b). If there is a future-null
curve in M from a to b (trivial or otherwise), we say that
a ‘‘causally’’ precedes b and write

a � b

(so it would be possible for a signal to get from a to
b). We have the following elementary properties (see
Penrose (1972)):

a � a

if a� b then a � b

if a� b and b� c then a� c

if a� b and b � c then a� c

if a � b and b� c then a� c

if a � b and b � c then a � c

We generalize the definition of Iþ(S), above, to an
arbitrary subset Q in M, obtaining the chronological
future Iþ(Q) and past I�(Q) of Q in M by

IþðQÞ ¼ fqjp� q for some p 2 Qg
I�ðQÞ ¼ fqjq� p for some p 2 Qg

The notation {qj some property of q} denotes the set
of q’s with the stated property and the causal future
Jþ(Q) and past J�(Q) of Q in M by

JþðQÞ ¼ fqjp � q for some p 2 Qg
J�ðQÞ ¼ fqjq � p for some p 2 Qg

The I�(Q) are always open sets, but the J�(Q) are not
always closed (though they are for any closed set Q in
Minkowski space). Thus, the sets I�(Q) have a more
uniform character than the J�(Q), and it is simpler to
concentrate, here, on the I�(Q) sets.

The boundary @Iþ(Q) of Iþ(Q) has an elegant
characterization:

@IþðQÞ ¼ fqjIþðqÞ 	 @IþðQÞ; but q =2 IþðQÞg

and the corresponding statement holds for @I�(Q).
Boundaries of futures also have a relatively simple
structure, as is exhibited in the following result (for
which there is also a version with past and future
interchanged):

Lemma Let Q 	 M be closed, and p 2 @Iþ(Q)� Q,
then there exists a null geodesic on @Iþ(Q) with
future endpoint at p and which either extends along
@Iþ(Q) indefinitely into the past, or until it reaches a
point of Q. It can only extend into the future along
@Iþ(Q) if p is not a caustic point of @Iþ(Q).

Beyond a caustic point, the null geodesic would
enter into the interior of Iþ(Q), but this also happens
(more commonly) when crossing another region of
null hypersurface on @Iþ(Q).

We wish to apply this to @Iþ(S), for a trapped
surface S, but we first need a further assumption that S
lies in the interior of the (future) domain of dependence
Dþ(H) of some spacelike hypersurface H. This region is
defined as the totality of points q for which every
timelike curve with future endpoint q can be extended
into the past until it meets H. One can consider domains
of dependence for regions H other than smooth space-
like surfaces, but it is usual to assume, more generally,
that H is a closed achronal set, where ‘‘achronal’’ means
that H contains no pair of points a, b for which a� b.
We find that every point q in the interior intDþ(H) of
Dþ(H) has the further property that all null curves into
the past from q will also eventually meet H if extended
sufficiently. The physical significance of Dþ(H) is that,
for fields with locally Lorentz-invariant and determi-
nistic evolution equations, the (appropriate) initial data
on H will fix the fields throughout Dþ(H) (and also
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throughout the similarly defined past domain of
dependence D�(H)). We find that points in the future
Cauchy horizon Hþ(H), which is the future boundary
of Dþ(H) defined by

HþðHÞ ¼ DþðHÞ � I�ðDþðHÞÞ;

has properties similar to the boundary of a past set, in
accordance with the above lemma, and also for the
past Cauchy horizon H�(H), defined correspondingly.
Singularity Theorems
and Related Questions

Now, applying our lemma to @Iþ(S), for a trapped
surface S 	 intDþ(H), we find that every one of its
points lies on a null-geodesic segment � on @Iþ(S),
with past endpoint on S (for if � did not terminate at S
it would have to reach H, which is impossible).
Assuming future-null completeness and weak energy
(� � 0), we conclude that if extended far enough into
the future, the family of such null geodesics � must
encounter a caustic, and therefore they must leave
@Iþ(S) and enter Iþ(S). We finally conclude that
@Iþ(S) must be a compact topological 3-manifold.
Using basic theorems, we construct an everywhere
timelike vector field in intDþ(H) which provides a
(1–1) continuous map from the compact @Iþ(S) to H,
yielding a contradiction if H is noncompact, thereby
establishing the following (Penrose 1965, 1968):

Theorem The requirement that there be a trapped
surface which, together with its closed future, lies in the
interior of the domain of dependence of a noncompact
spacelike hypersurface, is incompatible with future null
completeness and the weak energy condition.

We notice that this ‘‘singularity theorem’’ gives no
indication of the nature of the failure of future null
completeness in a spatially open spacetime subject to
weak positivity of energy and containing a trapped
surface. The natural assumption is that in an actual
physical situation of such gravitational collapse, the
failure of completeness would arise at places where
curvatures mount to such extreme values that
classical general relativity breaks down, and must be
replaced by the appropriate ‘‘quantum geometry’’ (see
Quantum Geometry and its Applications, etc.).
Hawking (1965) showed how this theorem (in time-
reversed form) could also be applied on a cosmolo-
gical scale to provide a strong argument that the
Big-Bang singularity of the standard cosmologies is
correspondingly stable. He subsequently introduced
techniques from ‘‘Morse theory’’ which could be
applied to timelike rather than just null geodesics
and, using arguments applied to Cauchy horizons,
was able to remove assumptions concerning domains
of dependence (e.g., Hawking (1967)). A later
theorem (Hawking and Penrose 1970) encompassed
most of the earlier ones and had, as one of its
implications, that virtually all spatially closed uni-
verse models, satisfying a reasonable energy condition
and without closed timelike curves, would have to be
singular, in this sense of ‘‘incompleteness,’’ but again
the topological-type arguments used give little indica-
tion of the nature or location of the singularities.

Another issue that is not addressed by these
arguments is whether the singularities arising from
gravitational collapse are inevitably ‘‘hidden,’’ as in
Figure 1, by the presence of a horizon – a conjecture
referred to as ‘‘cosmic censorship’’ (see Penrose
(1969, 1998)). Without this assumption, one cannot
deduce that gravitational collapse, in which a trapped
surface forms, will lead to a black hole, or to the
alternative which would be a ‘‘naked singularity.’’
There are many results in the literature having a
bearing on this issue, but it still remains open.

A related issue is that of strong cosmic censorship
which has to do with the question of whether
singularities might be observable to local observers.
Roughly speaking, a naked singularity would be one
which is ‘‘timelike,’’ whereas the singularities in black
holes might in general be expected to be spacelike
(or future-null), and in the Big Bang, spacelike (or past-
null). There are ways of characterizing these distinctions
purely causally, in terms of past sets or future sets (sets Q
for which Q= I�(Q) or Q= Iþ(Q)); see Penrose (1998).
If (strong) cosmic censorship is valid, so there are no
timelike singularities, the remaining singularities would
be cleanly divided into past-type and future-type. In the
observed universe, there appears to be a vast difference
between the structure of the two, which is intimately
connected with the second law of thermodynamics,
there appearing to be an enormous constraint on
the Weyl curvature (see General Relativity: Overview)
in the initial singularities but not in the final ones.

Despite the likelihood of singularities arising in their
time evolution, it is possible to set up initial data for the
Einstein vacuum equations for a wide variety of
complicated spatial topologies (see Einstein Equations:
Initial Value Formulation). On the observational side,
however, there seems to be little evidence for anything
other than Euclidean spatial topology in our actual
universe (which includes black holes). Speculation on
the nature of spacetime at the tiniest scales, however,
where quantum gravity might be relevant, often
involves non-Euclidean topology, however. It may be
noted that an early theorem of Geroch established that
the constraints of classical Lorentzian geometry do not
permit the spatial topology to change without viola-
tions of causality (closed timelike curves).
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Introduction

Spectral sequences are a tool for collecting and
distilling the information contained in an infinite
number of long exact sequences. Their most
common use is the calculation of homology by
filtering the object under study and using a spectral
sequence to pass from knowledge of the homology
of the filtration quotients to that of the object itself.
This article will discuss the construction of spectral
sequences and the notion of convergence including
conditions sufficient to guarantee convergence.
Some sample applications of spectral sequences are
given.

A differential on an abelian group G is a self-map
d : G!G such that d2 = 0. A morphism of differ-
ential groups is a map f : G!G0 such that d0f = fd.
The condition d2 = 0 guarantees that Im d 
 Ker d,
so to the differential group (G, d) we can associate
its homology, H(G, d) := Ker d=Im d. Often G has
extra structure and we require d to satisfy some
compatibility condition in order that H(G, d) should
also have this structure. For example, a differential
graded Lie algebra (L, d) requires a differential d
which satisfies the condition d[x, y] = [dx, y]þ
(�1)jxj[x, dy]. While, for simplicity, throughout this
article we will always assume that G is an abelian
group, the concepts are readily extended to the case
where G is an object of some abelian category and
generalizations to nonabelian situations have also
been studied.

An important example of extra structure is the
case where G =

L1
n =�1Gn is a graded abelian

group. The appropriate compatibility condition for
a differential graded group is that d should be
homogeneous of degree �1. That is, d(Gn) 
 Gn�1.
In many contexts it is more natural to use super-
scripts and regard d as having degree þ1; the two
concepts are equivalent via the reindexing conven-
tion Gn := G�n. Another important example is that



where G forms a graded algebra, meaning that it has
a multiplication Gn �Gk!Gnþk. To form a
differential graded algebra, in addition to having
degree �1, d is required to satisfy the Leibniz rule
d(xy) = d(x)yþ�(1)jxjxd(y) (where jxj denotes the
degree of x) familiar from the differentiation of
differential forms.

In many cases, G itself is not the main object of
interest, but is a relatively large and complicated
object, G = G(X), formed by applying some functor
G to the object X being studied. For example, X
might be some manifold and G could be the set of
all differential forms on X with the exterior
derivative as d. The presumption is that H(G(X))
carries the information we want about X in a much
simpler form than the whole of G(X).

A spectral sequence (Leray 1946) is defined
simply as a sequence ((Er, dr))r = n0, n0þ1,..., of differ-
ential abelian groups such that Erþ1 = H(Er, dr). By
reindexing, we could always arrange that n0 = 1, but
sometimes it is more natural to begin with some
other integer. If all terms (Er, dr) of the spectral
sequence have the appropriate additional structure,
we might refer, for example, to a spectral sequence
of Lie algebras. If there exists N such that Er = EN

for all r � N (equivalently dr= 0 for all r�N), the
spectral sequence is said to ‘‘collapse’’ at EN.

The definition of spectral sequence is so broad
that we can say almost nothing of interest about
them without putting on some additional condi-
tions. We will begin by considering the most
common type of spectral sequence, historically the
one that formed the motivating example: the
spectral sequence of a filtered chain complex.

Filtered Objects

To study a complicated object X, it often helps to
filter X and study it one filtration at a time. A
filtration FX of a group X is a nested collection of
subgroups

FX :¼ . . . FnX � Fnþ1X � � � � � X �1<n<1

A morphism f :FX!FY of filtered groups is a
homomorphism f : X!Y such that f (Fn(X)) � Fn(Y).
The groups FnX=Fn�1X are called the ‘‘filtration
quotients’’ and their direct sum Gr(FX) :=

L
n FnX=

Fn�1X is called the associated graded group of the
filtered group FX. In cases where X has additional
structure, we might define special types of filtra-
tions satisfying some compatibility conditions so
that Gr(FX) inherits the additional structure. For
example, an algebra filtration of an algebra X is
defined as one for which (FnX)(FkX) � Fnþ kX.

Since our plan is to study X by computing
Gr(FX), the first question we need to consider is
what conditions we need to place on our filtration
so that Gr(FX) retains enough information to
recover X. Our experience from the ‘‘5-lemma’’
suggests that the appropriate way to phrase the
requirement is to ask for conditions on the filtra-
tions which are sufficient to conclude that f : X!Y
is an isomorphism whenever f :FX!FY is a
morphism of filtered groups for which the induced
Gr(f ) : Gr(X)!Gr(Y) is an isomorphism.

It is clear that GrFX can tell us nothing about
X� ([Xn) so we require that X =[Xn. Similarly
we need that \Xn = 0. However, the latter condition
is insufficient as can be seen from the following
example.

Example 1 Let X :=
L1

k = 1Z and Y :=
Q1

k = 1 Z. Set

FnX :¼ X if n � 0L1
k¼�n Z if n < 0

�

FnY :¼ Y if n � 0Q1
k¼�n Z if n < 0

�

and let f : X!Y be the inclusion. Then Gr(f ) is an
isomorphism but f is not.

To phrase the appropriate condition we need the
concept of algebraic limits. Given a sequence of
objects {Xn}n2Z and morphisms fn : Xn!Xnþ1 in
some category, the ‘‘direct limit’’ or ‘‘colimit’’ of the
sequence, written lim�!n

FnX, is an object X together
with morphisms gn : Xn!X satisfying gnþ1 � fn = gn,
having the universal property that given any object
X0 together with maps g 0n : Xn!X0 satisfying g 0nþ1 �
fn = g 0n, there exists a unique morphism h : X!X0

such that g 0n = h � gn for all n. By the usual
categorical argument the object X, if it exists, is
unique up to isomorphism. The dual concept,
‘‘inverse limit’’ or simply ‘‘limit’’ of the sequence,
written lim �n

FnX, is obtained by reversing the
directions of the morphisms. For intuition, we note
that these notions share, with the notion of limits of
sequences in calculus, the properties that changing
the terms Xn only for n<N does not affect
lim�!n

FnX, and if the sequence stabilizes at N (i.e.,
the morphisms fn are isomorphisms for all n � N),
then lim�!n

FnX ffi XN. Similarly lim �n
FnX depends

only upon behavior of the sequence as n!�1.
Limits over partially ordered sets other than Z can
also be taken but we shall not need them in this
article. Although limits need not exist in general, in
the category of abelian groups, both the direct and
inverse limit exist for any sequence and are given
explicitly by the following constructions. lim�!n
FnX=

L
Xn=	 where, letting ik :Xk!

L
Xn be the
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canonical inclusion, the equivalence relation is gener-
ated by in(x)	 inþ1f (x) for x2Xn. lim �n

FnX=
{(xn)2�Xn j fn(xn)=xnþ18n}.

The condition needed is that our filtrations should
be bicomplete, defined as follows. FX is called
‘‘cocomplete’’ if the canonical map X! lim�!n

FnX
is
X
b
N
b

T
b
\
s
T
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an isomorphism and FX is called ‘‘complete’’ if
! lim �n

X=FnX is an isomorphism. FX is called
icomplete if it is both complete and cocomplete.
ote that FX cocomplete is equivalent to [FnX = X

ut FX complete is stronger than \FnX = 0.

heorem 1 (Comparison theorem). Let FX be
icomplete and let FY be cocomplete with
FnY = 0. Suppose that f :FX!FY is a morphism
uch that Gr(f ) : Gr(X)!Gr(Y) is an isomorphism.
hen f : X!Y is an isomorphism.

iltered Chain Complexes

chain complex (C, d) of abelian groups consists of
belian groups Cn for n 2 Z together with homo-
orphisms dn : Cn!Cn�1 such that dn � dnþ1 = 0 for

ll n. To the chain complex (C, d) we can associate
he differential (abelian) group (C
, d) :=

L1
n =�1 Cn

ith djCn
induced by dn. We often write simply C if

he differential is understood. The dual notion in
hich d has degree þ1 is called a cochain complex

nd the concepts are equivalent through our
onvention Cn := C�n.

heorem 2 (Homology commutes with direct
mits). H(lim�!n

Cn) = lim�!n
H(Cn).

As we shall see later, failure of homology to
ommute with inverse limits is a source of great
omplication in working with spectral sequences.
Let FC be a filtered chain complex. In many

pplications, our goal is to compute H
(C) from a
nowledge of H
(FnC=Fn�1C) for all n. The overall
lan, which is not guaranteed to be successful in
eneral, would be:

. use the given filtration on C to define a filtration
on H
(C),

. use our knowledge of H
(Gr C) to compute
Gr H
(C),

. reconstruct H
(C) from Gr H
(C).

To begin, set Fn(H
C) := Im(sn)
, where sn :

n(C)!C is the inclusion (chain) map from the
iltration. The spectral sequence which we will
efine for this situation can be regarded as a method
f keeping track of the information contained in
he infinite collection of long exact homology
equences coming from the short exact sequences
! Fn�1C! FnC! FnC=Fn�1C! 0. When working
F

A
a
m
a
t
w
t
w
a
c

T
li

c
c

a
k
p
g

1

2

3

F
f
d
o
t
s
0

with a long exact sequence, knowledge of two of
every three terms gives a handle on computing the
remaining terms but does not, in general, completely
determine those terms, which explains intuitively
why we have some reason to hope that a spectral
sequence might be useful and also why it is not
guaranteed to solve our problem.

Before proceeding with our motivating example,
we digress to discuss spectral sequences formed from
exact couples.
Exact Couples

In this section, we will define exact couples, show
how to associate a spectral sequence to an exact
couple, and discuss some properties of spectral
sequences coming from exact couples. As we shall
see, a filtered chain complex gives rise to an exact
couple and we will examine this spectral sequence in
greater detail.

Exact couples were invented by Massey and many
books use them as a convenient method of con-
structing spectral sequences. Other books bypass
discussion of exact couples and define the spectral
sequence coming from a filtered chain complex
directly.

Definition 1 An ‘‘exact couple’’ consists of a
triangle

D�!i D#

k

E
# j

containing abelian groups D, E, and together with
homomorphisms i, j, k such that the diagram is
exact at each vertex.

In the following, to avoid conflicting notation
considering the many superscripts and subscripts
which will be needed, we use the convention that an
n-fold composition will be written f �n rather than
the usual f n.

Given an exact couple, set d := jk : E! E. By
exactness, kj = 0, so d�2 = jkjk = 0 and therefore
(E, d) forms a differential group. To the exact
couple we can associate another exact couple, called
its derived couple, as follows. Set D0:= Im i � D and
E0:= H(E, d). Define i0 := ijD and let j0: D0 !E0 be
given by j0(iy) := j(y), where x denotes the equiva-
lence class of x. The map k0 : E0 !D0 is defined by
k0(�z) := kz. One checks that the maps j0 and k0 are
well defined and that (D0, E0, i0, j0, k0) forms an exact
couple. Therefore, from our original exact couple,
we can inductively form a sequence of exact couples
(Dr,Er, ir, jr,kr)1r=1 with D1:=D,E1:=E,Dr:= (Dr�1)0



and Er:= (Er�1)0. This gives a spectral sequence
(Er, dr)1r = 1 with dr = jrkr.

To the filtered chain complex FC, we can
associate an exact couple as follows. Set D :=

L
p, q

Dp, q where Dp, q = Hpþq(FpC) and E :=
L

p, q Ep, q

where Ep, q = Hpþq(FpC=Fp�1C). The long exact
homology sequences coming from the sequences
0! Fp�1C�!a FpC�!b FpC=Fp�1C! 0 give rise, for
each p and q, to maps a
 : Dp�1, qþ1 ! Dp, q, b
 :
Dp, q ! Ep, q, and @ : Ep, q ! Dp�1, q. Define i : D! D
to be the map whose restriction to Dp�1, qþ1 is the
composition of a
 with the canonical inclusion
Dp, q ! D. Similarly, define j : D! E and k : E! D
to be the maps whose restrictions to each
summand are the compositions of b
 and @ with
the inclusions. The indexing scheme for the bigrada-
tions is motivated by the fact that in many
applications it causes all of the nonzero terms to
appear in the first quadrant, so it is the most
common choice, although one sometimes sees other
conventions.

There is actually a second exact couple we could
associate to FC, which yields the same spectral
sequence: use the same E as above but replace D byL

Dp, q with Dp, q = Hpþqþ1(C=FpC), and define i, j,
and k in a manner similar to that above.

When dealing with cohomology rather than
homology, the usual starting point would be a
system of inclusions of cochain complexes � � � Fnþ1C
� FnC � Fn�1 � � � � � C. This can be reduced to the
previous case by replacing the cochain complex C by
a chain complex C
 using the convention Cp := C�p

and filtering the result by FnC
 := F�nC. The usual
practice, equivalent to the above followed by a
rotation of 180�, is to leave the original indices and
instead reverse the arrows in the exact couple. In
this case, it is customary to write Dp, q

r and Ep, q
r for

the terms in the exact couple and spectral sequence.
In applications, it is often the case that E1 is

known and that our goal includes computing D1.
The example of the filtered chain complex with the
assumption that we know H
(FpC=Fp�1C) for all p
is fairly typical.

Since each Dr is contained in Dr�1 and each Er is
a subquotient of Er�1, the terms of these exact
couples get smaller as we progress. To get properties
of the spectral sequence, we need to examine this
process and, in particular, analyze that which
remains in the spectral sequence as we let r go to
infinity.

For x 2 E, if dx = 0 then �x belongs to E2 and so
d2(�x) is defined. In the following, we shall usually
simplify the notation by writing simply x in place of
�x and writing drx = 0 to mean ‘‘drx is defined and
equals 0.’’

If dx = 0, . . . , dr�1x = 0, then x represents an
element of Er and drx is defined. Set Zr := {x 2
E j dmx = 0 8m � r}. Then Erþ1 ffi Zr=	 where x 	 y
if there exists z 2 E such that for some t � r we
have dmz = 0 for m < t (thus dtz is defined) and
dtz = x � y. With this as motivation, we set Z1 :=
\rZ

r = {x 2 E j dmx = 0 8m} (known as the ‘‘infinite
cycles’’) and define E1 := Z1=	 where x 	 y if
there exists z 2 E such that for some t we have
dmz = 0 for m < t and dtz = x � y.

Notice that Drþ1 = Imi�r ffi D=Ker i�r. There is no
analog of this statement for r =1. Instead we have
separate concepts so we set D1 := D= [r Ker i�r

and 1D := \r Imi�r. The analog of the rth-derived
exact couple when r =1 is the following exact
sequence.

Theorem 3 There are maps induced by i, j, and k
producing an exact sequence

0! D1�!i
1

D1�!j
1

E1�!
1k 1D�!

1i 1D

The fact that we were able to add the 0 term to
the left of this sequence but not the right can be
traced to the fact that lim�! preserves exactness but
lim � does not.

In our motivating example, the terms of the initial
exact couple came with a bigrading D =

L
Dp, q and

E =
L

Ep, q and writing jf j for the bidegree of a
morphism f we had: jij= (1, �1); jjj= (0, 0); jkj=
(�1, 0); d = (�1, 0). It follows that jirj= (1,�1); jjrj=
(�rþ 1, r� 1); jkrj= (�1, 0); jdrj= (�r, r� 1) which
is considered the standard bigrading for a bigraded
exact couple. Similarly, the standard bigrading for a
bigraded spectral sequence is one such that
jdrj= (�r, r� 1).

We observed earlier that terms of an exact couple
and its corresponding spectral sequence get smaller
as r!1 as each is a subquotient of its predecessor.
Note that the bigrading is such that this applies to
each pair of coordinates individually (e.g., Erþ1

p, q is
a subquotient of Er

p, q) and so in particular if the
p, q-position ever becomes 0 that position remains 0
forevermore.

Convergence of Graded Spectral
Sequences

As noted earlier, the definition of spectral sequence
is so broad that we need to put some conditions on
our spectral sequences to make them useful as a
computational tool. From now on, we will restrict
attention to spectral sequences arising from exact
couples in which D =

L
Dp and E =

L
Ep are

graded with ijDp
�Dpþ1, jjDp

�Ep, and kjEp
�Dp�1.

All the spectral sequences which have been studied
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to date satisfy this condition and in fact most also
have a second gradation as in the case of our
motivating example. To see how to proceed, we
examine that case more closely.

For a filtered chain complex FC with structure
maps sp : FpC! C we defined Fp(H
(C)) = Im sp
. If
x = i�(r�1)y belongs to

Dr
p; q = Im i�ðr�1Þ : HpþqðFp�rþ1CÞ ! HpþqðFpCÞ

then (sp)
x = (sp)
i
�(r�1)y = (spþ1)
i

�ry = (spþ1)
ix.
Therefore, we have a commutative diagram

Dr
p;q �! FpðHpþqðCÞÞ

#i #
Drþ1

pþ1;q�1 �! Fpþ1ðHpþqðCÞÞ

yielding a map

Drþ1
pþ1; q�1=D

r
p; q ! Fpþ1 HpþqðCÞ

� �
=Fp HpþqðCÞ
� �

= Grpþ1ðHpþqÞC

Letting r go to infinity, we get an induced map
� : D1=i1(D1)!Gr(H(C)).

Theorem 4 If FH(C) is cocomplete then

(i) D1= Fn(H(C));
(ii) � : D1=i1(D1)!Gr(H(C)) is an isomorphism;
(iii) There is an exact sequence 0!Gr(H(C))

j1

�! E1
1k�!1

D
1i�!1

D:

We say that the spectral sequence (Er) ‘‘abuts’’ to
FL if there is an isomorphism GrL! E1. Here we
mean an isomorphism of graded abelian groups,
which makes sense since under our assumptions Er

inherits a grading from E1 for each r. If in addition
the filtration on L is cocomplete, we say that (Er)
‘‘weakly converges’’ to FL and if it is bicomplete we
say that (Er) ‘‘converges’’ (or strongly converges) to
FL. The notation (Er)) FL (or simply (Er)) L
when the filtration on L is either understood or
unimportant) is often used in connection with
convergence but there is no universal agreement as
to which of the three concepts (abuts, weakly
converges, or converges) it refers to! In this article,
we will also use the expression (Er) ‘‘quasicon-
verges’’ to FL to mean that the spectral sequence
weakly converges to FL with \nFnL = 0. (Note: the
terminology quasiconverges is nonstandard although
the concept has appeared in the literature, some-
times under the name converges.)

While it would be overstating things to claim that
convergence of the spectral sequence shows that E1

determines H(C), it is clear that convergence is what
we need in order to expect that E1 contains enough
information to possibly reconstruct H(C). The sense

in which this is true is stated more precisely in the
following theorem.

Theorem 5 (Spectral sequence comparison
theorem). Let f = (f r) : (Er)! ~Er be a morphism
of spectral sequences.

(i) If f : EN ! ~EN is an isomorphism for some N,
then f r is an isomorphism for all r � N (includ-
ing r =1).

(ii) Suppose in addition that (Er) converges to FX

and (~Er) quasiconverges to F ~X. Let � :FX ! F ~X

be a morphism of filtered abelian groups which
is compatible with f. (i.e., there exist isomorph-
isms � : Gr X ffi E1 and �̃ : Gr ~X ffi ~E1 such that
f1 � �= �̃ �Gr(f )). Then f : X! ~X is an
isomorphism.

Within the constraints provided by Theorem 5, a
spectral sequence might have many limits. A typical
calculation of some group Y by means of spectral
sequences might proceed as an application of
Theorem 5 along the lines of the following plan.

1. Subgroups FnY forming a filtration of Y are
defined, although usually not computable at this
point. The subgroups are chosen in a manner that
seems natural bearing in mind that to be useful it
will be necessary to show convergence properties.

2. Directly or by means of an exact couple, a
spectral sequence is defined in a manner that
seems to be related to the filtration.

3. Some early term of the spectral sequence (usually
E1 or E2) is calculated explicitly and the
differentials dr are calculated successively result-
ing in a computation of E1.

4. With the aid of the knowledge of E1, a
conjecture Y = G is formulated for some G.

5. A suitable filtration on G and a map of filtrations
FG ! FY or FY ! FG are defined.

6. The spectral sequence arising from FG is demon-
strated to converge to G.

7. The original spectral sequence is demonstrated to
converge to Y and Theorem 5 is applied.

The hardest steps are usually (3) and (7). For step
(3), in most cases the calculations require knowledge
which cannot be obtained from the spectral sequence
itself, although the spectral sequence machinery plays
its role in distilling the information and pointing the
way to exactly what needs to be calculated. Steps
(4)–(6) are frequently very easy, and often not stated
explicitly, with ‘‘by construction of G’’ being the
most common justification of (6). We now discuss
the types of considerations involved in step (7).

Convergence of a spectral sequence to a desired L
can be difficult to verify in general partly because
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the conditions are stated in terms of some filtration
(usually understood only in a theoretical sense) on
an initially unknown L rather than in terms of
properties of the spectral sequence itself or an exact
couple from which it arose. Theorems 2 and 4(ii)
give us the following extremely important special
case in which we can conclude convergence to H(C)
of the spectral sequence for FC based on conditions
that are often easily checked.

Theorem 6 If FC is a filtered chain complex such
that FC is cocomplete and there exists M such that
H(FnC) = 0 for n < M, then the spectral sequence
for FC converges to H(C).

Although the second hypothesis, which implies
that 1D = 0, is very strong it handles the large
numbers of commonly used filtrations which are 0
in negative degrees.

Under the conditions of Theorem 6, inserting the
bigradings into Theorem 4 gives a short exact
sequence 0! D1p�1, qþ1 ! D1p, q ! E1p, q ! 0 with
D1p, q ffi Fp(Hpþq(X)); equivalently

Fk HnðCÞð Þ=Fk�1 HnðCÞð Þ ffi E1k; n�k

Thus, the only E1-terms relevant to the computa-
tion to Hn(C) are those on the diagonal pþ q = n. In
the important case of a first quadrant spectral
sequence (Er

p, q = 0 if p < 0 or q < 0), the number
of nonzero terms on any diagonal is finite so the
E1-terms on the diagonal pþ q = n give a finite
composition series for each Hn(C).

Here is an elementary example of an application
of a spectral sequence.

Example 2 Let S
( ) denote the singular chain
complex, let H
( ) := H
(S
( )) denote singular
homology, and let Hcell


 ( ) denote cellular homology.
Let X be a CW-complex with n-skeleton X(n). The
inclusions S
(X

(n))! S
(X) yield a filtration on
S
(X). In the associated spectral sequence,

E1
p;q ¼Hpþq XðpÞ=Xðp�1Þ

� �

ffi
free abelian group on the p-cells of X if q¼ 0

0 if q 6¼ 0

�

The differential

d1
p; 0 : Hp XðpÞ=Xðp�1Þ

� �
! Hp�1 Xðp�1Þ=Xðp�2Þ

� �

is the definition of the differential in cellular
homology. Therefore,

E2
p;q¼

HcellðXÞ if q ¼ 0
0 if q 6¼ 0

�

Looking at the bidegrees, the domain or range of d2
p, q

is zero for each p and q so d2 = 0, and similarly
dr = 0 for all r > 2. Therefore, the spectral sequence
collapses with E2 = E1. The spectral sequence con-
verges to H
(X) so the terms on the diagonal
pþ q = n form a composition series for Hn(X).
Since the (n, 0) term is the only nonzero term on
this diagonal, Hn(X) ffi Hcell

n (X). That is, ‘‘cellular
homology equals singular homology.’’

Returning to the general situation, set L1 :=
lim�!n

Dn and L�1:= lim �n
Dn. Filter L1 by FnL1 :=

Im(Dn ! L1) and filter L�1 by FnL�1 := Ker
(L�1 ! Dn). It follows from the definitions that
FnL1= D1n and so D1n =i

1(D1n�1) = GrnL1. At the
other end, the canonical map L�1 ! Dn lifts to 1Dn

yielding an injection L�1=FnL�1 ! 1Dn. Therefore,
for each n there is an injection GrnL�1 ! Kn where
Kn = Ker(1Dn�1 ! 1Dn). In general, the map
L�1 ! 1Dn need not be surjective (an element
could be in the image of i�r for each finite r without
being part of a consistent infinite sequence), although
it is surjective in the special case when 1Ds ! 1Dsþ1

is surjective for each s. In the latter case we get
Gr L�1 ffi K. As we will see in the next section, the
exact sequence of Theorem 3 extends to the right
(Theorem 8) giving lim �

1

r
Zr = 0 as a sufficient condition

that 1Ds ! 1Dsþ1 be surjective for each s, where lim �
1

is described in that section and (Zr) refers to the system
of inclusions � � � � Zrþ1 � Zr � Zr�1 � � � � . Thus,
lim �

1

r
Zr = 0 is a sufficient condition for Gr L�1 ffi K.

Taking into account the short exact sequence
0! D1=i1(D1)! E1 ! K! 0 coming from
Theorem 3, the preceding discussion yields two
obvious candidates for a suitable FL: FL1 or FL�1 .
In theory there are other possibilities, but in
practice one of these two cases usually occurs. We
examine them individually and see what additional
conditions are required for convergence.

Case I: Conditions for convergence to FL1 It is
easily checked from the definitions that lim�!n

D1n =
lim�!n

Dn so FL1 is always cocomplete. Therefore,

besides Gr L1 ffi E1 (equivalently, K = 0), it is
required to verify that FL1 is complete. As we will
see in the next section, the completeness condition can
be restated as \Dn = 0 and lim �

1

n
Dn = 0. According to

the preceding discussion, under the assumption that
L�1= \Dn = 0, which we need anyway as part of the
requirement that FL1 be complete, lim �

1

r
ZrX = 0 is

sufficient to show K = 0.

Case II: Conditions for convergence to FL�1 Any
inverse limit is complete in its canonical filtration, so
FL�1 is always complete and the issues are whether
GrL�1 ffi E1 and whether FL�1 is cocomplete.
FL�1 is cocomplete if and only if every element of
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L�1 lies in Ker(L�1 ! Dn) for some n, for which a
sufficient condition is that L1= 0 or equivalently
E1 ffi K. Therefore, if the reason for the isomorph-
ism Gr L�1 ffi E1 is that the maps E1�� K and
Gr L�1 � K are isomorphisms, then the rest of the
convergence conditions are automatic. In particular,
to deduce convergence to FL�1 it suffices to know
that L1= 0 and lim �

1

r
Zr = 0.

Derived Functors

The left and right derived functors LnT, RnT of a
functor T provide a measure of the amount by which
the functor deviates from preserving exactness.

The category Inv of inverse systems indexed over Z
(i.e., the category whose objects are diagrams
of abelian groups � � � ! An�1 ! An ! Anþ1 ! � � �)
forms an abelian category in which a sequence of
morphisms A0 ! A! A00 is exact if and only if the
sequence An

0 ! An ! An
00 of abelian groups is exact

for each n. The functor of interest to us is lim � : Inv!
AB where AB denotes the category of abelian groups.

Let T : A¼ ! B¼ be an additive functor between
abelian categories. Suppose that X in Obj A¼ has an
injective resolution IX. The definition of additive
functor implies that T takes zero morphisms to zero
morphisms, so TIX forms a cochain complex in B¼ .
The right derived functors of T are defined by
(RnT)(X) := Hn(TIX). The result is independent of
the choice of injective resolution (assuming one
exists) and satisfies:

1. If T is ‘‘left exact’’ (meaning that T preserves
monomorphisms), then R0T(X) = T(X);

2. If T preserves exactness, then (RnT)(X) = 0 for
n > 0.

Theorem 7 Let 0! X0 ! X! X00 ! 0 be a short
exact sequence in A¼. Suppose T is left exact and that
all the objects have injective resolutions. Then there
is a (long) exact sequence

0! TðX0Þ ! TðXÞ ! TðX00Þ ! ðR1TÞðX0Þ ! � � �

! ðRn�1TÞðX00Þ ! ðRnTÞðX0Þ ! ðRnTÞðXÞ !

ðRnTÞðX00Þ ! � � �

Similarly, the left derived functors of T are defined
by using projective resolutions and have similar
properties with respect to the obvious duality.

The functor lim �n
is left exact and in the category

Inv every object has an injective resolution. There-

fore lim �
q

n
is defined and lim �

0

n
Xn = lim �n

Xn, where

lim �
q

n
denotes the derived functor Rq(lim �n

). It turns

out that lim �
q

n
is 0 for q > 1, but we are particularly

interested in lim �
1

n
.

Let (Xn) be an inverse system with structure maps
in�1 : Xn�1 ! Xn. An explicit construction for lim �

1

n
Xn is as follows. Define � :

Q
n Xn !

Q
n Xn by

letting �(xn) be the sequence whose nth component
is (xn � in�1xn�1). Then lim �

1

n
Xn ffi Coker�. Observe

that Ker� ffi lim �n
Xn according to the explicit for-

mula for lim �n
Xn given earlier.

Recall that we defined 1D = \r Im i�r ffi lim �r
Dr.

The exact sequence of Theorem 3 can be extended
to give:

Theorem 8 There is an exact sequence

0! D1�!i D1 �!j E1 �!k 1D�!i 1D

�!j lim
 �

1

r
Zr�!k lim

 �
1

r
Dr�!i lim

 �
1

r
Dr ! 0

It is clear from the explicit construction that if the
system (Xn) stabilizes with Xn = G for all sufficiently
small n, then lim �n

X = G and lim �
1

n
X = 0. If the

spectral sequence collapses at any stage then the
system (Zr) stabilizes at that point, and so for a
spectral sequence which collapses, the condition
lim �

1

r
Zr = 0, which arose in the discussion of

convergence in the previous section, is automatic.
Let FX be a filtered abelian group. Applying

Theorem 7 to the short exact sequence 0! FnX!
X! X=FnX! 0 of inverse systems gives an exact
sequence

0! lim
 � n

FnX! lim
 � n

X! lim
 � n

X=Fn

! lim
 �

1

n
FnX! lim

 �
1

n
X

Since lim �n
X = X and lim �

1

n
X = 0, we get

Theorem 9 FX is complete if and only if
lim �n

FnX = 0 and lim �
1

n
FnX = 0.

When working with lim �
1

n
the following sufficient

condition for its vanishing, known as the Mittag–
Leffler condition, is often useful.

Theorem 10 Suppose A is an inverse system in
which for each n there exists k(n) � n such that
Im(Ai ! An) equals Im(Ak(n) ! An) for all i � k(n).
Then lim �

1

n
A = 0.

Of course, this will not be (directly) useful in
establishing lim �

1

n
FnX = 0 since the structure maps in

that system are all monomorphisms.

Some Examples of Standard Spectral
Sequences and Their Use

To this point we have considered the general theory
of spectral sequences. The properties of the spectral
sequences arising in many specific situations have
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been well studied. Usually the spectral sequence
would be defined either directly, through an exact
couple, or by giving some filtration on a chain
complex. This defines the E1-term. Typically, a
theorem would then be proved giving some formula
for the resulting E2-term. In many cases, conditions
under which the spectral sequence converges may
also be well known.

In this section, we shall take a brief look at the
Serre spectral sequence, Atiyah–Hirzebruch spectral
sequence, spectral sequence of a double complex,
Grothendieck spectral sequence, change of ring
spectral sequence, and Eilenberg–Moore spectral
sequence, and carry out a few sample calculations.

Serre Spectral Sequence

Let F! X�!� B be a fiber bundle (or more generally
a fibration) in which the base B is a CW-complex.
Define a filtration on the total space by
FnX := ��1B(n). This yields a filtration on H
(X) by
setting FnH
(X) := Im(H
(FnX)! H
(X)). The spec-
tral sequence coming from the exact couple in which
D1

p, q := Hpþq(FpX) and E1
p, q := Hpþq(FpX, Fp�1X) is

called the ‘‘Serre spectral sequence’’ of the fibration.
Theorems from topology guarantee that this filtra-
tion is cocomplete and that E1

p, q = 0 if either p < 0
or q < 0. Therefore, the Serre spectral sequence is
always a first quadrant spectral sequence converging
to H
(X).

Theorem 11 (Serre). In the Serre spectral sequence
of the fibration F ! E! B there is an isomorphism
E2

p, q ffi Hp(B; tHq(F)).

Here tH
(F) denotes a ‘‘twisted’’ or ‘‘local’’
coefficient system in which the differential is
modified to take into account the action, coming
from the fibration, of the fundamental groupoid of
the base B on the fiber F. In the special case where B
is simply connected and Tor(H
(B), H
(F)) = 0, the
‘‘universal coefficient theorem’’ says that the
E2-term reduces to E2

p, q ffi Hp(B)�Hq(F).
The Serre spectral sequence for cohomology,

Ep, q
2 ffi Hp(B; tHq(F))) Hpþq(X), has the advantage

that it is a spectral sequence of algebras which
greatly simplifies calculation of the differentials dr

which are restricted by the requirement that they
satisfy the Leibniz rule with respect to the cup
product on H
(B) and H
(F), and which also allows
the computation of the cup product on H
(X). Since
it is a first quadrant spectral sequence, convergence
is not an issue.

Frequently in applications of the Serre spectral
sequence, instead of using the spectral sequence to
calculate H
(X) from knowledge of H
(F) and H
(B)

it is instead H
(X) and one of the other two
homologies which is known, and one is working
backwards from the spectral sequence to find the
homology of the third space.

Example 3 The universal S1-bundle is the bundle
S1 ! S1 ! CP1 where S1 is contractible. We will
calculate H
(CP1) from the Serre spectral sequence
of this bundle, taking H
(S1) and H
(S1) as known.
We also take as known that CP1 is path connected,
so H0(CP1) ffi Z.

Ep;q
2 ffi HpðCP1Þ �HqðS1Þ

ffi HpðCP1Þ if q ¼ 0 or 1

0 otherwise

�

E1-terms on the diagonal pþ q = n form a compo-
sition series for Hn(S1) which is zero for n 6¼ 0.
Therefore Ep, q

1 = 0 unless p = 0 and q = 0, with
E0, 0
1 ffi Z. Because all nonzero terms lie in the first

quadrant, the bidegrees of the differentials show
that dr(E

1,0
2 ) = 0 for all r � 2, so 0 = E1,0

1 =
E1,0

2 = H1(CP1). Since E1,q
2 ffi E1,0

2 � E0,q
2 , it follows

that E1,q
2 = 0 for all q. Taking into the account the

known zero terms, the bidegrees of the differentials
show that E0,1

3 ffi Ker(d2 : E0,1
2 !E2,0

2 ) and E0,1
1 =

E0,1
3 . Similarly, E2,0

1 = E2,0
3 ffi Coker(d2 : E0,1

2 !E2,0
2 ).

Therefore, the vanishing of these E1-terms shows
that d2 : E0,1

2 ffiE2,0
2 and in particular H2(CP1) ffi

E0,1
2 = H1(S1) ffi Z. It follows that E2,q

2 ffi Z� E0,q
2 ffi

E0, q
2 for all q. With the aid of the fact that we

showed E1,1
2 = 0, we can repeat the argument used to

show E1,q
2 = 0 for all q to conclude that E3,q

2 = 0 for
all q. Repeating the procedure, we inductively find
that Ep,q

2 ffi Ep�2,q
2 for all p > 0 and all q and in

particular

HnðCP1Þ ffi Z if n is even
0 if n is odd

�

The cup products in H
(CP1) can also be
determined by taking advantage of the fact that the
spectral sequence is a spectral sequence of algebras.

Let a 2 E2,0
2 ffi Z be a generator and set x := d2a. By

the preceding calculation, d2 is an isomorphism so x
is a generator of H2(CP1). Therefore, x� a is a
generator of E2, 2

2 and the isomorphism d2 gives
that d2(x� a) is a generator of H4(CP1). However,
d2(x� a) = d2(x� 1)(1� a) = 0� 1 þ (�1)2(x� 1)d2

a = x2 � 1 and thus, x2 is a generator of H4(CP1).
Inductively, it follows that xn is a generator of
H2n(CP1) for all n and so H
(CP1) ffi Z[x].

When working backwards from the Serre or
other first quadrant spectral sequences in which
E2

p, q ffi E2
p, 0 � E2

0, q the following analog of the
comparison theorem (Theorem 5) is often useful.

630 Spectral Sequences



Theorem 12 (Zeeman comparison theorem). Let
E and E0 be first quadrant spectral sequences such
that E2

p, q = E2
p, 0 � E2

0, q and E0
2

p, q = E0
2

p, 0 � E0
2

0, q. Let
f : E! E0 be a homomorphism of spectral sequences
such that f 2

p, q = f 2
p, 0 � f 2

0, q. Suppose that f1p, q : E1p, q !
E0
1

p, q is an isomorphism for all p and q. Then the

following are equivalent:

(i) f 2
p,0 :E2

p,0!E0
2

p,0 is an isomorphism for p� n�1;

(ii) f 2
0, q : E2

0, q ! E0
2

0, q is an isomorphism for q � n.

There is a version of the Serre spectral sequence
for generalized homology theories coming from
the exact couple obtained by applying the
generalized homology theory to the Serre filtra-
tion of X.

Theorem 13 (Serre spectral sequence for generalized
homology). Let F! X! B be a fibration and let
Y be an (unreduced) homology theory satisfying the
Milnor wedge axiom. Then there is a (right half-
plane) spectral sequence with E2

p, q ffi Hp(B; tYq(F))
converging to Ypþq(X).

Cocompleteness of the filtration follows from the
properties of generalized homology theories satisfy-
ing the wedge axiom (Milnor 1962), and the rest of
the convergence conditions are trivial since the
filtration is 0 in negative degrees. Here, unlike
the Serre spectral sequence for ordinary homology,
the existence of terms in the fourth quadrant opens the
possibility for composition series of infinite length,
although in the case where B is a finite-dimensional
complex all the nonzero terms of the spectral
sequence will live in the strip between p = 0 and
p = dim B and so the filtrations will be finite.

The special case of the fibration 
 ! X! X
yields what is known as the ‘‘Atiyah–Hirzebruch
spectral sequence’’.

Theorem 14 (Atiyah–Hirzebruch spectral sequence).
Let X be a CW-complex and let Y be an (unreduced)
homology theory satisfying the Milnor wedge
axiom. Then there is a (right half-plane) spectral
sequence with E2

p, q ffi Hp(X; Yq(
)) converging to
Ypþq(X).

In the cohomology Serre spectral sequence for
generalized cohomology (including the cohomology
Atiyah–Hirzebruch spectral sequence), convergence
of the spectral sequence to Y
(X) is not guaranteed.
Convergence to lim �n

Y
(FnX), should that occur,
would be of the type discussed in case II in the
section ‘‘Con vergence of g raded spect ral sequenc es’’.
Since Xn = ; for n < 0, the system defining L1
stabilizes to 0. Therefore, L1= 0 and, by the
discussion in that section, lim �

1

r
ZrX = 0 becomes a

sufficient condition for convergence to lim �n
Y
(FnX).

However since the real object of study is usually
Y
(X), the spectral sequence is most useful when one
is also able to show lim �

1

n
Y
(FnX) = 0 in which case

the Milnor exact sequence (Milnor 1962)

0! lim �
1

n
Y
ðFnXÞ ! Y
ðXÞ

! lim �n
Y
ðFnXÞ ! 0

gives Y
(X) ffi lim �n
Y
(FnX).

If Y
( ) has cup products then the spectral
sequence has the extra structure of a spectral
sequence of Y
(
)-algebras. In the case where B is
finite dimensional, all convergence problems disap-
pear since the spectral sequence lives in a strip and
the filtrations are finite.

Example 4 Let K
( ) be complex K-theory. Since
K
(
) ffi Z[z, z�1] with jzj= 2, in the Atiyah–
Hirzebruch spectral sequence for K
(CPn) we have

Ep;q
2 ¼

Z if q is even and p is even with 0� p� 2n
0 otherwise

�

Because CPn is a finite complex, the spectral
sequence converges to K
(CPn). Since all the non-
zero terms have even total degree and all the
differentials have total degree þ1, the spectral
sequence collapses at E2 and we conclude that
Kq(CPn)=0 if q is odd and that it has a composition
series consisting of (nþ1) copies of Z when q is
even. Since Z is a free abelian group, this uniquely
identifies the group structure of Keven(CPn) as Znþ1.
To find the ring structure we can make use of the
fact that this is a spectral sequence of K
(
)-
algebras. The result is K
(CPn)ffiK
(
)[x]=(xnþ1),
where jxj=2.

In the Atiyah–Hirzebruch spectral sequence for
K
(CP1) again all the terms have even total degree
so the spectral sequence collapses at E2. We noted
earlier that collapse of the spectral sequence implies
that lim �

1

r
ZrX = 0 and so the spectral sequence

convergences to lim �n
K
(CPn), where we used

F2nCP1= CPn. Since our preceding calculation
shows that K
(CPn)! K
(CPn�1) is onto, Mittag–
Leffler (Theorem 10) implies that lim �

1

n
K
(CPn) = 0.

Therefore, the spectral sequence converges to
K
(CP1) and we find that K
(CP1) ffi lim �n
K
(CPn), which is isomorphic to the power series
ring K
(
)[[x]], where jxj= 2.

In topology one might be interested in the Atiyah–
Hirzebruch spectral sequence in the case where X is
a spectrum rather than a space (a spectrum being a
generalization in which cells in negative degrees are
allowed including the possibility that the dimensions
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of the cells are not bounded below). In such cases,
the spectral sequence is no longer constrained to lie
in the right half-plane and convergence criteria are
not well understood for either the homology or
cohomology version.

Spectral Sequence of a Double Complex

A double complex is a chain complex of chain
complexes. That is, it is a bigraded abelian group Cp, q

together with two differentials d0 : Cp, q!Cp�1, q and
d00 : Cp, q!Cp, q�1 satisfying d0 � d0= 0, d00 � d00= 0,
and d0d00= d00d0. Given a double complex C its total
complex Tot C is defined by (Tot C)n :=

L
pþq = n Cp, q

with differential defined by djCp, q
:= d0 þ (�1)pd00 :

Cp,q! Cp�1,q�Cp,q�1 � Totn�1C.
There are two natural filtrations, F0TotC and

F00Tot C, on Tot C given by

F0pðTotCÞ
� �

n
¼
M

sþt¼n
s�p

Cs;t

F00pðTotCÞ
� �

n
¼
M

sþt¼n
t�p

Cs;t

yielding two spectral sequences abutting to
H
(TotC). In the first E02p, q = Hp(Hq(C
, 
)) and in
the other E00

2

p, q = Hq(Hp(C
, 
)). Convergence of these
spectral sequences is not guaranteed, although the
first will always converge if there exists N such that
Cp, q = 0 for p < N and the second will converge if
there exists N such that Cp, q = 0 for q < N. From
the double complex C one could instead form the
product total complex (Tot�C)n :=

Q
pþq = n Cp, q and

proceed in a similar manner to construct the same
spectral sequences with different convergence pro-
blems. In the important special case of a first
quadrant double complex both spectral sequences
converge and information is often obtained by
playing one off against the other.

Example 5 Let M and N be R-modules. Let
Tor0R
 (M, N) and Tor00R
 (M, N) be the derived func-
tors of (�)�N and M� (�), respectively. Let P
 and
Q
 be projective resolutions of M and N respec-
tively. Define a first quadrant double complex by
Cp, q := Pp �Qq. Since Pp is projective,

HqðCp;
Þ ¼ Pp �HqðCp;
Þ ¼
0 if q 6¼ 0
N if q ¼ 0

�

and so in the first spectral sequence of the double
complex,

E0
2

p;q ¼
0 if q 6¼ 0
Tor0Rp ðM;NÞ if q ¼ 0

�

Therefore, the spectral sequence collapses to give
Hn(Tot C) ffi Tor0Rn (M, N). Similarly, the second
spectral sequence shows that Hn(Tot C) ffi Tor00Rn

(M, N). Thus, TorR

 (M, N) can be computed equally

well from a projective resolution of either variable.

The technique of using a double complex in which
one spectral sequence yields the homology the total
complex to which both converge can be used to prove.

Theorem 15 (Grothendieck spectral sequence). Let
C¼!

F
B¼!

G
A¼ be a composition of additive functors,

where C¼ , B¼ , and A¼ are abelian categories. Assume
that all objects in C¼ and B¼ have projective
resolutions. Suppose that F takes projectives to
projectives. Then for all objects C of C¼ there exists
a (first quadrant) spectral sequence with E2

p, q =
(LpG)((LqF)(C)) converging to (Lpþq(GF))(C).

Naturally, there is a corresponding version for
right derived functors.

An application of the Grothendieck spectral
sequence is the following ‘‘change of rings spectral
sequence.’’ Let f : R! S be a ring homomorphism,
let M be a right S-module and let N be a left
R-module. Let F(A) = S�R A and G(B) = M�S B,
and note that GF(A) = M�R A. Applying the
Grothendieck spectral sequence to the composition
(left R-modules !F left S-modules !G abelian groups)
yields a convergent spectral sequence E2

p, q ffi TorS
p

(M, TorR
q (S, N)) ) TorR

pþq(M, N).

Eilenberg–Moore Spectral Sequence

For a topological group G, Milnor showed how to
construct a universal G-bundle G! EG! BG in
which EG is the infinite join G
1 with diagonal
G-action. There is a natural filtration FnBG :=
G
(nþ1)=G on BG and therefore an induced filtration
on the base of any principal G-bundle. This
filtration yields a spectral sequence including as a
special case a tool for calculating H
(BG) from
knowledge of H
(G).

Theorem 16 Let G! X! B be a principal
G-bundle and let H
( ) denote homology with
coefficients in a field. Then there is a first quadrant
spectral sequence with E2

p, q = TorH
(G)
pq (H
(X), H
(
))

converging to Hpþq(BG).

Here the group structure makes H
(G) into an
algebra and TorA

pq(M, N) denotes degree q of the
graded object formed as the pth-derived functor of
the tensor product of the graded modules M and N
over the graded ring A.

There is also a version (Eilenberg and Moore
1962) which, like the Serre spectral sequence, is
suitable for computing H
(G) from H
(BG).
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Theorem 17 Let

W �! Y

# #�
X �!f B

be a pullback square in which � is a fibration and X
and B are simply connected. Suppose that
H
(X), H
(Y), and H
(B) are flat R-modules of
finite type, where H
( ) denotes cohomology with
coefficients in the Noetherian ring R. Then there is a
(second quadrant) spectral sequence with Ep, q

2 ffi
TorH
(B)

pq (H
(X), H
(Y)) converging to Hpþq(W).

The cohomological version of the Eilenberg–Moore
spectral sequence, stated above, contains the more
familiar Tor for modules over an algebra. For the
homological version, one must dualize these notions
appropriately to define the cotensor product of como-
dules over a coalgebra, and its derived functors Cotor.

Provided the action of the fundamental group of B
is sufficiently nice there are extensions of the
Eilenberg–Moore spectral sequence to the case
where B is not simply connected, although they do
not always converge, and extensions to generalized
(co)homology theories have also been studied.

See also: Cohomology Theories; Derived Categories;
K-Theory; Spectral Theory for Linear Operators.
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Introduction

We begin with the study of linear operators
on normed vector spaces (for definitions, see, e.g.,
Schechter (2002) or the appendix at the end of this
article). If the scalars are complex numbers, we shall

call the space complex. If the scalars are real, we
shall call it real.

Let X, Y be normed vector spaces. A mapping A
which assigns to each element x of a set D(A) � X a
unique element y 2 Y is called an operator (or
transformation). The set D(A) on which A acts is called
the domain of A. The operator A is called linear if

1. D(A) is a subspace of X, and
2. A(�1x1 þ �2x2) =�1Ax1 þ �2Ax2

for all scalars �1,�2 and all elements x1, x2 2 D(A).
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To begin, we shall only consider operators A with
D(A) = X.

An operator A is called bounded if there is a
constant M such that

kAxk �Mkxk; x 2 X ½1�

The norm of such an operator is defined by

kAk ¼ sup
x 6¼0

kAxk
kxk ½2�

It is the smallest M which works in [1]. An operator
A is called continuous at a point x 2 X if xn ! x in
X implies Axn ! Ax in Y. A bounded linear
operator is continuous at each point. For if xn ! x
in X, then

kAxn � Axk � kAk � kxn � xk ! 0

We also have

Theorem 1 If a linear operator A is continuous at
one point x0 2 X, then it is bounded, and hence
continuous at every point.

We let B(X, Y) be the set of bounded linear
operators from X to Y. Under the norm [2], one
easily checks that B(X, Y) is a normed vector space.

The Adjoint Operator

An assignment F of a number to each element x of a
vector space is called a functional and denoted by
F(x). If it satisfies

Fð�1x1 þ �2x2Þ ¼ �1Fðx1Þ þ �2Fðx2Þ ½3�

for �1,�2 scalars, it is called linear. It is called
bounded if

jFðxÞj �Mkxk; x 2 X ½4�

If F is a bounded linear functional on a normed
vector space X, the norm of F is defined by

kFk ¼ sup
x2X; x 6¼0

jFðxÞj
kxk ½5�

It is equal to the smallest number M satisfying [4].
For any normed vector space X, let X0 denote the

set of bounded linear functionals on X. If f , g 2 X0,
we say that f = g if

f ðxÞ ¼ gðxÞ for all x 2 X

The ‘‘zero’’ functional is the one assigning zero to all
x 2 X. We define h = f þ g by

hðxÞ ¼ f ðxÞ þ gðxÞ; x 2 X

and g =�f by

gðxÞ ¼ �f ðxÞ; x 2 X

Under these definitions, X0 becomes a vector space.
The expression

kfk ¼ sup
x 6¼0

jf ðxÞj
kxk ; f 2 X0 ½6�

is easily seen to be a norm. Thus, X0 is a normed vector
space. It is therefore natural to ask when X0 will be
complete. A rather surprising answer is given by

Theorem 2 X0 is a Banach space whether or not
X is.

(For the definition of a Banach space, see, e.g.,
Schechter (2002) or the appendix at the end of this
article.)

Suppose X, Y are normed vector spaces and
A2B(X, Y). For each y0 2 Y 0, the expression y0(Ax)
assigns a scalar to each x 2 X. Thus, it is a functional
F(x). Clearly F is linear. It is also bounded since

jFðxÞj ¼ jy0ðAxÞj � ky0k � kAxk � ky0k � kAk � kxk

Thus, there is an x0 2 X0 such that

y0ðAxÞ ¼ x0ðxÞ; x 2 X ½7�

This functional x0 is unique. Thus, to each y0 2 Y 0

we have assigned a unique x0 2 X0. We designate this
assignment by A0 and note that it is a linear operator
from Y 0 to X0. Thus, [7] can be written in the form

y0ðAxÞ ¼ A0y0ðxÞ ½8�

The operator A0 is called the adjoint (or conjugate)
of A. We note

Theorem 3 A0 2 B(Y 0, X0), and kA0k= kAk.

The adjoint has the following easily verified
properties:

ðAþ BÞ0 ¼ A0 þ B0 ½9�

ð�AÞ0 ¼ �A0 ½10�

ðABÞ0 ¼ B0A0 ½11�

Why should we consider adjoints? One reason is
as follows. Many problems in mathematics and its
applications can be put in the form: given normed
vector spaces X, Y and an operator A 2 B(X, Y), one
wishes to solve

Ax ¼ y ½12�

The set of all y for which one can solve [12] is called
the ‘‘range’’ of A and is denoted by R(A). The set of
all x for which Ax = 0 is called the ‘‘null space’’ of A
and is denoted by N(A). Since A is linear, it is easily
checked that N(A) and R(A) are subspaces of X and Y,
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respectively (for definitions, see, e.g., Schechter
(2002) or the appendix at the end of this article).
The dimension of N(A) is denoted by �(A).

If y 2 R(A), there is an x 2 X satisfying [12]. For
any y0 2 Y 0 we have

y0ðAxÞ ¼ y0ðyÞ

Taking adjoints we get

A0y0ðxÞ ¼ y0ðyÞ

If y0 2 N(A0), this gives y0(y) = 0. Thus, a necessary
condition that y 2 R(A) is that y0(y) = 0 for all
y0 2N(A0). Obviously, it would be of great interest
to know when this condition is also sufficient.

The Spectrum and Resolvent Sets

From this point henceforth we shall assume that
X = Y. We can then speak of the identity operator I
defined by

Ix ¼ x; x 2 X

For a scalar �, the operator �I is given by

�Ix ¼ �x; x 2 X

We shall denote the operator �I by �.
We shall denote the space B(X, X) by B(X).

For any operator A 2 B(X), a scalar � for which
�(A� �) 6¼ 0 is called an eigenvalue of A. Any
element x 6¼ 0 of X such that (A� �)x = 0 is called
an eigenvector (or eigenelement). The points � for
which (A� �) has a bounded inverse in B(X)
comprise the resolvent set �(A) of A (for defini-
tions, see, e.g., Schechter (2002) or the appendix
at the end of this article). If X is a Banach space,
it is the set of those � such that �(A� �) = 0 and
R(A� �) = X. The spectrum �(A) of A consists of
all scalars not in �(A). The set of eigenvalues of A
is sometimes called the point spectrum of A and
is denoted by P�(A).

We note that

Theorem 4 For A in B(X), �(A0) = �(A).

We are now going to examine the sets �(A) and
�(A) for arbitrary A 2 B(X).

Theorem 5 �(A) is an open set and hence �(A) is a
closed set.

Does every operator A 2 B(X) have points in its
resolvent set? Yes. In fact, we have

Theorem 6 For A in B(X), set

r�ðAÞ ¼ inf
n
kAnk1=n ½13�

Then �(A) contains all scalars � such that j�j > r�(A).

Let p(t) be a polynomial of the form

pðtÞ ¼
Xn

0

akt k

Then for any operator A 2 B(X), we define the
operator

pðAÞ ¼
Xn

0

akAk

where we take A0 = I. We have

Theorem 7 If � 2 �(A), then p(�) 2 �(p(A)) for any
polynomial p(t).

Proof Since � is a root of p(t)� p(�), we have

pðtÞ � pð�Þ ¼ ðt � �ÞqðtÞ

where q(t) is a polynomial with real coefficients.
Hence,

pðAÞ � pð�Þ ¼ ðA� �ÞqðAÞ ¼ qðAÞðA� �Þ ½14�

Now, if p(�) is in �(p(A)), then [14] shows that
�(A� �) = 0 and R(A� �) = X. This means that
� 2 �(A), and the theorem is proved. &

A symbolic way of writing Theorem 7 is

pð�ðAÞÞ � �ðpðAÞÞ ½15�

Note that, in general, there may be points in
�(p(A)) which may not be of the form p(�) for
some � 2 �(A). As an example, consider the
operator on R2 given by

Að�1; �2Þ ¼ ð��2; �1Þ

A has no spectrum; A� � is invertible for all real �.
However, A2 has �1 as an eigenvalue. What is the
reason for this? It is simply that our scalars are real.
Consequently, imaginary numbers cannot be con-
sidered as eigenvalues. We shall see later that in
order to obtain a more complete theory, we shall
have to consider complex Banach spaces. Another
question is whether every operator A 2 B(X) has
points in its spectrum. For complex Banach spaces,
the answer is yes.

The Spectral Mapping Theorem

Suppose we want to solve an equation of the form

pðAÞx ¼ y; x; y 2 X ½16�

where p(t) is a polynomial and A 2 B(X). If 0 is not in
the spectrum of p(A), then p(A) has an inverse in B(X)
and, hence, [16] can be solved for all y 2 X. So a
natural question to ask is: what is the spectrum of
p(A)? By Theorem 7 we see that it contains p(�(A)),
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but by the remark at the end of the preceding section
it can contain other points. If it were true that

pð�ðAÞÞ ¼ �ðpðAÞÞ ½17�

then we could say that [16] can be solved uniquely
for all y 2 X if and only if p(�) 6¼ 0 for all � 2 �(A).

For a complex Banach space we have

Theorem 8 If X is a complex Banach space, then
� 2 �(p(A)) if and only if �= p(�) for some � 2 �(A),
that is, if [17] holds.

Proof We have proved it in one direction already
(Theorem 7). To prove it in the other, let �1, . . . , �n

be the (complex) roots of p(t)� �. For a complex
Banach space they are all scalars. Thus,

pðAÞ � � ¼ cðA� �1Þ � � � ðA� �nÞ; c 6¼ 0

Now suppose that all of the �j are in �(A). Then
each A� �j has an inverse in B(X). Hence, the same
is true for p(A)� �. In other words, � 2 �(p(A)).
Thus, if � 2 �(p(A)), then at least one of the �j must
be in �(A), say �k. Hence, �= p(�k), where �k 2 �(A).
This completes the proof. &

Theorem 8 is called the ‘‘spectral mapping
theorem’’ for polynomials. As mentioned before, it
has the useful consequence:

Corollary 1 If X is a complex Banach space, then
eqn [16] has a unique solution for every y in X if
and only if p(�) 6¼ 0 for all � 2 �(A).

Operational Calculus

Other things can be done in a complex Banach space
that cannot be done in a real Banach space. For
instance, we can get a formula for p(A)�1 when it
exists. To obtain this formula, we first note

Theorem 9 If X is a complex Banach space, then
(z� A)�1 is a complex analytic function of z for
z 2 �(A).

By this, we mean that in a neighborhood of each
z0 2 �(A), the operator (z� A)�1 can be expanded in a
‘‘Taylor series,’’ which converges in norm to (z� A)�1,
just like analytic functions of a complex variable.

Now, by Theorem 6, �(A) contains the set jzj > kAk.
We can expand (z� A)�1 in powers of z�1 on this set.
In fact, we have

Lemma 1 If jzj > lim sup kAnk1=n, then

ðz� AÞ�1 ¼
X1

1

z�nAn�1 ½18�

where the convergence is in the norm of B(X).

Let C be any circle with center at the origin and
radius greater than, say, kAk. Then, by Lemma 1,I

C

znðz� AÞ�1dz ¼
X1
k¼1

Ak�1

I
C

zn�kdz

¼ 2�iAn ½19�

or

An ¼ 1

2�i

I
C

znðz� AÞ�1dz ½20�

where the line integral is taken in the right direction.
Note that the line integrals are defined in the same

way as is done in the theory of functions of a
complex variable. The existence of the integrals and
their independence of path (so long as the integrands
remain analytic) are proved in the same way. Since
(z� A)�1 is analytic on �(A), we have

Theorem 10 Let C be any closed curve containing
�(A) in its interior. Then [20] holds.

As a direct consequence of this, we have

Theorem 11 r�(A) = max�2�(A) j�j and kAnk1=n!
r�(A) as n!1.

We can now put Lemma 1 in the following form:

Theorem 12 If jzj > r�(A), then [18] holds with
convergence in B(X).

Now let b be any number greater than r�(A), and
let f (z) be a complex-valued function that is analytic
in jzj < b. Thus,

f ðzÞ ¼
X1

0

akzk; jzj < b ½21�

We can define f (A) as follows: the operators

Xn

0

akAk

converge in norm, sinceX1
0

jakj � kAkk <1

This last statement follows from the fact that if c is
any number satisfying r�(A) < c < b, then

kAkk1=k � c

for k sufficiently large, and the series

X1
0

jakjck
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is convergent. We define f (A) to beX1
0

akAk ½22�

By Theorem 10, this gives

f ðAÞ ¼ 1

2�i

X1
0

ak

I
C

zkðz� AÞ�1 dz

¼ 1

2�i

I
C

X1
0

akzkðz� AÞ�1 dz

¼ 1

2�i

I
C

f ðzÞðz� AÞ�1 dz ½23�

where C is any circle about the origin with radius
greater than r�(A) and less than b.

We can now give the formula that we promised.
Suppose f (z) does not vanish for jzj < b. Set
g(z) = 1=f (z). Then g(z) is analytic in jzj < b, and
hence g(A) is defined. Moreover,

f ðAÞgðAÞ ¼ 1

2�i

I
C

f ðzÞgðzÞðz� AÞ�1 dz

¼ 1

2�i

I
C

ðz� AÞ�1 dz ¼ I

Since f (A) and g(A) clearly commute, we see that
f (A)�1 exists and equals g(A). Hence,

f ðAÞ�1 ¼ 1

2�i

I
C

1

f ðzÞ ðz� AÞ�1 dz ½24�

In particular, if

gðzÞ ¼ 1=f ðzÞ ¼
X1

0

ckzk; jzj < b

then

f ðAÞ�1 ¼
X1

0

ckAk ½25�

Now, suppose f (z) is analytic in an open set �
containing �(A), but not analytic in a disk of radius
greater than r�(A). In this case, we cannot say that
the series [22] converges in norm to an operator in
B(X). However, we can still define f (A) in the
following way: there exists an open set ! whose
closure �! � � and whose boundary @! consists of a
finite number of simple closed curves that do not
intersect, and such that �(A) � !. (That such a
set always exists is left as an exercise; see, e.g.,
Schechter (2002).) We now define f (A) by

f ðAÞ ¼ 1

2�i

I
@!

f ðzÞðz� AÞ�1 dz ½26�

where the line integrals are to be taken in the
proper directions. It is easily checked that f (A) 2
B(X) and is independent of the choice of the set !.
By [23], this definition agrees with the one given
above for the case when � contains a disk of radius
greater than r�(A). Note that if � is not connected,
f (z) need not be the same function on different
components of �.

Now suppose f (z) does not vanish on �(A). Then
we can choose ! so that f (z) does not vanish on �!
(this is also an exercise). Thus, g(z) = 1=f (z) is
analytic on an open set containing �! so that g(A) is
defined. Since f (z)g(z) = 1, one would expect that
f (A)g(A) = g(A)f (A) = I, in which case, it would
follow that f (A)�1 exists and is equal to g(A). This
follows from

Lemma 2 If f (z) and g(z) are analytic in an open
set � containing �(A) and

hðzÞ ¼ f ðzÞgðzÞ

then h(A) = f (A)g(A).

Therefore, it follows that we have

Theorem 13 If A is in B(X) and f (z) is a function
analytic in an open set � containing �(A) such that
f (z) 6¼ 0 on �(A), then f (A)�1 exists and is given by

f ðAÞ�1 ¼ 1

2�i

I
@!

1

f ðzÞ ðz� AÞ�1 dz

where ! is any open set such that

(i) �(A) � !, �! � �,
(ii) @! consists of a finite number of simple closed

curves, and
(iii) f (z) 6¼ 0 on �!.

Now that we have defined f (A) for functions
analytic in a neighborhood of �(A), we can show
that the spectral mapping theorem holds for such
functions as well (see Theorem 8). We have

Theorem 14 If f (z) is analytic in a neighborhood
of �(A), then

�ð f ðAÞÞ ¼ f ð�ðAÞÞ ½27�

that is, � 2 �(f (A)) if and only if �= f (�) for some
� 2 �(A).

Complexification

What we have just done is valid for complex Banach
spaces. Suppose, however, we are dealing with a real
Banach space. What can be said then?
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Let X be a real Banach space. Consider the set Z
of all ordered pairs hx, yi of elements of X. We set

hx1; y1i þ hx2; y2i ¼ hx1 þ x2; y1 þ y2i
ð�þ i	Þhx; yi ¼ hð�x� 	yÞ; ð	xþ �yÞi
�; 	 2 R

With these definitions, one checks easily that Z is a
complex vector space. The set of elements of Z of
the form hx, 0i can be identified with X. We would
like to introduce a norm on Z that would make Z
into a Banach space and satisfy

khx; 0ik ¼ kxk; x 2 X

An obvious suggestion is

ðkxk2 þ kyk2Þ1=2

However, it is soon discovered that this is not a norm
on Z (why?). We have to be more careful. One that
works is given by

khx; yik ¼ max
�2þ	2¼1

ðk�x� 	yk2 þ k	xþ �yk2Þ1=2

With this norm, Z becomes a complex Banach space
having the desired properties.

Now let A be an operator in B(X). We define an
operator Â in B(Z) by

Âhx; yi ¼ hAx;Ayi

Then

kÂhx; yik
¼ max

�2þ	2¼1
ðk�Ax� 	Ayk2 þ k	Axþ �Ayk2Þ1=2

¼ max
�2þ	2¼1

ðkAð�x� 	yÞk2 þ kAð	xþ �yÞk2Þ1=2

� kAk � khx; yik

Thus,

kÂk � kAk

But,

kÂk 	 sup
x 6¼0

khAx; 0ik
khx; 0ik ¼ kAk

Hence,

kÂk ¼ kAk

If � is real, then

ðÂ� �Þhx; yi ¼ hðA� �Þx; ðA� �Þyi

This shows that � 2 �(Â) if and only if � 2 �(A).
Similarly, if p(t) is a polynomial with real coeffi-
cients, then

pðÂÞhx; yi ¼ hpðAÞx; pðAÞyi

showing that p(Â) has an inverse in B(Z) if and only
if p(A) has an inverse in B(X). Hence, we have

Theorem 15 Equation [16] has a unique solution
for each y in X if and only if p(�) 6¼ 0 for all
� 2 �(Â).

In the example given earlier, the operator Â
has eigenvalues i and �i. Hence, �1 is in the
spectrum of Â2 and also in that of A2. Thus, the
equation

ðA2 þ 1Þx ¼ y

cannot be solved uniquely for all y.

Compact Operators

Let X, Y be normed vector spaces. A linear operator
K from X to Y is called compact (or completely
continuous) if D(K) = X and for every sequence
{xn} � X such that kxnk � C, the sequence {Kxn} has
a subsequence which converges in Y. The set of all
compact operators from X to Y is denoted by
K(X, Y).

A compact operator is bounded. Otherwise, there
would be a sequence {xn} such that kxnk � C, while
kKxnk ! 1. Then {Kxn} could not have a conver-
gent subsequence. The sum of two compact opera-
tors is compact, and the same is true of the product
of a scalar and a compact operator. Hence, K(X, Y)
is a subspace of B(X, Y).

If A 2 B(X, Y) and K 2 K(Y, Z), then KA 2 K
(X, Z). Similarly, if L 2 K(X, Y) and B 2 B(Y, Z),
then BL 2 K(X, Z).

Suppose K 2 B(X, Y), and there is a sequence {Fn}
of compact operators such that

kK� Fnk�! 0 as n�!1 ½28�

We claim that if Y is a Banach space, then K is
compact.

Theorem 16 Let X be a normed vector space and
Y a Banach space. If L is in B(X, Y) and there is a
sequence {Kn} � K(X, Y) such that

kL� Knk�! 0 as n�! 0

then L is in K(X, Y).

Theorem 17 Let X be a Banach space and let K be
an operator in K(X). Set A = I � K. Then, R(A) is
closed in X and dim N(A) = dim N(A0) is finite.
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In particular, either R(A) = X and N(A) = {0}, or
R(A) 6¼ X and N(A) 6¼ {0}.

The last statement of Theorem 17 is known as the

‘‘Fredholm alternative.’’
Let X, Y be Banach spaces. An operator A 2

B(X, Y) is said to be a Fredholm operator from X to
Y if

1. �(A) = dim N(A) is finite,
2. R(A) is closed in Y, and
3. 	(A) = dim N(A0) is finite.

The set of Fredholm operators from X to Y is
denoted by �(X, Y). If X = Y and K 2 K(X), then,
clearly, I � K is a Fredholm operator. The index of a
Fredholm operator is defined as

iðAÞ ¼ �ðAÞ � 	ðAÞ ½29�

For K 2 K(X), we have shown that i(I � K) = 0
(Theorem 17).

Theorem 18 Let X, Y be normed vector spaces,
and assume that K is in K(X, Y). Then K0 is in
K(Y 0, X0).

Let X be a Banach space, and suppose K 2 K(X).
If � is a nonzero scalar, then

�I � K ¼ �ðI � ��1KÞ 2 �ðXÞ ½30�

For an arbitrary operator A 2 B(X), the set of all
scalars � for which �I � A 2 �(X) is called the �-set
of A and is denoted by �A. Thus, [30] gives

Theorem 19 If X is a Banach space and K is in
K(X), then �K contains all scalars � 6¼ 0.

Theorem 20 Under the hypothesis of Theorem 19,
�(K� �) = 0 except for, at most, a denumerable set
S of values of �. The set S depends on K and has 0 as
its only possible limit point. Moreover, if � 6¼ 0 and
� 62 S, then �(K� �) = 0, R(K� �) = X and K� �
has an inverse in B(X).

Unbounded Operators

In many applications, one runs into unbounded
operators instead of bounded ones. This is particu-
larly true in the case of differential equations. For
instance, consider the operator d/dt on C[0, 1] with
domain consisting of continuously differentiable
functions. It is clearly unbounded. In fact, the
sequence xn(t) = tn satisfies kxnk= 1, kdxn=dtk=
n!1 as n!1. It would, therefore, be useful if
some of the results that we have stated for bounded
operators would also hold for unbounded ones. We
shall see that, indeed, many of them do. Unless

otherwise specified, X, Y, Z, and W will denote
Banach spaces in this article.

Let X, Y be normed vector spaces, and let A be
a linear operator from X to Y. We now officially
lift our restriction that D(A) = X. However, if
A 2 B(X, Y), it is still to be assumed that D(A) = X.

The operator A is called closed if whenever {xn} �
D(A) is a sequence satisfying

xn�! x in X; Axn�! y in Y ½31�

then x 2 D(A) and Ax = y. Clearly, all operators in
B(X, Y) are closed.

To define A0 for an unbounded operator, we
follow the definition for bounded operators, and
exercise a bit of care. We want

A0y0ðxÞ ¼ y0ðAxÞ; x 2 DðAÞ ½32�

Thus, we say that y0 2 D(A0) if there is an x0 2 X0

such that

x0ðxÞ ¼ y0ðAxÞ; x 2 DðAÞ ½33�

Then we define A0y0 to be x0. In order that this
definition make sense, we need x0 to be unique, that
is, that x0(x) = 0 for all x 2 D(A) should imply that
x0= 0. This is true if and only if D(A) is dense in X.
To summarize, we can define A0 for any linear
operator from X to Y provided D(A) is dense in X.
We take D(A0) to be the set of those y0 2 Y 0 for
which there is an x0 2 X0 satisfying [33]. This x0 is
unique, and we set A0y0= x0. Note that if

jy0ðAxÞj � Ckxk; x 2 DðAÞ

then a simple application of the Hahn–Banach
theorem (see e.g., Schechter (2002) or the appendix)
shows that y0 2 D(A0).

We define unbounded Fredholm operators in the
following way: let X, Y be Banach spaces. Then the
set �(X, Y) of Fredholm operators from X to Y
consists of linear operators from X to Y such that

1. D(A) is dense in X,
2. A is closed,
3. �(A) = dim N(A) <1,
4. R(A) is closed in Y, and
5. 	(A) = dim N(A0) <1.

The Essential Spectrum

Let A be a linear operator on a normed vector space
X. We say that � 2 �(A) if R(A� �) is dense in X
and there is a T 2 B(X) such that

TðA� �Þ ¼ I on DðAÞ
ðA� �ÞT ¼ I on RðA� �Þ

½34�
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Otherwise, � 2 �(A). As before, �(A) and �(A) are
called the resolvent set and spectrum of A, respec-
tively. To show the relationship of this definition to
the one given before, we note the following.

Lemma 3 If X is a Banach space and A is closed,
then � 2 �(A) if and only if

�ðA� �Þ ¼ 0; RðA� �Þ ¼ X ½35�

Throughout the remainder of this section, we shall
assume that X is a Banach space, and that A is a
densely defined, closed linear operator on X. We ask
the following question: what points of �(A) can be
removed from the spectrum by the addition of a
compact operator to A? The answer to this question is
closely related to the set �A. We define this to be the
set of all scalars � such that A� � 2 �(X). We have

Theorem 21 The set �A is open, and i(A� �) is
constant on each of its components.

We also have

Theorem 22 �AþK = �A for all K which are
A-compact, and i(Aþ K� �) = i(A� �) for all
� 2 �A.

Set

�eðAÞ ¼
\

K2KðXÞ
�ðAþ KÞ

We call �e(A) the essential spectrum of A (there are
other definitions). It consists of those points of �(A)
which cannot be removed from the spectrum by the
addition of a compact operator to A. We now
characterize �e(A).

Theorem 23 � =2 �e(A) if and only if � 2 �A and
i(A� �) = 0.

Normal Operators

A sequence of elements {’n} in a Hilbert space is
called orthonormal if

ð’m; ’nÞ ¼
0; m 6¼ n

1; m ¼ n

(
½36�

(for definitions, see, e.g., Schechter (2002) or the
appendix at the end of this article).

Let {’n} be an orthonormal sequence (finite or
infinite) in a Hilbert space H. Let {�k} be a sequence
(of the same length) of scalars satisfying

j�kj � C

Then for each element f 2 H, the seriesX
�kðf ; ’kÞ’k

converges in H. Define the operator A on H by

Af ¼
X

�kðf ; ’kÞ’k ½37�

Clearly, A is a linear operator. It is also bounded,
since

kAfk2 ¼
X
j�kj2jðf ; ’kÞj2 � C2kfk2 ½38�

by Bessel’s inequalityX1
1

ðf ; ’kÞ2 � kfk2 ½39�

For convenience, let us assume that each �k 6¼ 0 (just
remove those ’k corresponding to the �k that vanish).
In this case, N(A) consists of precisely those f 2 H
which are orthogonal to all of the ’k. Clearly, such f
are in N(A). Conversely, if f 2 N(A), then

0 ¼ ðAf ; ’kÞ ¼ �kðf ; ’kÞ

Hence, (f ,’k) = 0 for each k. Moreover, each �k is
an eigenvalue of A with ’k the corresponding
eigenvector. This follows immediately from [37].
Since �(A) is closed, it also contains the limit points
of the �k.

Next, we shall see that if � 6¼ 0 is not a limit point
of the �k, then � 2 �(A). To show this, we solve

ð�� AÞu ¼ f ½40�

for any f 2 H. Any solution of [40] satisfies

�u ¼ f þ Au ¼ f þ
X

�kðu; ’kÞ’k ½41�

Hence,

�ðu; ’kÞ ¼ ðf ; ’kÞ þ �kðu; ’kÞ

or

ðu; ’kÞ ¼
ðf ; ’kÞ
�� �k

½42�

Substituting back in [41], we obtain

�u ¼ f þ
X�kðf ; ’kÞ’k

�� �k
½43�

Since � is not a limit point of the �k, there is a 
 > 0
such that

j�� �kj 	 
; k ¼ 1; 2; . . .

Hence, the series in [43] converges for each f 2 H. It
is an easy exercise to verify that [43] is indeed a
solution of [40]. To see that (�� A)�1 is bounded,
note that

j�j � kuk � kfk þ Ckfk=
 ½44�

(cf. [38]). Thus, we have proved
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Lemma 4 If the operator A is given by [37], then
�(A) consists of the points �k, their limit points and
possibly 0. N(A) consists of those u which are
orthogonal to all of the ’k. For � 2 �(A), the
solution of [40] is given by [43].

We see from all this that the operator [37] has
many useful properties. Therefore, it would be
desirable to determine conditions under which
operators are guaranteed to be of that form. For
this purpose, we note another property of A. It is
expressed in terms of the Hilbert space adjoint of A.

Let H1 and H2 be Hilbert spaces, and let A be an
operator in B(H1, H2). For fixed y 2 H2, the expres-
sion Fx = (Ax, y) is a bounded linear functional on
H1. By the Riesz representation theorem (see, e.g.,
Schechter (2002) or the appendix at the end of this
article), there is a z 2 H1 such that Fx = (x, z) for all
x 2 H1. Set z = A�y. Then A� is a linear operator
from H2 to H1 satisfying

ðAx; yÞ ¼ ðx;A�yÞ ½45�

A� is called the Hilbert space adjoint of A. Note the
difference between A� and the operator A0 defined
for a Banach space. As in the case of the operator A0,
we note that A� is bounded and

kA�k ¼ kAk ½46�

Returning to the operator A, we remove the
assumption that each �k 6¼ 0 and note that

ðAu; vÞ ¼
X

�kðu; ’kÞð’k; vÞ

¼ u;
X

��kðv; ’kÞ’k

� �
showing that

A�v ¼
X

��kðv; ’kÞ’k ½47�

(If H is a complex Hilbert space, then the complex
conjugates ��k of the �k are required. If H is a real
Hilbert space, then the �k are real, and it does not
matter.) Now, by Lemma 4, we see that each ��k

is an eigenvalue of A� with ’k a corresponding
eigenvector. Note also that

kA�fk2 ¼
X
j�kj2jðf ; ’kÞj2 ½48�

showing that

kA�fk ¼ kAfk; f 2 H ½49�

An operator satisfying [49] is called normal. An
important characterization is given by

Theorem 24 An operator is normal and compact
if and only if it is of the form [37] with {’k} an
orthonormal set and �k ! 0 as k!1.

We also have

Lemma 5 If A is normal, then

kðA� � ��Þuk ¼ kðA� �Þuk; u 2 H ½50�

Corollary 2 If A is normal and A’=�’, then
A�’= ��’.

Lemma 6 If A is normal and compact, then it has
an eigenvalue � such that j�j= kAk.

We also have

Corollary 3 If A is a normal compact operator,
then there is an orthonormal sequence {’k} of
eigenvectors of A such that every element u in H
can be written in the form

u ¼ hþ
X
ðu; ’kÞ’k ½51�

where h 2 N(A).

Hyponormal Operators

An operator A in B(H) is called hyponormal if

kA�uk � kAuk; u 2 H ½52�

or, equivalently, if

ð½AA� � A�A�u; uÞ � 0; u 2 H ½53�

Of course, a normal operator is hyponormal. An
operator A 2 B(H) is called seminormal if either A
or A� is hyponormal. We have

Theorem 25 If A is seminormal, then

r�ðAÞ ¼ kAk ½54�

We have earlier defined the essential spectrum of
an operator A to be

�eðAÞ ¼
\

K2KðHÞ
�ðAþ KÞ ½55�

It was shown that � 62 �e(A) if and only if � 2 �A

and i(A� �) = 0 (Theorem 23). Let us show that we
can be more specific in the case of seminormal
operators.

Theorem 26 If A is a seminormal operator, then
� 2 �(A)n�e(A) if and only if � is an isolated
eigenvalue with r(A� �) = limn!1 �[(A� �)n] <1.

Lemma 7 If A is hyponormal, then so is B = A� �
for any complex �.

Lemma 8 If B is hyponormal with 0 an isolated
point of �(B) and either �(B) or 	(B) is finite, then
B 2 �(H) and i(B) = 0.
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There is a simple consequence of Lemma 8.

Corollary 4 If A is seminormal and � is an isolated
point of �(A), then � is an eigenvalue of A.

We also have the following:

Theorem 27 Let A be a seminormal operator such
that �(A) has no nonzero limit points. Then A is
compact and normal. Thus, it is of the form [37]
with the {’k} orthonormal and �k ! 0.

Corollary 5 If A is seminormal and compact, then
it is normal.

Spectral Resolution

We saw in the sect ion ‘‘Operat ional calculus ’’ that,
in a Banach space X, we can define f (A) for any
A 2 B(X) provided f (z) is a function analytic in a
neighborhood of �(A). In this section, we shall show
that we can do better in the case of self-adjoint
operators.

A linear operator A on a Hilbert space X is called
self-adjoint if it has the property that x 2 D(A) and
Ax = f if and only if

ðx;AyÞ ¼ ðf ; yÞ; y 2 DðAÞ

In particular, it satisfies

ðAx; yÞ ¼ ðx;AyÞ; x; y 2 DðAÞ

A bounded self-adjoint operator is normal.
To get an idea, let A be a compact, self-adjoint

operator on H. Then by Theorem 24,

Au ¼
X

�kðu; ’kÞ’k ½56�

where {’k} is an orthonormal sequence of eigenvec-
tors and the �k are the corresponding eigenvalues of
A. Now let p(t) be a polynomial with real
coefficients having no constant term

pðtÞ ¼
Xm

1

aktk ½57�

Then p(A) is compact and self-adjoint. Let � 6¼ 0 be
a point in �(p(A)). Then �= p(�) for some � 2 �(A)
(Theorem 8). Now � 6¼ 0 (otherwise we would have
�= p(0) = 0). Hence, it is an eigenvalue of A (see the
section ‘‘Th e spect rum and resolven t sets ’’). If ’ is a
corresponding eigenvector, then

½pðAÞ � ��’ ¼
X

akAk’� �’
¼
X

ak�
k’� �’

¼ ½pð�Þ � ��’ ¼ 0

Thus � is an eigenvalue of p(A) and ’ is a
corresponding eigenvector. This shows that

pðAÞu ¼
X

pð�kÞðu; ’kÞ’k ½58�

Now, the right-hand side of [58] makes sense if p(t)
is any function bounded on �(A) (see the section
‘‘No rmal operat ors’’). Therefo re it seems plausib le
to define p(A) by means of [58]. Of course, for such
a definition to be useful, one would need certain
relationships to hold. In particular, one would want
f (t)g(t) = h(t) to imply f (A)g(A) = h(A). We shall
discuss this a bit later.

If A is not compact, we cannot, in general, obtain
an expansion in the form [56]. However, we can
obtain something similar. In fact, we have

Theorem 28 Let A be a self-adjoint operator in
B(H). Set

m ¼ inf
kuk¼1

ðAu; uÞ; M ¼ sup
kuk¼1

ðAu; uÞ

Then there is a family {E(�)} of orthogonal projection
operators on H depending on a real parameter � and
such that:

(i) E(�1) � E(�2) for �1 � �2;
(ii) E(�)u!E(�0)u as �0 < �! �0, u 2 H;

(iii) E(�) = 0 for � < m, E(�) = I for � 	M;
(iv) AE(�) = E(�)A; and
(v) if a < m, b 	M and p(t) is any polynomial,

then

pðAÞ ¼
Z b

a

pð�Þ dEð�Þ ½59�

This means the following. Let a =�0 < �1 < � � � <
�n = b be any partition of [a, b], and let �0k be any
number satisfying �k�1 � �0k � �k. ThenXn

1

p �0k
� �
½Eð�kÞ � Eð�k�1Þ� ! pðAÞ ½60�

in B(H) as �= max (�k � �k�1)! 0.

Theorem 29 Let A be a self-adjoint operator on H.
Then there is a family {E(�)} of orthogonal projec-
tion operators on H satisfying (i) and (ii) of
Theorem 28 and

(i) Eð�Þ ! 0 as �! �1
I as �! þ1

�
(ii) Eð�ÞA � AEð�Þ

(iii) pðAÞ=
Z 1
�1

pð�Þ dEð�Þ

for any polynomial p(t).
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These theorems are known as the spectral
theorems for self-adjoint operators.

Appendix

Here we include some background material related
to the text.

Consider a collection C of elements or ‘‘vectors’’
with the following properties:

1. They can be added. If f and g are in C, so is f þ g.
2. f þ (gþ h) = (f þ g)þ h, f , g, h 2 C.
3. There is an element 0 2 C such that hþ 0 = h

for all h 2 C.
4. For each h 2 C there is an element �h 2 C such

that hþ (�h) = 0.
5. gþ h = hþ g, g, h 2 C.
6. For each real number �,�h 2 C.
7. �(gþ h) =�gþ �h.
8. (�þ 	)h =�hþ 	h.
9. �(	h) = (�	)h.

10. To each h 2 C there corresponds a real number
khk with the following properties:

11. k�hk= j�jkhk.
12. khk= 0 if, and only if, h = 0.
13. kgþ hk � kgk þ khk.
14. If {hn} is a sequence of elements of C such

that khn � hmk ! 0 as m, n!1, then there is
an element h 2 C such that khn � hk ! 0 as
n!1.

A collection of objects which satisfies statements
(1)–(9) and the additional statement
15. 1h = h

is called a vector space or linear space.
A set of objects satisfying statements (1)–(13) is

called a normed vector space, and the number khk
is called the norm of h. Although statement (15) is
not implied by statements (1)–(9), it is implied by
statements (1)–(13). A sequence satisfying

khn � hmk ! 0 as m; n!1

is called a Cauchy sequence. Property (14) states
that every Cauchy sequence converges in norm to
a limit (i.e., satisfies khn � hk ! 0 as n!1).
Property (14) is called completeness, and a normed
vector space satisfying it is called a complete normed
vector space or a Banach space.

We shall write

hn ! h as n!1

when we mean

khn � hk ! 0 as n!1

A subset U of a vector space V is called a subspace
of V if �1x1 þ �2x2 is in U whenever x1, x2 are in U
and �1,�2 are scalars.

A subset U of a normed vector space X is called
closed if for every sequence {xn} of elements in U
having a limit in X, the limit is actually in U.

Consider a vector space X having a mapping (f , g)
from pairs of its elements to the reals such that

1. (�f , g) =�(f , g)
2. (f þ g, h) = (f , h)þ (g, h)
3. (f , g) = (g, f )
4. (f , f ) > 0 unless f = 0.

Then

ðf ; gÞ2 � ðf ; f Þðg; gÞ; f ; g 2 X ½61�

An expression (f , g) that assigns a real number to
each pair of elements of a vector space and satisfies
the aforementioned properties is called a scalar
(or inner) product.

If a vector space X has a scalar product (f , g), then
it is a normed vector space with norm kfk= (f , f )1=2.
A vector space which has a scalar product and is
complete with respect to the induced norm is called
a Hilbert space. Every Hilbert space is a Banach
space, but the converse is not true. Inequality [61] is
known as the Cauchy–Schwarz inequality. Rn is a
Hilbert space.

Let H be a Hilbert space and let (x, y) denote its
scalar product. If we fix y, then the expression
(x, y) assigns to each x 2 H a number. An assign-
ment F of a number to each element x of a vector
space is called a functional and denoted by F(x).
The scalar product is not the first functional we
have encountered. In any normed vector space, the
norm is also a functional. The functional
F(x) = (x, y) satisfies

Fð�1x1 þ �2x2Þ ¼ �1Fðx1Þ þ �2Fðx2Þ ½62�

for �1,�2 scalars. A functional satisfying [62] is
called linear. Another property is

jFðxÞj �Mkxk; x 2 H ½63�

which follows immediately from Schwarz’s inequal-
ity (cf. [61]). A functional satisfying [63] is called
bounded. The norm of such a functional is defined
to be

kFk ¼ sup
x2H;x 6¼0

jFðxÞj
kxk

Thus for y fixed, F(x) = (x, y) is a bounded linear
functional in the Hilbert space H. We have
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Theorem 30 For every bounded linear functional F
on a Hilbert space H there is a unique element
y 2 H such that

FðxÞ ¼ ðx; yÞ for all x 2 H ½64�

Moreover,

kyk ¼ sup
x2H; x 6¼0

jFðxÞj
kxk ¼ kFk ½65�

Theorem 30 is known as the ‘‘Riesz representation
theorem.’’

For any normed vector space X, let X0 denote the
set of bounded linear functionals on X. If f , g 2 X0,
we say that f = g if

f ðxÞ ¼ gðxÞ for all x 2 X

The ‘‘zero’’ functional is the one assigning zero to all
x 2 X. We define h = f þ g by

hðxÞ ¼ f ðxÞ þ gðxÞ; x 2 X

and g =�f by

gðxÞ ¼ �f ðxÞ; x 2 X

Under these definitions, X0 becomes a vector space.
We have been employing the expression

kfk ¼ sup
x 6¼0

jf ðxÞj
kxk ; f 2 X0 ½66�

This is easily seen to be a norm. Thus X0 is a normed
vector space.

We also have

Theorem 31 Let M be a subspace of a normed vector
space X, and suppose that f (x) is a bounded linear
functional on M. Set

kfk ¼ sup
x2M;x 6¼0

jf ðxÞj
kxk

Then there is a bounded linear functional F(x) on
the whole of X such that

FðxÞ ¼ f ðxÞ; x 2M ½67�

and

kFk ¼ sup
x2X;x 6¼0

jFðxÞj
kxk ¼ kfk ¼ sup

x2M;x 6¼0

jf ðxÞj
kxk ½68�

Theorem 31 is known as the ‘‘Hahn–Banach theorem.’’
If A is a linear operator from X to Y, with

R(A) = Y and N(A) = {0} (i.e., consists only of the

vector 0), we can assign to each y 2 Y the unique
solution of

Ax ¼ y

This assignment is an operator from Y to X and is
usually denoted by A�1 and called the inverse
operator of A. It is linear because of the linearity
of A. One can ask: ‘‘when is A�1 continuous?’’ or,
equivalent by, ‘‘when is it bounded?’’ A very
important answer to this question is given by

Theorem 32 If X, Y are Banach spaces and A is a
closed linear operator from X to Y with
R(A) = Y, N(A) = {0}, then A�1 2 B(Y, X).

This theorem is sometimes referred to as the
‘‘bounded inverse theorem.’’

If A is self-adjoint and

ðA� �Þx ¼ 0; ðA� �Þy ¼ 0

with � 6¼ �, then

ðx; yÞ ¼ 0

If A has a compact inverse, its eigenvalues cannot
have limit points. If A�1 is compact, then the
eigenelements corresponding to the same eigenvalue
form a finite-dimensional subspace.

See also: Ljusternik–Schnirelman Theory; Quantum
Mechanical Scattering Theory; Regularization for
Dynamical Zeta Functions; Spectral Sequences;
Stochastic Resonance.
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Introduction

In loop quantum gravity (LQG) (see Loop Quantum
Gravity) – a background independent formulation of
quantum gravity – the full quantum dynamics is
governed by the following (constraint) operator
equations or quantum Einstein equations:

Gauss LawbGiðA;EÞj� >:¼ dDaEa
i j� >¼ 0

Vector constraint

bVaðA;EÞj� >:¼ dEa
i F

i
abðAÞj� >¼ 0

Scalar constraint

bSðA;EÞ � >:¼
dffiffiffiffiffiffiffiffiffiffi

detE
p �1

Ea
i E

b
j Fij

abðAÞ þ � � �
� 	



 





� >¼ 0

½1�

where Ai
a is an SU(2) connection (i = 1, 2, 3,

a = 1, 2, 3), Ea
i is its conjugate momentum (the triad

field), F ij
ab(A) is the curvature of Ai

a, and Da is the
covariant derivative (see Canonical General Relativ-
ity). The hat means that the classical phase-space
functions are promoted to operators in a kinematical
Hilbert space Hkin; the solutions are in the so-called
physical Hilbert spaceHphys. The goal of the spin foam
approach is to construct a mathematically well-defined
notion of path integral for LQG as a device for
computing the solutions of the previous equations.

The space of solution of the Gauss and vector
constraints [1] is well understood in LQG (see Loop
Quantum Gravity), and often also called kinematical
Hilbert space Hkin. The solutions of the scalar
constraint can be characterized by the definition of
the generalized projection operator P from the
kinematical Hilbert space Hkin into the kernel of

the scalar constraint Hphys. Formally, one can write
P as

P¼ “
Y
x2

ðbSðxÞÞ”

¼
Z

D½N� exp i

Z
�

NðxÞ dSðxÞ� 	
½2�

A formal argument shows that P can also be defined
in a manifestly covariant manner as a regularization
of the formal path integral of general relativity. In
first-order variables, it becomes

P ¼
Z

D½e� D½A� �½A; e� exp iSGRðe;AÞ½ � ½3�

where e is the tetrad field, A is the spacetime connection,
and �[A, e] denotes the appropriate measure.

In both cases, P characterizes the space of
solutions of quantum Einstein equations as for
any arbitrary state j�>2 Hkin then Pj�> is a
(formal) solution of [1]. Moreover, the matrix
elements of P define the physical inner product
(< ,>p ) providing the vector space of solutions of
[1] with the Hilbert space structure that defines
Hphys. Explicitly,

<s; s0>p :¼ <Ps; s0>

for s, s0 2 Hkin.
When these matrix elements are computed in

the spin network basis (see Figure 1) (see Loop
Quantum Gravity), they can be expressed as a
sum over amplitudes of ‘‘spin network histories’’:
spin foams (Figure 2). The latter are naturally
given by foam-like combinatorial structures
whose basic elements carry quantum numbers of
geometry (see Loop Quantum Gravity). A spin
foam history, from the state js> to the state js0> ,
is denoted by a pair (Fs! s0 , {j}), where Fs! s0 is the
2-complex with boundary given by the graphs of
the spin network states js0> and js>, respectively,
and {j} is the set of spin quantum numbers
labeling its edges (denoted e 2 Fs! s0) and faces
(denoted f 2 Fs! s0 ). Vertices are denoted
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Figure 1 A spin network state is given by a graph embedded

in space whose links and nodes are labeled by unitary

irreducible representations of SU(2). These states form a

complete basis of the kinematical Hilbert space of LQG where

the operator equations [1] are defined.
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Figure 2 A spin foam as the ‘‘colored’’ 2-complex representing

the transition between three different spin network states. A

transition vertex is magnified on the right.
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v 2 Fs! s0 . The physical inner product can be
expressed as a sum over spin foam amplitudes

<s0; s>p¼<Ps0; s>

¼
X
Fs!s0

NðFs!s0 Þ
X
fjg

Y
f2Fs!s0

Af ðjf Þ

�
Y

e2Fs!s0

AeðjeÞ
Y

v2Fs!s0

AvðjvÞ ½4�

where N(Fs! s0 ) is a (possible) normalization
factor, and Af (jf ), Ae(je), and Av(jv) are the 2-cell
or face amplitude, the edge or 1-cell amplitude,
and the 0-cell or vertex amplitude, respectively.
These local amplitudes depend on the spin quan-
tum numbers labeling neighboring cells in Fs! s0

(e.g., the vertex amplitude of the vertex magnified
in Figure 2 is Av(j, k, l, m, n, s)).

The underlying discreteness discovered in LQG
is crucial: in the spin foam representation, the
functional integral for gravity is replaced by a sum
over amplitudes of combinatorial objects given by
foam-like configurations (spin foams) as in [4]. A
spin foam represents a possible history of the
gravitational field and can be interpreted as a set
of transitions through different quantum states of
space. Boundary data in the path integral are given
by the polymer-like excitations (spin network
states, Figure 1) representing 3-geometry states in
LQG.
Spin Foams in 3D Quantum Gravity

Now we introduce the concept of spin foams in a
more explicit way in the context of the quantization
of three-dimensional (3D) Riemannian gravity. Later
in this section we will present the definition of P
from the canonical and covariant viewpoint for-
mally stated in the introduction by eqns [2] and [3],
respectively.
The Classical Theory

Riemannian gravity in 3D is a theory with no local
degrees of freedom, that is, a topological theory (see
Topological Quantum Field Theory: Overview). Its
action (in the first-order formalism) is given by

Sðe; !Þ ¼
Z

M

trðe ^ Fð!ÞÞ ½5�

where M = �� R (for � an arbitrary Riemann
surface), ! is an SU(2) connection, and the triad e
is an su(2)-valued 1-form. The gauge symmetries of
the action are the local SU(2) gauge transformations

�e ¼ ½e; ��; �! ¼ d!� ½6�

where � is an su(2)-valued 0-form, and the
‘‘topological’’ gauge transformation

�e ¼ d!�; �! ¼ 0 ½7�

where d! denotes the covariant exterior derivative
and � is an su(2)-valued 0-form. The first invariance
is manifest from the form of the action, while the
second is a consequence of the Bianchi identity,
d!F(!) = 0. The gauge symmetries are so large that
all the solutions to the equations of motion are
locally pure gauge. The theory has only global or
topological degrees of freedom.

Upon the standard 2þ 1 decomposition (see Cano-
nical General Relativity), the phase space in these
variables is parametrized by the pullback to � of ! and
e. In local coordinates, one can express them in terms of
the two 2D connection Ai

a and the triad field
Eb

j = �bcek
c�jk, where a = 1, 2 are space coordinate

indices and i, j = 1, 2, 3 are su(2) indices. The symplec-
tic structure is defined by

fAi
aðxÞ;E b

j ðyÞg ¼ � b
a�

i
j�
ð2Þðx; yÞ ½8�
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Local symmetries of the theory are generated by the
first-class constraints

DbE b
j ¼ 0; F i

abðAÞ ¼ 0 ½9�

which are referred to as the Gauss law and the
curvature constraint, respectively – the quantization
of these is the analog of [1] in 4D. This simple
theory has been quantized in various ways in the
literature; here we will use it to introduce the spin
foam quantization.
Kinematical Hilbert Space

In analogy with the 4D case, one follows Dirac’s
procedure finding first a representation of the basic
variables in an auxiliary or kinematical Hilbert
space Hkin. The basic states are functionals of the
connection depending on the parallel transport
along paths � � �: the so-called holonomy. Given
a connection Ai

a(x) and a path �, one defines the
holonomy h�[A] as the path-ordered exponential

h� ½A� ¼ P exp

Z
�

A ½10�

The kinematical Hilbert space, Hkin, corresponds
to the Ashtekar–Lewandowski (AL) representation
of the algebra of functions of holonomies or
generalized connections. This algebra is in fact a
C�-algebra and is denoted Cyl (see Loop Quantum
Gravity). Functionals of the connection act in the
AL representation simply by multiplication. For
example, the holonomy operator acts as follows:dh�½A��½A� ¼ h� ½A��½A� ½11�

As in 4D, an orthonormal basis of Hkin is defined
by the spin network states. Each spin network is
labeled by a graph � � �, a set of spins {j‘} labeling
links ‘ 2 �, and a set of intertwiners {	n} labeling
nodes n 2 � (Figure 3), namely:

s�;fj‘g;f	ng½A� ¼
O
n2�

	n
O
‘2�

Yj‘
ðh‘½A�Þ ½12�
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Figure 3 A spin network state in 2þ 1 LQG. The decomposi-

tion of a 4-valent node in terms of basic 3-valent intertwiners is

shown.
where �
j

is the unitary irreducible representation matrix
of spin j (for a precise definition, see Loop Quantum
Gravity). For simplicity, we will often denote spin
network states js > omitting the graph and spin labels.
Spin Foams from the Hamiltonian Formulation

The physical Hilbert space, Hphys, is defined by
those ‘‘states’’ that are annihilated by the con-
straints. By construction, spin-network states solve
the Gauss constraint – dDaEa

i js >= 0 – as they
are manifestly SU(2) gauge invariant (see Loop
Quantum Gravity). To complete the quantization,
one needs to characterize the space of solutions of
the quantum curvature constraints (bFi

ab), and to
provide it with the physical inner product. The
existence of Hphys is granted by the following:

Theorem 1 There exists a normalized positive
linear form P over Cyl, that is, P( � ) � 0 for  2
Cyl and P(1) = 1, yielding (through the GNS
construction (see Algebraic Approach to Quantum
Field Theory)) the physical Hilbert space Hphys and
the physical representation 
p of Cyl.

The state P contains a very large Gelfand ideal (set
of zero norm states) J := {� 2 Cyl s.t. P(���) = 0}. In
fact, the physical Hilbert space Hphys := Cyl=J corre-
sponds to the quantization of finitely many degrees of
freedom. This is expected in 3D gravity as the theory
does not have local excitations (no ‘‘gravitons’’) (see
Topological Quantum Field Theory: Overview). The
representation 
p of Cyl solves the curvature con-
straint in the sense that for any functional f�[A] 2 Cyl
defined on the subalgebra of functionals defined on
contractible graphs � 2 �, one has that


p½f� �� ¼ f� ½0�� ½13�

This equation expresses the fact that ‘‘bF = 0’’ in Hphys

(for flat connections, parallel transport is trivial
around a contractible region). For s, s0 2 Hkin, the
physical inner product is given by

<s; s0>p :¼ Pðs�sÞ ½14�

where the �-operation and the product are defined
in Cyl.

The previous equation admits a ‘‘sum over
histories’’ representation. We shall introduce the
concept of the spin foam representation as an
explicit construction of the positive linear form P
which, as in [2], is formally given by

P ¼
Z

D½N� exp i

Z
�

tr½NbFðAÞ�� �
¼
Y
x2�

�½ dFðAÞ� ½15�
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εΣ

Figure 4 Cellular decomposition of the space manifold

� (a square lattice in this example), and the infinitesimal

plaquette holonomy Wp [A].
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where N(x) 2 su(2). One can make the previous
formal expression a rigorous definition if one intro-
duces a regularization. Given a partition of � in terms
of 2D plaquettes of coordinate area �2, one has thatZ

�

tr½NFðAÞ� ¼ lim
�!0

X
pi

�2tr½NpiFpi � ½16�

where Npi and Fpi are values of Ni and �abFi
ab[A]

at some interior point of the plaquette pi and �ab is
the Levi-Civita tensor. Similarly, the holonomy
Wpi[A] around the boundary of the plaquette pi

(see Figure 4) is given by

Wpi ½A� ¼ 1þ �2FpiðAÞ þ Oð�2Þ ½17�

where Fpi = �j�
abFj

ab(xpi) (�j are the generators of
su(2) in the fundamental representation). The pre-
vious two equations lead to the following definition:
given s 2 Cyl (think of spin network state based on a
graph �), the linear form P(s) is defined as

PðsÞ :¼ lim
�!0

�
Y
pi

Z
dNpi expði tr½NpiWpi �Þ; s

* +
½18�

where < , > is the inner product in the AL
representation and j� > is the ‘‘vacuum’’ (1 2 Cyl)
in the AL representation. The partition is chosen so
that the links of the underlying graph � border the
plaquettes. One can easily perform the integration
jj
p

=tr[∏(Wp)] Δk

Figure 5 Graphical notation representing the action of one plaque

written in terms of the spin network basis. The amplitude Nj ,m,k can

j k

m

n

j k

m

p

tr[∏(Wp)] Δk =

Figure 6 Graphical notation representing the action of one plaquett

is a 6j-symbol and �j := 2j þ 1.
over the Npi using the identity (Peter–Weyl
theorem) Z

dN expði tr½NW�Þ

¼
X

j

ð2jþ 1Þtr
h
�
j
ðWÞ

i
½19�

Using the previous equation

PðsÞ :¼ lim
�!0

Y
pi

X
jðpiÞ
ð2jðpiÞ þ 1Þ

<� tr
h

�
jðpiÞ
ðWpiÞ

i
; s> ½20�

where j(pi) is the spin labeling element of the sum
[19] associated to the ith plaquette. Since the
tr[�j(W)] commute, the ordering of plaquette opera-
tors in the previous product does not matter. It can be
shown that the limit �! 0 exists and one can give a
closed expression of P(s).

Now in the AL representation (see eqn [11]), each
tr½�jðpiÞðWpiÞ� acts by creating a closed loop in the jpi

representation at the boundary of the corresponding
plaquette (Figures 5 and 6).

One can introduce a (nonphysical) time parameter
that works simply as a coordinate providing the means
of organizing the series of actions of plaquette loop
operators in [20]; that is, one assumes that each of the
loop actions occurs at different ‘‘times.’’ We have
introduced an auxiliary time slicing (arbitrary para-
metrization). If one inserts the AL partition of unity

1 ¼
X
�2�

X
fjg�

j�; fjg >< �; fjgj ½21�

where the sum is over the complete basis of spin
network states {j�, {j} > } – based on all graphs � 2 �
and with all possible spin labeling – between each time
k
j

k

m

  =   Nj,m,kΣ
m

tte holonomy on a spin network state. On the right is the result

be expressed in terms of Clebsch–Gordan coefficients.
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slice, one arrives at a sum over spin network histories
representation of P(s). More precisely, P(s) can be
expressed as a sum over amplitudes corresponding to a
series of transitions that can be viewed as the ‘‘time
evolution’’ between the ‘‘initial’’ spin network s and
the ‘‘final’’ ‘‘vacuum state’’ �. The physical inner
product between spin networks s and s0 is defined as
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Figure 8 A set of discrete transitions representing one of the contri

continuous spin foam representation when the regulator is removed.
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the right, the continuous spin foam representation in the limit � ! 0
<s; s0>p :¼ Pðs�s0Þ

and can be expressed as a sum over amplitudes
corresponding to transitions interpolating between
the ‘‘initial’’ spin network s0 and the ‘‘final’’ spin
network s (e.g., Figures 7 and 8).
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Figure 9 The cellular decomposition of M = �� I (� = T 2 in

this example). The illustration shows part of the induced graph

on the boundary and the detail of a tetrahedron in � and a face

f 2 �� in the bulk.
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Figure 10 A (2-cell) face f 2 �� in a cellular decomposition of

the spacetime manifold M and the corresponding dual 1-cell. The

connection field is discretized by the assignment of the parallel

transport group elements gi
e 2 SU(2) to edges e 2 ��

(i = 1, . . . , 5 in the face shown here).
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Spin network nodes evolve into edges while spin
network links evolve into 2D faces. Edges inherit the
intertwiners associated to the nodes and faces inherit
the spins associated to links. Therefore, the series of
transitions can be represented by a 2-complex whose
1-cells are labeled by intertwiners and whose 2-cells
are labeled by spins. The places where the action of
the plaquette loop operators create new links
(Figures 6 and 8) define 0-cells or vertices. These
foam-like structures are the so-called spin foams.
The spin foam amplitudes are purely combinatorial
and can be explicitly computed from the simple
action of the loop operator in the AL representation
(see Loop Quantum Gravity). A particularly simple
case arises when the spin network states s and s0

have only 3-valent nodes. Explicitly,

<s; s0>p :¼ Pðs�s0Þ

¼
X
fjg

Y
f2Fs!s0

ð2jf þ 1Þ
�f
2

Y
v2Fs!s0

j4

j3

j1 j2

j6

j5

½22�

where the notation is that of [4], and �f = 0 if
f \ s 6¼ 0 ^ f \ s0 6¼ 0, �f = 1 if f \ s 6¼ 0 _ f \ s0 6¼ 0,
and �f = 2 if f \ s = 0 ^ f \ s0= 0. The tetrahedral
diagram denotes a 6j-symbol: the amplitude obtained
by means of the natural contraction of the four
intertwiners corresponding to the 1-cells converging
at a vertex. More generally, for arbitrary spin
networks, the vertex amplitude corresponds to 3nj-
symbols, and <s, s0>p takes the general form [4].

Spin Foams from the Covariant Path Integral

In this section we re-derive the spin foam represen-
tation of the physical scalar product of 2þ 1
(Riemannian) quantum gravity directly as a regular-
ization of the covariant path integral. The formal
path integral for 3D gravity can be written as

P ¼
Z

D½e�D½A� exp i

Z
M

tr½e ^ FðAÞ�
� �

½23�

Assume M = �� I, where I � R is a closed (time)
interval (for simplicity, we ignore boundary
terms).

In order to give a meaning to the formal
expression above, one replaces the 3D manifold
(with boundary) M with an arbitrary cellular
decomposition �. One also needs the notion of the
associated dual 2-complex of � denoted by ��. The
dual 2-complex �� is a combinatorial object defined
by a set of vertices v 2 �� (dual to 3-cells in �),
edges e 2 �� (dual to 2-cells in �), and faces f 2 ��
(dual to 1-cells in �). The intersection of the dual
2-complex �� with the boundaries defines two
graphs �1, �2 2 � (see Figure 9). For simplicity, we
ignore the boundaries until the end of this section.
The fields e and A are discretized as follows. The
su(2)-valued 1-form field e is represented by the
assignment of ef 2 su(2) to each 1-cell in �. We
use the fact that faces in �� are in one-to-one
correspondence with 1-cells in � and label ef with a
face subindex (Figure 9). The connection field A is
represented by the assignment of group elements
ge 2 SU(2) to each edge in e 2 �� (see Figure 10).

With all this, [23] becomes the regularized version
P� defined as

P� ¼
Z Y

f2��
def

Y
e2��

dge exp i tr ef Wf

� 	� 	
½24�

where def is the regular Lebesgue measure on R3,
dge is the Haar measure on SU(2), and Wf denotes
the holonomy around (spacetime) faces, that is,
Wf = g1

e � � � gN
e for N being the number of edges

bounding the corresponding face (see Figure 10).
The discretization procedure is reminiscent of the
one used in standard lattice gauge theory (see Lattice
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Gauge Theory). The previous definition can be
motivated by an analysis equivalent to the one
presented in [16].

Integrating over ef , and using [19], one obtains

P� ¼
X
fjg

Z Y
e2��

dge

Y
f2��
ð2jf þ 1Þ

� tr �
jf

ðg1
e . . . gN

e Þ
" #

½25�

Now it remains to integrate over the lattice con-
nection {ge}. If an edge e 2 �� bounds n faces f 2 ��

there will be n traces of the form tr[�jf ( � � � ge � � � )] in
[25] containing ge in the argument. In order to
integrate over ge we can use the following identity:

In
inv :¼

Z
dg �

j1
ðgÞ 	 �

j2
ðgÞ 	 � � � 	 �

jn
ðgÞ

¼
X
	

C	
j1j2���jn C�	j1j2���jn ½26�

where In
inv is the projector from the tensor product of

irreducible representations Hj1���jn = j1 	 j2 	 � � � 	 jn
onto the invariant component H0

j1���jn = Inv[j1 	 j2 	
� � � 	 jn]. On the right-hand side, we have chosen an
orthonormal basis of invariant vectors (intertwiners)
in Hj1���jn to express the projector. Notice that the
assignment of intertwiners to edges is a consequence
of the integration over the connection. Using [26]
one can write P� in the general spin foam
representation form [4]

P� ¼
X
ffg

Y
f2��
ð2jf þ 1Þ

Y
v2��

AvðjvÞ ½27�

where Av(	v, jv) is given by the appropriate trace of
the intertwiners corresponding to the edges bounded
by the vertex. As in the previous section, this
amplitude is given in general by an SU(2) 3Nj-
symbol. When � is a simplicial complex, all the
edges in �� are 3-valent and vertices are 4-valent.
Consequently, the vertex amplitude is given by the
contraction of the corresponding four 3-valent
intertwiners, that is, a 6j symbol. In that case, the
path integral takes the (Ponzano–Regge) form

P� ¼
X
fjg

Y
f2��
ð2jf þ 1Þ

Y
v2��

j4

j3

j1 j2

j6

j5

½28�

The labeling of faces that intersect the boundary
naturally induces a labeling of the edges of the
graphs �1 and �2 induced by the discretization.
Thus, the boundary states are given by spin network
states on �1 and �2, respectively. A careful analysis
of the boundary contribution shows that only the
face amplitude is modified to (�j‘ )

�f =2, and that the
spin foam amplitudes are as in eqn [22].

A crucial property of the path integral in 3D
gravity (and of the transition amplitudes in general)
is that it does not depend on the discretization � –
this is due to the absence of local degrees of freedom
in 3D gravity and not expected to hold in 4D. Given
two different cellular decompositions � and �0,
one has

��n0P� ¼ ��n0
0P�0 ½29�

where n0 is the number of 0-simplexes in �, and
� =

P
j (2jþ 1)2. As � is given by a divergent sum,

the discretization independence statement is formal.
Moreover, the sum over spins in [28] is typically
divergent. Divergences occur due to infinite gauge-
volume factors in the path integral corresponding to
the topological gauge freedom [7]. Freidel and
Louapre have shown how these divergences can be
avoided by gauge-fixing unphysical degrees of free-
dom in [24]. In the case of 3D gravity with positive
cosmological constant, the state sum generalizes to
the Turaev–Viro invariant (see Topological Quan-
tum Field Theory: Overview) defined in terms of the
quantum group SUq(2) with qn = 1 where the
representations are finitely many and thus � <1.
Equation [29] is a rigorous statement in that case.
No such infrared divergences appear in the canoni-
cal treatment of the previous section.
Spin Foams in 4D

Spin Foam from the Canonical Formulation

There is no rigorous construction of the physical
inner product of LQG in 4D. The spin foam
representation as a device for its definition has
been introduced formally by Rovelli. In 4D LQG,
difficulties in understanding dynamics are centered
around the quantum scalar constraintbS =

dffiffiffiffiffiffiffiffiffiffi
detE
p �1

Ea
i E

b
j Fij

ab(A)þ � � � (see [1]) – the vector
constraint bVa(A, E) is solved in a simple manner
(see Loop Quantum Gravity). The physical inner
product formally becomes

hPs; s0idiff ¼
Y

x

�½bSðxÞ�
¼
Z

D½N� < exp i

Z
�

NðxÞbSðxÞ� �
s; s0 >diff

¼
Z

D½N�
X1
n¼0

in

n!
<

Z
�

NðxÞbSðxÞ� �n

s; s0 >diff ½30�
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Figure 11 The action of the scalar constraint and its spin foam representation. N(xn) is the value of N at the node and Snop are the

matrix elements of bS.
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where < , >diff denotes the inner product in the
Hilbert space of solutions of the vector constraint,
and the exponential has been expanded in powers in
the last expression on the right-hand side.

From early on, it was realized that smooth loop
states are naturally annihilated by bS (indepen-
dently of any quantization ambiguity). Conse-
quently, bS acts only on spin network nodes.
Generically, it does so by creating new links and
nodes modifying the underlying graph of the spin
network states (Figure 11).

Therefore, each term in the sum [30] represents a
series of transitions – given by the local action of bS
at spin network nodes – through different spin
network states interpolating the boundary states s
and s0, respectively. The action of bS can be
visualized as an ‘‘interaction vertex’’ in the ‘‘time’’
evolution of the node (Figure 11). As in the explicit
3D case, eqn [30] can be expressed as sum over
‘‘histories’’ of spin networks pictured as a system of
branching surfaces described by a 2-complex whose
elements inherit the representation labels on the
intermediate states. The value of the ‘‘transition’’
amplitudes is controlled by the matrix elements ofbS. Therefore, although the qualitative picture is
independent of quantization ambiguities, transition
amplitudes are sensitive to them.

Before even considering the issue of convergence
of [30], the problem with this definition is evident:
every single term in the sum is a divergent integral!
Therefore, this way of presenting spin foams has to
be considered as formal until a well-defined regular-
ization of [2] is provided. That is the goal of the spin
foam approach.

Instead of dealing with an infinite number of
constraints Thiemann recently proposed to impose
one single master constraint defined as

M ¼
Z

�

dx3 S2ðxÞ � qabVaðxÞVbðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det qðxÞ

p ½31�

Using techniques developed by Thiemann, this
constraint can indeed be promoted to a quantum
operator acting on Hkin. The physical inner product
is given by

<s; s0>p :¼ lim
T!1

<s;

Z T

�T

dt eitbMs0> ½32�

A spin foam representation of the previous expres-
sion could now be achieved by the standard
skeletonization that leads to the path-integral repre-
sentation in quantum mechanics. In this context,
one splits the t-parameter in discrete steps and
writes

eitbM ¼ lim
N!1

½eitbM=N�N ¼ lim
N!1

½1þ it bM=N�N ½33�

The spin foam representation follows from the fact
that the action of the basic operator 1þ it bM=N on a
spin network can be written as a linear combination
of new spin networks whose graphs and labels have
been modified by the creation of new nodes (in a
way qualitatively analogous to the local action
shown in Figure 11). An explicit derivation of the
physical inner product of 4D LQG along these lines
is under current investigation.

Spin Foams from the Covariant Formulation

In 4D, the spin foam representation of the dynamics
of LQG has been investigated more intensively in
the covariant formulation. This has led to a series of
constructions which are referred to as spin foam
models. These treatments are related more closely to
the construction based on the covariant path-
integral approach of the last section. Here we
illustrate the formulation which has captured much
interest in the literature: the Barrett–Crane (BC)
model.

Spin foam models for gravity as constrained quan-
tum BF theory The BC model is one of the most
extensively studied spin foam models for quantum
gravity. To introduce the main ideas involved, we
concentrate on the definition of the model in the
Riemannian sector. The BC model can be formally
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Figure 12 The dual of a 4-simplex.
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viewed as a spin foam quantization of SO(4)
Plebanski’s formulation of general relativity. Ple-
banski’s Riemannian action depends on an SO(4)
connection A, a Lie-algebra-valued 2-form B, and
Lagrange multiplier fields  and �. Writing explicitly
the Lie algebra indices, the action is given by

S½B;A; ; ��

¼
Z �

BIJ ^ FIJðAÞ þ IJKL BIJ ^ BKL

þ ��IJKLIJKL

	
½34�

where � is a 4-form and IJKL =�JIKL =
�IJLK =KLIJ is a tensor in the internal space.
Variation with respect to � imposes the constraint
�IJKLIJKL = 0 on IJKL. The Lagrange multiplier
tensor IJKL has then 20 independent components.
Variation with respect to  imposes 20 algebraic
equations on the 36 components of B. The (non-
degenerate) solutions to the equations obtained by
varying the multipliers  and � are

BIJ ¼ 
�IJKLeK ^ eL

and

BIJ ¼ 
eI ^ eJ ½35�

in terms of the 16 remaining degrees of freedom of
the tetrad field eI

a. If one substitutes the first solution
into the original action, one obtains Palatini’s
formulation of general relativity; therefore, on shell
(and on the right sector), the action is that of
classical gravity.

The key idea in the definition of the model is that
the path integral for the theory corresponding to the
action S[B, A, 0, 0], namely

Ptopo ¼
Z

D½B�D½A� exp i

Z
BIJ ^ FIJðAÞ
� 	� �

½36�

can be given a meaning as a spin foam sum, [4], in
terms of a simple generalization of the construction
of the previous section. In fact, S[B, A, 0, 0] corre-
sponds to a simple theory known as BF theory that
is formally very similar to 3D gravity (see BF
Theories). The result is independent of the chosen
discretization because BF theory does not have local
degrees of freedom (just as 3D gravity).

The BC model aims at providing a definition of
the path integral of gravity pursuing a well-posed
definition of the formal expression

PGR ¼
Z

D½B�D½A�� B! �IJKLeK ^ eL

� 	
� exp i

Z
BIJ ^ FIJðAÞ
� 	� �

½37�
where D[B]D[A]�(B! �IJKLeK ^ eL) means that one
must restrict the sum in [36] to those configurations
of the topological theory satisfying the constraints
B = � (e ^ e) for some tetrad e. The remarkable fact
is that this restriction can be implemented in a
systematic way directly on the spin foam configura-
tions that define Ptopo.

In Ptopo spin foams are labeled with spins corre-
sponding to the unitary irreducible representations of
SO(4) (given by two spin quantum numbers (jR, jL)).
Essentially, the factor ‘‘�(B ! �IJKLeK ^ eL)’’ restricts
the set of spin foam quantum numbers to the so-
called simple representations (for which jR = jL = j).
This is the ‘‘quantum’’ version of the solution to the
constraints [35]. There are various versions of this
model. The simplest definition of the transition
amplitudes in the BC model is given by

Pðs�sÞ ¼
X
fjg

Y
f2Fs!s0

ð2jf þ 1Þ�f
Y

v2Fs!s0

X
	1���	5

ι2

ι1 ι3

ι5 ι4

j12

j15 j14

j45

j35

j24j25

j13

j23

j34

ι1* ι3*

ι2*

j15*

j12* j23*

ι5* j45*

j14* j35*

j25* j24*

j13*

j34*

ι4*

½38�

where we use the notation of [22], the graphs denote
15j-symbols, and 	i are half-integers labeling SU(2)
normalized 4-intertwiners. No rigorous connection
with the Hilbert space picture of LQG has yet been
established. The self-dual version of Plebanski’s
action leads, through a similar construction, to
Reisenberger’s model.

The simplest amplitude in the BC model corre-
sponds to a single 4-simplex, which can be viewed
as the simplest triangulation of the 4D spacetime
given by the interior of a 3-sphere (the correspond-
ing 2-complex is shown in Figure 12). States of the
4-simplex are labeled by ten spins j (labeling the ten
edges of the boundary spin network, see Figure 12)
which can be shown to be related to the area in
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Planck units of the ten triangular faces that form the
4-simplex. A first indication of the connection of the
model with gravity was that the large-j asymptotics
appeared to be dominated by the exponential of the
Regge action (the action derived by Regge as a
discretization of general relativity). This estimate
was done using the stationary-phase approximation
to the integral that gives the amplitude of a
4-simplex in the BC model. However, more detailed
calculations showed that the amplitude is dominated
by configurations corresponding to degenerate
4-simplexes. This seems to invalidate a simple
connection to general relativity and is one of the
main puzzles in the model.
Spin Foams as Feynman Diagrams

The main problem with the models of the previous
section is that they are defined on a discretization �
of M and that – contrary to what happens with a
topological theory, for example, 3D gravity
(eqn [29]) – the amplitudes depend on the discretiza-
tion �. Various possibilities to eliminate this reg-
ulator have been discussed in the literature but no
explicit results are yet known in 4D. An interesting
proposal is a discretization-independent definition of
spin foam models achieved by the introduction of an
auxiliary field theory living on an abstract group
manifold – Spin(4)4 and SL(2, C)4 for Riemannian
and Lorentzian gravity, respectively. The action of
the auxiliary group field theory (GFT) takes the form

S½�� ¼
Z

G4

�2 þ 

5!

Z
G10

Mð5Þ½�� ½39�

where M(5)[�] is a fifth-order monomial, and
G is the corresponding group. In the simp-
lest model, M(5)[�] =�(g1, g2, g3, g4)�(g4, g5, g6, g7)�
�(g7, g3, g8, g9)�(g9, g6, g2, g10)�(g10, g8, g5, g1). The
field � is required to be invariant under the
(simultaneous) right action of the group on its
four arguments in addition to other symmetries
(not described here for simplicity). The perturba-
tive expansion in  of the GFT Euclidean path
integral is given by

P ¼
Z

D½��e�S½�� ¼
X
FN

N

sym½FN�
A½FN� ½40�

where A[FN] corresponds to a sum of Feynman-
diagram amplitudes for diagrams with N interaction
vertices, and sym[FN] denotes the standard symme-
try factor. A remarkable property of this expansion
is that A[FN] can be expressed as a sum over spin
foam amplitudes, that is, 2-complexes labeled by
unitary irreducible representations of G. Moreover,
for very simple interaction M(5)[�], the spin foam
amplitudes are in one-to-one correspondence to
those found in the models of the previous section
(e.g., the BC model). This duality is regarded as a
way of providing a fully combinatorial definition of
quantum gravity where no reference to any dis-
cretization or even a manifold structure is made.
Transition amplitudes between spin network states
correspond to n-point functions of the field theory.
These models have been inspired by generalizations
of matrix models applied to BF theory.

Divergent transition amplitudes can arise by the
contribution of ‘‘loop’’ diagrams as in standard
quantum field theory. In spin foams, diagrams
corresponding to 2D bubbles are potentially divergent
because spin labels can be arbitrarily high leading to
unbounded sums in [4]. Such divergences do not occur
in certain field theories dual (in the sense above) to the
BC model. However, little is known about the
convergence of the series in  and the physical meaning
of this constant. Nevertheless, Freidel and Louapre
have shown that the series can be re-summed in certain
models dual to lower-dimensional theories.
Causal Spin Foams

Let us conclude by presenting a fundamentally
different construction leading to spin foams. Using
the kinematical setting of LQG with the assumption
of the existence of a microlocal (in the sense of
Planck scale) causal structure, Markopoulou and
Smolin define a general class of (causal) spin foam
models for gravity. The elementary transition ampli-
tude AsI! sIþ1

from an initial spin network sI to
another spin network sIþ1 is defined by a set of
simple combinatorial rules based on a definition of
causal propagation of the information at nodes. The
rules and amplitudes have to satisfy certain causal
restrictions (motivated by the standard concepts
in classical Lorentzian physics). These rules gene-
rate surface-like excitations of the same kind one
encounters in the previous formulations. Spin foams
FN

si! sf
are labeled by the number of times, N, these

elementary transitions take place. Transition
amplitudes are defined as

hsi; sf i ¼
X

N

AðFN
si!sf
Þ ½41�

which is of the generic form [4]. The models are not
related to any continuum action. The only guiding
principles in the construction are the restrictions
imposed by causality, and the requirement of the
existence of a nontrivial critical behavior that
reproduces general relativity at large scales. Some
indirect evidence of a possible nontrivial continuum
limit has been obtained in certain versions of these
models in 1þ 1 dimensions.
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Introduction

From a physical point of view, spin glasses, as dilute
magnetic alloys, are very interesting systems. They
are characterized by such features as exhibiting a new
magnetic phase, where magnetic moments are frozen
into disordered equilibrium orientations, without any
long-range order. See, for example, Young (1987) for
general reviews, and also Stein (1989) for a very
readable account about the physical properties of
spin glasses. The experimental laboratory study of
spin glasses is a very difficult subject, because of their
peculiar properties. In particular, the existence of
very slowly relaxing modes, with consequent memory
effects, makes it difficult to realize the very basic
physical concept of a system at thermodynamical
equilibrium, at a given temperature.

From a theoretical point of view some models
have been proposed, which try to capture the
essential physical features of spin glasses, in the
frame of very simple assumptions.

The basic model has been proposed by Edwards
and Anderson (1975) many years ago. It is a simple
extension of the well-known nearest-neighbor Ising
model. On a large region � of the unit lattice in d
dimensions, we associate an Ising spin �(n) to each
lattice site n, and then we introduce a lattice
Hamiltonian

H�ð�; JÞ ¼ �
X
ðn;n0Þ

Jðn; n0Þ�ðnÞ�ðn0Þ ½1�

Here, the sum runs over all couples of nearest-
neighbor sites in �, and J are quenched random
couplings, assumed for simplicity to be independent
identically distributed random variables, with cen-
tered unit Gaussian distribution. The quenched
character of the J means that they do not contribute
to thermodynamic equilibrium, but act as a kind of
random external noise on the coupling of the �
variables. In the expression of the Hamiltonian, we
have indicated with � the set of all �(n), and with J
the set of all J(n, n0). The region � must be taken
very large, by letting it invade all lattice in the limit.
The physical motivation for this choice is that for
real spin glasses the interaction between the spins
dissolved in the matrix of the alloy oscillates in sign
according to distance. This effect is taken into
account in the model through the random character
of the couplings between spins.

Even though very drastic simplifications have
been introduced in the formulation of this model,
as compared to the extremely complicated nature
of physical spin glasses, nevertheless a rigorous
study of all properties emerging from the static
and dynamic behavior of a thermodynamic system
of this kind is far from being complete. In particular,
with reference to static equilibrium properties, it
is not yet possible to reach a completely substan-
tiated description of the phases emerging in the
low-temperature region. Even physical intuition
gives completely different guesses for different
people.

In the same way as a mean-field version can be
associated to the ordinary Ising model, so it is possible
for the disordered model described by [1]. Now we
consider a number of sites i = 1, 2, . . . , N, and let each
spin �(i) at site i interact with all other spins, with the
intervention of a quenched noise Jij. The precise form
of the Hamiltonian will be given in the following.

This is the mean-field model for spin glasses,
introduced by Sherrington and Kirkpatrick (1975).
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It is a celebrated model. Numerous articles have
been devoted to its study during the years, appearing
in the theoretical physics literature.

The relevance of the model stems surely from the
fact that it is intended to represent some important
features of the physical spin glass systems, of great
interest for their peculiar properties, at least at the
level of the mean-field approximation.

But another important source of interest is
connected with the fact that disordered systems, of
the Sherrington–Kirkpatrick type, and their general-
izations, seem to play a very important role for
theoretical and practical assessments about hard
optimization problems, as it is shown, for example,
by Mézard et al. (2002).

It is interesting to remark that the original paper
was entitled ‘‘Solvable model of a spin-glass,’’ while
a previous draft, as told by David Sherrington,
contained the even stronger designation ‘‘Exactly
solvable.’’ However, it turned out that the very
natural solution devised by the authors is valid only
at high temperatures, or for large external magnetic
fields. At low temperatures, the proposed solution
exhibits a nonphysical drawback given by a negative
entropy, as properly recognized by the authors in
their very first paper.

It took some years to find an acceptable solution.
This was done by Giorgio Parisi in a series of
papers, marking a radical departure from the
previous methods. In fact, a very intense method of
‘‘spontaneous replica symmetry breaking’’ was
developed. As a consequence, the physical content
of the theory was encoded in a functional order
parameter of new type, and a remarkable structure
emerged for the pure states of the theory, a kind of
hierarchical, ultrametric organization. These very
interesting developments, due to Parisi, and his
coworkers, are explained in a brilliant way in the
classical book by Mézard et al. (1987). Part of this
structure will be recalled in the following.

It is important to remark that the Parisi solution is
presented in the form of an ingenious and clever
‘‘ansatz.’’ Until few years ago, it was not known
whether this ansatz would give the true solution for
the model, in the so-called thermodynamic limit,
when the size of the system becomes infinite, or it
would be only a very good approximation for the
true solution.

The general structures offered by the Parisi solu-
tion, and their possible generalizations for similar
models, exhibit an extremely rich and interesting
mathematical content. Very appropriately, Talagrand
(2003) has used a strongly suggestive sentence in the
title to his recent book: ‘‘Spin glasses: a challenge for
mathematicians.’’
As a matter of fact, how to face this challenge is a
very difficult problem. Here we would like to recall
the main features of a very powerful method, yet
extremely simple in its very essence, based on a
comparison and interpolation argument on sets of
Gaussian random variables.

The method found its first simple application in
Guerra (2001), where it was shown that the
Sherrington–Kirkpatrick replica symmetric approxi-
mate solution was a rigorous lower bound for the
quenched free energy of the system, uniformly in
the size. Then, it was possible to reach a long-
awaited result (Guerra and Toninelli 2002): the
convergence of the free energy density in the
thermodynamic limit, by an intermediate step
where the quenched free energy was shown to be
subadditive in the size of the system.

Moreover, still by interpolation on families of
Gaussian random variables, the first mentioned result
was extended to give a rigorous proof that the
expression given by the Parisi ansatz is also a lower
bound for the quenched free energy of the system,
uniformly in the size (Guerra 2003). The method gives
not only the bound, but also the explicit form of the
correction in a complex form. As a recent and very
important result, along the task of facing the challenge,
Michel Talagrand has been able to dominate these
correction terms, showing that they vanish in the
thermodynamic limit. This milestone achievement was
first announced in a short note, containing only a
synthetic sketch of the proof, and then presented with
all details in a long paper (Talagrand 2006).

The interpolation method is also at the basis of
the far-reaching generalized variational principle
proved by Aizenman et al. (2003).

In our presentation, we will try to be as self-
contained as possible. We will give all definitions,
explain the basic structure of the interpolation
method, and show how some of the results are
obtained. We will concentrate mostly on questions
connected with the free energy, its properties of
subadditivity, the existence of the infinite-volume
limit, and the replica bounds.

For the sake of comparison, and in order to
provide a kind of warm-up, we will recall also some
features of the standard elementary mean-field
model of ferromagnetism, the so-called Curie–
Weiss model. We will concentrate also here on the
free energy, and systematically exploit elementary
comparison and interpolation arguments. This will
show the strict analogy between the treatment of the
ferromagnetic model and the developments in the
mean-field spin glass case. Basic roles will be played
in the two cases, but with different expressions, by
positivity and convexity properties.
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Then, we will consider the problem of connecting
results for the mean-field case to the short-range case.
An intermediate position is occupied by the so-called
diluted models. They can be studied through a
generalization of the methods exploited in the mean-
field case, as shown, for example, in De Sanctis (2005).

The organization of the paper is as follows. We
first introduce the ferromagnetic model and discuss
behavior and properties of the free energy in the
thermodynamic limit, by emphasizing, in this very
elementary case, the comparison and interpolation
methods that will be also exploited, in a different
context, in the spin glass case.

The basic features of the mean-field spin glass
models are discussed next, by introducing all
necessary definitions. This is followed by the
introduction, for generic Gaussian interactions, of
some important formulas, concerning the derivation
with respect to the strength of the interaction, and
the Gaussian comparison and interpolation method.

We then give simple applications to the mean-field
spin glass model, in particular to the existence of the
infinite-volume limit of the quenched free energy
(Guerra and Toninelli 2002), and to the proof of
general variational bounds, by following the useful
strategy developed in Aizenman et al. (2003).

The main features of the Parisi representation are
recalled briefly, and the main theorem concerning
the free energy is stated. This is followed by a brief
mention of results for diluted models.

We also attack the problem of connecting the
results for the mean-field case to the more realistic
short-range models.

Finally we provide conclusions and outlook for
future foreseen developments.

Our treatment will be as simple as possible, by
relying on the basic structural properties, and by
describing methods of presumably very long lasting
power. The emphasis given to the mean-field case
reflects the status of research. After some years from
now this review would perhaps be written according
to completely different patterns.
A Warm-up. The Mean-field
Ferromagnetic Model: Structure
and Results

The mean-field ferromagnetic model is among the
simplest models of statistical mechanics. However, it
contains very interesting features, in particular a
phase transition, characterized by spontaneous
magnetization, at low temperatures. We refer to
standard textbooks for a full treatment and a
complete appreciation of the model in the frame of
the theory of ferromagnetism. Here we first consider
some properties of the free energy, easily obtained
through comparison methods.

The generic configuration of the mean-field
ferromagnetic model is defined through Ising spin
variables �i =�1, attached to each site i = 1,
2, . . . , N.

The Hamiltonian of the model, in some external
field of strength h, is given by the mean-field expression

HNð�; hÞ ¼ �
1

N

X
ði;jÞ

�i�j � h
X

i

�i ½2�

Here, the first sum extends to all N(N � 1)=2 site
couples, and the second to all sites.

For a given inverse temperature �, let us now
introduce the partition function ZN(�, h) and the
free energy per site fN(�, h), according to the well-
known definitions

ZNð�; hÞ ¼
X
�1...�N

expð��HNð�; hÞÞ ½3�

��fNð�; hÞ ¼ N�1E log ZNð�; hÞ ½4�

It is also convenient to define the average spin
magnetization

m ¼ 1

N

X
i

�i ½5�

Then, it is immediately seen that the Hamiltonian
in [2] can be equivalently written as

HNð�; hÞ ¼ �
1

2
Nm2 � h

X
i

�i ½6�

where an unessential constant term has been
neglected. In fact, we have

X
ði;jÞ

�i�j ¼
1

2

X
i;j;i 6¼j

�i�j ¼
1

2
N2m2 � 1

2
N ½7�

where the sum over all couples has been equivalently
written as one half the sum over all i, j with i 6¼ j,
and the diagonal terms with i = j have been added
and subtracted out. Notice that they give a constant
because �2

i = 1.
Therefore, the partition function in [3] can be

equivalently substituted by the expression

ZNð�;hÞ ¼
X
�1...�N

exp
1

2
�Nm2

� �
exp �h

X
i

�i

 !
½8�

which will be our starting point.
Our interest will be in the limN!1N�1 log ZN(�, h).

To this purpose, let us establish the important
subadditivity property, holding for the splitting of the
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large-N system in two smaller systems with N1 and N2

sites, respectively, with N = N1 þN2,

log ZNð�; hÞ � log ZN1
ð�; hÞ þ log ZN2

ð�; hÞ ½9�

The proof is very simple. Let us denote, in the most
natural way, by �1, . . . ,�N1

the spin variables for the
first subsystem, and by �N1þ1, . . . ,�N the N2 spin
variables of the second subsystem. Introduce also the
subsystem magnetizations m1 and m2, by adapting
the definition [5] to the smaller systems, in such a
way that

Nm ¼ N1m1 þN2m2 ½10�

Therefore, we see that the large system magnetiza-
tion m is the linear convex combination of the
smaller system ones, according to the obvious

m ¼ N1

N
m1 þ

N2

N
m2 ½11�

Since the mapping m! m2 is convex, we also have
the general bound, holding for all values of the �
variables

m2 � N1

N
m2

1 þ
N2

N
m2

2 ½12�

Then, it is enough to substitute the inequality in the
definition [8] of ZN(�, h), and recognize that we
achieve factorization with respect to the two sub-
systems, and therefore the inequality ZN � ZN1

ZN2
.

So we have established [9]. From subadditivity, the
existence of the limit follows by standard arguments.
In fact, we have

lim
N!1

N�1 log ZNð�; hÞ ¼ inf
N

N�1 log ZNð�; hÞ ½13�

Now we will calculate explicitly this limit, by
introducing an order parameter M, a trial function,
and an appropriate variational scheme. In order to
get a lower bound, we start from the elementary
inequality m2 � 2mM�M2, holding for any value
of m and M. By inserting the inequality in the
definition [8] we arrive at a factorization of the sum
over �’s. The sum can be explicitly calculated, and
we arrive immediately to the lower bound, uniform
in the size of the system,

N�1 log ZNð�; hÞ
� log 2þ log cosh �ðhþMÞ � 1

2�M2 ½14�

holding for any value of the trial order parameter M.
Clearly, it is convenient to take the supremum over M.
Then, we establish the optimal uniform lower bound

N�1 log ZNð�; hÞ
� sup

M
log 2þ log cosh �ðhþMÞ � 1

2�M2
� �

½15�
It is simple to realize that the supremum coincides
with the limit as N !1. To this purpose we follow
the following simple procedure. Let us consider all
possible values of the variable m. There are N þ 1 of
them, corresponding to any number K of possible
spin flips, starting from a given � configuration,
K = 0, 1, . . . , N. Let us consider the trivial decom-
position of the identity, holding for any m,

1 ¼
X
M

�mM ½16�

where M in the sum runs over the N þ 1 possible
values of m, and � is Kroneker delta, being equal to 1
if M = N, and zero otherwise. Let us now insert [16]
in the definition [8] of the partition function inside
the sum over �’s, and invert the two sums. Because of
the forcing m = M given by the �, we can write
m2 = 2mM�M2 inside the sum. Then if we neglect
the �, by using the trivial � � 1, we have an upper
bound, where the sum over �’s can be explicitly
performed as before. Then it is enough to take the
upper bound with respect to M, and consider that
there are N þ 1 terms in the now trivial sum over M,
in order to arrive at the upper bound

N�1 log ZNð�; hÞ
� sup

M

�
log 2þ log cosh �ðhþMÞ

�1
2�M2

�
þN�1 logðN þ 1Þ ½17�

Therefore, by going to the limit as N !1, we can
collect all our results in the form of the following
theorem giving the full characterization of the
thermodynamic limit of the free energy.

Theorem 1 For the mean-field ferromagnetic
model we have

lim
N!1

N�1 log ZNð�; hÞ ¼ inf
N

N�1 log ZNð�; hÞ ½18�

¼ sup
M

log 2þ log cosh �ðhþMÞ � 1
2�M2

� �
½19�

This ends our discussion about the free energy in
the ferromagnetic model.

Other properties of the model can be easily
established. Introduce the Boltzmann–Gibbs state

!NðAÞ

¼ Z�1
N

X
�1...�N

A exp
1

2
�Nm2

� �
exp

�
�h
X

i

�i

�
½20�

where A is any function of �1 . . .�N.
The observable m(�) becomes self-averaging under

!N, in the infinite-volume limit, in the sense that

lim
N!1

!Nððm�Mð�; hÞÞ2Þ ¼ 0 ½21�
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This property of m is the deep reason for the success
of the strategy exploited earlier for the convergence
of the free energy. Easy consequences are the
following. In the infinite-volume limit, for h 6¼ 0,
the Boltzmann–Gibbs state becomes a factor state

lim
N!1

!Nð�1 . . .�sÞ ¼Mð�; hÞs ½22�

A phase transition appears in the form of sponta-
neous magnetization. In fact, while for h = 0 and
� � 1 we have M(�, h) = 0, on the other hand, for
� > 1, we have the discontinuity

lim
h!0þ

Mð�; hÞ ¼ � lim
h!0�

Mð�; hÞ �Mð�Þ > 0 ½23�

Fluctuations can also be easily controlled. In fact,
one proves that the rescaled random variableffiffiffiffiffi

N
p

(m�M(�, h)) tends in distribution, under !N,
to a centered Gaussian with variance given by the
susceptibility

�ð�; hÞ � @

@h
Mð�; hÞ � �ð1�M2Þ

1� �ð1�M2Þ ½24�

Notice that the variance becomes infinite only at the
critical point h = 0,�= 1, where M = 0.

Now we are ready to attack the much more
difficult spin glass model. But it will be surprising to
see that, by following a simple extension of the
methods described here, we will arrive at similar
results.
Basic Definitions for the Mean-Field Spin
Glass Model

As in the ferromagnetic case, the generic configura-
tion of the mean-field spin glass model is defined
through Ising spin variables �i =�1, attached to
each site i = 1, 2, . . . , N.

But now there is an external quenched disorder
given by the N(N � 1)=2 independent and identical
distributed random variables Jij, defined for each
pair of sites. For the sake of simplicity, we assume
each Jij to be a centered unit Gaussian with averages
E(Jij) = 0, E(J2

ij) = 1. By quenched disorder we mean
that the J have a kind of stochastic external
influence on the system, without contributing to
the thermal equilibrium.

Now the Hamiltonian of the model, in some
external field of strength h, is given by the mean-
field expression

HNð�; h; JÞ ¼ �
1ffiffiffiffiffi
N
p

X
ði;jÞ

Jij�i�j � h
X

i

�i ½25�

Here, the first sum extends to all site pairs, and the
second to all sites. Notice the

ffiffiffiffiffi
N
p

, necessary to
ensure a good thermodynamic behavior to the free
energy.

For a given inverse temperature �, let us now
introduce the disorder-dependent partition func-
tion ZN(�, h, J) and the quenched average of the
free energy per site fN(�, h), according to the
definitions

ZNð�;h; JÞ ¼
X
�1...�N

expð��HNð�; h; JÞÞ ½26�

� �fNð�; hÞ ¼ N�1E log ZNð�; h; JÞ ½27�

Notice that in [27] the average E with respect to the
external noise is made ‘‘after’’ the log is taken. This
procedure is called quenched averaging. It represents
the physical idea that the external noise does not
contribute to the thermal equilibrium. Only the �’s
are thermalized.

For the sake of simplicity, it is also convenient to
write the partition function in the following equiva-
lent form. First of all let us introduce a family of
centered Gaussian random variables K(�), indexed
by the configurations �, and characterized by the
covariances

EðKð�ÞKð�0ÞÞ ¼ q2ð�; �0Þ ½28�

where q(�,�0) are the overlaps between two generic
configurations, defined by

qð�; �0Þ ¼ N�1
X

i

�i�
0
i ½29�

with the obvious bounds �1 � q(�,�0) � 1, and
the normalization q(�,�) = 1. Then, starting from
the definition [25], it is immediately seen that the
partition function in [26] can also be written, by
neglecting unessential constant terms, in the form

ZNð�; h; JÞ

¼
X
�1...�N

exp �

ffiffiffiffiffi
N

2

r
Kð�Þ

 !
exp �h

X
i

�i

 !
½30�

which will be the starting point of our treatment.
Basic Formulas of Derivation
and Interpolation

We work in the following general setting. Let Ui

be a family of centered Gaussian random variables,
i = 1, . . . , K, with covariance matrix given by
E(UiUj) � Sij. We treat the index i now as configura-
tion space for some statistical mechanics system, with
partition function Z and quenched free energy given by

E log
X

i

wi expð
ffiffi
t
p

UiÞ � E log Z ½31�
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where wi � 0 are generic weights, and t is a
parameter ruling the strength of the interaction.

It would be hard to underestimate the relevance of
the following derivation formula

d

dt
E log

X
i

wi expð
ffiffi
t
p

UiÞ

¼ 1

2
E

�
Z�1

X
i

wi expð
ffiffi
t
p

Ui

�
Sii

� 1

2
E

�
Z�2

X
i

X
j

wiwj expð
ffiffi
t
p

UiÞ:

� expð
ffiffi
t
p

UjÞSij

�
½32�

The proof is straightforward. First we perform
directly the t-derivative. Then, we notice that the
random variables appear in expressions of the form
E(UiF), where F are functions of the U’s. These can
be easily handled through the following integration
by parts formula for generic Gaussian random
variables, strongly reminiscent of the Wick theorem
in quantum field theory,

EðUiFÞ ¼
X

j

SijE
@

@Uj
F

� �
½33�

Therefore, we see that always two derivatives are
involved. The two terms in [32] come from the
action of the Uj derivatives, the first acting on the
Boltzmann factor, and giving rise to a Kronecker �ij,
the second acting on Z�1, and giving rise to the
minus sign and the duplication of variables.

The derivation formula can be expressed in a
more compact form by introducing replicas and
suitable averages. In fact, let us introduce the state !
acting on functions F of i as follows

!ðFðiÞÞ ¼ Z�1
X

i

wi expð
ffiffi
t
p

UiÞFðiÞ ½34�

together with the associated product state � acting
on replicated configuration spaces i1, i2, . . . , is. By
performing also a global E average, finally we define
the averages

hFit � E�ðFÞ ½35�

where the subscript is introduced in order to recall
the t dependence of these averages.

Then, eqn [32] can be written in a more compact
form

d

dt
E log

X
i

wi expð
ffiffi
t
p

UiÞ¼ 1
2hSi1i1i � 1

2hSi1i2i ½36�

Our basic comparison argument will be based on
the following very simple theorem.
Theorem 2 Let Ui and Ûi, for i = 1, . . . , K, be
independent families of centered Gaussian random
variables, whose covariances satisfy the inequalities
for generic configurations

EðUiUjÞ� Sij � EðÛiÛjÞ� Ŝij ½37�

and the equalities along the diagonal

EðUiUiÞ � Sii ¼ EðÛiÛiÞ � Ŝii ½38�

then for the quenched averages we have the inequal-
ity in the opposite sense

E log
X

i

wi expðUiÞ � E log
X

i

wi expðÛiÞ ½39�

where the wi � 0 are the same in the two
expressions.

Considerations of this kind are present in the
mathematical literature, as mentioned, for example,
in Talagrand (2003).

The proof is extremely simple and amounts to a
straightforward calculation. In fact, let us consider
the interpolating expression

E log
X

i

wi expð
ffiffi
t
p

Ui þ
ffiffiffiffiffiffiffiffiffiffiffi
1� t
p

ÛiÞ ½40�

where 0 � t � 1. Clearly, the two expressions under
comparison correspond to the values t = 0 and t = 1,
respectively. By taking the derivative with respect to
t, with the help of the previous derivation formula,
we arrive at the evaluation of the t derivative in
the form

d

dt
E log

X
i

wi expð
ffiffi
t
p

Ui þ
ffiffiffiffiffiffiffiffiffiffiffi
1� t
p

ÛiÞ

¼ 1

2
E Z�1

X
i

wi expð
ffiffi
t
p

UiÞðSii � Ŝii

 !

� 1

2
E Z�2

X
i

X
j

wiwj expð
ffiffi
t
p

UiÞ
 

� expð
ffiffi
t
p

UjÞðSij � Ŝij

!
½41�

From the conditions assumed for the covariances,
we immediately see that the interpolating function is
nonincreasing in t, and the theorem follows.

The derivation formula and the comparison
theorem are not restricted to the Gaussian case.
Generalizations in many directions are possible. For
the diluted spin glass models and optimization
problems we refer, for example, to Franz and
Leone (2003), and to De Sanctis (2005), and
references therein.
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Thermodynamic Limit and the
Variational Bounds

We give here some striking applications of the basic
comparison theorem. Guerra and Toninelli (2002)
have given a very simple proof of a long-awaited
result, about the convergence of the free energy per
site in the thermodynamic limit. Let us show the
argument. Let us consider a system of size N and
two smaller systems of sizes N1 and N2 respectively,
with N = N1 þN2, as before in the ferromagnetic
case. Let us now compare

E log ZNð�; h; JÞ

¼ E log
X
�1...�N

exp �

ffiffiffiffiffi
N

2

r
Kð�Þ

 !

� exp �h
X

i

�i

 !
½42�

with

E log
X
�1...�N

exp �

ffiffiffiffiffiffiffi
N1

2

r
Kð1Þð�ð1ÞÞ

 !

� exp �

ffiffiffiffiffiffiffi
N2

2

r
Kð2Þð�ð2ÞÞ

 !
exp �h

X
i

�i

 !

� E log ZN1
ð�; h; JÞ þ E log ZN2

ð�; h; JÞ ½43�

where �(1) stands for �i, i = 1, . . . , N1, and �(2) for
�i, i = N1 þ 1, . . . , N. Covariances for K(1) and K(2)

are expressed as in [28], but now the overlaps are
substituted with the partial overlaps of the first and
second block, q1 and q2, respectively. It is very
simple to apply the comparison theorem. All one has
to do is to observe that the obvious

Nq ¼ N1q1 þN2q2 ½44�

analogous to [10], implies, as in [12],

q2 � N1

N
q2

1 þ
N2

N
q2

2 ½45�

Therefore, the comparison gives the superaddivity
property, to be compared with [9],

E log ZNð�; h; JÞ
� E log ZN1

ð�; h; JÞ þ E log ZN2
ð�; h; JÞ ½46�

From the superaddivity property the existence of the
limit follows in the form

lim
N!1

N�1E log ZNð�; h; JÞ

¼ sup
N

N�1E log ZNð�; h; JÞ ½47�

to be compared with [13].
The second application is in the form of the
Aizenman–Sims–Starr generalized variational princi-
ple. Here, we will need to introduce some auxiliary
system. The denumerable configuration space is
given by the values of �= 1, 2, . . . . We introduce
also weights w� � 0 for the � system, and suitably
defined overlaps between two generic configurations
p(�,�0), with p(�,�) = 1.

A family of centered Gaussian random variables
K̂(�), now indexed by the configurations �, will be
defined by the covariances

EðK̂ð�ÞK̂ð�0ÞÞ ¼ p2ð�; �0Þ ½48�

We will also need a family of centered Gaussian
random variables �i(�), indexed by the sites i of our
original system and the configurations � of the
auxiliary system, so that

Eð�ið�Þ�i0 ð�0ÞÞ ¼ �ii0pð�; �0Þ ½49�

Both the probability measure w�, and the overlaps
p(�,�0) could depend on some additional external
quenched noise, which does not appear explicitly in
our notation.

In the following, we will denote by E averages
with respect to all random variables involved.

In order to start the comparison argument, we
will consider first the case where the two � and �
systems are not coupled, so as to appear factorized
in the form

E log
X
�1...�N

X
�

w� exp �

ffiffiffiffiffi
N

2

r
Kð�Þ

 !

� exp �

ffiffiffiffiffi
N

2

r
K̂ð�Þ

 !
exp �h

X
i

�i

 !

� E log ZNð�; h; JÞ þ E log
X
�

w�

� exp �

ffiffiffiffiffi
N

2

r
K̂ð�Þ

 !
½50�

In the second case, the K fields are suppressed and
the coupling between the two systems will be taken
in a very simple form, by allowing the � field to act
as an external field on the � system. In this way
the �’s appear as factorized, and the sums can
be explicitly performed. The chosen form for the
second term in the comparison is

E log
X
�1...�N

X
�

w� exp �
X

i

�ið�Þ�i

 !
exp �h

X
i

�i

 !

� N log 2þ E log
X
�

w�ðc1c2 . . . cNÞ ½51�
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where we have defined

ci ¼ cosh �ðhþ �ið�ÞÞ ½52�

as arising from the sums over �’s.
Now we apply the comparison theorem. In the

first case, the covariances involve the sums of
squares of overlaps

1
2ðq

2ð�; �0Þ þ p2ð�; �0ÞÞ ½53�

In the second case, a very simple calculation shows
that the covariances involve the overlap products

qð�; �0Þpð�; �00Þ ½54�

Therefore, the comparison is very easy and, by
collecting all expressions, we end up with the useful
estimate, as in Aizenman et al. (2003), holding for
any auxiliary system as defined before,

N�1E log ZNð�;h; JÞ

� log 2þN�1

�
E log

X
�

w� c1c2 	 	 	 cNð Þ

� E log
X
�

w� exp

�
�

ffiffiffiffiffi
N

2

r
K̂ð�Þ

��
½55�
The Parisi Representation
for the Free Energy

We refer to the original papers, reprinted in the
extensive review given in Mézard et al. (2002), for
the general motivations, and the derivation of the
broken replica ansatz, in the frame of the ingenious
replica trick. Here, we limit ourselves to a synthetic
description of its general structure, independently
from the replica trick.

First of all, let us introduce the convex space X of
the functional order parameters x, as nondecreasing
functions of the auxiliary variable q, both x and q
taking values on the interval [0, 1], that is,

X 3 x : ½0; 1� 3 q! xðqÞ 2 ½0; 1� ½56�

Notice that we call x the function, and x(q) its
values. We introduce a metric on X through the
L1([0, 1], dq)-norm, where dq is the Lebesgue
measure.

For our purposes, we will consider the case of
piecewise constant functional order parameters,
characterized by an integer K, and two sequences
q0, q1, . . . , qK, m1, m2, . . . , mK of numbers satisfying

0 ¼ q0 � q1 � 	 	 	 � qK�1 � qK ¼ 1

0 � m1 � m2 � 	 	 	 � mK � 1 ½57�
such that

xðqÞ ¼ m1 for 0 ¼ q0 � q < q1

xðqÞ ¼ m2 for q1 � q < q2

..

.

xðqÞ ¼ mK for qK�1 � q � qK

½58�

In the following, we will find it convenient to
define also m0 � 0, and mKþ1 � 1. The replica
symmetric case of Sherrington and Kirkpatrick
corresponds to

K ¼ 2; q1 ¼ �q; m1 ¼ 0; m2 ¼ 1 ½59�

Let us now introduce the function f, with values
f (q, y; x,�), of the variables q 2 [0, 1], y 2 R,
depending also on the functional order parameter
x, and on the inverse temperature �, defined
as the solution of the nonlinear antiparabolic
equation

ð@qf Þðq; yÞ þ 1
2 ð@2

y f Þðq; yÞ

þ 1
2 xðqÞð@yf Þ2ðq; yÞ ¼ 0 ½60�

with final condition

f ð1; yÞ ¼ log coshð�yÞ ½61�

Here, we have stressed only the dependence of f on q
and y.

It is very simple to integrate eqn [60] when x is
piecewise constant. In fact, consider x(q) = ma, for
qa�1 � q � qa, firstly with ma > 0. Then, it is
immediately seen that the correct solution of eqn
[60] in this interval, with the right final boundary
condition at q = qa, is given by

f ðq;yÞ

¼ 1

ma
log

Z
exp maf ðqa;yþ z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qa� q
p Þð Þd�ðzÞ ½62�

where d�(z) is the centered unit Gaussian measure
on the real line. On the other hand, if ma =0, then
[60] loses the nonlinear part and the solution is
given by

f ðq; yÞ ¼
Z

f ðqa; yþ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa � q
p Þ d�ðzÞ ½63�

which can be seen also as deriving from [62] in the
limit ma ! 0. Starting from the last interval K, and
using [62] iteratively on each interval, we easily get
the solution of [60], [61], in the case of piecewise
order parameter x, as in [58], through a chain of
interconnected Gaussian integrations.

Now, we introduce the following important
definitions. The trial auxiliary function, associated
to a given mean-field spin glass system, as described
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earlier, depending on the functional order parameter
x, is defined as

log 2þ f ð0; h; x; �Þ � �
2

2

Z 1

0

q xðqÞ dq ½64�

Notice that in this expression the function f appears
evaluated at q = 0, and y = h, where h is the value of
the external magnetic field. This trial expression
shoul be considered as the analog of that appearing
in [14] for the ferromagnetic case.

The Parisi spontaneously broken replica symmetry
expression for the free energy is given by the definition

� �fPð�;hÞ

� inf
x
ðlog 2þ f ð0; h; x; �Þ � �

2

2

Z 1

0

q xðqÞ dqÞ ½65�

where the infimum is taken with respect to all
functional order parameters x. Notice that the
infimum appears here, as compared to the supre-
mum in the ferromagnetic case.

By exploiting a kind of generalized comparison
argument, involving a suitably defined interpolation
function, Guerra (2003) has established the follow-
ing important result.

Theorem 3 For all values of the inverse tempera-
ture �, and the external magnetic field h, and for
any functional order parameter x, the following
bound holds:

N�1E log ZNð�; h; JÞ

� log 2þ f ð0; h; x; �Þ � �
2

2

Z 1

0

q xðqÞ dq

uniformly in N. Consequently, we have also

N�1E log ZNð�; h; JÞ

� inf
x

log 2þ f ð0; h; x; �Þ � �
2

2

Z 1

0

q xðqÞ dq

� �

uniformly in N.

However, this result can also be understood in the
framework of the generalized variational principle
established by Aizenman–Sims–Starr as described
earlier.

In fact, one can easily show that there exist �
systems such that

N�1E log
X
�

w�c1c2 . . . cN � f ð0; h; x; �Þ ½66�

N�1E log
X
�

w� exp �

ffiffiffiffiffi
N

2

r
K̂ð�Þ

 !

� �
2

2

Z 1

0

q xðqÞ dq ½67�
uniformly in N. This result stems from earlier work
of Derrida, Ruelle, Neveu, Bolthausen, Sznitman,
Aizenman, Contucci, Talagrand, Bovier, and others,
and in a sense is implicit in the treatment given in
Mézard et al. (1987). It can be reached in a very
simple way. Let us sketch the argument.

First of all, let us consider the Poisson point
process y1 � y2 � y3 . . . , uniquely characterized by
the following conditions. For any interval A,
introduce the occupation numbers N(A), defined by

NðAÞ ¼
X
�

�ðy� 2 AÞ ½68�

where �( ) = 1, if the random variable y� belongs to
the interval A, and �( ) = 0, otherwise. We assume
that N(A) and N(B) are independent if the intervals
A and B are disjoint, and moreover that for each A,
the random variable N(A) has a Poisson distribution
with parameter

�ðAÞ ¼
Z b

a

expð�yÞ dy ½69�

if A is the interval (a, b), that is,

PðNðAÞ ¼ kÞ ¼ expð��ðAÞÞ�ðAÞk=k! ½70�

We will exploit �y� as energy levels for a statistical
mechanics system with configurations indexed by �.
For a parameter 0 < m < 1, playing the role of inverse
temperature, we can introduce the partition function

v ¼
X
�

exp
y�
m

� �
½71�

For m in the given interval it turns out that v is a
very well defined random variable, with the sum
over � extending to infinity. In fact, there is a strong
inbuilt smooth cutoff in the very definition of the
stochastic energy levels.

From the general properties of Poisson point
processes, it is very well known that the following
basic invariance property holds. Introduce a random
variable b, independent of y, subject to the condition
E( exp b) = 1, and let b� be independent copies.
Then, the randomly biased point process y0�=y�þb�,
�=1,2, . . . , is equivalent to the original one in
distribution. An immediate consequence is the follow-
ing. Let f be a random variable, independent of y, such
that E(exp f )<1, and let f� be independent copies.
Then, the two random variablesX

�

exp
y�
m

� �
expðf�Þ ½72�

X
�

exp
y�
m

� �
E expðmf Þð Þ1=m ½73�
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have the same distribution. In particular, they can be
freely substituted under averages.

The auxiliary system which gives rise to the Parisi
representation according to [66] and [67], for a
piecewise constant order parameter, is expressed in
the following way. Now � will be a multi-index
�= (�1,�2, . . . ,�K), where each �a runs on
1, 2, 3, . . . . Define the Poisson point process y�1

, then,
independently, for each value of �1 processes y�1�2

,
and so on up to y�1�2...�K

. Notice that in the cascade of
independent processes y�1

, y�1�2
, . . . , y�1�2...�K

, the last
index refers to the numbering of the various points of
the process, while the first indices denote independent
copies labeled by the corresponding �’s.

The weights w� have to be chosen according to
the definition

w�¼ exp
y�1

m1
exp

y�1�2

m2
. . . exp

y�1�2...�K

mK
½74�

The cavity fields � and K have the following
expression in terms of independent unit Gaussian
random variables Ji

�1
, Ji
�1�2

, . . . , Ji
�1�2...�K

, J0�1
, J0�1�2

, . . . ,
J0�1�2...�K

,

�ið�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 � q0
p

Ji
�1
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � q1
p

Ji
�1�2
þ 	 	 	

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qK � qK�1
p

Ji
�1�2...�K

½75�

Kð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 � q2
0

q
J0�1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2 � q2
1

q
J0�1�2

þ 	 	 	

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

K � q2
K�1

q
J0�1�2...�K

½76�

It is immediate to verify that E(�i(�)�i0(�
0) is zero if

i 6¼ i0, while

Eð�ið�Þ�ið�0ÞÞ ¼

0 if �1 6¼ �01
q1 if �1¼ �01; �2 6¼ �02
q2 if �1¼ �01; �2 ¼ �02; �3 6¼ �03;
..
.

1 if �1¼ �01; �2 ¼ �02; . . . ;
�K¼ �0K

8>>>>>>><
>>>>>>>:

½77�

Similarly, we have

EðKð�ÞKð�0ÞÞ ¼

0 if �1 6¼ �01
q2

1 if �1¼ �01; �2 6¼ �02
q2

2 if �1¼ �01; �2¼ �02; �3 6¼ �03;

..

.

1 if �1 ¼ �01; �2¼ �02; . . . ;

�K ¼ �0K

8>>>>>>>>>><
>>>>>>>>>>:

½78�

This ends the definition of the � system, associated
to a given piecewise constant order parameter.
Now, it is simple to verify that [66] and [67]
hold. Let us consider, for example, [66]. With the
� system chosen as before, the repeated applica-
tion of the stochastic equivalence of [72] and [73]
will give rise to a sequence of interchained
Gaussian integrations exactly equivalent to those
arising from the expression for f, as solution of
the eqn [60]. For [73], there are equivalent
considerations.

Therefore, we see that the estimate in Theorem 3
is also a consequence of the generalized variational
principle.

Up to this point we have seen how to obtain
upper bounds. The problem arises whether, as in the
ferromagnetic case, we can also get lower bounds,
so as to shrink the thermodynamic limit to the value
given by the infx in Theorem 3. After a short
announcement, Talagrand (2005) has firmly estab-
lished the complete proof of the control of the lower
bound. We refer to the original paper for the
complete details of this remarkable achievement.
About the methods, here we only recall that in
Guerra (2003) we have given also the corrections to
the bounds appearing in Theorem 3, albeit in a quite
complicated form. Talagrand has been able to
establish that these corrections do in fact vanish in
the thermodynamic limit.

In conclusion, we can establish the following
extension of Theorem 1 to spin glasses.

Theorem 4 For the mean-field spin glass model we
have

lim
N!1

N�1E log ZNð�; h; JÞ

¼ sup
N

N�1E log ZNð�; h; JÞ ½79�

¼ inf
x

log 2þ f ð0; h; x; �Þ � �
2

2

Z 1

0

qxðqÞ dq

� �
½80�
Diluted Models

Diluted models, in a sense, play a role intermediate
between the mean-field case and the short-range
case. In fact, while in the mean-field model each site
is interacting with all other sites, on the other hand,
in the diluted model, each site is interacting with
only a fixed number of other sites. However, while
for the short-range models there is a definition of
distance among sites, relevant for the interaction, no
such definition appears in the diluted models, where
all sites are in any case equivalent. From this point
of view, the diluted models are structurally similar
to the mean-field models, and most of the
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techniques and results explained before can be
extended to them.

Let us define a typical diluted model. The
quenched noise is described as follows. Let K be a
Poisson random variable with parameter �N, where
N is the number of sites, and � is a parameter
entering the theory, together with the temperature.
We consider also a sequence of independent cen-
tered random variables J1, J2, . . . , and a sequence of
discrete independent random variables i1, j1,
i2, j2, . . . , uniformly distributed over the set of sites
1, 2, . . . , N. Then we assume as Hamiltonian

HNð�Þ ¼ �
XK

k¼0

Jk�ik�jk ½81�

Only the variables � contribute to thermodynamic
equilibrium. All noise coming from K, Jk, ik, jk is
considered quenched, and it is not explicitly indi-
cated in our notation for H.

The role played by Gaussian integration by
parts in the Sherrington–Kirckpatrick model, here
is assumed by the following elementary derivation
formula, holding for Poisson distributions,

d

dt
PðK ¼ k; t�NÞ � d

dt
expð�t�NÞðt�NÞk=k!

¼ �NðPðK ¼ k� 1; t�NÞ
� PðK ¼ k; t�NÞÞ ½82�

Then, all machinery of interpolation can be easily
extended to the diluted models, as firstly recognized
by Franz and Leone in (2003).

In this way, the superaddivity property, the
thermodynamic limit, and the generalized varia-
tional principle can be easily established. We refer to
Franz and Leone (2003), and De Sanctis (2005), for
a complete treatment.

There is an important open problem here. While
in the fully connected case, the Poisson probability
cascades provide the right auxiliary � systems to be
exploited in the variational principle, on the other
hand in the diluted case more complicated prob-
ability cascades have been proposed, as shown, for
example, in Franz and Leone (2003), and in
Panchenko and Talagrand (2004). On the other
hand, in De Sanctis (2005), the very interesting
proposal has been made that also in the case of
diluted models the Poisson probability cascades play
a very important role. Of course, here the auxiliary
system interacts with the original system differently,
and involves a multi-overlap structure as explained
in De Sanctis (2005). In this way a kind of very deep
universality is emerging. Poisson probability cas-
cades are a kind of universal class of auxiliary
systems. The different models require different
cavity fields ruling the interaction between the
original system and the auxiliary system. But further
work will be necessary in order to clarify this very
important issue. For results about diluted models in
the high-temperature region, we refer to Guerra and
Toninelli (2004).
Short-Range Model and Its Connections
with the Mean-Field Version

The investigations of the connections between the
short-range version of the model and its mean-field
version are at the beginning. Here, we limit ourselves
to a synthetic description of what should be done, and
to a short presentation of the results obtained so far.

First of all, according to the conventional wisdom,
the mean-field version should be a kind of limit of the
short-range model on a lattice in dimension d, when
d!1, with a proper rescaling of the strength of the
Hamiltonian, of the form d�1=2. Results of this kind
are very well known in the ferromagnetic case, but
the present technology of interpolation does not seem
sufficient to assure a proof in the spin glass case. So,
this very basic result is still missing. In analogy with
the ferromagnetic case, it would be necessary to
arrive at the notion of a critical dimension, beyond
which the features of the mean-field case still hold,
for example, in the expression of the critical
exponents and in the ultrametric hierarchical struc-
ture of the pure phases, or at least for the overlap
distributions. For physical dimensions less than the
critical one, the short-range model would need
corrections with respect to its mean-field version.
Therefore, this is a completely open problem.

Moreover, always according to the conventional
wisdom, the mean-field version should be a kind of
limit of the short-range models, in finite fixed
dimensions, as the range of the interaction goes to
infinity, with proper rescaling. Important work of
Franz and Toninelli shows that this is effectively the
case, if a properly defined Kac limit is performed.
Here, interpolation methods are effective, and we
refer to Franz and Toninelli (2004), and references
quoted there, for full details.

Due to the lack of efficient analytical methods, it is
clear that numerical simulations play a very important
role in the study of the physical properties emerging
from short-range spin glass models. In particular, we
refer to Marinari et al. (2000) for a detailed account of
the evidence, coming from theoretical considerations
and extensive computer simulations, that some of the
more relevant features of the spontaneous replica
breaking scheme of the mean field are also present in
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short-range models in three dimensions. Different
views are expressed, for example, in Newman and
Stein (1998), where it is argued that the phase-space
structure of short-range spin glass models is much
simpler than that foreseen by the Parisi spontaneous
replica symmetry mechanism.

Such very different views, both apparently
strongly supported by reasonable theoretical con-
siderations and powerful numerical simulations, are
a natural consequence of the extraordinary difficulty
of the problem.

It is clear that extensive additional work will be
necessary before the clarification of the physical
features exhibited by the realistic short-range spin
glass models.
Conclusion and Outlook for Future
Developments

As we have seen, in these last few years, there has
been an impressive progress in the understanding of
the mathematical structure of spin glass models,
mainly due to the systematic exploration of com-
parison and interpolation methods. However, many
important problems are still open. The most
important one is to establish rigorously the full
hierarchical ultrametric organization of the overlap
distributions, as appears in Parisi theory, and to
fully understand the decomposition in pure states of
the glassy phase, at low temperatures.

Moreover, it would be important to extend these
methods to other important disordered models as,
for example, neural networks. Here the difficulty is
that the positivity arguments, so essential in com-
parison methods, do not seem to emerge naturally
inside the structure of the theory.

Finally, the problem of connecting properties of
the short-range model, with those arising in the
mean-field case, is still almost completely open.
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Introduction

Spinors were invented by the mathematician
E Cartan (see, e.g., Cartan (1981)) in the early
years of the last century in the course of his study of
rotation groups. The physicist Pauli reinvented what
Cartan would have called the spinors of SU(2),
which is the double cover of the rotation group
SO(3), in order to explain the spectroscopy of alkali
atoms and the anomalous Zeeman effect. For this,
he needed an essential two-valuedness of the
electron, an internal quantum number to contribute
to the angular momentum, which is now called spin.
Now the wave function becomes a two-component
column vector. It is worth noting that, despite the
name, Pauli resisted the picture of an electron as a
spinning ‘‘thing’’ on the grounds that, as a repre-
sentation of SU(2) which was not a representation of
SO(3), it should have no classical kinematic model,
which a spinning object would have.

According to the review article of van der Waerden
(1960), the term ‘‘spinor’’ is due to Ehrenfest in
1929, and was introduced in the flurry of interest
after the next important step in the evolution of
spinors in the physics literature, which was the
introduction of a relativistic equation for the
electron by Dirac (1928).

Dirac sought a linear, first-order but Lorentz-
invariant equation for the electron which was to be
the square root of the linear, Lorentz-invariant but
second-order Klein–Gordon equation. He assumed
the equation for the wave function  would take
the form

L :¼ ði�apa þmcIÞ ¼ 0 ½1�

where pa =� i�h@=@xa for a = 0, 1, 2, 3, but where �a

are complex square matrices, of a size to be
determined, and I is the corresponding identity
matrix. Differentiating [1] again, one obtains the
Klein–Gordon equation for  provided these
matrices satisfy the equation

�a�b þ �b�a ¼ 2�abI ½2�

where �ab is the Minkowski metric, diag(1, �1,
�1, �1).

Assuming the �a have been found, the usual
substitution p! p� ieA, for a particle in a mag-
netic field with vector potential A, leads to the
correct magnetic moment for the electron, so that
this equation does describe an electron with spin in
the form made familiar by Pauli.

To decide on the size of the matrices �a and
therefore the dimension of the space of  ’s, one
notices, with the aid of [2], that the following are a
basis for the algebra generated by the �a:

1; �a; �½a�b�; �½a�b�c�; �½a�b�c�d� ½3�

There are 16 elements in this basis, assuming that
there are no extra identities among them, so that we
might hope to find a representation as 4� 4
matrices. This can be done, and Dirac gave explicit
formulas in terms of Pauli matrices. The space of
Dirac spinors is now a complex four-dimensional
vector space, which turns out to split as the sum of a
complex two-dimensional vector space S, which is
referred to as a spin space, and its complex
conjugate S̄ (the relationship between a complex
vector space and its complex conjugate is described
in the text below and eqn [9]). Under proper,
orthochronous Lorentz transformations, S trans-
forms into itself by SL(2, C) transformation, but
space and time reflections relate S to S̄. The fact that
there are two spin spaces S and S̄ in dimension 4 is
the basis of chirality: an electron is represented by a
Dirac spinor, which is a pair of spinors, one in each
of S and S̄, which are related under space reflection;
a particle represented just by a spinor in S cannot be
invariant under space reflection.

The Clifford algebra (see Clifford Algebras and
their Representations) associated with a vector space
V with metric g is defined as the algebra generated
by elements v, w of V with the multiplication [
satisfying

v [wþw [ v ¼ 2gðv;wÞ ½4�

The matrices �a define a representation of the
Clifford algebra by associating a covector va with a
matrix v = va�

a, since [2] is then equivalent to [4].
This part of the process works in any dimension n

and signature s. For odd n, as, for example, with Pauli
spinors, the �a are square matrices of size 2N � 2N,
where N = (n� 1)=2, and there is a single spin space
of dimension 2N. For even n, as with the original Dirac
spinors, the �a are square matrices of size 2N � 2N,
where N = n=2, but there are two spin spaces each of
dimension 2N�1. Reality properties of the spin spaces
and the existence of other structures on them depend
in an intricate way on n and s (Penrose and Rindler
1984, 1986, Benn and Tucker 1987).
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The dimension of the space of spinors rises rapidly
with n, which is one reason why historically spinors
have been most useful in spaces of dimensions 3 and 4,
where the spin space has dimension 2. In a space of
dimension 11, a case considered in supergravity, the
spin space already has dimension 32.
Spinors in General Relativity: Spinor
Algebra

In this section, we start again with a different
emphasis. Conventions follow Penrose and Rindler
(1984, 1986). To introduce spinors as a calculus in a
four-dimensional, Lorentzian spacetime M, one can
begin by choosing an orthonormal tetrad of vectors
(e0, e1, e2, e3) at a point p. The following conven-
tions are used:

gðea; ebÞ ¼ �ab ¼ diagð1;�1;�1;�1Þ

Any vector v in the tangent space V = TpM at p has
components va in this basis, which we arrange as a
matrix and label in two ways:

�ðvÞ ¼ 1ffiffiffi
2
p v0 þ v3 v1 þ iv2

v1� iv2 v0� v3

� �
¼ v000 v010

v100 v110

� �
½5�

The reason for the factor 1=
ffiffiffi
2
p

will be seen below,
as will the rationale for the second form of the
matrix. Note that �(v) is Hermitian and that

2 det �ðvÞ ¼ gðv; vÞ ¼ �abvavb ½6�

Clearly, there is a one-to-one correspondence
between elements of V and Hermitian 2� 2
matrices. Further, if t is any matrix in SL(2, C),then
the transformation

�ðvÞ ! t�ðvÞty ½7�

where ty is the Hermitian conjugate of t, is linear in v,
and preserves both Hermiticity and the norm of v.
Thus, it must represent a Lorentz transformation. It is
straightforward to check that it is a proper, ortho-
chronous Lorentz transformation and that all such
transformations arise in this way (recall that ‘‘proper’’
means transformations of determinant 1 so that
orientation is preserved, and ‘‘orthochronous’’ means
that future-pointing timelike or null vectors are taken
to future-pointing timelike or null vectors, so that time
orientation is preserved; the proper, orthochronous
Lorentz group is equivalently the identity-connected
component of the Lorentz group). Since both t and �t
give the same Lorentz transformation, this provides an
explicit demonstration of the (2 – 1)-homomorphism
of SL(2,C) with the proper, orthochronous Lorentz
group O"þ(1,3).
If the vector v in [5] is null, then the matrix has
vanishing determinant, or, equivalently, it has rank
1, and so it can be written as the outer product of a
two-component column vector �= (�0,�1)T and its
Hermitian conjugate:

�ðvÞ ¼ ��y ½8�

Furthermore, under [7], � transforms as

�! t� ½9�

The two-complex-dimensional space to which �
belongs is the spin space S at p, already met in the
previous section, and it follows from [8], since null
vectors span V, that the tensor product S� S̄ of S with
its complex conjugate vector space S̄ is the complex-
ification of V. Complex conjugation gives an antilinear
map from S to S̄. (One associates the complex-
conjugate vector space V̄ to any given complex vector
space V as follows: scalar multiplication for V can be
considered as a function � : C� V ! V given by
�(z, v) = zv, while vector addition is a map  : V �
V ! V given by  (u, v) = uþ v. Define another
complex vector space by taking the same vectors and
the same  but with scalar multiplication ��, where
��(z, v) =�(z̄, v). This is the complex-conjugate vector
space V̄. Given a choice of basis, we think of V as, say,
n-component column vectors of complex numbers,
and then V̄ is the corresponding complex-conjugate
columns.)

Conventionally, S is the space of unprimed spinors
and S̄ the space of primed spinors, and one also has
the two duals S0 and S̄

0
which are associated in the

corresponding way to the dual V 0 of V. Analogously
to the situation with vectors and covectors, index
conventions for spinors are as follows:

�A 2 S; �A0 2 �S; �A 2 S0; �A0 2 �S0

where A = 0, 1, A0= 00, 10.
Spinor algebra mirrors tensor algebra: a spinor

�A1...ApA0
1
...A0q

B1...BrB01...B0s
is an element of the tensor

product of p copies of S, q copies of S̄, r copies of S0,
and s copies of S̄

0
. The second way of writing the

matrix in [5] enables the identification of a vector
with a matrix to be conventionally written as

va ¼ vAA0 ½10�

and then extended to any tensor Ta...b
c...d by replacing

each vector index, say b, with a pair BB0 of spinor
indices. In particular, from [8], it follows that any
real null vector na can be written in the form

na ¼ �A ��A0

for some spinor �A.
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One must pay attention to the order of spinor
indices of a given type, primed or unprimed, but by
convention may permute primed and unprimed
indices. A spinor with an equal number n of primed
and unprimed indices corresponds to a tensor of
valence n, and the tensor is real if the spinor satisfies
a suitable Hermiticity relation.

Spinors may have various symmetries among their
indices, much as tensors have. However, since S is two
dimensional, there is only a one-dimensional space of
2-forms on S. This has two consequences: no spinor
can be antisymmetric over more than two indices; and
if we make a choice of canonical 2-form, all spinors
can be written in terms of symmetric spinors and the
canonical 2-form. This is a decomposition of spinors
into irreducibles for SL(2, C).

One makes a choice of 2-form 	AB according to

	AB ¼ �	BA; 	01 ¼ 1

There is an inverse 	AB defined by

	AC	BC ¼ �A
B ½11�

where �A
B is the Kronecker delta. The complex

conjugate of 	AB is conventionally written without
an overbar as 	A0B0 , and analogously 	A

0B0 is the
complex conjugate of 	AB.

Because of the antisymmetry of 	AB, order of
indices is crucial in equations such as [11]. The
2-form 	AB has a role akin to that of a metric as it
provides an identification of S and its dual,
according to

�A ! �B ¼ �A	AB

�B ! �A ¼ 	AB�B

with corresponding formulas for primed spinors.
Note that, because of the antisymmetry of 	AB,
necessarily �A�

A = 0 for any �A.
With conventions made so far, it can be checked

that

gabvavb ¼ 	AB	A0B0v
AA0vBB0 ½12�

for any vector va, where gab is the spacetime metric
at p, so that

gab ¼ 	AB	A0B0

It is the desire to have this formula without
constants that necessitates the choice of the factor
1=

ffiffiffi
2
p

in [5].
One final piece of spinor algebra that we note is

the following: given a symmetric spinor �A1...An
there

is a factorization

�A1...An
¼ �ð1ÞðA1

� � ��ðnÞAnÞ ½13�
where the round brackets indicate symmetrization
over the indices A1, . . . , An, and the n spinors
�(1)

A1
, . . . ,�(n)

An
, which are determined only up to

reordering and rescaling, are known as the principal
spinors of �. To prove this, note that the principal
spinors can be identified with the solutions 
A of the
equation

�A1...An

A1 � � � 
An ¼ 0

and there are n of these, counting multiplicities, by
the ‘‘fundamental theorem of algebra.’’
Spinors in General Relativity: Spinor
Calculus

We now want to define spinor fields on the
spacetime M as sections of a spinor bundle S
whose fiber at each point is S and such that the
tensor product S � �S is the complexified tangent
bundle. The existence of such an S imposes global
restrictions on M: M must be orientable and time
orientable, and a certain characteristic class, the
second Stiefel–Whitney class, must vanish (for an
explanation of these terms see, e.g., Penrose and
Rindler (1984, 1986)). Assuming that M satisfies
these conditions, spinor fields can be defined. It is
convenient to retain the algebraic formulas from the
previous section (e.g., [10] or [12]) but with indices
now regarded as abstract (a note on the abstract
index convention appears in Twistors).

By an argument analogous to that for the
fundamental theorem of Riemannian geometry,
there is a unique covariant derivative that satisfies
the Leibniz condition, coincides with the Levi-
Civita derivative on tensors and the gradient on
scalars, and annihilates 	AB and 	A0B0 . Following the
conventions of the previous section, the spinor
covariant derivative will be denoted as rAA0 . The
commutator of derivatives can be written in terms
of irreducible parts (for SL(2, C)) according to the
formula

rAA0rBB0 � rBB0rAA0 ¼ 	A0B0�AB þ 	AB�A0B0

where �AB =rC0(ArC0

B). The definition of the
Riemann curvature tensor is in terms of the Ricci
identity

ðrarb �rbraÞvc ¼ Rabd
cvd

and then this translates into two Ricci identities for
a spinor field:

�AB�C ¼ �ABCD�
D

�A0B0�C ¼ �A0B0CD�
D
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The curvature spinors �ABCD and �A0B0CD are related
to the curvature tensor. The Ricci spinor �A0B0AB is
Hermitian and symmetric on both index pairs and is
a multiple of the trace-free part of the Ricci tensor:

�A0B0AB ¼ �1
2 Rab � 1

4Rgab

� �

The spinor �ABCD is symmetric on the first and last
pairs of indices and decomposes into irreducibles
according to

�ABCD ¼ �ABCD � 2�	DðA	BÞC

where � = R=24 in terms of the Ricci scalar or scalar
curvature R, while �ABCD, which is totally sym-
metric and is known as the Weyl spinor, is related to
the Weyl tensor Cabcd by the equation

Cabcd ¼ �ABCD	A0B0	C0D0 þ ��A0B0C0D0	AB	CD

Thus, the ten real components of the Weyl tensor
are coded into the five complex components of the
Weyl spinor.

Following the last remark in the previous section,
the Weyl spinor has four principal spinors, each of
which defines a null direction, the principal null
directions of the Weyl tensor. There is a classifica-
tion of Weyl tensors, the Petrov–Pirani–Penrose
classification, based on coincidences among the
principal null directions (Penrose and Rindler
1984, 1986).

As a final exercise in spinor calculus, we recall the
zero-rest-mass equations (see Twistors). In flat
spacetime, these are the equations

rA0A�AB...C ¼ 0

on a totally symmetric spinor field �AB...C. The field
is said to have spin s if it has 2s indices, and the
cases s = 1=2, 1, or 2, respectively, are the Weyl
neutrino equation, the Maxwell equation, and the
linearized Einstein equation. In flat spacetime, these
hyperbolic equations are well understood and
solvable in a variety of ways. In curved spacetime,
however, if s � 3=2, then there are curvature
obstructions to the existence of solutions, known
as Buchdahl conditions. This can be seen at once by
differentiating again, say by rB

A0 , and using the
spinor Ricci identity. After a little algebra, one finds

�ABC
ðD�E...FÞABC ¼ 0

so that, whenever the field has three or more indices,
there are algebraic constraints on its components in
terms of the Weyl spinor.
The Spin-Coefficient Formalism

The spin-coefficient formalism of Newman and
Penrose is a formalism for spinor calculus in space-
times (see, e.g., Penrose and Rindler (1984, 1986)
and Stewart (1990)). It finds application in
any calculation dealing with curvature tensors,
including solving the Einstein equations. The form-
alism exploits the compression of terminology which
the introduction of complex quantities permits.

The formalism starts with a choice of spinor dyad,
a basis of spinor fields (oA, �A) normalized so that
oA�

A = 1. From the dyad, one constructs a null
tetrad, which is a basis of vector fields, according to
the scheme

‘a ¼ oA�oA0; na ¼ �A��A
0
; ma ¼ oA��A

0
; �ma ¼ �A�oA0

Given the normalization of the spinor dyad, each of
the vectors in the null tetrad is null (hence the name)
and all inner products are zero, except for

‘ana ¼ 1 ¼ �ma �ma

It follows that the metric can be written in the
basis as

gab ¼ 2‘ðanbÞ � 2mða �mbÞ

The components of the covariant derivative in the
null tetrad are given separate names according to the
following scheme:

‘ara ¼ D; nara ¼ �; mara ¼ �; �mara ¼ ��

and the spin coefficients are the 12 components of
the covariant derivative of the basis. Each is labeled
with a Greek letter according to the following
scheme:

DoA ¼ 	oA � �A; �oA ¼ �oA � ��A

�oA ¼ �oA � ��A; ��oA ¼ �oA � ��A

D�A ¼ �oA � 	�A; ��A ¼ �oA � ��A

��A ¼ �oA � ��A; ���A ¼ �oA � ��A

½14�

The spin coefficients code the 24 real Ricci rotation
coefficients into 12 complex quantities. Some of the
spin coefficients have direct geometrical interpreta-
tion. For example, the vanishing of  is the
condition for the integral curves of ‘a to be geodesic,
while, if � is also zero, this congruence of geodesics
is shear free. The same role is played by � and � for
the na-congruence. The real and imaginary parts of �
are, respectively (minus), the expansion and the
twist of the congruence of integral curves of ‘a.



Spinors and Spin Coefficients 671
In practice, it is often simpler to calculate the spin
coefficients from the commutators of the basis
vectors, now regarded as directional derivatives, as
follows:

�D�D�¼ð�þ ��ÞDþð	þ�	Þ��ð��þ�Þ��ð�þ ��Þ��
�D�D�¼ð��þ�� ��ÞDþ��ð��þ	��	Þ�����

�����¼���Dþð�� ����Þ�þð���þ ��Þ�þ ����
�������¼ð����ÞDþð����Þ�þð�� ��Þ��ð����Þ��

½15�

The commutator of second derivatives applied to
the spinor dyad expresses the components of the
curvature tensor in terms of the derivatives of
the spin coefficients. Before presenting these, we
adopt a convention for labeling the components of
curvature. The components of the Weyl spinor are
given as follows:

�0 ¼ �ABCDoAoBoCoD

�1 ¼ �ABCDoAoBoC�D

�2 ¼ �ABCDoAoB�C�D

�3 ¼ �ABCDoA�B�C�D

�4 ¼ �ABCD�
A�B�C�D

½16�

so that these five complex scalars encode the ten real
components of the Weyl tensor. For the Ricci spinor, set

�00 ¼�ABA0B0o
AoB�oA0�oB0 ; �01 ¼�ABA0B0o

AoB�oA0��B
0

�02 ¼�ABA0B0o
AoB��A

0
��B
0
; �11 ¼�ABA0B0o

A�B�oA0��B
0

�12 ¼�ABA0B0o
A�B��A

0
��B
0
; �22 ¼�ABA0B0 �

A�B��A
0
��B
0

together with �10 =�01,�20 =�02, and �21 =�12.
The nine components of the trace-free Ricci tensor
are encoded in these scalars of which three are real
and three complex. The Ricci scalar, as before, is
replaced by the real scalar �=R=24.

Now the commutators of covariant derivatives on
the spinor dyad lead to the following system:

D�� �� ¼ �2 þ ���þ ð	þ �	Þ�� ��

� ð3�þ �� � �Þþ �00

D�� � ¼ð�þ ��þ 3	� �	Þ�
� ð� � ��þ ��þ 3�Þþ�0

D� �� ¼ð� þ ��Þ�þ ð�� þ �Þ�þ ð	� �	Þ�
� ð3� þ ��Þþ�1 þ �01

D�� ��	 ¼ð�þ �	� 2	Þ�þ ���� ��	� �� ��

þ ð	þ �Þ�þ �10

D� � �	 ¼ð�þ �Þ�þ ð��� �	Þ� � ð�þ �Þ
� ð��� ��Þ	þ�1
D���	¼ ð�þ ��Þ�þð��þ�Þ��ð	þ�	Þ��ð�þ ��Þ	
þ ���þ�2��þ�11

D�� ���¼ ð��3	þ�	Þ�þ ���þð�þ�� ��Þ�
���þ�20

D�� ��¼ ð��� 	��	Þ�þ��þð��� ��þ�Þ�
��þ�2þ2�

D����¼ ð�þ ��Þ�þð��þ �Þ�þð�� ��Þ�
�ð3	þ�	Þ�þ�3þ�21

��� ���¼ �ð�þ ��þ3�� ��Þ�
þð3�þ ��þ�� ��Þ���4

��� ���¼ ð��þ�Þ��ð3�� ��Þ�þð�� ��Þ�
þð�� ��Þ��1þ�01

��� ���¼ �����þ���þ� ���2��þð�� ��Þ�
þð�� ��Þ	��2þ�þ�11

��� ���¼ ð�� ��Þ�þð�� ��Þ�þð�þ ��Þ�
þð���3�Þ���3þ�21

��� ��¼ �ð�þ�þ ��Þ��� ��þ ���

þð��þ3�� �Þ���22

��� ��¼ ð��þ�� �Þ����þ��þ 	��
þð�� ����Þ��� ����12

��� �� ¼ �ð��3�þ ��Þ�� ����ð�þ�� ��Þ�
þ����02

��� ��� ¼ ð�þ ��� ��Þ����þð ����� ��Þ�
þ���2�2�

��� ���¼ ð�þ 	Þ��ð�þ�Þ�þð��� ��Þ�
þð ��� ��Þ���3 ½17�

Finally, it is possible to write out the Bianchi
identities in this formalism. For simplicity, and
with a view to an application, we do this below
only for vacuum, so that the Ricci tensor is zero:

D�1 � ���0 ¼ ð�� 4�Þ�0 þ 2ð2�þ 	Þ�1 � 3�2

��0 � ��1 ¼ ð4� � �Þ�0 � 2ð2� þ �Þ�1 þ 3��2

D�2 � ���1 ¼ ���0 þ 2ð�� �Þ�1 þ 3��2 � 2�3

��1 � ��2 ¼ ��0 þ 2ð� � �Þ�1 � 3��2 þ 2��3

D�3 � ���2 ¼ �2��1 þ 3��2 þ 2ð�� 	Þ�3 � �4

��2 � ��3 ¼ 2��1 � 3��2 þ 2ð� � �Þ�3 þ ��4

D�4 � ���3 ¼ �3��2 þ 2ð�þ 2�Þ�3 þ ð�� 4	Þ�4

��3 � ��4 ¼ 3��2 � 2ð� þ 2�Þ�3 þ ð4� � �Þ�4

½18�

The whole system is then loosely described as the
spin-coefficient equations.

As a simple application, we shall prove the
Goldberg–Sachs theorem: for vacuum spacetimes, a
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spinor field oA is geodesic and shear free iff it is a
repeated principal spinor of the Weyl spinor.

In the spin-coefficient formalism, oA is geodesic
and shear-free iff  and � vanish, and, from [16], is a
repeated principal spinor of the Weyl spinor
provided �0 = �1 = 0. It will be repeated three
times if also �2 = 0 and four times if �3 = 0, but
one must have �k 6¼ 0 for some k if the spacetime is
not to be flat.

Suppose that oA is a (twice) repeated principal
spinor of the Weyl spinor, then at once from the first
two expressions in [18] both  and � vanish. If it is
repeated three times, one gets the same result from
the third and fourth expressions in [18], while if oA

is repeated four times then the fifth and sixth
expressions of [18] should be used.

For the converse, suppose that = �= 0. Then, by
the first equation in [14], oA can be rescaled to ensure
that 	= 0 and a spinor field �A can be chosen which is
normalized against oA and parallelly propagated along
‘a, so that, by the fifth equation in [14], �= 0. From
the second expression in [17], one can see at once that
�0 = 0, so that the first two equations in [18] simplify
to give expressions for D�1 and ��1. By commuting D
and � on �1 and using the second expression of [15]
with the relevant parts of [17], it can be concluded that
�1 = 0, as required.

Another application which is easy to describe is
the solution of the type-D vacuum equations. A
type-D solution is one for which the Weyl spinor has
two (linearly independent) repeated principal spi-
nors. If these are taken as the normalized dyad, then
from [16] only �2 is nonzero among the �k. By the
Goldberg–Sachs theorem, both spinors are geodesic
and shear free, so that the spin coefficients �,,�,
and � all vanish. With these conditions, the spin-
coefficient equations simplify to the point that
careful choices of coordinates and the remaining
freedom in the dyad enable the equations to be
solved explicitly. One obtains metrics that depend
only on a few parameters. Analogous methods
reduce the Einstein equations to simpler systems
for the other vacuum algebraically special metrics,
that is, the other vacuum metrics for which the Weyl
spinor does not have four distinct principal null
directions (Mason 1998).

The spin-coefficient formalism has also been
extensively used in the study of asymptotically flat
spacetimes and gravitational radiation (Penrose and
Rindler 1984, 1986, Stewart 1990).
The Positive-Mass Theorem

A very important application of spinor calculus in
recent years was the proof by Witten (1981) of the
positive-mass (or positive-energy) theorem. The
proof was motivated by ideas from supergravity
and gave rise to an increased interest in spinors in
general relativity.

The positive-mass theorem is the following asser-
tion: given an asymptotically flat spacetime M with
a spacelike hypersurface �, which is topologically
R3 and in which the dominant energy condition
holds, the total (or Arnowitt–Deser–Misner (ADM))
momentum is timelike and future-pointing. (The
dominant-energy condition is the requirement that
TabUaVb is non-negative for every pair of future-
pointing timelike or null vectors Ua and Vb.)

We follow the notation of Penrose and Rindler
(1984, 1986), where the proof begins by considering
the 2-form � defined in terms of a spinor field �A on
� by

� ¼ �i ��B0ra�Bdxa ^ dxb

If �a tends to a constant spinor at spatial infinity on
�, then

1

4�G

I
S

�! pa�
A ��A0 ½19�

as the spacelike spherical surface S tends to spatial
infinity, where pa is the ADM momentum. Suppose
� has unit normal ta, intrinsic metric hab = gab � tatb

and the dual-volume 3-form is d�a = tad�. Then
Stokes’ theorem states thatI

S

� ¼
Z

�

d�

We calculate

d� ¼ �þ �

where

� ¼ 4�GTab‘
ad�b

� ¼ �i	ab
cdrc�

Brd
��B0d�a

where ‘a =�a ��A0 and we have used the Einstein field
equations to replace curvature terms in � by the
energy–momentum tensor Tab. Provided the matter
satisfies the dominant-energy condition, � is every-
where a positive multiple of the volume form on �
and its integral is positive (it can vanish only in
vacuum). To make the integral of � positive, �A is
required to satisfy

DAA0�
A ¼ 0 ½20�

where Da = hb
arb, which is the projection of the four-

dimensional covariant derivative rather than the
intrinsic covariant derivative of �. Equation [20] is
the Sen–Witten equation; it is elliptic and reduces to
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the Dirac equation on a maximal surface; furthermore,
given an asymptotically constant value for �A on an
asymptotically flat 3-surface � with the topology of
R3, it has a unique solution. Equation [20] removes
part of the derivative of �A from � to leave

� ¼ �habDa�CDb
��C0d�c

Now hab is negative definite and � has timelike
normal so that � is a positive multiple of the volume
form on � (unless �A is covariantly constant, a case
which is dealt with separately). Thus, the integral of
d� is non-negative and therefore, by [19], so is the
inner product of the ADM momentum pa with any
null vector constructed from asymptotically constant
spinors. Furthermore, this inner product is strictly
positive, except in a vacuum spacetime admitting a
constant spinor. Such spacetimes can be found
explicitly and cannot be asymptotically flat, so that
the ADM momentum is always timelike and future
pointing, and vanishes only in flat spacetime.

The basic positive-energy theorem outlined above
can be extended in several directions:

� to prove that the total momentum at future null
infinity is also timelike and future pointing;
� to deal with surfaces � which have inner

boundaries, for example, at black holes;
� to prove inequalities between charge and mass; and
� to deal with spacetimes which are asymptotically

anti-de Sitter rather than flat.
Further Applications of Spinors

Supersymmetry is a symmetry in quantum field
theory relating bosons and fermions. In the language
of spinors, bosons are represented by fields with an
even number of spinor indices and fermions by fields
with an odd number of indices. Thus, the gauge
transformations of supersymmetry are generated by
spinors with a single index.

Supergravity is supersymmetry in the case that one of
the fields is the graviton. A supergravity theory is
labeled by an integer N for the number of independent
supersymmetries and much of the numerology of these
theories follows from properties of spinors. N = 1
supergravity contains a graviton and a spin-3/2 field
coupled together, and the presence of the super-
symmetry allows the Buchdahl condition to
be evaded. Supergravity theory with one supersymme-
try in 11 spacetime dimensions depends on one spinor,
which, in 11 dimensions, has 32 components. This is as
many components as eight Dirac spinors in a four-
dimensional spacetime, and, by a process of dimen-
sional reduction, N = 1 supergravity in 11 dimensions
is related to N = 8 supergravity in four dimensions. For
reasons related to the Buchdahl conditions, 8 is the
largest N that is considered in four dimensions.

In superstring theory and in some supergravity
theories, one often wishes to consider spaces
with ‘‘residual supersymmetry,’’ by which is meant
that there is a spinor field satisfying a condition of
covariant constancy in some connection (Candelas et
al. 1985). The existence of such constant spinors, as a
result of spinor Ricci identities analogous to those
given above, typically imposes strong restrictions on
the curvature. Riemannian manifolds admitting con-
stant spinors for the Levi-Civita connection are Ricci-
flat (Hitchin 1974); Lorentzian ones can often be
found in terms of a few functions. Manifolds of
special holomorphy, which are of interest in super-
string theory, can usually be characterized as admit-
ting special spinors (Wang 1989).

See also: Clifford Algebras and Their Representations;
Dirac Operator and Dirac Field; Einstein Equations: Exact
Solutions; Einstein’s Equations with Matter; General
Relativity: Overview; Geometric Flows and the Penrose
Inequality; Index Theorems; Relativistic Wave Equations
Including Higher Spin Fields; Spacetime Topology,
Causal Structure and Singularities; Supergravity; Twistor
Theory: Some Applications [in Integrable Systems,
Complex Geometry and String Theory]; Twistors.
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