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ULB-TH/02-08hep-th/0203096A Brief Course in Spontaneous Symmetry BreakingI. The Paleoliti Age1Robert BroutServie de Physique Th�eoriqueUniversit�e Libre de Bruxelles, Campus Plaine, C.P.225Boulevard du Triomphe, B-1050 Bruxelles, BelgiumAbstratThe physial word is marked by the phenomenom of spontaneous bro-ken symmetry (SBS) i.e. where the state of a system is assymmetriwith respet to the symmetry priniples that govern its dynamis. Formaterial systems this is not surprising sine more often than not ener-geti onsiderations ditate that the ground state or low lying exitedstates of many body system beome ordered i.e. a olletive variable,suh as magnetization or the Fourier transform of the density of asolid, piks up expetation values whih otherwise would vanish byvirtue of the dynamial symmetry(isotropy or translational symmetryin the aforementioned examples). More surprising was the disoveryof the role of SBS in desribing the vauum or low lyng exitations ofa quantum �eld theory. First ame spontaneously broken hiral sym-metry whih was then applied to soft pion physis. When ombinedwith urrent algebra, this �eld dominated partile physis in the 60's.Then ame the appliation of the notion of SBS to situations wherethe symmetry is loally implemented by gauge �elds. In that ase theonept of order beomes more subtle. This development lead the wayto eletroweak uni�ation and it remains one of the prinipal tools ofthe theorist in the quest for physis beyond the standard model. Thisbrief review is intended to span the history of SBS with emphasis ononeptual rather than quantitative ontent. It is a written version ofletures of R.Brout on the \Paleolithi Age" and on \Modern Times"by F.Englert, i.e. respetively without and with gauge �elds.1Invited talks presented at the 2001 Corfu Summer Institute on Elementary PartilePhysis
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I. The Early Anestors (van der Waals and Weiss)[1℄At the beginning of the 20th entury, van der Waals proposed the idea of a\moleular �eld" in order to explain the deviation of the equation of stateof gases from ideality and from there to ondensation. (What this has todo with SBS will emerge subsequently.) His idea was to onsider that eahmoleule was surrounded by others whih interat with it. Thus its energyis Vmol = �Z d3r0v(r � r0)� � ; (1)where v(r) is the intermoleular potential, taken to be attrative, in vander Waals's eyes, for r > r0; � is the mean density. The \moleular �eldapproximation" (MFA) is to neglet the orrelation of density at r0 to thepresene of a moleule at r. Though this neglet does some injustie to thesituation, we have learnt over the years that, in the large, the essential physisis respeted. One exeption is the quantitative theory of ritial phenomena,so beautifully exeuted by Wilson, Fisher and others. However, throughoutthis review we shall work in MFA sine the main progress whih has beenmade in analyzing the order enountered in a great variety situations has beenin MFA. (One more a notable exeption is in 2 dimensional systems whereintopologial onsiderations are often vital). In general as the dimensionalityinreases so does the reliability of MFA and for d > 4 , it beomes reliablein all thermodynami onditions (In this review we shall not touh uponlattie gauge theory where dimensionality plays a di�erent role from themore onventional many body and �eld theoreti systems treated here. Thuson�nement will not be inluded).From Eq.(1), van der Waals dedued the existene of an internal pressure,pint given by pint = ��Vmol�v = �2�Vmol�� = �2ev(o) ; (2)where ev(o) is the Fourier transform of v(r) at q = 0. The total pressure is thusp+ pint; p is the external pressure. Under normal onditions (p �= 1atm andT �= room temperature) a typial liquid exhibits pint = 103atm, whih givesone an idea of just how essential are the intermoleular fores in maintainingthe ohesion of the liquid, as against a vapor where pint more often than notis negligible away from ritial onditions.1



Whereas in an ideal gas has p = kT=v (v being the volume per moleule),van der Waals proposed that in a general uid one should replae v by the\free volume", that whih is unoupied by the moleule itself. Thus heset ptotal = (kT=v � b) where b is volume oupied by stu� within a singlemoleule. He thus setpTot = p+ �2ev(o) = kT [��1 � b℄�1 ; (3)the famous van der Waals equation. This equation of state has been quali-tatively suessful but fails quantitatively near the ritial point, as is to beexpeted. In Fig.1 we sketh shematially a few isotherms
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Fig. 1Only vapor exists for all p one T � T (), but for T < T (), along,for example, isotherm A, the system is in the liquid (vapor) phase forp > p(e) ( p < p(e) ) respetively. At p = p(e), the system has ahoie between liquid and vapor. They an oexist. It is this hoie,seemingly arbitrary, whih in this ase is SBS. We shortly bring morelarity into this question, but for the moment we ask the reader tobear in mind the oexistene urve D, whih on the left side marksthe lous of where liquid isotherms begin as the pressure inreases andon the right where vapor isotherms take over as the pressure dereases.Whilst van der Waals was busy in Holland explaining why it rains or shines,Weiss in Frane was proposing a similar mehanism to explain ferromag-netism. Like van der Waals, he was toying with this new fangled idea of the2



atomi hypothesis. Eah atom was endowed with a magneti moment andferromagnetism was the alignement of these elementary entities oasionedby the existene of an external magneti �eld. The only trouble was thatthese �elds were far too small to maintain the alignement at room tempera-ture, owing to their thermal agitation. Weiss therefore proposed that therewas an internal magneti �eld proportional to the magnetization itself. Thus~HTot = ~Hext + ~Hint = ~Hext + � ~M ; (4)where M is the magnetization per atom.The idea was mathed neatly with van der Waals internal pressure in the 20'swhen Heisenberg proposed his exhange mehanism wherein there was anenergy due to spin-spin interations brought about by interatomi oulombifores (like those whih were invoked to explain hemial binding or Hund'srule for atoms). Thus Heisenberg proposed an interationVspin�spin = �v(r � r0)~S(r):~S(r0) ; (5)~S(r) being the spin of the atom loated at r, hene proportional to itsmagneti moment. At typial interatomi distanes in a solid, v(r) ouldbe estimated to be something less than hemial bond energies, rather likeO(10�1ev) = 103 K. The v in Eq.(5) is not be onfused with the v of Eq.(1).It is the spin-spin part. This advane lent more redene to Weiss's sugges-tion sine when the idea was �rst proposed, the energy one ould ome by wasin dipole-dipole magneti interations and these were too small by 3 ordersof magnitude (Typially ferromagneti transitions our at O(103K) ).Thus Heisenberg proposed to furnish Weiss's hypothesis with a model whihontained spin-spin interations in the formV = �12Xi;j vij ~Si:~Sj ; (6)~Si being the spin on site i. This implies the existene of an internal �eldgiven at site i by ~Hi =Xj vij ~Sj : (7)MFA is then the analog of van der Waals' approximation. One neglets theorrelation of ~Sj to ~Si and approximatesh ~Hii = ~Hint =Xj vijh~Sji =Xj vijh ~M i ; (8)3



where we have used translational symmetry so that h~Sji is site independent.We have set the elementary magneton of eah atom equal to unity so thatspin and magneti momentmean the same thing. ThenH has the dimensionsof energy.Thus out�tted,Weiss's moleular �eld beomes (with ev(q) = Fourier trans-form of vij) ~Hmol = ~H + ev(o) ~M : (9)From statistial mehanis one may then alulate h ~M i self onsistentlyh ~M i = tr exp h� ~Hmol � ~Si ~Str exp h� ~Hmol � ~Si ; � = (1=kT ) : (10)II. Broken Disrete SymmetryIn the next few paragraphs we shall develop the idea using the Ising model(proposed by Heisenberg to his student as a thesis projet). We shall seethat this model is the prototype of a broken disrete symmetry, as opposedto a ontinuous symmetry wherein S is a vetor.One treats S as a 2-valued funtion, taking on values �1. ThenhMi = exp�Hmol � exp��Hmolexp�Hmol + exp��Hmol = tanh �Hmol= tanh � [H + ev(o)hMi℄ (11)a self onsistent equation for hMi. In Eq.(11) H designates the external �eld.To see the onsequenes of Eq.(11) set H = 0. It is then seen that in additionto hMi = 0 two additional solutions arise of equal and opposite values when�ev(o) > 1 sine the slope of tanh x at x = 0 exeeds unity when x > 1. Theseare the solutions whih enode spontaneous magnetization below the ritialtemperature ( kT < kT where kT = ev(o) ). We shall shortly see that theseare stable solutions whereas hMi = 0 is unstable for T < T. This is SBS.4
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Fig. 3In Fig.2, urve A is the isotherm for T < T, B for T = T and C for T > T.The values of hMi at H = 0 are skethed in Fig.3.Contat with the van der Waals theory is made as follows. De�ne�i = 12(1 + �i) : (12)Thus � = 0 means absene of a partile on a site and � = 1 means itspresene. Then hMi is mean density and H is like pressure. Turning Fig.2on its side and tinkering with some thermodynami identities onverts Fig.2into Fig.1 . Fig.3 looked at on its side is the oexistene urve of Fig.1 . Inthis ase SBS is the hoie of whether sites are oupied by partiles or holes.It has reently been proven by Fisher that the analogy between liquid-vaporondensation in the ase of ontinuum spae (as opposed to the lattie) andferromagnetism runs very deeply, even to the most minute details of theirritial behaviour.We shall ontinue with disrete SBS as exempli�ed by the Ising model byderiving these results from an important onstrution alled the e�etivepotential, a method developed by Bragg and Williams in the early 30's (inanother onnetion, but this is irrelevant).The partition funtion isZ = tr exp "�2 X vij�i�j + �X�iHi# : (13)For the none take Hi independent of i. The trae is over all 2N spin states.5



Carry it out pieemealM by M where M now means the total spinM =X�i = Nup �Ndown ; (14)so that Z =XM e�MHtrM exp "�2 X vij�i�j# ; (15)where trM means summing over the � N(N+M)=2� states haraterized by M.Though one an arry through the onstrution in all rigor we shall onlydevelop the theory here in MFA in order to bring out the essential ideas. Itis the essene of MFA to neglet inter-spin orrelations. Thus12Xi;j vijh�i�jiMFA = 12Xi;j vijh�iih�ji (16)= 12Xi;j vijh�i2M ; (17)where we used translational symmetry to set h�ii independent of site i. Thesymbol h�iM means the average of a spin in the subensemble haraterizedby M i.e. h�iM = 1N Xi h�iiM = MN = m : (18)Thus in MFA one hasEnergy = �12Xi;j vij�i�j �HX �i= �12N ev(0)m2 �NHm : (19)Thus ZM = 
(M)e��E(M) ; (20)where 
(M) =  N(N +M)=2! ; (21)whenelnZM = ln
(M) � �E(M)ln
(M) = N ln 2� N2 [(1 +m) ln(1 +m) + (1�m) ln(1�m)℄ ; (22)6



where we have used Stirling's approximation and Eq (18). lnZM has a sharpmaximum at N = Mm� wherem� = tanh [�ev(o)m� +H℄ ; (23)the relative width of whih is O(1=pN ) so that in the thermodynami limit(i.e. limN!1 lnZ ) one has lnZ = ln(Nm�) : (24)Sine lnZ = ��[Helmholtz free energy℄, we identify ln
(Nm�) with theentropy (beause the energy has already been identi�ed in Eq (19) ). Overthe years we have ome to all (�1=N) lnZ the e�etive potential and thishas beome the standard way to approah SBS in �eld theory (sine Z(M)is the funtional integral over on�gurations of exp (�S) where S is theeuledeanized ation; in our ase the funtional integral is the disrete sumover 2N on�gurations).One gets a �rst glimpse into the �eld formulation by looking at Veff forsmall mVeff = � lim( 1N ) lnZN = �12�ev(o)m2 � �mH + 12m2 + 112m4 + : : := 12(1� �ev(o))m2 + 112m4 � �mH ; (25)m is to be onsidered a �eld taking on a ontinuum of values in the N !1 limit and from now on we shall use the symbols m and ' (for �eld )interhangeably. In Eq.(25) the irrelevant onstant N ln 2 has been dropped.From Eq.(25) we have, Veff = 12�2'2 + �'4 � 'H ; (26)where �2 = (1 � �ev(o)) = (1 � (T=T )). It is seen that �2 hanges sign atT = T , beoming negative for T < T. Veff is skethed in Fig.47
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Fig. 4A: T > T ;H = 0 B: T > T ;H > 0 C: T < T ;H = 0 D:T < T ;H > 0 E: T = T ;H = 0These pitures essentially ontain the whole story and nothing more.For 2 < d � 4, small modi�ations exist in the ritial region de�ned by���1� TT ��� = O (a few perent) and H=kT a few perent. Otherwise MFA hasquantitative signi�ane, and always qualitative signi�ane. For example ford = 3 one has �2 � jT � Tj0:62 in the ritial region at H = 0 rather than�2 � jT � Tj0:5. The latter estimate beomes valid one ���1 � TT ��� > 10%.The next setion will a�ord further insight into the whys and wherefores ofthese fats.III. Correlation Funtion (Green's Funtion)Consider H = 0 and T = T + � where � is small and positive. As � ! 0,long range order omes into being i.e. if one �xes the orientation of a singlespin out of N , then all N get oriented in the same diretion. It then mustbe expeted that for � > 0, there must be a preursor of this phenomenomi.e. long range order should be heralded in by orrelations among spins over8



inreasingly longer range as � ! 0. The theory of this was worked out inthe �rst deades of the 20th entury by Ornstein-Zernike, by Smolohowskiand by Einstein, the interest being the tremendous enhanement of lightsattering by ritial utuations (i.e. long range orrelations) giving rise toritial opalesene. In our ase the ross setion is proportional to hj�qj2iwhere �~q =Xi �i exp hi~q � ~Rii ; (27)hene to the Fourier transform h�i�ji, therefore at small q sensitive to longrange orrelations.A �rst shot at the problem is ontained in a rather obvious generalization ofMFA. Turn on an external �eld whih varies from site to siteHamiltonian = H = �12X vij�i�j �X�iHiZ = tre��H : (28)Then h�ii = � lnZ��Hi ; (29)h�i�ji � h�iih�ji = �h�ii��Hj = �2 lnZ��Hi��Hj : (30)For T > T and in limHi!0, all i, Eq.(30) allows to ompute the (onneted)orrelation funtion (Green's funtion in �eld theory). We shall approximatethis by use of MFA in this extended loal sense.The �eld on �i is Pj vij�j + Hi. Thus for small Hi the average of �i forT > T is h�ii = tanh �(X vijh�ji+Hi)! � hX vijh�ji +Hii : (31)The essential approximation that has been made is that h�ji is alulatedwith a probability distribution that is independent of the orientation of �i .This is not exat sine the distributions di�er aording to �i = +1 or �i =�1. This neglet of orrelation in the present ontext is then a sort of loalMFA. Taking a derivative of Eq.(31) with respet of to Hk and using Eq (30)gives h�i�ki = Æik + �X vijh�j�ki : (32)9



This is like an integral equation for Gij(� h�i�ji). It may be solved byFourier transform. Denoting by G(q) and ev(q)G(q) the Fourier transforms ofGij and vij, one has G(q) = 1 + �ev(q)G(q) ; (33)G(q) = 11� �ev(q) : (34)An interation whih is ferromagneti over its whole range has v(~Ri� ~Rj) > 0for all distanes ���~Ri � ~Rj���. Therefore ev(q) is maximal at q = 0 and has theform ev(q) = ev(0) � �q2 ; (35)valid small q (qa� 1 where a = lattie distane).Thus G(q) = 1(1 � �ev(0)) + �q2 ' 1�2 + �q2 ; (36)and we see that the urvature of the e�etive potential at its minimum (forT > T and H = 0 ) is equal to the (mass)2 in G(q). In this way one seesthat for small values of [(T � T)=T℄ with (T � T) > 0 and for small valuesof (H=kT) the spin system is governed by an e�etive ation density equalto 12(r')2 + (�2=2)'2 + �'4 + 'H ; (37)with �2 � (T � T) and � > 0. We have dropped irrelevant fators of O(1)whih may be absorbed into the de�nition of ', � and �. The important pointis that �2 ! 0 as T ! T and one is onfronted with an infra red problemat T = T , H = 0. This gives rise to the theory of ritial phenomenawhih results in a dynamial theory of renormalization. In partiular massrenormalization shifts �2 to� (T�T)0:62 for d = 3. This is of little interest tous in this review whih is an exploration of the physial mehanism behindSBS. Nevertheless it is interesting to understand how it is that there is athreshold value of d (d > 4) for whih these renormalization e�ets beomeinsigni�ant.From Eq.(32), one sees that G(Ri �Rj) is built out of hains of the intera-tions vkl (Fig.5). 10
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Fig. 5The sum of all these random walks isGij . One an reast these onsiderationsso as to take into aount the fat that in the orret rule for eah walk, agiven intermediate spin is visited one and only one time. To this must beadded walks whih do have intersetions. These have di�erent weights. Onean then onvert the problem into a random walk without restrition givingrise to our G(q) plus orretions due to intersetions (there has been someoversimpli�ation but without injustie to the essential physis). It is afat, (and one an show it from the �eld theory itself) that for d > 4, theprobability of self intersetion beomes so small that it has no e�et on theGreen's funtions. There is too muh spae around and that is why MFAbeomes exat (exept for irrelevant fators of O(1) ) for d > 4.Now let us see what happens T < T. Then h�ii = m and the Green'sfuntion is Gij = h�i�ji � h�iih�j i = h�i�ji �m2 : (38)One an go through some formalism to establish the rules for how to onstrutthe random walk in this ase. SuÆe it to say that, one again, one sumson random walks in MFA, but one must weight eah vertex with the fator(1 � m2). To understand this physially, note that when one asks for thein�nitesimal variation of h�ii due to a variation of Hi , the �eld on �i , then�h�ii��Hi = ���Hi [tanh �Hi℄Hi=H0i = 1�m2(H0i ) : (39)Here H0i is the value of the �eld on �i before the variation, be it an externalor internal �eld!Sine in the hain of interations, an intermediate spin, say k , is submittedto a variation of the �eld Hk upon it, oming from the link whih preedes it,(where one onsiders the hain originating at i and terminating at j). Theresponse of �k to this variation is equal to �vlk(1 �m2) whih is taken tobe small. 11



The net result is for T < T , H = 0G(q) = 1 �m21 � (1 �m2)�ev(q) ; (40)whih for small q reads G(q) = 1�02 � �q2 ; (41)where �02 = 1(1�m2)�1 � �ev(0) : (42)In this expression m is the spontaneous magnetization i.e.m = tanh [�ev(0)m℄ : (43)From Eq.(43) and Eq.(42) it is very easy to show that �02 > 0 and in fat forsmall (T � T )=T one has �02 � (T � T ).Thus the wild infra-red utuations enountered as T ! T + � with � > 0beome quenhed through the existene of m for T < T . One easily showsthat �02 is the urvature of Veff in Fig.4C at one of the minima.One de�nes the suseptibility,� , as (�m=�H)jH=0 and in both ases ( (T�T)positive or negative) one has � � jT � Tj�1 .IV. Broken Continuous SymmetryRather than the spin taking on disrete values like �i = �1, one an nowstudy a spin whih is a vetor. This an be done lassially by plaing a unitvetor on eah lattie site. Then the trae that is used to alulate Z ish = Z Y d~Si Æ(X ~S2i � 1) ; (44)where ~Si is an n dimensional vetor in some internal spae. Or one an doa quantum alulation where ~Si is an operator and the trae is the sum overthe eigenvalues of ~Si in some group representation. For example if ~Si = ~�i(=Pauli matries) then the trae is one again over the values �1 for eah12



spin. The Hamiltonian in either ase is taken symmetri with respet to thetransformation of the symmetry group whih is represented by ~SiH = �12X vij(~Si � ~Sj) ; (45)and one represents an external breaking by �elds Hi aording toHext = �X ~Si � ~Hi : (46)For T > T the physis of this ase resembles strongly that of the Isingmodel. For example if ~Si = ~�i then the hain of interations ontributing toG(q) ontains hains liketr [: : : vkl~�k:~�l vlm~�l:~�m : : : ℄ : (47)Sine tr~�l~�l is 6= 0 only for equal spatial omponents, one sees that the traeis the same as that for the Ising model. Then the hain whih ontributes toD�xi �xj E is the same as for the Ising model. Moreover D�xi �yj E = 0. Thus oneagain,in MFA one has G(q) � 1q2 + �2 : (48)However for T < T , new physis emerges. The easiest road to Rome passesby the e�etive potential. From Eq.(26), one sees that the system dupliatesin detail the theory of disrete SBS. Thus the quadrati part of the potentialis proportional to (r~')2 + �2~'2 where �2 = T � T. As before, there willbe orretions due to self intersetions of walks (and other dynami e�etswhih in fat are dependent on the representation ~' of the symmetry groupin question. But, whatever, the form of the quarti interation is ditated bysymmetry to be � h(~'i)2i2). [This is going a little too fast sine sometimesother polynomial forms are available, (like dijk'i'j'k for SU3 with 'i in theregular representation), but this ursory review is not the plae to enter intosuh nieties℄. Thus one is led toVeff = 12 hr~'2 + �2(~')2i+ �(~'2)2 + ~' � ~H : (49)Whereas �2 hanges sign at T = T ( being proportional to (1 � �ev(0)) upto a saling of ev(0) ), one has � > 0. This is most easily seen in MFA where� arise from the entropy fator as in the Ising model.13



It then follows that all the pitures of Fig.4 remain appliable for use of SBSin the ase of ontinuous symmetry provided they beome multidimensionalin \'-spae". For ease of representation let the symmetry be U(1). Then~' = ('1; '2) and the pitures must be interpreted as planes ut through�gures of revolution about a entral axis in ' spae.The dimple in Fig.4C is the unstable solution ~' = 0 for T < T. The morestable minima lie along a irle in the '1; '2 plane ~'2 = '21+'22 = m2 where�V=�(~' 2) = 0. In this ase SBS is the hoie of whih vetor ~' is taken nonvanishing. The reason for the words \more stable" rather than \stable" islear. Suppose ~H 6= 0 in some diretion then the minimum beomes stableand ~' k ~H . Now let H ! 0. The solution then tends to that value of ~'whih is on the abovementioned irle without hanging its diretion as onetakes the limit. But it is unstable with respet to diretional hanges uponapplying an in�nitesimal adjuntion of ~H 0 in a diretion di�erent from theoriginal ~H (whih had been sent to zero). This will ause ~' to swivel alongthe irle so as to lie in the diretion of ~H 0, albeit this latter is in�nitesimalbut not zero.This new element of SBS of ontinuous symmetry is essential to the physis ofall kinds of situations and as will be seen in the gauge setion, plays a vitalrole in the Brout-Englert-Higgs (BEH) mehanism1. It is an e�et whihwas �rst onsiously put on display by Felix Bloh in the mid 1930's in hisspin wave theory of ferromagnetism. In the next setions we shall review histheory, as well as appliations to superondutivity and superuidity. Thiswill be followed by Nambu's development of the theory of spontaneouslybroken hiral symetry and soft pion physis. The expression of these ideas interms of a relativisti �eld theory, often alled the Goldstone theorem, willbe presented in the ontext of the BEH mehanism in the setion \ModernTimes" by Fran�ois Englert sine it is herein that this aspet of the theoryhas been partiularly suessful.We briey summarize the important result of SBS of ontinuous symmetrywhih has been dedued up to this point. In terms of the e�etive potentialfor Veff (~') , for T > T the situation is the same as for disrete symmetry.There is a unique minimum at ~'2 = 0, whose urvature is the inverse susep-1Referenes to the gauge theory and relevant material are given in \Modern Times".14



tibility � = �m=�H = (�2)�1 � (T �T)�1. For T < T, the point ~'2 = 0 isa loal maximum sine at this point the urvature (= T � T) is then nega-tive. There is then an \orbit" of minima whih for the ase of broken U(1)symmetry is a irle (for the general ase see Modern Times for a desriptionof this orbit in the spae of a representation of a general group). From ourdisussion it is seen that the suseptibility beomes a tensor in \~'" spae.One de�nes a longitudinal suseptibility orresponding to the response of h~'iwith respet to ~H parallel to an priori �xed vetor ~'0 whih is on the orbitof minima at H = 0. One thinks of this as a \strething" mode of responseof the magnetization. The transverse suseptibility is the response to ~H or-thogonal to h~'i0 and aording to our disussion of instability this is in�nity.One de�nes a (mass)2 tensor whih is ��1 whereupon �2longitudinal � (T�T )and �2transverse = 0. This vanishing of the mass in the transverse diretionis in fat the terminal point of a ontinuous spetrum of exitations, themodes being sorted out aording to Fourier transform. The expression ofthis in relativisti �eld theory (Goldstone's Theorem) is overed in \ModernTimes". The appliation to feromagnetism is very instrutive in this regard.This will be the subjet of the next setion.V. Spin Wave TheoryThe existene of zero mass modes as olletive exitations (i.e. bosons inquantum �eld theory) is neatly revealed in spin wave theory. We here followa proedure, due to Bloh, by studying the single quantum exitations fromthe the ground state (vauum). For simpliity we work with ~Si = ~�i (thePauli matries). SBS is the hoie of orientation of vauum, the only groupsymmetri spei�ation for whih is \all spins parallel" i.e. all in the samespin state. We hoose j 0 > to the \all spins up" i.e. �zi j 0 >= j 0 >.Exitations then are generated by reating down spins, the most low lyingbeing l..'s of ��i j 0 >. These l..'s are determined from[H;'!℄ j 0 >= i!'! j 0 > ; (50)where '! is an \eigen operator", i.e an l.. of ��i j 0 > whih satis�es[H;'!℄ = i!'!. Using the algebra of Pauli matries, along with [~�i; ~�j℄ = 0for i 6= j, we get with H = �12P vij~�i � ~�j,hH; ��i i = �X vij(h�zi ; ��i i�zj + h�+i ; ��i i��j ) =Xj vij(�zj��i ��zi ��j ) : (51)15



Operating on vauum, we gethH; ��i i j 0 >=Xj vij(��i � ��j ) : (52)By translational symmetry Eq.(52) is diagonalized by Fourier transform.De�ning ��q = (1=pN)P ��i ei~q�~Ri one hashH; ��q i j 0 >= i!q��q j 0 >= [ev(0)� ev(q)℄��q j 0 > ; (53)where !q = ev(0)� ev(q) � q2 ; small q : (54)The generalization to the ase of an external �eld is equally interesting.Clearly our vauum j 0 >, orresponds to ~H in the z diretion. So adding toH a term �HP�zi , going through the same steps then leads to!q = ev(0)� ev(q) + H � q2 + H : (55)Thus H indues a (mass)2 in the zero mode whih is linear in the externalbreaking. This is espeially important when applying these ideas to SB�Sand soft pion physis. It is to be noted that the exitation operator, ��q ,redues to the global rotation operator at q = 0 i.e. hH;��q=0i = 0 (at H = 0)in virtue of symmetry whene !(0) = 0, and we see that �2transverse = 0 isindeed the statement that the exitation energy of a ontinuous spetrumvanishes at q = 0 in virtue of symmetry.We also an now see why ontinuous SBS annot apply in its na��ve form tod = 2. The number of spin waves, at temperature ��1, is he�!q � 1i�1 forkT � ev(0) (for higher T they interat and the ideal gas of exitations is noa longer valid approximation). Then the total number of spin waves at lowT is � Z ddq 1e�!q � 1 � ��1 Z ddqq2 ; (56)whih diverges in the infra-red at d = 2 i.e. j 0 > is unstable for H = 0.New methods are therefore required in ontinuous SBS. But for SBS in thedisrete ase, the naive notions are OK, albeit su�ering severe quantitativemodi�ations. 16



Some oneptual issues arise whih we will now address. Their resolutionis of pedagogial interest espeially when ompared with the orrespondingsituation in the gauge theory.We shall �rst display the lassial onept of broken symmetry given bythe familiar piture of an arrow whih points in the \diretion of the vauumstate" piked by the broken symmetry. For example, in the above paragraphsthis arrow points in the z-diretion of group spae. For simpliity, we ontinuewith the example of broken SU(2) symmetry represented by a Pauli matrixsitting on eah lattie site, wherein the Hamiltonian is a group salar asin Eq.(45). The generalization of these onsiderations to any group in anyrepresentation is straightforward.Let j0i be the vauum state: Szj0i = N=2j0i where~S =Xi ~�i2 : (57)Sine the S�(� = x; y; z) represent group generators (i.e. [S�; S�℄ = i���S),one may onstrut a rotated vauum from them. For example, a rotationabout the x-axis of j0i gives the rotated vauum j�i wherej�i = eiSx�j0i : (58)The states j�i and j0i are degenerate sine [H; Sx℄ = 0, H being salar and~S being a group vetor.Sine Sx is a group generator, it follows thath�jSxj�i = 0 ; h�jSyj�i = � sin � ; h�jSzj�i = os � : (59)In this way, the lassial notion of \arrow" is given by the expetation valueof the operator ~S in the di�erent rotated vaua.We shall now prove that, for � �xed, in the limit N ! 1, h�j0i = 0.Moreover, we shall show that the Hilbert spae of exitations built upondi�erent vaua are mutually exlusive as well (in the limit N !1).h0j�i = h0jeiSx�j0i = h0j NYi=1 ei(�xi =2)�j0i17



= NYi=1h0j os (�=2) + i(�xi =2) sin (�=2)j0i= [os (�=2)℄N �!N!1 0 : (60)If instead of the overlap of h0j with j�i we took exited states of h0j, sayontaining n spin wawes, the overlap would then be � [os (�=2)℄N�n. Soeven if n is a �nite fration of N , the result vanishes in the limit. Withmore e�ort one an prove that the exited states built on j�i are orthogonalto exited states of j0i. This remains true until one reahes some thresh-hold number of exitations proportional to N at whih point one approahesritial onditions wherein these naive onsiderations break down.For �nite N one an always onstrut N + 1 orthogonal \vauum" states asone does in the onventional method of quantizing angular momenta. Theseare the states (S�)pj0i ; p = 0; 1::: ; N . States orresponding to a rotation�; ' from j0i are obtainable as a linear ombination of these. For �nite Nsuh states are not, in general, orthogonal. But they beome approximatelyso when their angular di�erene exeeds O(1=pN ). In this way one reoverstheir mutual orthogonality as N !1 for any angular di�erene.VI. Superuidity and SuperondutivityWe briey indiate how SBS applies to these two interesting phenomena.A free boson gas of N partiles ondenses at a temperature for whih thethermal Compton wave length (mkT )�1=2 is O(interpartile distane). ForT < T , a �nite fration of N oupies the state k = 0, and at T = 0 all Nhave zero momenta. For the interating ase, at T = 0 there is only a �nitefration whih ondenses i.e.Da+0 a0E = N0 = �N ; � < 1 : (61)This marosopi oupation of the k = 0 state an be transribed into aSBS as follows. The ommutator ha+0 ; a0i = 1 is negligible with respet toN0 i.e. N0 �= N0 + 1 in good approximation. Then one an treat a0 as a -number. But a0 has a phase. The hoie of this phase is SBS. Bogoljubov [2℄built a system of exitations in analogy to spins waves, by building themfrom a vauum with a �xed omplex -number value of a0. They are linear18



ombinations of the form 	+q = �qa+q +�qa�q (note a�q j 0 >6= 0 beause j 0 >ontains virtual oupation of states with q 6= 0 , in virtue of the interatomiinterations). The Bogoljubov oeÆients �q; �q (with (j�qj2�j�qj2) = 1) areproportional to a0 and a�0 respetively. The point to be made here is that asq! 0, the operator 	+q beomes a rotational generator in the \gauge plane"i.e. it generates in�nitesimal hanges of the phase of a0.Superuidity is then a spetaular example of SBS where the symmetry isU(1). The all important phase plays vital physial role sine if one lets itvary from point to point, its gradient is the veloity of superuid.Superondutivity is an equally fasinating ase of spontaneously brokenU(1) symmetry. Bound states (Cooper pairs) are s states in spin singlets,so ausing orrelations hnk"n�k#i � hnk"i hn�k#i whih are O(1) rather thanthe usual free gas value O(1=N). In terms of a pseudo spin algebra whih isisomorphi to Pauli spin matries given bybk = ak"a�k# � ��kb+k = a+�k"a+k# � �+k1� nk" � n�k# � �zk ; (62)one invents a set of order parameters whih are hbki. Sine bk has a phase, onebreaks U(1) and sine the hamiltonian is invariant under this U(1) symme-try, the interations being v(k; k0)b+k bk0, one has SBS. Note that an otherwiseSU(2) symmetry is broken externally sine the kineti energy in the Hamil-tonian is equal to P "(k)(nk" + n�k#) hene up to a onstant = P "(k)�zk.A typial \vauum" on�guration may be depited as follows as one spansthe Fermi surfae in k-spae
Fig. 6(in the free or normal metal at zero temperature jkj = kf is a point of dis-ontinuity). The residual U(1) symmetry are rotations about the isospinZ axis whih in the above piture is obtained by rotation around the hor-izontal axis. In this example the \moleular" �eld on the kth subsystem is19



"(k) h�zki + P v(k; k0) h�xk0i if the hbki's are hosen real. The zero mass isthen the aforementioned rotation whih for this ground state are exitationswhih are linear ombinations of �yk. There are also fermioni exitationswhih are massive. Their mass orresponds to the energy neessary to breakup a Cooper pair. It is given by h("k � "F )2 + H 2k i1=2 where Hk is the "trans-verse" moleular �eld on ~�k given by v(k; k0) hhbk0i + Db+k0Ei.In the above model the interation v(k; k0) is a small attrative fore thatissues from exhange of phonons (lattie waves) among the eletrons. Inaddition there is a muh stronger fore due to Coulomb interation. WhereasBardeen Cooper Shrie�er [3℄ worked only with the former, Anderson [4℄ andNambu [5℄ analysed the e�ets of the latter. The fermioni mass is essentiallyuna�eted, but the olletive mode is ompletely modi�ed so as to beomethe massy plasmon. It is a "longitudinal" photon. There are also massy\transverse" photons. These give rise to the Meissner e�et and the uxtubes of type II superondutors. The transverse and longitudinal massesare unequal sine their origins di�er dynamially. The plasmon uses the totaleletron density whereas the transverse photons refers to the ondensate (i.e.the hbki).These e�ets were the preursor of the BEH mehanism whih is studied in\Modern Times". Then beause there is longitudinal and transverse isotropyin the quantum relativisti quantum �eld vauum, there is only one mass.VII. Spontanously Broken Chiral Symmetry(SB�S)One of the �rst exerises for students in �eld theory is the alulation of theeletron's self mass �m, in QED with the result to O(e2)�m � e2m0 ln(�=m0) ; (63)where m0 is the bare mass, � the ut-o�. The important point is that�m = 0, if m0 = 0. It is this irumstane that redues the divergene of�m from the na��ve expetation that is linear in � to logarithmi. One saysthat the mass is \proteted" by hiral symmetry. Chiral symmetry for asingle fermion �eld is invariane of the ation under	! ei�5	 : (64)20



Whereas under normal (global) gauge transformations the L and R ompo-nents transform the same way (where L;R = [(1 � 5) =2℄	) they transformwith opposite signs under the hiral gauge transformation.Sine 	 = 	+0 one has under Eq.(64) 	! 	ei�5. In onsequene		 ! (os 2�) 		 + (sin 2�) 	i5		i5	 ! (� sin 2�)	i5	+ (os 2�)		 : (65)Here 5 is hermitian with (5)2 = 1 and f5; �g = 0. Thus under Eq.(65) theouple �		;	(i5)	� transforms as a vetor under hiral transformationsi.e. it rotates in the \hiral gauge plane" with angle (2�).Whereas the eletromagneti interation, as well the kineti term in the a-tion are hiral invariants (sine f5; �g = 0) thereby seuring the invarianeof 	�	, the mass term (m0		) is not, due to Eq.(65). One onsequeneis that every term in pertubation theory gives m = 0 if m0 = 0. This iseasily heked by making the ount of the number of  matries appearingin verties and fermion propagators. It is odd and the trae of suh a termvanishes. A mass term appearing in the self energy is alulated by takingthe trae. We shortly give a more syntheti demonstration of this fat fromthe hiral Ward identity.Inspired by the BCS theory of superondutivity, wherein a mass gap was de-rived non perturbatively (through Cooper bound state formation), Nambu [6℄showed that the same ould arise in quantum �eld theory, the prie beingthe existene of a dynamially generated pseudosalar meson, whih he thenidenti�ed with the pion. During this same period, Gell-Mann and Levy [7℄proposed a hiral invariant ation whih ontained salar and pseudosalar�elds oupled to the fermion (Yukawa oupling). SB�S was �rst generatedthrough the bosoni ation (e�etive potential method) wherein the salarpiked up an expetation value and the pseudosalar had zero mass in on-sequene of SBS kinematis. At low momentum sales the two methods giveequivalent physial results, whereas at large momenta the omposite hara-ter of the e�etive boson �elds in Nambu's methods ould give a onsiderablemodi�ation of the dynamis, so as to augment the width of the massy salar(i.e. the salar whih orresponds to the strething mode or longitudinal sus-eptibility in the magneti ase).It is the Gell-Mann L�evy phenomenologial approah whih until the present21



time has prevailed in standard model researh in the implementation of theBEH mehanism. Researh beyond the standard model is so tenuous thatall avenues must be onsidered open. One also must bear in mind that theoriginal dynamial mehanism of SB�S of Nambu Jona-Lasinio is now sup-planted by the QCD on�nement mehanism. In this ase the zitterbewegungof quarks at the end of eletri ux tubes (the model for mesons) providesfor the \onstituent" quark mass. The hiral symmetry of QCD then impliesthe existene of pions. These have zero mass if the \urrent" quark mass iszero and have a (mass)2 proportional to the latter when it is not zero. Anexeption is the ninth pseudosalar of the eightfold way whih has mass dueto an anomaly. The origin of quark and lepton masses in terms of some ulti-mate hiral, super or GUTS symmetry remains elusive, the Yukawa ouplingin standard model reseah being most likely the phenomenologial expressionof a deeper theory.In this review we shall adhere to Nambu's original approah sine it arries apedagogial message of both power and elegane. We �rst review the simplenon perturbative approah of Nambu Jona-Lasinio [8℄, not that it need beof diret appliability, but rather beause it sets the sene for more generalonsiderations.Consider a hiral invariant four point interation (suh as � h	�	i2 ) orits Fierz equivalent � h(		)2 � (	5	)i2. In lowest order the fermion selfenergy, �, is given by the graph (Fig.7)
Fig. 7where one may imagine some non loality over a distane ��1 at the vertex(say due to the exhange of a very heavy meson) supplies a U-V ut-o�.Then �(p) � g Z � � d4k�(k + p)�� ; (66)where irrelevant fators of O(1) are dropped and � are the relevant  matries(e.g. take � for de�niteness). Then tr� = 0 and �m = 0.22



Let us now make this self onsistent by iterating in the fermion propagatorso that �(p) � g Z � d4k � 1�(k + p)� � �(k + p)� : (67)This orresponds to an in�nite sum of graphs often alled rainbow graphsi.e a rainbow is built on every fermion line ad in�nitum. (It is amusing thatone an build the Weiss moleular �eld of ferromagnetism using exatly thesame set of graphs in a �eld theory whih is equivalent to the original spinproblem).Let � = A(p)�p� +M(p) and take the trae to giveM(p) � g Z � d4k M(p + k)(p + k)2 �M2(p+ k) ; (68)where we have not inluded the e�et due to the form fator A. The ensuingintegral equation is diÆult to solve but the ideas are brought out settingM(p) = M= onstant so as to give an eigenvalue equation for M . Takinginto aount fators for i, one gets a solution by making a Wik rotationprovided the fore is attrative (g < 0). This is the equivalent to the gapequation in superondutors.Of partiular interest in partile theory is the aompanying pseudosalar.Note the SB�S; one ould have takenM as a linear ombination ofM1+iM25with M2 = M21 +M22 . Choosing M2 = 0 is a hoie of diretion in the hiralgauge plane, along the axis 		. Then 	5	 should propagate with zeromass. It does as seen from its propagator (� 1=1 � g�) (Fig 8)
Fig. 8�(p) = tr Z d4k � 1�(p + k)� �M � 1�k� �M : (69)At q = 0 one has �(0) ' Z d4kk2 �M2 ; (70)23



and from the eigenvalue ondition Eq.(68) one heks 1 � g�(0) = 0. Thediligent reader may hek all the kinemati fators of O(1). Thus the prop-agator of 	5	 at q = 0 has a pole and one may hek (for example bydispersion relations) that it orresponds to a pole at q2 = 0 in the moregeneral ase when q� 6= 0. ( Here q2 � q20 � q2 )This result is general, powerful and independent of approximations that havebeen made. That is the true powerful aomplishement of Nambu whih wenow present.The hiral Ward identity, established in the same way as the usual vetorWard identity through use of the symmetry of the ation under hiral trans-formations, reads limq�!0 q���5 = 5�(p + q) + �(p)5 : (71)��5 is the vertex funtion formed from the hiral soures of momentum q�whih satters a fermion from p� to p� + q�. As q� ! 0, one sees that theform fator A(p) drops out of Eq.(71) (sine f5; �g = 0). Whenelimq�!0 q���5 = 2M(p)5 ; ��5 ! 2M(p)5q�q2 : (72)This pole at q2 = 0 is the signal of a pseudosalar meson whih ouples tothe fermion �eld through the mass of the fermion.Nambu reognized that in this way he had disovered the key to the suessof the elebrated Goldberger-Treiman relation, one of the gems of partilephysis in the 1950's-1960's, to whih we now turn so losing out this reviewof the Paleolithi Age.The original derivation by Goldberger and Treiman was based on a dispersionrelation argument, involving two assumptions: an unsubtrated dispersionrelation for one of the form fators ourring in the matrix element for �deay (see below) and pion dominane of the same. The quantitative suesswas remarkable, but there was little understanding of how to justify theassumptions. This was supplied by Nambu as follows. Whereas the Wardidentity involves �elds, one an also work diretly with matrix elements ofurrents among physial states. In partiular the matrix element of the axial24



urrent between nuleons is observed as the Gamow-Teller transition in �deay. Its most general form an be shown to behN jj�5jN 0i = FA(q2)uN (p+q)�5uN 0(p)+Fp(q2)uN (p+q)q�5uN(p) ; (73)where q� is the 4-momentum tranfer arried by j�5.Let us suppose that ��j�5 = 0 (i.e. hiral invariane). Then taking thedivergene of Eq.(73) gives0 = h(mN +mN 0)FA(q2) + q2Fp(q2)i [uN (p+ q)5uN(p)℄ ; (74)where we have used f5; �g = 0 and the Dira equation (�p� �M)	 = 0.As q2 ! 0, one �ndsFp(q2)!q2!0 (mN +mN 0) 1q2FA(0) ; (75)i.e. F (p) has a pole whih like ��5 (Eq.(72)) has residue proportional to thefermion mass, here the nuleon. Eqs. (74) and (75) have the interpretationgiven by the graphial struture for Fp (Fig.9)
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Fig. 9The dark irle in the drawing is h0 jj�5j �i = �if�q�. The dotted line isthe pion propagator (= 1=q2) and the light irle is g�NN 0uN 05uN , whereg�NN 0 is the pion nuleon oupling onstant. The residue ondition impliedby Eq.(75) is f�g�NN 0 = (mN +mN 0)FA : (76)All quantities are measured; f� is the pion deay onstant into leptons, FAthe Gamow-Teller � deay onstant, g�NN 0 is found from �N sattering.Agreement is found to O(2%). The deviation is attributed to the fat that25



��j�5 does not quite vanish and this is reeted by the fat that m2� 6= 0.Rather h0 j��j�5j�i = q2f� = m2�f� ; (77)sine the pion is \on shell". Nambu attributed m2� 6= 0, (but small on thesale of hadron physis) to a small external breaking of hiral invarianeindued by a bare mass, m0. He then showed that m2� � m0M where M=hadron sale (m0 � 10Mev;M � 1Gev;m� � 130Mev). Note the analogyto Eq.(55).Now return to Eqs.(73), (74) and (75). The l.h.s. of Eq.(74) now ontains thenon vanishing value hN j��j�5jN 0i. Nevertheless the residue relation Eq.(76)should not hange signi�antly. The (momentum transfer)2 in g�NN 0 andin FA are now shifted by O(m2�). Therefore Eq.(76) ought to hold good atthe 1% level. The orretions will be enoded in the ontribution of highmass states not inluded in the pion dominane estimate of Fp. Assumingthis true, one replaes Eq.(75) byFp(q) ' (mN +mN 0) 1q2 �m2�FA(0) ; (78)then yields Eq (76). This is the famous priniple of PCAC wherein pionmatrix elements are related to matrix elements of the axial urrent. Seereferene [9℄ for the phenomenology development of soft pion physis. Whenunited with the Gell-Mann urrent algebra it beomes a very powerful toolwhih interrelates all kinds of hadroni phenomena, thus beoming one of thedominant elements of partile physis throughout the 1960's and early 70's.The suess of the whole development bit by bit led to the QCD quark modeland on�nement whih are now onsidered the theoretial bases of hadronphysis as well as hadron-lepton interations.In the preeedings paragraphs, we have seen the important role that SBS hasplayed in partile physis when the symmetry that has been broken is global(the hiral group). \Modern Times" is devoted to the other important faetof this development, to wit: the BEH mehanism wherein one adds to theprevious onsideration the ompliation of gauge symmetry. This hapterlead to the eletroweak uni�ation. 26
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