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I. IntrodutionIt was known in the �rst half of the twentieth entury that, at the atomilevel and at larger distane sales, all phenomena appear to be governed bythe laws of lassial general relativity and of quantum eletrodynamis.Gravitational and eletromagneti fores are long range and hene an bepereived diretly without the mediation of highly sophistiated tehnialdevies. The development of large sale physis, initiated by the Galileaninertial priniple, is surely tributary to this irumstane. It then took aboutthree enturies to ahieve a suessful desription of long range e�ets.The disovery of subatomi strutures and of the onomitant weak andstrong interation short range fores raised the question of how to ope withshort range fores in quantum �eld theory. The Fermi theory of weak inter-ations, formulated in terms of a four Fermi point-like urrent-urrent inter-ation, was preditive in lowest order perturbation theory and suessfullyonfronted many experimental data. However, it was learly inonsistentin higher order beause of unontrollable quantum divergenes at high en-ergies. In order words, in ontradistintion with quantum eletrodynamis,the Fermi theory is not renormalizable. This diÆulty ould not be solved bysmoothing the point-like interation by a massive, and therefore short range,harged vetor partile exhange (the so-alled W+ and W� mesons); theo-ries with fundamental massive harged vetor mesons are not renormalizableeither. In the early nineteen sixties, there seemed to be insuperable obstalesfor formulating a theory with short range fores mediated by massive vetors.The solution of the latter problem ame from the theory proposed in 1964 byBrout and Englert [1℄ and by Higgs [2, 3℄. The Brout-Englert-Higgs (BEH)theory is based on a mehanism, inspired from the spontaneous symmetrybreaking of a ontinuous symmetry, disussed in the previous talk by RobertBrout, adapted to gauge theories and in partiular to non abelian gaugetheories. The mehanism uni�es long range and short range fores mediatedby vetor mesons, by deriving the vetor mesons masses from a fundamentaltheory ontaining only massless vetor �elds. It led to a solution of the weakinteration puzzle and opened the way to modern perspetives on uni�edlaws of nature.Before turning to an expos�e of the BEH mehanism, we shall in setion II1



review, in the ontext of quantum �eld theory, the analysis given by RobertBrout of the spontaneous breaking of a ontinuous symmetry. Setion III ex-plains the BEH mehanism. We present the quantum �eld theory approahof Brout and Englert wherein the breaking mehanism for both abelian andnon abelian gauge groups is indued by salar bosons. We also present theirapproah in the ase of dynamial symmetry breaking from fermion onden-sate. We then turn to the equation of motion approah of Higgs. Finallywe explain the renormalization issue. In setion IV, we briey review thewell-known appliations of the BEH mehanism with partiular emphasis ononepts relevant to the quest for uni�ation. Some omments on this subjetare made in setion V.II. Spontaneous Breaking of a Global SymmetrySpontaneous breaking of a Lie group symmetry was disussed by RobertBrout in \The Paleoliti Age". I review here its essential features in thequantum �eld theory ontext.Reall that spontaneous breakdown of a ontinuous symmetry in ondensedmatter physis implies a degeneray of the ground state, and as a onse-quene, in absene of long range fores, olletive modes appear whose ener-gies go to zero when the wavelength goes to in�nity. This was exempli�edin partiular by spin waves in a Heisenberg ferromagnet. There, the brokensymmetry is the rotation invariane.Spontaneous symmetry breaking was introdued in relativisti quantum �eldtheory by Nambu in analogy to the BCS theory of superondutivity. Theproblem studied by Nambu [4℄ and Nambu and Jona-Lasinio [5℄ is the spon-taneous breaking of hiral symmetry indued by a fermion ondensate1. Thehiral phase group exp(i5�) is broken by the fermion ondensate h �  i 6= 0and the massless mode is identi�ed with the pion. The latter gets its tinymass (on the hadron sale) from a small expliit breaking of the symmetry,just as a small external magneti �eld imparts a small gap in the spin wavespetrum. This interpretation of the pion mass onstituted a breakthrough inour understanding of strong interation physis. General features of sponta-neous symmetry breakdown in relativisti quantum �eld theory were further1See the detailed disussion in Brout's leture, setion VII.2



formalized by Goldstone [6℄. Here, symmetry is broken by non vanishing va-uum expetation values of salar �elds. The method is designed to exhibitthe appearane of a massless mode out of the degenerate vauum and doesnot really depend on the signi�ane of the salar �elds. The latter ouldbe elementary or represent olletive variables of more fundamental �elds,as would be the ase in the original Nambu model. Compositeness a�etsdetails of the model onsidered, suh as the behavior at high momentumtransfer, but not the existene of the massless exitations enoded in thedegeneray of the vauum.Let us �rst illustrate the ourrene of this massless Nambu-Goldstone (NG)boson in a simple model of a omplex salar �eld with U(1) symmetry [6℄.The Lagrangian density,L = �������� V (���) with V (���) = ��2���+ �(���)2 ; � > 0 ; (1)is invariant under the U(1) group � ! ei��. The U(1) symmetry is alledglobal beause the group parameter � is onstant in spae-time. It is brokenby a vauum expetation value of the �-�eld given, at the lassial level,by the minimum of V (���). Writing � = (�1 + i�2)=p2, one may hooseh�2i = 0. Hene h�1i2 = �2=� and we selet, say, the vauum with h�1ipositive. The potential V (���) is depited in Fig.1 .
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Around the unbroken vauum the �eld �1 has negative mass and aquires apositive mass around the broken vauum where the �eld �2 is massless. Thelatter is the NG boson of broken U(1) symmetry. The massive salar desribesthe utuations of the order parameter h�1i. Its mass is the analog of theinverse longitudinal suseptibility of the Heisenberg ferromagnet disussedby Robert Brout while the vanishing of the NG boson mass orresponds tothe vanishing of its inverse transverse suseptibility. The salar boson �1 isalways present in spontaneous breakdown of a symmetry. In the ontext ofthe BEH mehanism analyzed in the following setion, it was introdued byBrout and myself, and by Higgs. We shall label it the BEH boson2 (Fig.1).In the lassial limit, the origin of the massless NG boson �2 is learly illus-trated in the Fig.1. The vauum haraterized by the order parameter h�1i isrotated into an equivalent vauum by the �eld �2 at zero spae momentum.Suh rotation osts no energy and thus the �eld �2 at spae momenta !q= 0has q0 = 0 on the equations of motion, and hene zero mass.This an be formalized and generalized by noting that the onserved Noetherurrent J� = �1���2 � �2���1 gives a harge Q = R J0d3x. The operatorexp (i�Q) rotates the vauum by an angle �. In the lassial limit, thisharge is, around the hosen vauum, Q = R h�1i�0�2d3x and involves only�2 at zero momentum. In general, h[Q;�2℄i = ih�1i is non zero in the hosenvauum. This implies that the propagator ��hTJ�(x) �2(x0)i annot vanishat zero four-momentum q beause its integral over spae-time is preiselyh[Q;�2℄i. Expressing the propagator in terms of Feynman diagrams we seethat the �2-propagator must have a pole at q2 = 0. The �eld �2 is themassless NG boson.The proof is immediately extended to the spontaneous breaking of a semi-simple Lie group global symmetry. Let �A be salar �elds spanning a rep-resentation of the Lie group G generated by the (antihermitian) matriesT aAB. If the dynamis is governed by a G-invariant ation and if the po-tential has minima for non vanishing �A,s , symmetry is broken and thevauum is degenerate under G-rotations. The onserved harges are Qa =R ���B T aBA �A d3x. As in the abelian ase above, the propagators of the�elds �B suh that h[Qa; �B℄i = T aBA h�Ai 6= 0 have a NG pole at q2 = 0.2It is often alled the Higgs boson in the literature.4



III. The BEH Mehanism- From global to loal symmetryThe global U(1) symmetry in Eq.(1) an be extended to a loal U(1) in-variane �(x)! ei�(x)�(x) by introduing a vetor �eld A�(x) transformingaording to A�(x)! A�(x) + (1=e)���(x). The orresponding Lagrangiandensity is L = D���D��� V (���)� 14F��F �� ; (2)with ovariant derivative D�� = ���� ieA�� and F�� = ��A� � ��A�.Loal invariane under a semi-simple Lie group G an be realized by extendingthe Lagrangian Eq.(2) to inorporate non-abelian Yang-Mills vetor �elds Aa�LG = (D��)�A(D��)A � V � 14F a��F a�� ; (3)where(D��)A = ���A � eAa�T aAB�B; F a�� = ��Aa� � ��Aa� � efabAb�A� :(4)Here, �A belongs to the representation of G generated by T aAB and thepotential V is invariant under G.The suess of quantum eletrodynamis based on loal U(1) symmetry, andof lassial general relativity based on a loal generalization of Poinare in-variane, provides ample evidene for the relevane of loal symmetry forthe desription of natural laws. One expets that loal symmetry has afundamental signi�ane rooted in ausality and in the existene of exatonservation laws at a fundamental level, of whih harge onservation ap-pears as the prototype. As an example of the strength of loal symmetry weite the fat that onservation laws resulting from a global symmetry aloneare violated in presene of blak holes.The loal symmetry, or gauge invariane, of Yang-Mills theory, abelian ornon abelian, apparently relies on the massless harater of the gauge �eldsA�, hene on the long range harater of the fores they transmit, as theaddition of a mass term for A� in the Lagrangian Eq.(2) or (3) destroysgauge invariane. But short range fores, suh as the weak interation fores,seem to be as fundamental as the eletromagneti ones despite the apparent5



absene of exat onservation laws. To reah a basi desription of suh foresone is tempted to link the violation of onservation to a mass of the gauge�elds whih would arise from spontaneous symmetry breaking. However theproblem of spontaneous broken symmetry is di�erent for global and for loalsymmetry.To understand the di�erene, let us break the symmetries expliitly. To theLagrangian Eq.(1) we add the term�h� + ��h ; (5)where h; h� are onstant in spae time. Let us take h real. The preseneof the �eld h breaks expliitly the global U(1) symmetry and the �eld �1always develops an expetation value. When h ! 0, the symmetry of theation is restored but, when the symmetry is broken by a minimumof V (���)at j�j 6= 0, we still have h�1i 6= 0. The tiny h-�eld simply piks up oneof the degenerate vaua in perfet analogy with the in�nitesimal magneti�eld whih orients the magnetization of a ferromagnet. As in statistialmehanis, spontaneous broken global symmetry an be reovered in the limitof vanishing external symmetry breaking. The degeneray of the vauum anbe put into evidene by hanging the phase of h; in this way, we an reahin the limit h! 0 any U(1) rotated vauum.When the symmetry is extended from global to loal, one an still break thesymmetry by an external \magneti" �eld. However in the limit of vanishingmagneti �eld the expetation value of any gauge dependent loal operatorwill tend to zero beause, in ontradistintion to global symmetry, it ost noenergy in the limit to hange the relative orientation of neighboring \spins";there is then no ordered on�guration in group spae whih an be protetedfrom disordering utuations. As a onsequene, the vauum is generiallynon degenerate and points in no partiular diretion in group spae as theexternal �eld goes to zero. Loal gauge symmetry annot be spontaneouslybroken3 and the vauum is gauge invariant4. Realling that the expliit3For a detailed proof, see referene [8℄.4Note that for global symmetry breaking, one an always hoose a linear ombinationof degenerate vaua whih is invariant under, say, the U (1) symmetry. This hoie has noobservable onsequenes and only masks the degeneray of the vauumwhih is guaranteedby a superseletion rule. The Hilbert spae splits indeed, as in the ferromagneti aseanalyzed by Robert Brout (setion V of \The Paleoliti Age"), into an in�nite number oforthogonal spaes formed by all the �nite exitations on eah degenerate vauum.6



presene of a gauge vetor mass breaks gauge invariane, we are thus faedwith a dilemma. How an gauge �elds aquire mass without breaking theloal symmetry?- Solving the dilemmaIn perturbation theory, gauge invariant quantities are evaluated by hoosinga partiular gauge. One imposes the gauge ondition by adding to the ationa gauge �xing term and one sums over subsets of graphs satisfying the WardIdentities5.Consider the Yang-Mills theory de�ned by the Lagrangian Eq.(3). Let ushoose a gauge whih preserves Lorentz invariane and a residual global Gsymmetry. This an be ahieved by adding to the Lagrangian a gauge �xingterm (2�)�1��A�a ��Aa� . The gauge parameter � is arbitrary and has noobservable onsequenes.
A

B

q Fig. 2

(a)

(c)

(b)

The global symmetry an now be spontaneously broken, for suitable poten-5To this end, it is often neessary, in partiular for non abelian gauge theories, toinlude Fadeev-Popov ghosts terms in the ation. These ontribute when losed gauge�eld loops are inluded in the omputation.7



tial V , by non zero expetation values h�Ai of BEH �elds. In Fig.2 we haverepresented utuations of this parameter in the spatial q-diretion and inan internal spae diretion orthogonal to the diretion A. The orthogonaldiretion depited in the �gure has been labeled B. Fig.2a pitures thespontaneously broken vauum of the gauge �xed Lagrangian. Fig.2b and 2represent utuations of �nite wavelength �.Clearly as �!1 these utuations an only indue global rotations in theinternal spae. In absene of gauge �elds, suh utuations would give rise,as in spontaneously broken global ontinuous symmetries, to massless NGmode. In a gauge theory, utuations of h�Ai are just loal rotations in theinternal spae and hene are unobservable gauge utuations. Hene the NGbosons indue only gauge transformations and its exitations disappear fromthe physial spetrum.The degrees of freedom of the NG �elds were present in the original gaugeinvariant ation and annot disappear. But what makes loal internal spaerotations unobservable in a gauge theory is preisely the fat that they anbe absorbed through gauge transformations by the Yang-Mills �elds. Theabsorption of the long range NG �elds renders massive those gauge �elds towhih they are oupled, and transfers to them the missing degrees of freedomwhih beomes their third polarization.We shall see in the next setions how these onsiderations are realized inquantum �eld theory, giving rise to an apparent breakdown of symmetry:despite the absene of spontaneous loal symmetry breaking, gauge invariantvetor masses will be generated in a oset G=H, leaving long range fores onlyin a subgroup H of G.- The quantum �eld theory approah [1℄�) Breaking by BEH bosonsLet us �rst examine the abelian ase as realized by the omplex salar �eld� exempli�ed in Eq.(2).In the ovariant gauges, the free propagator of the �eld A� isD0�� = g�� � q�q�=q2q2 + � q�q�=q2q2 ; (6)8



where � is the gauge parameter. It an be put equal to zero, as in theLandau gauge used in referene [1℄, but we leave it arbitrary here to illustrateexpliitly the role of the NG-boson.
Gauge field

Complex scalar field

Fig. 3In absene of symmetry breaking, the lowest order ontribution to the self-energy, arising from the ovariant derivative terms in Eq.(2), is given by theone-loop diagrams of Fig.3. The self-energy (suitably regularized) takes theform of a polarization tensor��� = (g��q2 � q�q�) �(q2) ; (7)where the salar polarisation �(q2) is regular at q2 = 0, leading to the gauge�eld propagator D�� = g�� � q�q�=q2q2[1��(q2)℄ + � q�q�=q2q2 : (8)The polarization tensor in Eq.(7) is transverse and hene does not a�et thegauge parameter �. The transversality of the polarization tensor reets thegauge invariane of the theory6 and, as we shall see below, the regularityof the polarization salar signals the absene of symmetry breaking. Thisguarantees that the A�-�eld remains massless.6The transversality of polarisation tensors is a onsequene of the Ward Identitiesalluded to in the preeding setion. 9



Symmetry breaking adds tadpole diagrams to the previous ones. To see thiswrite � = 1p2(�1 + i�2) h�1i 6= 0 : (9)The BEH �eld is �1 and the NG �eld �2. The additional diagrams aredepited in Fig.4.
BEH tadpole

NG propagator

Fig. 4In this ase, the polarisation salar �(q2) in Eq.(7) aquires a pole�(q2) = e2h�1i2q2 ; (10)and, in lowest order perturbation theory, the gauge �eld propagator beomesD�� = g�� � q�q�=q2q2 � �2 + � q�q�=q2q2 ; (11)whih shows that the A�-�eld gets a mass�2 = e2h�1i2 : (12)The generalization of Eqs.(7) and (10) to the non abelian ase desribed bythe ation Eq.(3) is straightforward. One gets from the graphs depited inFig.5,
a

bCa

b

Fig. 5�ab�� = (g��q2 � q�q�)�ab(q2) ; (13)10



�ab(q2) = e2h��BiT �aBCT bCAh�Aiq2 ; (14)from whih follows the mass matrix�ab = e2h��BiT �aBCT bCAh�Ai : (15)In terms of the non-zero eigenvalues �a of the mass matrix the propagatorfor the massive gauge vetors takes the same form as Eq.(11)Da�� = g�� � q�q�=q2q2 � �a2 + � q�q�=q2q2 : (16)The gauge invariane is expressed, as it was in absene of symmetry breaking,through the transversality of the polarization tensors Eqs.(7) and (13). Thesingular 1=q2 ontributions to the polarization salars Eqs.(10) and (14),whih preserve transversality while giving mass to the gauge �elds, stem fromthe long range NG boson �elds enoded in their 1=q2 propagator. We shallverify below that this pole has no observable e�et as suh. On the otherhand, its absorption in the gauge �eld propagator transfers the degrees offreedom of the NG bosons to the third degree of polarization of the massivevetors. Indeed, on the mass shell q2 = �a2, one easily veri�es that thenumerator in their propagator Eq.(16) is:g�� � q�q�q2 = 3X�=1 e(�)� :e(�)� ; q2 = �a2 ; (17)where the e(�)� are the three polarization vetors whih are orthonormal inthe rest frame of the partile.In this way, the NG bosons generate massive propagators for those gauge�elds to whih they are oupled. Long range fores only survive in the sub-group H of G whih leaves invariant the non vanishing expetation valuesh�Ai.Note that (as in the abelian ase) the salar potential V does not enter theomputation of the gauge �eld propagator. This is beause the trilinear termarising from the ovariant derivatives in the Lagrangian Eq.(3), whih yieldsthe seond graph of Fig.5, an only ouple the tadpoles to other salar �elds11



through group rotations and hene ouple them only to the NG bosons.These are the eigenvetors with zero eigenvalue of the salar mass matrixgiven by the quadrati term in the expansion of the potential V around itsminimum. Hene the mass matrix deouples from the tadpole at the treelevel onsidered above. An expliit example of this feature will be given forthe Lagrangian Eq.(32).�) Dynamial symmetry breakingThe symmetry breaking giving mass to gauge vetor bosons may arise fromthe fermion ondensate breaking hiral symmetry. This is illustrated by thefollowing hiral invariant LagrangianL = LF0 � eV � � V� � eA � �5 A� � 14F��F ��(V ) � 14F��F ��(A) : (18)Here F��(V ) and F��(A) are abelian �eld strength for U(1)�U(1) symmetry.Chiral anomalies are eventually aneled by adding in the required additionalfermions.The Ward identity for the hiral urrentq���5(p + q=2; p� q=2) = S�1(p+ q=2)5 + 5S�1(p� q=2) ; (19)shows that if the fermion self-energy �p��2(p2) � �1(p2) aquires a nonvanishing �1(p2) term, thus a dynamial mass m at �1(m2) = m (taking forsimpliity �2(m2) = 1); the axial vertex ��5 develops a pole at q2 = 0. Inleading order in q, we get ��5!2m5 q�q2 : (20)The pole in the vertex funtion indues a pole in the suitably regularizedgauge invariant polarization tensor �(A)�� of the axial vetor �eld A� depitedin Fig.6 �(A)�� = e2A(g��q2 � q�q�)�(A)(q2) ; (21)with limq2!0 q2�(A)(q2) = �2 6= 0 : (22)The �eld A� aquires in this approximation7 a gauge invariant mass � .7The validity of the approximation, and in fat of the dynamial approah, rests on thehigh momentumbehavior of the fermion self energy, but this problem will not be disussedhere. 12
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fermion propagator

Fig.6This example illustrates the fat that the transversality of the polarizationtensor used in the quantum �eld theoreti approah to mass generation isa onsequene of a Ward identity. This is true whether vetor masses arisethrough fundamental fundamental BEH bosons or through fermion onden-sate. The generation of gauge invariant masses is therefore not ontingentupon the \tree approximation" used to get the propagators Eqs.(11) and(16). It is a onsequene of the 1=q2 singularity in the vauum polarisationsalars Eqs.(10), (13) or (22 ) whih omes from NG boson ontribution.- The equation of motion approah [2, 3℄Shortly after the above analysis was presented, Higgs wrote two papers. Inthe �rst one [2℄ , he showed that the proof of the Goldstone theorem [6, 7℄,whih states that, in relativisti quantum �eld theory, spontaneous symmetrybreaking of a ontinuous global symmetry implies zero mass NG bosons, failsin the ase of gauge �eld theory. In the seond paper [3℄, he derived the BEHtheory in terms of the lassial equations of motion, whih he formulated forthe abelian ase.From the ation Eq.(2), taking as in Eq.(9), the expetation value of theBEH boson to be h�1i, and expanding the NG �eld �2 to �rst order, one getsthe lassial equations of motion to that order��f���2 � eh�1iA�g = 0 ; (23)��F �� = eh�1if���2 � eh�1iA�g : (24)De�ning B� = A� � 1eh�1i���2 and G�� = ��B� � ��B� = F�� ; (25)one gets ��B� = 0 ; ��G�� + e2h�1i2B� = 0 : (26)Eq.(26) shows that B� is a massive vetor �eld with mass squared e2h�1i2 inaordane with Eq.(12). 13



In this formulation, we see learly how the Goldstone boson is absorbed intoa rede�ned massive vetor �eld whih has no longer expliit gauge invariane.The same phenomenon in the quantum �eld theory approah is related tothe unobservability of the 1=q2 pole mentioned in the disussion of Eq.(15);this will be made expliit in the next setion.The equation of motion approah is lassial in harater but, as pointed outby Higgs [3℄, the formulation of the BEH mehanism in the quantum �eldtheory terms of referene [1℄ indiates its validity in the quantum regime.We now show how the latter formulation signals the renormalizability of theBEH theory.- The renormalization issueThe massive vetor propagator Eq.(16) di�ers from a onventional free mas-sive propagator in two respets. First the presene of the unobservable longi-tudinal term reets the arbitrariness of the gauge parameter �. Seond theNG pole at q2 = 0 in the transverse projetor g���q�q�=q2 is unonventional.Its signi�ane is made lear by expressing the propagator of the A� �eld inEq.(16) as (putting � to zero)Da�� � g�� � q�q�=q2q2 � �a2 = g�� � q�q�=�a2q2 � �a2 + 1�a2 q�q�q2 : (27)The �rst term in the right hand side of Eq.(27) is the onventional massivevetor propagator. It may be viewed as the (non-abelian generalization ofthe) free propagator of the B� �eld de�ned in Eq.(25) while the seond termis a pure gauge propagator due to the NG boson ([1=eh�1i℄���2 in Eq.(25) )whih onverts the A� �eld into this massive vetor �eld B�.The propagator Eq.(16) whih appeared in the �eld theoreti approah on-tains thus, in the ovariant gauges, the transverse projetor g�� � q�q�=q2 inthe numerator of the massive gauge �eld Aa� propagator. This is in sharpontradistintion to the numerator g�� � q�q�=�a2 harateristi of the on-ventional massive vetor �eld B� propagator. It is the transversality of theself energy in ovariant gauges, whih led in the \tree approximation" to thetransverse projetor in Eq.(16). As already mentioned, the transversality isa onsequene of a Ward identity and therefore does not depend on the treeapproximation. This fat is already suggested from the dynamial example14



presented above but was proven in more general terms in a subsequent pub-liation8 [9℄. The importane of this fat is that the transversality of theself-energy in ovariant gauges determines the power ounting of irreduiblediagrams. It is then straightforward to verify that the BEH quantum �eldtheory formulation is renormalizable by power ounting.On this basis we suggested that the BEH theory onstitutes indeed a on-sistent renormalizable �eld theory [9℄. To prove this statement, one mustverify that the theory is unitary, a fat whih is not apparent in the \renor-malizable" ovariant gauges beause of the 1=q2 pole in the projetor, butwould be manifest in the \unitary gauge" de�ned in the free theory by theB� propagator. In the unitary gauge however, renormalization from powerounting is not manifest. The equivalene, at the free level, between the A�and B� free propagators, whih is only true in a gauge invariant theory wheretheir di�erene is the unobservable NG propagator appearing in Eq.(27), isthe lue of the onsisteny of the BEH theory. A full proof that the theoryis renormalizable and unitary was ahieved by 't Hooft and Veltman [10℄.IV. ConsequenesThe most dramati appliation of the BEH mehanism is the eletroweaktheory, amply on�rmed by experiment. Considerable work has been done,using the BEH mehanism, to formulate Grand Uni�ed theories of non grav-itational interations. We shall summarize here these well known ideas andthen evoke the onstrution of regular monopoles and ux lines using BEHbosons, beause they raise potentially important oneptual issues. We shallalso mention briey the attempts to inlude gravity in the uni�ation quest,in the so alled M-theory approah, and fouses in this ontext on an inter-esting geometrial interpretation of the BEH mehanism.- The eletroweak theory [11℄In the eletroweak theory, the gauge group is taken to be SU(2) � U(1)with orresponding generators and oupling onstants gAa�T a and g0B�Y 0.8The proof given in referene [9℄ was not omplete beause losed Yang-Mills loops,whih would have required the introdution of Fadeev-Popov ghosts were not inluded.15



The SU(2) ats on left-handed fermions only. The eletromagneti hargeoperator is Q = T 3+Y 0 and the eletri harge e is usually expressed in termsof the mixing angle � as g = e= sin �; g0 = e= os �. The BEH bosons (�+; �0)are in a doublet of SU(2) and their U(1) harge is Y 0 = 1=2. Breakingours in suh a way that Q generates an unbroken subgroup, oupled towhih is the massless photon �eld. Thus the vauum is haraterized byh�i = 1=p2 (0; v).Using Eqs.(12) and (15) we get the mass matrixj�2j=v24 g2 0 0 00 g2 0 00 0 g02 �gg00 0 �gg0 g2whose diagonalization yields the eigenvaluesM2W+ = v24 g2 ; M2W� = v24 g2 ; M2Z = v24 (g02 + g2) ; M2A = 0 : (28)This permits to relate v to the the Fermi oupling G as v2 = (p2G)�1.Although the eletroweak theory has been amply veri�ed by experiment, theexistene of the BEH boson has, as yet, not been on�rmed. It should benoted that the physis of the BEH boson is more sensitive to dynamialassumptions than the massive vetorsW� and Z, be it a genuine elementary�eld or a manifestation of a omposite due to a more elaborate mehanism.Hene observation of its mass and width is of partiular interest for furtherunderstanding of the mehanism at work.- Grand uni�ation shemesThe disovery that on�nement ould be explained by the strong ouplinglimit of quantum hromodynamis based on the \olor" gauge group SU(3)led to tentative Grand Uni�ation shemes where eletroweak and stronginteration ould be uni�ed in a simple gauge group G ontaining SU(2) �U(1) � SU(3) [12℄. Breaking ours through vauum expetation values ofBEH �elds and uni�ation an be realized at high energies beause while the16



renormalization group makes the small gauge oupling of U(1) inrease loga-rithmially with the energy sale, the onverse is true for the asymptotiallyfree non abelian gauge groups.- Monopoles, ux tubes and eletromagneti dualityIn eletromagnetism, monopoles an be inluded at the expense of introdu-ing a Dira string [13℄. The latter reates a singular potential along the stringterminating at the monopole. For instane to desribe a point-like monopoleloated at ~r = 0, one an take the line-singular potential~A = g4� (1� os �)~r� ; (29)This potential has a singularity along the negative z-axis (� = �) where thestring has been put (see Fig.7). The unobservability of the string impliesthat its �titious ux be quantized aording to the Dira onditioneg = 2�n n 2 Z : (30)
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In ontradistintion to the string in the U(1) theory, the Dira string innon abelian gauge groups an be removed by a gauge singularity for wellhosen quantized magneti harges, reduing the line singularity to a pointlike singularity. 17
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Fig. 8An example is the SO(3) monopole, represented in Fig.8, arising from thepotential Aa i = g4��iab rbr2 ; eg = 4� : (31)Breaking the symmetry to U(1) by a BEH �eld belonging to the adjointgroup SO(3) one an remove the point singularity to get the topologiallystable 't Hooft-Polyakov regular monopole [14℄.This proedure an be extended to Lie groups G of higher rank [15℄. For ageneral Lie group G, the possibility of gauging out the Dira string depends onthe global properties of G. Namely, the mapping of a small irle surroundingthe Dira string onto G must be a urve ontinuously deformable to zero.Closed urves in G are haraterized by Z where Z is the subgroup of theenter of the universal overing ~G of G suh that G = ~G=Z. Gauging outonly ours for the urve orresponding to the unit element of Z. Thisis the origin for the unonventional fator of 2 (4� = 2:2�) in Eq.(31) asSO(3) = SU(2)=Z2.The onstrution of regular monopoles has interesting oneptual implia-tions.The mixing between spae and isospae indies in Eq.(31) means that theregular monopole is invariant under the diagonal subgroup of SO(3)spae �SO(3)isospae. This implies that a bound state of a salar of isospin 1=2 withthe monopole is a spae-time fermion. In this way, fermions an be made outof bosons [16℄. 18



One an de�ne regular monopoles in a limit in whih the BEH-potentialvanishes. These are the BPS monopoles. They admit a supersymmetriextensions in whih there are indiations that eletromagneti duality an berealized at a fundamental level, namely that the interhange of eletri andmagneti harge ould be realized by equivalent but distint ations.The BEH-mehanism,when G symmetry is ompletely broken, is a relativistianalog of superondutivity. The latter may be viewed as a ondensation ofeletri harges. Magneti ux is then hanneled into quantized ux tubes.In on�nement, it is the eletri ux whih is hanneled into quantized tubes.Therefore eletri-magneti duality suggests that, at some fundamental level,on�nement is a ondensation of magneti monopoles and onstitutes themagneti dual of the BEH mehanism [17℄.- A geometrial interpretation of the BEH mehanismThe BEH mehanism operates within the ontext of gauge theories. Despitethe fat that grand uni�ation shemes reah sales omparable to the Planksale, there was, a priori, no indiation that Yang-Mills �elds o�er any insightinto quantum gravity. The only approah to quantum gravity whih hadsome suess, in partiular in the ontext of a quantum interpretation of theblak holes entropies, are the superstring theory approahes and the possiblemerging of the �ve perturbative approahes (Type IIA, IIB, Type I and thetwo heteroti strings) into an elusive M-theory whose lassial limit wouldbe 11-dimensional supergravity. Of partiular interest in that ontext is thedisovery of Dp-branes along whih the ends of open strings an move [18℄.This led, for the �rst time, to an interpretation of the area entropy of someblak holes in terms of a ounting of quantum states. Here we shall explainhow Dp-branes yield a geometrial interpretation of the BEH mehanism.When N BPS Dp-branes oinide, they admit massless exitations from theN2 zero length oriented strings with both end attahed on the N oinidentbranes. There are N2 massless vetors and additional N2 massless salarsfor eah dimension transverse to the branes. The open string setor has loalU(N) invariane. At rest, BPS Dp-branes an separate from eah other inthe transverse dimensions at no ost of energy. Clearly this an break thesymmetry group from U(N) up to U(1)N when all the branes are at distintloation in the transverse spae, beause strings joining two di�erent branes19



have �nite length and hene now desribe �nite mass exitations. The onlyremaining massless exitations are then due to the zero length strings withboth ends on the same brane.
Dp-branes

Fig. 9This symmetry breaking mehanism an be understood as a BEH mehanismfrom the ation desribing low energy exitations of N Dp-branes. Thisation is the redution to p+1 dimensions of 10-dimensional supersymmetriYang-Mills with U(N) gauge �elds [19, 20℄.The Lagrangian isL = �14TrF��F�� + Tr� 12D�AiD�Ai � 14[Ai ;Aj ℄2 �+ fermions ; (32)where � labels the p+1 brane oordinates and i the diretions transverse tothe branes. F�� = F a��Ta, Ai = Aa i Ta where Ta is a generator of U(N) ina de�ning representation.The states of zero energy are given lassially, and hene in general beauseof supersymmetry, by all ommuting Ai = fximng matries, that is, up toan equivalene, by all diagonal matries fximng = fximÆmng. Label the N2matrix elements of A� by A�mn. The (N2 � N) gauge �elds given by thenon diagonal elements m 6= n aquire a massm2mn / (~xm � ~xn)2 ; (33)if ~xm 6= ~xn, as is easily heked by omputing the quadrati terms in A�mnappearing in the ovariant derivatives TrD�AiD�Ai.This symmetry breaking is indued by the expetation values fximg. Thegauge invariane is ensured, as usual, by unobservable (N2�N) NG bosons.20



To identify the latter we onsider the salar potential in Eq.(32), namelyV = Tr14[Ai ;Aj ℄[Ai ;Aj℄ = 14 Xi;j;m;nhmj[Ai ;Aj ℄jnihnj[Ai ;Aj ℄jmi : (34)We write hmjAj jni = xjmÆmn + yjmn : (35)Here the diagonal elements fxjmg are the BEH expetation values and theyjmn(= �[yjnm℄�) de�ne d(N2 � N) hermitian salar �elds (yimn)a (a = 1; 2)where yjmn = (yjmn)1 + i(yjmn)2 ; m > n , and d is the number of transversespae dimensions. The mass matrix for the �elds (yimn)a is�2V�(ykmn)a�(ylmn)b = Æab[(~xm � ~xn)2Ækl � (xkm � xkn)(xlm � xln)℄ ; (36)and has for eah pair m;n (m < n), two zero eigenvalues orresponding tothe eigenvetors (ylmn)a / (xlm � xln). These are the required (N2 �N) NGbosons, as an be heked diretly from the oupling of Ai to A� in theLagrangian Eq.(32) .As mentioned above, the breaking of U(N) up to U(1)N may be viewed in thestring piture as due to the strethed strings joining branes separated in thedimensions transverse to the branes. One identi�es the fximg as oordinatestransverse to the brane m. The mass of the vetor meson A�mn is then themass shift due to the strething of the otherwise massless open string vetorexitations. The unobservable NG bosons ~ymn k (~xm � ~xn) are the �eldtheoreti expression of the unobservable longitudinal modes of the stringsjoining the branes m and n. In this way Dp-branes provide a geometrialinterpretation of the BEH mehanism.It may be worth mentioning the interesting situation whih ours when p = 0[20, 21℄. The Lagrangian Eq.(32) then desribes a pure quantum mehanialsystem where the fximng are the dynamial variable. The time omponentAtwhih enters the ovariant derivativeDtAi an be put equal to zero, leaving aonstraint whih amounts to restrit the quantum states to singlets of SU(N).The fximg whih de�ne in string theory D0-brane oordinates (viewed aspartons in the in�nite momentum frame in referene [21℄) are the analog, forp = 0, of the BEH expetation values in the p 6= 0 ase, although they labelnow lassial olletive position variables of the quantum mehanial system21



and not vauum expetation values. The nondiagonal quantum degrees offreedom ~ymn ? (~xm � ~xn) have a positive potential energy proportional tothe distane squared between the D0-branes m and n. Hene they get lokedin their ground state when the D0-branes are largely separated from eahother. In this way, the D0-brane Ai = fximng matries ommute at largedistane sale and de�ne geometrial degrees of freedom. However thesematries do not ommute at short distanes where the potential energies ofthe yimn go to zero. This suggests that the spae-time geometry exhibits nonommutativity at small distanes, a feature whih may well turn out to bean essential element of quantum gravity.V. RemarksPhysis, as we know it, is an attempt to interpret the apparent diversity ofnatural phenomena in terms of general laws. By essene then, it inites onetowards a quest for unifying diverse physial laws.Originally the BEH mehanism was oneived to unify the theoretial de-sription of long range and short range fores. The suess of the eletroweaktheory made the mehanism a andidate for further uni�ation. Grand uni-�ation shemes, where the sale of uni�ation is pushed lose to the saleof quantum gravity e�ets, raised the possibility that uni�ation might alsohave to inlude gravity. This trend towards the quest for uni�ation reeiveda further impulse from the developments of string theory and from its on-netion with eleven-dimensional supergravity. The latter was then viewedas a lassial limit of a hypothetial M-theory into whih all perturbativestring theories would merge. In that ontext, the geometrization of the BEHmehanism is suggestive of the existene of an underlying non ommutativegeometry.Referenes[1℄ F. Englert and R. Brout, Phys. Rev. Lett. 13 (31 August 1964) 321.[2℄ P.W. Higgs, Physis Letters 12 (15 September 1964) 132.22
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