
ATOMIC PHYSICS
Revision Lectures

Lecture 1 Schrödinger equation
Atomic structure and notation
Spin-orbit and fine structure

Lecture 2 Atoms in magnetic fields
Radiation and Lasers

Lecture 3 Nuclear effects: hyperfine structure
Two electron atoms
X-rays



Stern Gerlach Experiment
• Demonstrates quantization of 

direction for interacting vectors
• A consequence of quantization

of energy E
• Interaction energy for magnetic 

dipole µ in field B is:

E = µ.B = µ.B cosθ

• Since µ and B are constant in 
time, cosθ is quantized

• Force on atoms is:
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Directional quantization

• Direction defined by 
magnetic field along the 
z-axis

• The magnetic moment 
due to orbital angular 
momentum � is m �

• The magnetic moment 
due to spin s is ms 

• Each orientation has 
different energy in field B

• In zero field the states are 
degenerate
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The Schrödinger Equation
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Energy Level Diagrams

[configuration)  L     eg. Na:   (1s 2s 2p 3s) 3 S2S+1 2 2 6 2
J 1/2

SPECTROSCOPIC NOTATION
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Spectroscopic Notation

• One electron atoms e.g. Na

(configuration) 2s+1�j 1s22s22p6 3s  2S1/2

1s22s22p6 3p  2P1/2 , 2P3/2

• Two electron atoms e.g. Mg

(configuration) 2S+1LJ 1s22s22p6 3s2 1S0

1s22s22p6 3s3p  1P1 
3P2,1,0 



Vector Model: spin-orbit interaction

• Orbital � and spin ss
angular momenta give 
magnetic moments m

��

and ms

• Orientation of m
�

and ms
is quantized

• Magnetic interaction 
gives precessional motion

• Energy of precession 
shifts the energy level 
depending on relative 
orientation of � and s
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Fine structure from spin-orbit splitting in n=2 level of Hydrogen
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Fine structure in n=2 level in hydrogen



• Separation of 2S1/2 -2P1/2:
the Lamb shift, 
a QED effect, was first 
measured by RF 
spectroscopy in Hydrogen; 
microwave transition at 
1057 MHz

• Optical measurement uses 
emission of Balmer α line 
from Deuterium gas 
discharge

• Spectrum formed using 
Fabry-Perot interferometer 
for high resolution.

• Shift of 2S1/2 - 2P1/2
is resolved 
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End lecture 1

• Example finals questions



(1996) A3 question 1



(1995) A3 Question 2



Normal Zeeman Effect

Vector Model
• Magnetic moment 

due to orbital motion
µ
�
= -g

�
µB�

• Energy of precession 
in external field B is:

∆EZ = µ.B
�
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Orbital magnetic moment in external magnetic field

Magnetic dipole precession



Normal Zeeman Effect

• Perturbation Energy
(precession in B field)

‹∆EZ› = ‹µB.Bext›

• ‹∆EZ› = g
�
µB.Bextm�

• 2�+1 sub-levels

• Separation of levels:

µBBext

Orbital magnetic moment in external magnetic field
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Normal Zeeman Effect

• Selection rules:

∆m
�

= 0, +1

• Polarization of light:

∆m
�

= 0,    π  along z-axis

∆m
�

= +1     σ+ or σ−

σ, circular viewed along z-axis
π, plane viewed along x,y-axis
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Anomalous Zeeman Effect

Vector Model

• Spin-orbit coupled motion 
in external magnetic field.

• Projections of � and s on 
Bext vary owing to 
precession around j.

• m
�

and ms are no longer 
good quantum numbers
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Anomalous Zeeman Effect

• Total magnetic moment µTotal
precesses around effective 
magnetic moment µ

���

• Effective magnetic moment due to 
total angular momentum

µ
���

= -g
�
µB�

• Landé g-factor is:

• Energy of precession in external 
field B is:

∆EAZ = − µ
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Anomalous Zeeman Effect:  Na D - lines
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Magnetic effects in one - electron atoms

D1D1

σ π  π σ

D2D2

σ σ π  π σ σ σ          π          σ

2
P

2
S

1

0

-1
 1

0

-1

1/.2

1/2

1/2
-1/2

-1/2

-1/2



Atomic physics of lasers

ρ(ν)B12 ρ(ν)B21 A21

ρ(ν) Energy density of incident radiation

ρ(ν)B12    Rate of stimulated absorption

ρ(ν)       B21 Rate of stimulated emission

A21            Rate of spontaneous emission
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Rate equation:
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Laser operation
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End lecture 2



(1998) A3 question 1



Nuclear spin hyperfine structure
• Nuclear spin µI interacts with 

magnetic field Bo from 
total angular momentum
of electron, F

µI = gIµNI

• Interaction energy:

H’ = AJ I.J

• Shift in energy level:

∆Ehfs = <H’>

∆Ehfs = (1/2) AJ{F(F+1) – I(I+1) – J(J+1)
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Vector model of Nuclear Spin interaction
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Hyperfine structure of ground state of hydrogen

• Hyperfine Energy shift:  
∆Ehfs = AJ I.J

• Fermi contact interaction:
spin of nucleus with 
spin of electron

• Hyperfine interaction constant 
AJ → AS

• I = ½ , J = ½, F = 1 or 0

• I.J = {F(F+1) – I(I+1) – J(J+1)} 
= ¼ or -¾

• Hyperfine splitting ∆E = AS
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Hyperfine Structure of Hydrogen Ground State



Determination of Nuclear Spin I
from hfs spectra

• Hyperfine interval rule

∆E(F) – ∆E(F-1) = AJF

• Relative intensity in transition to level with no 
(or unresolved) hfs is proportional to 2F+1

• The number of hfs spectral components is
(2I+1) for I < J
(2J+1) for I > J



2-electron atoms
Schrödinger equation:

When Electrostatic interaction between electrons 
is the dominant perturbation →→→→ LS labelled terms
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2 electron atoms: LS coupling

• Electrostatic interaction 
gives terms  labelled by 
L and S

• L = �1 + �2,   S = s1 + s2

• J = L + S

• Terms are split by 
electrostatic interaction 
into Singlet and Triplet 
terms

• Magnetic interaction 
(spin-orbit) splits only 
triplet term
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2-electron atoms: symmetry considerations

• Singlet terms (S = 0): 
χ is antisymmetric, Φ is symmetric

spatial overlap allowed (Pauli Exclusion Principle)
increases electrostatic repulsion e2/r12

• Triplet terms (S = 1):
χ is symmetric, Φ is antisymmetric

spatial overlap forbidden (Pauli Principle) 
reduces electrostatic repulsion e2/r12

↑↓Φ=Ψ χφθ ),,(rtotal
Spatial         Spin 
function        function

= Antisymmetric
function



• Singlet and Triplet terms form separate systems
• Strong LS coupling:

Selection Rule  ∆S = 0    (weak intercombination lines)
Singlet-Triplet splitting >> fine structure of triplet terms
i.e Electrostatic interaction >> Magnetic (spin-orbit)
Triplet splitting follows interval rule ∆E J
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X-ray spectra

• Wavelengths λ fit 
simple formula

• All lines of series 
appear together

• Threshold energy for 
each series

• Above a certain energy

no new series appear
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X-ray
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ejected electron

Generation of characteristic X-Rays

Inner shell energy level
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K-series

L-series

M-series
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Absorption of X-rays

• Absorption decreases below 
absorption edge due to effect of 
conservation of momentum

• Fine structure seen at edges

• Auger effect leads to emission of 
two electrons following X-ray 
absorption by inner shell electron

The Auger Effect

K

L

e1
e2

- -
-

Potential Energy

      (E - E )K L

Kinetic Energy

    (E - E ) - EK L L

X-ray absorption
electron emitted

Second electron
emitted

K-edge

L-edge

LI

LII

LIII

M-edge

Wavelength

A
bs

or
pt

io
n

co
ef

fic
ie

nt

X-Ray absorption spectra


