ATOMIC PHYSICS Revision Lectures

Lecture 1 Schrödinger equation Atomic structure and notation Spin-orbit and fine structure

Lecture 2 Atoms in magnetic fields Radiation and Lasers

Lecture 3 Nuclear effects: hyperfine structure Two electron atoms
X-rays

Stern Gerlach Experiment

- Demonstrates quantization of direction for interacting vectors
- A consequence of quantization of energy E
- Interaction energy for magnetic dipole μ in field \underline{B} is:

$$
E=\mu \cdot \underline{B}=\mu \cdot B \cos \theta
$$

- Since μ and B are constant in time, $\cos \theta$ is quantized
- Force on atoms is:

$$
\underline{\mathrm{F}}=-\underline{\mu} \cdot \frac{d \underline{\mathrm{~B}}}{d \mathrm{z}} \underline{\vec{k}}
$$

Directional quantization

- Direction defined by magnetic field along the z-axis
- The magnetic moment due to orbital angular momentum ℓ is m_{ℓ}
- The magnetic moment due to spin s is m_{s}
- Each orientation has different energy in field B
- In zero field the states are degenerate

The Schrödinger Equation

$$
\begin{gathered}
\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)\right\} \psi(r, \theta, \phi)=E_{n} \psi(r, \theta, \phi) \\
\psi(r, \theta, \phi)=R(r) \Phi(\theta, \phi) \\
V(r)=\frac{Z e^{2}}{4 \pi \varepsilon_{o} r}+\xi(\underline{s} \cdot \underline{l})+\zeta(\underline{\mu} \cdot \underline{B})+\left\{\frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}}\right\}
\end{gathered}
$$

Nuclear
Coulomb

Spin-Orbit
External \{electron-electron Field interaction\}

Energy Level Diagrams

SPECTROSCOPIC NOTATION

[configuration)	${ }^{2 s+1} L_{\jmath}$	eg. $\mathrm{Na}:$	$\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s\right)$
\mathbf{S}	$3^{2} \mathrm{~S}_{1 / 2}$		
\mathbf{P}	\mathbf{D}	\mathbf{F}	

Spectroscopic Notation

- One electron atoms e.g. Na
(configuration) ${ }^{2 s+1} l_{j} \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} S_{1 / 2}$ $1 s^{2} 2 s^{2} 2 p^{6} 3 p{ }^{2} P_{1 / 2},{ }^{2} P_{3 / 2}$
- Two electron atoms e.g. Mg
(configuration) ${ }^{2 S+1} L_{J} \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}{ }^{1} S_{0}$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s 3 p{ }^{1} P_{1}{ }^{3} P_{2,1,0}
$$

Vector Model: spin-orbit interaction

- Orbital \underline{l} and spin \underline{s} angular momenta give magnetic moments \underline{m}_{l} and \underline{m}_{s}
- Orientation of \underline{m}_{l} and \underline{m}_{s} is quantized
- Magnetic interaction gives precessional motion
- Energy of precession shifts the energy level depending on relative orientation of \underline{l} and \underline{s}

Fine structure from spin-orbit splitting in $\mathrm{n}=2$ level of Hydrogen

Spin-orbit splitting of $n=2$ level in H

Note: only the ${ }^{2} \mathrm{P}$ term is split, $l \neq 1$ no splitting of ${ }^{2} S$ as $l \equiv 0$

Fine structure in $\mathrm{n}=2$ level in hydrogen

$$
\begin{aligned}
& \text { Bohr }+\underset{\text { degenerate states }}{+} \text { Spin-Orbit }+ \text { Relativity }+ \text { QED }
\end{aligned}
$$

- Separation of ${ }^{2} S_{1 / 2}-{ }^{2} P_{1 / 2}$ the Lamb shift, a QED effect, was first measured by RF spectroscopy in Hydrogen; microwave transition at 1057 MHz
- Optical measurement uses emission of Balmer α line from Deuterium gas discharge
- Spectrum formed using Fabry-Perot interferometer for high resolution.
- Shift of ${ }^{2} S_{1 / 2}-{ }^{2} P_{1 / 2}$ is resolved

Fine Structure in Atomic Hydrogen

End lecture 1

- Example finals questions

(1996) A3 question 1

1. Write down the Schrödinger equation for the hydrogen atom. Use the ground state wave function $\psi_{0}(r)=A e^{-b r}$ (\boldsymbol{A}, b are constants) to find the energy of the ground state, showing that the energy is consistent with the Bohr formula,

$$
E_{n}=-\frac{R_{\infty}}{n^{2}}
$$

where n is the principal quantum number and R_{∞} is the Rydberg constant.
Draw a diagram showing the fine structure of the energy levels for $n=2$ and $n=3$ for the hydrogen atom. Indicate on the diagram the relevant quantum numbers and the allowed radiative transitions between these levels.

The separation of the $2 \mathrm{p}^{2} \mathrm{P}_{1 / 2}$ and $2 \mathrm{p}^{2} \mathrm{P}_{3 / 2}$ levels of hydrogen is $0.36 \mathrm{~cm}^{-1}$ or $4.5 \times 10^{-5} \mathrm{eV}$. Discuss any difficulties which might be encountered in studying this fine-structure splitting in a laboratory discharge.

Positronium is the bound system of an electron and a positron. Write down the energy levels of the gross structure of this system, and explain why it might be preferred for testing the Coulomb interaction at short distances.

$$
\left[R_{\infty}=\frac{m_{e} \epsilon^{4}}{2 \hbar^{2}\left(4 \pi \epsilon_{0}\right)^{2}}\right]
$$

(1995) A3 Question 2

2. An electron with orbital angular momentum operator $\hat{\ell} \hbar$ in a central electrostatic potential $V(r)$ has a spin-orbit interaction

$$
V_{\mathrm{so}}=-\frac{e \hbar^{2}}{2 m^{2} c^{2}} \frac{1}{r} \frac{\partial V(r)}{\partial r} \hat{\ell} \cdot \hat{\mathrm{~s}},
$$

where m is the electron mass and $\hat{s} \hbar$ its spin operator.
Show that, in first-order perturbation theory, the spin-orbit interaction leads to a splitting of the energy levels of an electron bound in a central potential with quantum numbers n and ℓ but does not change the mean energy of the states involved.

The expectation value of $1 / r^{3}$ for an eigenstate of the hydrogen atom with quantum numbers n and ℓ is

$$
\left\langle\frac{1}{r^{3}}\right\rangle=\frac{2}{a_{0}^{3} n^{3} \ell(\ell+1)(2 \ell+1)},
$$

where a_{0} is the Bohr radius. Find (in units of eV) the fine-structure splitting for hydrogen with $n=2, \ell=1$. Estimate the fine-structure splitting for hydrogen-like potassium with $n=2, \ell=1$ (atomic number $Z=19$).

Describe the principles and basic experimental details of one method for the measurement of fine structure in the energy levels of an atom or ion of your choice.

Normal Zeeman Effect

Vector Model

- Magnetic moment due to orbital motion

$$
\underline{\mu}_{l}=-g_{l} \mu_{\mathrm{B}} \underline{l}
$$

- Energy of precession in external field B is:

$$
\Delta \mathrm{E}_{\mathrm{Z}}=\underline{\mu} \cdot \underline{B}_{l}
$$

Orbital magnetic moment in external magnetic field

Magnetic dipole precession

Normal Zeeman Effect

- Perturbation Energy (precession in B field)

$$
\left\langle\Delta \mathrm{E}_{\mathrm{Z}}{ }^{\prime}=\left\langle\underline{\mu}_{\mathrm{B}} \cdot \underline{B}_{\mathrm{ext}}{ }^{\prime}\right.\right.
$$

- $\left\langle\Delta \mathrm{E}_{\mathrm{z}^{\prime}}=\mathrm{g}_{l} \underline{\underline{B}}_{\mathrm{B}} \cdot \underline{B}_{\text {ext }} \mathrm{m}_{l}\right.$
- 2l+1 sub-levels
- Separation of levels:

$$
\mu_{\mathrm{B}} \mathrm{~B}_{\mathrm{ext}}
$$

Orbital magnetic moment in external magnetic field

Normal Zeeman Effect

- Selection rules:

$$
\Delta \mathrm{m}_{l}=0, \pm 1
$$

- Polarization of light:
$\Delta \mathrm{m}_{l}=0, \quad \pi$ along z-axis
$\Delta \mathrm{m}_{l}= \pm 1 \quad \sigma^{+}$or σ^{-}
σ, circular viewed along z-axis
π, plane viewed along x, y-axis

Anomalous Zeeman Effect

Vector Model

- Spin-orbit coupled motion in external magnetic field.
- Projections of \underline{l} and \underline{s} on $\mathrm{B}_{\text {ext }}$ vary owing to precession around j .
- m_{l} and m_{s} are no longer good quantum numbers

Anomalous Zeeman Effect

- Total magnetic moment $\mu_{\text {Total }}$ precesses around effective magnetic moment μ^{μ}
- Effective magnetic moment due to total angular momentum

$$
\mu_{\square}=-g \mu_{\mathrm{B}} \square
$$

- Landé g-factor is:

$$
\mathrm{g}_{j}=1+\frac{j(j+1)-l(l+1)+s(s+1)}{2 j(j+1)}
$$

- Energy of precession in external field B is:

$$
\begin{aligned}
\Delta \mathrm{E}_{\mathrm{AZ}} & =-\mu \cdot \underline{B}_{\mathrm{ext}} \\
& =\mathrm{g} \mu_{\mathrm{B}} \mathrm{~B}_{\mathrm{ext}} \mathrm{~m}_{\mathrm{j}}
\end{aligned}
$$

Anomalous Zeeman Effect: Na D - lines

Selection rules: $\Delta m_{j}=0, \pm 1$

Magnetic effects in one - electron atoms

Atomic physics of lasers

$\rho(v)$ Energy density of incident radiation $\rho(\mathrm{v}) \mathrm{B}_{12} \quad$ Rate of stimulated absorption $\rho(v) B_{21} \quad$ Rate of stimulated emission
$\mathrm{A}_{21} \quad$ Rate of spontaneous emission

Rate equation:

$$
\frac{d N_{2}}{d t}=B_{12} \rho(v) N_{1}-B_{21} \rho(v) N_{2}-A N_{2}
$$

Steady state:

$$
\begin{aligned}
& \frac{N_{2}}{N_{1}}=\frac{B_{12} \rho(v)}{A+B_{21} \rho(v)}=\exp -\frac{h v}{k T} \\
& \quad \rho(v)=A \frac{1}{\left[B_{12} \exp (h v / k T)-B_{21}\right]}
\end{aligned}
$$

Planck law:

$$
\rho(v)=\frac{8 \pi h v^{3}}{c^{3}} \frac{1}{[\exp (h v / k T)-1]}
$$

Hence:

$$
\begin{gathered}
B_{12}=B_{21}=B \\
A=\frac{8 \pi h v^{3}}{c^{3}} B
\end{gathered}
$$

Laser operation

Rate of change of photon number density n

$$
\frac{d n}{d t}=-\frac{d N_{2}}{d t}
$$

photon lifetime in cavity, τ_{p}
$\therefore \frac{d n}{d t}=\left(N_{2}-N_{1}\right) B_{12} \rho(v)-\frac{n}{\tau_{p}} \quad$ and $\quad \rho(v) \Delta v=n . h v$

$$
B_{12} \rho(v)=\left\{\frac{c^{3} A}{8 \pi v^{2} \Delta v}\right\} n=Q n
$$

$$
\frac{d n}{d t}=\left\{\left(N_{2}-N_{1}\right) Q-\frac{1}{\tau_{p}}\right\} n
$$

$\therefore n(t)=n(0) \exp \left\{\left(N_{2}-N_{1}\right) Q-\frac{1}{\tau_{p}}\right\} t$

$$
\text { Gain if } \quad\left(N_{2}-N_{1}\right)>\frac{1}{Q \tau_{p}}
$$

End lecture 2

1. Discuss briefly two types of experimental evidence for assigning to the electron an intrinsic angular momentum of $\hbar / 2$.

Show that in the presence of a weak magnetic flux density B an atomic energy level described by L, S, J splits into levels displaced in energy by

$$
\Delta E=\mu_{\mathrm{B}} B M_{J g} g_{J}
$$

and obtain an expression for g_{J}.
An atom has a transition ${ }^{1} \mathrm{P}_{1}-{ }^{1} \mathrm{~S}_{0}$ which, in the presence of a weak magnetic flux density B, has three components separated by wavenumber intervals of $30 \mathrm{~m}^{-1}$. What is the value of B and the direction of the observations with respect to B ? An alkali atom has a transition with wavenumber $\tilde{\nu}_{0}$. In the same magnetic flux density and direction of observation this transition splits into components at $\tilde{\nu}=\tilde{\nu}_{0} \pm 10 \mathrm{~m}^{-1}, \tilde{\nu}_{0} \pm 30 \mathrm{~m}^{-1}$ and $\tilde{\nu}_{0} \pm 50 \mathrm{~m}^{-1}$. What are the values of S and J of the levels involved in the transition at $\tilde{\nu}_{0}$? Find the values of g_{J} and L for these levels.

Describe briefly the experimental apparatus suitable for measuring such Zeeman splittings of a transition at 500 mm .

Nuclear spin hyperfine structure

- Nuclear spin μ_{I} interacts with magnetic field B_{0} from total angular momentum of electron, \underline{F}

$$
\mu_{\mathrm{I}}=\mathrm{g}_{\mathrm{I}} \mu_{\mathrm{N}} \underline{I}
$$

- Interaction energy:

$$
H^{\prime}=A_{J} \underline{I} \cdot \underline{J}
$$

- Shift in energy level:

$$
\Delta \mathrm{E}_{\mathrm{hfs}}=\left\langle\mathrm{H}^{\prime}\right\rangle
$$

$$
\Delta E_{h f s}=(1 / 2) A_{J}\{F(F+1)-I(I+1)-J(J+1)
$$

Vector model of Nuclear Spin interaction

$\underline{J}=$ Total electronic angular momentum
$\underline{I}=$ Nuclear spin
$\underline{F}=$ Total atomic angular momentum
$\underline{F}=\underline{I}+\underline{J}$
$\underline{I} \cdot \underline{J}=1 / 2\left\{\underline{F}^{2}-\underline{I}^{2}-U^{2}\right\}$

Hyperfine structure of ground state of hydrogen

- Hyperfine Energy shift:

$$
\Delta \mathrm{E}_{\mathrm{hfs}}=\mathrm{A}_{\mathrm{J}} \mathrm{I} \cdot \underline{\mathrm{~J}}
$$

- Fermi contact interaction:
spin of nucleus with spin of electron
- Hyperfine interaction constant $\mathrm{A}_{\mathrm{J}} \rightarrow \mathrm{A}_{\mathrm{S}}$
- $I=1 / 2, J=1 / 2, F=1$ or 0
- $\mathrm{I} \cdot \underline{\mathrm{J}}=\{\mathrm{F}(\mathrm{F}+1)-\mathrm{I}(\mathrm{I}+1)-\mathrm{J}(\mathrm{J}+1)\}$ $=1 / 4$ or $-3 / 4$

Hyperfine Structure of Hydrogen Ground State

- Hyperfine splitting $\Delta \mathrm{E}=\mathrm{A}_{\mathrm{S}}$

$$
\mathrm{A}_{J}=\mathrm{A}_{S}=\frac{2}{3} \mu_{o} g_{S} \mu_{B} \square_{I} / \mathrm{I} \exists_{P}|\psi(0)|^{2}
$$

Determination of Nuclear Spin I from hfs spectra

- Hyperfine interval rule

$$
\Delta \mathrm{E}(\mathrm{~F})-\Delta \mathrm{E}(\mathrm{~F}-1)=\mathrm{A}_{\mathrm{J}} \mathrm{~F}
$$

- Relative intensity in transition to level with no (or unresolved) hfs is proportional to $2 \mathrm{~F}+1$
- The number of hfs spectral components is
(2I+1) for $\mathrm{I}<\mathrm{J}$
$(2 J+1)$ for $I>J$

2-electron atoms

Schrödinger equation:

$$
\begin{gathered}
\left\{-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}+\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}+V(r)\right\} \psi(r, \theta, \phi)=E_{n} \psi(r, \theta, \phi) \\
V(r)=\square_{i=1,2} \frac{Z e^{2}}{4 \pi \varepsilon_{o} r_{i}}+\frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}}+\square_{i=1,2} \xi_{i}(\underline{s} \cdot \underline{l})
\end{gathered}
$$

When Electrostatic interaction between electrons is the dominant perturbation \rightarrow LS labelled terms

2 electron atoms: LS coupling

- Electrostatic interaction gives terms labelled by L and S
- $\underline{L}=\underline{l}_{1}+\underline{l}_{2}, \quad \underline{\mathrm{~S}}=\underline{\mathrm{S}}_{1}+\underline{\mathrm{S}}_{2}$
- $\underline{J}=\underline{L}+\underline{S}$
- Terms are split by electrostatic interaction into Singlet and Triplet terms
- Magnetic interaction (spin-orbit) splits only triplet term

2-electron atoms: symmetry considerations

$$
\Psi_{\text {total }}=\Phi(r, \theta, \phi) \chi^{\uparrow \downarrow}=\underset{\text { Antisymmetric }}{\text { function }}
$$

- Singlet terms ($\mathrm{S}=0$):
χ is antisymmetric, Φ is symmetric spatial overlap allowed (Pauli Exclusion Principle) increases electrostatic repulsion e^{2} / r_{12}
- Triplet terms $(S=1)$:
χ is symmetric, Φ is antisymmetric spatial overlap forbidden (Pauli Principle) reduces electrostatic repulsion $\mathrm{e}^{2 / r_{12}}$

Term diagram of Magnesium

- Singlet and Triplet terms form separate systems
- Strong LS coupling:

Selection Rule $\Delta S=0 \quad$ (weak intercombination lines)
Singlet-Triplet splitting >> fine structure of triplet terms i.e Electrostatic interaction >> Magnetic (spin-orbit)

Triplet splitting follows interval rule $\Delta \mathrm{E} \propto \mathrm{J}$

X-ray spectra

- Wavelengths λ fit simple formula
- All lines of series appear together
- Threshold energy for each series
- Above a certain energy no new series appear

Bremstrahlung

Threshold energy
Characteristic X-rays

Generation of characteristic X-Rays

Inner shell energy level

$\sqrt{\frac{\bar{V}}{R}}$

$$
\begin{aligned}
& \bar{v}_{\mathrm{K}}=\mathrm{R}\left\{\frac{\left(\mathrm{Z}-\sigma_{\mathrm{K}}\right)^{2}}{1^{2}}-\frac{\left(\mathrm{Z}-\sigma_{\mathrm{i}}\right)^{2}}{n_{i}^{2}}\right\} \\
& \bar{v}_{\mathrm{L}}=\mathrm{R}\left\{\frac{\left(\mathrm{Z}-\sigma_{\mathrm{L}}\right)^{2}}{2^{2}}-\frac{\left(\mathrm{Z}-\sigma_{\mathrm{i}}\right)^{2}}{n_{i}^{2}}\right\}
\end{aligned}
$$

X-Ray Series

Fine structure of X-Rays

$$
\Delta l \square+1 \quad \Delta \mathrm{j}=0,+1
$$

Series lines labelled by α, β, χ etc for decreasing wavelength λ

Lines have fine structure due to spin-orbit effect of "hole" in filled shell

$$
\Delta E_{\mathrm{fs}}=\frac{5.8 \mathrm{Z}^{4}}{n^{3} \square(\square+1)} \mathrm{cm}^{-1}
$$

Absorption of X-rays

- Absorption decreases below absorption edge due to effect of conservation of momentum
- Fine structure seen at edges

The Auger Effect

- Auger effect leads to emission of two electrons following X-ray absorption by inner shell electron

