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Preface 

I was delighted when World Scientific Publishing Company expressed enthusiasm 
for printing the second edition of this book, Theoretical Nuclear and Subnuclear 
Physics, originally published by Oxford University Press in 1995. I am also pleased 
that Oxford has given, “(unlimited) permission to use the material of the first 
edition in the second one . . . ” 

The original motivation for writing this book was two-fold. First, I wanted to 
lay out the intellectual foundation for the construction of CEBAF, the Continuous 
Electron Beam Accelerator Facility, of which I was Scientific Director in its initial 
phase from 1986-1992. Second, I wanted to help bring young people to the point 
where they could make their own original contributions on the scientific frontiers of 
nuclear and hadronic physics. 

CEBAF, now TJNAF (the Thomas Jefferson National Accelerator Facility), 
is currently a functioning laboratory, continually producing important scientific 
results. The need to “sell” it no longer exists. Furthermore, in 2001 the author 
published a book with Cambridge University Press entitled Electron Scattering for 
Nuclear and Nucleon Structure, which focuses on the foundation of this field and 
eliminates the need for a disproportionate emphasis on this topic. Correspondingly, 
the chapters on CEBAF’s role a t  the end of the various parts in the first edition 
of this book have been eliminated. In Part 1, a chapter on the many-particle shell 
model now replaces it. 

One of the major advances in nuclear theory in the past decade has been the 
placing of model hadronic field theories of the nuclear many-body system (quantum 
hadrodynamics, or QHD) on a firm theoretical foundation through the implemen- 
tation of effective field theory for quantum chromodynamics (QCD); furthermore, 
relativistic mean field theory now finds justification through density functional 
theory, and one has a deeper understanding of the reasons for its successful phe- 
nomenology. Furnstahl, Serot, and Tang are the individuals primarily responsible 
for this development. Two new chapters on these topics are now included in Part 2. 
The chapter on the model QHD-I1 has correspondingly been eliminated, as has 
the chapter on Weinberg’s chiral transformation, which the author believes is more 
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easily understood through the discussion of the transformation properties of the 
effective lagrangian; a new appendix on this topic is also included. 

Another major thrust of modern nuclear physics is the search for, and charac- 
terization of, the quark-gluon plasma through relativistic heavy-ion reactions. A 
new chapter on this topic is now included, which also contains an introduction to  
transport theory. 

Motivated primarily by the “solar neutrino problem,” a major experimental 
breakthrough in the past decade has been in our understanding of neutrinos, in 
particular, that they have mass and that there is neutrino mixing. This is one 
of the few developments that extends the very successful standard model of the 
electroweak interactions. A new chapter on neutrinos is included in Part 4. A 
single new chapter on electron scattering completes that part. 

To conserve length, three chapters have been eliminated: “Nuclear matter with 
a realistic interaction” from Part 1 (a discussion of modern interactions based on 
effective field theory is included), LLMore models” from Part 3, and “Electroweak 
radiative corrections” from Part 4 (although appropriate Feynman rules remain). 
A new appendix on units and conventions has been added. Relevant sections of 
the text have been updated and recent references included. There is now a unified 
bibliography. 

Preparing a new edition has allowed the author to  eliminate the typos in the text, 
most of which were caused by his wayward fingers - the availability of Spellcheck 
is now of great assistance. Errors in the formulae, which fortunately were few and 
far between, have hopefully also all been eliminated. 

The expression and understanding of the strong interactions in the nuclear and 
hadronic domain remains one of the most interesting and challenging aspects of 
physics. To the best of our knowledge, these are the same phenomena and rules 
that govern not only the behavior in the world around us, but also in the fiery 
interior of the objects in the most distant galaxies in deep space. I am fond of 
telling my students that the neutron and I are the same age, as the neutron was 
discovered in 1932, the year that I was born. It is incredible how our understanding 
of nuclear and hadronic phenomena has evolved within the span of one person’s 
lifetime. It has been a privilege, and source of deep satisfaction, to have been able 
to participate in that understanding and development. 

It is my belief that the material in this second edition will continue to be relevant 
for the foreseeable future. The book is now focused on the second of the original 
goals, and the presentation is a more complete and balanced one. It is my hope 
that the current edition will provide a useful text for a modern, advanced graduate 
course on nuclear and hadronic physics for some time to come. I am fully aware 
that the text is a challenging one; however, I hope that dedicated students will 
continue to  enjoy some of the understanding obtained from it and to  share some of 
the pleasure I took in writing it. 
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Chapter 1 

Nuclear forces - a review 

The motivation and goals for this book have been discussed in detail in the preface. 
Part 1 of the book is on Basic Nuclear Structure, where [B152, Bo69, Fe71, Bo75, 
de74, Pr82, Si87, Ma89, Fe911 provide good background texts.' This first chapter 
is concerned with the essential properties of the nuclear force as described by phe- 
nomenological two-nucleon potentials. The discussion summarizes many years of 
extensive experimental and theoretical effort; it is meant to be a brief review and 
summary. It is assumed that the concepts, symbols, and manipulations in this first 
chapter are familiar to the reader. 

1.1 Attractive 

That the strong nuclear force is basically attractive is demonstrated in many ways: 
a bound state of two nucleons, the deuteron, exists in the spin triplet state with 
(J" ,  T )  = (l+, 0); interference with the known Coulomb interaction in p p  scattering 
demonstrates that the force is also attractive in the spin singlet 'So state; and, after 
all, atomic nuclei are self-bound systems. 

1.2 Short-range 

Nucleon-nucleon scattering is observed to be isotropic, or s-wave with 1 = 0, up 
to M 10 MeV in the center-of-mass (C-M) system. The reduced mass is l/pL,,d = 
l /m + l / m  = 2/m. This allows one to make a simple estimate of the range of the 

'These books, in particular [Pr82], provide an extensive set of references to the original literature. 
It is impossible to include all the developments in nuclear structure in this part of the book. The 
references quoted in the text are only those directly relevant to the discussion. 
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nuclear force through the relations 

l,,, x r(Fermis) - MeV J: 
Here we have used the numerical relations (worth remembering) 

1Fermi G l f m  
= 1 0 - l ~ ~ ~  

- x 20.7MeVfm2 
t i2  

2mP 

A combination of these results indicates that the range of the nuclear force is 

T M few Fermis (1.3) 

1.3 Spin dependent 

The neutron-proton cross section unp is much too large at  low energy to  come from 
any reasonable potential fit to the properties of the deuteron alone 

3 1 
unp = - ( 3 4 + ; ( 1 4  4 

= 20.4 x 10-24cm2 

= 20.4 barns (1.4) 

At low energies, it is a result of effective range theory that the scattering measures 
only two parameters 

1 1 2  k cot bo = -- + -Tok 
a 2  

where a is the scattering length and TO is the effective range. The best current 
values for these quantities for n p  in the spin singlet and triplet states are [Pr82] 

(1.6) 
'a = -23.714 f 0.013 Em 3~ = 5.425 f 0.0014 fm 
'TO = 2.73 f 0.03 fm 3 ~ 0  = 1.749 f 0.008 fm 

The singlet state just fails to have a bound state (a = -m), while the triplet state 
has just one, the deuteron, bound by 2.225 MeV. 

(1.1)

(1.2)

(1..5)
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1.4 Noncentral 

The fact that the deuteron has a nonvanishing quadrupole moment indicates that 
there must be some 1 = 2 mixed into the 1 = 0 ground state. Therefore the 
two-nucleon potential cannot be invariant under spatial rotations alone. The most 
general velocity-independent potential that is invariant under overall rotations and 
reflections is 

v = h( r )  + 61 * 62vl(r) + S12VT(T) 

- 6 1  ' 6 2  (1.7) 
s 1 2  E 3(6i * . ) ( a 2  - r )  

r2 

The term S l z V ~ ( r )  gives rise to the tensor force. Several properties are of interest 
here: 

0 Since 

It follows that 
61 - 6 2  = -3 ; singlet (S = 0) 

= +1 ; triplet ( S  = 1) (1.9) 

0 The total spin S is a good quantum number for the two-nucleon system if 
the hamiltonian H is symmetric under interchange of particle spins [as in 
Eq. (1.7)], for then the wave function must be either symmetric ( S  = 1) or 
antisymmetric ( S  = 0) under this symmetry;2 

0 Higher powers of the spin operators can be reduced to the form in Eq. (1.7) 
for spin-1/2 particles; 
Since the total spin operator annihilates the singlet state, (61 + 6 2 )  x = 0, 
so does the tensor operator S12 

1 

S12[ lXl  = O (1.10) 

1.5 Charge independent 

Charge independence states that the force between any two nucleons is the same 
Vpp = Vpn = Vn, in the same state. The Pauli principle limits the states that are 
available to two identical nucleons. For two spin-1/2 nucleons, a complete basis can 
be characterized by eight quantum numbers, for clearly the states Ip1, sl; p2, s 2 )  

form such a basis. Alternatively, one can take as the good quantum numbers 

21f P, is the spin exchange operator then P,,[lx(l, 2)] = ' x (2 , l )  = - l x ( l ,  2) is odd and, similarly, 
Pu[3x( l ,  2)] = +3x( l ,  2) is even. Thus from Eqs. (1.9) Po = (1 + 51 . &)/2. 
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States 

Particle 
exchange 

Particles 

Parity 

Nuclear forces - a revaew 

'SO 'PI  'D2 3S1 +3D1 3Po 3P1 3P2+3 F2 3D2 
+ - + + 
- + - + 
nn nn nn nn nn 

PP PP PP PP PP 

+ 
+ 

- - - 
- - - 

n p  n p  n p  nPa n P  n P  n P  n P  

IE, J ,  M J ,  S, T ,  PcM). Table 1.1 lists the first few states available to the two-nucleon 
system. The Pauli principle states that nn and p p  must go into an overall antisym- 
metric state.3 Charge independence states that the forces are equal in those states 
where one can have all three types of particles including n p ;  the nuclear force is 
independent of the charge in these states. At low energy, the cross sections are 
given in terms of the singlet and triplet amplitudes by 

(1.11) 

1.6 Exchange character 

At higher energies more partial waves contribute to the cross section. At high 
enough energies, one can use the Born approximation 

(1.12) 

where the momentum transfer q is defined in Fig. 1.1. For large q the integrand 
oscillates rapidly and the integral goes to zero as sketched in Fig. 1.1. The ex- 
perimental results for n p  scattering are shown in Fig. 1.2. There is significant 
backscattering, in fact, the cross section is approximately symmetric about 90". If 
f(n - 0) = f (Q)  then only even 1 partial waves contribute to the cross section; the 
odd 1's will distort da/dR. 

To describe this situation one introduces the concept of an exchange force - a 
force that depends on the symmetry of the wave function. 

31n terms of isospin we assign T = 0 to the states that are even under particle interchange and 
T = 1 to those that are odd, so that the overall wave function is antisymmetric. 
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Fig. 1.1. Sketch of cross section in Born approximation. 

1 

0 40 80 120 160 
19,, degrees 

Fig. 1.2. The n-p differential cross section in the C-M system as a function of 
laboratory energy. From [Pr82]. 

The interaction is written V(T)& where the Majorana space exchange operator 
is defined by4 

Hence since r = r2 - rl 

(1.14) 

The odd 1 in the amplitude can evidently be eliminated with a Serber force defined 

4Since the overall wave function is antisymmetric pMP,P, = -1 (Note Pz = P: = +I). Thus 
h~ = -PcPT = - ( I +  a'i . &)(I +?I .?z)/4 provides an alternate definition. 
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by 
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(1.15) 
1 

V 3 V(r) - ( l+  PM) 
2 

The differential cross section in Born approximation with this interaction is 

This result is sketched in Fig. 1.3. The nuclear force has roughly a Serber exchange 
nature; it is very weak in the odd-1 states. 

Fig. 1.3. Sketch of cross section in Born approximation with a Serber force. 

1.7 Hard core 

The p p  cross section is illustrated in Fig. 1.4. 

100 1 1 1 1 1 1 1 1 1 1 J  
MeV 1 

9.1 - - 

U e 

1 
0 30 60 90 

B,, degrees 

Fig. 1.4. Same as Fig. 1.2 for p-p scattering. F'rom [Pr82]. 
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Recall that since the particles are here identical, one necessarily has the relation 
[da(.rr - e ) / d R ] c ~  = [dO(e)/da]cM. Although the cross sections shown in Figs. 1.2 
and 1.4 are very different, it is possible to make a charge-independent analysis of np 
and p p  scattering as first shown in detail by Breit and coworkers [Br39, Se681. The 
overall magnitude of the p p  cross section indicates that more than s-wave nuclear 
scattering must be included (recall the unitarity bound of . rr /rC2),  and the higher 
partial waves must interfere so as to give the observed flat angular distribution 
beyond the Coulomb peak. A hard core will change the sign of the s-wave phase 
shifts at high energy and allow the ' S  - 'D interference term in p p  scattering to 
yield a uniform angular distribution as first demonstrated by Jastrow [Ja51]; with a 
Serber force, it is only the states ('SO, 'D2)  in Table 1.1 that contribute to nuclear 
p p  scattering. Recall that for a pure hard core potential the s-wave phase shift is 
negative 60 = -ka as illustrated in Fig. 1.4. 

r 

Fig. 1.5. The s-wave phase shift for scattering from a hard-core potential. 

With a finite attractive well outside of the hard core, one again expects to see 
the negative phase shift arising from the hard core at high enough energy. The 
experimental situation for the s-wave phase shifts in both p p  and np scattering is 
sketched in Fig. 1.6. 

Fig. 1.6. Sketch of s-wave nucleon-nucleon phase shifts. After [Pr82]. 

From an analysis of the data, one concludes that there is a hard core5 of radius 

(1.17) T, M 0.4 to 0.5 fm 

in the relative coordinate in the nucleon-nucleon interaction. 

5 0 r ,  more generally, a strong, short-range repulsion. 



10 Nuclear forces - a review 

1.8 Spin-orbit force 

It is difficult to explain the large nucleon polarizations observed perpendicular to 
the plane of scattering with just the central and tensor forces discussed above. To 
explain the data one must also include a spin-orbit potential of the form 

v = -VsoL.S 
1 
2 

L * s = - [ J ( J  + 1) - 1(1+ 1) - S(S + l)] (1.18) 

This last expression vanishes if either 5’ = 0 (1 = J )  or 1 = 0 (S = J ) .  The spin- 
orbit force vanishes in s-states and is empirically observed to have a short range; 
thus it is only effective at higher energies. 

1.9 Summary 

The present situation with respect to our phenomenological knowledge of the 
nucleon-nucleon force is the following: 

0 The experimental scattering data can be fit up to laboratory energies of M 
300 MeV with a set of potentials depending on spins and parities ‘V;, 3V$, 
1~6, 3Vc, 3VT+, 3V,,etc;  

0 The potentials contain a hard core with r, M 0.4 to 0.5 fm;6 
0 The forces in the odd-1 states are relatively weak at low energies, and on 

0 The tensor force is necessary to understand the quadrupole moment of the 

0 A strong, short-range, spin-orbit force is necessary to explain the polariza- 

the average slightly repulsive; 

deuteron (and its binding); 

tion at high energy. 

Commonly used nucleon-nucleon potentials include the “Bonn potential” in 
[Ma89], the “Paris potential” [La80], and the “Reid potential” [Re68]. The first 
two contain the one-meson (boson) exchange potentials (OBEP) at large distances. 

1.10 Meson theory of nuclear forces 

The exchange of a neutral scalar meson of Compton wavelength l / m  G h/mc 
(Fig. 1.7) in the limit of infinitely heavy sources gives rise to the celebrated 

6Although a hard core provides the way to  represent this short-range repulsion within the frame- 
work of static two-body potentials, a short-range velocity-dependent potential that becomes re- 
pulsive at higher momenta leads to similar results [Du56]. We shall see in chapter 14 that the 
latter description is obtained as an immediate consequence of relativistic mean field theory. 



Meson theory of nuclear forces 11 

Yukawa potential [Yu35] 

g2 e-mr V ( r )  = --- 
4 m 2  r 

(1.19) 

A derivation of this result, as well as the potentials arising from other types of 
meson exchange, is given in appendix A.l .  

Fig. 1.7. Contribution of neutral scalar meson exchange to the N-N interaction. 

In charge-independent pseudoscalar meson theory with a nonrelativistic coupling 
of ~ ( n  . V) at each vertex, one obtains a tensor force of the correct sign in the 
N-N interaction. In fact, for this reason, Pauli [Pa481 claimed there had to be a 
long-range pseudoscalar meson exchange before the 7r-meson was discovered. Since 
the 7r is the lightest known meson, the 1-7r exchange potential is exact at large 
distances r --f 00; mesons with higher mass m give a potential that goes as e-mr/r 
by the uncertainty principle. The existence of this 1-7r exchange tail in the N-N 
interaction has by now been verified experimentally in many ways. 

The Paris and Bonn potentials [La80, Ma891 include the exchange of (n, CJ, p, w) 
mesons with spin and isospin ( J " ,  T )  = ( O W ,  l), (O+, 0), (1-, l), (1-, 0), respec- 
tively, in the long-range part of the N-N potential. The short-distance behavior of 
the interaction is then parameterized. 

One can get a qualitative understanding of the short-range repulsion and spin- 
orbit force in the strong N-N interaction by considering meson exchange and using 
the analogy with quantum electrodynamics (QED). Suppose one couples a neutral 
vector meson field, the w ,  to the conserved baryon current. Then just as with the 
Coulomb interaction in atomic physics, which is described by the coupling of a 
neutral vector meson field (the photon) to the conserved electromagnetic current: 

0 Like baryonic charges repel; 
0 Unlike baryonic charges (e.g., pfj ) attract; 
0 There will be a spin-orbit force; 
0 While the range of the Coulomb potential 1/r is infinite because the mass 

of the photon vanishes my = 0, the range of the strong nuclear effects will 
be N h/m,c. Since the w has a large mass, the force will be short-range. 

The meson exchange theory of the nuclear force and its consequences are well sum- 
marized in [Ma89]. 
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To get ahead of ourselves, there is now a theory of the strong interactions based 
on an underlying structure of quarks. The observed strongly interacting hadrons, 
mesons and nucleons, are themselves composites of quarks. The quarks interact 
through the exchange of gluons in a theory known as quantum chromodynamics 
(QCD). The quarks, gluons, and their interactions are confined to the interior of 
the hadrons. It is still true that the long-range part of the nuclear force must 
be described by meson exchange. How can one understand this? The key was 
provided by Weinberg [Wego, Wegl]. In the low-energy nuclear domain, one can 
write an effective field theory in terms of hadrons as the generalized coordinates 
of choice. This theory must reflect the underlying symmetry structure of QCD 
[Be95]. Expansion in appropriate small dimensionless parameters (for example, 
q / M  in the nucleon-nucleon case), and a fit of coupling constants to experiment, 
then allow one to systematically compute other observables. This approach puts 
the meson theory of the nuclear force on a firm theoretical foundation, at least in 
the appropriate range of the expansion parameters. Application of this effective 
field theory approach to the N - N  force can be found in [Or92, Or94, Or961. The 
very large scattering lengths in N - N  scattering put another characteristic length 
in the problem and one must be careful in making the proper expansions [Ka96, 
Ka98, Ka98al. Results from this effective field theory approach are quite satisfying 
[EpOO]. Of course, given an effective lagrangian one can proceed to calculate other 
quantities such as the three-nucleon force, that is, the force present in addition to 
the additive two-body interactions when three nucleons come together [We92a, Fr99, 
Ep021. The up-to-date developments in the theory of two- and three-nucleon forces 
can always be found in the proceedings of the most recent International Conference 
on Few-Body Physics (e.g. [Fe01]).7 

We shall spend a large part of the remainder of this book on effective hadronic 
field theory and QCD. For now, we return to some basic elements of nuclear struc- 
ture which ultimately reflect their consequences. 

'Recent nucleon-nucleon potentials can be found in (Ma87, Ma89, St94, Wi95, Or96, MaOl, En031. 



Chapter 2 

Nuclear matter 

2.1 Nuclear radii and charge distributions 

The best information we have about nuclear charge distributions comes from elec- 
tron scattering, where one uses short-wavelength electrons to explore the structure 
[WaOl]. In the work of Hofstadter and colleagues at Stanford [Ho56] a phaseshift 
analysis was made of elastic electron scattering from an arbitrary charge distribu- 
tion through the Coulomb interaction. The best fit to the data, on the average, was 
found with the following shape, illustrated in Fig. 2.1 

0.9 L0,--.t;l 

Fig. 2.1. Two parameter fit to the nuclear charge distribution given in Eq. (2.1). 

Several features of the empirical results are worthy of note: 
1. ( A / Z ) p o ,  the central nuclear density, is observed to be constant from nucleus 

2. The radius to 1/2 the maximum p is observed to vary with nucleon number 
to  nucleus. 

A according to' 

'The nucleon number A is identical to  the baryon number B, which, to the best of our current ex- 
perimental knowledge, is an exactly conserved quantity; the notation will be used interchangeably 
throughout this book. 

13 
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R = roA1l3 

where the half-density radius parameter ro is given by 

7-0 M 1.07 fm (2.3) 

We assume that the neutron density tracks the proton density and that the neutrons 
are confined to the same nuclear volume.2 This means that the nuclear density A/V 
is given by 

3 - A 
V 4 7 4  

M 1.95 x particles/cm3 

One thus concludes nuclear matter has a constant density from nucleus to nucleus; 
3. It is an experimental fact that for a proton [Ch56] 

( T ~ ) : / ~  M 0.77 fm (2.5) 

If the nucleus is divided into cubical boxes so that A/V = 1/13 then Eq. (2.4) implies 
that 1 = 1.72 fm. Is 1 >> 2r, so that the nucleus can, to a first approximation, be 
treated as a collection of undistorted nonrelativistic nucleons interacting through 
static two-body potentials? We will certainly start our description of nuclear physics 
working under this assumption! It is evident, however, that these dimensions are 
very close, and the internal structure of the nucleon will have to  be taken into 
account as we progress. 

4. The surface thickness of the nucleus, defined to be the distance over which 
the density in Eq. (2.1) falls from 0.9 po to 0.1 po is given by 

t M 2.4 fm (2.6) 

for nuclei from Mg to Pb.3 

p (Fig. 2.2) is given by 
5. The mean square radius of a sphere of radius Rc of uniform charge density 

s: 4rr2dr .  r2 

12 4m2dr  
( r2 )  = 

3 
= -R; 

5 

One can thus also define an equivalent uniform density parameter roc through 

Rc = r ~ c A l / ~  (2.8) 

2This assumption is verified quite well in nucleon-nucleus scattering. 

3Note a M t / 2  In 9. 

(2.2)

(2.4)

(2.7)
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The values of roc for two typical nuclei are 

roc 
1.32 fm 
1.20 fm 

Nucleus 

i:Ca 
209~ i  
83 

Fig. 2.2. Equivalent uniform charge density. 

6. It is important to remember that it is the nuclear charge distribution that is 
measured in electron ~ca t te r ing ;~  the nuclear force range may extend beyond this. 

2.2 The semiempirical mass formula 

A useful expression for the average energy of nuclei in their ground states, or nuclear 
masses, can be obtained by picturing the nucleus as a liquid drop. With twice as 
much liquid, there will be twice the energy of condensation, or binding energy. A 
first term in the energy will thus represent this bulk property of nuclear matter 

El = - u ~ A  (2.10) 

The nucleons at the surface are only attracted by the nucleons inside. This gives 
rise to a surface tension and surface energy which decreases the binding 

E2 = cT(surface tension) x (area) 
= 4 x a R 2  
= ( 4 7 r r 0 2 ~ ) A ~ / ~  
= a 2 ~ 2 / 3  (2.11) 

4For more recent measurements of nuclear charge distributions see [de87]. 

(.9)
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To this will be added the Coulomb interaction of 
distributed over the nucleus5 

2 protons, assumed uniformly 

(2.12) 

To proceed further, some specifically nuclear effects must be included: 
1. It is noted empirically that existing nuclei prefer to have N = 2. A symmetry 

energy will be added to take this into account. If one has twice as many particles 
with the same N / Z ,  one will have twice the symmetry energy as a consequence of 
the bulk property of nuclear matter. With a parabolic approximation (C is just a 
constant), the symmetry energy takes the form 

C 
4A2 

- - -(A - 2Z)2A 

- (A - 2 2 ) 2  
= a4 

A 
(2.13) 

2. It is also noted experimentally that nuclei prefer to have even numbers of the 
same kinds of particles, protons or neutrons. For example 

0 There are only 4 stable odd-odd nuclei: !H, !Li, 'gB, '$N; 
0 There is only 1 stable odd A nuclear isobar; 
0 For even A there may be 2 or more stable nuclei with even 2 and even N .  

The schematic representation of the nuclear energy surfaces for these different cases 
is shown in Fig. 2.3, along with the possible P-decay transitions. 

It is a general rule, which follows from energetics, that of two nuclei with the 
same A, and with Z differing by 1, at least one is P-unstable. The bottom two 
even-even nuclei in Fig. 2.3 can only get to each other by double @-decay, which is 
extremely rare. To represent these observations, a pairing energy will be included 
in the nuclear energy 

a5 
A3/4 E5 = A- (2.14) 

Here A = + l  for odd-odd, 0 for odd-even, and -1 for even-even nuclei, representing 
the contributions of 1 or 2 extra pairs of identical nucleons. The A-3/4 dependence 
is empirical. 

51n this book we use rationalized c.g.s. (Heaviside-Lorentz) units such that the fine structure 
constant is a = e2/4rfcc = (137.0)-l. See appendix D.3. 
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_ _  E 
A 

Odd A - F; 
A 

kQ?--p& e.c. p+ 

I I I 1 1 
Z 

Even ‘4 

odd-odd odd-odd 

even-even 

I I I I I +  
z 

Fig. 2.3. Nuclear energy surfaces for odd A, and even A nuclei. 

A combination of these terms leads to the Weizsacker semiempirical mass for- 
mula [Vo35] 

(2.15) 
( A - 2 2 ) ’  a5 + X- 

2 2  

A3/4 E = -alA + a2A2/3 + a3- + a4 
A A1/3 

One empirical determination of the parameters appearing in this expression is given 
by [Gr54I6 

a1 = 15.75 MeV 

a3 = 0.710 MeV 

a2 = 17.8 MeV 

a4 = 23.7 MeV 
a5 = 34 MeV (2.16) 

The empirical value of a3 implies roc = 1.22 fm, in remarkably good agreement 
with the values in Eq. (2.9). 

There are only two terms in Eq. (2.15) that depend on 2. The stable value Z* 
is found by minimization at fixed A; for odd A nuclei X = 0, and there is a single 
Z*. The condition dE/dZIA = 0 yields the value 

(2.17) 

For light nuclei, say up to A = 40, this gives Z* M A/2. The result in Eq. (2.17) is 
sketched in Fig. 2.4 in terms of the equilibrium neutron number N* = A - Z* vs 
Z* and compared with N = Z = A/2. 

The mass formula and value of Z* here are mean values, and the average fit to 
nuclear masses is e~ce l l en t .~  The semiempirical mass formula is of great utility, for 

6A very useful number to remember is hc = 197.3 MeV fm; also c = 2.998 X lo1’ cm/sec. 

7For a more recent fit see [Mo95a]. 
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example, in discussing nuclear fission, permitting one to tell when the energy of two 
nuclear fragments is less than the energy of an initial (perhaps excited) nucleus, and 
hence when there will be an energy release in the fission process. This semiempirical 
approach can also be extended to take into account fluctuations of masses about the 
mean values. Such fluctuations can arise, for example, from shell structure, which 
is discussed later in this part of the book. 

Fig. 2.4. Equilibrium neutron number N* = A - Za vs Za compared with N = 
Z = A/2. 

2.3 Nuclear matter 

We are now in a position to define a substance called nuclear matter. 

(1) Let A -+ 00 so that surface properties are negligible with respect to bulk 
properties; set N = Z so that the symmetry energy vanishes; and then turn 
off the electric charge so that there is no Coulomb interaction. The resulting 
extended, uniform material is known as nuclear matter. It evidently has a 
binding energy/nucleon of 

(2.18) 
l3 - x -15.7 MeV 
A 

That this expression is a constant independent of A is known as the satu- 
ration of nuclear forces; 

(2) Picture nuclear matter as a degenerate Fermi gas (Fig. 2.5). The degeneracy 
factor is 4 corresponding to neutrons and protons with spin up and spin 
down (n t n I p p I). The total number of occupied levels is A. Thus 

(2.19) 

This yields 

(2.20) 
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or, with the aid of Eq. (2.4) 

113 
kFro = (F) = 1.52 (2.21) 

The insertion of Eq. (2.3) then gives 

k~ M 1.42 x 1013 cm-l = 1.42 fm-' (2.22) 

This Fermi wave number provides a convenient parameterization of the 
density of nuclear matter.' 

Fig. 2.5. Nuclear matter as a degenerate Fermi gas. 

The theoretical challenge is to understand the bulk properties of nuclear matter 
in Eqs. (2.18) and (2.22) in terms of the strong nuclear force. In Part 2 of this 
book we discuss nuclear matter within the framework of relativistic hadronic field 
theories. In this first Part 1, we work within the context of phenomenological two- 
body potentials and the nonrelativistic many-particle Schrodinger equation. We 
start the discussion with a simple independent-particle, Fermi-gas model of the 
extended uniform system of nuclear matter. 

6Fits to interior densities of the heaviest known nuclei yield somewhat lower values ICF M 1.36 f 
0.06 fm-I [Se86]. 



Chapter 3 

The independent-particle Fermi-gas model 

The goal of this chapter is to develop an initial description of a large uniform sample 
of nuclear matter with A nucleons in a cubical volume V where one takes A ,  V 00 

at fixed baryon density AIV = p~ = 2k$/3.rr2. Periodic boundary conditions will 
be applied. The single-particle eigenfunctions are plane waves 

The form of these coordinate space wave functions follows from translation invari- 
ance. They are solutions to the Hartree-Fock equations, and since the Hartree-Fock 
equations follow from a variational principle, they form the best single-particle wave 
functions. This is the appeal of nuclear matter; the starting single-particle wave 
functions are known and simple. 

Nuclear matter is composed of both protons and neutrons with spin up and 
spin down. We know from charge independence that protons and neutrons look like 
identical particles as far as the nuclear force is concerned. We will treat them as 
just two different charge states of the same particle, a nucleon. 

3.1 Isotopic spin 

The nucleons will be given an additional internal degree of freedom that takes two 
values and distinguishes protons and neutrons. In strict analogy with ordinary spin 
1/2 one introduces 

The operators in this simple two-dimensional space are 1, T, which form a complete 
set of 2 x 2 matrices. If the spin and isospin dependence is included, the single- 
particle wave functions then take the form 

20 
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Here xx  is the spin wave function with XT = ( ),x, = ( !) and qp is the 

isospin wave function given above. The new isospin coordinate identifies the nature 
of the nucleon through its charge q = i(1 + 73).  

3.2 Second quantization 

The hamiltonian for this system is given in second quantization by [Fe71] 

Here the fermion creation and destruction operators satisfy the canonical anticom- 
mutation relations1 

It is assumed for the present purposes that the two-body potential is non-singular 
and that all the matrix elements in Eq. (3.4) exist. 

Let IF) be the normalized noninteracting Fermi gas ground state with neutron 
and proton levels with spin up and spin down filled equally to the Fermi wave 
number IEF (Fig. 2.5). First-order perturbation theory then gives the total energy 
of the system according to 

3.3 Variational estimate 

In fact, this first-order calculation also provides a rigorous bound since the varia- 
tional principle tells us that 

In writing these anticommutation relations, we have introduced a generalized Pauli principle. The 
state vector of a collection of nucleons is antisymmetric under the interchange of all coordinates 
including isotopic spin. There is, to this point in our development, no new physics implied by 
this assumption. 
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where E is the exact ground state energy of the fully interacting system. It follows 
from the expectation value that 

Eo + El = 

(Flailxlpl a t z X z P z  a k 4 X 4 ~ 4 a k 3 X 3 ~ 3  I F )  (3.8) 

All the operators in this last expression must refer to particles within the Fermi sea 
or the matrix element vanishes. The expectation value then gives [6klk3bX1X3bp1p3] 
[bkzk46XzX46~z~41 - [ ~ k l k 4 ~ ~ 1 ~ 4 ~ f 1 P 4 ]  [ ~ k 2 k 3 ~ ~ 2 ~ 3 ~ P 2 P 3 ]  from which the energy fo~~ows 
as 

{(kXp, k’X’p’lVJkXp, k’X’p’) - (kXp, k‘X’p’IVlk’X‘p’, kXp)} (3.9) 
\ / \  / 

VD VE 
Y -4 

The first term in brackets is known as the direct interaction (VD) and the second is 
the exchange interaction (VE). 

As an example, consider 

v = v(T)(aW -k a M h )  (3.10) 

where UM and aw are positive constants and pM is the Majorana space exchange 
operator (chapter 1). Assume that V(r) is nonsingular and that the volume integral 
of the potential = V(r)d3r exists; take it to be a negative quantity representing 
the attractive nature of the nuclear force. Assume further that V(T) has no spin 
dependence; in fact, the actual spin dependence of the nuclear force is quite weak - 
the ‘So state is just unbound, while the 3S1 is just bound. We proceed to evaluate 
the required matrix elements of the potential in Eq. (3.9). The direct term is given 
by 

(3.11) 

where we have defined z = x - y. The exchange term follows in exactly the same 
fashion as 

e-i(k-k’).~v ( )d3z + a~ 1 V(z)d3z] (3.12) 
V 
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The total energy in Eq. (3.9) thus becomes 

(3.13) 

The required momentum integrals are evaluated as 

The remaining volume is expressed in terms of the total number of nucleons as 
V = 3n2A/2k; and the energy becomes 

Since [3j1(kFZ)/kFzl2 + 0 as kF + 00 for all finite z ,  the second term in brackets 
becomes negligible at high baryon density. Thus unless (4UW-aM) < 0 or a~ > 4aw 
the system will be unstable against collapse. This is a rigorous result since this 
lowest order calculation is variational; the true ground state energy must lie below 
this value. Thus, as illustrated in Fig. 3.1, the true system must become more 
bound as kF + 00 and hence the system is unstable against collapse. 

EO+E1 f 
A 

exact ground s t a t e  

Fig. 3.1. Variational estimate for energy of true ground state of nuclear matter with 
the nonsingular potential in Eq. (3.10). 

Experimentally, the nuclear potential is approximately a Serber force with a~ x 
aw.  We have proven the following theorem for such an interaction: 
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A nonsingular Serber force with J V ( z ) d 3 z  < 0 does not lead to  
nuclear saturation. 

3.4 Single-particle potential 

The single-particle Hartree-Fock potential that a nucleon feels in nuclear matter at 
any density can readily be identified from this calculation as 

(3.16) 

The required integrals have all been evaluated above and one finds 

This result is independent of X and p and is only a function of k2. It is sketched in 
Fig. 3.2. 

/ I  

I k 

Fig. 3.2. Sketch of single-nucleon potential in nuclear matter with a nonsingular 
potential; for a Serber force aw = U M .  

The expansion j o ( k z )  1 - ( k ~ ) ~ / 3 !  + ( k ~ ) ~ / 5 !  allows one to identify the first few 
terms in an expansion for small k. The momentum dependence, which gives rise 
to an effective mass for the nucleons, arises both from the exchange interaction 
through the potential VW f V ( r ) a w  and from the direct interaction through the 
exchange potential VM E V(r )uM&.  Since j o ( k z )  will oscillate rapidly for large 
k causing the second integral to vanish, the asymptotic form of the single-particle 
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potential takes the form 

(3.18) 

One is faced with two problems: 

(1) How does one explain nuclear saturation in terms of the two-nucleon inter- 
action? It is an empirical fact that the static nucleon-nucleon potential is 
singular at short distances; there is empirical evidence for a strong short- 
range repulsion (chapter 1). A method must be developed for incorporating 
this possibility into our theoretical description. 

(2) W h y  does the independent-particle model work at all i f  the forces are indeed 
so strong and singular? It is an empirical fact that single-particle models 
do provide an amazingly successful first description of nuclei, for example, 
the shell model of nuclear properties and spectra, the optical model for nu- 
cleon scattering, and the Fermi gas model for quasielastic nuclear response. 
How can this success be understood in the light of such strong, singular 
internucleon forces? 

We proceed to develop the independent-pair approximation that allows one to 
incorporate the strong short-range part of the internucleon interaction into the 
theoretical description of nuclear matter within the framework of the nonrelativistic 
many-body problem. 



Chapter 4 

The independent-pair approximation 

In the previous chapter the expectation value of the hamiltonian was computed 
using the wave functions of a noninteracting Fermi gas. If the two-body force is 
strong at short distances, then it is essential to include the effects of the interaction 
back on the wave function. This shall be carried out within the framework of the 
independent-pair approximation, which provides a simple summary of the theory of 
Brueckner, Bethe, and others [Br54, Be56, Br59, Da671. The present discussion uses 
the Bethe-Goldstone equation [Be571 and is based on [Go58, Fe711 (see also [de74, 
Pr821). In [Fe71] the relation to the full analysis of nuclear matter using Green’s 
functions is developed in detail; here a more intuitive approach will be employed. 

4.1 Bethe-Goldstone equation 

The basic idea is to write the Schrodinger equation for two interacting particles 
in the nuclear medium. The nature of the potential at short distances is then 
unimportant, for the differential equation is simply solved exactly in that region. 
This approach takes into account the effect of the two-body potential on the wave 
function to all orders in V. The effects of the surrounding nuclear medium are then 
taken into account in two ways: 

(1) First, the two particles interact in the presence of a degenerate Fermi gas 
- there is a certain set of levels already occupied by other nucleons and 
the Pauli principle prohibits the pair of interacting particles from making 
transitions into these already-occupied states; 

(2) Second, the interacting particles move in a self-consistent single-particle 
potential generated by the average interaction with all of the other particles 
in the nuclear medium. 

We start from the Schrodinger equation for two free particles interacting through 
a potential V(1,2) 

26 
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[Tl+ T2 + V(1,2)]*(1,2) = E*(l,  2) 

Here E is the exact lowest-energy eigenvalue and 

Equation (4.1) represents the expansion of the full two-particle wave function Q in 
the complete set an; it is an integral equation since the wave function Q appears in 
the matrix elements on the right-hand side. A particularly convenient normalization 
has been chosen for the wave function, (&lQ) = 1; this has been accomplished by 
setting the first coefficient on the right-hand side of Eq. (4.1) equal to unity, or 

The proof of Eq. (4.1) follows by operating on it with E - HO and using the com- 
pleteness of the unperturbed wave functions; these simply represent particles in a 
big box of volume V with periodic boundary conditions (Fig. 4.1) 

(4.4) 

Spin and isospin indices are here suppressed for clarity, and nonidentical nucleons are 
assumed; if the nucleons are identical, the wave function must be antisymmetrized. 

The Pauli principle now restricts the possible intermediate states that can be 
admixed into the wave function of the interacting pair in Eq. (4.1) since some are 
already occupied by other nucleons (Fig. 4.1). 

A 

Fig. 4.1. Quantization volume and levels available to two interacting particles in 
nuclear matter. 

This restricts the sum in Eq. (4.1) according to 

c- c (4.5) 
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Next center-of-mass (C-M) and relative coordinates may be introduced through the 
relations 

1 k = -(kl - k2) 
2 

x = x1 - x g  

P = k l  + k2 

R = - (XI  + ~ 2 )  
1 
2 

Here pred = m/2 and Mtot = 2m are the reduced mass and total mass of the pair, 
respectively. The quantity tc2 appearing in E parameterizes the exact eigenvalue. 

The solution to the Schrodinger Eq. (4.1) takes the form 

(4.7) 

Substitution of this form and cancelation of common factors [assuming V(1,2) = 

V(x1 - xz)] gives1 

Here the initial momenta lie in F inside the Fermi sphere lP/2 f kl < k~ while the 
admixed momenta lie in r outside the Fermi sphere IP/2 f tJ > ICF. The regions 
of momentum space integration are indicated pictorially in Fig. 4.2. Note that the 
C-M momentum P is a constant of the motion for the interacting pair. 

I' 
> 
Y 

Fig. 4.2. Momentum space integrations in the Bethe-Goldstone equation. Here F 
is the region IP/2 f kl < ICF where both the starting particles are inside the Fermi 
sphere and r is IP/2 f kl > k~ where both intermediate particles are outside the 
Fermi sphere. 

l U s e J J d 3 z 1 d 3 x 2  = J J d 3 R d 3 x  and J d 3 R e x p { i R .  (P-P')} =V6p,p/ 
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Start with a pair of particles with (P, k); two-particle states above the Fermi sea 
are then admixed due to the two-particle potential. From this, the two-particle en- 
ergy shift is determined. In analogy to Eq. (3.9), it is assumed that the total energy 
shift for the system is obtained by summing the energy shifts over the interacting 
pairs 

- kw kw 

For identical particles (i.e., p etc.) the wave function must be antisymmetrized 
and there will be direct and exchange contributions to the two-particle energy shifts. 

The set of Eqs. (4.8) and (4.9) provides the simplest way of including the effects 
of a singular short-range interaction potential on the wave function and approximat- 
ing the expectation vqlue of the total hamiltonian H = Ci t( i)  + 4 Xi Cj V(i , j )  
taken with the exact many-particle wave function. 

As a generalization of these results, it will be assumed that each member of the 
interacting pair moves in a single-particle potential coming from the average inter- 
action with the particles in the other occupied states. In analogy with Eq. (3.16) 
one writes 

p 

(4.10) 

4.2 Effective mass approximation 

This fully coupled problem is still numerically complicated. It will here be simplified 
by making the effective mass A Taylor series expansion is made 
about some momentum ko, and only the first two terms retained 

N N 

Thus 

1 - m* 
m l + U l  

(4.11) 

(4.12) 

Since only energy differences enter in Eq. (4.8) for $pk, Uo cancels in that equation, 
and the only effect of this modification of the single-particle spectrum is then to 

2While exact over a small enough interval of the spectrum, Fig. 3.2 indicates that this can only 
be a crude approximation to the entire spectrum. (See, in this regard, [Ma85, Ja89, Ma911.) 

approximattion.2
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replace m -+ m* in the potential 

(4.13) 

where &=d = m*/2 is the reduced effective mass. 
Equations (4.8) are still involved. The wave function $pk satisfies an integral 

equation where the kernel depends on the eigenvalue tc2, which itself can be deter- 
mined only from $pk; however, it is possible to make an important simplification if 
one is primarily interested only in the buZk properties of nuclear matter. The energy 
shift I C ~  - k2 of a pair of particles in Eq. (4.8) goes as 1/V where V is the volume 
(Fig. 4.1). Since I C ~  - t2 cannot vanish except close to the Fermi surface (Fig. 4.2), 
one can make the replacement tc2 - t2  -+ k2 - t 2  in the equation for $pk as V -+ 00. 3 

4.3 Solution for a nonsingular square well potential 

Consider a square well potential fit to low-energy I S 0  scattering. In this channel, 
the nucleon-nucleon force has approximately a bound state at zero energy (chapter 
1). The wave function inside such a potential in the free scattering problem contains 
1/4 wavelength (Fig. 4.3) uin = Nsin ( ~ 2 / 2 d )  = Nsin [(2predVo/h2)1/2z]. 

/-- Ul" ,' For bound slate 
at zero energy 

Fig. 4.3. The s-wave wave function in a square well potential with a bound state at 
zero energy. Here z = 1x1. 

The depth of such a potential is related to its range by 

h2T2 v o = - - -  
8predd2 4md2 

- 
h2n2 

(4.14) 

The effective range of a square well potential with a bound state at zero energy 
is given by TO = d (Prob. 1.8). Use of the singlet effective range of TO = 2.7 fm 
[Eq. (l.S)] leads to VO = 14 MeV. This is a very weak potential in nuclear matter; 
for example, VO << E: where the Fermi energy is given by E: = h2ki/2m = 42 MeV 
with kF = 1.42 fm-l. 

3This argument gets one into trouble with the Cooper pairs - the extraordinary eigenvalues that 
lead to superconductivity (see [Fe71] Chap.10). These eigenvalues are a problem only very close 
to the Fermi surface, and are unimportant when discussing the bulk properties of nuclear matter. 
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0.03 
0.02 
0.01 

Let us calculate the Bethe-Goldstone wave function in nuclear matter in the 
limiting case where P = k = 0. At zero energy, only the s-waves feel the effects 
of the potential. Assume that the modification of the wave function is small (an 
approximation readily verified at the end of the calculation), and replace u ( x ) / x  M 

j o ( k x )  -+ 1 in the region of the potential. The modification of the wave function is 
then calculated from Eq. (4.8) to be 

- 
- 
- 1 2 A  4 5  

I I *  

The use of J;y2j0(ty)dy = d3jl(td)/td allows this to be rewritten as 

Here p E t d  and 

(4.16) 

(4.17) 

Calculation of m*/m at the Fermi surface gives M 0.6 (see Prob. 4.6), which implies 
that this ratio is uo/lC; NN 0.10. The result in Eq. (4.16) is plotted in Fig. 4.4. 

Fig. 4.4. Difference A+sw between Bethe-Goldstone wave function and unper- 
turbed plane wave for a zero energy pair in nuclear matter interacting through the 
'So square well potential in Fig. 4.3. From [Fe71]. 

We observe that lA+swI << 1 and this potential has almost no effect on the wave 
function. The wave function of this pair in nuclear matter is essentially the unper- 
turbed value. Due to the relatively large k ~ ,  this nucleon-nucleon potential cannot 
easily excite pairs out of the Fermi sea; the fact that m*/m < 1 makes it even more 
difficult to do so. 

4.4 Solution for a pure hard core potential 

Consider the Bethe-Goldstone (B-G) equation for a two-body potential that is an 
infinite barrier at T = a, and take P = 0 as the simplest example [Be57]. It is 
convenient in this case to first convert the B-G Eq. (4.8) with 6' M k2 to differential- 
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integral form by applying the operator (V2 + k 2 ) .  This gives 

Here we have used the relation J, = J - JF where is the complement of I? (see 
Fig. 4.2). Look for s-wave solutions to this equation of the form + = u(x)/x where 
x = 1x1; it is the s-waves that get in closest and will feel the singular potential 

1 kF y) sinkF(x +y)  - 
7r X + Y  

- 1 jo(tx)jo(ty)t2dt = 
7r 

X(X,Y) - 

(4.19) 

Introduce dimensionless variables r = kFx, r' = kFy, K = k/kF, and 

Equation (4.19) then takes the form 
a3 

u(r) = v(r)u(r) - 1 x(r, r')v(r')u(r')dr' 

(4.20) 

(4.21) 

The wave function will in general have a discontinuity in slope at  the core radius 
c = ~ F U  as illustrated in Fig. 4.5. 

r 
C 

Fig. 4.5. Sketch of s-wave wave function with a hard core. 

This implies that the product of the potential and the wave function must contain 
a delta f ~ n c t i o n . ~  Thus one must have 

V ( T ) U ( T )  = dS(r - C) + w(.) (4.22) 

4T0 see this, just integrate the radial differential equation over an infinitesimal region across the 
core boundary. 



Solution for a pure hard core potential 33 

Here w(r) = 0 outside the core r > c since the potential vanishes there. Inside the 
core r < c the wave function u(r) must vanish, and w(r) must be chosen to ensure 
that this happens. Thus 

; r < c  

For nuclear matter c is effectively a small parameter 

c = kFr, M (1.42 fmP1)(0.4 fm) M 0.57 

The kernel can then be expanded for small c 

2rc 
A 3n 
- -  w(r) -o(c - r) + 0(c5) - 

(4.23) 

(4.24) 

(4.25) 

For small c, w(r) may be neglected. Thus5 

($ + K’) u(r) M A[S(r - c) - x(r, c)] = F( r )  (4.26) 

The solution to this inhomogeneous differential equation can be written in the form 

u(r) = - sin [K(r - s)] F(s)ds  : I’ (4.27) 

This is immediately checked by differentiation u’ = si cos [K(r - s)] F(s)ds  and 
u(r)” + K’u(r) = F(r ) .  A trigonometric expansion in Eq. (4.27) then gives 

Two features of this result are of particular interest: 

(1) The excluded region in momentum space in the B-G equation is just such 
as to guarantee that there is no phase shijl in the wave function at large 
interparticle separation. All of the states with the same Ikl are already 
occupied by other nucleons and it is therefore not possible to scatter into 
them. As a consequence, the potential can distort the B-G wave function 
only at short distances; there is no long-range effect. At large distances the 

’From Eq. (4.25) w ( r )  is of order c2 and any integral over W ( T )  is at least of order c3; its effects 
can readily be included in a power series expansion in c. 
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B-G wave function goes over to an unperturbed plane wave. The proof that 
there is no phase shift follows by letting T + 00 in Eq. (4.28) 

lo sinKsF(s)ds 0; s2dsJr t2dt jo(Ks)jo(ts) 

This last result follows since K is in F and t is in r (Fig. 4.2) and the 
argument of the delta function can never vanish; 
The wave function must now be normalized, and to be normalized in the 
volume V one must demand +(x) -+ eik.x with unit amplitude as x -+ 00, 

or from Eq. (4.28) 

im cos Ks F(s)ds = 1 (4.30) 

Insertion of the definition of F ( s )  in Eq. (4.26) in this last relation gives 

A = [COS KC - cos K s  ~ ( s ,  c)ds]-' (4.31) 

These equations now allow one to calculate the wave function U(T)  and the result 
is shown in Fig. 4.6.6 

I" 
t I  

Fig. 4.6. The Bethe-Goldstone s-wave wave function U ( T ) / T  for a pair with K = P = 
0 interacting through a hard-core potential in nuclear matter. Recall that x = 1x1 
and T = kFx.  Also shown are the average interparticle distance kFl and range 
kFd = kF(b + bw) of the singlet potential in Prob. 1.8(b). From [Fe71]. 

The correlation function A+ = U ( T ) / T  - jo(Kr) oscillates to zero with large 
T = kFx .  The healing distance will be defined as the point where A+ first vanishes; 

6The calculations presented are actually of u(r) = Jc'_ k sin [K(r  - s)] F(s)ds SO that u(c) = 0 as 
is guaranteed by the presence of the term w(r) .  

(4.29)

(2)
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from Fig. 4.6 we see7 

35 

kFx M 1.9 ; healing distance (4.32) 

Also plotted in Fig. 4.6 is the interparticle separation in nuclear matter 1/13 = 
A/V = 2ki/3n2 

1/3 
k ~ l  = (F) = 2.46 ; interparticledistance (4.33) 

4.5 Justification of the independent-particle model 

We have seen that the attractive part of the nucleon-nucleon potential has only a 
relatively small effect on the B-G wave function, leaving it essentially a plane wave. 
The hard core modifies the wave function at short distances, but the B-G wave 
function heals rapidly and oscillates with decaying amplitude about the plane wave 
value. Thus, except for a modification at small internucleon separation, a nucleon 
in nuclear matter moves as if it were in a plane wave state. The Pauli principle, 
acting through the already occupied orbitals, suppresses the role of correlations; 
there are no long-range correlations here, only short-range correlations.8 

4.6 Justification of the independent-pair approximation 

The B-G wave function is modified only at short distance; at large distances it goes 
over to an unperturbed plane wave. We observe that the healing distance i s  less 
than the interparticle separation. It is therefore unlikely to find a third particle in 
the region of interaction of any pair. Thus it suffices to find the pair wave function 
at short distances to determine the properties of the system that depend on this 
short distance behavior, for example, the energy. 

A great effort has gone into calculating the saturation properties of nuclear mat- 
ter starting from a static two-nucleon potential fit to two-body scattering data and 
the independent-pair approximation, and then systematically calculating correc- 
tions. The names associated with this effort are Brueckner, Bethe, Pandharipande, 
among others. This analysis is described and referenced in [Fe71, Wa951, where 
a simple calculation with a hard-core, square-well, Serber force is shown to give 
semi-quantitative agreement with the saturation properties. One conclusion from 
all this work is that a many-body force must be included to get quantitative agree- 
ment with experiment. The material in [Fe71, Wag51 will not be repeated here; 
rather, in Part 2 of this book we shall focus on an alternative and more direct way 
of obtaining a theoretical description of the properties of nuclear matter. 

7These results are insensitive to k and P [Fe71]. 

*See in this connection [We50, We51, Go581. 



Chapter 5 

The shell model 

The previous discussion was concerned with the properties of infinite nuclear mat- 
ter. We now turn our attention to finite nuclei. The starting point is the nuclear 
shell model [Ma55], which provides both a remarkably successful single-particle de- 
scription of nuclei as well as a complete basis in which to describe more complicated 
nuclear states. The chapter starts with a discussion of the general canonical trans- 
formation to particles and holes in a finite nuclear many-body system [Fe71]. 

5.1 General canonical transformation to particles and holes 

For clarity, assume first a spherical system and just one kind of fermion (i.e., p or 
n); the discussion will subsequently be generalized. The single-particle states will 
be characterized by the good quantum numbers in such a system 

la) = Inlsjrnj) = la,rn,) (5.1) 

It is convenient to use the notation 

1 - a)  = lnlsj - rnj) ? la, -ma) (5.2) 

Assume that the ground state is well described in first approximation by a set of 
single-particle levels completely filled up to F (Fig. 5.1). Carry out the following 
canonical transformation on the creation and destruction operators cL, ca 

a,  t =  - ca t ; a > F particles 

b: = S-&C-, ; a < F holes (5.3) 

s, = (-1)j-R = --& (5.4) 

Here the phase S, is defined by 

where j ,  is half-integral. Clearly 

(5.5) 

36 
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and all other operators anticommute. Equations (5.3) therefore represent a cunon- 
ical transformation. The reason for the phase S, in Eq. (5.3) is that bL is now an 
irreducible tensor operator (ITO) of rank j. Thus it properly creates an eigenstate 
of angular momentum. The proof of this statement is given in appendix A.2. The 
complete canonical transformation in Eqs. (5.3) can be rewritten as 

The goal is now to rewrite the nuclear hamiltonian 

in normal-ordered form with respect to the new creation and destruction operators 
in Eq. (5.6). This hamiltonian governs the dynamics of the nucleus at the equilib- 
rium nuclear density. Note that in writing Eq. (5.7) it has been assumed that the 
matrix elements of the potential V are finite.l 

Fig. 5.1. Single-particle levels filled up to F .  

Wick’s theorem may now be used to normal order the operators [Fe71].2 For 
example, 

cLcp = N(cLcp) + c ~ c / ;  

Here N indicates a normal ordering with respect to the new particle and hole 
operators a and b [i.e., all destruction operators are placed to the right of the 
creation operators and a sign is affixed equal to (-1) raised to the number of 
interchanges of fermion operators needed to achieve this normal ordering]. The pair 
of dots in Eq. (5.8) indicates a contraction (i.e., the terms remaining after achieving 

‘If the potential is singular, then the interaction must initially be treated in the independent pair 
approximation, as in chapter 4, and the Bethe-Goldstone equation solved in the finite nuclear 
system (Fe711. 

2To make the formal connection with Wick’s theorem complete, one may consider the operators 
to be time dependent with the time of the operator on the left infinitesimally later than that 
on the right; however, a little reflection will convince the reader that this artifice is unnecessary; 
Eq. (5.12) is an algebraic identity. 
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the normal-ordered form). The new noninteracting “vacuum” is defined to contain 
neither particles nor holes (see Fig. 5.1) 

a,l0) = b,(O) = 0 (5-9) 

It follows from these relations that 

cpC; = ( O ~ C L C ~ ~ O )  = 6,pe(F-a) 

cpc; = c:c; = 0 (5.10) 

Thus Wick’s theorem applied to the bilinear kinetic energy term gives 

c:cP = 6,Pe(F - a)  + N ( & ~ )  (5.11) 

Wick’s theorem applied to the quadralinear potential energy term gives 

cLc,$s~, = N ( ~ L ~ J ~ ~ ~ )  + (6,,sPg - 6,s6P,)e(F - - p) 
+S,,O(F - a)N(cLcs) + 6 p s W  - P ) N ( c L q )  

-6,6e(F - ~)N(c;c,) - bp,e(F - P ) N ( C : ~ & )  (5.12) 

This result may now be substituted into the hamiltonian a in Eq. (5.7). Note that 
the potential is symmetric under particle interchange, which implies 

(aPlVlyS) = (PalVlW (5.13) 

A change of dummy summation indices then indicates that the two terms in the 
second line of Eq. (5.12) make equal contributions to A, as do the two terms in the 
third line. 

A major simplification is obtained if the bilinear terms in fi are diagonal, for 
then part of the finite nucleus problem has been solved exactly. The bilinear terms 
will be diagonal if the following equations are satisfied 

(PIT14 + c [(aPIVIaS) - ((.PlVI~a)l = Ep6ps 

The form of the single-particle wave functions, except for the good quantum num- 
bers, has until now been unspecified. Choose them as solutions to the Hartree-Fock 
(H-F) equations 

(5.14) 
a<F 

cr<F LJ 

- /4a( l ) tV(l ,  ~)h( l )4a(2)d3z1 = ~s4a(2) (5.15) 

Equations (5.14) then follow immediately from Eqs. (5.15) for it is readily estab- 
lished that the H-F eigenvalues E ,  in these equations are real and that the solutions 

1 
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to these H-F equations are orthonormal (Prob. 5.1). Insertion of these results puts 
the hamiltonian A into the following form 

A = HO+Al+& 

(5.16) 

This is an exact result. The H-F energies in these expressions are given by Eq. (5.14) 
as 

(5.17) 

Several comments are appropriate here: 

0 These are completely general results. They are, in fact, not restricted to 
spherically symmetric systems (note the phase S, never enters). The index 
a need denote only a complete set of solutions to the H-F e q ~ a t i o n s ; ~  

0 The H-F result EO = HO also provides a variational estimate for the energy 
since 

(OlA,lO) = (OlA,lO) = 0 (5.18) 

Therefore 

(OlBlO) = Ho (5.19) 

The H-F wave functions are the best possible single-particle wave functions; 
So far only one kind of fermion has been assumed. Thus the preceding 
results are directly applicable, for example, to atoms; however, the argu- 
ments are immediately generalized to the nuclear system with the inclusion 
of isospin 

3Strictly speaking H I  = Ca,F caaLaa - Ca<= c-,bLb,. In the spherically symmetric case 
em = ca = E - ~ .  It is assumed here that the pairs a and --(I are filled below F .  
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Then b& is an I T 0  with respect to both angular momentum and isospin 
(appendix A.2); 

0 One can now readily add particles and holes to the ground state 10) with 
the creation operators at and bt .  

5.2 Single-particle shell model 

Although the H-F equations describe single-particle wave functions, they are still 
complicated coupled, nonlinear, integro-differential equations. Nonetheless, they 
have been solved numerically in many cases, and they provide remarkably accurate 
descriptions of finite nuclear systems [Sk56, Sk59, Go79, Sv79, Ne821. Typically 
the calculations use phenomenological, nonsingular, density-dependent interactions 
[Sk56, Sk59, Go79, Sv791, although interactions based on more fundamental nuclear 
matter studies with the free nucleon-nucleon force have also been employed [Ne82]. 

Many properties of finite nuclei can be understood with wave functions generated 
with approximate, solvable, single-particle potentials. Such wave functions always 
provide a first orientation and physical insight. We therefore consider two solvable 
single-particle models: first a spherical cavity with infinite potential walls, and 
second an isotropic three-dimensional simple harmonic oscillator (which also, of 
course, has infinite walls). Figure 5.2 illustrates these two cases; the bottom of the 
well at a radius r = R has been adjusted to be at a potential -V, in both cases so 
a comparison can be made between them. 

Fig. 5.2. Solvable infinite square well and isotropic three-dimensional simple har- 
monic oscillator potentials. 

The wave functions for the infinite square well potential take the form 

(5.21) 

This solution is finite at the origin; it must also vanish at the boundary j l (kR)  = 0, 
which implies 

knlR = Xnl (5.22) 

Here Xnl is the nth zero of the lth spherical Bessel function, excluding the origin 
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and including the zero at the boundary. The level orderings are shown on the 
right-hand side (r.h.s.) of Fig. 5.3. 

c - c o  0 c--( 

Square-well 
levels 
(infinite walls) 

Isotropic harmonic- 
oscillator levels 

2hw 

1 hw 

Fig. 5.3. Level orderings in the two potentials shown in Fig. 5.2. The ground states 
have been arbitrarily normalized to the same energy [Ma55, Fe711. 

The required integral over the spherical Bessel functions (see [ScSS]) gives the 
normalization constant 

(5.23) 

The potential for the infinite oscillator also shown in Fig. 5.2 takes the form 

1 vo 
R2 2 

- -mw2 _ -  (5.24) 
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One looks for solutions to the Schrodinger equation of the form 

( 5 . 2 5 )  

With the introduction of dimensionless variables tiw = ti2/mb2 and q = r / b  the 
radial equation takes the form 

The acceptable solutions are the Laguerre polynomials [Mo53] 

nl ( Q ) = j v n l q z + l e - ; 9 y + t  n-I (q  2 ) 

(5 .26)  

(5 .27)  

As in the previous case, n = 1 , 2 , 3 , .  . . , 00 is the number of nodes in the radial wave 
function, including the one at infinity. The eigenvalues are given by 

Enl = t i w ( N + ; ) - v o  

N = 2 ( n - l ) + Z  = O 1 l , 2 , . . * , O 0  

The normalization follows from the integrals in [Mo53] 

( 5 . 2 8 )  

(5 .29)  

The level orderings in this potential are shown on the left-hand side (1.h.s.) of 
Fig. 5.3 .  

The true nuclear single-particle potential will be finite; however, the low-lying 
levels in the potential will not be greatly affected by extending the walls of the 
potential to infinity. The shape of the true single-particle well over the nuclear 
volume can be expected to lie somewhere between the two extreme cases shown in 
Fig. 5.2 (see Fig. 5 . 4 ) .  

Fig. 5.4.  Expected shape of true single-particle potential compared with the two 
solvable models. 
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It is possible to interpolate between the two solvable cases by flattening out the 
oscillator, or rounding off the square well. The highest-1 states in each shell in the 
oscillator will be lowered the most, since they spend most of their time at the edge 
of the potential (see Fig. 5.4). Note both (nl) remain good quantum numbers in 
this interpolation, whose results are indicated in the center column of Fig. 5.3. 

5.3 Spin-orbit splitting 

It is known experimentally that certain groups of identical nucleons ( p  or n) possess 
special stability. These so-called magic numbers occur at 2,8,20,28,50,82,126,. . . 
One does not obtain these numbers from the preceding analysis, where the total 
occupancies of the closed shells with the more realistic nuclear well (Fig. 5.4) are 
shown in the center column in Fig. 5.3. Mayer and Jensen [Ma551 suggested that 
there is an additional strong, attractive, single-particle spin-orbit t e rm  in the H-F 
potential of the form4 

H’ = -a(.) 1 .  s (5.30) 

The single-particle eigenstates are characterized by the eigenvalues In l s jmj ) .  Note 

21. slnlsjmj) = (j2 - l2 - s2) Inlsjmj) 
= [ j ( j  + 1) - 1(1+ 1) - s(s + l)]  lnlsjmj) (5.31) 

In the present case s = 1/2. Thus if j = 1 + 1/2 then 1 .  s = 1/2, and if j = 1 - 1/2 
then 1 .  s = - (1+ 1)/2. Therefore 

(5.32) 

This shell model of Mayer and Jensen now predicts the correct magic numbers if 
the spin-orbit interaction is large enough to push the state of highest 1 and highest 
j in a major oscillator shell down into the next lower shell (Fig. 5.5). Upon filling 
the levels in Fig. 5.5 consecutively, one predicts the spins and parities of nuclei if 
all the properties of the nucleus are ascribed to the last nucleon. This extreme 
single-particle model of the nucleus is remarkably successful in this regard [Ma55]. 
Also predicted are islands of isomerism where the only levels available to a particle 
in a low lying excited state differ greatly in angular momentum and have different 
parity; in such cases, the electromagnetic transition rates will be very small and 
nuclear metastability (isomerism) will occur. 

4We will find a natural explanation for the occurrence of this strong, attractive, spin-orbit inter- 
action within QHD in Part 2 of this book. 
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It is to the filling of shells and the applicability of the single-particle shell model 
that we now turn our attention. 

6hw 
even 

5 h w  
odd 

4 h w  
even 

Fig. 5.5. Level orderings in the nuclear single-particle potential with an additional 
attractive spin-orbit interaction [Ma55, Fe711. 



Chapter 6 

The many-particle shell model 

The previous chapter introduced the single-particle shell model, where the ground 
state properties are assumed to arise from the last valence nucleon. Here we study 
some aspects of the many-particle shell model where we start filling j-shells. The 
discussion is confined to the same type of particle, neutron or proton, filling one 
j-shell, and the shells already filled will be assumed to form an inert core. Important 
references are [Ma55, de63, Ta931; the present discussion is taken from [Fe71]. 

6.1 Two valence particles: general interaction and 6(3)(r) force 

Within the subspace of a given j-shell, we can use the shorthand notation {nljm} + 

m. The states of definite total angular momentum J for two identical particles can 
therefore be written 

Since the fermion operators anticommute, the symmetry property of the Clebsch- 
Gordan (CG) coefficient under the interchange ml  e m2, together with a change 
of dummy variables yields l j 2 J M )  = (-l)'jPJ+l Ij J M ) .  We conclude that J must 
be even or the state vanishes; two identical valence nucleons must therefore have 
the allowed states 

J" = O+, 2+, 4+, . . . , ( 2 j  - 1)' (6.2) 

In the single-particle shell model, these states are degenerate because the core is 
spherically symmetric and the valence particles do not interact. 

For real nuclei, the degeneracy is lifted, and it is an experimental fact that all 
even-even nuclei have ground states with J" = O+. Furthermore, the properties 
of odd-nuclei can be understood by assuming that the even group of nucleons is 
coupled to form J" = Of in the ground state. Can the many-particle shell model 
account for these facts? The degeneracy of the states formed by the valence nucleons 

45 
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can be removed only by including an interaction between these nucleons. To obtain 
some insight, we consider first-order perturbation theory and compute the level 
shifts from the first quantized matrix elements ( j2 JM(Vl j2JM)  .l These matrix 
elements are diagonal in J and M and independent of M because the two-particle 
potential is invariant under rotations; however, they still depend on J because of 
the different two-particle densities. 

We first make a multipole expansion of the general rotationally invariant inter- 
action V(r1, r2, cosB12) 

v(rl I TZi cos~12) = fk(T17 rZ)pk(cos~l2) (6.3) 
k 

This relation is merely an expansion in a complete set of functions of ~ 0 ~ 0 1 2 ,  and 
it can be inverted with the orthogonality of the Legendre polynomials 

Equation (6.3) can be rewritten with the expansion in spherical harmonics 

which gives 

For generality, we evaluate the expectation value of V for two arbitrary single- 
particle states q L l l l j l m l  (1) and &zlzjzmz(2)  coupled to form definite J and M .  The 
matrix element of the scalar product of two tensors in a couple scheme is [Ed741 

where the radial matrix element is defined by [here R,l(r) = u,~(T)/T] 

All the dependence on the total angular momentum J in Eq. (6.7) is contained in 
the 6-j symbol, and all the specific nuclear properties appear only in the multipole 
strengths Fk. The remaining reduced matrix elements are given in terms of a 3-j  

'When the two valence particles interact through a singular two-body potential, one must consider 
the overlap with the pair wave function as discussed in chapter 4 [Fe71]. 
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coefficient by [Ro59] 

= o  ; k odd (6.9) 

The 3-j  and 6-j coefficients are defined in [Ed741 where their properties are dis- 
cussed; they are tabulated in [Ro59]. 

Equation (6.7) can thus be rewritten 

(6.10) 

For two identical particles with even J in a j-shell, this expression reduces to 

(6.11) 

If all the F k  are negative, corresponding to an attractive two-nucleon force, then 
a detailed examination of Eq. (6.11) shows that J = 0 will be the lowest lying state 
in the spectrum; this follows since the largest 6-j symbols are generally those with 
J = 0 [Ro59]. Furthermore, Eq. (6.10) can also be applied to an odd-odd nucleus 
with an extra proton and neutron in the shells jl and j 2 .  In this case the lowest 
state for an attractive interaction will have J = Ijl - j 2  I and the first excited state 
turns out to have J = j 1  + j 2 .  It is easy to see the reason for these results. The 
matrix element ( j l j 2  JMlVljljz JM) essentially measures the overlap of the two 
single-particle wave functions. The best overlap will be obtained by opposing the 
angular momentum of the individual orbits, and the next best by lining them up; 
two identical particles cannot be lined up because of the Pauli principle. 

These results can be seen more clearly with a simple model of the attractive 
potential. Assume that 

9 q 7 - 1  - 7-2) W , 2 )  = -d3)(x1  - x2) = --s(i - c0sel2) 
7T 7-17-2 

with g > 0. This yields2 

9 q7-1 - 7-2) 

47T 7-17-2 
- - (2k  + 1) f k  (7-1, 7-2) = 

(6.12) 

(6.13) 

2Note that J:l 6(1- z)dz = 1/2, and Pk(0) = 1. 
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where 
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(6.14) 

The energy shift of two identical particles in the j-shell can now be found by 
explicity evaluating the sum on k in Eq. (6.11)3 

j j J  j k j  
even x(2k+1){ k j j k } (  5 1 0 -3 2 

It follows that 

The resulting spectrum is indicated for some simple cases in Fig. 6.1. 

(312)’ (512) (712)’ 
n 

2: - 4 +  = 
2+ 2+ - 

-2  “1 -2+ - 
< j*JlYlj’J > -4 - 

d I O+ 
O+ 

-a  -“I 0’ 

Fig. 6.1. Spectrum from Eq. (6.16) for two identical particles in the j-shell with an 
attractive interaction v ( I , ~ )  = -g6(3)(x1 - x2). 

We see that the O+ state indeed lies lowest and is split off from the excited 
states, which are nearly degenerate with this delta-function potential, by a pairing 
energy 

( j 2 0 0 ~ v ~ j 2 0 0 )  = -(2j  + 1)Ig (6.17) 

Note that this energy shift is proportional to 2 j  + 1 so that it may sometimes be 
energetically favorable to promote a pair of identical particles from the original j -  
shell into a higher j’ shell if j’ - j is large enough. In this lowest-order calculation 
[i.e. just taking the expectation value of V(1,2)], the relative position of these levels 

3See [Ro59]. Note the sum on even k can be converted to a sum on all k by inserting a factor 
(1 + ( -1 )7 /2 .  
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is a direct measure of the two-body interaction between the valence particles. Actual 
nuclei show many of the features illustrated in Fig. 6.1. 

6.2 Several particles: normal coupling 

The previous discussion shows explicitly that for a short-range attractive interac- 
tion, the lowest energy state for a pair of identical particles in the same j-shell will 
be 

lj200) = ,$lo) (6.18) 

where the new two-particle operator is defined by 

(6.19) 

with &, t - = EJ=O,M=O. ^t This argument suggests that the lowest energy state for 
N identical particles in a j-shell is obtained by adding the maximum number of 
J = 0 pairs consistent with the Pauli principle. These normal-coupling states 
(unnormalized) are 

3-particle state = a?,i: 10) 
4-particle state = 10) 
5-particle state = U ~ , & , ~ ~ ~ O )  t ^t ̂ t ; etc. (6.20) 

It is a fundamental assumption of the shell model that these normal-coupling states 
form the ground states of the multiply occupied j-shell nuclei [Ma55, de631. This 
model correctly predicts the ground-sate angular momentum and parity for most 
nuclei. We shall attempt a theoretical justification of this assumption shortly, but 
let us first briefly examine one of its consequences. 

Probably the most useful result is that the ground-state expectation value of an 
arbitrary multipole operator TKQ can be computed explicity. Such an operator is 
defined in second-quantization as 

?KO = C aL(mlTKolm)am (6.21) 

It is now a straightforward exercise to evaluate the expectation value of this operator 
in the states defined in Eq. (6.20) and to extract the reduced matrix element. We 
leave it as a problem to show that4 

111. 

( j N j  I P K  I I&) = ( j  I ITK I Id ; Kodd 
2 j + l - 2 N  

2 j  - 1 
- - ( j  I ITK I b) ; Keven(# 0) (6.22) 

4See Prob. 6.1; these relations are, in fact, proven in [Fe71]. 
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Here N is the (odd) number of particles (for even N the model has J = 0). These 
relations express the many-particle matrix elements in the normal-coupling scheme 
directly in terms of the single-particle matrix elements, which in general still depend 
on the quantum numbers n and 1.  For odd moments, such as the magnetic dipole, 
one finds just the single-particle value. For even moments, such as the electric 
quadrupole, there is a reduction factor (2j  + 1 - 2N)/(2j  - 1). This reduction factor 
vanishes at half-filled shells where N = ( 2 j  + 1)/2, and it changes sign upon going 
from N particles in a shell to N holes in a shell N + 2 j  + 1 - N .  The sign change 
agrees with the experimental observations (see chapters 7 and 8). 

6.3 The pairing-force problem 

We now return to the problem of justifying the many-particle shell model. We 
confine our attention to the subspace of a given j-shell and assume there is an 
attractive, short-range interaction between the particles in the shell. In this case, 
it is evident from Fig. 6.1 that the dominant two-particle matrix element of the 
potential occurs when the pair is coupled to form J = 0. This observation suggests 
that the two-body potential can be written to a good approximation as5 

(6.23) 

Such an interaction is called a pure pairing force. It has the great advantage that 
the resulting problem can be solved exactly.6 

We wish to find the spectrum of the hamiltonian 

a = &o+P (6.24) 

where €0 is the single-particle Hartree-Fock energy of the particular shell, which 
includes the kinetic energy and interaction with the filled shells (chapter 5 ) ,  and Q 
is given in Eq. (6.23). The calculation is most readily performed with the auxiliary 
operators 

1 
33 = - [ 2 f i -  4 ( 2 j + 1 ) ]  (6.25) 

5Equation (6.17) implies that a redefinition G = (2j + 1)c extracts most of the state dependence 
of the coupling constant. 

6The original analysis is due to Racah IRa43). The present solution is from Kerman [Ke61]. The 
same pseudospin technique was used by Anderson in a discussion of superconductivity [An58]. 



The pairing-force problem 51 

Since 

(6.26) 

It follows that’ 

[fi,ii] = 2& (6.27) 

Hence the operators & and 33 obey the familiar commutation relations 
, . A  [s+,s-] = 233 

[>+,&I = -9; 
[3-,i3] = 9- (6.28) 

The quantity S2 = which are just those of the angular-momentum operators. 
3; + 3; + 3; can be written 

A , .  

g2 = - 3 2  3 + -[S+S- 1 -  A + S-S+] = 33(93 - 1) + 3+s- (6.29) 
2 

and a rearrangement yields 

>+s- = s2 -33(33 - 1) (6.30) 

In terms of these pseudospin operators, the interaction hamiltonian becomes 

2G p = -- 

2 j  + 1 
- - -- 2G [S2  - $(33 - l)] (6.31) 

so that p is expressed entirely in terms of S2 and 33. Since the spectrum of the 
angular momentum operators follows solely from the commutation relations, we can 
immediately deduce the eigenvalue spectrum of the operators S2 and 33, which thus 
solves the problem. 

The eigenvalues of S2 are of the form S(S  -+ l), where S is integral or half- 
integral. It also follows from the theory of angular momentum that S > IS31, and 
S, is fixed from the last of Eqs. (6.25) if the number of particles N 5 2 j  + 1 is 
given. The absolute maximum possible value of S3 is clearly IS31m,, = ( 2 j  + 1)/4, 
and the general theory of angular momentum also requires that S 5 IS3Jmax. Thus 
for fixed N ,  the eigenvalues lie in the range 

1 1 
4 
- (2 j  + 1) > s > q12N - ( 2 j  + 1)l (6.32) 

7See problem 6.2; note that since j is half-integral, one has (-l)z(j-m) = 1 and (-1)’j = -1. 



52 The many-particle shell model 

and must be integral or half-integral depending on whether S, = [2N - (2j  + 1)]/4 
is integral or half-integral. In either case, the allowed values of S differ by integers, 
suggesting the definition 

(6.33) 

It follows from these last two results that the permissible values of IS for fixed N 
are, in the case that 2 N  < 2 j  + 1 so that we speak of particles in the shell, 

1 .  
4 

s = -(23 + 1 - 20) 

0 = 0 , 2 , 4 , . . .  , N  (Neven) ; 2 N < 2 j + 1  
= 1 , 3 , 5 , . . .  , N  (Nodd) particles (6.34) 

If 2 N  > 2 j  + 1 so that the shell is more than half-filled and we speak of holes, the 
permissible values of IS are 

IS = 0 , 2 , 4 , . . . , 2 j + l - N  (Neven) ; 2 N > 2 j + 1  

= 1 , 3 , 5 , . . . , 2 j + l - N  (Nodd) holes (6.35) 

The exact spectrum of fi is obtained by combining Eqs. (6.24), (6.31), (6.33), 
and the last of (6.25). 

E, = N€o-G(?)( 2 j  + 1 + 2  - N -  0 
2 j  + 1 

= N [c0 - (1 - "-'>1 + 
(1 - "-") 2 j  + 1 

(6.36) 
2 j  + 1 

with the allowed values of IS given by Eqs. (6.34) and (6.35). 

has IS = 0 and its energy is 
With an even number of particles in the shell, the lowest energy state evidently 

(6.37) 

Repeated use of the first commutation relation in Eq. (6.27) demonstrates that this 
eigenstate is just the normal-coupling state of Eq. (6.20) 

(6.38) 

where there are N/2 factors of in this expression [Fe71]. The first excited state in 
this case, with 0 = 2, is obtained by breaking one pair and replacing the final ti by 
tiM with J # 0. The quantum number IS, referred to as the seniority, is evidently 
the number of unpaired particles in these states. 

For an odd number of valence nucleons, the lowest energy eigenstate has IS = 1 
and is, again, just the normal coupling ground state of Eq. (6.20) 

fiti...tial,,10) = El(i...iiaS,IO) ; Nodd (6.39) 



Chapter 7 

Electromagnetic interactions 

In this chapter we discuss the interaction of nuclei, or any finite quantum mechanical 
system, with electromagnetic fields. Much of what we know about nuclei comes from 
such interactions. We start with the general multipole analysis of the interaction of 
a nucleus with the quantized radiation field (see [B152, Sc54, A156, de66, WaOl]). 
In the following ep = /el is the proton charge. 

7.1 Multipole analysis 

The starting point in this analysis is the total hamiltonian for the nuclear system, 
the free photon field, and the electromagnetic interaction 

Htotal = Hnuclear + c c tiwkaipk, 
k p=1,2 

This is the hamiltonian of quantum electrodynamics (QED); it is written in the 
Coulomb gauge. A is the vector potential for the quantized radiation field 

[ekpakpeik'x + h.c.1 
1 

k p=1,2 

Here ekp  with p = (1,2) represent two unit vectors transverse to k (see Fig. 7.1). 
The hermitian conjugate is denoted by h.c. We quantize with periodic boundary 
conditions (p.b.c.) in a large box of volume R, and in the end let R + 00. Fur- 
thermore, here and henceforth we adopt a system of units where (see appendix 
D.3) 

h = c = l  (7.3) 

For now, we restore these quantities in final formulae to explicitly demonstrate 
correct dimensions. 

53 
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The only assumption made about the nucleus to this point is the existence of 
local current and charge density operators J(x),p(x).’ This must be the case for 
any true quantum mechanical system.2 

It is convenient to first go from plane polarization to circular polarization with 
the transformation (cf. Fig. 7.1) 

Fig. 7.1. Transverse unit vectors. 

These circular polarization vectors satisfy the relations 

ekX t -  - (-1)’ek-A e+ x .ex/ = bx,, 

If, at the same time, one defines 

(7.4) 

(7.5) 

then the transformation is canonical 

(7-7) t 

Since elal + 8 2 0 2  = e+la+l + e-la-1 the vector potential takes the form 

[akX, ak’~’] = 6kk’SXX’ 

The index X = f l  is the circular polarization, as we shall see, and only X = f l  
appears in the expansion so V . A(x) = 0, characterizing the Coulomb gauge. 

Now proceed to calculate the transition probability for the nucleus to make 
a transition between two states and emit (or absorb) a photon. Work to lowest 
order in the electric charge e, use the Golden Rule, and compute the nuclear matrix 
element (JfMfkXIH’IJiMi) where H‘ is here the term linear in the vector potential 
in Eq. (7.1); it is this interaction term that can create (or destroy) a photon. All 
that will be specified about the nuclear state at this point is that it is an eigenstate 

lHnuclear could be given in terms of potentials, or it could be for a coupled baryon and meson 
system, or it could be for a system of quarks and gluons; it does not matter at this point. J(x) 
and p(x) could, for example, contain exchange currents. 

2Although Eq. (7.1) is correct in QCD, some models may have an additional term of O(e2A2) in 
the hamiltonian; the arguments in this section are unaffected by such a term. 
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of angular momentum. It will be assumed that the target is massive and its position 
will be taken to define the origin; transition current densities occur over the nuclear 
volume and hence all transition current densities will be localized in space. Since 
the photon matrix element is (kXlai,x, 10) = 6kk'6Xy, the required transition matrix 
element takes the form3 

Start by taking the photon momentum to define the z-axis (Fig. 7.2);  the gen- 
eralization follows below. 

Fig. 7.2.  Coordinate system with z-axis defined by photon momentum. 

In this case the plane wave can be expanded as 

eik.x = C i ' & G @ T i J j ~ ( ~ x ) ~ o ( ~ ~ )  (7.10) 
1 

The vector spherical harmonics are defined by the relations [Ed741 

(7.11) 

Note this sum goes over all three spherical unit vectors, X = f 1 , O .  The definition 
in Eq. (7.11) can be inverted with the aid of the orthogonality properties of the 
Clebsch-Gordan (C-G) coefficients 

(7.12) 

The ex are now just fixed vectors; they form a complete orthonormal set. Therefore 
any vector can be expanded in spherical components as 

x x 

(7.13) 1 
w+1 = r-(vz f i v , )  210 = v, 

fi 
3We now revert to the notation where a caret over a symbol denotes an operator in the nuclear 
Hilbert space. 
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As we shall see, the vector spherical harmonics project an irreducible tensor 
operator (ITO) of rank J from any vector density operator in the nuclear Hilbert 
space. A combination of Eqs. (7.10) and (7.12) and use of the properties of the C-G 
coefficients yields4 

ekAeik'x = i z ~ ~ j ~ ( k z ) ( Z O I X ~ l l J X ) y ~ ~ l ( O ~ )  (7.14) 

The C-G coefficient limits the sum on 1 to three terms 1 = J ,  J f 1, and these C-G 
coefficients can be explicitly evaluated to give for X = f l  

Z J  

From [Ed741 

The differential operators just raise and lower the indices on the spherical Bessel 
functions, giving -Icj~+1 (Icz) and Icj~-1 (kz), respectively. A combination of these 
results gives for X = f l  

ekAeik.x = c J- i~ { F 
J> 1 

X = f l  (7.17) 

Note the divergence of both sides of this equation vanishes (see [Ed74]).5 Now use 

Y3tJ1 = -(-1)AY5Jx1 (7.18) 

I 1 --v Ic x "~)Y$J1(~2Z)l ; 

to arrive at the basic result for X = f l  

4Note this is the amplitude for photon absorption. 

5The relation to be used is d.[jj(kz)3?JMJ1] = 0. 
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Here the transverse electric and magnetic multipole operators are defined by 

(7.20) 

This important result merits several comments: 
1. In a nucleus both the convection current density arising from the motion of 

charged particles (e.g., protons) and the intrinsic magnetization density coming from 
the intrinsic magnetic moments of the nucleons contribute to the electromagnetic 
interaction. The appropriate interaction hamiltonian should actually be written as 

H' = -ep 1 j c ( x ) . A ( x ) d 3 z  - e p  / fi(x).[V x A ( x ) ] d 3 z  

(7.21) 

To obtain the second line, a vector identity has been employed 

V.(a x b) = b . ( V  x a) - a.(V x b) (7.22) 

The total divergence has been converted to a surface integral far away from the 
nucleus using Gauss' theorem 

V . v d3z  = 1 v .dS  (7.23) 

Finally, the integral over the far-away surface can be discarded for a localized source. 
A second application of this procedure yields the relation 

/ d 3 z  [V x j ~ ( k z ) Y % , ]  .V x f i(x) = d 3 z f i ( x ) . V  x [V x j ~ ( k z ) Y ~ ~ ]  J 
= k2  / d 3 z f i ( ~ ) . [ j ~ ( k z ) Y % l ]  (7.24) 

In arriving at the second equality the relation V x (Vxv) = V(V . v)-V2v has been 
employed; the term V * v vanishes here, and in this application the remaining term 
satisfies the Helmholtz equation (V2 + k2)v = 0, as the reader can readily verify. 
Thus the multipole operators can be rewritten to explicitly exhibit the individual 
contributions of the convection current and the intrinsic magnetization densities 
[B152, Sc54, de66] 

FyGg(k)  = / d 3 s  { j ~ ( k z ) Y % l . j ~ ( x )  + [V x j ~ ( k z ) Y % l ]  . f i (x )}  (7.25) 

2. The TJM are now irreducible tensor operators of rank J in the nuclear Hilbert 
space. This can be proven in general by utilizing the properties of the vector density 
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operator j ( x )  under rotations. It is easier to prove this property explicitly in any 
particular application. For example, consider the case where the nucleus is pictured 
as a collection of nonrelativistic nucleons, and the intrinsic magnetization density 
at the point x is constructed in first quantization by summing over the contribution 
of the individual nucleons 

A 

(7.26) 

Here X i  is the intrinsic magnetic moment of the ith nucleon in nuclear magnetons 
(see below).6 The contribution to ?&, for example, then takes the form 

Here the definition of the vector spherical harmonics in Eq. (7.11) has been intro- 
duced. Each term in this sum is now recognized, with the aid of [Ed74], to be 
a tensor product of rank J formed from two I T 0  of rank J and 1, re~pectively.~ 
Thus !f j& is evidently an IT0 of rank J under commutation with the total angular 
momentum operator, which in this case takes the form 

A A 

j = C J(i) = C[L(i) + S ( i ) ]  ; angular momentum (7.28) 
i=l i=l 

As another example, the convection current in this same picture of the nucleus is 

Z 

1 p(i) (7.29) 
m 

Z 

j c ( x )  = C - { (6 (3 ) (x  - xi),p(i)}p,, c 6 ( 3 ) ( x  - Xi)- 
m 

i=l a= 1 

The need for symmetrization’ arises from the fact that p(i) and x i  do not commute; 
the current density arising from the matrix element of this expression takes the 
appropriate quantum mechanical form (1/2im)[$*V$ - (V$)*$]. The last equality 
in Eq. (7.29) follows since one of the symmetrized terms can be partially integrated 
in the required matrix elements of the current, using the hermiticity of p(i) and the 
observation that V . A = 0 in the Coulomb gauge. Multipoles constructed from the 
convection current density in Eq. (7.29) are now shown to be IT0 by arguments 
similar to the above. 

60ne could be dealing with a density operator in second quantization, or expressed in collective 
coordinates, etc; to test for an ITO, one first constructs the appropriate total angular momentum 
operator 3, and then examines the commutation relations (see [Ed74]). 

7Any spherically symmetric factor does not affect the behavior under rotations. 

8{A,  B}sym f (AB + BA)/2; note the current is now explicitly hermitian. 
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3. The parity of the multipole operators is [B152] 

Again, the general proof follows from the behavior of the current density j(x) 
as a polar vector under spatial reflections. It is easy to see this behavior in any 
particular application. For example, it follows from Eqs. (7.27) and (7.29) if one 
uses the properties of the individual quantities under spatial reflection: 01, --t al,; 
p l ,  -+ -plq; and xm(-x/lxl) = (-l)lylm(x/lxl). Parity selection rules on the 
matrix elements of the transverse multipole operators now follow directly. 

4. There is no J = 0 term in the sum in Eq. (7.19). This arises from the fact 
that the vector potential is transverse, and hence there are only transverse unit 
vectors, or equivalently unit helicities X = f l ,  arising in its expansion into normal 
modes [see Eqs. (7.8) and (7.17)]. This has the consequence, for example, that there 
can be no J = 0 -+ J = 0 real one-photon transitions in nuclei. 

5. The Wagner-Eckart theorem [Ed741 can now be employed to exhibit the 
angular momentum selection rules and M-dependence of the matrix element of an 
IT0 between eigenstates of angular momentum 

Note that the required matrix elements of Eq. (7.19) imply M f  = Mi - A. This 
means that the photon carries away the angular momentum X along the z-axis, 
which is the direction of emission of the photon in the preceding analysis (Fig. 7.2); 
thus the helicity of the photon (its angular momentum along k) is X = f l .  

7.2 Photon in an arbitrary direction 

Let us extend the previous analysis to describe the situation where the photon is 
emitted in an arbitrary direction relative to the coordinate axes picked to describe 
the quantization of the nuclear system. The situation is illustrated in Fig. 7.3. 

The unit vectors describing the photon are assumed to have Euler angles 
{a,  ,8, y} with respect to the nuclear quantization axes. The difficulty in achiev- 
ing this configuration is that the photon axes here are the axes that are assumed 
to be fixed in space, having been determined, for example, by the detection of the 
photon, and the rotations are to be carried out with respect to these axes. Now 
one knows how to carry out a rotation of the nuclear state vector relative to a fixed 
set of axes. For example, the rotation operator that rotates a physical state vector 
through the angle ,B relative to a laboratory-fixed y-axis is R-p = e-ip’y; this fact 
follows entirely from the defining commutation relations for the angular momentum 
(see Prob. 7.1). The goal is to rotate the nuclear state vector IJiMi) quantized 
with respect to the photon axes into a nuclear state vector IQi(JiMi)) correctly 
quantized with respect to the indicated {x, y, z }  coordinates. 
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Fig. 7.3. Photon emitted in arbitrary direction relative to quantization axes for 
nuclear system. Note {a,  ,B, y} are Euler angles. 

A concentrated effort, after staring at Fig. 7.3, will convince the reader that 
the following rotations, carried out with respect to the laboratory-fixed photon 
coordinate system in the indicated sequence, will achieve this end 

(1) -a about k/lkl 
(2) -,B about ek2 

(3) -y about k/lkl 

The rotation operator that accomplishes this rotation is 

The {2,3} axes are now the laboratory-fixed { e k 2 ,  k/lkl} axes. Thus 

l*i (&Mi)) = &pa I &Mi) DGk Mi (yPa) I JiMk) (7.33) 
MA. 

Here the rotation matrices have been introduced that characterize the behavior of 
the eigenstates of angular momentum under rotation [Ed74]. It is clear from Fig. 7.3 
that one can identify the usual polar and azimuthal angles that the photon makes 
with respect to the nuclear coordinate system according to /3 H 6' and a H 4; 
the angle y H -4 of the orientation of the photon polarization vector around the 
photon momentum is a definition of the overall phase of the state vector, and, as 
such, merely involves a phase convention; the choice here is that of Jacob and Wick 
[Ja59]. It will be apparent in the final result that this phase is irrelevant. Equation 
(7.33) expresses the required nuclear state vector as a linear combination of state 
vectors quantized along the photon axes. Since now only matrix elements between 
states quantized along k are required, all the previous results can be utilized. The 
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required photon transition matrix element takes the form 

(Qf (Jf Mf ) I BJ,-x I Qi (JiMi)) = (Jf Mf BJ,-x &pa I JiMi) (7.34) 

Here X is the photon helicity, and H , - x  indicates one of the contributions to the 
operator in Eq. (7.19). Evidently 

(7.35) 

The definition of an IT0 can now be used to simplify the calculation [Ed741 

R - c ~ - p - - y H . J , - A k ~ - p - ~  = x D & / - x ( - a  - p - Y ) f i J M l  (7.36) 
M’ 

The previous identification of the angles, and a combination of these results, permits 
one to write the transition matrix element describing the nuclear process JiMi -+ 
JfMf with the nuclear quantization axis along 
helicity X (Fig. 7.4) as 

z and emission of a photon with 

Y \ 
Fig. 7.4. Configuration for transition matrix element describing photon emission 
and nuclear process JiMi 4 JfMf with nuclear quantization axis along the z-axis. 

(Q f (Jf Mf) I*(kX) 1 Q i  (Ji Mi)) = (Jf Mf (Rm (kX) 1 Ji Mi) 
where the appropriate transition operator is given by 

(7.37) 

27r(2J + 1) 
Rm(kX) = e,x(-?).’{ J M  2 W k 0  

mag x[y&(k) + (k)] D&-A(-$k, - ek ,$k )  (7.38) 

The Wigner-Eckart theorem in Eq. (7.31) now permits one to extract all the angular 
momentum selection rules and M-dependence of the matrix element in Eq. (7.37). 
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All M’s now refer to a common set of coordinate axes.g 
The final V&-x in Eq. (7.38) plays the role of a “photon wave function,” since 

the square of this quantity gives the intensity distribution in (&, &) of electromag- 
netic radiation carrying off { J ,  -M,  A} from the target. 

7.3 Transition probabilities and lifetimes 

We proceed to calculate the transition probability for the process indicated in 
Fig. 7.5. The total transition rate for an unoriented nucleus is given by the Golden 
Rule 

””1 IJ,M,> 

Fig. 7.5. Nuclear transition with real photon emission. 

The appropriate sum over final states is given by 

= 1 d3k (7.40) 

The Jdk allows one to integrate over the energy-conserving delta function 
J dkG(Ef+wk -Ei) = 1. The integral over final solid angles of the photon dnk can 
be performed with the aid of the orthogonality properties of the rotation matrices 
[Ed741 

Mf f 

Note that since X is the same in both functions, the dependence on the last 4 (which 
was the phase convention adopted for the third Euler angle -7 in Fig. 7.3) drops 
out of this expression, as advertised. 

The average over initial nuclear states is performed according to c, = (2J i  + 
1)- l  EM;.  The use of the Wigner-Eckart theorem in Eq. (7.31) and the orthonor- 
mality of the C-G coefficients permits one to then perform the required sums over 

gThese axes were originally the photon axes with the z-axis along k, but they can now just as well 
be the nuclear {z, y, z} axes in Fig. 7.3; the equivalence of these two interpretations is readily 
demonstrated by taking out the M-dependence in a C-G coefficient with the aid of the Wigner- 
Eckart theorem*- it is the same in both cases. The two interpretations differ only by an overall 
rotation (with R-’R inserted everywhere), which leaves the physics unchanged. 
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M f  and Mi 

(7.42) 

The final sum on M gives EM = 2 J  + 1. 

vation of parity, assumed to hold for the strong interactions, it follows that 
Since the matrix element of one or the other multipoles must vanish by conser- 

1 (J! I I+;' + x + ~ ~ I  I J ~ )  l 2  = I ( ~ f  I 1+;'1 I J ~ )  l2  + 1 ( ~ f  1 l+yg1 IJi) l 2  (7.43) 

This expression is now independent of A, and the sum over final photon polarizations 
gives Ex = 2. 

A combination of these results yields the total photon transition rate for the 
process illustrated in Fig. 7.51° 

This is a very general result. For most nuclear transitions of interest involving real 
photons, the wavelength is large compared to the size of the nucleus. We thus 
consider next the long-wavelength reduction of the multipole operators, following 
closely the arguments developed in [B152]. 

7.4 Reduction of the multipole operators 

The use of the relations l/k = 5.07 x 1O'O cm-l/MeV and R M 1.2 All3 x 
allows one to write for real photons 

cm 

kR M 6.1 x 10-3[E,(MeV)A1/3] (7.45) 

Evidently kR << 1 for photons of a few MeV. In this case, the spherical Bessel 
functions can be expanded asll 

; k x + O  (7.46) 

One also needs from [Ed741 

1 
i LK, = -(rxv)K, = d m y r 1  (7.47) 

loRRcall a = e2/47rh in the present units; the multipole operators are now dimensionless. 

llRecall x = r and z = 1x1 = r in these discussions. One has to get all the derivatives off the 
Bessel functions before they can be expanded - that is the point of the following exercise. 
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With this relation, the multipole operators in Eqs. (7.25) take the form 

+ [LjJ (kZ)YJM] .Jc (x) } (7.48) 

These expressions can now be manipulated in the following manner: 

The differential orbital angular momentum operator L in Eq. (7.47) com- 
mutes with any function of the radial coordinate [L,f(r)] = 0, and it is 
hermitian; thus it can be partially integrated in the last two terms on the 
r.h.s. in the above to get it over to the right [with a sign (-l)]; 
The divergence theorem in Eqs. (7.22) and (7.23) can be used on the first 
two terms on the r.h.s. of the above to get the curl to the right; 
One can then get L to the right in these terms using the first argument 
[again with a (-l)]. This leads to two types of terms: first 

1 1 1 
a i 

L . v  = T(r x V).v = :(V x v).r = --V.(r x v) (7.49) 

and second 

1 
i = --V.[r x (V x v)] (7.50) 

Here the relation V x r = 0 has been used in obtaining these equations; 
Since all derivatives are now off the spherical Bessel functions and on the 
source terms, the Bessel functions may be expanded in the long-wavelength 
limit according to Eq. (7.46); 
One next invokes the general vector identity 

/zJYJMV.[r x (V x v)] d32 = ( J  + 1) z ~ Y J M V .  vd3z  (7.51) / 
This identity holds as long as the source terms v(x) vanish outside the 
nucleus (Prob. 7.2). 

With these steps the magnetic multipoles take the form 

(1)

(2)

()

(4)

(5)
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Partial integration of this result 
transverse magnetic multipoles 
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then gives for the long-wavelength limit of the 

Similarly, the electric multipole operators take the form 

Now use the continuity equation on the first term 

-- ab = -i[B,b] (7.55) 
at V . j C ( X )  = V . j ( X )  = 

The matrix element of this relation yields 

(fl[fi,blli) = @,f - Ei)(.flbli) = -k(flbli) (7.56) 

Thus, in the matrix element, one can replace12 V . jc(x) -+ ikF(x). Thus, for 
photon emission the long-wavelength limit of the transverse electric multipoles takes 
the form 

Several features of these results are of interest: 

The second term in Eq. (7.57) goes as hkc/mc2 << 1 and hence the contri- 
bution of this term is very small compared to that of the first term for real 
photons; l3 
The first term in Eq. (7.57) is just the J M t h  multipole of the charge density; 
Make a model where the nucleus is composed of individual nucleons, and 
where only the leading terms to order l / m  are retained in the current, that 
is, the terms in p(i) and a(i) [see Eqs. (7.29) and (7.26)]. The J = 1 
transverse magnetic dipole operator for k + 0 then takes the form 

This is the familiar magnetic dipole operator to within a numerical factor 
and power of k. Here the nucleon magnetic moments in nuclear magnetons 
are given by A, = 2.793 for the proton and A, = -1.913 for the neutron 
(see chapter 8). 

12Note this is for photon emission; for photon absorption one has the opposite sign for this term. 

13This term can become large in electron scattering where, as we shall see, the appropriate ratio 
is h&mc2 with q the momentum transfer. 
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It is useful to make the connection between these general results for the elec- 
tromagnetic nuclear moments and the static nuclear moments measured in time- 
independent electric and magnetic fields; this connection is made as follows. 

7.5 Static moments 

Consider first the static electric moments of the nucleus. Suppose one places a 
static charge distribution p(r) in an external electrostatic potential ael(r) where 
the external electric field is given by E = -Vae1(r) (see Fig. 7.6). A relevant 
example is a nucleus in the field of the atomic electrons. 

Fig. 7.6. Static electric nuclear moments. 

The interaction energy is given by 

(7.59) 

The external field satisfies Laplace's equation since it is source-free over the nucleus 

V2ael(r) = o (7.60) 

It is also finite there. Thus the external field in the region of the nucleus can be 
expanded in terms of the acceptable solutions to Laplace's equation 

ael(r> = C a l m r ' K m ( a r )  (7.61) 

The numerical coefficients al, can be related to various derivatives of the field at 
the origin. Substitution of Eq. (7.61) into Eq. (7.59) yields 

lm 

Here the multipole moments of the charge density are defined by 

(7.62) 

(7.63) 

These are exactly the same expressions, to within a numerical factor and powers 
of k, as the first term in the transverse electric multipole operators in Eq. (7.57).14 

14The charge multipole operators are defined in terms of the charge density operator. 
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Note that the nuclear quadrupole moment is conventionally defined by 

Q = /(3z2 - r2)p(x) d32 (7.64) 

which differs by a numerical constant from M$,. 

tion value that gives (afj(x)/at) = i([fi,fj]) = 0. This implies 
Consider next the nuclear magnetic moments. Take the ground-state expecta- 

V.(S(x)) = V.(jC(X)) = 0 (7.65) 

Here the general decomposition of current has been invoked 

J = J c + v x p  (7.66) 

Since the divergence of the last quantity in Eq. (7.65) vanishes everywhere, it can 
be expressed as the curl of another vector M(x) 

(SC(x)) = V x M(x) (7.67) 

One can assume that the additional magnetization M(x) vanishes outside the nu- 
cleus, for suppose it does not. Then since its curl vanishes outside the nucleus by 
Eq. (7.67), it can be written as M(x) = Vx(x) in this region. Now choose a new 
magnetization M’(x) = M(x) - Vx(x). This new magnetization has the same curl 
everywhere, and now, indeed, vanishes outside the nucleus. 

The expectation value of the interaction hamiltonian for the nucleus in an ex- 
ternal magnetic field now takes the form 

(fiint) = -ep /[V x M(x)].Aext(x) d32 - ep p(x).Bext(x)d3a: (7.68) I 
Here p = (p). The use of Eqs. (7.22) and (7.23) permits this expression to be 
rewritten as 

( f i jnt)  = -ep /[M(x) + p(x)].Bext(x) d32 (7.69) 

Since Bext(x) is an external magnetic field with no sources over the nucleus, it 
satisfies Maxwell’s equations there 

Thus one can write in the region of interest 

v2amag = 0 (7.71) 
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One can now proceed with exactly the same arguments used on the electric mo- 
ments. The energy of interaction is given by 

(7.72) 

The divergence in the last equation evidently plays the role of the "magnetic charge." 
Thus, just as before, when the general solution to Laplace's equation is substituted 
for the magnetic potential ibmag, all one needs are the magnetic charge multipoles 
given by 

M E g  = - /x'Yrm(R,)V.(M + p)d32 

1 = - /z'Km(Qz)V. [=r 1 x (V x M) + p d32 (7.73) 

The second equality follows with the aid of the identity in Eq. (7.51). A partial 
integration, and the restoration to operator form yields the final result for the 
relevant static magnetic multipole operators 

(7.74) 

This is recognized to be, within a numerical factor and powers of k, the long wave- 
length limit of the transverse magnetic multipole operator in Eq. (7.53). 

7.6 Electron scattering to discrete levels 

We conclude this chapter with a brief discussion of the results for the cross section for 
electron scattering with excitation of the nucleus to discrete nuclear levels; this can 
include both elastic and inelastic scattering. In first Born approximation, exactly 
the same electromagnetic multipoles as discussed here govern the cross section. 
Thus, while the detailed derivation of the cross section in this text is postponed to 
Part 4, it is useful to present the results here to tie into the present discussion. The 
scattering situation is illustrated in Fig. 7.7. 

One includes in the hamiltonian the interaction term between the nucleus and 
the electron as determined by QED 

(7.75) 

To consistently calculate the scattering amplitude to order e2 ,  the Coulomb inter- 
action is treated in first-order perturbation theory while the interaction with the 
transverse photon field [Eq. (7.8)] must be treated in second order. 
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Fig. 7.7. Electron scattering to discrete nuclear levels. 

Plane waves and Dirac spinors are assumed for the initial and final electrons,15 
and one is evidently left with nuclear matrix elements of the form 

( J f  M f  I / e i q ' x b ~  (x)d3z1 JiMi) 

( J ~ M ~ I  / eiq.~eqX.jN(X)d321~i~z) ; x = H (7.76) 

It simplifies the calculation to choose the z-axis for nuclear quantization along 
the direction of the three momentum transfer q = k l  - k2. In this case, from 
the previous analysis, transverse photon exchange has the nuclear selection rules 
A M  = f l ,  and the Coulomb interaction has A M  = 0; this implies there will be 
no interference between these terms in the sum and average over final and initial 
nuclear orientations. The cross section takes the form [de66, Wa0l]l6 

(7.77) 

Here CTM is the Mott cross section for the scattering of a Dirac electron by a point 
charge 

Q2 cos2 012 
OM 

4kT sin4 012 
(7.78) 

Also q; = q2 - (kl - k2)2 = 4klk2 sin2 0/2 is the four-momentum transfer. The 
Coulomb multipoles appearing in this expression are defined by 

15We work at energies where the electron mass can be neglected. 

l'Here p = 191. (Note we will later define q with opposite sign.) 
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In the long-wavelength limit, these become 

(7.80) 

where the static electric multipoles are defined in Eq. (7.63). 
Several features of these results are worthy of note: 

0 One can now use all the angular momentum and parity selection rules dis- 
cussed previously; 

0 These are the same transverse multipole operators that appear in real pho- 
ton processes, only now the argument of the multipoles is Iql, the three 
momentum transfer in the scattering rather than lkl, the real photon mo- 
mentum. In contrast to real photon transitions where the photon momen- 
tum is fixed by the energy it carries off, the quantity lql can be varied up 
to arbitrarily large values in electron scattering; 

0 For elastic scattering with O+ + O+ transitions, only the monopole moment 
of the charge density &grl(q) contributes to the cross section; 

0 One can separate the contribution of the Coulomb multipoles from that of 
the transverse multipoles by varying 6 at fixed {q2, q;};l7 

0 Equations (7.54), (7.55), and (7.80) imply there is a long-wavelength rela- 
tion between the matrix elements of the Coulomb multipoles and those of 
the transverse electric multipoles 

Thus one can get the rate for a real photon transition dominated by an 
electric multipole from Coulomb excitation of the level; 

The ef- 
fect is to multiply the r.h.s. of Eq. (7.77) by a factor T where T - ~  = 
1 + ( 2 k l / M ~ )  sin2 8 / 2  where MT is the target inverse Compton wavelength. 
This is the leading correction in ~ / M T  (see Prob. 7.4); 

0 A much more detailed discussion and derivation of these results is presented 
in [de66, WaOl], where the evaluation of the required multipole operators 
in a coupled single-particle shell model basis is also developed. Extremely 
valuable tables of the required single-particle matrix elements of the mul- 
tipole operators are available both with harmonic oscillator wave functions 
where the required angular momentum algebra and radial matrix elements 
can be evaluated analytically [Do79], and with arbitrary radial wave func- 
tions where the radial matrix elements remain to be evaluated [Do80]. 

0 Nuclear recoil can be included in the density of final states. 

Chapter 50 contains an extended discussion of electron scattering, together with 
derivations. We here turn to electromagnetic interactions in the nuclear shell model. 

17A “Rosenbluth plot.” 



Chapter 8 

Electromagnetism and the shell model 

We proceed to apply some of the general results on electromagnetic interactions with 
nuclei to the nuclear shell model where the basis for the description of the nucleus is 
a collection of nonrelativistic nucleons moving in a (complete) set of single-particle 
orbit ah. 

8.1 Extreme single-particle model 

It is an empirical result that the ground states of even-even nuclei all have J" = O+. 
The simplest description of odd nuclei is to assign all of the ground-state nuclear 
properties to the last odd nucleon. This extreme single-particle shell model is 
remarkably successful in predicting ground state spins and parities as the levels in 
Fig. 5.5 are filled [Ma55]. The model also allows a calculation of the electromagnetic 
properties of the ground state. 

The magnetic dipole operator is given in units of the nuclear magneton p~ = 

IelfiPmpc by 

bl = 1 + 2Aps 
PN 

; A, = +2.793 

= 2A,s 
P N  

; A, = -1.913 

The magnetic moment of the nucleus is defined as the expectation value of the 
magnetic dipole operator in the state where the nucleus is lined up as well as 
possible along the z axis 

The second equality follows from the Wigner-Eckart theorem. To evaluate the 
remaining reduced matrix element one needs (Zijl(l(lZ3j) and ( l ~ j ~ ~ s ~ ~ Z ~ j ) .  These 
are the reduced matrix elements of an IT0 acting on the first and second part of a 

71 

(8.1)
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coupled scheme respectively; they may be evaluated by using the results in [Ed74I1 

This result for the single-particle magnetic moment will be recognized as exactly 
the same expression obtained in the simple vector model of angular momenta. In 
this model the vectors 1 and s add to give the resultant j = 1 + s (Fig. 8.1). They 
then precess around this resultant so that the effective magnetic moment is only 
that component along j 

Fig. 8.1. Vector model of angular momenta. 

The insertion of the definition of the magnetic dipole operator in Eq. (8.1) gives 

The square of the relations j - 1 = s and j - s = 1 gives 

A combination of these results indeed reproduces Eq. (8.3). 

l A  combination of the results in [Ed741 gives 
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Insertion of the allowed values j = 15 1/2 in Eq. (8.3) gives the final results 

1 
2 

; j = l + -  

Here the entire expression is applicable for protons, while only the term in X is 
present for neutrons. When plotted against j ,  these results give rise to the celebrated 
Schmidt lines (Fig. 8.2). 

x =I 
x =1 

=2.?9 

l:N, , PRY: 

112 5 / 2  9/2 1312 ’ 

NEUTRONS 

3 
2 
1 
0 

-1 
-2 

1/2 5/2 9/2 13/2 ’ 
Fig. 8.2. Schmidt lines for nuclear magnetic dipole moments (see [Pr82]). 

Several comments are relevant here (see [Pr82] for a summary of the data): 

0 The results for the nuclear magnetic dipole moment are independent of 
the radial wave functions. They depend only on the angular momentum 
coupling scheme; 

0 Of 137 odd-A nuclear magnetic dipole moments in [Pr82], only 5 lie outside 
the Schmidt lines; these five are indicated in Fig. 8.2; 

0 Of 137 odd-A nuclear magnetic dipole moments in [Pr82], all but 10 lie 
between the Schmidt lines and the “fully quenched” moments obtained by 
setting X = 1 for protons and X = 0 for neutrons; these are the values 
obtained with the Dirac moment alone and vanishing anomalous magnetic 
moment; 

0 There will be corrections to this extreme single-particle value of the mag- 
netic moment coming from, among other things, configuration mixing, me- 
son exchange currents, and a relativistic treatment of the nucleus. 
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The electric quadrupole operator for a single nucleon is defined by 

QzO = 3z2-r2  = 2r2P2(cosO) = 2 r 2 E Y 2 0  = 2r2C20 (8.8) 

The quadrupole moment of the nucleus is the expectation value of this operator in 
the state where the nucleus is aligned as well as possible along the z axis2 

In the single-particle shell model, one needs the reduced matrix element 
(nlajllC2llnlaj), which is again an I T 0  in a coupled scheme. The result from 
[Ro59] is3 

2 j  - 1 
Q = - ( r2)nl -  

2 j  + 2 
; j L 312 (8.10) 

That the quadrupole moment is indeed negative for a single odd proton is indicated 
pictorially in Fig. 8.3. 

Fig. 8.3. Charge distribution in single proton state with m = j giving rise to a 
negative quadrupole moment. 

Rough estimates of the required single-particle mean square radius can be ob- 
tained as follows: 

(r2)nl = R2 ; particle at surface 
= gR2 ; uniform distribution 

= ( $ t o  $)R2 ; for square well 

It is thus evident that in the single-particle shell model lQl/R2 < 1 

(8.11) 

2We use indiscriminately the relation between C-G coefficients and 3-j symbols [Ed74]. 

3This is a marvelous reference and set of tables, which everyone should learn to use. In particular, 
it is shown in this book that 
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Table 8.1 Quadrupole moments of selected nuclei [Ma55, Pr82, Nu021. 

( d 5 1 2 ) ~  = d;,& 
d 3 / 2  

P3/2  

d 5 / 2  

d 3 / 2  

(99/d7 

75 

+1.15 
-0.51 
-0.70 

+13.10 

-0.28 
-0.40 
+0.80 

+22.90 

Element 

+14.9 

-16.0 
+590.0 

512 -2.7 
312 -6.0 
912 +22.0 
712 + 1000.0 

State I *  77% l a  
-0.57 
-0.40 
-0.40 

mag< 1 

-0.57 
-0.40 
-0.73 

mag< 1 

a Single-particle shell model values. For the odd neutron nuclei, the single-particle 
values are obtained by assigning the  odd neutron an effective charge +e,. 

Selected nuclear quadrupole moments appear in Table 8.1. Several comments 
are of interest here: 

0 The single-particle shell model does all right for single protons outside closed 
shells; 

0 If the shell is more than 112 filled, one gets the wrong sign for Q from this 
extreme single-particle model. A consistent many-body treatment of many 
particles in a shell is needed in this situation (see chapter 6 and [de63]);4 

0 Odd neutrons outside of closed shells behave just as if they were odd pro- 
tons, contributing as if they had an effective charge +e,; in reality, a free 
neutron is uncharged; 

0 The inequality 1Ql/R2 < 1 derived above in the single-particle shell model 
is very badly violated in selected regions of the periodic table where one is 
far from a few particles or a few holes outside of major closed shells; 

0 The explanation of the observed quadrupole moments is due to Rainwater 
[Ra50] and Bohr and Mottelson [Bo69, Bo751. The core of the nucleus 
carries a large charge 2. A small deformation of this core can have a large 
effect on the nuclear quadrupole moment. In particular, if the attractive 
interaction between a valence neutron and the nucleons in the core drags 
the positively charged core along with the neutron as it moves, one has 
a simple qualitative understanding of the behavior of odd-neutron nuclei 
described above. Although we will not go into detail on the discussion of 
deformed nuclei, it is one of the most beautiful aspects of nuclear structure. 
Fortunately, [Bo69, Bo75] provide a thorough treatise on the subject. 

This discussion can be extended to higher nuclear moments, and to all momen- 

4A contemplation of Fig. 8.3 will convince the reader that a single hole in a closed shell has the 
opposite sign of the quadrupole moment from that of a single particle in the shell. 



76 Electromagnetism and the shell model 

tum transfers, as indicated at the end of chapter 7. First, however, it is necessary 
to construct the nuclear current operator in the nuclear shell model. 

8.2 Nuclear current operator 

If the nucleus is modeled as a quantum mechanical system of point nucleons with 
intrinsic magnetic moments, then we know how to construct the charge density, 
convection current density, and intrinsic magnetization density from basic quantum 
mechanics. In first quantization these quantities are given by 

A 

;N(X) = C e ( j ) 6 ( 3 ) ( x  - xj) 
j = 1  

A 

J c ( x )  = c .(j) { %, 6 ( 3 ) ( x  - X j )  
j = 1  lsym 

(8.12) 

Here p (l/z)V. Thus one has for a single proton, for example 

1 
2im 

- - - {+*(x)V@(x)  - [ V + ( X ) l * W )  (8.14) 

These are the familiar results. A partial integration has been used in arriving at 
the second equality in Eq. (8.14). Here we have defined 

In this chapter we shall write the anomalous magnetic moment X'( j )  of the nucleon 
as 

This discussion presents a consistent nonrelativistic treatment in a picture where 
the nucleus is made up of point nucleons with appropriate charges and intrin- 
sic magnetic moments; however, a central future thrust of nuclear physics is the 
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measurement and calculation of nuclear electromagnetic transition densities out to 
momentum transfers of the order of a GeV, or q = O(m), and well beyond. It is 
essential to consider corrections to the nonrelativistic current operator as one moves 
into this regime. In order to do this, a fully relativistic treatment of the interacting 
many-body system is required, and Part 2 of this book is devoted to this topic. For 
the present, we simply consider the nuclear current density arising from the full 
relativistic electromagnetic vertex of a free nucleon. 

8.3 Relativistic corrections to the current 

The relativistic electromagnetic vertex of a free nucleon is illustrated in Fig. 8.4. 

Fig. 8.4. Electromagnetic vertex for a free nucleon. 

The most general structure of the matrix element of the current for a free nucleon 
is given by (see, e.g. [Bj64]) 

Here the spin and isospin quantum numbers have been made explicit; fi,u are 
Dirac spinors and vp,  17, are two-component Pauli isospinors. The four-momentum 
transfer is defined by q = p - p’ (Fig. 8.4), and the form factors Fl(q2), F2(q2) are 
functions of q2.  The isospin structure of the form factors must be of the form 

Relevant numerical values are 

Ff(0) = FY(0)  = 1 

2mFf(O) = x:,+x, = -0.120 

2mFZ(o) = -A, = +3.706 (8.19) 

To construct the nuclear current density we now carry out the following series 
of steps (see e.g. [WaOl]): 
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1. Substitute the explicit form of the Dirac spinors for a free nucleon 

(8.20) 

Here X T ,  x1 are two-component Pauli spinors for spin up and down along the z 
axis. Now expand the matrix element in Eq. (8.17) consistently to order l /m2.  The 
result is (see Prob. 8.5) 

1 t  t (p’a’p’IJ,(O) IPV) = EVp’ X,IM,XUVP 
1 -ia x q 

M = F l ~ ( p  + p’) + (FI  + 2mF2) 

iq(O ’’1 + 0 (2) M~ = F~ - ( F ~  + 4 m ~ z )  [ & - (8.21) 
4m2 

Here M ,  = ( M , Z M O ) . ~  

at the origin, in second quantization, the following expression 
2. Take as the prescription for constructing the nuclear current density operator 

&(O) = c c c;!u!p’ (P’a’p’lJ,(O)lP~p)Cpup (8.22) 
P’U‘P’ PUP 

Here the single-particle matrix element is precisely that of Eq. (8.17). 
3. Use the general procedure for passing from first quantization to second quan- 

tization [Fe71]. If, in first quantization the one-body nuclear density operator has 
the form 

A 

J,(x) = C{Jf)(2)6(3)(x - Xi)} 
i=l 

(8.23) 

then in second quantization the operator density is 

4 J X )  = c c c;~,rp’(P’~’p‘IJI,(x)lP~p)Cpup (8.24) 
P’U’P’ PUP 

with 

(P’U’dIJp(x)lpap) = /$Y ~ ; / u f p ’ ( ~ ) { J ~ ) ( ~ ) 6 ( 3 ) ( ~  - y))dpUp (Y) (8.25) 

4. The discussion in chapter 7 shows that physical rates and cross sections are 
expressed in terms of the Fourier transform of the transition matrix element of the 
current 

J e--(fl&(x)li) d3a: (8.26) 

51t is assumed here that both qo and Fz are O(l/m). The expansion in (q/m, qo/m) is avoided 
in [Je98]. 
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Here q = p - p‘, and in electron scattering q = k’ - k. We define 

( f I j p ( x ) l i )  3 Jp(x) f i  (8.27) 

and observe that by partial integration in Eq. (8.26) with localized densities one 
can make the replacement 

V - iq (8.28) 

We then anticipate the presence of terms in iq in the elementary nucleon amplitudes 
by defining 

J ( x ) f i  J c ( x ) f i  + V x p ( x ) f i  

p ( x ) f  i PN(X)f i + v ‘ s(x)f i -k v2$(x)f i (8.29) 

The use of Eq. (8.25) evaluated at x = 0 now permits the identification of the 
nuclear density operators in first quantization, which give rise to the required result 
in second quantization of Eq. (8.22). The operators take the form 

J(x) = J C ( X ) + V  x jqx) 
p(x)  = bN(X) + v*b(x) + v2$(x) 

Here the densities are defined by Eqs. (8.12), (8.15), (8.16), and 

with 

s ( j )  = e ( j )  + 2A’(j) 

5. It is an empirical result that in the nuclear domain6 

1 
fSN(q2) = (1 + q2/0.71 GeV2)2 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

6A more accurate representation of the experimental data for the proton and neutron out to very 
large q2 is given by (see e.g. [WaOl]) 

GM(q2) Fi + 2mF2 = fsN(q2)GM(0) 

G*(q2) f 8’1 - (q2/2m)F2 = ~ s N ( ~ ~ ) G E ( O )  

although G;(q2) remains to be measured well. 
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The ( e l  e’) cross section is now determined by an effective Mott cross section 

(8.34) 

The use of this effective Mott cross section represents an approximate way of taking 
into account in the nuclear domain the spatial extent of the internal charge and 
magnetization densities of a single constituent nucleon. 

6. The present analysis gives the leading relativistic corrections to the nuclear 
current, assuming it is a one-body operator. It neglects, among other things: meson 
exchange currents, other multibody currents, relativistic terms in the wave func- 
tions, and off-shell corrections to the nucleon vertex in the nuclear medium. 

7. The goal, pursued in this text, is to develop 

0 a consistent, relativistic, hadronic description of the nucleus 
0 a consistent, relativistic, quark-based description of the nucleus 

and to understand the relation between them. 
For the present, we pursue the description of nuclear excited states within the 

traditional picture of non-relativistic nucleons interacting through static potentials, 
and we use as a basis the complete set of shell model states. 
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Excited states - equations of motion 

This section is based on [Fe71], which in addition contains a discussion of a system- 
atic procedure using Green’s functions to determine the nuclear excitation spectrum 
to all orders in the two-body interaction. References [Br59a, Ba60, La64, Br641 pro- 
vide important background material here. 

Consider the general problem of describing the collective excitations built on 
the Hartree-Fock ground state of a finite nonrelativistic system. If the system is 
excited through a one-body operator of the form GtOG, then the resulting states 
must have a single particle promoted to a higher shell; in other words, as indicated 
in Fig. 9.1, the excited state must contain a particle-hole pair. Coherent super- 
position of particle-hole states can build up transition strength. One can describe 
the strongly excited collective excitations built on the Hartree-Fock ground state 
as linear combinations of particle-hole states. The goal is to develop a set of quan- 
tum mechanical equations of motion with which to describe the properties of these 
excitations. To that end, introduce the particle-hole pair creation operator 

tLp = aLbL (9.1) 

The notation is that of chapter 5. Consider the matrix element 

(*nl[fi,t:pll*o) = (En - Eo)(*nlt:al*o) (9.2) 

Here 190,~) are the exact ground and excited states. The hamiltonian in Eq. (5.16) 
is used to evaluate the commutator required on the 1.h.s. of this relation 

(H0,t:pI = 0 

(9.3) 
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Recall that 

Excited states - equations of motion 

C, = e(a - F)a,  + B(F - a)S,bt, (9.4) 

These are exact equations of motion of the system. Their solution is equivalent to 
that of the full Schrodinger equation for a finite many-body system. To be tractable, 
some approximation is needed to deal with the last term in Eq. (9.3), which contains 
the entire remaining effects of the two-body interaction. This shall be done with 
the method of linearization of the equations of motion. We start with the simplest 
case, which provides a widely used approximation scheme. 

9.1 Tamm-Dancoff approximation (TDA) 

Make the following two approximations (see Fig. 9.1): 

(1) Assume the ground state corresponds to the filled core of Hartree-Fock 
states, that is 

(2) Assume the excited state is some linear combination of particle-hole states 

4 

The sum here is assumed to go over some finite, albeit arbitrarily large, set 
of n/ particle-hole states. 

\ /  

F 

Fig. 9.1. One-body excitations built on the Hartree-Fock ground state. 

With these two assumptions, only the terms proportional to atbt need be kept in the 
final commutator in Eq. (9.3); all other operators make a vanishing contribution to 
the matrix element in Eq. (9.2). Thus only the following terms in the commutator 
will contribute 

[ N { S,, S, a: b- , a, bL + 
+ SpSpb-,a~a,b~,}, aLbL] 

S, S, b- ,a: b up + S, S, a f, b- b , up 

(9.7) 
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Use the symmetry property of matrix elements of the potential 

( P 4 V I P 4  = (VlVlW) 

This reduces the required commutator in Eq. (9.7) to the form1 

2[(S,Sua~b~,b-,a, - SvSua$bt,b-ua,) , aLb$ 

The required result is then 

[&, &I = c S-pS-,[(X - PlVl - P 4  - - PlVb - P)Itl, (9.10) 
A, 

Here the symbol = indicates that only these terms contribute to the required matrix 
element in Eq. (9.2) in the TDA. 

Define [see Eqs. (9.5) and (9.6)] 

( Q n I t L p I Q o )  $,p (n) (9.11) 

A combination of the previous results then yields the resulting equations of motion 

Here E ,  - €0 is the Hartree-Fock particle-hole configuration energy and the particle- 
hole interaction is defined in terms of matrix elements of the two-body potential 
according to 

uap;x, 3 S-pS-,[(X - PlVl - PO) - - PlVb  - P)l (9.13) 

Equations (9.12) provide a set of linear, homogeneous, algebraic equations for the 
numerical coefficients $c). The vanishing of the determinant of the matrix of co- 
efficients in these algebraic relations gives the set of energy eigenualues En with 
n = 1, . , N. Substitution of these eigenvalues allows one to determine the eigen- 

tution of the eigenvalue, it is only N - 1 ratios that are determined. The entire 
eigenvector can be obtained with the aid of a phase convention and the normaliza- 
tion condition. The latter is derived by noting that 

vectors $,",. ( In fact, since one of the equations is linearly dependent upon substi- 

(9.14) 

( Q n t l Q n )  = bnn/ = C% (n') +,P (n)*  (9.15) 

The orthogonality of solutions for different n follows directly from the linear alge- 
braic Eqs. (9.12) (see Prob. 9.2). 

'To evaluate this commutator, just move the destruction operators over to the right. 

(9.8)

(9.9)
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The transition matrix elements of any multipole operator can be calculated from 

T = C c t , ( a l ~ l P ) c a  = C((.ITI - P)S-pCp  (9.16) 

The symbol A here has the same meaning as above; only these terms contribute to 
the transition matrix element in the TDA. Thus 

ap ap 

(9.17) 

The result is a linear combination of single-particle transition matrix elements 
weighted with the previously determined numerical coefficients $2'. 

The TDA provides an excellent framework for obtaining a qualitative, and semi- 
quantitative, description of nuclear excitations. It assumes a closed-shell Hartree- 
Fock ground state and excited states that are linear combinations of only singly 
excited particle-hole pairs. This is clearly a simple model and often fails, for ex- 
ample, to exhibit the observed degree of coherence in nuclear transition strengths. 
It is of interest to ask how these results are modified if one allows for particle-hole 
pairs in the ground state, and additional particle-hole pairs in the excited state, 
while retaining the utility of linearized equations of motion. The random phase 
approximation provides such a framework. 

9.2 Random phase approximation (RPA) 

The linearized equations of motion can be extended by allowing the ground state to 
have particle-hole pairs. This is accomplished by retaining both the particle-hole pair 
creation and destruction operators in the evaluation of the required commutators in 
Eqs. (9.3) 

tLp E aLbL cap = bpaa (9.18) 

All matrix elements are retained of the form 

(9.19) 

Thus one can either create or annihilate a particle-hole pair in making a transi- 
tion from the ground to the excited state. Consider now the following two matrix 
elements 

(*n"fi, t L p ] l * o )  = (En - ~o)+&",' 

(*n~[fi, t ap11*0)  = (En - ~014% (9.20) 

The terms in [I?,(;,] proportional to tLp were evaluated above. The additional 
terms proportional to cap are now required. An extension of the above analysis 



Random phase approximation (RPA) 

gives 
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[N{SpSub-pb-uauap} , a ! 4 ]  

2 2[6pa6p-pb-,a, - 6,,6p-pb-,ap]SpS, 

Here Eq. (9.8) has again been used. One thus obtains 

i f i2 ,  tLp1 ~ [ v a p ; A p t l p  + U a P ; A p L I  

AP 

The additional particle-hole interaction follows from the above as 

(9.21) 

(9.22) 

(9.23) 

These again form linear, homogeneous, algebraic equations. If the complete set 
of single-particle states is taken to include the bound states plus the continuum 
states with standing wave boundary conditions, then all the matrix elements of the 
potential are real 

- 
Vap;Ap = V:p;Ap = V A W P  

uap;xp  = u:p;xp - = UAp:aP (9.25) 

With the aid of these conditions, one readily establishes the orthogonality condition 
on the eigenvectors (Prob. 9.2) 

(9.26) 
4 

The choice of normalization must be justified. So far only the matrix elements 
have been approximated through the linearization of the equations of motion in 
Eq. (9.20); the normalization of the eigenvectors is a bilinear relation that requires 
further restrictions (see [Ba60]). To this end, define the operator 

QL = CM.p (n) cap ^t - 4$tap1 (9.27) 
a0 

It follows from the matrix element in Eqs. (9.20) that 

(9.28) 
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Assume this holds as an operator identity. Assume also that the interacting ground 
state can be defined by the relation 

Qnl*o) = 0 (9.29) 

for all n. The collective excitations can then be explicitly constructed by letting Qi 
act on the ground state 

I*n) = QLlQo) (9.30) 

for Eq. (9.28) now implies 

fil*n) [fi, Q;11*0) + E O Q A ~ Q O )  EnlQn) (9.31) 

Furthermore, the normalization condition can be derived from Eqs. (9.29) and (9.30) 
as 

(*nlI*n) = Jnnl = ( * O ~ [ Q n ~ , Q ~ ] ~ * o )  (9.32) 

The normalization condition in Eq. (9.26) now follows from this relation provided 
[<xx,, <,$I A 6xa6pl,; however by explicit calculation 

A , .  

[& = 6pp6xCY - 6,paLax - 6,xb;bx, (9.33) 

Necessary conditions for this "quasiboson" description of the collective excitations 
to hold are 

(9.34) 

The first expression yields the probability that a particle is present in any level in 
the ground state, and the second is the probability that a hole is present; evidently 
these quantities must be small for the approximation to work. If these conditions 
hold, then we have, consistently, 

(n')* (n) (n')* (n)  ( * O l [ Q d 7 Q L I l * O )  = X M C Y p  $,p - & p  4,pI = 6nnt (9.35) 
LYR 

The transition matrix elements of any single-particle operator can now be eval- 
uated in the RPA as before by first retaining the appropriate terms in the operator 

p = Cl(4TI - P)s-,i:p + ( -P lmw-p tCYp l  (9.36) 
CYR 

The matrix element of this relation then yields 
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This is the desired result; it expresses the transition amplitude as a coherent super- 
position of the single-particle matrix elements, with the eigenvectors obtained by 
solution of the linear RPA equations as numerical coefficients. 

9.3 Reduction of the basis 

The introduction of eigenstates of total angular momentum J and total isospin T 
will reduce the basis since these are good quantum numbers for the nucleus that 
cannot be mixed by the interaction. The analysis is carried out in detail in section 
59 of [Fe71], and the reader is urged to work through this material in detail. Here, 
instead, we analyze a simple model where the two-body interaction is assumed to 
be attractive and independent of spin and i~osp in .~  This model illustrates many 
systematic features of more detailed particle-hole calculations. We here explicitly 
carry out the reduction of the basis in the TDA. 

The situation is illustrated in Fig. 9.1. Consistent with this model it will be 
assumed that: 

(1) The ground state of even-even nuclei corresponds to closed shells with S = 

(2) The single-particle levels can be characterized with the quantum numbers 
L = T = O ;  

{a}  = (71.m la, ;, ;; mkY,m,a, mta} = {a;  m a ,  msa,mta}. 

One can now explicitly transform from j - j  to L-S coupling; however, it is simpler to 
start over with a slightly different canonical transformation to particles and holes4 

To reduce the basis, sum this relation with the appropriate C-G coefficients. One 
can simply proceed with the angular momentum coupling since care has been taken 

31f V is independent of spin and isotopic spin, then the nuclear hamiltonian is invariant under the 
symmetry group SU(4), which mixes the spin and isotopic spin of a nucleon in the fundamental 
representation [Wi37]. All states belonging to an irreducible representation of SU(4) are then 
degenerate, and with attractive interactions, the ground state belongs to  the identity represen- 
tation. For the particlehole excitations we have [4] @ = [l] @I151 as explicitly illustrated in 
this model calculation. The situation is analogous to that in particle physics where the internal 
symmetry structure of the meson multiplets is that of qq pairs. 

4Note Bi = f b k  for j ,  = 1, f 112. Thus there is simply an a-dependent phase relating the two 
canonical transformations. 
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to  work with I T 0  at each step (appendix A.2). Thus one defines 

1 1 1 1  
x(-mt,-mtpI--TMT)$$) 2 2 2 2  (9.40) 

If V is independent of spin and isospin, then this dependence factors in the two- 
body matrix element. In the first term in the interaction potential above, one finds 
the following expression for the spin part of the matrix element 

(9.41) 

with a similar expression for isospin. Thus when the first term gets summed with 
the C-G coefficients in Eq. (9.40) only S = T = 0 will contribute; in the second 
term in the interaction, these spin and isospin C-G coefficients go right through the 
potential and onto the eigenvectors. 

For the 1-dependence of the matrix elements, the use of the completeness of the 
eigenstates of angular momentum allows one to write 

Now use the fact that V is a scalar under rotations 

(9.42) 

(9.43) 

Thus 

Here the first two factors on the r.h.s. are C-G coefficients explicitly exhibiting the 
m-dependence, and the remaining matrix element of the potential is diagonal in L 
and M and independent of M .  

Substitution of Eq. (9.44) in Eq. (9.39) and projection with the C-G coefficient 
in Eq. (9.40) lead to  the following sum over three C-G coefficients 

(9.45) 
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A rearrangement of the order of the coupling in the C-G coefficients using formulas 
in [Ed741 puts this in standard form 

X (L‘M‘lbmpIL‘lbllmx) (lamalbmp Il,lbLM) (9.46) 

From [Ed741 this is a standard recoupling relation involving a 6-j symbol 

The remaining C-G coefficient is now of the proper form to go right onto the eigen- 
vector in Eq. (9.39) to give the proper coupling in Eq. (9.40). The result is that the 
TDA equations are reduced to the form 

( € a  - Eb - En) ‘ $ ‘ g ~ ( a b )  f uf;; ‘$‘pJ~(lm) = 0 (9.48) 
lm 

The particle-hole interaction in this reduced basis is given by 

(9.49) 

Here the order of the first and second terms in the interaction has been interchanged. 
Several features of this result are of interest: 

There is one set of linear equations for each ( L , S , T }  independent of 
{ M L ,  M s ,  MT};  thus the basis has been reduced. The remaining sum in 
Eq. (9.48) goes over the set of particle-hole states characterized by the 
quantum numbers {lm} = {nl,ll, $, $;nm,lm, k, +}; If there are NL of 
these states contributing for a given L,  then one is solving a set of NL- 

dimensional linear equations, and nL = 1, . . . , NL labels the eigenvalues 
and eigenvectors; 
E ,  - €6 are the Hartree-Fock single-particle energies of interaction with the 
filled core. The role of the particle-hole interaction u is to subtract off the 
interaction with the empty state; 
The entire remaining dependence on S and T is contained in the coefficient 
of the last term in the interaction. If either S # 0 or T # 0 the last term 
in Eq. (9.49) vanishes. Thus the 15 spin and isospin states in Table 9.1 
with [2S + 1,2T + 11 = [3,3] @[3,1] @[1,3] lie at the same energy or are 
degenerate for each of the NL eigenvalues with given L. They can each be 
combined with these states of given L to produce states of good { L ,  S,  J, T } ;  
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Table 9.1 
excitations discussed in text. 

Quantum numbers of the degenerate states in the model of collective particle-hole 

T I s 11 L I J 3 x E E  0 1 L L - l , L , L + l  

The single state with S = T = 0 for each of the NL eigenvalues with given L 
is split off from the 15 with S # 0 or T # 0 by the interaction in Eq. (9.49). 

The transition matrix elements of the multipole operator in Eq. (9.17) are im- 
mediately expressed in terms of the reduced eigenvectors of Eq. (9.40) through the 
use of the Wigner-Eckart theorem on both the many-particle and single-particle 
matrix elements. Furthermore, this reduction of the basis is readily extended from 
the TDA to the RPA using analogous techniques. These results will be presented 
in the next section where the introduction of a simple contact two-body interaction 
will allow us to solve both the TDA and RPA equations analytically and investigate 
their  consequence^.^ 

51t is shown in [Fe71] that the TDA corresponds to finding the poles of the polarization propagator 
obtained by summing the forward-going particlehole insertions on an interaction line; here there 
is only one particlehole pair present at any given time. The RPA corresponds to summing 
these as Feynman diagrams, with both forward and backward propagation in time; now several 
particle-hole pairs may be present at any instant. 
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Collective modes - a simple model with 

In this section, which is based on [Br64, Fe711, a simple attractive contact po- 
tential, independent of spin and isospin, will be assumed. This allows solution of 
the linearized equations of motion and investigation of the systematics of collective 
particle-hole excitations in nuclei. From SU(4) invariance [Wi37], the degenerate 
particle-hole supermultiplets will belong to the [4] @m = [15] @[1] representations 
of SU(4); as shown in chapter 9, this structure is explicitly realized in this model dy- 
namical calculation. Of course, there are significant spin-dependent effects present 
in nuclei, the most evident being the spin-orbit interaction that gives rise to the 
nuclear shell model (chapter 5). Thus the present model is applicable in detail, at 
most, to light nuclei.2 

Take the two-body interaction to be a simple attractive short-range interaction 
of the form 

v = -96(3)(~1 - x2) (10.1) 

In this case the matrix element of the two-body potential ( l ~ l ~ L ’ ~ V ~ l a l m L ’ )  required 
in Eq. (9.49) can be readily evaluated. First, the / d322 is immediately performed. 
Then the use of [Ed741 gives 

(10.2) 

lMore realistic description of the effective interaction in nuclei can be found in [Ba75b, Na84, 

21t can be extended to j-j coupling and heavier nuclei (see [Br64, Fe711 and Prob. 9.3). 

Br87, Br88, KuQO]. 

91 
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Thus 

Collective modes - a simple model with -9d3)(r) 

(10.3) 

Further use of [Ed741 allows one to now perform the sum on L’ required in 
Eq. (9.49)3 

10.1 The [15] supermultiplet in TDA 

For the [15] supermultiplet the last term in Eq. (9.49) vanishes, and the particle-hole 
interaction takes the form 

‘ab;lm ~51-5 = ~‘ab’lm L L (10.5) 

Here the factors are defined by4 

The second equality follows from [Ed74]. The parameter < represents the remaining 
radial integral 

(10.7) 

Now the radial wave functions (assumed real) are peaked at the nuclear surface for 
particles in the first few unoccupied shells and holes in the last few filled shells, 
and the overlap integral < does not change much from one particle-hole pair to the 
next “0591. The assumption of constant E leads to a particle-hole interaction in 

3Note that the 3-j symbol ( 
4Recall cLM [ 4 ~ / ( 2 L  + I ) ] ~ / ~ Y L M .  

) vanishes unless 11 + 12 + L is even. 
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Eq. (10.5) that is separable, allowing one to solve the linear Eqs. (9.48) analytically, 
for they now take the form5 

( cab  - En)$:ri]~(ab) + t w t b  uf-, $:ri]~(lm) = 0 (10.8) [ Im 1 
Multiplication by ?&/(&b - en) and c a b  then leads to the eigenwahe equation 

_ -  1 (v,”,)2 

t -T-  
This eigenvalue equation is solved graphically for the en in Fig. 10.1. 

(10.9) 

Fig. 10.1. Graphic solution of TDA eigenvalue equation for simple model two-body 
interaction discussed in the text. 

With N particle-hole states, N -  1 eigenvalues lie between the configuration energies 
Eab 3 - Eb. One eigenvalue €top is pushed up to arbitrarily high energy, depending 
on the value of 1/(. If all the particle-hole states are degenerate (say lf iw excitations 
in an oscillator) then 

Eab = €a  - Eb €0 (10.10) 

The solution to Eq. (10.9) for the highest state therefore takes the form 

ab 

The corresponding normalized eigenvector follows from Eq. (10.8) as 

(10.11) 

(1 0.12) 

5Note {ab}  and {lm} are now simply sets of radial quantum numbers in this equation. 
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From Fig. 10.1 and Eq. (10.8) the other N - 1 eigenvalues and eigenvectors all 
satisfy the relations 

(10.13) 
lm 

The general expression for the transition matrix element of an arbitrary multi- 
pole operator in this scheme6 follows in direct analogy to Eq. (9.17) 

( Q n l q Q o )  = C(aITI - P)S-p$$ (10.14) 

Suppose ~ ? L M  is an ITO; use of the Wigner-Eckart theorem [Ed741 then gives for 
the 1-dependence 

a p  

(*;I IfL I I Q O )  = C(la I ITLI I l b ) ( S - p ) 2 ( l a m , l b m , l l a l b ~ ~ ) $ ' $  
a p  

(10.15) 
ab .. 

Exactly the same calculation can be repeated for isospin. 

matrix element in Eq. (10.14) gives 
Suppose the multipole operator TLM is independent of spin. In this case, the 

Hence only S = 0 will be connected to the ground state through this multipole.' 
Observe that if S = 0 within the [15] supermultiplet, then the isospin is T = 1. 
Apply these arguments to the transition multipoles of the charge density operator 
defined by 

(10.17) 

Since the excited state has T = 1, only the 73 term can contribute to the transition 
matrix element, and recall that (3113~113) = 3 6  [Ed74]. Thus 

Here the notation ( i i  
L and T.  

6Recall Eqs. (9.38). 

7Recall the ground state here belongs to the identity, or [I], representation of SU(4). 

i i )  indicates a matrix element reduced with respect to both 
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Assume, as with the radial matrix elements, that ( r L ) a b  M ( rL )  independent of 
{ab},  and make use of Eq. (10.6). Then 

Insertion of Eqs. (10.12) and (10.13) then gives 

(10.19) 

.. L .. 
( @ L 5 ] L  :: Q L  :: Qo) = 0 ; other n/ - 1 supermultiplets (10.20) 

Thus the top [15] supermultiplet for a given L gets all the strength of the transition 
matrix elements of the multipoles of the charge density; the other N - 1 are left 
with no transition strength whatsoever!' The situation 
in Fig. 10.2. 

- "ph- 

Fig. 10.2. Schematic representation of results for [15] 
discussed in the text. 

is illustrated schematically 

supermultiplets in the model 

10.2 Random phase approximation (RPA) 

We proceed to a calculation of nuclear excitations using the same model two-body 
interaction, but with the RPA equations of motion. The first term in the particle- 
hole interaction in Eqs. (9.24) is treated exactly as in the TDA; the reduced eigen- 
vectors are defined by Eq. (9.40), and the interaction is given in this model by Eq. 
(10.5). The reduction of the new part of the eigenvector is accomplished by writing 

8This model, for transitions to the giant dipole resonance with quantum numbers JT = 1-,  T = 1 
(in even nuclei with N = Z )  was first examined in [BrBSa]. 
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Here SL = (-1) L - M L  with a similar definition for Ss and ST. These phases are 
necessary, for while & is a product of ITO, only SaSp{-,-p = S,Spb-p-, is 
such a product (appendix A.2). Now one can proceed with the angular momentum 
couplings, and use the symmetry properties of the C-G coefficients [Ed74]. A com- 
parison of Eqs. (9.13) and (9.23) shows that a reduction of the basis analogous to 
that presented above for this model in the TDA leads to the expression (Prob. 10.1) 

It will again be assumed that E is a constant. The reduction of the RPA equations 
then takes the form 

To derive the eigenvalue equation from these relations divide by ( cab  

tively, then Cab w f b ,  multiply the second by (-l)L+S+T, and add. The result is 
en), respec- 

(10.24) 

This equation is symmetric under 6, H -en; it is evident from Eq. (9.20) that the 
excitation energies E ,  = En - Eo are to be interpreted as the solutions for positive 
E , .  Note that the phase (-l)LfS+T cancels from this relation. This eigenvalue 
equation is solved graphically in Fig. 10.3. n/ - 1 roots are again trapped between 
the configuration energies, and the top one is pushed up. 

The eigenvalue equation again simplifies if the configuration energies are degen- 
erate with Eab = €0, and the equations can be solved analytically just as before. The 
top eigenvalue is given by 

(10.25) 
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The normalized top eigenvector follows as 

Here E 

case also follows as before; for these en = €0 and 
€top. The solution for the other n/ - 1 supermultiplets in this degenerate 

Fig. 10.3. Graphic solution for eigenvalues with model problem in RPA. 

The transition amplitude in RPA follows directly from Eq. (9.37) 

The transition matrix elements of the charge density operator in Eq. (10.17) are 
calculated through the same analysis as described previously 

Here equality has again been assumed for the radial matrix elements. Substitution 
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of the eigenvectors in Eqs. (10.26) and (10.27) then gives the final result 

(QF:.$L .. :: Q L  ,. .. 1: Qo) = ~ g z 7 m s o ( r L )  
.. A .. (Q:YilL :: Q L  :: @o) = 0 ; otherN - 1 supermultiplets (10.30) 

Two features of these results are of particular interest: 

A comparison of Eqs. (10.25) and (10.11) indicates that the top L state is 
not pushed up as far in the RPA as in the TDA. The rest of the states again 
remain degenerate at €0; 
A comparison of Eqs. (10.30) and (10.20) shows that the transition strength 
to the top supermultiplet is similarly reduced in the RPA from that in the 
TDA. The transition strength to all the other degenerate supermultiplets 
again vanishes identically in the RPA. 

10.3 The [l] supermultiplet with S = T = 0 

For the delta function potential in Eq. (lO.l), the two-particle matrix elements 
satisfy the equality 

(-l)la+l-+L’(~~lbL’IVI~m~aL’) (l!llbL’[vllalmL’) (10.31) 

It follows from Eq. (9.49) that if S = T = 0 then 

PI - ~ 5 1  
‘ab;lm - -3vab;lm (10.32) 

An analysis analogous to that used to derive Eq. (10.22) gives exactly the same 
relation for the additional interaction term in the RPA (Prob. 10.2) 

uab;lm [I] - - -3u[151 ab;lm (10.33) 

Thus the analysis for these states is exactly the same as that already carried out 
provided one makes the replacement - = -3E (10.34) 

Contemplation of the previous results then immediately implies: 

0 In contrast to the top state being pushed up in energy and gathering all the 
transition strength, the bottom state is now pushed down; it again contains 
all the transition strength for the charge density multipoles in this model;g 

gThe isoscalar charge density operator for the dipole mode with L = 1 is given by Eq. (10.17) as 
Q ~ M  = a Cj r ( j ) l M .  This is proportional to the center-of-mass coordinate and cannot cause a 
true internal excitation of the nucleus. Thus there is no transition from the ground state to the 
[l] supermultiplet with S = T = 0 and L = 1 through the charge density operator. The present 
analysis is applicable to quadrupole L = 2 and higher charge oscillations of the nucleus. 

(1)

(2)
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0 The bottom L state is pushed farther in the RPA than in the TDA; 
0 The transition densities are more collective in the RPA than in the TDA; 
0 In the TDA the bottom state will acquire a negative eigenvalue for suffi- 

ciently large t' (Fig. l O . l ) ,  while in the RPA it is possible that the lowest 
eigenvalue will in fact disappear under similar conditions (Fig. 10.2). Both 
of these results are indicative of an instability of the ground state with 
respect to these new modes in this strong-coupling limit. 

10.4 Application to nuclei 

There is a rich variety of modes of motion of nuclei: single-particle excitations, 
collective shape oscillations, spin-isospin oscillations, rotations of deformed nuclei, 
superdeformed shape isomers, coupled combinations of these - the list can go on 
and on. It is not within the perspective of this text to go into each of these in 
detail. Many good books are available that do this, for example [Bo69, Bo75, Pr82, 
CaSOa, Ta931. Rather, the goal of the present development is to provide a theoretical 
basis for describing a wide variety of nuclear excitations. Reference [Fe71] shows 
how to consistently extend this description to arbitrary orders in the two-nucleon 
interaction. 

The present analysis does provide a framework for understanding a broad variety 
of nuclear phenomena. For example, it is an experimental fact that low-energy 
photoabsorption by nuclei is dominated by the giant dipole resonance (GDR) as 
illustrated schematically in Fig. 10.4. 

photon energy 

Fig. 10.4. (a) Schematic representation of low-energy nuclear photoabsorption cross 
section and the giant dipole resonance. (b) Goldhaber-Teller model. 

The GDR occurs at approximately 25 to 10 MeV in going from the lightest to the 
heaviest nuclei. It is a few MeV wide and the most important electromagnetic 
transition multipole in this energy regime. It systematically exhausts the El sum 
rule. Now the El operator has the form 

(10.35) 
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Therefore the GDR has quantum numbers S = 0, T = 1, L" = 1- in nuclei whose 
ground states have quantum numbers S = T = L = 0. 

The simplest picture of the giant dipole resonance is due to Goldhaber and 
Teller [Go48]; the protons oscillate as a unit against the neutrons as illustrated 
schematically in Fig. 10.4. The more sophisticated model for the giant dipole res- 
onance presented here is due to Brown and Bolsterli [Br59a]. The observed GDR 
does indeed lie at a higher energy than the configuration energies determined 
from neighboring nuclei; it is also observed to carry all the dipole strength. The 
present model predicts that the GDR observed in photoabsorption comprises just 
three components with (T = 1, S = 0) of a degenerate [15] dimensional spin-isospin 
supermultiplet of giant dipole resonances with L = 1. The simple picture of the 
other components is obtained in the framework of the Goldhaber-Teller model by 
considering the various oscillations of { p  r , p  1, n t ,  n L} (c.f. Fig. 10.4). There is ev- 
idence from weak interactions and electron scattering that these other components 
are indeed present in light nuclei [Do75].1° The model calculation discussed here 
also predicts additional giant resonance [15] supermultiplets,in fact one for each L. 

The collective states belonging to the identity, or [I] , spin-isospin supermulti- 
plet with ( S  = 0, T = 0) correspond to pure charge oscillations of the nucleus. For 
example, there can be quadrupole shape oscillations with L = 2, octupole shape 
oscillations with L = 3, and so on, as illustrated schematically in Fig. 10.5. These 
oscillations are seen systematically throughout the periodic table as low-lying col- 
lective excitations of even-even nuclei [Pr82, CaSOa] . 

quadrupole octupole 

Fig. 10.5. Schematic representation of collective shape oscillations of even-even 
nuclei. 

The RPA description of these phenomena tends to be in closer accord with the 
observations than that of the TDA (see, e.g. [Gi64]). 

IOReference [Ti921 clearly displays this supermultiplet in ;He. 



Chapter 11 

Application to a real nucleus - l 6 0  

Many calculations of nuclear spectra starting from realistic single-particle properties 
and two-nucleon interactions have been carried out (see, for example, [Ba75b, Sp81, 
Na84, Br87, Br88, Ku901). It is impossible to summarize all these results here. 
Rather, we present just one example of an attempt to calculate the excited states of 
a real nucleus. The calculation focuses on the negative-parity T = 1 states of '680; 
these are the states excited in inelastic electron scattering at large angles and high 
momentum transfer through the large isovector magnetic moment of the nucleon 
[Eqs. (7.77) and (8.30)I.l The calculation in the TDA is due to Donnelly and Walker 
[Do701 (see Fe71]). 

One starts with single-particle states of the form Inljmj; +m,), which diagonalize 
the strong spin-orbit force H,, = l&,(r)l. s. The analysis of chapters 9 and 10 is 
readily generalized to this case (Prob. 9.3). The ground state of '680 is assumed to 
form a closed pshell. 

Fig. 11.1. Particle-hole states retained in calculation of negative-parity T = 1 states 
of 1680. 

All particle-hole states corresponding to a hole in the pshell and a particle in the 
next (2s-ld) oscillator shell are retained (Fig. 11.1).2 The particle-hole configuration 

lNote from Eq. (8.15) ,u = ; ( A p  +A,) + ; T ~ ( A ~  - A,). Since (A, - A,) >> (A, +A,) it is the 

2The [15] supermultiplets here are obtained from the spatial states (2s)(Ip)L? and (lcf)(lp);?2-3- 

isovector transitions that dominate the transverse electron scattering cross section. 

where the total L is indicated with a subscript. 
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(2s1/2)(1P3/2)-1 

(ld5/2 ( lP3/2)-l 

(ld3/2)(lP3/2)-l 

(2s1/2)(1P1/2)-1 

(ld5/2) (lPl/d-l 

(ld3/2)(lPl/2)-' 

energies E ,  - Eb are taken from the neighboring oxygen isotopes as indicated in 
Fig. 11.2. They are shown in Table 11.1. 

18.55 1-, 2- 

17.68 1-,2-,3-,4- 

22.76 0-,1-,2-,3- 

12.39 0-,1- 

11.52 2-, 3- 

16.60 1-, 2- 

Fig. 11.2. Particle-hole configuration energies for calculation in l:O. 

Table 11.1 
I:O and configuration energies obtained from neighboring nuclei. 

Particlehole configurations retained in calculation of negative-parity T = 1 states in 

Configurations I - Eb (MeV) I States 

A nonsingular Serber-Yukawa potential fit to low-energy nucleon-nucleon scat- 
tering is used 

1 
V(L2) = 1 lV(T12)lP + "(Tl2)3Pl~[1+ &(I, 211 

1 
4 3P = -(3 + u1. u2) 1 

4 lP = -(1- u1* u2) 

'VO = -46.87MeV 'p = 0.8547 fm-' 

3v0 = -52.13MeV 'p = 0.7261 fm-' (11.1) 

The calculation employs harmonic oscillator single-particle solutions (chapter 
5) as approximate Hartree-Fock single-particle wave functions with an oscillator 
parameter b = 1.77fm determined from a fit to elastic electron scattering. The 
calculated spectrum for '680 is shown in Fig. 11.3. 
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Also shown in this figure is the spectrum with the spin-dependent forces (Hso and 
Vla1.az ) turned off. In this case one reproduces the previous model supermultiplet 
results of chapter 10. 

c in MeV 

28 F PO0- 

1- 
3 -  
2- 
1-  

0; 1; 1; 2- 

- 1- 
0- 
2;3- 

- '4 12 

Fig. 11.3. Calculated spectrum of T = 1 negative-parity excitations of l;O. Also 
shown is the calculated spectrum with the spin-dependent forces turned off. From 
[Do70, Fe7lj. 

The cross section for photoabsorption involves the dipole states with ( J " ,  T )  = 
(1-, 1); the comparison of the observed photoabsorption cross section for '680 with 
the calculated values (arbitrary overall normalization) is indicated schematically in 
Fig. 11.4. The total calculated strength is too high by about a factor of 2. 

Fig. 11.4. Schematic comparison of observed and calculated photoabsorption cross 
section in the giant resonance region for 'EO. Lines show location and relative 
strength of the calculated result; the integrated theoretical result is too high by 
about a factor of 2 (see text). 
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The use of the current and magnetization operators in Eqs. (8.12) allows one 
to compute the electron scattering cross section [Eq. (7.77)] to the discrete levels 
in Fig. 11.3. The results are compared with the experimentally observed (el  e') 
spectrum at 6 = 135O and ~i = 224MeV in Fig. 11.5. 

L. 
rn 

I 6 x  
% 
E 
E 
u' 
-J 
c: 
? 

\ 
D 

v 

b 
h 
N 

E (MeV) 

Fig. 11.5. Experimentally observed spectrum of scattered electrons at 6 = 135" and 
~i = 224MeV compared with calculated spectrum for states in Fig. 11.3 (arbitrary 
overall normalization; the integrated areas for the various complexes are compared 
with theory in the next figure). From [Si69, Fe711. 

The solid curve is an estimate at this momentum transfer of the nonresonant back- 
ground above the threshold for nucleon emission. 

The form factors for the various complexes observed in Fig. 11.5 are compared 
with the experimental data (area under the resonance peaks) in Fig. 11.6. 

The theoretical results for the form factors are all too high, and they are re- 
duced in amplitude by approximately the following numerical factors for each of 
the indicated complexes: 2/3 (13 MeV); 2/3 (17MeV); 1 (19 MeV); 2/3 (20.4MeV); 
1 / 4  (Coulomb part of giant dipole re~onance).~ 

In summary, the shell model provides a basis for understanding the dominant 
features of the set of negative-parity T = 1 particle-hole excitations in this nucleus 
up to excitation energies of the order of 30 MeV. Linearization of the equations 
of motion for the collective particle-hole excitations provides a semiquantitative 
description of both the location of the levels and the spatial distribution of the 
transition current densities through which they are excited by the electromagnetic 
interaction. 

3See chapter 47 for a better understanding of this reduction factor. 
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I I I I I 1 

I I I I 

GIANT RESONINCE REGION 

- 
D 

(L 

- 
.1 

1 8 PRESENT DATA 
- VANPRAET 

Fig. 11.6. Calculated transverse inelastic form factor for (e, e’) defined as F2(q) = 
(dc/dR)[47ra~(1/2 + tan2 0/2)]-’ for negative-parity T = 1 states in ‘680 and ex- 
perimental values obtained from areas under the resonance curves for the following 
complexes of states (see Figs. 11.3 and 11.5): 13MeV peak (3-2-1-); 17MeV 
peak (2-1-); 19MeV complex (3-2-4-1-2-); 20.4MeV peak (2-1-); and 20.8- 
26.0 MeV giant resonance region (3-2-1-1-). The latter includes the calculated 
quasielastic background. From [Si69, Do751. Energies in figure are calculated values; 
see text for amplitude reduction of calculated curves. 



Chapter 12 

Problems: Part 1 

The first five problems review the analysis in nonrelativistic quantum mechanics of the 
scattering of a spinless particle by a spherically symmetric potential (see [B152, Mo53, 
Sc68, Fe801). In these problems the notation x = 121 G T is employed. 

1.1. The Green's function for the scalar Helmholtz equation satisfies the differential equa- 
tion (V2 + k2)Gi+' (Z-  $ = - d 3 ) ( Z -  $ and is given by the limit 77 + 0 of 

Show by contour integration that' 

.. m 

1.2. The Schrodinger equation for the scattering wave function with energy E = 
li2k2/2pr,d and potential V = h2v(x)/2p,,d can be rewritten as an inhomogeneous in- 
tegral equation with outgoing wave boundary conditions 

Verify this result. Show that as x + co 

Here 2 = lzl (i!/lZl). Show by computing the ratio of scattered to incident flux that the 
cross section is given by da/dR = l f (R,Z) l2 .  

lHere h;') = j, + inl; and I> (I<) is the greater (lesser) of 121 and 14. 
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1.3. Substitute the following ansatz for the scattering wave function 

Show that the integral equations decouple and that 

+, (+) (x ;k )  + - (e 
X - m  1 - i[kx-(l+l)ff/Z] + ~ l ( k ) e i [ k x - ( l + l ) f f / 2 ]  

2kx 

Si(k) = 1 - 2ik ji(ky)v(y)+l'+'(y;k)y2dy 

- m  
1 

2ik 
f(P, i) = - C ( 2 1 +  i ) [ s l ( k )  - i ] ~ ( ~ ~ ~ e ~ , , ~ )  

1=0 

Show that the radial wave functions everywhere satisfy 

[ !-Sx - 1(1+1) + k2 - V ( X )  +[+)(z; k )  = 0 
5 2  I 

1.4. Use +F)(Z) to compute the net incoming flux through a large sphere of radius 
R. Prove IS11 = 1 if there is only elastic scattering. Hence introduce the phase shift 

with Irc'll = Irc'l in this proof.] 

scattering boundary condition 

SI = exp (2i61). [~int: One must ultimately use superposition \k a+r)(~) + P + ~ ,  (+) (z) 

These last two problems reduce the analysis to a radial Schrodinger equation and 

x - t w  ei61 ( 1  + 1)7r +!+) (x ;  k )  - - cos { k z  - - 
kx 2 

1.5. Suppose there is a nonvanishing incoming flux through the large sphere of radius R 
in Prob. 1.4. Show the reaction cross section is given by u,. = (7r/k2)  c 1 ( 2 1 +  1 ) ( 1 -  lS11~). 
1.6. Derive the first Born approximation for the scattering amplitude used in Eq. (1 .12) .  

1.7. Show for a hard sphere potential that tan61 = j l ( k u ) / n l ( k u ) .  
1.8. (a) Suppose an attractive square well potential of range d and depth VO has one 
bound state at zero energy. Show &d2 = )i27r2/8pred. Use the effective range expansion 
k cot SO = - l / u  + rok / 2  to prove that u = -00, TO = d. 
(b) Suppose the potential in (a) is an infinite barrier (hard core) to JZJ = b and then an 
attractive square well to 121 = b+b,. Show Vobi  = h27r2/8pred, u = -00, and TO = 2b+b,. 
1.9. Derive the 1-7r exchange potential in Eq. (A.9d). 

2.1. Consider the scattering of a particle of charge ze from a charge distribution p(IZ1) 
through the Coulomb interaction H' = ze2 p( ld )d3y /4r1Z  - d. Use the Born approx- 
imation. Show the cross section takes the form d u / d R  = where up is the 
cross section for scattering from a point charge and the form factor F ( g 2 )  is the Fourier 
transform of the charge distribution with respect to the momentum transfer. 

2.2. Calculate the form factor in Prob. 2.1 for the following charge distributions: (a) 
uniform to Rc; (b) gaussian; and (c) exponential. 

2 
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2.3. Calculate the Coulomb interaction energy of Z charges uniformly distributed over a 
sphere of radius Rc and hence derive Eq. (2.12). 

2.4. Consider the small oscillations of an incompressible liquid drop [Ra79, Ra451. Write 
the general surface as T = r0[1+ EE1 Em qmKm(8 ,  4)] with qtm = (-l)mql-m and work 
to second order in qm. 
(a) Show that the volume and surface area of the drop are given by V = (47r~:/3)[1 + 
(3/47r) Elm Iqlm12] E 47ra3/3 and S - 47ra2 = (a2/2) Ei,(l - 1)(1+ 2)lqlmI2. 
(b) Assume irrotational flow so that v' = d$. Hence show V2$ = 0. Show that the 
kinetic energy is given by T = (pa5/2) Elm 1q1m12/1  where p = mn is the mass density and 
q = dq/dt. (Hint What is the boundary condition at the surface of the drop?) 
(c) Hence derive the lagrangian 

Here o is the surface tension. Derive the equations of motion for the normal modes and 
identify the normal mode frequencies. Plot the spectrum. 

2.5 Consider the quantization of the system in Prob. 2.4. Introduce the canonical mo- 
menta, hamiltonian, and canonical commutation relations. Use qlm (h/2-) 1/2  

[al, + (-l)mai-m] and pim = i ( F ~ m / 2 ) ' / ~ [ a ; ,  - ( - l ) , a ~ - ~ ]  where the lagrangian is 
written 2L = Elm BllqlmI2 - Elm ClIql,12. Hence reduce the problem to the form 

Discuss this quantum system in detail. 

2.6. Assume the drop in Probs. 2.4 and 2.5 is uniformly charged. Add the additional 
Coulomb interaction energy. 
(a) Show the result is to replace Cl --f C1[1 - 10y/(21 + 1)(1 + 2)] where y is the ratio of 
Coulomb to surface energy y = [(3/5)Z2e2/47ra] / [47rua2]. 
(b) Show that fission will occur (i.e., the restoring force will vanish) when y 2 2. What is 
the corresponding inequality for Z2/A? 
3.1. Prove that a two-body tensor force with Serber exchange V = V~S12$(1 + PM) 
makes no contribution to the energy of a spin-; isospin-; Fermi gas (i.e., nuclear matter) 
in lowest order. (Such a force can, to a first approximation, be taken to describe the 
difference between the triplet and singlet interactions.) 

3.2. (a) Assume the nuclear interactions are equivalent to a slowly varying potential 
-U(T) .  Within any small volume element, assume that the particles form a non-interacting 
Fermi gas with levels filled up to an energy -B. In equilibrium, B must be the same 
throughout the nucleus. From this description, derive the Thomas-Fermi expression for 
the nuclear density n(r)  = ( 2 / 3 ~ ~ ) ( 2 m / h ~ ) ~ / ~ [ U ( ~ )  - BI3I2. 
(b) Derive the results of part (a) by balancing the hydrostatic force -dP and the force 
from the potential n d U  [Fe71]. 

4.1. The expectation value of a two-body operator (1/2) Cij O(&,Zj )  for a system of 
identical particles involves knowledge of the two-body density P(~)(Z, 9) computed from the 
full wave function. Use the analysis in Eqs. (3.9)-(3.15) to show that for a noninteracting 
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Fermi gas with degeneracy g ,  one has 

where p ( l )  = 1/V. Hence show that like fermions are anticorrelated in space by the Pauli 
principle. Compare this correlation length with the interparticle spacing. 

4.2. Extend Prob. 4.1. How would one calculate p(’) for an interacting system in the 
independent-pair approximation? Sketch this quantity for a hard-core gas with parameters 
appropriate to  nuclear matter; use the result in Fig. 4.6. 

4.3. Attempt a partial wave decomposition of the B-G equation when P # 0. Show the 
partial waves are coupled. Discuss. 

4.4. To help understand Eq. (4.29), verify directly from Eq. (4.8) that $p,n(?) has no 
Fourier components in ?; except for i itself (see Fig. 4.2). 

4.5. Verify the claim made in writing Eq. (4.22). 

4.6. Model the attractive part of the two-nucleon potential by a square-well Serber force 
extending from T = b to T = b + bw = d, and use the wave functions of Eq. (3.1). 
(a) Show the contribution to  the single-particle potential in nuclear matter is 

(b) Use the numerical values k~ = 1.42fmP1,b = 0.4fm, and the singlet effective range 
TO = 2.7fm to calculate and discuss this contribution for the potential of Prob. 1.8(b). 
What is the resulting m*/m at k = O? At k = kF? (see [Fe71, wa951). 

5.1. Consider the Hartree-Fock Eqs. (5.15). 
(a) Use the hermiticity of T and V to  prove the eigenvalues 
(b) Prove that the solutions corresponding to  different eigenvalues are orthogonal. 

5.2. Consider a noninteracting Fermi gas in a big box with periodic boundary conditions. 
Now add a two-body interaction V(I& - 2jI). 
(a) Show the original single-particle wave functions solve the Hartree-Fock equations. 
(b) Consider the new dispersion relation E(,&). Show that with short-range potentials the 
direct and exchange contributions are comparable, while with long-range potentials the 
direct term dominates. (The neglect of the exchange contribution results in the Hartree 
approximation.) 

6.1. It is a result from chapter 6 that with a short-range attractive interaction - g d 3 ) ( r 3  
the paired state with J = 0 of two identical nucleons in the j-shell is by far the most tightly 
bound. The normal coupling scheme for the j N  configuration with N odd consists of a 
core with ( N  - 1)/2 pairs coupled to zero, thus IjNjm) = da: , ( t i ) (N-’ ) /210)  where d is 
the appropriate normalization constant. If ?K is a one-body ITO, prove [Ma55, Fe711 

are real. 
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Hence conclude that in this normal coupling scheme odd moments are just the single- 
particle values and even moments change sign in going from particles to holes. 

6.2. Verify Eqs. (6.27) and (6.28). 

7.1. (a) Use the angular momentum commutation relations to prove that exp{-ipj,} 
3, exp { i p j ,  1 = j, cos p + j, sin p. 
(b) Prove ~.Zz,[exp(-ip~,}]lj,) = p[exp{-ipj,}]ljm) where Z,, = e ' , cos~+Z=sinP.  
(c) Hence conclude that the operator R-p = exp {-iPJ,} rotates the physical state vector 
by an angle +p about the y-axis. Thus verify the result in Eq. (7.32). 
7.2. Verify the integral vector identity in Eq. (7.51). 

7.3. Equation (7.44) is the general expression to O(a)  for photoemission. 
(a) What is the analogous expression for the photoabsorption cross section integrated over 
the absorption line Jabs line a f i ( w )  dw? 
(b) The Wigner-Weisskopf theory of the line width in QED results in the replacement 
b(Ef - Ei - h u )  + (-y/27r)[(Ef - Ei - fiw)2 +-y2/4]-' in the transition rate [Wi30]. What 
is the effect on the answer in part (a)? 

7.4. Show the effect of including nuclear recoil in the density of final states is to 
multiply the electron scattering cross section in Eq. (7.77) by a factor T where T - ~  = 
1 + (2k1/M7-)sin2 0/2 to 0 ( 1 / M ~ ) .  What is the analogous factor in Eq. (7.44)? 

7.5. Consider photodisintegration of the deuteron :H. Work in the C-M system where 
Fp + Fn = 0. Neglect spin. 
(a) Since :H is just bound, its wave function extends well outside the two-nucleon potential. 
Show that the wave function in this region is 4out = N exp {-ap}/p where &b = h2a2/2pred. 
Here p' = Fp - Fn is the relative coordinate. Sketch a comparison with the expected 
behavior of the actual wave function inside the potential. Show N z ( a / 2 ~ ) l / ~ ,  and 
assume di M 4out. 
(b) Make the Born approximation for the final state, assuming a plane wave in the relative 
coordinate q5f M (l/R)'/' exp {&f . p3. 
(c) Start from Eq. (7.1), make the long wavelength dipole approximation eik" z 1 in the 
matrix element of the current, and derive the Bethe-Peierls' cross section for photodisin- 
tegration of the deuteron (Hint: If H = P2/2pred + v(z), then p/pred = (i/h)[H,%]) 

.. 

- _  da  - -- 2a y3/2 COS26kf 
dR a2 (1 + Y ) ~  

Here y = k;/a2 and polarized photons are assumed with cosOkf = ZA . if/lzfl. Plot your 
results. 
(d) Sketch the final integrand of the required matrix element as a function of p ,  and use 
this as a basis for a discussion of the validity of the approximations made. 

7.6. Derive the electron scattering cross section in Eq. (7.77) (see [de66, WaOl] and Part 
4 of this book). 

8.1. Rainwater [Ra50] pointed out that one can lower the energy of the system of a 
particle moving in a constant potential inside a liquid drop by allowing the drop to acquire 
a permanent deformation. The particle effectively exerts a pressure on the walls of the 
potential. 
(a) Assume the deformation F' = F(1 + Ex,, qxpYxp) of Prob. 2.4. Assume the potential 
follows the drop so that V'(F') = V(F).  Take AV = V'(F') - V(F'). Hence show 
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the shift in the single-particle energy is A E ~ ,  = (ljml -r(aV/dr)Cx,qx,Yx,,lljm) = 

-2Tn1 Ex ,  qxfi(ljmlYx~l~jm).’ 
(b) Add the surface energy of Prob. 2.4 so that the total energy of the system is 

Minimize this expression with respect to qx,. Show a permanent qxo lowers the total 
energy of the system. 
(c) Now add particles to fill the m states in the Ijm) shell. Discuss what happens to &?o 
as the states are filled. 

8.2. Calculate the quadrupole moment of the uniformly charged core as a function of the 
permanent deformation q20 in Prob. 8.1. Discuss how it varies with the filling of the Ijm) 
shell. 

8.3. Consider the single-particle shell model matrix elements of the multipole operators in 
Eqs. (7.25) and (7.79). Use the nonrelativistic quantum eechanical densities of Eq. (8.12) 
and also Eq. (7.16). Let M J M  = j J ( q z ) Y J M ( & )  and MKl = jL(qz)$E1. Prove the 
following relations [de66, Ed74, Do791 

1 1 .  1 
(n’Lj’p4Jl~nl-J)  = (-1)j+J+4-[(21’ + 1)(21+ 1)(2j‘ + 1)(2j + 1)]1/2 

2 2 dG 
I’ J 1 

x m {  j ; lf } ( 
(n’l’;j’llIl&L . alln1-J) 1 .  = (-1) 

) (n’l’lj-J(q?-)lnl) 

+ 1)(21+ l)(2j’ + 1)(2j + 1 ) y  2 

x d(2L + 1)(2J + 1) {; ;  If} 

I’ L 1 + 1  

1’ L 1-1 
0 0  0 
1-1 1 1 

0 0 0  

‘Hint: Establish the virial relation ~ ( 8 V / a r )  = [.‘. d ,  Hpart] + 2Tpart for a particle moving in the 
potential V ( T ) .  

8.4. Show

Here
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8.5. Insert the explicit form of the Dirac spinors into the general form of the vertex, 
expand through O(l/m2), assume qo and F2 are O(l/m), and derive Eq. (8.21). Use the 
standard representation of the Dirac matrices where 7 = i Z p ,  7 4  = p, o , , ~  = [Y,,, yu] /2i 
a n d o = (  1 0  - l ) , Z = (  a 0 3  O ) i n 2 x 2 f o r m .  

9.1. Prove that a filled 1-shell produces a spherically symmetric probability distribution. 
Repeat for a filled j-shell. 

9.2. (a) Consider the TDA Eqs. (9.12). Use the assumed properties of the two-nucleon 
potential to prove that the eigenvalues are real and that the eigenfunctions satisfy the 
orthogonality relation of Eq. (9.15). 
(b) Repeat for the RPA Eqs. (9.24) and the orthogonality relation of Eq. (9.26). 
9.3. (a) Show that for a spin- and isospin-dependent two-nucleon potential the reduced 
TDA particle-hole interaction is [Fe71] 

} { 1/2 1/2 T' } 
1/2 1/2 T V$im = - c ( 2 . 7 '  + 1)(2T' + 1) { :T 

j l  J'T' 

1 1  
(b) Show the RPA adds the interaction ui&m = ( - l ) ~ - ~ - T ( - l ) j " - ~ l - J  vu,b;ml' JT 

9.4. As a model for the large amplitude collective motion of deformed nuclei consider the 
quantum mechanics of the symmetric top. 
(a) Introduce the Euler angles, construct the lagrangian, find the canonical momenta, and 
obtain the hamiltonian. Show H = T = (tL2/211)J2 + h2(1/213 - 1/211)J," where IZ = 11, 
J-, is the component of the angular momentum along the figure axis, and the square of 
the total angular momentum is J = J$ + (Ja - J7 cos p)2/sin2 p + J,". 
(b) Introduce canonical quantization with the generalized coordinates {a, 6 = cos p, y} 
and operators hermitian with respect to the volume element d~ = dad-&. Hence show 
J7 = (l/i)a/ay and 

-2 

(c) Consider the Schrodinger equation H$(aPy)  = E$(a@r). Differentiate, use the com- 
mutation relations, and use the eigenstates of angular momentum to show that the rotation 
matrices 'oj,,(a&) = (jml exp {ijza} exp {iJyp} exp {iJZ-y}ljk) are the eigenfunctions for 
the symmetric top. What are the eigenvalues? What is the normalization constant? 
(d) Show that an object that has full azimuthal symmetry must have k = 0. (Hint: 
use superposition.) Hence derive the rotational spectrum for deformed even-even nuclei 
E = (h2/21)j(j + 1). 

10.1. Derive the reduced form of the additional RPA interaction uF<if;l. in Eq. (10.22). 

10.2. Show u!j;lm = -3u!& for a delta-function potential [Eq. (10.33)]. 

10.3. In the Goldhaber-Teller model of the GDR the protons are assumed to move as a 
unit against the neutrons. Consider the model hamiltonian H = f12/2Pr,d + ~ ~ , d w ' r ' ~ / 2  
where (r',@) are the relative coordinate and momentum and the reduced mass is 1/Pred = 
1/Zm + 1/Nm. 
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(a) Quantize this system. Discuss the excitation spectrum and transition matrix elements 
of the operator F. 
(b) Show the charge density operator in the C-M system in this model is ~ N ( Z )  = po(1Z- 
NF/AI) where po(z) is the ground-state proton density. Expand in Fand show the Coulomb 
transition matrix element is related to the ground-state form factor by 

(c) Show the current density operator is Yp~(2) = po(z)(N/A)dF/dct to first order in F. 
Prove it is conserved to  this order. 
(d) Calculate the 1.h.s. and show that for all q [de66] 

10.4. Consider the quantized oscillating liquid drop model of Probs. 2.4-2.6. 
(a) The charge density operator is given to order 41, by $ N ( Z )  = (3Z/4~a~)O(a[ l  + 
Elm 41nYim(0, 4)] - T ) .  Show the Coulomb form factors for single surfon excitation are 
given by 

Plot as a function of qa and discuss. 
(b) Show the conserve! current density operator is given to order elrn by ;~J(Z) = ( 3 2 / 4 ~ a )  

(c) Show that for all q 
Cl , ( l / l ) (dq^ ln /dc t )[V(r /a) l~ , (e ,  4)l@(. - T I .  

10.5. Let D be a sum of hermitian single-particle operators. 
(a) Prove the identity 

(*ol[fi, [fi,fi]ll*o) = 2 C ( ~ n  - ~o)l(*nlDl*o)1~ 
n 

(b) If the r.h.s. is evaluated in the RPA, show that the result is the same as evaluating the 
1.h.s. in the Hartree-Fock shell model ground state. Whenever the double commutator is 
a c-number, the RPA thus preserves this energy-weighted sum rule [Th61]. 

11.1. The nucleus '::In66 has a ground state with j" = (9 /2)+,p = 5.51 n.m., and 
Q = 83 x cm2. The first excited state at 0.335 MeV has j" = (1/2)- and a half- 
life of 71/2 = 4.5 hr. Can you quantitatively account for these properties using the shell 
model?3 

3Do not forget internal conversion. This is an additional contribution to the electromagnetic 
transition rate due to the direct ejection of atomic electrons; its importance increases with the 
multipolarity and 2, and decreases with energy. One writes w:pt = w:i + 'On = (1 + [ )w :~  
and the internal conversion coefficients [ are tabulated. 
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Chapter 13 

Why field theory 

A principal goal of nuclear physics is to develop a consistent] economic understand- 
ing of the main features of the structure of ordinary nuclei that can be extrapolated 
to new regions of baryon density, temperature] neutron/proton ratio, strangeness 
content, and momentum transfer. 

Traditional, non-relativistic many-body theory provides one approach. Here 
static potentials fit to two-body scattering and bound-state data are inserted in the 
non-relativistic many-particle Schrodinger equation] and that equation is solved 
with certain approximations, or exactly for few-nucleon systems. Although this 
approach has had a great deal of success, it does have some obvious shortcomings. 
At large distance and long wavelength, the nuclear interaction between nucleons 
is mediated by the exchange of mesons, and eventually the approximation of re- 
placing this interaction with static potentials, rather than dealing dynamically with 
these degrees of freedom, becomes inadequate. Furthermore, while correctly incor- 
porating quantum mechanics] the traditional approach overlooks the principles of 
special relativity. One of these principles, for example, that no signal can be propa- 
gated faster than the speed of light (microscopic causality), is readily violated when 
traditional calculations are extrapolated into new regimes. 

The only fully consistent theory of the quantum mechanical] relativistic, in- 
teracting many-body system is relativistic quantum field theory based on a local 
lagrangian density. Since hadrons, baryons and mesons, are the observed degrees of 
freedom at large distance and long wavelength, we will take hadrons as our general- 
ized coordinates of choice in the lagrangian theory. We will denote these coordinates 
generically as 

q0(z) ; (T = 1, . . . n generalized coordinates (13.1) 

It is convenient to refer to relativistic quantum field theories of the nuclear many- 
body system based on hadronic degrees of freedom as quantum hadrodynamics or 

In classical continuum mechanics with a lagrangian density C(q, aq, /ax: , ) ,  
(QHD). 
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Hamilton’s principle provides the equations of motion (see [Fe80]) 

S Cd‘x = 0 ; Hamilton’s principle 

fixed endpoints (13.2) 

The result of carrying out the variation is the set of Euler-Lagrange equations for 
this system, one for each generalized coordinate 

J 

fJ= 1, ... , n  (13.3) 

To quantize the system, one can either work with the generating functional as 
a path integral over fields with sources [Wa95], or use canonical quantization 

The theory can be characterized by a set of Feynman rules for Feynman diagrams 
[Se86, Wa951, whose derivation can be found in any good book on field theory. 

Noether’s theorem tells us that to every continuous symmetry of C, one can 
associate a conserved current as follows (see [Bj65]) 

; Noether’s theorem (13.5) 1 Sq1 + . . . 
Part 2 of this book develops QHD, starting from a very simple model and grad- 

ually increasing the degree of sophistication. Many applications are discussed, in- 
sights emphasized, and issues raised. 

Strongly motivated by short-distance, high-momentum-transfer electron scatter- 
ing experiments, we now have a theory of the strong interactions based on quarks 
and gluons as the underlying degrees of freedom (see e.g. [WaOl]). It is quantum 
chromodynamics (QCD), a non-abelian Yang-Mills theory based on internal color 
symmetry. This theory has two remarkable properties. It is asymptotically free, 
which implies that at short distance, or high momentum transfer, the renormalized 
coupling constant goes to zero; thus one can do perturbation theory in this regime. 
Furthermore, it is confining. Colored quarks and gluons do not exist as asymptoti- 
cally free states in the laboratory. They are confined to the interior of the hadrons, 
which are the strongly interacting particles that we actually observe. The hadrons 
are composites of quarks; baryons (nucleons) have the quantum numbers of quark 
triplets (qqq) and mesons of quark-anti-quark pairs (qq). Part 3 of this book focuses 
in detail on QCD. An obvious issue, also confronted in Part 2, is the relation of 
QHD to QCD. 



Chapter 14 

A simple model with (4, Vp) and 
relat ivist ic mean field theory 

Part 2 of this book is based on [Se86, Se97, SeOl], which contain a detailed list 
of background references; only those individual references directly relevant to the 
discussion in the text will be cited as we proceed.’ Relativistic quantum mechanics 
and relativistic quantum field theory form the basis for the discussion in this part 
of the book. The best introduction to this subject is still to be found in the texts 
by Bjorken and Drell [Bj64, Bj65].2 There will be one change from [Se86]; here the 
following metric will be employed [Wag21 

XP = (x,izo) = (x,ict) 

a . b  = a . b - a o b o  (14.1) 

In this metric, the gamma matrices are hermitian, and satisfy 

YPYY + YVYP = 26,” (14.2) 

The conversion algorithm to go from the metric of Bjorken and Drell to this metric 
is given in Table XI1 of [Se86] and appendix D.2 of this book. In the text we 
generally employ units where h = c = 1; the units and conventions used in this 
book are summarized in appendix D.3. 

We start the discussion of QHD with a very simple model [Wa74]. 

14.1 A simple model 

We start with the following fields 

A baryon field for the neutrons and protons 

$ = (  :) (14.3) 

lThe background references [Sc5la, Jo55, Du56, Mi721 deserve special mention. 

2See also [Gr93]. 
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0 A neutral scalar field q5 coupled to the scalar density 611, 
0 A neutral vector field Vx coupled to the conserved baryon current i$yxI). 

The choice is motivated by several considerations. First, we want to describe the 
bulk properties of nuclear matter; these fields and couplings provide the smoothest 
average nuclear  interaction^,^ and as such, should describe the dominant features 
of the bulk properties. Second, large neutral scalar and vector contributions are ob- 
served empirically in a Lorentz-invariant analysis of the free nucleon-nucleon scat- 
tering amplitude - they dominate the amplitude. Third, as shown in appendix A . l ,  
in the static limit of infinitely heavy baryon sources (which will not be assumed in 
the subsequent discussion), these exchanges give rise to an effective nucleon-nucleon 
interaction of the form 

(14.4) 

With appropriate choices of coupling constants and masses this potential describes 
the main qualitative features of the nucleon-nucleon interaction: a short-range re- 
pulsion between baryons coming from v, exchange, and a long-range attraction 
coming from 4 e ~ c h a n g e . ~  

14.2 Lagrangian 

The lagrangian density for this system of fields and couplings is given by 

Here, as in QED, the field tensor is defined by 

av, av, 
P, - ax, ax, v =---  

The field equations are derived from Hamilton’s principle (see [Fe80]) 

Here q is any field variable. Lagrange’s equations follow as 

= o  a c  
ax, w q l a x , )  a4 

-- a a c  - 

3Spin- and isospin-dependent interactions tend to average out in nuclear matter. 

4This is sometimes also referred to as the (0, w )  model. 

(14.5) 

(14.6) 

(14.7) 

(14.8) 
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Taken in turn for the field variables {V,, 4, q}, these give rise to the field equations 

(14.9) 

The field equation for $ 5 7/,t-y4 follows from the adjoint of the last relation. The 
first of these field equations is just the relativistic form of Maxwell’s equations with 
massive quanta and a conserved baryon current as source 

B, = 4Y,+ (1 4.10) 

The second field equation is the Klein-Gordon equation for the scalar field with the 
baryon scalar density $$J as source. The third field equation is the Dirac equation 
for the baryon field with the meson fields Vx and 4 included in a “minimal” fashion. 

The stress tensor in continuum mechanics is given by5 

(14.11) 

For a uniform system in equilibrium at rest the expectation value of the stress tensor 
must take the form (see e. g. [We72, Fe801) 

(+/A,) = P 6,, + ( P  + E)U,U” ( 14.12) 

Here p is the pressure, E is the energy density, and up = (0, i) is the four-velocity 
of the fluid. 

14.3 Relativistic mean field theory (RMFT) 

Consider a large box of volume V filled uniformly with B baryons (Fig. 14.1). 

B. V m 
Fig. 14.1. A large box of volume V filled uniformly with B baryons. 

Since baryon number is conserved, so is the baryon density p~ = B/V .  Now 
decrease the size of the box. As the baryon density gets large, so do the source 

5Note the hamiltonian density is 7-1 = -T44 = rIq(aq/i3t) - L: with nq = 8L:/a(aq/&) 
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terms on the right-hand side of the meson field equations in Eqs. (14.9). When the 
source gets strong, and there are many quanta present, one can attempt to replace 
the meson fields by classical fields and the sources by their expectation values - as 
in the theory of electromagnetism. In the limit of appropriately large p~ we replace 

(14.13) 

The vector field can develop only a fourth component since there is no spatial 
direction in the problem for a uniform system at rest. Furthermore, for a uniform 
system at rest the classical fields $0 and VO must be constants independent of space 
and time, which greatly simplifies the remaining problem. For example, the vector 
meson field equations in Eqs. (14.9) now reduce to the form 

( 14.14) 

Here the expectation value of the baryon current has been written as B, = (0,ip~). 
The classical vector meson field is thus given in terms of conserved quantities. We 
refer to this simplification of the description of the full interacting quantum system 
as relativistic mean field theory (RMFT), or just MFT for short. 

The substitution of the constant fields &,VO into the lagrangian density in 
Eq. (14.5) reduces it to the form 

Here the effective mass of the nucleon is defined by 

M* M - gs$o ( 14.16) 

If one looks for solutions of the form $J = U(p)exp(ip . x - iEt), then the Dirac 
equation for the baryons in the constant fields $o,Vo corresponding to the last of 
Eqs. (14.9) takes the form 

Repeated application of this relation and use of the properties of the Dirac matrices 
a, /3 yields the eigenvalue equation 

= gv& f (p2 + M*2)1/2 ( 14.18) 

We will refer to these eigenvalues as Ek.  Note that familiar manipulations of the 
Dirac Eq. (14.17) lead to the relation 

(1 4.19) 
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We normalize our Dirac spinors to UtU = 1 (corresponding to unit baryon density 
in the laboratory frame). 

In the Schrodinger picture the baryon field operator can be expanded in terms 
of the complete set of solutions to the Dirac equation according to 

G(x) = - 1 [U(kX)Akxe"'" + V(-kX)BLxe-ik'X ] (14.20) 
fl kX 

The solution V corresponds to E-. The theory is now quantized by imposing the 
equal time anticommutation relations 

{ AkX, At, , ,}  = Sk,ktbX,X' 

& X I }  = bk,k'SX,X' (14.21) 

Everything else anticommutes. 
Insertion of this field expansion in the hamiltonian density derived from 

Eq. (14.15), use of the orthonormality of the wave functions, and use of the canonical 
anticommutation relations results in an expression of the form6 

I? = 3iMFT + sx (14.22) 

Here the mean field theory hamiltonian is given by 

" kX 

( 14.23) 
" kX 

The additional term S7-l is defined by 

2 1/2 (14.24) 6'FI = -- x [ ( k 2  + M*2)1/2 - (k2 + M ) ] 

This is the zero-point energy; it represents the difference of energy of a filled negative 
energy Fermi sea of baryons with mass M* and that of a filled negative energy Fermi 
sea of baryons of mass M (see Fig. 14.2). Its presence is familiar from Dirac hole 
theory. 

1 

kX 

The baryon density appearing in Eq. (14.23) is the normal-ordered expression 

ijB 2 Gt(x)G(x) - (olGt(X)4(X)IO) 

= : #(x)?i)(x) : (14.25) 

6These manipulations are formally identical to those carried out in the free field case (Prob. 14.2). 
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Fig. 14.2. Filled negative energy sea of baryons in mean field theory. 

The vacuum expectation value subtracted off in the second line simply counts 
the number of filled states in the negative energy Dirac sea; it is independent of 
the interaction. The baryon density now counts the number of baryons minus the 
number of antibaryons relative to the vacuum. 

Since both '??MFT and @B are now diagonal operators, the mean field theory has 
been solved exactly. The qualitative argument given at the beginning of this section 
indicates that mean field theory can be expected to be correct in the limit p~ ---t 00. 

14.4 Nuclear matter 

It is evident from Eq. (14.23) that the ground state of nuclear matter in the MFT 
is obtained by filling levels up to kF with { p  T , p  1, n T, n J}; the degeneracy factor 
for nuclear matter is thus y = 4 (Fig. 14.3). 

Fig. 14.3. Ground state of nuclear matter in the RMFT. The quantity y is the 
spin-isospin degeneracy factor; here, for nuclear matter, y = 4. 

The energy density E 3 EIV and baryon density obtained from the expectation 
value of Eqs. (14.23) in this state, and the use of Eqs. (14.14) and (14.16), provide 
a parametric equation of state for nuclear matter in RMFT7 

(14.26) 

7The expression for the pressure is derived in appendix B.l. 
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The value of the classical condensed scalar field $0 = ( M  - M * ) / g s  can be 
determined with the aid of thermodynamics. At a fixed volume and baryon number 
(V, B ) ,  the system will minimize its energy 

Differentiation of the first of Eqs. (14.26) then gives 

(14.27) 

(14.28) 

Here the scalar density ps is defined by the second equation. These relations provide 
a self-consistency equation for the scalar field, which appears under the integral in 
the form M* = M - gs40. They are recognized as the scalar meson field Eq. (14.9) 
in RMFT where the source term is obtained by summing the scalar density in 
Eq. (14.19) over the occupied levels. Note that the scalar density ps is damped at 
large k~ relative to the baryon density p~ due to Lorentz contraction [Eq. (14.19)]. 

There are only two parameters in this RMFT of nuclear matter. We choose to 
fit them to the two experimentally accessible properties of uniform nuclear matter, 
the binding energy and density (see Fig. 14.4); this yields 

C," = 9," (%) M2 = 195.9 (14.29) 

The mechanism for saturation in this relativistic mean field theory is the repul- 
sion between like baryons and the damping of the scalar meson attraction with 
increasing baryon density. As shown in chapter 3, a Hartree-Fock variational calcu- 
lation with the static potential of Eq. (14.4) demonstrates that the corresponding 
non-relativistic many-body sytem is unstable against collapse. 

Thus, even though the binding energy is small compared to the nucleon mass, 
saturation here is entirely a relativistic phenomenon. The solution to the self- 
consistency equation for M* as a function of density is shown in Fig. 14.5. Note 
that at nuclear matter saturation density M * / M  = 0.56, and we clearly have a new 
energy scale in this problem as the scalar field energy is of the same order as the 
nucleon mass itself (see r.h.s. of Fig. 14.5). 

Note that while the scalar meson density qlc, is the simplest thing one can write 
down relativistically, its nonrelativistic limit is complicated, and corresponds to an 
infinite series of velocity-dependent terms, since [cf. Eq. (14.19)] 

1 p2 3 p4 - I - - -  - + -- + .  . . M* 
( p 2  + M*2)1/2 2 M*2 8M*4 

(14.30) 
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Fig. 14.4. Saturation curve for nuclear matter. These results are calculated in the 
RMFT with baryons and neutral scalar and vector mesons. The coupling constants 
are chosen to fit the value and position of the minimum. The prediction for neutron 
matter (y = 2) is also shown [Se86]. 

MEAN-FIELD THEORY 

- 200 

- 300 

- 700 

3 4  

k, (fm-') 

Fig. 14.5. Effective mass as a function of density for nuclear (y = 4) and neutron 
(y = 2) matter based on Fig. 14.4 [Se86]. 

All other properties of nuclear and neutron matter are now predicted, for 
example: 
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14.5 Neutron matter equation of state 

Neutron matter in the MFT is obtained from the analysis of nuclear matter by 
simply replacing y = 4 by y = 2. Neutron matter is unbound (Fig. 14.4). The 
equation of state p vs. E for neutron matter is shown in Fig. 14.6. 

NEUTRON MATTER 
[ EQUATION OF STATE 

Fig. 14.6. Predicted equation of state for neutron matter at all densities based on 
Fig. 14.4. A Maxwell construction is used to determine the equilibrium curve in the 
region of the phase transition. The mass density regime relevant to neutron stars 
is also indicated [Se86].8 

Note the approach from below to the causal limit E = p (where Gound = Clight) at 
high density. There is a phase separation in this model, similar to the gas-liquid 
transition in the van der Waal’s equation of state.g 

14.6 Neutron star mass vs. central density 

Insertion of the neutron matter equation of state in the Tolman Oppenheimer 
Volkoff equations for a static spherically symmetric metric in general relativity 
[We721 allows one to compute the mass of a neutron star as a function of the cen- 
tral density (Fig. 14.7). 

8 0 n  the abscissa, once the units are restored, one has log€ = logpc2 = logp+logc2 = logp+20.95; 
it is logp that is indicated. 

gThe properties of the two phases of neutron matter are determined by a Maxwell construction. 
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CENTRAL DENSITY p,, (g/cm3 I 

Fig. 14.7. Calculated neutron star mass in units of the solar mass Ma as a function 
of the central density based on Fig. 14.6 (solid curve) [Se86]. 

One finds for the maximum mass of a neutron star (M/Ma),,, = 2.57 with this 
equation of state; it is about as “stiff” as one can get and still be consistent with 
causality and the saturation properties of nuclear matter. 



Chapter 15 

Extensions of relativistic mean field 
theory 

We next consider two extensions of the simple model with (4,  V,) meson fields ap- 
plied to nuclear matter in relativistic mean field theory (RMFT) in the previous 
chapter. The first extension is to a relativistic Hartree theory of finite nuclei. Here 
the condensed fields and sources are allowed to have a spatial variation and the 
sources are evaluated by summing over the occupied orbitals. The coupled, nonlin- 
ear, relativistic Hartree equations are then solved by iteration [Ho81, Se861. The 
second extension is to a description of the scattering of high energy nucleons from 
finite nuclei; here the empirical covariant nucleon-nucleon scattering amplitude and 
the Hartree densities are used to construct a Dirac optical potential from which the 
scattering amplitude is then generated [C183, C183a, Mc83, Sh83, Se86, Wa871. 

15.1 Relativistic Hartree theory of finite nuclei 

In static finite systems, the condensed scalar and vector fields of the previous chapter 
and their source terms will acquire spatial variations. Closed shells are assumed so 
that these quantities are spherically symmetric. The field Eqs. (14.9) then take the 
form 

(15.1) 

Fig. 15.1. Filled orbitals in relativistic Hartree theory of finite nuclei. 
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We assume that the baryons move in well-defined single-particle orbitals and 
evaluate the source terms by summing over those filled orbitals (Fig. 15.1). 

F 

a 
F 

(15.2) 
a 

The Dirac equation is solved in the fields generated by these sources through 
Eqs. (15.1), and this system of nonlinear equations is then solved self-consistently 
[Ho81]. 

Equations (15.1) and (15.2) fully constitute the relativistic Hartree theory in this 
spherically symmetric case. The reduction to nonlinear, coupled, one-dimensional 
radial differential equations is carried out in detail in [Se86, WaOl]. While invaluable 
for numerical calculations, it serves no purpose to just reproduce that reduction 
here. Instead, we have included Probs. 15.1-15.5, which take the reader through 
that derivation and summarize the results. The generation of relativistic Hartree 
wave functions is an extremely useful tool for every nuclear physicist; fortunately, 
a computer program for solving the relativistic Hartree equations is now available 
for general distribution in [Ho91]. 

To make the model more realistic for application to nuclei with N # 2, and 
in anticipation of the broader formulation of QHD in chapter 24, additional con- 
densed fields are included here for the neutral & ( T )  meson coupled to the isovector 
baryon density gp++(73/2)+, and for the electromagnetic field (Coulomb potential) 
Ao(r). There are four parameters in this analysis {gs,gv,gp,ms} that must be 
determined from experiment. The authors in [Hog11 choose to fit the following 
quantities {(E/B)n.m.,(kF)n.rn., (a4)n.m.r (m )40ca}- the binding energy, den- 
sity, and symmetry energy of nuclear matter, and the root mean square radius of 
4;Ca. The masses {m, = m,, mp} are fixed at their observed values. The ground 
state properties of all nuclei are then determined. 

Resulting nuclear charge densities are shown in Figs. 15.2, 15.3, and 15.4 and 
compared with the results obtained from elastic electron scattering. The central 
density in 'giPb determines ( k ~ ) ~ . ~ , ;  the mean square radius of 4;Ca is fit; the 
charge density of l;O is then obtained for free. The quality of the description of 
the charge densities is comparable to the most sophisticated nonrelativistic density- 
dependent Hartree-Fock calculations that exist (also illustrated in these figures). 

Figure 15.5 shows the calculated Hartree single-particle spectrum for 'giPb. 
One obtains all the shell closures of the nuclear shell model (chapter 5). Just as in 
atomic physics, a Dirac particle moving in spatially varying fields qk~(r) and Vo(r) 
will exhibit a spin-orbit splitting. Whereas the large effects of these condensed fields 
cancel in the total binding energy of the nucleus, they add with the correct sign in 
the spin-orbit interaction [Se86], bringing it to a level consistent with the empirical 
nuclear shell model. 
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Fig. 15.2. Charge density for 2::Pb. The solid curve and shaded area represent the 
fit to experimental data. Relativistic results are indicated by the long dashed lines 
[Ho81, Se861; from [Se86]. 
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Fig. 15.3. Same as Fig. 15.2 for 4;Ca. 

One can thus, with this relativistic Hartree theory, derive the nuclear shell model by  
fitting only a few bulk properties of nuclear matter.l 

lReferences [ReSS, GaSO, SeS7] summarize more extensive descriptions within this framework. 
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Fig. 15.4. Same as Fig. 15.2 for '680. 

15.2 Nucleon scattering 

This analysis can be extended to a description of those nucleons lying above the 
Fermi surface involved in scattering from the nucleus. The basic idea is to construct 
a Dirac optical potential from the relativistic Hartree densities and N-N scattering 
amplitude. The Dirac equation is then solved in this optical potential to generate 
the scattering amplitude. 

The details of this construction are discussed in [Se86] and in the original sources 
[C183, C183a, Mc83, Sh83, Wa87]. Simply reproducing those details here will take 
us too far afield from our principal purpose. The most thorough treatment of the 
subject of nuclear reactions is contained in the book by Feshbach [Fe91], and the 
dedicated reader is referred to that reference. The optical potential does, however, 
play a central role in nuclear physics, and it is important for every nuclear physicist 
to have an understanding of it. We shall be content here in Probs. 15.6-15.10 to 
guide the reader through a simple nonrelativistic model where the multiple scatter- 
ing amplitude can be found exactly and the approximations in the optical potential 
clearly identified.' 

The ( a , ~ )  model is too simple to describe the detailed spin dependence of 
nucleon-nucleon ( N - N )  scattering. We therefore compromise and take the N - N  
scattering amplitude 

(15.3) 

2See also Probs. 47.11-47.12. 
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Fig. 15.5. Predicted spectrum for occupied levels in 20,8,Pb. Experimental levels are 
from neighboring nuclei [Ho81, Se861; from [Se86]. 

from experiment. Here the amplitude is written explicitly in terms of Lorentz 
invariant quantities. It is an empirical fact that when written in this fashion the 
scalar and vector terms are very large (several hundered MeV). The relativistic 
Hartree densities generated previously can be folded with the empirical scattering 
amplitude to generate a Dirac optical potential (Prob. 15.10) 

u Z l p t ( ~ )  = - d3A eiA 'x (f"(A )p(')(A)) 
-47TA / (15.4) 

This analysis is known as the "relativistic impulse approximation (RIA)" [C183, 
C183a, Mc83, Sh83, Se86, Wa871. One can then solve the Dirac equation for scat- 
tering in this potential. The results are illustrated in Fig. 15.6. 
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Fig. 15.6. Calculated cross section, analyzing power, and spin rotation function for 
p'+ :iCa at Tr, = 497 MeV using the Dirac (relativistic) impulse approximation 
(RIA, solid curve). Figure prepared by Prof. B. C .  Clark; from [Se86]. 

It  is  evident that the main features of nucleon-nucleus scattering, in particular 
the spin dependence, can be understood within this same relativistic framework. 
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The source of the spin dependence responsible for these spin observables is again 
the interaction of a Dirac particle with spatially varying condensed scalar and vector 
fields; it is the same source of spin dependence as in the shell model derived above. 

The phenomenology associated with this simple (4, V,) model as expressed 
through relativistic mean field theory (RMFT) is quite striking - it appears to 
have more content than one might expect. We shall see later that there is actually 
a deep underlying theoretical foundation for what we have been doing in terms 
of effective field theory for QCD and density functional theory. For the present, 
we have before us a consistent, lagrangian-based, field theory model of the nuclear 
many-body system incorporating quantum mechanics and special relativity. Let 
us proceed to develop this theory, extend it, and investigate some of its additional 
consequences. 



Chapter 16 

Quantum hadrodynamics (QHD-I) 

16.1 Motivation 

The basic goal in the next several chapters is the development of model hadronic 
relativistic quantum field theories of the nuclear system in which one can, in prin- 
ciple, calculate to arbitrary accuracy and compare with experiment. Let us return 
to nuclear matter and take as a goal the systematic calculation of the corrections 
to RMFT for the model (4, V,) field theory developed in chapter 14. Just as with 
nonrelativistic many-body theory [Fe71], the content of the full relativistic many- 
body theory can be summarized in terms of a set of Feynman rules for the Green’s 
functions. The baryon Green’s function, for example, is defined in the Heisenberg 
representation by 

iG,p(xltl,X2t2) = (~IP[~a(Xltl),~p(X2t2)11~) 

(16.1) 

The time-ordered product (P-product) includes a factor of (-1) for the interchange 
of fermion operators. The Green’s function allows one to calculate the expectation 
value of observables built out of products of field operators; this Green’s function 
gives the baryon contribution to TPv defined in chapter 14. The derivation of 
the Feynman rules for nonrelativistic many body theory is given in [Fe71]. The 
derivation of the Feynman rules for relativistic theories is developed in detail in 
many basic texts, for example, [Bj64, Bj65, Fe71, Ch841 (see also [Gr93]); it is 
assumed that the reader is familiar with this material. For the present theory, the 
Feynman rules are as follows (see Fig. 16.1): 

16.2 Feynman rules 

For the nth order contribution to iG(k) :  

(1) Draw all topologically distinct, connected diagrams; 
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(2) Include the following factors for the scalar and vector vertices respectively 

ig,l ; scalar -gw7, ; vector (16.2) 

(3) Include the following factors for the scalar, vector, and baryon propagators, 
respectively (Fig. 16.1) 

1 1  
i k 2 + m :  

i k 2 + m :  ( m : )  

-~ 

1 1  k, k” 
6,” + - - 

; scalar (16.3) 

; vector 

scalar 
/ 
baryon 

Y 
vector  

Fig. 16.1. Elements of the Feynman rules for QHD-I (see text). 

(4) Conserve four-momentum at each vertex; 
(5) Include a factor of 
(6) Take the Dirac matrix product along a fermion line; 
(7) Include a factor of (-l)F where F is the number of closed fermion loops.; 
(8) Include a factor of 6ij  along a fermion line for isospin (here i, j = p, n). 

d4q/(27r)4 for each independent internal line; 

There are several features of these rules that merit discussion: 

0 The masses all carry a small negative imaginary part to give the proper 
Feynman singularities in the propagator; 

0 The term proportional to k,k, in the vector meson propagator goes out 
in any S-matrix element since the vector meson couples to the conserved 
baryon current.’ The theory is analogous to massive QED with an addi- 
tional scalar interaction; it is renormalizable; 

lThe proof is similar to that for the analogous terms in the photon propagator in QED (see [Bj64, 
Bj65, Wa921). 
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0 It is the extra contribution to the baryon propagator, present at finite 
baryon density, that complicates finite-density, relativistic nuclear many- 
body theory. Its role is to move a finite number of poles from the 4th to 
the 1st quadrant so that when one evaluates expectation values by closing 
contours in the upper-1/2 po plane, there will be a contribution from the 
occupied single-particle orbitals (see Fig. 16.2). 

p - plane 
0 I 

X I XK 
\ ,  

M d  (M2+ k: I 1'2 

Fig. 16.2. Poles of the baryon propagator in the complex frequency plane. 
Here EF = (Ic: + M2)1/2. 

Note that when contours are closed in the upper-l/2 po plane, one can- 
not  avoid picking u p  the contribution of the negative frequency poles in the 
2nd quadrant. These contributions are an essential feature of the relativis 
tic many-body problem and are completely absent in the nonrelativistic 
many-body problem where these antiparticle contributions are pushed off 
to infinity and ignored; 

0 The familiar expression -l/(iyppp + M) can be used for the baryon propa- 
gator if one keeps track of the location of the singularities and the contour 
in Fig. 16.2. 

An alternative way of writing the baryon propagator helps illustrate these points. 
From Fig. 16.2 one can write 

(16.4) 

The term in the second line can now be rewritten as 

This is the result quoted in Eq. (16.3). 
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16.3 A n  application - relativistic Hartree approximation (RHA) 

We present the results of a self-consistent one-baryon-loop calculation, done in detail 
in [Se86, Wa951. The self-consistent sum of “tadpole” diagrams for the baryon 
Green’s function is illustrated diagrammatically in Fig. 16.3; it treats the forward 
scattering of a baryon in the medium from the other baryons in a self-consistent 
fashion. 

Fig. 16.3. Self-consistent sum of the tadpole diagrams for the baryon propagator in 
nuclear matter. 

The meson propagators are calculated by retaining just the disconnected con- 
tributions terminating in the baryon tadpoles, which are present in the nuclear 
medium at finite density. 

In order to carry out the calculation of finite, physical quantities in this renor- 
malizable field theory, counter t e r n s  involving the self-coupling of the scalar meson 
field up through powers of 44 must first be added to the lagrangian density 

(16.6) 

These counter terms are fixed in the vacuum sector by demanding that the ap- 
propriate calculated scalar meson amplitudes, including now the (divergent) loop 
contributions, take on specified physical values. To minimize the role played by 
many-body forces in nuclear matter, we assume here that the relevant amplitudes 
vanish when the four-momenta of the scalar mesons vanish (qi = O).2 

With the familiar definition of the energy density E = E / V ,  we now find our 
previous MFT results plus a correction term 

ERHA = EMFT + AEO-PT (16.7) 

The “zero-point” correction term provides a proper evaluation of our previous result 
in Eqs. (14.22) and (14.24) 

20ther choices are possible and have been extensively investigated [Se86, Se921. The inclusion of 
AE~-PT(M*)  does not appear to improve the phenomenology. 
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It is given by [Se86] 

I 13 25 
3 12 

+-M(M - M*)3 - - (M - M*)4 (16.9) 

This important result is derived in detail in [Se86, Wa951, to which the dedicated 
reader is referred. Before further discussion, we present some numerical results. 

The modification of the MFT equation of state upon inclusion of the additional 
term in Eq. (16.9) is shown in Fig. 16.4. 

321 
0.2 0.5 1.0 2.0 

E(CeV/frn’) 

Fig. 16.4. Nuclear matter equation of state. The mean-field theory (MFT) results 
are shown as the solid line. The relativistic Hartree approximation (RHA), which 
includes AEO-PT, produces the long-dash line; from [Se86]. 

Note the MFT result remains correct at high density. This provides a partial justi- 
fication of our initial derivation of MFT in chapter 14. 

The modification of the MFT binding energy curve is shown in Fig. 16.5. The 
additional term A s 0 - p ~  is a small shift on the new energy scale, but it is impor- 
tant for a quantitative description of the saturation properties of nuclear matter in 
this model. This additional contribution is completely absent in any nonrelativistic 
many-body problem where the negative frequency poles in Fig. 16.2 are pushed out 
to infinity and ignored; it is inherently a relativistic effect. 

We proceed to rederive the MFT results for uniform nuclear matter by a. self- 
consistent sum of an infinite class of Feynman diagrams. In so doing, we provide 
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Fig. 16.5. Energy/nucleon in nuclear matter. The curves are calculated and labeled 
as in Fig. 16.4; from [Se86].3 

a framework for a proper treatment of the remaining term 6’H in Eqs. (14.22) 
and (14.24). Consider the self-consistent sum of tadpole diagrams for the baryon 
Green’s function as illustrated in Fig. 16.3. Here the self-consistency enters in that 
the baryon loop, which represents the forward scattering (q  = 0 )  interaction with 
the other baryons in the medium, is calculated from the full Green’s function itself. 
The analytic expression of Dyson’s equation for the baryon propagator takes the 
form [Fe71, Wag21 

G(P) = GO(P) + GO(P)C*(P)G(P) (1 6.10) 

Here 

(16.11) 

The appropriate f i v  singularity structure here is given in Eqs. (16.4) and (16.5). 
The proper self-energy is calculated through the Feynman rules and can be written 
in the form 

C*(P) = -gs40 - igvr/Lv,o (16.12) 

31n these figures HF stands for relativistic Hartree-Fock obtained by summing self-consistently the 
lowest-order self-energy insertion as discussed in [SeSS]. When the model parameters are properly 
renormalized to reproduce the empirical saturation properties, exchange corrections modify the 
energy density only slightly, and the HF binding energy curve for nuclear matter is then similar 
to  the MFT result. 
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Here Vf = iSx4Vo. The meson fields (40, h) arising at finite baryon density are 
defined implicitly in terms of the appropriate baryon sources represented by closed 
loops of the baryon Green’s function; they are constants for nuclear matter.4 The 
solution to Dyson’s equation can be written as 

G(p)-l = Go(p)-l - C*(P) 
= -(iY,P, + M )  + 9840 + i9vrpv,o (16.13) 

The baryon Green’s function for nuclear matter in the RHA is thus given by 

( 16.14) 

The change in singularity structure at finite baryon density from the usual Feynman 
Green’s function is shown in Fig. 16.6. 

p - plane 
0 

X 
I I 

I g V +M’ & Q ~ V ~ + I M  .2 +kF 2 1 112 v 0  

Fig. 16.6. Shift in position of the pole in the Feynman propagator for the baryon 
at finite baryon density in RHA. 

In the renormalizable field theory QHD-I, the counter terms in Eq. (16.6) must 
be added to the lagrangian density. One choice, as indicated above, is to fix the 
counter terms in the vacuum sector to exactly cancel the one-baryon-loop contri- 
bution to the relevant scalar meson amplitudes at qi = 0. With E = E/V,  one 
then finds the previous MFT results for nuclear matter plus the correction term in 
Eq. (16.7) [Se86, Wa951. The “zero point” energy provides a proper evaluation of 
the additional terms in Eq. (16.8), and the result of this rather extensive calculation 
has already been given in Eq. (16.9). We emphasize that within this renormalizable 
model, the correction A a 0 - p ~  to the MFT result, often referred to as the Casimir 
eflect, is completely finite and ~alculable.~ 

4The signs and factors follow from the Feynman rules. The iteration of Dyson’s equations in this 
case sums the tadpole diagrams for the baryon Green’s function. 

5When expanded in the dimensionless ratio ( g s 4 0 / M ) ,  the quantity A a o - p ~ / M ~  in Eq. (16.9) is 
an infinite power series with prescribed coefficients beginning with (gs40/M)5; however, these 
coefficients are ‘‘unnatura111 in the sense of chapter 24, and with effective field theory one lets 
experiment determine the actual value of the coefficients in this Casimir effect. 



Chapter 17 

Applications 

In this chapter we present a few selected further applications of QHD-I. Numerous 
other applications are discussed in [Se86, Se92, Se97]. 

17.1 RPA calculation of collective excitations of closed-shell nuclei 

An RPA calculation (chapters 9-10) of the excitation spectrum of using the 
particle-hole interaction of QHD-I fit to the properties of nuclear matter has been 
carried out by F'urnstahl [Fu85]. The interaction is illustrated in Fig. 17.1. 

Fig. 17.1. Particle-hole interaction in QHD-I. 

Here only those terms involving the density-dependent part of the baryon prop- 
agator are retained and retardation is neglected in the meson propagators;' the 
calculation is otherwise relativistic. The p-h configuration energies and wave func- 
tions are taken from the relativistic Hartree calculations of chapter 15, and the 
interaction from Prob. 17.1. The resulting spectra are shown in Figs. 17.2 and 17.3. 

Since the binding energy of nuclear matter results from a strong cancelation of 
two large contributions, one might wonder whether the nuclear excitation spectrum 
has any reality. This calculation demonstrates that the particle-hole interaction 
of QHD-I, with a minimal set of parameters fit to the bulk properties of nuclear 
matter, produces a realistic spectrum in l;O. 

'The baryon propagator has both a Feynman and finitedensity part. We write G = GF + GD in 
Eq. (16.14) and refer to GD (arising from the shifted poles) as the density-dependent part [Se86]. 

143 



144 

-1- --0- 
0- 1 1 -  

_.I. -1- - - -1- - 
2- -2- - 

-2- -4- __ . 
2' 

2- - - 0- -4- 

-0- . 
0- 

- - 2- -2- 

=>,. -1- 

- 

5,- - 2- - 
5 /$-I- -1- . 

-3- -- 
-3- -2- - 
- 3- - 3- . 

d 

Applications 

' 6 0  T = l  
- 1- 

-1- 

OHD-I OHD-II OHD-II Experiment 
PS Pions PV Pions 

Fig. 17.2. Negative parity T = 1 states in '680 calculated in RPA using the particle- 
hole interaction of QHD-I with relativistic Hartree configuration energies and wave 
functions. Only ld(lp)-' and 2s(lp)-l unperturbed levels are shown. The pion 
contribution is discussed in chapters 20-24. From [h85]. 

5 i 
Unperlurbed 

I6O T = O  

Fig. 17.3. Same as Fig. 17.2 for T = 0 states. S denotes the spurious 1- state. 
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The inclusion of the negative energy states in the relativistic generalization of the 
RPA calculation (the “RRPA” ) of nuclear excitations and of ground-state properties 
of nuclei has three meritorious effects: 

It cures the magnetic moment problem and the isoscalar convection current 
gets corrected back from p/M* to p/M. This contribution returns to that 
of the Schmidt lines of chapter 8 [Ma81, Be85, Ku85, Mc86, F’u871; 

0 It brings the spurious (l-,O) state, corresponding to pure center-of-mass 
motion, down to zero excitation energy when enough particle-hole configu- 
rations are admixed [Da90]; 

0 It preserves the conservation of the electromagnetic current [Da90].’ 

The RRPA is discussed in detail in [Ch77, Se86, Se92, Wa95, Fu02]. 

17.2 Electromagnetic interaction 

The electromagnetic current operator in QHD-I is given by 

(17.1) 

The r.h.s. is expressed in terms of the field operators. The use of the equations of 
motion verifies that this current is conserved 

1 &(4 = iG)y,5(1+ 7-3)+(x) 

(17.2) 

The meson fields ($,I$) do not contribute to the electromagnetic current since 
they are neutral. One must at least include charged meson fields (T, p) to get a 
more realistic picture of the electromagnetic structure of the baryon; this shall be 
done after our discussion of pions. Here we introduce an effective current operator 
that when used with QHD-I allows us to take into account the internal charge and 
current structure of the baryons, maintains current conservation, and allows us to 
model the behavior of the interacting relativistic many-body system. 

The general structure of the electromagnetic vertex of the nucleon was intro- 
duced in chapter 8 (see Fig. 8.4) 

i 
(P’~‘P’IJp(0)IP~P) = cC(P’4v;.  [PI (q2)r, + ~2(4’)a,vqv] v p 4 P 4  

Fi -(Fi 1 s  + ~ 3 F i  V ) 2 

F f ( 0 )  = 1 2mF;(O) = A:, + A, = -0.120 

FF(0)  = 1 2mFT(0) = A; - An = +3.706 (17.3) 

2The modification of the (e, e’) form factors in the RRPA is also shown in [DaSO]. 
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Here p = p' + q. The form factors possess a spectral representation. F r ( q 2 ) ,  for 
example, has the analytic properties in the complex q2 plane indicated in Fig. 17.4. 

Fig. 17.4. Analytic properties of the nucleon form factor F . ( q 2 )  in the complex q2 
plane. 

It can be written as [Ch58, Fe58, Dr611 

(17.4) 

The spectral weight function p g ( a 2 )  can be expressed as the absorptive part of 
the amplitude for a virtual time-like photon to produce an N - n  pair as indicated 
schematically in Fig. 17.5. 

r ! 

Fig. 17.5. Schematic representation of spectral weight function as absorptive part. 

The physical region for electron scattering is space-like q2 > 0. The singularities 
closest to the physical region come from the lowest-mass intermediate states; here 
the first state is that of two pions. These are all exact statements and relations. 

To evaluate the two-pion contribution to the spectral weight function for Fz(q2) 
in Born approximation (without pion rescattering) one can simply look at the Feyn- 
man diagram for the lowest order vertex correction illustrated in Fig. 17.6. The 
Feynman rules for pions will be developed later in this part of the book. Here we 
anticipate and calculate the contribution of this diagram to the S-matrix element 
Sf i from the following pion-nucleon and pion-photon lagrangian densities3 

(17.5) 

3The nucleon pole term in the relevant absorptive part is independent of the particular form of 
the T - N  coupling used. 
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Fig. 17.6. Two-pion contribution to Sfi and F2(q2) in Born approximation. 

The component contributions to the diagram are then indicated in Fig. 17.6. The 
result from this diagram can be put into the following form (here M = m)4 

The spectral representation and two-pion contribution to the spectral weight func- 
tion follow directly. Note this contribution is entirely isovector. 

The integral in Eq. (17.6) is well-defined, and one can use it to calculate the 
two-pion contribution to the anomalous magnetic moment of the nucleon by simply 
evaluating 2mF2(O). One can get the two-pion contribution, that of longest range, 
to the mean-square radius of the isovector magnetic moment through 

(17.7) 

The use of g2/41~ = 14.4 from pion-nucleon scattering leads to the results shown in 
Table 17.1.5 

Table 17.1 
approximation. 

Two-pion contribution to the anomalous magnetic moment of the nucleon in Born 

4The required manipulations are detailed in [Bj64, Wa921. 

5Note that the definition Fi = (FF + ~ F y ) / 2  used here differs by a factor of 2 from that used in 
Eq. (10.10) of [Se86] where Fi = F: +qF:. 
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Charged pions are responsible for the long-range part of the electromagnetic 
structure of the nucleon. The present analysis provides a qualitative, and even 
semiquantitative, understanding of the anomalous magnetic moment and its mean- 
square radius [Ch58, Fe58].6 Charged mesons will be included later in this part 
of the book after a discussion of pions. Here we will be content to include their 
contribution to the internal structure of the nucleon in QHD-I in a phenomenological 
fashion. 

We assume7 

(17.8) 

It is convenient to then take out the common overall form factor and define an 
effective M&r potential f S N ( q 2 ) / q 2  (Fig. 17.7). Since this is an overall factor 
in the scattering amplitude, the electron scattering cross sections will be simply 
expressed in terms of an effective Mott cross section CT$ = C T M [ ~ S N ( ~ ~ ) ] ~ .  

Fig. 17.7. The effective Maller potential. 

Now define an effective current operator in QHD-I 

1 1 
p 2  2 

A’ = A’ -(1 + 73) + A n - ( l  - 73) (17.9) - 

Again the r.h.s. is expressed in terms of field operators. This effective current is 
to  be used in lowest order. It takes into account the internal charge and magnetic 
structure of the baryons coming from the charged mesons in a phenomenological 
manner. Although very simple minded, this effective current has the following 
features to recommend its use in QHD-I: 

0 It is local; 
0 It is Lorentz covariant; 

61t was argued before their discovery that vector mesons with ( J ” , T )  = (1-,  1) and (l-,O), the 
p and w ,  must be present to make these results quantitative “ 6 7 ,  F’rGOa]. 

’Although this assumption serves our purpose over much of the domain of nuclear physics, one 
really must do better than this to have a quantitative calculation at high q2. A more accurate 
representation of the single-nucleon form factors is given in [WaOl]; it is incorporated into the 
effective nuclear current in Part 4. 
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0 It is conserved; 
0 It gives the correct (e, e') amplitude for a free, isolated nucleon. 

Since we now have a completely relativistic framework, one can push the cal- 
culation of nuclear (e,e') processes to any q2 .  There is nothing inherent in the 
calculations limiting them to low q2.  

One goal is to push to very high q2 to see where QHD breaks down - where 
one is forced to invoke another dynamic description of the internal structure of the 
hadrons. 

The calculation of Kim [Ki86] for elastic magnetic scattering from li0 is shown 
in Fig. 17.8. This calculation uses the solution to the Dirac equation for a (ld5/2)v 
in the relativistic Hartree potentials for l;O (chapter 15). It uses the current in 
Eq. (17.9).8 A center of mass (C-M) correction factor is also i n ~ l u d e d . ~  The wave 
functions calculated by Kim in [Ki86] are shown in Fig. 17.9. The configuration 
assignments are ;He (1sl/2)y1, '780 ( l ~ l 5 / 2 ) ~ ,  and 2g2Bi (1hg/2)K. 

As a second application of this approach, consider quasielastic electron scattering 
(e, el) .  Rosenfelder [Ro80] has studied this process for both 4;Ca and 2giPb using a 
local Fermi gas with Dirac spinors and the quantities M*(r )  and ~ B ( T )  taken from 
a relativistic Thomas-Fermi calculation of the densities in QHD-I [Ro80, Se861. 

U - 
(u 

I- 
LL 

10-3 

10-6 

10'~ 

lo-'* 

I i 

Fig. 17.8. Magnetic form factor squaredlO for lg0. The dotted curve omits the 
C-M correction factor and the dashed-dot curve omits the single-nucleon form fac- 
tor f S N ( q 2 )  = [I + q2/(855 MeV)2]-2. Calculated using relativistic Hartree wave 
functions and the current operator in Eq. (17.9). From [Ki86]. 

8For the calculation procedure, see Prob. 17.2 and (Ki86, Hu031. 

'The C-M correction factor here ~ C M  = exp (q2b2 /4A}  is taken from the simple harmonic oscil- 

"See chapter 47 for the precise definition of F;".. 

lator (see [WaOl]) - it is the only nonrelativistic element in the calculation. 
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Fig. 17.9. Upper and lower component Dirac radial wave functions G(r)  and F ( r )  
(see Prob. 15.1) for the three cases mentioned in the text. From [Ki86]. 
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Fig. 17.10. Quasielastic electron scattering from igCa in the relativistic MFT com- 
pared with experimental values. The calculation assumes a local relativistic Fermi 
gas with the quantities M * ( r )  and p ~ ( r )  taken from a relativistic Thomas Fermi 
calculation of these quantities in QHD-I. From [R080, Se861. 

The solutions to the Dirac equation for both the initial bound nucleon and final 
continuum nucleon in the quasielastic scattering process are thus generated con- 
sistently within this framework. Rosenfelder also uses the electromagnetic current 
operator of Eq. (17.9). The results are shown in Figs. 17.10 and 17.11. 
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Fig. 17.11. Same as Fig. 17.10 for 2::Pb. 

Particularly satisfying are the positions of the peaks and the shapes of the curves, 
which are obtained with no further parameters. This indicates that the RMFT of 
chapter 14 provides a consistent and reasonable description of the gross quasielastic 
nuclear response in this kinematic regime. 
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Some thermodynamics 

In this chapter we investigate the behavior of the (4, V,) system at finite temper- 
ature, working within the framework of RMFT.I Reference [Fe71] provides back- 
ground for this development. 

Fig. 18.1. Many-body system at specified chemical potential, volume, and temper- 
ature (p ,  V, T ) .  

The thermodynamic potential of a system at specified chemical potential, vol- 
ume, and temperature ( p ,  V, T ) ,  as illustrated in Fig. 18.1, is given by 

(18.1) 
1 R(p,V,T) = --In& 
P 

The grand partition function appearing in this expression is defined by 

(18.2) 

Here l? is the baryon number operator and the Trace goes over a complete set 
of states in the many-baryon Hilbert space. As usual P = l/lc~T. One has the 
thermodynamic relations 

R = -pv 
dR = -SdT-pdV-Bdp (18.3) 

where 5’ is the entropy. 

lWe remind the reader that in this book the simple model field theory QHD-I is referred to  
interchangeably as the (4, V,) or the (a, w )  model; the second name is frequently used in the 
literature. 
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18.1 Relativistic mean field theory (RMFT) 

Consider nuclear matter in RMFT in QHD-I. The hamiltonian and baryon number 
operators are given in chapter 14 

(18.4) 

These operators are diagonal in the basis of eigenstates of the baryon and anti- 
baryon number operators 

(18.5) 

It is a straightforward matter to calculate the Trace in Eq. (18.2) in this basis; 
the calculation is very similar to that for a noninteracting Fermi gas [Fe71] and is 
carried out in detail in Appendix B.2.' 

At the end of the calculation, the vector field VO will be determined by the 
thermal average of the equation of motion. For a uniform system this gives 

Here the additional explicit dependence on the condensed fields (&,VO) is also 
indicated (recall M* = M - gs40). The explicit dependence on VO in Eq. (18.4) 
allows one to immediately conclude from Eqs. (18.1) and (18.2) that 

(18.7) 

The condensed scalar field is determined at the end of the calculation through 
the use of Gibbs' relation for thermodynamic equilibrium; a system in equilibrium 
at specified (p ,  V, T )  will minimize its thermodynamic potential 

(18.8) 

2We assume a single species of baryon in this simple model calculation. There will always be 
additional additive contributions to the thermodynamic potential arising from other species. For 
example, even in QHD-I in RMFT, there will be contributions from the free ( a , ~ )  fields. 
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Now the total differential of the thermodynamic potential is given by 

(18.9) 

Keep ( p ,  V, T )  constant and make use of Eq. (18.7). This allows one to write 
the equilibrium condition as 

(1 8.10) 

As a consequence, the condensed vector field can be held constant during the min- 
imization procedure. The vanishing of the partial derivatives in Eqs. (18.7) and 
(18.10) is extremely useful, for it implies that the condensed meson fields ( 4 0 ,  Vo) 
can be held constant in computing thermodynamic variables. For example, 

(18.11) 

The equilibrium condition for $0 follows from Eq. (18.10) and Eqs. (18.1) and 

a0 
= - ( E ) V , T  = - (&)V,T;qjo,V0 

(18.2) 

7 4 4 0  = SSPS(P, v, T ;  4 0 ,  vo) (18.12) 

Here ps is the thermodynamic average of the scalar density, written out in detail 
below. 

At the end of the calculation it is useful to specify the baryon density p ~ ,  and 
adjust the chemical potential until one arrives at that specified value of p~ as the 
equilibrium value. The condensed vector field is then also specified by Eq. (18.6) 

( 18.13) sv VO = -pB 
mE 

The equation of state in parametric form follows directly from the thermody- 
namic potential; its derivation is given in appendix B.2 

(1 8.14) 
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At thermodynamic equilibrium, the self-consistency relation for $0 = ( M  - M*) /g ,  
must be satisfied 

The thermal distribution functions in these expressions are defined by 

Here 

(1 8.16) 

( 18.17) 

In thermodynamic equilibrium, at the end of the calculation, one can replace 

(18.18) 

Note carefully the signs appearing in Eqs. (18.14) and (18.15); it is ( n k  + f i k )  that 
appears in ( E ,  p ,  p,) ,  and ( n k  - f i k )  that appears in p ~ .  

Some limiting cases of this equation of state are of interest: 

As T -+ 0 at finite baryon density one has n k  -+ B ( k F  - (k() and f i k  -+ 0. 
The system becomes a degenerate Fermi gas of baryons, and one recovers 
the RMFT results of chapter 14 at T = 0; 
As p~ -+ 00 for any finite T ,  the system again becomes degenerate; 
As T -+ 00 baryon pairs are produced, and the self-consistent baryon mass 
M* 4 0. The analytic relation at p~ = 0 is 

; T -i 00 (18.19) 

In the limit T -+ 00 the equation of state takes a form similar to that of a 
black body 

7x27 
E = - ( k ~ 3 T ) ~  

120 
1 

p =  SE (18.20) 

18.2 Numerical results 

A procedure for numerical analysis of the equation of state consists of the following: 

(1) Solve the self-consistency Eq. (18.15) for $0 (or equivalently M* = M - 

(2) The distribution functions n k ( p * )  and f i k ( p * )  are now determined; 
(3) Compute the resultant p~ from the last of Eqs. (18.14); 

g&) at fixed P and p*; 
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(4) Determine the corresponding chemical potential p from Eq. (18.18); 
(5) Compute ( ~ , p )  from Eqs. (18.14). 

The resulting isotherms (constant temperature cuts of the equation of state) are 
shown for neutron matter with y = 2 in Fig. 18.2. 

NEUTRON MATTER 
EQUATION OF STATE 

/ 

E (GeV/fm3) 

Fig. 18.2. Isotherms of the neutron matter equation of state at finite temperature 
as calculated in the RMFT of QHD-I. The curves are labeled by the value of ~ B T ,  
and the left-hand end point of an isotherm corresponds to zero baryon density. 
The shaded area shows the region of phase separation, and the critical point at a 
temperature of ~ B T ,  = 9.1 f 0.2 MeV is indicated by 0; from [Se86]. 

We use the coupling constants of chapter 14. Several comments are of interest: 

0 One sees a phase transition; it is similar here to the gas-liquid phase tran- 

0 In the region of phase equilibrium, Gibbs’ criteria for phase equilibrium are 
sition exhibited by the van der Waal’s equation of state; 

satisfied 

Pl = P2 P1 = P2 T = constant (18.21) 
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0 The equilibrium conditions are determined numerically by plotting p vs. p 
at fixed T and seeing where the curve crosses itself; 

0 One has a critical region and a critical temperature, above which there is 
no phase transition; 

0 The high temperature isotherms terminate as the energy density is de- 
creased. There is a finite, limiting value of E as p~ -+ 0. One simply 
has a vanishingly dilute solution of baryons in a sea of pairs. 

The corresponding solution to the self-consistency equation for M* as a function 
of temperature T is shown in Fig. 18.3 at p~ = p = 0. 

Fig. 18.3. Self-consistent nucleon mass as a function of temperature at vanishing 
baryon density. Results are indicated both for neutron matter (y = 2 - based on 
Fig. 18.2) and nuclear matter (y = 4). 

The physics here is that pairs are produced as the temperature is increased. This 
does not change p~ but does change ps; increasing ps decreases M*,  which makes 
it easier to produce pairs. The equilibrium situation is obtained by solving the 
transcendental self-consistency relation at each temperature and density. At high 
temperature the baryons are massless. As one lowers the temperature, the baryons 
acquire a mass (at kBT << M )  due to the self-consistent freezing out of the vacuum 
pairs; they then retain that mass down to T = 0. 
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18.3 Finite temperature field theory in QHD-I 

As at zero temperature, one can characterize the finite temperature field theory in 
terms of a set of Feynman rules. The thermal baryon Green's function, for example, 
is defined by (see [Fe71]) 

The frequency is given by 

(2n + l)7r 
P 

wn = 

The statistical operator is defined by 

(18.23) 

(18.24) 

with 

K = H - p B  (18.25) 

The fields are in the Heisenberg representation with imaginary time 

Given the thermal baryon Green's function, one can compute ensemble averages of 
bilinear combinations of baryon field operators. 

We proceed to give the Feynman rules for the thermal baryon Green's function 
-G(K ,G&3 

(1) Draw all topologically distinct connected diagrams; 
(2) Include the following factors for the scalar and vector vertices, respectively 

gsl ; scalar %YP ; vector (18.27) 

(3) Include the following factors for the scalar, vector, and baryon propagators, 

3They are derived as in [Fe71] (see [WaSS]). References [F'ugO, F'u91, Fausla] contain a much more 
extensive discussion of QHD at finite temperature. 
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respectively 

1 
~2 + mf 

1 
~YAPA + M 

: scalar 

; vector 

; baryon (18.28) 

Here, in the first two (boson) propagators 

Icy = ( K  , i [ i W n ] )  ; K 2  = KvKv 

2nr 
P 
- w, = 

while in the last (fermion) propagator 

PA = (P, i [ ~  + iwn] )  
(2n + 1)r  

P 
w, = 

(4) Conserve frequency and wave number at each vertex; 
(5) For each internal line perform 

(1 8.29) 

(18.30) 

(18.31) 

(6) Take the Dirac matrix product along fermion lines;4 
(7) Include a factor of (-l)F where F is the number of closed fermion loops. 

In chapter 14 the RMFT at zero temperature was extended to the RHA, which 
includes a proper treatment of the zero-point energy. For the extension to the RHA 
treatment of the finite-temperature equation of state, see [Fr77, FuSla]. 

4We have again suppressed isospin; there is a factor &j with i , j  = 1,2  in the baryon propagator. 
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QCD and a phase transition 

19.1 Quarks and color 

There is now convincing evidence that hadrons are composed of a simpler substruc- 
ture of quarks. The primary evidence for this is the fo1lowing:l 

0 If one assumes the baryons are composed of quark triplets (qqq) and the 
mesons are quark-antiquark pairs (qq) then, with appropriate quantum 
numbers for the quarks (flavors), one can describe and predict the observed 
supermultiplets of hadrons; 

0 The assumption of interaction with point-like quarks provides a marvelously 
simple and accurate description of electroweak currents; 

0 Dynamic evidence for a point-like quark-parton substructure of hadrons is 
obtained from deep inelastic electron scattering ( e ,  e’) and neutrino reac- 
tions (vl, 1- ) .  

Quarks come in many flavors; the quark field can be written as 

(19.1) 

One assigns quarks an additional intrinsic degree of freedom called color, which 
takes three values i = R, G, B. The quark field then becomes 

U R  UG UB 

+ =  ( 2 2 2 )  = (+R,+G,+B) = +i ; = R,G,B (19.2) 

CR CG 

lThe material on quarks, gluons, and quantum chromodynamics (QCD) will be developed in 
detail, with appropriate references, in Part 3 of this book. The present chapter is included as 
background for a simple model calculation of the phase diagram of nuclear matter. 

160 
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It is convenient to construct a column vector from the color fields 

(19.3) 

Matrices in this color space will be here denoted with a bar under a symbol. This 
is a very compact notation 

0 Each +i has many flavors; 
0 Each flavor is a four-component Dirac field. 

19.2 Quantum chromodynamics (QCD) 

Quantum chromodynamics (QCD) is a theory of the strong interactions binding 
quarks into the observed hadrons. It is a Yang-Mills nonabelian gauge theory built 
on color and invariance under local SU(3)c .  We develop this theory in detail in 
Part 3 of this book. Here, for the present purposes, we anticipate that discussion 
and summarize some of the results: 

0 Introduce massless gauge boson fields, the gluons, AE(x) with a = 1 , .  . . ,8. 

0 The lagrangian density then takes the form 
There is one for each generator; 

Repeated Latin superscripts are summed a = 1, . . . ,8; 
0 The A” are the 3 x 3 SU(3)  matrices satisfying 

(19.5) 
1 1  1 

[ z ~ a ,  ?xb] = ifabC2Ac 

0 The gluon field tensor is given by 

(19.6) 

0 The lagrangian density is written for massless quarks; however, a mass term 
of the form 

 mass = -$M* (19.7) 

where 

- M = (  m m )  (19.8) 

is the unit matrix with respect to color, leaves local S U ( 3 ) c  invariance. 
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The theory of QCD can again be characterized by a set of Feynman rules. The 
quark Green's function in the vacuum sector is defined by 

iGap(xiti,  ~ $ 2 )  E (OIP[d,(xiti), $p(xztz)]10) / &,.,z,-z2, zGap(k)  

The Feynman rules for iG(k) are as follows [Qu83, Ch84, Wa92]:2 

(1) Draw all topologically distinct, connected diagrams; 
(2) Include the following factors for the quark, gluon, and ghost lines, respec- 

tively (Fig. 19.1):3 

(19.9) 

q u m r k  gluon ghost 

Fig. 19.1. Propagators in QCD. 

; quark (massless) 

; gluon (Landau gauge) 

1 1  
6ijdlm -- 

i i Y p P p  

; ghost ( 19.10) 
1 1  
i k 2  
- p b  - 

The ghost is an internal element, coupled to gluons, that is required to 
generate the correct S-matrix in a nonabelian gauge theory; 

(3) Include the following factors for the vertices indicated in Fig. 19.2: 

P 

b I c , v  ,P 

a, x d. ,a , 
P b- +. b., 

' C  

Fig. 19.2. Vertices in QCD. 

2See [Ch84] for a much more extensive discussion, including Feynman rules with other choices of 

3All quark indices are now explicit: i, j = R, G, B for color; 1, m = u, d,  s, c, . . . for flavor. 

gauge. 
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1 ; (quark)2-gluon 
2 -9 - xj'i L Y ,  

+f ade f cbe ( ~ A v 6 u p  - ~ U V ~ X , ) ]  ; ( g ~ u o n ) ~  

- g f  abcPp ; (ghost)2-gluon (19.11) 

(4) Take the Dirac matrix product along fermion lines; 
(5) Conserve four-momentum at each vertex. 
( 6 )  Include a factor J d4q/(27r)4 for each independent internal line; 
(7) Include a factor of (-l)F+G where F is the number of closed fermion loops 

and G is the number of closed ghost loops. 

19.3 Properties of QCD 

QCD has two absolutely remarkable properties. The first is confinement. It is an 
empirical fact that quarks and color are confined to the interior of hadrons. There 
is evidence from lattice gauge theory calculations, discussed in detail in Part 3 of 
this book, that confinement is a dynamic property of QCD arising from the strong, 
nonlinear gluon couplings. The second property is asymptotic freedom, again aris- 
ing from the nonlinear gluon couplings; this implies that at very large momenta, or 
equivalently at very short distances, the renormalized coupling constant gets very 
small and the theory is asymptotically free. The effect arises from the antishielding 
of the color charge (as opposed to the shielding one has in quantum electrody- 
namics (QED) [Sc58]). When the effective coupling constant is small, one can do 
perturbation theory. 

What is the relationship of QHD to QCD? At this stage in the present develop 
ment there are various possibilities: 

0 There is an approximate separation radius R in coordinate space for the 
hadron; and one can use QCD at short distances inside of R and QHD at 
large distance outside of R. This is the basis of bag models of the hadrons, 
also discussed in Part 3; 

0 One can perform this separation in momentum space using spectral repre- 
sentations. The contributions from nearby singularities can be expressed in 
terms of observed hadron amplitudes; and the far-off, asymptotically free, 
contributions can be calculated in perturbation theory. These two contribu- 
tions can then be joined in some manner. This is one of the basic concepts 
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of QCD sum rules ([Rag11 and additional references in Part 3); 
Closely related is the interpretation of QHD as an effective field theory for 
QCD where the short-distance behavior is replaced by general point (and 
derivative) couplings. We explore this concept in detail in the following 
chapters; 
A fourth possibility is that one has two models for two distinct phases of 
nuclear matter: QHD (treated in RMFT) for a baryon-meson phase and 
QCD (treated as asymptotically free) for a quark-gluon phase. It is this 
fourth possibility that ties in directly with the development in this part of 
the book, and we proceed to carry out a simple model calculation of the 
phase diagram of nuclear matter. 

19.4 Phase diagram of nuclear matter 

Nuclear matter will be modeled as consisting of two phases -a baryon-meson phase 
described using QHD-I in RMFT (chapter 18), and a quark-gluon phase described 
with asymptotically-free QCD. The discussion will be restricted to the nuclear do- 
main consisting of u, d quarks (assumed massless) and their antiquarks. The quark 
field in the nuclear domain takes the form 

+=(  ;) ; nuclear domain (19.12) 

The confinement property will be modeled by assuming that it takes a constant, 
finite energy per unit volume +b to create a bubble in the vacuum into which the 
quarks and gluons can then be inserted (Fig. 19.3)4 

( qac = +b 
(19.13) 

The following degeneracy factors will be used for the quark-gluon system 

YQ = (3colors) x (2flavors) x (2 helicities) = 12 
YG = (8colors) x (2helicities) = 16 (19.14) 

Fig. 19.3. Vacuum bubble into which one inserts quarks and gluons as a simple 
model of the confinement property of QCD. 

4This is the basic concept of the M.I.T. bag model (see Part 3). 
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The equation of state for asymptotically free quarks and gluons (assumed mass- 
less) follows immediately [Fe71] 

PB = 3 ( 2 4 3  /d3k(nk - f i k )  (19.15) 

The fermion distribution functions here are given by (recall that quarks carry baryon 
number 1/3) 

Several analytical results follow from this simple parametric equation of state 
for the quark-gluon phase: 

The equation of state at all T and p~ is given by 

3(p + b) = & - b (19.17) 

At finite baryon density p~ = 2k$/37r2 (see chapter 3) and zero temperature 
T = O  

(19.18) 
3 

2 4  
3(p+b) = & - - b  = --k4 

Here the Fermi pressure of the quarks keeps the bubble from collapsing; 
At finite temperature T # 0 and vanishing baryon density p~ = p = 0 

37 
3(p+b) = E - b  = G . ‘ ~ ~ ( ] C B T ) ~  ( 19.19) 

Here the thermal pressure keeps the bubble from collapsing; 
It follows from this last result that at zero baryon density, the pressure will 
vanish at a temperature TO, which satisfies the condition 

(19.20) 

Above this temperature, the thermal pressure of the quarks and gluons 
causes the bubble to expand. 

5Since gluons are not conserved, the gluon chemical potential vanishes (see Prob. 18.1). 

(1)

(2)

(3)

(4)
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1000 

M--  

The equilibrium conditions for two phases described with the equations of state 
in Eqs. (18.14) and Eqs. (19.15) can be determined by demanding that Gibbs' 
criteria for phase equilibrium are again satisfied 

Pl = P a  P1= P2 T = constant (19.21) 

There is one free parameter b left in the calculation; it will be chosen for purposes 
of illustration so that quark-gluon matter at T = 0 saturates at baryon densities 
well above that of observed nuclear matter. The choice 

R = 3(2r2b)'l4 = 1 .2M ; arbitrary choice (19.22) 

results in the situation illustrated in Fig. 19.4. 

/ 
7291.2 M 

oHo-l\ b= 0.1312 GeV/frn' 
- 

/ 
/ - - - - - - I I 

Fig. 19.4. Saturation curve at T = 0 for nuclear matter. The solid curve denotes 
the quark-gluon result, with R from Eq. (19.22). The baryon density determines 
k~ through p~ = 2k$/3n2. The dashed curve is the result for nuclear matter from 
chapter 14. From [Se86]. 

The resulting isotherms for nuclear matter are shown in Fig. 19.5 for the in- 
dicated values of ~ B T .  It is evident that at high enough baryon density p ~ ,  or 
temperature T ,  the equilibrium phase is always quark-gluon. 

The resulting phase diagram and vapor pressure curve for nuclear matter is 
shown in Fig. 19.6. 

This is only a very simple model calculation, but it has the following features 
to recommend it: 

0 It is a completely relativistic model of the phase diagram; 
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0 The QHD description of the baryon-meson phase is consistent with observed 

The QCD description of the quark-gluon phase is consistent with asymptotic 

0 The statistical mechanics has been done exactly. 

properties of real nuclei; 

freedom; 

Some important references for this phase transition are [Co75, Ba76, Ch78, 
Ku80, Ku811; others are given [Se86]. 

I 

1 0  

A 

n 
E 

c3 -. 
r 

P - lo' 
Q 

lo' 

EOUATION OF 
STATE ISOTHERMS 

b=0.1312 GeV/fm3 

I 1  BARYONS/MESONS 

I ,y 
-130 MeV 

QUARKS IGLUONS 

-p=  (&-4b)/? 

Fig. 19.5. Equation of state isotherms for nuclear matter. Equilibrium between the 
baryon-meson and quark-gluon phases exists along the horizontal segments. The 
arrow 'B' indicates the energy density at the center of the most massive neutron 
star in chapter 14. The endpoints of the highest T curves are PB = 0; from [Se86]. 

There are now regular international conferences on quark matter, and the reader 
is referred to the proceedings for the latest developments (e.g. [Qu02]). A nice 
discussion of the detection of the quark-gluon plasma is contained in [Bego]. The 
relativistic heavy-ion collider (RHIC), currently in operation at the Brookhaven 
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National Laboratory (BNL), is designed to search for this new state of matter. We 
return to this topic in chapter 40. 

NUCLEAR MATTER PHASE DIAGRAM 

I / k,T: I/k,T (MeV-') 

Fig. 19.6. Phase diagram for nuclear matter based on Fig. 19.5. The equilibrium 
vapor pressure is plotted against l/kBT. The boundary of the shaded region is 
given by Eq. (19.19); from [Se86]. 



Chapter 20 

Pions 

The pion is the lightest mass quantum of the nuclear force (with mass here denoted 
by mT = p) .  It gives rise to the longest-range part of the two-nucleon interaction. 
It is a pseudoscalar meson with J" = 0-. It is also an isovector meson with three 
charge states (T+, T O ,  T - )  or in terms of hermitian components 7r = (TI, T Z ,  ~ 3 ) .  

The pion couples to the spin and isospin of the nucleon; it is the source of the 
long-range tensor force (see chapter 1). The pion does not contribute to the bind- 
ing energy of nuclear matter in the Hartree approximation since its contribution 
averages to zero in a spin, isospin saturated system. 

20.1 Some general considerations 

Consider the general structure of the S-matrix for T-N scattering (Fig. 20.1). Con- 
servation of four-momentum implies 

q1 +Pl = q2 +PZ (20.1) 

Here the symbols indicate four-vectors. Define the combinations 

1 
Q T(qi + 42) 

and the two independent Lorentz scalars 

P * Q  u = -- 
M 

2 1  
= q(41 - q d 2  

(20.2) 

(20.3) 

Alternatively, one can work with two of the three scalars 

s = -(P1 + q d 2  '11 = - (Pz  - t = -(q1 - qz)2 (20.4) 

Note that these three quantities are linearly relatedl 

s + t + u = 2M2 + 2p2 (20.5) 
1 s + t + u = - p , - p p , - 3 q : : - q g B - 2 q l ' ( p l - p g - q 2 ) = - - p 2 - p 2 - - 2 - q 2 - 2 ~ 2 + 2 ~ 2 ,  2 2  

1 2  1 2 -  

169 
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Fig. 20.1. General structure of the S-matrix for n-N scattering. 

In the center-of-momentum (C-M) system 

s = w2 
t = -2q2(1 (20.6) 

The general structure of the S-matrix is as follows: 

Here periodic boundary conditions in a big box of volume R are assumed for the 
spatial wavefunctions (in the end R + co), the Dirac wavefunctions have invariant 
norm iiu = 1, and the scalar functions can alternatively be written in terms of 
the arguments A(v, K ’ ) ,  B(v, K ’ ) .  We suppress the nucleon isospinors. The general 
phenomenology of n-N scattering is summarized in Appendix B.3. 

20.2 Pseudoscalar coupling and u exchange 

Let us make a first attempt to include pions in our QHD lagrangian density in order 
to calculate some simple n-N processes. We want covariance, parity invariance, 
and isospin invariance. We also ask for renormalizability. The only acceptable n- 
N coupling is then ig,4ySr . 7r4. The simplest renormalizable n -4 coupling is 
ig+m,7r2q5. Here the coupling constants (gT, g4) are dimensionless and real. The 
first attempt at an extended QHD lagrangian thus takes the form [Se86] 

(20.8) 
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Here 

(20.9) 

The lagrangian density thus takes the form 

c = L Q H D  + c; + c? (20.10) 

The first term is the QHD-I lagrangian, the second is the free pion lagrangian, and 
the last is the interaction term 

(20.11) 

The Feynman rules for the S-matrix follow directly from this lagrangian density. 
We give a subset of the rules, useful for our immediate purposes, below. 

20.3 Feynman rules for baryon, scalar, and pion contributions to 
Sf i 

(1) Draw all topologically distinct connected diagrams;' 
(2) Include the following vertex factors (Fig. 20.2): 

-gT757, ; (baryon)'- pion 
ig+m,S,p ; (pion)'- scalar 

i g ,  ; (baryon)'- scalar (20.12) 

pion scalar nucleon 

Fig. 20.2. Some components of the Feynman rules for the S-matrix Sfi for 
the extended QHD lagrangian in Eq. (20.8). 

2There is an additional (baryon)2-vector vertex, a vector propagator, and external vector lines 
(Prob. 20.6). 
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(3) Include the following factors for the propagators (Fig. 20.2); 

; baryon 

; pion 

; scalar 

1 1 
i iy,p, + M 
1 1  

- 

-~ i k2 + p2 6@ 
1 1  
i k2+m:  
-- (20.13) 

(4) Include the following factors for (incoming) external lines (Fig. 20.2); 

E+P ; baryon 

; scalar (20.14) 
1 

; pion 
1 

&z=l &z=l 

(5) Include a factor ( 2 ~ ) ~ 6 ( ~ ) ( A p )  at each vertex; 
( 6 )  Include a factor 
(7) Include a factor (-l)F where F is the number of closed baryon loops. 

c Z ~ ~ / ( ~ T ) ~  for each internal line; 

20.4 Particle-exchange poles 

We now use these Feynman rules to calculate the contribution of the particle- 
exchange graphs to the T-N scattering amplitude. These exchanges give rise to 
poles in the amplitude. At the pole, the pole gives the entire contribution and 
hence the exact answer. The pole will generally occur in an unphysical region of 
the kinematic variables. When close to the physical region, it will be a good ap- 
proximation to keep just the pole contribution to the scattering amplitude. The 
coupling constants that appear are renormalized coupling constants. They are the 
residues at the poles. They include vertex corrections that remain when all of the 
particles at that vertex are on the mass shell (Fig. 20.3). 

Fig. 20.3. Renormalized coupling constant, with vertex corrections, appearing as 
the residue of the pole in particleexchange amplitudes. 
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The particle-exchange graphs are shown in Fig. 20.4 a,b,c. 

Fig. 20.4. Particle-exchange graphs: (a) s-channel baryon; (b) u-channel baryon; 
(c) t-channel scalar. 

The s-channel baryon contribution to Tfi is 

(20.15) 

The second line follows from the first by rationalizing and using the properties of 
~ 5 . ~  Now use the Dirac equation4 

Also write T ~ T ,  = {TP, 7,}/2 + [TP, ~ ~ ] / 2 .  This allows one to identify [Eq. (B.27)] 

The u-channel baryon pole comes from the graph in Fig. 20.4b. The contribution 
to the T-matrix is 

The analysis is the same as for the first term, only now ~ ~ 7 - p  = Sap - [ ~ p , ~ , ] / 2 .  

3Note 75 

4Thus between these Dirac spinors qi = (qi  + q1)/2 = (qi + p z  - p i  + q z ) / 2  = Q. 
71^(27374 with { 7 5 ,  - y p }  = 0 and 7; = 1. 
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Thus one obtains 

Pions 

2 
9, B:b) = F G  A;) = O  

The third term in Fig. 2 0 . 4 ~  is a scalar exchange and contributes 

(20.19) 

Thus 

In summary, the pole terms are given by the sum of these contributions 

; A - = O  

(20.21) 

(20.22) 

20.5 Threshold behavior 

In the C-M system at threshold there is only s-wave scattering (appendix B.3). The 
kinematic variables at threshold become 

s = (A4 + p)2 u = (A4 - p)2 t=O (20.23) 

If one now takes the further limit of zero-mass pions, p -+ 0,  then the nucleon poles 
move to threshold. Thus at threshold, in the limit p -+ 0, the nucleon poles give 
the exact answer! 

The general expression for the s-wave scattering length is given by Eqs. (B.33) 
and (B.34) 

1 (A* + p B * )  
1 - _  

ao+ - 47r (1 + p / M )  
(20.24) 

Substitution of the pole terms and the threshold values in Eqs. (20.22) and (20.23) 
then gives the following expressions for the contribution of the pole terms to the 
scattering lengths 

g: P2 1 1 1 = 2-- ai+ 47r 4M2 (1 + p / M )  (1 - p2/4M2) 
1 
- (20.25) 

1 
47r m, 4n A4 (1 - 

SSSQ P 93 CL ----- a:+ 
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Now estimate the order of magnitude of these scattering lengths, using p / M  M 1/7 
and g: = 14.4 [Se86]. F’rom the nucleon pole terms alone one has 

(20.26) 

The experimental results are [Set361 (see also [Se92]); 

1 
a:+ = (-0.015 f 0.015) - (20.27) 

P 

The estimate for the isospin-odd scattering length at+ is clearly in the right ballpark; 
the isospin-even scattering length a$+ is too large by two orders of magnitude! 

The second estimate can be fixed by making use of the pole contribution from 
scalar exchange, which contributes only to a$+. Arrange to have it exactly cancel 
the nucleon pole contribution. For reasons that will become clear as we proceed, 
this cancellation is arranged to take place at p = 0. From Eq. (20.25) this condition 
is 

(20.28) 

It provides a constraint on coupling constants and masses. Substitution back into 
Eq. (20.25) then gives 

g2 P2 P 1 1 1 w -L-- 
47r 4M2 M (1 + p / M )  (1 - p2/4M2) 

An estimate similar to that above now gives 

9: P2 P 1 0.01 
47r 4M2 M p P 

“ 

(20.29) 

(20.30) 

This scattering length is now also in the right ballpark; however, this arises by a 
cancellation of two orders of magnitude in the a m p l i t ~ d e . ~  

These arguments are taken from [Se86], which contains further references to 
original work.6 

SNote that the “natural” magnitude of the T-N scattering lengths is a0 M l/p. 

6They were first developed within the framework of QHD in [Se79]. 
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20.6 Decay rate for 4 --f 7r + 7r 
Given ga from T-N dispersion relations and (g,, m,) from RMFT, Eq. (20.28) can 
be solved for g4. This in turn allows one to calculate the decay rate for the decay 
of the scalar meson (which we have referred to as the 0) into two pions q!~ -+ 7r + 7r 

using the previously stated Feynman rules. The process is illustrated in Fig. 20.5. 

Fig. 20.5. Decay amplitude for 4 4 T + T :  (a) general structure; (b) in the C-M 
system. 

The S-matrix takes the form 

(20.31) 

The decay rate then follows from Fermi’s Golden Rule 

(20.32) 

Go to the C-M system (Fig. 20.5b). The rate is then calculated through the following 
series of steps: 

2T - 
dufi = ,ITfi126(Wf - Wi)dpf 

(1) In this frame 

Wf = 2 & 7 7  ; Wi = m, 

aw, = 2  z 2- 4 (20.33) 

( 2 )  The density o f  final states for a particle satisfying periodic boundary con- 

q 
84 J&7 W q  

ditions in a box of volume R is 

(20.34) 

(3 )  Since there are identical particles in the final state that come out back- 
to-back, the integration over 1/2 the total solid angle counts all processes. 
Thus the integral over final solid angles is 

(4) The isospin sums are given by Cap1JapI2 = 3; 
(5) A combination of these factors yields ufi = (3g$/32r)(q/wq)m,; 

dR, = 275 
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(6) The kinematics give 
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m, = 2w, = 2d377 

(7) The final result for the decay rate is 

(20.35) 

(20.36) 

Let us put some numbers in this expression. It is convenient to first summarize 
in one place the masses and coupling constants used so far (chapter 14 and [SeSS]): 

mp = 938.3 MeV = 14.40 
4n 

m+ = 139.6MeV 

m, = mu = 782.0MeV 

2 2 

_ -  " - 7.303 
4n 

-- gv - 10.83 
4n 

C," G 9," (g) = 267.1 

C," = 9," ($) = 195.9 

2 2 
QsQ4 QlT 

4n ms M 

2 2 

m, = 550MeV 

-- - -  -- " - 9.756 

In subsequent work we will also make use of the combination 
2 f: - 9, (-) P = 0.0797 

4n 2M 

(20.37) 

(20.38) 

These values give for the width of the scalar meson 

r+m+n - - 1734MeV (20.39) 

There is no angular momentum barrier, and the scalar meson r$ just falls apart into 
pions in free space. There is thus no simple interpretation of the degree of freedom 
of the scalar field as a particle (meson) since its width is so much larger than its 
mass in this model. 
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Chiral invariance 

We start from two observations. First, it was shown in the previous chapter that if 
the following condition is satisfied 

(21.1) 

then the s-wave T-N scattering lengths arising from the pole terms vanish in the 
limit of zero pion mass 

(21.2) 

Second, as we shall discuss in detail in Part 4, the charge-changing weak inter- 
actions couple to hadronic vector and axial vector currents (see e. g. [de73]) 

(21.3) 

The first current is a Lorentz four-vector and the second is an axial vector; both 
are isovectors. The vector current is conserved 

The axial vector current is partially conserved 

- ~ A A  p 2 o 0  

8.x 

(21.4) 

(21.5) 

One knows from Noether’s theorem that an invariance (symmetry) of the lagrangian 
leads directly to a conserved current [see Eq. (13.5)] 

(21.6) 

Therefore, let us go back and examine the symmetry structure of the lagrangian. 
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21.1 Isospin invariance - a review 

Recall the situation for isospin [Bj64, Wa921. Take the lagrangian density of chapter 
20 (with gb = 0 initially to simplify the illustration). 

(21.7) 

The last two terms are isoscalars and will not enter into the argument. In this 
expression the covariant derivative is defined by 

The isospin transformation is defined by 

e-iw.3'+e+iw.3' - e;r .w 
- - L- 19 

(21.8) 

Here T is an operator in the abstract occupation number Hilbert space and the r 
are 2 x 2 Pauli matrices. A bar under a symbol denotes a matrix. This relation can 
also be written as1 

R(w)+R(w)-l  = - $1 = ?-(w)+ - (21.10) - 

The corresponding transformation on the isovector pion field is just a rotation 

R(w)7ria(w)-1 = 7r: = UZj(W).j (21.11) 

These transformations leave the lagrangian in Eq. (21.7) invariant. 

L + L 1 = L  (2 1.12) 

It is often convenient (and enough for Noether's theorem) to specify to the 
infinitesimal transformation w = E + 0 where the transformation becomes 

(21.13) 

'In subsequent developments in this book, carets will often be omitted from above operators in 
the abstract Hilbert space when the operator nature is evident from the context. The matrix 
notation of a bar under a symbol will similarly often be suppressed once the matrix structure is 
clear. 
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The quantities appearing in the second equation are defined by 

- .=( ;:) (t.) z 3k . = - -i&. y k  . (21.14) 

Equation (21.13) is a rewriting of the relation 6.rr = --E x T, which characterizes 
an infinitesimal rotation. Since they represent just the infinitesimal form of the 
transformation, Eqs. (21.13) still imply 6C = 0.’ 

It now follows from Noether’s theorem [Eq. (21.6)] that the following current is 
conserved (the constant arbitrary overall infinitesimal factor --E can be dropped) 

(21.15) 

The integral over all space of the fourth component of the current is the total 
charge 

T -  d 3 x V o  (21.16) s 
This has two properties: 

(1) If the current is conserved then, just as in the case of electrodynamics, the 
total charge is a constant of the motion; 

(2) The total charge is also the generator of the transformation; here the three 
charges form the isospin operators, which generate isospin  transformation^.^ 

The isospin operator is thus given by 

(21.17) 

In quantum mechanics, the generators are characterized by their commuta- 
tion relations. These can now be computed with the aid of the canonical (anti-) 
commutation rules 

2Note the notation here, is the pion field and not the canonical momentum, which will explicitly 
be denoted by *,& u, etc. 

Just as the angular momentum operators J’generate rotations. 
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It then follows from the defining Eqs. (21.17) that 

(21.19) 

The generators of the isospin transformation form a Lie algebra, and just as with 
angular momentum, it is the algebra of SU(2). 

A h  

[Ti, Tj] = i&ijkTk 

21.2 The chiral transformation 

What about the (partial) conservation of the axial vector current? To what sym- 
metry principle does this correspond? We again define an operator transformation 
as in Eq. (21.10), only this time of the form 

e-iw.T5+ e+iw.T5 - = - +' = [ c+r .w75]+  - (21.20) - 

This transformation mixes Dirac components as well as isospin. The matrices ap- 
pearing in this expression are thus 8 x 8; they are unitary 

Note also that 

(21.22) 

These follow from (75, 7P} = 0. The infinitesimal form of this chiral transformation 
is 

(21.23) 1 
2- 

6 + = [ i ~ . - r ~ 5 ] $  - 

It is proven in Prob. 21.2 that 
W W = 

= 

cos - + in.  r sin - 
2 2 

cos - + in.  7 7 5  sin - 2 2 

e j r .w  

e+r.wy5 W W 
(21.24) 

Here w = nw with n a unit vector. The first equation is a relation on the 2 x 2 SU(2) 
matrices, and the second on the 8 x 8 chiral matrices. 

Let us now look at the transformation properties of the various parts of the 
lagrangian in Eq. (21.7) under this chiral transformation: 

(1) The transformation of the baryon kinetic energy in the lagrangian goes as 
follows [note Eqs. (21.22)] 
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The kinetic energy is invariant under the chiral transformation because 
of the presence of the additional yp. It is assumed in this analysis that 
w = constant independent of space-time so that it can be moved through 
the derivatives - it is a global (rather than a local) invariance; 
Consider the transformation of the interaction term in Eq. (21.7) where for 
simplicity we initially assume gT = gs. The transformation of the baryon 
field alone leads to the following 

(21.26) 

The finite transformation is analyzed in Prob. 21.3. Here we explicitly 
evaluate the infinitesimal form with w G E -+ 0 

= ?+3[(4 - E .  7r) + i 7 5 7 .  (7r + + o ( E ~ )  (21.27) 

This is not the full story, however, since one must also simultaneously trans- 
form the meson fields; for infinitesimal transformations these transforma- 
tions can be written in the form 

R4R-1 = 4' = (b+.d(b 

R7rR-l = 7r' = 7r+67r (21.28) 

It is evident that the additional terms arising from the transformation of 
the baryon fields alone can be exactly canceled by the transformation of the 
meson fields if that transformation is defined to satisfy 

(2 1.29) 

The interaction lagrangian is then left invariant under this overall chiral 
transformation 

SLi,t = 0 (21.30) 

If one starts from a more general interaction term that has different coupling 
constants for the scalar and pion fields [Eq. (21.7)] 

Lint = l J ( g s 4  + igr75 7. ~ ) 1 c I  (21.31) 

4Again, this is enough to identify the corresponding current through Noether's theorem; we now 
judiciously suppress the explicit matrix underlining. 

(2)
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then the transformation of the meson fields that leaves this interaction term 
invariant depends on the strengths of the couplings 

It is undesirable to have a symmetry property of the lagrangian depend on 
the strength of the ~oupl ing,~ and therefore it shall henceforth be assumed 
that there is a single coupling constant 

gn  = gs  = 9 (21.33) 

The possibility gs # gn is further ruled out by the symmetry properties of 
the meson kinetic energy, which we proceed to examine; 
The kinetic energy for the meson fields takes the form 

LC0,es = -5  [ (g)2 + ($)2] (21.34) 

Now with a transformation of the form in Eq. (21.29), the bilinear combi- 
nation +2 + 7r2 is invariant. This follows since 

6 ( @ + 7 r 2 )  = 2 ( 4 6 4 + 7 r . h )  
= 2(4E.7r-7r.E4) = 0 (21.35) 

It follows from this observation that the meson kinetic energy is invariant 
under the infinitesimal chiral transformation in Eq. (21.29) 

bCmes 0 = 0 (21.36) 

Consider next the meson mass and meson interaction terms. A meson 
potential of the form -V(42 + 7 r 2 )  can now be added to the lagrangian. We 
choose to include the meson mass terms in this V .  Note that the meson 
fields are assumed to enter in the bilinear combination 42 + 7r2 to ensure 
invariance under the chiral transformation, as discussed above; 
Finally, consider how the baryon mass term transforms 

RGM11,R-’ = $ M E +  # $M$ (21.37) 

The baryon mass term is not invariant under the chiral transformation. 
Since the baryon mass represents the largest energy in the problem, ones 
first reaction is simply to quit at this point and try another approach to 
pion physics. Alternatively, one can invoke the concept that the baryon 
mass term in the underlying lagrangian indeed vanishes, the lagrangian 
respects chiral symmetry, and the baryon mass is then generated through 
spontaneous symmetry breaking. This can arise through the nature of the 

5Which is renormalized order by order. 

(3)

(4)

(5)
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meson mass and interaction term V, as we shall see. With an appropriate 
form of V, the scalar field will develop a vacuum expectation value 

(4)vac  # 0 (21.38) 

This term produces a baryon mass and spontaneously breaks the chiral 
symmetry. Conventionally, one denotes the scalar field appearing in the 
underlying chirally symmetric lagrangian, the field that develops the vac- 
uum expectation value, as (T where 

(+ac = g o  (21.39) 

The field 4 is then conventionally used to denote the fluctuations about this 
vacuum expectation value6 

( T = ( T o + +  (2 1.40) 

(6) In summary, the following is a lagrangian for baryons, isoscalar scalar and 
vector mesons, and pions that is invariant under the chiral transformation 

D 

-; [ (&)2+  (&32] - V ( C 2 f T 2 )  (21.41) 

The covariant 
invariant 

derivative is defined in Eq. (21.8). This lagrangian is left 

6L = 0 (21.42) 

under the chiral transformation 
1 sQ = [ie .  2 r y 5 ] Q  

su = e-7r 

s7r = -e(T 

21.3 Conserved axial current 

(21.43) 

Noether’s theorem in Eq. (21.6) implies that this chiral invariance property of the 
lagrangian leads to a conserved current (the constant overall factor of -e is again 
removed) 

(2 1.44) 

6As we shall see, and as we shall subsequently do, one should really denote this field with a different 
notation, say ‘p; it is not to be associated with the scalar field 4 of QHD-I. 
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The pion T is an isovector pseudoscalar field, and this is evidently an isovector, 
Lorentz axial-vector current. 

The conservation of the axial vector current in Eq. (21.44) can also be proven 
explicitly from the equations of motion, and it will be of use in the subsequent 
developments to do so. The Euler-Lagrange equations derived from the lagrangian 
density in Eq. (21.41) for the (4, $, (T, T) fields, respectively, are as follows: 

c 
Here the derivative D /Dx, acts to the left and is given by 

c L 

a 
- +igvVp ; acts to left - - -  - D 

Dx’” ax’” 

(21.45) 

(21.46) 

Now use these relations to calculate the four-divergence of the axial vector current 

t 

D 1  1 
= i $  - 7 5 - 7  - ~5577~- Dx’” D ] $ + T ( & ) 2 u - ( T ( & ) 2 T  - [  Dx, 2 

(21.47) 

Substitution of Eqs. (21.45) now shows that this expression vanishes 

-- - 0  axe, (21.48) 

This relation cannot hold exactly if the pion mass is nonzero for then the pion 
would not decay (Prob. 21.5). Thus chiral symmetry must be an upprozzmute one 
in nature where p # 0. We discuss a model for this breaking of chiral symmetry at 
the lagrangian level in the next chapter. For the present, we continue the discussion 
of the conserved current. 
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21.4 Generators of the chiral transformation 

The integral over all space of the fourth component of the conserved axial vector 
current yields the following expression 

1 T 5  = /d32 [$+ 1 + 7i0 - ir7r 
(21.49) 

Just as in the discussion of the isospin transformation above, the three components 
of the vector operator T 5  have the following important properties: 

0 They are constants of the motion; 
0 They are the generators of the chiral transf~rmation.~ 

Just as with the generators of the isospin transformation in Eq. (21.17), the 
generators of the chiral transformation in Eq. (21.49) can again be characterized 
by their commutation relations. These are evaluated with the aid of the canonical 
(anti-)commutation relations satisfied by the ($, n) fields in Eqs. (21.18) as well as 
that satisfied by the u field 

[a(x), b(x’)] = ib(3)(X - x’) (2 1.50) 

The result is (appendix B.4) 

[?:,T:] = ‘ k i j k T k  [Ti, Tj] = i E i j / &  

[Ti,?:] = i E i j k T t  (21.51) 

Note that it is only the entire set of isospin and chiral generators (T ,T5)  that is 
closed under commutation, and hence forms a Lie algebra. As shown in appendix 
B.4, appropriate linear combinations of the generators reduce this algebra to that 
of two commuting SU(2) subalgebras - s U ( 2 ) ~  @ sU(2)R.  

Further progress depends on the specific form of the potential term V(a2 + 7r2 )  

and generation of the baryon mass by spontaneous symmetry breaking. We proceed 
to a discussion of the chiral 0-model of Schwinger and Gell-Mann and Lkvy [Sc57, 
Ge601. 

7The explicit proof, through use of the canonical (anti-)commutation relations, that the operators 
in Eq. (21.49) do indeed generate the transformation in Eq. (21.43) as the infinitesimal form of 
the defining Eqs. (21.20) and (21.28) is left as an exercise for the reader (Prob. 21.6). 
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The a-model 

The development in this chapter is based on [Sc57, Ge60, Se861. We first summarize 
the argument up to this point. Consider the following lagrangian density built from 
isospinor baryon, isoscalar scalar and vector, and isovector pion fields {$, c, Vx, ?r} 

Here 

(22.1) 

(22.2) 

The following statements then hold: 

This lagrangian is invariant under isospin transformations. As a conse- 
quence, there is an isovector current V x ( x )  that is conserved aV,/dxx = 0; 
This lagrangian is invariant under chiral transformations. As a consequence, 
there is an isovector, axial-vector current Ax that is conserved aAx/dxx 
= 0; 
This latter symmetry is observed to be only an approximate one in nature 
where the mass of the pion is nonzero p # 0 (PCAC); it can be expected 
to hold exactly only in the limit p * 0; 
This lagrangian is invariant under the symmetry group S U ( ~ ) & ! ~ U ( ~ ) R ;  
There is a conserved baryon current B, = to which the neutral 
vector meson V, coup1es;l 
This lagrangian is invariant under parity, charge conjugation, and time 
reversal (P, C, T); 

lThis follows, as in the last chapter, from the invariance of the lagrangian under phase transfor- 
mations of 3 and Noether's theorem (Prob. 22.3). 
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(7) The quantum theory generated by this lagrangian is renormalizable if the 

(8) The baryon mass term is absent. 
potential V is at most quartic in the meson fields; 

We must now discuss the form of V .  

22.1 Spontaneous symmetry breaking 

If the potential V represents just the usual meson mass term then 

1 2 2  2 ~ : ~ ~ ~ ( u ~  + 7r2) = -m (u + 7r ) 
2 

(22.3) 

This potential surface is illustrated in Fig. 22.la. 

&i? k% 
( 1 - c o m p o n e n t 1  ( 1 - c o m p o n e n t )  

[a1 [ bl 

Fig. 22.1. Meson potential surfaces V for (a) usual mass terms; (b) spontaneous 
symmetry breaking. 

Note that the meson masses must be equal mz = m: 5 m2 if chiral symmetry 
is to be preserved. This potential is clearly minimized if 00 = 7r0 = 0; hence there 
is no constant expectation value for the meson fields in the vacuum. 

In contrast, assume the potental V has the following form, as illustrated in 
Fig. 22.lb 

u2 + 7r2) - v2] vo = - [( x 
4 

(22.4) 

Here X > 0 and we will henceforth assume g > 0 and v > 0. The potential depends 
only on the combination (u2 + 7r2) and respects chiral symmetry. Since it is at most 
quartic in the fields, it leads to a renormalizable theory. Now, however, it is clear 
that the origin is a local mmimum rather than a true minimum, and the lowest 
energy state in V ,  the vacuum, will have a nonzero, constant expectation value for 
the meson fields. Thus, in this chirally symmetric theory, with this particular form 
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for V, one will have 

(0' + n 2 ) v a c  # 0 (22.5) 

If the vacuum is to have a definite parity, as appears to be the case in nature, then 
the vacuum expectation value of the pseudoscalar n field must vanish 

(n)vac = no = 0 (22.6) 

How can these observations be reconciled? It has already been pointed out that 
chiral symmetry cannot be an exact symmetry of nature, but can be expected to 
hold only in the limit that the pion mass p + 0. Let us therefore augment the 
lagrangian in Eq. (22.1) with a chiral symmetry breaking term chosen so that the 
true minimum of the potential lies at a point satisfying Eq. (22.6). Evidently an 
additional term of the form 

with E > 0 will accomplish this objective. This additional term represents a plane 
in Fig. 22.lb whose addition tilts the potential so that a true minimum occurs along 
the negative u axis (Fig. 22.2). 

m i n i m u m  I 

Fig. 22.2. Contribution of additional chiral symmetry breaking term EU to potential 
V as viewed along the u axis. 

Now in the true minimum of V, in the vacuum, there will be an additional constant 
field uo 

(22.8) 

What does the additional term in Eq. (22.7) do to the equations of motion and the 
conservation of the axial vector current? It is clear from Eq. (21.45) that only the 
equation of motion for the u field is modified; it now contains an additional term E 

(&) u = -g$1c, + 2UV'(U2 + n2) + & (22.9) 
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The modification of the four-divergence of the axial vector current follows immedi- 
ately from Eq. (21.47) 

(22.10) 

It is proportional to the 7r field with constant of proportionality E ;  evidently exact 
chiral symmetry is restored in the limit E -+ 0. 

Now there are constant mean fields (no ,  T O )  in the vacuum, and for the ground 
state one just minimizes the total V 

x 2 

4 
v = - [(n2 + 7r2) - w2] + &U 

The minimization conditions are 

(22.11) 

(22.12) 

For positive E ,  the second equation implies [(n," + T:) - u2] # 0; the first equation 
then implies that TO = 0, in accord with the second of Eqs. (22.8). The first of 
Eqs. (22.8) is now also satisfied with 00 given by the solution to 

AcrO[crO 2 - w2] = -& (22.13) 

It is evident from Fig. 22.2 that the absolute minimum of V occurs for negative 00. 

One can therefore introduce the following definitions 

M 
(To = -- 

9 
& - - p  M 2  

9 

2 
m,2 -' (22.14) Xr 

2M2 

The first relation defines a baryon mass M ,  for the presence of this term precisely 
serves the role of a mass in the Dirac lagrangian 

D D -+=- P o  ] +=-$ - [  7 .=+MI+ (22.15) 

The second of Eqs. (22.14) expresses the chiral symmetry breaking parameter E in 
terms of what will turn out to be the pion mass p2 = mz. Note that now one 
has explicitly E + 0 as p2 + 0, and chiral symmetry is restored in the limit that 
the pion mass goes to zero. The third of Eqs. (22.14) defines the scalar mass ml;  
evidently ml > p2 here. These mass terms will be identified through the quadratic 
field terms in the lagrangian obtained in a new expansion about the true minimum 
of v.2 

2Note that if one takes {g, M, p = m,} from experiment together with {gu, mu},  where g = g,, 
then the only parameter left in the model is m,, the mass of the scalar field. 
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Now consider excitations built on this ground state. One looks for 

0 = 0 0 + 4  

7r 7 r =  (22.16) 

Here 4 is the excitation of the scalar field and 7r that of the pion field; these take 
place about the minimum of the potential sketched in Fig. 22.3. 

-mass ' t e r m  f o r  scalar field m 2  
S 

r"l 

2 / ' m a s s  / t e r m  f o r  pion field 

k J  

Fig. 22.3. Sketch of the meson potential in which the excitations about the minimum 
take place. 

Substitution of these relations into the lagrangian density in Eq. (22.1) leads to 
the following 

1 M 
g(--++++i7.7ry5) 11,+c: D e = -11, y-- - [  '"Dz, 9 

-A 2 [ (g)2 + (32] - { [ ( D o  + +)2 +7r2]  -?I">' 

- 4 0 0  + 4) (22.17) 

Collect the terms in V (recall it is -V that appears in L): 

(1) The constant terms are 

2 2 2  vo = - (Do -?J ) +&DO 4 
(2) The terms linear in 4 are 

(22.18) 

(22.19) 

This expression vanishes at the minimum by Eq. (22.13); 



192 The o-model 

(3) The terms quadratic in x are 

& 
7r2 

x 
4 2ffo 

v, = -2(ffi-v2)7r2 = -- 

v, = - p 7 r  1 2 2  (22.20) 
2 

Here the minimum condition in Eq. (22.13) has again been used, as well as 
the definitions in Eq. (22.14). One can now identify p2 as the pion mass; 

(4) The terms quadratic in 4 are analyzed in the same manner 

(22.21) 
1 
2 

V, = -m:$2 

This allows an identification of m: as the scalar mass; 

then given by 
(5) The remaining cubic and quartic interactions of the meson fields (4,  n) are 

A collection of these terms then yields the rewritten V 

A constant term in V is irrelevant. 

In summary, with the g-model for the generation of the baryon mass by spon- 
taneous symmetry breaking, the lagrangian density of Eq. (22.1) takes the form 



Spontaneous symmetry breaking 193 

Several aspects of this result deserve comment: 

0 This result, with the isoscalar vector field set equal to zero V, = 0, is the 
a-model of Schwinger [Sc57] and Gell-Mann and LQvy [Ge60]. Reference 
[Le72] is a very nice discussion of chiral dynamics, which includes many 
applications of the a-model and further theoretical analysis of it; 

0 The partially conserved axial vector current (PCAC) now follows as an 
operator relation 

Hence 

(22.25) 

(22.26) 

Chiral symmetry is an exact symmetry of the lagrangian in Eq. (22.24) in 
the limit E = (M/g )p2  + 0. Chiral symmetry is broken if p2 = ( g / M ) &  # 0; 
Equation (22.24) looks like the lagrangian we started with in Eq. (20.8), 
only now there is a single coupling constant g and an additional prescribed 
set of nonlinear ~ o u p l i n g s . ~  In particular, one can identify the previous 
coupling introduced on an ad hoc basis in chapter 20 

2 (22.27) 1 
2 L+ = -g+m3d7r 

From Eq. (22.24) one has 

(22.28) 

In the chiral limit p2 = 0 there is also a single coupling constant 

g3 = gT = (22.29) 

In chapter 20 the following relation was imposed on the exchanged scalar 
coupling constant and mass 

(22.30) 

to ensure a cancellation for the s-wave 7r-N scattering lengths so that 

(22.31) 

3What do these additional couplings do to the RMFT of nuclear matter in chapter 14? If one 
makes a preliminary (invalid) identification of 4 with the scalar field of QHD-I, then (q5)n.m. = 40 
and M* = M - 940.  The potential in QHD-I is just VO = (1/2)m:4% = ( m ? / 2 g 2 ) ( M  - M * ) z .  
The reader can show that in the chiral limit with p2 = 0 the potential is now given by &hira, = 
Vo[(M + M*)2/4M2]. This changes the self-consistency relation for M * ;  new abnormal solutions 
may be obtained [Le74, Le751. There is little change from the potential of QHD-I when M* M M .  
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Now observe that in the chiral limit p2 = 0 the relation in Eq. (22.30) follows 
identically from Eqs. (22.28) and (22.29)! The relation in Eq. (22.30) thus 
follows as a direct result of the underlying chiral symmetry of the lagrangian 
in Eq. (22.24); 

0 Thus in the soft pion  limit where qx ---t 0, the pions decouple from the 
nucleons. This is a direct result of chiral symmetry; 

0 Note that while p = m, = 139.6 MeV may be small on the scale of particle 
physics, it is significant on the scale of nuclear physics, in which case going 
to the chiral limit p + 0 is nontrivial; 

0 Even when the relation in Eq. (22.30) is satisfied, one still has a cancellation 
of two orders of magnitude in the scattering amplitude required to obtain 
the small scattering lengths and Eq. (22.31). It would be much more satis- 
fying to effect this cancellation directly in the lagrangian, and then have to 
deal only with scattering amplitudes that are already of the right order of 
magnitude. To accomplish this, one can carry out a chiral transformation as 
a unitary transformation on the lagrangian. The argument is originally due 
to Weinberg [We67, We68, We791, and it is presented in detail, with all the 
requisite algebra, in [Wa95]. Rather than simply repeating that material 
here, we prefer to present an analogous argument in a different, somewhat 
more transparent, form in chapter 24. 

For the present, we proceed to investigate some of the dynamical consequences 
of the simple model developed so far. 



Chapter 2 3 

Dynamic resonances 

In chapter 22 the fields {+, V,, u, n} were used to construct a chiral-invariant la- 
grangian, and the mass of the baryon was then generated by choosing a meson 
interaction potential V that leads to spontaneously broken chiral symmetry. The 
outcome of that discussion is the following lagrangian density 

9 1 g 2  
+=(m; - p2)cp(cp2 + n2) - 5 ( G) (m; - p2)(cp2 + 7r2)2 (23.1) 

Here 

(23.2) 

We change notation slightly for clarity in the following discussion; the scalar field 
is here denoted cp, and its mass by mu. Several features of the above result are of 
interest: 

The underlying lagrangian is chiral invariant when E = (M/g )p2  = 0. 
PCAC is thus satisfied as are the soft-pion theorems (chapter 22). If one 
identifies { M ;  g = g,; p = m,; m, = m,} with experimental values, and 
takes gv from chapter 14, then there is only one parameter left - the mass 
m: of the scalar fie1d;l 
The last line in this chiral-invariant lagrangian represents strong, nonlinear 
couplings in the fields { c p ,  n}; 
If this chiral scalar field is identified with the low mass scalar field of chapter 
14 and 15 with mu = m, = 550MeV, then the nonlinear terms in the 

Weinberg's chiral transformation demonstrates that this scalar field decoupples in the limit that 
its mass becomes very large rn: 4 00 (see [Wa95]). 

195 



196 Dynamic resonances 

last line are such as to destroy the successful phenomenological RMFT 
description of nuclear matter and finite nuclei discussed there [Se86, Se92, 
Fu961. We have also noted that the empirical N-N scattering amplitude 
exhibits evidence of strong, low-mass isoscalar scalar (and vector) exchange; 
We are thus faced with the following problem: Can one take the meson- 
baryon dynamics to be described by this underlying chiral-invariant la- 
grangian with a very large (but finite) m,, and then generate a resonant 
low-mass scalar dynamically through the strong nonlinear couplings, which 
would then play the required nuclear role? Can we understand a light scalar 
as of dynamic origin? We proceed to discuss the calculation of [Li89, Li901 
(see other references cited there). 

23.1 A low-mass scalar 

In this section we demonstrate that the strong, nonlinear, chiral-invariant couplings 
involving the (9, T} present in the lagrangian in Eq. (23.1) will give rise to a low- 
mass, broad, (near-)resonant amplitude in the ( O + ,  0 )  7r-7r scattering channel. The 
argument follows [Li89, Li901. 

The process of 7r-7r scattering is illustrated in Fig. 23.1. 

Fig. 23.1. 7r-7r scattering. 

The analysis of this process is discussed in appendix B.5, where it is shown that the 
general form of the S-matrix is given by 

One introduces the same kinematic variables (s, t ,  u)  as in 7r-N scattering (appendix 
B.3). The differential cross section in the C-M system is given by 

($) CM = IfCM12 

(23.4) 

The Feynman rules are generated directly from Eq. (23.1) (see chapter 20); they 
can be used to compute the pole contributions to the scattering amplitude arising 
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from the meson interaction processes illustrated in Fig. 23.2. 

Fig. 23.2. Tree-level contributions to 7r-7r scattering amplitude in this theory. 

The 7r4 contact term in Eq. (23.1) contributes to 7r-7r scattering and its contri- 
bution must also be included; thus we here work at "tree level" (no loops). The 
T-matrix arising from this sum of graphs follows immediately 

A combination of these results gives 

Now consider the ( J " ,  T )  = (O+, 0) channel (the channel of the low-mass scalar). 
First note that since the quantity 7r2 = ra7r, is an obvious isoscalar, we can identify 
the state LIaa > as the isoscalar channel.2 Hence we examine d3 

9 3 

=-(m;-p2) g2 { 3 ('"') - + (- t -m$  + d)} u-mz M2 s -mz  (23.7) 

Note that this amplitude is symmetric under the interchange t F+ u, as it should be 
for bosons. 

2Repeated isospin indices in this discussion are summed from 1 to 3. 
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Consider next the s-wave amplitude. First note that in the C-M system one has 
(appendix B.5) 

t = -2q2(1- COSO) s = w2 = 4(q2 + p2) 

u = -2q2(1+ COSO) s + t + u = 4p2 (23.8) 

The s-wave scattering amplitude can now be projected by simply taking the angular 
average 

1 +1 
t o  = 1 / dcos0-Trri,, 

2 -1 3 
(23.9) 

One thus needs to evaluate 

The result is 

Consider the soft-pion limit of this result. First go to threshold by setting 
s = 4p2 and q2 = 0 

(23.12) 

Note the cancellation of the terms of 0(1 )  inside the brackets; the result is 

= -- 7g2p2 + 0 ( ~ 4 )  (23.13) 
M2 

The soft-pion limit is again built into this amplitude, which was calculated from 
the chiral-invariant lagrangian in Eq. (23.1). 

p=o 0 (23.14) 

Note that the inclusion of the 7r4 contact term was essential in arriving at this result. 
Thus the tree amplitude has the correct pole structure and satisfies the soft-pion 
constraint imposed by chiral symmetry. 

It is now necessary to develop a framework in which one can describe resonance 
dynamics. The method that shall be used is to take the Born, or tree amplitude, 
as the driving term and then introduce a procedure to unitarize that amplitude. 
Forcing it to satisfy unitarity is equivalent to summing a selected part of an infinite 
series of Feynman diagrams. This infinite summation of graphs allows for repeated 
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interaction, and with an appropriate Born term, one can build up a dynamic reso- 
n a n ~ e . ~  

We initially assume two equal mass distinguishable spinless particles and elastic 
scattering in this discussion for clarity and to illustrate the method. One knows 
from quantum mechanics that 

(g) CM = lfCM12 

M 

f C M  (23.15) 
1 =o 

It follows from unitarity that the partial wave amplitudes fl must have the form 

(23.16) 

For elastic scattering, the phase shifts 61 are real. Equation (23.16) can be rewritten 
as 

(23.17) 1 sin61 1 sin61 - -  1 1  - f l  = -- = - q e-61 

The imaginary part of 11 f i  is thus a known quantity 

q cos 61 - i sin 61 q cot61 - i  

1 
Im- = -q fl 

It follows from Eqs. (23.4) and (23.9) that for s-waves 

(23.18) 

(23.19) 

Hence 

Here 

(23.21) 

Suppose one has some real first approximation to Eq. (23.20), such as a set of pole 
contributions (Born or tree amplitude) K ( s ) t p ( s ) .  (The situation is illustrated in 
Fig. 23.3.) 

31n the present case, the Born amplitude is given by the set of graphs in Fig. 23.2. 
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Fig. 23.3. (a) Driving term; (b) unitarized (partial) summation of graphs in de- 
scription of resonance dynamics. 

This amplitude can be forced to satisfy Eq. (23.18), and hence unitarized, by making 
the replacement 

K (s)t? ( s )  

1 - i K ( s ) t T ( s )  K ( s ) t Y  - (23.22) 

This clearly gives Im(l/eiso sindo) = -1, as should be. In summary, we shall take 
as the unitarized amplitude 

K (  s ) t P (  s) 

1 - iK(s)t?(s) eiso sin SO = (23.23) 

To interpret this result, simply expand the denominator; one finds a repeated ap- 
plication of the driving term (Fig. 23.3a), with just enough of the sum over inter- 
mediate states to ensure unitarity (Fig. 23.3b). Of course this is an approximation 
scheme, and one expects these results to be quantitatively modified in any strong 
coupling theory; however, the qualitative features of repeated application of a driv- 
ing term leading to resonance behavior might be expected to remain4 

It remains to take into account the identity of the particles - here bosons. 
The required modification in the T = 0 (symmetric) channel in Eq. (23.15) is 
(Probs. 23.1-3) 

(23.24) 

40ne can give a more rigorous basis for this discussion by invoking the N/D solution to dispersion 
relations where only a certain set of nearby singularities is retained. See [Ch62, Ga661. 
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Hence in Eqs. (23.19) and (23.21) 

201 

1/2 4 -  1 K ( s )  = -- - 
16nW 32n 

(23.25) 

The results of Serot and Lin [Li89, Li90] for n-7r scattering in the (O+, 0) channel 
starting from the driving term in Eq. (23.11) are shown in Fig. 23.4. The scalar 
strength required in the (4, V,) model of QHD-I is reproduced at an appropriate 
energy for arbitrarily large values of the chiral c mass.5 

125 

25 

0 

s-wave I t = O   TI Phase Shift 

I 

0 250 500 750 1000 1250 
s'" (MeV) 

Fig. 23.4. The calculated unitarized s-wave n-n phase shift as a function of (twice) 
the pion C-M energy compared with the experimental data. The chiral n masses 
used here are m, = 950MeV (a), 1400MeV (b), and 14 GeV (c). From [Li89, Li901. 

23.2 The A(1232) 

The n-N resonance in the (:+, %) channel is the first excited state of the nucleon 
(Fig. 23.5), and this A(1232) state, which lies in the n-N continuum, dominates 
the interaction of intermediate energy pions with nuclei. Its effects are all the more 
important because of the suppression of the n-N s-wave interaction, which we have 
been discussing. Any model that claims a connection with nuclear physics must 

5See also the figure in [Li89, LiSO] where there is an actual peaked contribution to the driving 
term in the N-N interaction. 
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MeV 
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Fig. 23.5. First excited state of the nucleon. 

contain the A(1232). It is not possible to include a field for this particle in a simple 
renormalizable theory, and so the only possibility, if one starts from the lagrangian 
of Eq. (23.1), is that this state also occurs as a dynamic resonance. 

Fortunately, one knows from the work of Chew and Low in the static model 
[Ch56a], and on the relativistic extensions of this work [Ch57, Fr60, Li911, that 
this will indeed be the case (see also [Ga66]). The driving mechanism is nucleon 
exchange. 

We retain the nucleon pole terms illustrated in Fig. 23.6. 

Fig. 23.6. Nucleon pole terms as driving mechanism for the A(1232). 

The pole contribution was evaluated in chapter 20 

A*=O (23.26) 

The isospin 3/2 amplitude is given by B3l2 = B+ - B- (appendix B.3), and hence 

(23.27) 

Now project out the J" = %' amplitude; the procedure is given in appendix B.3. 
To simplify the discussion, consider first just the static limit (as did Chew and 
Low) .6 Write 

W = M + w  w2 G q2 + p2 (23.28) 

6The scalar exchange graph is omitted here for simplicity; it is included in the calculations in 
[Fk60, Li911. As m, + 00, scalar meson exchange does not contribute in the J" = $+ channel. 
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Now let M + 00. In this case one has 

u = 2M2 + 2p2 - W 2  + 2 q 2 ( 1  - X) 

M 2  - u = W 2  - M 2  - 2w2 + 2 q 2 x  

-+ 2Mw + 2q2x +.  . . (23.29) 

Note the linear dependence on x = cose in the last expression. An expansion in 
inverse powers of M gives7 

M+W 

B3/2 = -- 
2Mw 

From appendix B.3 one has 
1 

I+ - - {4M2WB1 + 2Mq2B2} 
- 32.rrM2 

To leading order in 1 / M  only the first term contributes and 

(23.31) 

(23.32) 

Hence the nucleon pole contribution to the scattering amplitude in the (g', $) 
channel is 

(23.33) 

Note that this amplitude f l + / q 2  has a simple pole in the variable w at w = 0. 

have the following properties: 
Consider now the dynamics in this channel. The full amplitude f l +  ( w ) / q 2  must 

( 1 )  It must have the analytic properties in the variable w indicated in Fig. 23.7. 
In particular, it must have the pole in Eq. (23.33); 

Fig. 23.7. Analytic properties of the amplitude f l + / q 2  as a function of 
w .  Here the left-hand crossed cut is neglected for simplicity; its effects can 
easily be included (see [Ch56a, Ch57, Ch62, Fr60, Li911). 

'One must keep the 2 = cose dependence in these expressions to get a nonzero result when 
projecting the amplitude in the J" = $+ channel. 
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(2) The scattering amplitude fi+/q2 = ei61+ sinb1+/q3 must satisfy unitarity 
on the right-hand physical cut 

The solution to this problem can be written in the form [Ch62] 

-- fl+ N(w) 
q2 D(w) 

- 

(23.34) 

(23.35) 

Here N(w) has all the left-hand singularities (in this case just the pole at the 
origin) and N(w) is real on the right-hand unitarity cut. We will take 

(23.36) 

The denominator D(w) has the right-hand unitarity cut. Since the exact value of 
the amplitude is known at the pole, which is contained in N(w), one can subtract 
D there and impose the condition D(0) = 1. Unitarity then dictates the form 

(23.37) 

Evidently, on the right-hand cut 

Thus we have a solution to the problem posed. 
A combination of these results gives the explicit expression 

(23.39) 

The integral does not converge in this static limit. Chew and Low put in a cut-off 
[Ch56a]; the relativistic version, retaining all the correct kinematic factors, con- 
verges [F'r60, Li911. Since the integral gets most of its contribution from high w', 
one can neglect w in the denominator in the region of interest. In this case D(w) 
takes the approximate form' 

(23.40) W 

WR 
D(w) M 1 - - - Zq3N(w) 

8Here 

; (5) f * I  - 1 
W R  

Note that N ( w )  must have the correct sign (positive) to get a resonance with W R  > 0. 
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Now 

- -  q2 - qycots1+ - 2 )  = - [ (1 - 2) - iq3N(w)] (23.41) 
fl+ N(w) 

The term -iq3 cancels, and the result is * cot Sl+ = 7 1 (1 - E) 
3wp2 f, 

(23.42) 

This is the Chew-Low effective range formula [Ch56a, Ch571. At w = WR, the 
phase shift passes through 7r/2, and one has a r e s~nance .~  In quantum mechanics 
a resonance can be represented as 

The situation is illustrated in Fig. 23.8. 

Fig. 23.8. Resonant phase shift. 

It follows from the above that 

One can thus identify r/2 = q3w~N(w), and evaluation at resonance gives 

(23.43) 

(23.44) 

(23.45) 

The following numbers are relevant: 

fi = 0.0797 M = 938.3 MeV p = 139.6MeV 

W = 1232MeV WR = 2 . 1 0 4 ~  qR = 1.851 (23.46) 

91t was shown by Chew and Low [Ch56a] (see also [F'r60]) that the pole term N ( w )  is of the wrong 
sign, or too small, to lead to low-energy resonances in the other pwaves ($+, i), (f', $), (f', f )  
in s - N  scattering. 
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Insertion into Eq. (23.45) gives 

rres = 188.2 MeV rexpt = 120 MeV (23.47) 

The second number is the experimental value. 
This calculation can again be interpreted as a partial summation of the infinite 

set of diagrams in Fig. 23.9; just enough of the infinite summation is kept to unitarize 
the driving term, here generated from the nucleon pole. 

Fig. 23.9. Driving term and its iteration in dynamical calculation of the A(1232). 

The result of a relativistic dispersion calculation keeping all the close lying left- 
hand singularities in Fig. 23.7 is given in [F'r60]; this calculation is convergent and 
requires no cutoff. A modern more-detailed version of this calculation, starting from 
the lagrangian in Eq. (23.1) is contained in [Li91]. The calculation is finite in this 
renormalizable theory, and the A(1232) is again found as a dynamic resonance. 
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Effective field theory 

Significant progress has been made in recent years in providing theoretical foun- 
dations for much of the preceeding discussion in terms of effective field theory for 
QCD and density functional theory. To understand these developments, it is useful 
to recapitulate the arguments presented so far. 

24.1 Model hadronic field theories - revisited 

The first simple model field theory considered in chapter 14 was based on baryon 
and scalar and vector meson fields ($J, q5, Vp). The theory was solved as a relativistic 
mean field theory where the meson fields are replaced by classical fields and their 
sources by expectation values. For uniform nuclear matter the meson fields must 
be constants independent of space and time. The Dirac equation is then linearized 
and the relativistic mean-field theory (RMFT) can be solved exactly. The energy 
density for nuclear matter, for example, takes the form 

f M*2)1/2 

(24.1) 

The quantities appearing in this expression are defined by 

@ = g340 ; w = g,vo ; M * = M - @  (24.2) 

Here p~ = ykg/6.rr2 is the baryon density, with y = 4 ( n T , n l , p f , p l )  for nu- 
clear matter. Extremization of this energy functional reproduces the meson field 
equations and leads to a self-consistency equation for a, or equivalently for M*, 
at each k ~ .  There are two parameters in this RMFT of nuclear matter, and they 
may be chosen to fit the equilibrium values of the binding energy and density as 
in Eq. (14.29). The calculated binding energy per nucleon as a function of k~ is 
shown in Fig. 14.4 and the effective mass in Fig. 14.5. The extension of this model 

207 
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to finite nuclei through solution of the relativistic Hartree equations, and the im- 
plications for densities and the nuclear shell model, were presented in chapter 15. 
Nuclear saturation here arises from the cancellation of the contributions of the large 
scalar and vector fields while the strong nuclear spin-orbit interaction arises from 
their sum. Applications of this renormalizable model field theory were discussed in 
chapters 16 and 17. 

Consider again, as a second simple hadronic field theory, the a-model which 
provides an extension to include pions [Sc57, Ge60, Se86, Wa951. The pions have 
quantum numbers ( J " ,  2') = (0-, 1) and hence develop no classical mean fields in 
the class of nuclei considered above. Several arguments were given in chapter 21 
that chiral symmetry plays an essential role when pions are included, the two most 
important of which are: 

(1) We know that the weak interactions couple to hadronic currents where in 
the vector case V, is strictly conserved (CVC), and in the axial vector case 
A, is conserved in the limit of vanishing pion mass (PCAC). From Noether's 
theorem, a conserved current corresponds to a continuous symmetry of the 
lagrangian; 

(2) The underlying QCD lagrangian manifests chiral symmetry as the mass of 

( 2 ) + O. 
the light quarks 

The hadronic degrees of freedom in the cT-model are (+, V,, c ~ ,  T )  where a is a scalar 
field, and the lagrangian is taken to be manifestly chiral symmetric 

1 1 - V ( 2  + 7r2) - -m:v; - ,v,,v,, 
2 

Here V is a potential that is a function of a2 + r2 and' 

(24.3) 

(24.4) 

This lagrangian is evidently invariant under the global isospin transformation 

7 ~ i  + aij(w)nj (24.5) 

where aij(w) is a real symmetric rotation matrix.2 The infinitesimal form of 
this transformation with w = E + 0, which is enough for Noether's theorem in 

INote V,, = aV,/axp - aV,/ax, is the vector meson field tensor. 

2Repeated Latin indices are summed from 1 to 3. 
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Eq. (13.5), is 

i 
2 

sic, = - T , € l c ,  

67r = - € X T  (24.6) 

A little algebra demonstrates that the lagrangian in Eq. (24.3) is also invariant 
under the following infinitesimal chiral transformation (chapter 21) 

i 
2 

blc, = - 7 . & - / 5 $  

6a = € * 7 r  

67r = -&a (24.7) 

The last two variations leave the quantity u2 + 7rz unchanged to O(E) .  The isospin 
and chiral invariances imply that one indeed has a conserved vector current V, and 
a conserved axial vector current A, (in the absence of an extra pion mass term). 

Now note that a baryon mass term -$M$ is not chiral invariant, and no such 
term has been included in Eq. (24.3). Since the nucleon mass is a large, dominant 
quantity in the nuclear physics domain, one must either quit at this point, or be 
very clever and generate this mass by some other mechanism. 

24.2 Spontaneously broken chiral symmetry - revisited 

The nucleon mass is then generated by spontaneous symmetry  breaking, a phe- 
nomenon that appears to be ubiquitous in modern physics. If one gives the (a,7r) 

fields their usual mass term, then the potential in Eq. (24.3), which so far is un- 
specified, takes the simple form V = (m2/2)(u2 + 7r2), and one has the situation 
illustrated in Fig. 22.la. Suppose instead that the potential looks like the following, 
as pictured in Fig. 22.lb [Sc57, Ge60, Se86, Wag51 

x 
4 

v = - [ ( a ” + 2 )  - 2 1 2  (24.8) 

Since no higher than quartic terms in (a, 7r) appear in the lagrangian, the model is 
renormalizable, which provided an original motivation for this simple form. In this 
case, the minimum of the potential no longer occurs for vanishing field strength, 
and there will be a finite value of the field in the vacuum. 

We know that the pion is not massless [the ( u , d )  quarks indeed have a small 
non-zero mass in the QCD lagrangian], and there must be some small breaking of 
chiral symmetry at the lagrangian level. To take this into account, let us include a 
term of the following form in the potential 

JKsb = €U (24.9) 

This tilts the potential in Fig. 22.lb slightly, and now the true minimum of the 
potential lies on the negative a-axis so that only the scalar field develops a vacuum 
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expectation value ( u ) ” ~ ~  = UO. Consistent with our notion of parity invariance, the 
pseudoscalar pion field n now has no expectation value in the vacuum. The actual 
scalar field can always be expanded about its constant vacuum expectation value 
as illustrated in Fig. 24.1, which we repeat here, and now using (d,  m,) we write3 

= (+ac ++ = Uo + (7, (24.10) 

‘ 1  
3ss-Ler-m f o r  scalar field m 2 .  

‘ ‘ m a s s  / term f o r  pion field p 2  
J 

Fig. 24.1. Sketch of the meson potential in which the excitations about the minimum 
take place (here p2 = mz); the second axis represents one component of 7r. [Wa95]. 

Some algebra then leads to the following form of the lagrangian (chapter 22) 

D 

-1 2 [ ( g ) 2 + m : @ 2 ]  - f  [ ( g ) 2 + m : ~ 2 ]  +const. (24.11) 

The quantities appearing in this expression are defined by 

The nucleon mass now appears in this lagrangian through the spontaneous 
breaking of chiral symmetry, and the vacuum expectation value of the scalar field 

3Note that in writing L(+, 7 .  T) we lose track of the symmetry of the potential in Fig. 24.1. 
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00 = - M / g  sets the scale of this spontaneous symmetry breaking. The term that 
breaks chiral symmetry at the lagrangian level is indeed proportional to the square 
of the pion mass, and a calculation of the divergence of the axial vector current 
establishes PCAC (chapter 22) 

(24.13) 

An obvious identification is now (p -+ q5 and mu -+ m, where ($,m,) are the 
scalar field and mass of QHD-I. Although a large fraction of the literature makes 
this identification, it is in fact incorrect. The strong non-linear couplings in the 0- 
model for small mu destroy the success of relativistic mean-field theory [Se86, Se92, 
F'u961. The correct interpretation is that the low-mass scalar is a very broad two- 
pion "resonance" generated dynamically by the interactions in the model. Figure 
23.4 shows calculations of Lin and Serot of the s-wave isoscalar T-T phase shift for 
various values of the large mass mu [Li89, Li901, and indeed one obtains the very 
broad low-mass enhancement observed experimentally. 

To proceed, let us rewrite the o-model lagrangian in Eq. (24.3). First, introduce 
new combinations of fields (see appendix B.4)4 

Note that x is a 2 x 2 matrix. Equation (24.3) can now be rewritten as5 - 

(24.14) 

(24.15) 

Here the trace is with respect to the 2 x 2 isospin matrices. This lagrangian now 
explicitly exhibits the full symmetry group of isospin and chiral invariance. Consider 
the following transformation 

$L -+ L$L ; X-,RXLt - 

$R -+ R $ R  (24.16) 

where E and L are independent, global SU(2) matrices. The lagrangian is evi- 
dently unchanged (provided 6 = 0 and the explicit chiral symmetry breaking term 

40ne can do marvelous things with different choices of generalized coordinates in continuum 

5We employ the notation 13, 

mechanics! 

L (V, = 0). The complexity resides in the treatment of the pion 
field in 13,. The vector field can always be restored by using DIDxx in Cfermion and adding 13"v,. 
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vanishes). Hence the full symmetry group of the a-model (and of QCD) is 

24.3 Effective field theory 

(24.17) 

Let us now take another approach to the nuclear problem. So far we have been 
discussing model hadronic field theories. As useful as they are for correlating data 
and extrapolating into uncharted regions, they are just that, models. What we have 
done is to describe the spontaneous breaking of chiral symmetry by choosing a very 
specific, limited form of the potential V in Eq. (24.8); the form was dictated by 
imposing the condition of renormalizability. More to the point, the goal of QHD, at 
least in the regime of observed terrestrial nuclei, should be to construct an effective 
lagrangian that provides a proper description of the underlying physics. Let us, 
then: 

( 1 )  Give up the two model points of renormalizability and the specific form of 

( 2 )  Keep the underlying symmetry  structure of the theory. 
V in Eq. (24.8); 

Consider as a first simple generalization of the cJ-model an effective lagrangian 
of the form [Se97] 

Here we have defined a 2 x 2 matrix 

(24.18) 

(24.19) 

This is an SU(2)  matrix and contains all powers of the hermitian pion field n(z) .  
No matter what the form of the potential V ,  provided only that it is invariant (and 
provided m i  = 0 ) ,  the lagrangian Czff is unchanged under the following global 
SU(2)L  s u ( 2 ) R  transformation6 

+L + L + L  ; u - + R U L t  

$R E"R ; + + +, vx + vx (24.20) 

6Leff is also left unchanged by this transformation. 
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In order to make a connection with our previous discussion of the c-model, 
consider the limit of V as the chiral symmetry breaking scale becomes very large. 
If V has the same limit as the potential in Eq. (24.11) 

(24.21) 

then LeE and L become identical. Thus we have one limit of this effective theory that 
takes us back to the cT-model. We stress that V is otherwise completely arbitrary in 
this discussion, as long as it is invariant under the transformation in Eq. (24.20). 

Conceptually, the expression in Eq. (24.18) is now just an effective lagrangian. 
We no longer demand that the chiral symmetry breaking be described by the internal 
dynamics arising from the specific, limited form of the potential V in Eq. (24.8). 
The potential V is just some expression arising from other external dynamics. All 
we demand is that it reflect the correct symmetry structure of that dynamics, in 
particular, the spontaneously broken chiral symmetry. Leff is now both non-linear 
and non-renormalizable. 

The conventional notation is to write the chiral symmetry breaking scale as 

(24.22) 

Amazingly enough, it is possible to transform away the pion-baryon interaction 
in the second term Eq. (24.18).7 Define the following new generalized coordinates 
[Do931 

Some algebra then leads to the following result for the fermion part of the effective 
lagrangian [Se9718 

(24.24) 

'It can also be eliminated in Eq. (24.11) through the use of Weinberg's chiral transformation 

*The conventions used here (Wag51 differ from those of [Se86, Se97]; note also Eq. (24.22) which 

[We67, We68, We79, Wa951. 

implies E = ge. - 
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Here 
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(24.25) 

With a little effort, one can now establish that the total Leff is invariant under the 
following s U ( 2 ) ~  8 s U ( 2 ) ~  transformation. 

Under this transformation (appendix B.6) 

(24.26) 

(24.27) 

and once again the chiral scalars (@, Vj,) + (@, Vj,) are unchanged. 
The first of the relations in Eqs. (24.26) defines the local SU(2) matrix h(z). 

The second states that the new baryon field undergoes a local SU(2) transformation. 
The third is just the previous global transformation on the pion field u, and hence 
our previous arguments in the meson sector concerning 

Although we have framed the discussion of the effective lagrangian in terms of 
a simple generalization of the a-model, which reduces to the a-model in the limit 
that the chiral symmetry breaking scale gets very large, the resulting form of the 
parity-conserving effective lagrangian is, in fact, quite general and standard [co69, 
Ca69, Do%, Se97]. In particular: 

remain unchanged. 

Pions enter through 5 (and V )  ; they are the Goldstone bosons arising from 
the spontaneous breaking of chiral symmetry; 
Pions are now coupled through derivative couplings; thus soft pions decou- 
P k  
Additional hadrons can readily be included by demanding that their interac- 
tions with baryons simply be invariant under the local SU(2) transformation 

In particular, additional chiral scalars such as our low-mass q5 are readily 
incorporated into the effective lagrangian. 

h (x ) ;  

To understand this last important point in more detail, consider Fig. 24.1. At a 
given 0 = ao: 



0 

a 

a 

This is 
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The radial excitations at i r - n  = 0 have nothing to do with chiral symmetry, 
since the potential V ( g 2  + n2) --+ V can be anything in an effective theory. 
Thus @ is a chiral scalar and rn: is arbitrary; 
On the other hand, the excitations in 27. n at G = GO are entirely deter- 
mined by chiral symmetry and the trough in the surface of revolution. The 
pions are Goldstone bosons with rn: = 0. The local E - and manifest the 
SU(2)r, 8 s U ( 2 ) ~  symmetry, albeit nonlinearly; 
Even if chiral symmetry is spontaneously broken with (G) = GO, all compo- 
nents of the pion field are equivalent and isospin remains a good symmetry. 

why Eqs. (24.18, 24.24) and their generalization in [co69, Ca69] provide a 
standard representation. 

24.4 Effective lagrangian for QCD 

The role of our effective lagrangian is to describe low-energy, long-wavelength phe- 
nomena where the internal structure of the constituents is not resolved, and the 
heavy-particle physics is replaced by point (and derivative) couplings. Consider 
two well-known examples of the utility of such effective lagrangian~.~ 

The original theory of the weak interactions was the point four-fermion model 
of Fermi with lagrangian density for charge-changing processes given by (Part 4)" 

(24.28) 

We now know that this is really an extremely efficient, effective low-energy la- 
grangian for exactly describing the real underlying process which consists of the 
exchange of a heavy charged vector boson Wi*' as illustrated in Fig. 24.2. 

+ 
QED 

Fig. 24.2. Effective lagrangians in weak and electromagnetic interactions. 

gother examples include the use of phonons in crystals, the Ginsberg-Landau theory OF phase 
transitions, London's theory of superconductivity, and the Gross-Pitaevskii theory of superfluid 
4He [Fe71]. 

l0We use G = K r 5 / M 2 ;  also F,, = aA,/ax,  - aA, /ax ,  and G,, = E ~ ~ ~ ~ F ~ ~ .  
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Before the development of the modern theory of renormalized quantum electro- 
dynamics (QED) [Sc58], the scattering of light-by-light was efficiently described by 
the local, low-energy Euler-Heisenberg lagrangian [Eu35, He36, AmOO] 

1 a 1  
4 p’ ’” 607rm: Ceff = --F F +--F OFpu 

(24.29) 

This really describes the scattering through a virtual electron loop as illustrated in 
Fig. 24.2; it is also exact in the long-wavelength limit. 

Furnstahl, Serot, and Tang (FST) are the individuals who have put the use of 
effective field theory in nuclear many-body physics on a firm theoretical foundation 
[Fu95, Fu96, Fu97, Fu97a, Se97, FuOO,  FuOOb, SeOl]. Their work can be summarized 
as follows: 

0 A baryon field and low-mass meson fields that concisely describe the im- 
portant interaction channels, namely 7 r ( O - ,  I), 4(0+, 0), Vp(l-, 0), p(l-, l ) ,  
are the hadronic generalized coordinates of choice. The pion, a Goldstone 
boson, is treated as in the example above. Higher mass meson fields are 
assumed to be “integrated out” and their contributions contained in the 
effective coupling constants; 

0 Dimensional analysis is first used to characterize the various terms in the 
effective lagrangian. Briefly, this is done as follows: 

- The chiral symmetry breaking scale as represented by M plays the role 

- The initial couplings of the meson fields to the baryon fields are linear, 
The dimensionless form of the 

of the heavy mass in this problem; 

with a strong coupling constant g. 
combination is [see Eqs.(24.2)] 

@lM M g 4 l M  = $If* (24.30) 

Non-Goldstone bosons are assumed to enter in the effective lagrangian 
in this dimensionless form; 

- From the mass term of the non-Goldstone boson fields c( m2q52, with 
m2 M M 2 ,  one then deduces the overall scale factor in the lagrangian 
density of f ,”M2; 

- From the baryon mass term M$$, one concludes that the dimension- 
less form of the baryon densities is &)/M f,”. 

“Naive” dimensional analysis (NDA) then implies that, after appropriate 
combinatorial factors are included, the various terms in the effective la- 
grangian enter with dimensionless coefficients of order unity; 
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The various interaction terms allowed by the sU(2)1,@ s U ( 2 ) ~  symmetry 
structure of QCD are then constructed using the nonlinear realization of 
chiral symmetry illustrated above." Simply writing down all possible terms 
does not get one very far unless there is an organizing principle, and the 
following provides the crucial insight; 
Although the mean scalar and vector field energies are large compared to 
the nuclear binding energy, the dimensionless combinations g+o/M M +o/ fir 
and g h / M  M Vo/ fir are roughly 113 and thus provide convenient expansion 
parameters. Furthermore, spatial variations of the meson fields and of the 
baryon densities in the nucleus are observed to occur over the scale of the 
nuclear surface region, and hence the dimensionless ratio V I M  also provides 
a useful expansion quantity (as does the characterization of chiral symmetry 
violation at the lagrangian level, mir/M).  The following quantities thus 
provide the small parameters, or organizing principle, in this expansion12 

= o(i)  ; mean fields W G  - 
M '  M 

; derivatives of mean fields (24.31) - k F  = o ( ; )  
M 

A combination of these observations allows one to construct a hierarchy of 
decreasing contributions to the effective lagrangian for the nuclear many- 
body problem characterized by an integer v defined by 

n 
2 

~ = d + - + b  (24.32) 

Here d is the number of derivatives, n the number of nucleon fields, and 
b is the number of non-Goldstone boson fields present in the interaction 
term. Derivatives on the nucleon fields are not counted in d because they 
generally introduce powers of the nucleon mass M ,  which will not lead to 
small expansion parameters. The effective lagrangian at various levels of v 
is given in [Fu97, Se97, Hu021; 
The coefficients in the effective lagrangian are then fit to the selected proper- 
ties of stable nuclei (as illustrated above); the fitting procedure is discussed 
in detail in [Fu97, Se971; 
The assumption of naturalness is then verified by systematically examining 
various levels of approximation (see Table 24.1). 

"FST include all non-redundant terms. For example, total derivatives in the lagrangian density do 
not change the action, and allow partial integrations; fields can be redefined; and in evaluating 
the energy density along the dynamical path, field equations can be invoked. 

l2 chiral perturbation theory starts from an analogous effective lagrangian and expands pion am- 
plitudes in the small parameters q / M ,  and m,/M. 
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As an example of one of the results of FST, the simple energy density of 
Eq. (24.1) now becomes 

(24.33) 

The quantities (a, W )  are again determined by extremization of this functional, 
which reproduces the field equations in RMFT. The Noether currents arising from 
the effective lagrangian of FST are analyzed in [An02]. 

24.5 Effective lagrangian and currents 

The effective lagrangian of FST is extremely important and useful, and for com- 
pleteness we present it here. Up through v = 3 and with the present conventions, 
the fermion part of the lagrangian is [Fu97, Se97, An021 

+ ” s , m p  a,,N+ -NV,,a,,N+... f V 9 V  - 
4M -P” 4M 

Here 

(24.34) 

(24.35) 

The axial vector coupling constant g~ = 1.26 enters as a parameter, and the ellipsis 
in Eq. (24.34) represent terms involving ?r-N interactions that are not needed for 
the present discussion. Some algebra shows that the quantities in Eqs. (24.35) 
transform under the non-linear s U ( 2 ) ~  @ s U ( 2 ) ~  transformation of Eq. (24.26) 
according to (appendix B.6) 

p + h p  ht 

DPP” + hD&- ht 
- -p - -P 

-P” p + 4PP,ht (24.36) 

so that the lagrangian is indeed left invariant. 
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The meson part of the effective lagrangian through v = 4 is given by13 

(24.37) 

In this expression 

2," -+ h2,,ht (24.38) 

From pion decay, fR = 93MeV. 
The Noether currents with this effective lagrangian density are given by [An021 

v, = Gtr{r(ei"+e@)} 4 ax, ax, 

A, = -tr if: 4 { 7 ( @ = - u =  :x: ?)} ax, 

where the ellipsis now also include the p contributions (see Prob. 24.2). Applications 
of these currents can be found in [An02, Hu031. 

24.6 RMFT and density functional theory 

The effective lagrangian has now been put on a firm theoretical foundation, but what 
about relativistic mean-field theory through which that lagrangian is utilized? Here 

13The u = 5 terms with (al, aa), which play a role at a higher level of approximation and appear 
in Table 24.1, are also included. 
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two powerful theorems from Kohn's density functional theory are invoked [Ko99, 
Fu97, Se97, FuOO,  Se01]:14 

(1) The  Hohenberg-Kohn theorem states (non-relativistic version): 

The ground state (GS) expectation value of any observable is a 
unique functional of the exact GS density; moreover, if the expec- 
tation value of the hamiltonian is considered as a functional of the 
density, the exact GS density can be determined by minimizing 
the energy functional. 

(2) The  Kohn-Sham approach is (relativistic generalization): 

The exact GS scalar and vector densities, energy, and chemical 
potential for the fully interacting many-fermion system can be 
reproduced by a collection of (quasi) f ermions  moving in appro- 
priately defined local, classical fields. 

The problem is therefore reduced to justifying the form of the energy functional 
whose structure is now related to the underlying theory of QCD. 

24.7 Parameters and naturalness 

The parameters in the effective lagrangian determined by the fits of FST are shown 
in Table 24.1; here M = 939MeV,m, = 782MeV, and mp = 770MeV.15 The 
selected experimental quantities to which the parameters are fit, and the quality of 
the fits at each level, are discussed in [Fu97, Se97, F u O O ,  SeOl]. We summarize that 
discussion. 

The relativistic Hartree (Kohn-Sham) equations and meson field equations de- 
rived from the energy functional are solved self-consistently for closed-shell nuclei 
'$0, igCa, i:Ca, ZiSr, ""88,b, and nuclear matter. The parameters are then fit to 
empirical properties of the charge densities, binding energies, and various splitting 
between energy levels near the Fermi surface using a figure of merit (x2) defined by 
a weighted, squared deviation between 29 calculated and empirical values. When 
working at the highest order of truncation (essentially v = 4), the calculated results 
are very accurate, as we illustrate shortly. The detailed results can be found in the 
references cited above. 

The critical question is whether the hierarchal organization of interaction terms 
is actually observed. This is illustrated in Fig. 24.3, where the nuclear matter 
energylparticle is shown as a function of the power of the mean fields, which is 

14Chapter 25 provides an overview of density functional theory. 

15There are some small electromagnetic correction terms included in FST that are not included 
in this table. 
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Table 24.1 Parameter determinations of FST at various levels [Fu97, Se971. 
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power of fields 

Fig. 24.3. Nuclear matter energy/particle for two parameter sets of FST, one on the 
left and one on the right of the error bars. The power of the fields is b = j + 1 for a 
term of the form (gs&)j(gvVo)l  (1 is even). The arrow indicates the total binding 
energy, €0 = 16.1 MeV. Absolute values are shown. From [SeOl]. 

called b in Eq. (24.32). (There are no gradient contributions in nuclear matter and 
(T) = 0.) The crosses and error bars are estimates based on NDA and naturalness, 
that is, overall coefficients are of order unity. 

First, it is clear that the leading order terms, those with v = 2 (correspond- 
ing to the simple model QHD-I) dominate the binding energy and give individual 
contributions more than an order of magnitude larger than the observed binding 
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energy of nuclear matter, which arises from a strong cancellation of the mean scalar 
and vector contributions. Furthermore, it is clear that each successive term in the 
hierarchy is reduced by roughly a factor of five, and thus for any reasonable desired 
accuracy, the lagrangian can be truncated at a low value of v. Derivative terms and 
other coupling terms are analyzed in [FuOO] , with similar conclusions. 

The quality of the fits to finite nuclei at the appropriate levels of truncation 
is illustrated in Fig. 24.4, where the figure of merit is plotted as a function of 
truncation order and of various combination of terms retained in C. 

500 0 

10 ' I I I I ]  
2 3 4 5 

power of fields 

Fig. 24.4. x2 values for FST parameter sets, as a function of the level of truncation; 
from [SeOI]. 

The full calculations retain all allowed terms a given level of v, while the other two 
choices keep only the indicated subset. There is clearly a great improvement in the 
fit (more than a factor of 35) in going from v = 2 (the simple QHD-I model) to v = 4, 
but there is no further improvement in going to v = 5. Speaking chronologically, 
the v = 2 results show the level of accuracy obtained in 1980 [Ho8l, Se861, while the 
v = 4 results were obtained at the turn of the century [Fu97]. Moreover, the $"-only 
results at Y = 4 show the state of the situation in the late 1980's, as discussed in 
[Se92]. Recent work shows that the full complement of parameters at order v = 4 
is underdetermined, and that only six or seven are determined by this data set 
[FuOO], which explains the great success of these earlier models with a restricted set 
of parameters. 

24.8 An application 

To illustrate the power of the effective field theory approach to nuclear many-body 
physics, we show two results of Huertas [Hu02]. He uses the effective lagrangian of 
FST, with parameters fit along the valley of stability, and solves the self-consistent 
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Fig. 24.5. Binding energy of even foSn isotopes calculated using the effective la- 
grangian of [Fu97]; from [Hu02]. 

- o+ 

Fig. 24.6. Calculated level spectrum of isotones of 'ggSn82 differing by one proton 
together with experimental results [Hu02]. 

relativistic Hartree (Kohn-Sham) and meson field equations to calculate the prop- 
erties of Sn isotopes out to doubly-magic values of N and 2 far from stability. 

Figure 24.5 shows the predicted binding energies of the even isotopes from ';$n 
to '2;Sn. The agreement is better than 1% throughout. Figure 24.6 shows the 
predicted GS energies, spins, and parities of the neighboring single-particle and 
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single-hole nuclei '2;Sb and '::In relative to 1$$Sn.16 The agreement provides 
compelling evidence that we indeed have an effective field theory for QCD with 
which to describe nuclear many-body  physic^.'^ The effective field theory evidently 
is QCD in the strong-coupling nuclear domain. 

24.9 Pions - revisited 

For completeness and illustration, we use the effective lagrangian in Eq. (24.37) to 
calculate T-T scattering in lowest order. When systematically calculated to higher 
orders, including loops, this forms the basis of c h i d  perturbation theory [Do93]. An 
expansion through order 1/ f: gives 

+**4 + . . . 
24.e 

(24.40) 

The first two terms on the second line of Eq. (24.40) constitute the free pion la- 
grangian L;, and the remaining terms allow a calculation of the required amplitude. 
The calculation of the S-matrix for the process illustrated in Fig. B5.1 proceeds as 
in chapter 20. In the notation of appendix B.5, one finds after a little algebra" 

1 
rn; - t )  ; T(") = -(m; - u) (24.41) 

This effective field theory is applicable to low-energy pions. At threshold in the C-M 
system one has 

1 ; T(t )  = -( 1 ~ ( " 1  = -(m; - s) 
f," f," f," 

41 = 42 = 43 = 44 = (O,im,) 
; t = u = O  (24.42) 2 s = 4m, 

Hence 

(24.43) 

16The differences in energies are just the chemical potentials. 

17For the extension of this work to semi-magic nuclei with N=28, 50, 82, 126 and Z=28, 50, 82 
see [Hu04]. 

"There are factors of (-l)(-i) to get from the interaction lagrangian to the S-matrix, wavefunc- 
tions for the external particles, and ( 2 ~ ) ~ 6 ( ~ ) ( A p )  from integration over all space of the contact 
interaction; the derivatives act on the wavefunctions e-iq.z for a created particle and eiq.z for 
a particle destroyed. 

In
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The C-M scattering amplitude is obtained from the T-matrix according to 
Eq. (B.63) 

m7r (24.44) 
16n f," 

The amplitudes in states of given total isospin are then obtained from Eqs. (B.65) 

f,6" = 0 

(24.45) 

As in Eqs. (23.24, 23.25), for these two identical bosons the scattering length in 
the T = 0 (symmetric) channel is related to the threshold scattering amplitude by 
ft(h0) = 2 ~ f ) ; ~ '  hence the isosinglet scattering length is given by 

The experimental value is 

uf'l = 0.28 f 0.05fm 
expt 

(24.46) 

(24.47) 

If this value is used to determine fT, one obtains (see [Wa95]) 

fT  x 83MeV (24.48) 

This number compares well with the value of fT obtained from pion decay through 
the axial vector current in Eq. (24.39)." 

lgWe use the same sign convention as in 7r-N scattering. 

2oSee problem 42.7. 
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Density functional theory ------ an overview 

In this chapter we present a brief overview of density functional theory. The dis- 
cussion is based on [Ko99, ArOO, Fe71, SeOl, VaO21. We first review the statistical 
mechanics of a non-relativistic, uniform assembly [Fe71] .’ The grand partition func- 
tion is defined by 

zG(p, V, T )  = Trace { exp [ - P ( H  - p f i )  I} (25.1) 

Given simultaneous eigenstates IN,j)  of H and fi, this may be rewritten as 

ZG = C ( N , j l e -  P ( f i - ~ f i )  I N ,  j )  = C , -P(Ej-d”  (25.2) 
N , j  N , j  

The thermodynamic potential is then given as 

(25.3) 

The first and second laws of thermodynamics can be combined to  give 

d O ( p , V , T )  = - S d T - P d V - N d p  (25.4) 

Hence 

N = -(E) 
v, T 

(25.5) 

This equation can be inverted to give p(N,  V, T ) .  The Helmholtz free energy is then 
given by a Legendre transformation 

(25.6) 

‘We use the term assembly to refer to a collection of particles. 

226 
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Hence 

(25.7) 

According to Gibbs, thermodynamic equilibrium is defined by the condition 

(bfl)p,V,T 2 0 (25.8) 

An assembly minimizes its thermodynamic potential at fixed (p ,  V, 2’). 

[Fe71] 
The expressions for N and H in second quantization are particularly useful 

(25.9) 

fi = /qt(x)T(x)G(x) d3a: + - 2 ‘s qt (x)Gt (x’)V(x, x’)$(x’)q(x) d3a: d32’ 

Here q(x) is the fermion (boson) field operator. 

potential uext(r), and define2 
Consider next inhomogeneous, self-bound assemblies. Add an external, one-body 

vex t (T )  U e x t ( r )  - P  (25.10) 

The grand partition function takes the form 

(25.1 1) 

Here we have observed that ZG is independent of V for a self-bound assembly 
( P  = 0), and we use the notation [veXt] to indicate that ZG is a functional of 

At this point it is essential to review the main features of variational derivatives. 
If q(x) is an arbitrary function of x, and X is a first-order infinitesimal, then the 
variational derivative of a functional W[f] is defined by 

vext(r). 

Since ~ ( x )  is arbitrary one can take it to be 6(3)(x-y), and hence obtain an explicit 
expression for the variational derivative 

2The chemical potential p now defines the zero of energy. 



228 Density functional theory - an overview 

The expression in Eq. (25.12) is conventionally written 

(25.14) 

An expansion in X and use of the cyclic properties of the Trace now allow us to 
take the variational derivative of the grand partition function with respect to the 
external potential vext ( Y ) ~  

6zG (Ivextl, 
Svext (Y) 

The variational derivative of 

6fl( [vext] 7 T )  
6vext (Y) 

= -pTrace [Gt(y)G(y) e-p(B+ihxt) ]  (25.15) 

the thermodynamic potential then follows as 

= ( (4+(Y)G(Y) ) )  

= n ( y )  ; particle density (25.16) 

This last relation defines the particle density (we suppress the 2'-dependence). It 
can, in principle, be inverted to give 

vext (2, [nl, 2') (25.17) 

That is, there is a one-to-one relation between the external potential and the particle 
density, and hence the external potential becomes a functional of the density. The 
possibility of this inversion is actually the crux of the matter (see e.g. [Dr90]). Small 
variations in particle density are then related to small variations in the external 
potential by Eq. (25.14) 

(25.18) 

We are now in a position to define the Hohenberg-Kohn free energy through a 
Legendre transformation 

Let us compute the variational derivative of this quantity with respect to n(z) 

The integrand in the first term vanishes by Eq. (25.16), and the result is the 
Hohenberg-Kohn equation 

(25.21) 

3We henceforth use the notation y = IyI = T and assume spherical symmetry. 
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Note that if one has some direct way of constructing the functional FHK([n],T) for 
an interacting system, then this equation allows one to determine the density, and 
hence F H K  ([n] , T) , for any given vex$ (x). 

Suppose one constructs the following quantity 

O([n],T) = FHK([n],T) + /n(.)vext(x)d3x (25.22) 

A variation in the density at fixed (vext, T )  then yields 

If this variation is required to vanish for arbitrary Sn(x), Eq. (25.21) is recovered; 
one thus has a variational principle for which the Hohenberg-Kohn equation is the 
Euler-Lagrange equation. 

If these results are all specialized to zero temperature (T = 0), then only the 
ground state contributes to ZG, and the free energy becomes simply the energy 
(recall F = E - T S  -+ E ) .  Suppose that one also simply sets the external potential 
to zero at this point (vext = 0). In this case, the Hohenberg-Kohn equation becomes 
a variational principle from which the ground-state density can be computed. 

(25.24) 

Knowledge of the density immediately yields the ground-state energy through 
EHK 1.1. 

Finally, we turn to the Kohn-Sham approach to the ground-state (T = 0) prob- 
lem. Write 

Here the subscripts NI and INT stand for non-interacting, and interacting respec- 
tively. F N 1  [n] represents the kinetic energy contribution. The interaction energy 
EINT[~] is some functional of the density (and its derivatives), and in the many- 
body problem it contains a Hartree term, an exchange-correlation contribution, etc. 
[Fe71I4 

EINT[n] = E~artree[n]  -k Eexch-corr[n] + * * * 

= Eeff [n] (25.26) 

*The simplest expression for the non-interacting term is just that of Thomas and Fermi 
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Now consider the (non-relativistic) one-particle Schrodinger equation in a po- 
tential veff(z) where weff(z) is designed to  give the correct n(z). 

N 

4.1 = Cl+i(X)I2 (25.27) 

In this problem, v , ~  exactly plays the role of the previous wext, and hence the H-K 
equation (25.21) gives 

i= 1 

(25.28) 

Thus, upon taking the variational derivative of Eq. (25.25) with respect to n(z), 
using Eq. (25.26), and rearranging terms one obtains 

(25.29) 

Upon setting vext = 0, one obtains the effective potential to be used in the Kohn- 
Sham (KS) equations (25.27) 

(25.30) 

With a one-body potential, the non-interacting kinetic energy is just given by 
N 

i=l 
N 

= c E i  - / veff(z)n(z)d3z (25.31) 

Hence the total energy is obtained from the KS wave functions and eigenvalues as 
i= 1 

E H K [ ~ ]  = (5 ~i - / v e ~ ( z ) n ( z ) d 3 z  (25.32) 
i=l 

An extensive analysis of density functional theory is contained in [D~-90].~ 

5An application of effective field theory and density functional theory to strange, superheavy nuclei 
with Q = 0 and ISl/B = 1 is discussed in [Mc02], and to A-hypernuclei in [Mc03]. 



Chapter 26 

Problems: Part 2 

The first seven problems review some basic results from advanced quantum mechanics: 
properties of the Dirac equation and introduction to the relativistic quantum theory of 

fields. We use 7 = i6p,y4 = p with 13 = (: E ) , P =  ( i  “1>. Alsoup,= 

[ ~ ~ , y , ] / 2 i  and the Maxwell field tensor is F,, = aA,/az ,  - bA,/dz , .  The relation to 
the conventions of Bjorken and Drell is discussed in detail in appendix D.2. 

13.1. The Dirac equation for a free particle is ihaQ/at = [(hc/i)Z. ? + pmoc2]Q. 
(a) Find stationary-state plane-wave solutions of the form Q = exp { i(p’. 1 - Et)}$. Show 
the spinors $ form the columns of the modal matrix 

Ep + moc2 cpa . p’ 
= ( 2Ep 

)’” ( l -  Ep+moc2 

(b) Show this modal matrix is unitary with Mt = M-’ 

-cZ .p’l(Ep + moc2) 
1 

Here Ep = c(F2 + 
(c) The ith column is obtained from Mqi where qi is a unit spinor with 1 in the ith row 
and zeros elsewhere. Hence relate the modal matrix to the Lorentz transformation from 
the particle’s rest frame to one where it moves with momentum fl. 
13.2. The Dirac equation [yp(t3/dz, - ieA,/hc) + moc/h]Q = 0 describes a particle of 
spin 1/2 and magnetic moment eh/2moc. Pauli observed that the equation remains gauge 
invariant and covariant if a term ( - e 6 / 4 ~ 0 C ~ ) 0 , , , , ~ , , ~ ~  is added to the above. 
(a) Show that the Dirac hamiltonian is then H = cG . (p’ -  eA/c) + @moc2 + e@ - 
(eh6/2moc)p(Z. ‘d - iZ .  2). Identify a‘. 
(b) Show that in the non-relativistic limit and with vanishingly small fields, this describes 
a particle of spin 1/2 and magnetic moment eh(1 + 6)/2moc. 
(c) Recall that s‘= 8/2  and ii = p’-eA/c are the Dirac spin and kinetic momentum. Show 
the equation of-motion of a particle with anomalous magnetic moment 6 in a uniform 
magnetic field ‘H = ‘Hz’is d(s’. i i ) / d t  = -wl6/3(s‘x 2 ) .  I where wl = e’H/m,c. 

13.3. Show the energy levels of a Dirac particle in a point Coulomb potential are given 

by [Sc68]: E = m0c2 [l + a 2 Z 2 /  (n’ + d(j + 1/2)2 - a2Z2 with n’ = 0 , 1 , .  . . 

23 1 
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14.1.l Consider a real scalar field with equations of motion [(a/az,)' - mf]4  = 0 and 
lagrangian density L = ( - ~ ~ / 2 ) [ ( 8 4 / d z , ) ~  + m34']. Here m, = m,oc/h is the inverse 
Compton wavelength. 
(a) Show the canonical momentum density is n = &$/at and hamiltonian density is 'Ti = 

(b) Construct the stress tensor and the four-momentum P, = (l/ic) S d3zT4, = ( P ,  iH/c). 
pave that Pp $ both a four-vector and a constant of the motion. Show T44 = -7-t and 

(c) Work in a big box of volume R and use p.b.c. First, treat the problem as one in classical 
continuum mechanics and introduce the general field expansions 

(1/2)[n2 + C"(a4)2 + rnfC2d21. 

P = - S d 3  zxvq5. 

Show this reduces both H and P' to normal modes with H = C,g fiWk(CLCI; + c,-cL)/2 and 

P' = xz hk(cLcc + cgci)/2. Here w k  = c(k + rnZ)ll2. The problem is now reduced to a 
system of uncoupled harmonic oscillators. 
(d) Now quantize the system. Work in the Schrodinger picture. Show Ehrenfest's theorem 
and the canonical commutation relations [x(.'), +(.")I = (h/2)d3)(5 - .") generate the 
correct equations of motion. Hence show one recovers the correct classical limit of the 
theory. 
(e) The fields are now operators. Show the canonical commutation relations of (d) imply 
[cc, c;,] = b ~ z ,  with all other commutators vanishing. Interpret H and P in terms of the 
particle content of the theory. 
(f) Explain how one recovers the explicit time dependence of the operators in (c) in quan- 
tum mechanics. 

14.2. Consider a complex Dirac field with equations of motion (ypd/dzp + M ) $  = 0 and 
lagrangian density L = -hc4(ypd/dz, + M)$ .  Here 4 
(a) Show the canonical momentum density k+n+ = ih$' and hamiltonian is H = s $t (z)(cZ. p'+ ,Brn0cz)$(z)d3z. Here p" (h/z)V. 
(b) Construct the stress tensor and the four-momentum Pp = (l/ic) J d3xT4, = ( P ,  iH/c).  
Show T44 = -3-1 and P = Jd3z$t(z)@$(z). 
(c) Show that the current j ,  = ieq(z)yp$(z) is conserved and hence conclude the total 
charge Q = e J d3z+lt(z)$(z) is a constant of the motion. 
(d) Work in a big box of volume R and use p.b.c. First, treat the problem as one in 
classical continuum mechanics2 and introduce the general field expansions 

+ - 2  

$+y4 and M = moc/h. 

Show this reduces both H and P' to  normal modes with H = CsX fiWk(aLXagX - BiAB,-,), 

An excellent initial introduction to relativistic quantum field theory is contained in [We49]. 

2Keep track of the proper order of the factors, however, so that the calculation is still correct after 
one introduces anticommutation rules. 
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(e) .Now quantize the system. Show that the usual commutation relations for the cre- 
ation and destruction operators lead to  a system with no lowest energy ground state.3 
Hence introduce anticommutation relations for the fermion creation and destruction op- 
erators. Work in the Schrodinger picture. Show Ehrenfest’s theorem and the canonical 
anticommutation relations {+(Z), T+(.“)} = 2hd3)(Z - 2’) generate the correct equations 
of motion. 
(f) Now make a canonical transformation to BcA e b:,-, so that the field becomes 

The quantities in (d) then take the form 

Interpret H ,  p, and Q in terms of the particle content of the theory. Interpret and discuss 
the additive constants in these expressions. 
(g) Show the canonical anticommutation relations for the creation and destruction opera- 
tors are equivalent to the canonical anticommutation relations on the fields. 
(h) Explain how one recovers the explicit time dependence of the field operator in (f) in 
quantum mechanics. 

14.3. Carry out the canonical formalism for a real spin 1 field with mass. The field 
equations are [(a/ax,)’ - m?]+, = 0 with v = 1,” .  ,4 and a+,/ax, = 0. With the 
introduction of the field tensor +,, = a+,/ax, - a+,/ax, these become d+,,/dx, = 

(a) Show the lagrangian density L = -(1/4)+,,&, - (m?/Z)qb,+, gives the correct equa- 
tions of motion. 
(b) Use the canonical procedure to find the hamiltonian. 
(c) What is the stress tensor? The momentum? 
(d) Show the following expansions reduce the problem to normal modes 

-m?*,. 

Here Zzo = i/ I i I .  

3This is the first half of Pauli’s theorem on the connection between spin and statistics. 
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(e) Quantize the system. What are the commutation rules? 
(f) Compare with the free electromagnetic field where m; = 0. 

14.4. (a) Include an interaction of the Dirac field in Prob. 14.2 with an electromagnetic 
field by making the minimal gauge invariant substitution a/&,, + a/&,, - ieA,,/hc. 
What is the new H ?  
(b) Generalize Probs. 14.1 and 14.3 to  complex (charged) fields. How would you then 
include with minimal coupling an interaction with the electromagnetic field? 

14.5. Derive the expression for the pressure in Eq. (14.26) directly from the MFT stress 
tensor obtained from Eq. (14.15). 
15.1.4 Consider the hamiltonian h = -ia.e+gvvo(r)+p[M-g,~o(r)] for a Dirac particle 
moving in spherically symmetric vector and scalar fields. Define the angular momentum 

b y i = L + s = - i F x ? + 2 / 2 .  H e r e g =  ( :) a n d + =  ( ;t ). 
(a)_Pr:ve [h, Ji] = [h, f 2 ]  = [h, 5'1 = 0. Note [h, L 2 ]  # 0. Introduce K = p(2 . L' + 1) = 

(b) Label the eigenvalues of K by K$ = -K+. Show the states can be characterized by 
the eigenvalues {j, s = 1/2, - ~ . , m } .  Show K 2  = L + e . i + 1  = Y2+1/4. Hence conclude 
that K. = &(j + 1/2). 
(c) Show -&+A = ( 3 .  e + l ) + ~  and -K+B = -(3. i + 1 ) + ~ .  Use (b) to  show that 

p(C . J - 1/2). Show [h, K ]  = 0 .  

- 2  

Thus, although + is not an eigenstate of L 2 ,  the upper and lower components are separately 
eigenstates with eigenvalues determined from these relations. They also have fixed j and 

(d) Introduce spin spherical harmonics @srn = Crnlrns (lml ~mslZ~jm)Krn l  (0, 4)xrnS. Here 
j = (rcl  - 1/2. Hence show the solutions to this Dirac equation take the form 

s = 1/2. 

Here 1 = K. if K. > 0 and 1 = - ( K  + 1) if K. < 0. Write out the first few wave functions. 

15.2. Consider the relativistic Hartree Eqs. (15.1). Label the baryon states by {a} = 
{nrct, ma} {a, ma}. Here t = 1/2 (-1/2) for protons (neutrons). Look for stationary 
state solutions, and insert the form of Dirac wave functions in Prob. 15.1. 
(a) Show 8 - e (G/r )aKrn  = -(l/r)(d/dr + r c / ~ ) G @ - ~ ~ .  What is the relation for F? 
(b) Show the coupled radial Dirac equations reduce to 

d 
dr -Ga(T) !GQ(r) - [EQ - g v v O ( T )  + M - gS+O(r)]FQ(r) = 0 

4Since it is now clear where all the factors go, we shall here and henceforth also set f i  = c = 1 in 
the problems. 
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(c) Show the normalization condition is s," dr(lGa(r)12 + IFa(r)I2) = 1. 

15.3. Consider the relativistic Hartree Eqs. (15.1)  for the meson fields 
(a) Show CzElj @Lrn@,trn = 6,, ,(2j  + 1 ) / 4 ~  for K = fd. 
(b) Hence show the meson field equations become 

15.4. How would you solve the relativistic Hartree equations in Probs. 15.2-3? 

15.5. Enlarge the set of equations in Probs. 15.2-3 to include a condensed neutral p 
field bo(r)  coupled to the third component of the isovector baryon density gp$Jt +73$ and 
Coulomb field AO(r) coupled to the charge density e , $ t i ( l  +Ti)$ [Se86]. 

15.6.5 Consider nonrelativistic potential scattering. Enlarge the concept of a potential 
to include nonlocal interactions w$ + s w(Z, y3$(y3d3y, and then separable potentials 

(a) Show the scattering amplitude for a single fixed scatterer at the origin is 
~ ( 2 ,  y3 = Elrn 4 w X l w l ( z ) w l ( ~ ) ~ r n ( R = ) ~ ~ ( R , ) .  

Here wl(k) = 4 w s  w , ( z ) j l ( k z ) z 2 d z .  
(b) Consider A fixed scatterers at positions {&,... , 3 ~ }  and an interaction w(Z,y3 = 
x f = l ~ ( Z  - Zi, y'- Zi). Show the multiple scattering problem reduces to a set of matrix 
equations (recall that a bar under a symbol denotes a matrix) 

The matrix indices are {ilrn}. The Green's function is 

Here wl rn (z )  = (47r)1'2i'vrn(Rk)wl(k) and @i=j) = 0. The other quantities appearing in 
these equations are defined by 

(+)fin = A l d r n ( g )  

I l i  I /  .iE'.za wlrn (p) 
( e ) l r n  = eiwlrn = 

These relations provide an exact solution for the multiple scattering amplitude f 
fz, z( 3 1  7 ' ' . ZA ) . 
5Probs. 15.6-15.10 are from [FOGS]. 
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15.7. Make the multiple scattering expansion [I + g-' = I - G +  g2 + . . . in Prob. 15.6. 
Derive the following rules for the nth order contribution to -47r f :  
(a) Set down A points (21,. . . , Z A } ;  
(b) Draw n + 1 connected directed line segments connecting the points with one incoming 
and one outgoing line. Include all possibilities; 
(c) Assign factors eiL'z'i and e-"." 3 for the incoming and outgoing lines; 
(d) Include a factor -e i t7(Zj -z i ) / ( t2  - k2 - iq) for each propagator between points; 
(e) Include the following factor for each vertex 

(f)  Integrate 

15.8. For a quantum mechanical target one must integrate over the probability of finding 
the target particles in any particular configuration 

~ i ~ t l ( 2 7 r ) ~  over each internal line. 

f(/?,i) = / p A ( z l , . . .  ,zA)fpE(zl,... , s A ) d 3 2 1 . . . d 3 2 A  

This probability is given by the square of the target ground-state wave function pA = 1 @ , 0 1 ~ .  
Introduce the following expansion for this ground-state density 

p A ( " ' l , ' ' .  , z A )  = p(l)(zI)".p(l)(zA) + [ p ' " ( ~ l ) " . p ( ' ) ( ~ A ) ]  +" '  
contractions 

p(')(Z)*p( ')($* A(Z, y3 P(~)(Z, y3 - p(')(?)p(')(y3 

The sum goes over all possible pairs of contractions. Here p( ' )  and p(2)  are the one and 
two particle densities (compare Probs. 4.1 and 4.2). Note sd3yA(Z,y3 = 0. Demonstrate 
the validity of this expansion by showing: 
(a) The density pA is symmetric under particle interchange; 
(b) It satisfies the consistency relation 

/ d 3 2 A p ( " ) ( j 1 , .  . . ,SA)  = p ( A - ' ) ( -  2 1 ,  . . . rzA-1)  

(c) It gives the correct expectation value for any one-body operator (xi O(i) ) ;  
(d) It gives the correct expectation value for any twebody operator 

15.9. A single-particle optical potential allows one to simply solve the appropriate wave 
equation to generate the scattering amplitude. With the results in Probs. 15.7-8, one 
can state precisely when the equivalent single-particle potential will reproduce the full 
scattering amplitude. In general this one-body potential will be nonlocal U ( Z ,  y3 and has 
a double Fourier transform o(fi, cj) = s s e-ig"U(Z, y3eif..ad32d3y. 

Make the following assumptions: (1) The effective number of scatterings nefi satisfies 
nee << A; (2) no target particle is multiply struck; (3) retain just the first term in the 
expansion in Prob. 15.8 [with p(')([ZI)] .  Demonstrate the following: 
(a) The lowest order optical potential is given by 

O(i j ) ) .  
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Here $I)($- 4 = j" e-i(p-a.a p (1) ( z ) d 3 z .  

(b) For an extended system, the Fourier transform of the one-body density implies p' M 

$M c. show that UO then has the approximate limiting form 
4 Uo($,g M -4~Af(o)p(')(A) ; A = $ - $  

Uo(Z, y3 M -47rAf(O)p(')(z) d3)(Z - y3 

Here f ( 0 )  is the forward scattering amplitude from a single target particle. In this limit 
the optical potential becomes local with Uo(z) = -47rAf(O)p(')(z). 

15.10. Assume the interaction vl(z)  in Probs. 15.6-9 vanishes outside some radius a. 
(a) Show more precisely in Prob. 15.9 that if the target particles do not overlap so that 
2a < - Zjl, and if the energy is high enough klZ, - ZjI + 00, then 

-47rAp(')(A) f i ( lc ) (21+ 1)A (1 - $) 
I 

d3A Uo(z) -+ -47rA e""."f(~)p("(A) - s 
Evidently the limit of Prob. 15.9 Uo(z) M -47rAf(O)p(l)(z) is recovered here. 
(b) Discuss some classes of corrections to this lowest-order optical potential. 
16.1. The Feynman propagator for the free scalar meson is defined by 

1 
- A F ( & ~ I , & ~ )  (OIT[~(Zltl),~(Z2t2)]10) i 

Use the field expansion in Prob. 14.1 to derive the result in Eq. (16.3). 
16.2. (a) Use the field expansion in Prob. 14.2 to calculate the Feynman propagator for 
the free baryon in Eq. (16.1); hence establish the first part of the result in Eq. (16.3). 
(b) Repeat for the noninteracting system at finite baryon density to derive the full result 
in Eq. (16.3). 
(c) Compare with the nonrelativistic propagator in [Fe71]. 

16.3. Use the field expansion in Prob. 14.3 to derive the Feynman propagator for the free 
massive vector meson in Eq. (16.3). 

16.4. Compute the lowest-order baryon self-energy in QHD-I retaining just the density- 
dependent part of the baryon propagator. Make a nonrelativistic reduction and reproduce 
the usual exchange contribution to the energy [Fe71, Se861. 
17.1. Define an effective N-N potential that in lowest order gives the same S-matrix 
as QHD-I (see appendix A.l). Neglect retardation in the meson propagators. Show the 
effective potential to be used with relativistic Hartree wave functions to compute nuclear 
spectra is v(1,2) = (-g~/47rT12)e-m'r12 + ~~)~~)(gu2/47rT12)e-mur12 [Fu85]. 

17.2. (a) Use the effective current in Eq. (17.9). Show the multipole operators to be used 
with the relativistic Hartree wave functions for elastic magnetic scattering take the form 

Here and



238 Problems: Part 2 

(b) Generalize to the other multipoles and inelastic transitions [Ki86]. 

17.3. (a) Retain just the Coulomb interaction. Show the electron scattering cross section 
can be written as d2u/dRzd&2 = a$ott(q:/q2)2R(q,w) where 

(b) Show that for a uniform system of nonrelativistic charged point nucleons 

(c) Compute the quasielastic response R(q, w )  for a nonrelativistic noninteracting Fermi 
gas (chapter 3). Show 

-. 
Here the dimensionless variables are defined by A = ;/kF, 6 = m w / k i ,  2 = k /kF.  
(d) Evaluate the integral in part (c). Show [Fe71, WaOl] 

A E A 
; A < 2  ; - + l > - > l - -  E A  

= +(,-1)2] 2 A -  2 

= 2iTn E ; A < 2  ; 1 - - - > - - > 0  A t  
2 - A -  

(e) Plot these results as a function of E for fixed A. Discuss. 

17.4. Use the results of Prob. 17.3 to derive the Coulomb sum rule for the noninteracting 
Fermi gas C(q) = (112) s," dw R'"(q, w )  

17.5. Derive Eq. (17.6), and verify the first line of Table 17.1. 

18.1. (a) Use the condition of thermodynamic equilibrium to prove that conservation 
of baryon number implies the chemical potential of an antibaryon is the negative of the 
chemical potential of a baryon. 
(b) Show that if there is no such conservation law, the chemical potential of an additional 
species must vanish. 

18.2. Consider the noninteracting, relativistic system of fermions in Prob. 14.2; let F G 

Q/e be the fermion number. 
(a) Compute the thermodynamic potential and parametric equation of state &(/IF, T )  and 
P(/IF,T). 
(b) Give analytic expressions for the limiting cases /IF +. 00 and T +. 00. 

(c) Formulate a numerical procedure for arbitrary (/IF, T ) .  
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18.3. Verify the high temperature limits in Eqs. (18.19) and (18.20). 

18.4. Include the contribution of the noninteracting, noncondensed (a, w )  fields in f i ~ m  
(Probs. 14.1 and 14.3). 
(a) Compute the additional contribution to R (see Prob. 18.1). 
(b) Compute the new very high T energy density and equation of state. 

18.5. Use the Feynman rules for the temperature Green’s function and the self-consistent 
Hartree approximation of chapter 16 to rederive the finite temperature MFT results of 
this section. 

19.1. Verify the limiting results in Eqs. (19.18)-(19.20) for the model quark-gluon equation 
of state. 

19.2. (a) Include a contribution for noninteracting pions in the baryon-meson thermody- 
namic potential and equation of state. What is the pion chemical potential? 
(b) Recompute a few of the isotherms in Fig. 19.5. 
(c) Discuss the impact of this, and higher mass hadron contributions. 

19.3. Draw the Feynman diagrams and use the Feynman rules for QCD to obtain an 
expression for the second-order contribution to the quark self energy.6 You need not yet 
evaluate the integrals. 

19.4. Repeat Prob. 19.3 for the gluon self-energy. Remember the ghost loop and all the 
gluon loops. 

19.5. Repeat Prob. 19.3 for the quark-gluon vertex. 

The next five problems review the relativistic analysis of an arbitrary two-body 
scattering or reaction process a + b -+ c + d; this can include massless participants as well 
as (e, e’X) through one-photon exchange WaOl]. The analysis is from the+ classic paper 
of Jacob and Wick [Ja59], which uses helicity states for the particles with J . (p’/p) [FA) = 
Xlp’x). The helicity is unchanged under rotation or Lorentz transformations along p’ (as 
long as it is not reversed). Through the use of general properties of the scattering operator 
9, the angular distribution can be exhibited, and unitarity, as well as symmetry properties 
of the S-matrix, readily imposed in each subspace of total J .  
20.1. T_he direct product state I&&bXaXb) can also be denoted by I P p 6 p 4 p X a X b )  where 
Pp = (P,iE) is the total four-momentum and (QpL4?) are the direction of the relative 
momentum p” (mbp’a  - m a p ’ b ) / ( m a  + m b ) .  Since [S ,  Pp] = 0 one can define 

Here p and the relative velocity v = p / d m  + p/d-z  are C-M values. 
(a) Set 3 = 1 and use the normalization of the single-particle states to show that in the 
C-M system ( 6 ’ ~ ‘ X c X d 1 6 + X a X b )  = 6(cos6’ - cos6’)6(4 - 4 ‘ ) 6 X , X , 6 X d X b 6 c a 6 d b .  

(b) Write S = 1 + iT and show the cross section in the C-M frame is 

6Second order in g.  
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(c) Unitarity states stS = 1. Assume only two-body states are accessible. Show 

20.2. The single-particle state can be constructed by rotation (see chapter 7) I$) = 
R-+-e+Ip+X) where p+ lies along- the positive z axis; the last angle is a phase con- 
vention. Define (p-A) = (-l)S-X&-noIp+X) and the two-particle state by Ip+X1X2) = 
Ip+Xi)Ip-Xz). Let (c .0~)  be Euler angles and X XI - X2. A basic theorem then provides 
the eigenstates of angular momentum 

(a) Prove this is an eigenstate of 3, with eigenvalue M .  (Hint: Try e i W j z . )  

(b) Prove this is an eigenstate of J2 with eigenvalue J ( J  + 1). (Hint: Insert a complete 
set of eigenstates.) 
(c) Identify the angles (a,@) = (4,e) and IpB4X1X2) = k+-,+Ip+X1Xz). Use the nor- 
malization condition in Prob. 20.1 to show N = [(2J + 1)/4.rr]’/2. Hence conclude that 
the transformation coefficients to eigenstates of angular momentum are just the rotation 
matrices 

20.3. Use the results of Probs. 20.1-2 and the rotational invariance of the scattering 
operator [zs] = 0 to exhibit the general angular dependence of the cross section (here 

= A, - X b  and p = X c  - A d ,  and we use p and P O )  

20.4. (a) Use the unitarity of the scattering operator in Prob. 20.1 and the transformation 
in Prob. 20.2 to show the finite submatrices S J ( E )  satisfy 

(b) It  is shown in [Ja59] that the parity operator can be defined so that plJMX1X2) 
= (-1)J--sl-s2 771774JM - A1 - A,) where 77 is the intrinsic parity. Show that if parity is 
a good symmetry with [ p ,  51 = 0 then the number of independent helicity amplitudes is 
reduced 

(-Ac - x d l s J ( E ) I  - A, - X b )  = ~ a ~ ~ ~ ~ ~ ~ ( - l ) s c + s d - s a - s b  ( X c X d  IsJ ( E )  IXcaXb) 

(c) I t  is also shown in [Ja59] that the antiunitary time reversal operator and phase conven- 
tions for the states (note!) can be defined so that TJJMX1Xz) = (-l)J-MIJ - MX1X2) .  
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Demonstrate that if time reversal is a good symmetry with ?> = >+f' then the submatrices 
are symmetric 

( X c X d l g J ( E )  I X a X b )  = ( X a X b  ISJ ( E )  I X c X d )  

20.5. As an application of the results in Probs. 20.1-4 consider relativistic elastic scat- 
tering of strongly interacting spin-1/2 and spin-0 particles (e.g., T + N or a + N ) .  
(a) What are the conditions imposed on the matrix S J ( E )  by unitarity and the symmetry 
conditions in Prob. 20.4? 
(b) Demonstrate that eigenstates of parity will diagonalize these matrices. Express the 
diagonal elements in terms of phase shifts. The standard notation is 6i* where J = 1 f 1/2 
and the parity is qlq~(-l) ' .  
(c) Show that the scattering amplitude between helicity states X = &1/2 can be expressed 
in the form 

1 ( f 1 +  f2) cose/2 
f++ f+- (f1+ f2)  C O S ~ / ~  (fl - f2)e-i+sin8/2 

f = ( f-+ f-- ) = [ -(fi - fi)ei+sinO/2 

Here f1 = Cl(f,+P[+, - ~ L - P [ - ~ )  and f2  = C,(fi- - fi+)P; with fi 
(d) One can always introduce another basis by making a unitary transformation on the 
helicity states IP) = Ca,Ua/~Ia'). Chose the following transformation Uap = D~(~(-r$Or$) 
on the final state. Show one then reproduces the form of the scattering amplitude given 
in Eq. (B.25). 
(e) Interpret the transformation in (d) in terms of a rotation of the spin of the particle at 
rest from the z-axis to the direction of $. Use the Lorentz transformation properties of 
the helicity states to relate the C-M scattering amplitude in (d) to the spin of the final 
particle in its rest frame. 

20.6. Deduce from C in Eq. (20.8) the Feynman rules for the additional contributions to 
Sfi from the neutral vector meson V,. 
20.7. Substitute the explicit representation of the Dirac spinors in Prob. 13.1 into 
Eq. (20.7) to derive Eq. (B.26). (Remember to renormalize to Eiu = 1). 
20.8. Take appropriate matrix elements and use the theory of angular momenta to derive 
the isospin relations in Eq. (B.28). 

20.9. Derive Eq. (B.35). 

20.10. The equivalence theorem states that between Dirac spinors, pseudoscalar and pseu- 
dovector couplings are identical 

eisi sin&/po. 

Here q = p - p'. Use the Dirac equation to prove this relation. 

21.1. One of the most useful operator identities in quantum mechanics is 

eiSOe-iS - i2 i3 
- 0 + i[S, 01 + $S, [S ,  O]] + z[S, [S, [S, 0111 + ' . . 

This algebraic identity also holds for matrices. 
(a) Verify the first few terms. 
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(b) Prove to all orders by making a Taylor series expansion of $'(A) = eiAs0e-axs - - 
C,(Xn/n!)(anp/aXn)x,, and then setting X = 1 [Bj64]. 

21.2. The T matrices satisfy [ a ~ i ,  3731 = iEijk 

(a) Showexp{~3~7 '}=cosw/2+i f i . . r ' s inw/2  where3= (w~,wz,wg) =&I. 
(b) Extend the proof to show exp { $3 . ?75}  = cos w/2  + ifi . 7'75 sin w/2. 

21.3. 
i?. j i 7 5 ) ~  = ~ ( C O S ~  + ifi . ?75 sinw) + i i .  [i?75 - fisin w - 2f i ( i f i .  7'75) sin2 w/2]. 
(b) Let L3 E .?+ 0 and verify the infinitesimal chiral transformation in Eq. (21.27). 

21.4. Nambu and Jona-Lasinio have proposed a dynamic model for spontaneous breaking 
of chiral symmetry [Na61, NaGla]. Their model involves a four-fermion coupling with 
lagrangian density 

and { ~ i ,  ~ j }  = 26ij. 

(a) Let exp ( $ 2 .  ? 7 5 }  = ~ ( 3 ) .  Show the finite chiral transformation is ~ ( 4  + 

Prove this lagrangian is invariant under the global chiral transformation 1c, + eir5e/21c,. 

21.5. The matrix element needed for pion decay is (chapter 42) ~ ( O l J ~ ~ ' ( 0 ) l ~ ; p )  
= iF,(p2)px. Prove that if the axial vector current is conserved and p2  = -$ # 0, then 
F, = 0 and the pion cannot decay. 

21.6. Use the canonical (anti-)commutation relations to show that the operator f 5  in 
Eq. (21.49) is indeed the generator of the chiral transformation in Eqs. (21.43). 

21.7. (a) Verify Eq. (B.48); 

22.1. Consider QCD in the nuclear domain with massless quarks mu = m d  = 0 
[Eqs. (19.1)-(19.4) and 19.12)]. Show LQCD is invariant under the chiral transformation. 

22.2. Prove Noether's theorem in Eq. (21.6). 

22.3. Use the invariance of the lagrangian in Eq. (22.1) under global phase transformations 
of the baryon field 1c, to deduce the conserved baryon current. 

22.4. (a) Derive the lowest order three-body nucleon force in the chiral symmetric c- 
model. 
(b) Repeat for the four-body force. 
( c )  Estimate the contribution of these two interactions to the binding energy of 4He. Use 
s.h.0. wave functions and assume a ( l ~ 1 / 2 ) ~  configuration. 

23.1. Consider scattering in nonrelativistic quantum mechanics (Probs. 1.1-6). Let 
f (0 ,4)  = C,(21 + 1)fi A(cos0) with fi = eisl sin&/k be the scattering amplitude cal- 
culated for two distinguishable particles. Now assume the two particles are identical, 
implying either a symmetric or antisymmetric spatial wave function. Show the effect on 
the scattering amplitude is to replace f + f(0) f f(r - 0) [Sc68]. 

23.2. Consider the scattering of two particles with isotopic spin Itlmltzmz). Assume the 

scattering operator is invariant under isospin rotations so that [T, S] = 0. 
(a) Show the scattering amplitude can be written 

(b) Verify Eqs. (B.52) and (B.53). 

4 . .  

(b) Show the scattering amplitude of Prob. 20.3 is calculated from ( X , X d l T J T ( E ) I X , X b )  
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which satisfies the unitarity condition in Prob. 20.4. 

23.3. Consider the relativistic analy_si: of the scattering of two identical 0' bosons. Here 
there is only one two-particle state Ikllcz) = c! c! lo); it is automatically symmetric under 
particle interchange. 
(a) Show the transformation coefficients in Prob. 20.2 with the correct symmetry are now 
given by (e,dIJM) = Y J M ( 6 ,  4) [I + ( - I ) ~ ]  /&. 
(b) Show these coefficients are properly normalized with respect to the volume element 

(c) Show the unitarity relation, taking into account the volume element in (b), again has 
the form in Prob. 20.4. 
(d) What is the corresponding form for the scattering amplitude in Prob. 20.3? Compare 
with the result in Prob. 23.1. 
(e) Extend the analysis to include integer isospin. Show the transformation coefficients 
are now (e, 4 1 ~ ~ ) ~  = YJM(e,  4) [I + ( - I ) ~ + ~ ]  / &. 
23.4. (a) The substitution rule allows one to turn around an external leg on a Feynman 
diagram by reversing the sign of the four-momentum and making an appropriate wave 
function replacement. Show that a pion leg can be turned around with the replacement 
qi,  a -+ -qi ,  a. Hence show that the T-N scattering amplitude is invariant under the 
substitution q1,a e -qz,P. 
(b) If the scattering amplitude is an analytic function, the substitution rule implies crossing 
relations that relate the function in different regions of the variable(s). Prove the following 
crossing relations for T-N scattering 

ki kz 

dR / 2 !, which counts all the independent states. 

A*(s , t ,u )  = &A*(u, t ,s)  B*(s,t,u) = FB*(u , t , s )  

What are the crossing relations in terms of (v, K ~ ) ?  

23.5. The analyticity properties for T-N scattering shown in Fig. B3.1 can be established 
from Feynman diagrams or axiomatic field theory [Bj65]. Write a Cauchy integral, expand 
the contour, use the crossing relations of Prob. 23.4, and use the nucleon pole contributions 
of Eqs. (20.22) to derive the fixed 6' dispersion relations in Eqs. (B.31) and (B.32). 

23.6. Derive the results in Eqs. (B.65). 

23.7. What are the crossing relations for T-T scattering? 
23.8. Consider T-T scattering in the J" ,  T = 1-, 1 channel. 
(a) Calculate the T-matrix in tree approximation starting from L in Eq. (23.1). 
(b) Unitarize the amplitude as discussed in the text for the O', 0 channel. 
(c) Calculate and plot the phase shift for the values of rnz in Fig. 23.4. Do you get anything 
that looks like the pmeson? 
23.9. (a) Include the electromagnetic interaction through the minimal gauge invariant 
substitution in C in Eq. (23.1) and derive the conserved electromagnetic current. 
(b) Show the electric charge is given by Q = T3 + B/2. 

24.1. Use Eq. (24.34) to derive the contribution of a condensed neutral p: field in the 
relativistic Hartree theory of finite nuclei in Prob. 15.5. 

24.2. In Eq. (1-139) of [It801 it is stated that the Noether currents can be defined according 
to 
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where E"(z) is a set of local, infinitesimal transformation parameters. Derive this result, 

24.3. Use the result in Prob. 24.2 to derive the leading terms in the Noether currents in 
Eqs. (24.39) arising from the v = 2 piece of the FST effective lagrangian (see [An02]). 

24.4. Derive the results in Eqs. (24.41). 

25.1. (a) Derive the Thomas-Fermi expression for the Hohenberg-Kohn free energy func- 
tional of a non-interacting Fermi gas with number density n(x)  and degeneracy y 

(b) Assume the nuclear interactions are equivalent to a slowly varying radial potential 
-U(P) and that the chemical potential for a self-bound nucleus with N = 2 is p = -B. 
Use the Hohenberg-Kohn theorem to rederive the expression for the nuclear density in 
Prob. 3.2 
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Chapter 27 

QCD - a review 

Quantum chromodynamics (QCD) is the theory of the strong interactions binding 
quarks and gluons into observed hadrons (baryons and mesons), and, in turn, into 
observed nuclei. As such, it is truly the theory of the structure of matter. A brief 
introduction to QCD was given in chapter 19. In this part of the book we turn our 
attention to developing the implications of the theory of QCD. Of particular interest 
is the strong-coupling regime appropriate to nuclear physics. First, however, it is 
necessary to further develop a basic understanding of the theory. We do that in 
this chapter with a review and summary, starting with the classic work of Yang and 
Mills on nonabelian local gauge theories [Ya54] (see also [Ab73]). 

27.1 Yang-Mills theory - a review 

Start with isospin invariance [SU(2)], which is the case originally studied by Yang 
and Mills [Ya54]. A discussion of isospin invariance is contained in chapter 21. In 
direct analogy with angular momentum, the isospin operator T is the generator 
of isospin transformations, and the operator R producing the finite, global isospin 
transformation through the angle 8 = no is obtained through exponentiation. Its 
effect on the field - q5 depends on the particular isospin representation to which that 
field belongs. 

Here T is a hermitian matrix representation of the generators T.' - q5 is a column 
vector composed of a set of fields that mix among themselves under isospin trans- 

lThe generators form a Lie algebra 

[ f i , f j ]  = ' k i j k f k  

The quantities E i j k  are the structure constants of the Lie algebra [here SU(2) ] .  

247 
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formations. Two examples consist of the previously studied nucleon and pion fields 

.=( ;)=( ;) 1 
; T = - 7  

2- 

- .=( i;) ; T = &  (27.2) 

Here the matrices & are defined by ( t i ) j k  = - i&i jk .  Global isospin invariance implies 
that the lagrangian is left invariant under this transformation. 

L-L' = L (27.3) 

Specification to infinitesimal transformations 8 + 0 reduces Eqs. (27.1) and (27.3) 
to 

(27.4) 

The nucleon with isospin 112 plays a special role here since it forms a basis for 
the fundamental  representation of the group SU(2) 

fi+fi-l= - [ e - iT.e 2- I +  - (27.5) 

In this case u(8) is a three parameter, unitary, unimodular, 2 x 2 matrix. 
The goal is to now convert this into a local gauge invariance where the isospin 

transformation angle 8, instead of being an overall constant (global invariance), 
may be a func t ion  of the position in space-time 8 (x ) .  The transformation of the 
fields now takes the form 

- $(x )  + - $I(x) = [e-i@(4] - $(x )  
= vl +)I $(.I (27.6) 

The matrix Q[ 8(x ) ]  defined in this expression is unitary. Now if the lagrangian is 
built out of bilinear forms $t$, it will be invariant under the local transformation 
in Eq. (27.6) 

- -  

- 4 It $ I = $tvtv$J = $Jt$ (27.7) 

What about the gradient terms? To make them invariant under this local gauge 
transformation one introduces a covariant derivative such that 

D' D -4 = U [  e(x)l-$ Dx, - Dx, - (27.8) 

The same argument for invariance as in Eq. (27.7) can then be employed; if the 
kinetic energy term in a$/ax, appears in the lagrangian 12 only in a bilinear com- 
bination of D$/Dx,, then L will be invariant under local gauge transformations. - 
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To ensure Eq. (27.8), introduce vector fields, one for each generator 

A; (x) ; i = 1,2,3 (27.9) 

Define the covariant derivative as 

(27.10) 

Now let these new vector fields also transform under the local gauge transformation. 
How must these fields transform to ensure Eq. (27.8)? Use 

a 84 
axp - ax, 

= g(e)-- + [a!,- -u(e) ] -  4 
one wants 

Substitution of Eq. (27.11) into Eq. (27.12) yields 

(27.11) 

(27.12) 

(27.13) 

or 

or, finally 

(27.15) 

This result appears to depend on the representation T; in fact, it depends only on 
the commutation rules, that is, on the particular Lie algebra under consideration. 
To understand this, go to infinitesimals 8 + 0 

i ae 
9 ax, 

T . A; = (1 - iT. e + . . . ) ( T .  A,)(i + iT. e + ...I - - [ - i ~ .  -1 - 

(27.16) 

The matrices T provide a representation of the commutation rules, which in the case 
of su(2) gives [Ti,Tj] = kijkTk. Since the matrices are linearly independent 
one can equate coefficients, and hence the infinitesimal transformation law for the 
vector fields becomes 

. . . I  ae 
9- ax, 

= T.A,-i[Ti,21.1]eaAA3,--T.- - 

(27.17) 
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More generally, the &ijk  are replaced by the structure constants of the particular 
group under discussion. For SU(2) with nucleon and pion fields, the covariant 
derivatives and transformation law for the vector fields can be conveniently ex- 
pressed in a vector notation 

(27.18) 

What about the kinetic energy term for the vector mesons? Can we construct 
a term bilinear in derivatives of the vector meson field that is also locally gauge 
invariant? The answer to this question was given by Yang and Mills. Define a 
vector meson field tensor by the following relation 

(27.19) 

Again, more generally, the &ijk  of SU(2) are replaced by the structure constants of 
the group. Take, in analogy to QED, a kinetic energy term of the form 

(27.20) 
1 ’  ’ 

CKE = -~3 ,L3~, ,  
In vector notation these relations can be written 

(27.21) 

With these definitions, it is then true that for infinitesimal transformations the 
change in the vector meson field tensor is perpendicular to the field tensor itselfL 

1 
CKE = -f”” * F,, 

bF,, = 8 x F,, ; e 4 0  (27.22) 

This implies that the kinetic energy term is unchanged under this infinitesimal 
transformation 

SCKE = 0 (27.23) 

One would normally proceed to add a mass term for the vector mesons to the 
lagrangian 

(27.24) 1 
bC,,,, = - -miA ,  . A, 2 

2We leave the proof of this relation in SU(2) as an exercise for the reader in Prob. 27.1 (see 
[Wa92]). 
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Such a term clearly changes under the local gauge transformation in Eq. (27.18), 
and hence the only way to preserve local gauge invariance is to demand that the 
additional vector meson fields be massless 

mi=O (27.25) 

These results can be combined to construct, for example, a model lagrangian for 
pions and nucleons that is locally gauge invariant under isospin transformations [a 
nonabelian gauge theory built on the group SU(2)] 

(27.26) 

Here v;l = (vt, ivi); the metric is not complex conjugated under this * operation. 
The discussion of nonabelian Yang-Mills theories can be specialized to the case 

of the abelian theory of QED where the invariance is to  local phase transformations 
of the fields and the invariance group is simply U(1). In this case one has the 
correspondence: 

(1) The finite transformation operator and unitary representation become 

7 (27.27) R = . u = e--iq@ 

Here Q is the electromagnetic charge operator and q is the charge carried 
by the field. Since there is only one generator Q, the structure constants 
vanish; 

(2) A single vector field A, is introduced, and the covariant derivative is defined 
by 

(3) Under local gauge transformations the vector field transforms as 

(4) The field tensor for this vector field is defined by 

dA, dA,  F 
P, - ax, ax, 

(27.28) 

(27.29) 

(27.30) 

(5) The vector field must be massless rn; = 0 to maintain local gauge invari- 
ance. 
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Remarkably enough, these arguments, used to construct a lagrangian that is in- 
variant under local phase transformations, lead to quantum electrodynamics (QED), 
the most accurate physical theory we have. 

27.2 Quarks and color 

As discussed in chapter 19, quarks come in several flavors [u, d ,  s ,  c, b, t ,  + .  . I ,  each 
of which has a set of quantum numbers out of which the quantum numbers of the 
observed baryons are deduced from (qqq) triplets and the observed mesons from (44)  
pairs. In addition, the quarks are assigned an additional internal quantum number 
called color, which can take three values ( r e d ,  green, blue) .  The lightest mass quark 
fields will be represented as f01lows:~ 

U R  U G  U B  

= (;I-( 5 t;] 
5 ( 4 ~ ~ 4 ~ ~ 4 ~ )  4i ; i =  R,G,B (27.31) 

Define the column vector - $ by 

4 R  y - = (;;) (27.32) 

This is a very compact notation; each $i contains many flavors as indicated in 
Eq. (27.31), and eacl 
for example 

park flavor in turn represents a four-component Dirac field, 

U R  

d R  
S R  

C R  

; etc. (27.33) 

R 

The lagrangian for the free quark fields can now be written compactly as 

Here the mass term is the unit matrix with respect to color 

m 

(27.34) 

(27.35) 

3The extension to any number of flavors is evident. 
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It may be anything with respect to flavor, for example, 

(27.36) 

The lagrangian in Eq. (27.34) has a global invariance with respect to unitary 
transformations mixing the three internal color variables [SU(3)] .  We denote the 
generators of this transformation by & with a = 1, . . . , 8  and the eight parameters 
characterizing a three-by-three unitary, unimodular matrix by 8" with a = 1,. . . , 8 .  
There are eight three-by-three, traceless, hermitian, Gell-Mann matrices &, - the 
analogues of the Pauli mat rice^.^ The operator producing the finite color transfor- 
mation is then given by 

= p a w  (27.37) 

It has the following effect on the quark field 

Latin indices will now run from 1, . . . ,8 ,  and repeated Latin indices are summed. 
The transformation in Eq. (27.38) with constant, finite leaves the lagrangian in 
Eq. (27.34) unchanged. Here u(0) is a unitary, unimodular three-by-three matrix, 
and the quark field in Eq. (27.38) forms a basis for the fundamental representation 
of SU(3). The symmetry is with respect to color. 

One can now make this global color invariance a local invariance where the 
transformation P ( x )  can vary from point to point in space-time by using the theory 
developed by Yang and Mills: 

(1) Introduce massless vector meson fields, one for each generator 

A;(xc) ; a = 1 ,  ..., 8 (27.39) 

4These matrices satisfy the Lie algebra of SU(3) ,  the same algebra as satisfied by the generators 

1 1  1 
[-A", - X b  = i f a b c - y  
2- 2-1 2- 

Here the f a b c  are the structure constants of the group; they are antisymmetric in the indices 
(abc). The matrices ( A a ) i j  for a = 1 , .  . . , 8  are given in order by 

( ) ( 2  -2 ) ( l  -l ) ( 1  ')(i - 2 )  
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These vector mesons are known as gluons; 
(2) Define the covariant derivative by 

D d i  
-1c, = - - -gAaA,(x)] - 1c, Dx,- [ax, 2 - 

(3) Define the field tensor for the vector meson fields as 

(27.40) 

(27.41) 

Here f a b c  are the structure constants of SU(3); 

fields and the field tensor transform according to 
(4) Under infinitesimal local gauge transformations 8” + 0 the vector meson 

; e a + o  (27.42) u;,, = f abc e b 3iU 

(5) A combination of these results leads to the lagrangian of QCD 

The original result that this lagrangian leads to asymptotic freedom is due to Gross 
and Wilczek [Gr73, Gr73al and Politzer [Po73, P0741; see also Fritzsch and Gell- 
Mann [F’r72, Fr731. References [Ma78, Re81, Wig21 contain good background ma- 
terial on QCD. 

The lagrangian in Eq. (27.43) can be written out explicitly in powers of the 
coupling constant g 

LQCD = L o + L i + L 2  

c2 = --f g L  abc f ade A,A:A;A; b (27.44) 
4 

Here 

(27.45) 

The various processes described by the interaction terms in this lagrangian are 
illustrated in Fig. 27.1. 
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3 

Fig. 27.1. Processes described by the interaction term in the QCD lagrangian. 

To obtain further insight into these results, it is useful to write the Yukawa 

Recall, for example, the structure of the first two Aa matrices 
interaction between the quarks and gluons in more detail. 

A ' = (  1 1 ) 
- 

--z 
- A2 = ( i ' ) (27.46) 

These matrices connect the (R,  G) quarks, and with explicit identification of the 
flavor components of the color fields, it is evident that this interaction contains the 
individual processes illustrated in Fig. 27.2. The quarks interact here by changing 
their color, which in turn is carried off by the gluons; the flavor of the quarks is 
unchanged and all flavors of quarks have an identical color coupling. If the gluons 
are represented with double lines connected to the incoming and outgoing quark 
lines, respectively, and a color assigned to each line as indicated in this figure, then 
color can be viewed as running continuously through a Feynman diagram built from 
these components. 

1.2 YR 

Fig. 27.2. Individual processes described by the quark-gluon Yukawa coupling in 
QCD. 

The Euler-Lagrange equations following from the QCD lagrangian provide fur- 
ther insight. They are readily derived to be the following 

(27.47) 



256 QCD - a review 

It follows from these equations of motion that currents built out of quark fields and 
a unit matrix with respect to color are conserved. 

; baryon current 

; flavor current (27.48) 

Here C is a unit matrix with respect to color, but anything with respect to flavor, 
satisfying [E,Xa] = 0. 

We assume here that the quark masses are sufficiently degenerate so that [ a , ~ ]  = 0. 
It follows from the four-divergence of the third of Eqs. (27.47) and the antisym- 

metry of Fiv = -3& that the color current, the source of the color field, is also 
conserved. 

(27.50) 

The Feynman rules for the S-matrix following from the lagrangian density of 
QCD are derived, for example, in [Qu83, Ch84, Ai89, Wa921; they lead to those for 
the Green’s functions stated in chapter 19. 

QCD has two absolutely remarkable properties, confinement and asymptotic 
freedom. 

27.3 Confinement 

Colored quarks and gluons, the basic underlying degrees of freedom in the strong 
interactions, are evidently never observed as free asymptotic scattering states in 
the laboratory; you cannot hold an isolated quark or gluon in your hand. Quarks 
and gluons are confined to  the interior of hadrons. There are strong indications 
from lattice gauge theory calculations, which we discuss in some detail in the next 
several sections, that confinement is indeed a dynamic property of QCD arising 
from the strong, nonlinear gluon couplings in the lagrangian. One can show in 
these calculations, for example, that the energy of a static (44)  pair grows linearly 
with the distance d separating the pair (see Fig. 27.3). What actually happens then 
as the (qq) pair is separated is that another (qq) pair is formed, completely shielding 
the individual color charges of the first pair, and producing two mesons from one. 
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Fig. 27.3. Confinement in QCD. Lattice gauge theory calculations indicate that the 
separation energy grows linearly with d.  

27.4 Asymptotic freedom 

The second remarkable property is asymptotic freedom. Recall from QED that 
vacuum polarization shields a point electric charge eo as indicated in Fig. 27.4a. 

Fig. 27.4. (a) Shielding of point charge by (b) vacuum polarization in QED. 

The renormalized charge e i  changes with the distance scale, or momentum transfer 
X2, at which one measures the interior charge. The mathematical statement of this 
fact is the renormalization group equation of Gell-Mann and Low [Ge54] 

(27.51) 

The lowest order modification of the charge in QED arises from the vacuum polar- 
ization graph indicated in Fig. 27.4b. The renormalization group equations can be 
used to sum the leading logarithmic corrections to the renormalized charge to all 
orders. The result is that the renormalized charge measured at large X2 >> M 2  is 
related to the usual value of the total charge e: by 

(27.52) 

The first term in the expansion of the denominator arises from the graph in 
Fig. 27.4b.5 The renormalized electric charge in QED is evidently shielded by vac- 

5Prove this statement (Prob. 27.6). 
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uum polarization; the measured charge increases as one goes to shorter and shorter 
distances, or higher and higher X2. 

Similar, although somewhat more complicated, arguments can be made in QCD. 
An isolated color charge go is modified by strong vacuum polarization and sur- 
rounded with a corresponding cloud of color charge as indicated schematically in 
Fig. 27.5. 

C 
c C C  

c c c  
C 

c . c  
C 
c g0 cc 
c c  c c c  

Fig. 27.5. Antishielding of color charge in QCD by strong vacuum polarization. 

In this case, the renormalization group equations lead to a sum of the leading In 
corrections for X2 >> Xq of the form [Gr73, Gr73a, Po73, Po741 

2 91 
g2 1 + (g:/167r2)(33/3 - 2Nf/3) In (X2/Xq) 

(27.53) 

Here Nf is the number of quark flavors.6 An expansion of the denominator again 
gives the result obtained by combining the lowest-order perturbation theory correc- 
tions to the quark and gluon propagators and quark vertex (Prob. 27.7). The plus 
sign in the denominator in this expression is crucial. One now draws the conclu- 
sion that there is antishielding; the charge decreases at shorter distances, or with 
larger A’. The vacuum in QCD thus acts like a paramagnetic medium, where a 
moment surrounds itself with like moments, rather than the dielectric medium of 
QED where a charge surrounds itself with opposite charges. The implications are 
enormous, for one now concludes that it is consistent to do perturbation theory at 
very short distances, or high momentum transfer, with QCD. The renormalization 
group equations then provide a tool for summing the leading In’s of perturbation 
theory. This powerful result of asymptotic freedom in QCD is due to Politzer, 
Gross, and Wilczek [Gr73, Gr73a, Po73, P0741. 

“With N f  = 1, no gluon contribution of 3313, and the observation tr($Xa$Xb) = %hub, one 
recovers the result in Eq. (27.52). It is the gluon contribution that changes the sign in the 
denominator. 
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Path integrals 

Nuclear physics is the study of the structure and dynamics of hadronic systems. 
Such systems are composed of a confined quark/gluon substructure. The large- 
distance confinement of color, and the evolution into the large-distance hadronic 
structure, is governed by a regime where the coupling constant g is large and the 
nonlinear interactions of QCD are crucial. A central goal of nuclear physics is to 
deduce the consequences of QCD in this strong-coupling regime.l The subsequent 
developments are most conveniently presented in terms of a path integral formu- 
lation of quantum mechanics and field theory [Fe65]. This approach permits one 
to readily incorporate explicit local gauge invariance, and as a formulation of field 
theory in terms of multiple integrals over paths, provides a basis for carrying out 
large-scale numerical Monte Carlo evaluations of physical quantities. We start the 
discussion with a review of the basic concepts of path integrals. The material in 
this section is taken from [Fe65, Ab731 and [Se86, Wa921; it is meant as a review. 
We start with the problem of a single nonrelativistic particle in a potential. 

28.1 Propagator and the path integral 

The quantum mechanical amplitude for finding a particle at position q f  at time tf 
if it started at qi at time ti is given by2 

The action appearing in this expression is defined by 

P tt 

(28.1) 

(28.2) 

'As opposed to the very short-distance, high-momentum regime where one can do perturbative 

2We restore tL until the end of this chapter for reasons that will become evident. 

QCD. 
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Here L = T - V is the lagrangian. The path integral appearing in Eq. (28.1) is 
illustrated in Fig. 28.1. 

t t  t 0 t l  t 2  n-1 n 
ti-+-- n i n t e rva l s  +tf 
t 0 t l  t 2  
ti-+-- n i n t e r  

t t  n-1 n 

Fig. 28.1 

It is defined 

. Definition of the path integral for a single nonrelativistic 

in the following manner3 

particle. 

Split the time interval t f  -ti into n subintervals At such that t f  -ti = nAt. 
Label the coordinate at time tp  by qp. Fix qi = qo and qf  = qn; 
Write the action in Eq. (28.2) as a finite sum over these intervals; 
Define the time derivative of the coordinate appearing in that sum according 
to 

(28.3) 

To evaluate the expression in Eq. (28.1), integrate over each coordinate at 
each intermediate time (see Fig. 28.1) 

(28.4) 

For the measure of integration, assign the following factor for each interval 

me--i?F/2 

( 27~fiAt ) ; one factor for each interval (28.5) 

Finally, take the limit n -+ 00 [which implies At = ( t f  - ti)/. -+ 01. 

This procedure generates the exact quantum mechanical transition amplitude 
[Fe65]. It involves only the classical Zagrangian; however, one has to integrate over 
all possible paths connecting the initial and final points as illustrated in Fig. 28.1. 

3The derivation of these results for a T and V of the form in Eq. (28.15) proceeds in a manner 
similar to that given in the text for the partition function (Prob. 28.1). 

(1)

(2)
(3)

(4)

(5)

(6)
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The classical limit of this expression can be obtained by taking f i  -+ 0. In this limit, 
the method of stationary phase [Fe80] implies that the integral in Eqs. (28.1) and 
(28.2) will be determined by that path (or paths) where 

(28.6) 

Here the variation about the actual path is precisely that defined in classical me- 
chanics, and the endpoints are held fixed. The reader will recognize Eq. (28.6) as 
Hamilton’s principle. One immediately obtains classical mechanics as the classical 
limit of this path integral formulation of quantum mechanics. 

28.2 Partition function and the path integral 

The partition function in the canonical ensemble, and hence statistical mechanics, 
bears an intimate relation to the propagator and path integral described above. 
Given a system in thermodynamic equilibrium at given ( N ,  V, T )  as illustrated in 
Fig. 28.2, the canonical partition function is defined by 

Fig. 28.2. System at given ( N ,  V, T )  in the canonical ensemble. 

(28.7) 

Here ,8 z 1/kBT where kg  is Boltzmann’s constant and the Trace (Tr) indicates a 
sum over the diagonal elements evaluated for a complete set of states in the Hilbert 
space for given N ;  the second expression is obtained by evaluating the trace in 
the basis of eigenstates of the hamiltonian I? satisfying I?IEn) = EnIEn). The 
Helmholtz free energy is then given in terms of the canonical partition function by 

(28.8) F ( N ,  V, T )  = -- In 2 
1 
P 

Recall that the Helmholtz free energy is related to the energy and entropy by 

F = E - T S  
dF = dE - TdS - SdT (28.9) 
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The first and second laws of thermodynamics state 

d E  = T d S  - P d V  i- p d N  (28.10) 

Here p is the chemical potential, and the last term contributes only for an open 
system. A combination of these equations yields 

d F  = - S d T  - P d V  + P d N  (28.11) 

Hence if one knows the function F(T ,  V, N ) ,  the entropy, pressure, and chemical 
potential can be obtained by differentiation 

s = - ( $ )  P = - ( E )  p = ( g )  (28.12) 
V, N T, N V, T 

With N uncoupled subsystems, the hamiltonian is simply additive 

N H=Ciu (28.13) 
u=l 

If the N subsystems are all identical and localized, the canonical partition function 
simplifies to 

z = ZN 

z = Tr [&I (28.14) 

In the last expression the trace is now over a complete set of single-particle states 
and one works in the microcanonical ensemble. As a concrete example one can work 
with a one-dimensional problem of a particle in a potential where 

1 
2m 

i = -62 + V ( i )  (28.15) 

To convert the partition function to a path integral first introduce a basis of 
eigenstates of position where 

4 4 )  = 414) 

(4%) = w -4) 

Eigenstates of momentum will also be employed 

6lP) = PIP) 
(P’lP) = w -P) 

(28.16) 

(28.17) 

The inner product between the coordinate and momentum eigenstates follows from 
general principles 

(28.18) 
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The completeness relation states4 

(28.19) 

Now evaluate the trace in Eq. (28.14) using these eigenstates of position 

z = Tr[e-oh] = 1 dq(qle-ohlq) (28.20) 

To proceed, divide tip into n intervals of width Ar = E and write tip = n E  as 
indicated in Fig. 28.3. 

Fig. 28.3. Evaluation of partition function as a path integral. 

Introduce the coordinate qp at each intermediate rp as indicated in Fig. 28.3. 
Define the initial and final coordinates to have the same value qo = qn = q. This 
corresponds to a cyclic boundary condition on the coordinate and is needed for the 
evaluation of the trace. The exponential in the partition function can be factored 
into 7~ terms 

The completeness relation sdqp lqp) (qp )  = 1 can be inserted between each of these 

4With a big box of length L and periodic boundary conditions one should really use 

Then at the end of the calculation the limit C, + (L/27~) i )  J” d p  is taken. 
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factors to give 

(28.22) 
J p=l l=O 

Now expand the matrix elements in this expression and work to first order in E.  

This result is exact as E + 0.5 

replaced by its eigenvalue in the last factor (which we label as m.e.) 
Next insert eigenstates of momentum so that the f i  in the exponential can be 

(28.24) 

Complete the square in the exponent 

1 m 
m.e. = 

27rh 1’) (28.25) 
im 

I = sp, dP exp { -& [P - ---(a - Q l + l )  

A change of integration variables, and the use of Cauchy’s theorem to shift the 
integral Jc e-z2 up to the real axis yields 

(28.26) 

5A somewhat more rigorous derivation of this result is obtained with the aid of the Baker-Haussdorf 
theorem [Probs. (31.1-2)]. 
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A combination of these results yields 

(28.27) 

This expression is exact as E 4 0; it allows us to express the partition function in 
this same limit as 

n- 1 n-1 

l=O p=o 
27reh 

(28.28) 

The exponent appearing in this expression can be related to the action in the 
following manner. Define E = d r .  Then as E t 0, one has 

dq QP+l - 4 P  - - - 
E d r  

Recall the action is defined by 

Now make the following substitution 

The action then becomes 

dq S(f, i) = -i 6 d r L ( q ,  i- ) = iS(r2, rl )  d r  

(28.30) 

(28.31) 

(28.32) 

Hence 

S ( 7 2 , n )  = - Jr: L(q, i-& dq ) d r  (28.33) 

In summary  the partition function in the microcanonical ensemble can be written 
as a path integral according to 

J 

Here the action is evaluated for imaginary time, and from Eq. (28.33) 

S(hp, 0) = (28.35) 
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This expression for the partition function as a path integral has the following inter- 
pretation: 

Divide the r integration for the action at imaginary times in Eq. (28.35) 
into n intervals of size AT with tip = nAr. Label the coordinate at the 
intermediate time rp by qp as indicated in Fig. 28.3; 
Write the action in Eq. (28.35) as the corresponding finite sum; 
Define the I- derivative appearing in that expression by 

4% - 9 P + l  - 9 P  - 
d r  AT 

Impose cyclic boundary conditions to recover the trace 

(28.36) 

90 qn (28.37) 

Carry out the multiple integral over the coordinates at all intermediate taus 
(Fig. 28.3); include dqo to recover the trace 

(28.38) 

As a measure for the integration, include the following factor for each in- 
terval 

; one for each interval (&) 1’2 
(28.39) 

At the end of the calculation, take the limit n -+ 03 (which implies AT = 
tip/n -+ 0 ) .  

resulting expression gives an exact representation of the partition function 
in the microcanonical ensemble. 

28.3 Many degrees of freedom and continuum mechanics 

Let us extend this discussion to systems with many degrees of freedom. Consider, 
for example, many mass points on a massless string with tension T moving in the 
transverse direction as illustrated in Fig. 28.4. Denote the transverse displacements 
by qn with a = l , . . .  , N .  Here the index a merely labels the coordinates. Then 
extend the notion of the path integral to include integrations over all possible con- 
figurations of each of the coordinates 

N 
(28.40) 

(1)

(2)
(3)

(4)

(5)

(6)

(7)
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Fig. 28.4. System with many degrees of freedom: mass points on a massless string 
with tension T moving in the transverse direction. 

The quantum mechanical amplitude for finding the coordinates in a configuration 
{q&} at time t f  if they started at {qa} at time ti is 

( q i d  ...q;vitfIq142...~~iti) = (28.41) 

where S ( f ,  i) is the many-body action. The canonical partition function is evidently 

(28.42) 

It is now straightforward to proceed to the continuum limit; in the previous 
example it would be that of a continuous string. 

(28.43) 

The coordinate x now merely serves as a label to indicate the position of the dynamic 
variable q. The quantity C is the lagrangian density.6 

28.4 Field theory 

We have now arrived at field theory.’ Consider the path integral associated with a 
field variable 4 in three-dimensional space. 

(28.44) 

This expression means the following: 

(1) Subdivide space-time into volumes of size E ~ .  Label each cell with the index 

(2) Write the action S as a finite sum over these cells; 
a as indicated in Fig. 28.5a; 

‘For generality, these expressions have been written for any number of spatial dimensions; they 
would apply, for example, to the dynamics of a one-dimensional string, a twc-dimensional mem- 
brane, or a threedimensional solid. 

7We could be discussing, for example, sound waves in a gas (cf. [Fe80]). 
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(3) Include the measure for each interval 

(28.45) 
a 

Since all the subsequent developments will depend only on ratios of path 
integrals over the fields, the precise value of ma is immaterial here; 

(4) Perform a multiple integration over the value of the field variable in each 
cell as illustrated in Fig. 28.513 

a J  

(5) Take the limit E 4 0 where +a 4 4(x,t). 

The path integral has now been exactly evaluated.' 

(28.46) 

Fig. 28.5. Path integral in field theory: (a) Subdivision of space-time into cells of 
volume E ~ ;  each cell is labeled by a. (b) Representation of the field in each cell. 

28.5 Relativistic quantum field theory 

On the basis of the preceding discussion, it follows that the partition function in 
relativistic quantum field theory is given by9 

2 = / a(+) exp { lhp dr / d3a: L(+, id+/ar, V4) (28.47) 

Cyclic boundary conditions required for the trace are imposed by demanding 

4(x, W )  = +(Xl 0) (28.48) 

8This limit should be taken only at the very end of the calculation of the quantity of interest. 

QThis is not a ratio, but we will show in the next section how thermodynamic averages will involve 
the partition function in the form of a ratio. 
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To conclude this chapter, we briefly review some additional results of relativistic 
quantum field theory, derived for example in [Ab73] (see also [SeSS]). The generating 
functional for a scalar field theory is defined by 

(28.49) 

It is a ratio of path integrals where the denominator is calculated from the numerator 
by simply setting the source current J = 0. The generating functional yields the 
Green's functions, or propagators, of the theory by variational differentiation (see 
Prob. 28.3) with respect to the source current J ( z ) .  Here z denotes a four-vector. 

SnW(0) - - ( 'olTIJ(zl)  . '  *J(zn)llQ'o) (28.50) (:>" S J ( z l ) 6 J ( z 2 )  . - . S J ( z , )  ('01%) 

The crucial theorem of Abers and Lee [Ab73] now states the following: the 
correct limiting conditions on the times for extracting the ground-state expectation 
values from the generating functional are 

(28.51) 

This result can be combined with the euclidicity postulate that the Green's functions 
for certain problems can be analytically continued in the time.1° Let 

J D(4)  exp { ( i /h)  g' d 4 4 C  + 541) 
W ( J )  = LimTt,-i,LimT,+i, 

[' ' * ] J=O 

00 

t -27 i ~ ~ O O d t + ~ O O d r  (28.52) 

The Green's functions are then generated in the euclidian metric where 

(28.53) 

The generating functional that provides these euclidian Green's functions is evi- 
dently 

Here d 4 z  = d3xd7.  The evaluation of this expression gives the Green's functions in 
the euclidian metric, which may then be analytically continued back to real time." 

l0This can be validated in perturbation theory for the vacuum Green's functions. 

l1 Alternatively, one can evaluate Eq. (28.49) in Minkowski space and build in the correct Feynman 
boundary conditions for the propagators by introducing an adiabatic damping factor in the 
action. Consider the mass term L,,,, = -(1/2)m2@ in the lagrangian density, and take 
m2 + m2 - iq where q is a positive infinitesimal. See Prob. 28.7. 
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This generating functional has an interpretation as the amplitude to go from the 
ground state to the ground state in the presence of external sources [Ab73]; 

Now note the great similarity of the partition function in Eq. (28.47) and the 
generating functional for the Green’s functions in the euclidian metric in Eq. (28.54). 

We proceed to use these results as a basis for analyzing strong-coupling QCD. 
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Lattice gauge theory 

The material in this chapter is based on [Wi74, Cr83, Re83, Kh891. We start by 
reviewing the motivation. The goal is to solve a locally gauge-invariant, nonabelian, 
strong-coupling field theory. We seek to understand confinement in QCD and the 
structure of hadrons and nuclei. Since it is the local gauge invariance that dictates 
the nature of the nonlinear couplings in the lagrangian, and since it is these nonlinear 
couplings that are presumably responsible for confinement, it is important that the 
approach incorporate local gauge invariance. 

The method of solution, due to Wilson [Wi74], puts the theory on a finite 
lattice of space-time points with separation a. This reduces the problem to a large, 
but finite, set of degrees of freedom. A natural momentum cut-off of A M 1/u 
now appears in the theory. Various expectation values, which allow one to probe 
the consequences of QCD, can be related to the partition function. The resulting 
path integral ratios can be evaluated numerically with Monte Carlo techniques 
- in some cases, such as mean-field theory and strong-coupling theory, analytic 
results can be obtained. At the end, the continuum limit must be taken (or at 
least discussed). Asymptotic freedom, whereby the renormalized coupling constant 
becomes vanishingly small at short distances [Eq. (27.53)], facilitates the continuum 
limit and permits one to tie on to perturbative QCD. 

29.1 Some preliminaries 

Recall from chapter 28 that the canonical partition function is defined by 

z = n ( , - p H )  (29.1) 

The energy of the system is then given by [see Eqs. (28.7-28.12)] 
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(29.2) 

These observations allow one to introduce the statistical operator (see [Fe71]) 

(29.3) 

The thermal average of a quantity is then given in terms of the statistical operator 
by 

(29.4) 

From the form of the partition function in Eq. (28.47), the statistical operator 
in relativistic quantum field theory can be identified as 

(29.5) 

When the numerator and denominator are evaluated through path integrals in these 
thermal averages, the measure drops out in the ratio as advertised. 

Now that the ti has served its purpose, we shall henceforth return to the system 
of units where ti = c = 1. 

As an introduction to lattice gauge theory, we start with the example of QED in 
one space and one time dimension. This theory is locally gauge invariant; however, 
the group here is abelian - it is just that of local phase transformations. This simple 
example is worth studying, though, since it provides insight into the approach of 
putting the theory on a lattice while maintaining exact gauge invariance. We will 
then discuss the extension to the more complicated nonabelian case. It is worthwhile 
to separate these concepts. 
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29.2 QED in one space and one time dimension 

Start with a system with no femions-just the electromagnetic field 

The lagrangian is gauge invariant under the transformation 

Now construct the appropriate action and partition function 

= - / d 2 x C ( A , , $ )  

(29.6) 

(29.7) 

(29.8) 

Here z, = (z, T ) ,  and the cyclic boundary condition implies A,(x, p) = A,(z ,  0). 
The partition function is then given by 

= / W,) exp {-W, 0)) (29.9) 

The volume element s a(A,)  in the path integral must be defined so that it is also 
gauge invariant. 

In the path integral we are required to integrate over all field configurations at a 
given point. After the analytic continuation to imaginary time (temperature) it is 
convenient to define A, = ( A l ,  Az) with real components and integrate over these. 
Now everything is euclidian. This change of variables amounts to a rotation of the 
contour of integration on A2 from the imaginary to the real axis. This contour rota- 
tion is evidently justified, and defines a unique partition function Z(p), if the result- 
ing integrals are convergent. In the present case, after the rotation the exponential 
in the partition function takes the form exp{-+ s/ dT s dz(dAl/aT - a A z / a z ) 2 }  
and the exponentially decreasing weight function will indeed give convergent in- 
tegrals. Although we do not prove this contour rotation in detail here, a simple 
example of the mathematical manipulations involved in the analytic continuation 
and contour rotation is given in Prob. 29.1.l 

'In &ED in three dimensions one can guarantee physical configurations in the path integral by 
carrying out the integrations in a particular gauge. For example, one can enforce the Coulomb 
gauge by adding delta functions in the integrand D ( A p ) b p ( V .  A)bp(4) .  Here bp represents a 
product over the volume elements a of size s4 (see [Ab73]). The weighting function now takes 
the form exp{-i s," d . r sd3z [ (V  x A)' + (dA/&)']). The partition function is then the same 
result one gets by working in the euclidian metric with z, = ( x , ~ ) ;  A, = (A,4), and the 
decreasing exponentials again lead to convergent path integrals. 
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We proceed to discuss the evaluation of the partition function for QED in one 
space and one time dimension, in the euclidian metric, using the technique of lattice 
gauge theory. 

29.3 Lattice gauge theory 

Divide space-time into a set of discrete points, or lattice sites, as indicated in 
Fig. 29.1. The elementary square with neighboring points at the corners is called 
a plaquette; the length of its side is the point separation a. Each site may be asso- 
ciated with a plaquette in a one-to-one manner in this two-dimensional problem.2 
Each side of the square is of length a. 

Fig. 29.1. Division of space-time into a set of discrete points, or lattice sites, in one 
space and one time dimension. The elementary square with neighboring points at 
the corners is called a plaquette; the length of its side is the point separation a. 

Fig. 29.2. Label the sites around a given plaquette by ( i , j ,  k ,  1) .  The sites are said 
to be connected by links. 

The sites around a given plaquette will be labeled by ( i ,  j ,  k, 1 )  as indicated in 
Fig. 29.2. The two-vector ( x i ) p  = ( x i l ,  xi2) will now denote the location of the ith 
site. The sites are said to be connected by links, and the links are vectors having 
two directions. 

2For example, choose the point in the lower left-hand corner of each plaquette. 
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An electromagnetic field variable is now assigned to each link according to the 
following prescription 

U j i ( ~ , )  = exp ieo(xj - z i ) , ~ ,  ( a(x j  + x i ) ) }  (29.10) 

The vector (xj - xi), points from the point i to the point j ;  it is dotted into the 
field A,, which is evaluated at the center of the link $(xj + xi). Note that 

{ 

Uji(A,)* = &(A,) (29.11) 

Thus the Uij form an hermitian matrix. Each plaquette is assigned a direction 
running around it; there are evidently two possibilities, counterclockwise ("1) and 
clockwise ( +-J) . 

The action is now assumed to receive the following contribution from each pla- 
quette3 

so = 0 {[I - (UiZUlkUkjUji),] + [l - (UjkUklUliUij),]} 

So = 20 [l - Re (UilUlkUkjUji),] (29.12) 

The second line follows with the aid of Eq. (29.11). 

the field transforms according to 
Let us now discuss the gauge invariance of this result. Under a change in gauge 

(29.13) 

The exponent in Eq. (29.10) then changes to 

ah 
= ieo(zj - xi),A, + ieo(xj - xi), - 

M ieo(xj - xi),A, + ieo [R(xj) - A(zi)] (29.14) 

The second line follows from the definition of the gradient for small separation a; 
this is the whole trick, for now the quantity Uji in Eq. (29.10) transforms under a 
gauge transformation according to 

ieo(xj - xi),A; 
ax, 

uji (A;) = eaeOA(zj)uji(A,)e-ieOA(li) (29.15) 

The change is simply an initial phase factor depending only on the initial point xi 
and a final phase factor depending on the final point xj. The contribution to the 
action from a plaquette in Eq. (29.12), since it depends on the product of the U's 
around the plaquette, is unchanged under this transformation and hence it is gauge 
invariant 

(UiZUlkukjUji); = (UilUlkUkjUji), ; gauge invariant (29.16) 

3This form of the action ensures both gauge invariance and the correct continuum limit - see the 
following discussion. 



276 Lattice gauge theory 

The additional phase factors cancel in pairs in this expre~sion.~ 
Consider next the continuum limit of these expressions. One wants to show 

that in the limit a -+ 0 the correct continuum results are recovered. The phases 
appearing in the contribution of a single plaquette to the action for finite a in 
Eq. (29.12) are additive; define their sum as follows 

(xj - xi),A, ( i ( x j  + x i ) )  + + (xi - XZ),A, (;(xi  + X I ) )  = /+A,dx,(29.17) 

This expression has the important property that it reverses sign with a change in 
direction around the plaquette 

A,dx, = - /+ A,dx, (29.18) 

With the definition in Eq. (29.17), the contribution of a given plaquette to the 
action in Eq. (29.12) can be written 

/! 

s o  = (T { [I-  exp (ieo /+ A,d.,)] + [ 1 - exp ( i e ~  /+ A,dx,)] } (29.19) 

The exponent is of order a2,  and for small a it can now be expanded to give 

A,dx, + 1 2! ( ie ,  f+ A,dx,)' +.  . .I) (29.20) 

Use of Eq. (29.18) leads to 

2 

So = aei (j+ A,dxp) + . , (29.21) 

In the continuum limit a + 0,  the expression in Eq. (29.17) is the usual line integral, 
and this limiting result for the contribution to the action of an individual plaquette 
in Eq. (29.21) is exact. 

Now use Stokes' theorem on the line integral 

dS,(V x A), (29.22) 

This relation is also exact as a --f 0. Evaluation in the present two-dimensional case 
gives 

J dx,A, = 
enclosed surface 

dA2 aA1 /- dx,A, M a2(V x A)3 = a2 (- ax, - -) ax2 + O(a3) (29.23) 

4The introduction of the notion of point splitting to generate gaugeinvariant currents is due to 
Schwinger [Sc51]. 

.17)
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Thus from Eq. (29.21) one finds 

Now define the overall coefficient to be 

1 
2eza2 

UEE- 

Then 

2 1  Lima*O SO = a -F,,F,, = -a2L 
4 

Here L is the lagrangian density. 
The total action is defined to 

Equation (29.26) then yields 

be the sum over all the plaquettes 
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(29.24) 

(29.25) 

(29.26) 

(29.27) 

(29.28) 

The right-hand side is just the classical action evaluated in the euclidian metric. 
Thus one has achieved the correct continuum limit of the theory. 

We next discuss the boundary conditions to be employed in the evaluation of 
the partition function. For the partition function one must have periodic boundary 
conditions on fields in the direction of temperature (to produce the Trace) 

This implies that the fields must have period ,B = l / k ~ T  in the (imaginary) time 
direction. For a finite system confined to a box of dimension L (Fig. 29.3a), we take 
periodic boundary conditions with period L in the space direction 

A,(x+L,T) = A , ( ~ , T )  (29.30) 

The physical realization of periodic boundary conditions in space is achieved by 
joining the two ends of the line. The construction of the square lattice of side a in 
(z, 7) space then corresponds to a uniform division of the surface of a cylinder as 
illustrated in Fig. 29.3a. 
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6 

0 L T 

Fig. 29.3a One-dimensional spatial configuration. 

L 

(bl 

Fig. 29.313 Physical realization of periodic boundary conditions in one spatial di- 
mension. 

The size of the lattice is (n, n) in units of a. Evidently' 

p = nu L = nu (29.31) 

The physical realization of periodic boundary conditions in the r direction in (2, r )  
space is achieved by joining the two ends of the cylinder as in Fig. 29.3b to form a 
torus. The lattice then divides the surface of the torus into small squares of side a; 
integrals J J dx d r  are obtained by summing over the squares.6 

It is now necessary to discuss the measure for the path integral, that is, the 
volume element D ( A p )  for the integration over all field configurations. The action 
S has been constructed to be gauge invariant. We want the measure to be gauge 
invariant so that the partition function 2 will also have this property. The partition 
function should arise from summing only over physical field configurations. Recall 
that any overall factors in the measure are immaterial since they cancel in the ratio 
required in the thermal averages ((0)) in Eq. (29.5).7 

5Recall ti = c = 1. Clearly one can generalize to different lattice sizes (m, n). 

6For the generating functional r?l,(J) one must integrate s-'," s-'," d2x. 

70verall factors in the measure add a constant to In Z and since PF = P(E - TS) = - In Z,  they 
add a constant to S,,,, the entropy of the vacuum, which is unobservable. 
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To construct a gauge-invariant measure, first examine the exponent of the ma- 
trices Up 

(29.32) 

This quantity is now a pure phase. The field variables in this lattice gauge theory 
enter only through the phase in 

As before, 4 depends on the direction of the link, reversing sign when the direction is 
reversed. Let us simplify the notation for the purposes of the present discussion and 
let {&qr $2, 437  44} stand for the phases of the links surrounding a given plaquette. 
Since the phase depends on the direction of the link, we will adopt the convention 
that the phase in the positive r or positive x direction will be denoted by 4i. This 
is illustrated in Fig. 29.4. The phase in the opposite direction is then +. 

Fig. 29.4 Phases on links surrounding a given plaquette. The convention is that the 
phase in the positive T or positive x direction is denoted by +i. The phase in the 
opposite direction is then -4i. 

What values can the phases 4i take? Each component of A, along the link is an 
independent variable and 4 can in principle take all values. Note, however, that 
the function ea4 is periodic with period 2n and thus any field configuration that 
corresponds to 4 translated by 2n in any direction does not make an independent 
contribution to the action. W e  wall thus simply retain one complete period of 4ji - 
all other values of the field give rise to  a value of U = ei& already counted. Thus 
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the measure will be taken as an integration over phase 4 such that 0 5 4 5 27r 

(29.35) 

This measure is now locally gauge invariant! To see this, note that a local gauge 
transformation changes the phase along the link by some constant A, thus 4 -+ ++A. 
The contribution of this link to the partition function is modified to 

(29.36) 
1 27r 

Now change the dummy integration variable 4 -+ $ + X = $’ with d$ = d$’ 

I X  = 1 d+f(ei[++’l) 

(29.37) 

The last line follows since f ( e i + )  is periodic in 4. 

be 
Thus the gauge-invariant measure in this lattice gauge theory will be taken to 

(29.38) 

Here $1 is the phase associated with a given link in the positive r or positive x 
direction. 

Note that in the continuum limit as the lattice spacing a -+ 0, the field A, must 
cover an infinite range of values so that the phase 4 defined in Eq. (29.32) covers 
the range 0 -+ 27r. 

Fig. 29.5 Cartesian coordinates in the field parameter space for a given link. 

It is convenient for this and future discussions to write the measure in another 
way. Instead of integrating over the phase &, one can integrate over the matrix 
Uji = ei+ji itself. To see this, go to Cartesian coordinates in this field parameter 
space as illustrated in Fig. 29.5. 
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The integral in Eq. (29.35) can be written in the following fashion 

(29.39) 

Evaluation in polar coordinates establishes the equality 

I = 1 lr J J d 2 a d ( a  2 - l)j(a1 + iaz) 

= 1 n- J J&@$~(PZ - l)f(pei+> 

1 
2n- 

- - - J J dpzh(p2 - l)d+f(pei+) = & [" d+f(ei+> (29.40) 

Hence one can take either of the following expressions as the measure for the path 
integral over a given link 

29.4 Summary 

In summary, the partition function in lattice gauge theory for QED in 1 + 1 dimen- 
sions is calculated as follows: 

(1) Temperature corresponds to imaginary time (t = 4 7 )  and rotation of a 
contour in the path integrals over the fields converts the entire problem to 
the euclidian metric; 

(2) Space-tau is divided into an (n,n) lattice of dimension a. Squares with 
neighboring lattice sites at the four corners are plaquettes; connections be- 
tween nearest neighbors (the edges of the plaquettes) are links (Figs. 29.1 
and 29.2). Periodic boundary conditions are imposed in both the space and 
tau directions [recall Eqs. (29.31) and Fig. 29.3133; 

(3) The field variables are associated with the links and enter through a phase 
Uji = ei4j% [Eqs. (29.10) and (29.32)]. The phase changes sign with direction 
(Fig. 29.4); 

(4) The action receives a contribution from each plaquette; it is obtained from 
the product of the field contributions around the plaquette [Eq. (29.12)] 

(5) The partition function is obtained by integrating the exponential of the 
s o  = a{[l - u-] + [l-  U-]} EE a{[1- UO] + [l- UZ]} ; 

action with the measure of Eq. (29.38). Thus 

So = 2a(l-ReUo) 
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(29.42) 

The situation is illustrated in Fig. 29.4. The convention here is that the 
phase 4i is associated with the positive x or r direction along the link; 

(6) Equation (29.41) presents an alternate form of the measure; 
(7) The problem is coupled since each link occurs in the contribution to the 

action of two neighboring plaquettes (see Fig. 29.6); 

Fig. 29.6 Each link appears in the contribution to the action of two neigh- 
boring plaquettes. 

(8) The action is gauge invariant [Eqs. (29.15) and (29.16)]; 
(9) The measure is also gauge invariant [Eqs. (29.36) and (29.37)]; 

(10) The theory has the correct continuum limit [Eq. (29.28)]; c is defined in 
Eq. (29.25).8 

This model is now completely defined. One can at this stage, for example, 
put the calculation of the partition function on a computer. Before launching on 
large-scale numerical calculations, however, it is always useful to first obtain some 
physical insight into the theory. We shall solve this model, as well as its subsequent 
generalizations, analytically in some simple limiting cases. We proceed to discuss 
mean field theory. 

8Note that all the information on coupling strength and lattice spacing is now contained in the 
single parameter 0. 
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Mean field theory 

Equations (29.42) summarize the content of lattice gauge theory for QED in I t 1  di- 
mensions; they are a self-contained set of expressions. In this section we solve those 
equations analytically under certain simplifying assumptions to get some physical 
insight into their implications. We work in mean field theory (MFT) where the basic 
idea is to reduce the coupled many-body problem to a one-body problem in a mean 
field coming from the average interaction with all the other degrees of freedom. 

Although the exact problem clearly becomes more complicated, it is possible 
to carry out the MFT in any number of dimensions. In fact, one expects MFT 
to become more valid as the number of nearest neighbors increases. We first need 
some elementary considerations in different numbers of dimensions d. 

30.1 Counting 

As an aid in the counting, divide the lattice into basic building blocks from which the 
entire lattice can be constructed by simple repetition. In two dimensions (d = 2), 
the elementary building block is the square, and in three dimensions (d = 3) it is 
the cube. This is easily seen (Fig. 30.1) and extended to d dimensions. At each site 
draw the positive orthogonal coordinate axes and place the building block between 
the positive axes. The site can then be associated in a one-to-one fashion with the 
origin of this coordinate system, and the lattice constructed by repetition of the 
basic building block at each site. Some elementary results then follow immediately. 

The volume per site is ad. The volume of the lattice is then given by summing 
that volume over all the sites 

volume/site = a d 

volume = C ad + J ddz 
sites 

(30.1) 

The number of links per site is given by counting the number of positive coordinate 
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axes, which is just the dimension of the problem 

number of links/site = d (30.2) 

The number of plaquettes per site is just the number of pairs of positive coordinate 
axes, for each pair determines an independent plane; the number of these pairs is 
d(d - 1)/2 

1 
2 

number of plaquettes/site = -d(d - 1) (30.3) 

A complete nonoverlapping enumeration of the terms in various sums is thus as 
follows: 

c 
c=c c 
sites 

links sites links/site links sites 

1 
2 

; e.g. c 1 = -d(d - 1) 1 (30.4) 
sites 0 

c=c c 
0 sites plaquettes/site 

In the MFT the problem is reduced to a one-body problem in a mean field. 
This shall be done by concentrating on each of the above independent individual 
units, the basic building blocks, at a given site. We start the discussion of MFT by 
recalling a similar analysis of a more familiar physical system; the Ising model (see 
[Hu87, Sc891). 

plaque t t e  

Fig. 30.1. Elementary building blocks of the lattice in different number of dimen- 
sions: (a) d = 2; (b) d = 3. 

30.2 Ising model - review 

The Ising model consists of a set of spins on a lattice where the spins can take 
two values, up and down, and there is a constant interaction, either attractive 
or repulsive, between nearest neighbors. The physical situation is indicated in 
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Fig. 30.2. The hamiltonian is 

; si,sj = fl 

Here (ij) indicates nearest neighbors on the lattice. 
Evidently a sum over nearest neighbors is identical to a sum over links 

c=c 
(ij) links 
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(30.5) 

(30.6) 

The constant J can have either sign. If J > 0 the interaction between nearest 
neighbors is attractive and the spins tend to align. 

Fig. 30.2. Two-dimensional Ising model. 

The partition function for this system is given by 

(30.7) 

With an external field Hext with which the spins interact, the partition function is 
modified to 

{s} I L links sites I ) 

The spins in this problem are clearly coupled; each spin enters in the exponent 
through an additive term coupling it to its nearest neighbors. 

30.3 Mean field theory (MFT) 

The object is to replace the coupled problem by an effective one-body problem 
where a given spin can move dynamically in a mean field created by the average 
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interaction with its neighbors.' With periodic boundary conditions all sites axe 
equivalent. Consider then the ith site and denote the expectation value of the spin 
at that site by (s) = m. Through the use of the partition function and the definition 
of thermal averages discussed in the previous section one has 

(30.9) 

The problem will now be decoupled by replacing the two-body interaction terms 
by the following average value for the interaction with the spin at the i th site 

(sisj)i = si(sj)i = s im (30.10) 

The spin si is still dynamic, but it sees only the average value of the spin at the 
neighboring site. Since si is decoupled from all the other spins, the dependence on 
si now factors in the exponential. The remaining sums over all the other spins in 
the lattice are now identical in the numerator and denominator and cancel in the 
ratio. Hence one is left with 

C{si) si exp { P J  C l i n k s  at ith site ' i m )  

C{si} exp { P J  C l i n k s  at ith site ' i m }  
m =  (30.11) 

The goal of reduction to an effective one-body problem has been accomplished. It 
is still a nontrivial problem since the expectation value of the spin m itself depends 
on the average field, which appears in the exponential. 

It remains to evaluate 

(sisj)i = (si m) x (number links/site) 
links at ith site 

= simyl (30.12) 

Here yl is the effective coordination number, the average number of other spins with 
which the ith spin interacts; this quantity is discussed in more detail below. With 
this definition the problem is reduced to 

Csi=*l si exp {(PJTlm)sil 
Csi=*l exp { ( P J T l r n ) S i }  

m =  

ex - e-" 
; x = PJrlm - - 

ex + e-" 
m = tanh { (PJy l )m}  (30.13) 

This is a self-consistency equation for the magnetization m in the Ising model in 
MFT. With an external field, the same calculation yields 

m = tanh {P(Jyzm + Hext)}  (30.14) 

'This is the author's own version of MFT; it is not Bragg-Williams (see e.g. [Hu87]). 
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Let us now concentrate on 71, which measures the average number of nearest 
neighbor spins with which the ith spin interacts. One cannot determine this quantity 
unambiguously at this stage of the argument without a more powerful principle such 
as the minimization of the total free energy.2 To see this, note that the term sisj 
in the hamiltonian in the exponential could be replaced by msi where it serves as a 
mean field for the ith spin; or it could be replaced by msj where it serves as a mean 
field for the j t h  spin and is no longer seen by the ith spin; or it could be replaced 
by any combination of these expressions. In a later section the MFT equations will 
be derived in a global and more rigorous manner. Here we simply use intuition 
to gain physical insight. It was shown in Eqs. (30.4) that the sum over links can 
be decomposed into a complete and nonoverlapping sum over sites if one first sums 
over the independent links at that site. It will be assumed that it is the independent 
links at the ith site that are coupled in the mean field approximation to the spin 
at the ith site. Equations (30.4) then provide a simple expression for the effective 
coordination number 

~l = number links/site = d (30.15) 

Equation (30.13) can now be solved graphically as indicated in Fig. 30.3. 

Fig. 30.3. Graphic solution to self-consistency equation for magnetization in Ising 
model in MFT. The dashed curve illustrates the slope of tanh ( p J n ) m  at the origin. 

It is evident from the figure that if the slope (PJrl)  < 1 the only solution is m = 0. 
On the other hand, if ( P J n )  > 1, there is an additional intersection point with 
m > 0.3 There is thus a critical value of the slope a t  the origin above which one 

2Recall that in quantum mechanics the Hartree (or Hartree-Fock) equations are determined by 
minimizing the expectation value of the total hamiltonian with a product (or determinant) of 
single-particle wave functions. 

3There are actually two solutions with m # 0 corresponding to  the two possible directions for 
the total spin of the lattice. One solution may be selected by starting with finite He,t and then 
letting H,,t + 0. To show it is the stabIe solution, it is also necessary to show that the solution 
with m # 0 has lower free energy that the one with m = 0 (see [Sc89]). 
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begins to obtain a macroscopic value of m # 0. 

PcJn = 1 

Insertion of Eq. (30.15) determines the critical temperature to be 

J d  Tc = - 
kB 

(30.16) 

(30.17) 

This is the critical temperature below which one finds a macroscopic magnetization 
m # 0 in the Ising model in d dimensions in MFT. 

The two-dimensional Ising model was solved analytically by Onsager in a tour 
de force calculation, and indeed for positive J there is a phase transition to a 
ferromagnetic phase at a transition temperature very close to that given by this 
MFT (see [Hu87, Sc891) 

2 J  Tc = - 
kB 

2.269 J 
kB 

Tc = - 

; MFT 

; Exact (30.18) 

The behavior of the magnetization as a function of temperature is qualitatively 
correct when compared with the exact answer in this case as sketched in Fig. 30.4. 

T/Tc 

Fig. 30.4. Sketch of behavior of magnetization in two-dimensional Ising model as a 
function of temperature in MFT compared with exact result (see [Hu87, Sc891). 

30.4 Lattice gauge theory for QED in MFT 

Lattice gauge theory for QED in d dimensions will be treated in MFT using analo- 
gous arguments [Wi74]. 

W e  again focus the discussion on  the basic building block, or cell, 
f rom which the entire system is constructed by repetition. 

The cell contains one site, d links in the direction of the positive coordinate axes, 
and d(d - 1)/2 plaquettes - planes formed by the positive coordinate axes (see 
Fig. 30.1). 
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Concentrate first on the dynamics of a single link variable connected to the ith 
site. Pick a gauge. Now suppose all other link variables coupled to this one through 
plaquettes appearing in the sum over plaquettes in the action were to be replaced 
by a mean value 

(eidJ) = meiX (e-idJ) = me-ix (30.19) 

Here a simple parameterization has been introduced for this complex vector; m is 
its modulus and x is its phase. In order to have physics, one must deal with a 
gauge-invariant quantity; the contribution to the action from a given plaquette is a 
suitable   and id ate.^ Substitution of the MFT result for each link into So leads to 

(So) = 2aj l  - Re[(meix)2(me-iX)2]} 
= 2 4 1  - m4) (30.20) 

Thus the “magnetization” m represents a gauge-invariant quantity. 
With periodic boundary conditions all sites, links, and plaquettes are equivalent. 

Again work within a given gauge. Consider a link variable connected to the ith 
site. Denote this generically as the ith link with Ui = ei4a. The MFT value of the 
contribution to the action in the exponential from each plaquette containing this 
link to the ith site leaves this link as a dynamic variable and replaces all the other 
links in that plaquette by their mean value 

(S0)i = 2a{l - Re[m3ei(4”x) I )  
= 2 4 1  - m3 cos (4i - x)] (30.21) 

As before, introduce yo as the effective coordination number. Here 

yo is the average number of plaquettes in the ith cell that contain a 
given link to the ith site. 

One then has 

(30.22) 

Substitution of Eqs. (30.21) and (30.20) then yields 

4 2 4 1  - m ) = 

s,’“ d4i2a[1 - m3 cos (di - x)] exp 1-241 - m3 cos (4i - x)]yO) 
27r (30.23) 

NOW change the variable of integration in the integrals. Let 4 = +i - x with 
d4 = d$i. The limits of integration can be restored to be s,’” since the integrand 

4Since we worked hard to make that gauge invariant. 

So d4i exp ( -241  - m3 cos (4i - x)]” /o)  
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is periodic in 4. (Recall this is the argument used originally to justify the choice of 
gauge-invariant measure.) The result is (cf. Fig. 30.5) 

s,’” d42a(1- m3 cos $1 exp {-2g(1- m3 cos $)yo) 
S,2*d+exp{--2a(l- m3cosq5)yo) 

(30.24) 

A conceptual difficulty with this discussion is that although in the end it pro- 
duces a relation between gauge-invariant quantities, it proceeds through the link 
variables, which are themselves gauge d e ~ e n d e n t . ~  A more satisfying approach is 
to use this discussion as motivation and simply make the MFT ansatz for the dy- 
namic form of the contribution to the action from a plaquette in the ith cell attached 
to the ith link; this is (So)i given in Eq. (30.21). Thus one assigns one common 
phase (& - x) to each of these plaquettes and then evaluates the mean value of 
(So)i .  The development of a magnetization m in this mean value 2 4 1  - m4) can 
then be used to signal a phase transition in this MFT.‘ 

2 4 1  - m4) = 

Fig. 30.5. MFT ansatz for the contribution to the action from a plaquette in the 
ith cell attached to the ith link, a gauge-invariant quantity; it is parameterized in 
terms of a “magnetization” m and a single overall phase as SO = 2 4  1 - m3 cos 4) .  

Let us proceed then with the analysis of the MFT self-consistency relation in 
Eq. (30.24). Additive constants in the exponentials in the integrands lead to con- 
stant factors that can be cancelled in the ratio of integrals in this expression. In 
analogy with the Ising model, the final result is a transcendental equation for the 
magnetization m 

s,”” d42a(1- m3 cos 4)  exp {2cyom3 cos $1 
s,”“ d+ exp {2ayom3 cos $1 2 4  - m4) = (30.25) 

Cancellation of common terms on both sides leads to 

(30.26) s,”” c14 cos 4 exp (2070 m3 cos $1 - II ( 2 ~  m3) 
s,’” d+ exp (2070 m3 cos 4) I. ( 2ayo m3) 

m =  - 

5See, e.g. [E175]. 

6The exact expression for the contribution to the action from the ith plaquette is   SO)^ = 
2 4 1  - cos ($1 + 4 2  - 43 - 44)]. The MFT ansatz discussed here assigns a single angle (q5i - x) 
and multiplicative constant m to the angular dependence; the phase transition then signals an 
alignment of the contributions from the plaquettes. 
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The last equality identifies an integral representation of the modified Bessel function 
of imaginary argument [Fe80]. 

The effective coordination number yo remains to be discussed. We proceed 
exactly as in the Ising model. Equations (30.4) express the sum over links and 
plaquettes as a complete set of nonoverlapping contributions obtained from a sum 
over sites where one first sums over the independent links and plaquettes at that 
site. 

It will be assumed here that all of the plaquettes in the ith cell con- 
nected to  a given link in the ith cell are coupled through a common 
t e r m  in the action of the f o r m  in Eq. (30.21). 

The number of plaquettes in the ith cell passing through a link in the ith cell is 
equal to the number of positive coordinate axes orthogonal to a given positive axis; 
in d dimensions this number is just ( d  - 1). Thus we choose 

yo = number plaquettes /link G d - 1 (30.27) 

"E 
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Fig. 30.6. Sketch of the "magnetization" m4 for QED in lattice gauge theory in 
3+1 dimensions ( d  = 4) in MFT compared with the essentially exact Monte Carlo 
calculation on a 54 lattice. Here So = 2 4 1  - m4). (From [Du89, Kh891). The 
author is grateful to J. Dubach for preparing this figure. 

Numerical solution of Eq. (30.26) yields a universal result for the critical value 
oc above which there is a solution m # 0 (e.g. [Kh89]) 

20cyo = 2 (2.7878) (30.28) 
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Combination with Eq. (30.27) yields 

~ c ( d  - 1) = 2.7878 (30.29) 

In 1+1 dimensions (d = 2) this MFT predicts a phase transition at uc = 2.7878. 
The problem with d = 2 can be solved exactly and contains no phase transition. 
Thus 

uc = 2.7878 ; MFT 
no phase transition ; Exact (30.30) 

This should not be so surprising since the same thing happens with the one- 
dimensional Ising model. Equation (30.17) predicts TC = J/kB for d = 1 while 
the exact theory has no phase transition in one dimension. 

In 3+1 dimensions (d = 4) the results of this MFT are more realistic. Compar- 
ison with the Monte Carlo results of [Cr79, La80a, Du89, Kh891 gives 

uc = 0.9293 ; MFT 
= 0.4975 ; Monte Carlo on 54 lattice (30.31) 

The resulting magnetization m is sketched in the two cases in Fig. 30.6. Although 
quantitatively incorrect, the MFT result is striking in its simple qualitative descrip 
tion of the observed exact numerical behavior of So. 

30.5 An extension 

It is evident from Fig. 30.6 that while MFT shows a well-defined phase transition 
with vanishing “magnetization” m4 for cc/a > 1 in four dimensions (d = 4), the 
numerical Monte Carlo calculations on the 54 lattice show only a weak transition, 
whose order is not at all apparent, with a tail on m4 extending to much higher 
ac/u. It is of interest to ask if one can find a situation where there is a more 
well-defined transition and where one has a much closer correspondence between 
the analytical and numerical results. 

It is evident that the validity of MFT will depend on the number of nearest 
neighbors, increasing as that number increases. A way of increasing the number of 
nearest neighbors is to go to higher dimension (larger d). Barmore has extended 
these U(l)  lattice gauge theory considerations up to d = 7 [Ba99]. In five or more 
dimensions, U(l) lattice gauge theory shows a strong first-order phase transition 
and metastable states in the region of the transition.’ Barmore has carried out 
Monte Carlo calculations in dimensions up to seven that illustrate this behavior. 
In order to improve the MFT results, he uses axial gauge fixing, which eliminates 
many of the redundant configurations whose contributions factor and cancel in the 

7The case of d = 5 was investigated previously in [Bh80]. 
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ratio in which the magnetization is expressed. In order to describe the region above 
the phase transition (u < uc), he uses the strong-coupling expansion developed 
subsequently in chapter 34; in fact, he uses Pad6 approximates built out of this 
strong-coupling expansion to improve the accuracy of the results. 
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Fig. 30.7. Analytic phase diagram in six dimensions. Dash-dot line is Pad6 series 
for the strong-coupling expansion up to the transition point, the solid vertical line 
marks the transition point, and the long-dashed line is axial MFT beyond the 
transition point. Also shown are the Monte Carlo data on a 56 lattice [Ba99]. In 
this figure p = 2u. 

Barmore’s results for both the analytic calculations and the Monte Carlo cal- 
culations for d = 6 are shown in Fig. 30.7. In these figures p plays the role of an 
inverse “effective temperature” and has been redefined in terms of u as follows 

- 
s o  ZE ps, ; p = 2 u  

En = (30) (30.32) 

The metastable states seen in the Monte Carlo calculations are well reproduced 
by gauge-fixed mean field theory for the “superheated state” (p < pc) and by 
Pad6 approximants to the strong-coupling expansion for the “supercooled state” 

The value of p at the phase transition is located in the following manner: In 
analogy to Van der Waal’s systems, a cubic equation of state is employed to con- 
nect the two metastable states in both the Monte Carlo and analytic calculations. 
A Maxwell construction is developed allowing for the identification of the transi- 
tion point. The relative free energy is obtained by integrating the cubic fit to the 

(P > Pc).8 

8PadB approximants are ratios of power series, whose expansion reproduces the actual power series 
to any given order. By using a ratio, one has the possibility of building in singularities which limit 
the convergence of the original power series. The result in Fig. 30.7 uses the [7,8] approximant. 
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(30.33) 

Where this curve crosses itself, one has two phases in equilibrium. This is illustrated 
in the bottom of Fig. 30.8. 
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Fig. 30.8. The upper frame show the cubic fit in the metastable region for the d = 6 
phase diagram (Fig. 30.7). The lower frame shows the relative free energy obtained 
by integrating the plaquette energy along the upper curve. The system favors the 
phase with the lowest free energy and thus changes phase where the lower two lines 
cross [Ba99]. 

The conclusion of this work is that there is a well-defined first-order phase tran- 
sition for d 2 5 and one can obtain analytic expressions f r o m  MFT and strong- 
coupling theory that reproduce this phase diagram well through the region of phase 
transition. 

gThis is the analog of the thermodynamic relation (note that here p plays the role of l/T,fi) 
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30.6 Some observations 

The developments in this chapter are intended simply to provide some familiarity 
with lattice gauge theory. The physical implication of these results will be discussed 
in some detail after the nonabelian theory has been developed. The reader may well 
ask at this stage, however, how this theory of QED, which has as its continuum limit 
the free field theory where the coupling constant eo never appears, can ever give rise 
to a phase transition. The answer is that this lattice gauge theory is really a model 
field theory describing an entirely different physical situation. In this model, the 
coupling constant enters in the phase of the field variables Uji and, thus, for finite 
a, the action contains an infinite series in eo! For finite a it is a fully interacting 
field theory and may have many rich and interesting properties. In the continuum 
limit it is, indeed, constructed to reduce to the free field theory. It is thus essential 
to understand how one goes to the continuum limit in lattice gauge theory. With 
this in mind, we turn to a discussion of the nonabelian case. 
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Nonabelian theory - SU(2) 

We turn next to a development of lattice gauge theory for Yang-Mills nonabelian 
gauge groups. S U ( 2 )  is considered as a specific example since in this case it is 
relatively simple to deal explicitly with all of the required matrices. The discussion 
is based on [Wi74, Cr83, Re83, Kh891. 

31.1 Internal space 

One now has an additional internal space for each field variable. The quantity A, 
is a vector in this internal isospin space with three components A, : (Ah, A:, A;) .  
The situation for the basic plaquette is illustrated in Fig. 31.1. The phase angle Oji 
is also defined to be a vector in this internal space 

eji = go(x j  -  xi),^, (;(xi  + x j ) )  (31.1) 

As before the subscript ( j i )  indicates the connected sites. 

abelian QED theory to this Yang-Mills theory is 
Recall that the modification of the covariant derivative required to go from the 

(31.2) 

In contrast to the simple phases of the abelian theory of $ED, we are thus motivated 
to introduce the link variables as 2 x 2 SU(2)  matrices 

E ~ ~ ( A , )  = exp { $. oji} (31.3) 

Here the internal matrix structure is again denoted by a bar under the symbol. 
Substitution of Eq. (31.1) leads to 

(31.4) 
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The contribution to the action is defined to be the trace (tr) of the matrix product 
in this internal space taken around a plaquette (Fig. 31.1) 

The ordering of the matrices is now important; the final result after the trace is 
taken is just a c-number. If one goes around the plaquette in the opposite direction, 
the expression becomes 

(31.6) 1 
( U D ) Q  Tt' (EjkUklUliuij) 

Since the r matrices are hermitian, one evidently has1 

Eji(A,)+ = ZLij(A,) (31.7) 

Fig. 31.1. Basic plaquette and illustration of the field A, as a vector in the internal 
isospin space in S U ( 2 )  nonabelian lattice gauge theory. 

Substitution of this relation into Eq. (31.6) yields 

1 
= -trut, = 

2 (31.8) 

The contribution of a plaquette to the action will be taken to be 

s o  = a {[l-  (UO)+] + [I - (UO)r]} 

= 2a[l-Re(Uo)+] = 2a 1 -  -Re[trU,] ) ( : :  (31.9) 

The total action is obtained from a sum over plaquettes 

(31.10) 

'Thus considered as matrices with respect to the site indices ( j ,  i), they are again hermitian. 



298 Nonabelaan theory - SlJ(2) 

So far these are just ad hoc definitions. They assume importance if one can 
show, as in the abelian case, that 

(1) The action is locally gauge invariant; 
(2) The action has the correct continuum limit. 

This we shall proceed to do. 

31.2 Gauge invariance 

The goal is to show that the action as defined above is gauge invariant. We shall be 
content here to show invariance under an infinitesimal gauge transformation with 
8 -+ 0 [Eq. (27.18)]; we work to first order in 8. 

1 ae 
90 ax, 

A, --+A; =A,  - --+e A, (31.11) 

The link variables in Eq. (31.4) are then transformed into 

The first term gives the original result. The definition of the gradient allows one to 
rewrite the second as 

(31.13) 

This expression is exact as a --+ 0; we also work to first order in a. For the third 
term in Eq. (31.12) write 

= - -7 .e , - -7 .~ ,  [: 2 l l  
(31.14) 

Thus 
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We now claim that with the neglect of terms of O(u28) and 0(aO2)  in the exponent, 
the relation in Eq. (31.15) can be rewritten as 

Here - g(z) = exp { 8(z)} is a local SU(2) transformation. This result states that 
a gauge transformation in the nonabelian theory multiplies the link variables by a 
local gauge transformation, and its inverse, at the sites at the ends of the l ink2 
The action is again gauge invariant if this result holds, for the matrices - g cancel 
when the trace is taken around a plaquette3 

It remains to demonstrate Eq. (31.16). To do this one can invoke the Baker- 
Haussdorf formula 

eAeB = .A+B+;[A,B] 

if [A,[A,B]] = [B,[A,B]]  = 0 (31.18) 

This is an algebraic identity holding for both operators and matrices. The deriva- 
tion of this relation is discussed in Probs. 31.1-2. A combination of the first two 
exponentials in Eq. (31.16) then gives 

1 
2 

1 
8(z:,), - T .  A, (:(xi + zj))] } (31.19) 

The last term in the exponential commutes with the other two through the order 
to which we are working. Also, 8 can be evaluated at the midpoint of the link in 
the last term since it is already of O(u0). Now combine with the last exponential 

2The result can actually be established for finite gauge transformations through more general con- 
siderations; to illustrate the concepts we are content to prove it here explicitly for infinitesimals. 

3Compare Eqs. (29.15) and (29.16). 
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in Eq. (31.16) 

i i 
2 2 9-'&- = exp (zj - z~i),A, - -r . O(zj) + -r . O(zCi) 

1 

One can again verify that the conditions of Eq. (31.18) are satisfied through the 
order to which we are working, and, again, 0 can be evaluated at the midpoint of 
the link in the last term. This expression in Eq. (31.20) is immediately rewritten as 

(31.21) 

The last equality is just Eq. (31.15), the result we set out to prove. Thus the gauge 
invariance of the action has been e~tablished.~ 

31.3 Continuum limit 

Consider next the continuum limit of the model as a + 0. The goal is to show 
that the action takes the correct form in this limit. The link variables are defined 
in Eq. (31.4). The action is obtained from a product of the link variables around a 
plaquette, as illustrated in Fig. 31.2. 

Fig. 31.2. 
a + 0. 

Quantities in basic plaquette used in evaluation of continuum limit 

The relation in Eq. (31.18) can first be used to evaluate the product of two link 

4At least to this order. 
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We neglect terms of O(a3) in the exponent; to this order the conditions of Eq. (31.18) 
are satisfied. In addition, to this order, the A, in the last term can be evaluated 
at the center of the plaquette x = (x i  + xj + x k  + x1)/4. Now write the small 
displacement vectors along the links as (Fig. 31.2) 

( x k  - zj). = 4 7 2 2 ) ~  (xj - x i ) ,  = a ( n 1 ) p  (31.23) 

The result in Eq. (31.22) then takes the form 

As in Eq. (29.17), the integral is defined by the first two terms in Eq. (31.22). Now 
repeat, noting that 

This gives 

U U U . .  = exp (31.26) -1 k-kj-9 a 
LI 

Once more yields5 

variables

5Note
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Here aPv is the antisymmetric tensor characterizing the plane of the plaquette (see 
wa921) 

a,, = (nl) ,(nz)u - (nl)v(nz)/l  (31.28) 

Define the surface area associated with the plaquette to be 

dS,, = a2a,,, (31.29) 

The result in Eq. (31.27) can be rewritten as 

Stokes’ theorem can now be used on the first term6 

(31.31) 
p,” 1 (2 - -) 

j - d x p ~ w  = J enclosed surface ax, 

Hence Eq. (31.30) becomes 

= ( U O L  (31.32) 

If one goes around the plaquette in the opposite direction the result is 

(u0le = exp { - -$SOT.  (+ ax, - - ax, +SOAP x A,)  I d s , , }  (31.33) 

The action is obtained from the sum of these two contributions 

Now let a -+ 0. As before, the odd terms in the exponentials cancel, and in this 
limit the action becomes7 

2 

s o  = -tr a902 8 [r . (aA, ax, - - a*, ax, + S O A P  x A,) ids,,] (31.35) 

Use [r . vI2 = v2 and tr 1 = 2. 

‘This relation is readily verified for a given isospin component in three dimensions. With reference 
to Fig. 31.2 one has 

(e x 2).  dS M a 2 ( d  x 2 )s  
/ - A . d ?  = J enclosed surface 

- - a 2 ( 2 - % )  = -&,, 2 (ax, axu 
a x 2  

Here Eq. (31.28 ) has been used. This is the stated result. 

‘See also Prob. 31.3. 
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For illustration, we now specialize to the case of 1+1 dimensions. Define* 
0 

(31.36) 

The result is 
2 

so = -!- [ IdS,, (% - dA, + goA, x A,,)] (31.37) 
2a2 2 ax, ax, 

For the case of 1+1 dimensions one can simply refer to Fig. 31.2. The contribution 
of a plaquette to the action becomes 

(31.38) 

This is the continuum action with the full field tensor F,, of  the nonabelian theory 
[see Eq. (27.21)]. Thus, in the continuum limit 

1 
= -a2F,,,.F,, 

4 

(31.39) 

This is the correct continuum limit for the gauge theory SU(2)  [cf. Eq. (29.28)]. 

31.4 Gauge-invariant measure 

The remaining issue is to develop a gauge invariant measure for the path integrals 
in the partition function in the nonabelian theory. For each link U = ei4 in the 
abelian U(1) theory we took [Eq. (29.41)] 

& Jo”” dq5f(ei4) = / d2a: 6(a2 - l ) f ( a ~  + ia2) (31.40) 

This is illustrated in Fig. 29.5. There is one such term for each link [Eq. (29.42)]. 
Now note that in this U(1) case one can write 

ei4 = cosq5+isinq5 = a l+ ia2  

a:y:+a; = 1 (31.41) 

A gauge transformation A, 4 A, - (l/eo)dA/dx, changes the link variable to 

uji e-iA(xj)ei4ji e+iA(.i) (31.42) 

sThe definition in d dimensions is u G 2/gga4-d (see Prob. 31.4). 
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Or, equivalently 

Nonabelian theory - SU(2) 

ei+ -+ ei+' - - ,i(++W = a; + ia; 

(a; )" (ay  = 1 (31.43) 

This is just a rotation. on the unit circle in the two-dimensional internal space 
illustrated in Fig. 29.5. Under a rotation d 2 a  = d2a'. With periodic boundary 
conditions, the integral around the unit circle is unchanged 

1 1 d 2 a  6 ( a 2  - l)f(a; + ia;) = - 1 d 2 a  6 ( a 2  - l ) f ( a ~  + ia2) (31.44) 
7r 7r 

Or, equivalently 

(31.45) 

We argue by analogy in the nonabelian case of SU(2) .  Recall that the 2 x 2 SU(2) 
matrices can always be represented as 

(31.46) 

Here 

a ; + a 2  = 1 (31.47) 

This suggests that we now 

(1) Work in the four-dimensional internal parameter space ap = (ao,a) for 
each link. The condition a: = a: + a2 = 1 defines the unit sphere in 
this four-dimensional internal space. This is illustrated schematically in 
Fig. 31.3; 

Fig. 31.3. Schematic illustration of unit sphere in four-dimensional internal 
parameter space for each link in SU(2).  

(2) Impose periodic boundary conditions on this unit sphere; 
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(3) Take the measure for each link to be 

The normalization constant can be verified by performing the integration. In the 
four-dimensional euclidian internal space the volume element can be written in 
spherical coordinates as ([Wa92]) 

a0 = pcos$ 

a1 = psin$sinOcosq5 

a2 = psin$sinOsinq5 

a3 = psin$cosO 

d4a = p3 sin2 $ sin O dlC, dO dq5 dp (31.49) 

Here (O,q5)  are the usual three-dimensional polar and azimuthal angles and the 
additional polar angle satisfies 0 5 $ 5 7r. The required normalization integral is 
then ’ 1 d4a 6c.l; + - 1) = - (2pdp)p26(p2 - 1) sin2 $sin O d$ dO dq5 

7 9  2 4  ‘s 
(31.50) 

Consider now the gauge invariance of the measure. We have shown that under 
a (infinitesimal) gauge transformation the link variables transform according to 
Eq. (31.16) 

u.. + U’.. 

-3 ul.. = e-3r.e(zj)u..e~r.e(zi) -3 2 

-3% -3% 

(31.5 1) 

Since this is simply another 2 x 2 SU(2)  matrix, it can again be expressed in the 
form 

This transformation is just a rotation on the surface of the unit sphere in the four- 
dimensional internal space (ao ,  a) (Fig. 31.3). Under a rotation d4a = d4a‘. With 
periodic boundary conditions [Eqs. (31.49)] the integral on the surface of the unit 
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sphere in the four-dimensional internal space is unchanged under this rotation. Thus 

Hence this integral over the parameter set ( ( Y O ,  a) is unchanged under a change in 
gauge and the measure is gauge invariant. 

31.5 Summary 

In summary, the lattice gauge model for the Yang-Mills nonabelian gauge theory 
based on an internal S U ( 2 )  symmetry is constructed as follows: 

(1) Assign to each link a phase angle and link variable (see Fig. 31.4) 

Fig. 31.4. Basic link, link variable, and plaquette for the lattice gauge model 
of the nonabelian Yang-Mills theory with internal SU(2)  symmetry. 

(2) Impose periodic boundary conditions on ((YO, a) that lie on the unit sphere 

(3) Take the contribution to the action from each plaquette to be (Fig. 31.4)’ 
in the four-dimensional internal parameter space for each link; 

9u is given in 1+1 dimensions by Eq. (31.36) and in d dimensions by Prob. 31.4. Note once again 
that the single parameter CT now contains the entire dependence on coupling constant and lattice 
spacing. 
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The total action is the sum over all plaquettes s = Co SO; 

the measure of Eq. (31.53) 
(4) The partition function is obtained from an integration over all links with 

= /-;;i-6("u2,+,:-l)exp{--cS,} d4al (31.56) 

links 0 

(5) It has been demonstrated that the action is invariant under (infinitesimal) 
local gauge transformations, that the measure is also gauge invariant, and 
that this model has the proper continuum limit; 

(6) Equations (31.55), (31.56), and the last of Egs. (31.54) are self-contained; 
they constitute SU(2)  lattice gauge theory. 



Chapter 3 2 

Mean field theory - SU(n) 

To obtain some insight into nonabelian lattice gauge theory, and to gain some 
familiarity with it, consider again mean field theory (MFT). This time we take a 
more systematic approach than in chapter 30 and start from the partition function 
for the entire many-body system, from which an analysis of its free energy will 
follow. The discussion is based on [Ba74, Ba75, Ba75a, Ma89al. This chapter is 
taken from [Ma89a]. 

We first briefly repeat a summary of the results of the previous chapter. The 
basic plaquette is illustrated in Fig. 32.1. The partition function is obtained from 
a path integral over all link variables of the exponential of the action, which is 
obtained from the sum over all plaquettes of a term formed from the product of the 
link variables around the plaquette' 

S ( U )  = c2~7 
0 

(32.1) 

Stated in this form, the equations constitute lattice gauge theory for any internal 
symmetry group SU(n). 

For SU(2) ,  as we have seen, the link variables are expressed as2 

lWe here and henceforth simply use 3 E S for the required action. 

2Remember that the labels (ji) here denote the link; they are not the elements of the n x n matrix. 
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For SU(3) the link variables are expressed as 

An explicit representation for the SU(3)  (and higher n) matrices will not be needed 
for the developments in this section. 

The measure for SU(2)  is 

/ ( d U )  = n A 7r /d4al b(a& + a: - 1) 
links 

This can also be generalized to S U ( n ) ;  the specific form will again not be required 
for the present developments. 

Fig. 32.1. Basic plaquette in lattice gauge theory for S U ( n ) .  

32.1 Mean-field approach 

Concentrate again on the link variables. Pick a gauge. Now add and subtract a 
mean field contribution to the action 

H H 
-Re[trCji] n = -Re[tr&] n 

<ij> links 

(32.5) 

Here H is a constant to be determined.3 Since this expression is a sum over link 
variables, the exponential of this MFT contribution to the action factors. The 
product of the integrations of this contribution over the link variables then also 
factors. The path integrals over the link variables of this MFT contribution to the 
action are thus decoupled 

3The constant H will be treated as a variational parameter determined by a variational principle. 
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After the addition and subtraction of this MFT term in the action, the partition 
function can be written identically as 

H 
2 = exp { -20 1} /(dU) exp { c -Re[trUl] n 

links 

H 
n 

- c -Re[trUl] 
links 

(32.7) 

The first factor in the last expression contributes only a constant to the entropy of 
the vacuum and drops out of thermal averages. 

Now define the MFT statistical operator 

With this one can calculate MFT thermal averages 

(32.8) 

(32.9) 

With this definition, Eq. (32.7) becomes 

(32.10) 
H 

(exp { :Re[trU,] - 1 -Re[tr&] n 
links 

To proceed with the analysis one invokes the very useful and powerful Peierls' 
inequality 

This inequality holds whenever the average value is computed with any positive 
measure (or weighting f ~ n c t i o n ) ; ~  it is proven in appendix C.l. The great utility 
of this inequality is that it gets the mean value up into the exponent, and the 
MFT value of the action itself is readily computed. The inequality will be used to 
establish a variational principle for the free energy. 

4As is the case when one uses Eqs. (32.8) and (32.9). 
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The use of Eq. (32.11) on Eq. (32.10) leads to 

2 

The integrations on the right can now be performed because they factor. The 
integral in the second term is 

The volume element factors J ( d U )  = nlinks J(dUl)  and each term being averaged 
in Clinks gives an identical result. We again choose to work in d dimensions and 
use the counting procedure of chapter 30.5 Thus 

= Nsitesd H (ARe[tr a])  
MFT 

(32.14) 

The expression being averaged in the final term is a one-body operator. 
Consider next the first integral on the right-hand-side of Eq. (32.12). This is the 

heart of the matter. The problem at this stage has been reduced to calculating the 
mean value of Re[tr go]; now one is again dealing with a physical, gauge-invariant 
quantity (see the discussion in chapter 30). But this integral can now be carried 
out since u, also factors! Thus 

Now assume [as will be verified explicitly for SU(2) below] that upon doing the 
path integral of a link variable over a link (&)MFT, only ( l /n)  Re[tr 31 remains; 
thus 

5Note that with a lattice of N intervals in each of d dimensions and with periodic boundary 
conditions the number of sites is Nsites = N d .  
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Then all the contributions in Eqs. (32.15) are identical and6 

The remaining mean value is identical to that appearing in Eq. (32.14). 
Define 

c ( H )  3 / ( d U )  exp { :Re[trl/]} 

c ( ~ ) t ( ~ )  = / ( d ~ ) ; ~ e [ t r ~ ]  1 exp { :..[t..i> 
The previous results can then be summarized simply as 

12 = Nsites d H t ( H )  
1 

I~ = N .  -d (d-  1 ) 2 a t 4 ( ~ )  
sites 2 

For the denominator of the 1.h.s of Eq. (32.12) one also needs the relation 

(32.18) 

(32.19) 

- - lC(~>1Nsitesd (32.20) 

A combina.tion of these relations allows us to rewrite the basic inequality for the 
partition function in Eq. (32.12) as 

Now take the logarithm of both sides 

I n 2  2 Nsites{ad(d- l)t4(H) - d H t ( H )  +d[lnc(H)]} (32.22) 

Recall the relation between the partition function and the free energy (to within an 
additive constant (S)vac) 

2 = e-@F (32.23) 

Both are gauge-invariant quantities. Upon taking logarithms, and reversing the 
sense of the inequality in Eq. (32.22), one finds a variational principle for the free 
energy 

"Note ( l /n )  Re[tr 11 = 1 . 
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The last expression is just the free-energy/site. The MFT expression for the free 
energy can now be minimized with respect to the parameter H to obtain the best 
bound on the actual free energy F .  One has 

-4ad(d - l ) t 3 ( H ) t ’ ( H )  + d t ( H )  + d H t ’ ( H )  - d[c’(H)/c(H)] = 0 (32.25) 

Note from Eqs. (32.18) that 

(32.26) 

Hence Eq. (32.25) for the optimal choice of H becomes 

Define a “magnetization” M by 

H M 3  = 
4a(d - 1) 

(32.28) 

Then the self-consistency equation for the magnetization is given by 

M = t ( 4 4 d  - 1 ) ~ )  (32.29) 

Here t ( H )  = ( iRe[ t ru] )MFT is the one-body MFT average in Eq. (32.18). This is 
a very powerful result; it describes the nonabelian theory SU(n)  in d dimensions 
for arbitrary n and d ! 

32.2 Evaluation of required integrals for SU(2) 

Let us specialize to the case of SU(2).  In this case the link variable takes the form 

- U = (Yo + ZCX . T (32.30) 

The integral over link variables is performed according to 

(32.3 1) 
1 /(dU)f(U) = 2 / d4Ct6((11i + CX2 - l)f((7Y0 + ZCU. 7) 

7T 

First note that 

(32.32) 
1 
- Re[trU] = a0 
2 

Thus 

/ ( d U ) U  exp {: Re[tr Q] } = $ / d 4 a  S(ai + a2 - I ) eHao  (ao + irr . T) 

= / (dU)~Re[ t rU]exp 1 
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The second equality follows since the angular average of the final term in the first 
line vanishes by symmetry. Equation (32.33) is the result that was to be verified in 
the discussion of Eq. (32.16). 

The quantity c ( H )  can be evaluated as follows for SU(2)  

c ( H )  = 21' d a o d q e H a o  
7T -1 

It follows from Eq. (32.18) that 

(32.34) 

(32.35) 

This is the basic relation needed for the self-consistency Eq. (32.29). 

I . . . . I . . . .  

K 
20 40 60 a0 " " " " '  

O 

Fig. 32.2. Values of / ~ F M F T ( H ) / N ~ ~ ~ ~ ~  versus H for various values of 2a for SU(2)  
and d = 4. From [Ma89a]. 

Numerical results for , B F M F T ( H ) / N ~ ~ ~ ~ ~  versus H for d = 4 are shown in Fig. 32.2 
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(from [89a]).7 It is evident from this figure that there is a critical value of (T 

(TC = 1.4131 (32.36) 

For values of c < cc the phase with H = 0 has the lowest free energy; however, 
for values of u > (TC a second phase exists with lower free energy and finite H [and 
hence finite M by Eq. (32.28)]. The calculation of M4 as a function of ac/a for 
SU(2)  lattice gauge theory in d = 4 dimensions in MFT, obtained from the solution 
to Eq. (32.29), is assigned as Prob. 32.1. 

Results in other dimensions, and comparison with some Monte Carlo calcula- 
tions, are discussed in Probs. 32.2-3. 

7Some integrals are useful in this analysis (see [Ma89a]). A change of variable (YO = cos$ and a 
subsequent integration by parts yields 

c(H) = 2 /rsin2+eHCos@d+ 
T O  

Hc(H) = 2 /Ccos+eHcoS$d+ = 2Ii(H) 
T O  

The last equation identifies a modified Bessel function. It follows that Z;(H) = Io(H)-Zl(H)/H; 
this is of use in Eq. (32.26). The first of these equations is the result one obtains starting from 
the four-dimensional euclidian volume element in spherical coordinates in chapter 31. 



Chapter 33 

Observables in LGT 

In this chapter we consider the calculation of observables in lattice gauge theory 
(LGT). These will include such quantities as: (1) the interaction potential between 
a static quark-antiquark pair, where a linear rise in the potential with separation 
distance will provide strong evidence for the complete screening of the strong color 
charge and the confinement of coZo7; (2) the corresponding “string tension,” or force 
required to separate the two static color charges; and (3) the mass of a “glueball,” 
a particle without quarks arising entirely from the nonlinear gluon interactions. 
References [Wi74, Cr82, Cr83, Cr83a, Re83, Ko83, Be83, Be83a, Ot84, Ca89, La021 
provide the relevant background; this section is based on [Ca89]. 

33.1 The (It) interaction in QED 

For clarity we start the discussion with the abelian U(1) theory and then generalize 
to the nonabelian case. Put a (heavy) charged lepton pair with charges f e o  at two 
fixed points in space with world lines as shown in Fig. 33.1. The charges interact 
through the electromagnetic field. The interaction with the background electro- 
magnetic field can be included exactly in LGT. Consider the partition function and 
the generating functional for the gauge fields (chapters 28 and 29) 

(33.1) 

Everything is now in the euclidian metric, and the correct boundary conditions are 
implied: for Z one takes so d r  with periodic boundary conditions in r;  and for 
r?l,(J) one computes s-”, d7 - the Green’s functions derived from WE(J)  can be 
analytically continued back to Minkowski space at the end of the calculation. 

P 
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Now compute the additional source term in the action SJ 

(33.2) 

Start in Minkowski space 

C = J,A, (33.3) 

Here, for a pair of static charges, the source of the electromagnetic field takes the 
form J, = (0 ,  i p )  and J,A, = - p @  with 

(33.4) 1 p = eo 6 ( 3 ) ( ~  - x2) - 6 ( 3 ) ( ~  - x1) [ 
Hence 

dt [@(xg)  - @(XI)] (33.5) 

Now go to the euclidian metric (chapter 29) 

t -+ -iT x, -+ (X,T) xi = X2 + T 2  

@ -+ -iAo A, -+ (A,Ao) A; = A2 + A; (33.6) 

Then 

Here the integrals go along the world lines in Fig. 33.1. 

I 

Fig. 33.1. World lines for a (heavy) charged lepton pair with charges f e o  at two 
fixed points in space - basis for calculating their interaction potential. 

Now for a static problem, the contribution to the line integral from a segment 
in the x direction at fixed t must be independent oft .  Thus after the substitution 
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in Eq. (33.6) the contribution to the line integral from the two segments shown in 
Fig. 33.2a must be equal.' 

(33.8) 

These segments can be combined with the expression in Eq. (33.7) to give a line 
integral around a closed curve C in space-time as shown in Fig. 33.213. 

-t 

X I X  

Ibl 

Fig. 33.2. (a) Equal contributing end segments in the line integral of the vector 
potential in the static case. (b) Resulting completion of the line integral of the 
vector potential around the closed curve C in space-time. 

The resulting integral is gauge invariant. To see this, make a gauge transforma- 
tion A,, --+ A, + aA/ax,. Then, by the definition of the gradient, and since A is 
single-valued 

Sl, (E) dx, = 0 (33.10) 

Hence the line integral of the vector potential around the closed curve in space-time 
is unchanged by the gauge transformation. 

The integral over the euclidian action in Eq. (33.1) can thus be written 

& ( J )  = (exp { ieo A&.,}) 

Here the expectation value is evaluated with the statistical operator in Eq. (33.1) 

(33.11) 

e-S(u) 
= J(dU)e-s(u)  

'In fact, here, both contributions vanish since A, = (0,  Ao). 

(33.12) 
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33.2 Interpretation as a V,f(R) potential 

The goal is to now make a connection with physics through the concept of an 
interaction potential between the two fixed charges. In order to make this connection 
introduce the concept of effective degrees of freedom for this system, and concentrate 
entirely on the space-time coordinates of the charges themselves. Return to the 
original discussion of the path integral in chapter 28 in terms of particle coordinates. 
For a single particle the probability amplitude for finding the particle at (42, t z )  if 
it  started at (q l ,  t l )  is 

(33.13) 

This probability amplitude, according to the general principles of quantum mechan- 
ics, can be written in the Schrodinger and Heisenberg pictures as 

(q2t21qltl) = (q2I\IIq1(t2)) ; S-Rep 

= (921 exp { - iH( t z  - t l)}l91) ; H-Rep (33.14) 

This analysis is readily extended to two (or more) particles. Consider two charged 
particles, and take as the initial and final states the above charges at their fixed 
positions in space 

(33.15) 

Now go to the euclidian metric and define the tau-interval 

( t z  - t l )  Ei -i7 (33.16) 

Equation (33.14) then implies that the 1.h.s. of Eq. (33.13) can be written as 

1.h.s. = (lqe-HTI1r) (33.17) 

Define an effective hamiltonian for the two charged particles by H = T + V ;  for 
heavy (static) charges, one can neglect the kinetic energy T .  Since the particles 
are heavy and fixed there is no dynamics and the states do not change; Eq. (33.17) 
then reduces to 

-V(R)I 1.h.s. = e (33.18) 

Here V ( R )  is just the interaction potential of the two heavy (fixed) charges sep- 
arated in coordinate space by a distance R. We have now calculated the same 
amplitude in two different ways. A combination of Eqs. (33.18) and (33.13) and 
(33.11) then provides a definition of the interaction potential of the two charges 
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entirely in terms of the field 

exp{-V(R)I} = (exp{ieokApdzp}) = WE(J)  (33.19) 

The logarithm of this relation provides an explicit expression for the potential 

1 
7 V(R) = --lnWE(J) 

(33.20) 

The required integrals in Eq. (33.20) can be immediately evaluated in lattice 
gauge theory in terms of Wilson loops. These are defined by utilizing the specific 
contour C indicated in Fig. 33.3; the quantity WE(J) evaluated for this contour C 
will be denoted by WJ(m, n). Here 

' T = m a  R = na (33.21) 

Hence 

(33.22) 
1 

V(R) = --lnWJ(m,n) 
ma 

This expression is readily evaluated using the LGT techniques that have been devel- 
oped, since the paths in the Wilson loops now just involve the link variables along 
the path - we shall do so analytically in the next section. 

Fig. 33.3. Contour C for the evaluation of Wilson loops in LGT. 

33.3 Nonabelian theory 

Analogous arguments indicate that these results may be taken over to the non- 
abelian LGT if one makes the replacements3 

2Recall that even in QED, with finite lattice spacing a, these are self-interacting fields. 

3Note [ S ( U ) , f C  dz,&] = 0 since the action S ( U )  = 2aCo (1 - $-Re[trU,]) is just a c-number. 
Thus the exponentials still factor e-'(')e-'J = e-'(')-'J. 

variabless.2
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0 For SU(2) 

(33.23) 

0 For SU(3) 

The generalization of Eq. (33.20) for SU(N) is 

(33.25) 

One simply includes the appropriate link variables around the Wilson loop. The 
arguments in chapter 31 indicate that this functional is again gauge invariant. 

33.4 Confinement 

It is of great interest to see if the nonabelian gauge theories based on an internal 
color symmetry can provide forces sufficiently strong so that an isolated color charge 
is completely shielded by strong vacuum polarization (a possibility first envisioned 
by Schwinger in another context [Sc62, Sc62al). We seek a situation where one 
cannot pull the static charges apart in the absence of additional pairs, where they 
behave as if they were tied together with a “string” (Fig. 33.4). 

Fig. 33.4. Confinement modeled by two heavy charges connected with a string. 

We look for 

V ( R )  = dR d = string tension (33.26) 

The goal is to see if this indeed happens in the above calculation, and, if it does, to 
calculate 5.4 The anticipated form of the confining potential is sketched in Fig. 33.5. 

41n the physical world what presumably happens is that the string breaks and a pair of quarks is 
created from the vacuum to take the places at the ends of the string fragments - a meson turns 
into two mesons. 
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If Eq. (33.26) holds, then e-V(R)T = e--aRT and one can rewrite Eq. (33.22) as 

1 1 -  a =  -- , , l nw~(J )  = (33.27) 

Here Eq. (33.21) has been used and the result written in terms of the Wilson l00p.~ 
The first of these equations states that In ~ E ( J )  must be proportional to the area 
R 7  of the Wilson loop in order to find a constant a; this proportionality to the 
area can be taken as a signal for confinement. 

conf lnernent 

V [ R l  = 3R / 
I ,I asqrnptotic f reedorn 

Fig. 33.5. Anticipated form of the confining static (44)  potential. At short distances 
one has the asymptotic freedom result V(R) = -cxs/R; at large distances one has 
the anticipated string value V ( R )  = BR. 

33.5 Continuum limit 

Consider the continuum limit of this calculation where a -+ 0 for a fixed lattice size 
The situation is illustrated in Fig. 33.6. For a given lattice size, one needs to 

keep a large enough so the fixed static charges are far enough apart in space that 
the asymptotic expression (large R) in Eq. (33.26) holds. Conversely, a must be 
small enough so that the result approximates the true continuum limit. 

One test that can be used on the lattice dimension a is to see if one reproduces 
the scaling of the coupling constant predicted by perturbation theory. How does 
this work? Asymptotic freedom is the key ingredient here. It says that the size of 

5Suppose W J ( ~ ,  n) = exp (-5R7 - p 1 7  - pzR - b}  where the last three terms represent possi- 
ble “transients” in the LGT calculation. Recall R = na ,  7 = ma.  Then 

In this case the transients can be eliminated by taking 5 = -(1/a2) In R(m, n) . 

6Limited, for example, by computing power. 
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+a+ ....... . . . . . . . .  ....... ....... ........ 
q ....... q ....... - . . . . . . . .  n ....... . . . . . . . .  . . . . . . . .  u 

m e s o n  [hadronl str ing 

Fig. 33.6. Continuum limit a 4 0 of calculation of the (qq) potential for iixed lattice 
size Nd. 

the renormalized coupling constant decreases as one goes to smaller and smaller 
distance scales. Let g be the (renormalized) coupling constant one uses to describe 
physics on the distance scale of a as illustrated in Fig. 33.7a. 

0 0 0 0 0  

0 0 .  

a 
0 0 0 0 0  

0 0 0 1  0 0 0 0 .  

(a1 (bl 

Fig. 33.7. Schematic illustration of variation of strength of the renormalized cou- 
pling constant g on the lattice with the distance scale of the lattice a. (a) For 
spacing a;  (b) for spacing a/2. 

For illustration, imagine the coupling constant to be associated with each site and 
let the size of the dot illustrate the strength of the coupling. Now suppose one halves 
the physical dimension of the lattice by letting a 4 a/2 as illustrated in Fig. 33.7b. 
To maintain the same total strength of the coupling in a given physical region in 
space, the coupling on each site must be decreased in strength as illustrated. 

In the asymptotic domain the analytical relation between these scaled renor- 
malized coupling constants is given in SU(3) (that is, QCD) by the relation [Gr73, 
Po731 (see chapter 27) 

(33.28) 
33 33 2Nf p = - - -  

3 3  3 
(= - here) 0 

In this expression g;(X2) is the renormalized coupling constant as measured at a 
momentum transfer X2 (Fig. 33.8a).7 The initial coupling constant 9: is b e d  by 

7The corresponding result for SV(N)  from [Gr73, Po731 is Po = l W / 3  - 2Nf/3; here Nf is the 
number of “flavors” of fermions, that is, the number of different types of fermions belonging to 
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experiment; it defines the starting point for the analysis. To visualize the situation, 
imagine this coupling constant g: has a certain physical distribution in space. The 
lattice then looks at this coupling on a certain physical distance scale characterized 
by the lattice spacing a as illustrated in Fig. 33.813. 

Fig. 33.8. (a) Physical determination of the renormalized coupling constant g$(X2); 
(b) lattice view of the starting renormalized coupling constant g; with lattice spacing 
a; it has some overall strength and spatial extent. 

Equation (33.28) is based on the renormalization group; it sums the leading 
terms in lnq2. In LGT there is a natural distance scale a at which one wants to 
determine the new renormalized coupling constant, or correspondingly, a natural 
momentum scale q2 E X2 = l /a2.  Asymptotically in this quantity one can write 
Eq. (33.28) as 

(33.29) 

Here it has been assumed that (g;,B0/167r2)ln{l/a2X:} >> 1; we are interested in 
the limit a 0. The quantity in Eq. (33.29) will be defined as g 2 ,  the renormalized 
coupling constant to be used at the distance scale u2.8 Equation (33.29) can be 
inverted to solve for u2 

Now substitute this relation in Eq. (33.27) 

(33.30) 

(33.31) 

The scaling test  implies that the physical’quantity expressed by the term in brack- 
ets on the r.h.s. of this equation should be independent of a [and hence of g2 by 

the fundamental representation of SU(N) .  

(chapter 27) e; M e : / [ l  - (e:/127r2) In (X2/M2)] because here ez would change sign! 
8Note that one cannot take the same limit in a nonaaymptotically free theory, such as $ED where 
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Eq. (33.29)] for small enough a. If one has a proper description, then physical quan- 
tities such as that illustrated schematically in Fig. 33.8b should be unchanged if the 
underlying lattice with which one chooses to describe them decreases in size and 
the coupling constant used on that lattice is scaled appropriately. If the physical 
distance scale of the underlying lattice is small enough, one can use the asymp- 
totic relation for the dependence of coupling constant on distance scale - and the 
coupling constant is becoming vanishingly small in this asymptotically free theory. 

For SU(N) and dimension d = 4 defineg 

- 2N 2a-p- -  
g2 

(33.32) 

This is now the only parameter left in the calculation [except for l/A1, which simply 
defines the unit of length through Eq. (33.30)]. Then from Eq. (33.30) 

(33.33) 

Thus the result in brackets in Eq. (33.31) should be i n d e p e n d e n t  o f p  for large 
e n o u g h  ,8 - this is the scaling test.” 

33.6 Results for V,, 

We show some results of numerical calculations carried out by Otto and Stack for 
QCD in Fig. 33.9 [Ot84].11 

These authors: 

(1) Work on a lattice of size 164; 
(2) Assume 

- In W ( R ,  7) = 8727 + corrections (33.34) 

(3) Check the linearity in T / u  for fixed R / u  (Fig. 33.9a); 
(4) Check the scaling with p and find it works for p 2 6; 
(5) Fit their results for V ( R )  in Fig. 33.913 to 

(33.35) 
a V ( R ) = 8 R + B - -  R 

’Recall from chapter 31 that for SU(2)  and d = 2 we had 20 = 4/g2a2, and with d = 4 the a2 

“According to [Ca89] the authors in [Ot84] include the next order correction to Eq. (33.33), which 
results in fo(g) + f1(g) = ( 8 ~ ~ p / 3 p o ) ~ ~ / ~ ~ ~ f 0 ( g ) ~  but the factor in front of fo(g) is “purely 
decorative.” 

dependence disappears from this expression (see Prob. 31.4). 

“The basis for the large-scale Monte Carlo numerical calculations is developed in chapter 35. 
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They find 

J? M (106 f 3)Xl (33.36) 

From fits to the spectra of heavy quarkonium [(Ec), (&), etc.], the string 
tension appearing in the potential V ( R )  is empirically determined to be 

8 M 1 GeV/fm (33.37) 

Thus these authors determine 

X I  M 4 MeV 6 M 400 MeV (33.38) 

The key result from this work is that the quark potential Vqq(R) does indeed 
appear to  rise linearly with R for large R as seen in Fig. 33.9b - QCD does 
appear to  lead to  confinement. 

d 
2.0 

1.0 

0.0 

-1.0 

-2.0 

r 

1' t t  
m t '  

J 
rm 

t/ 
b 

o 7.6 
I 0 1 . 2  

r .  b 6.8 

Fig. 33.9. (a) -In W ( R ,  7) vs. T / a  for p = 6 and various R = R / a ;  (b) the quark 
potential V/& vs. &R for all data with p 2 6 ;  here IE 3 8. From [Ot84, Ca891. 

33.7 Determination of the glueball mass 

Start back in Minkowski space. Let Q(t) be any hermitian operator in the Heisen- 
berg representation 

Q(t> = eiHtQ(o)e-iHt ; H-Rep (33.39) 
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Consider the vacuum matrix element of this operator expressed as 

G(t) 3 (olQ(t)Q(o)lo) - (olQ(t>lo)(olQ(o)lo) (33.40) 

This is a correlation function. Insert a complete set of eigenstates of H 

G(t) = C(olQ(t)ln)(nlQ(o)lo) = C I(4Q(0)10)12e--iEnt (33.41) 
n # O  n # O  

Now go to euclidian space with t + -il [Eq. (33.6)] 

G ( 7 )  = I(nlQ(0)10)12e-EnT 
n#O 

(33.42) 

Take the limit 7 + 00. Let mo be the mass of the lightest “glueball.”’2 Suppose 
the operator Q has any overlap with this state. Then 

G(7)  1(g01Q(0)IO)12e-moT (33.43) 

Hence 

(33.44) 
1 

mo = -- l n G ( l )  l 
Here the limit 7 + 00 is implied. With 7 = ma one can write instead 

1 G(m) mo = --ln 
a G(m-1) 

(33.45) 

The use of Eq. (33.30) allows one to again check scaling to  see if the lattice result 
is believable 

(33.46) 

The scaling test implies that the physical quantity in brackets should be independent 
of p [Eqs. (33.32) and (33.33)] as p + 00. 

Clearly the operator Q must have the same quantum numbers as the state 190) 
to produce some overlap in Eq. (33.43). One picks Q to have as definite rotation 
properties as possible on the lattice in order to select states of definite angular 
momentum (see [Be83, Be83al). The latest result quoted in [Ca89] is 

m,,(O++) x 375x1 x 1.5GeV (33.47) 

Here the value of A1 from Eq. (33.38) has been used. Thus the mass of the lightest 
glueball appears to be about 1.5 GeV.13 

I2An eigenstate of H formed from the nonlinear gluon couplings in the absence of valence quarks. 

13The most recent results from lattice gauge theory calculations can always be found in the 
proceedings of the latest international “Lattice Conferences” (e.g. [La02, La03)). 
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The calculation of a correlation function on the lattice amounts to an evaluation 
of the following expression (see Prob. 33.1). 

(33.48) 



Chapter 34 

Strong-coupling limit 

It is always useful to have limiting analytical solutions to any theory. In this chapter 
LGT is solved analytically in the strong-coupling limit where the constant u in the 
action becomes very small. Thus we are here interested in the following limit of the 
theory 

(34.1) Fix a2 ; u + 0  or -+ca 

From Eq. (33.32), for example, for SU(N)  in d = 4 dimensions, 2u = 2N/g2. Small 
u corresponds to large g 2 ;  hence the name strong-coupling limit. References [Wi74, 
Cr83, Ko831 provide basic background here; this section is based on [It89]. 

1 
u 

Fig. 34.1. Contour C of Wilson loop (see Fig. 33.3) and tiling plaquettes. 

Since the action appears in the exponent of the statistical operator, small u is 
equivalent to high temperature in the usual partition function in statistical mechan- 
ics. One can think of 1/u E T e ~  as an effective temperature here. If we recall 
the plot of the magnetization m4 vs uc/u in Fig. 30.6 and Prob. 32.2, then the 
strong-coupling limit corresponds to the far right hand side of the figure. 

Basic Observation: I n  the limit u + 0, one can expand the expo- 
nential of the action in the statistical operator and keep the first 
nonvanishing term in a power series in u. 

329 
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Let us start with U ( 1 )  and then generalize. This calculation is readily carried 
out because the path integral over the individual link variables takes a very simple 
form 

As a -+ 0 one can write 

exp { i e o & % 4 p }  = n Ul 
links on C 

(34.2) 

(34.3) 

Here C indicates the contour of the Wilson loop (Fig. 34.1). This follows from the 
definition of the link variables 

i e o ( x j  - X ~ ) , J ,  (i(q +xi))} (34.4) 

The statistical average of Eq. (34.3) then forms the Wilson loop (chapter 33) 

In this expression (chapter 29) 

s = Cosn 
so  = c7 {[l - ( U O ) + ]  + [l - (UO)+-]} 

(uo)+ = uilUlkUkjUji = e--i+4e-i+3ei+2ei+l 

The situation for the basic plaquette is illustrated in Fig. 34.2. 

(34.5) 

(34.6) 

Fig. 34.2. Link variables around the basic plaquette in U(1). Recall the convention 
that the phase in the direction of the positive coordinate axes is taken as +q5 (the 
phase in the opposite direction is -4). 

1 
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Now expand e-’(’), and employing Eqs. (34.2), keep the minimum number of 
terms necessary to get a nonzero result. One must pair all links in opposite directions 
as illustrated in Fig. 34.3 (producing UlV;); the path integral over unpaired links 
vanishes. 

Fig. 34.3. Pairing of link variables required to get first nonvanishing result in strong- 
coupling theory. 

The minimum number of plaquettes necessary to pair all links starting from a 
given contour C in the Wilson loop must just tile the area as illustrated in Fig. 34.1. 
The number of such plaquettes p is clearly 

p = m n  ; minimum number of plaquettes 

to tile Wilson loop (34.7) 

Expand 

We must go to pth order 

P 
p! (C0SD) = P! (. . . +so1 + so2 + *. .  + s o p  + .. a ) ”  

(34.9) 

Here the tiling plaquettes have been explicitly indicated. How many ways can the 
required product of the p tiling plaquettes be obtained from this expression? The 
first term can be chosen from p factors; the second from p - 1 factors, etc. - the 
answer is p! ways. Hence the first contributing term in the statistical average arises 
from 

(34.10) 

Evidently e-’ = 1 in the denominator of Eq. (34.5) for the same reasons. Hence 
this expression becomes 

,-s I 1s s p. 0 1  02.*.SOp 
P! 

W J ( ~ ,  n) = ~ ~ ( - l ) ~  / ( d U )  {[I - (Uo)Lt] + [l - ( U O ) + ] } ~  x * * 

x {[I - ( U O ) - + l +  [ I -  ( ~ O ) e l } p  n Ul (34.1 1) 
links on C 
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Now note that the only nonvanishing contribution from this product of So arises 
from the product of factors -(UD),, which produces the pairing illustrated in 
Fig. 34.1. 

wJ(rn,n) =up (dU)(UOl)t.(UD2)t....(UOp)t. n Ul (34.12) I links on C 

Equations (34.2) state that all the remaining integrals are unity. Hence one derives 
the lovely, simple, analytical result that in the strong-coupling limit 0 + 0 the 
Wilson loop is given by 

WJ(rn, n) = 0 p  = umn (34.13) 

We return later to a discussion of this result. 

34.1 Nonabelian theory 

Let us now extend these arguments to the nonabelian case and take SU(2)  as a 
specific example. The same basic arguments will be employed, only now the link 
variables Uji are 2 x 2 matrices, and the contribution of a plaquette to the action 
involves the matrix product around the plaquette 

For the present discussion, matrix indices will be denoted with Greek super- 
scripts; repeated indices are summed from 1 to 2. One needs 

(34.15) 

Note that the initial and final matrix indices are tied together by the trace (tr). 
The sites and matrix indices for the basic plaquette are illustrated in Fig. 34.4. 

Fig. 34.4. Sites and matrix indices for the basic plaquette in SU(2) .  

In the opposite direction one has 

(34.16) 
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Since vij = Eli Eqs. (34.14) and (34.16) can be rewritten 

(V,), = VtiU$LkjVji 
(UO)+ = VklVlZUjiELj (34.17) 

Now all the link indices refer to the direction of the positive coordinate axes. 

direction. 
variables' 

We claim that tr  (u0)+, by itself, is real. The same result holds for the other 
The proof follows from the general representation of the SU(2) link 

- U ,  = ( C Y o + i C Y . T ) l  (34.18) 

Here the parameters (a,ao)i with a: + a:, = 1 depend on the link and are real. 
Then 

tr  (En)+ = (34.19) 

tr  (a0 + ia . 7)' (a0 + ia . T ) ~  (a0 - ia 1 T ) ~  (a0 - ia . T ) ~  

The result follows since all the required traces tr  ( i ~ ) ,  tr  (i27k71), etc. are real. 
Thus for SU(2)  

1 tr (U,)+] = 2a [l - Ztr 1 (ED), 

(34.20) 

34.2 Basic observation 

The analysis again depends on the path integrals over the individual link variables 

(34.21) 

The proof of these relations starts from the measure previously introduced for SU(2) 

(34.22) 

The terms linear in a give zero by symmetry. 

(34.23) 

'Note a0 multiplies the unit matrix, which is here suppressed. 
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Define 

Strong-coupling limit 

1 
7 9  
- J d4a b(ai + a2 - l)f(a) = 

Equation (34.23) then states ((YO) = (a) = 0. Symmetry arguments immediately 
imply the following additional relations 

1 1 2  (4 = ,(a2) = z(ap) 

(aoa) = 0 

(aiaj) = - ( a % i j )  
1 
3 

The actual value of the expression (a:) is immediately evaluated 

(34.25) 

(34.26) 

The last of Eqs. (34.21), which provides the minimum requisite pairing of the link 
variables in the strong-coupling theory, is derived by explicitly evaluating the inte- 
gral using these relations 

+(; ;y(; ;y+( 1 0  J O (  1 0 )'"I 
0 -1 

Indicate the possible sets of matrix indices by (pa, y S); then the only nonvanishing 
values of the above are 

1 
2 
1 
2 

( 1 1 , l l )  = (22,22) = - 

(12,21) = (21,12) = - 

This establishes the last of Eqs. (34.21). 

34.3 Strong-coupling limit (a +. 0) 

(34.28) 

Again expand the exponential of the action and keep the first nonvanishing terms. 
All of the link variables along the contour C in the Wilson loop (see below) must 

(34.24)
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be paired, for any unpaired link variable integrates to zero. The links in all the 
plaquettes used for this pairing must themselves be paired for the same reason. Just 
as before, the minimum number of plaquettes required to achieve these pairings is 
the set of tiling plaquettes (Fig. 34.1). 

The use of Eqs. (34.20) and (34.17) leads to a pairing of link variables as indicated 
in Fig. 34.5. 

t K 6  [U Ji 1 

i 
6 
0 J  8 

Fig. 34.5. Pairing of link variables in SU(2) strong-coupling theory. 

The Wilson loop is given by Eq. (33.25), and the integrals appearing in this ex- 
pression must now be evaluated. As before, as a + 0 the integral around the contour 
C can be broken up into the product of link variables around C (see Fig. 33.3).2 
Thus 

1 1 
2 4 (34.29) 

The Wilson loop is then (it will turn out to be real) 

wJ(m, .) = (34.30) 

Now expand the exponential and keep the first nonvanishing term. As before, 
the result is 

wJ(m,.) = n ~(dU,)tr(U,,),tr(u,,), . . * tr(Uop)t- 
all links 

xt r  (UlU2 . 4 2 ( m + 4 )  (34.31) 

All links are now paired. Use Eq. (34.21). It remains only to deal with the matrix 
indices. Again, repeated indices are summed. Since one is dealing with the trace in 
the plaquette contribution to the action and in the Wilson contour C, matrix indices 
close around the plaquettes and around C. Equation (34.21) and Fig. 34.5 indicate 
that the path integral over the link variables ties the matrix indices at the ends of 

2There are a total of 2(m + n) links on the contour C and p = mn plaquettes inside. 
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each set of paired links together. Thus one has the three situations illustrated in 
Fig. 34.6. 

Fig. 34.6. Matrix indices tied together in the three types of vertices required in the 
evaluation of the Wilson loop. 

For the three cases one must evaluate, respectively 

(34.32) 

The result is 2 in all three cases. 
One can now simply read off the answer: there is a factor of 0 from each tiling 

plaquette, a factor of 1/2 from each set of paired link variables, and a factor of 2 
from each vertex. Thus 

number links 

number plaquettes (a) (2)number sites (34.33) 

The counting follows immediately from Fig. 33.3 

number plaquettes = m n  
number sites = (m + l)(n + 1) 
number links = (m + l)n + (n + 1)m (34.34) 

Hence one again arrives at a lovely, simple, analytical result for the Wilson loop in 
nonabelian lattice gauge theory based on SU(2) in the strong-coupling limit 

In this discussion we use the following notation 

d = string tension = IC 

go = 9 eo = e (34.36) 
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34.4 Strong-coupling SU(2) 

The string tension that follows from the Wilson loop according to Eq. (33.27) is 
given in the strong-coupling limit by 

2 
lnWJ(m,n) = ln- 1 _- U2K = 

mn U 

In four dimensions (d  = 4) Eq. (33.32) implies 

2 
a2tc = In- = 1ng2 

U 

(34.37) 

(34.38) 

The strong-coupling limit corresponds to a + 0 or equivalently g2 + 00. There are 
three important features of this result: 

0 It demonstrates confinement in the strong-coupling Iimit; 
0 It provides an analytical check on numerical calculations; 
0 It is not analytic in g2, and hence is intrinsically nonperturbative. 

34.5 Strong-coupling SU(3) 

The discussion here is based on [Ca89, It891. The corresponding result for SU(3) 
and d = 4 is given by 

a26 = In (3g2) (34.39) 

In chapter 33, in the weak-coupling limit where g2 + 0 it was shown that 

In wJ(rn, n> = constant x f2(g2) 1 
mn 

= -- 

= constant x exp - { ;Z2} (34.40) 

The numerical calculations discussed in chapter 33 interpolate between these two 
limiting cases as indicated in the log plot in Fig. 34.7. 

The fit to the numerical calcuIations yields the constant in Eq. (34.40). Now 
use 

(34.41) 

The string tension is then determined as K = constant x A:, leading to the result 
quoted in chapter 33. 
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A 

a2X 

0.1 

Strong-coupling limit 

- -  16n2 
constant x e 1 1 2  - 

I 1 1 - 

Fig. 34.7. Sketch of strong and weak coupling limits for the string tension a2& in 
SU(3)  in four dimensions (d = 4). Here IE E (T. 

34.6 Strong-coupling U(l)  

We have also evaluated the strong-coupling limit for the abelian U(1) theory of 
lattice QED. Equation (34.13) and Prob. 29.3 give for d = 4 

(34.42) 
1 

a2,  = In- = 1n(2e2) 
U 

Several features of this result are also of interest: 

0 It provides an analytical check on numerical calculations; 
0 It is nonanalytic in the coupling constant; 

It implies that the abelian theory of QED on the lattice is also confining in 
the strong-coupling limit! 

Here the reader is referred to the discussion at the end of chapter 30. Clearly, one 
cannot simply pass to the continuum limit in this nonasymptotically free theory. 



Chapter 35 

Monte Carlo calculations 

The partition function or generating functional in field theory in the path integral 
approach involves the evaluation of multiple integrals over the local field variables 
where the dimension of the multiple integrals approaches infinity. In lattice gauge 
theory the dimension of the multiple integral over the link variables is finite, but 
very large. In many problems in statistical mechanics, for example the Ising model, 
one is faced with the evaluation of multidimensional sums over dynamic variables 
where the dimension of the sum is again typically very 1arge.l 

The goal of this section is to describe the numerical methods commonly used 
to accurately evaluate many-dimensional multiple integrals (or sums). This section 
is based on [Me53, Ne88, Du891. Much of this material is taken from [Du89]. We 
start with a few preliminaries - some statistics. 

35.1 Mean values 

Flip a coin N times. Assign +1 for heads and 0 for tails. Record the sequence of 
coin flips as indicated in Fig. 35.1. The set of all possible sequences of coin flips is 
said to form the ensemble of sequences. How many ways can one form a sequence 
that contains a total of m heads and N - m tails in N tosses? The answer is a basic 
counting problem 

(35.1) 
N !  

m!(N - m)! 
number with m heads and N - m tails = 

lConsider some numbers: In an LGT calculation in d dimensions with N sites along one axis, the 
number of links is d N d .  For a lattice of size 164 in four dimensions the number of integrations over 
links in the multiple integrals = 4 x 164 = 262,144; this must still be multiplied by the number of 
internal link variables. For the Ising model, the number of spin configurations is ZNsit- = 2 N d .  
For a 64 x 64 lattice in 2 dimensions the number of spin configurations, which is the number of 
terms in the partition function sum, is 264x64 = 24096 ! 

339 
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The total number of sequences is obtained by summing this result over all m 

= (1 + 1)N = 2N (35.2) 
N !  

m ! ( N  - m)! 

N 

Total number sequences = 
m=O 

The second result follows immediately from the binomial theorem. This is clearly 
the correct total number of sequences since at each of the N steps in the sequence 
there are two possibilities - heads or tails. 

0 Z/N 

Fig. 35.1. Record of N coin flips where the value +1 is assigned to heads and 0 to 
tails. 

What is the probability P(m,  N - m) that a sequence with m heads and N - m 
tails will occur? This is just the probability that one would choose such a sequence 
at random from the ensemble of sequences; this, in turn, is just the number of 
such sequences divided by the total number of members of the ensemble of possible 
sequences 

1 N !  
P ( m , N - m )  = - 2* m!(N - m)! 

(35.3) 

Now let us use these probabilities to calculate the average value x that will 
occur if one repeats many sequences and for each flip in a sequence assigns an x as 
illustrated in Fig. 35.1. Denote the average value by 3. Since in a sequence with m 
heads and N - m tails each head contributes z = 1 and each tail contributes x = 0 
one has z(m) = m x 1 + ( N  -m)  x 0 = m 

m (35.4) 
1 N !  

5 = x P ( m , N - m ) s ( m )  = -1 
m 2 N  m m ! ( N - m ) !  

What is the mean value of x2? Evidently 

m2 
- 1 N !  
2 2  = - 

2N m ! ( N  - m)! 
m 

(35.5) 
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The mean-square deviation is defined by 

- 
(AX)' (x-Z)' = X' - 2 Z Z + Z 2  

- 
- - .2 - 5 2  (35.6) 

The sums in Eqs. (35.4) and (35.5) can be explicitly evaluated with the aid of a 
generating function [Was91 

Thus 

(35.7) 

On the average, each coin toss contributes 112,  which is exactly what we would have 
guessed; however, any given sequence may yield a somewhat different value. How 
can one characterize the spread in values of x observed if this process is repeated 
many times, calculating x for each sequence? To this end, evaluate first 

- N N ( N - 1 )  
2 2  = - +  

2 4 
(35.9) 

Then determine the mean-square-deviation that follows as 

N 
(AX)' = - 4 (35.10) 

Now take the expression d w / ?  as a measure of the deviation f rom the mean 
value. Then 

(35.11) 

The relative mean-square-deviation decreases as l/n. As a consequence, as the 
length of the sequence N grows, it becomes more and more probable that a given 
sequence will yield a value of 2 very close to the mean value 3. For very large N ,  
this becomes overwhelmingly probable ([Wa89]). 
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It will be convenient in the following to define normalized values of these quan- 
tities by 

1 f 
N 2 

- -  - -  

(35.12) 

Let us now speak of P(x), the probability of observing a given x in any one 
sequence.2 The above arguments indicate that this function has the shape sketched 
in Fig. 35.2. This probability is peaked at the value f / N  = 1/2 and its width goes 
as 1/m; the distribution grows sharper and sharper as the number of coin tosses 
in the sequence N + 00. 

Fig. 35.2. Sketch of probability that the value x is observed in any given sequence. 

35.2 Monte Carlo evaluation of an integral 

Let us use these observations to find an alternate way to evaluate a one-dimensional 
integral. Consider 

(35.13) 

One can interpret this expression as the mean value of f (x) on the interval [0,1] as 
illustrated in Fig. 35.3. 

Now generate a random set of points along the z-axis between 0 and 1 (see 
Fig. 35.3 - note the x-axis is vertical in this figure). With very many points 
chosen at random, one will approach a uniform distribution along the axis. One 
can compute the (normalized) mean value f by summing f(xp) at each of these 
points 

(35.14) 

What does one expect the error to be in this Monte Carlo calculation? Denote 
any one such determination of the mean value by f and define (A f)2 = - f . 

-2 

Really P[z(m)].  
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f [XI 

Fig. 35.3. Mean value f of f(x) on the interval [0,1] and random set of points along 
the x-axis used to evaluate this quantity. Note the z-axis is vertical here. 

Then from the previous discussion, in calculating this mean value one expects a 
statistical error of 

This is illustrated schematically in Fig. 35.4 (compare Fig. 35.2). 

(35.15) 

t 

Fig. 35.4. Probability of obtaining a given f in calculation of mean value f through 
the Monte Carlo procedure illustrated in Fig. 35.3. 

Let us compare the above with the standard method for evaluating a one- 
dimensional integral. Break the x-axis up into N intervals of length h = 1/N. 
Then add up the areas of each rectangle using, for example, the height at the right 
edge of each as illustrated in Fig. 35.5a. This estimate can be improved by us- 
ing the trapezoid rule where the slope at the midpoint of each vertical element 
is fit with a straight line (Fig. 35.5b) or with Simpson’s rule where one fits the 
slope and curvature at the midpoint (Fig. 35.5c), computing the area of the seg- 
ment in each case, and then summing. What is the anticipated error when using 
these procedures? The error is expected to be O(h = 1/N) , O(h2 = 1/N2), and 
O(h3 = l/N3), respectively, for these three methods. Now clearly this standard 
method is far superior to the Monte Carlo method for a one-dimensional integral 
since the anticipated error is 1/N << l/n. 
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fit slope and 
fit slope curvature 

1 1 2 3  
I I I I >  

+he 
brute force 

I 1 , 2 3 >  1 1 1 2 3 >  
+he +he 

trapezoid Simpson 

Fig. 35.5. Standard method for evaluating a one-dimensional integral: (a) brute 
force; (b) trapezoid method; (c) Simpson's rule. 

Fig. 35.6. Evaluation of a multidimensional integral in d dimensions using N points. 
There are one-dimensional rows of Nild points. 

What about a multidimensional integral in d dimensions? The situation is 
sketched in Fig. 35.6. Suppose one is limited by computer power to a calculation 
of a total of N points. There are rows of Nild points (Fig. 35.6). If one makes a 
series of brute force linear integrals, as above, one gets an accuracy O(h = l/N1id). 
Refinements can reduce this to its square, or cube, but now very quickly 

(35.16) 

Hence it is much more accurate to  use the Monte Carlo statistical method on  mul- 
tidimensional integrals. 

35.3 Importance sampling 

Suppose there is a particular region of f(x) that is very important, as illustrated, 
for example, in Fig. 35.7. 
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Fig. 35.7. Importance sampling - region of f(z) that is very important for the 
integral, here z -+ 0. We define F ( z )  E f ( z ) /m(z) .  

With just random sampling of the z-axis, one might miss this important region, or 
handle it only very crudely. Consider instead the expression 

(35.17) 

Here m(z) is a specified, positive, integrable function that emphasizes the important 
region in such a fashion that the new function F ( x )  = f ( x ) / m ( z )  is flat. One now 
faces exactly the same task as before, and the Monte Carlo method can be expected 
to work well. The only difference is that there is now a measure p ( x )  in the integrals 

(35.18) 

Fig. 35.8. Points distributed along the z-axis with a probability density d N / N  = 

P(X)dX . 

Suppose that one could generate and store a set of points { z 1 , x 2 ,  . , z ~ }  dis- 
tributed along the x-axis with a probability density p ( x ) ,  that is, which satisfy 
(Fig. 35.8) 

(35.19) 
d N  
N 

fraction in d x  = - = p ( z ) d z  
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Then one could just evaluate P by summing F(xp) over these points 

- N  
- 1  
F = - c F(xp) 

p= 1 
N (35.20) 

Now F x E everywhere, and the error in the Monte Carlo evaluation of the integral 
is expected to be small. At the end of the calculation, the desired integral is 

r l  r l  
f(x)ds = E J, m(z)dz 

10  
(35.21) 

Motivated by this discussion, we turn our attention to  the problem of generating a 
set of points distributed along the z-axis with a probability density p(x). 

35.4 Markov chains 

A Markov chain is a sequence of distributions of points where the rule for getting 
the (n + 1) distribution depends only on the previous (n)  distribution. Imagine a 
set of points on an interval, say [0,1]. Pick a point. Let p(z)dx be the probability 
that you will pick a point at the position x. Evidently 

p(x)dx = 1 (35.22) 

Let P(x + y)dy be the probability that the point x is assigned to the new point y 
at the next step in the Markov chain (Fig. 35.9a). Since each point goes somewhere 
in the interval 

/ 

dyP(x --+ y) = 1 (35.23) / 
What is the new distribution of points? Since one multiplies probabilities, the 
answer is 

(35.24) 

In words, the new probability distribution at the point y is the initial probability 
distribution at the point x multiplied by the probability of a point at x being taken 
into a point at y, summed over all 2. One can verify that this rule maintains the 
normalization 

(35.25) 

What conditions must the rule P(x -+ y) satisfy so that the probability distri- 
bution is stable, that is, eventually after each step one obtains the same probability 
distribution as the one before 

5(Y> = P ( Y )  ; stable distribution (35.26) 
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We claim that sufficient conditions for stability are the following: 

0 One must be able to reach all y with P(x  -+ y); 
0 The rule must satisfy the condition of microreversibility 

P(.>P(. + Y) = P(Y)P(Y -.+ .) (35.27) 

The second condition is illustrated in Fig. 35.9a. 

Fig. 35.9. (a) Generation of new probability distribution of points $(y) from prob- 
ability distribution p(z)  according to probability rule P(x  -+ y) in Markov chain; 
(b) Follow a given point through the steps of the Metropolis algorithm to generate 
a set of points { zp}  distributed according to the probability ~ ( 3 ) .  

The proof of these statements will follow in two steps. First show that microre- 
versibility implies stability 

Here the microreversibility condition has been used in the first line; this allows one to 
take the p(y) out of the integral and the last equality follows from the normalization 
condition. 

The second step in the proof is to show that the deviation from the equilibrium 
distribution is nonincreasing in the sequence of distributions in the Markov chain. 
Start with a distribution, say s(x) (Fig. 35.9a). Define a measure of the deviation 
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of this distribution from the equilibrium distribution by 

Dold d x l s ( z )  - P ( x )  I (35.29) 

What is the new distribution generated from s(x) and the new deviation from 
equilibrium? 

S(y) = / d z P ( z  + y)s(z) 

I 

Dnew = d y  I;(Y) - P ( Y ) I  (35.30) I 
The proof consists in demonstrating 

D m w  5 Dold (35.31) 

Here the equality holds only for the equilibrium distribution. The proof follows in 
a straightforward manner 

Dnew = I ~ Y  
= I d Y  

r 

(35.32) 

The first and second line substitute definitions, the third follows from the positivity 
of the probability P(z  + y), and the final equality comes from the normalization 
condition. 

Can one find a probability rule P(z  --t y) that fulfills the two requirements 
and is readily adopted to computer calculations? The most widely used rule is the 
Metropolis algorithm given in [Me53]. 

35.5 The Metropolis algorithm 

Given the desired probability distribution p ( z ) ,  carry out the following sequence of 
steps: 

(1) Start with a point at position x; 
(2) Generate a new position y on the interval in a random manner; 
(3) Calculate 

P ( Y )  
P ( 4  

r = -  (35.33) 
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(4) If r > 1, then take the trial move, that is, move the point to the region of 
higher probability density; 

(5) If r < 1, accept the trial move with probability r ,  that is, go to a region of 
lower probability sometimes. How does one do this? Generate a random 
number R on the interval [0,1] (Fig. 35.10); 

Fig. 35.10. Criterion for accepting a move in P(x  -+ y) if T = p(y) /p(x)  < 1. 
Here R is a random number on the interval [0,1]. If R 5 r accept the move. 
If not, stay where you are. 

If R 5 r accept the move. If not, stay where your are; 
(6) Repeat; 
(7) After equilibrium is achieved, store the points reached by following a given 

{xp}  point through repeated steps of this process { X n ,  xn+l, * * , Xn+N}  

(Fig. 35.913). These points are now distributed according to  ~ ( x ) ; ~  
(8) Then 

(35.34) 

If one starts with a set of points with some arbitrary distribution s(x)  
(Fig. 35.9a), then repeating the steps in the Markov chain many times will take 
one to the equilibrium distribution p(x). This process is known as thermalization. 

The Metropolis algorithm is an efficient and powerful computational tool for 
doing multiple integrations or sums. We conclude this section with a proof of 
that algorithm. To prove the Metropolis algorithm, one must show that the two 
conditions for stability stated below Eq. (35.26) are satisfied. Clearly the choice of 
y can reach all points on the interval. It remains to demonstrate microreversibility 
(see Fig. 35.9a). 

3A little thought will convince the reader that following a single point through very many steps of 
the Metropolis algorithm is equivalent to taking the distribution of points from one step of the 
Markov chain to the next one. Since the probability distribution is stable, it is simply reproduced 
by this process. 
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If r = p(y)/p(z) > 1, then P(z  + y) = 1, and going the other way y + 5 would 
be accepted with probability p ( z ) / p ( y )  = 1/r .  Thus in this case 

(35.35) 

Hence in this case 

P(Y>P(Y + .> = PkC> = P(z:>P(z+YY) (35.36) 

If, on the other hand, r = p(y)/p(z) < 1, then P ( y  + z) = 1 and going the 
other way z + y would be accepted with probability p(y)/p(z) = r. Therefore 

; r < l  (35.37) 

Hence again 

P(.>P(. + Y) = P(Y> = P(Y)P(Y + .> (35.38) 

Microreversibility thus holds for both cases and the Metropolis algorithm is estab- 
lished. 

For clarity, the arguments in this section have all been formulated in terms of 
one-dimensional integrals. They are readily extended to multidimensional integrals 
(or sums). Suppose there are v degrees of freedom. Replace 2 by the vector q = 

the Markov chain then takes p(q) -+ $(q'). 
An appropriate choice of the probability density for importance sampling in the 

multidimensional integrals in LGT is p = Ne-S(u) (and in statistical mechanics 
p = Ne-oH) .  

{ql, QZ, . . . , q v }  and p ( z ) d z  by p(q)dq = p(q1, qz,. . . , Q ~ ) ~ Q I ~ Q ~ .  . . dq,. One step in 
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Include ferrnions 

So far the discussion of lattice gauge theory has been based on a gauge-invariant 
treatment of the nonlinear boson (gluon) couplings in a Yang-Mills nonabelian local 
gauge theory. In this chapter we discuss the extension of LGT to include fermions 
(quarks). This chapter is based on [Wi74, Ko75, Ba76a, Su77, Wi77, Dr76, Dr76a, 
Ko83, Dm89, LaO31-much of it is taken from [Dm89]. 

The free Dirac lagrangian density is given by 

The second line is an equivalent form to be used in the action where a partial 
integration can be carried out. 

In QED, a theory with U(1) local gauge invariance, the lagrangian density takes 
the form 

LF = -: 2 { '$ [T, ($ - i eA , )  +m] $ 

In the euclidian met7-ic of LGT one calculates the action 
72 

S = - I ,  d3x d r L E  

Here the four-vectors (xp, A,) are taken as 

x, = (x,it) -i (XJ) 
A, = (A,i@) -+ (A,Ao) 

(36.2) 

(36.3) 

(36.4) 

35 1 
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In analogy, for the Dirac gamma matrices in the euclidian metric we will make the 
replacement 

7 p  = (Y,iYO) --+ (Y,70) 

Thus in the following we shall use 

(36.5) 

7 4  = 270 70 = 4 7 4  (36.6) 

36.1 Fermions in U(l)  lattice gauge theory 

Associate fermion fields with each site as indicated in Fig. 36.1. 

W 

Fig. 36.1. Associate fermion fields with each site. 

These fermion fields are taken to be Grassmann variables, that is, they are anti- 
commuting c-numbers (see [Se86, Wag21 and Probs. 36.1-4). 

Recall from chapter 30 that 

c=c c (36.7) 

Here the second ClinksIsite goes over the positive coordinate directions at each site 
(Fig. 36.2). 

links sites links/site 

Fig. 36.2. Positive coordinate directions at each site. 

This expression gives a complete enumeration of the terms in C l i n k s .  At the site i, 
as in Fig. 36.2, one can write the scalar product of two four vectors in terms of the 
components along the positive coordinate directions as 
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Hence the following expression characterizes a four-vector product at the site i 

(36.9) 

Associate a gamma matrix with the link according to 

Here Aji is a unit vector in the direction of the link. Associate an electromagnetic 
field variable with each link exactly as before 

We now state a model result for the f e m i o n  contribution to  the action in LGT 
and then proceed to show that it has all the required properties 

For simplicity the fermions are here assumed to be massless. The first and second 
terms run in the two directions along the link as illustrated in Fig. 36.3. 

Fig. 36.3. Two terms in fermion contribution to the action for a given link between 
two sites. 

Note the following 

Thus the second term in Eq. (36.12) is the adjoint of the first term 

(36.13) 

(36.14) 

Hence SF is real. 
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36.2 Gauge invariance 

Recall that a gauge transformation in this U(1) theory takes the form 

uji 4 e-wx~)u. .e~~(%) 
$i Gi 4 e-") 

3% 

4j + eiA(Xi)qj (36.15) 

The phases all cancel at the sites; this is one reason for putting the fermions at the 
sites. Hence SF is gauge invariant. 

36.3 Continuum limit 

Let a -+ 0. Then 

(36.16) 

(36.17) 

Equations (36.9), (36.8), and (36.2) imply that when summed over links, this will 
yield the action of QED. 

In two-dimensional (d = 2) space-tau define' 

(TF - (36.18) 
2a 

Hence 

(36.19) 

Where the lagrangian density is given by Eq. (36.2). Thus this model for including 
the fermions in U(1) LGT has the correct continuum limit. 

'The generalization to d dimensions is UF = 1/2a1-d (Prob. 36.7). 



Path integrals 

36.4 Path integrals 

355 

With the addition of the fermions the partition function becomes 

(36.20) 

Here SG(U) is the action arising purely from the gauge fields; it is the contribution 
we have been studying. &(U, $, '$) is the fermion contribution to the action given 
by Eq. (36.12). The generating functional in the euclidian metric is obtained exactly 
as before. The problem is now well posed. 

One can go further, however, since the integral over the fermion fields can be 
explicitly evaluated. This permits a reduction of the problem to path integrals over 
the gauge fields of the type we have been studying, only with a more complicated 
effective action. 

To explicitly carry out the integration over the fermion fields, use the basic 
result for integration over Grassmann variables. If xi Cj go over all sites, then 
(see e.g. [Se86, Wag21 and Prob. 36.1)2 

(36.21) 

One can then also use the general relation for (positive) matrices ([Se86, Wag21 and 
Prob. 36.5) 

l n d e t a  = T r l n a  (36.22) 

Here Tr indicates the trace of the (N,jt,,-dimensional) matrix. These two steps 
reduce Eq. (36.20) to the form 

(36.23) 

The problem has been reduced to integrals over the gauge fields with an effective 
action. One can bring down fermion fields for mean values in Eq. (36.21) by taking 
derivatives with respect Aij .3 

The additional term in Seff adds significant complication to numerical evaluation 
of the path integrals. As we have seen, the confinement aspects of Yang-Mills 
nonabelian gauge theories in LGT arise from the nonlinear couplings of the gauge 
fields. Since virtual fermion pairs are not expected to qualitatively alter the results, 

20ne  must rearrange the fermion action so that it is in this form; this is not hard to do since each 

3Use the general matrix relation a(detM)/aM,j = (M-')ji(detM). The proof of this relation is 

site is connected to a finite number of links (Prob. 36.8). 

not difficult if one uses the expansion of the determinant in terms of cofactors (Prob. 36.6). 
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one often employs the quenched approximation where in the action in the final 
calculation 

seff(u) sG(u) ; quenched approximation (36.24) 

This approximation neglects fermion loops in the partition function 2. 
The calculation of observables in LGT is discussed in chapter 33. One can obtain 

fermion observables by calculating the statistical average of appropriate fermion 
operators and, for example, by again looking at the exponential decay with T for 
large T in euclidian space. 

36.5 Problem - fermion doubling 

There is a problem with this development, and it is referred to as f e rmion  dou- 
bling [Wi74, Ko75, Ba76a, Su77, Wi77, Dr76, Dr76a, Ko83, Dm891. Consider free 
fermions on a lattice in 1 + 1 dimensions in Minkowski space. The Dirac equation 
for the stationary states is 

-a-++m 1C,=E1C, (:: ) 
Take4 

+ = O * = ( o  1 0  - 1 )  

{0z70r) = 0 0: = 0," = 1 

Look for solutions to this equation on a lattice where (Fig. 36.4) 

(36.25) 

(36.26) 

Fig. 36.4. Dirac fermions on a lattice in one space and one time dimension. 

$(x )  = ei""u(C) ; x = n a  (36.27) 

(36.28) 

40ne  needs only two anticommuting matrices now; this can be satisfied with a two-dimensional 
representation. 

Equivalently
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The straightforward definition of the derivative on the lattice is 

d 1  - = -[$(n + 1) -$(..)I 
dx a 

(36.29) 

Substitution of these relations into the Dirac equation leads to the eigenvalue equa- 
tion 

1 
-a,(eika - 1) + a,m - [ i a  

(36.30) 

This is a set of two linear homogeneous algebraic equations; for a solution, the 
determinant of the coefficients must vanish 

= 0 (36.31) m - E  ( 2 / a ) e i k 4  sin k a / 2  detl  (2/a)eika12 sin k a / 2  - m - E  

It is evident that the solution to this equation yields a complex E. It thus appears 
that the definition of the derivative in Eq. (36.29) is too naive. Let us redefine the 
derivative to make it more symmetric5 

In this case the eigenvalue equation is changed to 

m - E  (l/a)sinka 
(l/a) sin ka -m - E det 1 

This gives 
2 

~2 = m2 + (: sin k a )  

(36.32) 

(36.33) 

(36.34) 

Translation by ka 4 ka  + 27~ does not give a new solution in Eqs. (36.28) and 
(36.34).  We can therefore limit ourselves to the basic interval 

-rr 5 ka  < T 

The eigenvalue equation can then be solved graphically as shown in Fig. 36.5. 

(36.35) 

There are two interesting regions of solution indicated in the figure: 

( 1 )  In the continuum limit as a 4 0, two solutions are obtained with E2 = 
m2 + (*/c)~. These correspond to a free particle going in the two different 
directions. This is the desired limit (there are two values of k for given E 2 ) ;  

( 2 )  In contrast, on the lattice with finite a ,  there are instead four solutions to 
the eigenvalue equation (there are now four values of k for given E2) .  This 
situation arises because the function (sin ka/a)' turns over and returns to 
zero at the endpoints of the interval in Eq. (36.35).  This is the problem of 
fermion doubling. 

'Note { [ N n  + 1) - 1L(n)l+ [1L(n) - 1L(n - 1)1)/2a = [1L(n + 1) - +(n - 1)1/2a. 
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Fig. 36.5. Solution to the eigenvalue equation for the stationary state solution to 
the Dirac equation in a one-dimensional lattice. (1) Two solutions corresponding 
to the two directions of motion in continuum limit a 4 0. ( 2 )  Four solutions on a 
lattice with finite a - problem of fermion doubling. 

36.6 Possible solution to the problem of fermion doubling 

Consider massless fermions with m = 0. One possible solution to the problem of 
fermion doubling is to use' Wilson fermions [Wi74, Ko75, Wi771. Here one modifies 
the Dirac equation with an additional term that raises the wings of the curve in 
Fig. 36.5, and vanishes sufficiently fast as a 4 0 so that one recovers the proper 
continuum limit. Take 

1 d  B d2 

Here the second derivative is defined as 

(36.36) 

(36.37) 

The eigenvalue equation then reads6 

= 0 (36.38) (2B/a2)  sin2 ka/2 - E 
(l /a)  sin ka 

( 1 / a )  sin ka 
-(2B/a2) sin2 kaj2 - E det 1 

This leads to 

(36.39) 

The graphic solution to this eigenvalue equation in indicated in Fig. 36.6. 

6Note ( -B /2a2) [ ( e ika  - 1) - (1 - e- ika)]  = (2B/a2)sin2 ka/2.  
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E2 
A 

Fig. 36.6. Eigenvalue equation with massless Wilson fermions. Here B is chosen 
large enough so that there are always only two solutions for k for given E2. 

The situation is now modified from the above: 

(3) For large enough B there are only two solutions for k for given E2 and the 
problem of fermion doubling has been eliminated. One recovers the correct 
continuum limit provided B 4 0 sufficiently fast as a -+ 0.7 

Wilson fermions are often used in numerical calculations [La02, La031. 

36.7 Chiral symmetry on the lattice 

It is important to maintain the symmetry properties of the continuum limit of the 
theory as far as possible when the theory is formulated on a discrete space-time lat- 
tice. We have already touched on rotational symmetry in chapter 33. Particularly 
important is the retention of chiral symmetry. We have seen that chiral symmetry 
plays an important role in low-energy hadron physics. In the nuclear domain with 
massless (u ,d)  quarks the QCD lagrangian is invariant under the chiral transfor- 
mation (Prob. 22.1). The pion, a Goldstone boson corresponding to spontaneously 
broken chiral symmetry, is correspondingly massless (chapter 24). It is crucial to 
be able to carry our LGT calculations in this regime. Wilson fermions, while solv- 
ing the “doubling” problem, add an effective mass term [see Eqs. (36.36, 36.38)] 
and thus destroy this underlying chiral symmetry. It then becomes a challenge to 
recover the massless chiral limit in numerical simulations. One proposed solution 
is the use of staggered fennions  on the lattice [Ba76a, Su77, Ko831. We refer the 
reader to [Ko83] for further pursuit of this topic. 

The general problem of imposing chiral symmetry in LGT calculations, while 
retaining other appropriate symmetries and eliminating the doubling, has been ex- 
amined by Ginsparg and Wilson [Gi82]. Let D be the Dirac operator on the lattice; 

7For example, B = y a  where y is a constant. 
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in U(1), for example, the continuum limit of D (see Eq. 36.2) is ~p[a/axp-ieAp(z)]. 
Furthermore, let rs be a generalization, with appropriate properties, that reduces to 
7 5  in the continuum limit. Then, according to Creutz [Cr03], the Ginsparg-Wilson 
relation can be written succinctly as 

rsD = - D T ~  (36.40) 

It is evident from the argument in Eqs. (21.25) that the lattice lagrangian will now 
be invariant under the effective chiral transformation 

7c, + 7cleier5 1c, + eiers 1c, (36.41) 

It then becomes possible to track the continuum chiral limit numerically while 
retaining chiral (and other) symmetries along the way. Several methods have been 
developed to implement Ginsparg-Wilson fermions on the lattice. These include 
overlap fermions [Na95, Ne981 and domain wall fermions [Ka92a, Fu95bl where, in 
the latter case, chiral symmetry is recovered on the boundary of an appended fifth 
dimension. Detailed discussion of these approaches goes beyond the scope of the 
present text; however, dealing with chiral fermions on the lattice while maintaining 
the full action of Eq. (36.23) forms a central thrust in present day LGT efforts, and 
this is a rapidly evolving subject. The current status, and most recent results, can 
always be obtained from the proceedings of the international conference series on 
LGT (e.g. [La02, La03]).8 

8See, in particular, the presentations by H. Wittigand, L. Giusti, and M. Creutz in [LaO3]. 
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QCD-inspired models 

Solution to QCD presents formidable problems. It is often useful to make models 
that emphasize one or another aspect of QCD and that provide physical insight 
and guidance for further work. In this section we discuss QCD-inspired models 
of the internal structure of hadrons. Reference [Bh88] provides good background 
reading and a more extended development on many of these topics. We start with 
the M.I.T. bag model, instead of the widely used non-relativistic constituent quark 
model, for two reasons: 

(1) The M.I.T. bag model represents a nice application of Dirac particles mov- 
ing in a self-consistent scalar field soliton; as we have seen in Part 2 of this 
book, this picture successfully describes the structure of finite nuclei, and 
we now have the necessary formalism well in hand; 

(2) Most of the non-relativistic quark model results can be obtained as a simple 
limiting case of the more complicated situation of massless Dirac particles 
in the soliton, where the spin and orbital motion are intrinsically coupled. 

37.1 Bag model 

Bag models build on three features of QCD: 

(1) Baryons have the quantum numbers of (qqq) systems and mesons of (qq) 
where the flavor quantum numbers of the quarks q are given in Table 37.1; 

(2) Color and the strong color forces are confined to the interior of the hadrons. 
Quarks come in three colors (R,  G ,  B) .  Lattice gauge theory calculations 
indicate that confinement arises from the strong nonlinear couplings of the 
gauge fields at large distances; 

(3) QCD is asymptotically free; at short distances the renormalized coupling 
constant goes to zero. One can do perturbation theory at short distances. 

361 
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Quark/field 

U 

d 
S 

C 

Table 37.1 
baryon number, strangeness, charm, and electric charge, respectively. 

Flavor quantum numbers of the lightest quarks: isospin, third component of isospin, 

T T3 B S C Q =T3+(B+S+C)/2 

1/2 1/2 1/3 0 0 2/3 

0 0 1/3 0 1 2/3 

1/2 -1/2 1/3 0 0 -1/3 
0 0 1/3 -1 0 -1/3 

The M.I.T. bag model provides an extreme picture of each of the three items 
listed above [Ch74, Ch74a, De75, Ja761. For baryons, consider three noninteracting 
quarks (correct quantum numbers) and treat the one-gluon-exchange interaction as 
a perturbation (asymptotic freedom). Put the quarks inside a vacuum bubble of 
radius R as illustrated in Fig. 37.1 (confinement). 

Fig. 37.1. M.I.T. bag model-three quarks inside a bubble in the vacuum. 

Assume it takes a positive amount of internal energy density to create this bubble 
in the vacuum 

( ;)"ac = +b 
(37.1) 

Consider some simple phenomenology based on this picture. Take the ( u , d )  
quarks to be essentially massless in QCD. For simplicity, suppose to start with 
that they were scalar particles. Then for massless scalar particles in a cavity the 
Klein-Gordon equation for stationary states is 

( 0 2  + k2)+ = 0 ; r < R  (37.2) 

The s-wave solution to this equation, which is nonsingular at the origin and vanishes 
at the wall, is given by 

4 = jo (kr )  ; nonsingular at r = 0 

jo(kR) = 0 ; vanishes at wall (37.3) 
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The last is an eigenvalue equation. The roots are the zeros of j o .  The first zero of 
j o ,  corresponding to the lowest lying state, is given by 

(37.4) 

R 

Fig. 37.2. Energy of a hadron in the M.I.T. bag model. 

These results can now be used to estimate the internal energy of a hadron. Write 

E = n q x  K + (t7rR3) b (37.5) 

The first term, where nq is the number of quarks and K is a constant, is the kinetic 
energy of the quarks (in the above discussion, which motivates this form of the 
kinetic energy, K = T); the second is the energy of the vacuum bubble. This 
expression gets large for R + 0 because of the kinetic energy and also for R + 00 

because of the bubble energy (Fig. 37.2). Minimization with respect to R requires 
BEIBR = 0 which yields 

Substitution of this value leads to the energy at the minimum 

(37.6) 

(37.7) 

Put in some numbers: for baryons nq = 3; for massless Dirac particles K = 2.04 (see 
below); Emin = M = 938.3MeV is the nucleon mass; he = 197.3MeVfm restores 
the units. This gives 

Rmjn = 1.72fm (37.8) 

This is not bad; it is certainly in the right ballpark, although it is too large. 
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Table 37.2 Low-lying states for massless Dirac particle in a scalar cavity. F'rom [Bh88]. 
- 

K - 
-1 

1 
-2 

2 
-3 
- 

K: 

2.04, 5.40 
3.81 
3.20 
5.12 
4.33 

Recall that the experimental value of the root-mean-square charge radius of the 
proton is (chapter 2) 

( r 2 ) y  M 0.8 fm (37.9) 

For comparison, for a uniform charge distribution' the mean square radius is (r2) = 

3R2/5 (chapter 2); hence the experimental value of the equivalent uniform radius 
is approximately 1/2 as big as the bag value 

Runiform = 1.03 fm (37.10) 

Consider now the Dirac equation for a particle of mass M in a spherical cavity. 
Start with the Dirac equation in spherically symmetric scalar and vector potentials 
[UO(T),  Vo(r)], respectively. From Prob. 15.1 the solution to the Dirac equation in 
this case can be written 

Here 

(37.11) 

In this expression j = I K I  - 1/2 and I = K if IC > 0 while I = - ( K  + 1) if K < 0. The 
first few states are given in Table 37.2. 

The coupled radial differential equations take the form (Prob. 15.2) 

d K 
-G,(r) + -G,(r) - [E, - &(r) + M + Uo(r)] F, = 0 dr r 
d K 

-F,(r) - -F,(r) + [E, - Vo(r) - M - Uo(r)] G, = 0 dr r 
(37.13) 

Note the signs in front of the potentials: the vector potential has the opposite sign 
from the energy; the scalar potential has the sign of the mass. 

'Which one does not have in this model. 
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Let us find the lowest positive energy state ( E  > 0) for massless particles in 
a pure scalar potential (A4 = VO = 0). In this case the coupled radial equations 
reduce to 

(37.14) 

Apply (d/dr + l/r) to the first equation and substitute the second; the result is 

GI' = - (E2  - UijG (37.15) 

Define E = I c ,  and assume a square-well potential as shown in Fig. 37.3. 

Fig. 37.3. Ground state (lowest positive energy) of a massless Dirac particle in a 
spherically symmetric scalar potential. 

The differential Eq. (37.15) is readily solved in the two indicated regions: 
Region I: Here G" = -k2G with solution 

GI =Asinkr+BcosIcr ; E=lc (37.16) 

For a solution that is nonsingular at the origin one must have G(r) --f 0 as T 4 0. 
This implies that the coefficient B = 0. 

Region 11: Assume here that Uo > Ic as indicated in the figure. Then 

G" = (U," - k2)G Y ~ G  (37.17) 

The solution is 

For a solution that is normalizable one must have G(r) -+ 0 as r --f 00. This implies 
that the coefficient D = 0. 

Now from the first of Eqs. (37.14) 

GI - G/r 
E + Uo 

F =  (37.19) 
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Thus 

(37.20) 

Now consider the case of a scalar wall where Uo -+ 00. In this limit Eqs. (37.18) 
and (37.20) imply that for the outside solution in Region I1 

fiI(r) = - G I I ( ~ )  (37.21) 

If one demands that both (G, F )  are continuous at the wall, then (see Fig. 37.4) 

Fig. 37.4. Match boundary conditions at a scalar wall. 

Equations (37.16) and (37.20) then yield the eigenvalue equation2 

The first few eigenvalues are shown in Table 37.2 (from [Bh88]). They are 
displayed in Fig. 37.5. A combination of these results provides the Dirac wave 
function for the ground state (lowest positive energy) 

(37.24) 

Here the eigenvalue is kloR = x = 2.04, which satisfies the boundary condition at 
the wall jo(z) = jl(x). 

2Note jo (p )  = sin p / p  and j ,  ( p )  = sin p/p2 - cos pip. 



Bug model 

4 

367 

2 
E*R 

251/2 

p 1/2 

1d3/2 1d5/2 
'3/2 

1/2 15 

Fig. 37.5. Low-lying spectrum of a massless Dirac partiL-2 in a sp-erical scalar 
cavity. From [Bh88]. 

Let us determine the normalization constant N .  First write the above solution 
in more detail 

It then follows that3 

Note that these equations imply that at the scalar wall 

(37.26) 

(37.27) 

Thus by explicitly solving the Dirac equation in a finite scalar well, demanding 
continuity of the Dirac wave function, and then letting the height of the scalar 
potential go to infinity, we have derived the boundary condition that the scalar 
density vanishes at a scalar wall. In contrast, the baryon density is nonzero at a 
scalar wall. 

3For m = 1/2 one has (the result is the same for m = -1/2) 

= (1/3)(3/47r) cos2 8 + (2/3)(3/87r) sin2 0 = 1/4~ 
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Now evaluate the remaining radial integrals using (see Prob. 37.1) 

l z [ j g ( p )  +j;(p)lp2dp = 2(2 - 1) sin2z 

Hence the normalization constant is determined to be 

2 3  

2 ~ 3 ( ~  - 1) sin2 z 
- - k3 

2(z  - 1) sin2 z 
N 2  = 

(37.28) 

(37.29) 

Here the eigenvalue is 2 = 2.04. 

us compute the magnetic moment 
Assume this massless Dirac particle in the 1~112 state carries a charge e,. Let 

p = i / r x j d 3 r  2 

j = eq$+a+ 
O a  

; - = ( a  0 )  
(37.30) 

Substitute the Dirac wave function in Eq. (37.24) 

Now express the required operator in spherical components4 

[r x 4, - 
1 

a*1 = P--(a,fia,) = T h o *  (37.32) Jz 
The quantities a* are the raising and lowering matrices for spin 1/2; their matrix 
elements follow directly. Thus 

(37.33) 

4Start with [ax  b], = a,by-aybs and the spherical components of a vector v+l = ~ ( v ~ k i ~ ~ ) / \ / Z .  
Then v, = (v-1 - v + l ) / d ?  and vy = i(v-1 + v + l ) / &  . Thus [a x b], = i ( a - l b + l  - a+lb-l). 
Now use rlm = (4n/3)1/2rY1m; this produces Eq. (37.32). 
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The second equality follows from the relation Y1-1 = -Y;l and the normalization 
of the spherical harmonics; the C-G coefficient is m. The final radial integral is 
evaluated in Prob. 37.1 

(37.34) 

Substitution of the normalization constant in Eq. (37.29) then leads to the final 
expression for the magnetic moment 

e,R 4 x - 3  
p = -  

12 x(2-  1) 
= 0.203 e,R (37.35) 

The Dirac particle is massless - there is no quark magneton in this model. The 
dimension for the magnetic moment arises here from the radius R of the ~ a v i t y . ~  
Multiplication and division by the nucleon mass M and by ep  yields 

p = 0.203 (2) (&) 2MR 

For a cavity of radius R = 1 fm, one obtains in nuclear magnetons (n.m.) 

p = 1.93 (2) n.m. ; R = l f m  

(37.36) 

(37.37) 

This is certainly in the ballpark of the observed magnetic moment of the nucleon; 
however, to apply the result in that case, one must have the wave function for three 
quarks in the nucleon. 

37.2 Quark model state vectors 

We have evaluated a few single-quark matrix elements in this bag model. To do 
a real calculation one needs the (qqq) [and (qq)] wave functions, including all the 
quantum numbers. We make an independent-quark shell model of hadrons and work 
in the nuclear domain where only the lightest (u, d) quarks and their antiquarks are 
retained; thus the quark field is approximated by 

; nuclear domain (37.38) 

Let us start with the simpler case of nonrelativistic quarks in a potential (where the 
spin and spatial wave functions decouple).6 In this case one can write the one-quark 

51n the same way one can calculate Jm = 0.73 R (Reference [Bh88] and Prob. 37.3) 

6This is, in fact, the case for the very successful constituent quark model of nucleons and mesons 
(see [Is80, 1~851). Here one starts from an independent quark basis with nonrelativistic quarks of 
mass mg w m/3. With the quark wave functions developed here, and the analysis of electroweak 
interactions with nuclei in Parts 1 and 4, one can understand many of the results of this model. 



370 QCD-inspired models 

wave function as 

m,= 

a =  (R,G,B) 
1c, = 1Clnlmt (r) Xm, Vmt ; mt= h i  (37.39) 
-vvv 

space spin isospin color 

Consider the color wave function for the (qqq) system. The observed hadrons 
are color singlets. Hence the color wave function in this case is just the completely 
antisymmetric combination (a Slater determinant with respect to color) 

If G:OIOr; (Y = 1 , .  . . ,8  are the generators of the color transformation among the 
quarks, then all of the generators annihilate this wave function' 

G~lorQcolor = 0 ; (Y = l , . . .  ,8 (37.41) 

Since the total wave function must be antisymmetric in the interchange of any two 
fermions, the remaining space-spin-isospin wave function must be symmetric. 

For the ground state in this shell model, the spatial wave functions Gno0(r) will 
all be the same, all Is,  and hence the spatial part of the wave function is totally 
symmetric 

The spin-isospin wave function must thus be totally symmetric. 
Start with isospin. One is faced with the problem of coupling three angular 

momenta; however, the procedure follows immediately from the discussion of 6- j  
symbols in quantum mechanics [Ed74]. An eigenstate of total angular momentum 
can be formed as follows 

These states form a complete orthonormal basis for given ( j l , j 2 , j 3 ) .  The states 
formed by coupling in the other order l j l ( j 2 j 3 ) j 2 3 j m )  are linear combinations of 
these with 6- j  symbols as coefficients. 

For isospin in the nuclear domain all the ti = 1/2, thus there are a total of 
2 x 2 x 2 = 8 basis states. Consider first the states with total T = 3/2. Here 
the only possible intermediate value is t l 2  = 1. The state with T 3  = 3/2 is readily 
constructed from the above as a( l )a(2)a(3) .  Now apply the total lowering operator 

7 J ~ s t  as the fully occupied Slater determinant of spins has S = 0, or of j-shells has J = 0. 
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T- = t(1)- + t(2)- + t(3)- and use t-a = P , t -P = 0. The set of states with 
T = 312 follows immediately 

11 1 3 3  
2 2  2 2 2  
11 1 3 1  1 

a[(- -)1- - -1 = ~ ( 1 ) ~ ( 2 ) ( ~ ( 3 )  

+[(-+---I = - [ ~ ( 1 ) 4 2 ) 4 3 )  + 4 ) ~ ( 2 ) 4 3 )  + 4 ) 4 2 ) ~ ( 3 ) 1  
2 2  2 2 2  fi 

11 1 3  1 1 

11 1 3  3 
2 2  2 2  2 

w - - ) 1 - -  - -1 = - “ ~ ( 1 ) ~ ( 2 ) 4 3 )  + P ( w ) P ( ~ )  + 4 ) ~ ( 2 ) ~ ( 3 ) 1  
2 2  2 2  2 fi 

(37.44) a[(--)l-- - -1 = P(l)P(2)@(3) ; 4 symmetric states 

There are four symmetric states with T = 312. 

mediate values in the above, t12  = 0 , l .  For the first of these values one finds 
Consider next the states with total T = 112. Here there are two possible inter- 

(37.45) 

These two states have mixed symmetry; they are antisymmetric in the interchange 
of particles (1 t+ 2). 

The second value t 1 2  = 1 yields 

11 111 1 
(a’[(--)1---] = -[2a(l)a(2)P(3) - a( l )P(2)a(3)  - P(l)a(2)a(3)]  

2 2  2 2 2  lb 
11 11 1 1 

~ - - ) i - -  - -1 = - - [ 2 ~ ( 1 ) ~ ( 2 ) 4 3 )  - ~ ( 1 ) 4 2 ) ~ ( 3 )  - 4 1 ) ~ ( 2 ) ~ ( 3 ) 1  
2 2  2 2  2 lb 

; 2 states (37.46) 

These two states also have mixed symmetry; they are symmetric in the interchange 
of particles (1 H 2). 

Now look at the spin wave functions. The analysis is exactly the same! We have 
a set of spin states E identical to those above. 

For the overall spin-isospin wave function, we must take a product of these 
wave functions and make the result totally symmetric. Recall first from quantum 
mechanics how one makes a wave function totally antisymmetric. Introduce the 
antisymmetrizing operator 

(37.47) 

Here the sum goes over all permutations, produced by the operator P,  of a complete 
set of coordinates for each particle. The signature of the permutation is (-l)P, and 
N = 1 / f i  where Np is the total number of permutations. 
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Similarly, to make a wave function totally symmetric introduce the (unnormal- 
ized) symmetrizing operator 

(37.48) 

Note that if a wave function is antisymmetric under the interchange of any two 
particles, the application of S will give zero. This result is established as follows. 
Use 

P1,S = SP12 (37.49) 

This follows since as P goes over all permutations, so does P12 P or PP12 

(37.50) 

It follows that 

P12S+ = s+ = SP12+ = -s+ = 0 (37.51) 

This is the stated result. 
Note further that if the operator S is applied to the product of the totally 

symmetric 3/2 state and either of the 1/2 states with mixed symmetry, the result 
will vanish. The proof is as follows. Since S@3/2 = @3/2S, one just needs to show 
that 

S [ A P  + B@'] = 0 (37.52) 

The first term gives zero since @P is antisymmetric in the interchange of the first pair 
of particles. The second vanishes because of the nature of the sums in Eq. (37.46) 
and the fact that S produces an identical result when applied to each term in the 
sum 

S(aaP) = S(aPa) = S(Paa) (37.53) 

It is a consequence of these two observations that the only nonzero totally sym- 
metric wave function will be obtained by combining the spin and isospin wave func- 
tions of the same symmetry. Thus one must combine the two totally symmetric spin 
and isospin states and the other two pair of states with the same mixed symmetry; 
in the latter case there is only one totally symmetric linear combination (this is 
proven in appendix C.2). This leads to the set of totally symmetric spin-isospin 
states shown in Table 37.3 and given by 

(37.54) 



Matrix elements 373 

1/2 

Table 37.3 Totally symmetric spin-isospin states for three nonrelativistic quarks. 

112 4 
20 

Number of states 

These are all the baryons one can make in this model. Since all these states are de- 
generate in the model as presently formulated, one has a supermultiplet of baryons. 
The present calculation predicts the spins and isospins of the members of this SU- 

permuhiplet .' 
Let us extend the arguments to the situation in the M.I.T. bag model where, 

in contrast to massive, nonrelativistic constituents, one has massless relativistic 
quarks. The problem is more complicated since the space-spin parts of the wave 
functions are now coupled; however, if the quarks occupy a common lowest posi- 
tive energy T,LJ1sl,2mj (r) ground state, the problem is greatly simplified. Make the 
following replacement in the space-spin wave functions discussed above 

lclls(r)Xm, + T,LJlsl,2mj (r) (37.55) 

Instead of the spin S ,  now talk about the total angular momentum J; the angular 
momentum and symmetry arguments are then exactly the same as before. 

37.3 Matr ix  elements 

Consider the nucleon ( N )  ground-state expectation value of the following operator 

3 

(37.56) 
a= 1 

Assume that the isospin factor is diagonal Ii = (1 ,73)i .  Since the wave function is 
totally symmetric, it follows that one need evaluate the matrix element only for the 
third p a r t i ~ l e . ~  

3 

(37.57) 
i=l 

8Define ci e xrnSvrnt with (ms,  mt) = ( f 1 / 2 ,  f1 /2 ) .  Then in a nonrelativistic quark model with 
spin-independent interactions one has an internal global SU(4) (flavor) symmetry - this is just 
Wigner's supermultiplet theory. Here the baryons belong to the totally symmetric irreducible 
representation one gets from 4 @ 4 @ 4; this is the [20] dimensional representation with spin- 
isospin content worked out in the text and shown in Table 37.3. 

gAssume the operators form the identity with respect to  color; the color wave function then goes 
right through the matrix element, and it is normalized. 



374 QCD-inspired models 

Substitution of Eq. (37.54) then yields” for the state of total mj = 1/2 

Here the remaining labels on the single-particle matrix elements of O3 are Imj, 

(particle number)). The result is 

(37.59) 

This result is for total mj = 1/2; the remaining isospin operator 13 acts only on the 
third particle. For an isoscalar operator with 13 = 1 this expression reduces to 

(37.60) 

This is now just a sum of single-particle matrix elements. For an isovector operator 
with 13 = 73, the required isospin matrix elements for the proton with mt = 1/2 
follow from Eqs. (37.45) and (37.46) 

1 
2 

; proton mt = - (37.61) 
x 1 1 

(@x173(3)l@ ) = -(-4+ 1 + 1) = -- 
6 3 

For a neutron with mt = -1/2, these isovector matrix elements simply change sign. 
It follows that 

The notation here is *zt,mj.  
In the nuclear domain with only (u, d)  quarks the electric charge is given by 

ei = - + -73(i) ep [: a ] (37.63) 

louse ( w I 1 3 1 @ A )  = 0 if 13 is diagonal; this follows immediately from the form of Eq. (37.45) and 
the orthogonality of the mixed-symmetry wave functions. 
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Hence the expectation value of an operator proportional to the charge in the com- 
posite three-quark proton and neutron ground state is given by 

(37.64) 

Let us apply this result to compute the magnetic moment of the ground state of 
the nucleon in the bag model using Eq. (37.35) for the expectation value of the single 
(massless) quark matrix element (:lo($) = 0.203R; since the magnetic moment is 
a vector operator, its expectation value in the state mj = -1/2 must simply change 
sign (-$I01 - $) = -0.203R. This yields 

Pn = -- 2PP (37.65) 
3 

,up = 0.203epR 

The experimental results are 

,up = +2.79n.m. pn = -1.91 n.m. (37.66) 

The calculated ratio is quite impressive, and the absolute value is fit in the first 
relation with a radius R = 1.44fm, which, although too large, is certainly in the 
right ballpark. 

37.4 Transition magnetic moment 

Consider the transition magnetic dipole moment between the ground state ( N )  and 
the excited state (A) formed from the product of the totally symmetric isospin state 
and totally symmetric space-spin state. Since only different mj states are involved 
in the latter, we are in a position to calculate this matrix element. The situation is 
illustrated in Fig. 37.6. 

The wave functions are given by 

(37.67) 
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J~ .T 

3/2+.3/2 "q- 
N 1/2+;1/2 

Fig. 37.6. Transition magnetic dipole moment in the M.I.T. bag model. 

The subscripts on the left are (mt, mj) and those of the right (Tmt, J m j ) ;  in detail, 
these wave functions are 

A similar expression holds for z2 1.. The transition magnetic dipole moment is now 
given by 

2 2  

Here it has been observed that only the isovector part of the magnetic dipole oper- 
ator can contribute to the transition and the total symmetry of the states has been 
used. It now follows from Eqs. (37.68), (37.45), and (37.46) that 

Use of Eqs. (37.64) and (37.65) allows the final result for p* to be expressed in 
terms of the ground-state magnetic moment of the proton 

4 
- PP 

3 1 16 p* = (37.71) 

This is the matrix element for (mj, mt) = ($ $) -+ ( $  $); other components follow 
from the Wigner-Eckart theorem. This result agrees to about 30% with experimen- 
tal observations of the transition magnetic dipole matrix element obtained from 
electroproduction of the first nucleon resonance [Ka83]. 
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37.5 Axial-vector current 

The matrix 2775 governs the spatial part of the axial-vector current in the weak 
interactions (Part 4); it is given by 

i v 5 = (  -a o a  ())( O -I)=( -a O )  
-1 0 O a  (37.72) 

Taken between fields this matrix gives 

$i-/75$ = $t ( O ) ( -IJ o a  O ) $  = -$t ( a O a  O ) $  0 -1 
= -$b$ (37.73) 

-Xm,uXm, t -(a) (37.74) 

This is just the spin operator, whose nonrelativistic limit is 

Substitution of the ground-state (lowest positive energy) wave function $lsl,zmj for 
a massless Dirac particle in a spherical cavity in Eqs. (37.25) and (37.29) gives the 
following expression for this matrix element 

43iy"75$; = 

1 

Hence the matrix element is 

The remaining integral is f = (22/3) sin2 x (Prob. 37.1). Hence 
X 4;irZ75$+ = - = -0.65 

3(x - 1) 
(oz) = 0.65 (37.77) 

This result exhibits the reduction of the expectation value of the spin of a single 
massless Dirac particle in the ground state in a scalar bubble. Of course for a 
composite nucleon, one must still take the expectation value using the three quark 
wave functions developed above. These results play an important role in the theory 
of the weak interactions, to which we will return in Part 4 of this book. 
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37.6 Large N c  limit of QCD 

Let us again summarize some of the general properties of QCD: Color is confined 
to the interior of hadrons. Lattice gauge theory calculations indicate that this is 
a dynamic property of QCD arising from the strong, nonlinear gluon interactions. 
The theory is asymptotically free; one can do perturbation theory at high momenta 
or short distances. In addition, the theory exhibits spontaneously broken chiral 
symmetry; we recall what this means. 

Consider the nuclear domain where the quark field reduces to 

; nuclear domain (37.78) 

Assume these quarks are massless." The QCD lagrangian LQCD is then invariant 
under the global chiral transformation 

(37.79) 

As we have seen, this chiral invariance shows up in nature through 

0 The partially conserved axial vector current (PCAC); 
0 The decoupling of pions as qx -+ 0 (soft-pion theorems). 

Chiral symmetry appears to be exact in the limit as the pion mass goes to zero 
( p  = rn, 4 0). This symmetry is the underlying basis for the c-model discussed 
in chapter 22. The generation of the mass of the physical hadrons appears to arise 
from the spontaneous breaking of this chiral symmetry, as illustrated in the a-model 
and discussed in detail in chapter 24. 

Another interesting property of QCD is its behavior in the limit of very many 
colors. Although the physical world is evidently described by the Yang-Mills non- 
abelian gauge theory QCD with three colors (Nc = 3), the properties of QCD 
simplify in the limit NC -+ 00 . We proceed to discuss some features of this model 
limit of the theory. The arguments are due to 't Hooft ['t74, 't751; see also Witten 
[Wi79].12 The basic Yukawa coupling of quarks to gluons (chapters 19 and 27) is 
illustrated in Fig. 37.7. Gluons have the color properties of the (qq) system (ex- 
cluding the singlet). Color is then conserved along the connected lines in Fig. 37.7; 

l'The mass terms in the QCD lagrangian for the (u, d )  quarks are very small (a few MeV). The 
inclusion of these mass terms forms a basis for c h i d  perturbation theory [Ga84, Go921. Here 
one uses a nonrenormalizable effective lagrangian (see [Ge93] and chapter 24) in a systematic 
low-energy approximation scheme. Recent nuclear physics results in chiral perturbation theory 
are summarized in [Me93]. 

I2There is a nice discussion of this topic in [BhSS]. 
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it flows from the quark lines through the gluon lines, which effectively carry two 
c01ors.l~ 

Fig. 37.7. Basic Yukawa coupling of quarks to gluons in QCD. 

The following assumed dependence of the coupling constant on the number of 
colors Nc leads to a theory which is finite in the limit Nc 4 00 

1 
gm- 4% (37.80) 

quark loops no free color indices 

Q * =0[1/NJ 

g2 N =0[11 

a 
one free color index 

C 

gluon loops 

s t w o  free color indlces 
4 2 -  

Q Nc -0[11 

Fig. 37.8. 
dependence on Nc . 

A few elementary processes, the free color indices, and the inferred 

Loops in QCD can now be analyzed according to the number of free color indices 
which they contain, that is, over which one independently sums in the loop. Each 
free sum gives rise to one power of Nc.  A few elementary processes, the free color 
indices, and the inferred dependence on NC are illustrated in Fig. 37.8. The results 
from this figure are 

The quark loop is proportional to g2 = O(l/Nc). 
0 The gluon loop is proportional to g2Nc = O(1). 
0 The planar gluon loop is proportional to g4N6 = O(1). 

13Gluons are “dichromatic.” 
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We leave it to the dedicated reader to extend the analysis. It is claimed in "t74, 
't75, Bh881, for example, that the nonplanar gluon loops are of O ( l / N s ) .  

Fig. 37.9. (a) Baryon-baryon interaction through quark and gluon exchange; (b) 
baryon-meson interaction; (c) meson-meson interaction. 

One can quite readily see the following: 

(1) The baryon mass is of O(Nc) .  This follows since one requires NC quarks 

(2) Mesons are formed from (44) singlets; the meson mass is thus of O(1); 
(3) Baryon-baryon interactions can take place, for example, through quark and 

gluon exchange as illustrated in Fig. 37.9a. Since one has N c  quarks to 
choose from in each baryon, the baryon-baryon interaction illustrated here 
is of O(g2Ng),  which is O(Nc);  

(4) In classifying meson interactions we first note that the normalized color- 
singlet state vector for mesons is of the form 

to make a color-singlet state;14 

There are NC terms in the sum. The process of meson creation is illustrated 
in Fig. 37.9b. Since there are Nc quarks to choose from in the baryon, and 
since one picks up a factor N C / m  from the color part of the meson 
wave function, the meson-baryon interaction is of 0 ( g 2 N c m ) ,  which is 

(5) Meson-meson interactions can take place through formation of an interme- 
diate gluon as illustrated in Fig. 37.9~. The amplitude involves the initial 
and final wave function for each meson; there are then NC colors to choose 
from for each meson. Hence the amplitude for the meson-meson interaction 
is of O(g2(l /Ng)Ng),  which is of O ( l / N c ) .  

of 0(4%); 

14Since all the NC quarks have the same spatial wave function in the color-singlet ground state, 
the mean square radius of the baryon will be ( r 2 )  = ( l /Nc)  czl (r2)i = ( r 2 ) i .  Thus the baryon 
size is of O( 1). 
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Summary. In summary the classification of various quantities in the limit Nc -+ 

00 from 't Hooft is as follows "t74, 't75, Bh881: 

0 Only planar gluon loops remain; 
0 Mesons are stable and noninteracting; 
0 Baryons are infinitely heavy and interact strongly with mesons and with 

each other. 

And as extended by Witten [Wi79, Bh881, in this limit: 

0 QCD becomes the theory of weakly coupled mesons in the meson sector; 
0 Baryons are soliton solutions to the nonlinear meson field equations15 with 

the mass of the baryon MB 0: 1/g2.I6 

These results of the large color limit provide a theoretical basis for saying that 
liadrons are the effective low-energy degrees of freedom for QCD, and hence for the 
analysis in Part 2 of this book. 

QCD-inspired models of hadrons underly a substantial amount of research in 
nuclear and hadronic physics, and it is impossible to review all of that material here. 
Fortunately, [Bh88] provides an excellent background summary (see also [Wa95]), 
and the latest results can always be found in the proceedings of ongoing conference 
series such as [Ba03]. 

We proceed instead to a discussion of the experimental probe that provided 
the first dynamical evidence for a point-like substructure of the nucleon - deep 
inelastic electron scattering. 

l5We have already seen a good example of one type of soliton formation in the discussion of finite 
nuclei as the solutions to the set of nonlinear, Hartree field equations for given baryon number 
in chapter 15. Recall the calculated charge densities of finite nuclei shown in Figs.15.2-4. 

16The Skyrme model [Sk61, Sk621 provides just such a description of the nucleon as a soliton 
solution to the nonlinear, chiral symmetric, meson field equations. The model is discussed in 
detail in [Bh88, Wa951; see also [Ch84a]. 
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Deep-inelastic scattering 

In the next two chapters we discuss deep-inelastic electron scattering, where both 
the four-momentum transfer q2 and energy transfer u = q.p/rn become very large. It 
is through these experiments, initially carried out at the Stanford Linear Accelerator 
Center (SLAC), that the first dynamic evidence for a point-like substructure of 
hadrons was obtained [Bj69, Fr72al. The structure functions exhibit this point-like 
substructure through Bjorken scaling, which implies Fi(q2, u)  -+ Fi(q2/u) as q2 + 

00 and u -+ 00 at fixed q2/u.  In this section we present some general considerations 
on electron scattering [Qu83, WaOl] , summarize the deep-inelastic results [Bj69, 
F'r72a, Qu83, WaOl], and introduce the quark-parton model through which the 
deep inelastic scaling can be understood [Fe69, Bj69a, Ha84, Ai89, Ma901. QCD 
then allows a calculation of the corrections to scaling and the evolution equations 
for doing this are developed in the next chapter. Finally, the change of the structure 
functions in nuclei gives direct evidence for the modification of quark properties in 
the nuclear medium (EMC effect) [Au83]. 

38.1 General analysis 

The kinematics for electron scattering employed in these two chapters are shown in 
Fig. 38.1. Here the four-momentum transfer is defined by' 

We further define 

q2 X E -  
2mu 

(38.1) 

(38.2) 

Massless electrons are assumed throughout this discussion. 

382 

1
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These are the energy loss in the lab frame and Bjorken scaling variable, respectively. 

I 

Fig. 38.1. Kinematics in electron scattering; momenta are four-vectors. 

The S-matrix for the process in Fig. 38.1 is given by 

Here J,(z) is the local electromagnetic current operator for the target system. 
With box normalization,’ momentum conservation is actually expressed through 
the relation 

The incident flux in any frame where kl I Ip is given by 

(38.4) 

(38.5) 

Then for a one-body nuclear final state 

Here W f  = E Z  + Ept and Wi = ~1 + Ep are the total initial and final energies, 
respectively. It follows that the differential cross section in any frame where klllp 
is given in Lorentz invariant form by (Prob. 38.1) 

(38.7) 

2That is, periodic boundary conditions in a big box of volume R. 
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In this expression the lepton and hadron tensors for unpolarized electrons and tar- 
gets, generalized to include arbitrary nuclear final states, are defined by 

i f  

The lepton tensor can be evaluated directly (recall the mass of the electron is 
neglected) 

= k l d 2 u  + klvIc2p - (Icl * k2)6pv (38.9) 

It  follows from the definition in Eq. (38.8) that the lepton current is conserved 

(38.10) qprlpu = r1,wqv = 0 

The hadron tensor depends on just the two four-vectors (q, p )  and is also conserved; 
its general form is (Prob. 38.2) 

w p v  = W1(q2,q * P I  kpu 
1 

+W2(q2, q * P ) a  

The Heisenberg equations of motion are as follows: 

O(Z) = e-iP.zo(0)e".+ (38.12) 

They can be used to exhibit the space-time dependence of a matrix element taken 
between eigenstates of four-momentum 

(38.13) 

Completeness of the final set of hadronic states has been used to obtain the second 
line. Consider the matrix elements of the operators in the opposite order 
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Here the kinematics are illustrated in Fig. 38.2 

P + 4  = p' 
Qo = E2 - E l  < 0 (38.15) 

One cannot reach a physical state under these kinematic conditions since the nucleon 
is stable; thus the expression in Eq. (38.14) vanishes. 

P 

Fig. 38.2. Kinematics for crossed term. 

One can subtract this vanishing term in Eq. (38.13) and write W,, as the Fourier 
transform of the commutator of the current density at two displaced space-time 
points 

Introduce states with covariant norm3 

IP) m 1 P )  

Equation (38.13) can then be rewritten 

(38.16) 

(38.17) 

This expression is evidently covariant; it forms the absorptive part of the amplitude 
for forward, virtual Compton scattering. 

A combination of Eqs. (38.7), (38.9), and (38.11) yields the general form of the 
laboratory cross section for the scattering of unpolarized (massless) electrons from 
an arbitrary, unpolarized hadronic target (Prob. 38.3) 

Here OM is the Mott cross section. 

3The norm of these states is @IF') = 2 E ( 2 7 ~ ) ~ 6 ( ~ ) ( p ' -  f?); this is Lorentz invariant. 

(38.19) 
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E = 4.88 GeV 

(D. E. S. Y.) 
O L  I I I 

" I  

E = 15.15 G e V  

0 

(g) =3750nb 
MOTT 

(m)MoTT dU = lB20 nb 

(5) = 740 nb 
MOTT 

d u  (ElMOTT = 389 nb 

lot  'MU1 1 E = 17.65 GcV 

1 

nl 1.0 ;LA- 2.0 3.0 4.0 I 5.0 
MISSING kWSS (GeV) 

Fig. 38.3. Visual fits to spectra showing the scattering of electrons from hydrogen 
at 0 = 10' for primary energies 4.88 to 17.65 GeV. The elastic peaks have been 
subtracted and radiative corrections applied. The cross sections are expressed in 
nanobarns/GeV/steradian. From [F'r72a]. 
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38.2 Bjorken scaling 

A qualitative overview of the SLAC data on deep-inelastic electron scattering from 
the proton is shown in Fig. 38.3 from [Fr72a]. 

On the basis of his analysis of various sum rules, Bjorken predicted, before the 
experiments, the following behavior of the structure functions in the deep inelastic 
regime [Bj69] 

Here the scaling variable is defined by 

(38.21) 
q2 - 1 x = - - -  - 

2mu W 

These relations imply that the structure functions do not depend individually on 
(v, q2) but only on their ratio. The scaling behavior of the SLAC data is shown in 
Figs. 38.4 and 38.5. The first of these figures illustrates the independence from q2 
at fixed w = 1/x; the second shows the extracted structure functions F1,2(x).45 

Fig. 38.4. uW2 for the proton as a function of q2 and total C-M energy of the proton 
and virtual photon W = [-(p - q)2]1/2 > 2 GeV at w = l / x  = 4. From [Fr72a]. 

4These authors use W1,2 

'From the SLAG data the ratio of longitudinal to transverse cross section is given by R = q/ot = 

(l/m)W,ty$t where W:,5$* are the structure functions used here. 

0.18 f 0.10 where Wl/WZ E (1 + v2/q2)at/(ut + q). 
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Fig. 38.5. Structure functions 2mW1 and vW2 for the proton vs w for C-M energy 
W > 2.6GeV and q2 > l(GeV/c)’, and using R = 0.18. From [Fr72a]. 

38.3 Quark-parton model 

The quark-parton model was developed by Feynman and Bjorken and Paschos to 
provide a framework for understanding the deep-inelastic scattering results [Fe69, 
Bj69al. The basic idea is as follows: 
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(1) The calculation of the structure functions is Lorentz invariant. Go to the 
C-M frame of the proton and incident electron with p = -kl. Now let the 
proton move very fast with IpI --+ 00. This forms the infinite-momentum 
frurne; it is illustrated in Fig. 38.6; 

8 /proton 

+electron 

4 Lorentz  
?contracted 

Fig. 38.6. Situation in frame where the proton is moving very rapidly with 
momentum p = -kl (the infinite-momentum frame). 

(2) The proper motion of the parton constituents of the hadron (proton) is 

(3) The partons are effectively frozen during the scattering process; 
(4) The interaction between the partons is then not important; 
(5) The electrons scatter incoherently from the constituents; 
(6) The electrons scatter from the constituents as if they are point-like; 
(7) The parton constituents are quarks (charged) and gluons (neutral); 
(8) In the limit q2 + 00,v 4 00, the masses of the constituents can be ne- 

slowed down by time dilation in this frame; 

glected.6 

The remainder of this section is based on [Ma901 (see also [Ha84, Ai891). The 
calculation of the cross section is Lorentz invariant, and can be performed in any 
Lorentz frame, in particular in any frame where pl(k1. Go to the infinite-momentum 
frame. The scattering situation is then illustrated in Fig. 38.7. In this frame the 
ith parton carries the incident four-momentum 

Pinc = ViP (38.22) 

Here qi is the fraction of the four-momentum p of the proton carried by the ith 
parton. Evidently 

O < V i I 1  (38.23) 

The incident hadron is now just a collection of independent partons. The electron 
proceeds to scatter from one of the point-like charged partons. We do not worry 

61t is assumed also that the transverse momentum of the parton before the collision can be ne- 
glected in comparison with ,,@, the transverse momentum imparted as lpl + 00 . 
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Fig. 38.7. Scattering in impulse approximation in the quark-parton model in the 
infinite-momentum frame. 

here about how the parton eventually gets converted into hadrons in the final state 
(hadronization). Only the quarks are charged with charges 

qi Qiep (38.24) 

Now 

Let f i(qi)dqi be the number of quarks of type i with four-momentum 
between qip and (qi + dvi)p. 

The total four-momentum of the proton is then evidently given by 

(38.25) 

Here ( g  is the fraction of the total four-momentum of the proton carried by all the 
gluons, and xzl is a sum over all types of quarks. 

Cancellation of an overall factor of the four-momentum p from the last of 
Eqs. (38.25) gives 

(38.26) 

Introduce a dummy variable x;  this momentum s u m  rule can then be written 

N 
a=1 

(38.27) 

Now calculate the process in Fig. 38.7 using the analysis of inelastic electron 
scattering presented at the beginning of this section. With the assumption of scat- 
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tering from point-like Dirac quarks, the S-matrix is given by 

The incident flux is given by 

(38.28) 

(38.29) 

The cross section for inelastic electron scattering from the ith point-like quark, in 
the IpI + cm frame, in the impulse approximation follows as 

(38.30) 

Here the response tensor for scattering from the ith quark is defined by 

With the use of momentum conservation and the neglect of the masses of the par- 
ticipants, the energy-conserving delta function can be manipulated in the following 
manner 

Here z = q2/2mu is the scaling variable introduced in Eq. (38.21). Hence 

(38.32) 

(38.33) 
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The required traces are the same as those evaluated in rlPV at the beginning of 
this section, except that the initial momentum is qip.  Thus 

Now use 

Hence, again with the neglect of masses, 

(38.34) 

(38.35) 

(38.36) 

The symbol A here indicates that the terms in q, and qV have been dropped because 
of Eq. (38.35). 

An incoherent sum over all types of quarks now gives the response tensor for 
the composite nucleon 

(38.37) 

Substitution of Eq. (38.36) into Eq. (38.37) demonstrates that the response functions 
now explicitly exhibit Bjorlcen scaling and allows one to identify [see Eqs. (38.11), 
(38.20), and (38.21)] 

N N 

i=l 

_ .  

F’(z) = C Q : x f i ( ~ )  (38.38) 
i=l 

Not only do these expressions explicitly exhibit scaling, but they also allow one 
to calculate the structure functions in terms of the charges of the various types of 
quarks and their momentum distributions and as defined just below Eq. (38.24). 

Consider the nucleon to be made up of (u ,d ,s )  quarks, with charges listed in 
Table 38.1, and their antiparticles. 

Table 38.1 Quark sector used in discussion of deep-inelastic electron scattering from the nucleon. 

F Qi 2/3 -1/3 -1/3 
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It then follows from Eq. (38.38) that 

(38.39) 

Here an obvious notation has been introduced for the momentum distributions fi(x) 
of the various quark types in the proton and neutron. 

Strong isospin symmetry implies that the quark distributions should be invariant 
under the interchange ( d  e u) and hence ( p  + n). Thus one defines 

up(.) = d n ( z )  E U(X) 
dP(z) = ~"(5) d ( z )  
SP(X) = s y s )  = S(X) (38.40) 

The quark contributions can be divided into two types: those from valence 
quarks, from whom the quantum numbers of the nucleon are constructed; and 
those from sea quarks, present, for example, from (qa) pairs arising from strong 
vacuum polarization or mesons in the nucleon. 

.(X) = .V(.) +%(X) 

d ( X )  = dv( . )+ds(z)  
S(Z) = .V(.)+SS(X) (38.41) 

Strong vacuum polarization should not distinguish greatly between the types of sea 
quarks; hence it shall be assumed for the purposes of the present arguments that 
the sea quark distributions are identical 

It follows that 

(38.43) 

The SLAC data comparing the distributions functions F;ln is shown in Figs. 38.8 
and 38.9 (taken from [Ha84, Mago]). Evidently at small 5 the ratio F,P/F," N" 1 
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and the sea quark distribution S(x) dominates the structure function; at large x the 
ratio F:/FT x 4 and it is the valence u quark distribution UV(X) which  dominate^.^ 
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Fig. 38.8. The difference F2eP - F,"" as a function of x, as measured in deep-inelastic 
scattering at the Stanford Linear Accelerator Center. From [Ha84]. 

Fig. 38.9. The ratio F Y / F t p  as a function of x, as measured in deep-inelastic 
scattering. Data are from the Stanford Linear Accelerator Center. From [Ha84]. 

'"Generalized parton distributions (GPD)" include additional momentum transfer variables in the 
distribution functions, providing a description of exclusive processes [Ji97, Ra97, Di031. 
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38.4 Momentum sum rule 

For simplicity, work in the nuclear domain where the nucleon is composed of (u, d)  
quarks and their antiquarks. The contribution of these quarks to the momentum 
sum rule in Eq. (38.27) takes the form 

1 
CU = zdz(u+21) 

1 
Q = J zdz(d+d)  

0 

From the SLAC results [Ha84, Ma901 one finds the sum rules 

(38.44) 

i ldzFl (z)  = -Cu 4 + -Cd 1 = 0.18 
9 9  

(38.45) 

These results, together with Eq. (38.27), then imply 

Cu = 0.36 Cd = 0.18 

Cg = 0.46 (38.46) 

Hence one observes that the gluons carry approximately one-half of the momentum 
of the proton. 

38.5 EMC effect 

This material is from [Au83, Mo86, Bi89, Dm901. The most naive picture of the 
nucleus is that of a collection of free, noninteracting nucleons. In this picture the 
structure function one would observe from deep-inelastic electron scattering from 
a nucleus would be just N times the neutron structure function plus 2 times that 
of the proton. It is an experimental fact, first established by the European Muon 
Collaboration (EMC), that the quark structure functions are modzfied inside the 
nucleus [Au83]. 

It is known that nucleons in the nucleus have a momentum distribution. The 
most elementary nuclear effect on the structure functions for the nucleus A involves 
a simple average over the single-nucleon momentum distribution 

(38.47) 
i=1 J 

We note an immediate difficulty in the extension of the theoretical analysis to an 
A-body nucleus; this expression is clearly model dependent in the sense that the 
integration is not covariant. It is only with a covariant description of the nuclear 
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many-body system that one can freely transform between Lorentz frames, and, in 
particular, go to the IpI + 00 frame where the parton model is developed. 

It shall be assumed that Eq. (38.47) holds in the laboratory frame. Define the 
following ratio 

0 0.2 0.4 0.6 

X 

(38.48) 

1 

Fig. 38.10. A comparison of calculations of the effect of Fermi smearing on the ratio 
R in Eq. (38.48). From [Bi89]. 

1.3 

1. 2 

Ge l1 
T 
F 2  0 

10 

0.9 

0.8 

Fig. 38.11. The ratio R in a relativistic version of this single-particle model com- 
pared with some early experimental data. From [Mo86]. 
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This is the ratio of the structure function for iron (per nucleon) to that of the struc- 
ture function for deuterium (per nucleon). Calculations of R based on Eq. (38.47) 
are shown in Fig. 38.10. R is calculated assuming the response function Whh)(p, q)  
for a free nucleon is unmodified in the nuclear interior (from [BiSS]). Note that this 
Fermi smearing effect is sizable for large 2. 

The result of a relativistic version of this single-particle model is shown in 
Fig. 38.11, along with some of the representative early experimental data (from 
[Mo86]). 



Chapter 39 

Evolution equations 

The quark-parton model gives the structure functions in the scaling region in terms 
of the quark distribution functions' 

FI(2) = - F2(2) - - Qqqi(z) 2 
i 

(39.1) 

One cannot yet calculate the quark distribution functions from first principles. They 
result from the strong color interactions in the hadrons and are a consequence of 
strong-coupling QCD. Lattice gauge theories can, in principle, get at these distri- 
bution functions.2 

One can, however, calculate the evolution of the structure functions with q2 at 
high q2 from perturbative QCD. The momentum transfer and spatial distance scale 
X with which one examines the system bear an inverse relation to each other. From 
consideration of the Fourier transform, the relation is lql = 2n/X.  Suppose one 
examines the nucleon with higher and higher resolution, where the resolution will 
now be defined mathematically by (here qi is some initial value) 

r = l n ( z )  2 
(39.2) 

Then one expects to see finer and finer details of the substructure of the nucleon. 
Consider first some kinematics in the quark-parton model. The situation in deep- 

inelastic electron scattering in the impulse approximation is shown in Figs. 38.6 and 
38.7. The kinematics for the electron are shown again in Fig. 39.1. 

In the IpI --t 00 frame, and in the deep-inelastic region where q2 t 00 and 
v + 00 at fixed q2/v, the magnitude of the three-momentum transfer is lql M @, 
and as a vector it is perpendicular to p at small scattering angle 6 (Prob. 39.1). 

'Here qi(qi)dqi is the number of quarks of the ith type carrying momentum between qip  and 
(qi + dqi)p in the proton in the infinitemomentum frame; it was called fi(qi)dqi in the previous 
chapter. 

2And QCD sum rules can provide constraints on them. 

398 
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Fig. 39.1. Electron variables in the impulse approximation in the quark-parton 
model for deep-inelastic scattering in the IpI -+ oc, frame. 

higher q. shorterh 

G - 
.=Y- 

- higher q L + 

Fig. 39.2. Examination of the nucleon at higher and higher resolution in the quark- 
parton model for deep-inelastic scattering in the IpI -+ 00 frame. 

Thus the situation at higher and higher resolution in this model is as illustrated in 
Fig. 39.2. 

Now the evolution of the structure functions in perturbative QCD can be calcu- 
lated with the renormalization group equations that sum the leading logarithms at 
large values of the space-like momentum transfer (here large T ) . ~  This calculation 
is complicated, and involves a detailed examination of operator product expansions. 

We here present, instead, a discussion of the Altarelli-Parisi evolution equations 
[A177, Qu83]. They reproduce the renormalization group results and provide a 
simple, physical way of looking at renormalization group improved perturbation 
t h e ~ r y . ~  

39.1 Evolution equations in QED 

To illustrate the basic ideas, we formulate the evolution equations within the abelian 
theory of QED; we then refer to the literature for the corresponding equations and 

3A discussion of this topic is contained, for example, in [Ge54, Ch84, Wa921. 

4T0 give full credit, these are often referred to as the DGLAP equations [Do77, Gr72, A177, Mu971. 
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results for QCD. This material is based on [A177, Qu831; much of it is taken from 
[CagO]. 

Consider electron scattering as shown in Fig. 39.3. The first diagram is just 
electron scattering from a target, and the second is electron scattering with the 
emission of a photon, or bremsstrahlung. Now part of the time the incident elec- 
tron is actually an electron plus a photon, and the photon will share some of the 
momentum of the incident electron. How can this be described? One can exam- 
ine the effects of this compositeness by studying the top part of the diagrams in 
Fig. 39.3. 

Fig. 39.3. Electron scattering, and electron scattering with emission of a photon; 
we now study the top part of the diagrams. (Later an analogous study allows one 
to determine the behavior of a quark in a hadron.) 

First introduce some definitions: 

(1) Let 

measured momentum of electron beam 
prepared momentum of electron beam 

Z G  

= momentum fraction carried by electron (39.3) 

( 2 )  Suppose one starts with a monochromatic electron beam. Then 

- = N d ( z  - 1) d N  
d z  

(39.4) 

This is the prepared electron momentum distribution with a monochromatic 
beam;5 

(3) Let T be the resolving power of the probe as defined in Eq. (39.2); 
(4) Let e ( z ,  7 ) d z  be the number of electrons [(total number) x (probability)] with 

momentum fraction between z and z + d z  at this resolving power; 
(5) Let (a/27r)Pe+,(z)d7-dz be the difleerential probability of observing an elec- 

tron carrying a fraction of momentum between z and z + d z  of the parent 
electron with a change in resolution dT. 

51n this chapter J' dzb(1 - z )  3 J1+dzb( l  - z )  = 1. 
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We now write the evolution equation. equation Consider Fig. 39.4. With the 
above definitions, one can write6 

The 1.h.s. represents the change in probability density for electrons with momen- 
tum fraction z at a given resolution r. The first factor on the r.h.s. represents 
the probability for electrons with momentum fraction y. The second factor on the 
r.h.s. is the differential probability that the process in Fig. 39.4 will actually yield 
an electron carrying momentum fraction z ;  recall that one multiplies probabilities 
(chapter 35). The final factor guarantees that for the process in Fig. 39.4 feed- 
ing electrons from the interval at y into the interval at x on the l.h.s., one has 
(fraction x) = (fraction y) x (fraction 2). 

Fig. 39.4. Primary electron, and electron with emitted photon. Here (z, y, z )  denote 
the momentum fractions with yz = x. 

This result can be verified when one simply starts with an initial monochromatic 
beam; then from Eq. (39.4) 

- Nd(y-  1) (39.6) e(y,r) = - - d N  
dY 

The integrals over (y, z )  can then be performed in Eq. (39.5) with the result 

d r  2n 
(39.7) 

In words, this equation says that the rate of change (with respect to resolution) of 
the number of electrons carrying momentum fraction z is the initial number (N) 
times the “rate” [ d(probabi1ity for fraction z ) / d ~ ]  for producing electrons carrying 
that momentum fraction. 

The presence of the &function on the r.h.s. of Eq. (39.5) allows one to perform 
the integral over so dz6(zy - z) under arbitrary conditions; hence7 1 

(39.8) 

6Note de(z ,  T + d ~ )  x de( z ,T ) .  

7The lower limit on y follows from the condition z 5 1. 
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Fig. 39.5. (a) Photon distribution; (b) another process feeding the electron distri- 
bution. 

This analysis is now extended in a similar fashion (Fig. 39.5). Introduce the 
following additional definitions: 

Let (cr/27~)P,,,(z)drdz be the differential probability of finding a photon 
carrying a fraction z of the parent electron’s momentum with an increase 
in resolution d r ;  
Let y ( z , r ) d z  be the number of photons with momentum fraction between 
z and z + dz at resolving power r (Fig. 39.5a); 
Let (a/27~)P,,,drdz be the differential probability of finding an e- (or e+) 
with momentum fraction z of the parent photon’s momentum (Fig. 39.5b); 
Let e(z ,  r )dz  be the number of antiparticles (e+) with momentum fraction 
between z and z + dz at resolving power r. 

On the basis of the above example and the extended definitions, we are in a 
position to write the set of master equations for QED 

Here the equality of particle and antiparticle processes feeding the various channels 
has been incorporated. There is no dynamic Prtr to this order in QED (see 
appendix C.3); there is a Pgtg in QCD. 

These are the Altarelli-Pa7-isi evolution equations for QED [A177, Qu831. The 
splitting functions Pbca are assumed known; they are calculated from the structure 
of the theory, in this case QED - we demonstrate how one calculates these quanti- 
ties below. The evolution equations for the distribution functions then form a set of 
coupled, linear, integrodifferential equations in the variables (z, T ) ; ~  their solution 
may be obtained by taking moments of the distribution functions (Prob. 39.6 and 
[A177, Qu83, Ca901). 

The splitting functions obey various sum rules derivable from the master equa- 
tions; we give examples in appendix C.3. 

‘Note that while the derivative is in the resolving power T = In ( q 2 / q i ) ,  the integral is only over 
the momentum fraction I; this is why the solution can be obtained relatively easily. 

(1)

(2)

(3)

(4)
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39.2 Splitting functions 

The goal is now to calculate the splitting functions, which form the kernels in the 
master equations. For illustration we here concentrate on (a/2r)P7+,(z)d7dz. To 
do this, we relate the electron scattering process from a test target as shown in 
Fig. 39.6 to the corresponding real photon process. This will allow us to identify 
the probability o f f i n d i n g  a photon in the field of the electron. The relationship 
between the processes illustrated in Fig. 39.6 is well known; it is just the Weizsucker- 
Wil l iams approximation, which becomes exact in the limit tc2 --f 0. The classical 
basis for this approximation is described, for example, in [Ja62]. The Coulomb field 
of a relativistic electron Lorentz contracts and becomes predominantly transverse; 
the electron current produces a transverse magnetic field of comparable magnitude 
(Fig. 39.7). This transverse field configuration is equivalent to a collection of real 
photons with a certain, specified momentum distribution. 

electron r e d  photon 

Fig. 39.6. Relation of electron scattering process to real photon process. 

Fig. 39.7. Lorentz contracted electric field of a relativistic electron; basis for the 
Weizsacker-Williams approximation. 

The QED analysis here will follow [Dr64, WaOl]. Recall the structure of the 
hadronic response tensor (Fig. 39.6) 

(39.10) 



404 Evolution equations 

The (unpolarized) cross section for real photon processes follows directly from 
this response tensor. The relationship is derived in [Dr64, WaOl]; it is here left as an 
exercise for the reader (Prob. 39.2). The photoabsorption cross section (Fig. 39.6) 
is given by 

(39.1 1) 

The first line follows from the covariant polarization sum, and the second from a 
change to incoming photon momentum (Fig. 39.6). Note that the real photon limit 
(tc2 4 0) of Eq. (39.10) is perfectly finite; there are no singularities of the r.h.s. in 
this limit. Hence one establishes the following relations as K~ 4 0 [Dr64, WaOl] 

These equations can be inverted to give for K~ 4 0 

m2K2 w2 --L - 
( p  * K)2  w1 

(39.12) 

(39.13) 

39.3 Weizsacker-Williams approximation 

The electron scattering cross section of Eqs. (38.7), (38.9), and (38.11) can be 
written in terms of the variables in Fig. 39.6 as 

The overall dependence of l/tc4 coming from the square of the virtual photon prop- 
agator implies that in the integrated cross section, most of the contribution arises 
from the region where tc2 t 0. In this case, one can replace the structure functions 
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by their limiting forms in Eqs. (39.13)' 

This expression is Lorentz invariant. It is exact in the limit K~ 4 0 [Dr64]; at finite, 
but small K ~ ,  it forms the Weizsacker-Williams approximation. 

Now use some kinematics. From Fig. 39.6 one has in the lab frame 

(39.16) 

Also, the expression in brackets in Eq. (39.15) can be rewritten as 

S E ~ E ;  sin2 e l 2  cos2 0/2 ~ E ? E ;  sin2 e 
= K 2 +  = K 2 +  (39.17) 

W 2  W 2  

Hence the result in Eq. (39.15) becomes 

. 8a2 d3k2 w 1 
dce = i- - K ~ ]  2 (39.18) 

K4 2E2 E l  (27r)2a 

Now change variables using 

w = E 1 - & 2  

K2 = 2 E 1 ~ 2 ( 1  -case) 

Hence (after an immediate integration over d4) 

E ~ E Z ~ W  dK2 T 
- -  - 2 ~ -  = -dwdK2 
d3k2 
2E2  2E2 2E1E2 2E1 

(39.19) 

(39.20) 

The limit n2 -+ 0 is achieved at finite 6 2  by going to small angles where 0 4 0. In 
this case one has 

&?&;sin2e 2 .+;e2 = K ~ E ~ E ~  (39.21) 

'Here the symbol = implies an approximate relation that is exact in the limit n2 -+ 0. We will 
identify the splitting function from the coefficient of dn2/n2 as n2 + 0. It is then used to generate 
the asymptotic Inq2 behavior as q2 -+ 00. One can do this since J q z  dtcc2/n2 = In ( q 2 / q i )  gives 

both the qi  -+ 0 and the q2 -+ 00 behavior! In the lpl + 00 frame with 0 + 0, n 2 / g  indeed 
provides a small parameter and one can first take lpl much larger than any other momentum of 
interest in the problem [Qu83]. 

q: 
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Hence 
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Now introduce the photon momentum fraction 

- W % 1 - Z  
- - f Z  
El dl 

Also introduce the differential of the resolution 

dK2 dT = dln($) = - K2 

(39.22) 

(39.23) 

(39.24) 

The electron scattering cross section in Eq. (39.22) can then be rewritten as 

(39.25) 

We are now in a position to interpret this result in terms of previously introduced 
quantities. The contribution to the electron scattering cross section for a beam of 
N electrons from the accompanying photon field can be written as the following 
product: [number of photons dy(z, T ) ~ Z  viewed with resolution between T and T + ~ T  

carrying a momentum fraction between z and z+dz of the beam] x (photoabsorption 
cross section at that z ) .  The first factor can in turn be related to the probability 
that at that T ,  a photon carrying momentum fraction z will be produced by an 
electron through the analog of Eq. (39.7). Hence 

Nda, = [dy(z,  ~ ) ] a ~ ( z ) d z  

(39.26) 

One is now in a position to identify the splitting function through a comparison 
of Eqs. (39.25) and (39.26) 

(39.2 7) 

Note that the splitting function as calculated here is independent of T .  For the 
other splitting functions in QED, see Probs. 39.3-5. 

39.4 QCD - Altarelli-Parisi equations 

The application to QCD follows the same basic ideas discussed here. In QCD, to 
lowest order in the coupling constant, one must also include an additional dynamic 
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splitting function Pg+g(z)  for a gluon going into two gluons as illustrated in Fig. 39.8 
(Prob. 39.7). 

Fig. 39.8. Additional splitting function for a gluon going into two gluons also present 
to first order in the coupling constant in QCD. 

The master equations for QCD, and the required splitting functions are written 
down, for example, in [Qu83], pp. 229-242, and their solution is discussed there. 
For solution, one takes moments of the evolution equations (Prob. 39.6). This 
procedure sums leading logarithms and leads to results of renormalization group 
improved perturbation theory in the QCD description of the approach to scaling in 
deep-inelastic electron scattering. 

To give the reader a feeling for some of the applications, we are here content to 
simply quote two results: 

(1) From the asymptotic solution for the n = 2 moments one can compute the 
momentum fraction of the gluons 

16 
cg = 16 + 3Nf 

Here N f  is the number of flavors of quarks. for Nf = 6 this gives 

(39.28) 

Cg = 0.47 ; theory 
= 0.46 ; experiment (39.29) 

The experimental result is from Eq. (38.46).1° 
(2) One can analyze the evolution with increasing resolution I- of diflerences 

of quark distributions qi(z). In particular, the “nonsinglet distribution” 
receives no contribution from the gluons (here nonsinglet refers to  flavor). 
The nth moment of the nonsinglet (NS) quark distribution is predicted to 
evolve as 

2AnlP0 

(39.30) 

“One should probably use a smaller number for N f  as the active quark degrees of freedom in the 
SLAG experiments. 
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The numerical coefficients A, for n = (1,2,3, . ) are predicted to be A, = 
(0, -16/9, -25/9, a ) .  

There are very clear presentations of this subject in [A177, Qu83, Ca901; the 
reader is referred to the literature for further detailed developments. 



Chapter 40 

Heavy-ion reactions and the quark-gluon 
plasma 

40.1 The quark gluon plasma 

An enormous amount of effort has gone into lattice gauge theory calculations and 
will continue to do so [LaOZ, La031. In chapter 19 a simple calculation indicated a 
phase transition from a hadronic phase to a quark-gluon phase at both low tem- 
perature and high baryon density and at high T and zero (or low) p ~ .  Although 
calculations at significant baryon density are still prohibitively difficult in LGT, the 
high temperature transition is fully confirmed by LGT calculations. 

Recall from Eq. (19.19) that at high temperature and vanishing baryon density 
a gas of (asymptotically) free, massless colored gluons with two flavors of massless 
colored quarks and anti-quarks has an energy density and pressure of 

37 
& = 30?r2(kBT)4 

& p = -  
3 

(40.1) 

The coefficient of 37 = 8 x 2 + (7/8)(3 x 2 x 2 x 2) counts the number of degrees of 
freedom of the bosons and fermions. A thermal hadronic gas of free, massless, spin- 
zero pions, for example, would have only a coefficient of 3 (for the 3 charge states). 
Figure 40.1 is taken from a talk by H. Satz, who is responsible for much of the lovely 
numerical work on this topic [Sa02]. It shows the energy density and pressure as 
studied in detail in finite temperature LGT with two and three light dynamical 
quarks, as well as the more realistic case of two light and one heavier species. It 
is seen that there is a sudden increase from a state of low to one of high values 
of E ,  as expected at the confinement-deconfinement transition. The exact nature 
of the phase transition, and the deviation from the asymptotic values, are subjects 
of continuing interest and study. Standing series of international conferences are 
now devoted to the Lattice and Quark Matter, and the reader is referred to the 
proceedings of these conferences to keep abreast of developments (e.g. [La03, Qu021). 

lSee appendix A of [Fe71] for the fermion factor of 7/8, 

409 
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3 flavour - 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

the quark-gluon plasma 

5.0 1 
i 

3 flavour - 
2+1 flavour ~ . 

2flavour - 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Fig. 40.1. Energy density and pressure divided by T4 in full lattice QCD with light 
dynamical quarks [SaO2]. 

The quark-gluon plasma presumably existed very early in the universe after 
the big bang. With cooling and expansion, the plasma eventually converted into 
hadrons (and photons and leptons). In an attempt to simulate the temperature 
and density conditions of the early universe, albeit over an infinitesimal volume in 
space and a brief instant in time, heavy, stripped nuclei are being accelerated and 
allowed to collide with a wide variety of powerful detectors examining the collision 
remnants [RH03, LH031. 

It is generally agreed that it is only by looking at a combination of signals ema- 
nating from a relativistic heavy-ion collision that one will be able to unambiguously 
deduce 
erties. 
RHO31 : 

0 

0 

0 

0 

0 

0 

0 

the fleeting creation of the quark-gluon plasma, its evolution, and its prop- 
Some of the signals under investigation include [Ma86, Be90, Le02, Qu02, 

The average transverse momentum of produced particles which reflects the 
pressure history of the expansion; 
produced strangeness which reflects statistical equilibrium of (s, 3) in the 
plasma; 
antibaryon production which likewise reflects the equilibrium of 4 in the 
plasma; 
J / $  suppression reflects shielding in the plasma of the strong color force in 
the (cc) meson; 
charged lepton pair emission ( I f ,  1- )  allows one to probe the plasma interior; 
direct photon emission probes plasma formation and evolution; 
pion interferometry teaches us about the space-time size and properties of 
the interaction region. 

These are just some of the experimental probes. 
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We cannot go into detail here on all the aspects of this subject. Fortunately, 
there is an excellent new and very readable book on Hadrons and quark-gluon plasma 
by Letessier and Rafelski to which the reader is referred for a through treatment 
[Le02]. A recent overview is also contained in [BlOa]. We shall be content to examine 
a few aspects of relativistic heavy-ion reactions. 

40.2 Relativistic heavy ions 

The rapidity variable plays a central role in the analysis of relativistic heavy-ion 
collisions. It is the angle of rotation in Minkowski space that is simply additive for 
collinear Lorentz transformations along the incident direction, and it is particularly 
useful in transforming to the C-M system for fixed target experiments. We recall 
that for Lorentz transformations in the z-direction, a particle's four-momentum 
transforms as2 

P'I = PI 
p'r, = p~ coshyo - E sinh yo 
E' = -PL sinh yo + E cosh yo (40.2) 

Here p~ is the component along the z-direction, p l  is the transverse component, 
and the hyperbolic angle is related to the velocity of the new Lorentz frame by 

tanhyo = 210 (40.3) 

Now define 

It is then a simple exercise to show that Eqs. (40.2) can be rewritten 

p'r, = ml sinh(y -yo) 

E' = m I cash (Y - Yo) 

It follows that 

(40.4) 

(40.5) 

Y' = y - Y o  (40.6) 

2Recall c = 1. 
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The trigonometric identity 

1 l + u  
tanh-' u = - In - 

2 1 - u  
(40.7) 

and a little algebra allow the above relations to be inverted as 

E + P L  y = ln- 
ml 

E' + p i  y' = ln- 
ml 

yo = tanh-lvo (40.8) 

A plot of particle distributions against the laboratory y in A+A collisions allows 
one to easily identify yo for the C-M system, about which the distributions must be 
symmetric. 

As just one example, Fig. 40.2 taken from [Leo21 shows the baryon distribution in 
the C-M system for P b t P b  collisions at a total C-M energy normalized per nucleon 
of a = 17.2 GeV as measured at CERN. Note how the baryon distributions 
appear to penetrate each other, having maxima at large and small rapidity. 

-3 -2 -1 0 1 2 3 
Y ,  

Fig. 40.2. Rapidity distribution of baryons ( b  - 8) observed by experiment NA49 at 
CERN in central (5%) Pb-Pb collisions at + = 17.2 GeV (solid circles, direct 
measurement, open circles, reflections at YCM). Stars are rapidity spectra of baryons 
for S-S interactions obtained by NA35 at 6 = 18.4 GeV, for the 3% most central 
events, scaled with participant number 352/52; from [Le02]. 

There are evidently several stages in the collision of two relativistic heavy ions 
leading to the observed distribution of final hadrons, photons, and leptons (regard- 
less of the intermediary steps, these are indeed the particles that are observed). 
One can invoke various theoretical descriptions of these stages: 
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(1) In the initial stage of the collision the internal parton (quark and gluon) 
distributions are violently modified. Here one can use, for example, a parton 
or parton/string cascade approach; 

(2) A deconfined quark-gluon plasma is formed over some region of space-time. 
There will be a baryon-poor regime between the leading baryon trajectories 
that have passed through each other and a baryon-rich regime at the head 
of these traje~tories.~ The extent to which thermal equilibrium is reached 
in these regions is a challenging issue; 

(3) As it evolves, the quark-gluon plasma will eventually hadronize into (con- 
fined) hadrons; photons and leptons are emitted at all stages; 

(4) The hadron phase will then evolve into the observed laboratory distribu- 
tions. 

The goal is to draw conclusions about the quark-gluon plasma from the ini- 
tial conditions and final particle distributions - a daunting task. The theoretical 
analysis should, in principle, follow the initial conditions through to the final distri- 
butions in a unified and consistent manner. This is not yet practical, although one 
can anticipate that it will be possible at some time in the future. With so many 
degrees of freedom, the problem is essentially one in non-equilibrium quantum sta- 
tistical mechanics. The subject of transport within QCD is discussed, for example, 
in [Gy86, E187, Va87] and reviewed in [B102]. Hybrid macroscopic/microscopic mod- 
els combining hydrodynamics for the initial stage and microscopic non-equilibrium 
dynamics for the later stages are developed, for example, in [Ba99a, BaOO, BaOl]. 
It is inappropriate here to go into detail on all the work that has been done on this 
subject; fortunately the book by Letesssier and Rafelski gives a good overview and 
leads one to the various available codes [Le02]. 

We will be content, instead, to provide some insight by following the evolution 
of the final hadronic stage, an analysis that also plays a central role in lower energy 
heavy-ion reactions. We present a brief discussion of relativistic transport theory, for 
which the material in Part 2 of this book provides a particularly useful framework. 

40.3 Transport theory 

One of the principal thrusts of nuclear physics has been, and will continue to be, the 
use of relativistic heavy-ion reactions to study the properties of hadronic nuclear 
matter under extreme conditions of density, temperature, and flow. A great deal 
of work has been done within the framework of QHD using relativistic transport 
theory to describe relativistic heavy-ion collisions. For example, the foundations 
of hadronic relativistic transport theory are discussed in [St86, Ko87, B188, Ko88, 
Li89a, La90, Ma92, Ma93, Mo94, Sc94] and further developed in [de91, de92, Me93a, 

3The evolution of the mid-rapidity region is analyzed in [Bj83]. 
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Ni93, Mo95, Mr94, Fu95a, P0951. In this section, we start the discussion with a 
simple introduction to classical transport theory, relying heavily on [St86]. 

Consider the microcanonical ensemble which consists of a collection of identical, 
randomly prepared, microscopic systems (particles). The ensemble can be charac- 
terized by the distribution in 6-dimensional phase space 

dN d3p d3q Number of  members of the ensemble in - 
( 2 r ) 3  

(40.9) 

The probability of finding a particle in this region in the ensemble is the probability 
of picking such a member of the ensemble at random and this is equal to  d N / N  
where N is the total number of members of the ensemble, obtained by integrating 
Eq. (40.9) over all of phase space. This probability can now be used to compute 
expectation values over the ensemble. 

I a 
/ 

Fig. 40.3. 
points in phase space of the members of the ensemble. 

Schematic representation of the time evolution of the representative 

Consider now the canonical ensemble consisting of a collection of identical, ran- 
domly prepared assemblies of systems with interactions governed by a hamiltonian 
H .  There will be some many-body distribution function f(p1, * ’ p n ,  q1, * , qn; t) 
in the 6-N dimensional phase space, and the goal is to follow the time evolution of 
that distribution function. As a function of time, a classical assembly moves from 
(PO, 4 0 )  -+ ( p ,  q)  in phase space, as illustrated in Fig. 40.3. Liouville’s theorem (see 
e.g. [WaS9]) states that with hamiltonian dynamics, the volume in phase space is 
unchanged with time. Since the number of members of the ensemble dN in this 
volume is also conserved, one concludes that the distribution function is unchanged 
along a phase trajectory 

f[p(t), Q(t),  t] = fbo, qo,  t o ]  = constant (40.10) 
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Differentiation with respect to time then yields4 

Now Hamilton's equations state 

Insertion into Eq. (40.11) then gives 
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(40.11) 

(40.12) 

(40.13) 

The last equality identifies the Poisson Bracket. At equilibrium there is no time de- 
pendence to the distribution function and this expression must vanish. The solution 
to  this condition is that f = f ( H ) ,  and f is a constant of the motion. 

The next task is to project the (exact) dynamics of the many-body distribu- 
tion function f (p l ,  . . .pn, q1, . + . , qn; t )  down to an approximate equation for the 
one-body distribution function f ( p ,  q; t )  and reduce the problem back to the mi- 
crocanonical ensemble. In addition to the one-body dynamics governed by some 
hamiltonian h(p, q), a short-range two-body Boltzmann collision term can now be 
included. In the canonical ensemble, particles are scattered into and out of the 
region in phase space in Eq. (40.9) as illustrated schematically in Fig. 40.4. 

Fig. 40.4. Schematic representation of scattering of particles into and out of a region 
in one-body phase space due to short-range two-particle collisions. 

Collisions serve as an effective source and sink of particles for the one-body 
distribution, and we assume that it satisfies 

collisions d t  
(40.14) 

We proceed to calculate this quantity, relating it back to the one-body distribution 
itself. Momentum is conserved in the collisions so that p1+ p2 = p i  + p i .  Detailed 

4Repeated Latin indices are summed over the spatial coordinates, and also over particles. 
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balance then states that 

(40.15) 

where v is the relative velocity, and the second relation follows from the first. The 
number of transitions per unit time in the direction i + f in the assembly is now 
given by 

number transitions ] = ( p v l z )  ~ 3 q )  (40.16) 

The first factor is the incident flux and the final factor is the number of target 
particles in the volume d3q.  Here the particle density is5 

[ time i- f 

d N  
p - -  

d3q 
(40.17) 

The rate of change of the number of particles in the phase space volume 
d3pd3q/(27rh)3 due to the collision term is then given by 

(40.18) 

Here we assume that u is just a constant cross section independent of the dynamics, 
and detailed balance has then been used to extract a common factor of uv12. It 
is further assumed that the interactions are zero-range and all the collisions take 
place at a given point q in configuration space. The last line then represents the 
number of particles scattered out of the volume in phase space, and the factors 
are respectively: the incident flux, the number of target particles, a factor of unity 

5T0 understand these results, it is useful to recall that the quantum mechanical expression for the 
transition rate and cross section are given by the Golden Rule 

27r 
ti 

Rfi = -6(Ef - Ei)l(fIH’li)12 

ufi = &/incident flux 

Note that this is the cross section to a single final state I f ) ,  and to get the transition rate into a 
group of states about p’ one still needs to multiply by the number of states d3p’/(27rh)3 where 
all factors of the canceling quantization volume R have now been removed. Note also that energy 
conservation is built into this expression. Detailed balance then follows from the hermiticity of 
H’ (although it is more general). We restore ti for the remainder of this discussion for reasons 
that will become clear; however, it cancels from all ratios through which expectation values are 
expressed, and the calculation in the text is classical until the later indicated point. 
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introduced for convenience, and the number of final states. The second line then 
represents the number of particles scattered into this region in phase space. 

A cancellation of common factors now leads to the following expression for the 
collision term in the Boltzmann equation 

The last term again counts particles scattered out of this region in phase space and 
the first term counts those particles scattered in. This relation will be abbreviated 

This result is that of classical transport theory; with truly zero-range collisions, the 
angular distributions will be isotropic. We emphasize that this expression yields 
the change in the one-body distribution function due to  two-body collisions. 

If the one-body hamiltonian has the form 

(40.2 1) 

where U is a mean field, then the transport Eq. (40.13) for the one-body distribution 
function takes the form 

af - -+v .V , f  -V,U.V,f = - 
at ( ’’ ) collision 

(40.22) 

This is the Vlasov equation and includes the effect of a mean field on the transport. 
The transport equations are now non-linear, integro-differential equations for the 
one-body distribution function. 

At equilibrium, with no time dependence, the collision term must vanish implying 
fifl? = ffz, or 

f (E: ) f (E; )  = f (Elf (Ez) (40.23) 

This relation must hold for all ( E ,  E2), and for given (E i ,  E;), the left side is just 
some constant. This constant will have some dependence on the quantity Ei + Ei;  
denote this functional dependence by g(E{ + Ei) .  Now energy is conserved in the 
collision, and hence Ei + Ei = E + E2. It follows that 

f(E)f(Ez) = g(E: + E;) = g(E + Ez) (40.24) 

Differentiation with respect to E and E2 in turn then leads to 

(40.25) 
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This yields the Boltzmann distribution 

f ( h )  = exp ( - h / k B T )  (40.26) 

as the equilibrium solution to these kinetic equatiom6 This expression evidently 
satisfies the Boltzmann Eq. (40.13). 

In molecular dynamics calculations one simply numerically follows the classical 
equations of motion for the distribution function f(p1, . . . p, ,  41, . . . , 4,; t )  for some 
finite number of members of an assembly and then performs a suitable average to 
produce the en~emble .~  

In the Nordheim- Uehling- Uhlenbeck extension of the Boltzmann equation one 
includes a Pauli-blocking term for identical fermions, not allowing the scattering 
process to lead to states already filled with one fermion per unit cell; the unit 
cell consists of the region ~i~pd~ql(27rfL)~ in phase space. (It is here that quantum 
mechanics first makes its appearance in this discussion.) One makes the replacement 

(40.27) 

As one justification for this approach, an argument similar to the above shows that 
the condition for static equilibrium is satisfied by the Fermi distribution function 
(see Prob. 40.2) 

(40.28) 

The Vlasov- Uehling- Uhlenbeck ( W U )  model is a one-body transport equation 
that includes the effects of a long-range mean field on the one-body dynamics and 
a short-range two-body collision term. The one-body hamiltonian is 

(40.29) 

The density p ( t )  is calculated from the distribution function, and when parameter- 
ized as a function of density, U(p) probes the equation of state of the medium. 

The basic ideas behind various transport models are well described in the review 
article by Stocker and Greiner [St86], and a program to actually carry out such 
calculations for relativistic heavy-ion collisions up to a few GeV/nucleon is available 
to all [Ha93a]. Although more sophisticated calculations exist, there is insight to 
be gained from briefly summarizing what the program in [Ha93a] actually does: 

0 Random positions and momenta are selected from two Fermi gases inside 

0 Particles are then followed with classical dynamics and zero (short)-range 
the initial colliding nuclei; 

collisions leading to random final states; the collisions conserve (p, E);  

61t is only for this distribution, of course, that the ensemble is truly “canonical”. 

7An ultra-relativistic quantum molecular dynamics code UrQMD is described in [Bags]. 
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0 A statistical average is taken over many “events” run in parallel; 

(40.30) 

0 The density p ( t )  is computed from f and inserted in V ( p ) ;  
0 An average of “runs” is used to determine the best f; 
0 This f is then used to compute particle distribution and mean values; 
0 Inelastic N-N processes producing (T, A) are also included. 

What are the advantages of QHD, as discussed in Part 2 of this book, for pro- 
viding a relativistic extention of this analysis? 

0 It provides a covariant description of the nuclear many-body system; 
0 It provides a basis for a relativistic treatment of the transport equations; 
0 It allows a consistent treatment of all hadronic channels; 
0 In RMFT, it provides an excellent first approximation to the nuclear mean 

field, including the energy dependence of the optical potential [Se86]. 

There exists a great deal of work on relativistic transport theory within this frame- 
work. The theoretical underpinnings are developed in [Ma93, Sc941. A covariant 
Boltzmann-Uehling-Uhlenbeck (BUU) approach, the basic ideas of which have been 
presented above, is developed in [B188, La90, Ma92, Ma94aI and applied in [B189, 
B191, Ko90, Ko911. Relativistic transport coefficients are discussed in [Ha93b, Ay94, 
Mo941. The connection of the scalar and vector mean fields to the underlying rela- 
tivistic two-body theory in this context is explored in [E192, Fu92, We921. Effective 
cross sections in the medium are studied in [Li93, Ma94bl. Additional momentum 
dependent scalar and vector potentials, which provide a more accurate description 
of the optical potential, are introduced in [We92, We931. Shocks are discussed in 
[Mo95]. The role of the Dirac sea in such collisions is discussed in [Ju92]. The 
production of kaons is examined in [Fa93a, Fa93b, Fa941, and of antinucleons in 
[Te93, Te94, Li941. Other interesting extensions include studies of a classical ver- 
sion of QHD [Bu93a, Bu93b, Bug51 and of a transport theory for quarks and mesons 
[Zh92]. 

40.4 Summary 

We have simply touched on a few aspects of heavy-ion reactions and the quark- 
gluon plasma, hopefully whetting the reader’s appetite to pursue these subjects in 
more detail. An excellent, readable book exists on this topic [Le02], which contains 
extensive references to the literature. A recent overview is also given in [B102]. 
Transport in QCD is discussed in more detail, for example, in [Gy86, Va87, Se93, 
Se941 and hadronic transport in [E187]. Unified transport theory is approached 
in [Ba99al BaOO, BaOl]. The reader can keep abreast of the latest developments 
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in this field by looking at the most recent proceedings of the Quark Matter and 
Lattice Conferences (e.g. [Qu02, La02, La03]), and background material and the 
latest results are always available on the laboratory websites [RH03, LH031. 
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Problems: Part 3 

27.1. Start from the definition of the field tensor $"y in Eq. (27.21) and introduce the 
infinitesimal local gauge transformation in Eq. (27.18). Prove 6$,,,, = e'x pPu. 
27.2. (a) Derive the Euler-Lagrange Eqs. (27.47) for QCD. 
(b) Derive Eqs. (27.48) from Noether's theorem. What are the appropriate symmetries? 

27.3. (a) Show the canonical momentum conjugate to the gluon field in QCD is II; = 
"A; = i.F2j. 
(b) Derive Gauss' law for the color fields 

-.-. 
Q .  II" = -g?,!ltA"?,!l 2- - - + gfabcfib ' R -g(Pzuark + P:luon) 

27.4. (a) Show (with the aid of partial integration) that_the hamGtonian density in QCD 
can be written NQCD = $ f i a  . fi" + L3p . .FG 4 23 + - gt{6. [+V - qX"Aa(2)] + PA4}+. - 
()) Pzove that any vector field can be separated into fi = f i ~  + f i ~  where 6 . f i ~  = 0 and 
Q x nr, = 0 with J,, f i ~  . l=i~ d32  = 0 [Fe80]. 
(c) Hence show the hamiltonian density can be written 

1 
2 4 'HQCD = ++{a. [:a - ~ . A X " A Q ( ~ ) I  + PAI}+ + f i ~  + -.EGG - z 2- - 

Here 6 . fI" = ? 
terms of the color charge pa = Pqauark f p&on is 

satisfies the constraint equation in Prob. 27.3(b) whose solution in 

Since 

27.5. Use the results of Prob. 27.4 and the analogy to QED to discuss the quantization 
of QCD in the Coulomb gauge where 6 . 
27.6. In QED charge renormalization comes entirely from vacuum polarization (Ward's 
identity). Consider the Mpfller scattering of two electrons through one photon exchange at 
a momentum transfer k2. 

depends on fi, this is an integral equation (or power series) for fi? 

= 0 [wa92]. 
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(a) Show that if k2 >> M 2  then to O(a) the modification of the photon propagator due to 
the vacuum polarization process in Fig. 27.4b is e2/k2 -+ e2[1+(a/37r)(1n k2/M2-5/3)]/k2 
[Bj64, Bj65, Wa921. 
(b) Use this result to define a new renormalized charge eg(k2,e2)/k2. Hence derive the 
first term in the power series expansion of Eq. (27.52). Note the sign. 
27.7. In QCD color charge renormalization comes from vertex and self-energy parts as 
well as vacuum polarization. The following perturbation theory results in the Landau 
gauge are given for k2 >> X2 in [Re81]: 
(a) From the graphs in Prob. 19.3, the quark propagator is -6ij61m/(iy,,p,, + m) + 0(g4).  
(b) From the graphs in Prob. 19.4, the gluon propagator is (Pb/k2)(6, , , ,  - k,k,/k2)[1 - 
(13/2 - 2Nf/3)(g2/16r2) lnk2/X2]. Here N f  is the number of quark flavors. 
(c) From the graphs in Prob. 19.5, the quark vertex is (AQ/2)y,[1 - (9/4)(g2/16r2) 
In k2/Xz]. 

Consider the scattering of two quarks through one gluon exchange to O(g4). As in 
Prob. 27.6, use the above results to define a new renormalized color charge g2(k2)/k2. 
Hence derive the first term in the power series expansion of Eq. (27.53). Note the sign. 
27.8. Define the finite renormalized functions by 
subtracting at the (euclidian) mass A'. 

27.9. Repeat Prob. 27.8 for the result in Prob. 27.7(b). 
27.10. Repeat Prob. 27.8 for the result in Prob. 27.7(c). 
27.11. Represent gluons with double lines with a color assigned to each line. Then, 
as indicated in the text, color can be viewed as running continuously through Feynman 
diagrams built from the Yukawa quark-gluon coupling in Eq. (27.44). Can you extend this 
concept to the cubic gluon self-couplings? To the quartic couplings? 
28.1. Use the analog of the derivation of the partition function in the text to derive the 
path integra! expression for the quantum mechanical transition amplitude ( q f t f  [piti) = 
(qfI exp { - ih( t f  - t i ) } lq i )  given in Eqs. (28.1) to (28.5). 
28.2. A useful result for path integrals is provided by gaussian integration from ordinary 
analysis. Suppose gT& = Cy=;'CyI:qiNijqj is a quadratic form and Nij = Nj; is a real, 
symmetric matrix. Let JTq - = Cyi:J;qi and ( a ,  b) be real numbers. Prove the following 
for a = &(a[  

Derive the result in Prob. 27.7(a). 

28.3. The variational derivative of a functional W(f) can be defined by Limx-0 {W[f(z)+ 
w z  - Y)1 - w[f(.)l}/x = JW)/&f(Y).  
(a) Let Wz(f) = J K ( ~ , Y ) ~ ( Y ) ~ Y .  Show 6Wz(f)/6f(z) = K ( z ,  2). 
(b) Let ,zn) be a totally symmetric function and W(f) = s . . . s K n ( z l , . . . )  

28.4. Show with the aid of the result in Prob. 28.2 that the required path integral can be 
evaluated exactly for the one-dimensional s.h.0. to give [Fe65] 

f ( ~ 1 )  ~~~f(zn)dzl . . . d z n .  Show 6"W(f)/6f(~1) ."6f(zn) = n!Kn(z1,... , z n ) .  
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Note this result is periodic in wt  and for wt  -+ 0 it reduces to that for a free particle. 

28.5. Show from its definition that the result in Prob. 28.4 is the Green's function for the 
Schrodinger equation for the one-dimensional s.h.0. 

28.6. Start from the definition in Prob. 28.1. Evaluate the trace through Jdq(qtlq0) 
and then make the replacement t + -iph in Prob. 28.4 to rederive the partition function 
z = exp {/?tiw/2}(exp {Ptiw} - 1)-' for the one-dimensional s.h.0. 

28.7. Consider a free scalar field with source LJ = Jq5 and set h = c = 1. 
(a) Assume the disturbance is confined to a finite region of space-time and carry out a 
partial integration to give s = (1/2) J d42[-4a24/at2 + 4v2+ - (m2 - iq)@ + 2541. 
(b) Divide space-time into finite cells of volume c4. Label each cell with a; in the continuum 
limit where E + 0 one has CY -+ 2, ,B + y. Replace integrals by finite sums. In the 
action one can write S = C,~~C~c~q!~ ,K ,p$p /2  + C,E~& J,. Here Cp~44,K,p4p - 
J d4y4(z)K(z - y)+(y) and Lim,,oK,p = [62/azz - (m2 - iq)]d4)(2 - y). Use the result 
for gaussian integration in Prob. 28.2 to evaluate the generating functional in Eq. (28.49) 
in Minkowski space in terms of K-' [Ab73]. 
(c) Define the inverse matrix by C,K,,(K-'),s = with Lim,,o(K-'),p/E* = 
-AF(z - y). Show the generating functional is 

E'O 

1 eik.(2--y) 
( 2 ~ ) ~  k2 + (m2 - i ~ )  

Here AF is the Feynman propagator. 
(d) Show ( l / i ) 2 ~ 2 i i / ' ~ ( 0 ) / S J ( z i ) 6 J ( s z )  = ( l / i ) A ~ ( ~ i  - 2 2 )  = (OIT[&(a), $(22)]10). 

29.1. The mathematical manipulations in chapters 29 and 30 involve analytically contin- 
uing the generating functional in complex time to produce the partition function and then 
rotating the path integrals over the fields to go from Minkowski to euclidian metric. As 
a very simple example illustrating some of these procedures (see [Fe80] for background), 
consider the following integral: 

(a) Show I ( X )  is an analytic function of X for ReX > 0. 
(b) Evaluate I ( X )  = = F(X) on the positive real X axis. Use this expression to 
analytically continue I ( X )  to the entire cut X plane. 
(c) Hence establish the integral representation F(X) = Jce-Az2dz for ReX > 0 where the 
contour C runs from the origin to 00 along the positive real z-axis. 
(d) Use the analyticity of the integrand and Cauchy's theorem to show that if X lies on the 
positive real axis, one can rotate the contour C in the complex z plane to another contour 
C1 so F(X) = Jce-'"'dz = J e-A"2dz where CI is any ray running from the origin to 
00 with Rez' > 0. 
(e) Let X approach the negative imaginary axis from the right X + IXle-i"/2 = - i l X I .  
Show the integral in (c) becomes F(JXle- irr /2)  = s, exp {-e-i"/21Xlz2}dz. 
(f) Show the contour C in (e) can be rotated to any direction such that Re(e-i"/2z2) > 0. 

c1 
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For example, it can be rotated to 

F(lXle-i"/z) = 1 exp {-e-iT/zlxlz2}ciz 
C Z  

where C2 runs along the positive imaginary axis. 
(g) Make a simple change of variables in (f) to show F(-ilXl) = is; exp {-i lXlC2}dC. 

The net result is that the value of the function analytically continued from real to 
imaginary argument is obtained by rotating the contour in the integral representation of 
that function from the real to imaginary axis. Analytic continuation implies that the 
resulting function is unique, and all steps are mathematically justified as long as the 
integrals under consideration converge. 
29.2. Extend the formulation of U(1) lattice gauge theory in the text to two space and one 
time (2+1) dimensions. Demonstrate gauge invariance and the proper continuum limit. 

29.3. Extend Prob. 29.2 to 3+1 dimensions. Show u = 1 / 2 4  for the proper continuum 
limit in this case. 
30.1. Extend the Ising model by letting the spin on each site take the values { s i }  = 
{s, s - 1,. . . , -s}. Work in mean field theory (MFT). 
(a) Show the partition function is z = [sinh (s + ; ) X I /  sinh f z  where z = PJ-ylm. 
(b) Show the magnetization is m = d lnz /bz  = (s + f )  coth (s + ;)z - f coth fz. 
(c) Find Tc; plot m vs. T/Tc. 
30.2. Extend the Ising model by letting the spin on each site take the values { s i }  = 
{s cos 9,) with a measure s dRi/47~ = s s sin Oi d& d+i/47~.  Work in MFT. 
(a) Show the partition function is z = [sinh C ] / C  where C = PJ-ylms. 
(b) Show the magnetization is m/s  = a In z/aC = coth C - l/(. 
(c) Find Tc; plot m / s  vs. T/Tc. 
(d) Let J y l m  -+ Next be an external magnetic field in the z-direction; write m = XmagNext 
as Next -+ 0; and define s = PO. Use the above results to derive the Langevin expression 
for the paramagnetic susceptibility of a classical ensemble of magnetic moments xmag = 
& / 3 b T .  
30.3. Verify the MFT numerical results for lattice QED quoted in Eq. (30.28) and 
Fig. 30.6. 

30.4. Consider lattice QED in 1 + 1 dimensions on a 2 x 2 lattice with periodic boundary 
conditions in both directions. 
(a) Introduce relative angles and show the full problem can be reduced to the following 
exact expression (TS T I )  

(b) Show  SO)) = -adlnZ(a)/da.  
(c) Extend these results to an n x n lattice. 

31.1. The Baker-Haussdorf identity eAeB = eA+B+$[AvB] holds for operators and matrices 
as long as [A, [A, B ] ]  = [B ,  [A, B ] ]  = 0 .  Prove this relation to third order in the operators 
by expanding the exponentials on both sides. 
31.2. Construct a proof of the Baker-Haussdorf identity in Prob. 31.1 to all orders in the 
following fashion [Bj65]: 
(a) First show eBAe-B = A + [B ,  A ] .  
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(b) Define F(X) = eX(A+B)e--XBe--XA. Show dF/dX = eX(A+B)[A,  e--XB]e-XA. 
(c) Hence show [A, e-XB] = -X[A, B]e-XB and dF/dX = -X[A, B ] F ( X )  with F(0)  = 1. 
(d) Use (c) to conclude F(X) = e - T [ A , B ]  and take X = 1 to establish the identity. 

31.3. (a) Prove that & is again a 2 x 2 SU(2) matrix and thus can be written & = 

exp { t ~ .  
(b) Show that as 6- 0 one has i t r &  = 1 - 64 + .... 
31.4. Generalize the discussion of the continuum limit in the text to the case of 2+1 and 
3+1 dimensions (d=3,4). Show u = 2/g&4-d. 

31.5. Search the literature to find the appropriate gauge-invariant measure for s u ( 3 )  
nonabelian lattice gauge theory. 
32.1. Plot the "magnetization" M4 as a function of UC/U for SU(2) lattice gauge theory 
in d = 4 dimensions in MFT obtained from Eqs. (32.24), (32.29), and (32.35). Compare 
with Fig. 30.6. 
32.2. (a) Show that to within an overall multiplicative constant the MFT free energy/site, 
and thus also the minimization condition for H ,  depends only on the combination u(d- 1). 
(b) Hence conclude that the critical value of u for the development of spontaneous mag- 
netization A4 in MFT in d dimensions scales as oc(d - 1) = 4.239. 
(c) Thus use the results of Prob. 32.1 to make a universal plot of M&T vs. uc/u in d 
dimensions. 

32.3. One of the original Monte Carlo calculations in nonabelian lattice gauge theory is 
due to Creutz, who found clear evidence for a phase transition in the pure SU(2) gauge 
theory in d = 5 dimensions [Cr79a]. 
(a) Use the scaling relation in Prob. 32.2 to show that for SU(2)  with d = 5 one has 
ac = 1.060 in MFT. 
(b) Establish that Pcreutz e 2u. (You may have to trace back in the literature here.) 
(c) Hence establish the comparison with the Monte Carlo result that uc = 0.821 f 0.008 
in this case. 

33.1. At the end of chapter 28 it was argued that the vacuum expectation value of a 
time-ordered product of Heisenberg operators, in the euclidian metric, can be obtained 
from variational derivatives with respect to the sources of the generating functional; these 
simply serve to bring down the field operators. Thus one can write 

A2 

for some real 4 : (di,d2, d3). 
- 2  

Here S G S of chapter 28, with J-", d r ,  and Q is constructed from the link variables. The 
correlation function of Eq. (33.42) is then given by G ( 7 )  = (Q(7)Q(O))  - (Q(7 ) ) (Q(O) ) .  

Let Q = SO be the contribution to the action from an elementary plaquette. Formulate 
the problem of calculating the plaquette-plaquette correlation function in lattice gauge 
theory. 

33.2. Discuss the following features of the calculation formulated in Prob. 33.1: gauge in- 
variance, continuum limit, large 7 limit, and nature of the intermediate states contributing 
to the correlation function. 
34.1. Derive the following strong-coupling u -+ 0 limits for (SO): 
(a) For U(1); 
(b) For SU(2); 

(S0)/2u = 1 - u + O(u3) 
(S0)/2g = 1 - u/2 + O(u3) 
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34.2. Plot the asymptotic strong-coupling result in Fig. 30.6. 
34.3. Draw Fig. 34.7 for SU(2) in d = 4 dimensions. 

34.4. Evaluate the term of O(a3) in Prob. 34.l(a). 

35.1. Use the Monte Carlo method in Eq. (35.14) to evaluate the following integrals: si z'dz, si sin (7rz/2) dz, and si e-"dz. Compare with the brute force method in Fig. 35.5 
for the same number of points. Discuss convergence. 

35.2. The Dirichlet integral I ,  = s . . . s d z l .  . . dz, with z: + . . . + z: 5 1 is the volume 
of the unit sphere in n-dimensional euclidian space. Generate a random point in the unit 
cube, keep the point if the inequality is satisfied, and hence compute the ratio of the 
volume of the unit sphere to unit cube In = (&),/I'(l + n/2 ) .  Verify for several n, and 
discuss convergence. 

35.3. Consider the following integral f = so] f(z)m(z)dz/Ji m(z)dz with p ( z )  = 
m(z)/  J; m(z)dz. Use the Metropolis algorithm to generate a distribution satisfying 
dN/N = p ( z ) d z  and evaluate f in the following cases: 1) f(z) = z'(1 - z)' with 
m(z) = z(1- z); and 2) f(z) = xn with m(z) = e-". Discuss convergence. 

35.4. Pick one of the integrals in Prob. 35.1. By repeated calculation for fixed N ,  and 
then for larger N ,  verify the main features of Fig. 35.4. 
36.1. Fermion fields in path integrals are described through Grassmann algebras of anti- 
commuting c-numbers ci with i = 1, . . . , n satisfying {ci , cj} = 0. The concept of integra- 
tion, here justified a posteriori (Prob. 36.4), is then defined by s dci = 0 and s cidci = l 
where it is assumed that all elements anticommute {ci, c j }  = {dci, cj} = {ds, dcj} = 0. 
Suppose one has two distinct Grassmann algebras and ci with all elements anticom- 
muting. The basic integral relation corresponding to that in Prob. 28.2 is then (as usual, 
repeated indices are summed) 

(a) Prove this result explicitly for n = 2. 
(b) Generalize the proof to arbitrary n. 

36.2. Let & and & be two additional Grassmann algebras of sources, everything again 
anticommuting. Prove 

(Hint: change variables - = c - N-lJ with dqi = dci.) 

36.3. Let Lo = -$(y,d/dz, + A4)$ be the lagrangian density of a free fermion field. Dis- 
cretize space time as in Prob. 28.7, and repeat that problem dealing now with Grassmann 
variables Ga and $0 and a measure D($)D($).  If and C are Grassmann sources, show 
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exp {ik . (z - y)} 
d4k 1 

sF(z-y) = -/ m i k , y ,  + (A4 - iq) 

36.4. Denote the continuum limit of the Grassmann algebra by q -+ c, + c(z), and 
define a functional and its variational derivatives by 

P[E, c] = 1 dzl . . . dz,, dyl . . . dy,, I 

Here the kernel K,, (XI, . . . , zn; y1, . . . , yn) is assumed antisymmetric in 2 1 , .  . . , z,, and in 
yi, . . . , y,,; note the order is important on both sides of these relations. 

Derive the following relation from the result in Prob. 36.3 

36.5. (a) Assume AD is a diagonal matrix. Show det& = exp {Tr 1.4,). 
(b) Assume the matrix A can be diagonalized with a similarity transformation m-' 
= A,. Use the result in (a) to prove detA = exp {Tr InA}. 

36.6. Use the expansion of the determinant in terms of cofactors to prove the general 
matrix relation a(detAf)/aMij = (M-')ji(detE). 
36.7. Extend the demonstration of the correct continuum limit of the LGT fermion action 
to d = 3 and d = 4 dimensions. Show UF = 1/2aldd. 
36.8. Use Eq. (36.12) to find the matrix Aij(V) in Eq. (36.21). 

37.1. Assume T satisfies the eigenvalue equation jo (z)  = jl(z). Use the formulae for 
spherical Bessel functions in [Sc68] to show the following: 
(4 1," P2dP[jo"(P) + j ? ( P ) l  = 2(. - 1) sin2 z 

(4 so PZdP[jo"(P) - 5m1 = ($4 sin2 2 
(b) S,Z p3dpj0(p)j1(p) = (z - 9 )  sin2 2 

37.2. (a) Use the arguments in appendix A . l  to derive the effective quark-quark potential 
arising from one-gluon exchange. Show that with neglect of retardation in the gluon 
propagator one has vq-q = ( g 2 / 4 . n r 1 2 ) ( ~ , ) ( ' ) ( y , ) ( 2 ) ( X a / 2 ) ( 1 ) ( X a / 2 ) ( 2 ) .  When added to 
the bag model, this gives rise to additional splitting of the (17)~ levels. 
(b) Use asymptotic freedom to discuss the expected behavior of g 2 ( r 1 2 )  as r1z + 0. 
(c) Discuss the q-q potential and the relevance to Fig. 33.5. 
37.3. (a) Show that ((r2))'/' = 0.73 R for a single massless quark in the l s l / 2  state in 
the bag model [Bh88]. 

the generating functional is(see[Se86,Wa92])
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(b) Find the mean square charge radius of the proton and neutron in the bag model. 
37.4. Construct the bag model (qq) wave functions for the ground-state, color singlet, 
(0-,  I-) mesons in the nuclear domain with massless quarks. (Note: Be careful with the 
antiquark contributions.) 
38.1. Verify the expression for d u  in Eq. (38.7). 

38.2. 

38.3. Verify the expression for d 'o ldS22d~z  in Eq. (38.19). 
39.1. Show that in the 
parton model one has 14 x 0 and $is perpendicular to Icl = -@(Fig. 39.1). 

39.2. Derive Eqs. (39.11) for the photoabsorption cross section uy [WaOl]. 
39.3. Derive the splitting function Pet? = [z' + (1 - z)']/2 in QED. 

39.4. Derive thesplitting function Pete = (1+z2) / (1-z)++(3/2)S( l -z )  in QED. Here 
the singularity at  z = 1 has been removed through f (z ) / ( l -  z)+ = [f(z) - f ( l ) ] / ( l  - z) ;  
and the second term is added to properly account for depletion in this channel through 
satisfaction of the sum rules in Eqs. (C.17) and (C.20) (see [Qu83]). 
39.5. Show that to take into account depletion and to satisfy the sum rule in Eq. (C.20) 
Prtr = -(1/3)6(1 - z )  in QED. 
39.6. Define moments of the distribution functions e"(7) st da: zn-'e(a:, T )  with similar 
relations for P(T)  and ~"(7). Also define Pbta = st dzzn - lPb ta ( z ) ;  note that these are 
now known quantities. 
(a) Take moments of the master Eqs. (C.14) and show 

Derive the general expression for the response tensor W,, in Eq. (38.11) (see 
[WaOlI ). 

+ 00 frame in the deep inelastic region with small 0 in the 
.+ 

(b) Discuss the solution of these coupled, linear, first-order differential equations. 
39.7. Show that in QCD [A177, Qu83, CaSO] 

P,+,(z) = 2Nc - + - + z( l  - z )  + (; - 6Nc) N f  S(1- 41 [ s z  (1 :z)+ 

40.1. Verify Eqs. (40.5) and (40.8). 

40.2. Write f(E) l /D(E) with D(E)  = e(E-,)/kBT + 1 and show that this Fermi 
distribution function causes the new expression for the integrand of the collision term in 
Eq. (40.27) to vanish. 
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Chapter 42 

Weak interaction phenomenology 

In this chapter we review some basic phenomenology of the weak interactions. This 
material is the result of over a half-century of beautiful experimental and theoreti- 
cal work, and we cannot really do justice to this material in a superficial overview. 
Nonetheless, a familiarity with the basic weak interaction phenomenology is essen- 
tial to the further development in this part of the book. The reader is referred to 
[Wa75, Co83] for a much more extensive discussion of these topics and a thorough 
list of references to the original literature. 

42.1 Lepton fields 

Most leptons (1, Q) are light, or massless, and they can be created and destroyed 
in weak interactions. This indicates that they must be described with relativistic 
quantum fields. In the interaction representation, fermion fields take the following 
form 

(42.1) 

In this expression a destroys a lepton, bt creates an antilepton, and X denotes the 
helicity with respect to the accompanying momentum variable.' 

42.2 V - A theory 

In the weak interactions, massless leptons are observed to  couple through the fol- 
lowing two-component fields 

'Hole theory implies that v(-kX) is a negative-energy wave function with helicity X with respect 
to -k. 

431 
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Note the following properties of 7 5  = 71727374 
7s" = 1 

(42.3) 

Equation (42.2) implies that the lepton coupling terms in t,,e weak ..amiltonian 
take the following form 

1 -  
6aOi4b = q'$'a(l - 75)oi(l + 75)"b (42.4) 

This expression vanishes for scalar ( S ) ,  pseudoscalar ( P )  , and tensor (T)  couplings 
of the form Oi = 1,75, apv; and in the case of vector ( V )  and axial vector (-A) 
interactions Oi = -yp, yp75 the coupling is unique 

1 -  1 -  
6aOi4b = q'$a(l - 75)7p(l  + 75)"b = z'$'a?'p(l + 75)"b (42.5) 

The early days of weak interactions are filled with studies to determine the nature 
of the couplings (S, P, T ,  V, A). The empirical evidence now is that it is entirely of 
this V - A form [Co83]. 

In the standard representation of the Dirac matrices 

7 5  = ( ; I )  = (: ;) 
(42.6) 

The Dirac equation for the energy eigenstates in the case of massless particles is 

a . p $  = f E P $  (42.7) 

Multiplication by (1 + y5)/2 and 7 5  in turn then leads to 

(42.8) 

The last equation exhibits the empirical helicity of the massless leptons; particles 
are left-handed and antiparticles are right-handed in the coupling in the weak inter- 
action. 
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42.3 &decay interaction 

The empirical hamiltonian describing the weak interaction was first written by Fermi 
who, as legend has it, was teaching himself field theory. Written in terms of the 4 
with the corresponding unique V - A coupling, the simplest form of the hamiltonian 
describing the P-decay process in Fig. 42.1 is 

Here G is the Fermi coupling constant. The present convention is that e = e- 
represents the particle in the charged lepton field, and e+ the antiparticle. 

Fig. 42.1. Basic P-decay process. 

42.4 Leptons 

It is an empirical fact that if leptons are assigned a lepton number 1 then, as with the 
baryon number, the lepton number is a conserved quantity. Furthermore, suppose 
one groups the observed leptons into pairs in the following fashion 

(42.10) 

Then, until recently, all experimental evidence indicated that the lepton numbers 11 
of the individual pairs were separately conserved [Co83]. Current results on neutrino 
mixing invalidate this statement (chapter 49). 

42.5 Current-current theory 

How do the other leptons couple in the weak interactions? The evidence is that 
there is a universal coupling to the charge-changing lepton current illustrated in 
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Ial Ibl Icl 

Fig. 42.2. Charge-changing fermion currents in the weak interactions: (a) leptons; 
(b) point nucleons; (c) quarks. 

Fig. 42.2a and given by 

As is evident from &decay, the total current in the charge-changing weak interac- 
tions has both a hadronic and leptonic part 

Ji-) = Jj-)(hadronic) + j1-I (leptonic) (42.12) 

For nucleons with point Dirac couplings the weak charge-changing hadronic 
current describing, for example, the ,&decay process p --+ n + e+ + v, as illustrated 
in Fig. 42.2b takes the form 

Ji-)(hadronic) = 2i&yx&, 
= i$nYX(l + Y5)& (42.13) 

On a more basic level, the charge-changing weak interactions of the light quarks 
proceed through the reactions u -+ d + 1+ + vl and u -+ s + 1+ + vl as illustrated in 
Fig. 42.2~. The empirical form of the appropriate quark current is given by [Co83] 

Here sin& M sin13" represents the Cabibbo angle; it is a rotated quark field 
($d cos Bc + GS sin 0,) that couples into the charge-changing weak interactions. 

The adjoint of the above current describes weak processes where the charge is 
raised 

(42.15) 

It is then an empirical fact that all the charge-changing weak interactions can 
be described through a universal current-current interaction of the currents in 
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Eqs. (42.12) and (42.15) 

Ew(2) = - (42.16) 

Written in terms of the lepton and quark currents in Eqs. (42.11) and (42.14), this 
point four-fermion hamiltonian appears to provide the correct description of weak 
interactions in the nuclear domain [Co83]. One must realize, however, that the 
evaluation of the matrix elements of the quark fields in the nuclear domain involves 
all the complexities of strong-coupling QCD. 

In fact, a remarkably good starting description of semileptonic weak interactions 
in the nuclear domain is given by the Fermi hamiltonian and the hadronic current 
of Eq. (42.13) with point Dirac fields 

G -  

X [der~(l+ r5)1Cl”, + . * + $nrx( l+  75)$p + . . - 1  
E W ( 2 )  = - [db,YA(1+ r5)& + . . - + &YA(1+ r5)+n + * .  . ] Jz 

(42.17) 

42.6 p-decay 

The purely leptonic process of p-decay is described by the hamiltonian in 
Eqs. (42.16) and (42.17) as illustrated in Fig. 42.3. 

Fig. 42.3. p-decay as described by the point four-fermion interaction. 

Since no strong interactions are involved, the calculation of the decay amplitude 
and rate is a straightforward exercise in perturbation theory (Prob. 42.6). The 
experimental value of the decay rate can then be used to determine the value of the 
Fermi constant [Co83] 

1.0267 x 
G, = 

m; 
(42.18) 

Note that the Fermi constant is not dimensionless; it has dimensions l /mi .  Thus the 
hamiltonian in Eq. (42.16) would appear to be an effective low-energy representation 

2This value includes the lowest-order electromagnetic correction to the rate; the uncorrected value 
is GFcorr. = 1.024 x lOW5/m; [Co83]. Henceforth we consistently set tL = c = 1 (appendix D.3). 
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of a deeper underlying theory. 

42.7 Conserved vector current theory (CVC) 

The conserved vector current theory of Feynman and Gell-Mann is one of the loveli- 
est and most powerful weak-interaction results [Co83]. To motivate it, start with 
point nucleons. The charge-changing weak current from above is then 

Ji+’ = i?J,YX(l+ Y5)+, (42.19) 

Introduce the isodoublet nucleon field and Pauli matrices 

+ = (  :) - ( 1 + 7 3 ) = ( ;  2 1 :) 
( ; : ) (42.20) 

1 
7- = -(71 - 272) = (: ;) 2 

1 
2 

7+ = -(TI + i 7 2 )  = 

The expression in Eq. (42.19) can then be rewritten as 

(42.21) 

The electromagnetic current can similarly be rewritten as 

Now the actual hadronic current depends on the details of hadronic structure 
and the strong interactions; even within a purely hadronic picture there will be 
additional mesonic currents in the weak interaction, and without some guiding 
principle they are un~onstrained.~ One can, however, attempt to abstract the general 
symmetry properties of the currents as provided by the above very simplistic model. 
If we use a subscript to denote the properties under Lorentz transformations, and a 
superscript to denote the transformation properties under isospin, then it is evident 
by inspection that the above currents have the following general characteristics 

Jx = J x  + Jx5 ; V - A  
Jif’ = JF *iJ? ; Isovector 

J,Y = J f +  J F  ; EM current 

Ji*) = J,V’ & iJF  ; cvc (42.23) 

3CVC was developed before the discovery of the quark substructure of hadrons; indeed, one of 
the major triumphs of the quark picture with point electroweak couplings is the simple form and 
symmetry properties of the predicted electroweak currents (see later). 
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The first equation indicates that the weak current is the sum of a Lorentz vector and 
axial-vector, the second that the charge-changing weak current is an isovector, and 
the third that the electromagnetic current is the sum of an isoscalar and third com- 
ponent of an isovector; the last equation is the statement of CVC. The last relation 
states that the Lorentz vector part of the weak charge-changing current is simply 
obtained from the other spherical isospin components of the same isovector opera- 
tor that appears in the electromagnetic current. As a consequence, one can relate 
matrix elements of the Lorentz vector part of the charge-changing weak currents 
to those of the isovector part of the electromagnetic current by use of the Wigner- 
Eckart theorem applied to isospin. The resulting relations are then independent of 
the details of hadronic structure; they depend only on the existence of the isospin 
symmetry of the strong interactions. CVC is a powerful, deep, and far-reaching 
result for it established the first direct relation between the electromagnetic and 
weak interactions which a priori have nothing to  do with each other! 

In fact, CVC goes further than this. The electromagnetic current J,Y is con- 
served, and one expects the dynamically independent isoscalar and isovector con- 
tributions in Eq. (42.23) to be separately conserved. In CVC one identifies J T  
with the conserved isovector current arising from strong isospin symmetry (chapter 
21). The integral over the fourth component then yields the strong isospin opera- 
and the full weak Lorentz vector, charge-changing current is then conserved 
(CVC). All known applications of CVC are consistent with experiment. A stronger 
motivation for CVC in terms of quarks will be presented later. 

42.8 Intermediate vector bosons 

The interaction in QED, the most successful physical theory we have, is mediated 
by the exchange of a vector boson, the photon. The Lorentz vector nature of the 
weak charge-changing current, the form of the effective low-energy current-current 
hamiltonian in Eq. (42.16), and the dimensional form of the Fermi constant all 
strongly suggest that the weak interactions are also mediated by the exchange of a 
vector boson. In contrast to the massless, neutral photon of QED, this weak vector 
boson must be massive and charged. The coupling of such a boson is illustrated in 
Fig. 42.4a and can be described with the following hermitian interaction lagrangian 

(42.24) 

Here W, = (WliWo) is the weak vector boson field, which destroys a W f  and 
creates a W - ,  while W i  = (W*,iW,*) creates a W+ and destroys a W-.  g is a 
dimensionless coupling constant, and the charge-changing weak currents are those 

4See, for example, Prob. 42.2. 
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discussed above. The interaction hamiltonian follows as 

'HI = -L = - 9  -[JJ-)W,* + Jj+'WJ 
2 J z  

I (42.25) 

Fig. 42.4. Interaction with charged weak vector boson: (a) basic vertex; (b) second- 
order Feynman diagram for n + vl + p + 1- through boson exchange. 

Now use this expression to compute, for example, the S-matrix to order g2 for 
the process n + vl -t p + 1- through W exchange as illustrated in Fig. 42.4b. The 
Feynman rules imply: 

(1) There are two cross terms in S ( 2 )  arising from this hamiltonian; this cancels 

(2) There is a factor of ( 2 ~ ) ~ 6 ( ~ ) ( C p i )  at each vertex; 
(3) There is an overall factor of (-i)2(-g/2.\/2)2 for second order; 
(4) The vector meson propagator is5 

the 1/2! in the S-operator; 

(42.26) 

(5) One must take J d4q over the internal four-momenta; 
(6) For the external wave functions, leave the following general expression, 

which takes the indicated form in the above Feynman diagram 

above 2 - (flJp(o)l4 - p ( k ' ) - / p ( l +  -/5)%,(k) ; etc. (42.27) 

A combination of these results then gives the S-matrix 

5Note the factor of q,g,/M& in the numerator, which appears to preclude the possibility of 
making this a renormalizable theory. 



Neutral currents 439 

The momentum transfer q = p’ - p = k - k’ is here controlled by the external 
variables. Suppose that the weak boson is very heavy so that Iql/Mw << 1. In this 
case the S-matrix simplifies to 

~ ~ l 3 ~ - ~ ~ ~ ~ l ~ ~ ~ ~ l 3 ~ + ~ ~ ~ ~ l ~ ~  (42.29) 
g2 sg) (244i6(4)(p + k - - IC’) - 8M& 

One can now define an effective lagrangian that, when treated in lowest order, 
gives exactly the same result as in Eq. (42.29) 

This is precisely the expression in Eq. (42.16). 
These arguments are truly compelling; searches for this massive weak vector 

boson extended over several decades, resulting finally in its discovery at CERN in 
1983 (see [Ai89]). 

Applications of the semileptonic part of this lagrangian, describing semileptonic 
weak nuclear processes, will be discussed in detail later in this part of the book 
[Wa75]. 

42.9 Neutral currents 

The question immediately arises, if there are charged weak vector mesons, why not 
neutral ones also? The observation of the effects of weak neutral currents at low 
energies is difficult because many of their effects are masked by electromagnetic 
interactions. 

Fig. 42.5. Interaction with neutral weak vector boson: (a) vertex; (b) second-order 
Feynman diagram for process of p + uz 4 p + u~ through boson exchange. 



440 Weak interaction phenomenology 

The following hermitian lagrangian describes the interaction with a weak neutral 
meson as illustrated in Fig. 42.5a 

qz) = -Jyzp f (42.31) 

Here 2;) is the neutral boson field and gf) a hermitian weak neutral current, as 
yet unspecified. 

Consider the second-order Feynman diagram for the process p + ul -+ p + ul 
through boson exchange as illustrated in Fig. 42.513. Proceed through the same 
steps as above. If the Zf) is heavy, one arrives at an effective lagrangian of the 
form 

2 

- L e R  = x e R  = -f2j!O)(lepton)~!o)(nucleon) (42.32) 

Here it is assumed, as before, that the weak neutral current is the sum of a leptonic 
and a hadronic part 

4M.z 

3:’) = ,7i0)(hadron) + jf)(lepton) (42.33) 

There will now be two cross terms in the current-current interaction of the form in 
Eq. (42.32), and hence the total current-current interaction is 

(42.34) 

The standard model of electroweak interactions of Weinberg and Salam (chapter 
43) relates the charged and neutral coupling constants and masses.6 The heavy 
neutral weak vector meson 2; was also discovered at CERN in 1983 (see [Ai89]). 

42.10 Single-nucleon matrix elements of the currents 

Consider the full single-nucleon matrix element of the charge-changing weak current 
(Fig. 42.6). The strong interactions determine the exact value of the matrix elements 
of the currents at any momentum transfer; however, the use of Lorentz invariance, 
parity invariance, isospin invariance, and the Dirac equation permits one to write 
the general f o r m  of these matrix elements (see e.g. [Wag21 and Probs. 42.3-5) 

i 
R 
i 

(p‘lJ~-)(O)lp) = -qP’)[FlYp + Fzupw4w + iFS4p17-44 
(P’lJLi)(o)[P) = nfi(P’)[FA757p - iFP754p - F T 7 5 ~ p ~ q ~ ] ~ - u ( p )  (42.35) 

6We will derive the following relations between the coupling constants and masses in the standard 
model: G ‘ l f i  = f 2 / 8 M $  = g2/8M$ cos2 Ow = g2/SM& = GI&. 
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Here q = p - p’ with p2 = p” = -m2, and all the form factors Fi(q2) are functions 
of q2. We suppress the isospin wave functions. 

Fig. 42.6. Kinematics in single-nucleon weak vertex. 

It is a theorem due to Weinberg that if the currents have the same transformation 
properties under time reversal T ,  parity P ,  charge conjugation 6,  and strong isospin 
T as the point fermion currents in Eqs. (42.21) and (42.22), then ([Wa75, C0831, 
Probs. 42.3-5) 

Fs = FT = 0 (42.36) 

These terms are labeled second class currents by Weinberg [We58]; they are absent 
in the standard model (and experiment has so far found no evidence for them). 

The general structure of the single-nucleon matrix element of the electromagnetic 
current follows in the same fashion; it has already been employed in chapter 8. 

(42.37) i 
(P’lJ,Y(O)lP) = $w)[F:y, + F2y~PYQY14P) 

The isospin structure is given by 

; i = 1 , 2  
1 
2 F? = -(F:+T~FY) 

(42.38) 

The conserved vector current theory in Eq. (42.23) now provides nontrivial relations 
between the weak and electromagnetic form factors of the nucleon. The observation 
that (71 f i 7 2 ) / 2  = 75 immediately leads to the relations 

Fi = Piv ; i = 1 , 2  (42.39) 

Hence CVC implies that 

the entire Lorentz vector part of the single-nucleon matrix element 
of the charge-changing weak current, whatever the detailed dynamic 
structure of the nucleon, can be obtained from elastic electron scat- 
tering through the electromagnetic interaction! 
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42.11 Pion decay 

The weak decay of the pion (Fig. 42.7) plays a central role in the phenomenology 
of the weak interactions. 

TT- .... 9 .... g<; 
P 

Fig. 42.7. Weak decay of the pion. 

By Lorentz covariance, the hadronic part of the decay amplitude must take the 
following form 

Here p 2  = -p2 = -m:. Go  to the rest frame of the pion. It is then evident that 
since the pion has J" = 0-, only the axial vector current can contribute to  this 
matrix element. 

It follows from the weak hamiltonian density in Eq. (42.16), that the S-matrix 
for this process is given by7 

The pion decay rate is then given by (Prob. 42.1) 

Comparison with experiment then yields the result (Prob. 42.1) 

F, = m,f M 0.92m, 

Note only the magnitude of F, is determined here. 

(42.41) 

(42.42) 

(42.43) 

'Note that the field R = ( ~ 1  - i ~ z ) / f i  creates x - ,  R* = ( x i  + i x z ) / f i  creates A+, and 7'. ii E 
f i ( X T +  + X * 7 - )  + R373. 
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42.12 Pion-pole dominance of the induced pseudoscalar coupling 

There is a one-pion exchange process that contributes to the weak charge-changing 
lepton-nucleon scattering amplitude 1- + p  -+ y + n (Fig. 42.8). 

Fig. 42.8. Pion-pole contribution to the weak charge-changing lepton-nucleon scat- 
tering amplitude. 

This process produces a pole in the scattering amplitude at a four-momentum trans- 
fer q2 = -rn$ The contribution to the S-matrix from the Feynman diagram in 
Fig. 42.8 follows from the preceding analysis as 

This expression is exact on the pole, where the vertices are to be evaluated for real 
particles on the mass shelL8 

On the other hand, the general form of the S-matrix for the process p + 1- -+ 

n + VL follows from the current-current interaction and the weak nucleon vertex 
defined in Eqs. (42.35) 

- i ~ ( 2 ~ ) 4  
sfi = z ~ 6 (  ’ ( P  kl  -P’ - k 2 ) C ( k 2 ) 7 ~ ( 1 +  7 5 ) U ( k l ) G ( P ’ ) r ~ U ( p )  (42.45) 

Comparison of these results allows an identification of the pion-pole contribution to 
the induced pseudoscalar form factor Fp 

1 
q2 + rn: - - ~ F P Y ~ ~ x T -  = i F n 7 s ~ x f i g ~ ~ -  (42.46) 

The result is 

*Recall Prob. 20.10. 

(42.47) 
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If one now makes the bold assumption that the pion-pole contribution dominates in 
the experimentally accessible region of small momentum transfer, then Eq. (42.47) 
provides an explicit expression for the induced pseudoscalar coupling. 

42.13 Goldberger-Treiman relation 

We previously introduced the notion of the partially conserved axial vector current 
(PCAC) in chapters 21 and 22 

(42.48) m,+O 
- 0  

While historically the argument ran in the opposite direction, if one assumes PCAC, 
then for the single-nucleon matrix element of the divergence of the axial vector 
currentg 

i 
R = -G(p')[FAY5iYXqX 4- q 2 F p ~ ~ ] ~ . - u ( p )  (42.49) 

Here the second equality follows from Eqs. (42.35) and (42.36). Now use the Dirac 
equation on the first term with q = p - p' 

W)Y5(iYAPA - iYXPi)U(P) = 'ZL(P')(iYXPiY5 + Y5iYXPX)U(P) 
= - 2774P')Ys (P) (42.50) 

Hence 

Now use the pion-pole result in Eq. (42.47); the expression in square brackets be- 
comes 

For this result to satisfy Eq. (42.48), the first two terms must cancel to O(mz)  

- 2 m F ~  = fig,& (42.53) 

'From the Heisenberg equations of motion (p'lJ;;)(z)lp) = ei(P--P')'z (P'l J;;)(o)lP). 
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This is the Goldberger-Treiman relation [Co83]; PCAC implies that this relation is 
exact in the limit m, 4 0. 

Use the following numerical values 

FA(O) = -1.23 f 0.01 m,+ = 139.6MeV 
2 
9. = 14.4 
4lr 

mp = 938.3 MeV (42.54) 

These lead to the following prediction for the pion decay constant from the 
Goldberger-Treiman relation 

- 
F, E fm, = 0.87m, (42.55) 

It agrees with the result obtained from pion decay in Eq. (42.43) to better than 
lo%. lo  

"Note that in this chapter, as in appendix A. l ,  we have explicitly included a factor of ( - i )n 
where n is the order in the Feynman rules for the S-matrix. 



Chapter 43 

Introduction to the standard model 

The development of a unified theory of the electroweak interactions surely must be 
regarded as one of the great intellectual achievements of our era. After the brief 
introduction to the phenomenology of the weak interactions in the previous chapter, 
we are now in a position to discuss the so-called standard model of the electroweak 
interactions originally presented in [Sa64, We67a, G170, We72aI (see also [co83, 
Ge841). 

43.1 Spinor fields 

A spinor field can always be decomposed as follows 

(43.1) 

43.2 Leptons 

The lepton fields for the electron and electron neutrino' will be combined in the 
following fashion: 

(43.2) 

lAnd similarly for the other leptons. 
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Leptons 

The fields ( L ,  R )  are defined by 
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1 
R _ e R =  ~ ( 1 -  75)$'e 

The kinetic energy of the leptons is then given by2 

(43.3) 

(43.4) 

This lagrangian is invariant under a global SU(2)w symmetry - a weak (left- 
handed) isospin - which treats the field L as a weak isodoublet and R as a weak 
isosinglet. From our previous discussions, the generators for this SU(2)w symmetry 
can be immediately written in terms of the above fields as 

(43.5) 

It follows immediately from the canonical (anti)commutation relations that these 
generators satisfy an SU(2) algebra 

[p w , T j  wl = i E . .  v k  T k  W (43.6) 

The finite symmetry transformations are given by 

e.T exp (20. Tw} L exp { -iO. Tw} = 1e-T ] L ; doublet 

exp { i e .  Tw} R exp { - iO .  Tw} = [l] R ; singlet (43.7) 

These equations follow from the projection properties of (1 f y5)/2,  which imply 

The mass t e rm for the electron has the following form 

-meqe+e = - -me[cLeR + E M L ]  (43.9) 

2There is only one neutrino field in the standard model UL = q(l+ys)&; it describes left-handed 
neutrinos and right-handed antineutrinos. This is put in by hand, as is the fact that this neutrino 
is massless mu = 0 (see chapter 49). 
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This expression is not invariant under SU(2)w. Hence if one wants to build on this 
symmetry, it is necessary to start with massless fermions. 

43.3 Point nucleons 

As in the previous chapter , the corresponding lagrangian for point Dirac nucleon 
fields illustrates the general structure of the theory [We72a], and for clarity of con- 
cept, we start with this simple description of the hadronic sector. The extension to 
matrix elements for physical nucleons then follows from general symmetry consider- 
ations, leading to Eqs. (42.35) and (42.36). The deeper formulation of the standard 
model in terms of quarks is discussed in the next chapter. 

Thus we here include proton and neutron fields in a manner analogous to the 
above 

PRi n R  ; singlets 

This lagrangian is now also invariant under SU(2)w; again this is true only if one 
starts with massless fermions. 

43.4 Weak hypercharge 

Introduce an additional global U(l)w symmetry - weak hypercharge - defined 
so that the fields transform according to 

Assign quantum numbers to the fields (and corresponding particles) so that the 
lagrangian is invariant and the electric charge is still given by the Gell-Mann - 
Nishijima relation 

Q = (7'3+-Y)w 1 (43.12) 
2 

Conservation of electric charge will always be imposed as an exact symmetry of the 
theory. Assignments of the weak quantum numbers for the fields introduced so far 
are shown in Table 43.1. 

The generator for the weak hypercharge symmetry for the fermions is readily 
constructed in second quantization, as are those for the electric charge operator and 
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Table 43.1 Weak symmetry quantum numbers in the standard model. 

YW 
-1 
-1 
-2 

1 
1 
2 
0 
1 
1 

-1 
-1 

- 

- 

- 

third component of weak isospin, by (Table 43.1) 

Q - 
0 

-1 
-1 

1 
0 
1 
0 
1 
0 
0 

-1 

- 

- 

- 

(43.13) 

Hence 

1 -  
Q = T3w+-Yw 2 

(43.14) 

43.5 Local gauge symmetry 

Now make this a Yang-Mills local gauge theory based on the symmetry group 
SU(2)w @ U(1)W. The technique for doing this has been previously discussed 
in detail. The only slight new complexity is that now one has the direct product 
of two symmetry groups with commuting generators [Eq. (43.14)]; however, an ex- 
amination of the basic concept shows that this is an inessential complication. The 
steps of the Yang-Mills construction are as follows: 
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(1) Add gauge bosons, one for each of the generators (!I!&,, p i )  

( 2 )  Use the covariant derivative in the lagrangian 

; on doublets 
a D d i  i -g‘YwB, - - g T .  A, dx, Dx, ax, 2 2 

; on singlets (43.16) 
d i  

Tg’YwBp 
ax, 

(3) Include a kinetic energy term for the gauge bosons 

2 - -- 1 (- dB, - z)2 - 1 (” - dA, +gA, x Au) (43.17) 
4 ax, ax, Lgauge - 4 ax, 

(4) Mass terms of the form miB,B, or miA,  . A, break the local gauge 
invariance; hence the gauge bosons must be massless. 

The Yang-Mills lagrangian thus takes the form 

43.6 Vector meson masses 

As in our discussion of the a-model in chapter 22, the masses for the gauge bosons 
will be generated by spontaneous symmetry breaking. One proceeds to: 

( 1 )  Introduce a weak isodoublet of complex scalar mesons 

(43.19) 

(2) Assign weak quantum numbers as indicated in Table 43.1; 
(3) Use the covariant derivative of Eq. (43.16); 
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( 4 )  Add a term to the lagrangian for this scalar field that is invariant under 
local S U ( 2 ) w  @ U(l)w 

(43.20) 

Here (D+/Dx , )*  - E [ ( D + / D x ) t ,  - + ( l / i ) ( D + / D ~ o > t ] . ~  - Thus 

(E)* (E) = 

(5) Assume the most general form of the scalar self-interaction potential V for 
a renonnalizable theory 

v = P2$t$+X($t$)2 (43.22) 

43.7 Spontaneous symmetry breaking 

For the generation of mass for the gauge bosons, while maintaining the local gauge 
symmetry, one now employs essentially the same argument that was used for the 
generation of nucleon mass in the chiral-invariant a-model in chapter 22. 

Fig. 43.1. Form of the scalar self-interaction potential to generate mass for the 
gauge bosons by spontaneous symmetry breaking. The illustration is for a single, 
neutral, complex 4. 

Assume that p2 < 0 and X > 0 so that the potential V has the shape shown in 
Fig. 43.1. The minimum of the potential no longer occurs at the origin with + = 0, 
but now at a finite value of - 4. Hence the scalar field acquires a vacuum expectation 

3The metric is not complex conjugated in v; (vt, +ivh). 
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value. Only the neutral component of the field can be allowed to develop a vacuum 
expectation value in order to preserve electric charge conservation. Furthermore, the 
(constant) phase of the field can always be redefined so that this vacuum expectation 
value is real. Thus we write 

V (do)  = (p*) = - (43.23) Jz 
At the minimum of the vacuum expectation value of the potential one finds 

(43.24) 

Without loss of generality, one can now parameterize the complex scalar field 4 
in terms of four real parameters {i$(z), ~(2)) describing the fluctuations around the 
vacuum expectation value in the following fashion [Ab73]: 

(43.25) 

The theory has been constructed to be locally gauge invariant. Make use of this 
fact to simplify matters. Make a gauge transformation to  eliminate the first factor 
in this equation. Define 

Written in terms of the new field - $', the three scalar field variables {i$(z)} now 
no longer appear in the lagrangian; and, as we proceed to demonstrate, the free 
lagrangian has instead a simple interpretation in terms of massive vector and scalar 
particles. The lagrangian in this form is said to be written in the unitary gauge 
where the particle content of the theory is manifest. This procedure for generating 
the mass of the gauge bosons in this fashion is known as the Higgs mechanism (see 
[Ab73, C0831). 

Substitution of the expression in Eq. (43.26) in the scalar lagrangian in 
Eqs. (43.20)-(43.22) leads to 

(43.2 7) 

Here X I  = ( ) . An evaluation of the potential term, utilizing the minimization 
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condition in Eq. (43.24), gives 

x 4 
2 

v ( i ( U  + 7712) = $(U + + p + 77) 

= U 2  (p) + q2(-p2) + V 3 ( W  + v4 (a> (43.28) 

Note that there is no term linear in 77 when one expands about the true minimum 
in V .  The coefficient of the term linear in aq/dz, similarly vanishes in Eq. (43.27). 

The remaining boson interactions in .Cscalar are proportional to 

x:(SlB, + QT . A,)(dB, + QT - A,)Xl 
12 2 

= XI (9 B, + g2AE + 2gg’BpT . A,)X1 
= (g 12 B, 2 + g2AE - 2gg1B,Af)) 

Hence the scalar lagrangian in the unitary gauge is given by 

(43.29) 

(43.30) 

The term in u2 in the second line now provides the sought-after mass for the 
gauge bosons. The coefficient of this term is a quadratic form in the gauge fields, 
which can be put on principal axes with the introduction of the following linear 
combinations of fields: 

1 
8 

- - (U + q)2(g’2Bi + g2AE - 2gg1B,Af)) 

(43.31) 

The fields (WE, W,) will create particles (W,’, W;), respectively, the third field 
describes a neutral 2: vector boson, and the fourth is the photon field. The re- 
lation between (B,,Af)) and (Z , ,A, )  is an orthogonal transformation, which is 
illustrated in Fig. 43.2. 

Note in particular that the weak angle is defined by 

(43.32) 
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Fig. 43.2. Coefficients in the orthogonal transformation that diagonalizes the vector 
meson mass matrix in the standard model. 

The scalar lagrangian can thus finally be written in the unitary gauge as 

1 2  2 12 1 1 
--?J ( g  + g  ,zz; - - p v , w ;  
--q(2v+77)[(g2 1 +g’2)z; +2g2w,w;1 (43.33) 

4 

8 

The first term in the first line is the lagrangian for a free, neutral scalar field of mass 
-2p2 - the Haggs field; this is the only remaining physical degree of freedom from 
the complex doublet of scalar fields introduced previously, in this unitary gauge. 
The second term describes cubic and quartic self-couplings of the Eggs field; the 
third term in the first line is simply an additive constant. 

The terms in the second line proportional to the constant w2 represent the 
quadratic mass terms fo r  the gauge bosons. Note, in particular, that no mass t e rm 
has been generated for  the photon field, which thus remains massless, as it must. 

Finally, the terms in the last line proportional to ( 2 q  + q2)  represent cubic and 
quartic couplings of the Higgs to the massive gauge bosons. 

Since the transformation in Eq. (43.31) is orthogonal, the quadratic part of the 
kinetic energy of the gauge bosons remains on principal axes and Eq. (43.17) can 
be rewritten as 

Here the field tensors are defined by the linear Maxwell form V,, = aVu/azp - 
aV,/azu and the original gauge field A, in the nonlinear terms must still be ex- 
pressed in terms of the physical fields defined through Eqs. (43.31). The second line 
in the above result represents cubic and quartic couplings of these physical fields. 
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43.8 Particle content 

The particle content of the theory is now made manifest in this unitary gauge, 
since the free lagrangian has the required quadratic form in the kinetic energy and 
masses. In addition to the original (still massless!) fermions, the theory evidently 
now contains: 

(1) A massive neutral weak vector meson 2; with mass given by 

w2(g2 + d2)  
4 

MZ = 

(2) Massive charged weak vector mesons Wb*) with masses 

v2g2 - -  - MZ cos2 Ow M$ = 
4 

(43.35) 

(43.36) 

(3) A massless photon 

M: = 0 (43.37) 

The lagrangian explicitly retains the exact local V (  1) gauge invariance generated 
by the electric charge Q, corresponding to QED. 

43.9 Lagrangian 

The total lagrangian for the standard model as presented so far is the sum of the 
individual contributions discussed above 

C = Clepton + Cnucleon + Lgauge + Cscalar (43.38) 

This lagrangian now contains all the electroweak interactions; in particular, it yields 
all the weak interaction phenomenology of chapter 42. It is still necessary to put 
in the fermion mass, while preserving the underlying local gauge symmetry and ac- 
companying renormalizability; this will be done by again appealing to spontaneous 
symmetry breaking, employing the already-introduced complex scalar field. 

First, however, let us continue to investigate some of the consequences of the 
lagrangian in Eq. (43.38). The coupling of the leptons to the gauge bosons follows 
immediately from Eqs. (43.18) and (43.31) (the details of this algebra, central to 
applications of the standard model, are provided in appendix D.1) 

(43.39) 
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Here the electric charge ep  is defined by4 

(43.40) 

The lepton currents are given by the following expressions 

$1 - - 4 l Y , ( l +  Y5)7&$1 

j ;  = 2 4 l Y p  [-2(' 1 -n)] $1 

(43.41) 

The interaction of the point nucleons with the gauge fields takes exactly the 

1 
j f )  = i&-y,(l + 7 5 ) p $ '  - 2 sin2 ewj; 

same form as in Eqs. (43.39), with hadronic currents given by 

(43.42) 
1 
2 

$'I = i$rp(l + y5)-73+ - 2 s i n 2 e w ~ z  

The lepton and nucleon doublets appearing in these currents are defined by 

$1 = (t) (43.43) 

43.10 Effective low-energy lagrangian 

The analysis in chapter 42 shows how interactions with the gauge bosons of the form 
in Eqs. (43.39) lead to an effective current-current lagrangian in the low-energy, 
nuclear domain where q2 << M&, M i .  In particular, comparison with that analysis 
immediately establishes the following relationships between the gauge couplings and 
masses of the standard model and the coupling constants introduced in that chapter 

It is also evident that the total weak currents here receive additive contributions 
from the leptons and hadrons 

J:*) = J:*)(hadrons) + jy)(leptons) 

3:'' = 31') (hadrons) + jr) (leptons) (43.45) 

4Note that both (g,g ' )  must be nonzero for nonzero e p .  
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The semileptonic parts of this effective low-energy lagrangian will form the basis 
for most of the subsequent discussion of nuclear applications; they describe the 
semileptonic processes illustrated in Fig. 43.3.5 

The corresponding lagrangians are 

In both of the last two lagrangians there is a suppressed multiplicative factor 
2(cross terms)/2(fromlepton current) = 1. 

These lagrangians give all the phenomenology of chapter 42. We discuss their 
application to the calculation of semileptonic weak nuclear processes in some detail 
in the subsequent chapters [Wa75, Wags]. 

Fig. 43.3. Semileptonic processes described by the effective low-energy semileptonic 
lagrangians in the text: (a) charge-changing [&I;  (b) weak neutral current neutrino 
scattering [v]; and (c) weak neutral current, charged-lepton interaction [l]. 

43.11 Fermion mass 

The theory as formulated assumes massless fermions. The fermion mass will now 
be put in by hand. One adds Yukawa couplings of the fermions to the previously in- 
troduced complex scalar field that preserve the local SU(2)w @ U(l)w local gauge 
symmetry. One such coupling is introduced for each fermion field. The ferrnions 
then acquire mass when the scalar field develops its vacuum expectation value. As a 
consequence of this procedure, each fermion also has a prescribed Yukawa coupling 
to the fl?_Lctuation of the scalar field about its vacuum expectation value - the real 
scalar Higgs. 

5Formulation in terms of quarks simply changes the underlying structure of JA (hadrons). See 
next chapter. 
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We illustrate the procedure in the case of leptons and point nucleons. In the 
latter case, in addition to the complex scalar field q5 in Eq. (43.19), one also needs 
the field - 4 derived from it as follows:6 

- 

0 1  d+* do* io - P = i72q5* - = ( -1 0 ) ( $O* ) = ( -$- ) = ( 4- ) (43.47) 

Under the weak hypercharge transformation one simply transforms #J*, and hence 
this field has opposite weak hypercharge YW = -1; however, it still transforms as a 
weak isodoublet. This is readily established since 

exp {ie T w )  - 4 exp {-ie. Tw) = ir2[e-;'.~+]* - = [e -$e 'T~P - (43.48) 

Hence one now has an additional field with which to build invariant Yukawa cou- 
plings (Table 43.1). 

Start with the following lagrangian with Yukawa couplings of the fermions to 
the complex scalar field and invariant under local SU(2)w @ U(l)w 

Each term is a weak isoscalar, and each term is neutral in weak hypercharge (Table 
43.1). 

Now with the previously discussed spontaneous symmetry breaking, and in the 
unitary gauge 

(43.50) 

Substitution into Eq. (43.49) gives 

(43.51) 

Hence 

(43.52) 1 
- - --(W + v)[GeEe + G i p p  + GsBn]  Jz 

6Here indicates hermitian adjoint in the Hilbert space, while $t includes a matrix transpose. - 
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For strong isospin symmetry, one must evidently impose the condition7 

G1 = Gz 

The final result is 

(43.53) 

The first term is the sought-after fermion mass, with one adjustable coupling con- 
stant for each fermion mass in the theory. The second term is the remaining Yukawa 
interaction with the real scalar Eggs particle, with a prescribed coupling determined 
by the mass of the fermion. 

For clarity of concept, this introduction to the standard model has been pre- 
sented in terms of a hadronic sector consisting of point nucleons. The extension 
to matrix elements of the hadronic current for physical nucleons can be obtained 
using general symmetry properties of the hadronic current, preserved in the exten- 
sion to an underlying quark structure. Just as in chapters 7 and 8, the resulting 
Eqs. (42.35) and (42.36) can then be used to obtain a description of semileptonic 
processes in nuclei; this is discussed in detail in later chapters. 

The deeper formulation of the standard model is in terms of quarks, and it is to 
this topic that we now turn our attention in the following chapter. 

'Note the interesting fact that strong isospin symmetry here comes from the equality of the 
couplings to the complex doublet in the electroweak sector, where spontaneous symmetry breaking 
provides the fermion (and gauge boson) masses; the same will hold t rue  with the  formulation in 
terms of quarks where it is the near equality of the (small) masses of the (u, d )  quarks that is 
responsible for strong isospin symmetry. 
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Quarks in the standard model 

With this introduction to the methodology of the standard model, we turn our 
attention to the formulation of the theory of electroweak interactions with the un- 
derlying quark fields. 

44.1 Weak multiplets 

At first glance, one might expect that the first quark weak isodoublet would just be 
that constructed from (u, d )  quarks. The actual quark weak isospin doublets that 
couple in the electroweak interaction have a more complicated form [Ca63, G1701. 
They are 

U L  

dL cos Bc + sL sin Bc 9L = ( (44.1) 

C L  

-dL sin Bc + sL cos Bc ) G ( c L )  ; weak doublets 
DCL 

Q L  = ( 
The fact that it is a slightly rotated combination of fields in the charge-changing 
current, which includes a small strangeness-changing component, was first noted by 
Cabibbo [Ca63]. The discovery that one requires a second doublet with an addi- 
tional c quark and the orthogonal rotated combination is due to Glashow, Iliopolous, 
and Maiani (GIM) [G170] who in fact predicted the existence of the c quark on the 
basis of the arguments given be1ow.l 

As before, the right-handed quark fields form weak isosinglets 

U R ,  d R ,  S R ,  C R  ; weak singlets (44.2) 

The quarks are assigned the weak quantum numbers in Table 44.1. The assignments 

lThe extension to include still another (heavy) quark family is discussed in chapter 48. 
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Field /particle q L  QL 
Tw 1/2 1/2 
Yw 1/3 1/3 

U R  d~ S R  C R  

0 0 0 0 
4/3 -2/3 -2/3 4/3 

are again made so that the electric charge operator is given by 

1 -  Q = ( P 3 + z Y ) w  (44.3) 

44.2 GIM identity 

Because one has two orthogonal linear combinations, the following (GIM) identity 
holds 

$d, + DcDc = (dcos Bc + Ssin e c ) ( d  cos 6c + s sin 0,) 

+(-dsinec + scosBc)(-dsinBc + scosec) 
= d;l+Ss (44.4) 

No off-diagonal, strangeness-changing terms appear in this expression; as a conse- 
quence, the neutral currents generated in the standard model have no lowest-order 
strangeness-changing components - an empirical observation that was the primary 
motivation for the introduction of the c quark in [G170]. 

The GIM identity can be used to rewrite the noninteracting quark kinetic energy 
as 

44.3 Covariant derivative 

The standard model is a Yang-Mills theory based on local SU(2)w @ U(1)w gauge 
invariance. It starts from massless fermions and massless gauge bosons and in- 
troduces mass by coupling to a complex scalar weak isodoublet and spontaneous 
symmetry breaking (chapter 43). The covariant derivatives acting on the quark 
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fields are as before (see Table 44.1) 

; on isodoublets 

; onisosinglets (44.6) 

The gauge boson and Higgs sectors of the theory are exactly the same as dis- 
cussed in the previous chapter. 

44.4 Electroweak quark currents 

The electroweak currents representing the interaction with the physical gauge 
bosons can now be identified exactly as before (appendix D.l) .  

The charge-changing weak current is given by 

Note that it is the Cabibbo-rotated combination that enters into these charge-chang- 
ing currents. 

The electromagnetic current of QED is just the point Dirac current multiplied 
by the correct charge 

1 2 1 -  
3 2 -('1Ly,u + q,c) - z(d7,d + 37,s) J;LY = [ (44.8) 

The weak neutral current is 

The second equality follows with the aid of the GIM identity. Terms of the form 
(d) or (&) have been eliminated; hence there are no strangeness-changing weak 
neutral currents in this quark-based standard model, as advertised. 

The quarks can be given mass in the same fashion as were the nucleons in the 
previous chapter. Here we are content to refer the reader to Prob. 44.1 and the 
literature for the details [Ab73, C0831. 
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44.5 QCD 

How does the standard model of electroweak interactions get combined with QCD, 
the theory of the strong forces binding quarks into hadrons? Consider for simplicity 
the nuclear domain of (u,  d )  quarks. Quarks now carry an additional color index 
that takes three values (R,  G, B ) ,  and the quark field gets extended to 

These get combined into a three component (actually multicomponent) field - + de- 
fined as 

(44.11) 

Let Q be a matrix that is the identity with respect to color, but an arbitrary 
matrix 0 with respect to flavor so that 

- 0 = ( "  0 o )  

Then under the extension of the quark fields to include color, all electroweak currents 
are defined to be correspondingly extended to 

(44.12) 

1Ctrp0+ + ~C~RY~O+R + ~C~GY~O+G + ~ B Y ~ O + B  
G $7 07) (44.13) - P-- 

Such currents have the following important properties: 

0 They are invariant under strong SU(3)c;  
0 The vector currents are conserved in QCD with equal mass quarks.2 

44.6 Symmetry group 

The full lagrangian of the strong and electroweak interactions thus takes the form 
(see [Do931 for an extended discussion) 

c = LO+.c&+c~& (44.14) 

This lagrangian is locally gauge invariant under the full symmetry group3 

SU(3)c  @ SU(2)W @ U(1)W (44.15) 

*See chapter 27. 

3There are additional global invariances. 
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This full theory is renormalizable. It has the following characteristic properties: 

0 The electroweak interactions are colorblind - they are the same, indepen- 

0 The gluons are absolutely neutral to the electroweak interactions - the 
dent of the color of the quarks; 

electroweak interactions couple to the quarks. 

44.7 Nuclear currents 

Let us examine the implications of this development for nuclear physics. To sum- 
marize the weak and electromagnetic quark currents in the standard model, we 
have 

(44.16) 

Each current is actually a sum over three colors Ccolors(. . . ) leading to an operator 
which is an S U ( 3 ) c  - singlet as discussed above. 

44.8 Nuclear domain 

To a good approximation, the hadrons that make up the nucleus are composed of 
(u, d )  quarks. As a starting point for nuclear physics, consider that subspace of the 
full Hilbert space consisting of any number of (u ,d )  quarks and their antiquarks 
(a, d). The quark field in this sector takes the form 

+ = (;) ; nuclear domain (44.17) 

Assume that the (u ,d)  quarks have the same mass in the lagrangian; they are 
in fact both nearly massless. In this case, the lagrangian of the strong interactions, 
with the full complexity of QCD, has an exact symmetry - the SU(2)  of strong 
isospin. This is the familiar isotopic spin symmetry of nuclear physics. It is im- 
portant to note that one still has the full complexity of strong-coupling QCD with 
colored quarks and gluons in this truncated flavor sector of the nuclear domain; 
nevertheless, one can draw conclusions that are exact to all orders in the strong 
interactions using this strong isospin symmetry. 
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The quark field 11, in Eq. (44.17) forms an isodoublet under this strong isospin. 
The quark currents in Eq. (44.16) can then be written in terms of this isospinor in 
the nuclear domain as follows 

Jj*) = i I h p ( 1  + Y5)7*$ 

(44.18) ,$O) = i$y,(l+ y5)-73$ - 2sin2 ewJ;L’ 

As in the previous chapter, the properties of these currents under general symmetry 
properties of the theory now follow by inspection 

1 
2 

& = J p  + Jp5 ; V - A  
$*I = 3% P f i Jh  P ; isovector 

J;I = J: + J? ; EMcurrent 

J ( & )  = Jvl  f i J V 2  ; cvc P P 1 

3:) = JV3 P - 2 sin2 Ow J; ; standard model (44.19) 

Here the Cabibbo angle has been absorbed into the definition of the hadronic weak 
charge-changing Fermi coupling constant 

G(&) E G c~~ ec cosec = 0.974 (44.20) 

Note that the numerical value of cosec is, in fact, very close to 1 [C083].~ 
Consequences of the Lorentz structure of various nuclear matrix elements, and 

relations of various matrix elements through the use of the Wigner-Eckart theorem 
applied to strong isospin, now follow immediately from Eqs. (44.19). 

If the discussion is extended to that sector of the full theory with no net 
strangeness or charm, and the electroweak interactions are treated in lowest or- 
der, then the first four of Eqs. (44.19) still hold; however, the weak neutral current 
is modified by the addition of an isoscalar contribution 

(44.21) 

In this sector of the theory, (s, c)  quarks and their antiparticles (s, E )  enter through 
loop processes. 

We shall return to a discussion of the extension to include an additional heavy 
quark family later in this part of the book. First, however, we explore in some 
detail the consequences of the theory developed so far for electroweak interactions 
with nuclei. 

i 
2 

q j 0 )  = -[- c ~ p ( 1 +  ~ S I C -  W p ( l +  ~ 5 b I  

*If a rate calculation uses G(*) = G,, as in Eqs. (42.53)-(42.55) and Prob. 42.1, then one must 
reinterpret Fi -+ Fi cos Bc. 



Chapter 45 

Weak interactions with nuclei 

45.1 Multipole analysis 

The topic of semileptonic weak interactions with nuclei includes the rich variety of 
processes illustrated in Fig. 45.1. 

Fig. 45.1. Charge-changing processes in semileptonic weak interactions with nuclei. 

The kinematic variables used to describe the processes are shown in Fig. 45.2. The 
theoretical framework presented here will closely parallel that in chapters 7 and 8 
on electromagnetic interactions interactions with nuclei.' 

We start from the semileptonic weak hamiltonian of the standard model, which 
in the Schrodinger picture takes the form 

(45.1) 

lSee also the detailed analysis of electron scattering in [WaOl]. 
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( a  1 NEUTRINO ( b 1  ANTINEUTRINO ( c  1 CHARGED- 
SCAT TERlNG SCATTERING LEPTON 

CAPTURE 
q 2 k z - k i =  P - P '  

( d 1  c- DECAY ( c  1 c+ DECAY 

q kz + k, * P - P'  

Fig. 45.2. Kinematic variables for semileptonic processes in Fig. 45.1. 

The appropriate lepton and hadron currents have been discussed in the previous 
two chapters. 

We work to first order in the weak coupling constant G; thus the leptons will be 
treated in lowest-order perturbation theory. In contrast, the strong interactions will 
be treated to all orders, and one is still required to evaluate the exact transition 
matrix elements of the hadronic weak currents. With this in mind, the matrix 
element of this weak hamiltonian required to describe the semileptonic processes in 
Fig. 45.2 takes the form 

Here the matrix element of the leptonic current is written 

Define a complete orthonormal set of spatial unit vectors with z-axis q/lql as 
illustrated in Fig. 45.3. Now any vector can be expanded in this set as follows 
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Fig. 45.3. Complete orthonormal set of spatial unit vectors. 

Here 

1 
ekl = F-(eql fieq2) fi 

eo = q/lql = ego 
el  . ex) = S A , ~ ,  e l  = (-1)’e-A (45.5) 

Hence 1x = eA.1, and to avoid confusion with the time component, we write e o . 1 ~  l 3  

= l 3  (45.6) 

Now make a multipole expansion of the hadronic current to project irreducible 
tensor operators (ITO), which permits the use of the entire theory of angular mo- 
mentum on the nuclear matrix elements. The required multipole expansion was 
derived in chapter 7 

1 
1&1 = 7-(11  f 212) Jz 

; f o r X = f l  (45.7) 

To avoid confusion with the four-momentum transfer, we henceforth define 

K E  lql (45.8) 

For weak interactions, because the axial-vector current is not conserved as is the 
electromagnetic current, one is also required to deal explicitly with its longitudinal 
matrix elements. The derivation of the longitudinal multipoles exactly parallels 
that in chapter 7 for the transverse multipoles. One needs the following identity 
[Ed741 

(45.9) 
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The result is (Prob. 45.1, [Wa75])2 
. m  
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(45.10) 

The adjoint relations follow as in chapter 7 

; forX = fl 

(45.1 1) 

Insertion of these results in Eq. (45.2) leads to 

Here the multipole operators are defined by 

&M(n) = k J M + M : M  = 1 d 3 X [ j J  ( K X ) Y J M  (%)]30(x) 

21 E J M ( K )  3 ~ J M  + L ~ M  = ; 

T T L ( K )  EZ T& + ?JE = K 1 d3X[V X jJ(KX)Y51(%)] . 3 ( X )  

d32{V[jJ(KX)Y~M(~2z)]} . 3 ( X )  

F F i g ( K )  G ?yig +TYig5 = /d3X[j~(KX)y5,,(n.)j . 3 ( X )  (45.13) 

As in chapter 7, these operators are now irreducible tensor operators (ITO) in the 
nuclear Hilbert space. In contrast to the previous discussion, each operator contains 
contributions of both parities, as explicitly indicated above, since the weak hadronic 
currents have a V - A structure 

3p = j p  + j p 5  (45.14) 

The Wigner-Eckart theorem can now be employed on the I T 0  

2Note again that this is just an algebraic identity, following from the definition of the vector 
spherical harmonics. 
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Equations (45.12) and (45.15) are now completely general in that they hold for 
any nuclear wave functions and any local nuclear weak current. One can proceed to 
calculate any  semileptonic weak nuclear process - with polarized leptons, polarized 
targets, recoil polarizations, etc. 

With unoriented and unobserved targets, one sums over final target states, and 
averages over initial states. The orthonormality of the 3-j  coefficients then yields 

2Jil+1cc( Mf Mi -Zf ; & ) (  -Zf $i) 
1 

- - 6 J JJ 6 ~ ~ 1  (45.16) 
( 2 J  + 1)(2Ji + 1) 

Hence from Eq. (45.12) 

Now use

Thus
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This is a general result; it holds for any semileptonic nuclear process. In addition to 
lowest-order perturbation theory in the weak coupling constant G, it assumes only 

0 The existence of a local weak nuclear current operator; 
0 That the initial and final nuclear states, whatever they may be, are eigen- 

states of angular momentum. 

45.2 Nuclear current operator 

The next step is to construct the nuclear current operator. In the traditional nuclear 
physics picture, the electroweak current is constructed from the properties of free 
nucleons, and we start with this approach. The full matrix element of the hadronic 
weak current operator for a free nucleon in the standard model follows from general 
symmetry considerations; it was constructed in chapter 42. The kinematic situation 
is shown in Fig. 42.6. Here q = p - p’ and all the form factors Fi(q2) are functions 
of 42.  

For the vector current one has 

i 
( P’O’P’ I jF) (0) I ~ g p )  = z G (  p’g’)~;, [Fi T~ + Fw,,~,]T* vPu( pa) (45 2 0 )  

Note the following features of this result: 

0 It is assumed here that, as in the standard model, there are no second class 
currents; 

0 FromCVC 

Fi = FY ; i = 1 , 2  (45.21) 

Here FY is the isovector form factor in the electromagnetic interaction mea- 
sured in ( e ,  e’) (chapter 42); 

0 Consider the quark description in the nuclear domain, as discussed in the 
last chapter, where the quark Hilbert space is restricted to  contain only 
(u, d)  quarks and their antiquarks and the quark field reduces to 

1c, (;) (45.22) 

The near equality of the mass of the ( u , d )  quarks (they are both almost 
zero) implies that the QCD lagrangian possesses an SU(2) symmetry with 
respect to flavor mixtures of these quarks; this symmetry is strong isospin 
and the field in Eq. (45.22) then forms a strong isodoublet. In this case, one 
can take over all the arguments on the general symmetry properties of the 
hadronic weak current in the preceding chapters; the sole exception is that 
the charge-changing weak coupling constant must be modified to take into 
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account the presence of the Cabibbo angle 

G* Gcos9c (45.23) 

The single-nucleon matrix element of the axial vector current takes the form 

0 p IJp5 (0)lpap) = - ~ ( P ’ ~ ’ ) T ~ ~  [FAYSYp - iFPY54p]T,tTpu(Pa) 
I I Yk) i 

(45.24) R 

This result has the following features: 

From pion-pole dominance of the induced pseudoscalar coupling and the 
Goldberger-Treiman relation one has (chapter 42) 

This implies the PCAC relation 

(45.25) 

(45.26) 

0 The form factor FA(q2)  describing the internal axial vector structure of the 
nucleon must be measured through some weak process. 

As in chapters 7 and 8, these results can now be used to construct the nuclear 
current operator in the traditional nuclear physics picture. Assume the nuclear 
current density operator at the origin is given in second quantization by 

$4)) = c c c;fUfp’ (P’a’p’l3P(O)lPap)cPa, (45.27) 
P’O’P’ PUP 

Here the matrix element is taken to be that for free nucleons, as discussed above. 
Write the current density operator in first quantization as 

(45.28) 

The prescription for the transition from first to second quantization then identifies 
the single-particle matrix element of the current density appearing in Eq. (45.27) 
as [Fe71] 

(P’a’P’l3P(x)lPaP) = / d3Y &dP4Y) [3p(Y)6(3)(x - Y)] 4pup(Y) (45.29) 

By comparison with the single-particle matrix element for a free nucleon, one can 
now identify the appropriate single-particle densities. 
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As in chapter 7, we anticipate the form of the results and write the nuclear 
current densities in this approach as follows 

3*)(X) = jL*)(X) + v x fi(*’(X) 

JL*)(X) = A(*’(X) + V&?&X) 

$*)(X) = $*’(X) 

(45.30) 

Now substitute the explicit form of the solutions to the Dirac equation in the single- 
nucleon matrix element, use the standard representation of the gamma matrices, 
and make an expansion in powers of l /m;  a calculation exactly paralleling that in 
chapter 8 then leads to (Prob. 45.2)3 

1 
(p’~’p’I.$-)(O)lp~p) = 

M p  (M,iMo) 

(45.31) 

As in chapter 8, use the definition of the kinematics in Eq. (45.2) and Fig. 45.2, 
and assume that in this discussion the nuclear target is localized so that partial 
integrations are permitted with vanishing surface terms; this allows the following 
identification in Eq. (45.30) 

v ++ iq (45.32) 

A comparison of these results then yields the first-quantized nuclear density 
operators 

A 

$*I (x) = F1 c 7* ( j ) d 3 )  (x - Xj) 
j=1 

A 

p ( x )  = F 1 C T * ( j )  [ y a ( 3 ) ( x - x j )  
j=1 1 sym 

A 

A(*)(x) = FA C ~ ( j ) ~ * ( j ) b ( ~ ) ( ~  - xj) 
j=1 

A 

p$*’(x) = F A C 7 * ( j ) U ( j )  f [$ ,d3’ (X-Xj )  

j=1 1 sym 
(45.33) 

3Recall 27475’J = ( ) and 7475 = ( i1 ) . 
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In addition 

Weak interactions with nuclei 

(45.34) 

Matrix elements of this weak nuclear current operator are tabulated in [Do791 
for three-dimensional harmonic oscillator wave functions, and also in [Do801 for 
arbitrary radial wave functions; either set constitutes a complete basis of single- 
particle wave functions for the nuclear many-body problem. 

45.3 Long-wavelength reduction 

The long-wavelength reduction of the multipoles is useful both to obtain insight 
into their character and as a starting point in analyzing low momentum transfer 
processes. This reduction is obtained with exactly the same analysis carried out in 
detail for the electromagnetic interaction in chapter 7. It assumes only a localized 
nuclear transition current density. 

The results are as follows [Wa75] (see Prob. 45.3) 

(45.35) 

The one exception occurs with the monopole longitudinal multipole where the first 
nonvanishing contribution is 

i o 0 ( K )  + 2 1 d32 ~ZY~,,V .3(x) (45.36) 

The long-wavelength reduction of the transverse multipoles is exactly the same 
as before (here x = r) 

The conserved vector current theory (CVC) allows a rewriting of the integrands. 
For the vector current 

(45.38) 
a& v . J(x) = -- = -@, &(x)] at 
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Hence the transverse electric multipoles and the charge multipoles for the vector 
current are related exactly as in the electromagnetic case 

(45.39) 

45.4 Example - “allowed” processes 

Consider semileptonic weak nuclear processes in the long-wavelength limit where 

K = lql 4 0 (45.40) 

From the above analysis, the only surviving multipoles in this limit are 

T& = J Z & M  = 3 ” J ” p / h , o d 3 x  4T 

M o o  - - p / 3 0 ( x ) d 3 x  4T 

This is a general result. 
Now assume further that one is dealing with slow nucleons so that 

E - ( Y )  + o  
m C nucleon 

In this limit, the only surviving charge-changing nuclear densities are 

A 

b ( * ) ( ~ )  = F1 CT*(~)S(~)(X - xi) 
i=l 

A 

A(*’(X) = FA CT*(Z)O(~)S(’)(X - xi) 
i=l 

A combination of Eqs. (45.41) and (45.43) then leads to 

A 

A 

Several features of these results are of interest: 

(45.41) 

(45.42) 

(45.43) 

; Fermi (45.44) 

These operators give rise to the allowed weak transitions in the traditional 
picture of the nucleus; 
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0 The operators and transitions they give rise to are known as Gamow-Teller 
and Fermi, re~pectively;~ 

0 This is the form of the operators in the limit (w/c),,,leon -+ 0. The general 
results for the nuclear densities, keeping relativistic corrections up through 
O(l/m), have been presented previously in this chapter; 

0 It is evident that at long wavelengths5 

1 M o o  = -T* 6 (45.45) 

Here T* is the isospin raising and lowering operator in this traditional 
picture. A great beauty of CVC is that this relation is predicted to continue 
to hold in any hadronic picture of the strong interactions, for example, in 
QHD. The standard model predicts that this relation continues to hold on 
the quark-gluon level with the strong interactions described by QCD; 

0 In the standard model, the operators governing neutral current weak in- 
teractions in the nuclear domain are obtained immediately from those for 
charge-changing processes (discussed here) and the electromagnetic current 
(chapter 44). 

45.5 The relativistic nuclear many-body problem 

In Part 2 of this book we discussed the relativistic nuclear many-body problem 
in terms of quantum field theories based on hadronic degrees of freedom. QHD-I, 
a simple model with neutral scalar and vector meson fields (4,V,) was shown to 
enjoy some phenomenological success at the mean-field level. There an effective 
electromagnetic current, which attempts to take into account the internal charged- 
meson structure of the nucleon, was introduced as follows: 

1 
(45.46) 

1 
A’ = A’ -(1 + 73) + A n - ( l  - 73) 

p 2  2 - 

Recall that this effective electromagnetic current has the following properties: 

(1) It is local; 
(2) It is covariant; 
(3) It is conserved in QHD-I; 

4The nuclear selection rules for Fermi and Gamow-Teller transitions follow immediately from the 

5Recall Fl(0)  = F Y ( 0 )  = 1. 

form of the operators (Prob. 45.4). 
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(4) When used with the effective Mdler potential fsN(q2)/q2, it correctly de- 
scribes electron scattering from a free nucleon. 

Now perform the same analysis with the weak current. The free nucleon matrix 
elements are given in Eqs. (45.20) and (45.24). In an exactly analogous fashion one 
then has 

(45.47) 

Here, for simplicity, a common single nucleon form factor has again been assumed 

(45.48) 

The resulting weak nuclear current has the following features to recommend it: 

(1) It is covariant; 
(2) It satisfies PCAC 

(45.49) 

(3) It satisfies all the general symmetry properties of the standard model in the 

(4) It gives the correct result for semileptonic weak interactions on a free nu- 

(5) In conjunction with QHD-I, it provides a model for summing relativistic 

nuclear domain [Eqs. (44.19)]; 

cleon; 

effects in nuclei to all orders.6 

6The electromagnetic current in Eq. (45.46) assumes that F1(q2)/F1(0) x Fz(q2)/F2(0) x 
f S N ( q 2 ) .  This relation breaks down at large q2 where the data indicate that it is the Sachs 
form factors which scale (see [WaOl]) 

GM Fi + 2mF2 GE = F1 - q2 F2 /2m 

To incorporate this observation, make the following replacements: 

; effective Mfller potential f S N ( q 2 )  fSN(q2)  1 
- 4 -  

q2 q2 I+q2/4m2 
i a a  J;' + JY---- 

c1 4m2axV ax, 
Here p is the full magnetic moment [see Eq.(8.16)]. We leave the demonstration of this result as 
a problem (Prob. 45.5). The assumption in Eq. (45.48) can similarly be relaxed. 
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45.6 Summary 

In summary, we now have a general multipole analysis of the transition matrix 
element of the weak current for any semileptonic weak nuclear process; the cross 
section or rate for that process follows immediately from Fermi’s Golden Rule. The 
weak charge-changing nuclear current operators have been constructed in the tradi- 
tional nuclear physics picture where the electroweak currents are obtained from the 
properties of free nucleons, retaining relativistic corrections through O( llrn). The 
nuclear weak neutral current operator in the standard model in the nuclear domain 
is simply a linear combination of a rotated isospin component of the charge-changing 
current and the electromagnetic current (chapters 43 and 44). We have extended 
this analysis to the relativistic nuclear many-body problem through the construc- 
tion of an effective covariant weak current operator, possessing all the symmetry 
properties of the full theory, to be used in conjunction with QHD-I. Given nuclear 
wave functions, one can now calculate any semileptonic process. We proceed to 
discuss applications of these results. 



Chapter 46 

Semileptonic weak processes 

In this chapter we consider in detail the basic semileptonic weak nuclear processes: 
neutrino (antineutrino) reactions, charged lepton (muon) capture, and P-decay. 
General expressions for cross sections and rates are derived in terms of relevant 
multipoles of the nuclear weak currents, and some useful limiting forms of these 
results are discussed. 

46.1 Neutrino reactions 

Consider neutrino reactions with nuclear targets. In addition to the charge-changing 
processes illustrated in Figs. 45.1 and 45.2 one also has the processes of neutrino 
scattering through the weak neutral current as shown in Fig. 46.1.l 

Fig. 46.1. Neutrino scattering through the weak neutral current. Here q = ka -kl = 

P - P'. 

Such reactions are of central importance in astrophysics where the transport of neu- 
trinos determines the rate of cooling of many stellar objects, and their detection 
provides a unique way of looking at such fascinating astrophysical phenomena as 

lUnless specifically stated otherwise, the phrase neutrino reaction used in this chapter will now 
refer generically t o  the production of charged leptons by neutrinos and antineutrinos, as well as 
to the elastic and inelastic scattering of neutrinos and antineutrinos, by nuclei. 

479 
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the interior workings of our sun [Bag21 and supernovae explosions [Bu89]. Further- 
more, transitions between discrete nuclear states are now being measured in the 
laboratory using neutrinos from the decays of accelerator-produced particles [AlQO, 
Kr92, KA921. 

The lepton matrix elements relevant to the neutrino reactions, as well as sign 
factors used in the presentation of various results, are given in Table 46.1. They 
are calculated with the aid of Eq. (42.1). 

To obtain the cross section, it is necessary to perform the appropriate sums and 
averages over the lepton spins; here it is essential to keep two facts in mind: (1) Do 
not average over initial neutrino helicities since there is only one kind of neutrino 
(and antineutrino) in nature that is produced and absorbed in the electroweak 
interactions; (2) instead, just sum over initial and final neutrino helicities since the 
(1 + 7 5 )  in the interaction acts as a projection operator, selecting the appropriate 
helicity for the particle (and antiparticle). The cross section then follows from the 
Golden Rule as 

The last three factors are the energy-conserving delta function, the number of fi- 
nal states (in a big box with periodic boundary conditions), and the initial flux, 
respectively. 

For unpolarized and unobserved targets, one can now use the general result in 
Eq. (45.19) for the square of the matrix element summed and averaged over nuclear 
orientations. Note that the quantization volume cancels in the cross section, as 
it must. 

To perform the integration over the energy-conserving delta function, use 

Thus the cross section is given by2 

21f one includes target recoil in the density of states, then b ( W f  - W i ) d ~  = ( d a / d W f )  T. TO 

compute T use W f  = d m - +  E .  Then 

- awf = 
a& 
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Table 46.1 
tions: the sign factors S, are used in Table 46.2. 

Lepton matrix elements and sign factors for semileptonic nuclear weak interac- 

a The antilepton requires - I x ;  this is immaterial for the subsequent bilinear forms. 

The required lepton traces produced from the lepton matrix elements in 
Table 46.1 by (R2/2)Cleptonspins are now summarized in Table 46.2. Note that 
for neutrino scattering, only the extreme relativistic limit (ERL) with ]PI + 1 is 
relevant. 

As for the derivation of the results in Table 46.2, we will do one and let the 
reader verify the rest (Prob. 46.1). Consider 

(46.4) 

Note the term in the lepton mass ml in the first line goes out since it is multiplied 
bY (1 4- - 'Ys).~ 

At threshold, p + 0 and this expression goes to one. In the ERL 

(46.5) 
e i + f i . p  = i + c o s e  = 2 c 0 ~ 2 -  
2 

3Use the cyclic property of the trace (tr). 
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Summand 

Table 46.2 
46.1 as required for semileptonic weak nuclear processes. 

Lepton traces: (n2/2) Cleptonspins produced from lepton matrix elements 1~ in Table 

General resulta Threshold 1 IPl-,O I ERL 
IPI + 1 

I 

a Here the hats indicate unit vectors and the massive lepton velocity is p' = L/E. 

Here 0 is the scattering angle of the outgoing lepton with respect to the incident 
direction. 

The general neutrino reaction cross section now follows from Eqs. (46.3) and 
(45.19) and the lepton traces in Table 46.2.4 Two limiting cases are particularly 
simple. 

= lk/&I -+ 1. This is 
the case for relativistic final massive leptons; and it is always the case for neutrino 
scattering. In the ERL, the result for neutrino reactions with incident vi or 4 
becomes 

The extreme relativistic limit (ERL) is defined by 

4For charge-changing semileptonic processes in nuclei, one must use the standard model result 
from Eq. (45.23) that G(*) = GcosBc % 0.974G. 
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Note that the charge and longitudinal multipoles enter only in the combination 
M J  - (qo/ lq l )eJ in the ERL limit. Suppose the current and charge density have 
the following form (as they do in the case of the induced pseudoscalar interaction 
- see chapter 45) 

(46.7) 

The charge and longitudinal multipoles of this current then have the following form 
(chapter 45) 

Here energy conservation has been used in the second equality, and a partial inte- 
gration performed in arriving at the third. As a consequence of these relations one 
finds 

(46.9) 

Hence we establish the result that the induced pseudoscalar interaction does not 
contribute to the neutrino cross section in the ERL.5 

The other simple limiting case is at threshold in 
charged lepton production, where one has just enough energy to produce the mas- 
sive final lepton and 

Threshold Cross Section. 

(46.10) 

In this case, the kinematics are as follows6 

g = -v 
90 = E - u -+ ml - v ; threshold (46.11) 

5This can be seen directly from the S-matrix for the neutrino reaction on a nucleon. The induced 
pseudoscalar coupling is proportional to qx and on the lepton current, this gives a contribution 
proportional to the lepton mass q x l x  o( ml. Hence this term does not contribute to  the scattering 
in the ERL where the lepton mass is negligible. 

‘This assumes a sufficiently heavy target. 
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The cross section for (vl,l-) and ( i j l ,  I + )  then takes the form 

J=1 I 
(46.12) 

Thus, in the threshold neutrino cross section, the entire effect of the induced pseu- 
doscalar coupling can be taken into account by the following simple replacement in 
the axial charge density 

&5 -+ &5 + irnlips ; threshold (46.14) 

With the expression for the cross section obtained from Eqs. (46.3) and (45.19) 
and the lepton traces in Table 46.2, which has the two limiting forms discussed 
above, one is now in a position to calculate any neutrino reaction o n  a nuclear target, 
under any kinematic conditions. It simply requires calculating the appropriate 
multipoles of the weak current operator (chapter 45). We discuss some specific 
examples in chapter 47. 

46.2 Charged lepton (muon) capture 

We next discuss the process of charged lepton capture where the basic nucleon 
process is 

I -  + p -+ n + y (46.15) 

With a nuclear target, the relevant processes are 

p- + A ( N ,  2) -+ A*(N + l , Z  - 1) + vP 

e- + A ( N ,  2) -+ A*(N + l , Z  - 1) + v, (46.16) 

This is illustrated in Fig. 45.1. Although the formula to be derived for the capture 
rate is applicable to both processes, we shall focus the discussion in this chapter on 
muon  capture. 
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The kinematics for this process are shown in Fig. 46.2. The relevant lepton 
matrix element and sign factors are given in Table 46.1. 

Fig. 46.2. Charged lepton capture by nuclei. 

We are primarily concerned here with processes where the negatively charged 
lepton is captured from the lowest lslp atomic orbital; for the case of muon capture, 
this necessitates a brief survey of some of the essential features of muonic atoms. 

When a muon (produced, for example, from cosmic rays or particle decay) passes 
through matter, it is finally captured into high-lying atomic orbits. It then quickly 
cascades down to the 1s Bohr orbit through Auger processes with atomic electrons 
and the emission of some X-rays. Here it can do one of two things: it can decay 
with its characteristic free lifetime 

- 
p -, e- +vp+De  

T~ = 2.197 x 10-6sec 

Or it can be captured by the nucleus, where the basic nucleon process is 

(46.17) 

p- + p --$ ?I + v p  (46.18) 

The Is orbit for a muon has a Bohr radius given by 

1 t i 2  -- _ -  4 - 
47r Z m,e2 

Hence the ratio of the muon Bohr radius to that of an atomic electron is 

m e - -  1 4 - - _ -  
a6 m, 206.8 

(46.19) 

(46.20) 

The situation is illustrated in Fig. 46.3. The muon evidently sits well outside the 
nucleus, for light nuclei, and well inside all of the atomic electrons. In this case, the 
muon is accurately described by the simple, one-particle Bohr atom!’ 

71n a closed-shell atom, the electron distribution is spherically symmetric; the electrostatic poten- 
tial inside such a spherically symmetric charge distribution is constant, and thus has no effect 
on the motion of the muon. In addition, if the muon is outside of a nucleus with a spherically 
symmetric charge distribution, the nucleus acts as a point charge. 
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Fig. 46.3. Ratio of Bohr radii characterizing the size of the Is Bohr orbits for a 
muon and atomic electrons (not to scale). 

From quantum mechanics, the square of the 1s wave function at the origin for a 
Bohr atom is given by [Sc68] 

(46.21) 

The final factor takes into account the reduced mass of the system. 
The nucleus actually has a charge density of finite extent. As 2 gets larger, 

the muon wave function is pulled into the nuclear Coulomb potential, where it no 
longer feels the full strength of a point charge; thus the magnitude of the 1s atomic 
wave function in the region of the nucleus will be reduced from the point-charge 
value quoted above. The situation is illustrated in Fig. 46.4. 

Fig. 46.4. Reduction of the 1s atomic wave function in the vicinity of the nucleus 
from that of a point-charge Bohr atom caused by the finite extent of the nuclear 
charge distribution. 

We therefore write 

Here R is a reduction factor obtained by averaging the actual 1s wave function 
over the nuclear volume.' Values of R obtained from numerical integration of the 
Dirac equation for the electron in the finite nuclear charge distribution are shown 
in Table 46.3 (from [Wa75]). 

is sensible to characterize this effect with a single gross factor 72. because the Is wave function 
continues to be a slowly varying function over the nuclear volume up to medium-weight nuclei. 
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Element 
R 

Table 46.3 Reduction factor of the square of 1s Bohr wave function obtained by averaging the 
solution of the Dirac equation in a finite nuclear charge distribution over the nuclear volume (from 
[Wa75]). 

4He 12C l60 28Si 40Ca 56Ni 
0.98 0.86 0.79 0.60 0.44 0.30 

There is another limiting case of the muonic atom that has a very simple quan- 
tum mechanical interpretation. Take the other extreme of a very heavy, large nu- 
cleus where the muon lies completely inside the nucleus. If the nucleus is modeled 
with a spherically symmetric uniform charge distribution (Fig. 46.5), then the elec- 
trostatic potential is that of a three-dimensional simple harmonic oscillator and 
the atomic energy levels and wave functions will be those for that simple system 
(Prob. 46.6). Intermediate situations between the two simple limiting cases can be 
characterized by interpolation. 

2s.ld 

t-R+ 
Ial (bl 

Fig. 46.5. (a) Muon inside a spherically symmetric uniform charge distribution; (b) 
resulting spectrum. 

From Eq. (46.18), the nuclear muon capture rate is proportional to the number of 
protons in the nucleus. Since the semileptonic weak nuclear interaction is effectively 
a contact interaction (chapter 45), the capture rate is also proportional to the 
probability of finding the muon at the nucleus. Hence 

Wp-capt cx (probability at nucleus) x (number of protons) 
lhsl:" z (46.23) 

For light nuclei R M 1, and hence one finds from Eq. (46.21) 

Up-capt O: z4 (46.24) 

This is the celebrated Z4 law for nuclear muon capture. It is not until about Mg 
that the nuclear capture rate is equal to the free decay rate. 

We now turn to a calculation of the p-capture rate. The kinematics are illus- 
trated in Fig. 46.2. To a good approximation, in all cases one can treat the initial 
charged lepton in the 1s atomic orbit as a nonrelativistic particle. Thus one can 
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write the Dirac wave function for the initial charged lepton as 

(46.25) 

The matrix element of the semileptonic weak interaction in chapter 45 thus takes 
the form 

Here we have defined (Table 46.1) 

-iRlx i i ( ~ ) ~ x ( l +  7 5 ) ~ ( k )  ; k+O (46.27) 

The capture rate follows from the Golden Rule 

Here one, indeed, must average over the initial lepton spins for spinless n ~ c l e i . ~  
Now assume that, because of its slow variation over the nuclear volume, one 

can remove a factor of (+ls), from the nuclear matrix element.” In this case, the 
nuclear multipole analysis and sum over nuclear states is precisely the same as that 
performed in chapter 45 and leads to Eq. (45.19). Note the factors of R again cancel 
in the rate, as they must. It remains to perform the lepton traces. 

Because of the form into which the amplitude has been cast, the result for the 
lepton traces is just that in Table 46.2, using the sign factors from Table 46.1. It 
is the threshold value that must be used since here p = k / E  --t 0. To confirm these 
results, we will again verify one line in detail, and let the reader check the others. 
Consider 

0 2  

2 - c lolo* = +1 
lepton spins 

(46.29) 

Note that the term in ml in the first line again goes out. 

’If nuclear recoil is included in the density of states, the result is to multiply the expression for 

lOImproved approximations here are (1) average q51s over the actual nuclear transition density; (2) 

the rate by a recoil correction factor T = (1 + u/M~)-l (Prob. 46.3). 

leave the spherically symmetric factor q51s in the nuclear matrix element. 
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The final result for the charged-lepton (muon) capture rate is thus given by 

Several 

0 

0 

0 

0 
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(46.30) 

features of this result are of interest (see also Prob. 46.3): 

Here the neutrino energy is determined by energy conservation from the 
relation 

In this expression Eb is the binding energy of the muonic atom; 
Note that the momentum transfer in the nuclear multipoles is K = v. The 
nucleus must absorb the momentum of the final neutrino for the reaction 
to go, since the initial charged lepton in the atomic orbit furnishes its rest 
mass, but negligible momentum; 
One could have left the muon wave function 4Jls(r) inside the nuclear mul- 
tipoles, since it is just a spherically symmetric factor that does not affect 
the angular momentum analysis; 
This result should be compared with the threshold antineutrino cross sec- 
tion in Eq. (46.12) (the threshold antineutrino process is obtained from 
the charged lepton capture process through crossing); it has the same form 
except for signs obtained from the lepton traces. 

46.3 P-decay 

Finally, we discuss nuclear &decay. This is the process by which nuclei of the 
same baryon number transform into one another until stable isobars are obtained 
(chapter 2). The basic nucleon processes are" 

n t p + e - + z &  

p + n+e++v, 

With a nuclear target, the relevant processes are 

A ( N ,  2) 
A(N,  2) 4 A*(N + l , Z  - 1) + e+ + v, (46.33) 

"The first gives rise to the P-decay of the free neutron; since the proton is stable, the second can 

+ A*(N - 1,Z + 1) + e- + De 

take place only inside a nucleus where nuclear binding effects allow it to proceed. 

(46.32) 
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The kinematics for this process are shown in Fig. 46.6. The relevant lepton matrix 
element and sign factors are given in Table 46.1. 

Fig. 46.6. Nuclear ,b-decay: (a) (e-De) decay; (b) (e+ve)  decay. 

The analysis proceeds as in the previous sections. The only new feature is that 
one now has two particles in the final state, and hence a factor for the number of 
final states must be included for each of them. The decay rate is thus 

f l d 3 k  Od3' (46.34) 
1 dw = 27r c - l(fp?WIZ)[2S(Wf - wi)-- 

2Ji + 1 Mi Mf ( 2 4 3  ( 2 4 3  
lepton spins 

The volume factors again cancel in the rate, as they must. The integral over the 
energy conserving delta-function can be performed as follows12 

S(Wf -Wi)dv = b(E+V+Ef -Ei)dv = 1 

; energy release 
J 

Ei -  E f  Wo 
J 

s neutrino energy 

E + V  = WO ; m a .  electron energy (46.35) 

The final-state lepton kinematics thus become 

b(Wf - Wi)d3kd3v = kEd&dOk(Wo - &)2df12, (46.36) 

Hence the decay rate is 

1 - E)2kEdEdRkdfl, C - I(fIfiwli)12 (46.37) 
lepton spins Mi Mf 2 J i + 1  

The general expression in terms of nuclear multipoles for the sum and average 
over nuclear orientations in Eq. (45.19) can now again be employed. One then has to 
sum over final lepton spins. The required lepton traces obtained from the expression 
(f12/2) Cleptonspins are given in Table 46.2 for general final lepton kinematics; here 

12We leave the calculation of the target recoil correction as a problem (Prob. 46.3); it is usually 
unimportant since the energy release in P-decay is small. 
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the sign factors in Table 46.1 are to be employed. A combination of these results 
gives the following @-decay rate for (e-De) and (e+v,) 

G2 d n k d R ,  4n 
dwpr = ?k~(Wo - E)2dE--- 

2n 4n 4n 2Ji + 1 

&q . (c - p)2 Re ( J f  I I IJi) ( J f  II?;'I IJi)*] (46.38) 

Here D = u/v, q = q/lql, and P = k/E. All the multipoles in this expression are to 
be evaluated at a momentum transfer 

IE G lql = Ik + U I  (46.39) 

Thus there is still a complicated angle dependence o n  &V contained in the  multi- 
poles. The long-wavelength expansion of these multipoles in chapter 45 makes this 
angle dependence explicit. Equation (46.38) provides a general expression for the 
P-decay rate between any two nuclear states. 

Consider the simplification of the above expression in the long-wavelength al- 
lowed limit where from chapter 45 the only remaining, nonzero nuclear multipoles 
are 

;iel 1M = V % ~ M  ; Gamow-Teller 
M o o  ; Fermi (46.40) 

One now has the significant simplification that these multipoles are independent of 
IE. The rate then becomes 

I (Jf I I M O  I I Ji ) l 2  dwfp, = -k&(Wo - (1 + D -P)- 1 
4n 4n 2Ji + 1 

2G2 
n2 

We comment on a few features of this result: 

(46.41) 

0 This is the general expression for the allowed Pr-decay rate; 
0 Note the characteristic allowed energy spectrum for the electron arising 

from phase space arguments; 
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Note the characteristic (9 . p) angular correlations between the momenta 
of the emitted leptons in the allowed rate; 

0 The neutrino momentum v can be determined from measurements of the 
electron and nuclear recoil momenta and the use of momentum conservation; 
these are very lovely, but difficult, measurements; 

0 To close the loop, a direct derivation from start to finish of this result for 
the allowed P-decay rate is given in Prob. 46.5. 

46.4 Final-state Coulomb interaction 

The electron (positron) emitted in P-decay is charged, and has a Coulomb interac- 
tion with the final charged nucleus. This interaction will modify the wave function 
of the final charged lepton from the plane-wave value used in the calculation of the 
rate above; by changing the electron wave function over the nuclear volume, the 
final-state Coulomb interaction modifies the matrix element of the contact four- 
fermion interaction, and hence changes the rate. A full treatment of this final- 
state interaction is available through numerical integration of the Schrodinger (or 
Dirac) equation of the electron in the Coulomb field of the final nucleus and atom 
(e.g. [La69]). 

An upproxzmute treatment of this final-state Coulomb interaction can be ob- 
tained by using the ratio at the origin of the wave function for scattering at energy 
E from a point nuclear charge Ze, to the noninteracting plane wave. This ratio can 
be calculated analytically for the Schrodinger equation with the result [Sc68] 

(46.42) ZZCY q = -  ; z = leptoncharge 
IPI 

Here o is the fine-structure constant. This factor F ( 2 ,  E )  then multiplies the above 
expressions for the P-decay rates. 

46.5 Slow nucleons 

Up to this point, the general expressions for the multipole operators appearing in 
the expression for the allowed P-decay rate are given by 

(46.43) 
1 

2 

M o o  - - - & 1 $')(x)d3x ; Fermi 

- *& = - 1 3 2 ( x ) d 3 2  ; Gamow-Teller 
2/2 &G 

L 1 M  = 
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With the further approximation that the nucleons are moving slowly so that 
( z I / c ) ~ ~ ~ ~ ~ ~ ~  << 1, these expressions simplify to the result given in Eq. (45.44) 

; Fermi (46.44) 

A 1 ; ie l  i 

Jz di%r j = 1  

- 1M = -FA T* ( j ) o l ~  ( j )  ; Gamow-Teller = 



Chapter 47 

Some applications 

There have been many, many theoretical and experimental studies of weak interac- 
tions with nuclei (see e.g. [Wa75, co83, wE891). It is impossible, and even inappro- 
priate, to attempt a comprehensive, up-to-date summary here. Rather, we present a 
few selected examples that illustrate the study of weak interactions with nuclei, and 
that demonstrate the accuracy with which one can do nuclear physics in selected 
cases by employing a unified analysis of electromagnetic and weak interactions with 
nuclear systems. 

47.1 One-body operators 

Recall the discussion of nuclear structure in Part 1. An arbitrary one-body multipole 
operator can be expanded in second quantization as 

F J M J ; T M T ( q )  = ~ ~ c ~ , ( ~ : I T . I M J ; T M T ( ~ ) I ~ ) ~ P  (47.1) 

Here a = {n l j rn j ;  &} = {a ;  mj, rnt} is a complete set of single-particle quantum 
numbers. 

The matrix element of this operator between an arbitrary pair of nuclear states 
thus takes the form1 

Q P  

Q P  

(47.2) 

In words, this result says that the nuclear matrix element of this multipole operator 
between any two states can be written as a s u m  of single-particle matrix elements 
multiplied by numerical coefficients; the numerical coefficients are simply the matrix 
elements of the creation and destruction operators as defined in the second line. 

'See [WaOl] for the derivation of some general properties of the matrix elements of these multipole 
operators and their evaluation in several specific cases. 

494 
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47.2 Unified analysis of electroweak interactions with nuclei 

Consider the traditional nuclear physics picture as presented in Parts 1 and 4 of this 
book: nucleons interacting through static potentials, with quantum dynamics gov- 
erned by the nonrelativistic many-body Schrodinger equation, and with electroweak 
currents constructed from the properties of free nucleons. Within this picture, the 
above result can be utilized in the following way: 

(1) Within this traditional nuclear physics picture, Eq. (47.2) is exact. For 
example, any shell-model calculation, no matter how complicated, must 
give a result in this form; 

(2) Now suppose that one truncates Eq. (47.2) to a finite sum of single-particle 
transitions. Within this truncation one still has the flexibility of describing 
very complicated nuclear states. For example, in any shell model calcula- 
tion within the s-d shell, no matter how many particles and basis states are 
included, any final nuclear transition matrix element must be a simple sum 
over the few possible transition matrix elements between the single-particle 
s-d basis states; furthermore, any TDA or RPA calculation of nuclear exci- 
tations as in chapters 9-11 must give a result of this form; 

(3) The single-particle matrix elements (s.p.m.e.) appearing in Eq. (47.2) can 
be constructed from the radial wave functions of the single-particle basis 
states (chapter 5) and the one-body currents (chapters 8 and 45). This is 
carried out in [Do79, Do801; 

(4) These s.p.m.e. have different q2 dependence; 
(5) One can make use of this additional, invaluable, q2 dependence to synthesize 

the experimental electromagnetic (e ,  e') form factors (chapter 7), and hence 
determine the set of numerical coefficients +$; 

(6) These same one-body densities can then be used to  compute the semi- 
leptonic weak processes (chapter 46). 

We proceed to discuss a few selected applications of this approach. 

47.3 Applications 

These applications are all taken from [Do72, Do73, Do75, Do76, Wa771. They will 
be presented in the following format: 

(1) The nuclear transition is identified and the (e, e') data shown;2 
(2) The truncation scheme and parameterization used in the determination of 

the one-body densities is discus~ed;~ 

2We here use (chapter 7) du/dSl = 4TUM F2[1 + ( 2 ~ 1  sin2 f3/2)/M~]-' where F2 3 ($/q4)FZ + 

3An overall factor ~ C M  = ey/* is included in all calculations to take into account the C-M motion 

(qE/2ii2 + tan20/2)F+. Also ~ S N  = [1+ $/ (855 

- see [de66, WaOl]. This factor is also included in the calculations in chapter 11. 

throughout. 
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(3) A comparison is then made with all existing weak rates. These applications 
all assume the weak nucleon couplings from chapter 45; there are no second- 
class currents and Fp = 2 r n F ~ / ( q ~ + m ; ) .  The value of FA(O) is taken from 
the /3-decay of the neutron [Co83I4 

The first set of nuclear levels is shown in Fig. 47.1. It involves the O+O 1+1 
transition in the B = 12 system. 

15.11 MeV1+l 

T.d 

Fig. 47.1. System of nuclear levels in first application. 

Fig. 47.2. Simplest model 10) .+ llp1/2(lp3/2)-1) for first application. 

The simplest model for this transition is that ';C forms a closed lp3p shell and 
the excited state is lp112(lp3/2)-~ as illustrated in Fig. 47.2. In this case, only a 

single s.p.m.e. ((lp1/2)1/2..T~,l(q)i.(lp3/2)1/2) is required (chapters 9 and 10). The 
resulting nuclear matrix element of the transverse magnetic dipole operator is then 
given by [de66, WaOl] (see Prob. 47.1) 

y (9) 2 

(47.4) 

Here harmonic oscillator wave functions have been assumed. This is the TDA 
result; the RPA result (chapter 9) gives the same answer reduced by a factor JRPA; 
calculation in the open-shell RPA gives the same answer reduced by a still larger 

41t is assumed for historical reasons in these applications that G(*) = GcosOc sz. G in the 
vector couplings, introducing a M 2.6 % error in these terms. The Particle Data Booklet gives 
gA/gV = FA(o)/FI(o)  = -1.2573 f 0.0028. 
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Fig. 47.3. F;(q) for the 1+1 state in 12C(15.11MeV). Here q = lql. The curve is 
a best fit with 6 = 1.77fm and [ = 2.25. From [Do75]. 

factor [OSRPA. We choose to compare the electron scattering data for this transition 
with Eq. (47.4) multiplied by an empirical overall reduction factor [ and with an 
empirical oscillator parameter. The result is shown in Fig. 47.3. 

The predicted charge-changing semileptonic weak transition rates for the system 
in Fig. 47.1 obtained using a one-body density parameterized in terms of these values 
of (5, b,,,) are shown in Table 47.1. 

Table 47.1 Partial weak rates with ' ;C(g.s. )  (Do751. 

~ 

Process Experiment Theory 

/?--decay rate 32.98 f 0.10 sec-l 33.8 sec-' 

,@-decay rate 59.55 f 0.22 sec-l 66.9 sec-l 

p--capture rate 6.75?0,:$: x lo3 sec-' 6.64 x lo3 sec-' 

The second example consists of the O+O -+ J"1 transitions to the first 
(0-, 1-, 2-, 3-) states in the B = 16 system as illustrated in Fig. 47.4; only the 
latter three are excited in electron scattering with one-photon exchange. 

The simplest model of these transitions is to assume that '680 forms a closed 
pshell and the excitations are linear combinations of the 2s(lp)-l, ld(lp)-' p-h 
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states shown in Fig. 11.1. The resulting excitation spectrum calculated in TDA 
with a simple two-nucleon potential fit to scattering data is presented in chapter 
11; the calculation is discussed there. An improvement is an RPA calculation as 
discussed in chapters 9 and 10. 

16N 3 

13.26 
13.09 
12.97 
12.79 

MeV 

T 
3-1 
1-1 
2 -1 
0-1 - 0+0 

1:0 
U 

Fig. 47.4. The O+O t P l  transitions to the first (0-,1-,2-,3-) states in the 
B = 16 system; only the latter three are excited in electron scattering with one- 
photon exchange. 

The existing (e ,e ' )  data are shown in Fig. 47.5. The curves are three fits to 
the data: (1) TDA with harmonic oscillator wave functions and b,,, = 1.77fm as 
determined from a fit to elastic ( e ,  e )  scattering; (2) RPA, but otherwise the same 
as (1); (3) same as set (1) with Woods-Saxon radial wave functions. An overall 
reduction factor E is then included and the individual p-h amplitudes are allowed 
to vary by up to 10% from the TDA and RPA  value^.^ 

The partial weak rates with '680 and the states in Fig. 47.4 calculated using the 
resulting parameterizations of the one-body densities are shown in Table 47.2. 

The third example involves the 1+0 -+ 0+1 transition in the B = 6 system as 
shown in Fig. 47.6. 

Here we truncate to  the pshell as illustrated in Fig. 47.7. The core is assumed 
to form a closed s-shell, and the wave function of the two valence nucleons is written 
quite generally in this space as 

All existing electromagnetic data for these levels are fit with the parameter set 
{A,. . . , E;  b,,,}; this includes the magnetic dipole and electric quadrupole moments 
of the ground state and the elastic and inelastic magnetic electron scattering form 

5The actual values used in the fit are given in [Do72]; the 0- is assumed to behave similarly to 
the other three states. 
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Fig. 47.5. Inelastic form factors = F2/(1/2 + tan2 8/2) at large B for the first 
(1-,2-,3-) states in l;O. Here q = lql. The three fits are described in the text. 
From [Do75]. 
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Table 47.2 Partial weak rates with ':O(g.s.) .  From [Do75]. 

Process Experiment Theory 
Set 1 Set 2 Set 3 

0- 1.1 f 0 . 2  0.86 0.86 0.70 
p--capture (lo3 sec-l) 

1- 

2- 

3- 

1.6 f 0.2 
0.85+0.145 

-0.060 
1.88f0.10 1.42 1.28 1.16 
1.4 f 0.2 
1.85+0.355 

-0.170 
6.17f0.71 7.54 6.65 7.44 

5 0.08 0.060 0.054 0.077 
7.9 f 0.8 

P--decay sec-l) 
2- 2.53f0.20 2.18 1.92 2.29 
0- 43 f 10 42 46 

3.562 MeV 

Fig. 47.6. Third example of 1+0 4 0+1 transition in the B = 6 system. 

Fig. 47.7. Truncation to pshell in third example. 

factors. When the full elastic magnetic form factor is calculated in this basis it 
takes the form (Prob. 47.2) 

(47.6) 
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A similar result holds for the inelastic magnetic form factor. Hence this truncation 
predicts a straight line when the combination on the left side is plotted against y. 
The experimental result is shown in Fig. 47.8. 

Y 

Fig. 47.8. Magnetic electron scattering from !Li in terms of p(y) (see text). The 
straight line is a minimum x2 fit to the accurate data at (q( < 200 MeV (heavy error 
bars). From [Do73]. 

In contrast to the previous logarithmic plots, this comparison is a much more 
accurate one made on a linear scale. The resulting parameter set determined by a 
fit to the data is shown in Table 47.3. Note that in this case one has determined the 
entire nuclear wave function for both levels through the aid of electron scattering. 

The resulting semileptonic weak rates calculated from these wave functions are 
shown in Table 47.4. Note this is now an absolute calculation of the !He P-decay 
rate, which agrees with the experimental value to better than 5%. 

Finally, the fourth example is an extremely simple one. Consider the ground- 
state ;+; isodoublet in the B = 3 system as illustrated in Fig. 47.9. Here the 
lifetime of :H is long enough that one can carry out ( e , e )  experiments on both 
nuclei. 
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Table 47.3 
ons in gLi. From [Do75]. 

Parameter set determined by fit to electromagnetic data involving two valence nucle- 

A B C D E bosc(fm) 

0.810 -0.581 0.084 0.80 0.60 2.03 
50.001 fO.OO1 50.002 f0.03 f0.04 f0.02 

Table 47.4 
(Do751. 

Semileptonic weak rates for the 0+1 tt 1+0 transition in the B = 6 system. From 

Process Experiment Theory 

p--decay (sec-l) 0.864 f 0.003 0.877 f 0.023 

1.39 f 0.04" p--capture (1O3sec-l) 1.6-0.13 +0.33 

a Statistical average over hyperfine states (Qp).  

Fig. 47.9. Example of the ground-state ;+$ isodoublet in the B = 3 system. 

The simplest model for this nucleus is a ( l ~ l p ) ; ~  neutron hole in ;He, as pre- 
sented in chapter 17. If harmonic oscillator wave functions are used, there is only 
one parameter left in the one-body density, and Fig. 47.10 shows a fit to  some 
of the early, low-q2 data for these nuclei with an oscillator parameter chosen as 
b,,, = 1.59 fm. Although much more precise experimental and theoretical results 
now exist to much higher q2,  this is an acceptable one-parameter fit in the low-q2 
regime for the present purposes. 

The calculated magnetic moments in this model are independent of the choice 
of radial wave functions; the fit is well known as is shown in Table 47.5. The 
discrepancy with the isovector moment was one of the first pieces of evidence for 
the role of exchange currents in nuclei. 

The resulting semileptonic weak rates for iHe-:H (Fig. 47.9) using this one- 
body density are shown in Table 47.5. These are now absolute calculations of the 
weak rates since the required one-body nuclear densities have been determined from 
( e ,  e); the weak rates agree with the data in this case to better than 5%.6 

6The requisite calculations with this state are carried out in [Do76, WaOl] (see Probs.47.3-4). 
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Fig. 47.10. Longitudinal and transverse elastic ( e , e )  form factors for B = 3 in 
terms of f L ( q ) M T  = Z ~ S N / ( ~ T ) ~ / ~  and fT(q)MT E ( 4 / m ) ( X p b l l . i T , - i / 2 + X n b M ~ , + 1 / 2 )  

f s ~ / ( 8 7 r ) ~ / ~  where f s ~  is the single-nucleon form factor of chapters 8 and 45. Here 
q = lq(. The theoretical curves use b,,, = 1.59fm. From [D076]. 

Table 47.5 Magnetic moments and semileptonic weak rates for zHe-:H. From [Do76]. (Here 
F = J + S.) 

Quantity Experiment Theory 
mag. moment 

p 3 H  + p3He 0.8513 0.8795 
5.106 4.706 p 3 H  - p3He 

,B--decay 
wp(sec-') (1.7906 f 0.0067) x 10W9 1.84 x lo-' 

p--capture 
w,, (sec-l) 1505 f 46 1531 

( F  = 0) 5740 
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47.4 Some predictions for new processes 

The present analysis uses electron scattering (e, e') through the electromagnetic 
interaction to determine specific nuclear transition densities; these densities are 
then used to compute semileptonic weak processes within the traditional nuclear 
physics framework. Comparison with experiment indicates that this procedure can 
be carried out to quite high accuracy in selected cases. The analysis is "model inde- 
pendent" in the sense that it eliminates any theoretical calculation of the underlying 
nuclear structure. 

On the basis of this analysis, one can make reliable predictions for some as- 
yet-unmeasured semileptonic weak processes. For example, Figs. 47.11a and 47.11b 
shows predicted charge-changing neutrino cross sections for the two nuclear systems 
shown in Figs. 47.6 and 47.4. 

Predictions can also be made for the inelastic scattering of neutrinos (antineu- 
trinos) through the weak neutral current in the standard model using the analysis 
in chapters 45 and 46. Figure 47.12 presents these cross sections for the two systems 
shown in Figs. 47.1 and 47.6.' 

The direct measurement of one charge-changing neutrino cross section between 
discrete nuclear levels has been reported in [A190, Kr92, KA921. The first two 
references refer to an experiment carried out at the LAMPF neutrino facility viewing 
the LAMPF beam stop; the experiment involves the nuclei in Fig. 47.1. The cross 

I u.20 GeV - 

I 
0 I 1  I I I I 

0 100 200 300 400 500 6 
Y (MeV) 

10 

Fig. 47.1 la. Predicted charge-changing neutrino cross sections for the transition 
analyzed in the text with a !Li target. From [Do72, Do73, Wa771. 

7The cross sections are shown for two values of the weak mixing angle Ow = 0" and 35"; one can 
easily interpolate to Ow = 28.7" corresponding to sin20w = 0.23. They also assume FA(O) = 
-1.23. 
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Fig. 47. l l b .  Predicted charge-changing neutrino cross sections summed over the 
transitions analyzed in the text with a lZ0 target. The asymptotic individual 
contributions are indicated. From [Do72, Do73, Wa771. 
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Fig. 47.12. Predicted cross sections for inelastic neutrino (antineutrino) scattering 
through the weak neutral current for transitions analyzed in text with targets: (a) 
$Li; (b) l:C. From [DOTS, Wa771. 
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section is measured for the following process 

v, + ';C --f e- + '?N(g.s.) (47.7) 

The neutrinos are produced through the decay chain 7r+ + p+ + vp -+ e+ + v, + Fp + 
vp. The number of stopped 7r+ is known and the subsequent decay spectra can be 
accurately calculated; hence the incident neutrino flux is known. Since the incident 
proton beam is pulsed, one has a signal for initializing timing measurements; the 
low duty factor serves to reduce cosmic-ray backgrounds. The appearance of an e- 
indicates that a neutrino event has taken place. 

The nucleus ';N has only one bound state; its presence is therefore a clear 
indication of direct production, as all excited states decay by particle emission. 
The presence of '$N(g.s.) is detected by the time-delayed @+-decay back to the 
ground state of 'ZC. 

7[ '$N(g,s.) + ';C(g.s.) + e+ + ve] = 15.9 msec (47.8) 

The previous analysis clearly allows a theoretical prediction for the cross section 
in Eq. (47.7). Table 47.1 gives an indication of the kind of accuracy one can expect. 
The average over the beamstop neutrino spectrum has been performed by Donnelly 
[A190, Kr921.' The results are [Kr92] 

~ [ v ,  + ';C -i e- + '$N(g.s.)] = (1.05 f 0.14) x cm2 ; experiment 
= 0.94 x cm2 ; theory (47.9) 

47.5 Variation with weak coupling constants 

We now let the weak coupling constants vary to see how well they are determined 
by the above comparison between theory and experiment. Define 

(47.10) 

The singlet p-capture rates for 'H(pu-, vp)n and statistically averaged rate for 
:He&-, vp):H are shown as functions of their induced-pseudoscalar Cp(0) and 
weak magnetism p(I)(O) = p v ( 0 )  contributions in Fig. 47.13. The pion-pole value 
of Cp(0)  and CVC value of p(')(O) are indicated by the vertical lines in the f i g ~ r e . ~  If 
one assumes the latter quantity to be given by CVC, then the rate for iHe(p-, v,):H 
gives Cp(0)/Cp(O)pion pole M l f30% as the best determination; it is not determined 
very well. 

The p-capture rate for l~C(p-,vp)l~B(g.s.)  is shown as a function of these 
same two quantities in Fig. 47.14. The upper curve shows the dependence on 

'Donnelly has also extended the theoretical analysis to include all possible p-shell s.p.rn.e.; the 

gThe pion-pole value from chapter 45 is Fp = 2 r n F ~ / ( q ~  + rnz). 
effect on the cross section for this transition is not large. 

H
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Fig. 47.13. The B = 1 singlet and statistically weighted B = 3 p-capture rates as 
functions of their induced-pseudoscalar Cp (0) and weak magnetism p(l)(O) contri- 
butions. The pion-pole value of Cp(0) and CVC value of p(l)(O) are indicated by 
the vertical lines. From [Do76]. 
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Fig. 47.14. The p-capture rate for 'gC(p-, vp)lgB(g.s.) as a function of the devi- 
ation of the induced-pseudoscalar Cp(0)  and weak magnetism p(l)(O) 3 FY(0)  + 
ZmF: (0) contributions from the pion-pole and CVC values, respectively. From 
[DOTS, wa77]. 
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the deviation of Cp(0)  from the pion-pole value; evidently this rate is completely 
insensitive to Cp(0) since the theoretical rate lies within the experimental error 
bars for all plotted values. One can make use of this insensitivity to Cp(0)  and use 
the comparison as a measure of the role of weak magnetism in p-capture. One has 
p v ( 0 )  x pv(0)cvc f 1.5 = 4.71 f 1.5, a confirmation of the role of the magnetic 
part of the weak vector coupling predicted by CVC. 

47.6 The relativistic nuclear many-body problem 

We have discussed in Part 2 the motivation for, and development of, a relativistic 
quantum field theory description of nuclear structure based on hadronic degrees 
of freedom. In particular, the relativistic Hartree description in QHD-I provides a 
minimal explanation of many essential features of nuclear structure such as charge 
densities, the shell model, and the spin dependence of nucleon-nucleus scattering. 
Although the complete calculation of the hadronic contribution to the electroweak 
currents in QHD is a formidable problem, an effective local electroweak current to 
be used in lowest order with QHD-I was constructed in chapter 45; it is covariant, 
the vector current is conserved, the axial vector current satisfies PCAC, and the 
full current has all the symmetry properties of the standard model. 

The traditional approach to nuclear structure and a unified analysis of elec- 
troweak processes in nuclei can, in selected cases, provide a quantitative analysis as 
discussed above. In this approach, relativistic corrections are treated in perturba- 
tion theory. Furthermore, as with electron scattering, the approach clearly becomes 
inadequate when the momentum transfer becomes large compared to the mass of 
the nucleon. 

It is therefore of interest to examine a few semileptonic processes within the 
context of QHD with at least two goals: 

(1) To carry out a completely relativistic calculation where the relativistic cor- 

(2) To calculate neutrino reactions at high q 2 .  
rections are included to all orders; 

We present two examples taken from [Ki87]. Consider as the first example the 
nuclear system shown in Fig. 47.15. The configuration here is a ld512 isodoublet, 
and the relativistic Hartree wave function of chapter 15 is used for the valence 

ld5/2 
17F 9 l70 8 

Fig. 47.15. Nuclear system considered in the first example of the relativistic calcu- 
lation in QHD [Ki87]. 
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nucleon. The wave function and elastic magnetic cross section for l;O(e, e)lZ0 have 
already been presented in chapter 17. 

The effective relativistic electroweak current of chapter 45 is now employed, 
appropriate reduced matrix elements evaluated, and the rates and cross sections are 
just those of chapter 46. The differential and integrated cross sections for the charge- 
changing and neutral current reactions ' ; O ( y ,  l-)'iF(g.s.) and l;O(vl, vl)';O are 
shown in Fig. 47.16.l' 

do !dq2 

v * 300 IMeVI 

Y e  - '70 - vc . '70 

0 . 100 200 300 400 500 600 
10.4- 

- 
V - 0.917 I G e V l  

- 
10.120 200 400 600 800 1000 1200 

u (Integrated Cross-Section) 
1.0 I I 1  I . , I , ,  , , , , , , , . , , 

0.8 - - 

q (MeV) v (MeV1 

Fig. 47.16. Differential do/dq2 and integrated cross section for the charge-changing 
';O(vl, Z-)'zF(g.s.) and neutral current reaction ' ; O ( q ,  vl)l;O. The dashed curve 
(where calculated) is the nonrelativistic limit as described in the text. From [Ki87]. 

The nonrelativistic limit is obtained by first writing the Dirac wave function in 
the following manner 

lcI = ( ;:(4 ) (47.11) 

"The calculation is now completely relativistic, except for the C-M correction where the previous 
expression ~ C M  is used. 
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An expansion through O(l/m) then reproduces the results of chapter 45; numerical 
results with the Hartree ~ ( r )  are indicated by dashed curves in Fig. 47.16. The 
@-decay rate for this system calculated in the same manner is shown in Table 47.6. 

Table 47.6 
is the nonrelativistic limit as described in the text. From [Ki87]. 

P-decay and p-capture rates (sec-l) for relativistic Hartree calculations; also shown 

Process Rel. Hartree Nonrel. lim. Experiment 

:H + ;He + e- + fie 1.815 x 1.818 x (1.7906 

':F 4 'i0 + e+ + ve 1.223 x 1.228 x 1.075 x 
p - +  ;He-+  ;H+v, 1458 1378 1505 f 46 

&0.0067) x 

As a second example consider the nuclear system in Fig. 47.9. The configura- 
tion is ( 1s1,2)-'. Relativistic Hartree calculations of integrated cross sections for 
;He(vl, vl);He, ;He(&, &);He, and ;He(&, Zf);H are shown in [Ki87] together with 
the nonrelativistic result. The @-decay and p-capture rates for this system are also 
given in Table 47.6. 

The conclusions from this work are as follows: 

One has a closed-form summation of relativistic corrections in the semilep- 
tonic weak interactions with nuclei; 
There is agreement with the nonrelativistic results for the rates and inte- 
grated cross sections at the level of 5 9%; 
The deviation of the nonrelativistic result for the differential cross section 
can be larger at high q2;  
Nothing now limits these calculations to low q2 - one can make predictions 
for any new semileptonic process at any q2 .  

47.7 Effective field theory 

The Noether currents in Eq. (24.39) provide a consistent set of weak currents to use 
with the effective lagrangian in chapter 24. The leading terms in those currents, as 
q2 + 0, are just the effective currents introduced in Eqs. (17.9, 45.47)." 

As we have seen, the ground-state structure of selected nuclei far from stability 
is well described using the effective lagrangian of FST. Density functional theory, as 
developed in chapter 25, implies that if the ground-state energy is well described, the 
ground-state densities should also be. A way of testing this hypothesis is to examine 
the ground-state densities through semi-leptonic interactions. Huertas [Hu03] has 

l'The authors in [h97]  provide an effective lagrangian treatment that includes the terms of order 
q2 in the electromagnetic form factors. 
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Fig. 47.18. Calculated and experimental ,&-decay rates for '352Sns3 -+l35; Sb82 + 
e- + ve [Hu03]. 

calculated all the multipole projections from the relativistic Dirac-Hartree (Kohn- 
Sham) wavefunctions required for the semileptonic processes discussed in chapter 
46. As an application, Fig. 47.17 shows a blow-up of his calculated spectra in 
Fig. 24.6. His calculated P-decay rates for the transitions 
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are shown in Fig. 47.18. The ground-state to ground-state transition is very well- 
described,12 as one might expect, with the accuracy decreasing as one moves away 
from the ground state. 

In addition to confirming our understanding of the nuclear structure, the ability 
to calculate P-decay rates (and neutrino cross sections) accurately and consistently 
for nuclei far from stability provides valuable theoretical input for describing element 
formation in supernovae. 

I2For the ground-state transition, the calculated amplitude must be reduced by a factor of 0.83 
to agree with the experimental value. 



Chapter 48 

Full quark sector of the standard model 

In this chapter we extend the discussion of the standard model of electroweak in- 
teractions to the full underlying quark sector. To do this, an extended discussion 
of quark mixing in the electroweak interactions is required. We first review the 
development in chapter 44 involving quark mixing in the case of two families of 
quarks. Color indices will here be suppressed for clarity; their inclusion is discussed 
in chapter 44. 

48.1 Quark mixing in the electroweak interactions: two-families - 
a review 

Start with the kinetic energy of massless (ti, d,  s, c )  quarks 

(48.1) 
a a a 

ti+f&,-d+Fy - s + q  -c 
a 

-Lo = iiT,& ax, Pax, Pax, 

Use the previously established decomposition into left- and right-handed fields 

Now define a rotated combination of (d, s) fields 

(48.3) 

Here 6c is the Cabibbo angle.' The GIM identity allows the first line in Eq. (48.2) 
to be rewritten 

'Note the change of notation from chapter 44. Now DCL = SCL. 

513 
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Now introduce two weak (left-handed) isospin doublets 

QL = ( d",", ) 
Equation (48.4) then takes the form 

Q L E  ( cL ) 
SCL 

(48.5) 

(48.6) 

The lagrangian LO = LOL +LOR now possesses a global weak isospin symmetry with 
left-handed doublets and right-handed singlets. Convert this into a Yang-Mills 
theory with a local symmetry. The charge-changing weak interaction then takes the 
form (appendix D.1)2 

,$*I = ~ ~ ~ L Y ~ T ~ Q L  + ~ ~ Q L Y ~ ~ * Q L  (48.7) 

Let us recast this last result in a slightly different form. Evaluation of the indicated 
matrix products shows this result is identical to the following 

The effect of quark mixing in the two-family sector is to modify the charge-changing 
weak quark currents leading from (d, s) to (u, c) by the inclusion of a mixing matrix 

(48.9) cos& sin& U u d  uus 

-sin& cos& ) ( U c d  u c s  ) 
This mixing matrix has the following properties: 

(1) It is a unitary 2 x 2 matrix; 
( 2 )  As long as the mixing matrix in Eq. (48.9) is unitary, then the weak neutral 

currents will be diagonal in flavor by the GIM mechanism (chapter 44); 
(3) Since the quarks (d, s) and (u, c) are interconverted only through the weak 

interactions, the relative phases of the quark fields can be chosen so that 
this unitary 2 x 2 matrix is, in fact, a real rotation; 

(4) The mixing matrix here is just that of Cabibbo [Ca63] discussed in chapter 
44; 

2With the GIM mechanism, the corresponding weak neutral current is diagonal in flavor (chapter 
44). 
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( 5 )  The empirical value of the mixing angle is cos& = 0.974 (chapter 47).3 

One can now proceed to generate mass by spontaneous symmetry breaking, and 
form the mass eigenstates (u,  d ,  s, c) ,  as discussed previously. 

48.2 Extension to three families of quarks 

We have already observed that leptons come in three families 

( 2 )  
Quarks evidently also come in three families4 

(:) (48.10) 

(48.11) 

Now one can go through exactly the same arguments as presented above, but this 
time including all three families of quarks. Evidently the charge-changing weak 
current in Eqs. (4818) and (48.9) is then generalized to 

uud uus uub 

gi+) = i(U,c,f)’yp(l+Ys) ( 2; 2; :; ) ( 4) (48.12) 

In this case one can have a 3 x 3 unitary quark mixing matrix - the Cabibbo- 
Kobayashi-Moskawa (CKM) matrix [Ko73]. 

The existing experimental data can be summarized in a matrix of the form 
[He89, Ng89] 

X AX3(p-i77) 
1 - A212 AX2 ) (48.13) 

A P ( ~  - - iv) -AP 1 

where the experimental values of the parameters (A, A) appearing in this expression 
are given by 

A2 

2 
1 - - M 0.974 X M 0.220 

A = 1 .05f0 .17  (48.14) 

3Although many explanations have been put forward, there is no simple way to understand why 
the weak interactions sample this particular combination of quark fields. 

4The following footnote appeared in the first edition of this book [WaQ5]: “Most physicists believe 
the top quark t exists, although at the time of this writing it remains to  be discovered.” The top 
quark was indeed subsequently found at Fermilab (see Particle Data Booklet [Pa03]). 
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The parameter q admits the possibility of a small CP (or T)-violating phase; the 
two parameters (p ,  q )  remain to be determined.5 

One can now again proceed to generate mass by spontaneous symmetry breaking, 
and form the mass eigenstates (u, d, s, c, b, t).6 

48.3 Feynman rules in the quark sector 

We proceed to give the resulting Feynman rules for the standard model in the quark 
sector. Here the following notation will be employed for the quark fields q: p denotes 
a p type  quark (u, c, t ) ;  n denotes an n-type quark (d, s, b);  and Up, denotes the 
appropriate CKM mixing matrix element. The vertex components are shown in 
Fig. 48.1; the corresponding factors in the S-matrix in the unitary gauge are as 
follows (a result derived in this text is denoted with J ): 

The Feynman rules for the S-matrix with the complete set of radiative corrections 
in the standard model can be found, for example, in [Ao82, Ch841 (See also [Se86, 
Wag~j ] ) .~  

Experimental data from LEP at CERN are now regularly compared with radia- 
tively corrected theoretical results. This beautiful particle physics work takes us 
beyond the framework of the present text. In the final chapter of this book we shall 
discuss one nuclear physics application of these results - parity violation in ( Z ,  el) .  

5The up-to-date status of the parameter determinations can always be found in the Particle Data 
Booklet [Pa03]. 

‘The following sentence also appears in the first edition of this book [Wa95]: “If the neutrinos 
were to have a small mass, then by analogy, one might also expect mixing in the lepton sector; so 
far there is no experimental evidence to support this.” Subsequent developments in the neutrino 
sector are discussed in the next chapter. 

7Reference [Ch84] differs in the sign of the 7 5  in the (ppZ,) and (nnZp) couplings in Eq. (48.15); 
in addition in that reference, the mixing matrix factor is Up, in the ( n p W i )  vertex. 
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First, however, we turn to a discussion of developments in our understanding of the 
elusive neutrino.8 

~ 

Fig. 48.1. Vertices for p type  (u, c,  t )  and n-type (d, s, b) quarks in the standard 
model of electroweak interactions. 

*Chapter 48 of [Wag51 on Electroweak radiative corrections does discuss some aspects of this topic. 



Chapter 49 

Neutrinos 

The reader has learned in the previous chapters how to  calculate cross sections 
for neutrino reactions on nuclear targets within the framework of the standard 
model of electroweak interactions. So much fascinating research goes on involving 
neutrinos, which impacts nuclear, particle, and astrophysics, that we devote an 
additional separate chapter to it. We certainly cannot adequately cover the topic 
here. Fortunately, the second edition of Neutrino Physics, edited by K. Winter, 
provides an excellent overview, and the reader is referred to it [WiOO]. The topic of 
solar neutrinos, which we shall also briefly touch on, is well summarized in review 
articles written over the years by Bahcall and co-workers [Ba92, Ba95, BaOOa]. 

49.1 Some background 

It was Pauli who first suggested that the missing energy in P-decay was carried 
off by a very weakly interacting fermion. Experiments on the electron spectrum 
implied that the rest mass of this missing particle was very small, if not zero. In 
a classic experiment, for which they later won the Nobel prize, Reines and Cowan 
observed the “neutrino” directly [Re53a, Re53bl. By using the intense anti-neutrino 
flux from the Hanford nuclear reactor, they were able to observe the final positron 
and neutron in the reaction 

pe + p  4 e+ + n (49.1) 

Schwarz [Sc60] and Pontecorvo [Po591 suggested that one could use the final de- 
cay neutrinos from particle production at high-energy accelerators to also induce 
neutrino reactions. Since low-energy neutrino cross sections grow rapidly with en- 
ergy, and since these neutrino beams are relatively forward-focused, terrestrial, 
laboratory-based, neutrino experiments become feasible. Indeed, today they form 
an essential part of the experimental programs at CERN and Fermilab. Initial ex- 
periments at Brookhaven by Lederman, Schwarz, and Steinberger, for which they 
also won the Nobel prize, clearly evidenced reactions induced by up and i jp arising 
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from 7r decay [Da62]. Theoretical guidance was provided by the calculations of Lee 
and Yang on the processes (Le601 

v,+n + p - + p  
P,+p + p++n (49.2) 

The fact that the muon neutrinos from pion decay produced only muons, and not 
electrons, led to the deduction that the lepton numbers ( l e ,  1,) (and later l T ) ,  which 
change sign €or antiparticles, are separately, additively conserved (chapters 42-43). 
Along with electric charge and baryon number, lepton numbers (Ze, 1,, Z T )  appeared 
to be among the few strictly conserved additive quantum numbers in nature. 

Simultaneously, direct measurement of neutrino masses, primarily by looking at 
the endpoints of decay spectra, showed no evidence for a rest mass of the neutrinos. 
Additional, truly impressive, experiments demonstrate that the spin-1/2 neutrinos 
are left-handed and antineutrinos right handed [WiOO]. Indeed, as we have seen, 
the standard model of electroweak interactions simply assumes massless, left-handed 
neutrinos from the outset. 

It is primarily the solar neutrino experiments that have called into question these 
assumptions. 

3 -  

1 10 

NEUTRINO ENERGY (MeV) 

Fig. 49.1. Solar neutrino spectrum as calculated from the standard solar model 
[BAH88, 951. Energy thresholds for various neutrino detection schemes are 
shown on the top. Absolute fluxes in 106cm-2s-1 and their la uncertain- 
ties are: pp:  59 100 (k l%);  pep: 149 (4~2%); 7Be: 5150 (3~6%); 8B: 6.6 (3~15%); 
13N: 618 (f20%); 150: 545 (f20%). From [WiOO]. 
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49.2 Solar neutrinos 

Bahcall and Davis are the pioneers in solar neutrino experiments [BaOOa]. Neutrinos 
are produced by nuclear reactions in the solar interior, and since the neutrinos 
interact so weakly, they have a very long mean free path in the solar material and 
can escape to the surface of the earth. 

Total Rates: Standard Model vs. Experiment 
Bahcall-Pinsonneault 98 

Kamioka SAGE 

CI "*O Ga 

'Be n P-Pe Pep Experiments 
0 'B I CNO 

Fig. 49.2. Comparison of measured rates and standard-model predictions for five so- 
lar neutrino experiments [2-61. The unit for the radiochemical experiments (chlorine 
and gallium) is SNU (see Fig. 2 for a definition); the unit for the water-Cerenkov 
experiments (Kamiokande and SuperKamiokande) is the rate predicted by the stan- 
dard solar model plus standard electroweak theory [ll]. Fkom [BaOOa]. 

Calculations of the solar neutrino fluxes here at the earth's surface (Fig. 49.1) 
indicate that with a large enough detector, one can observe the neutrinos from 
the sun's c0re.l The initial experiments by R. Davis and co-workers, for which 
Davis eventually received the Nobel prize, used a tank car of cleaning fluid and the 
reaction 

Ye+;;Cl ---t e-+;iAr (49.3) 

to produce a few atoms of radioactive Argonne, which were then extracted by chem- 
ical means and their decays detected [Da68]. As impressive as this unimaginably 
difficult experiment was to carry out, even more impressive is the fact that over the 

l o n e  has a tool for actually observing the interior of the solar furnace! 
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years, this, and related experiments, give only a fraction of the neutrino flux pre- 
dicted by the “standard solar model” [WiOO, BaOOa]. Continual refinement of this 
solar model, including convection, temperature uncertainties, nuclear cross section 
uncertainties, etc., fails to account for this discrepancy [BaOOa]. We show the state 
of affairs at the time of this writing in Fig. 49.2. 

49.3 Neutrino mixing 

A likely explanation for the absence of solar electron neutrinos initiating nuclear 
interactions here on the surface of the earth is that these neutrinos mix with the 
other types (“flavors”) of neutrinos, and since they do not have enough energy to 
create their massive, charged lepton partners, they are inert in these detectors. In 
this section we give a brief discussion of two-neutrino mixing. It arises because 
the neutrinos entering into the weak interactions, those we have been studying, 
may not be the energy eigenstates of the total hamiltonian. We here consider only 
two flavors of Dirac neutrinos, for example lye), Ivp), and mixing in vacuum. The 
extensions to three flavors (carried out in analogy to the analysis in chapter 48), 
mixing in matter, and more exotic mass possibilities are discussed in WiOO], and 
we refer the reader to this reference for further study. Note that in introducing 
neutrino mixing, we by necessity violate individual lepton number conservation. 

The problem is just one in two-state quantum mechanics, and here we work in 
a subspace of given momentum p. The two neutrino states above are produced 
through the weak interactions, and their corresponding leptons numbers ( l e ,  Z p )  are 
exactly conserved by all the interactions considered so far. Suppose these are not 
eigenstate of the full H .  We then look for the two states that do satisfy 

fils) = E(”)IS) ; s = 1 ,2  (49.4) 

These will be some linear combinations of IVe), [vp). 

(49.5) 

Substitute this into the first equations and then take the inner product with (Vkl  

[ H k j  - E ( ” ) 6 k j ]  a:”’ = 0 ; k = e , p  
j = e , p  

H k j  ( V k l f i l V j )  (49.6) 

This is now a familiar two-dimensional matrix eigenvalue problem. One can always 
change the overall phase of the neutrino states without changing any of our previous 
physical results. Choose the relative phase so that the matrix H k j  is real. The 
coefficients a?) can then also be assumed real. The modal matrix is constructed by 
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placing the normalized coefficients down the columns [Fe80] 

This is now a real, orthogonal matrix that diagonalizes the hamiltonian 

-- M ~ M  = I 

Any real, orthogonal, 2 x 2 matrix can be parameterized as 

cos9 -sin9 
- M = (  sin9 cos9 

(49.7) 

(49.8) 

(49.9) 

The general solution to the time-dependent Schrodinger equation within the 
neutrino subspace can now be written as 

s=1,2 

d 
at 

i -pqt ) )  = Al@(t)) 

The coefficients in this expansion are determined by the initial conditions 

(49.10) 

(49.11) 

The probability to find the system in the state Ivj) at the time t is given by quantum 
mechanics as 

W )  = l(vjl@(t))12 (49.12) 

Since 

(VjlS) = a!“’ 3 (49.13) 

the above results can be combined to write 
I 

(49.14) 

As an example, suppose one starts with a pure Ive) beam created by the weak 
interactions at time t = 0. The new energy eigenstates are given by 

(49.15) 
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These relations are readily inverted to give 

Ive) = cosB11) - sin812) 

Ivp) = sinell) +cosel2) 

The initial state of pure Ive) therefore has coefficients 

(49.16) 

c1 = case cp = - sin 8 (49.17) 

Let us compute the probability to find the system in the state Ivp) after some time 
T .  In this case 

a;) = sin e a f )  = cos e (49.18) 

Thus 

; AE = E(l)  - E(’) (49.19) 

By conservation of probability (or direct calculation), the probability that the sys- 
tem remains in the state Ive) is 

T A E  
= sin2 (28) sin2 ( T) 

(F) Pu,tu,(T) = 1 - sin2 (20) sin2 (49.20) 

This is evidently smaller than 1 if the last term is non-zero. 

after they are produced with a velocity M 1. In this case T = L and2 
Now suppose that the neutrinos are highly relativistic and travel a distance L 

Am2 = mf-rn; (49.21) 

In summary, in this simple two-state mixing calculation with an initially pro- 
duced Ive) state and relativistic neutrinos that travel in vacuum a distance L from 
the source, one finds 

L Am2 Pvetue(L) = 1 - sin2 (24  sin2 (7) (49.22) 

Experiments on such a system are evidently able to measure the two parameters 
(0, Am2). With an absence of positive signal, what is usually plotted is an exclusion 
area, saying the parameters cannot lie in a certain region. Examples are given in 
[WiOO], and the current state of affairs with respect to neutrino mixing can always 

2Recall ti = c = 1 in these arguments. Here p lpl. 
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be found on the website of the Particle Data Group [Pa03]. It is fascinating that ex- 
periments detecting neutrinos coming from the center of the sun, originally designed 
to teach us about solar structure, appear instead to have profound implications for 
our understanding of neutrinos! 

49.4 Some experimental results 

The Sudbury Neutrino Observatory (SNO) is a large spherical vessel of heavy water 
D20 surrounded by photomultiplier tubes sitting deep in a mine in Canada [SN03]. 
It is designed to be sensitive to the Cerenkov radiation from the produced electrons, 
and the gammas from subsequent capture of the produced neutrons, in the inverse 
solar neutrino reactions 

(49.23) 

Only electron neutrinos ve can produce the e- through the weak charged-current 
interaction in the first reaction. All neutrinos (v,, vp, v7)3 contribute to the disin- 
tegration of fH, and scatter elastically from e-, through the weak neutral current 
interaction in the last two. Since the reaction mechanisms are known within nu- 
clear physics and the standard model of weak interactions, the SNO detector can 
simultaneously measure the flux of ve as well as the total neutrino flux. 

In an initial paper, measurements at SNO of solar neutrinos from the decay of 
EB (those of highest energy - see Fig. 49.1) via the first and third of the reactions in 
Eqs. (49.23) have been reported [AhOl]. The ratio of fluxes (together with precision 
measurements on the third rection at Super-Kamiokande) allow the authors to 
deduce that there is a non-electron flavor active neutrino component in the solar 
flux. The total neutrino flux of active ZB neutrinos is then determined to be 5.44 f 
0.99 x 106 cm-2s-1, in close agreement with the prediction of solar models. 

Thus there is now direct experimental evidence that a finite fraction of the u, 
produced in the nuclear reaction in the sun have converted to neutrinos of another 
flavor in their trip to earth. 

In a subsequent paper, all three of the reactions in Eqs. (49.23) were measured 
and used to deduce the solar neutrino fluxes here on the surface of the earth [Ah02]. 
The results are shown in Fig. 49.3. They fully confirm the conclusions in the first 
paper. Note that neutrino mixing implies both non-conservation of individual lepton 
flavor number and massive  neutrino^.^ 

3As well as their antiparticles. 

4The authors in [AhOl] state that their data implies a splitting of the squares of neutrino mass 
eigenvalues of < eV2. 
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0 i 2 3 4 5 

Fig. 49.3. Flux of 'B solar neutrinos which are p or T flavor vs flux of electron 
neutrinos deduced for the three neutrino reactions in SNO. The diagonal bands 
show the total 'B flux as predicted by the SSM [BaOla] (dashed lines) and that 
measured with the NC reaction in SNO (solid band). The intercepts of these bands 
with the axes represent +la errors. The bands intersect a t  the fit values for de and 
4pT, indicating that the combined flux results are consistent with neutrino flavor 
transformation assuming no distortion in the 8B neutrino energy spectrum. From 
[Ah02]. 

Another interesting neutrino result has been obtained at KARMEN, the Karls- 
ruhe-Rutherford Medium Energy Neutrino experiment at the pulsed spallation neu- 
tron facility ISIS, which uses the beam stop neutrinos from T+ and p+ decays at 
rest [KA03].5 The time structure of the neutron source allows a separation of the 
reactions induced by the prompt, monoenergetic vp coming from 

7r+ 4 p+ + vp (49.24) 

The experiment is described in [Ar98]. The goal of this experiment is to study the 
weak neutral current through excitation of nuclear levels as originally suggested in 
[Do74]. The reaction studied in [Ar98] is just that analyzed in chapter 47 

vp +'g C 4 'gC(15.1 MeV)* + vp (49.25) 

The process is identified by detection of the subsequent 15.1 MeV gamma 

'ZC(15.1 MeV)* 4 'EC + y (49.26) 

The experimental signal, after background subtraction, is shown in Fig. 49.3. The 

5The stopped n- undergo nuclear capture and disappear. 
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measured cross section at the neutrino energy of E., = 29.8 MeV is 

c.,.t = (3.2 f O.Eistat. f 0.4s,,t.) x cm2 (49.27) 

From Fig. 47.12 we see that the measured value is fully consistent with the predicted 
value, which at this energy is sensitive only to the overall coupling strength once 
the nuclear matrix element has been calibrated through inelastic electron scattering 
(e ,  el) .  The measured value is in agreement with a more detailed prediction obtained 
using the analysis developed in chapter 47 [Do79a, Ar981. 

This experiment is a remarkable achievement, as the incoming and outgoing 
neutrinos are unobserved, and only the presence of the 15.1 MeV gamma (Fig. 49.4) 
indicates that an inelastic scattering event has taken place.6 

Fig. 49.4. Energy distribution after background subtraction, dashed line: Monte 
Carlo simulation of the 15.1 MeV gamma ray. From [Ar98]. 

6More accurate measurements of the cross section for the charged current reaction v, +l: C 4 
';N(g.s) + e- discussed in chapter 47 have also been obtained at KARMEN [KA03]. 
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Electron scattering 

We close this book with a chapter on electron scattering, which may be considered 
a brief introduction to the extensive discussion of this subject in [WaOl]. We have 
already met this topic in chapter 7 on electromagnetic interactions. There the cross 
section and multipole analysis for the process (e, e’) were simply quoted; however, 
as a byproduct of the analysis of semileptonic weak interactions in chapters 45 and 
46, we have actually derived the relations quoted in chapter 7. 

50.1 Cross section 

With a few judicious replacements, the cross section for the scattering of rela- 
tivistic electrons through the electromagnetic interaction can be obtained from the 
ERL neutrino cross section in Eqs. (46.6, 46.9) where the multipoles are defined in 
Eqs. (45.13): 

(1) Replace the coupling by 

(50.1) 

Here the photon propagator, depending on the four-momentum transfer, has 
been explicitly included. Note 9: = 4klk2 sin2 6/2 for electron scattering; 

(2) Delete both the lepton and nuclear axial vector currents. For the leptons 
we used (1 + ~ 5 ) ~  = 2( 1 + 75) in obtaining the cross section. Thus we must 
multiply by 1/2 when the lepton axial-vector current is deleted; 

(3) Since the nuclear current is now a pure vector, there is no interference 
between the transverse electric and magnetic multipoles which now have 
opposite parities; 

(4) Include a factor of 1/2 since one must now average over the incident unpo- 
larized electrons. 

The result is the electron scattering cross section quoted in Eq. (7.77). 
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It is useful to make a little more systematic analysis of this result employing the 
material in chapter 38. 

50.2 General analysis 

We start by going back a step and restoring the spatial dependence to the matrix 
elements in Eq. (38.8) through the use of the Heisenberg equations of motion 

- 
wpv = c,c,s(~, - ph - qo)(il  J eiq’xJv(x> d 3 4 f )  

x ( f l /  e-iq.XJ,(x) d 3 4 i ) ( ~ )  (50.2) 

This relation is still exact since if the initial and final states are eigenstates of 
momentum, one has 

(fi J e - i q . x ~ ~ X )  d 3 4 4  = ~sp,p/+q(f iJp(0)i i )  

and then; (il /eiq‘xJv(x) d 3 4 f )  = R(ilJ,,(O)If) (50.3) 

Thus in the limit R + 00 

W p v  = ( 2 7 d 3 C i C f 6 ( 4 ) ( P  - P’ - Q)(ilJv(O)lf)(flJ,(O)li)(ER) (50.4) 

This is our previous result. 
Assume one goes to a discrete state with mass M+, then’ 

(50.5) 
M2 

W p v  = -$S(Po - Ph - qo)wpv 

The cross section is again given by Eq. (38.7). 

and make use of the fact that in the laboratory frame p = (0, ZMT). This yields 
Let us now solve Eqs. (50.5) for the functions wl,2(q2). First take p = v = 4 

(50.6) 

‘We briefly restore the caret which explicitly denotes an operator in the nuclear Hilbert space. 
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Next dot the spatial part of the tensor W,, into the spherical unit vectors eqA from 
the left and eLX from the right, Here these spherical unit vectors are defined with 
respect to the direction of the momentum transfer q [see Fig. 7.1 and Eqs. (7.5)]. 
For X = fl they satisfy 

eqA-ehX = 1 

eqx.q = 0 ; A  = f l  (50.7) 

As a result of these observations, the term in w2 no longer contributes. Finally, 
take to simplify things. The result of these operations is 

These equations can now be solved for w1,2(q2) with the result 

(50.8) 

(50.9) 

These equations are still exact. 
Now assume, just as in the analysis of real photon transitions in chapter 7, that: 

(1) The target is heavy and the transition densities are well localized in space; 
(2) The initial and final states are eigenstates of angular momentum. 

Thus one imagines that the target is heavy and “nailed down” (at the origin, say). 
It makes a transition, and the localized transition density scatters the electron. 
Here target recoil (i.e. the C-M motion of the target) is neglected in the transition 
matrix elementq2 it is included correctly where it is most important through the 
recoil phase space factor T .  

The multipole analysis now proceeds exactly as in chapter 7. The essential 
difference is that the argument of the spherical Bessel functions in the multipoles, 
instead of being given by IkJ the momentum of the photon (with Ikl = w ) ,  is now 
given by K. = lql the momentum transfer in the electron scattering process. 

= lql (50.10) 

’The C-M motion can, in fact, be handled correctly in the usual non-relativistic nuclear physics 
problem using, for example, the approach in appendix B of [WaOl]. 
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In addition to the transverse electric and magnetic multipoles 

(50.11) 

there is now a Coulomb multipole of the charge density defined by 

A i h ( K )  = / d 3 . j , ( K 4 Y J M ( R Z )  ax) (50.12) 

This is the same multipole that appears at long wavelength in the expansion of 
?&(k) in Eq. (7.57). 

The use of the Wigner-Eckart theorem allows one to do the sum and average 
over nuclear states, and exactly as in chapter 7 one arrives at the relations 

The Wigner-Eckart theorem limits the sums on multipoles appearing in these ex- 
pressions to values satisfying the triangle inequality IJf - Jil < J < Jf + Ji. 

The cross section follows from Eq. (38.7) as 

(50.14) 

Here the recoil factor f is given by 

1 
E' 

= 1 +  

= -(MT +El - El case) 

( E ~  - case) 
(50.15) E' 

Energy conservation has been used in obtaining this result (note that for most nu- 
clear applications MT/E' M 1). Equation (50.14) is the general electron scattering 
cross section, to order a2, from an arbitrary, localized quantum mechanical target. 

As a final topic, we discuss parity violation in electron scattering. 
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50.3 Parity violation in (Z, e’) 

The measurement of parity violation in the scattering of longitudinally polarized 
electrons in deep inelastic electron scattering from deuterium at SLAC is a classic 
experiment that played a pivotal role in the establishment of the weak neutral 
current structure of the standard model [Pr78, Pr791. The measurement of parity 
violation in A(Z, e’), where A includes the nucleon, promises to play a central role in 
future developments in nuclear physics [Pago]. In this section we use the previous 
results to develop a general description of this process. 

To start the discussion, consider the scattering of a relativistic (massless) longi- 
tudinally polarized electron from a point proton. The contributing diagrams in the 
unitary gauge are shown in Fig. 50.1. 

Fig. 50.1. Contributing Feynman diagrams (unitary gauge) for parity-violating 
asymmetry in scattering of longitudinally polarized electrons from point protons. 
Here q = k2 - kl. 

Fkom the Feynman rules in chapter 48, the S-matrix is given by 

At low energy Iql/Mz << 1, and the momentum-dependent terms can be neglected 
in the 2-propagator. Take the standard model values 

e2 = 4na 

a = -  - (I - 4sin2 ew) b r - 1  (50.1 7) 
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Then 

(50.18) 

This result is easily extended to point neutrons using the Feynman rules of chapter 
48 through the replacement 

At this juncture one can redefine things so that the result is more general than 
for just point nucleons 

Now these are single-nucleon matrix elements of the full electromagnetic and weak 
neutral current densities taken between exact Heisenberg states; for point nucleons, 
this expression reduces to Eq. (50.19). 

The dimensionless ratio G q 2 / 4 7 r a a  forms the small parameter in these nuclear 
physics parity-violation calculations. 

d q  d ?  

Fig. 50.2. Cross section for right- and left-handed electrons. 
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50.4 Cross sections 

The first term in Eq. (50.20) leads to the electron scattering cross section derived 
in chapter 38 [WaOl] 

4a2 d3k2 1 
du = -- 77PVWP” 

q4 2E2  /- 

From chapter 42 we know that the following are projections for right- and left- 
handed (massless) Dirac electrons 

(50.22) 1 
Pl = 2 ( 1  +YS) 

1 
2 Pr = -(1 - 7 5 )  

To calculate the cross sections for such particles (Fig. 50.2) one simply modifies vPU 
with the appropriate insertion of these projections and removes the average over 
the initial helicities4 

omit 

31 32 

Thus one now has either ( - 7 5 )  or (1) in the lepton trace. Since all common factors 

3Here p l  E p and p z  
possibility of inelastic processes. 

4Note daT + d d  = 2dcrunpolarise,3. 

p’ in the previous notation, and we again generalize to include the 
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cancel an the ratio the asymmetry is given by 

Here 

The lepton traces are evaluated in Prob. 50.1. The result is5 

$2 = $2 = -2(bVp, + a E P v p U ~ l p k 2 u )  (50.26) 

Thus in the numerator of Eq. (50.24) one needs &;(WjL) + W$) and 

W(1) P, + W ( 2 )  P ,  - - (2743YJ-y4)(q +P’ - P )  [(Pl~~(O)IP’)(P’l~~)(O)IP) 

i f  

+ (PIJ?)(O) IP’) (P’l J;Ly (0) IP)] (0%) (50.27) 

Now separate 

3:) = J ( O ) + J ( O )  P P5 ; V - A  (50.28) 

Since the asymmetry is already explicitly of order G q 2 / 4 r ( r f i ,  one can then use 
the good parity of the nuclear states to write 

w(l)+wj(;) P, = W$t+Wi;” (50.29) 

Here 

(1) The first term W$t comes from J r ’ ;  it has the same general structure as 
W;, in Eq. (50.21)6 

5Note that the first term is symmetric in p ++ u while the second term is antisymmetric. 

6The proof of this result uses the fact that the current Jp’ is conserved. 
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(2) The second term, coming from J$), is a pseudotensor; the only pseudoten- 
sor that can be constructed from the two four-vectors ( p p ,  qp)  is 

(50.31) 1 wb-v = w8(q27 q * p)@&pvpuPpqu 

Now combine these expressions with Eq. (50.26). The result follows from simple 
algebra and kinematics ([WaOl], Prob. 50.2). The only nonzero terms are 

'1 (50.32) 
e 

-2bqpvWE = ( - b ) 4 ~ ~ ~  W p  cos2 - + 2Wint sin - 2 2 

and 

The final result is 

(50.33) 

Several 

0 

0 

0 

features of this result are of interest: 

This is the general expression for the parity-violating asymmetry in rela- 
tivistic polarized electron scattering from a hadronic target arising from the 
interference of one-photon and one-2 exchange (Fig. 50.1).' 
The left-hand side is the product of the asymmetry A [Eq. (50.24)] and the 
basic (e, e') response [Eqs. (50.21) and (50.32)]. 
The characteristic scale of parity violation in nuclear physics from the pro- 
cess (Z, e') is set by the parameter Gq2/47rafi appearing on the right-hand 
side. 

7Note that this expression is antisymmetric in p t+ v. 

6Additional contributions to the parity-violating asymmetry can arise from parity admixtures 
These in the nuclear states coming from weak parity-violating nucleon-nucleon interactions. 

contributions are generally negligible, except perhaps at very small q2 [Se7Qa, Dm921. 
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0 The parameter b characterizes the lepton axial-vector weak neutral cur- 
rent [Eq. (50.17)]; its coefficient here arises from the interference of the 
vector part of the weak neutral and electromagnetic hadronic currents 
[Eqs. (50.27) - (50.29), and (50.30)] 

0 The parameter a characterizes the lepton vector weak neutral current 
[Eq. (50.17)]; its coefficient here arises from the interference of the ax- 
ial vector part of the weak neutral and electromagnetic hadronic currents 
[Eqs. (50.27)-(50.29) and (50.31)] 

0 The three response functions on the right-hand side of Eq. (50.34) can be 
separated by varying the electron scattering angle 0 at fixed (q2 ,  q . p).' 

0 The parity violation arises from the interference of the transition matrix 
element of the electromagnetic and the weak neutral currents. If the elec- 
tromagnetic matrix elements have been measured, then parity violation in 
(t?,e') provides a measurement of the matrix elements of the weak neutral 
current in nuclei at all q 2 .  

50.5 An example - ( Z , e )  from a O+ target 

We give one example [WaOl]. 
(Fig. 50.3a). 

Consider elastic scattering from a O+ target 

0+ 0 +.0 
(01 Ibl 

Fig. 50.3. Example of parity-violating asymmetry in scattering from (a) J" = O+, 
and (b) J",  T = Of,  0 target. 

Then from Lorentz invariance and current conservation the transition matrix 
elements of the electromagnetic and weak neutral currents must have the form" 

The last relation follows since it is impossible to construct an axial vector from only 
two four-vectors (p , ,  q,). 

'This is known as a Rosenbluth separation. 

'OHermiticity of the current implies that the form factors, as defined here, are real. 
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Insertion of these relations in the defining equations yields 

Hence 

(50.36) 

(50.37) 

This expression allows one to measure the ratio of the weak neutral current and elec- 
tromagnetic form factors - the latter measures the distribution of electromagnetic 
charge in the O+ target, and the former the distribution of weak neutral charge. 

Now suppose that, in addition, the target has isospin T = 0 (Fig. 50.3b). Then 
only isoscalar operators can contribute to the matrix elements. In the nuclear 
domain of (u, d)  quarks and antiquarks, the only isoscalar piece of the weak neutral 
current in the standard model arises from the electromagnetic current itself, and 
hence in this case (chapter 44) 

This implies 

F,, (0) (q  2 ) = -2s in2B~Fl (q2)  

(50.38) 

(50.39) 

The ratio of form factors is then the constant -2 sin2 Ow at all q2 - a truly re- 
markable prediction!" Insertion of this equality in the expression for the asymmetry 
leads to [Fe75] 

(50.40) 

Several comments are of interest: 

a It is important to note that this result holds to all orders in the strong 

a This expression is linear in q2 with a coefficient that depends only on fun- 

It can be used to measure sin2 Ow in the low-energy quark sector, comple- 

a It can be used to test the remarkable prediction in Eq. (50.39) that holds 

interactions (QCD); 

damental constants; 

menting other measurements of this quantity; 

in the nuclear domain. 

"This result depends on the assumption of isospin invariance that is broken to O(a) in nuclei. 
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A measurement of this parity-violating asymmetry for elastic scattering from 
';C at q = 150 MeV has been carried out in a tour de force experiment at the Bates 
Laboratory [S090]. Take 

q = 150 MeV sin2 OW = 0.2325 
1.027 x 

a-1 = 137.0 G =  
7% 

A =  1.882 x low6 

Then, with an electron beam polarization P,, one has [Mo88, So901 

(50.41) 

AP, = 0.696 x ; theory (P, = 0.37) 
AP, = 0.60 f 0.14 f 0.02 x ; experiment (50.42) 

The first error is statistical. This experiment provided the prototype for the subse- 
quent generation of electron scattering parity-violation (Z, e') studies [Mu94, WaOl]. 

Consider next the extended domain of (u, d ,  s, c)  quarks and their antiquarks. 
The standard model then has an additional isoscalar term in the weak neutral 
current (chapter 44) 

This leads to an additional contribution 6F,(O) in the form factor in Eq. (50.39); the 
asymmetry for elastic scattering of polarized electrons on a O+, 0 nucleus such as 
;He then takes the form 

(50.44) 

The additional weak neutral current form factor comes from the vector current 
in Eq. (50.43) - expected to arise predominantly from the much lighter strange 
quarks. Hence one has a direct measure of the strangeness current in nuclei. The 
total strangeness of the nucleon must vanish in the strong and electromagnetic 
sector, and hence 6Fio)(0) = 0; however, just as with electromagnetic charge in 
the neutron, there can be a strangeness distribution, which is determined in this 
experiment. 

As projected [Pa86, Wa931, the measurement of weak neutral currents in nuclei 
through (Z, e') has turned out to be one of CEBAF's (TJNAF) most important roles 
[An99, WaOl, JLO31. 
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Problems: Part 4 

42.1. Equation (42.41) is the S-matrix for pion decay x- -+ 1- + 4 (Fig. 42.7). 
(a) Verify the general form of the hadronic matrix element of the current in Eq. (42.40). 
(b) Use the Dirac equation to show fi(Z~)yxpx(l+ y5)v(-&) = imle(&)(l+ 75)2)(&). 
(c) Assume a big box with p.b.c. so that [ ( 2 ~ ) ~ / R ] 6 ( ~ ) ( $ -  kl - kz) = 6 F,gl+g2. Let f i  be 
the momentum of the 1- in the pion rest frame. Show the decay rate is 

- . +  

G2F2 Rd3k m: dw = 2x6(Wf - Wi)2--tr[(l + ys)(-iyxkzx)(l - ys)(mi - Zypk~,,)] 4Wpn (2??)3 4&l&z 

(d) With Wf = k + (k2 + m:)l/' and Wi = m,, show dWf/dk = m,/&1. 
(e) Show tr{. . . } = -8(k1 . kz) = 8 k m ~  in (c). 
(f) Hence show the pion decay rate for this channel is given by Eq. (42.42). 
(g) It is observed that W(T- -t p- + P,) = 3.841 x lo7 sec-'. Use G, = 1.024 x 10-5/mz, 
m, = 105.7MeV, and the numbers in chapter 20 to show F, = m,f = 0.92mr. 

42.2. Consider a nuclear 0-decay transition {O+; T ,  M T }  -+ (0'; T,  MT f 1). 
(a) Prove this transition can proceed only through the Lorentz vector part of the weak 
charge-changing hadronic current .fi*). 
(b) Take p' = p - q. Use the Heisenberg equations of motion to show as qx -+ 0 that 

(c) As in chapter 21, identify Jd3z.f(Z) = T' as the strong isospin operator (CVC). 
Show that in the target rest frame f 2 ( p l ~ ~ ) ( O ) l p )  = i 6 ~ 4 J ( T  MT)(T  f MT + 1). Hence 
conclude that the hadronic matrix element is known exactly in this case. 

42.3. Assume the matrix element of the electromagnetic current in Eq. (42.37) were to 
be augmented by a term of the form (i/~)fi(p')[iF~(q2)~~~,uqu]~(p). 
(a) Use hermiticity of the EM current to prove that the form factors Fi are all real. 
(b) Use invariance under parity P [Bj64, Bj65, Wag21 to prove F3 = 0. 
(c) Use invariance under time reversal T [Bj64, Bj65, Wag21 to separately prove F3 = 0. 
(d) Make a nonrelativistic reduction of the current and give a physical interpretation of 
the term in F3. 
42.4. (a) Use Lorentz invariance, the Dirac equation, and strong isospin invariance to 
derive the general form of the single-nucleon matrix element of the Lorentz vector, isovector 
current in the first of Eqs. (42.35). 
(b) Assume the symmetry properties of the current in Eq. (42.21) under strong isospin 

(P~IZ(O)J~) + ( ~ / W ( ~ I  s d 3 4 w .  
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and the hermiticity properties of j y )  in Eq. (42.15); prove FI, F2,iFs are real. 
(c) Assume the properties of the current in Eq. (42.21) under time reversal; show Fs = 0. 
(d) Show that current conservation also implies FS = 0 if q2 # 0. 

42.5. (a) Repeat Prob. 42.4(a) for the Lorentz axial vector, isovector current. 
(b) Repeat Prob. 42.4(b) in this case; prove Fa,Fp,iFT are real. 
(c) Repeat Prob. 42.4(c) in this case; prove FT = 0 (see Prob. 42.3). 

42.6. Use the interaction in Eq. (42.16) to compute the rate for p decay p- + e-($ + 
(a) Show the differential decay rate is (here Em,, 
vp(Q + De(q3. 

Wo % m,/2) 

(b) Show the electron spectrum is dwfi = (G2/6x3)mPpdE[3E(Wo - E )  +p2]. 
(c) Assume relativistic electrons; show the integrated rate is wf i  = G2W:/6.rr3. 

42.7. Calculate the pion decay rate from the axial vector current in Eq. (24.39). Compare 
with the result in problem 42.1. (Be careful in relating fir to F,.) 
43.1. Consider the charge-changing weak reactions (vl,l-) and ( P l , l + )  on a hadronic 
target [denoted (v,l~)]. Use the effective interaction in Eq. (42.30), and remember the 
initial neutrinos are polarized. 
(a) Show the analogue of Eq. (38.7) is 

Here qpu contains the additional term f ~ ~ ~ ~ ~ k 1 ~ k 2 ~ ,  and mPu is calculated from the 
matrix elements of {J$ ' ) (O) ,  $*)(O)}. [Note Eq. (44.20).] 
(b) Assume the ERL (mi + 0); assume also that m, + 0 so that the weak current is 
conserved. Show the form of the target response tensor in Eq. (38.11) is now augmented by 
a term w ~ ( q 2 , q . p ) ( l / m 2 ) E , , , u p p q u .  Hence derive the analog of Eq. (38.19) (e.g. [Wa75]) 

43.2. Assume a transition to a discrete state of mass A4; in (e, el). 
(a) Show the cross section in Eq. (38.19) is (da/dR) = m[w2(q2) + 2w1(q2) tan2 e / 2 ] ~  
where r-l 1 + ( ~ E ~ / M T )  - sin2 8/2. Here the response tensor in Eq. (38.8) is now the co- 
variant expression wPu = xi C;(EE'R2/M~)(i(Ju(0)l f ) ( f lJ , (O)l i ) ,  which has the tensor 
structure of Eq. (38.11) with coefficients wi(q2) [WaOl]. 
(b) Consider elastic scattering from a J" = 0' target. Construct the general form of the 
matrix element of the current; show that w1 = 0 and w2 = lFo(q2)I2. 
(c) Consider elastic scattering from a J" = (1/2)+ target. Use the general form of the 
matrix element of the current in Eq. (42.37); show w1 = q2(Fi + 2rnF2)'/4m2 and w2 = 
F: + r ~ ~ ( 2 m F 2 ) ~ / 4 m ~ .  Hence derive the celebrated Rosenbluth cross section. 
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43.3. Consider the weak charge changing exclusive reactions vi +n -+ 1- + p  and 9 + p  -+ 

1’ + n. Use the general form of the matrix elements of the weak currents in Eq. (42.35); 
show the cross section is given in the ERL by (e.g. [wa75]) 

The term in FT (assumed real) is absent in the standard model. [Note Eq. (44.20).] 

43.4. (a) Use Eq. (43.39) to write the lowest order S-matrix for vp + e- -+ ve + p-.  
(b) Repeat (a) for ve + e- -+ ve + e - .  (Hint: there are two Feynman diagrams here.) 
(c) Calculate the C-M cross section for (a). 

43.5. Use Eq. (43.39) to compute the rate for 2’ -+ vi + 4 in the standard model. (Note: 
this reaction can be used to determine the number of vi with 2m, < Mz.) 
43.6. Rewrite the interaction in Cgauge [Eq. (43.34)] in terms of the physical vector meson 
fields. Discuss. 
44.1. (a) Consider the Yukawa coupling Lint = G,(gLH)u~ + Gc(QL$)c~ + h.c. Show this 
is invariant under SU( 2) w @ U( 1) w . 
(b) Show that with spontaneous symmetry breaking, in the unitary gauge, this term gives 
rise to masses and Higgs couplings for the (u, c) quarks. 
(c) Construct all SU(2)w U(1)w invariant quark Yukawa couplings from the fields in 
Tables 43.1 and 44.1. 
(d) Discuss how the diagonal quark mass matrix arises from these couplings. 

44.2. Include the possibility of production of heavy quark flavor in the reactions (vi, 1 - )  
and ( S , l + )  through the additional currents in Eq. (44.16), relax the condition of conser- 
vation of axial vector current, and stay in the ERL for the leptons. Show the results in 
Prob. 43.1 still hold. 

44.3. It  is an empirical observation that the strangeness-changin5, charge-changing weak 
hadronic currents in nuclear physics satisfy A S  = AQ and lATl = 1/2. Derive these 
selection rules from the currents in Eq. (44.16). 

45.1. Derive the expansion of e*eiG” in Eqs. (45.10) and (45.9). 

45.2. Derive the nonrelativistic reduction of the singlenucleon matrix element of the weak 
current in Eq. (45.31). This is the analog of Eq. (8.21) and employs the same assumptions. 

45.3. Derive the long-wavelength reduction of E J M  in Eqs. (45.35) and (45.36). 

45.4. Give the nuclear selection rules for the allowed Fermi and Gamow-Teller operators 
in Eq. (45.44). 
45.5. (a) Derive the improved form of the effective electromagnetic current operator given 
in the footnote at  the end of chapter 45; this incorporates the scaling of the Sachs form 
factors, which holds to very high q2. 
(b) Discuss a corresponding extension of the effective weak current in Eq. (45.47). 

46.1. One line in Table 46.2 is derived in the text in Eqs. (46.4), (46.5), and (46.29). 
Verify the remaining entries. 
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46.2. (a) As in chapter 42, show that the effective interaction for electron scattering from 
a nuclear target with one photon exchange is given by the Mbller potential 

Here q = p - p' = k2 - kl. 
(b) Use the analysis in chapter 46 to now derive the (e ,e ' )  cross section in Eq. (7.77). 

46.3. (a) Show that if nuclear recoil is allowed in the density of final states, the lepton 
capture rate in Eqs. (46.28) and (46.30) is multiplied by T = (1 + v/M~)-l. 
(b) Repeat part (a) for ,&decay; determine T .  

46.4. The longitudinal polarization of the emitted e-(e+)  in @-decay is defined as PT = 
(NT - N~)/(NT + N1). Construct helicity projection operators from 5 . p' to use in the 
lepton traces, and show that in the ERL one finds [PT];?~ = ~ 1 .  

46.5. Consider @--decay with the kinematics in Fig. 46.6a; work in the allowed limit 
K = 141 4 0 where only the multipoles in Eq. (46.40) remain; 
(a) Start from the Golden Rule and show explicitly 

- - -  - 
(b) Evaluate (R2/2)C,,pton,pi,,l~l~ = 1 + D .  @ and (!22/2)~leptonspinsl . 1 *  = 3 - D p. 

= R2(27r)-6k~ d&dRk(Wo - E ) ~ ~ R , , .  Hence independently derive the allowed @-decay rate 
in Eq. (46.41). 

46.6. (a) Show that a p -  moving entirely inside a uniform spherically symmetric charge 
distribution feels a three-dimensional simple harmonic oscillator potential; hence compute 
the spectrum of this muonic atom (Fig. 46.5). 
(b) The case where the muon moves entirely outside the charge distribution reduces to 
the Bohr atom. Interpolate the spectrum of the muonic atom between these two limiting 
cases of nuclear size and discuss. 

47.1 Use the analysis in chapters 5-9 to find ((lp3/2)-'lp1/2; 1+, 1 0 ) l ~ ~ g ( q ) l J O + , O )  in 
Eq. (47.4). 

47.2. Prove that when calculated with valence particles in the pshell and s.h.0. wave 
functions, the matrix element in Eq. (47.6) must yield a straight line in y. 

47.3. Assume a configuration (1s1/2)-' for the three nucleon system and s.h.0. wave 
functions. Reproduce the EM results in Table 47.5 and Fig. 47.10. 

47.4. Repeat Prob. 47.3 for the weak rates in Table 47.5: (a) for @-decay; (b) for p-capture. 

47.5. Consider the cross sections for $He(y, vl)$He and $He(&, &)$He in the standard 
model; work to lowest order in G: 
(a) Prove that in the nuclear domain with strong isospin invariance this cross section is 
determined by $He(e, e)$He; derive the relation between the differential cross sections. 
(b) How is this relation modified in the full standard model? 

47.6. Calculate the rate for p -  + p 
the weak current in Eqs. (45.20) and (45.24) and full kinematics. 

(c) Show the density of final states is Jneutrinoenergy qwf - ~ , ) ~ 2 ( 2 4 - ~ 3 1 c d 3 ~  

n. + v p  using the single-nucleon matrix elements of 
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(a) Show that for statistical occupancy of the initial atomic hyperfine states one has [Note 
Eq. (44.20)] 

3, = 

U 2 
+2 [ FA - -(Pi 2m +2mF2)] } (1 + ” ) - I  m 

(b) Calculate the rate from the individual hyperfine states (see, e.g., [Do76]). 

47.7. Extend the analysis of the relativistic Hartree single-particle matrix elements of the 
EM current in Prob. 17.2 to include the contributions of the additional weak currents in 
Eq. (45.47). (See [Hu03].) 

47.8. Reduce the S-matrix Si:’ for UI + :H + n + p + UI and vi + :H -+ p + p + 1- to the 
evaluation of a nuclear matrix element; here S(l) is exact to lowest order in G. Work in the 
standard model. Discuss the evaluation of the nuclear matrix element in: (a) traditional 
nuclear physics; (b) QHD; and (c) QCD. These reactions are the basis for the Sudbury 
solar neutrino detector (SNO). 

47.9. Extend the Fermi gas results in Prob. 17.3 to compute the quasielastic nuclear 
response to the neutrino reaction (vi,l-). Assume N > 2 and introduce separate Fermi 
momenta for the neutrons and protons with p p  + pn = p = const. Take the Fermi energy 
to be EF = k;,/2rn = k;,/2m + €0. 
(a) Show the appropriate replacement in Prob. 17.3(b) is 

Introduce dimensionless variables A = f/kFn, ( = mweff/k&, with weff G w - €0, and 
X kFp/kFn. Show : 
(b) If A > 1+X (proton and neutron spheres do not intersect) and A/2+1 > </A > A/2-1 

(c) If 1 + X > A > 1 - X (proton and neutron spheres intersect) 
(i) If A/2 + 1 > (/A > X - A/2, one has 721. 
(ii) If X - A/2 > (/A > -(1- X2)/2A 

(d) If 1 - X > A > 0 (proton sphere inside neutron sphere) 
(i) If A/2 + 1 > (/A > X - A/2, one has RI. 
(ii) If X - A/2 > (/A > - (A + A/2), one has RII. 
(iii) If -(X + A/2) > </A > -(1- A/2), one has RI. 

(e) Recover the results in Prob. 17.3 as X + 1. 
(f) Sketch and discuss (see [wa75]). 
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47.10. Use Prob. 47.9 to extend the Coulomb sum rule in Prob. 17.4 to (w, 1 - ) .  Define 
C(+)(q)  = (1/N) Jr duR(+)(q ,w) .  Show 

c(+)(q) = 1 ; A > l + X  

1 3 1 3(1-x2)2 ; 1 + X  > A > 1 - X  -(1 - A') + - ( I  + X2)A - -A3 + 
2 8 16 16A 

= 

Recover the result in Prob. 17.4 as X + 1 

47.11. In coincidence reactions ( e ,  e 'X )  or (YL, 1-X)  the final-state interaction of the 
emitted hadrons must be taken into account. The optical potential for doing this is 
analyzed in Probs. 15.6-10. The Glauber approximation then provides an excellent high 
energy approximation for determining the scattering state wave function [G159] (see also 
[ScSS]). 
(a) Look for a solution $J = u/r to the radial Schrodinger equation in Prob. 1.3 of the 
form u~(r) = e*ik4(T).  Show that for large k ,  one can write the solution d ( r )  = r - TO + 
ST: dr[ ( l  - weff(r)/k2)'/' - 11 + + ( T O ) .  Here W . E ( T )  = w(r) + 1 ( 1 +  1)/r2. 
(b) Assume the radial solution vanishes at  the classical turning point vee(r0) = k 2  and 
write ul M a{eik[4(T)-4(Tn)]  - e - ik [4 (T) -4 (T 'J ) ] } .  Identify the phase shift through the asymp- 
totic form in Probs. 1.3-4 to get SL = 17r/2 - kro + k J" d r [ ( l  - v e f f ( r ) / k 2 ) ) ' / 2  - I]. 
(c) To satisfy the condition 61 = 0 when 21 = 0, it is necessary to allow the wave function 
to slightly leak into the barrier; hence define 

Tn 

6yKB = ( l + - ) - - k r o + k  l7r dr  [ (1 - q) )'I2 - 11 
2 2  

Show 6yKB = 0 when v = 0. 
(d) Define the impact parameter by 1 + a = kb. Let v ( r ) / k 2  --f 0 and show 

Here the Glauber phase shift is calculated by integrating on a straight line eikonal trajec- 
tory through the potential at  impact parameter b. 
47.12. Write 2i6?lauber - = zx(b,  ' k )  = - ( i / 2 k )  J-wm d z v ( d m ) .  
(a) Justify replacing Cl k J d b ;  use Heine's relation Liml,,A(l - z2 /212)  = Jo(r ) ;  
recall 4'' = 2k2(1 - cos8); and hence show at high energy the scattering amplitude in 
Prob. 1.3 can be written 

The last expression is the (transverse) two-dimensional Fourier transform of the eikonal. 
(b) Change variables to d cos 8 = -q d q / k 2 ,  and assume the scattering amplitude falls off 
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fast enough so that one can perform d2g over the entire transverse plane. Show 

lI2 
a,, = / d2b leiX(k’b) - 

(c) Use the optical theorem Imfel(0) = (k/4.rr)utOt [Sc68] to show 

1 utot = 1 d2b 2 Re [ 1 - eix(k,b) 

47.13. The matrix elements of the nuclear weak currents in the traditional nuclear physics 
picture in chapter 45 can be calculated through the use of the results in Probs. 8.3-4 and 
the following relation [Wa75] 

(n I (1 ’1 ~ ) J ’ / ~ M J ?  . . Z l l n ( l z ) j )  1 = cJ , ( - l ) J ’ - J [6(2 j  + 1)(2j’ + 1)(2.7’ + 1)]”2 

(a) Derive this result (see [Ed74]). 
(b) Use the result in Prob. 8.4 to obtain an explicit expression in terms of radial integrals. 
48.1. Demonstrate the approximate unitarity of the parameterization of the mixing matrix 
- U in Eq. (48.13). 

48.2. Introduce weak isodoublets whose lower components are the fully mixed (d ,  s, b)  
expressions in Eq. (48.12). Construct the weak neutral current, and show that it is diagonal 
in flavor. 
49.1. Verify Eq. (49.20) by direct calculation. 

49.2. Assume the solar ue neutrinos are converted to just one other type of neutrino (up 
or v7) on their way to earth from the sun and take the central value of the SNO results in 
Fig. 49.3 for the fraction converted. Use the two- state analysis in this chapter to compute 
and plot the implied allowed range of mixing angle 0 and mass difference bm2. 

50.1. Establish the following traces for massless (relativistic) electrons [see Eqs. (50.26) 
and (50.21)]: 

(b) $2 = 2 t r  yu(-iy,ka,)(ayp + b-yp75)(--75)(-27uklu) = -2(bvpu + a ~ ~ ~ ~ ~ k 1 ~ k 2 ~ )  

(d) Hence conclude 

( 4  tr YpYvYpYuY5 = 4EPUfU 

(c) vpu (2) - - T t r  -1 (a?, + ~ u ~ 5 ) ( - - i y p k a p ) ~ p ( - ~ 5 ) ( - i y u k l , )  = -2(bvpu + a ~ p u p u k l p ~ 2 u )  

(1)  - (2) - 2(bv 
v p u  - v p u  - - 
v p u  = huk1M + k2pk1u - kl ’ k26pu 

pu + a E p u p u k l p k 2 u )  

50.2. Derive Eqs. (50.32) and (50.33). 

50.3. Assume the single-nucleon matrix element of the weak neutral current has the form 
( p ’ ( J f ) ( o ) l p )  = ( i / ~ ) ~ i ( ~ ’ ) [ F , ( ~ ) y ,  + FZ(o)apuqu + FA (0) 75yp - iFg)y5qp]u(p) .  Assume the 
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matrix element of the electromagnetic current has the form in Eq. (42.37). Show that 
for relativistic electrons the parity-violating asymmetry for N(Z,  e )N has the form [Po871 
(here GM = FI + 2mF2) 

~ t ( [ ( F : ) ~ + q ~ ( F ~ ) ~ ] c o s  2 Z + ~ ( G h ) ~ s i n  0 q2 - =-- Gq2 
2 

[FP’F? + q2Fp’FJ cos2 + -Gg’G& q2 sin 2 0  - 
2 2m2 2 

--/-‘G&(l sin 0/2 -4sin20w)FF’ 
m 

50.4. Discuss the form factors FJ0’ in Prob. 50.3 within the standard model under the 
following assumptions about the strong interactions: 
(a) Point nucleons; 
(b) QCD in the nuclear domain of (u, d)  quarks and strong isospin invariance; 
( c )  QCD in the extended domain of (u, d ,  s, c)  quarks and strong isospin invariance. 

50.5. Consider ul + :He + vl + :He. Calculate the differential cross section under the 
following assumptions about the strong interactions: 
(a) QCD in the nuclear domain of (u, d )  quarks and strong isospin invariance; 
(b) QCD in the extended domain of (u, d, s, c) quarks and strong isospin invariance; 
(c) Discuss the relation to the parity violation measurement ;He(Z, e);He. 

50.6. Carry out the following simplified calculation of ?H(Z, e’) in the deep inelastic region 
p a 0  11 : 
(a) Assume forward angles with 0, + 0; assume also sin20w M 1/4. Show A = 
-(Gq2/4raJZ) [ v W ~ ( U ,  q2)int /uWZ(U, q2)’] ; 
(b) For a nucleon, assume just three valence quarks and identical quark distributions; use 
the quark parton model (chapter 38) to reduce the required ratio of structure functions to 
a ratio of charges [Ci 2 Q I Q ~ ’ ] / [ C i ( Q ~ ) 2 ]  ; 
(c) For the deuteron, take an incoherent sum of structure functions and show d2H = 
-(Gq2/4wafi) 2 [(xi QI&,!O’)p + (Ci QIQIo’)n] / [Ci(Q:)Pr + Ci(Q:)xl; 
(d) Hence show that under these assumptions’ 

(e) Compare with the experimental results in [Pr78, Pr79]. 

The last problem goes beyond the standard model: 

50.7. Suppose there were a very heavy charged vector boson Wp, right-handed neutrinos 
( v l ) ~ ,  and an interaction with coupling (1 - 7 5 )  in Eqs. (43.39), (43.41), and (43.42). 
(a) Discuss the experimental consequences. 
(b) Compute the allowed rate for n -+ p + e- + ( v , ) ~  in terms of (6, M w ) .  

lFor a better treatment see [Ca78] 
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Appendix A 

Part 1 

A. l  Meson exchange potentials 

Consider the lowest-order scattering operator in nonrelativistic potential scattering 

In second quantization the interaction hamiltonian with a potential V,, and distin- 
guishable fermions is given by 

The kinematic situation is illustrated in Fig. A l . l .  That part of the nonrelativistic 
field operator that contributes to the matrix element is the following 

Here R is the quantization volume. The matrix element of the scattering operator 
for the situation illustrated in Fig. A l . l  thus takes the form 

(A.4) 
-i Sfi ( 1 )  - - ~ ( 2 . r r ) ~ d ~ ) ( k l  + k2 - k3 - k4)R;eff(q3 

- - $ - . +  

where f=  k l  - k3 = k4 - k z .  Here spin indices have been suppressed. 
The interaction lagrangian density for scalar meson exchange is given by 

CI = d $ 4  64.5) 

The Feynman rules (Fig. Al.1) then yield the following lowest-order S-matrix 
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The limit M --t 00 represents static sources; in this limit qo = 0(1/M) and iiu + 

6,,!. A comparison of Eqs. (A.4) and (A.6) then allows the identification 

Note the sign. The Fourier transform of this relation then yields the celebrated 
Yukawa potential 

Here all masses are in units of inverse Compton wavelengths mclti. 

Fig. A l . l .  Kinematics for scattering, and scalar meson exchange. 

We summarize the effective potentials obtained in this fashion from various 
meson exchanges and lagrangian densities. The respective vertices are indicated 
pictorially in Fig. A1.2. 

Fig. A1.2. Pictorial representation of vertices for various types of meson exchange: 
(a) neutral scalar a ;  (b) neutral vector w ;  (c) isovector vector p'; (d) isovector 
pseudoscalar ?i . 



bk is a Tank-j irreducible tensor operator 

CI Kff (r) 
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(A.9) 

2 e-m,T 
s s  

47rc2 r 
2 -m,r 

s v  e 
47r r 
- 

Several comments are relevant here: 

Note the presence of the tensor interaction proportional to 5'12 in the one- 
pion exchange potential (d); 
The neutral vector meson result (b) assumes that the w, is coupled to the 
conserved baryon current. Then the interaction is just like that in QED, 
only with a finite photon mass; 
The pion potential in (d) actually yields a divergent Fourier transform. The 
one pion exchange potential (OPEP) (d) is obtained in coordinate space if 
this Fourier transform is interpreted in the following fashion 

Note that the OPEP is still singular at the origin. 

A.2 b: is a rank-j irreducible tensor operator 

The canonical transformation to particles and holes for the situation illustrated in 
Fig. 5.1 is defined in Eq. (5.3) 

.t a = - ca t ; a > F  
bf, = S--a~-a ; a < F  ( A . l l )  

Here I - a) = la, -ma). The goal of this appendix is to show 
that the hole creation operator bL is an irreducible tensor operator [Ed741 and 
hence properly creates an eigenstate of angular momentum.2 The additional phase 

= (nls j ,  -mj) 

2While appendix B of [Fe71] provides a concise summary of the essentials, the basic reference for 
the quantum theory of angular momentum used in this text is IEd741, and every dedicated reader 
should keep a copy of that book close at hand. 



552 Part 1 

sff = (-1) 3 ’a --ma = -S-, (recall j ,  is half-integral) is essential to the argument. 
The first step in the proof is the construction of the angular momentum operator 

d 

J’ = C C: ( a l q ~ ) c p  = C aL,jm (jmJJIjm’)anljmt 
ffp nljmm’ > F 

+ C (jmlqjm’)(-l)j-mbnlj-m(-l)j-m’bL~j-m, (A.12) 
nljmm’< F 

Now use the anticommutation relations ( - l ) j -mbn l j -m( - l ) j -m’b~ l j -m ,  - - 
(- 1)m-m‘ [Smm, - bL+m,bnij-rn] and the Wigner-Eckart theorem [Ed74], which 
implies 

A change of dummy summation indices then gives 

nljmm’>F nljmm’ < F 

(A.14) 

One now demonstrates that bL = bLma is an IT0 by considering the commutator 

13 bhm,~ = C(PIJ~)PL~,, ~ L I  = C(PIJI?)S~,~~, 
P Y  P r  

m; 

This is the definition of an IT0 [Ed74]. 
These arguments can readily be extended to include isospin by taking 

Then the same proof shows b: is an IT0 with respect to both angular momentum 
and isospin. 



Appendix B 

Part 2 

B. l  Pressure in MFT 

The pressure p can be determined from Eq. (14.12) and the field expansions, or one 
can use thermodynamics; these two approaches give identical results [Se86]. In this 
appendix the thermodynamic argument is summarized. 

Start from the first law of thermodynamics 

Consider the expression 

Thus 

One can keep 40 fked here since from Eq. (14.27) 

One then has from Eq. (B.3) and the first of Eqs. (14.26) 
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Note p~ = yki/67r2; thus the third and fourth terms can be written in the form 

This last equality follows upon a partial integration with u = k 3 / 3 ,  du = 
k2dk ;dw = kdlc/(k2 + M*2)1/2, w = ( k 2  + M*2)1/2. Thus we arrive at  the fol- 
lowing expression for the pressure 

This is the result quoted in Eq. (14.26). 

B.2 Thermodynamic potential and equation of state 

First introduce some notation. Order all the single-particle modes and write 

{nz,} {n1,712,7237 ' '  ' 7 n,} 

s {ni} ; i = l , 2 , . . . , 0 0  (B.8) 
The grand partition function is then given by 

ZG = c.. .y7;. . .c 
n1 n, iil ii, 

A -  

x (n1,. . . , n,; Al,. . . , fi,le-p(H-PB)lnl,. . . , n,; fil,. . . , fim) (B.9) 

Use I?MFT, B, and the factorization of exponentials 

i ni j Aj 

(B.ll) 

There are just two values of the occupation numbers for fermions ni, f i i  = 0 , l .  Thus 

Here
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Thus the thermodynamic potential in Eq. (18.1) is given by 

Now compute the thermodynamic variables, for example 

f3R 
* = - ( E ) T , V  = - (%)T,V$o,V, 

This gives, with xi --f [ y V / ( 2 ~ ) ~ ]  J d 3 k  

Here the thermal occupation numbers are defined by 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

The pressure can be obtained from p = -n/V which gives 

+ L r  / d 3 k  [ln{1 + e-P(E*-p* ) }  + ln{1+ e-P(E*f j ' * ) } ]  (B.17) 
P (2T)3 

Now integrate by parts. In the first term, for example, define 

d v  = k2 dk  21 = In (1 + e - P ( E * - p * ) }  

1 
3 

v = -k3  

Then 

(B.19) 
1 k2 

2 
1 

P I 3  / d 3 k 3 ( n k + f i k )  ( k 2  + M*2)1/2 p = -rn2b2 - 2rn,do + - 
The energy is obtained from 

This gives 

(B.20) 



556 Part 2 

The value of the scalar field 40 is obtained from the minimization of the ther- 
modynamic potential at fixed (p ,  T ,  V) 

= o  
p,V,T;Vo 

(B.22) 

This leads to the self-consistency condition (recall M* = M - gs$o) 

This is identical to the thermal average of the scalar meson field equation for a 
uniform system. At the end of the calculation, one can replace the vector field by 
the baryon density 

(B.24) 

This is the thermal average of the vector meson field equation for a uniform medium. 

B.3 IT-N scattering 

This material is from [Ch57, Fu59, Fr601. 
In the C-M system one can write (in this appendix q = 14) 

(B.25) 

Here the matrix element is taken between two-component Pauli spinors. The quanti- 
ties f1, f2  can be related to the amplitudes defined in the text through substitution 
of the explicit representation for the four-component Dirac spinors in Prob. 13.1 
(multiplied by (E/M)1/2 to get iiu = 1). 

The isospin structure of the amplitudes is given by 

(B.26) 

(B.27) Apa = A+6pa + A- 5 [TO, Ta] 

with a similar relation for B. The indices refer to the hermitian components. The 
amplitude must be a second rank tensor in isospin space, and these are the only 
two tensors available. These amplitudes are related to those in the channels of total 
isospin by 

1 

(B.28) 
1 1 

3 A- = -(Al/2 - A3/2) A+ = p 3 / 2  + 4 2 )  



T - N  scattering 557 

Similar relations hold for B.3 
One can carry out a partial wave analysis in the C-M system. The conventional 

notation denotes the parity of the channel by (-l)’+’ and the angular momentum 
in the channel by j = 1 f 1 /2 .  Introduce 

Then4 

(B.29) 

(B.30) 

Here P;((z) = dP~/dz with z = cos8. 
The scalar functions A, B satisfy fixed momentum transfer dispersion relations5 

Here 

tC2 
v o = p - -  

M (B.32) 

The singularity structure of the amplitudes in the complex v-plane at fixed fi2 is 
shown in Fig. B3.1. 

physics 

Fig. B3.1. Singularity structure of the T-N scattering amplitudes in the complex 
v-plane at fixed f i2 .  

3These relations are proved by taking appropriate matrix elements and using the theory of angular 

*These relations are derived using the analysis of Jacob and Wick [Ja59] in Probs. 20.1-5. 

5See Prob. 23.5. 

momenta (Prob. 20.8). 
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At threshold in the C-M system q = 0 and W = M + /I, and there is only s-wave 
scattering so fEh  = fo+ and f2th = 0. Thus from Eq. (B.26) 

(B.33) 

The s-wave scattering length in T-N scattering is defined by (note the sign) 

fat: = ao+ (B.34) 

Inversion of the defining relations for the partial wave amplitudes in the C-M 
system [Eqs. (B.26)-(B.30)] gives 

1 fl& = 32TW2 { [(W + M ) 2  - p21 [AZ + (W - M)BZI 
+[(W - M ) 2  - P21[-Al*l + (W + M)BZ*11} (B.35) 

Here 

A ( s )  = ll fi(a:)A(s,t,u)da: ; etc. (B.36) 

Also in the C-M system 

(B.37) 
1 

4W2 
q2 = -[(W + M)2 - $][(W - M)2 - $1 

B.4 The symmetry s U ( 2 ) ~  @ s U ( 2 ) ~  

The generators for the isospin and chiral transformations in chapter 21 are 

(B.38) 

Equations (21.18) and (21.50) give the canonical (anti-)commutation relations for 
the fields. It is then a basic exercise in quantum mechanics to show that the isospin 
generators form an SU(2) algebra (see e.g. [Wa92]) 

1 Ti = J d32 [$t f ~ i $  - &ijkk j7rk  

1 T! = J d3a: [$t lgy5$ 2 + irig - d-ri 

[Ti, Tj] = i & i j k T k  (B.39) 

Call this isospin subalgebra SU(2)v. Now evaluate 

I 
I 

1 1  [Ti, = J &a: { $ t [ p ,  z ~ j ] y 5 ~  - i ~ i ~ j i r p  - isijgr~d- = z&ijk?i  (B.40) 

In a similar fashion, for i # j ,  one has 

1 1  [P a )  T;] = J d 3 Z { $+[-Ti, -Tj]752$J - ik$Tj + i T i f j  = i E i j k T k  (B.41) 
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Define the linear combinations 

(B.42) 

These may be said to correspond to left- and right-handed isospin, respectively. It 
follows immediately from Eqs. (B.39)-(B.41) that 

1 -  - 1 -  - 
2 

TR -(T - T5) 
2 

TL = -(T+T5) 

The operators 5?~ form an SU(2) algebra s U ( 2 ) ~ ;  the operators ' f ~  form an SU(2) 
algebra s U ( 2 ) ~ ;  and these generators commute with each other. The entire new 
set of generators thus forms the Lie algebra s u ( 2 ) ~  @ s u ( 2 ) R .  

The following quantities are the projection operators for left- and right-handed 
massless Dirac particles, respectively (note appendix D.2) 

(B.44) 

They satisfy 

P1" = Pi PT" = Pr 
PlPT = PtPl = 0 (B.45) 

Define left- and right-handed Dirac fields by 

In addition, define the following combination of meson fields 

1 
x = - ( ( a + i ? . j i )  - J z  

(B.46) 

(B.47) 

It is then a matter of straightforward algebra to verify that the lagrangian in 
Eq. (21.41) can be rewritten as (Prob. 21.7) 

Here v;L = (8, +ZV~).~ 

Define the SU(2)  matrix and its infinitesimal form with L3 = Z-i 0 as 

(B.49) 

6A Yang-Mills QHD theory based on this lagrangian is developed in [Se92a]. 
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Since Rt& = 1 is unitary and the trace is invariant under cyclic permutations, it 
follows by inspection that the above lagrangian is invariant under the global s u ( 2 ) R  

transformation defined by 

'$R R ' $ R  '$L -+ '$L 

x -+ Rx (B.50) 

Similarly, it is invariant under the independent s U ( 2 ) ~  transformation defined by' 

- 

'$'L --$ L'$L '$'R -+ '$R 

x -+ XL t (B.51) 

The infinitesimal forms of these transformations are easily seen to be (Prob. 21.7) 

- - 

(B.52) 

This is the infinitesimal form of a particular combination of chiral and isospin trans- 
formations, both of which leave the lagrangian invariant. In the second case 

1 1 1 ,  x-+&(.,?i) --+ X(o---Z.?i, ?i+-E'a---Ex?i) - - 2  2 2 

i 
+L -+ L ~ L  + (1 + ZP.?) +L 

B.5 7r-7r scattering 

In this appendix we discuss some general phenomenology of 7r-7r scattering [Ch62, 
Li901. The process is illustrated in Fig. B5.1. 

Fig. B5.1. T-T scattering. 

The general form of the S-matrix is given by 

(B.54) 

'Note the matrix multiplication on the right by the adjoint in the second expression. 
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As before, the Lorentz invariant kinematic variables are defined by 

s = -(q1 + q2)2  t = -(q1 - q3I2 'u. = -(q1 - 44)' (B.55) 

They satisfy 

s + t + 21 = 4p2 

In the C-M system (Fig. B5.2) 

(B.56) 

Fig. B5.2. 7r-7r scattering in the center-of-momentum (C-M) system. 

s G w2 = 4(@+p2) = 4w2 

t = -2&1 -case) (B.57) 

The cross section is given by 

27r ITfi12 d p f  = --b(Wf - WJ-- 
R2 ( 2 ~ ) ~  Flux 

(B.58) 

The incident flux is given by 

(B.59) 1 9  F l u  = -2- 
R w  

The density of states is 

R 
dPf  = w d 3 q  

Since the total energies are W f  = 2(q2 + p2)l/' and Wi = 2w, one has 

Thus the differential cross section in the C-M system is given by 

(B.60) 

(B.61) 

(B.62) 
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The scattering amplitude is thus' 

(B.63) 

One still has a second rank tensor in isospin space T,S;~~ from which appro- 
priate matrix elements must be evaluated. In terms of hermitian components the 
scattering amplitude in Fig. B5.1 must have the form 

The amplitudes in states of given total isospin are then 

B.6 Chiral transformation properties 

In chapter 24 the pion field enters the effective lagrangian through the local SU(2)  
matrix 

(B.66) 

The general non-linear chiral transformation is defined there by 

Here R and L are independent, global SU(2) matrices, and &(x), defined by the 
equality, is a local SU(2)  matrix satisfying 

- h ( X )  ht (x) = ht (x) h(z) = 1 

These matrix relations can be differentiated to give, for example 

- h ( a h t )  ax,- = - ("h) ax,- - hi 

(B.68) 

(B.69) 

This allows one to move the derivative to the left in this expression, with a minus 
sign. 

sThe sign follows from unitarity (Probs.2O.l-4). 
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The pion field enters the effectivefermion lagrangian through the combinations 

(B.70) 

(B.67)’ 

1 

Consider how a, changes under the transformation in Eq. 

= haxht (B.71) 

Here we have use the fact that R and L are global matrices to move them through 
the derivatives, and we then use Eq. (B.66). The calculation for V A  differs only in 
the relative sign of the term in brackets in the second line, and hence 

(B.72) 

The transformation of the “covariant” derivative of the nucleon field is evaluated 
as follows 

(B.73) 

Here Eqs. (B.69) and (B.68) have been used to eliminate the term in brackets in 
the second line. 

The p field transforms according to 

Pp + hP,ht (B.74) 

The “covariant” derivative of the p field is defined according to 

(B.75) 8P” D, PY = - + i[?Jp,py] 
8% 

gSince the matrix context is now clear, we suppress the underlining for the remainder of this 
appendix to simplify the notation. 
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This quantity evidently transforms as 

= h D,p,ht (B.76) 

where the judicious use of Eqs. (B.69) and (B.68) shows that the remaining terms 
again cancel in arriving at the last equality. 

The pion field axial vector field tensor is defined by 

a,, = [a,, a,] (B.77) 

The transformation property of this quantity follows immediately from Eq. (B.71) 

a,, + ha,, ht (B.78) 

The “covariant” pion field vector field tensor is defined as 

(B.79) 

The same techniques, with somewhat more algebra, demonstrate that this quantity 
again transforms according to 

up, + hv,, ht (B.80) 

We leave the proof to the dedicated reader. 

e.g. [Se97]) 
We also leave as a problem the proof of the identity of these two tensors (see 

up, = --2a,, (B.81) 

Note that Eq. (B.80) then follows immediately from Eq. (B.71). 
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Part 3 

C.l  Peierls' inequality 

This appendix is taken from [Ma89a]. The claim is that 

2 

Here the mean value is computed with any positive weighting function (measure). 
For a proof, define first a convex function +(x) that has d2+/dx2 2 0 in the 

interval [a,b] as illustrated in Fig. C1.l. Let 20 be a point in the interval. The 
tangent to the curve at that point is given by 

Y = m(a: - 20) + 4(20) (C.2) 

The tangent clearly stays below the curve everywhere in the interval 

4 b )  2 m(x  - 20) + 4(xo) (C.3) 

Now suppose one has a one-to-one parameterization of x in the interval 

x = f ( t )  (C.4) 

Compute the mean value of x with some positive weighting function p ( t )  so that 
the mean value lies in the interval [a, b];  identify this mean value with the 20 above. 
Thus 

Now take a similar mean value of the inequality in Eq. (C.3) 

565 
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Hence 

Part 3 

This is Jensen's inequality. More concisely it states 

(4[f(t)l) 2 d(f( t>) l  

Now take as a specific convex function 

$(z) = ex ((3.9) 

This function is convex on the entire interval [-m, +m] as illustrated in Fig. C1.2. 
Hence 

(C.10) 

Here z = f ( t )  is any one-to-one mapping. This is the result that wits to be proven. 

Fig. C1.l .  Illustration of convex function used in proof of Peierls' theorem. 

Fig. C1.2. ex is convex for all z. 

c.2 Symmetric (T, S)  = ( f ,  f )  state 

For (3"' S) = (f, i) there are two states (A, p)  of each type. It is shown in the text 
that one must combine states of the same symmetry. The interchange of a pair of 
particles will mix the resulting states and only a linear combination can be totally 



mt1 Coefficients 

2 / 3  

213 

213 

-113 
-113 
-113 

-113 
-113 
-113 

Symmetric (T, S)  = (+, i) state 567 

Table C.l Coefficients of 21/2'D$2,1/2 in direct product basis. 

P23\kZtms 

213 

213 

213 

-113 
-113 
-113 

-113 
-113 
-113 

mts mss 

symmetric. We demonstrate here that the following combination leads to a totally 
symmetric state 

(C.11) 

Start with m, = mt = 1/2 ,  and multiply out the above wave function. Call 
(Q,P)  = (41/2,4-1/2) etc. Then 

d\k = q # l  112 (1)4-1/2 (2) - 4-112 (1)41/2 (211 4112 (3)  Jz 
x - [x1/2(1)x--1/2(2) - x-1/2(1)~1/2(2) ]  x1/2(3) 

+ - [241/2(1)41/2(2)4-11/2(3) - 41/2(1)4-1/2(2)4~/2(3)  

-4-1p (1)41/2 (2)41/2 (311 

x - [2X1/2(1)X1/2(2)X-1/2(3) - X1/2(1)X-l/2(2)X1/2(3) 

-x- 1/2(1)Xl/2 (2)X1/2(3)] (C.12) 

1 

1 
Jz 
& 

1 

& 

Read off the coefficients in the product basis lmt, mt2 mt3m,, mszms3); they are 
shown in Table C.1. 

The application of PI2 to this wave function gives +1 since all terms have a def- 
inite symmetry under ( 1  f-1 2). Apply P23 and read off the new coefficients in the 
direct product basis (last column); they are clearly identical to the starting coeffi- 
cients (second last column). Application of PIS gives an identical result.The terms 
in the symmetrizing operator S = N C(p)  P are linear combinations of products of 
these particle interchange operators. Hence 

S @ i N / Z , l / Z  = *iN/Z,l/Z (C.13) 
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Since [T,S] = [ S , S ]  = 0 the indices (rn,,rnt) may be lowered with identical 
results. 

C.3 Sum rules 

In this appendix we derive two sum rules from the master equations for QED that 
we rewrite as 

The number of fermions is conserved. Hence 

1' dz[e(z, r )  - ~ ( z ,  T)] = N 

Differentiation with respect to r gives 

(C.15) 

(C.16) 

This result must hold for all distributions [e(y, r ) ,  E(y, r)]. It then follows from the 
integrated difference of the first two of Eqs. (C.14) that 

r l  
J, dzPete(z) = 0 (C.17) 

Momentum is conserved. Hence 

z[e(z, r )  + E(z, r )  + y(z, r)]dz = 1 (C.18) 

Differentiate with respect to  r 

(C.19) 

This result must hold for all distributions [e(z, r ) ,  E(z, r ) ,  y(z, r)].  It follows from 
the integrated sum of Eqs. (C.14), each multiplied by z, that 

zdz[Pe+e(z) + Pr te (z ) ]  = 0 I' 
(C.20) 
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Part 4 

D.l Standard model currents 

This appendix details the algebra leading from the initial lagrangian to the inter- 
action of the fermion currents with the physical gauge fields. Consider first the 
leptons. 

The lepton lagrangian is 

Insert the definitions of the initial gauge fields (B, ,A,)  in terms of the physical 
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There are additive contributions to this current from the other lepton doublets. 
Next collect coefficients of A, 

Note the form of the expression in square brackets and recall the definition of the 
electric charge operator for the fermions as Q = (?3 + ?/2)~7.  Use 

-ELy,eL - ER'ypeR = -ET,e (D.7) 

Hence the electromagnetic interaction is 

G p t o n  = ePj,YAP 
j z  = (-)il+JeYp$e 

This is just the lagrangian of QED! We have defined 

Note that here e, = -ep, and there is again an additive term in the current for each 
charged lepton. 

Finally, collect the coefficients of 2, 

Hence 

(D. l l )  

The introduction of the weak mixing angle in Fig. 43.2 then gives the final form of 
the weak neutral current interaction of the leptons 

(D.12) 
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Start from the lagrangian for point nucleons 

Now repeat the above calculation. The charge-changing interaction follows imme- 
diately as 

The electromagnetic current in this case is identified as’ 

Hence 

LC;lucleon = ePJ;*P 

J,Y(nucleon) = i lF/ ,P  = i?JTp# 1 + 73)1cI (D.16) 

The weak neutral current is identified through 

Hence 

1 2g’2 J;(nucleon) (D.18) 
( g 2  + = i4yp(1 + T5)5731cI - 

‘Recall again that Q = (p3 + P/2)w . 
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With the introduction of the weak mixing angle these expressions become 

1 
2 

JiO)(nucleon) = i&,(l + y5)-737,f~ - 2sin2 BwJ~(nuc1eon) (D.19) 

When the hadronic structure is described in terms of quarks, the lagrangian of 
the standard model takes the form 

The electroweak interactions of the quarks then follow exactly as above. The 
charge-changing weak interaction is given by 

U C 

d cos Bc + s sin 8c ) ( -dsin& +scos& 

The electromagnetic interaction of the quarks follows as2 

Hence 

(D.23) 

2Recall again that Q = (93 + P/2)w . 
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The weak neutral current interaction is given by3 

It follows that 

(D.24) 

(D.25) 

With the introduction of the weak mixing angle these expressions become 

(D.26) 

D.2 Metric and convention conversion tables 

In this appendix we give a set of convention and metric conversion tables between 
the present text and some other standard references (here h = c = 1). 

A comparison of the conventions and metric used in Bjorken and Drell [Bj64, 
Bj651 with those in the present text is shown in Table D.l. 

It follows that the conversion of expressions presented in the metric of Bjorken 
and Drell (used in [Se86, Cu83, Ch841) to results in the metric used in this text 
(and in [Wa92]) is obtained by the substitutions shown in Table D.2 (see [SeSS]). 

D.3 Units and conventions 

To define the units and conventions used in this book we first write Maxwell’s 
equations for the electromagnetic field in vacuum with sources. With the use of 
Heaviside-Lorentz (rationalized c.g.s.) units these equations are, now restoring c 

3Here in the first line we write g r 2 / 3  - g2r3 g” /3  + g ’ 2 n  - (9’ + d 2 ) 7 3 .  



574 Part 4 

Table D.l Convention comparison table (here h = c = 1). 

Bjorken and Drell [Bj64, Bj651 Present text 

1 0  0 0 
0 -1 0 

g p v =  [ ; ; ;l 4j 

a Note gFu = g’” 

and li 

V * E  = p 

V - H  = 0 
1 aE 

1 aH 

V x H - - -  = j 
at 

at V x E + - -  = O (D.27) 

Here p and j are the local charge and current density; the former is measured in 
e.s.u. and the latter in e.m.u. where 1 e.m.u = 1 e.s.u./c. The Lorentz force 

41n this caSe the magnetic field is H E B. 
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Table D.2 Metric conversion table (from [Se86]). 

Bjorken and Drell Present metricb 
[Bj64, Bj65, co83, Ch84, Se861 

bSome examples: 

CThe lowering and raising of the Lorentz index on the overall vertex P’ itself is controlled by 
the g p v  in the propagator; thus rygrvr; = r i p 9 ~ v r 2 v .  

equation and fine structure constant are given respectively by 

F = e ( E + z x ~ )  

1 - -  - a = - - -  e2 
4 n k  137.036 

Introduce the antisymmetric electromagnetic field tensor 

(D.28) 

(D.29) 
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Straightforward algebra then shows that Maxwell’s equations can be written in 
covariant form as 

Here E~~~~ is the completely antisymmetric 
summed from one to four. Also 

= J p  

= o  (D.30) 

tensor and repeated Greek indices are 

xp = (x, ict) 

j p  = (j, ip )  (D.31) 

The second set of Maxwell’s Equations can be satisfied identically with the intro- 
duction of a vector potential 

A, = (A, i@) (D.32) 

Comparison with Eq. (D.29) then allows the identification 

H = V X A  

E = -V@---A (D.33) 

The present choice of metric and notation for the Dirac equation is presented in 
appendix D.l where it is compared with the notation of Bjorken and Drell [Bj64, 
Bj651 and a metric conversion table is included in appendix D.2.5 

With respect to  ti and c the situation is somewhat schizophrenic. Generally, in 
the text the following convention is employed 

i a  
at 

t i = c = l  (D.34) 

This simplifies the equation displays and makes the physics (and algebra) more 
transparent. This commonly used convention implies that energies and momenta 
are actually all inverse lengths. The full set of units can always be restored at  the 
end of any calculation with the relations 

tic = 197.3MeVfm 

c = 2.998 x 10” cm/sec 
1fm = 10-13cm (D.35) 

5Many of the author’s collaborators, including his principal collaborator on QHD [Se86, Se97, 
SeOl], choose to use the metric of Bjorken and Drell, which has necessitated mastering both 
metrics. The conventions used in this text are those in which the author has the most confidence. 
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Rather than have these quantities disappear completely, the author has found it 
pedagogically useful to have them appear explicitly until the student is comfortable 
with the new material [Wa92], and that is the approach taken here. Thus the reader 
will find factors of h and c appearing where in the author's opinion it helps with 
the understanding;6 it should be clear from the context when this is happening. 

Some additional conventions: 

0 When discussing statistical mechanics we consistently use the shorthand 

1 p z -  
kBT 

(D.36) 

Here kg = 1.381 x erg ("K)-l is Boltzmann's constant. 
0 Carets will often be omitted from above operators in the abstract Hilbert 

space when the operator nature is evident from the context. The matrix 
notation of a bar under a symbol will similarly often be suppressed once 
the matrix structure is clearly established. 

0 In this text the simple model field theory QHD-I is referred to interchange- 
ably as the (4, V,) or the (a, w )  model; the second name is frequently used 
in the literature although it is misleading since, as emphasized in the text, 
the 

0 We choose to use the shorthand J,& = A, for the axial vector current in 
Part 2; this should cause no confusion with the SU(2) vector meson fields 
in Part 3. 

0 Nuclei in this text are denoted by :chemical symbol. Here B is the baryon 
number (which is identical to the nucleon number A ) ,  2 is the proton num- 
ber (charge), and the neutron number is N = B - 2. While this complete 
labeling may seem pedantic for light nuclei, it is maintained throughout for 
clarity and consistency. 

field should not be associated with the scalar field of the a-model. 

6See, for example, Probs. 13.1-14.5 (and this appendix). 
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axial vector current, 185, 187, 190, 225, 
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bag models, 163, 428 
Baker-Haussdorf formula, 299, 424 
baryon current, 11, 121, 187, 256 
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baryon Green’s function, 136, 139, 141, 
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baryon mass, 183, 184, 186, 190, 209, 380 
baryon number, 13, 152, 153 
baryon propagator, 138, 143 
baryon self-energy, 237 
baryon size, 380 
baryon-meson phase, 164, 167 
baryons, 118, 160, 252, 361, 362, 373 
basic building blocks, 283, 288 
Bates Laboratory, 538 
Bethe-Goldstone equation, 26, 28, 31, 37, 

Bethe-Goldstone wave function, 31, 34, 35 
Bethe-Peierls’ cross section, 110 
binomial theorem, 340 
Bjorken scaling, 382, 387, 392 
Bjorken scaling variable, 383 
BNL, 168 
Bohr atom, 485, 486 
Bohr wave function, 487 
Boltzmann collision term, 415 
Boltzmann distribution, 418 
Boltzmann equation, 417, 418 
Boltzmann’s constant, 261, 577 
Born approximation, 6, 68, 107, 146 
boson exchange, 438-440 
bosons, 197, 200, 243 
boundary conditions, 277 
breaking of chiral symmetry at  the 

lagrangian level, 209 
bremsstrahlung, 400 
bulk properties, 30, 120, 131 
bulk property of nuclear matter, 15 

C-G coefficients, 56, 62, 74, 87-89, 96 
C-M correction, 149, 509 
C-M frame, 239, 556 
C-M motion, 495, 529 
Cabibbo angle, 434, 465, 472, 513 
Cabibbc-Kobayashi-Moskawa (CKM) 
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180, 186, 242, 447, 558 
canonical commutation relations, 232 
canonical ensemble, 261, 414 
canonical partition function, 267, 271 
canonical quantization, 118 
canonical transformation, 37, 54, 233 
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center-of-mass (C-M) system, 3, 28 
center-of-momentum (C-M) system, 170, 
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charge conjugation, 187, 441 
charge conservation, 448, 452 
charge density, 66, 76, 131 
charge density operator, 94, 97, 98, 113 
charge independence, 5 
charge operator, 570 
charge oscillations, 100 
charge radius of the proton, 14, 364 
charge renormalization, 421 
charge-changing fermion currents, 434 
charged lepton (muon) capture, 484, 489 
charged weak vector boson, 438 
chemical potential, 152, 154, 165, 224, 

Chew-Low effective range formula, 205 
Chew-Low static model, 202 
chiral cr mass, 201 
chiral a-model, 186 
chiral invariant, 195 
chiral limit, 194 
chiral perturbation theory, 217, 224, 378 
chiral scalar field, 195 
chiral scalars, 214 
chiral symmetry, 185, 188, 190, 193, 208, 

chiral symmetry breaking, 190 
chiral symmetry breaking scale, 213, 214 
chiral symmetry breaking term, 189 
chiral symmetry on the lattice, 359 
chiral transformation, 181, 183, 184, 187, 

chiral transformation properties, 562 
circular polarization vectors, 54 
CKM mixing matrix, 516 
classical fields, 122, 207, 220 
classical lagrangian, 260 
classical limit, 261 
classical transport theory, 414, 417 
Clebsch-Gordan (C-G) coefficients, 45, 55 
collapse, 23 
collective excitations, 100 
collective particle-hole excitations, 91 
collision term, 417 
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color, 160, 161, 252, 255, 361, 378-380, 

color charge, 258, 316, 321, 421, 422 
color current, 256 
color singlets, 370 
color wave function, 370 
color-singlet state vector, 380 
commutation relations, 51, 59, 110, 249 
completeness, 263, 384 
complex scalar field, 458 
condensed scalar field, 125, 153 
configuration mixing, 73 
confinement, 118, 163, 256, 257, 271, 321, 

322, 326, 337, 338, 355, 361, 362, 378 
confinement of color, 316 
confining potential, 321, 322 
conserved axial vector current, 184, 209 
conserved baryon current, 120, 137, 242, 

conserved current, 118, 178, 180, 185, 243, 

conserved vector current, 209, 437 
conserved vector current theory (CVC), 

constant of the motion, 180, 186 
constituent quark model, 369 
continuity equation, 65 
continuum limit, 267, 271, 276, 277, 280, 
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continuum mechanics, 266 
contour rotation, 273 
convection current, 58 
convection current density, 57, 76 
convex function, 565, 566 
Cooper pairs, 30 
correlation function, 327, 328, 425 
correlation length, 109 
Coulomb gauge, 53, 54, 58, 273, 421 
Coulomb interaction, 3, 16, 68, 69, 108, 

Coulomb multipole, 69, 70, 530 
Coulomb potential, 231 
Coulomb sum rule, 238, 544 
counter terms, 139, 142 
covariant derivative, 248, 249, 254, 450, 

covariant norm, 385 
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critical temperature, 288 
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cross section, 6, 106, 134 
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current and magnetization operators, 104 
current conservation, 113, 145, 187, 540 
current operator, 472 
current-current interaction, 434, 440, 443 
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decay of the scalar meson, 176 
decay rate, 176, 177 
deep-inelastic electron scattering, 160, 

382, 387, 395, 398 
deep-inelastic scattering, 399 
deformation, 110 
deformed nuclei, 75, 112 
degeneracy factor, 18, 124, 164 
density functional theory, 135, 207, 220, 

density of final states, 176 
density of nuclear matter, 19 
density-dependent part, 143 
detailed balance, 416 
deuteron, 3, 5 
DGLAP equations, 399 
dielectric medium, 258 
differential cross section, 561 
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Dirac hole theory, 123 
Dirac lagrangian density, 351 
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Dirac radial wave functions, 150 
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Dirac wave function, 170, 366, 488, 509 
direct interaction, 22 
Dirichlet integral, 426 
dispersion relations, 200, 243, 557 
distribution function, 414 
domain wall fermions, 360 
driving term, 200, 206 
dynamic resonance, 195, 199, 202, 206 
Dyson's equation, 141, 142 

early universe, 410 
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effective action, 355 
effective charge, 75 
effective coordination number, 286, 287, 

effective current, 145, 237 
effective current operator in QHD-I, 148 
effective electromagnetic current, 476, 541 
effective electroweak current, 508, 509 
effective field theory, 12, 142, 216, 230 
effective field theory for QCD, 135, 164, 

effective hamiltonian, 319 
effective interaction, 542 
effective interaction in nuclei, 91 
effective lagrangian, 212-217, 219, 224, 

effective lagrangian of FST, 218, 222, 510 
effective mass, 24, 29, 122, 126 
effective potential in Kohn-Sham (KS) 

effective potentials, 550 
effective quark-quark potential, 427 
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effective temperature, 293, 329 
effective weak curent, 477, 478 
Ehrenfest 's theorem, 232 
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elastic magnetic scattering, 149 
electric charge, 448, 456, 461 
electromagnetic current, 11, 436, 437, 441, 

electromagnetic current operator, 145, 383 
electromagnetic field, 234, 273, 316, 317 
electromagnetic field tensor, 575 

Hartree wave functions, 237 
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electron scattering cross section, 69, 383, 
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electroweak currents, 160, 463, 495 
electroweak interactions of quarks, 572 
electroweak quark currents, 462 
EMC effect, 382, 395 
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euclidian metric, 269, 274, 277, 281, 316, 
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Fermi and Gamow-Teller transitions, 476 



Index 597 

Fermi constant, 433, 435, 437, 465 
Fermi distribution function, 165, 418, 428 
Fermi gas model, 18, 21, 25, 26 
Fermi hamiltonian, 435 
Fermi sphere, 28 
Fermi wave number, 19, 21 
Fermi’s Golden Rule (see also Golden 

Rule), 176 
Fermilab, 518 
fermion action, 353, 355, 427 
fermion doubling, 356-359 
fermion fields, 352, 355 
fermion mass, 457, 459 
fermions, 351, 355 
Feynman boundary conditions, 269 
Feynman diagrams, 90, 118, 140, 146, 198, 

Feynman propagator, 237, 423 
Feynman rules, 118, 136, 141, 142, 146, 
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Feynman rules for QCD, 162 
Feynman rules for QHD-I, 136, 137 
Feynman singularities, 137 
field equations, 120, 121 
field expansion, 232, 237 
field tensor, 303, 421, 454 
field theory, 267 
field variables, 320 
filled j-shell, 112 
filled orbitals, 129, 130 
final-state Coulomb interaction, 492 
fine structure constant, 575 
finite temperature, 152 
finite temperature field theory, 158 
finite, global isospin transformation, 247 
first and second laws of thermodynamics, 

first quantization, 58, 76, 78 
first-order phase transition, 294 
fission, 108 
flavor, 160, 252, 255, 361, 541 
flavor current, 256 
flavor quantum numbers, 362 
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471, 472, 477, 499, 500, 503, 539, 546 
four-fermion model of Fermi, 215 
four-momentum, 169, 232, 389, 390, 411 
four-momentum transfer, 69, 382, 468 
four-vectors, 169, 269, 351, 352 
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free energy, 293, 308, 310, 312, 313, 315 
full quark sector, 513 
full symmetry group, 463 
full symmetry group of the 0-model, 212 
functional, 227, 228 
fundamental representation, 248, 253, 324 

gamma matrix, 353 
gauge boson fields, 161 
gauge boson kinetic energy, 450 
gauge boson mass, 450, 451, 453 
gauge bosons, 450 
gauge fields, 316, 355 
gauge invariance, 272, 273, 275, 289, 290, 

298, 299, 300, 305, 311, 312, 318, 321, 
354, 424 

gauge transformation, 299, 303, 318, 354 
gauge-invariant measure, 279, 280, 303 
Gauss’ law, 57, 421 
gaussian integration, 422 
Gell-Mann matrices, 253 
Gell-Mann - Nishijima relation, 448 
general angular dependence of the cross 
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generalized parton distributions (GPD), 

generating functional, 118, 269, 270, 278, 

generators of isospin transformations, 247 
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giant dipole resonance, 95, 99, 100 
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GIM mechanism, 514 
Ginsparg-Wilson fermions, 360 
Glauber approximation, 544 
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global chiral transformation, 378 
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global isospin invariance, 248 
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glueball mass, 326 
gluon field tensor, 161 
gluon propagator, 422 
gluon self-energy, 239 
gluons, 118, 160, 161, 247, 254-256, 258, 

Goldberger-Treiman relation, 444, 445, 

Golden Rule, 54, 62, 416, 478, 480, 488, 

Goldhaber-Teller model, 100, 112 
Goldstone bosons, 214, 215 
grand partition function, 152, 226-228, 

Grassmann algebra, 426, 427 
Grassmann variables, 352, 355 
Green’s functions, 269, 316 
ground-state density, 229, 236 
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hadronic current, 434, 436, 456, 468, 469 
hadronic generalized coordinates, 216 
hadronic phase, 409 
hadronic relativistic transport theory, 413 
hadronic response tensor, 384, 403 
hadronization, 390, 413 
hadrons, 12, 80, 118, 163, 256, 363, 381, 

hadrons, baryons and mesons, 117, 247 
half-density radius, 14 
Hamilton’s equations, 415 
Hamilton’s principle, 118, 120, 261 
hamiltonian, 21, 29, 39, 51, 53, 57, 67, 68, 

81, 87, 112, 153, 285, 433, 438 
hamiltonian density, 121, 123, 421 
hamiltonian dynamics, 414 
Hanford nuclear reactor, 518 
hard core, 9 
hard core potential, 31, 107 
Hartree-Fock energy, 39, 50 
Hartree-Fock (H-F) equations, 20, 38, 39, 

Hartree-Fock ground state, 81, 82, 84 
Hartree-Fock single-particle energies, 89 
Hartree-Fock wave functions, 39, 102 
healing distance, 34, 35 
Heaviside-Lorentz (rationalized c.g.s.) 

Heine’s relation, 544 
Heisenberg equations of motion, 384, 444, 
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Heisenberg representation, 136, 158, 326 
helicity, 431, 432, 480, 533, 542 
helicity of the photon, 59 
helicity states, 239, 241 
Helmholtz free energy, 226 
Higgs couplings, 541 
Higgs field, 454 
Higgs mechanism, 452 
Higgs particle, 459 
Hilbert space, 261, 464 
Hohenberg-Kohn equation, 228, 229 
Hohenberg-Kohn free energy, 228, 244 
Hohenberg-Kohn theorem, 220, 244 
hole theory, 431 
holes, 52, 75, 86 

identical particles, 200, 225, 242 
imaginary time, 265, 273, 281 
impact parameter, 544 
importance sampling, 344, 345, 350 
incident flux, 383, 391, 416, 480, 506, 561 
independent-pair approximation, 26, 35, 

independent-particle model, 25, 35 
induced pseudoscalar coupling, 443, 472, 

infinite-momentum frame, 389, 390, 398 
instability of the ground state, 99 
interaction potential, 316, 319 
interaction representation, 431 
intermediate vector bosons, 437 
internal SU(2) symmetry, 306 
internal conversion, 113 
internal isospin space, 297 
internal space, 296, 304, 305 
internal symmetry group SU(n) ,  308 
interparticle spacing, 35, 109 
intrinsic magnetization density, 57, 58, 76 
irreducible tensor operator (ITO), 37, 56, 

Ising model, 284-288, 292, 339, 424 
isomerism, 43 
isospin (see also strong isospin, weak 

isospin), 6, 20, 39, 87, 179, 370, 436, 
437, 441, 537, 552, 556, 558, 562 
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isospin invariance, 247 
isospin operator, 180, 247 
isospin representation, 247 
isospin transformation, 179, 187, 208 
isotherms, 156, 167 
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isotropic three-dimensional simple 

isovector current, 187 
isovector magnetic moment, 101 
ITO, 40, 58, 59, 61, 71, 74, 88, 94, 109, 
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harmonic oscillator, 40 
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j-shell, 45 
Jacob and Wick, 60, 239, 557 
Jensen’s inequality, 566 

KARMEN, 525, 526 
kinetic energy for vector mesons, 250 
Klein-Gordon equation, 121, 362 
Kohn-Sham (KS) approach, 220, 229 
KS wave functions and eigenvalues, 230 
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450-455, 458, 463, 514, 549, 559 

lagrangian density, 117, 120, 122, 139, 
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lagrangian for point nucleons, 571 
lagrangian of QCD, 254 
lagrangian of QED, 570 
lagrangian of the standard model, 572 
Laguerre polynomials, 42 
LAMPF, 504 
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large Nc limit of QCD, 378, 381 
lattice gauge theory (LGT), 271, 272, 283, 

lattice sites, 274 
left- and right-handed Dirac fields, 513, 

left- and right-handed isospin, 559 
left-handed neutrinos, 447, 519 
Legendre polynomials, 46 
Legendre transformation, 226, 228 
lepton current, 433, 456, 467, 569 
lepton fields, 431, 446 
lepton flavor number, 524 
lepton kinetic energy, 447 
lepton lagrangian, 569 
lepton matrix elements, 480, 481 
lepton number, 433, 519, 521 
lepton tensor, 384 
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559 

lepton traces, 481, 482, 488, 533, 534 
leptons, 458, 515 
level orderings in the nuclear potential, 

LGT, 329, 351, 356, 359, 360, 409 
Lie algebra, 181, 186, 247, 249, 253 
Lie algebra s u ( 2 ) ~  @ su(2)R,  559 
light scalar of dynamic origin, 196 
line integral, 276 
linearization of the equations of motion, 

link, 274, 275, 280, 281, 291, 299, 303, 

link variables, 290, 296, 298, 300, 308, 

Liouville’s theorem, 414 
liquid drop, 15 
local SU(2)w @ U(l)w gauge invariance, 

local SU(2) matrix h(z), 214, 562 
local current and charge density 

local gauge invariance, 248, 251, 253, 271, 

local gauge transformation, 248, 249, 251 
localized nuclear density, 55, 79, 262, 474, 

localized source, 57, 473 
long-range correlations, 35 
long-wavelength , 54 1 
long-wavelength expansion, 491 
long-wavelength limit, 63, 65, 70, 474, 475 
longitudinal multipoles, 468 
loops in QCD, 379 
Lorentz force, 574 
Lorentz transformation, 231, 239, 241, 

low-mass scalar, 195, 196, 197, 211 
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operators, 54, 471 
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M.I.T. bag model, 164, 361-363, 373 
M$ller potential, 148, 477, 542 
Mg/ller scattering, 421 
magic numbers, 43 
magnetic charge, 68 
magnetic dipole operator, 65, 71, 496 
magnetic moment, 72, 73, 368, 369, 375, 

magnetization, 286-292, 313, 329, 425 
Majorana space exchange operator, 7, 8, 
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many degrees of freedom, 266 
many-baryon Hilbert space, 152 
many- body distribution function, 4 15 
many-body forces, 35, 139 
many-particle shell model, 45, 50 
Markov chain, 346, 347 
mass of the scalar field, 195 
mass term for electron, 447 
mass term for gauge bosons, 454 
mass term for the light quarks, 208, 378 
mass term for quarks, 161, 252 
mass term for vector mesons, 250 
masses and coupling constants, 177 
massive neutrinos, 524 
massive weak vector meson, 455 
massless fermions, 448 
master equations, 402, 407, 428, 568 
matrix representation, 247 
Maxwell construction, 127 
Maxwell field tensor, 231 
Maxwell’s equations, 121, 573, 576 
mean field theory (MFT), 283, 285, 308, 

mean field theory hamiltonian, 123 
mean value, 289, 339, 340, 342, 343 
mean-square-deviation, 341 
measure, 266, 268, 305, 309, 333, 345, 425, 

measure for path integral, 278, 281 
meson exchange, 11 
meson exchange potentials, 549 
meson fields, 216 
meson kinetic energy, 183 
meson mass, 183, 188 
meson potential, 183, 188, 191, 195, 209, 

meson-meson interactions, 380 
mesons, 117, 118, 160, 321, 361, 393 
metric, 119 
metric and convention conversion tables, 

metric conversion table, 575 
Metropolis algorithm, 347-350, 426 
MFT, 284, 287, 288, 290, 292, 294, 310, 

MFT ansatz, 290 
microcanonical ensemble, 262, 265, 266, 

microreversibility, 347, 349, 350 
microscopic causality, 117 
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313, 425 
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Minkowski space, 269, 316, 317, 326, 411, 

mixed symmetry, 371 
mixing angle, 515 
mixing matrix, 514, 545 
modal matrix, 231 
model field theory, 295 
model hadronic field theories, 207 
modes of motion of nuclei, 99 
molecular dynamics, 418 
moments of the distribution functions, 428 
momentum conservation, 383 
momentum distribution, 395, 400 
momentum fraction, 400-402, 406 
momentum fraction of the gluons, 407 
momentum sum rule, 390, 395 
momentum transfer, 6, 65, 77, 104, 257, 

Monte Carlo calculation, 271, 291-293, 

Mott cross section, 69, 80, 148, 385 
multidimensional integral, 344, 350 
multiple scattering amplitude, 235 
multiple scattering expansion, 236 
multipole analysis, 53, 466, 468, 478, 527, 

multipole expansion of the interaction, 46 
multipole operators, 49, 64, 84, 94, 237, 

469, 494 
multipoles, 58 
muon capture, 485 
muon wave function, 486, 489 
muonic atom, 485, 489, 542 
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258, 398, 489, 508, 529 

315, 325, 339, 342-344, 346, 425, 426 
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naive dimensional analysis (NDA), 216, 

Nambu and Jona-Lasinio model, 242 
naturalness, 217, 221 
negative energy sea, 124 
negative energy states, 145 
negative frequency poles, 138 
neutral scalar field, 120 
neutral vector field, 120 
neutral weak vector boson, 439 
neutrino cross section, 482, 484, 504-506, 

509, 512, 526, 527, 540, 541 
neutrino field, 447 
neutrino masses, 519 
neutrino mixing, 521, 523 
neutrino reactions, 479, 518 

221 



Index 601 

neutrino scattering, 479 
neutrinos, 518 
neutron matter, 126, 127, 156, 157 
neutron star, 127, 128, 167 
neutron-proton cross section, 4 
Noether currents, 218, 219, 243, 244, 510 
Noether’s theorem, 118, 178-180, 182, 

184, 187, 208, 242, 421 
non-linear couplings, 211 
non-renormalizable, 213 
nonabelian gauge theory, 247, 251 
nonabelian lattice gauge theory, 308, 320 
nonabelian theory, 303, 332 
nonabelian theory SU(n) ,  313 
nonasymptotically free theory, 324, 338 
noninteracting “vacuum”, 38 
nonlinear couplings, 193, 195, 271, 351, 

nonlinear gluon interactions, 163, 256, 

nonrelativistic field operator, 549 
nonrelativistic limit (NRL), 509, 510 
nonrelativistic many-body theory, 117, 

nonrelativistic nucleons, 58, 71, 80 
nonrelativistic potential scattering, 549 
nonrelativistic quarks, 361, 369 
nonrelativistic treatment, 76 
nonsinglet quark distribution, 407 
nonsingular Serber-Yukawa potential, 102 
nonsingular square well potential, 30 
Nordheim-Uehling-Uhlenbeck extension, 

normal coupling, 109 
normal modes, 232 
normal-coupling state, 49, 52 
np cross section, 6 
nuclear charge distribution, 13, 15, 130 
nuclear current densities, 77, 473 
nuclear current density operator, 78, 79 
nuclear current operator, 76, 471, 478 
nuclear density, 14, 108, 244 
nuclear domain, 164, 242, 359, 369, 374, 

355, 361 

316, 327 
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378, 395, 428, 463-465, 471, 537, 542, 
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nuclear energy surfaces, 17 
nuclear fission, 18 
nuclear force, 3 
nuclear hamiltonian, 37 
nuclear Hilbert space, 55-57, 469, 528 

nuclear magneton, 71 
nuclear matrix element, 494 
nuclear matter, 18, 20, 24, 35, 108, 

157, 166, 167, 196, 207, 221, 222 
124-126, 128, 131, 136, 139-141, 143, 

nuclear reactions, 132 
nuclear recoil, 70, 110, 542 
nuclear saturation, 24, 25, 208 
nuclear shell model, 130, 131 
nucleon magnetic moments, 65 
nucleon maw, 210 
nucleon number, 13 
nucleon pole terms, 146, 202, 203, 206 
nucleon scattering, 132 
nucleon-nucleon interaction, 10, 12, 25, 

nucleon-nucleus scattering, 134 
number of final states, 480, 490 
number of links per site, 283 
number of plaquettes per site, 284 

40, 120 

observables, 316 
odd nuclei, 45, 71 
odd-even nuclei, 16 
odd-odd nuclei, 16, 47 
one gluon exchange, 422, 427 
one photon exchange, 421 
one pion exchange potential (OPEP), 551 
one-body density, 497, 498, 502 
one-body distribution function, 415, 417 
one-body operator, 81, 494 
one-dimensional s.h.o., 422, 423 
one-gluon-exchange interaction, 362 
optical model, 25 
optical potential, 132, 236, 544 
optical theorem, 545 
organizing principle, 217 
oscillations of an incompressible liquid 

oscillator parameter, 42, 102 
overlap fermions, 360 

drop, 108 

Pad6 approximates, 293 
pairing energy, 16, 48 
pairing force, 50 
pairing of link variables, 331, 335 
paramagnetic medium, 258 
paramagnetic susceptibility, 424 
parameter determinations of FST, 221 
parameters in the effective lagrangian, 220 
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parity, 63, 187, 441, 534, 539 
parity admixtures in nuclear states, 535 
parity of the multipole operators, 59 
parity operator, 240 
parity selection rules, 70 
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