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COVER ILLUSTRATIONS

Left: Telescope such as used by Galileo to discover lunar craters and Jupiter’s moons. The basic
design is still used in opera and sports glasses. See Chap. 1.

Middle: Simplified schematic of a laser showing the gain medium which amplifies the light,
and the resonator which defines the light’s direction and spatial distribution. The third critical
part, the source to excite the gain medium, is not shown. See Chap. 16.

Right: Zernike circle polynomial representing balanced astigmatism with a standard deviation
of one wave illustrated as an isometric plot on the top, interferogram on the left, and point-
spread function on the right. See Chap. 11.
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EDITORS’ PREFACE

The third edition of the Handbook of Optics is designed to pull together the dramatic developments
in both the basic and applied aspects of the field while retaining the archival, reference book value
of a handbook. This means that it is much more extensive than either the first edition, published
in 1978, or the second edition, with Volumes I and II appearing in 1995 and Volumes III and IV in
2001. To cover the greatly expanded field of optics, the Handbook now appears in five volumes. Over
100 authors or author teams have contributed to this work.

Volume I is devoted to the fundamentals, components, and instruments that make optics possible.
Volume II contains chapters on design, fabrication, testing, sources of light, detection, and a new section
devoted to radiometry and photometry. Volume III concerns vision optics only and is printed entirely
in color. In Volume IV there are chapters on the optical properties of materials, nonlinear, quantum and
molecular optics. Volume V has extensive sections on fiber optics and x ray and neutron optics, along
with shorter sections on measurements, modulators, and atmospheric optical properties and turbulence.
Several pages of color inserts are provided where appropriate to aid the reader. A purchaser of the print
version of any volume of the Handbook will be able to download a digital version containing all of the
material in that volume in PDF format to one computer (see download instructions on bound-in card).
The combined index for all five volumes can be downloaded from www.HandbookofOpticsOnline.com.

It is possible by careful selection of what and how to present that the third edition of the
Handbook could serve as a text for a comprehensive course in optics. In addition, students who take
such a course would have the Handbook as a career-long reference.

Topics were selected by the editors so that the Handbook could be a desktop (bookshelf) general
reference for the parts of optics that had matured enough to warrant archival presentation. New
chapters were included on topics that had reached this stage since the second edition, and existing
chapters from the second edition were updated where necessary to provide this compendium. In
selecting subjects to include, we also had to select which subjects to leave out. The criteria we applied
were: (1) was it a specific application of optics rather than a core science or technology and (2) was it
a subject in which the role of optics was peripheral to the central issue addressed. Thus, such topics as
medical optics, laser surgery, and laser materials processing were not included. While applications of
optics are mentioned in the chapters there is no space in the Handbook to include separate chapters
devoted to all of the myriad uses of optics in today’s world. If we had, the third edition would be
much longer than it is and much of it would soon be outdated. We designed the third edition of the
Handbook of Optics so that it concentrates on the principles of optics that make applications possible.

Authors were asked to try to achieve the dual purpose of preparing a chapter that was a worth-
while reference for someone working in the field and that could be used as a starting point to
become acquainted with that aspect of optics. They did that and we thank them for the outstanding
results seen throughout the Handbook. We also thank Mr. Taisuke Soda of McGraw-Hill for his help
in putting this complex project together and Mr. Alan Tourtlotte and Ms. Susannah Lehman of the
Optical Society of America for logistical help that made this effort possible.

We dedicate the third edition of the Handbook of Optics to all of the OSA volunteers who, since
OSA’s founding in 1916, give their time and energy to promoting the generation, application,
archiving, and worldwide dissemination of knowledge in optics and photonics.

Michael Bass, Editor-in-Chief
Associate Editors:

Casimer M. DeCusatis

Jay M. Enoch

Vasudevan Lakshminarayanan
Guifang Li

Carolyn MacDonald

Virendra N. Mahajan

Eric Van Stryland
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PREFACE TO VOLUME I

Volume II of the Handbook of Optics is a continuation of Volume I. It starts with optical system
design and covers first-order layout, aberration curves, design software, specifications and toler-
ances, component mounting, stray light control, and thermal compensation techniques. Optical
fabrication and testing are discussed next. A new chapter on the use of orthonormal polynomials in
optical design and testing has been added. Such a polynomial representing balanced astigmatism is
illustrated on the cover. The section on sources includes different types of lasers, laser stabilization,
laser theory, and a discussion of ultrashort laser sources. Light-emitting diodes including the new
“high-brightness” LEDs are presented. Artificial sources of light for both the laboratory and field are
described along with a discussion of light standards calibration. The section on detectors includes
high-speed and thermal detectors along with an analysis of signal detection. Imaging using film,
detector arrays, and image tubes is discussed. This volume ends with a section on radiometry and
photometry. Two new chapters have been added in this area. One is on spectroradiometry and the
other is on lighting and applications.

Every effort was made to contact all the authors of chapters in the second edition that would
appear in this edition so that they could update their chapters. However, the authors of several
chapters could not be located or were not available. Their chapters are reproduced without update.
Every effort has been made to ensure that such chapters have been correctly reproduced.

There are many other chapters in this edition of the Handbook that could have been included
in Volumes I and II. However, page limitations prevented that. For example, in Volume V there is
a section on Atmospheric Optics. It consists of three chapters, one on transmission through the
atmosphere, another on imaging through atmospheric turbulence, and a third on adaptive optics to
overcome some of the deleterious effects of turbulence.

The chapters are generally aimed at the graduate students, though practicing scientists and
engineers will find them equally suitable as references on the topics discussed. Each chapter has suf-
ficient references for additional and/or further study.

Virendra N. Mahajan

The Aerospace Corporation

Eric Van Stryland

CREOL, The College of Optics and Photonics
Associate Editors

XXVil



This page intentionally left blank.



GLOSSARY AND FUNDAMENTAL
CONSTANTS

Introduction

Units

Prefixes

This glossary of the terms used in the Handbook represents to a large extent the language of optics.
The symbols are representations of numbers, variables, and concepts. Although the basic list was
compiled by the author of this section, all the editors have contributed and agreed to this set of sym-
bols and definitions. Every attempt has been made to use the same symbols for the same concepts
throughout the entire Handbook, although there are exceptions. Some symbols seem to be used for
many concepts. The symbol ¢ is a prime example, as it is used for absorptivity, absorption coeffi-
cient, coefficient of linear thermal expansion, and more. Although we have tried to limit this kind of
redundancy, we have also bowed deeply to custom.

The abbreviations for the most common units are given first. They are consistent with most of the
established lists of symbols, such as given by the International Standards Organization ISO! and the
International Union of Pure and Applied Physics, [UPAP.2

Similarly, a list of the numerical prefixes' that are most frequently used is given, along with both the
common names (where they exist) and the multiples of ten that they represent.

Fundamental Constants

Symbols

The values of the fundamental constants® are listed following the sections on SI units.

The most commonly used symbols are then given. Most chapters of the Handbook also have a glos-
sary of the terms and symbols specific to them for the convenience of the reader. In the following
list, the symbol is given, its meaning is next, and the most customary unit of measure for the quan-
tity is presented in brackets. A bracket with a dash in it indicates that the quantity is unitless. Note
that there is a difference between units and dimensions. An angle has units of degrees or radians and
a solid angle square degrees or steradians, but both are pure ratios and are dimensionless. The unit
symbols as recommended in the SI system are used, but decimal multiples of some of the dimen-
sions are sometimes given. The symbols chosen, with some cited exceptions, are also those of the
first two references.

RATIONALE FOR SOME DISPUTED SYMBOLS

The choice of symbols is a personal decision, but commonality improves communication. This sec-
tion explains why the editors have chosen the preferred symbols for the Handbook. We hope that this
will encourage more agreement.

XXixX



XXX GLOSSARY AND FUNDAMENTAL CONSTANTS

Fundamental Constants

It is encouraging that there is almost universal agreement for the symbols for the fundamental con-
stants. We have taken one small exception by adding a subscript B to the k for Boltzmann’s constant.

Mathematics

We have chosen 7 as the imaginary almost arbitrarily. [UPAP lists both i and j, while ISO does not
report on these.

Spectral Variables

These include expressions for the wavelength A, frequency v, wave number o, ® for circular or
radian frequency, k for circular or radian wave number and dimensionless frequency x. Although
some use f for frequency, it can be easily confused with electronic or spatial frequency. Some use
Vv for wave number, but, because of typography problems and agreement with ISO and IUPAP, we
have chosen o'; it should not be confused with the Stefan-Boltzmann constant. For spatial frequen-
cies we have chosen & and 7, although f, and fy are sometimes used. ISO and IUPAP do not report
on these.

Radiometry

Radiometric terms are contentious. The most recent set of recommendations by ISO and TUPAP are L for
radiance [Wcemsr'], M for radiant emittance or exitance [Wcm™], E for irradiance or incidance [Wem™],
and I for intensity [Wsr2]. The previous terms, W, H, N, and J, respectively, are still in many texts, notably
Smith* and Lloyd® but we have used the revised set, although there are still shortcomings. We have tried to
deal with the vexatious term infensity by using specific intensity when the units are Wem™sr™), field intensity
when they are Wem™, and radiometric intensity when they are Wsr™.

There are two sets to terms for these radiometric quantities, which arise in part from the terms
for different types of reflection, transmission, absorption, and emission. It has been proposed that
the ion ending indicate a process, that the ance ending indicate a value associated with a particu-
lar sample, and that the ivity ending indicate a generic value for a “pure” substance. Then one also
has reflectance, transmittance, absorptance, and emittance as well as reflectivity, transmissivity,
absorptivity, and emissivity. There are now two different uses of the word emissivity. Thus the words
exitance, incidence, and sterance were coined to be used in place of emittance, irradiance, and radi-
ance. It is interesting that ISO uses radiance, exitance, and irradiance whereas IUPAP uses radiance
excitance [sic], and irradiance. We have chosen to use them both, i.e., emittance, irradiance, and
radiance will be followed in square brackets by exitance, incidence, and sterance (or vice versa).
Individual authors will use the different endings for transmission, reflection, absorption, and emis-
sion as they see fit.

We are still troubled by the use of the symbol E for irradiance, as it is so close in meaning
to electric field, but we have maintained that accepted use. The spectral concentrations of these
quantities, indicated by a wavelength, wave number, or frequency subscript (e.g., L,) represent
partial differentiations; a subscript g represents a photon quantity; and a subscript v indicates
a quantity normalized to the response of the eye. Thereby, L is luminance, E, illuminance, and
M, and I, luminous emittance and luminous intensity. The symbols we have chosen are consis-
tent with ISO and TUPAP.

The refractive index may be considered a radiometric quantity. It is generally complex and is
indicated by 7 = n — ik. The real part is the relative refractive index and k is the extinction coefficient.
These are consistent with ISO and ITUPAP, but they do not address the complex index or extinction
coefficient.
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For the most part ISO and IUPAP do not address the symbols that are important in this area.

There were at least 20 different ways to indicate focal ratio; we have chosen FN as symmetri-
cal with NA; we chose f and efl to indicate the effective focal length. Object and image distance,
although given many different symbols, were finally called s, and s, since s is an almost universal
symbol for distance. Field angles are 6 and ¢; angles that measure the slope of a ray to the optical
axis are u; u can also be sin 1. Wave aberrations are indicated by W, while third-order ray aberra-
tions are indicated by 0, and more mnemonic symbols.

Electromagnetic Fields

There is no argument about E and H for the electric and magnetic field strengths, Q for quantity
of charge, p for volume charge density, o for surface charge density, etc. There is no guidance from
Refs. 1 and 2 on polarization indication. We chose L and || rather than p and s, partly because s is
sometimes also used to indicate scattered light.

There are several sets of symbols used for reflection transmission, and (sometimes) absorption,
each with good logic. The versions of these quantities dealing with field amplitudes are usually
specified with lower case symbols: r, £, and a. The versions dealing with power are alternately given
by the uppercase symbols or the corresponding Greek symbols: R and T versus p and 7. We have
chosen to use the Greek, mainly because these quantities are also closely associated with Kirchhoff’s
law that is usually stated symbolically as & = €. The law of conservation of energy for light on a sur-
face is also usually written as a+ p+ 7= 1.

Base S| Quantities

length m meter
time s second
mass kg kilogram
electric current A ampere
temperature K kelvin
amount of substance mol mole
luminous intensity cd candela

Derived Sl Quantities

energy ] joule
electric charge C coulomb
electric potential A% volt
electric capacitance F farad
electric resistance Q ohm
electric conductance S siemens
magnetic flux Wb weber
inductance H henry
pressure Pa pascal
magnetic flux density T tesla
frequency Hz hertz
power w watt
force N newton
angle rad radian
angle ST steradian



xXxXXii GLOSSARY AND FUNDAMENTAL CONSTANTS

Prefixes
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Name Common name Exponent of ten
exa 18

peta 15

tera trillion 12

giga billion 9

mega million
kilo thousand
hecto hundred
deca ten

deci tenth -1
centi hundredth -2
milli thousandth -3
micro millionth -6
nano billionth -9
pico trillionth -12
femto -15
atto -18

— N W

S SRBOALERAZOATT

Constants

speed of light vacuo [299792458 ms™]

first radiation constant = 27c*h = 3.7417749 X 107'¢ [Wm?]
second radiation constant = hc/k = 0.014838769 [mK]
elementary charge [1.60217733 x 107"° C]

free fall constant [9.80665 ms™]

Planck’s constant [6.6260755 X 10734 Ws]

Boltzmann constant [1.380658 x 10~ JK!]

mass of the electron [9.1093897 x 107! kg]

Avogadro constant [6.0221367 X 10% mol™]

Rydberg constant [10973731.534 m™']

vacuum permittivity [u ~'c™]

Stefan-Boltzmann constant [5.67051 x 10~ Wm™ K]
vacuum permeability [477 x 107 NA?]

Bohr magneton [9.2740154 x 10724 JT™']

Na RSl

> 0 o
ok

m
A =z

o

==
=

General

magnetic induction [Wbm, kgs™' C']
capacitance [f, C* s> m2 kg™]

curvature [m™']

speed of light in vacuo [ms™']

first radiation constant [Wm?]

second radiation constant [mK]

electric displacement [Cm™]

incidance [irradiance] [Wm™]

electronic charge [coulomb]

illuminance [lux, Imm™]

electrical field strength [Vm™!]

transition energy [J]

band-gap energy [eV]

focal length [m]

Fermi occupation function, conduction band
Fermi occupation function, valence band

Smemge S o 00w

o
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Greek Symbols

o
o

focal ratio (f/number) [—]
gain per unit length [m™]
gain threshold per unit length [m!]
magnetic field strength [Am™, Cs™! m™']
height [m]
irradiance (see also E) [Wm™]
radiant intensity [Wsr™!]
nuclear spin quantum number [—]
current [A]

-1
imaginary part of
current density [Am™]
total angular momentum [kg m? s™']
Bessel function of the first kind [—]
radian wave number =27/A [rad cm™]
wave vector [rad cm™]
extinction coefficient [—]
sterance [radiance] [Wm™ sr!]
luminance [cdm™]
inductance [h, m? kg C?]
laser cavity length
direction cosines [—]
angular magnification [—]
radiant exitance [radiant emittance] [Wm™72]
linear magnification [—]
effective mass [kg]
modulation transfer function [—]
photon flux [s7!]
carrier (number)density [m™]
real part of the relative refractive index [—]
complex index of refraction [—]
numerical aperture [—]
optical path difference [m]
macroscopic polarization [C m]
real part of [—]
resistance [Q2]
position vector [m]
Seebeck coefficient [VK™]
spin quantum number [—]
path length [m]
object distance [m]
image distance [m]
temperature [K, C]
time [s]
thickness [m]
slope of ray with the optical axis [rad]
Abbe reciprocal dispersion [—]
voltage [V, m? kgs C!]
rectangular coordinates [m]
atomic number [—]

absorption coefficient [cm™]
(power) absorptance (absorptivity)
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diclectric coefficient (constant) [—]
emittance (emissivity) [—]

eccentricity [—]

Re (€)

Im (€)

(power) transmittance (transmissivity) [—]
radiation frequency [Hz]

circular frequency = 27v [rads™]
plasma frequency [H,]

wavelength [wm, nm]

wave number = 1/A [cm™]

Stefan Boltzmann constant [Wm—2K™!]
reflectance (reflectivity) [—]

angular coordinates [rad, °]

rectangular spatial frequencies [m™!, r™!]
phase [rad, °]

lens power [m™2]

flux [W]

electric susceptibility tensor [—]

solid angle [sr]

=S

Other
R responsivity
exp (x) e*
log, (x) log to the base a of x
In (x) natural log of x
log (x) standard log of x: log,, (x)
z summation
IT product
A finite difference
Ox variation in x
dx total differential
ox partial derivative of x
(x) Dirac delta function of x
517 Kronecker delta
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1.1 GLOSSARY

>
™

scaling constants

distance between components
focal length

image height

invariant

o~ S X

indices

bl

axial intercept distance

angular magnification

linear, lateral magnification

refractive index

partial dispersion, projection lens diameter
radius

(/)*t"U3§§~

source or detector linear dimension

95}
w

secondary spectrum
object distance

N w

image distance

temperature

ray slope

Abbe number

height above optical axis

radiometer field of view, projector field of view

component power (= 1/f)

“Deceased.

1.3
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1.2 FIRST-ORDER LAYOUT

First-order layout is the determination of the arrangement of the components of an optical system
in order to satisfy the first-order requirements imposed on the system. The term “first-order” means
the paraxial image properties: the size of the image, its orientations, its location, and the illumination
or brightness of the image. This also implies apertures, f-numbers, fields of view, physical size limi-
tations, and the like. It does not ordinarily include considerations of aberration correction; these are
usually third- and higher-order matters, not first-order. However, ordinary chromatic aberration
and secondary spectrum are first-order aberrations. Additionally, the first-order layout can have an
effect on the Petzval curvature of field, the cost of the optics, the sensitivity to misalignment, and the
defocusing effects of temperature changes.

The primary task of first-order layout is to determine the powers and spacings of the system compo-
nents so that the image is located in the right place and has the right size and orientation. It is not neces-
sary to deal with surface-by-surface ray-tracing here; the concern is with components. “Components”
may mean single elements, cemented doublets, or even complex assemblies of many elements. The first-
order properties of a component can be described by its Gauss points: the focal points and principal
points. For layout purposes, however, the initial work can be done assuming that each component is of
zero thickness; then only the component location and its power (or focal length) need be defined.

1.3 RAY-TRACING

The most general way to determine the characteristics of an image is by ray-tracing. As shown in
Fig. 1, if an “axial (marginal)” ray is started at the foot (axial intercept) of the object, then an image
is located at each place that this ray crosses the axis. The size of the image can be determined by trac-
ing a second, “principal (chief),” ray from the top of the object and passing through the center of the
limiting aperture of the system, the “aperture stop;” the intersection height of this ray at the image
plane indicates the image size. This size can also be determined from the ratio of the ray slopes of
the axial ray at the object and at the image; this yields the magnification m=u /u;; object height
times magnification yields the image height.
The ray-tracing equations are

»n==hu, 1)
’r_ 2
%—%—%@ (2)
Vin =Yt ©)
==y Iu 4)

@, Principal

Axial

FIGURE 1
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where [ and !’ are the axial intersection distances of the ray before and after refraction by the com-
ponent, u and u” are the ray slopes before and after refraction, ¢ is the component power (¢ = 1/f),
y; is the height at which the ray strikes the jth component, and d, is the distance from the jth to the
(j + )th component. Equations (2) and (3) are applied sequentially to the components, from object
to image.

These equations can be used in two different ways. When the components and spacings are
known, the image characteristics can readily be calculated. In the inverse application, the (unknown)
powers and spaces can be represented by symbols, and the ray can be traced symbolically through
the postulated number of components. The results of this symbolic ray-tracing can be equated to
the required characteristics of the system; these equations can then be solved for the unknowns,
which are the component powers and spacings.

As an example, given the starting ray data, y, and u, we get

u/=u—ye
V= tdu =y, +d =y,
Uy == ,0,
=u=y,0, =y, +d,(w, - y,0)]0,
V=, +du; =etc.

Obviously the equations can become rather complex in very short order. However, because of the
linear characteristics of the paraxial ray equations, they can be simplified by setting either y, or u,
equal to one (1.0) without any loss of generality. But the algebra can still be daunting.

TWO-COMPONENT SYSTEMS

Many systems are either limited to two components or can be separated into two-component seg-
ments. There are relatively simple expressions for solving two-component systems.

Although the figures in this chapter show thick lenses with appropriate principal planes, “thin”
lenses (whose thickness is zero and whose principal planes are coincident with the two coincident
lens surfaces) may be used.

For systems with infinitely distant objects, as shown in Fig. 2, the following equations for the
focal length and focus distance are useful:

Fus =L Sl(fy+ 1y =) (5)
B =0, +0,~d0,0, ®)
B=f,,(f,—dif, (7)
F=f(fy =), ®)
W=f,tanu, 9)

where fAB is the focal length of the combination, ¢ ), 18 its power, fA and fB are the focal lengths of the
components, ¢, and ¢, are their powers, d is the spacing between the components, B is the “back
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Lens a Lens b
with ¢, = 1/f, with ¢, = 1/f;,
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planes of ! : P
lens a | |
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plane of “
combination
FIGURE 2

focus” distance from the B component, F is the “front focus” distance, u, is the angle subtended by
the object, and h’ is the image height.

If f, ;> d, and B (or F) are known, the component focal lengths can be found from

fa=df x/(fuz—B) (10)

fy=—dB/(f,;—B—d) (11)

These simple expressions are probably the most widely used equations in optical layout work.

If a two-component system operates at finite conjugates, as shown in Fig. 3, the following equa-
tions can be used to determine the layout. When the required system magnification and the compo-
nent locations are known, the powers of the components are given by

¢, =(ms—md—s")/msd (12)

¢B=(d—ms+s’)/ds' (13)

where m = h'/h is the magnification, s and 5" are the object and image distances.

Component A Component B

|t
R

Principal W = mb
planes

(=)s d

T

FIGURE 3
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In different circumstances, the component powers, the object-to-image distance, and the magni-
fication may be known and the component locations are to be determined. The following quadratic
equation [Eq. (14)] in d (the spacing) is solved for d:

0= d>— dT+T(f, +f,)+(m — V2f, f,/m (14)

and then
s=[(m—-1d +T)/[(m - 1) — mdg,] (15)
sSs=T+s—-d (16)

1.5 AFOCAL SYSTEMS

If the system is afocal, then the following relations will apply:
MP =~ (f,/f;) = (u,lu,) = (d,/d,) (17)

and, if the components are “thin,”

L=f,+f, (18)
fo=—L-MP/(1 - MP) (19)
fy=L/(1-MP) (20)

where MP is the angular magnification, f, and f, are the objective and eyepiece focal lengths, u,
and u, are the apparent (image) and real (object) angular fields, d, and d,, are the entrance and exit
pupil diameters, and L is the length of the telescope as indicated in Fig. 4.

(b) Galilean telescope

FIGURE 4
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Eyelens (fg)

Objective (fp)

FIGURE 5

1.6 MAGNIFIERS AND MICROSCOPES

The conventional definition of magnifying power for either a magnifier or microscope compares the
angular size of the image with the angular size of the object when the object is viewed from a (conven-
tional) distance of 10 inches. Thus the magnification can be found from

MP=10"/f 1)

for either a simple microscope (i.e., magnifier) or a compound microscope, where f is the focal
length of the system. Using the symbols of Fig. 5, we can also write the following for the compound
microscope

MP =(f, + f, —d)10”/f, f,, (22)
MP =m, xm,

=(S,/8)(10”/f,) (23)

1.7 AFOCAL ATTACHMENTS

In addition to functioning as a telescope, beam expander, etc., an afocal system can be used to mod-
ify the characteristics of another system. It can change the focal length, power, or field of the “prime”
system. Figure 6 shows several examples of an afocal device placed (in these examples) before an
imaging system. The combination has a focal length equal to the focal length of the prime system
multiplied by the angular magnification of the afocal device. Note that in Fig. 6a and b the same
afocal attachment has been reversed to provide two different focal lengths. If the size of the film or
detector is kept constant, the angular field is changed by a factor equal to the inverse of the afocal
magnification.

1.8 FIELD LENSES

Figure 7 illustrates the function of the field lens in a telescope. It is placed near (but rarely exactly at)
an internal image; its power is chosen so that it converges the oblique ray bundle toward the axis
sufficiently so that the rays pass through the subsequent component. A field lens is useful to keep
the component diameters at reasonable sizes. It acts to relay the pupil image to a more acceptable
location.
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FIGURE 6
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The required field lens power is easily determined. In Fig. 7 the most troublesome ray is that
from the bottom of the objective aperture; its slope (u) is simply the height that it climbs divided
by the distance that it travels. The required slope (1) for the ray after refraction by the field lens is
defined by the image height (y), the “eyelens” semidiameter, and the spacing between them. Then
Eq. (2) can be solved for the field lens power,

d=u—u')ly (24)

A periscope is used to carry an image through a long, small-diameter space. As shown in Fig. 8,
the elements of a periscope are alternating field lenses and relay lenses. An optimum arrangement
occurs when the images at the field lenses and the apertures of the relay lenses are as large as the
available space allows. This arrangement has the fewest number of relay stages and the lowest power
components. For a space of uniform diameter, both the field lenses and the relay lenses operate at
unit magnification.

1.9 CONDENSERS

The projection/illumination condenser and the field lens of a radiation measuring system operate in
exactly the same way. The condenser (Fig. 9) forms an image of the light source in the aperture of
the projection lens, thereby producing even illumination from a nonuniform source. If the source
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image fills the projection lens aperture, this will produce the maximum illumination that the source
brightness and the projection lens aperture diameter will allow. This is often called Kéhler illumina-
tion. In a radiometer type of application (Fig. 10), the field lens images the objective lens aperture
on the detector, uniformly illuminating its surface and permitting the use of a smaller detector.
Often, the smallest possible source or detector is desired in order to minimize power or maximize
signal-to-noise. The smallest possible size is given by

S=Po/2n (25)

where S is the source or detector size, P is the projection lens or objective aperture diameter, o is the
field angle of projection or the radiometer field of view, and # is the index in which the source or
detector is immersed. This value for S corresponds to an (impractical) system speed of F/0.5. A
source or detector size twice as large is a far more realistic limit, corresponding to a speed of F/1.0.

The invariant, I=n(y,u, — y,u,), where y, u, y,, and u, are the ray heights and slopes of two
different rays, is an expression which has the same value everywhere in an optical system. If the two
rays used are an axial ray and a principal (or chief) ray as shown in Fig. 11, and if the invariant is
evaluated at the object and image surfaces, the result is

hnu = h'n’u’ (26)

1.10 ZOOM OR VARIFOCAL SYSTEMS

If the spacing between two components is changed, the effective focal length and the back focus are
changed in accord with Egs. (5) through (9). If the motions of the two components are arranged so
that the image location is constant, this is a mechanically compensated zoom lens, so called because
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the component motions are usually effected with a mechanical cam. A zoom system may consist of
just the two basic components or it may include one or more additional members. Usually the two
basic components have opposite-signed powers.

If a component is working at unit magnification, it can be moved in one direction or the other to
increase or decrease the magnification. There are pairs of positions where the magnifications are m
and 1/m and for which the object-to-image distance is the same. This is the basis of what is called a
“bang-bang” zoom,; this is a simple way to provide two different focal lengths (or powers, or fields of
view, or magnifications) for a system.

1.11 ADDITIONAL RAYS

When the system layout has been determined, an “axial” ray at full aperture and a “principal” ray at
full field can be traced through the system. Because of the linearity of the paraxial equations, we can
determine the ray-trace data (i.e., y and u) of any third ray from the data of these two traced rays by

y,=Ay, +By, (27)

u, = Au, +Bu, (28)

where A and B are scaling constants which can be determined from

A=y —uy)(wy, = yu,) (29)

B=(uyy, = ysu,)l(uy, = yu, (30)

where y,, u,, y,, and u, are the ray heights and slopes of the axial and principal rays and y, and u, are
the data of the third ray; these data are determined at any component of the system where the speci-
fications for all three rays are known. These equations can, for example, be used to determine the
necessary component diameters to pass a bundle of rays which are A times the diameter of the axial
bundle at a field angle B times the full-field angle. In Fig. 12, for the dashed rays A =+0.5 and —0.5
and B = 1.0. Another application of Egs. (27) through (30) is to locate either a pupil or an aperture
stop when the other is known.

FIGURE 12
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1.12 MINIMIZING COMPONENT POWER

The first-order layout may in fact determine the ultimate quality, cost, and manufacturability of the
system. The residual aberrations in a system are a function of the component powers, relative aper-
tures, and angular fields. The relationships are complex, but a good choice for a system layout is one
which minimizes the sum of the (absolute) component powers, or possibly the sum of the (abso-
lute) y¢ product for all the components.

For example, in Fig. 13 the length, magnification, and the eye relief of the rifle scope are speci-
fied. There are five variables: three component powers and two spaces. This is one more variable
than is necessary to achieve the specified characteristics. If we take the focal length of the objective
component as the free variable, the component powers which satisfy the specifications can be plot-
ted against the objective focal length, as in Fig. 13, and the minimum power arrangement is easily
determined.

Minimizing the component powers will strongly tend to minimize the aberrations and also the
sensitivity of the system to fabrication errors and misalignments. The cost of an optical element
will vary with its diameter (or perhaps the square of the diameter) and also with the product of the
diameter and the power. Thus, while first-order layout deals only with components, these relation-
ships still apply reasonably well even when applied to components rather than elements. Minimizing
the component powers does tend to reduce the cost on these grounds (and also because it tends to
reduce the complexity of the components).

1.13 IS IT A REASONABLE LAYOUT?

A simple way to get a feel for the reasonableness of a layout is to make a rough scale drawing showing
each component as single element. An element can be drawn as an equiconvex lens with radii which
are approximately r = 2(n — 1)f; for an element with an index of 1.5 the radii equal the focal length.
The elements should be drawn to the diameter necessary to pass the (suitably vignetted) off-axis



1

.14

DESIGN

bundle of rays as well as the axial bundle. The on-axis and off-axis ray bundles should be sketched in.
This will very quickly indicate which elements or components are the difficult ones. If the design is
being started from scratch (as opposed to simply combining existing components), each component can be
drawn as an achromat. The following section describes achromat layout, but for visual-spectrum sys-
tems it is often sufficient to assume that the positive (crown) element has twice the power of the achro-
mat and the (negative) flint element has a power equal to that of the achromat. Thus an achromat may
be sketched to the simplified, approximate prescription: r, = —r, =f/2 and r, = plano.

Any elements which are too fat must then be divided or “split” until they look “reasonable.” This
yields a reasonable estimate of the required complexity of the system, even before the lens design
process is begun.

If more or less standard design types are to be utilized for the components, it is useful to tabulate
the focal lengths and diameters to get the (infinity) f-number of each component, and also its angular
field coverage. The field coverage should be expressed both in terms of the angle that the object and
image subtend from the component, and also the angle that the smaller of these two heights subtends
as a function of the focal length (rather than as a function of that conjugate distance). This latter angle
is useful because the coverage capability of a given design form is usually known in these terms, that is,
h/f, rather than in finite conjugate terms. With this information at hand, a reasonable decision can be
made as to the design type necessary to perform the function required of the component.

1.14 ACHROMATISM

The powers of the elements of an achromat can be determined from

¢,=0,,V,I(V,=-V,) (31)
0,=0,,V,/(V,=V,) (32)
=039,

where ¢, , is the power of the achromatic doublet and V, is the Abbe V-value for the element whose
power is ¢,, etc. For the visible spectral region V = (n,—1)/(n,—n_); this can be extended to any
spectral region by substituting the indices at middle, short, and long wavelengths for n,, 1., and n ..

If the elements are to be spaced apart, and the back focus is B, then the powers and the spacing
are given by

¢A= ¢ABBVA/(VAB_VB/¢AB) (33)
@p=—0,,V,/B(V,B=V,/9,.) (34)
D:(I_B¢A3)/¢A (35)

For a complete system, the transverse axial chromatic aberration is the sum of y’¢/Vu; for all
the elements, where y is the height of the axial ray at the element and u, is the ray slope at the image.
The lateral color is the sum of yy @/Vu;, where y, is the principal ray height.

The secondary spectrum is the sum of y2¢P/Vu;, where P is the partial dispersion, P= (n,—n)/
(ng—mn_). Summed over two elements, this leads to an expression for the longitudinal secondary
spectrum of an achromatic doublet

$S=f(P,—P)/(V,~V})

= — f(AP/IAV) (36)
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This indicates that in order to eliminate secondary spectrum for a doublet, two glasses with
identical partial dispersions [so that (P, — P,) is zero] are required. A large difference in V-value
is desired so that (V, —V,) in the denominator of Egs. (31) and (32) will produce reasonably low
element powers. As indicated in the schematic and simplified plot of P versus V in Fig. 14a, most
glasses fall into a nearly linear array, and (AP/AV) is nearly a constant for the vast majority of glasses.
The few glasses which are away from the “normal” line can be used for apochromats, but the AV for
glass pairs with a small AP tends to be quite small. In order to get an exact match for the partial dis-
persions so that AP is equal to zero, two glasses can be combined to simulate a third, as indicated in
Fig. 14b. For a unit power (¢ = 1) apochromatic triplet, the element powers can be found from

X =[V,(P,~ P.) + V,(P.— P)V/(P, — P,) (37)
b=V I(V.~X) (38)
0y =(1=@.)(P.— PV, /[V,(P.— P)+V,(P,~ P.)] (39)
¢, =1-¢,—¢c (40)

1.15 ATHERMALIZATION

When the temperature of a lens element is changed, two factors affect its focus or focal length. As
the temperature rises, all dimensions of the element are increased; this, by itself, would lengthen the
focal length. However, the index of refraction of the lens material also changes with temperature.
For many glasses the index rises with temperature; this effect tends to shorten the focal length.

The thermal change in the power of a thin element is given by

deldt =—gla—(dn/dt)/(n—1)] (41)

where dn/dt is the differential of index with temperature and a is the thermal expansion coefficient
of the lens material. Then for a thin doublet

dg¢/dt = ¢, T, +9,T, (42)
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where
T =[-a+(dn/dt)/(n—1)] (43)

and ¢ is the doublet power.
For an athermalized doublet (or one with some desired d¢/dt) the element powers are given by

¢, =[(d¢/dt)—¢T)N(T,~T,) (44)

¢B=¢_¢A (45)

To get an athermalized achromatic doublet, a plot of T against (1/V) for all the glasses/materials
under consideration is made. A line drawn between two glass points is extended to intersect the
T axis as indicated in Fig. 15. Then the value of the d¢/dt for the achromatic doublet is equal to the
doublet power times the value of T at which the line intersects the T axis. A pair of glasses with a
large V-value difference and a small or zero T axis intersection is desirable.

An athermal achromatic triplet can be made with three glasses as follows:

$,=0V,(T,V, - T.V.)/D (46)
¢y =9V, (T.V. - T,V,)/D (47)
¢.= ¢V (T,V,— T,V,)ID (48)
D=V, (T,V,- T.V)+V,(T.V.~ T,V,) + V.(T,V,— T,V,) (49)

See also Chap. 8, “Thermal Compensation Techniques,” by Philip J. Rogers and Michael Roberts.

NOTE: Figures 2, 3, 4, 5, 7, 8,9, 10, 11, and 13 are adapted from W. Smith, Modern Optical
Engineering, 2nd ed., McGraw-Hill, New York, 1990. The remaining figures are adapted from Critical
Reviews of Lens Design, W. Smith (Ed.), SPIE, vol. CR41, 1992.
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2.1 GLOSSARY

H  ray height

NA  numerical aperture
OPD  optical path difference

P petzval

S sagittal

T tangential

tan U  slope

2.2 INTRODUCTION

Many optical designers use aberration curves to summarize the state of correction of an optical
system, primarily because these curves give a designer important details about the relative con-
tributions of individual aberrations to lens performance. Because a certain design technique may
affect only one particular aberration type, these curves are more helpful to the lens designer than a
single-value merit function. When a design is finished, the aberration curves serve as a summary of
the lens performance and a record for future efforts. For applications such as photography, they are
most useful because they provide a quick estimate of the effective blur circle diameter.

The aberration curves can be divided into two types: those that are expressed in terms of ray errors
and those in terms of the optical path difference (OPD). OPD plots are usually plotted against the
relative ray height in the entrance pupil. Ray errors can be displayed in a number of ways. Either the
transverse or longitudinal error of a particular ray relative to the chief ray can be plotted as a function
of the ray height in the entrance pupil. Depending upon the amount and type of aberration present,
it is sometimes more appropriate to plot the longitudinal aberration as a function of field angle.

2.1
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For example, astigmatism or field curvature is more easily estimated from field plots, described below.
Frequently, the curves are also plotted for several wavelengths to characterize chromatic performance.
Because ray error plots are the most commonly used format, this entry will concentrate on them.

2.3 TRANSVERSE RAY PLOTS

These curves can take several different forms, depending on the particular application of the optical
system. The most common form is the transverse ray aberration curve. It is also called lateral aberra-
tion, or ray intercept curve (also referred to by the misleading term “rim ray plots”). These plots are
generated by tracing fans of rays from a specific object point for finite object distances (or a specific
field angle for an object at infinity) to a linear array of points across the entrance pupil of the lens. The
curves are plots of the ray error at an evaluation plane measured from the chief ray as a function of the
relative ray height in the entrance pupil (Fig. 1). For afocal systems, one generally plots angular aberra-
tions, the differences between the tangents of exiting rays and their chief ray in image space.

If the evaluation plane is in the image of a perfect image, there would be no ray error and the
curve would be a straight line coincident with the abscissa of the plot. If the curve were plotted for
a different evaluation plane parallel to the image plane, the curve would remain a straight line but it
would be rotated about the origin. Usually the aberration is plotted along the vertical axis, although
some designers plot it along the horizontal axis.

The curves in Fig. 1 indicate a lens with substantial underconnected spherical aberration as evi-
denced by the characteristic S-shaped curve. Since a change of the evaluation plane serves only to
rotate the curve about the origin, a quick estimate of the aberrations of a lens can be made by read-
ing the scale of the ray error axis (y axis) and mentally rotating the plot. For example, the blur spot
can be estimated from the extent of a band that would enclose the curve a in Fig. 1, but a similar
estimate could be made from the curves b or ¢, also.

The simplest form of chromatic aberration is axial color. It is shown in Fig. 2 in the presence of
spherical aberration. Axial color is the variation of paraxial focus with wavelength and is seen as a differ-
ence in slope of the aberration curves at the origin as a function of wavelength. If the slopes of the curves
at the origin for the end wavelengths are different, primary axial color is present. If primary axial color is
corrected, then the curves for the end wavelengths will have the same slope at the origin. But if that slope
differs from the slope of the curve for the center wavelength, then secondary axial color is present.

A more complex chromatic aberration occurs when the aberrations themselves vary with wave-
length. Spherochromatism, the change of spherical aberration with wavelength, manifests itself as a
difference in the shapes of the curves for different colors. Another curve that provides a measure of
lateral color, an off-axis chromatic aberration, is described below.

For a point on the axis of the optical system, all ray fans lie in the meridional plane and only one
plot is needed to evaluate the system. For off-axis object points, a second plot is added to evaluate a
fan of skew rays traced in a sagittal plane. Because a skew ray fan is symmetrical across the meridional
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FIGURE 1 (Left) Rays exiting a lens are intercepted at three evaluation planes. (Right) Ray intercept curves
plotted for the evaluation planes: (a) at the point of minimum ray error (circle of least confusion); (b) at the
paraxial image plane; and (c) outside the paraxial image plane. (See also color insert.)
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FIGURE 2 Meridional ray intercept curves of a
lens with spherical aberration plotted for three colors.
(See also color insert.)

plane, only one side of the curve is usually plotted. For all curves the plots are departures from the
chief ray location in the evaluation plane (Fig. 3). (In the case of the on-axis point, the chief ray is
coincident with the optical axis.) For systems of small-field coverage only two or three object points
need to be analyzed, but for wide-angle systems, four or more field points may be necessary.

What can be determined most easily from a comparison between the meridional and sagittal
fans is the amount of astigmatism in the image for that field point. When astigmatism is present, the
image planes for the tangential and sagittal fans are located at different distances along the chief ray.
This is manifested in the ray intercept curves by different slopes at the origin for the tangential and
sagittal curves. In Fig. 3 the slopes at the origins of the two curves are different at both 70 percent
and full field, indicating astigmatism at both field points. The fact that the difference in the slopes
of these two curves has changed sign between the two field points indicates that at some field angle
between 70 percent and full field, the slopes are equal and there is no astigmatism there. In addition,
the variation of slopes for each curve as a function of field angle is evidence of field curvature.

Full field

- / /

ZEP < EP =Z_EP

70% Field /
. —

On-axis

—-EP EP EP

Tangential curves Sagittal curves

FIGURE 3 Evaluation of a lens on-axis
and at two off-axis points. The reduction of
the length of the curve with higher field indi-
cates that the lens is vignetting these angles.
The differences in slopes (dashed lines) at
the origin between the meridional and skew
curves indicate that the lens has astigmatism
at these field angles. The variation in the slopes
with field indicates the presence of field curva-
ture. (See also color insert.)



24

DESIGN

— — — — Spherical

FIGURE 4 Ray intercept curve showing

coma combined with spherical aberration. (See
also color insert.)

The off-axis aberration of pure primary coma would be evident on these plots as a U-shaped
curves for the meridional fan and sagittal fans, the tangential curve being three times larger than the
sagittal curve. The “U” will be either upright or upside down depending on the sign of the coma. In
almost all cases coma is combined with spherical to produce an S-shaped curve that elongates one
of the arms of the “S” and shortens the other (Fig. 4).

The amount of vignetting can be determined from the ray intercept curves also. When it is pres-
ent, the meridional curves get progressively shorter as the field angle is increased (Fig. 3), since rays
at the edges of the entrance pupil are not transmitted. Taken from another perspective, ray intercept

curves can also provide the designer with an estimate of how far a system must be stopped down to
provide a required degree of correction.

2.4 FIELD PLOTS

The ray intercept curves provide evaluation for a limited number of object points—usually a point on the
optical axis and several field points. The field plots present information on certain aberrations across the
entire field. In these plots, the independent variable is usually the field angle and is plotted vertically and
the aberration is plotted horizontally. The three field plots most often used are: distortion, field curvature,
and lateral color. The first of these shows percentage distortion as a function of field angle (Fig. 5).

The second type of plot, field curvature, displays the tangential and sagittal foci as a function of object
point or field angle (Fig. 6a). In some plots the Petzval surface, the surface to which the image would
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FIGURE 5 Field curve: distortion
plot. The percentage distortion is plotted
as a function of field angle. Note that the
axis of the dependent variable is the hori-
zontal axis. (See also color insert.)

FIGURE 6 Field curve: field curvature plot. The locations of
the tangential T and sagittal S foci are plotted for a full range of
field angles. The Petzval surface P is also plotted. The tangential
surface is always three times farther from the Petzval surface than

from the sagittal surface: (a) an uncorrected system and (b) a
corrected system. (See also color insert.)
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FIGURE 7 Field curve: lateral color plot.
A plot of the transverse ray error between red
and blue chief ray heights in the image plane
for a full range of field angles. Here the distance
along the horizontal axis is the color error in the
image plane. (See also color insert.)

collapse if there were no astigmatism, is also plotted. This plot shows the amount of curvature in the
image plane and amount of astigmatism over the entire field. In cases of corrected field curvature
(Fig. 6b), this plot provides an estimate of the residual astigmatism between the axis and the corrected
zone and an estimate of the maximum field angle at which the image possesses reasonable correction.

The last of the field curves provides information on color error as a function of field angle
(Fig. 7). Lateral color, the variation of magnification with wavelength, is plotted as the difference
between the chief ray heights at the red and blue wavelengths as a function of field angle. This
provides the designer with an estimate of the amount of color separation in the image at various
points in the field. In the transverse ray error curves, lateral color is seen as a vertical displacement
of the end wavelength curves from the central wavelength curve at the origin.

Although there are other plots that can describe aberrations of optical systems (e.g., plot of
longitudinal error as a function of entrance pupil height), the ones described here represent the
ensemble that is used in most ray evaluation presentations.

2.5 ADDITIONAL CONSIDERATIONS

In many ray intercept curves the independent variable is the relative entrance pupil coordinate of
the ray. However, for systems with high NA or large field of view, where the principal surface cannot
be approximated by a plane, it is better to plot the difference between the tangent of the convergence
angle of the chosen ray and the tangent of the convergence angle of the chief ray. This is because the
curve for a corrected image will remain a straight line in any evaluation plane.""When plotted this
way, the curves are called H-tan U curves.

Shifting the stop of an optical system has no effect on the on-axis curves. However, it causes
the origin of the meridional curves of off-axis points to be shifted along the curve. In Fig. 8, the
off-axis meridional curves are plotted for three stop positions of a double Gauss lens. The center
curve (Fig. 8b) is plotted for a symmetrically located stop; the outer curves are plots when the stop
is located at lens surfaces before and after the central stop.

It is usually sufficient to make a plot of the aberrations in the meridional and sagittal sections of
the beam. The meridional section, defined for an optical system with rotational symmetry, is any plane
containing the optical axis. It is sometimes called the tangential section. The sagittal section is a plane
perpendicular to the meridional plane containing the chief ray. There are some forms of higher-order
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FIGURE 8 The effect of stop shifting on the meridional
ray intercept curves of a double Gauss lens. (a) Stop located
in front of the normal centrally located stop. (b) Stop at
the normal stop position. (c) Stop behind the normal stop
position. The dot locates the point on the curve where the
origin is located for case (b). (See also color insert.)

coma that do not show in these sections.? In those cases where this aberration is suspected to be a
problem, it may be helpful to look at a spot diagram generated from rays in all sections of the bundle.

For a rotationally symmetric system, only objects in a meridional plane need to be analyzed. Also
for such systems, only meridional ray errors are possible for purely meridional rays. To observe cer-
tain coma types, it is a good idea to plot both the meridional and sagittal ray errors for sagittal rays.
It is possible for the meridional section to show no coma and have it show only in the meridional
error component of the sagittal fan,? but this aberration is normally small.

In addition to plots of the ray error in an evaluation plane, another aberration plot is one that
expresses wavefront aberrations as an optical path difference from a spherical wavefront centered
about the image point. These OPD plots are particularly useful for applications where the lens must
be close to diffraction-limited.

2.6 SUMIMARY

Aberration curves provide experienced designers with the information needed to enable them to
correct different types of aberrations. Chromatic effects are much more easily classified from aberra-
tion curves also. In comparison to spot diagrams and modulation transfer function curves, the types
of aberrations can be more easily seen and quantified. In the case of diffraction-limited systems,
modulation transfer functions may provide better estimates of system performance.

2.7 REFERENCES
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axial ray

chief ray

curvature

aspheric coefficients
effective focal length

focal ratio

function

ray height

linear, lateral magnification
refractive index

paraxial (Lagrange) invariant
entrance pupil radius
thickness

ray slope

coordinate

coordinate

tilt about x (Euler angles)
tilt about y (Euler angles)
tilt about z (Euler angles)
displacement of a ray from the chief ray
Buchdahl coefficients
conic constant

radial coordinate

spherical aberration
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o, coma
0o, astigmatism
o, Petzval blur
o, distortion
3.2 INTRODUCTION

The primary function of optical design software is to produce a mathematical description, or pre-
scription, describing the shapes, locations, materials, etc., of an optical system that satisfies a given
set of specifications. A typical optical design program contains three principal sections: data entry,
evaluation, and optimization. The optical design programs considered here are to be distinguished
from ray-trace programs, which are mainly concerned with evaluation, and CAD programs, which
are mainly concerned with drawings. The essence of an optical design program is its optimization
section, which takes a starting design and produces a new design that minimizes an error function
that characterizes the system performance.

The first practical computer software for optical design was developed in the 1950s and 1960s.'~
Several commercially available programs were introduced during the 1970s, and development of
these programs has continued through the 1980s to the present time. Although decades have passed
since the introduction of optical design software, developments continue in optimization algo-
rithms, evaluation methods, and user interfaces.

This chapter attempts to describe a typical optical design program. It is intended for readers that
have a general background in optics, but who are not familiar with the capabilities of optical design
software. We present a brief description of some of the most important mathematical concepts, but
make no attempt to give a detailed development. We hope that this approach will give readers enough
understanding to know whether an optical design program will be a useful tool for their own work.

Of course, many different programs are available, each with its own advantages and disadvan-
tages. Our purpose is not to review or explain specific programs, but to concentrate on the basic
capabilities. Some programs work better than others, but we make no quality judgment. In fact, we
avoid reference, either explicit or implicit, to any particular program. The features and benefits of
particular optical design programs are more than adequately described by software vendors, who are
listed in optical industry buyer’s guides.

Figure 1 is a flowchart of a typical optical design project. Usually, the designer not only must enter
the starting design and initial optimization data, but also must continually monitor the progress of
the computer, modifying either the lens data or the optimization data as the design progresses to
achieve the best solution. Even when the performance requirements are tightly specified, it is often
necessary to change the error function during the design process. This occurs when the error function
does not correlate with the desired performance sufficiently well, either because it is ill-conceived, or
because the designer has purposefully chosen a simple error function to achieve improved speed.

The fact that there are alternate choices of action to be taken when the design is not good enough
has led to two schools of thought concerning the design of an optical design program. The first school
tries to make the interface between the designer and the program as smooth as possible, emphasizing
the interactive side of the process. The second school tries to make the error function comprehensive,
and the iteration procedure powerful, minimizing the need for the designer to intervene.

3.3 LENS ENTRY

In early lens design programs, lens entry was a “phase” in which the lens data for a starting design was
read into the computer from a deck of cards. At that time, the numerical aspects of optical design on
a computer were so amazing that scant attention was paid to the lens entry process. However, as the
use of optical design software became more widespread, it was found that a great deal of a designer’s
time was spent punching cards and submitting new jobs, often to correct past mistakes. Many times, it
turned out that the hardest part of a design job was preparing a “correct” lens deck!
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Initial entry of
lens and
optimization data

Evaluate lens

(evaluate)

Iterate design
in computer
(optimization)

Change lens and
optimization data

Good enough?

FIGURE 1 Flowchart for the lens design process. The action taken when a design
is not satisfactory depends on how bad it is. The designer (or a design program) may
change the lens data, or redefine the targets to ones that can be achieved.

Over the years, optical design programs have been expanded to improve the lens entry process,
changing the function of this part of the program from simple lens entry to what might be called
lens database management. A typical contemporary program provides on-line access to a library of
hundreds of lenses, interactive editing, automatic lens drawings, and many features designed to sim-
plify this aspect of optical design.

The lens database contains all items needed to describe the optical system under study, including
not only the physical data needed to construct the system (curvatures, thicknesses, etc.), but also data
that describe the conditions of use (object and image location, field of view, etc.). Some programs also
incorporate optimization data in the lens database, while others provide separate routines for han-
dling such data. In any case, the lens database is often the largest part of an optical design program.

The management of lens data in an optical design program is complicated by two factors. One is
that there is a tremendous range of complexity in the types of systems that can be accommodated, so
there are many different data items. The other is that the data are often described indirectly. A surface
curvature may be specified, for example, by the required slope of a ray that emerges from the surface,
rather than the actual curvature itself. Such a specification is called a solve, and is based on the fact
that paraxial ray tracing is incorporated in the lens entry portion of most optical design programs.

It might seem curious that paraxial ray tracing is still used in contemporary optical design pro-
grams that can trace exact rays in microseconds. (The term exact ray is used in this chapter to mean
a real skew ray. Meridional rays are treated as a special case of skew rays in contemporary software;
there is not sufficient computational advantage to warrant a separate ray trace for them.) In fact, par-
axial rays have some important properties that account for their incorporation in the lens database.

First, paraxial rays provide a linear system model that leads to analysis of optical systems in terms
of simple bilinear transforms. Second, paraxial ray tracing does not fail. Exact rays can miss surfaces
or undergo total internal reflection. Finally, paraxial rays determine the ideal performance of a lens.
In a well-corrected lens, the aberrations are balanced so that the exact rays come to the image points
defined by the paraxial rays, not the other way around.

Two basic types of data are used to describe optical systems. The first are the general data that are
used to describe the system as a whole, and the other are the surface data that describe the individual
surfaces and their locations. Usually, an optical system is described as an ordered set of surfaces,
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beginning with an object surface and ending with an image surface (where there may or may not be
an actual image). It is assumed that the designer knows the order in which rays strike the various
surfaces. Systems for which this is not the case are said to contain nonsequential surfaces, which are
discussed later.

General System Data

The general data used to describe a system include the aperture and field of view, the wavelengths at
which the system is to be evaluated, and perhaps other data that specify evaluation modes, vignett-
ing conditions, etc.

Aperture and Field of View The aperture and field of view of a system determine its conditions of
use. The aperture is specified by the axial ray, which emerges from the vertex of the object surface
and passes through the edge of the entrance pupil. The field of view is specified by the chief ray,
which emerges from the edge of the object and passes through the center of the entrance pupil.

There are various common ways to provide data for the axial and chief rays. If the object is at
an infinite distance, the entrance pupil radius and semifield angle form a convenient way to specify
the axial and chief rays. For finite conjugates, the numerical aperture in object space and the object
height are usually more convenient.

Some programs permit the specification of paraxial ray data by image-space quantities such as
the f-number and the image height, but such a specification is less desirable from a computational
point of view because it requires an iterative process to determine initial ray-aiming data.

Wavelengths It is necessary to specify the wavelengths to be used to evaluate polychromatic sys-
tems. Three wavelengths are needed to enable the calculation of primary and secondary chromatic
aberrations. More than three wavelengths are required to provide an accurate evaluation of a typical
system, and many programs provide additional wavelengths for this reason. There has been little
standardization of wavelength specification. Some programs assume that the first wavelength is
the central wavelength, while others assume that it is one of the extreme wavelengths; some require
wavelengths in micrometers, while others in nanometers.

Other General Data Several other items of general data are needed to furnish a complete lens
description, but there is little consistency between programs on how these items are treated, or even
what they are. The only one that warrants mention here is the aperture stop. The aperture stop is
usually defined to be the surface whose aperture limits the angle of the axial ray. Once the aperture
stop surface is given, the positions of the paraxial pupils are determined by the imaging properties
of the system. Since the aperture and field of view are determined formally by the paraxial pupils,
the apertures are not associated with the exact ray behavior.

The “vignetting factor” is used to account for the differences between paraxial and exact off-axis
ray heights at apertures. In particular, the vignetting factor provides, in terms of fractional (par-
axial) coordinates, the data for an exact ray that grazes the apertures of a system. Typically, there is
an upper, lower, and skew vignetting factor. The details of how such factors are defined and handled
are program dependent.

Surface Data

Surface Location There are two basic ways to specify the location of surfaces that make up a lens.
One is to specify the position of a surface relative to the immediately preceding surface. The other
is to specify its position relative to some fixed surface (for example, the first surface). The two ways
lead to what are called local and global coordinates, respectively. For ordinary lenses consisting of
a series of rotationally symmetric surfaces centered on an optical axis, local coordinates are more
convenient, but for systems that include reflectors, tilted, and/or decentered surfaces, etc., global
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coordinates are simpler. Internally, optical design programs convert global surface data to local
coordinates for speed in ray tracing.

Most optical design programs use a standard coordinate system and standard sign conven-
tions, although there are exceptions.® Each surface defines a local right-handed coordinate sys-
tem in which the z axis is the symmetry axis and the yz plane is the meridional plane. The local
coordinate system is used to describe the surface under consideration and also the origin of the
next coordinate system. Tilted elements are described by an Euler-angle system in which a is a
tilt around the x axis, B is a tilt around the y axis, and ¥ is a tilt around the z axis. Since tilting
and decentering operations are not commutative; some data item must be provided to indicate
which comes first.

Surface Profile Of the various surfaces used in optical systems, the most common by far is the
rotationally symmetric surface, which can be written as’

2
cr
2=t drt ter + fr¥ + gr'?

1+41-c2(k +1)r?
r=yx*+y?

c is the curvature of the surface; x is the conic constant; and 4, e, f, and g are aspheric constants. The
use of the above equation is almost universal in optical design programs. The description of conic
surfaces in terms of a conic constant k instead of the eccentricity e used in the standard mathemati-
cal literature allows spherical surfaces to be specified as those with no conic constant. (The conic
constant is minus the square of the eccentricity.)

Although aspheric surfaces include all surfaces that are not spherical, from a design standpoint
there is a demarcation between “conic” aspheres and “polynomial” aspheres described using the
coefficients d, e, f, and g Rays can be traced analytically through the former, while the latter require
numerical iterative methods.

Many optical design programs can handle surface profiles that are more complicated than
the above, including cylinders, torics, splines, and even general aspheres of the form z = f (x, ),
where f (x, y) is an arbitrary polynomial. The general operation of an optical design program, how-
ever, can be understood by considering only the rotationally symmetric surfaces described here.

As mentioned above, the importance of paraxial rays in optical system design has led to the indi-
rect specification of lens data, using solves, as they are called, which permit a designer to incorporate
the basic paraxial data describing a lens with the lens itself, rather than having to compute and opti-
mize the paraxial performance of a lens as a separate task. Considering the jth surface of an optical
system, let

y; = ray height on surface
u, = ray slope on image side
¢; = curvature of surface

n, = refractive index on image side

t= thickness on image side
The paraxial ray trace equations can then be written as®
Vi=Viattiali,

)

nu.=n. u. —y.c.(n.—n
j=17j-1 yl J( j

Ji j-1
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These equations can be inverted to give the curvatures and thicknesses in terms of the ray data.
We have

n_u. n.u

_ i Y

i )’j(”j—”j,l)
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] u.
j

The specification of curvatures and thicknesses by solves is considered to be on an equal basis
with the direct specification of these items. The terminology used to specify solves is that the solves
used to determine thickness are called height solves, and the solves used to determine curvature are
called angle solves. Often, an axial ray height solve on the last surface is used to automatically locate
the paraxial image plane, a chief ray height solve on the same surface to locate the exit pupil, and an
axial ray angle solve is used to maintain a given focal length (if the entrance pupil radius is fixed). In
some programs, additional types of solves are allowed, such as center of curvature solves, or aper-
ture solves.

Of course, specifying lens data in terms of paraxial ray data means that whenever any lens data is
changed, two paraxial rays must be traced through the system to resolve any following data that are
determined by a solve. In an optical design program, this function is performed by a lens setup rou-
tine, which must be efficiently coded, since it is executed thousands of times in even a small design
project.

Other functions of the lens setup routine are to precalculate values that are needed for repetitive
calculations, such as refractive indices, rotation and translation matrices, etc. Many programs have
the capability of specifying certain data items to be equal to (+) the value of the corresponding item
on a previous surface. These are called pickups, and are needed for optimization of systems contain-
ing mirrors, as well as maintaining special geometrical relationships. Programs that lack pickups
usually have an alternate means for maintaining the required linking between data items. Like solves,
pickups are resolved by the lens setup routine, although they do not use paraxial data.

Other Surface Data A variety of other data is required to specify surfaces. Most important are
apertures, discussed below, and refractive indices. Refractive indices are usually given by specify-
ing the name of a catalog glass. In the lens setup routine, the actual refractive indices are calculated
using an index interpolation formula and coefficient supplied by the glass manufacturer, together
with the design wavelengths stored with the lens data. Other surface-related items include phase
data for diffractive surfaces, gradient-index data, holographic construction data, and coatings.

Apertures have a somewhat obscure status in many optical design programs. Although aper-
tures have a major role to play in determining the performance of a typical system, they do not
usually appear directly in optimization functions. Instead, apertures are usually controlled in
optimization by targets on the heights of rays that define their edges. If an aperture is speci-
fied directly, it will block rays that pass outside of it and cause typical optimization procedures
to become unstable. Accordingly, some programs ignore apertures during optimization. Other
programs allow the apertures to be determined by a set of exact “reference rays” that graze their
extremities.

Nonsequential Surfaces In some optical systems, it is not possible to specify the order in which a
ray will intersect the surfaces as it progresses through the system. The most common examples of
such systems are prisms such as the corner-cube reflector, where the ordering of surfaces depends
on the entering ray coordinates. Other examples of nonsequential surfaces include light pipes and a
variety of nonimaging concentrators. Nonsequential surfaces can be accommodated by many opti-
cal design programs, but for the most part they are not “designed” using the program, but rather
are included as a subsystem used in conjunction with another part of the system that is the actual
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system being designed. Data specification of nonsequential surfaces is more complicated than ordi-
nary systems, and ray tracing is much slower, since several surfaces must be investigated to see which
surface is the one actually traversed by a given ray.

Lens Setup

Whenever the lens entry process is completed, the lens must be “set up.” Pickup constraints must be
resolved. If the system contains an internal aperture stop, the position of the entrance pupil must
be determined. Then paraxial axial and chief rays must be traced through the system so that surface
data specified by solves can be computed. Depending on the program, a variety of other data may
be precomputed for later use, including aperture radii, refractive indices, and various paraxial con-
stants.

The lens setup routine must be very efficient, since it is the most heavily used code in an opti-
cal design program. In addition to running whenever explicit data entry is complete, the code is
also executed whenever the lens is modified internally by the program, such as when derivatives are
computed during optimization, or when configurations are changed in a multiconfiguration system.
Typically, lens setup takes milliseconds (at most), so it is not noticed by the user, other than through
its effects.

Programming Considerations

In writing an optical design program, the programmer must make a number of compromises
between speed, size, accuracy, and ease of use. These compromises affect the usefulness of a par-
ticular program for a particular application. For example, a simple, fast, small program may be well
suited to a casual user with a simple problem to solve, but this same program may not be suited for
an experienced designer who routinely tackles state-of-the-art problems.

The lens entry portion of an optical design program shows, more than any other part, the dif-
ference in programming models that occurred during the 1980s. Before the 1980s, most application
programs were of a type called procedural programs. When such a program needs data, it requests
it, perhaps from a file or by issuing a prompt for keyboard input. The type of data needed is known,
and the program is only prepared to accept that kind of data at any given point. Although the pro-
gram may branch through different paths in response to the data it receives, the program is respon-
sible for its own execution.

With the popularization in the 1980s of computer systems that use a mouse for input the model
for an application program changed from the procedural model described above to what is called an
event-driven model. An event-driven program has a very simple top-level structure consisting of an
initialization section followed by an infinite loop usually called something like the main event loop. The
function of the main event loop is to react to user-initiated interrupts (such as pressing a key, or click-
ing a mouse button), dispatching such events to appropriate processing functions. In such a program,
the user controls the execution, unlike a procedural program, where the execution controls the user.

An event-driven program usually provides a better user interface than a procedural program.
Unfortunately, most optical design programs were originally written as procedural programs, and it
is difficult to convert a procedural program into an event-driven program by “patching” it. Usually
it is easier to start over. In addition, it is harder to write an event-driven program than a procedural
program, because the event-driven program must be set up to handle a wide variety of unpredict-
able requests received at random times. Of course, it is this very fact that makes the user interface
better. There is an aphorism sometimes called the “conservation of complexity,” which states that
the simpler a program is to use, the more complicated the program itself must be.

The data structures used to define lens data in an optical design program may have a major
impact on its capabilities. For example, for various reasons it is usually desirable to represent a lens
in a computer program as an array of surfaces. If the maximum size of the array is determined at
compile time, then the maximum size lens that can be accommodated is built into the program.
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As more data items are added to the surface data, the space required for storage can become
unwieldy. For example, it takes about 10 items of real data to specify a holographic surface. If every
surface were allowed to be a hologram, then 10 array elements would have to be reserved for each
surface’s holographic data. On the other hand, in most systems, the elements would never be used,
so the data structure would be very inefficient. To avoid this, a more complicated data structure
could be implemented in which only one element would be devoted to holograms, and this item
would be used as an index into a separate array containing the actual holographic data. Such an
array might have a sufficient number of elements to accommodate up to, say, five holograms, the
maximum number expected in any one system.

The preceding is a simple example of how the data structure in an optical design program can
grow in complexity. In fact, in a large optical design program the data structure may contain all sorts
of indices, pointers, flags, etc., used to implement special data types and control their use. Managing
this data while maintaining its integrity is a programming task of a magnitude often greater than the
numerical processing that takes place during optical design.

Consider, for example, the task of deleting a surface from a lens. To do this, the surface data must
of course be deleted, and all of the higher-numbered surfaces renumbered. But, in addition, the sur-
face must be checked to see whether it is a hologram and, if so, the holographic data must also be
deleted and that data structure “cleaned up.” All other possible special data items must be tested and
handled similarly. Then all the renumbered surfaces must be checked to see if any of the “pick up”
data from a surface that has been renumbered, and the reference adjusted accordingly. Then other
data structures such as the optimization files must be checked to see if they refer to any of the renum-
bered surfaces, and appropriate adjustments made. There may be several other checks and adjust-
ments that must also be carried out.

Related to the lens entry process is the method used to store lens data on disc. Of course, lens
data are originally provided to a program in the form of text (e.g., “TH 1.0”). The program parses
this data to identify its type (a thickness) and value (1.0). The results of the parsing process (the
binary values) are stored in appropriate memory locations (arrays). To store lens data on disc, early
optical design programs used the binary data to avoid having to reparse it when it was recovered.
However, the use of binary files has decreased markedly as computers have become fast enough that
parsing lens input does not take long. The disadvantages of binary files are that they tend to be quite
large, and usually have a structure that makes them obsolete when the internal data structure of the
program is changed. The alternative is to store lens data as text files, similar in form to ordinary key-
board input files.

3.4 EVALUATION

Paraxial Analysis

Although the lens setup routine contains a paraxial ray trace, a separate paraxial ray trace routine is
used to compute data for display to the user. At a minimum, the paraxial ray heights and slopes of
the axial and chief ray are shown for each surface, in each color, and in each configuration.

The equations used for paraxial ray tracing were described in the previous section. Although
such equations become exact only for “true” paraxial rays that are infinitesimally displaced from
the optical axis, it is customary to consider paraxial ray data to describe “formal” paraxial rays that
refract at the tangent planes to surfaces, as shown in Fig. 2. Here, the ray ABC is a paraxial ray that
provides a first-order approximation to the exact ray ADE. Not only does the paraxial ray refract at
the (imaginary) tangent plane BVP, but also it bends a different amount from the exact ray.

In addition to the computation of ray heights and slopes for the axial and chief ray, various par-
axial constants that characterize the overall system are computed. The particular values computed
depend on whether the system is focal (finite image distance) or afocal (image at infinity). For focal
systems, the quantities of interest are (at a minimum) the focal length efl, the f~number FN, the par-
axial (Lagrange) invariant PIV, and the transverse magnification . It is desirable to compute such
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FIGURE 2 Showing the difference between a paraxial
ray and a real ray. The paraxial ray propagates along ABC,
while the real ray propagates along ADE.

quantities in a way that does not depend on the position of the final image surface. Let the object
height be h, the entrance pupil radius be 7, the axial ray data in object and image spaces be y, u and
¥/, u, the chief ray data be ¥, 4 and y’, u’, and the refractive indices be n and »’".

The above-mentioned paraxial constants are then given by

_ —th
u'r+u’'h

FN=-——

r, .’

2n’u
PIV=n(yu—yu)

nu

7

nu

In addition to the paraxial constants, most programs display the locations of the entrance and
exit pupils, which are easily determined using chief-ray data. Surprisingly, most optical design pro-
grams do not explicitly show the locations of the principal planes. In addition, although most
programs have the capability to display “y — ¥ ” plots, few have integrated this method into the main
lens entry routine.

Aberrations

Although most optical designs are based on exact ray data, virtually all programs have the capability
to compute and display first-order chromatic aberrations and third-order monochromatic (Seidel)
aberrations. Many programs can compute fifth-order aberrations as well. The form in which aber-
rations are displayed depends on the program and the type of system under study, but as a general
rule, for focal systems aberrations are displayed as equivalent ray displacements in the paraxial
image plane.

In the case of the chromatic aberrations, the primary and secondary chromatic aberration of
the axial and chief rays are computed. In a system for which three wavelengths are defined, the pri-
mary aberration is usually taken between the two outer wavelengths, and the secondary aberration
between the central and short wavelengths.
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The Seidel aberrations are computed according to the usual aberration polynomial. If we let € be
the displacement of a ray from the chief ray, then

e =€, +e. +---
y 3y 5y
Ex:€3x+65x+”'

For a relative field height h and normalized entrance pupil coordinates r and 6, the third-order
terms are

€,,=0,cos 0r’ +0,(2+co0s20)r*h+(30, +0, )cos Orh* + o, h’

€,,=0,sin0r’ +0,5in 20r*h+(0, +0, )sin Orh’

The interpretation of the coefficients is generally as follows, but several optical design programs
display tangential coma, rather than the sagittal coma indicated in the table.

Spherical aberration
Coma

Astigmatism

Petzval blur
Distortion

Qaaaa

v

The fifth-order terms are

&,= 1, cos O’ + (L, + 1,cos 20)r* h+ (1, + U cos® O)cos Or*h?
+(1h, + pyc0s 20)r*h* + p, cos Orh* + 1, b
€, .= M, sin@r’ + 1, sin 20r*h+(u, + i, cos? 6)sin Or°h?
+Uysin 20r*h’ + 1, sin Orh*
These equations express the fifth-order aberration in terms of the Buchdahl u coefficients. In

systems for which the third-order aberrations are corrected, the following identities exist:

3

_’u3

H=3

Hy=Hs + L

My = U+ 1y

u, Spherical aberration
U, Coma

(M= 1,,)14 Astigmatism

(5, — )14 Petzval blur
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1, + U Tangential oblique spherical aberration
s Sagittal oblique spherical aberration
1, + U Tangential elliptical coma

7N Sagittal elliptical coma

u, Distortion

Some programs display only the aberrations that have corresponding third-order coefficients,
omitting oblique spherical aberration and elliptical coma.

The formulas needed to calculate the chromatic and third-order aberrations are given in the U.S.
Military Handbook of Optical Design. The formulas for calculating the fifth-order aberrations are
given in Buchdahl’s book.’

Aberration coefficients are useful in optical design because they characterize the system in terms
of its symmetries, allow the overall performance to be expressed as a sum of surface contributions,
and are calculated quickly. On the negative side, aberration coefficients are not valid for systems
that have tilted and decentered elements for systems that cover an appreciable field of view, and
the accuracy of aberration coefficients in predicting performance is usually inadequate. Moreover,
for systems that include unusual elements like diffractive surfaces and gradient index materials, the
computation of aberration coefficients is cumbersome at best.

Ray Tracing

Exact ray tracing is the foundation of an optical design program, serving as a base for both evalu-
ation and optimization. From the programmer’s standpoint, the exact ray-trace routines must be
accurate and efficient. From the user’s viewpoint, the data produced by the ray-trace routines must
be accurate and comprehensible. Misunderstanding the meaning of ray-trace results can be the
source of costly errors in design.

To trace rays in an optical design program, it is necessary to understand how exact rays are speci-
fied. Although the details may vary from one program to the next, many programs define a ray by a
two-step process. In the first step, an object point is specified. Once this has been done, all rays are
assumed to originate from this point until a new object point is specified. The rays themselves are
then specified by aperture coordinates and wavelength.

Exact ray starting data is usually normalized to the object and pupil coordinates specified by the
axial and chief rays. That is, the aperture coordinates of a ray are specified as a fractional number,
with 0.0 representing a point on the vertex of the entrance pupil, and 1.0 representing the edge of
the pupil. Field angles or object heights are similarly described, with 0.0 being a point on the axis,
and 1.0 being a point at the edge of the field of view.

Although the above normalization is useful when the object plane is at infinity, it is not so good
when the object is at a finite distance and the numerical aperture in object space is appreciable.
Then, fractional aperture coordinates should be chosen proportional to the direction cosines of rays
leaving an object point. There are two reasons for this. One is that it allows an object point to be
considered a point source, so that the amount of energy is proportional to the “area” on the entrance
pupil. The other is that for systems without pupil aberrations, the fractional coordinates on the
second principal surface should be the same as those on the first principal surface. Notwithstanding
these requirements, many optical design programs do not define fractional coordinates proportional
to direction cosines.

It is sometimes a point of confusion that the aperture and field of view of a system are specified
by paraxial quantities, when the actual performance is determined by exact rays. In fact, the paraxial
specifications merely establish a normalization for exact ray data. For example, in a real system the
field of view is determined not by the angle of the paraxial chief ray, but by the angle at which exact
rays blocked by actual apertures just fail to pass through the system. Using an iterative procedure,
it is not too hard to find this angle, but because of the nonlinear behavior of Snell’s law, it does not
provide a convenient reference point.
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There are two types of exact rays: ordinary or lagrangian rays, and iterated or hamiltonian rays.
The designation of rays as lagrangian or hamiltonian comes from the analogy to the equations of
motion of a particle in classical mechanics. Here we use the more common designation as ordinary
or iterated rays. An ordinary ray is a ray that starts from a known object point in a known direction.
An iterated ray also starts from a known object point, but its direction is not known at the start.
Instead, it is known that the ray passes through some known (nonconjugate) point inside the sys-
tem, and the initial ray direction is determined by an iterative procedure.

Iterated rays have several applications in optical design programs. For example, whenever a new
object point is specified, it is common to trace an iterated ray through the center of the aperture
stop (or some other point) to serve as a reference ray, or to trace several iterated rays through the
edges of limiting apertures to serve as reference rays. In fact, many programs use the term refer-
ence ray to mean iterated ray (although in others, reference rays are ordinary rays). Iterated rays are
traced using differentially displaced rays to compute corrections to the initial ray directions. Because
of this, they are traced slower than ordinary rays. On the other hand, they carry more information
in the form of the differentials, which is useful for computing ancillary data like field sags.

Reference rays are used as base rays in the interpretation of ordinary ray data. For example, the
term ray displacement often refers to the difference in coordinates on the image surface of a ray from
those of the reference ray. Similarly, the optical path difference of a ray may compare its phase length
to that of the corresponding reference ray. The qualifications expressed in the preceding sentences
indicate that the definitions are not universal. Indeed, although the terms ray displacement and opti-
cal path difference are very commonly used in optical design, they are not precisely defined, nor can
they be. Let us consider, for example, the optical path difference.

Imagine a monochromatic wavefront from a specified object point that passes through an opti-
cal system. Figure 3 shows the wavefront PE emerging in image space, where it is labeled “actual
wavefront.” Because of aberrations, an ordinary ray perpendicular to the actual wavefront will not
intersect the final image surface at the ideal image point I, but at some other point Q. The optical
path difference (OPD) may be defined as the optical path measured along the actual ray between the
actual wavefront and a reference sphere centered on the ideal image point.

Unfortunately, the ideal image point is not precisely defined. In the figure, it is shown as the intersec-
tion of the reference ray with the image surface, but the reference ray itself may not be precisely defined.

OPD = PR

_— Reference sphere

R

Ordinary ray

Actual wavefront

Reference ray

FIGURE 3 The relation between ray trajectories and optical
path difference (OPD). See text.
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Is it the ray through the center of the aperture stop, or perhaps the ray through the center of the actual
vignetted aperture? These two definitions will result in different reference rays, and correspondingly dif-
ferent values for the optical path difference. In fact, in many practical applications neither definition is
used, and the actual ideal image point is defined to be the one that minimizes the variance of the optical
path difference (and hence maximizes the peak intensity of the diffraction image).

Moreover, the figure shows that even if the ideal image point is precisely defined, the value of the
optical path difference depends on the point E where the actual wavefront interesects the reference
sphere. For the particular point shown, the optical path difference is the optical length along the
ordinary ray from the object point to the point T, less the optical length along the reference ray from
the object point to the point I. As the radius of the reference sphere is increased, the point T merges
with the point S, where a perpendicular from the ideal image point intersects the ordinary ray.

The above somewhat extended discussion is meant to demonstrate that even “well-known” opti-
cal terms are not always precisely defined. Not surprisingly, various optical design programs in com-
mon use produce different values for such quantities. There has been little effort to standardize the
definitions of many terms, possibly because one cannot legislate physics. In any case, it is important
for the user of an optical design program to understand precisely what the program is computing.

Virtually all optical design programs can trace single rays and display the ray heights and direction
cosines on each surface. Other data, such as the path length, angles of incidence and refraction, and
direction of the normal vector, are also commonly computed. Another type of ray-data display that
is nearly universal is the ray-intercept curve, which shows ray displacement on the final image surface
versus (fractional) pupil coordinates. A variation plots optical path difference versus pupil coordinates.

In addition to the uncertainty concerning the definition of ray displacement and optical path
difference, there are different methods for handling the pupil coordinates. Some programs use
entrance pupil coordinates, while others use exit pupil coordinates. In most cases, there is not a
significant difference, but in the case of systems containing cylindrical lenses, for example, there are
major differences.

Another consideration relating to ray-intercept curves is the way in which vignetting is handled.
This is coupled to the way the program handles apertures. As mentioned before, apertures have a
special status in many optical design programs. Rays can be blocked by apertures, but this must be
handled as a special case by the program, because there is nothing inherent in the ray-trace equa-
tions that prevents a blocked ray from being traced, in contrast to a ray that misses a surface or
undergoes total internal reflection.

Even though a surface may have a blocking aperture, it may be desirable to let the ray trace proceed
anyway. As mentioned before, blocking rays in optimization can produce instabilities that prevent con-
vergence to a solution even though all the rays in the final solution are contained within the allowed
apertures. Another situation where blocking can be a problem concerns central obstructions. In such
systems, the reference ray may be blocked by an obstruction, so its data are not available to compute
the displacement or optical path difference of an ordinary ray (which is not blocked). The program-
mer must anticipate such situations and build in the proper code to handle them.

In the case of ray-intercept curves, it is not unusual for programs to display data for rays that are
actually blocked by apertures. The user is expected to know which rays get through, and ignore the
others, a somewhat unreasonable expectation. The justification for allowing it is that the designer
can see what would happen to the rays if the apertures were increased.

In addition to ray-intercept curves, optical design programs usually display field sag plots show-
ing the locations of the tangential and sagittal foci as a function of field angle and distortion curves.
In the case of distortion, there is the question of what to choose as a reference height. It is generally
easiest to refer distortion to the paraxial chief ray height in the final image surface, but in many cases
it is more meaningful to refer it to the centroid height of a bundle of exact rays from the same object
point. Again, it is important for the user to know what the program is computing.

Spot-Diagram Analysis

Spot diagrams provide the basis for realistic modeling of optical systems in an optical design pro-
gram. In contrast to simple ray-trace evaluation, which shows data from one or a few rays, spot
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diagrams average data from hundreds or thousands of rays to evaluate the image of a point source.
Notwithstanding this, it should be understood that the principal purpose of an optical design
program is to design a system, not to simulate its performance. It is generally up to the designer to
understand whether or not the evaluation model of a system is adequate to characterize its real per-
formance, and the prudent designer will view unexpected results with suspicion.

From a programmer’s point of view, the most difficult task in spot-diagram analysis is to accu-
rately locate the aperture of the system. For systems that have rotational symmetry, this is not dif-
ficult, but for off-axis systems with vignetted apertures it can be a challenging exercise. However,
the results of image evaluation routines are often critically dependent on effects that occur near the
edges of apertures, so particular care must be paid to this problem in writing optical design soft-
ware. Like many other aspects of an optical design program, there is a trade-off between efficiency
and accuracy.

A spot diagram is an assemblage of data describing the image-space coordinates of a large num-
ber of rays traced from a single object point. The data may be either monochromatic or polychro-
matic. Each ray is assigned a weight proportional to the fractional energy that it carries. Usually, the
data saved for each ray include its xyz coordinates on the image surface, the direction cosines klm,
and the optical path length or optical path difference from the reference ray. The ray coordinates are
treated statistically to calculate root-mean-square spot sizes. The optical path lengths yield a mea-
sure of the wavefront quality, expressed through its variance and peak-to-valley error.

To obtain a spot diagram, the entrance pupil must be divided into cells, usually of equal area.
Although for many purposes the arrangement of the cells does not matter, for some computations
(e.g., transfer functions) it is advantageous to have the cells arranged on a rectangular grid. To make
the computations have the proper symmetry, the grid should be symmetrical about the x and y axis.
The size of the grid cells determines the total number of rays in the spot diagram.

In computing spot diagrams, the same considerations concerning the reference point appear as for
ray fans. That is, it is possible to define ray displacements with respect to the chief-ray, the paraxial ray
height, or the centroid of the spot diagram. However, for spot diagrams it is most common to use the
centroid as the reference point, both because many image evaluation computations require this defini-
tion, and also because the value for the centroid is readily available from the computed ray data.

a,= € ,=ray displacement in the x direction
b, = € ;= ray displacement in the y direction
¢, = k,/m, = ray slope in the x direction
d, =1I./m,= ray slope in the y direction

w, = weight assigned to ray

The displacements of rays on a plane shifted in the z direction from the nominal image plane by
an amount Az are given by

Ox;=a,+b,Az
Oy, =c,+d,Az

If there are n rays, the coordinates of the centroid of the spot diagram are
B R
6x =W§Wi5xi =A+BAz

5)7=%§w15y1 =C+DAz
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where W is a normalizing constant that ensures that the total energy in the image adds up to
100 percent, and

1 n
A=—)>wa
W 1:1 11
1 n
B=—>» wb.
W 1:1 11
1 n
C=—)wc
W 1:1 11
1 n
D=—) wd.
W 11

The mean-square spot size can then be written as
MSS=%§WI.{(5JC{ 8% +(8y,~ 67}

Usually, the root-mean-square (rms) spot size, which is the square root of this quantity, is
reported. Since the MSS has a quadratic form, it can be written explicitly as a function of the focus
shift by

MSS=P+2Q Az+R(Az)?

where

13 2 2\_ (A2 2
Pzwgwi{(ai +c2)—(A2+C?)}

1 n
szgwi{(aibi+cl.d1.)—(AB+CD)}

R=%§wﬁ(bﬁdﬁ)—(32+D2)}

Differentiating this expression for the MSS with respect to focus shift, then setting the derivative
to zero, determines the focus shift at which the rms spot size has its minimum value:

AznPt =—QI/R

Although the above equations determine the rms spot size in two dimensions, similar one-
dimensional equations can be written for x and y separately, allowing the ready computation of the
tangential and sagittal foci from spot-diagram data. In addition, it is straightforward to carry out the
preceding type of analysis using optical path data, which leads to the determination of the center of
the reference sphere that minimizes the variance of the wavefront.
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Beyond the computation of the statistical rms spot size and the wavefront variance, most
optical design programs include a variety of image evaluation routines that are based on spot dia-
gram data. It is useful to characterize them as belonging to geometrical optics or physical optics,
according to whether they are based on ray displacements or wavefronts, although, of course, all
are based on the results of geometrical ray tracing.

Geometrical Optics Most optical design programs provide routines for computing radial diagrams
and knife-edge scans. To compute a radial energy diagram, the spot-diagram data are sorted accord-
ing to increasing ray displacement from the centroid of the spot. The fractional energy is then plot-
ted as a function of spot radius. The knife-edge scan involves a similar computation, except that the
spot-diagram data are sorted according to x or y coordinates, instead of total ray displacement.

Another type of geometrical image evaluation based on spot-diagram data is the so-called geo-
metrical optical transfer function (GOTF). This function can be developed as the limiting case, as the
wavelength approaches zero, of the actual diffraction MTE, or, alternately, in a more heuristic way as
the Fourier transform of a line spread function found directly from spot-diagram ray displacements
(see, for example, Smith’s book!®). From a programming standpoint, computation of the GOTF
involves multiplying the ray displacements by 27 times the spatial frequency under consideration,
forming cosine and sine terms, and summing over all the rays in the spot diagram. The computation
is quick, flexible, and if there are more than a few waves of aberration, accurate. The results of the
GOTF computation are typically shown as either plots of the magnitude of the GOTF as a function
of frequency, or alternately in the form of what is called a “through-focus” MTE, in which the GOTF
at a chosen frequency is plotted as a function of focus shift from the nominal image surface.

Physical Optics The principal physical optics calculations based on spot-diagram data are the
modulation transfer function, sometimes called the “diffraction” MTF, and the point spread func-
tion (PSF). Both are based on the wavefront derived from the optical path length data in the spot
diagram. There are various ways to compute the MTF and PSF, and not all programs use the same
method. The PSE, for example, can be computed from the pupil function using the fast Fourier
transform algorithm or, alternately, using direct evaluation of the Fraunhofer diffraction integral.
The MTF can be computed either as the Fourier transfer of the PSF or, alternately, using the con-
volution of the pupil function.!! The decision as to which method to use involves speed, accuracy,
flexibility, and ease of coding.

In physical-optics-based image evaluation, accuracy can be a problem of substantial magnitude.
In many optical design programs, diffraction-based computations are only accurate for systems
in which diffraction plays an important role in limiting the performance. Systems that are limited
primarily by geometrical aberrations are difficult to evaluate using physical optics, because the
wavefront changes so much across the pupil that it may be difficult to sample it sufficiently using
a reasonable number of rays. If the actual wavefront in the exit pupil is compared to a reference
sphere, the resultant fringe spacing defines the size required for the spot diagram grid, since there
must be several sample points per fringe to obtain accurate diffraction calculations. To obtain a
small grid spacing, one can either trace many rays, or trace fewer rays but interpolate the resulting
data to obtain intermediate data.

Diffraction calculations are necessarily restricted to one wavelength. To obtain polychromatic
diffraction results it is necessary to repeat the calculations in each color, adding the results while
keeping track of the phase shifts caused by the chromatic aberration.

3.5 OPTIMIZATION

The function of the optimization part of the program is to take a starting design and modify its
construction so that it meets a given set of specifications. The starting design may be the result of a
previous design task, a lens from the library, or a new design based on general optical principles and
the designer’s intuition.
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The performance of the design must be measured by a single number, often known in optics as
the merit function, although the term error function is more descriptive and will be used here. The
error function is the sum of squares of quantities called operands that characterize the desired attri-
butes. Examples of typical operands include paraxial constants, aberration coefficients, and exact
ray displacements. Sometimes, the operands are broken into two groups: those that must be satisfied
exactly, which may be called constraints, and others that must be minimized. Examples of constraints
might include paraxial conditions such as the focal length or numerical aperture.

The constructional parameters to be adjusted are called variables, which include lens curvatures,
thicknesses, refractive indices, etc. Often the allowed values of the variables are restricted, either by
requirements of physical reality (e.g., positive thickness) or the given specifications (e.g., lens diam-
eters less than a prescribed value). These restrictions are called boundary conditions, and represent
another form of constraint.

Usually, both the operands and constraints are nonlinear functions of the variables, so optical
design involves nonlinear optimization with nonlinear constraints, the most difficult type of prob-
lem from a mathematical point of view. A great deal of work has been carried out to develop effi-
cient, general methods to solve such problems. Detailed consideration of these methods is beyond
the scope of this chapter, and the reader is referred to a paper by Hayford.!?

In a typical optical design task, there are more operands than variables. This means that there is,
in general, no solution that makes all of the operands equal to their target values. However, there is
a well-defined solution called the least-squares solution, which is the state of the system for which
the operands are collectively as close to their targets as is possible. This is the solution for which the
error function is a minimum.

The Damped Least-Squares Method

Most optical design programs utilize some form of the damped least-squares (DLS) method, some-
times in combination with other techniques. DLS was introduced to optics in about 1960, so it has a
history of 50 years of (usually) successful application. It is an example of what is known as a down-
hill optimizer, meaning that in a system with multiple minima, it is supposed to find the nearest
local minimum. In practice, it sometimes suffers from stagnation, yielding slow convergence. On the
other hand, many designers over the years have learned to manipulate the damping factor to over-
come this deficiency, and even in some cases to find solutions beyond the local minimum.

We consider first the case of unconstrained optimization. Let the system have M operands f; and
N variables x, The error function ¢ is given by

P=fr+ ity

Define the following:

df.
A = derivative matrix, A.. = i
i axj

. 10
G = gradient vector, G, = 199
2 0x,

x = change vector

f = error vector

With these definitions, we have

G=A"f
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If we assume that the changes in the operands are linearly proportional to the changes in the
variables, we have

f=Ax+f,
G=ATAx+G,

At the solution point, the gradient vector is zero, since the error function is at a minimum. The
change vector is thus

x=—(ATA)"G,

These are called the least-squares normal equations, and are the basis for linear least-squares
analysis. When nonlinear effects are involved, repeated use of these equations to iterate to a mini-
mum often leads to a diverging solution. To prevent such divergence, it is common to add another
term to the error function, and this limits the magnitude of the change vector x. In the DLS method,
this is accomplished by defining a new error function

¢= 0+ px'x

A key property of DLS is that the minimum of ¢ is the same as the minimum of ¢ since, at the
minimum, the change vector x is zero. By differentiating and setting the derivative equal to zero at
the minimum, we arrive at the damped least-squares equations

x=—(ATA+pI)'G,

which look like the normal equations with terms added along the diagonal. These terms provide
the damping, and the factor p is called the damping factor. This particular choice of damping is
called additive damping but, more generally, it is possible to add any terms to the diagonal and still
maintain the same minimum. Some optical design programs multiply the diagonal elements of the
ATA matrix by a damping factor, while others make them proportional to the second derivative
terms. Although theoretical arguments are sometimes advanced to support the choice of a particular
method of damping, in practice the choice of damping factor is an ad hoc way to accelerate con-
vergence to a solution by limiting the magnitude (and changing the direction) of the change vector
found from the normal equations.

In practical optical design work, it has been found that no single method for choosing the damp-
ing factor works best in all cases. In a particular problem, one method may be dramatically better
than another, but in a different problem, the situation may be completely reversed. Every optical
design program has its unique way of choosing the optimum damping, which makes each program
different from the others, and gives it a raison d’étre.

Although the principal use of the damping factor is to accelerate convergence by limiting the
magnitude of the change vector, the damping factor has also been used routinely to increase the
magnitude of the change vector to escape a local minimum. During the course of a minimization
task, if the solution stagnates, or does not converge to what the designer believes to be an acceptable
configuration, it may be possible to force the solution into another region by running one or more
iterations with reduced damping in which the error function increases.

Constraints and Boundary Conditions There are two general methods used in optical design pro-
grams for handling constraints and boundary conditions. The first is to add a term (called a penalty
function) to the error function that targets the constraint to its desired value. In the case of boundary
violations, “one-sided” terms can be added, or special weighting functions can be constructed that
increase in magnitude as a violation goes farther into a forbidden region. The other method augments
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the number of equations by the number of constraints and solves the resulting equations using the
Lagrange multiplier method. This produces a minimum that satisfies the constraints exactly and
minimizes the remaining error function.

The penalty function method is more flexible and faster (since there are fewer equations) than
the Lagrange multiplier method. On the other hand, the Lagrange multiplier method gives more
precise control over the constraints. Both are commonly used in optical design software.

Other Methods

Although DLS is used in the vast majority of optical design applications, other methods are occa-
sionally used,'? and two warrant mention. These are orthonormalization, which has been used to
overcome stagnation in some DLS problems, and simulated annealing, which has been used for
global optimization.

Orthonormalization The technique of orthonormalization for the solution of optical design
problems was introduced by Grey.? Although it solves the same problem as DLS does, it proceeds in
a very different fashion. Instead of forming the least-squares normal equations, Grey works directly
with the operand equations

Ax=—f

To understand Grey’s method, it is best to forget about optics and consider the solution of these
equations strictly from a mathematical point of view. The point of view that Grey uses is that f rep-
resents a vector in m-dimensional space. The columns of A can be regarded as basis vectors in this
m-dimensional space. Since there are only # columns, the basis vectors do not span the space. The
change vector x represents a projection of f on the basis vectors defined by A. At the solution point,
the residual part of f will be orthogonal to its projection on the basis vectors.

In Grey’s orthonormalization method, the solution of the equations is found by a technique simi-
lar to Gram-Schmidt orthogonalization, but during the solution process, the actual error function is
evaluated several times in an effort to use the best variables to maximum advantage. Because of this,
the method is computationally intensive compared to DLS. However, the extra computation is justified
by a more accurate solution. The common wisdom is that orthogonalization is superior to DLS near a
solution point, and inferior to DLS when the solution is far removed from the starting point.

Simulated Annealing Simulated annealing has been applied to optical design optimization, chiefly
in problems where the task is to find a global minimum. The method varies drastically from other
techniques. It makes no use of derivative information, and takes random steps to form trial solu-
tions. If a trial solution has a lower error function than the current system, the new system replaces
the old. If a trial solution has a higher error function than the current system, it may be accepted,
depending on how much worse it is. The probability of acceptance is taken to be exp (—A¢/T),
where T is an experimentally determined quantity. In general simulated annealing, T is provided by
the user. In adaptive simulated annealing, T is reduced automatically according to algorithms that
hold the system near statistical equilibrium.

Error Functions

Obviously, the choice of an error function has a major impact on the success of an optical design
task. There are a number of requirements that an error function should meet. Most importantly,
the error function should accurately characterize the desired properties of the system under design.
There is little chance of success if the program is optimizing the wrong thing. Yet this is an area of
great difficulty in computer-aided optical design, because it is at odds with efficiency. In order to
obtain more accuracy, more extensive computations should be carried out, but this takes time.
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There are two schools of thought concerning the implementation of error functions in opti-
cal design programs. The first holds that the designer should have complete control over the items
included in the error function, while the second holds that the program itself should set up the basic
error function, allowing the designer some degree of control through weighting functions. Neither
school has demonstrated superiority, but the approach to error function construction taken by vari-
ous optical design programs accounts for user allegiances that are sometimes remarkably strong.

The different ways that optical design programs handle error functions makes it difficult to
discuss the topic here in anything other than broad detail. At one extreme are programs that
provide practically no capability for the user to insert operands, displaying only the value of the
overall error function, while at the other extreme are programs that make the user enter every
operand individually. Regardless of the user interface, however, there are some general concepts
that are universally relevant.

Error functions can be based on either aberration coefficients or exact-ray data (or both). In the
early stages of design, aberration coefficients are sometimes favored because they provide insight
into the nature of the design, and do not suffer ray failures. However, the accuracy of aberration
coefficients for evaluating complex systems is not very good, and exact-ray data are used in virtually
all final optimization work.

So far as exact-ray error functions are concerned, there is the question of whether to use ray
displacements or optical path difference (or both). This is a matter of user (or programmer) prefer-
ence. The use of ray displacements leads to minimizing geometrical spot sizes, while the use of opti-
cal path difference leads to minimizing the wavefront variance.

For exact-ray error functions, a suitable pattern of rays must be set up. This is often called a
ray set. There are three common methods for setting up a ray set. The first is to allow the designer
to specify the coordinates (object, pupil, wavelength, etc.) for a desired set of rays. This gives great
flexibility, but demands considerable skill from the user to ensure that the resulting error function
accurately characterizes performance.

The other two methods for setting up ray sets are more automatic. The first is to allow the user to
specify object points, and have the program define a rectangular grid of rays in the aperture for each
point. The second uses a Gaussian integration scheme proposed by Forbes to compute the rms spot
size, averaged over field, aperture, and wavelength.!* The Forbes method, which is restricted to sys-
tems having plane symmetry, leads to dividing the aperture into rings and spokes. For systems hav-
ing circular pupils, the Forbes method has both superior accuracy and efficiency, but for vignetted
pupils, there is little difference between the two.

Multiconfiguration Optimization

Multiconfiguration optimization refers to a process in which several systems having some com-
mon elements are optimized jointly, so that none of the individual systems but the ensemble of
all of the systems is optimized. The archetype of multiconfiguration systems is the zoom system in
which the focal length is changed by changing the separation between certain elements. The system
is optimized simultaneously at high, medium, and low magnifications to produce the best overall
performance.

Most of the larger optical design programs have the capability to carry out multiconfiguration
optimization, and this capability is probably used more for non-zoom systems than for zoom sys-
tems. A common use of this feature is to optimize a focal system for through-focus performance in
order to minimize sensitivity to image plane shifts. In fact, multiconfiguration optimization is used
routinely to control tolerances.

Tolerancing

Beyond the task of desensitizing a given design, considerations of manufacturing tolerances
become increasingly important as the complexity of optical designs increases. It is quite easy to
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design optical systems that cannot be built because the fabrication tolerances are beyond the
capability of optical manufacturing technology. In any case, specifying tolerances is an integral
part of optical design, and a design project cannot be considered finished until appropriate toler-
ances are established.

Tolerancing is closely related to optimization. The basic tolerance computation is to calculate
how much the error function changes for a small change in a construction parameter, which is the
same type of computation carried out when computing a derivative matrix. Even more relevant,
however, is the use of compensators, which requires reoptimization. A compensator is a construc-
tion parameter that can be adjusted to compensate for an error introduced by another construc-
tion parameter. For example, a typical compensator would be the image distance, which could be
adjusted to compensate for power changes introduced by curvature errors.

There is considerable variation in how different optical design programs handle tolerancing.
Some use the reoptimization method described here, while others use Monte Carlo techniques.
Some stress interaction with the designer, while others use defaults for more automatic operation.

3.6 OTHER TOPICS

Of course, many other topics would be included in a full discussion of optical design software. Space
limitations and our intended purpose prevents any detailed consideration, but a few of the areas
where there is still considerable interest are the following.

Simulation

There is increased interest in using optical design programs to simulate the performance of actual
systems. The goal is often to be able to calculate radiometric throughput of a system used in con-
junction with a real extended source. It is difficult to provide software to do this with much general-
ity, because brute force methods are very inefficient and hard to specify, while elegant methods tend
to have restricted scope, and demand good judgment by the person modeling the physical situation.
Nevertheless, with the increase in the speed of computers, there is bound to be an increasing use of
optical design software for evaluating real systems.

Global Optimization

After several years during which there was little interest in optimization methodology, the
tremendous increase in the speed of new computers has spawned a renewal of efforts to find
global, rather than local, solutions to optical design problems. Global optimization is a much
more difficult problem than local optimization. In the absence of an analytic solution, one
never knows whether a global optimum has been achieved. All solution criteria must specify a
region of interest and a time limit, and the method cannot depend on the starting point. The
simulated annealing method described above is one area of continuing interest. Several meth-
ods for what might be called pseudo-global optimization have been used in commercial optical
design programs, combining DLS with algorithms that allow the solution to move away from
the current local minimum.

Computing Environment

Increasingly, optical design programs are used in conjunction with other software. Drawing pro-
grams, manufacturing inventory software, and intelligent databases are all relevant to optical design.
While the conventional optical design program has been a stand-alone application, there is increas-
ing demand for integrating optical design into more general design tasks.
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3.7 BUYING OPTICAL DESIGN SOFTWARE

Hardware

Features

The complexity of the optical design process, together with the breadth of applications of optics, has
created an ongoing market for commercial optical design software. For people new to optical design,
however, the abundance of advertisements, feature lists, and even technical data sheets doesn’t make
purchasing decisions easy. The following commentary, adapted from an article, may be helpful in
selecting an optical design program.!* It considers five key factors: hardware, features, user interface,
cost, and support.

It used to be that the choice of an optical design program was governed by the computer hardware
available to the designer. Of course, when the hardware cost was many times higher than the soft-
ware cost, this made a great deal of sense. Today, however, the software often costs more than the
hardware, and many programs can be run on several different computer platforms, so the choice of
computer hardware is less important. The hardware currently used for optical design is principally
IBM-PC compatible.

To run optical design software, the fastest computer that can be obtained easily is reccommended.
The iterative nature of optical design makes the process interminable. There is a rule, sometimes
called the Hyde maxim, that states that an optical design is finished when the time or money runs
out. Notwithstanding this, the speed of computers has ceased to be a significant impediment to
ordinary optical design. Even low-cost computers now trace more than 1000 ray-surfaces/s, a speed
considered the minimum for ordinary design work, and create the potential for solving new types of
problems formerly beyond the range of optical design software.

Before desktop computers, optical design software was usually run on time-shared central com-
puters accessed by terminals, and some programs are still in that mode. There seems to be general
agreement, however, that the memory-mapped display found on PCs provide a superior working
environment and dedicated desktop computer systems are currently most popular.

If you need a particular feature to carry out your optical design task, then it is obviously important
that your optical design program have that feature. But using the number of features as a way to
select an optical design program is probably a mistake. There are more important factors, such as
cost, ease of use, and scope. Moreover, you might assume that all the features listed for a program
work simultaneously, which may not be true. For example, if a vendor states that its program han-
dles holograms and toric surfaces, you might assume that you can work with holographic toroids,
but this may not be true.

The continuing growth of optics and the power of desktop computers has put heavy demands on
software vendors to keep up with the development of new technology. Moreover, since the customer
base is small and most vendors now support the same computer hardware, the market has become
highly competitive. These factors have led to a “feature” contest in which software suppliers vie to
outdo each other. While this is generally good for the consumer, the introduction of a highly vis-
ible new feature can overshadow an equally important but less obvious improvement (for example,
fewer bugs or better documentation). In addition, the presence of a number of extra features is no
guarantee that the underlying program is structurally sound.

User Interface

There is very little in common between the user interfaces used by various optical design programs.
Each seems to have its own personality. The older programs, originally designed to run in batch
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Cost

Support

mode on a large computer, are usually less interactive than ones that were written specifically for
desktop computers. Batch programs tend to be built more around default actions than interac-
tive programs, which require more user input. It would be hard to put any of today’s major optical
design programs in a box classified as either batch or interactive, but the look and feel of a program
has a strong influence on its usefulness.

Many people don’t realize that the most important benefit of using an optical design program is
often the understanding that it provides the user about how a particular design works. It’s often tempt-
ing to think that if the computer could just come up with a satisfactory solution, the design would be
finished. In practice, it is important to know the trade-offs that are made during a design project. This
is where the judgment of the optical engineer comes in, knowing whether to make changes in mechan-
ical or electrical specifications to achieve the optimum balance in the overall system. Lens designers
often say that the easiest lens to design is one that has to be diffraction-limited, because it is clear when
to stop. If the question of how to fit the optics together with other system components is important,
then the ability of the user to work interactively with the design program can be a big help.

In today’s market, there is a wide range of prices for optical design software. This can be very con-
fusing for the first-time buyer, who often can’t see much difference in the specifications. The pricing
of optical design software is influenced by (at least) three factors.

First, the range of tasks that can be carried out using an optical design program is enormous. The
difference in complexity between the job of designing a singlet lens for a simple camera, and that of
designing a contemporary objective for a microlithographic masking camera is somewhat akin to
the difference between a firecracker and a hydrogen bomb.

Second, all software is governed by the factors originally studied in E. P. Brooks’ famous essay The
Mythical Man-Month.'> Brooks was director of the group that developed the operating system for
the IBM 360, a mainframe computer introduced in the 1960s. Despite its provocative title, Brooks’
essay is a serious work that has become a standard reference for software developers. In it, he notes
that if the task of developing a program to be used on a single computer by its author has a diffi-
culty of 1, then the overall difficulty of producing integrated software written by a group of people
and usable by anyone on a wide range of computers may be as high as 10. In recent years, the scope
of the major optical design programs has grown too big for a single programmer to develop and
maintain, which raises costs.

Third, there are structural differences in the way optical design software is sold. The original
mainframe programs were rented, not sold. If the user did not want to continue monthly payments,
the software had to be returned. PC programs, on the other hand, are usually sold with a one-time
fee. In the optical design software business, several vendors offer a compromise policy, combining a
permanent license with an optional ongoing support fee.

It would be nice if the buyer could feel comfortable that “you get what you pay for,” but unfortu-
nately this view is too simplistic. One program may lack essential capabilities, another may contain
several unnecessary features when evaluated for a particular installation. Buying on the basis of cost,
like features, is probably not a good idea.

Support is an important aspect to consider in selecting an optical design program, and it is often
difficult to know what is included in support. Minimal support consists of fixing outright bugs in
the program. More commonly, support includes software updates and phone or email assistance in
working around problems.

Optical design programs are typically not bug-free. Unlike simple programs like word proces-
sors, optimization programs cannot be fully tested, because they generate their own data. One result
of this is that software vendors are generally reluctant to offer any warranty beyond a “best-effort”
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attempt to fix reported problems. Unfortunately, there is no good way for buyers to know whether
and when their particular problems may be fixed; the best approach is probably to assess the track
record of the vendor by talking to other users.

Coupled with support is user training. Although it should be possible to use a program by study-
ing the documentation, the major optical design software vendors offer regular seminars, often cov-
ering not only the mechanics of using their program, but also general instruction in optical design.
For new users, this can be a valuable experience.

3.8 SUMIMARY

As stated in the introduction, this chapter is intended as a survey for readers who are not regular
users of optical design software. The form of an optical design program described here, consisting
of lens entry, evaluation, and optimization sections, is used in many different programs. There has
been little standardization in this field, so the “look and feel,” performance features and extent of
various programs are quite different. Nonetheless, it is hoped that with a knowledge of the basic
features described here, the reader will be in a good position to judge whether an optical design pro-
gram is of use, and to make an informed decision about whether one particular program is better
than another.
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4.1 GLOSSARY
ATF  approximate transfer factor
DTF  diffraction transfer function
MTF  modulation transfer function
W wavefront error in units of wavelengths
'me  TOOt-mean-square wavefront error
t-number  f-number adjusted for lens transmission
v normalized spatial frequency
4.2 INTRODUCTION

Setting the specifications for an optical instrument or system is an essential part of engineering,
designing, or purchasing an optical system. Since the optics usually serve as a portion of a larger
system, the specifications are frequently set by project managers who do not have specific knowledge
in the basics of optical systems. This can at times lead to unrealistic requirements being established;
this can profoundly affect the probability of success for the system. Properly drafted specifications
can make the entire project successful and cost effective. Poorly written specifications can lead to
excess cost and ultimately project failure.

One of the difficulties with setting optical specifications is that the ultimate result of a beam of
light passing through a complex assembly of components is affected by each of those components,
which in turn need to be specified and tolerances placed upon the fabrication and assembly of those
components. In the case of an imaging system, the problem is compounded by the need to describe
an optical system which passes many bundles of light across a wide field of view. Even in the case of
single beam, optical communications components, indirect issues such as scattered light and envi-
ronmental stability may prove to be major issues.

*Retired.
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In the worst case, the specifications may be set so high that the system is not capable of being
manufactured. In most cases, the specifications interact with other devices, such as detector arrays,
and matching the quality of the optic to the limits of the sensor is required. In this section some of
the principles involved in setting the specifications will be discussed, and guidelines provided for
carrying out the process of specification setting. The reader will have to extend these principles to
the device or system that is being considered. In this chapter, the stress will be placed on imaging
systems.

Specifications for optical systems cover a wide range of needs. Functional specifications of the
image quality or other optical characteristics are required for the satisfactory operation of a sys-
tem. These functional specifications serve as the goal for the design and construction of the optical
system. In addition, these specifications are a basis for tolerances placed upon the components of
the optical system and lead to detailed component specifications used for procurement of the opti-
cal elements of the system. Assembly specifications and detailed specifications of optical parts to
be produced by a shop can be written based upon these component specifications. The detail and
extent of information required is different at each step. Over- or underspecification can contribute
significantly to the cost or feasibility of design of an optical system.

Functional specifications are also used to describe the characteristics that an instrument must
demonstrate in order to meet the needs of the user. This may include top-level requirements such
as size, weight, image scale, image format, power levels, spectral range, and so on. Component
specifications are developed after design of the system and describe the optical components, surface,
and materials used in the system to the detail necessary to permit fabrication of the components.
Assembly specifications are another derivative of the design and system specifications. These include
the statement of tolerances upon location of the components, as well as the procedure to be used in
assembling and testing the system.

The development and writing of these specifications is important both for initiating and for
tracking the course of development of an optical instrument. In a business or legal sense, specifica-
tions are used to establish responsibility for a contractor or subcontractor, as well as to define the
basis for bidding on the job. Thus the technical specifications can have business importance as well
as engineering significance. “Meeting the customer’s specifications” is an essential part of any design
and fabrication task. Identifying areas where the specifications could be altered with benefit to all
parties is an important business and engineering responsibility.

Specifications are usually communicated as a written document following some logical format.
Although there are some international standards that may cover the details of drawings of com-
ponents, there is no established uniform set of standards for stating the specifications on a system
or component. The detailed or component specifications are usually added as explanatory notes to
drawings of the components to be fabricated. In modern production facilities, the specifications and
tolerances are often part of a digital database that is accessed as part of the production of the com-
ponents of the system.

The detail and the intent of each of these classes of specifications are different. Optical specifica-
tions differ from many mechanical or other sets of specifications in that numbers are applied to
surfaces and dimensions that control the cumulative effect of errors imposed on a wavefront passing
through the total system. Each of the specifications must be verifiable during fabrication, and the
overall result must be testable after completion.

Mechanical versus Optical Specifications

There are two types of specifications that are applied to an optical system or assembly. One set of
these includes mechanical tolerances on the shape or location of the components that indirectly
affect the optical quality of the image produced by the system. Examples of this include the overall
size or weight of the system. The other set consists of specialized descriptions that directly affect the
image quality. Examples of this latter type of specification are modulation transfer function (MTEF),
illumination level, and location of the focal plane relative to the system.
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System versus Components Specifications

Some specifications have meaning only with respect to the behavior of the entire optical system. Others
apply to the individual components, but may affect the ability of the entire system to function.

An example of a system specification is a set of numbers limiting the range of acceptable values
of the MTF that are required for the system. Another system specification is the desired total light
transmission of the system.

Examples of component specifications are tolerances upon surface irregularity, sphericity, and
scattering. The related component specification based upon the system light transmission specifica-
tion might provide detailed statements about the nature and properties of the antireflective coatings
to be applied to the surface of each element.

Image Specifications

The specifications that are applied to the image usually deal with image quality. Examples are mod-
ulation transfer function, fraction of scattered light, resolution, or distortion. In some cases, these
specifications can be quite general, referring to the ability of the lens to deliver an image suitable for
a given purpose, such as the identification of serial numbers on specific products that are to be read
by an automated scanner. In other cases, the requirements will be given in a physically meaningful
manner, such as “the MTF will be greater than 40 percent at 50 lines per millimeter throughout the
field of view.”

Other criteria may be used for the image specifications. One example is the energy concentra-
tion. This approach specifies the concentration of light from a point object on the image surface.
For example, the specification might read “75 percent of the light shall fall within a 25-um-diameter
circle on the image.” This quantity is obviously measurable by a photometer with appropriate-size
apertures. The function may be computed from the design data by a method of numerical integra-
tion similar to that providing the point spread function or modulation transfer function.

Wavefront Specifications

Wavefront specifications describe the extent to which the wavefront leaving the lens or components
conforms to the ideal or desired shape. Usually the true requirement for an optical system is the
specification of image quality, such as MTE, but there is a relation between the image quality and
the wavefront error introduced by the optical system. The wavefront error may be left to be derived
from the functional image quality specification, or it may be defined by the intended user of the
system.

For example, a wavefront leaving a lens would ideally conform to a sphere centered on the chosen
focal location. The departure of the actual wavefront from this ideal, would be expressed either as
a matrix or map of departure of the wavefront from the ideal sphere, as a set of functional forms
representing the deviation, or as an average [usually root-mean-square (rms)]| departure from the
ideal surface. By convention, these departures are expressed in units of wavelength, although there is
a growing tendency to use micrometers as the unit of measure.

The rms wavefront error is a specific average over the wavefront phase errors in the exit pupil. The
basic definition is found by defining the nth power average of the wavefront W(x, y) over the area A
of the pupil and then specifically defining W___or, in words, the rms wavefront error is the square root
of the mean square error minus the square of the mean wavefront error:

_Vl_ 1 n
w —KJW(x,y) dx dy

W, =AW= W

rms

The ability to conveniently obtain a complete specification of image quality by a single number
describing the wavefront shape has proven to be questionable in many cases. Addition of a correlation
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length, sometimes expressed as a phase difference between separated points, has become common.
In other cases, the relative magnitude of the error when represented by various orders of Zernike
polynomials is used.

There is, of course, a specific relationship between the wavefront error produced by a lens and
the resulting image quality. In the lens, this is established by the process of diffraction image for-
mation. In establishing specifications, the image quality can be determined by computation of the
modulation transfer function from the known wavefront aberrations. This computation is quite
detailed and, while rapidly done using present day computer techniques, is quite complex for gen-
eral specification setting. An approximation which provides an average MTF or guide to acceptable
values relating wavefront error and MTF is of great aid.

A perfect lens is one that produces a wavefront with no aberration, or zero rms wavefront error.
By convention, any wavefront with less than 0.07 wave, rms, of aberration is considered to be
essentially perfect. It is referred to as diffraction-limited, since the image produced by such a lens is
deemed to be essentially indistinguishable from a perfect image.

The definition of image quality depends upon the intended application for the lens. In general,
nearly perfect image quality is produced by lenses with wavefront errors of less than 0.15 wave,
rms. Somewhat poorer image quality is found with lenses that have greater than about 0.15 wave
of error. The vast majority of imaging systems operate with wavefront errors in the range of 0.1 to
0.25 wave, rms.

There are several different methods that can be used to establish this relationship. The most
useful comparison is with the MTF for a lens with varying amounts of aberration. The larger the
wavefront error, the lower will be the contrast at specific spatial frequencies. For rms error levels of
less than 0.25 or so, the relation is generally monotonic. For larger aberrations, the MTF becomes
rather complex, and the relation between rms wavefront error and MTF value can be multiple val-
ued. Nevertheless, an approximate relation between MTF and rms wavefront error would be useful
in setting reasonable specifications for a lens.

There are several possible approximate relations, but one useful one is the empirical formula
relating root-mean-square wavefront error and MTF given by

MTF (v) = DTF (v) X ATF (v)

The functional forms for these values are
2
DTFE(v)= ;[arccos(v) —vil1—v?]

W ‘ 2
ATFE(v)=|1- (;m‘] (1-4(v-0.5)%)

0.18
v spatial frequency N
" spatial frequency cutoff 1
Af-number

These look quite complicated, but are relatively simple, as is shown in Fig. 1. This is an approxi-
mation, however, and it becomes progressively less accurate as the amount of the rms wavefront
error W exceeds about 0.18 wavelength. The approximation remains reasonably valid for lower
spatial frequencies, less than about 25 percent of the diffraction limited cutoff frequency. The major-
ity of imaging systems fall into this category.

Figure 1 shows a plot of several values for the MTF of an optical system using this approximate
method of computation. The system designer can use this information to determine the appropriate
level of residual rms wavefront error that will be acceptable for the system of interest. It is impor-
tant to note that this is an empirical attempt to provide a link between the wavefront error and the
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FIGURE 1 Approximate MTF curves from formula.

MTF as a single-value description of the state of correction of a system. Examination of the curves
provides a method of communicating the specification to the system designer and fabricator. More
detail on applying the rms wavefront error can be found in Chap.5, “Tolerancing Techniques.”

In addition, it must be pointed out that most imaging systems operate over a finite wavelength
range. Thus the specification of “wavefront error” can be a bit fuzzy, but is usually meant to mean either
the wavefront error at a specified wavelength, or a weighted average over the wavelength band. This
should be mentioned when writing the specifications. In either case, the stated wavefront error contains
a measure that communicates the extent of perfection required of the optical system performance.

4.3 PREPARATION OF OPTICAL SPECIFICATIONS

Gaussian Parameters

The gaussian parameters determine the basic imaging properties of the lens. They are the starting
point for setting the specifications for a lens system. In principle these numbers can be specified pre-
cisely as desired. In reality, overly tight specifications can greatly increase the cost of the lens. Some
of the important parameters are shown in Table 1.

Table 1 is a sample of reasonable values that may be placed upon a lens. A specific case may vary
from these nominal values. The image location, radiometry, and scale are fixed by these numbers. A
specific application will require some adjustment of these nominal values. In general, specifications
that are tighter than these values will likely result in increased cost and difficulty of manufacture.

There is an interaction between these numbers. For example, the tight specification of magni-
fication and overall conjugate distance will require a very closely held specification upon the focal
length. The interaction between these numbers should be considered by the user to avoid acciden-
tally producing an undue difficulty for the fabricator. It may be appropriate to specify a looser toler-
ance on some of these quantities for the prototype lens, and later design a manufacturing process
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TABLE 1 Gaussian Parameters
Parameter Precision Target Importance How Verified

Focal length 1-2% Determines focal position Lens bench
and image size

f-number <+5% Determines irradiance at Geometrical
image plane measurement

Field angle <+2% Determines extent of image Lens bench

Magnification <+2% Determines overall conjugate Trial setup of lens
distances

Back focus +5% Image location Lens bench

Wavelength range As needed; set by detector Describes spectral range Image measurement

and source covered by lens
Transmission Usually specified as Total energy through lens Imaging test,
>0.98" for n surfaces radiometric test
of lens
Vignetting Usually by requiring Uniformity of irradiance Imaging test,

radiometric test
of lens

transmission to drop by
less than 20% or so at the
edge of the field

in the image

to bring the production values within a smaller tolerance. However, it is appropriate that this be
investigated fully at the design stage. The designer should be encouraged to consider the possibility
of leaving adjustment possibilities in the lens design, so that a final assembly adjustment can bring
the Gaussian parameters into the required tolerance range.

4.4 IMAGE SPECIFICATIONS

Image Quality

The rms wavefront error and the MTF for a lens have been discussed earlier as useful items to spec-
ify for a lens. Frequently, the user desires to apply a detection criterion to the image. This is always
related to the application for the lens.

The most familiar functional specification that is widely used for system image quality is the res-
olution of the system. This is usually stated as the number of line pairs per millimeter that need to
be visually distinguished or recognized by the user of the system. Since this involves both the physics
of image formation as well as the psychophysics of vision, this is an interesting goal, but needs to
be specified clearly to be of use to a designer. The reading of the resolution by a human observer is
subjective, and the values obtained may differ between observers. Therefore, it is necessary to specify
the conditions under which the test is to be carried out.

The type of target and its contrast need to be stated. The default standard in this case is the “standard”
U.S. Air Force three-bar target, with high contrast, and a 6:1 ratio of bar length to width. This is usually
selected as it will give the highest numerical values, certainly politically desirable. However, studies have
shown that there is a better correlation between the resolution produced by a low-contrast target, say 2:1
contrast ratio, or 0.33 modulation contrast and the general acceptability of an image.

The resolution is, of course, related to the value of the MTF in the spatial frequency region of the
resolution, as well as the threshold of detection or recognition for the observer viewing the target. If
the thresholds are available, the above-described empirical relation between the rms wavefront error
and the MTF can be used to estimate the allowable aberration that can be left in the system after
design or fabrication.
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In the case of a system not intended to produce an image to be viewed by a human, a specific
definition of the required image contrast or energy concentration is usually possible. The signal-to-
noise ratio of the data transmitted to some electronic device that is to make a decision can be calcu-
lated once a model for operation of the detector is assumed. The specification writer can then work
backward through the required MTF to establish an acceptable level of image quality. The process is
similar to that for the visual system above, except that the threshold is fully calculable.

In some cases, the fractional amount of energy collected by the aperture of the lens from a small
angular source, such as a star, falling within the dimensions of a detector of a given size is desired.
Such a requirement can be given directly to the designer.

Image Irradiance

The radiometry of the image is usually of importance. With an optical system containing the source,
such as a viewer, projector, or printer, the usual specification is of the irradiance of the image in
some appropriate units. Specifying the screen irradiance in watts per square centimeter or, more
commonly, foot-lamberts, implies a number of optical properties. The radiance of the source, the
transmission of the system, and the apertures of the lenses are derived from this requirement.

In the more usual imaging situation, the f-number and the transmission of the lens are specified.
If the lens covers a reasonable field, the allowable reduction in image irradiance over the field of
view must also be specified. This leads directly to the level of vignetting that can be allowed by the
designer in carrying out the setup and design of the lens system.

There is an interaction between these irradiance specifications and the image quality that can be
obtained. The requirement of a large numerical aperture leads to a more difficult design problem, as
the high-order aberration content is increased in lenses of high numerical aperture.

An attempt to separate the geometrical aperture effects from the transmission of the compo-
nents of the lens is accomplished through the -number specification. Since the relative amount of
irradiance falling on the focal plane is inversely proportional to the square of the f-number of a lens,
the effect of tranmission of the lens can be included by dividing the f-number by the transmission
of the lens.

f-number

Ji

where t is the transmission factor for the lens. The transmission factor for the lens is the product of
the bulk transmission of the glass and the transmission factor for each of the surfaces. When this is
specified, the designer must provide a combination of lens transmission and relative aperture that
meets or exceeds a stated value.

t-number=

Depth of Focus

The definition of the depth of focus is usually the result of a tolerance investigation. The allow-
able focal depth is obtained by determining when an unacceptable level of image quality is
obtained. There is an obvious relation between the geometry of the lens numerical aperture and
the aberrations that establishes the change of MTF with focal position. This effect can be com-
puted for specific cases, or estimated by recognizing that the relation between rms wavefront
error and focus shift is

ol
(A —
"™ A(f-number)?

which can be used in the above approximate MTF to provide an estimate of the likely MTF over a
focal range.
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Approx. MTF vs. focus shift

—=— (.1

0.9

0.8

0.7

0.6

0.5

MTF

0.4

0.3

0.2

0.1

T T
0 0.05 0.1 0.15 0.2 0.25 0.3

Focus shift in rms waves

FIGURE 2 Approximate MTF as a function of focal position for various spatial frequencies.

If there is a basic amount of aberration present in the lens, then the approximation is that

= W2 +WwW?

rms, rmsg.¢ ms),

total

leading to a calculation of the estimated MTF value for the given spatial frequency and focal posi-
tion. As an example, Fig. 2 provides a plot of the focal position change of the MTE. The interpreta-
tion of this curve is straightforward. Each of the curves provides the MTF versus focus for a spatial
frequency that is the stated fraction of the cutoff spatial frequency. The defocus is given in units of
rms wavelength error, which can be obtained from reference to the appropriate formula. Using this
approximate data, a specification writer can determine whether the requirements for image quality,
f-number, and focal depth are realistic.

An additional consideration regarding depth of focus is that the field of the lens must be consid-
ered. The approximate model presented here is used at an individual field point. An actual lens must
show the expected depth of field across the entire image surface, which places some limits upon the
allowable field curvature. In general, it is the responsibility of the specification writer to establish the
goal. It is the responsibility of the optical designer to determine whether the goal is realizable, and
to design a system to meet the needs. In a sensible project, there will be some discussion between
the designer and the engineer writing the specifications in order to avoid an unrealizable set of goals
being set.

4.5 ELEMENT DESCRIPTION

Each element of the lens to be fabricated must be described in detail, usually through a drawing. All
of the dimensions will require tolerances, or plus and minus values that, if met, lead to a high prob-
ability that the specified image quality goals will be met.
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Mechanical Dimensions

The mechanical dimensions are specified to ensure that the element will fit into the cell sufficiently
closely that the lens elements are held in alignment. This will be a result of tolerance evaluation, and
must include allowances for assembly, thermal changes, and so on.

An important item for any lens is the interface specification, which describes the method of
mounting the lens to the optical device used with it. For some items, such as cameras and micro-
scopes, there are standard sizes and screw threads that should be used. In other cases, the specifica-
tion needs to describe a method for coupling or mounting the optics in which there is a strain-free
transfer of load between the lens and the mounting.

Optical Parameters

The optical parameters of the lens element relate to the surfaces that are part of the image-forming
process. The radius of curvature of the spherical refracting (or reflecting) surfaces needs to be speci-
fied, as well as a plus or minus value providing the allowable tolerances. When tested using a test
glass or an interferometer, the important radius specification is usually expressed in terms of fringes
of spherical departure from the nominal radius. In addition, the shape of the surface is usually
specified in terms of the fringes of irregularity that may be permitted.

When specifying a surface that will be measured on an interferometer, adjustment of focus
during the test can be made. In this case, the spherical component of the surface, that is, the
fringes of radius error, can be specified independently of the irregularity fringes that are appli-
cable to the surface. When test glasses are to be used, the spherical component must be fabri-
cated to within a small level of error to permit accurate reading of the irregularity component
of the surface.

The cosmetic characteristics of the surface also need to be stated. The specification for this is
as yet a bit imperfect, with the use of a scratch-and-dig number. This is actually intended to be a
comparison of surface scratches with a visual standard, but is generally accepted to be in terms of
a ratio, such as 20:10, which means, more or less, scratches of less than 2-um width and digs of less
than 100-um diameter. This specification is described in MIL-O-13830, and is referred to a set of
standards that are used for visual comparison to the defects on the surface. There have been several
attempts to quantify this specification in detail, but no generally accepted standard has yet been
achieved. A broader description of these specifications is found in International Standards 10110
and 9211, discussed later in this chapter.

Material Specifications

The usual material for a lens is optical glass, although plastics are becoming more commonly used in
optics. The specification of a material requires identification of the type, as, for example, BK7 glass from
Schott. Additional data upon the homogeneity class and the birefringence needs to be stated in ordering
the glass. The homogeneity is usually specified by class, currently P1 through P4 with the higher number
representing the highest homogeneity, or lowest variation of index of refraction throughout the glass. The
method of specifying glass varies with the manufacturer, and with the catalog date. It is necessary to refer
to a current catalog to ensure that the correct specification is being used.

Similar data should be provided regarding plastics. Additional data about transmission is usually
not necessary, as the type of material is selected from a catalog which provides the physical descrip-
tion of the material. Usually, the manufacturer of the plastic will be noted to ensure that the proper
material is obtained.

Materials for reflective components similarly have catalog data describing the class and
properties of the material. In specifying such materials, it is usually necessary to add a descrip-
tion of the form and the final shape required for the blank from which the components will be
made.
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Coating Specifications

The thin film coatings that are applied to the optical surfaces require some careful specification writ-
ing. In general, the spectral characteristics need to be spelled out, such as passband and maximum
reflectivity for an antireflection coating. Requirements for the environmental stability also need to
be described, with reference to tests for film adhesion and durability. Generally, the coating supplier
will have a set of “in-house” specifications that will guarantee a specific result that can be used as the
basis for the coating specification.

4.6 ENVIRONMENTAL SPECIFICATIONS

Temperature and Humidity

Specification setting should also include a description of the temperature range that will be experi-
enced in use or storage. This greatly affects the choice of materials that can be used. The humidity
and such militarily favorite specifications as salt spray tests are very important in material selection
and design.

Shock and Vibration

The ruggedness of an instrument is determined by the extent to which it survives bad handling. A
requirement that the lens shall survive some specified drop test can be used. In other cases, stating
the audio frequency power spectrum that is likely to be encountered by the lens is a method of spec-
ifying ruggedness in environments such as spacecraft and aircraft. In most cases, the delivery and
storage environment is far more stressing than the usage environment. Any specification written in
this respect should be careful to state the limits under which the instrument is actually supposed to
operate, and the range over which it is merely meant to survive storage.

4.7 PRESENTATION OF SPECIFICATIONS

Published Standards

There are published standards from various sources. The most frequently referred to are those from
the U.S. Department of Defense, but a number of standards are being proposed by the International
Standards Organization.

Format for Specifications

The format used in conveying specifications for an optical system is sometimes constrained by
the governmental or industrial policy of the purchaser. Most often, there is no specific format for
expressing the specifications.

The best approach is to precede the specifications with a brief statement as to the goals for the use
of the instrument being specified. Following this, the most important optical parameters, such as focal
length, f-number, and field size (object and image) should be stated. In some cases, magnification and
overall object-to-image distance along with object dimension will be the defining quantities.

Following this, the wavelength range, detector specifications, and a statement regarding the
required image quality should be given. The transmission of the lens is also important at this stage.

Following the optical specifications, the mechanical and environmental requirements should be
stated. The temperature and humidity relations under which the optical system needs to operate as
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well as a statement of storage environment are needed. Descriptions of the mechanical environment,
such as shock and vibration, are also important, even if expressed generally.

Other important pieces of information, such as a desired cost target, can then be included. Any
special conditions, such as the need to be exposed to rapid temperature changes or a radiation envi-
ronment, should be clearly stated. Finally, some statement of the finish quality for the optical system
should be given.

In many cases, a list of applicable governmental specifications will be listed. In each case it is
appropriate to ensure that these referenced documents are actually available to the individual who
has to respond to the specification.

Use of International Standards

An important tool in writing specifications is the ability to refer to an established set of standards
that may be applicable to the system being designed. In some cases, the development of specifica-
tions is simplified by the specification writer being able to refer to a set of codified statements about
the environment or other characteristics the system must meet. In other cases, the established stan-
dards can be used as a reference to interpret parts of the specifications being written. For example,
there may be a set of standards regarding interpretation of items included in a drawing.

Standards are an aid, not an end to specification. If the instrument must be interchangeable with
parts from other sources, then the standards must be adhered to carefully. In other cases, the stan-
dards can serve as an indicator of accepted good practice in design or fabrication. It is the respon-
sibility of the specification writer to ensure that the standard is applicable and meaningful in any
particular situation.

At the present time there is growing activity in the preparation of standards for drawings, inter-
faces and dimensions, MTF, and other properties of optical and electro-optical systems. The efforts
in this direction are coordinated by the International Standards Organization, but there are a num-
ber of individual standards published by national standards organizations in Germany, England,
Japan, and the United States. The first major publications are ISO 10110, detailing preparation of
drawings for optical elements and systems and ISO 9211, on optical coatings. Other standards on
optical testing and environmental requirements are in draft form.

The ISO standards are expected to provide significant detail on various standards issues, and
should become the principal guiding documents. At present, the standards documents that are most
used in the United States are the various military specifications, or MIL-SPEC documents, that cover
many different aspects of optical systems.

Information on published standards is available from the American National Standards Institute
(ANSI), 11 West 42d Street, New York, NY 11036, or may be downloaded at www.webstore.ansi.
org. A recent (2008) review of this website showed over 350 individual documents dealing with
these issues, the majority of which deal with issues regarding fiber optical systems. Information on
U.S. Department of Defense standards can be searched for through the National Search Engine for
Standards at www.nssn.org. Additional information about worldwide standards is available at www.
worldwidestandards.com.

4.8 PROBLEMS WITH SPECIFICATION WRITING

Underspecification

Failure to specify all of the conditions leaves the user vulnerable to having an instrument that will
not operate properly in the real world. In many cases, the designer may not be aware of situations
that may arise in operation that may affect the proper choice of design methods. Therefore, the
design may not meet the actual needs.

The engineer developing a specification should examine all aspects of the problem to be solved,
and carefully set the boundaries for the requirements on an optical system to meet the needs. All of
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the pertinent information about the image quality, environment, and relation to other systems that
may interact with the lens being specified should be considered. The specifying engineer should
also review the physical limits on the image quality and ensure that these are translated into realistic
values.

Overspecification

Specifying image quality and focal position requirements too tightly can lead to problems.
Overspecification would seem to ensure that the needs will be met, but difficulties in meeting these
requirements can lead to designs that are difficult and expensive to build. Achieving the goals can be
costly and may fail. In such cases, the penalty for not quite meeting very tight specifications can be
serious, both economically and technically.

Boundary-Limit Specification

In most cases, the statement of goals or boundaries within which a lens must operate is better than
stating specific values. This leaves the designer with some room to maneuver to find an economic
solution to the design. Obviously, some fixed values are needed, such as focal length, f-number, and
field angle. However, too-tight specifications upon such items as weight, space, and materials can
force the design engineer into a corner where a less desirable solution is achieved.

Negotiation of Specifications

Finally it is important to note that unless there is an existing closely defined set of established speci-
fications for an specific optical device (such as a fiber optics coupler, for example) each specification
is the product of a single individual or group and reflects the experience and understanding of that
individual. The procuring official should be prepared in some cases to act as a negotiator between
the engineer and the supplier to ensure that a reasonable and successful set of verifiable specifica-
tions has been stated.

4.9 REFERENCES

There are many useful references on optical specifications that deal with specific topics not directly
covered by the general discussion in this chapter. The most useful suggestion is that the users hav-
ing the task of setting specifications on a specific product or system use the massive capabilities of
Internet search engines to look for specific data applicable to that task. A general Google search on
“Optical Specifications” provided 360,000 hits, of which probably less than 10 will be applicable to
any specific problem.
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5.1 GLOSSARY

a relative tolerance error
BK7,SF2  types of optical glass
CtoF  spectral region 0.486 to 0.656 um
f-number  relative aperture as in F/2.8

n  refractive index
rl, 12,13, r4 radii of curvature of surfaces
airspace thickness in sample lens
Abbe number or reciprocal dispersion
wavefront or pupil function
change factor
finite change in a parameter
small change in a parameter

Sy T <D

wavelength

5.2 INTRODUCTION

Determination of the tolerances on an optical system is one of the most important parts of carrying
out an optical design. No component can be made perfectly; thus, stating a reasonable acceptable
range for the dimensions or characteristics is important to ensure that an economical, functioning
instrument results. The tolerances attached to the dimensions describing the parts of the lens system
are an important communication by the designer to the fabrication shop of the precision required
in making the components and assembling them into a final lens.

*Retired.
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The tolerances are related to but are not the same as the specifications. Setting specifications
is discussed in Chap. 4. The tolerances are responsive to the requested system specifications and
are intended to ensure that the final, assembled instrument meets the requested performance.
The specifications placed on the individual lens elements or components are derived from the
tolerances. Thus there is an interactive relation between the tolerancing activity and the setting of
specifications. The system specifications drive the tolerances that need to be determined, and the
tolerances are used in setting the specifications for the components of the system. The reality is that
neither of these processes can be done fully independently.

At this point it is important to note that most optical design programs include a tolerancing util-
ity that can be used to generate and distribute tolerances automatically once a few questions about
goals have been answered by the designer. This appears to be a seductively simple process that is
usually quite useful, but can be very disastrous if used uncritically by anyone who does not under-
stand the basics of the process being carried out.

There are three principal issues in optical tolerancing. The first is the setting of an appropriate
goal for the image quality or transmitted wavefront to be expected from the system. The second is
the translation of this goal into allowable changes introduced by errors occurring on each compo-
nent of the system. The third is the distribution of these allowable errors against all of the compo-
nents of the system, in which some components of the optical system may partially or completely
compensate for errors introduced by other components.

In this chapter, some basic approaches to distributing tolerances within an optical assembly are
discussed. The examples will deal with tolerancing to meet a specified wave-front error and level of
image quality. Similar principles apply to nonimaging optical systems, once the procedures necessary
for relating errors in components or alignment to the specified operating requirements are established.
The user will obviously have to adapt these approaches to the specific system being toleranced.

Optical versus Mechanical Tolerances

The tolerances on mechanical parts, in which a dimension may be stated as a specific value, plus or
minus some allowable error, are familiar to any engineer. For example, the diameter of a rotating shaft
may be expressed as 20.00 mm + 0.01/-0.02 mm. This dimension ensures that the shaft will fit into
another component, such as the inner part of a bearing, and that fabricating the shaft to within the
specified range will ensure that proper operational fit occurs. These tolerances may include the effect of
environmental effects, such as operating temperature or lubrication needs, on the mechanical assembly.

Optical tolerances are more complicated, as they are generally stated as a mechanical error in a
dimension, but the allowable error is determined by the effect upon an entire set of wavefronts pass-
ing through the lens. For example, the radius of curvature of a surface may be specified as 27.00 mm
+ 0.05 mm. The interpretation of this is that the shape of the optical surface should conform to a spe-
cific spherical form, but remain within a range of allowable curvatures. Meeting this criterion indicates
that the surface will perform properly in producing a focused wavefront, along with other surfaces in
the optical system. Verification that the specific component tolerance is met is usually carried out by an
optical test, such as examining the fit to a test plate. Verification that the entire system operates properly
is accomplished by an assembled system test in which a specified image quality criterion is measured.

Basis for Tolerances

The process involved in setting tolerances begins with setting of the minimum level of acceptable
image quality. This is usually expressed as the desired level of contrast at a specific spatial frequency
as expressed by the modulation transfer function. Each parameter of the system, such as a radius of
curvature of a surface, is individually varied to determine how large an error in each component is
allowed before the contrast is reduced to the specified level. This differential change is then used to
set the allowable range of error in each component.

In most cases, direct computation of the change in the contrast is a lengthy procedure, so that
a more direct function, such as the rms wavefront error, is used as the quality-defining criterion.
In other cases, the quantity of importance will be the focal length, image position, or distortion.



TOLERANCING TECHNIQUES 5.3

In nonimaging systems, the beam divergence or the uniformity of illumination after passage
through the system may be the criterion of interest.

Relating the computed individual errors in the system to the tolerances to be specified is not always
a simple matter. If there are several components, some errors may compensate other errors. Thus, it
would be easy to assign too tight a tolerance for each surface unless these compensating effects, as well
as the probability of a specific distribution of errors, are used in assigning the final tolerances.

Tolerance Budgeting

The method of incorporating compensation of one error by another, as well as the likelihood of
obtaining a certain level of error in a defined fabrication process, is called tolerance budgeting. As
an example, in a lens system it may be found that maintaining the thickness of a component may
be easier than keeping the surfaces of the component at the right spherical form. The designer may
choose to allow a looser tolerance for the thickness and use some of the distributed error to tighten
the tolerance on the radius of curvature. In other cases, the shop carrying out the fabrication may
be known to be able to measure surfaces well, but has difficulty with the centering of the lenses. The
designer may choose to trade a tight tolerance on the irregularity of the surfaces for a looser toler-
ance on the wedge in the lens components.

Finally, the effect of a plus error on one surface may be partially compensated by a minus error
on another surface. If the probability of errors is considered, the designer may choose to budget a
looser tolerance to both surfaces.

This budgeting of tolerances is one of the most difficult parts of a tolerancing process, since
judgment, rather than hard numbers, is very much a part of the budget decisions. It is advisable for
the engineer carrying out the tolerance budgeting to do some modeling of the system performance
using trial sets of parameter variations based on the tolerances that have been obtained. This verification
serves as a method if ensuring that the tolerances are indeed reasonable and justified.

Tolerance Verification

Simply stating a set of allowable errors does not complete the integrated process of design and fabrica-
tion. The errors must be measurable. Measurement of length can be gauged, but has to be within the
capabilities of the shop fabricating the optics. Measurement of error in radius of curvature requires
the use of an interferometer or test plates to determine the shape of the surface. Measurement of the
nonspherical component of the surface, or the irregularity, requires either an estimate from the test
plate, or a computation of the lack of fit to a spherical surface based on measured fringes.

Finally, the quality of a completed lens must be measurable. Use of a criterion that cannot be
measured or controlled by the shop or by the user is not acceptable. The contrast mentioned is not
always measurable by the optical shop. The surface errors as measured by an interferometer or by
test plates are common.

As shown in the Chap. 4 on specifications, the average or rms wavefront error can be related to the
level of contrast, or modulation transfer function (MTF), that can be expected in the image. In addi-
tion, measurement of the final wavefront from an assembled optical system is most frequently obtained
by an optical shop in a summary method by using an interferometer. For this reason, wavefront toler-
ancing methods have become the most commonly used methods of defining and verifying tolerances.

5.3 WAVEFRONT TOLERANCES

The rms wavefront error tolerancing method will now be used as an example of the approach to
evaluating the tolerances required to fabricate a lens. An example which discusses the axial image
tolerances for a doublet will be used to provide insight into the tolerancing of a relatively simple sys-
tem. Most optical tolerancing problems are far more complex, but this example provides an insight
into the methods applied. The specific example selected for this chapter is an airspaced achromatic
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FIGURE 1 Drawing of
the doublet lens used for
tolerancing.

doublet using BK7 and SF2 glasses, F/2.8, 100-mm focal length. The lens design is nominally of
moderately good quality, and is optimized over the usual C to F spectral range, with balanced spher-
ical aberration, and is corrected for coma.

Figure 1 is a drawing of the sample doublet used in this chapter. The locations of the four radii of
curvature and the airspace to be toleranced are indicated. The number of possible errors that actu-
ally can occur in such a simple lens is surprisingly large. There are four curvatures, two thicknesses,
one airspace, and two materials that may have refractive index or dispersion errors. In addition to
these seven quantities, there are two element wedge angles, four possible tilts, and four decenter pos-
sibilities, plus the irregularity on four surfaces and the homogeneity of two materials. So far, there
are 21 possible tolerances that are required in order to completely define the lens. For interfacing to
the lens mount, the element diameters, roundness after edging, and cone angle on the edges must be
considered as well. More complex systems have far more possible sources of error. For the example
here, only the four radii and the airspace separation will be considered.

Parameter Error Quality Definitions

The starting point for a tolerance calculation is the definition of a set of levels that may be used to
define the initial allowable range of variation of the parameters in the lens. The magnitude of these
classes of errors is determined by experience, and usually depends upon the type of fabrication facil-
ity being used. Table 1 presents some realistic values for different levels of shop capability.

These values are based on the type of work that can be expected from different shops, and serves
as a guide for initiating the tolerancing process. It is obvious that the degree of difficulty in meeting
the quality goals becomes more expensive as the required image quality increases.

Computation of Individual Tolerances

The individual tolerances to be applied to the parameters are obtained by computing the effect of
some arbitrary but reasonable parameter changes upon the image-quality function. For the example
doublet, if made perfectly with no errors in the individual components or assembly, the nominal
amount of rms wavefront error at the central wavelength is 0.116 waves, rms. It is determined by the
user from consideration of the needs for the application that the maximum amount of error that is
acceptable is 0.15 waves, rms. Thus a distribution in allowable errors that results in no greater than
about a 0.15 wavelength rms wavefront error would produce an acceptable system. The tolerancing
task is to specify the tolerances on the radii of curvature and the separation between the component
surfaces such that the goal is met.
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TABLE 1 Reasonable Starting Points for Tolerancing a Lens System

Parameter Commercial Precision High Precision

Wavefront residual 0.25 wave rms 0.1 wave rms <0.07 wave rms
2-wave peak 0.5 wave peak <0.25 wave peak

Thickness 0.1 mm 0.01 mm 0.001 mm
Radius 1.0% 0.1% 0.01%
Index 0.001 0.0001 0.00001
V-number 1.0% 0.1% 0.01%
Homogeneity 0.0001 0.00001 0.000002
Decenter 0.1 mm 0.01 mm 0.001 mm
Tilt 1 arc min 10 arc sec 1 arc sec
Sphericity 2 rings 1 ring 0.25 ring
Irregularity 1 ring 0.25 ring <0.1 ring

The reason for the choice of 0.15 wave rms is indicated by Fig. 2. The designer experimented
with several choices of focus position to obtain a set of plots of the MTF for different amounts of
error. This is not a completely general conclusion since the source of error produces an rms error
which may not be the same for every source of error. But the samples permit the intelligent selec-
tion of an upper bound to the required error. In a lens with more sources of error, and with larger
amounts of aberration in the basic design, setting up an example such as this is extremely important
to avoid an error in the goal for the final image quality.

The first computation of the effect of nominal changes in the parameters on the rms wavefront
error leads to the results in Table 2. (Only the radii and thickness are considered for this example.)
The two columns for rms wavefront effect are first, for the aberration if no adjustment for best focus
is made, and second, permitting the establishment of best focus after assembly of the lens.

Table 2 shows that the effect of a change in the parameter will have an effect proportional to the
change, but that the factor relating the change to the resulting wavefront error is different for the
various parameters. The amount of change permitted if the parameter is not compensated by allow-
ing an adjustment for best focus is quite small. Any one of the parameters would have to be main-
tained within a range far less than the delta used in computation. The allowance of a compensating
focal shift does greatly loosen the tolerance.

0.8 —m— (0.116 —+— 0.141 —%— 0.141

0.6 —0—0.197 —%—0.197 —— 0.265

MTF

-0.2

0 100 200 300 400 500 600
Lines per mm

FIGURE 2 Some examples of the effect of various rms errors on the MTF of the sample doublet. (The
rms error is stated in wavelengths.)
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TABLE 2 Finite Differentials for Computing Tolerances

Parameter Delta Rms Uncompensated Rms Compensated
rl 0.1% 0.740 0.117
r2 0.1% 1.187 0.171
r3 0.1% 1.456 0.157
r4 0.1% 0.346 0.110
12 0.025 mm 1.155 0.152

Since the acceptable goal is 0.15 waves, rms, the amount of change of an individual parameter to
attain the acceptable level is about 50 times that of r1 and r4, but the change of 0.1 percent would be
excessive for r2 and r3. The allowable change for 2 alone would be just about the delta of 0.025 mm.

Combination of Tolerances

No parameter in a lens lives alone. The effect upon the image will be the result of combining the effect
of all of the errors. If the errors are uncorrelated, then the usual statistical summing of errors can be
used. This states that the total amount of aberration produced by the errors can be found by using

where the sum is taken over the i parameters of interest. The x factors are the amount of change
used in computing the change of wavefront error and the a factors are the relative amount of toler-
ance error allotted to each parameter in units of the delta used in the computation.

There are implicit assumptions in the application of this method to distributing tolerances. The
principal assumption is that the fabrication errors will follow normal gaussian statistics. For many
fabrication processes, this is not true, and modification of the approach is required.

For the example of the doublet, Table 3 can be generated to evaluate the different possibilities in
assigning tolerances. The allowable change in rms wavefront error is 0.033 waves; thus the root sum
square of all of the contributors must not exceed that amount.

In Table 3 the first column identifies the parameter, the second states the delta used in the com-
putation, the third states the amount of wavefront error caused by a delta amount. The final two
columns show different budgeting of the allowable error. Distribution 1 loosens the outer radii and
the thickness at the cost of maintaining the inner radii very tightly. Distribution 2 tightens the outer
radii and spacing tolerances, but loosens the inner radii tolerances. Depending upon the capabilities
of the shop selected to make the optics, one of these may be preferable.

The interpretation of these statistical summations is that they are the sum of a number of differ-
ent random processes. Thus, if the interpretation of each of the values given is the width of a normal
distribution, which implies that 67 percent of the samples lie within that value, then 67 percent of
the resulting combinations will lie within that range. If the interpretation is a two- or three-sigma
value, the interpretation of the result follows similarly.

TABLE 3 Two Possible Tolerance Distributions for the Doublet

Parameter Delta Coefficient Distbn. 1 Distbn. 2
rl 0.1% 0.00071 10.0 0.1
r2 0.1% 0.05440 0.25 0.4
73 0.1% 0.04069 0.25 0.4
r4 0.1% 0.00069 10.0 0.1
12 0.025 mm 0.03589 0.75 0.5

rms change 0.033 0.033
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FIGURE 3 The resulting effect of different tolerance budgets for the sample doublet.

Figure 3 shows the effect of the various choices of allowable error distribution on the modulation
transfer function of the lens. Either of the distributions stated in Table 3 provides an acceptable lens.
For comparison, the allowable tolerances were doubled to provide distribution 2a, which is clearly
not an acceptable lens. A spot check of some sample distributions is always relevant when doing
tolerancing just to ensure that a reasonable relation between the toleranced system and acceptable
image quality exists.

In any manufacturing process, the individual statistics will not necessarily follow a random rule.
The interpretation is somewhat modified, but the principle still remains. In some cases, parameters
may not be independent. For example, in the doublet there is a linking between the values of 2 and
73 that would loosen the tolerances if both are in error in the same direction. This could be used to
advantage if the manufacturing process is carefully defined.

Use of Compensators

The use of compensators to loosen the tolerances was indicated above. An example of compensation
for aberrations can be seen from a single lens element. If the first curvature is varied, both the ele-
ment power and the spherical aberration from the element will change. However, a specific change
of the second radius can restore the focal position and reduce the change of spherical aberration.
Thus the tolerance allowed to the first curvature needs to take into account the possibility of a cor-
related or deliberate change in the second curvature. It is evident that the proper use of compensa-
tors can greatly loosen the tolerances applied to a surface.

A compensation that is frequently employed is the establishment of the correct focal position
after assembly of the lens. If this procedure is followed, the individual tolerances on the surface of
the elements can be loosened. It is obvious that the tolerancing and the development of a plan for
fabrication and assembly must be coordinated.

5.4 OTHER TOLERANCES

Often, a particular optical parameter for the lens must be specified and maintained. Sometimes,
for example, the focal length or back focus must be obtained within some tolerance. The com-
putation of these paraxial constants for the lens can be made in the usual manner, and tolerances
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Boresight

Distortion

Assembly

obtained by using differentials relating each of the parameters to the quantity, such as the focal
length, and then distributing the tolerances in a manner similar to that shown above for the doublet
in Table 3.

The pointing direction, or boresight, for a lens is sometimes of interest. Errors in boresight are usu-
ally due to asymmetric fabrication or mounting errors for the lens. In the simplest manner, one
needs simply to trace an axial ray through the lens, and evaluate the direction of this ray as a result
of introducing tilts and decenters of the surfaces, or of entire components. Tolerances on the lens
parameters can be obtained by the procedure described for the doublet above, substituting the bore-
sight error for the wavefront error.

Distortion is the failure of the lens to provide a constant mapping from object space to image space.
There are alternate interpretations for this error, which can have radial components due to sym-
metric errors in the lens, as well as tangential components from tilt and decenter of the lens com-
ponents. This can be toleranced in the usual manner, but may be related to some general properties
of the lens, such as the overall glass thickness of the components. In the simplest case, the tolerances
upon distortion may be obtained from direct aberration computation. In complex cases, it may be
necessary to compute the actual location of the centroid of the image as a function of image posi-
tion and in the best image location.

Assembly tolerances are related to the tolerances on image quality. The elements must be located
and held in position so that the resulting image-quality goals are met. There are additional ques-
tions of allowing sufficient clearance between the elements and the lens barrel so that the elements
can be inserted into the barrel without breaking or being strained by the mountings. These must be
considered in stating the allowable dimensional range in the diameter, wedge, and concentricity of
the edge of the lens.

5.5 STARTING POINTS

Shop Practice

Table 3, given as part of the sample tolerancing of the doublet, provides some estimates of the accu-
racies to which an optical shop may operate. These generic levels of error convey what is likely to be
possible. The designer carrying out a tolerance evaluation should consult with probable fabrication
shops for modification to this table. The tolerances that are ultimately assigned relate errors in the
system to acceptable errors in the image. However, an understanding of shop practice is of great
assistance in intelligent budgeting of tolerances.

Measurement Practice

Contemporary practice in optical fabrication and testing is to use interferometry to define wave-
fronts and surfaces. A convention that has become common in recent years is the use of polynomials
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fitted to the wavefront as a method of describing the wavefront. There are several representations
used, the most frequent of which is a limited set of Zernike polynomials. These ideally serve as an
orthonormal set describing the wavefront or surface up to a specific order or symmetry. In toleranc-
ing, the principal use for the coefficients of the Zernike set has been the easy computation of the rms
wavefront error fitted to a given order. Thus the residual error in the system can be described after
removal of low-order error such as focus or coma, which can sometimes be attributed to properties
of the test setup.

5.6 MATERIAL PROPERTIES

The most important material is optical glass. Specification of the material usually includes some
expected level of error in index of refraction or dispersion. In addition, glass is offered having sev-
eral different levels of homogeneity of index of refraction. The usual range allows for grades of glass
having index of refraction inhomogeneity ranging from £0.00001 to less than £0.0000001 within a
single glass blank. It is usually assumed that this variation will be random, but the process of glass
manufacturing does not guarantee this.

To place a tolerance upon the required glass homogeneity variation, the concept of wavefront
tolerancing can be used. In general, the amount of wavefront error that can be expected along a glass
path of length ¢ through the glass is

6W:5N><t

For example, if a lens has a glass path of 5 cm but an error of 0.01 wavelengths is assigned to
glass homogeneity, then the allowable glass homogeneity is about 0.00000013 within the glass. Thus
precision-quality glass is needed for this application. For less glass path or looser tolerance assignment
to glass homogeneity error, the required glass precision can be loosened. For a prism, the light path
may be folded within the glass, so that an effective longer glass path occurs.

5.7 TOLERANCING PROCEDURES

The example of the doublet serves to illustrate the basic principles involved in determining the
tolerances on a lens system. Most lens design programs contain routines that carry out tolerancing
to various degrees of sophistication. Some programs are capable of presenting a set of tolerances
automatically with only limited input from the designer. The output is a neat table of parameters
and allowable ranges in the parameters that can be handed to the shop. This appears to be a quite
painless method of carrying out a complex procedure, but it must be remembered that the process is
based on application of a set of principles defined by the program writer, and the result is limited by
the algorithms and specific logic used. In most cases, some trials of samples of the suggested toler-
ance distribution will suggest changes that can be made to simplify production of the lens system.

Direct Calculation

The preceding discussion describes methods used in calculating the tolerance distribution for a lens
system. Frequently, tolerance determinations for special optical systems are required that either do not
require the formal calculation described above, or may be sufficiently unusual that the use of a lens-
design program is not possible. In that case, application of the principles is best accomplished directly.
The procedure is first to decide on a meaningful measure of the image quality required. In fact,
the term “image quality” may require some broader interpretation. For example, the problem may be
to optimize the amount of energy that is collected by a sensor in an optical communication system;
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or the goal may be to scan a specific pattern with specific goals on the straightness of the projected
spot or line during the scan.

The next step is to express the desired image quality in a numeric form. Usually, the rms wave-
front error is the useful quantity. In some cases, other values such as the focus location of a beam
waist or the size of the beam waist may be pertinent. In radiometric cases, the amount of flux within
a specified area on the image surface (or within a specified angular diameter when projected to the
object space) may be the pertinent value.

Once this is accomplished, the third step is to determine the relation between small changes in
the parameters of the optical system and changes in the desired image quality function. This is usu-
ally accomplished by making small changes in each of the parameters, and computing the value of
each differential as

aw _aw
dx.  Ax.
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where the right side is a finite differential. On occasion, the magnitude of this relation is nonlinear,
and may require verification by using different magnitudes of change in the parameter.

This computation provides relations for independent, individual changes of the parameters. The
possibility of compensation by joint changes in two or more parameters also has to be investigated.
The best approach is to compute changes in the image-quality parameter in which specific coupling
of parameters is included. For example, the differentials for variation of the curvatures of the two
surfaces of a lens independently will be significantly different than the coupled changes of both sur-
faces simultaneously, either in the same or different directions.

Spreadsheet Calculation

The differentials must be combined in some manner to provide insight into the tolerance distribu-
tion. The best way to accomplish this is to develop a spreadsheet which allows simultaneous evalu-
ation of the combination of errors using the equation for rms summation stated earlier. The use of
spreadsheets for calculation is so common today that details need not be covered in this chapter.

Lens-Design Programs

The use of lens-design programs for tolerance calculation has become very widespread because of
the proliferation of programs for use on the PC-level computer. The status of lens-design programs
changes rapidly, so that any specific comments regarding the use of any program is sure to be out of
date by the time this book appears in print. Suffice it to say that all of the principal programs have
sections devoted to establishing tolerances. Usually the approach follows the procedures illustrated
earlier in this chapter, with finite changes, or sometimes true computed analytical derivatives, used
to establish a change table relating parameters to changes in the state of correction of the lens. In
this case, the tolerances would be a listing of the allowed changes in the parameter to remain within
some specified distance from the design values in aberration space. Some programs use a more com-
plex approach where the allowable change in such quantities as the contrast value of the modulation
transfer function at specified spatial frequencies is computed.

The distribution of tolerances is usually established according to the statistical addition rules
given above. Some programs permit the user to specify the type of distribution of errors to be
expected for various types of parameters.

As recommended above, it is strongly suggested that the user or designer not accept blindly the
results of any tolerancing run but, rather, do some spot checking to verify the validity of the range of
numbers computed. It is frequently found that alterations in the specified tolerances will occur as a
result of such an investigation.
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5.8 PROBLEMS IN TOLERANCING

Finally, it is useful to recite some of the problems remaining in establishing tolerances for a lens sys-
tem. Even though the computational approach has reached a high level of sophistication for some
lens-design programs, there are aspects of tolerancing that more closely approach an art than a sci-
ence. The judgment of the designer or user of a tolerance program is of importance in obtaining a
successful conclusion to a project.

Use of Computer Techniques

The use of a computer program mandates the application of rules that have been established by the
writer of the program. These rules, of necessity, are general and designed to cover as many cases as
possible. As such, they are not likely to be optimum for any specific problem. User modifications of the
weighting, aberration goals, and tolerance image-quality requirements are almost always necessary.

Overtightening

The safe thing for a designer to do is to require very tight tolerances. This overtightening may ensure
that the fabricated system comes close to the designed system, but the cost of production will likely
be significantly higher. In some cases, the added cost generated by the overtight tolerances can raise
the cost of the lens to the point where the entire project is abandoned.

The designer should consult with the fabricators of the optical system to develop an approach to
assembly and testing that will allow the use of more compensating spacings or alignments to permit
loosening of some of the tight tolerances.

Overloosening

A similar set of comments can be made about too-generous tolerances. In many schemes for produc-
tion, these loose tolerances are justified by inclusion of an alignment step that corrects or compensates
for cumulative system error. Too casual an approach to developing tolerances that require specific
assembly processes, which are not fully communicated to the project, can result in a lens which is ini-
tially inexpensive to build, but becomes expensive after significant rework required to correct the errors.

Judgment factors

The preceding two sections really state that judgment is required. There is no completely “cookbook”
approach to tolerancing any but the very simplest cases. The principles stated in this chapter need to
be applied with a full knowledge of the relation between a change in a system parameter and the effect
upon the image quality. In some cases, a completely novel relationship needs to be developed, which
may include, for example, the connection between the alignment of a laser cavity and a nonlinear
component included within the cavity. Finite difference calculations to obtain the output level can be
developed using whatever computation techniques are appropriate. These values can be combined in a
spreadsheet to examine the consequence of various distributions of the allowable errors.

5.9 REFERENCES

There are many useful references on optical tolerances that deal with specific topics not directly cov-
ered by the general discussion in this chapter. The most useful suggestion is that the users having the
task of setting specifications on a specific product or system use the massive capabilities of internet
search engines to look for specific data applicable to that task. A general Google search on “Optical
Tolerances” provided 1,600,000 hits, of which probably less than 10 will be applicable to any specific
problem.
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6.1 GLOSSARY

a. acceleration factor
D, diameter of optic
E  Young’s modulus
ID internal diameter
K  constant factor
m  mass
OD  outer diameter
P total preload
S, yield stress
SPDT  single point diamond turning
t  thickness
A deflection of spring or flange
v Poisson’s ratio

6.2 INTRODUCTION AND SUMMARY

This chapter summarizes the techniques most commonly used to mount lenses, windows,
small mirrors, and similar optical components as well as moderate-sized mirrors, and prisms
within their mechanical surrounds to form optical instruments. Because of space limitations,
mountings suitable for large (i.e., >85-cm diameter) optics are not discussed here. Two basic
approaches for mounting optical components are considered: those in which the optic is held
firmly against mechanical reference surfaces by applied forces (hard mounting) or those supported
by benign means that do not inherently apply force (soft mounting). Descriptions of hard mount-
ings include ones using threaded retaining rings, flanges, or springs while descriptions of soft

6.1
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mountings include ones using flexures, elastomeric encapsulation, or bonding to mechanical
pads. With either type of mounting, the required location and orientation of the optic relative
to other portions of the instrument, that is, its alignment, is established during assembly in
order to maximize performance. An important aspect of mounting design considered here is
how the adverse influences of shock, vibration, temperature change, and moisture on alignment
and system performance can be minimized. References cited here provide equations for design-
ing and analyzing a large variety of mountings. Although we speak here of optics as if they are
always made of glass and to mechanical parts (housings, cells, spacers, retainers, etc.) as if they
are always made of metal, it should be understood that many of these mounting considerations
also apply to other materials such as crystals, plastics, and composites.

6.3 NMOUNTING INDIVIDUAL ROTATIONALLY
SYMMETRIC OPTICS

Hard Mounting Techniques

In order to constrain an optic and preserve its alignment relative to other critical components
of an optical instrument, hard mountings apply compressive forces to the glass at discrete loca-
tions or along line contacts. These forces, called preloads, are established during assembly and
generally are of sufficient magnitude to hold the optic against appropriately located mechanical
reference surfaces in the mount under all environmental conditions, including shock, vibration,
and temperature changes. The magnitude of the preload P in N applied along any axis should
be at least 9.81ma_, where m is the mass of the optic and any related components to be held by
a single constraining means and a, is the worst case acceleration expected to be encountered by
the subassembly. This term a, is understood to be a multiple of ambient gravity. If the optic is
rotationally symmetric, glass-to-metal contact can be provided at the optic’s cylindrical rim, at
its ground bevels, or at its polished surfaces. Five degrees of freedom (three translations and two
tilts) must be controlled. The sixth degree of freedom (rotation about the optic axis) is also adjusted
and controlled in some cases to improve performance in the presence of residual optical wedge or if
nonsymmetrical aspheric surfaces are involved. All six degrees of freedom must be constrained for
noncircular optics, such as prisms.

The forces applied at the interfaces as well as those from gravity or imposed accelerations may
distort the optical surfaces (thereby affecting performance) and introduce stress into the glass.
Stress is known to cause birefringence, or, in extreme cases, damage to the optic—especially at low
temperatures where shrinkage of the metal exerts maximum force on the glass. To minimize these
adverse effects, forces must be kept within acceptable limits. Very few closed-form equations
are available for predicting refracting or reflecting surface deformations due to applied forces.
Finite element analyses are most frequently used for this purpose.> Explanation of how this is
done is beyond the scope of this presentation.

Relatively simple analytical means for estimating compressive and tensile stresses introduced by
mounting forces are detailed in the literature.* Most of these techniques are based on adaptations of
standard formulations by Roark® and Timoshenko and Goodier.® The magnitude of the stress gener-
ated by a force depends not only upon the magnitude of that force, but also on the shapes of the sur-
faces in contact and Young’s modulus and Poisson’s ratio values for the glass and metal involved.

Statistical analyses backed by experimentation indicate that an optical component made by
conventional high-quality grinding and polishing methods can usually withstand tensile stress as
large as ~6.9 MPa without failure. This value is generally accepted as a “rule-of-thumb” tolerance for
survival of the optic under stress.” Optics made by “controlled grinding” techniques,® polished and
assembled with great care, and not scratched or otherwise damaged during use, might well survive
long-term stress about 1.7 times greater.’

Under the more benign conditions of the operating environment (wherein the instrument
must perform to specifications), survival is not a concern, but distortions of optical surfaces
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due to mounting forces may degrade performance. High-performance optical systems and
those using polarized light may also be especially sensitive to stress-induced birefringence.
A commonly applied tolerance for stress in the glass in such cases is ~3.4 MPa. Analytical meth-
ods outlined in this chapter allow mounting stresses to be estimated to predict the potential
success of a given design.

Burnished Mountings Figure 1 shows a very simple way to mount a lens element in a tubular
cell. This cell has an internal shoulder against which the lens is to be held. The cell is mounted on
a spindle, the lens is inserted and held in place gently, and the assembly is slowly rotated. The cell
has a lip that extends beyond the rim of the lens. That lip is burnished with one or more hardened
rod-shaped tool(s) over the edge of the lens as indicated in the right-hand view. The cell mate-
rial must be malleable so it can be bent easily. Brass or annealed aluminum are common choices.
The magnitude of the force, if any, introduced by the mounting cannot be quantified in this case
because the bent metal tends to spring slightly away from the glass once tool pressure is removed.
This type mounting is most suitable for use with small elements used in some endoscopes, simple
microscope objectives, or low-cost cameras.

Mounts Using Threaded Retaining Rings This mounting, shown schematically in Fig. 2, is the type
most frequently used to secure a lens element in its mount. Torque Q in N-mm applied to the ring
with a wrench creates axial preload P to hold the lens against the shoulder very approximately as
5Q/Dy, where D, is the pitch diameter of the thread in millimeters.

The fit of the mating threads in the cell and retainer should be loose enough for the retainer to
align itself to the centered lens surface; otherwise, lens alignment may be altered when the retainer is
tightened. Such a fit may be specified as Class-1 or -2 per ANSI/ASME B1.1-2003.” During assembly,
the lens should first be aligned in the cell and then held in place as the retainer is tightened to the
required torque.

Mounts Using Annular Flanges Figure 3 shows a lens element preloaded against a shoulder by an
annular flange that is deflected axially by a distance A from its nominal flat shape. Adapting an equa-
tion from Roark,” the deflection A required to produce a given preload P in N equals (K, — K;)P/#’
where t is the flange thickness in millimeters and the constants K, and K, are determined by the
material properties and the dimensions a4 and b indicated in the figure.

For a given design, the required deflection may be obtained by customizing the thickness of the
spacer located under the flange and should be at least 10 times larger than the resolution capability
of the device to be used to measure the flange deflection at the time of assembly. As the flange is bent,
stress is developed within that component. To prevent damage to the flange, its thickness should
equal K_Pf/S, where the constant K. depends upon the dimensions a and b and the flange material

*Unified Inch Screw Threads (UN and UNR Thread Form).
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properties. The quantity S, is the yield stress of the flange material and f, is the desired safety factor. The
stiffening ring shown next to the flange maintains uniform flange deflection between the attaching
SCIews.

A significant advantage of the annular flange as compared to the threaded retaining ring is that
the flange can be calibrated before installation by measuring the actual preload developed as a func-
tion of deflection. Then, one can be quite confident that the preload on the lens is as stated by the
above relationship when that flange is deflected by the specific distance A. This level of confidence
cannot be achieved with a threaded ring.

Soft Mounting Techniques

Elastomeric Mountings A convenient technique for mounting a lens in a cell is to inject a continu-
ous annular ring of an elastomeric material such as room temperature vulcanizing (RTV) sealing
compound between the lens rim and the inside surface of the cell (see Fig. 4). This is sometimes
called an “elastomeric ring mounting.” The thickness ¢, equals K, D, where D, is the lens diameter
and the constant K}, is determined from the material properties using a relationship attributed by
Herbert!® to R. Vanbezooijen. The lens is then virtually free of radial stress at all temperatures. This
is because the elastomer expands or contracts with temperature changes just enough to always fill
the radial gap between the glass and the metal.

Some designs using the elastomeric ring approach also benefit from the fact that a continuous ring
of this material effectively seals the lens to its mount so, if this subassembly forms part of the exterior
skin of an optical instrument, leakage of gases and moisture through that interface is prevented.

Annular ring of

Injection
hole (typ.) elastomer
[ Cell
¥ -
a Lens
Py
Vi
_% ,

FIGURE 4 A lens supported in its cell by a continuous annular ring
of elastomer.
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Another type of elastomeric mounting for lenses uses discrete pads of elastomer located between
the lens rim and the cell’s inside surface. At least three such pads are needed to fully constrain the
optic. They should be symmetrically distributed around the lens. The radial thicknesses of these
pads can be sized as described above for the continuous ring.

Flexure Mountings High-performance optical systems require the optical axes of their lenses to
be precisely centered mechanically with respect to some mechanical reference and to remain in that
condition when the temperature changes. Because metal and glass components expand or contract
with temperature at different rates, the optics may become decentered, tilted, or stressed when tem-
perature changes occur in the above-described hard mountings. A properly designed support con-
figuration using three or more symmetrically located identical flexures between the mount and lens
rim will ensure that the lens stays as originally aligned and free of stress in spite of such changes.
Figure 5 shows a concept for a simple flexure mount design suggested by Ahmad and Huse."
Three identical flexure modules are made with narrow slots cut into them (by an electric discharge
machining method) to form cantilevered flexure blades. Each blade has, at its free end, a curved pad
shaped to interface with the lens rim. These modules are attached to the lens cell with screws pass-
ing through slightly oversized holes. In an alignment fixture, the optical axis of the lens is centered
with respect to the axis of the cell. The modules are then adjusted to provide specific gaps between
the pads and the lens rim and pinned in place. Epoxy is injected into those gaps and cured. Because
the flexures are separate from the cell, they can be made from a material (such as titanium) with a
higher yield stress than the cell. The cell is typically made of less expensive yet dimensionally stable
material (such as stainless steel). More complex flexure designs and ones featuring a larger number
of radial flexures have also been described.'?"'¢ Because of their inherent flexibility, flexure mount-
ings should be analyzed to determine their responses to externally imposed shock and vibration.

6.4 MULTICOMPONENT LENS ASSEMBLIES

Groups of lenses used in optomechanical assemblies typically are individually mounted and con-
strained in seats machined into a housing or are separated axially by spacer rings within a common
cylindrical bore in the housing. It is important for those lenses to have a common optical axis and
the correct axial airspaces within allowable tolerances. We here consider several ways in which such
assemblies can be designed.
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Drop-In Assembly

If alignment requirements are not too demanding, lenses, housings, and spacers can be machined to
reasonable tolerances and simply assembled without further machining or adjustment other than
tightening a retainer to provide prescribed preload. Figure 6 shows an eyepiece for a low-power
telescope assembled in this way. Radial clearances are typically ~0.075 mm, so individual lenses can
easily be inserted into their seats. The eyepiece is configured to thread into a cylindrical opening in
the telescope housing and to be focused by rotating the entire eyepiece. In some cases, the lenses are
sealed to the cell and the threaded joint with the telescope also is sealed.

Many all-plastic lens assemblies used in consumer products are designed for swift drop-in assembly.
The example shown in Fig. 7 is the objective for a rear-projection television system. Flexible tabs
molded into the inside walls of both halves of the plastic housing project inward to form pockets
for insertion of the three injection-molded plastic lens elements. Grooves (not shown) molded into
the inside walls of the housings reduce stray light that otherwise could reduce contrast of the image.
The housings are fastened together by self-tapping screws passing through flanges along each side,
as indicated in the end view. Optical alignment relies on accuracy of the molding processes and is
adequate for the application.

Injection molded Cell halves
lens (3 pl.) held together
by screws
Centggﬂg—_.»‘ = 7 | F y; through flanges
tab (typ.)
Flexible — 77 NA N\
tab (typ.) NN N
Aperture — =2 g
stop 7 7 Z
Mold part

line

FIGURE 7 An all-plastic projection lens assembled by the “drop-in” method.
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Tightly Toleranced Assemblies

When higher performance is required, the dimensional tolerances are tightened and better optical
alignment is achieved. Figure 8 shows the objective lens assembly for a military telescope.!” The three
lenses are edged to fit the cell inside diameter with nominal radial clearances of 0.012 mm. All metal
parts are made of stainless steel. The first spacer is made of sheet metal stock 0.025 + 0.005 mm thick.
It conforms to the spherical shapes of the adjacent lens surfaces under preload. The axial thicknesses
of the lenses are toleranced to £ 0.005 mm. Residual optical wedge tolerances for the lenses are 12
arcsec. The beam deviation from these wedges is minimized at assembly by rotating (i.e., clocking)
two lenses about their axes relative to the third lens to obtain maximum symmetry of the image of
an on-axis artificial star. This image is observed with a microscope during alignment.

Lathe Assembly

A technique that is frequently used to obtain lens centration by minimizing radial clearances between
lens ODs and cell IDs is called “lathe assembly” because it is done on a machinist’s lathe. The diameters
and thicknesses of a selected set of lenses are measured and recorded. The required central air spaces
and their tolerances are obtained from the optical system design. Actual lens surface radii are obtained
from interferometric measurements made during lens manufacture. This data accompanies the lenses
to the machine shop where a partially machined cell or housing is customized to provide conical or
toroidal interfaces with the polished surfaces of that particular set of lenses and to provide all other
required dimensions for the optomechanical assembly within the required tolerances. Radial clear-
ances of ~0.005 mm can be achieved by this method. This clearance is adequate for careful assembly of
the lenses into the cell.

Figure 9'7 shows an air-spaced doublet lens subassembly created by this process. The individual
lens seats are finish-machined at the time of assembly to fit those lenses. The length of the spacer
(dimension E) and the location of the mounting flange (Datum B) relative to the front lens vertex
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FIGURE 9 An air-spaced doublet assembled by the “lathe assembly”
process. (From Yoder.”)

are also machined to produce the proper air space and overall length. Both lenses are secured by
the retainer. The actual values of the numbered dimensions are recorded in the boxes. If required,
a complete pedigree of that particular assembly can be established for future reference from the
measured data and inspection reports. This type of construction is especially suited for applications
involving high accelerations. Bayar described an aerial camera lens assembled by this method.!®

“Poker Chip” Assembly

Figure 10 is a partial section view through a lens assembly that features seven lenses: four doublets
and three singlets. Each lens, except the largest, was centered interferometrically to the mechanical
axis of its cell OD and held in place in that cell with annular rings of epoxy nominally 0.381 mm
thick. After the adhesive was cured, the axial thicknesses of the cells were final machined so all axial
air spaces would be within design tolerances. The cell subassemblies Numbers 6 through 2, which
had been machined to the same ODs within tight tolerances, were then inserted into the stainless
steel housing and secured by Cell No. 1 that was threaded into the housing to act as a retainer. The
largest lens (No. 12) was held directly in the housing by its own retainer. Accuracy of internal align-
ment was built into the assembly by the fabrication process.’ This type of construction is frequently
referred to as “poker chip” assembly because the individual lens/cell subassemblies are stacked on
top of each other inside the housing.

Lenses Adjusted at Assembly

Many complex lens assemblies to be used in very high-performance applications such as micro-
lithographic projection systems need positional adjustment of a few carefully selected elements at
the final stage of assembly. This is because application of the best possible optical and mechanical
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FIGURE 10 A projection lens comprising a stack of “poker chip” lens/
cell subassemblies inserted into the bore of the mount. (From Fischer."®)

manufacturing processes and extremely tight dimensional tolerances cannot make the lenses and
mechanical parts accurately enough to obtain the full level of performance required by the applica-
tion. An example is shown schematically in Fig. 11.2

This optomechanical system comprises twelve air-spaced “poker chip” subassemblies, stacked on
top of each other with custom-made spacers placed between lapped coplanar pads on the cell faces

Screw
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Shims between cell
flat pads on
cells and spacer

Spacer

Flexure

Adjustable
cell

Lens

Detail view

FIGURE 11 Partial section view of a “poker chip” lens assembly with two
lenses adjusted after assembly to optimize performance. (From Yoder.*)
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to control axial air spaces. The lenses are mounted on flexures machined directly into the interior
surfaces the cells. Ten of the subassemblies fit closely inside the stainless steel barrel. Two subassem-
blies are adjustable laterally in orthogonal directions from the outside. Optical performance of the
system is measured interferometrically in near real time, while the adjustable lenses are moved very
slightly until optimal performance is achieved. The adjustment mechanisms are then locked and the
lens is installed into the microlithography system.

Determination of which lens elements to move in a given optical system to correct residual aber-
rations is a job for the lens designer working with mechanical engineers and metrology experts who
help decide how to incorporate the needed mechanisms and to conduct the necessary tests. The
sensitivities of spherical, coma, astigmatism, and distortion aberration contributions from each lens
to lateral and axial displacements are determined by raytracing. The ideal candidates for correcting
each aberration are lens shifts that modify that aberration significantly, but do not excessively affect
the other aberrations. The results are reviewed to determine which lens movements are best to mini-
mize each aberration. Williamson?® outlined a procedure in which the aberration contributions of
the optical system shown in Fig. 12a for specific axial and lateral displacements of each element are
plotted as shown in Fig. 12b and ¢, respectively. Using phase-measuring ultraviolet interferometry
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FIGURE 12 (a) Optical schematic of an 18-element lithographic projection lens.
(b) The effects on aberrations of individually displacing each element axially by 25 um.
(c) Similar effects of displacing each element laterally by 5 um. The best lenses to adjust
for optimum system performance can be determined. (From Williamson.*)
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military application. (Courtesy of Goodrich Corporation, Danbury, CT.)

as the image quality monitor, all these aberrations can be significantly reduced by iteration of lens
movements and the final system performance of production lens assemblies greatly enhanced.

6.5 MOUNTING WINDOWS AND DOMES

Small circular windows usually are secured in a mount with a threaded retainer or by an elastomeric
ring. Noncircular ones are best held in place with elastomer. The continuous flange-mounting method
can be used to advantage with larger windows. The one shown in Fig. 13 has an elliptical aperture of
20.32 % 30.5 cm.* The electrical connections shown provide current to a conductive coating on a bur-
ied surface, which keeps the window free of fog in high-humidity situations. The flange preloads the
window into an aluminum cell. An elastomeric sealant is injected into a groove around the window’s
rim to seal it to the cell. The cell is sealed to the instrument housing with a gasket or an O-ring.

Figure 14 shows typical mountings for deeply curved spherical windows, called shells or domes.
That in Fig. 14a is sealed and secured with a Neoprene gasket clamped in place by a flange?! while that
in Fig. 14D is secured and sealed with a continuous ring of elastomer.* In some more elaborate designs,
an elliptically shaped sapphire dome is brazed with special metallic alloys to a titanium mount.?

6.6 MOUNTING SMALL MIRRORS AND PRISMS

General Considerations

The appropriateness of designs for mechanical mountings for small mirrors and prisms depends
upon a variety of factors including: tolerable rigid body movement of the optic and distortion of
its reflecting and/or refracting surface(s); the magnitudes, application locations, and directions
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of forces tending to move the optic with respect to its mount; steady-state and transient thermal
effects (including gradients); the sizes and kinematic compatibility of interfacing optomechanical
surfaces; and the rigidity and long-term stability of the structure supporting the optic. In addition,
the designs must be compatible with assembly, maintenance, package size, weight, and configuration
constraints, as well as being cost effective. The representative mounting designs described in the
following sections illustrate proven mounting techniques.

Mechanically Clamped Mountings

Figure 15 shows a simple means for attaching a first surface flat mirror to a mechanical bracket.?®
Three cantilevered springs press the reflecting surface against three pads that have been lapped
coplanar. The contacts between the springs and the mirror’s back face are directly opposite the pads
to minimize bending moments. This design constrains one translation and two tilts. Translations
in the plane of the reflecting surface can most easily be constrained by dimensioning the spacers
supporting the springs so as to just clear the rim of the mirror at minimum temperature. Rotation
in that plane usually does not need to be constrained. Given the number of springs N, the spring
material’s Young’s modulus E, , its yield stress S, and its Poisson’s ratio v, , the spring lengths L and
widths b, and an appropriate safety factor f,, the spring thickness ¢ that will provide a total preload
P to the mirror is determined as [K,PLf/(bS,N)]"2. The length of the spacer located under each
spring is chosen to cause that spring to be deflected from its flat condition by A equal to (K,L?)
(1-v,2)/(E, bt N). In these relationships, K, is 4 and K, is 0.75.

Elastomeric Mountings for Mirrors

Small mirrors can often be mounted in the manner illustrated by Fig. 4 for a lens. In applications
where the optic does not need to be sealed in place with a continuous ring of elastomer, three or
more discrete pads located between the lens rim and the cell ID can support it. Vanbezooijen’s equa-
tion is again used to determine the pad thicknesses.!® The lateral dimensions of the pads have, in
some designs, been determined by finite element analysis that predicts the dynamic response of the
subassembly to vibration inputs from the environment.*
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FIGURE 15 A simple mounting for a flat mirror pre-
loaded with deflected cantilevered springs. (From Yoder.?)

Spring-Loaded Mountings for Prisms

A spring-loaded mounting for a prism is illustrated in Fig. 16.2° Here, a penta prism is preloaded
against three coplanar pads on the baseplate by three cantilevered springs supported by posts with
spacers machined to produce the necessary spring deflection and resultant preload, as described
earlier for a mirror mounting. Constraint in the plane parallel to the pad surfaces is provided by a
single spring (called a straddling spring) that is supported at each end and presses against the end
of the prism. The dimensions and deflection of this spring are chosen to preload the prism against
three locating pins that are pressed or threaded into strategically located holes in the baseplate. The
relationships for ¢ and A given in Sec. “Mechanically Clamped Mountings” apply also to the strad-
dling spring, but K, equals 0.75, N = 1, and K, = 0.0625. How the direction of the force exerted
by the straddling spring can be optimized to nearly equalize the stresses created in the prism at the
interfaces with the pins has been explained in the literature.?

Bonded Mountings for Small Mirrors and Prisms

A widely used and successful technique for mounting small mirrors and prisms is to bond them directly
to a plate or bracket with an adhesive such as epoxy. Any alignment adjustments that are needed
should be built into the mount rather than into the glass-to-metal joint. Figure 17 shows a typical
mirror mount of this type.? It has proven satisfactory for cases where the diameter-to-thickness ratio
for the mirror substrate is at least 6:1. The mirror should then be stiff enough not to be excessively
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FIGURE 16 A penta prism preloaded against lapped pads on a baseplate with
cantilevered and straddling springs. (From Yoder.>)

distorted by shrinkage of the adhesive as it cures. Most prisms are thick enough that they are not
distorted by this shrinkage.

All adhesive bonds need to have sufficient area for the joint to be strong enough to support the
optic under all anticipated levels of acceleration. The minimum bond area Q,, is 9.81maf./],
where ] is the strength of the cured adhesive joint and all other terms are as previously defined.”
Bonding should be done on a fine ground surface of the optic for maximum joint strength. A typi-
cal value for J for a two-part epoxy such as 3M 2216B/A with bond thickness of 0.100 £ 0.025 mm is
~17.2 MPa. For conservative design, the factor f; should be ~4. Successful bonding requires careful
cleaning of the surfaces to be bonded and adequate curing time. The adhesive manufacturer’s rec-
ommendations should be followed unless tests indicate otherwise for a specific application.

The 29-mm aperture roof penta prism in Fig. 18 is bonded in cantilevered fashion to a bracket
nominally oriented vertically. The circular bond area is adequate to withstand a severe military shock and
vibration environment. Some designs work better if the prism is supported from both sides. Figure 19
shows one way to do this. It was adapted from Beckmann.?® The mount is designed with two arms, one
of which has a hole bored through it. The prism is supported by a fixture in the proper location and ori-
entation relative to the mount and epoxy bonded to the flat pad on the left arm. A plug made of the same
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FIGURE 17 A flat mirror bonded on its back to a pad on
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metal as the mount is then centered in the hole in the right arm and bonded to the right surface of the
prism. When those bonds have cured, the plug is bonded into the right arm.

Flexure Mountings for Small Mirrors and Prisms

Circular mirrors as large as ~15-cm diameter have been successfully mounted on flexures in the gen-
eral manner shown in Fig. 5 for a lens. Usually, these are image-forming mirrors, perhaps aspheric,
that need to have constant centration relative to a system axis.
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FIGURE 18 A roof penta prism bonded to a pad on a mounting flange.
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FIGURE 19 Concept for supporting a prism from both sides. (a) Prism bonded
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mount. (Adapted from Beckmann.?®)

Prisms intended for use in relatively benign environments can be mounted on flexures. One
way to do this is by attaching the prism to instrument structure through three posts with integral
flexures at each end. Figure 20 shows a large multiple component Zerodur prism mounted in this
manner. It has two wing prisms optically contacted to a third (base) prism, to which the flexures
are bonded. The wing prism surfaces are perpendicular to each other and form a 15.2-cm-wide
roof mirror that is inclined at 45° to the vertical. The reflected image is inverted horizontally
as the optic turns the incident beam axis 90°. The orientations of three of the flexure joints are

Wing prism

Flexure “B”
(1pl)
bonded into

Flexure “A”

Belleville (2pl) };ole in
washers bonded to Structure ase prism
base prism
surface

FIGURE 20 Optomechanical configuration of a large prism assembly with three
flexure mounting posts to isolate the optic from dimensional changes under temperature
changes. (Courtesy of ASML Lithography, Wilton, CT.)
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as indicated in the section view A-A’. If attached to a structure that expands or contracts more
than the prism as the temperature changes, the flexures simply bend very slightly and prevent the
introduction of mounting forces that could distort the reflecting surfaces and interfere with per-
formance of the optical system.

6.7 MOUNTING MODERATE-SIZED MIRRORS

General Considerations

The simple mirror mountings described earlier are not satisfactory for mirrors larger than about
15-cm diameter because they are too flexible to be treated as rigid bodies. The important criteria
for selecting a suitable mounting are orientation with respect to gravity, performance level required,
substrate material stiffness, and weight limitations. The mounting for a mirror to be used in a fixed
horizontal- or vertical-axis orientation can be figured during polishing to compensate for gravity
effects. Variable orientation applications require mounts that change their force distribution with
inclination to keep surface deflections within tolerance. Both axial and radial supports are required.
Mirrors to be used in space have the added requirement of release of gravitational force after being
fabricated, tested, and installed into the instrument in a normal gravity environment. Choice of
mounting depends strongly on the substrate configuration. Weight constraints generally lead to
solid substrates with shaped back surfaces or ones built-up from multiple parts that are attached
together. We here describe a few typical ways to support mirrors of various shapes as large as ~85 cm.
Designs appropriate to both nonmetallic and metallic mirrors are considered.

Substrate Configurations

Figures 21b through e shows half-section views of four first-surface mirror solid substrates of the
same diameter and material with concave surfaces of the same radius. Their back surface shapes
differ and reduce the mirror weight as compared to a flat-back baseline design (Fig. 21a). All these
mirrors, except one, can be supported within the telescope housing on a hub passing through the
mirror’s central perforation. For example, see Fig. 22. Here, the hub has a toroidal-shaped raised
land that supports the 41-cm-diameter meniscus-shaped mirror radially and a shoulder that locates
it axially. The radial support lies in the mirror’s neutral plane where fore and aft bending moments
are balanced. A threaded retaining ring provides axial preload. To focus, the locating ring is moved
on the hub and secured with the clamping ring. The substrate configuration from Fig. 21 that can-
not be hub mounted is the double arch configuration (Fig. 21e). It is best supported on flexures at
three or more points spaced equally around the zone of greatest thickness.

(a) (®) (c) (d) (e)

FIGURE 21 Sectional views of baseline concave-plane (a) and lightweighted mirror substrates
(b) through (e) with contoured backs. Figure (f) shows a built-up substrate configuration.
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FIGURE 22 Hub mounting for a meniscus-shaped telescope mirror. Focus adjustment
means is illustrated.

Lighter-weight mirror constructions typically employ built-up substrates such as that shown in
Fig. 21f. A very successful type is the monolithic meniscus construction illustrated by Fig. 23. Such
mirrors are usually made of Corning ULE. Strips of the material form the webs of a core to which
front and back facesheets are fused. All joints in the core also are fused together. The spacing of the
webs is large except at locations where axial and radial supports attach to the substrate. There, the
spacing is considerably smaller to increase strength.

s ~n
/ _
/ Internal Front
core facesheet
—
Back
facesheet

Radial
support

attachment
block (3 pl.)

FIGURE 23 A completely fused (monolithic) built-up lightweight mirror substrate.
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Mirror . )
l Whiffletree mechanism

(3pl)
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connects bar
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FIGURE 24 An 18-support Hindle-type mirror mount supporting the optic at multiple
points on rings of radii R, and R, from three posts attached to structure at radius R;. The whif-
fletree plates are centered on the ring of radius Rq.

Lever Mechanism Mountings

Because of the flexibility of lightweighted mirrors, axial support is frequently provided at many
points on the back of the substrate. Hindle mounts? using multiple lever mechanisms (called
“whiffletrees”) are commonly used. Figure 24 shows such a mount with 18 supports for the mirror.
The number of supports needed is the minimum number that keeps the gravitational sag of the
reflecting surface between support points smaller than the deflection tolerance when the mirror axis
is vertical. To avoid friction effects, flexures (sometimes called “Flex-Pivots”) are typically used
as single-axis bearings in these mounts. Dual-axis bearings are usually necked-down posts that serve
as flexures.

A mirror on a Hindle mount also needs radial support if it is to be used in any orientation other
than axis vertical. This might be in the form of three or more mechanical links with universal-joint
flexures at each end that are oriented tangent to the rim of the mirror and connect the mirror rim to
the surrounding structure. Provision for such a support is shown in the mirror of Fig. 23. Multiple-
point whiffletree radial supports have also been used for this purpose.?!

Mountings for Metallic Mirrors

Metallic mirrors are generally easier to support than nonmetallic ones because attachments can be
made directly to the substrate through, for example, threaded holes for screws. The metallic sub-
strate may also be stiffer than the glass counterpart. An example is the aluminum mirror shown
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by section and back views in Fig. 254.%° Here, a single-point diamond-turning (SPDT) method is
employed to machine the optical surface and the axial and radial mounting interface surfaces on
the mirror’s back. In this method, many extremely fine cuts are made with a precision diamond
tool as the substrate rotates about a common mechanical and optical axis. The tool moves on a
prescribed path under interferometric control. This results in very accurate surface shapes and
surface interrelationships, as well as smooth surfaces and very low residual stresses in the parts.
The mating surfaces on the mount are also created by diamond turning. The mirror is shown
installed in its mount in Fig. 25b. Optical surface distortions due to mounting forces are minimal
because the contacting surfaces on the optic and its mount are parallel when drawn together.?!
When the mirror and its mount are made of the same material, the effects of temperature changes
are minimized.

Optical surface

(AlumiPlate
plated and SPDT)
|
|
Pilot diameter Axial interface
(SPDT) (3 pl., SPDT)
Back surface
(unplanted

=

[l

t - + ,’7‘Eousing

[l
NN

t ﬁ/ Back plate

T T I\/_‘l_, l T
(®)

FIGURE 25 Optomechanical configuration (b) of an alumi-
num mirror (a) with optical and mounting surfaces machined by
SPDT methods. The radial and axial interfaces are shown. (From
Vukobratovich et al*°)
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6.8 CONTACT STRESSES IN OPTICS

The shape of the mechanical surface touching a lens, mirror, or prism surface is typically spherical,
cylindrical, conical, or flat. Point contacts occur at spherical pads attached to the ends of springs
while short line contacts occur if cylindrical pads are used on springs or if pins are used to locate the
optic. Lenses, windows, and mirrors preloaded against mechanical constraints by a retaining ring or
flange typically have circular line contacts with the metal around the edges of their apertures. The
metal surface typically is conical for a convex glass surface and toroidal for a concave glass surface.
The preloads applied through all of these interfaces cause elastic deformations of the glass and metal
parts. Associated with these deformations are compressive and tensile stresses in those materials.
Up-to-date analytical methods for estimation of these stresses have been presented in detail else-
where.* Space constraints preclude discussion of those methods here. Once the tensile stress to be
expected in a given optomechanical design has been quantified, it can be compared to the aforemen-
tioned rule-of-thumb tolerance to predict success or failure of the optomechanical design. Should
the stress appear to be too large, certain design changes that can be made to reduce it are suggested
in the referenced publication.

6.9 TEMPERATURE EFFECTS ON
MOUNTED OPTICS

General Considerations

Because the temperature environment of any optical instrument is seldom constant, we should
anticipate changes in dimensions of all parts, in refractive indices, and in material parameters [such
as coefficient of thermal expansion (CTE) and Young’s modulus] to occur throughout the lifetime
of the device. These changes may defocus the system, change aberration balance, or degrade align-
ment. Athermalized designs are created in a manner to reduce the magnitudes of these effects to
tolerable levels.

Prevention of Axial Gaps

Differential expansions and contractions of all types of materials with temperature changes may
change the axial and/or radial relationships, that is, alignment between optics and their mechanical
reference surfaces. Optomechanical assemblies that are adequately preloaded at assembly will tend
to maintain optic-to-mount contact, but this preload will change as the temperature changes. It may
disappear completely at elevated temperatures. Then the optics may be free to move if externally
disturbed, as by vibration or shock. These component shifts may become permanent if the optic is
decentered or tilted when the temperature drops and the mount reapplies forces to the optics.

To reduce this effect, each optical assembly might be designed to compensate for axial dimen-
sional changes so axial preload changes are reduced to insignificance.’? For example, the air-spaced
triplet assembly of Fig. 264 is constructed of three optical glasses, an aluminum cell, and two alumi-
num spacers. The scale of the figure is as indicated. At maximum temperature, the physical separa-
tion of the interfacing points A and B in this particular assembly changes by 0.015 mm if computed
for a path through the lenses and spacers, but changes by 0.030 mm if computed for a path through
the cell. One or more axial air gaps totaling 0.015 mm would then exist somewhere within the
assembly and the lenses might move or tilt within that space. If the design were to be modified by
changing the metals in the cell and in one spacer, lengthening that spacer, and providing space for
the larger spacer by adding a step bevel to the second lens—as indicated in Fig. 26b—the chosen
materials and component dimensions would make the A-to-B separation remain equal for both
paths for all temperature changes. Preload would then remain unchanged and misalignment would
not occur.
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FIGURE 26 An air-spaced triplet lens assembly (a) in
which an axial gap between glass and metal parts exists at high
temperature, possibly allowing the lens to become misaligned.
Modified design (b) is athermalized to maintain registry of the
optics in the mount. (Adapted from Yoder and Hatheway.?)

Focus Athermalization Techniques

Single Material Designs Figure 27 shows a reflecting telescope made of a single material, in this
case, aluminum.*® All dimensions change, but the assembly remains in alignment and the optical
performance is unchanged (other than a small change in image scale) as the temperature changes.
This telescope is an example of the use of single-point diamond-machining methods as all optical
and mounting surfaces are precisely made in the proper geometric relationships so alignment accu-
racy is built-in.

Passive Athermalization Figure 28a illustrates the use of materials with dissimilar CTEs and care-
fully chosen axial dimensions so the axial distance between optical components (in this case, the
two mirrors) remains constant when the temperature changes.** This keeps the optical performance
within required limits. Control of the mirror separation of this telescope is modeled schematically
in Fig. 28b. Positive signs associated with lengths of low and high CTE materials indicate how the



Primary mirror

-
-
SPDT /
- SPDT SPDT SPDT
Test chamber
window
|/ It S
—_ I——
— |
] Focal
Secondary Secondary Primary plane
mirror reference reference
sphere sphere
Secondary N 0T
support [SPDT]|
SPDT

SPDT

FIGURE 27 Schematic of an all-aluminum (athermalized) telescope objective with
optical and mechanical interface surfaces finished by SPDT for ease of assembly without
alignment. (From Erickson et al.>*)
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FIGURE 28 A passively athermalized telescope structure using Invar
metering tubes to connect the primary and secondary mirror mounts.
(a) Exploded view of the telescope. (b) Model of the compensation system.
(From Zurmehly and Hookman®*)
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mirror separation changes as the temperature rises. Proper choices of materials for their coefficients
of thermal expansion and dimensions make the mirror separation remain constant as the tempera-
ture changes.

Active Athermalization When a source of power is available, components in an optical system
can be physically moved to compensate for the effects of temperature changes. For example,
Fig. 29a shows a concept for a zoom lens system in which locations of the moveable lenses are
varied by motors as commanded by an internal microprocessor that monitors the temperature of
the system.*® As indicated in Fig. 29b, desired magnification inputs from the operator are auto-
matically converted into the lens shifts required to focus properly on the object at the measured
temperature.

Stepper
motor

D
H
l

% EPROM
(a)

= -0.6

Group motion

FIGURE 29 An actively athermalized zoom lens sys-
tem that drives two lens groups to maintain focus at select-
able magnification settings in spite of temperature changes.
(From Fischer and Kampe.*®)
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7.1 GLOSSARY

A area
BRDF  bidirectional reflectance distribution function
GCF  geometric configuration factor

L  radiance
R distance
6,9 angles
®  power
Q  solid angle

7.2 INTRODUCTION

The analysis of stray light suppression is the study of all unwanted sources that reduce contrast or
image quality. The control of stray light encompasses several very specialized fields of both experi-
mental and theoretical research. Its basic input must consider (1) the optical design of the system;
(2) the mechanical design, size, and shape of the objects in the system; (3) the thermal emittance
characteristics for some systems; and (4) the scattering and reflectance characteristics of each surface
for all input and output angles. It may also include spectral characteristics, spatial distribution, and
polarization. Each of these areas may be concentrated on individually, but ultimately the analysis
culminates in the merging of the various inputs.

Developments in detector technology, optical design software, diffraction-limited optical designs,
fabrication techniques, and metrology testing have created a demand for sensors with lower levels of
stray radiation. Ways to control stray light to meet these demands must be considered during the
“preliminary” conceptual design. Decisions made at this time are, more often than not, irrevocable. This
is because parallel studies based upon the initially accepted starting design are often very expen-
sive. The task of minimizing the stray radiation that reaches the detector after the system has been

7.1



7.2

DESIGN

designed by “adding on” a suppression system is very difficult. Therefore, every effort should be
made to start off with a sound stray light design. To ensure a sound design, some stray light analysis
should be incorporated in the earliest stages of a preliminary design study.

This chapter presents some basic concepts, tools, and methods that you, the optical or mechani-
cal designer, can consider when creating a sensor system. You do not need to be very experienced
in stray light suppression to design basic features into the system, or to consider alternative designs
that may significantly enhance the sensor’s performance. The concepts are applicable to all sizes of
optical instrumentation and to virtually all wavelengths. In some cases, you can use the concepts to
rescue a design when experimental test results indicate a major design flaw.

7.3 CONCEPTS

This section outlines some concepts that you can use to reduce stray radiation in any optical system.
The section also contains some experimental and computer-calculated data as examples that should
give you some idea of the magnitude of the enhancement that is possible.

The power on a collector depends on the following:

1. The power from the stray light source.

2. The surface scatter characteristics of the source; these characteristics are defined by the bidirec-
tional scatter distribution function (BSDF).

3. The geometrical relationship between the source and collector. This relationship is called the
geometrical configuration factor (discussed later in this section).

To reduce the power on the detector, we can try to reduce the contributions from these elements:

X BRDE x GCF

collector power —  source power source source collector

X TT (1)

Ways to reduce each of these factors are discussed below. The creative use of aperture stops,
Lyot stops, and field stops is an important part of any attempt to reduce the GCF term of the power
transfer equation.

For the discussion that follows, examples from a two-mirror Cassegrain design, with the aperture
stop at the primary, will be used to stimulate thoughts about stray light reduction possibilities for
other sensors.! The system is shown in Fig. 1.

Critical Objects

The most fundamental concept is to start the stray light analysis from the detector plane of the
proposed designs. The most critical surfaces in a system are those that can be seen from the detector
position or focal surface. These structures are the only ones that contribute power to the detector.
For this reason, direct your initial attention toward minimizing their power contributions by remov-
ing them from the field of view of the detector.

The basic idea is to visualize what would be seen if you were to look out of the system from the
image plane. Unlike most users of optical instruments, the stray light designer’s primary concern is sel-
dom the object field, but rather all the interior surfaces that scatter light. It is necessary to look beyond
the radii of the imaging apertures to find the sources of unwanted energy. Removing these sources from
the field of the detector is a real possibility, and will result in a significant improvement in the system.

Real-Space Critical Objects

I will start out by identifying a particular critical real-space object that can be seen by the detector in
our example; it is the inside of the secondary baffle. The direct view discussed here is different than
the image of the same baffle reflected by the secondary which is discussed in the next section.
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FIGURE 1 Typical Cassegrain design with the aperture stop at the primary. (Ref. 2, p. 52.)

Many Cassegrain secondary baffles have been designed to be cone-shaped (Fig. 2), usually
approximating the converging cone of light from the primary. From the detector, portions of this
secondary cone are seen directly as a critical surface. Since most of the unwanted energy is incident
on this baffle from nearly the same direction as this surface is seen from the detector, the addition of
vane structures would be of little help, assuming an optimum coating is used on the simple baffle.
If the cone is made more cylindrical, the amount of critical cone area is reduced, and the angle at
which the surface is seen gives a smaller projected area (Fig. 3).

Avoid making the baffle cylindrical because the outside of it would be seen. Since the detector
is of a finite size there is a fan of rays off the primary representing the field of view of the telescope.

Forward scatter to detector image

Image of
main bgafﬂe g // Back sc!at/ter to detector
Image of jé%::‘ ________

detector\"': 7/ —_—__——‘_‘:=====__Jw

Image of | , ///

conical baffle Image of Conical baffle

secondary baffle

Objects imaged
by secondary

FIGURE 2 Direct and reflected scatter from the cone-shaped secondary baffle.
(Ref. 1, p. 4.)
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Outgoing edge ray

Cylindrical baffle

FIGURE 3 Reduced scatter from an almost cylindrical-shaped secondary baffle.

Although collimated for any point on the detector, any point not on axis would have its ray bundle
at some angle to the optical axis, hence a cylindrical secondary baffle would be seen from off-axis
positions on the detector.

Imaged Critical Objects

Imaged objects are often critical objects. They too can be seen from the detector. Determining which
of the imaged objects are critical requires a bit of imagination and usually some calculations; stray
light software can help you make the calculations. The Y-Y bar diagram can help you to conceptual-
ize and determine the relative image distances and sizes with a minimum number of calculations.?
The same could be done with other first-order imaging techniques (see Chap. 1 in this volume).
Using the Cassegrain example again (Fig. 2), you can see that reflected off the secondary mirror
are the images of the detector and the inside of the inner conical baffle (object 3 in Fig. 1). In some
designs the outside of the conical baffle will be seen in reflection. These are imaged critical objects. If
you wish, you can eliminate some of these images with a central obscuration on the secondary, or
for the conical baffle, with a spherical mirror concentric about the image plane. The direct view to
the inner conical baffle will remain, but the path from the image of it is removed.

The cone-shaped secondary baffle is also seen in reflection (Fig. 2). For the incident angles of
radiation on this surface, the near specular (forward-scattering) characteristics will often be one
of the most important stray light paths because the image of the detector is in that direction. This
is an extension of starting from the detector. There is an image of the detector at the prime focus of
the primary mirror. Often, as in this case, one location may be easier than another for you to deter-
mine what could be seen. By making the baffle more cylindrical, part of the image of the baffle is
removed from the detector’s view; as a result, the power that can scatter to the detector is reduced.
Furthermore, it is sometimes possible to baffle most of this power from the field of view with one or
two vanes (Fig. 4).

Continue the process of removing critical surfaces until all the critical surfaces have been consid-
ered for all points in the image plane. The power contributions from these surfaces will either go to
zero, or at least be lessened after you reduce the area of the sections seen.

There is still more that can be done, since only the GCF term in the power transfer equation to
the detector has been reduced. It is also possible to minimize the power onto the critical sections,
which will become the source of power, @, at the next level of scatter. This approach can be very
similar to the approach used for minimizing the power scattered to the image plane. The viewing
is now forward from the critical surfaces instead of the image plane. By minimizing the BRDF and
GCEF factors of the surface scattering to the critical sections, the power incident on the critical sur-
faces will be reduced. Hence, the power to the detector is also reduced.
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FIGURE 4 A cylindrical secondary baffle can be seen from off-axis positions on the detector.

Illuminated Objects

Minimizing the GCFs and BRDFs for the specific input and output angle is sometimes easier if you
look into the system from the position of the stray light source in object space. By doing this, you
can identify the surfaces that directly receive the unwanted energy. I will call these the illuminated
objects. If any of these illuminated surfaces contain sections that the detector can see, then you
should direct your initial efforts toward eliminating these paths. These paths will usually dominate
all other stray light paths because there is only a single scatter before the stray light reaches the
detector. An example of such a path that is often encountered is from the source onto the inner
conical baffle of multimirror systems (Fig. 1). Some of the ways that the direct radiation can be
eliminated is by extending the main baffle tube, increasing the obscuration ratio by increasing the
diameter of the secondary baffle (Fig. 5), or by narrowing the field of view, which will allow you to
extend the secondary baffle and the inner conical baffle toward each other.

The effect of eliminating this path is shown in a composite Point Source Transmittance (PST)
plot in Fig. 6.* The PST plot is defined as the reference plane (detector plane in most cases) irradi-
ance divided by the input irradiance along the line of sight. (See the section called “Point Source
Transmittance Definitions” for a more detailed definition of PST.) For the case shown, the unwanted
irradiance on the detector is reduced by over an order of magnitude.

Aperture Placement

I will now focus on the optical design aspects of a stray light suppression system, and give a qualita-
tive discussion of some general aspects that you might consider. All optical systems will have at least

FIGURE 5 Increased obscuration ratio blocks direct
path to inner conical baffle. (Ref. 1, p. 6.)



7.6

DESIGN

_5 T T
6+ 4
I
w
9
N
S)
o0
o)
s
7tk 1 4
2
8t 4
1 1
0 10 20 30

Off-axis angle

FIGURE 6 Point source transmittance with obscurations of (1) 0.333 and (2) 0.4. The 0.4
obscuration removed the direct path from the source to the inner conical baffle. (Ref. 1, p. 6.)

one aperture, called an aperture stop, that limits the size of the bundle of the incoming signal rays.
Some systems will have field stops and/or Lyot stops. Each type of stop has a clearly defined role in
stray radiation suppression, which is discussed in the following sections.

In many cases stop placement will have a much more noticeable effect on system performance
than any vane structure, coating, or baffle redesign. Probably the only factor with more effect on the
PST curve is the off-axis position of the source. Therefore, the benefits of any of the stops cannot be
overemphasized.

Aperture Stops  The aperture stop is the aperture that limits the size of the cone of radiation that
will reach a point on the image plane. Sometimes shifting this stop allows the optical designer to
better balance the aberrations. In a stray radiation suppression design, it plays a similar important
role. All objects in the spaces preceding the stop in the optical path will not be seen unless they are
imaging elements, central obscurations, or objects that vignette the field of view. Only a limited
number of critical objects is possible before the aperture stop. In the intervening spaces from the
stop to the image plane it is likely that many of the baffle surfaces will be seen. Figure 7 represents
a two-mirror design, and Fig. 8 represents a three-element refracting system; both have the stop at
the first element. In both cases the second element is oversized to accommodate the field of view
from a point in the field stop; the amount depends on the full field of view of the design. Because
the elements are oversized, the main baffle following the first element will be seen. This baffle will
be a critical object, a direct path of unwanted energy. The “overviewing” is characteristic of all of the
optical elements past the aperture stop.

If you move the stop along the optical path toward the detector plane, its performance as a stray
radiation baffle will improve. If you shift the stop to the second element, the intermediate baffle will
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FIGURE 7 The oversized secondary allows the main baffle
to be seen in reflection. (Ref. I, p. 8.)
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FIGURE 8 The main baffle is seen through the oversized
secondary and tertiary. (Ref. 1, p. 8.)

not be seen. It is removed from the field of view of the detector, since the stop now eliminates direct
paths from baffles in all spaces that precede it. Figure 9 shows the improvement in the PST curve for
a two-mirror system. By moving the stop you have reduced the PST by a factor of 10. This is a desir-
able feature to consider for stray radiation reduction.

Direct paths from central obscurations can be blocked by a central disk located at some location
deeper into the system; however, because of the parallax involved between the central obscuration
disk and this central disk, the central disk obscuration will usually be a larger obstruction to imag-
ing rays. In a reimaging design it is often possible to locate a central disk conjugate to the actual
central obscuration.

Field Stops  An aperture can be placed at intermediate irmages in a system to limit the field of view.
Such an aperture will usually prevent any stray light from outside of the field of view from being
directly imaged into the system beyond this field stop aperture. In a sense, its operation is just oppo-
site that of an aperture stop. Baffle surfaces following a field stop cannot be seen from outside the
field of view in the object plane, unless they are central obscurations. Note that with just a field stop,
succeeding optical elements may allow out-of-field critical sections to be seen through the field stop,
from within the field in the image plane (Fig. 11). Aperture stops are necessary to block such paths.
Figures 10 and 11 show two such cases. Although for some designs the field stop is not 100 percent
effective because of optical aberrations, its small size limits most of the unwanted stray light. Field
stops therefore do not remove critical sections, but rather limit the propagation of power to illumi-
nated objects. In reflecting systems, take care that the object side of the field stops does not become
a critical area, which can be seen directly or in reflection from the image plane because unwanted
energy is being focused onto them.’
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FIGURE 9 PST improvement with stop shift for the two-mirror system.
(Ref. 1,p. 8.)

Aperture stop

Detector

| | | |Field stop

Lyot stop |

FIGURE 10 The addition of a Lyot stop prevents preceding baffles
from being seen from the image.

Lyot Stops A limiting aperture placed at the location of the image of an aperture stop, sometimes
called a glare stop or Lyot stop, has the same property as described for aperture stops. It should
be slightly smaller than the image of the aperture stop. It limits the critical sections which are out
of the field of view to those objects in succeeding spaces only. Since Lyot stops are by definition
further along the optical path to the detector, the number of critical surfaces seen by the detector
will be reduced. Usually, these stops are incorporated into the design to block the diffracted energy
from an aperture stop and field stop pair, so that only secondary or tertiary diffracted energy
reaches the image. Nevertheless, both diffracted and scattered energy are removed from the direct
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Aperture stop

Scattered energy will reach the image plane

FIGURE 11 Out-of-field energy in object plane will not be
imaged beyond field stop. Out-of-field energy elsewhere may be
seen. (Ref. 1, p. 9.)

view of the image, re imaging the largest optical element as the stop takes full advantage of both
the light-gathering power of the optics and the stray radiation suppression features provided by
the stop. Figure 10 shows a system with a Lyot stop.

On space-based telescopes the image plane is often shared by one or more instruments. Each
instrument reimages the telescope’s image through some optical train, and eventually onto the
detector. In that optical train there could be a logical place to use a Lyot stop to improve the stray
light performance of the viewing instrument well beyond that of the telescope.

It is the combination of these different stops or apertures that helps minimize the propagation
of unwanted energy by limiting the number of critical objects seen by the detector, and the objects
illuminated by the stray light source.

When all direct paths have been eliminated, the next step is to determine the relationship
between the sections that received power (illuminated objects) and the critical surfaces. This rela-
tionship takes the form of scattering paths; that is, stray light can scatter from the illuminated
objects to the critical objects. To start reducing the stray light contributions from these paths, you
can start at the critical surfaces as described above. But now you have more knowledge about where
the direct incident power is being distributed throughout the system, since you can also look into
the system from the source side to find the surfaces receiving direct power. With this information
you can identify the possible paths between the illuminated and critical surfaces.

Design considerations for extended baffle shields (Figs. 12 and 13) provide a good example of
starting from the source side to identify possible paths. In the examples, object 2 (an optical sur-
face) is the largest contributor of scattered radiation and is the best superpolished mirror available
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shield to the primary

FIGURE 12 There is a direct path from the baffle to
the primary mirror. (Ref. 1, p. 7.)
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FIGURE 13 There is a direct path from the baffle to the
refracting element. (Ref. 1, p. 7.)
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FIGURE 14 Direct paths are removed by properly tilting
the shield. (Ref. 1, p. 7.)

(Fig. 12), or if it is a lens as in Fig. 13, it has the lowest possible scattering characteristics. It cannot
be removed from the view of the image plane. If the initial power incident on object 2 is only from
the extended shield, then by tilting the shield (Fig. 14), the power on the shield must first scatter to
the main tube and then to the optical element. The combination is then referred to as a two-stage
baffle. If vanes are added to the main baffle, the scattered radiation incident on the optical element
will be reduced by many orders of magnitude when all the scattering solid angles and the number of
absorbing surfaces are considered. Note that without the tilt to the shield, vanes on the main baffle
are worthless because there is a direct path to the objective.

Figure 15 is an abstract representation of the process of reducing stray light in a sensor system.
Start at the detector, then work from its conjugate image locations. Starting from the detector
simplifies the analysis and directs your attention to the most productive solutions, because you
can identify all the possible sources of stray light to the detector. You can then work at decreas-
ing their number by slightly redesigning the baffles and stops. Next, identify which objects are
illuminated. Discover how energy may propagate between them and you have identified the paths
of stray light propagation. From then on the process of moving objects or blocking paths is quite
simple, although the quantitative calculations might get difficult and may require some analysis
software.

Baffles and Vanes

A few definitions are required to define baffles and vanes. Other authors have used their own dif-
ferent definitions. In this section the term baffle is used to describe conical structures (including
cylindrical) that can also be described as tubelike structures. Their function is to shade, or occult,
stray light from the source to one or more system components. The main baffle shields the primary
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FIGURE 15 The first step in a stray light analysis begins from the detector plane, not from the source.

mirror from direct radiation at the larger off-axis angles. Vanes are structures put on baffles to affect
the scatter characteristics of the surface. Other authors have used the term “baffles,” or “glare stops,”
to describe these vanes.

Baffles In a well-designed system vanes play an important role only at large off-axis angles. For
example, when one-tenth of the stray light falls on the primary of the Cassegrain design, then the
main baffle receives the remaining 90 percent of the stray light. When the main baffle has properly
designed vanes on it, light that falls on the baffles is attenuated by five orders of magnitude before
it reaches the primary mirror. The resultant power on the primary mirror is then about 9.0 x 107°
compared to the direct 10 percent that fell on the mirror. This results in less than 0.1 percent of the
total on the primary. In addition, most of the subsequent scatter off the primary will be at much
higher scatter angles. This will cause the scattered energy to have much lower BRDFs off the pri-
mary mirror when scattered in the direction of the detector, further reducing the scatter contribu-
tion from the baffle.

Only when no power illuminates the objective will the baffles play a significant role in the propa-
gation paths of the stray light. Usually the system’s performance merit function is then very good.
Only if the stray light source has a tremendous amount of energy, like the sun, does the stray light
become measurable.

Vanes The depth, separation, angle, and bevel of vanes are variables that need to be evaluated for
every design. In the following paragraphs stray light analysis results are presented for both a cen-
trally obscured system (Cassegrain) and an unobscured eccentric pupil design (Z-system).® Profiles
of these systems are given in Figs. 2 and 16. Of the two designs, only the eccentric pupil design has
a reimager that would allow for the placement of an intermediate field stop and an accessible Lyot
stop, as discussed above.

The APART stray light analysis program was used to analyze the two designs. The APART program
was a substantial software package that performed deterministic calculations of stray light propaga-
tion in optical systems.>”

As an example of vane design considerations, the design of vanes on a main baffle tube will be
explained. With minor differences, the design steps are the same for the Cassegrain and the eccen-
tric pupil designs. In a reimaging system, vane structure deep in the system is usually not neces-
sary, but there are exceptions. Figure 17 shows a collecting optical element that has some small
field of view (FOV). The optical element could represent a primary mirror or a refractive element.
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FIGURE 16 Confocal mirror system, eccentric pupil, no obscuration, low-
scatter system. (Ref. 6, p. 91.)

FIGURE 17 Vane placement design, lowercase letters are radii (measured from
the optical axis), uppercase are z locations. (Ref. 6, p. 94.)

The placement of a straight, diffusely coated cylindrical tube would block the direct radiation
from an external source, such as the sun, from reaching the optical element for a certain range
of off-axis angles. If it were at a large off-axis angle, the forward scatter off the inside of the tube
would be so high that it would normally not be acceptable. The solution is to add vanes to block
this path.

Figures 18 and 19 depict the two cases that could represent the scatter from a baffle. In one case
there are no vanes; in the other case there are vanes. This example shows how a propagation path is
blocked by vanes. Vanes are useful, but a better approach is to make the solid angle (€2 ) from the
baffle (not the vanes) to the collectors of the scattered light go to zero, so that there is no path from
the baffle and vane structure to the collecting object. By moving the baffle out of the field of view of
the collector, the baffle’s contribution goes to zero. There is no edge scatter, and no edge diffraction
effects. That topic is in the realm of baffle design, which has already been touched on, and is well
covered in the literature.>!°
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FIGURE 18 High forward scatter path. FIGURE 19 Forward scatter path highly
(Ref. 6, p. 92.) attenuated by the vane structure. (Ref. 6, p. 92.)

Designing the Vane Spacing and Depth'?

A first vane is most often placed at the entrance of the baffle and an external ray is brought in from
object space at a maximum off-axis position. If there is no forebaffle the angle is 90° off axis. The
depth of the vane cavity is normally dictated by space and weight requirements. Too little depth
will dictate the requirement for many vanes. Then vane edge scatter eventually becomes the major
source of scatter instead of multiple vane scatter.

The initial ray will strike the side wall at the base of the first vane (point A in Fig. 17). From this
point, a design line is drawn/calculated (AC) from the wall to the edge of the optical element on
the opposite side. This line (AC) intersects the edge ray (EF), at z position D. At this point a vane
could be placed. Mathematically, this assures that any point below C, including those on the optical
element, would not see any directly illuminated side wall. However, practicality dictates that some
offset of point D to a point D" (not shown) is required to allow for tolerance errors in fabrication of
the vane, thermal effects, assembly errors, and for stray light edge scatter and diffraction effects. The
tolerance allowance is company-, material-, and design-dependent. Acceptable numbers are often
about 0.125 mm for fabrication and assembly tolerances. For the rest of this analysis, assume that
this is accounted for.

Continue the design process by constructing another line from the edge of the entrance aperture
to the tip of the second vane to the wall (line GH). Draw a new HC line to the area near the objec-
tive and determine the placement of the third vane (at I); once tolerances are considered, iterate the
process to reach a final design. In some cases you may have to consider more than just the scatter
path to the objective. In the Cassegrain design you may also have to consider the inner conical baffle
opening. It is beyond the present scope to go into further detail.!?

Bevel Placement on Vanes In this short discussion on baffle-vane design and placement, I did not
mention the placement of a slanted surface, or bevel, sometimes placed on a vane edge as shown in
Fig. 20. Which side should the bevel go on? The answer is usually dictated by first-order scatter prin-
ciples.!>!* Near the front of the tube, direct radiation from a source at large off-axis angles will strike
this bevel. If it is placed on the right side (Fig. 21), then the illuminated bevel will scatter its radia-
tion all the way down into the tube to some optical surface. If placed on the left side, as depicted in
Fig. 20, then it will go only 16° deeper into the system to the opposing vanes, a much better solu-
tion. For vanes deeper into the system, the bevel is placed on the right side. The point at which this
is done is determined by the angle of the bevel and the diameter of the baffle tube. At some point,
external radiation will not be able to directly strike the beveled edge if it is on the right-hand side of
the vane. Only the nonbeveled, straight side will be illuminated. Therefore, the vane can rescatter
only in the left side of the hemisphere, which is in the direction of going out of the system. If the
bevel is placed on the left side, it can scatter 16° (in the example) deeper into the sensor; this is usu-
ally a needless design shortcoming that could be a significant error.

Vane Angle Considerations Another variation on the design feature of vanes that has sometimes
been incorporated onto baffles in an optical system is angled vane structure. These vanes are non-
planar objects. This makes them quite tedious to cut out of sheet metal, fabricate, and install.
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FIGURE 21 Placement of the
bevel on the right side of the vane
structure. (Ref. 6, p. 96.)

45°

FIGURE 22 Vane structure angled at 90, 70, and 45°, respectively. (Ref. 6, p. 97.)

The next few paragraphs will present computer analysis results from two designs to show the effect of
vanes on the propagated stray light. The vane angles used were 90, 70, and 45°, as depicted in Fig. 22.
The comparative stray light results for the Cassegrain system (Fig. 1) with a Martin Black coat-
ing on the vanes are shown in Fig. 23; in this system the vanes are on the main baffle, but not on the
sunshade. There is no difference in the performance as the vane angle is varied from 45° to 90° (all

three curves lie one on top of the other).
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FIGURE 23 Cassegrain with Martin Black. Vane angles 1 =90°,2 =
70°, 3 = 45°. Log PST = detector irradiance divided by input irradiance.

(Ref. 6, p. 97.)
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FIGURE 24 Z-system with Martin Black. Vane angles 1 = 45°, 2 = 70°,
3 =90°. Vanes are on the sunshield. (Ref. 6, p. 114.)

The comparative results for the Z-system (Fig. 16) with vanes on the sunshield are shown in
Fig. 24. The results differ from the Cassegrain results for source located at angles greater than 45°
off-axis. This is because the primary side of the baffle is illuminated and scatters light directly to the
primary mirror. The 70° baffles would fail for sources beyond 70° off-axis. The Cassegrain system has
vanes on the main baffle (not the sunshade) and the sunshade occulted the direct illumination of the
primary side of the 45° vanes. This accounts for the subtle but important difference in the results.

Usually the first-order scattering properties of the vane structures are more important than
whether the vanes are angled or not. The results presented above confirm this statement. There are
occasions where angled vanes would be beneficial, but to fully understand those cases a much longer
explanation of diffuse vane baffle scatter is necessary. These results are detailed elsewhere.!>!®

There are special situations where angled vanes will have a significant advantage over annular
vanes. One example is a bright source at a fixed offset angle. I have seen such a feature on a space-
borne telescope on a platform where there was nearby a brightly sunlit rocket-thruster casing at a
fixed angle outside the field of view. Figure 25 shows the design where the vanes were aimed at the
thruster at an angle where the primary mirror side (right side in Fig. 25) could not be directly illu-
minated by the sunlight scattered off the thruster. Under those circumstances most of the stray light

NN,

FIGURE 25 Angle-staggered vanes for fixed input angle.
(Ref. 6, p. 104.)
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had to make three scatters before exiting the vane cavity. In general, as soon as the position of the
bright object is moved over a range of angles, the advantage of the angled vanes is lost. Nevertheless,
there are many occasions within a sensor where the relative positions of a scattering source and a
collecting object are fixed along a major stray light path. The front parts of the main-barrel baffle
and the opening of the inner conical baffle in the Cassegrain design is an example. Many more
examples could be cited. But the point is that you, as a designer, should first consider the first-order,
single scatter paths off the baffle wall, each side of the vanes, and the bevel, for the full range of input
values. Based on that information you can make the decision to user planar or angular vanes.

Vane Depth Considerations By varying the vane depth in the example analysis we can evaluate
how the vane spacing-to-depth ratio affects system performance. Figure 26 gives the results of
an analysis of the Cassegrain system with varying vane depths on the main baffle of 0.2, 0.4, and
0.8 inches. Figure 27 gives similar output from the Z-system analysis results. The performance of the
system gets better as the vane depth increases from 0.2 to 0.4 inches, but there is little performance
difference between the 0.4- and 0.8-inch baffle depths. The latter is the normal case. The 0.2-inch
vane depth allows for a single path from the walls of the baffle tube, which increases the stray light
propagation. Once that path is blocked by a greater vane depth, no further improvement should be
expected due to further increases in vane depth.

The intent of presenting the two different optical designs was not to trade off one optical design
against another. It needs to be made clear that the two optical sensors being used as examples are
intentionally not equivalent from stray light design considerations. This is why the changes in
performance are design-dependent. The nominal design of the eccentric pupil has a reimager, and
the Cassegrain does not. The Cassegrain could have a reimager, in which case the stray light perfor-
mance of both could be made essentially equal. It would depend on the optical design character-
istics, F/#, field of view, obscuration ratio, etc. The Cassegrain design has a specular sunshield and
the Z-system has a vaned diffuse baffle structure. Which would perform better could only be deter-
mined after all of these features are considered.

To summarize, the general points being made in this section are

1. Usually, angled vane structure has little, if any, additional benefit over straight, annular vanes,
and the annular vanes are much easier to fabricate and assemble.

2. Once the depth of a diffuse black vane structure is deep enough to block the single scatter path,
further increases will not improve performance.
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FIGURE 26 Cassegrain 90° baffles, coated with Martin Black, at
varying depths; 1 = 0.2-inch, 2 = 0.4-inch, 3 = 0.8-inch depth. (Scatter is
dominated by baffles.) (Ref. 6, p. 98.)
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FIGURE 27 Z-system with varying vane depths. 1 = 0.2-inch, 2 =
0.4-inch, and 3 = 0.8-inch depth. (Ref. 6, p. 114.)

Specular Vanes Another aspect about vane structure that has been explored, but only in a limited
way, is the specular vane cavity. Previous studies indicated that specular vanes have a problem with
the aberrated rays and near specular angle scatter; this problem is severe enough to degrade the
performance significantly.!”'® In another study by Freniere this was not always true.!* The ASAP?
stray light software was used to evaluate the Z-system (Fig. 28) with (1) no vane structure, but with
the main barrel baffle coated with Martin Black; (2) with Martin-Black-coated vanes; and (3) with
a specular vane structure. The results show a dramatic degradation in the stray light performance
without the coating on the main baffle tube. A subsequent specular baffle design developed by Nick
Stavroudis has been shown to be a major improvement over previous concepts.?!
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FIGURE 28 PST for unobscured pupil design without vane
structure, with diffuse vane structure, and with specular vanes.
1 (solid) = no vanes, diffuse black coating; 2 (dotted) = diffuse vanes on
main tube; 3 (dashed) = specular vanes on main tube. (Ref. 6, p. 115.)
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Contamination Levels

Light scattered from a particulate-contaminated surface can have a pronounced effect on the stray
light performance of a system.??

I will now relate the performance of both designs (the centrally obscured Cassegrain, and the
unobscured eccentric pupil) as a function of the level of scatter, per MIL-STD 1246A.% This analy-
sis evaluates the sensor for different amounts of contamination on the optics only. The levels of
contamination as defined in IEST-STD-CC1246D are for a distribution of particles with a specified
range in particle sizes.

Ray Young used Mie scattering theory to predict the BRDF of a mirror covered with such MIL-
STD distributions.>* Table 1 was generated from Young’s work for the 10 wm radiation. This table
shows the base BRDF value and the BRDF slope that would be used in a typical stray light analysis
program for input. The base value is the BRDF value at (8 — ) = 0.01 and the second term is the
slope of the BRDF in a (log-log) plot of BRDF versus (8— ). B, is the sine of the angle of incidence
and f3 is the sine of the observation angle.?> The terms work equally well for out-of-plane values, but
the above definitions, for simplicity, assume in-plane scattering data. See also the works of Spyak.??

Spyak and Wolfe? did a series of experiments and calculations that relate BRDF to particulate
contamination. They counted and sized particles on a mirror surface, and then measured the con-
tribution of these particles to the mirror’s BRDF at both visible (633 nm) and infrared (10.6 um)
wavelengths. They also performed Mie theory calculations and compared their calculations with
the measured BRDFs. At both visible and infrared wavelengths, Mie theory calculations were a
reasonable estimate for contribution of particulates to a mirror’s BRDE In most cases agreement
between Mie calculations and their measurements were within a factor of two. Spyak and Wolfe
also published Mie calculations of the BRDF expected from the MIL-STD-1246B (now IEST-STD-
CC1246D) standard at 633 nm and 10.6 mm.*

Michael Dittman?” has published a series of Mie calculations at five wavelengths. His calculations
were done for the IEST 1246D distributions, but he considered an additional distribution in which
the “particle slope” on the distribution was reduced from 0.926 to 0.383. The latter slope results in
more large particles, and is commonly thought to be a more realistic distribution on surfaces that
are exposed in a cleanroom environment.”

There is a problem with specifying the optics with this standard because it is difficult to reliably
relate a level of contamination by particles to a BRDF performance. Two equal sizes and distribu-
tions of particulates may not give the same BRDE, because the index of refraction, the reflectivity,
and the roughness of the particulates enter the calculations. In general, few people go to the trouble
to determine these other factors. These factors will vary from one distribution to another. BRDF is
the most usable value when performing a stray light analysis, so it should be the stray light specification.
For manufacturing specifications, other parameters may be more appropriate, but they are not as
good as BRDF for a stray light specification.

The level of scatter is also given in Table 1 along with the BRDFE. The BRDF data from particulate
scatter for the 5-, 10-, and 20-um wavelengths for the 100, 300, and 500 contamination level have

TABLE 1 Mirror Scatter Relationships [Wavelength =
10 um, BRDF Slope in Log (8- )]

BRDF at
(B-B,)=0.01 BRDF Slope Cleanliness Level
0.02 -1.17 500
0.01 -1.17 454
0.001 -1.17 300
0.0001 -1.17 204
0.00001 -1.17 100

“Personal communication on partical contimination paragraphs, contributed by Dr. Gary Peterson, Breault Research
Organization, Inc.
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FIGURE 29 Predicted BRDFs on particles deposited on low—scatter mirror for cleanliness levels of 100, 300, and 500 at radia-
tion wavelengths of 5.0, 10.0, and 20.0 pm.* (Ref. 6, p. 105.)

been plotted in Fig. 29. Consensus, not factually documented, indicates that the current state of
the art of contamination control is at the cleanliness level of 300 to 500 for the 10-pm-wavelength
region. Measured BRDFs below level 200 are achievable in the lab for short periods of time. A stray
light analyst is strongly advised not to predict a system’s performance with values below 1.0E-3 sr!
in the 10-pum region. Based on historical performance, mirrors in the IR (10-um region) consistently
degrade to this value, usually because of particulate scatter. Research work performed under Rome
Air Development Center contract for the detection, prevention, and removal of contamination from
the ground and in space could greatly reduce the degradation currently experienced by IR sensors.?

Hal Bennett presents the significance of particulate scatter, as shown in Fig. 30.?° This figure
shows an agreement between measured data and theoretical data, and illustrates why IR sensors
are usually more sensitive to particulate scatter than RMS scatter; the opposite is true in the visible.
Figure 30 also indicates why the wavelength scaling law does not usually relate visible BRDF mea-
surements to BRDF measurements in the IR. The physical process is different.

Figures 31 and 32 are the representative point source transmittances (defined as the irradiance
on the detector divided by the incident irradiance) for the cleanliness levels of 100 through 500 for
each design. The Cassegrain is much less affected by changes in contamination level, because the
scatter from the black-coated surfaces dominates all other scatters. If the system had a reimager its
performance would be better because these black surfaces would be blocked from the field of view
of the detector, and the stray light performance would be due to the cleanliness level of the optics.
The eccentric pupil design is sensitive to changes in the mirror coatings because it does have a reim-
ager, and the major source of scatter is from the mirror surfaces.

In summary, the impact of particle contamination on the performance of a system will depend
on how well the system is designed to suppress stray light. The goal is to be limited by a single opti-
cal element, such as the collecting lens or mirror, which is the objective of the system. The eccentric
pupil design (Z-system) has this design feature. The better the optical design from a stray light point
of view, the more the system’s performance will be degraded by particle contamination. The more
the system performance is determined by the black coatings, the more it will be sensitive to degrada-
tions in the coatings on the baffles.
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Strut Design

In a centrally obscured system the central obscuration must be supported. In some designs
(Schmidt-Cassegrains) the obscuration can be supported by a refractive element, but in most designs
some form of struts are used. The most common error in strut design is to specify manufacture
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FIGURE 30 Scattering from polished dense flint glass. The diagonal line
gives the contribution predicted for microirregularity scattering by a 29.5 A rough
surface. Circles indicate the minimum scattering observed, and the bars and
squares the difference between the average and minimum scattering observed at
several points on the surface. This difference may be related to particulate scat-
tering. (Ref. 29, p. 32.)
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FIGURE 31 Cassegrain system with mirrors at all five contamination levels.
1 =100, 2 =204, 3 =300, 4 =454, 5=500. (Ref. 5, p. 113.)
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FIGURE 32 Z-system with mirrors at all five contamination levels. 1 = 100,
2=204,3 =300, 4 =454,5=500. (Ref. 6, p. 113.)
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FIGURE 33 Angled strut design does not allow the detector to see the sides of the strut.

from a slab or plate of coated metal. Because all detectors have some finite field of view, the scat-
ter from the sides of the struts can be seen from the image plane. Usually the struts are out “front”
and exposed to more stray light sources than the objects deeper into the system. The near off-axis
angles of incidence of scattered light off of the strut sides make for very high scattering toward the
detector.

The proper strut design will preclude this path by making the object end of the strut narrower
than the side nearest the objective (primary). This shape, shown in profile in Fig. 33, does not allow
the detector to see the sides of the struts. The angle of the taper depends upon the object space field
of view of the detector. It requires only a small change in design to remove this stray light path.

Basic Equation of Radiation Transfer

This section briefly discusses the most fundamental equation needed to perform the quantitative
calculations of a stray light analysis. It reinforces the concept of first identifying what the detector
can see and working on the geometry of the system to limit the stray light propagation, and not the
BRDF term.
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The fundamental equation relating to power transfer from one section to another is:

cos(@ )dA cos(d,)

d®, =1 (0., ¢,.)dA, e )

where dCDC is the differential power transferred, LS( 0, ¢C) is the radiance of the source section, dA
and dA_ are the elemental areas of the source and collector, and ¢, and ¢, are the angles that the line
of sight from the source to the collector makes with their respective normals. This equation can be
rewritten as three factors that help clarify the reduction of scattered radiation.

LGe0) cos(9,)dA,cos(6)
A0, =g B0 8)dA © )
d®_ =BRDF(8;, ¢;; 6, 9. )dP (6;, §,)dQ_cos(¢,) (4)
d®_=BRDF(6,,¢;6.,9,)d® (6, ¢.)GCF_ 7 )

E(6,, ¢,) is the incident irradiance on the source section dA. GCF,_. is the projected solid angle from
the source to the collector divided by 7.

The GCF is independent of the first two terms and solely determined by the geometry of the
system, including obscurations. The first term, BRDF (91., 006, ¢c)’ is the bidirectional reflectance
distribution function. It is usually considered independent of the second term, the incident power,
and is therefore a function of the surface characteristics only. When reducing stray radiation propa-
gation, one or more of these terms must be reduced. If any one of these terms is reduced to zero, no
power will be transferred between the source and collector.

Stray Radiation Paths

Since the third term (GCF) in Eq. (4) is the only term that can be reduced to zero, it should receive
attention first. This is a crucial point in a stray light analysis. Therefore, the logical starting place
for stray light reduction is with the critical objects, since it is the GCF terms for these transfers
which can be reduced to zero. Most novice analysts make the mistake of working on the BRDF
term first.

GCp = S08(@)dA cos(9,)
7R2

The apparent possibilities for decreasing the GCF are to increase R, @, ¢_ or to reduce the area dA .
Not readily apparent is that the GCF is limited by apertures and obstructions. These features will,
in some cases, block out the entire view of the source section from the collector so that there is no
direct path. This is the mathematical basis for the logical approach, discussed at the beginning of the
chapter. First block off as many direct paths of unwanted energy to the detector as possible, and then
minimize the GCF for the remaining paths.

Point Source Transmittance Definitions

There are five common ways to define the merit function of the stray light in an optical sensor.
The most common and preferred method is to define it as the output irradiance divided by the
input irradiance, in terms of the normalized detector irradiance (NDI),*® or in terms of the point
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source normalized irradiance transmittance (PSNIT).?! This merit function is appropriate because it
describes an irradiance transmittance, and it is relatively independent of the detector size.

A term often used in the past was the off-axis rejection (OAR), defined as the detector power
divided by the input power from the same source on-axis. The term rejection is a misnomer because
by definition the term describes a power transmittance, which can have little correlation with the
rejected stray light. The second objection is that as a merit function it varies significantly with the
detector size. If you double the area of the detector, the OAR will increase by about the same factor
even though the system hasn’t performed significantly worse in any way.

Another term commonly used is the system’s stray light point source power transmittance (PSPT),
or its reciprocal, the attenuation of the system. The PSPT is the detector power divided by the input
power into the sensor from the specified off-axis angle. Again, this term varies with the detector size.
Sometimes there is no well-defined entrance port so the denominator is impossible to define. Note
that the magnitude of attenuation would normally be expressed in terms of a positive exponential.
Beware that attenuations are often incorrectly called out with negative exponents.

A final PST definition that is sometimes specified is the point source irradiance transmittance
(PSIT), defined as the output irradiance divided by the entrance port input irradiance. This defini-
tion becomes inappropriate when there is no clearly defined entrance port.

Surface Scattering Characteristics

Of the three potentially important factors in scattered radiation analysis cited above (the radiance of
the undesirable source or sources, the geometry of the scattered radiation paths (GCF), and the sur-
face scattering characteristics, (BRDF)), usually the first possibility considered is to improve the sur-
face coatings or the addition of vane structure. In concept it appears to be the right place to start and
that it is straightforward. Neither is the case; the BRDF never goes to zero as does the GCF, and the
BRDF varies with input and output angles. However, with accurate bidirectional reflectance distribu-
tion function (BRDF) data and knowledge about the variations with applications, time, wavelength,
and other factors, BRDF problems can be dealt with. The scattering characteristics of surfaces are
discussed by Church, and the scattering characteristics of black coatings by Pompea and Breault
elsewhere in this Handbook. The addition of vane sections on baffles can usually be considered as a
specialized “coating” with its own specialized BRDFE.

BRDF Characteristics

Usually, BRDF data that are presented represent only one profile of the BRDF, and many such pro-
files for various angles of incidence are necessary for understanding the scattering characteristics.
However, studies have shown that a single profile of a mirror’s surface scattering characteristics
can be used, with some approximations, to define the BRDF for all angles of incidence.* This is a
significant achievement. It reduces the amount of data that must be taken, and it makes it easier to
calculate, or estimate, the BRDF value for any set of input and output angles. The BRDF can also
be reconstructed for cases where only a single profile of the function has been presented, which has
been the usual practice.

The approximation has its limitations, as clearly detailed by Stover.?* The approximation is quite
good for nominal angles of incidence (see Fig. 34).”* However, it breaks down for very high 6, and
high observation angles 6.

It is important to understand qualitatively the scattering characteristics of diffuse black coatings.
Figure 35 shows the BRDF profile of Martin Black at 10.6 pm for several angles of incidence.’
At near-normal angles of incidence the BRDF values are bowl-shaped; the values increase at
large observation angles from the normal. At high angles of incidence the BRDF values in the
near specular direction have increased by 2.5 orders of magnitude. There is a good discussion of
the qualitative characteristics of diffuse black surfaces by Pompea and Breault elsewhere in this
Handbook.
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FIGURE 34 (a) The BRDF is asymmetrical when plotted against 6, — 6,, (b) The
data in (a) exhibits near symmetry when plotted against |3 — 8 |. The slight deviation from
symmetry is due to the factor (cos 6,Q), where Q is a polarization factor. (Ref. 34, p. 69,
reprinted with permission.)

BRDF Log

7.4 OPTICAL SOFTWARE FOR STRAY
LIGHT ANALYSIS

There is a small bevy of commercial optical software programs on the market that perform stray
light analyses or some aspects of the stray light problems that are typically encountered. One must be
knowledgeable of what each package can accomplish so the best thing to do is to ask for a demonstra-
tion of what each optical software manufacturer has to offer that is relevant to your design challenge.
Here’s a summary of a few commercially available optical software codes for stray light analysis.
Note also that the programs’ capabilities are always in a state of flux.
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Martin anodized black—new sample

BRDF
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FIGURE 35 BRDF profile of Martin Black at 10 pm. (F. O. Bartell et al., “A
Study Leading to Improvements in Radiation Focusing and Control in Infrared Sensors,”
Final Report, Army Materials and Mechanics Research Center, December 1976.)

ASAP, by Breault Research Organization, Inc.

ASAP Optical Software was developed to meet design and analysis criteria of imaging and illumi-
nation systems and the unique challenges of stray light analysis with CAD interoperability. ASAP
is powered by the ASAP nonsequential ray-tracing engine—known throughout the optics indus-
try for its accuracy and efficiency. Rays can encounter surfaces in any order and any number of
times, with automatic ray splitting. Optimized for speed, ASAP will trace millions of rays in min-
utes. The standard edition of ASAP includes a license of the SolidWorks Parts Only 3D Modeling
Engine—an intuitive 3D-design environment optimized for use with ASAP. The user can write
ASAP geometry files from within SolidWorks, import XML files, or use BRO’s proprietary smart-
IGES system to import system models from any CAD package while maintaining fast, efficient ray
trace speed.

Use ASAP to model complex imaging systems, illumination systems, and light-concentrating
devices. Create highly accurate source models using source images, point sources, ray grids, and
fans. Model incandescent bulbs, LEDs, CCFLs, and HID arc lamps, or import from the BRO Light
Source Library. Perform the analyses necessary to validate your designs without experimental
prototyping.

ASAP includes a distributed-processing capability allowing the user to complete big design and
analysis jobs effectively in short-time span—spawn up to 5 additional ASAP sessions on other local
area network (LAN), without leaving your desk. Web site: www.breault.com

FRED, by Photon Engineering

FRED is an optical engineering software package that uses a statistical ray sampling approach to
analyzing incoherent stray light mechanisms in optical systems. The user can assign one or more
of many different BSDF scatter functions to a surface. When a ray is incident on the surface, a
specified number of scatter rays are generated in random directions into the hemisphere accord-
ing to a uniformly random angular distribution, although a Monte-Carlo technique can be used
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to generate scatter rays with directional ray density proportional to the BSDF function. The power
assigned to any particular scatter ray is proportional to the incident ray power and value of the
BSDF function evaluated in the direction of the scatter ray. Uniform sampling of angle space has the
advantage that lower power scatter paths will be realized with higher probability. Ray-density direc-
tion sampling has the advantage that more rays are directed in the higher power directions which
decreases the statistical noise in those directions.

When analyzing scatter from a surface, the user is often interested in only a subset of the entire
hemispherical angular range. In these cases a technique called importance sampling can often be
used to great advantage. The user can specify that the same number of scatter rays be generated
into the importance sample direction as was originally directed into the hemisphere to decrease
the statistical noise. An alternative is to decrease the number of rays but still achieve the same
noise level. The desired angular range can be specified in a variety of ways and FRED will then
direct scatter rays randomly into the specified range. The power assigned to each scatter ray is
adjusted to account for the fact that it can be directed only into a subset of the entire hemisphere.
Web site: www.photonengr.com

LightTools and CodeV, by Optical Research Associates

LightTools is a complete illumination design and analysis software product. It combines full opti-
cal accuracy, powerful optical and illumination analysis, and an intuitive graphical user interface
in a 3D solid modeling environment where models interact with rays to produce virtual prototypes
of manufacturable systems. A fully integrated illumination optimization capability automatically
improves model performance. LightTools’ Monte Carlo ray tracing facilitates accurate spectral mod-
eling of the illuminance, luminance, intensity distributions, and CIE colorimetric data anywhere in
the optomechanical model.

In addition to illumination system design, LightTools supports many other applications, from
packaging studies to stray light analysis. For example, its ray path visualization collects and displays
information about ray-surface interactions to identify system elements that are contributing to light
loss, scatter, unintentional reflections, or ghost images. A unique point-and-shoot ray tracing capa-
bility allows rapid, interactive evaluation of optical behavior.

CODE V is used for the optimization, analysis, and tolerancing of image-forming optical systems
and free-space photonic devices. Its many capabilities include powerful local and global optimiza-
tion for optics, fast wavefront differential tolerancing that allows as-built considerations to be evalu-
ated throughout the design process, and highly accurate diffraction beam propagation analysis. For
stray light applications, CODE V can be used to analyze ghosts in imaging systems due to Fresnel
reflections. Web site: www.opticalres.com

ZEMAX, by ZEMAX Development Corporation

The ZEMAX program, from ZEMAX Development Corporation, has two modes of use. Its primary
use is as a sequential optical design (optimization) program. In this mode it has tools to help iden-
tify location of ghost pupils and images resulting from Fresnel reflections. A separate nonsequen-
tial mode has many capabilities necessary for stray light analysis, including scatter modeling with
importance sampling.

ZEMAX’s Nonsequential ray-tracing capabilities can further be extended to finding rays which
have specific characteristics or properties. For example, imagine you are studying the stray light in a
telescope:

How significant are rays which “ghost” reflected off of various surfaces (both mechanical and
optical)?

Rays which are experience multiple reflections may be important, but how significant are those
which experience more than four reflections?
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How effective is a strategically placed baffle in terms of limiting the amount of stray light on the
detector?

Website: www.zemax.com

TracePRO, by Lambda Research Corporation

TracePro, from Lambda Research Corporation, is a 3D Computer Aided Design (CAD) program for
simulating the performance of illumination and optical systems. TracePro can model the propagation of
light in imaging and nonimaging optomechanical systems. Models are created by combining imported
lens designs, imported CAD geometry (IGES, STEP, SolidWorks, Pro/E, CATIA, or Inventor files), and
geometrical objects created using TracePro’s user interface. Optical properties are then assigned to each
solid and surface using the TracePro interface or through the TracePro Bridge for SolidWorks. Source
models are added by specifying grids, surface emitters, ray file data or by using the surface source utility.
Rays are ray traced through the model, while keeping track of absorption, specular reflection and trans-
mission, fluorescence and scatter at each intersected surface or volume scatter site.
From TracePro models, the user may ray trace and analyze:

e Light distributions in illumination and imaging systems
e Stray light, scattered light, and aperture diffraction

e Throughput, loss, or system transmittance

e Flux or power absorbed by surfaces and bulk media

e Light scattering in biological tissue

e Polarization effects

o Fluorescence effects

e Birefringence effects

e Lit Appearance

Website: www.lambdares.com

SPEOS, by Optis

OPTIS simulation software family, SPEOS and OptisWorks. It manages and optimizes many of the
optical aspects of a broad range of sensors: reflection, refraction, scatter from surfaces, diffraction,
absorption, polarization, and Gaussian beam propagation. It calculates stray light, illumination, and
realistic optical simulations. Any product that needs to manage interactions of light and surfaces is
calculated. It deals with the various types of light sources also. The simulations limit the need for
costly prototyping of systems.

OPTIS simulation software allows the designer to “see” and realistically render products to depict
what the final performance of the illuminator will look like in its applied application with stunning
similarity. Its software produces a unique and accurate physiological human vision model of the
final lit product for comfort, safety, and performance.

7.5 METHODS

There are two distinct methods that have been used to evaluate a system for stray radiation. You can
either build the system and test it, or you can model the system and try to predict its performance.
Both methods have advantages and disadvantages. Taken ftogether the two methods provide the
means to ensure that the system will perform as desired.
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Build-and-Test Approach

A common approach is to make the system and either use it or test it for stray radiation rejection.
Certainly if the system consistently performs satisfactorily in its operational environment, it has
passed the ultimate test. But what if it does not meet the desired or expected level of performance?
Making more systems to test becomes expensive rapidly. In fact, for very large systems, usually only
modifications (“fixes”) can be contemplated because of the high cost. This is not the only argument
against the build-and-test approach. The tests are rarely designed to determine how the scattered
radiation is propagating through the system and which surfaces contribute most of the undesired
radiation.

It is this information, and a thorough knowledge of the surface scattering characteristics, that is
necessary to make measurable improvements to the system. Such a test, when determining the prop-
agation paths, should yield information about how the system is reacting to its test environment,
including the test equipment. Unless the tests are being conducted in the environment for which the
system was designed, it is imperative to determine that the fest environment is not giving erroneous
results (either better or worse). Without analyzing the test configuration, you should expect that the
environment will affect the system stray light measurements. It is also incorrect to assume that the
test environment can only add to the stray light background. It is sometimes assumed that if the sys-
tem passes the stray light tests in the lab it will only perform better in space or wherever its intended
environment is. This is not necessarily true.

Now that several points have been made about the difficulty of making valid experimental tests,
it must be stated that valid tests can and should be made. The measurement costs need not be pro-
hibitive. Even relatively large optical systems have been fabricated and then modestly redesigned.
Changes to the system can be made until the desired information and stray radiation rejection is
attained. In some cases it will be less expensive to test an existing system and modify it if necessary
than to analyze the system with computer software.

The system-level test need not be extensive; it is not necessary to have an all-encompassing mea-
surement from on-axis to 90° off-axis. Indeed, few facilities are capable of making such tests when
the attenuation gets even modestly high. An important point to recognize is that the most important
paths to check are those at the nearer off-axis angles where the attenuation is not so high. These can
usually be measured reliably.

At small off-axis angles the stray light noise is more often much higher than the detector back-
ground noise, while at the higher off-axis angles the stray light noise is well below the electronic/
detector noise. From a performance point of view, at the higher off-axis angles there is usually
only one additional scattering object (scatter from the main baffle) before these same near off-axis
angle paths are encountered or are reinvolved. The validation of the analysis will only be suscep-
tible to the scatter from this one object that can’t be fully tested at the system level, but most of the
scatter paths, and usually all the most important ones, will have been validated by the near off-axis
measurements.

This one additional surface scatter most often (especially on space-based sensors) involves the
vanes on the main baffle that shields the primary objective. It will normally reduce the optical noise
incident upon it by four to five orders of magnitude. That’s why the optical noise goes dramatically
below the electronic noise. Its most important role is to occult the direct illumination of the objec-
tive which is usually part of the most significant direct scatter path. The performance of this baffle
and its vane structure could be analyzed separately and then measured independently to confirm
that it too will perform as predicted.

NOTE: Contrary to some published papers you cannot, in general, multiply the stray light
transmittance of two parts of a sensor and determine the system’s overall performance. Although
the main baffle system can be analyzed (or measured) independently from the rest of the system,
it is not correct to take its performance and multiply it times the stray light performance of the
rest of the system. The stray light propagation paths are far more important than the magnitudes
of the two parts. In the above analysis where it was proposed that the main baffle could be mea-
sured independently it was to confirm its performance alone. A full-system stray light analysis was
assumed.
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Computer Analysis

As with the experimental tests, computerized analyses are also subject to errors. The three most sig-
nificant ones are software limitations, scatter data of samples (not the real system), and user error.
No software is capable of putting in every detail of a complex design, yet the computer model must
faithfully represent the actual performance of the system. On the other hand, the software can put
in “parts” with far greater mathematical precision than these parts can actually be assembled. Unless
special studies are made the analyst does not usually account for assembly errors that might affect the
actual system. The scatter characteristics of the surfaces, usually defined in terms of the bi-directional
reflectance distribution function (BRDF), are usually measured on sample substrates, and controls
must be exercised to ensure that the samples tested represent the sensor’s actual coatings, and that
they do not change with time. The stray light analysis programs are also subject to errors in deter-
mining the significant paths. The experimental test is for the actual design, with real coatings, and
will include any extraneous unintentional paths due to misalignment or other causes.

On the positive side, a software program can point out many flaws in the system that contribute
stray radiation by considering the input BRDF characteristics of the coatings. A program can also do
trade-off studies, parametric analysis, and in many other ways aid in the study of alternate designs.
The analysis of the paths of scatter will suggest meaningful modifications and help to discard
impossible designs. These analyses allow designers to test designs and make modifications before the
design goes into production. This is very useful, since rejecting a sensor design is much easier when
it is on paper than after it has already been built. It is usually much more cost-efficient than cutting
new hardware, redesigning the system, or making fixes on the built system.

If you are in a field related to the optical design of a sensor, be it at the design level or the system
level, you know that it would be preposterous to perform the optical design analysis and then put
the system together without testing it for its image quality. Yet that is how far the pendulum has
swung in favor of performing a stray light analysis over making a system-level stray light test. It
reflects a major change in attitude since the early 1970s. It has been stated by stray light analysts that
the reliability of a stray light analysis is now much higher than experimental test results, so some
people avoid the latter. While there is a degree of truth in this statement, it is wrong to omit the stray
light test at the system level.

The advantages and disadvantages of the two methods are summarized in Fig. 36. The disadvan-
tages of the build-and-test approach are the strengths of the analysis method, whereas the strengths of
the build-and-test approach cover the weaknesses of an analysis. Taken together these two methods
give the greatest amount of reliable information which you can use to create the optimal system and
have confidence in its performance. Jointly, they indicate the reliability of the analysis and test results.

Inexpensive High Easy Real No missed Real
performance paths BRDF
complete with
manufacturing
Strength error
Weakness
Sampled
Programmer BRDF
Expensive Limited Hard Models only error measurements
Cost Information Changes Real-world Error BRDF
level performance

I:I Build and test I:I Analysis

FIGURE 36 Build-and-test and analysis methods complement each other.
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7.6 CONCLUSION

In summary, the issues involved in designing a system with stray light suppression in mind are

L.

IL.

III.
IV.

VL

VIL

VIII.
IX.
X.
XI.

System design concepts

A. Critical objects seen by the detector
B. llluminated objects

C. Lyot stops

D. Field stops

E. Optical designs

Baffle and vane design

A. Diffuse and specular vane cavities
B. Vane edge scatter

Diffraction

Strut design

Scattering theory

BRDF data

A. Log BRDF versus 0

B. Log BRDF versus log (- f3,)

C. Polar plots

D. Isometric projections (3-D characteristics)
Coatings

A. Paints and anodized surfaces

B. AR coatings and other thin films
C. Mirror coatings

Thermal emission

Ghost images

Software

Detection, prevention, and removal of contamination

A step by step procedure that can help you to improve your system is:

I

II.
III.

IV.

VL

VIIL.
VIIL

Start from the detector and identify what objects, called “critical objects,” can be seen
from various positions on the detector. Be sure to include a point near the edge of the
detector.

Work to remove the number of critical objects that the detector can see.

Determine what objects the source of unwanted radiation can see, called the “illuminated
objects.”

If possible, reduce the number of illuminated objects seen.

If there are illuminated objects that are also critical objects, work very hard on these
paths. Orders of magnitude in improvement will be your reward.

If task V is not possible, then the computations are quite easy.

A. Calculate the power incident on the illuminated/critical objects.

B. Use Eq. (1) to calculate the transfer of power from the critical objects to the detector.
Remember to properly account for the input and output angles when calculating the
BRDE. Do not use a straight lambertian scatter distribution; there is no such distribution
in reality.

Find all the paths connecting the illuminated objects to the critical objects.

Evaluate the corresponding input and output angles at the illuminated and critical objects.
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IX. Determine if vane structure will help, or if some other redesign will effectively block
these paths.

X. For the calculated input and output angles, evaluate which coating would be lowest.

XI. Perform the stray light calculation using Eq. (1) in an iterative fashion. This should
determine the most significant stray light path and quantify the amount of stray light on
the detector

XII. Perform the above tasks for a series of off-axis positions of the point source.
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8.1 GLOSSARY
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surface curvature of an optical element

diameter

F-number or focal ratio

paraxial focal length

thermo-optical constant (normalized thermal change of OPD)
(subscript) signifies “pertaining to the optic housing”
(subscript) number of a specific optical element
signifies a number of optical elements

Kelvin

thermal conductivity

refractive index

optical path difference

temperature

thickness

Abbe number of a refracting optical material

spatial frequency

linear coefficient of thermal expansion

thermal glass constant (normalized thermal change of optical power)
small, finite change

wavelength

infinitely small change of a parameter

optical power (reciprocal of focal length)



8.2 DESIGN

8.2 INTRODUCTION

In the following, the thermal effects for which compensation is required are taken to be those
that affect the focus and image scale of an optical system. Methods for quantifying and offsetting
these effects were described some time ago,' similar information being provided by several other
authorities.>** The thermal compensation techniques described in this chapter, with the exception
of intrinsic athermalization, involve either mechanical movement of one or more parts of the opti-
cal system, or compensation achieved solely by choice of optical materials. Except in Sec. 8.5 titled
“Effect of Thermal Gradients,” a homogeneous temperature change of all parts of the optical system
is assumed.

Most optical materials undergo a change of refractive index n with temperature T, conveniently
quoted as a rate of change dn/0T. The usual values of n and 6n/0T given for a material (and
assumed in this chapter unless stated otherwise) are those relative to the surrounding air rather
than the absolute values with respect to vacuum. Air has a 6n/0T of —1 x 10®at T = 288 K and
1 atmosphere air pressure for wavelengths between 0.25 and 20 um:’ allowance for this must be
made when a lens operates in vacuum or in an enclosed space where the number of air molecules
per unit volume does not change with temperature. The absolute 6n/8T of an optical material can

be found from
on on on
(a—le;”m(a—T]*”(a—TL W

where the value of n_,_is approximately 1.0.

8.3 HOMOGENEOUS THERMAL EFFECTS

Thermal Focus Shift of a Simple Lens

The rate of change of the power ¢ (reciprocal of the focal length f) of an optical element with tem-
perature T can be obtained by differentiating the thin lens power equation ¢ = ¢(n — 1), where c is
the total surface curvature of the element. For a linear thermal expansion coefficient ¢ of the mate-
rial from which the element is formed this gives

(13180
9 ST ¢ ST
09 on/ST
5_T_+¢( n—1 aj )
Therefore
Sf on/dT
(s

The material-dependent factor inside the parenthesis in Egs. (2) and (3) is known as the thermal
“glass” constant (¥) and represents the thermal power change due to an optical material normal-
ized to unit ¢ and unit change of T. Tables 1 to 3 give y values for a selected number of visual and
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TABLE 1  Optical and Thermal Data for a Number of Visual Waveband Materials

Schott Optical Refractive Abbe Thermal Glass Thermo-Optical Thermal
Glass  Plastic Index, Number, Constant, Constant, Conductivity,
Type n’ Vi y(Xx10%)* G(x10%)% k(W -m™- K1)

FK52 1.487 81.4 —27 +1 0.9
FK5 1.489 70.2 -11 +4 0.9
BK7 1.519 64.0 -1 +7 1.1
PSK53A 1.622 63.2 -13 +4 —
SK5 1.591 61.0 +1 +7 1.0
BaLKN3 1.521 60.0 -3 +7 1.0
BaK2 1.542 59.4 =5 +6 —
SK4 1.615 58.4 -2 +7 0.9
LaK9 1.694 54.5 -1 +8 0.9
KzFSN4 1.617 44.1 +4 +8 0.8
LF5 1.585 40.6 —6 +7 0.9
BaSF51 1.728 379 +8 +14 0.7
LaFN7 1.755 34.7 +6 +12 0.8
SE5 1.678 32.0 0 +11 —
SEN64 1.711 30.1 —4 +9 —
SF6 1.813 25.2 +6 +18 0.7

Acrylic® 1.497 57 -279 71 0.2

Polycarbonate® 1.590 30 —247 —68 0.2
*At A =546 nm.

"Defined as (1, —1)/ (1,5, — 71,,,)-
*At =546 nm and T = 20C.

SValues (except conductivity) from Waxier et al. Appl. Opt. 18:102 (1979).

infrared materials along with the relevant V value (Abbe number) and other data. The much
higher level of y for infrared as opposed to glass optical materials indicates that thermal defocus
(focus shift) is generally a much more serious problem in the infrared wavebands. The actual value
of yvaries with both wavelength and temperature due to variations in the value of dn/6T and o. In
general, this is unlikely to cause major problems unless a wide wavelength or temperature range is

TABLE 2 Optical and Thermal Data for Selected 3- to 5-pum Waveband Infrared Materials

Thermal

Optical Refractive Abbe Number, Thermal “Glass”  Thermo-Optical Conductivity,

Material Index, n » Vs Constant, y Constant, G k(W -m™-K")
Silicon 3.43 2.4 x10? +6.3 X 107 +1.7x 107 1.5 x 10?
KRS5* 2.38 2.3 %102 -23x107* -1.5x107* 5.0 x 107!
AMTIRI1F 2.51 1.9 x 102 +3.9%x 107 +9.5 % 107° 3.0x 107!
Zinc selenide 2.43 1.8 x 107 +3.6 X 107° +7.3 x107° 1.8 x 10!
Arsenic trisulfide 2.41 1.6 X 102 -1.9x 107 +3.4 x 107 1.7 x 107!
Zinc sulfide 2.25 1.1 x 10? +2.6 X 107 +5.2 X107 1.7 x 10!
Germanium 4.02 1.0 x 102 +1.3x 1074 +4.2 x 107 5.9 x 10!
Calcium fluoride 1.41 2.2 %x 10! -5.1 x 107 -1x10°° 9
Magnesium oxide 1.67 1.2 x 10! +1.9x 107 +2.6 X 107 4.4 x 10!

“Thallium bromo-iodide.
Ge/As/Se chalcogenide from Amorphous Materials Inc.
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TABLE 3 Optical and Thermal Data for Selected 8- to 12-pum Waveband Infrared Materials

Abbe Thermal
Optical Refractive Number, Thermal “Glass” Thermo-Optical Conductivity,
Material Index, Moy V1o Constant, y Constant, G k(W -m™- K1)
Germanium 4.00 8.6 x 10% +1.2x 107 +4.1 x 10~ 5.9 x 10!
Cesium iodide 1.74 2.3 % 10% -1.7x 107 -53%x107° 1
Cadmium telluride 2.68 1.7 X 10? +5.3 x 107 +1.1 x 107 6
KRS5 2.37 1.7 x 102 -23x10* -1.6x 107 5.0 X 107!
AMTIR1 2.50 1.1 x 10% +3.6 X 107° +9.0 X 107 3.0x 107!
Gallium arsenide 3.28 1.1 x 10? +7.6 X 107 +2.0 x 10~ 4.8 x 10!
Zinc selenide 2.41 5.8 x 10! +3.6 X 107° +7.2%x107° 1.8 x 10!
Zinc sulfide 2.20 2.3 x 10! +2.6 X 107° +5.0 X 107 1.7 x 10!
Sodium chloride 1.49 1.9 x 10! -9.5x 107 -3x10° 6

being considered.® Thermal defocus results not only from a change of optical power but also from
the thermal expansion coefficient ¢, of the housing. Equation (3) can be modified to allow for the
effect of the latter:

Single thin lens: Af =—f(y+a,)AT )

j thin lenses in contact: Af=—f [fi(y.q)‘)ntah}AT (5)
i1

Thermal Defocus of a Compound Optical Construction

Consider a homogeneous temperature change in an optical system that comprises two thin-lens
groups separated from each other, the normalized thermal power change being the same in each
lens group. Taking the thermal defocus calculated from Eq. (4) as unity, then that due to a com-
pound optic comprising two separated components and of the same overall power can be estimated
from Fig. 1.7 The latter shows scaling of thermal defocus with respect to a simple thin lens, relative
to front lens/image plane distance (overall length) for three different positions of the second lens
group. The graph is divided into three basic lens constructions distinguished from each other by
overall optical length and/or the sign of the power of the front lens group.

Figure 1 assumes germanium optics in an aluminum housing but change of either material,
while altering values slightly, has no effect on the following two conclusions:

1. Telephoto/inverted telephoto constructions always give more (and Petzval lenses always give less)
thermal defocus than an equivalent simple lens.

2. Thermal defocus reduces as the second lens group is moved toward the image plane, irrespective
of lens construction: the efficacy of this procedure is limited, however, by the increased imbal-
ance of optical powers between the groups.

The thermal defocus scaling technique could be extended to cover an optic comprising more
than two lens groups. This extension has been carried out for the Cooke triplet construction® and
for a series of separated thin lenses,® although only for the case of a zero-expansion housing.



THERMAL COMPENSATION TECHNIQUES 8.5

4.0

Telephoto,
lenses |
|
|
Z I
~ |
|
2304 |x=03 |
= | |
7 |
e I X=03 !
= , Inverse
B : telephoto —
= | lenses d
g 207 | Overall length
3 I
< i
o |
= | Overall length
£ | X=05 Rp= —— 8
5 | f
= l
E 104 0 N
X=0.7 d

0.5 Petzval lenses

|

! X= —ov—
| Overall length
|

T

T T
0.5 1.0 1.5 2.0 2.5

FIGURE 1 Effect of compound lens construction on thermal defocus. (From Rogers.”)

8.4 TOLERABLE HOMOGENEOUS TEMPERATURE
CHANGE (NO COMPENSATION)

Diffraction-Limited Optic

Equation (5) can be used to establish the temperature change AT that will result in a quarter-wave
of longitudinal thermal defocus, a reasonable limit for a simple optic that is nominally diffraction-
limited. Given an optic of diameter D and focal ratio FN imaging at a mean wavelength of A:

Diffraction-based depth of focus: Af =£2A(FN)? ©
Combining Egs. (5) and (6): AT = ifl(—FN) -
D{f2(7i¢,-)+ah]
i=1

Figure 2 gives AT against D results for a simple 8- to 12-um bandwidth germanium optic in an
aluminum housing:’ the curves illustrate the small temperature change that can be tolerated in ger-
manium optics before focus compensation is required. Partial avoidance of this particular problem
may be achieved by the replacement of germanium by other infrared optical materials having lower
values of y: this may also be desirable to reduce high-temperature absorption but generally leads to
much greater optical complexity.
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FIGURE 2 Tolerable temperature change for a simple
germanium infrared lens. (From Rogers.”)

Nondiffraction-Limited Optic

The depth of focus of an optic having a nominal performance far from the diffraction limit is a
function of the residual aberration level and balance in the optic as well as its first-order parameters.
An estimate related to a cutoff spatial frequency v that gives a reasonable approximation in many
cases can be obtained!? from

Approximate depth of focus: Af=+ (FN) (8)
v
i -1
Combining Egs. (5) and (8): AT:i{D{fZ(yiQ).,.ah}} )
=1

Notice that, given the approximation of this method, the value of v can be determined by extend-
ing a straight line MTF from 1.0 response at zero spatial frequency, through the MTF point of inter-
est, to the intersection of the line with the spatial frequency axis.

8.5 EFFECT OF THERMAL GRADIENTS

The previous sections assume a homogeneous temperature change in all parts of the optical system:
in situations where steady-state or transient temperature gradients exist, further consideration is
required.!

Allowance for the effect of steady-state longitudinal gradients can be made by applying a
different value of T to each lens group and an average local temperature to each portion of the
housing that separates two adjacent lens groups. Transient longitudinal gradients are a more
difficult problem and, if severe, may require individual athermalization of each lens group in its
own housing domain.

Steady-state or transient radial thermal gradients cause at least a shift of focus position, with the
possible addition of a change of aberration correction. A localized radial temperature difference of
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AT through the thickness t of a plane-parallel plate will cause a deviation of a ray of light!! that can
be quantified as an optical path difference (OPD):

OPD=1t[o((n—1)+6n/6TIAT (10)

The expression in the square bracket is often referred to as the thermo-optical constant G and is
an approximate measure of the sensitivity of an optical material to radial gradients. More thorough
analysis of the effects produced by radial thermal gradients includes computation of thermally
induced stress and consequent anisotropic change of refractive index: in some cases, this may be a
significant factor in image degradation.'>"1

Tables 1 to 3 give values of G for the selected optical materials. Also tabulated is the thermal con-
ductivity k, as in many cases G/k is a more appropriate measure of sensitivity given the greater abil-
ity of high-conductivity materials to achieve thermal equilibrium.

8.6 INTRINSIC ATHERMALIZATION

The need for athermalization can be avoided or minimized for some applications by employing
optical power and mounting techniques that are inherently insensitive to temperature change. A
concave spherical mirror fabricated from the same material that separates the mirror from its focal
plane (e.g., an aluminum mirror in an aluminum housing) is in effect “self-athermalized” for a
homogeneous distribution of temperature. The optical performance of a single spherical mirror
is limited, but the above principle applies for more complex all-reflective optical constructions
employing conic or other aspheric surface forms. A glass spherical mirror, although not thermally
matched to an aluminum mounting, may be used as part of a self-athermalized catadioptric afocal
in the infrared, a germanium Mangin being used in this case as a secondary mirror lens.' The high
thermal power change of the negatively powered lens in the germanium Mangin, used in double-
pass, compensates for the thermal defocus due to the glass primary, the housing, and the remaining
germanium optics in the afocal—Fig. 3.1

Glass primary mirror

—=
Exit
pupil
Germanium Mangin ~_ !
secondary mirror E L AT T
=

FIGURE 3 High magnification self-athermalized catadioptric afocal. (From
Norrie.'®)
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An alternative approach to the above is to use glass-ceramic mirrors within a nickel-iron alloy
housing, since they can have thermal expansion coefficients approaching zero. A major advantage of
this approach is its insensitivity to thermal gradients.

8.7 MECHANICAL ATHERMALIZATION

General

Mechanical athermalization essentially involves some agency moving one or more lens elements by
an amount that compensates for thermal defocus—a simple manual option being to use an existing
focus mechanism. Automatic methods are, however, preferable in many cases and can be divided
into passive or active. Passive athermalization employs an agency, often involving materials (includ-
ing liquids) with abnormal thermal expansion coefficients, to maintain focus without any powered
drive mechanism being required. Automatic active athermalization involves the computation of
focus compensation algorithms that are stored (usually electronically) and implemented by a pow-
ered device such as an electric motor. The following sections refer to a number of passive and active
athermalization methods, although the list is by no means exhaustive.

Passive Mechanical Athermalization

The principal advantages of passive thermal compensation methods are their relative simplicity and
potential reliability. Disadvantages are their inadequate response to transient temperature gradients
and, generally, lack of adjustment to allow for errors or unforeseen circumstances. Passive methods
are ideal in glass optics'” where thermal effects are low, although here it is not too difficult to achieve
optical athermalization (see later under “Optical Athermalization”) except where very low secondary
spectrum is required. In the infrared wavebands, where thermal effects are much greater due to the
nature of the optical materials, it is difficult to achieve simple passive mechanical athermalization
due to the large refocusing movement required, typically 1.5 x 10~ per unit focal length per Kelvin
for an aluminum-housed germanium optic. An exception to the above is the combination of silicon
and germanium in 3- to 5-um optics, where thermal defocus results largely from the expansion of
the housing. In this case, use of more than one nonmetallic housing material can result in an ather-
malized optic, even one having two fields of view'®*—Fig. 4.

For infrared cases other than the above, the options are either to provide a mechanism that mod-
ifies mechanical expansion effects or to reduce the required refocusing movement by optical means.

Composite
-y = =
Plastic
. ENN
Plastic =
i \ \‘
J I i EE s
Plastic N
o N W

FIGURE 4 Part composite/part plastic mounting structure used for athermalization of a 3- to
5-um IR optic. (From Garcia-Nuiiez and Michika.'®)
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Two outer rods
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at this point

FIGURE 5 Passive mechanical thermal compensation
using differential expansion rods. (From Povey.'®)

Examples of the former include! a series of linked rods of alternatively high and low expansion
coefficient—Fig. 5—and a hydraulic method where the fluid contained in a large-volume reservoir
expands into a small-bore cylinder—Fig. 6.

An interesting alternative employs shape-memory metal?® to provide a large movement over a
relatively small temperature range.!® Another alternative is to employ a geodetic arrangement: in this
method! an athermalizing adjustment of, for example, the separation between primary and second-
ary mirrors in a catadioptric, is produced by differing expansion coefficients of the primary mirror

Finned for fast response
via convection

via mounting
_______ surface
High
fluid

Optical axis One or more
- - “thermal sensors”

Max conduction

)

N

Extra ports
as required

FIGURE 6 Passive mechanical thermal compensation using high-expansion-fluid
thermal sensors. (From Povey.'?)
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FIGURE 7 Geodetic support structure for positive or negative thermal compensation move-
ment. (From Povey."?)

mount and the secondary mirror struts—Fig. 7. Where none of the above methods are desirable, the
option to reduce the necessary movement may be the only alternative. This may be achieved by an
optical layout’® configured such that the required athermalizing movement is reduced typically by a
factor of four, but at the expense of somewhat greater optical complexity—Fig. 8.
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FIGURE 8 Alternative optical configurations for mechanically athermalized forward
looking infrared (FLIR) systems. (From Rogers.’)
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FIGURE 9 Active electromechanical athermalization—
schematic.

Active Mechanical Athermalization

Active mechanical athermalization in its simplest form can be manual adjustment of a lens ele-
ment or group for refocusing. For more complex optics, such as multi-field-of-view, a procedure
can be specified for manual (or motorized) adjustment of several lens elements to maintain focus
over a range of magnifications and temperatures.?"> Where automatic athermalization is required,
a method can be employed that uses a combination of electronics and mechanics—Fig. 9. One or
more temperature sensors located along the body of the optic feed their signals into an algorithm
that calculates the required movement of a compensating lens and then initiates the motion. For
simplicity, the compensating lens may be that which already provides close-distance focusing, thus
requiring only an increase in the range of movement for athermalization. The location of sensors is
especially important for infrared optics and should be dependent on the thermal sensitivity varia-
tions within the optical system.

Active electromechanical thermal compensation is particularly suitable where transient longitudinal
temperature gradients are expected and for multi-field-of-view optics where thermal defocus is depen-
dent on field-of-view setting. The algorithm required for elimination of the effects of a combination of
both of the above is complex, but compensation may be accomplished by a single mechanical motion.?

A single motion does not, however, guarantee athermalization of image scale, in which case
more than one compensatory movement may be required. Two motion athermalization in a zoom
or dual-field-of-view infrared telescope can take advantage of the existing mechanisms required for
field-of-view change. Also, by utilizing internal lens elements, problems associated with hermetically
sealing an external focusing lens element can be avoided.?*?® In order to maintain stability of aber-
ration correction in infrared zoom telescopes, particularly those having a large zoom range, three-
motion athermalization has been proposed.?**

Active/Passive Athermalization

An improvement over simple manual active athermalization is to include partial passive athermaliza-
tion. This is best suited to systems that already contain axially moving lens components, for example, a
dual-field-of-view infrared telescope®'—Fig. 10.> Here the majority of the athermalization is provided
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(Passive—lens group adjustment)

FIGURE 10 Part active, part passive mechanical athermalization.
(From Roberts.??)

by a mechanically passive device that adjusts the position of the rear lens group in the objective. The
residual focus error is then corrected by small manual adjustments to the magnification change ele-
ment. This technique can minimize the change of image scale and aberrations with temperature. A
potential problem, however, is the subjective nature of best-focus determination.

Athermalization by Image Processing

Athermalization by image processing is suitable for some applications. A range of automatic focusing
techniques exists but, while this approach has the advantage of not requiring temperature sensors, it
does suffer the potential disadvantage of misinterpretation of image information.

8.8 OPTICAL ATHERMALIZATION

General

Athermalization of the focus position of an optical system by choice of refractive materials has been
described extensively in the literature.**2 The requirements of overall optical power, achromatism,
and athermalism demand that three conditions be satisfied for j thin lens elements in contact:

Power: Zq)i =¢ (11a)
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TABLE 4 Unity Focal Length Athermal Two-Material Achromatic Combinations

Material Material Total Secondary Petzval Normalized

Type Combination Curvatures Spectrumt’ Sum Mass
Optical glasses BaLKN3 + KzFSN4 +7.24/-4.49 3.6 x 107 0.77 2.1
BaK2 + LaFN7 +4.43/-1.86 4.8 x 10 0.76 1.4

FK5 + LF5 +4.85/-2.34 4.8x 107 0.73 1.3

PSK53A + SFN64 +3.06/-1.28 5.0 x 107 0.65 1.0

BaLKN3 + BaSF51 +5.21/-2.35 5.2x10™ 0.79 1.5

Stabilized optical SK4 + KzFSN4 +7.30/-5.64 1.8 x 10 0.62 2.0*
glasses SK5 + SF5” +3.97/-1.99 10.6 x 107 0.67 1.0*
3- to 5-um Materials As,S,+ MgO +0.77/-0.12 8.6 x 107 0.40 0.8°

“Thermally invariant housing, all others aluminum.

TOver wavebands of 480 to 644 nm, 546 to 852 nm, and 3 to 5 Lm respectively.
*Relative to SK5/SF5 solution.

SRelative to lowest value in Table 5.

Source: Rogers.®®

0.
Achromatism: z% =0 (11b)

i=1"1i

Athermalism: (v,0)+00, =0 (11¢)

J
=1

i

The presence of three conditions implies the need for three different materials in order to obtain
an exact solution. It is possible, however, to find achromatic combinations of two materials that are
also athermal, provided that a simple condition is satisfied:*!

Vi(y, +oy,)=V,(y,+,) (12)

Suitable combinations for thin-lens athermal achromats can be found by plotting a range of
materials on a graph of yV against V] the slope of the line joining a chosen pair representing the
required thermal expansion coefficient of the housing.®

A number of approximately athermal optical glass achromats exist of which those listed in
Table 4*>—with the exception of the last entry—represent examples with low to moderate second-
ary spectrum over the visible to near infrared waveband. The data given for these achromats are
lens element total curvatures for unity focal length; secondary spectrum (second-order color);
thin-lens Petzval sum; and an approximate indication of mass, normalized to the lowest value. The
pairing of radiation-stabilized versions of SK5 and SF5, both of which have a low value of y makes
a good choice for athermalized space optics in a temperature-invariant mount.®

In the infrared wavebands the options are far more limited: at least one 3- to 5-um waveband
two-material athermal combination exists, namely, arsenic trisulfide and magnesium oxide, but
there is currently no realistic pairing of materials in the 8- to 12-um band.

Athermal Laser Beam Expanders

Many more two-material athermal combinations exist if the requirement for achromatism [Eq. (11b]
is removed. This is the situation that occurs with a (preferably) galilean laser beam expander, although
here the two lens materials are separated.** From Eq. (4), making the thermal defocus Af values equal
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and opposite for the two lenses leads to a value for magnification at which two given materials in a
specific housing material will provide an athermal beam expander (for a homogeneous temperature
distribution):

I v to
Magnification = ——"
PR

(13)

h

Three-Material Athermal Solutions

Graphical methods have been described that allow investigation of preferred three-material ather-
malized achromatic solutions.*! An alternative method is the systematic evaluation of all possible
combinations of three materials selected from a short list, each combination being allocated a risk
factor dependent on material characteristics and solution sensitivity.” The optical powers of the three
in-contact thin-lens elements are determined by solving Eq. (11a to ¢) which give for a unity focal
length:

a:VLVz—VzVa’¢3:(1—b)7’1+b7’2+0‘h (14a)
V\V,-V,V, (1-a)y, +ay,+7,
b v, ¢, =b—ag (14b)
=—, =0—a
Vz_Vl ? ’
6, =1-(9, +¢,) (14¢)

Tables 5 and 6 give a selection of lower-risk three-material solutions, in approximate order of
increasing risk, for 3- to 5- and 8 to 12-um infrared combinations, respectively. The data given are
similar to those in Table 4, but the housing is assumed to be aluminum in all cases. Note that these
tables are intended as a guide only and are based on currently available material data.

Athermalization of Separated Components

In many ways, thermal defocus and thermal change of focal length are analogous to longitudinal
and lateral chromatic aberration, having the same first-order dependencies. For this reason it has
been suggested that a thermal Abbe number, defined as y ~1* be used to replace the chromatic

TABLE 5 Unity Focal Length Athermal Three-Material Achromatic Combinations for the
3- to 5-wm Waveband

Material Combination Total Curvatures Petzval Sum Normalized Mass
Si+ Ge + ZnS +0.72/-0.36/+0.27 0.39 1.3
ZnSe + Ge + MgO +1.16/-0.21/-0.06 0.51 1.8
Si + Ge + KRS5 +0.69/—0.26/4+0.08 0.34 1.0
(ZnS + MgO + Ge] +1.28/-0.17/-0.16 0.52 1.5
AMTIRI + Ge + Si +0.56/—0.32/+0.46 0.42 1.4
Si+MgO + KRS5 +0.31/-0.08/+0.22 0.31 1.1
ZnSe + ZnS + Ge +1.80/—0.69/-0.23 0.50 2.8
Si+ CaF, + KRS5 +0.32/-0.25/4+0.24 0.29 1.1

[ ] Low residual high-order chromatic aberration.
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TABLE 6 Unity Focal Length Athermal Three-Material Achromatic Combinations for the
8- to 12-um Waveband

Material Combination Total Curvatures Petzval Sum Normalized Mass
KRS5 + ZnSe + Ge +0.34/-0.15/+0.25 0.30 1.0
ZnSe + ZnS + Ge +2.05/-0.92/-0.26 0.50 2.5
GaAs + ZnS + KRS5 +0.38/—-0.20/4+0.26 0.31 1.0
AMTIRI + ZnS + Ge +1.42/-0.35/-0.24 0.48 1.3
{CdTe + ZnSe + KRS5} +0.72/-0.37/4+0.22 0.37 1.5
GaAs + ZnSe + KRS5 +0.68/—0.71/+0.33 0.25 1.8
[AMTIRI + ZnSe + KRS5] +1.19/-0.72/+0.16 0.39 1.9
[Csl + NaCl + GaAs] +0.68/—0.32/4+0.29 0.38 1.1

{ } Very high transmission.
[ ] Low residual high-order chromatic aberration.

Abbe number (V value) in the usual chromatic aberration equations. Thermal expansion of the
housing—obviously not present in chromatic calculations—does, however, complicate the situation
a little.

In equations thus far, Af has meant both thermal defocus and focal length change, as numerically
these are the same for a thin lens. For separated components, rules similar to those for chromatic
aberration apply, for example, two separated thin-lens groups—such as those described by Fig. 1—
must be individually athermalized if both types of thermal “aberration” are to be corrected simul-
taneously. More complex optics (for example, multistage) may have transfer of thermal aberration
between constituent lens groups but may still be corrected simultaneously for thermal focus shift
and focal length change as a whole. This procedure can, however, lead to one lens group requiring
excessive optical powers in order to achieve full overall correction—transient longitudinal thermal
gradients may also cause problems.

Use of Diffractive Optics in Optical Athermalization

The term “hybrid optic” is generally used to signify a combination of refractive and diffractive
means in an optical element. The diffractive part of the hybrid is usually a transmission hologram
which for high efficiency would be of surface relief form, the surface structure being machined or
etched onto the refractive surface.*> The diffractive surface acts as a powered diffraction grating,
producing large amounts of chromatic aberration which could be employed in an optic where a
lightweight optically athermalized combination of two materials could be chosen without regard to
achromatism: residual chromatic aberration could then be corrected by the hologram.*®
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OPTICAL FABRICATION

Michael P. Mandina

Brandon Light
Optimax Systems, Inc.
Ontario, New York

INTRODUCTION

The novel creations of optical designers have been limited by the fabricator’s ability to manufacture
and measure the elements of the optical prescription. A solution to a design criteria often existed
only on paper as the required elements were not physically realizable. Optics manufacturing tech-
nology innovations continually expand the possibilities for optical components. Increasingly, manu-
facturing is tethered to metrology. Creation of optics metrology instruments with accuracy equal
to that of optics manufacturing equipment and vice versa has driven process development. It is this
developmental symbiosis that has brought determinism to the art of precision optics manufactur-
ing. Metrology and machine innovations offer optics of higher quality and complexity in predict-
able timeframes. The requirement for skilled technicians is still vital in the manufacturing process;
however, the skill set is increasingly one of craft in combination with science. Artisan opticians of
yesteryear still provide value; however, the future of optics manufacturing is in the hands of the 21st
century optics technicians.

The methods described below are the most common for typical optical components used in
industrial, aerospace, and defense applications. For the spherical lens section, a brief overview of the
traditional process is described first and then the latest methods. The remaining sections will pro-
vide general overviews. The focus will be exclusively on brittle materials. For our purposes, brittle
materials are defined as those where the removal process is achieved by applying mechanical forces
that fracture the surface, releasing fragmented particles in a controlled manner. Much has been doc-
umented on fine finishing of brittle materials such as optical glasses, ceramics, and crystals. Works
by Preston!, Silvernail?, Izumitani®, Buijs*, Bach®, Kaller®, Lambropoulos’, Golini®, Cook®, Jacobs!®
and DeGroote!! have contributed greatly to the understanding of optics finishing processes.

9.2 MATERIAL FORMS OF SUPPLY

Optical glass is available in boule, slab, and gob forms. Boules are formed in special disposable
pots that yield a batch or glass melt of a specific glass type, such as the borosilicate glass BK7, but
whose detailed characteristics are unique to that batch. Slab is yielded from a continuous flow process.

9.3
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Materials are homogeneously mixed and heated, and a continuous ribbon of glass is produced. These
ribbons are cut into slabs that are generally 250 mm wide, 25 mm thick, and 350 mm long, although
sizes vary significantly based on supplier and material. Gobs are also yielded from a continuous flow
process; however, the molten glass flows through an orifice and is sliced like cookie dough at a pre-
determined frequency that ensures the desired volume for the application. Gobs are almost always
made to customer specifications for glass type and volume. They are used as the preblank to produce
near net shape molded blanks for high-volume lens systems. Many glass suppliers also provide pol-
ished preforms, usually balls. These are used for glass molding finished optics components.

Manufacturers will order the form that best suits their purpose. The closer to final form the
material, the less waste and time consumed in bulk removal operations. When rough shaping mate-
rial blanks from boule or slab forms, most manufactures use diamond impregnated saw blades and
core drills to yield a part appropriate to yield the finished optic, generally called disks. Typically
blanks or disks are several millimeters oversized from the final part’s critical dimensions.

9.3 BASIC STEPS IN SPHERICAL

OPTICS FABRICATION

Generating

This is a bulk material removal operation that starts with a near net shape molded blank or a disk.

Generating—Traditional The removal is accomplished through the application of diamonds
embedded in a matrix on the cutting surface of a cup-shaped ring tool. The material is ground away
as the diamonds create cracks in the surface, sweeping away glass particles where the fractures intersect.'?
The machine accuracy is generally akin to manually set, mechanically based control production
equipment used in the machine tool industry. The operator continually monitors results and modi-
fies machine settings as the cupped ring tools wear. Machine precision is adequate to control thick-
nesses to +/—0.025 mm and radius to +/—0.010-mm sagittal height, but the machine is only capable
of coarse removal. Subsequent lapping operations are required in order to reduce subsurface dam-
age'? to a level where polishing is possible.

Generating—Modern The advent of deterministic microgrinding processes spearheaded by the
work at the University of Rochester’s Center for Optics Manufacturing!* in the 1990s shifted the
paradigm for finishing expectations from the generating operation. As a result, machines used in
the generating operation have evolved to precision machine tool status. Generators manufactured
by mainstream optics manufacturing equipment providers such as OptiPro,'* Satisloh,'® Schneider!”
and others, have created grinding solutions that enable the generating operation to predictably
yield surfaces that are ready for polishing operations. This modern equipment makes use of CNC
(computer numeric control) systems, robust motion and motion control systems such as precision
linear ball slides, advanced machine base materials, structure design, and improved positioning
feedback through optical encoders and other submicron feedback systems. Additionally, most of
the machine builders provide in situ metrology options that enable operator assisted or completely
automated parameter adjustment optimization. This is an important feature as the tool consumes
itself during the process.

Complimenting the advent of advanced generating machine tools for optics generating has been
the increased understanding of fixed abrasive grinding mechanisms. Deterministic microgrinding
is typically preferred to loose abrasive lapping when fabricators have a choice. The residual damage
from microgrinding can be estimated based on glass properties.'® This aids in determining prepol-
ish finish requirements so the overall process time for the optics can be optimized. Even with recent
advancements in understanding the microgrinding process, the industry is far from offering a direc-
tory of ring tools optimized for the array of optical materials. Therefore the industry continues to
rely heavily on empirical results to determine optimal setups.
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Lapping

Polishing

This process reduces subsurface damage left from generating to a manageable level in preparation
for polishing.

Lapping—Traditional Lapping is the application of loose abrasive particles applied as slurry
and pressed into the work surface by nominally constant applied pressure.! The process typically
consists of applying the abrasive slurry between a cast-iron-rotating lapping tool and the optic.
Both surfaces abrade away as they remain in random dynamic contact. The fabricator controls the
material removal so the operation yields the desired surface radius and smoothness. The abrasive
material, often aluminum oxide, is typically between 30- and 5-um particle size. The operator steps
through particle sizes, using progressively smaller abrasives. Removal amounts account for the sub-
surface damage from the prior generating or lapping operation, ideally completely removing it.

Lapping—Modern The use of diamond particles embedded in a resin or metal matrix have been
popular for some time. Initially, these matrices were fabricated in pellets, fastened as desired on
metal backing plates, and used as laps. Abrasive work is done by the diamonds and coolant serves as
lubricant and carries the glass particulate away. Unlike loose abrasive lapping, the slurry is not the
abrasive. Diamond tool manufactures also make diamond-sheet material for ready application to
tools, and more recent products such as resin-bonded sheet materials from abrasive manufacturers
such as 3M?° can be used the same way.

Polishing converts the finely fractured surface from the lapping or deterministic grinding opera-
tion [typical roughness of about 1-um rms (root mean square)] into a specular surface of a surface
roughness typically 1 to 3 nm rms. Polishing is a chemical-mechanical process. Water attacks the
surface creating a chemically softened layer, and then the mechanical action of the abrasive in the
polishing slurry, usually ceria based for optical glasses, removes the chemically softened outer layer
of glass.’

Polishing—Traditional The polishing process is expected to remove the damage left from preced-
ing operations, typically 5 to 20 pm of material. The intimate contact between the polishing tool
and the optic, working with the slurry, slowly enhances the surface finish. The process is feedback
based, and the fabricator works the part for a while and checks the outcome. Reacting to the results,
the experienced fabricator controls various parameters to yield the desired form and finish of the
polished surface.

The most basic polishing tool is a pitch polisher. Optical polishing pitch is a viscoelastic material.
To form a pitch polisher, a metal tool of proper radius is coated with a 4 to 5-mm layer of polishing
pitch. The pitch is warmed and formed to the optic. Once cool the brittle pitch will be cut to allow
irrigation grooves for slurry access. When performed by artisans, pitch polishing can yield form
errors equal to fractional wavelength of visible light routinely. Less capable fabricators may be lim-
ited to commercial quality, multiple wavelength form error outcomes.

By the 1980s, high-speed polishing had become very popular. One of the key innovations was
the use of polyurethane polishing pads as a replacement for pitch. Polyurethane pads are a visco-
elastic thermoplastic material with a higher viscosity than pitch. Polyurethane remains a polishing
material staple and is the polishing material of choice for the fast removal seen in high-volume
optics manufacturing.

Polishing—Modern Advances in deterministic polishing are dramatically changing the demands
placed on optics manufacturers. Deterministic polishing is a feed-forward process, where the
outcome is reasonably certain. Industry leaders in deterministic polishing development are QED/
Schneider consisting of Magnetorheological Finishing (MRF)?! and Zeeko/SATISLOH?? who promote
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Edging

a precessions polishing and air bladder solution. Each has created opportunities for manufacturers
to produce optics at more predictable cost. Their application of CNC machining systems to the pol-
ishing process is revolutionizing the precision optics industry.?

All these new solutions rely on subaperture small “pad” polishing with a known removal rate,
where the “pad” may be in the form of variable stiffness polishing fluid or compliant tool made from
a variety of materials and consistencies. Originally used to finish large astronomical telescope optics,
small pad methods have advanced in recent years to scale cost and size down so these technologies
are available to the broader population of precision optics manufactures.

Deterministic subaperture polishing solutions combine a tool’s known removal rate with an
error map of the optic to produce a removal schedule. This feed-forward process relies completely
on the accuracy of actual surface form information. In most cases this information is acquired from
a variety of instruments such as coordinate measurement machines (CMM) or surface profilometers
like the Taylor-Hobson Form TalySurf.>* These instruments themselves or the software of the pol-
ishing tool convert points of data into an error map for a continuous surface. The removal profile
dictates the dwell time for the small aperture polishing pad, and in general form error decreases by
a factor of five per iteration. For example, if the form error is 1 wave, it is reasonable to expect that
after a deterministic polishing iteration the form error will be ~1/5 wave, and after another iteration
would be ~1/25 wave.

Newer technology that is also under development at a number of equipment manufacturers
including QED and ZEEKO? incorporates fluid jet technology. Surfaces are corrected by direct-
ing a jet of abrasive/fluid mixture at a surface, the flow generates sufficient surface shear stress that
chemical-mechanical polishing occurs.?*?” The jet-polishing technology is especially promising for
difficult to reach areas seen in asphere and conformal optical surfacing.

Most applications of lenses require mounting into a lens housing. Lens system performance is maxi-
mized when the centers of curvature reside on the cylindrical axis of the housing. The edging opera-
tion simultaneously creates a precise (+/— 0.025 mm or less) diameter for mounting and aligns the
centers of curvature on the mechanical centerline of the lens.

Edging—Traditional®® Earlier pitch-based methods consisted of using a precision spindle where
a brass cup was trued using a cutting tool. This was basically a lathe-type operation and required a
skilled combination of heat, pitch, spindle velocity, timing, and consistent axial force applied by a
skilled artisan in order to set the lens in a “trued” position. Once the lens was blocked, a diamond
wheel ground the diameter to final dimension. Lenses are typically brought to final polished state
with the diameter of the lens 1- to 3-mm oversized.

This pitch method was almost entirely replaced with mechanical bell-clamping edging machines.
Bell clamping employs two opposed coaxial synchronized precision spindles and is a pitch-free pro-
cess. Each spindle is affixed with a precision cup of the appropriate size to capture the lens and allow
auto alignment by virtue of the mechanical forces on the variably sloped surfaces. Once the lens is
“clamped” into true position, an operator mechanically defines and initiates an automated grinding
sequence.

Edging—Modern In recent years, the use of CNC edging equipment is enabling a single setup for
multiple grinding operations. For example, it is fairly routine to process the diameter, sagitta with
a step, bevel and a fiduciary flat, all in one operation. The CNC controller interface shows a series
of cross-sections, and the operator fills in inputs for what is the starting point and what features
are needed in the end. Simultaneous creation enssures the features will all run true relative to one
another. In addition to facilitating grinding of more complex features, optional features such as
micropositioning air blasts for automated alignment optimization and measurement enable preci-
sion placement of the optic. Lenses are still mechanically bell clamped.



OPTICAL FABRICATION 9.7

9.4 PLANO OPTICS FABRICATION

A plano surface has a radius equal to infinity. Typically plano form specification does not differ-
entiate between spherical power and irregularity, specifying lump sum reflected errors as flatness.
Therefore, maintaining perfect flatness is critical during plano surface finishing. The process steps
for plano surfaces are exactly the same as for spheres. Planos have the advantage of fixed radius, so
often, companies, departments within companies, personnel and equipment will be plano specific.
This specificity allows economies of scale and development of plano-specific solutions. An example
of this are continuous polishers (CPs), in which a large (40-60 inches in diameter) annular lap is
“conditioned” to maintain lap flatness independent of the workpiece size. The lap is forced by a large
glass (or similar material) “conditioner” to stay flat. This persuasion by the conditioner imprints
onto the work piece and maintains flatness as a result.

Double-sided CPs polish both sides of a window simultaneously. Much of the recent technology
used in the precision plano window manufacturing has been taken from semiconductor industry’s
work-optimizing silicon wafer processes.

9.5 ASPHERE OPTICS FABRICATION

Aspheric lenses contain at least one optically active surface of nonconstant curvature. This is the
primary differentiator from a spherical lens. Rotationally symmetric aspheric lenses are solids of
revolution, where a general equation describes the cross section to be revolved (Fig. 1). Lenses of
this style are capable of higher aberration order correction than spherical lenses. While the forms
and their promise have been known to optical designers for centuries, for most of that time only the
mildest forms have been physically realizable. The methods, machinery, and metrology are specific
to asphere manufacturing.'*

Once rotated around the axis of
revolution, the aspheric solid is formed.
2D trace

This rotation transforms a two-dimensional
transforms . . . .
aspheric trace into a three-dimensional

Sweepiflg the to 3D solid aspheric lens. The 2D trace is generated via
aspheric trace the general aspheric equation.
around the

aspheric axis

Aspheric profile_| vertex

o no
z= —————— + Yap

T+\1-(k+DE? =1

where, in a cartesian sense,
z = height of aspheric surface relative to vertex
r = radial distance from aspheric axis
1
(= —— (\/,2 2)
vertex radius Xty
k = conic constant

a; = aspheric coefficient of ith order

Spherical backside

Aspheric axis
also the axis
of rotation

z

L.

FIGURE 1 Sample general asphere form. (Brandon Light, Optimax Systems, Inc.)
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Traditional full-aperture fabrication methods are not capable of manufacturing aspheric
surfaces due to their nonconstant curvature. By changing the amount of contact from full to a
region where change in local curvature approaches zero, some portions of traditional spherical
lens-manufacturing techniques can be applied. Brittle removal by high-speed diamond grinding
followed by ductile removal using a polishing slurry (ceria, alumina, etc.) can be used to prepare
aspheric surfaces. Instead of full contact, curvature-insensitive local contact is used in grinding
and polishing.

In aspheric grinding, a peripheral diamond wheel on a CNC platform traces the surface to
generate the aspheric profile. In grinding, machine accuracy determines profile accuracy. A more
accurate ground profile makes a more accurate polished profile more likely, since there’s less cor-
rection needed. Particular attention must be paid to wheel wear, wheel balance, positional accuracy,
and overall stiffness of the grinding platform. Imperfection in any of these grinding parameters will
leave signatures in the ground surface.

The surface is then polished by working only a small area at a time. All of this must be done
while maintaining location of the aspheric axis, the axis around which the solid of revolution was
formed. Each iteration has an error inducement associated with it, so making as few correction runs
as possible is a primary focus. Typically, asphere polishing is a feed-forward, deterministic process.
While the local curvature may be constant, globally it is not. Polishing requires an adaptive tool
and knowledge of what’s ahead. The polishing tool needs to change to suit local curvature at a suit-
able rate of change. This requires knowledge of how the tool will evolve and how much removal is
needed in which region. Deterministic processes provided by Zeeko/Satisloh and QED machinery,
discussed earlier, are examples of such tools. These processes characterize the removal rate as a func-
tion of curvature for a given tool and combine that with an error map of the surface to be worked.
The resulting removal schedule accommodates for volumes to be removed and tool performance at
that local curvature.

Conventional interferometric techniques do not translate to aspheric manufacturing either.
Since local curvature is nonconstant, interferometric techniques for aspheres are lock and key.
The setup and equipment can be unique for a given aspheric form, so time and money demands
are large. For example, form-specific computer-generated holograms (CGHs) may be required
to provide feedback to the closed-loop deterministic polishing process. For a more cost-effective
solution profilometry is the main two-dimensional compromise, and it is the current industry
standard. Although more generalized interferometric solutions are beginning to be offered by
QED, Zygo, and others.

Errors in centration are unrecoverable. In centering a spherical lens, errors can be removed. With
sufficient diameter overage both centers of curvature could be positioned on the same axis and that
axis could be made concurrent and coincidental with the mechanical axis. Since an aspheric surface
is centered about an axis and not a point such realignment is not possible. Therefore, centration
must be conserved throughout processing.

9.6 CRYSTALLINE OPTICS

As more optical work occurs outside the visible spectrum, use of optics made from nonglass brittle
materials will grow. Single crystalline and polycrystalline materials are transparent far outside the
usual spectral transmission range of glass. In many cases, the surfaces of these materials have dif-
fering hardness values depending on the orientation of the crystal boundaries. Soft laps tend to
accentuate the grain boundaries of these materials, and that can lead to wavefront errors, mottled
surfaces, and scattering. The traditional optical fabrication process can be adapted to crystal materi-
als if some substitutions are made. The lapping process may substitute finely graded diamond for
alumina and tin or zinc laps in place of the typical cast iron. Similarly, diamond suspensions are
often used in polishing in place of ceria. Polishing laps may consist of synthetic materials like poly-
urethane or beeswax instead of optical pitches.?*°
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9.7 PURCHASING OPTICS

There are a number of companies who offer lines of standard optical components. These suppliers
can provide off-the-shelf optics in a variety of sizes, shapes, and quality levels. Most optics providers
have areas of specialization, and the informed optics buyer will select vendors that match their spe-
cific optics requirements. When custom optics are required, it is best to understand the capabilities
of prospective suppliers. Most optics companies promote a broad range of capabilities, but many
tend to specialize in some manner. Professionals who are engaged in optics purchasing on a regular
basis learn where to go for specific optics requirements. Often this education is paid for by award-
ing of numerous contracts across a broad array of parts and suppliers and experiencing the conse-
quences of the decisions. Much is learned in the contract’s postmortem review.

Optics purchasing is further complicated with the predominance of the internet as a research tool.
Web sites and promotional materials often do not reflect a supplier’s true capability and know-how.

Whether buying off-the-shelf or custom optics, it is always best to engage potential suppliers in
dialog, preferably addressing tolerances and other manufacturing cost drivers. The buyer should be
satisfied the supplier has the ability to meet and measure all critical criteria. For optics that approach
a manufacturer’s limits, it is especially important to understand the test and acceptance process, as
there can be quite a divergence of metrology equipment and methods available for testing various
parameters.’! This is especially true for aspheres, where full format phase measuring interferometry
or transmitted wavefront testing is not always within a supplier’s capability.

9.8 CONCLUSION

Optics fabrication requires serial application of relatively simple steps. In the past, these steps were
carefully carried out by artisans using traditional techniques. Modern approaches incorporate scien-
tific research into the manufacturing process. Artisan skills integrate with the scientific know-how
yielding a new breed of technology workers of the twenty-first century. Nevertheless, the basic pro-
cess steps of grinding followed by polishing have remained. Introduction of new optical materials,
more complex shapes and more narrow tolerance budgets will enable designers to develop improved
solutions to old problems over an expanded spectrum, and modern manufacturing methods can
make the optics physically realizable. Finally, the tendency for specialization among optics supplier
requires open dialog between supplier and designer as a means to optimize successful relationships.
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10.1 GLOSSARY

f feedrate

h  peak-to-valley height

R tip radius of diamond tool
10.2 INTRODUCTION

The use of special machine tools with single-crystal diamond-cutting tools to produce optical sur-
faces on some metals and a limited range of other materials is called diamond turning. Over the last
50 years or so, diamond turning has matured to become the method of choice for producing some
optical surfaces; in other applications, diamond turning provides a critical process step with radi-
cally different characteristics from most other optical fabrication methods.

In terms of geometry and motions required, the diamond-turning process is much like the step
of “generating the optical surface” in traditional optical fabrication. However, the diamond-turning
machine is a more sophisticated piece of equipment that produces the final surface, which frequently
does not need the traditional polishing operation. The surface quality produced by the “best” diamond
turning does not yet match the best produced by conventional polishing practice. The limits of diamond
turning for both figure and surface-finish accuracy have not yet been reached—and diamond turning can be
combined with postpolishing to improve surface finish and reduce scatter.! Also subaperture processing
with small polishing tools or magnetorheological finishing (MRF) can be used to improve figure.

There are several important advantages of using diamond turning, including the ability to produce
good optical surfaces to the edge of the element, to fabricate soft ductile materials that are difficult to
polish, to eliminate alignment adjustments in some systems, and to fabricate shapes difficult to produce
by other methods. The latest generation of diamond-turning machines incorporates up to five axes

*Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

TCertain commercial equipment, instruments, or materials are identified in this chapter. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products
identified are necessarily the best available for the purpose.
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of computer-controlled motion, allowing for production of anamorphic optics. Use of form tools on
multiaxis machines enables production of “structured” optical surfaces? ranging from subwavelength
structures through diffractive/refractive infrared (IR) elements to optical component molds.

If the advantages of diamond turning suggest this fabrication method, then it is important to
determine early in the design phase of a project whether the material specified is appropriate for
diamond turning and whether slideway travels and linear and rotary axis controls are available on
the diamond-turning machine to support fabrication of complex structures.

Sections in this chapter highlight the following:

e The diamond-turning process

e The advantages of diamond turning

¢ Diamond-turnable materials

e Comparison of diamond turning and traditional optical fabrication
e Machine tools for diamond turning

e Basic steps in diamond turning

e Surface finish of diamond-turned optics

e Metrology of diamond-turned optics

e Conclusions

10.3 THE DIAMOND-TURNING PROCESS

The diamond-turning process produces finished surfaces by very accurately cutting away a thin chip or
layer of the surface. Thus, it is generally applicable to ductile materials that machine well rather than
to hard brittle materials traditionally used for optical elements. However, by using a grinding head on
a diamond-turning machine in place of the tool, hard brittle materials can be finished. At very small
effective depths of cut, brittle materials behave in an apparently ductile manner. This attribute allows
fracture-free grinding of glasses and ceramics as well as diamond turning of optical surfaces on materi-
als such as germanium, zinc selenide, and potassium dihydrogen phosphate (KDP).

In diamond turning, both the figure and surface finish are largely determined by the machine
tool and the cutting process. Note, however, that material characteristics such as grain size and inclu-
sion size limit the ultimate surface finish achievable. The tool has to be very accurately moved with
respect to the optical element to generate a good optical surface, and the edge of the diamond tool
has to be extremely sharp and free of defects.

10.4 THE ADVANTAGES OF DIAMOND TURNING

Diamond turning fits within a broad spectrum of optics fabrication processes. When compared with
traditional optical fabrication methods of lapping and polishing (see, for example, Chap. 9, “Optical
Fabrication,” by Michael P. Mandina) diamond turning has several advantages.

e It can produce good optical surfaces clear to the edge of the optical element. This is important,
for example, in making scanners, polygons, special shaped flats, and when producing parts with
interrupted cuts.

e It can produce optical surfaces on soft ductile materials that are extremely difficult to polish.
e It can easily produce off-axis parabolas and other difficult-to-lap aspherical shapes.

e It can produce optical elements with a significant cost advantage over conventional lapping and
polishing where the relationship of the mounting surface—or other feature—to the optical surface
is very critical. Expressed differently, this feature of diamond turning offers the opportunity to
eliminate alignment adjustments in some systems.
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FIGURE 1 An axicon optical element being diamond turned. (Courtesy of Rank
Taylor Hobson, Keene, New Hampshire.)

e It can fabricate optical shapes such as axicons, facetted optics, and grazing incidence X-ray optics
that would be extremely difficult to fabricate by methods other than diamond turning (see Fig. 1).

Conflicts between optical requirements and diamond turnability on the one hand, and mechani-
cal considerations on the other, often lead to the use of platings. Plating deficiencies, however, can
cause as much trouble as poor bulk materials. For example, small changes in the composition of
plated electroless nickel may cause dramatic changes in tool wear.?

Residual stress in the mirror blank, whether plated or not, can lead to changes in mirror shape
with time. It is essential to pay careful attention to stress-relief prior to final diamond turning.

A decision to diamond turn an optical element, rather than fabricate it by the conventional polish-
ing techniques, might be based on several different considerations such as type of element, size, and
material. A general guide to different considerations in selecting diamond turning as a fabrication
technique is presented in Table 1.

TABLE 1 General Guide to Optical Fabrication Methods

Size, m Shape Material Preferred Method
Less than 0.5 Flat or sphere Glass/ceramic Polish
Ductile metal Diamond turn
Asphere Glass/ceramic Grind/polish*
Ductile metal Diamond turn
0.5t02.0 Any axisymmetric Ductile metal Diamond turn®
Greater than 2.0 Any Any Large polishing machine

*Can generate shape or figure on a diamond-turning machine with a grinding head replacing the diamond tool. Subaperture
polishing techniques, including techniques such as MRE, may be applied to advantage.
TDiamond-turning machines up to 2-m diameter have been built.
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As indicated above, diamond turning has some unique characteristics. In some IR (and even
visible) imaging systems, considerable improvements in optical performance have been obtained by
combining a refractive aspheric surface and a diffractive surface in a single element. For IR applications,
it is hard to produce such a component by any other fabrication process; for visible applications, such
optics can be produced in volume from diamond-turned molds.

Another unique capability of diamond turning is to provide datums or alignment features
machined in the same setup as the optical surface. “Snap-together” optical systems requiring no
alignment adjustments after assembly are very attractive in some applications.

Over the last decade, there have been considerable advances in the ability to produce aspheric
optics using computer-controlled generators and pad polishers. These technologies, combined with
ion polishing, magnetorheological finishing, and computer-controlled polishing have enabled a new
generation of aspheric optics. Ultimately the choice of manufacturing process requires a careful
analysis of the options and the system requirements.

10.5 DIAMOND-TURNABLE MATERIALS

Selection of appropriate materials is, necessarily, a trade-off between application-specific require-
ments and optimization of the manufacturing process. This trade-off may drive the selection of a
plated surface, for example, or the choice of fabrication steps.

Historically materials have been described as either “diamond turnable,” or not, as if this were an
inherent material property. This shorthand covers two different situations. One is that, in practice,
some materials cause very rapid wear of the diamond; for example, it is widely known that ferrous
materials cause rapid tool wear. The other is that, particularly for certain plastics, tool-workpiece
interactions produce unacceptable optical surfaces.

A number of listings of diamond-turnable materials, such as the one included in Table 2, have
been published. Such listings should be treated with caution. Typically, they are incomplete and
do not provide sufficient information on the materials that are listed. For example, good optical
surfaces are not generally produced on all aluminum alloys: Aluminum Alloy 6061 (Aluminum
Association, Inc. designation) is the most commonly used alloy, although certain 5000 series and
7000 series alloys have their proponents, and 2024 aluminum has been used but, in general, does not
produce the best surfaces.

TABLE 2 Diamond-Turnable Materials

Metals Nonmetals Plastics
Aluminum Calcium fluoride Polymethymethacrylate
Brass Magnesium fluoride Polycarbonates
Copper Cadmium telluride Polyimide
Beryllium copper Zinc selenide
Bronze Zinc sulphide
Gold Gallium arsenide
Silver Sodium chloride
Lead Calcium chloride
Platinum Germanium
Tin Strontium fluoride
Zinc Sodium fluoride
Electroless nickel KDP

KTP

Silicon
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Similarly, gold is considered diamond-turnable, but problems have been reported machining large
gold-plated optics. Conventional electroplated nickels (and bulk nickel) give rapid tool wear, but
electroless nickel with phosphorous contents above about 10 percent, if appropriately heat treated, can
be machined effectively.* Higher phosphorous contents (up to 15 percent) are obtainable in electroplated
nickel>® which also machines extremely well. Both materials are metastable and will transform—with
exposure to the necessary time/temperature conditions—to a mixture of crystalline nickel with hard
phosphides. This transformation is accompanied by a volume change, a degradation of optical charac-
teristics of the surface, and a dramatic increase in tool wear.

Platings may also be optimized to give low ductility and hence minimum burr formation when
machining Fresnels or the molds for micro-optics arrays such as arrays of retroreflectors. Platings
over a diamond-turned sacrificial mandrel allow production of otherwise unobtainable forms.
Plated surfaces, however, have characteristics which can adversely affect both fabrication and appli-
cation; at some level the resulting structure is a temperature-sensitive bimetal strip. Pits and inclu-
sions can cause significant fabrication issues.”

Silicon, although included in the listing given here, should be considered marginal as tool wear
can be high. Reasonably large areas of amorphous silicon cladding are reported to have been suc-
cessfully machined.

Over the last decade or so there have been significant advances in understanding of diamond tool
wear. Mechanisms associated with abrasion and chipping typically provide one limit to diamond
tool life. For example, when machining bulk aluminums the interactions between hard inclusions
and the diamond tool clearly lead to wear. Such mechanisms, however, do not explain the very rapid
wear observed when machining soft, high-purity iron.

Paul et al.® showed that machining metallic elements containing unpaired d-shell electrons
results in catalyzed reactions between diamond and the work material. The same mechanism
explains the role of phosphorous in electroless nickel and led to a recent breakthrough by
Brinksmeier et al.’ They showed that, like phosphorous, nitrogen in a nitride surface layer on steel
combines with the unpaired d-shell electrons from the iron. The result is a dramatic reduction in
tool wear, suggesting that diamond-turned steel molds (e.g., for plastic optics) may become practi-
cal in the near future. Previous approaches—such as diamond turning at cryogenic temperatures'°
or in methane or acetylene environments''—provided evidence of the mechanisms at work but
were not widely adopted (and in the case of cryogenic machining was not intended by the original
researchers to be practical).

For a number of years, Moriwaki'? has been developing ultrasonic-assisted machining, including
cutting when the tool is vibrated with an elliptical motion. Significant reductions in tool wear have
been demonstrated, although the mechanism remains controversial. The amplitude and frequency
of oscillation in the cutting direction are generally selected such that separation between the rake
face of the tool and the chip is expected. In this case, one might postulate poisoning of the catalytic
process by, for example, hydrocarbon-based cutting fluids. Elliptical motion would also move the
clearance face out of contact. Other measurements show significant reductions in cutting forces,
suggesting a reduction of tool temperatures.

In case of some plastics, recent work by Gubbels et al.'* shows that the chemical explanations of
Paul et al.¥ do not apply, but that triboelectric effects dominate. In general, there are some sugges-
tions that parameters, such as surface speed, are more important for successful diamond machin-
ing of plastics than for metal and crystalline substrates. Some plastics are diamond turned in vol-
ume production.

Other material characteristics, in addition to the material composition, are important. For
example, large grain size results in a more pronounced “orange peel” as tools become dull and
the variation in modulus of the different grain orientations leads to different deflections due to
cutting forces. Residual stresses can relax over time and cause changes in figure. Because of these
types of problems it is important to involve experienced personnel early in the design phase®® to
ensure that the material specified is appropriate. In some projects, the part is so valuable and/or
so difficult to produce by other techniques, it is worth consuming tools more rapidly than would
normally be acceptable. However, such a decision should be taken consciously, not by default late
in a project.
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10.6 COMPARISON OF DIAMOND TURNING

AND TRADITIONAL OPTICAL FABRICATION

In diamond turning, the final shape and surface of the optic produced depend on the machine
tool accuracy, whereas, in traditional optical fabrication, the final shape and surface of the opti-
cal element depend on the process variables involved with using an abrasive-loaded lap. The
differences between diamond turning and traditional optical fabrication can be summarized
by describing diamond turning as a displacement-controlled process versus a force-controlled
process for traditional optical fabrication.'® The goal in diamond turning is to have a machine
tool that produces an extremely accurate path with the diamond tool, hence a displacement-
controlled process. A traditional polishing machine used for optical fabrication depends on the
force being constant over the area where the abrasive-loaded lap—or tool—touches the surface
being worked. Selective removal of material can be produced by increasing the lap pressure in
selected areas or by use of a zone lap. The stiffness of a diamond-turning machine is important
because, to control the displacement, it is important that cutting forces and other influences do
not cause unwanted displacements. Feeds, speeds, and depth of cut are typically much lower
in diamond turning than conventional machining, thus giving lower forces. However, the dis-
placements of concern are also much lower. Thus the stiffness required is as much, or more, of
a concern than conventional machining even though the total force capability may be lower for
diamond turning.

10.7 MACHINE TOOLS FOR DIAMOND TURNING

In general, the machine tools used for diamond turning are very expensive compared to the equip-
ment needed for traditional optical fabrication. The positioning accuracy required for diamond
turning is beyond the capability of conventional machine tools, thus some of the first widely
adopted diamond-turning machines for fabricating optics were modified Moore measuring
machines.!”

Although there are some records of machine tools being used to generate optical surfaces as early
as the seventeenth century, most of the effort is modern, accelerated in the 1960s and 1970s with the
advent of computer-based machine tool controls and laser interferometer systems used as positional
feedback devices. Evans'® has documented much of the history of diamond turning and provides
an extensive reference list. Ikawa!® summarizes some of the research in metal cutting related to dia-
mond turning and associated machine tools.

The early diamond-turning machines were two-axis lathes that could produce axisymmetric
optical elements. With recent advances in computer-based control systems, and improved motion
control and feedback sensors, multiaxis diamond-turning machines have become readily available.
Two commercial diamond-turning machines are shown in Fig. 2. Both machines can be configured
with five-axis motion control combining both linear and rotary axes. Measuring scales have replaced
the laser interferometers in many diamond-turning machines and give a very reliable positioning
feedback system at lower cost.

Programming of these multiaxis machines draws on the technology developed in precision
machine shops for large five-axis machine tools used to make complicated parts. By adapting the
multiaxis control to diamond-turning machines, a great variety of shapes can now be diamond
turned which opens up the process to many new optical applications. Before judging an optical
element shape to be unsuitable for diamond turning, a manufacturer of modern diamond-turning
machines should be consulted.

Producing nonaxisymmetric parts—such as an off-axis parabola machined while centered on the
rotating axis—has become possible with fast tool servos. These systems can rapidly move a cutting
tool a short distance coordinated with the rotation of the spindle.?’ There are also cases where the
machine’s slideways or rotary motions can be used to produce nonaxisymmetric parts.
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FIGURE 2 (a) Diamond-turning machine configurable for five-axis machining. (Courtesy of Precitech,
Inc., Keene, New Hampshire.) (b) Diamond-turning machine configurable for five-axis machining. (Courtesy

of Moore Nanotechnology Systems, LLC., Keene, New Hampshire.)
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Many diamond-turning machines are used in the traditional turning lathe mode where the
workpiece turns and the tool is held stationary in the tool post. Most diamond-turning machines
can also be configured such that the tool rotates about the spindle axis—commonly called fly
cutting—to produce components such as long flat mirror surfaces or other milled surfaces.

10.8 BASIC STEPS IN DIAMOND TURNING

Much like the traditional optical-fabrication process, the diamond-turning process can be described
as a series of steps used to make an optical element. The steps used in diamond turning are

1. Preparing the blank with all the required features of the element with an extra thickness of mate-
rial (generally 0.1-mm extra material or plating is adequate) on the surface to be diamond turned

Mounting the blank in an appropriate fixture or chuck on the diamond-turning machine
Selecting the diamond tool appropriate for the material and shape of the optical component
Mounting and adjusting the diamond tool on the machine

Machining the optical surface to final shape and surface quality

SRR

Cleaning the optical surface to remove cutting oils or solvents

Mounting the optical element blank on a diamond-turning machine is extremely important.
If a blank is slightly distorted in the holding fixture, and then machined to a perfect shape on the
machine, it will be a distorted mirror when released from the fixture. Therefore, fixtures and chucks
to hold mirrors during diamond turning need to be carefully designed to prevent distortion. Often
the best way to hold a mirror during machining is to use the same mounting method that will be
used to hold the mirror in service.

It is advantageous in many applications to machine a substrate of aluminum or copper and then
add a plating to be diamond turned. The design and application of platings is part science and part
art. Many aspects of the platings as related to diamond turning were covered at the ASPE Spring
1991 Topical Meeting.”

Tool setting—the mounting and adjusting of the diamond-tipped cutting tool—is often accom-
plished by cutting a test surface, either on the actual mirror blank to be later machined over, or by plac-
ing a test piece on the machine just for tool setting. If the cutting tool is too high or too low, a defect at
the center of a mirror is produced. It is possible, using reasonable care and patience, to set the tool height
within about 0.1 um of the exact center. Setting the tool in the feed direction after the height is correct
is somewhat more difficult. For example, an error in setting will produce an ogive shape rather than a
sphere which is not obvious until the figure is measured. Gerchman?' describes these types of defects.

The selection of the tool for diamond turning is important. Large cutting tip radii (2 mm or
greater) are often used when producing flats, convex, or concave mirrors with large radius of curvature.
However, small-radii diamond tools are available (in the range of 0.1 mm) for making small deep mir-
rors or molds. Tools with special geometries, including so-called “dead sharp” tools, can be obtained for
such applications as Fresnel lenses or retroreflector arrays. In general, approximately 0° rake tools, with
about 5° or 6° front clearance, are used for diamond-turning ductile metals. Negative rake tools are
often good for crystalline materials and positive rakes may be beneficial when machining some plastics.
The cutting edge has to be chip free to produce a good diamond-turned surface. A normal specification
for edge quality is “chip free when examined at 1000x.” The edge sharpness is a concern for very small
depths of cut—especially where the depth of cut is close to the cutting edge sharpness—because the
cutting forces increase and more of a plowing than a cutting process occurs. The effect of cutting edge
sharpness has been investigated by researchers, for example Lucca, et al,> however, there is currently no
convenient way to specify and inspect tools for edge sharpness.

The orientation of the diamond itself on the shank is of concern because the single-crystal dia-
mond is anisotropic. The orientation of diamond tools has been studied, for example, by Wilks,
Decker,* and Hurt.?® It is necessary for the tool manufacturer to mount the diamond so that it can
be shaped to the required radius and produce a good cutting edge. The usual orientation for diamond
tools is with the cleavage plane parallel to the rake face.
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The actual diamond turning, or machining to final size and surface finish, is often the fastest part
of the process. The machine-tool controller has to be programmed to move the tool along the cor-
rect path, the chip-removal system has to be positioned, and the cutting-fluid applicator needs to be
adjusted to provide consistent clean cutting.

For machining of flats and spherical surfaces, the part programs that define the machine motion
are straightforward. But when cutting aspherical surfaces, caution has to be exercised so that the
radius of the tool is properly handled in calculating the tool path. Modern computer-aided design
(CAD) systems perform the necessary calculations, but tests should be performed prior to cutting a
difficult or expensive component.

In general, the cutting speeds for diamond turning are similar to those used for conventional
machining: less than 1 m/min to more than 100 m/min. However, the slower cutting speeds produced
by facing to the center of a workpiece do not affect the surface finish in diamond turning as is often the
case with nondiamond tools. Thus, varying the spindle speed to keep the cutting speed constant is not
necessary in diamond turning. The upper speed for diamond turning is often limited by the distortion
of the optical element due to inertial forces, especially for larger elements. The upper spindle speed can
also be limited due to any unbalance of the workpiece and fixture. The feed rate in diamond turning is
usually adjusted to give a good theoretical surface finish. (See the following section.)

Cleaning of diamond-turned optics has a lot in common with cleaning conventionally polished
optics. But because many of the diamond-turned elements are of soft metals, caution has to be exercised
to prevent scratching. In general, a degreaser is used (soap or solvent), followed by a rinse in pure ethyl
alcohol. The drag-wiping technique traditionally used on some glass optics can be used on some
diamond-turned elements. Care must be taken to ensure that the lens tissue is very clean and remains
wet. Some work has been done to study the best solvents to use for cleaning diamond-turned optics
from an environmental-impact standpoint.?®

10.9 SURFACE FINISH OF DIAMOND-TURNED OPTICS

The surface structure is different for diamond-turned surfaces as compared with conventionally
polished surfaces. A diamond-turned surface is produced by moving a cutting tool across the surface of
the turning component, such as the facing operation illustrated in Fig. 3. Therefore, diamond-turned
elements always have some periodic surface roughness, which can produce a diffraction-grating effect,
whereas polished optical surfaces have a random roughness pattern. The traditional “scratch and dig”
approach to describing surfaces is not meaningful for diamond-turned surfaces.

Spindle rotation
(RPM = revolutions per minute)

Tool slide motion

Diamond-turned
surface
Cutting speed = 277 « RPM o

(usually converted to feet/minute or meters/minute)

FIGURE 3 Diamond turning an optical element.



10.10 FABRICATION

The machining process produces a periodic surface structure directly related to the tool tip
radius and feed rate. The theoretical diamond-turned surface is illustrated in Fig. 4. The formula
displayed in the figure for calculating the height of the cusps is

2
h:Sf—R W

where h = peak-to-valley height of the periodic surface defect
f=feed per revolution
R =tool tip radius

For example, if a surface is diamond turned using a spindle speed of 31.4 rad/s (300 rpm), a feed
of 7.5 mm/min, and a 5.0-mm tool tip radius:

2
h:M:I.S6X10’5mm
8x%5
h=15.6 nm (2)

In addition to the “theoretical finish” based on cusp structure, the measured surface finish on
diamond-turned parts is influenced by other factors.

e Waviness within the long-wavelength cut-off for surface measurement may be correlated, for
example, with slide straightness errors.

¢ Asynchronous error motions of the spindle can cause surface defects. If, for a given angular spin-
dle position, there is nonrepeatability in axial, radial, or tilt directions, these errors will transfer
into surface structure. Details of spindle errors are important in diamond turning. Further infor-
mation can be found in the “Axis of Rotation Standard.”?”

e External and self-induced vibration, not at the spindle frequency or at one of its harmonics, can
have the same effect on finish—measured across the lay—as asynchronous spindle motions.

e Materials effects such as the differential elastic recovery of adjacent grains can cause steps in the
machined surface that have an appearance commonly referred to as “orange peel.” Impurities in
the material can also degrade surface finish.

e Within each cusp, there can be a repeated surface structure related to chips in the edge of the tool.

Part being diamond turned

Turned surface J

X Cusp geometry
R
) —
ee(fewwr g N
\R—h T
2 R >
f
h=1i_

8R

With h2= 0

FIGURE 4 “Cusp” surface of diamond-turned optical
element.
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The Nomarski microscope is an excellent means of qualitatively evaluating diamond-turned sur-
faces. The Nomarski photo in Fig. 5a illustrates the periodic structure of a diamond-turned surface.
The feed rate used in producing the surface causes the wavelength of the periodic structure to be about
8 um. Figure 5b illustrates other defects in the diamond-turned surface when the Nomarski micro-
scope is adjusted such that the periodic cusps are not seen.?

(b)

FIGURE 5 Nomarski micrograph of a diamond-turned aluminum alloy (a) aligned so that
the grooves can be seen and (b) aligned so that the grooves are canceled. (From Bennett, p. 84.2)
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10.10 METROLOGY OF DIAMOND-TURNED OPTICS

In general, measurement of diamond-turned optics is similar to the measurement of any other
optic; figure, midspatial frequency errors, transmitted wavefront, and surface roughness may all
need characterization, depending on the specification. As with other optics, the choice of figure
metrology is driven by the optical surface itself. Classical null tests—especially autocollimation tests
for parabolae and the related tests for other conics—are widely used. Over the last decade or so, use
of in-cavity holograms in Fizeau tests has increased. What remains elusive is a general test. Over a
limited range of surfaces, subaperture stitching? may be viable or, for circularly symmetric aspheres,
zonal stitching.*® Kuechel®! described a zonal technique that uses only the zone of null data and,
hence, is free of retrace errors and applicable to a range of aspheres without the need for null optics.
An instrument based on this technique is shown in Fig. 6.

One area in which diamond turning differs from conventional optics production is that the
machine itself can be used as a measuring machine. The diamond tool can be replaced with an
appropriate sensor (such as a capacitance sensor, air bearing linear variable differential transformer
(LVDT), optical triangulation sensor, etc.) or the sensor can be built into an auxiliary mount. With
sufficient care, the geometric errors of the machine can be mapped so that the limits in the metrol-
ogy are the uncertainties associated with probing and with the environment. This approach is par-
ticularly advantageous when making (and measuring) radical aspheres or discontinuous, structured
surfaces® such as molds for facetted automotive lighting. On multiaxis machines, it is sometimes
more useful to use a different combination of axes for metrology than for machining to better
decouple machine geometry errors from measurement uncertainty. For example, on a diamond-
turning machine with a B axis (rotary table), near hemispheres and some aspheres can conveniently
be machined using only the x and y axes, with measurement of the departure from a best-fit sphere
performed using a separate probe mounted on the rotary table.

FIGURE 6 Aspheric measuring system. (Courtesy Zygo
Corporation, Middlefield, CT.)



FABRICATION OF OPTICS BY DIAMOND TURNING 10.13

FIGURE 7 Microinterferometer. (Courtesy of Zygo Corporation).

There is little practical difference between measuring optical surfaces produced using traditional
methods and by diamond turning. It is worth bearing in mind, however, that during diamond turn-
ing there is usually a monotonic progression in cutting from outside diameter to inside diameter
or vice versa; hence, diamond tool wear or small edge nicks will cause a degradation in finish that
depends on position on the part. The surface finish measurement sampling strategy should be
adjusted accordingly. Surfaces produced using traditional 2-axis or 3-axis diamond-turning have
significantly different characteristics along and transverse to the lay; scattering is isotropic, a char-
acteristic that should be considered in both the specification and metrology of diamond-turned
optics. Four-axis and 5-axis machining using methods akin to milling produce cusp structures usu-
ally at different spatial wavelengths in both directions.

Microinterferometers (Fig. 7) have become the tool of choice for characterizing optical sur-
faces at spatial wavelengths down to the limits posed by the instrument transfer function.®?
Microinterferometers—particularly those using scanning coherence techniques frequently referred
to as scanning white light interferometry (SWLI)—can be useful, provided the surface slopes and
lateral extent are compatible with the available numerical aperture of the objective and the field of
view. Replication—for example, using dental replica materials, silicone-based caulks, two-part epox-
ies, and the like—allows sampling of large surfaces, although there is inevitably some increase in
“noise” due to the replication process.

Higher spatial frequency structured surfaces, such as retroreflectors or other micro-optic arrays,*
often pose metrology challenges for which there is no general solution.

10.11 CONCLUSIONS

Diamond turning has been used for many years to commercially produce infrared optics. Some vis-
ible and ultraviolet applications are now possible. Moreover, the limits of diamond turning for both
figure and surface finish accuracy have not yet been reached. Taniguchi®® and others have shown that
precision in both conventional machining and ultraprecision machining, such as diamond turning,
has steadily improved for many decades, with roughly a factor of three improvements possible
every 10 years. If this trend continues, we could expect diamond-turning machines with accuracies
below 10 nm and even approaching 1 nm by the year 2020. Yet, it is important to remember that it
becomes increasingly difficult to push the capabilities in this regime—nor is it clear that it is cost
effective to do so. Other manufacturing techniques may be more appropriate for production of the
highest quality optics.
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The technology developed for diamond-turning optics in some industries is now beginning to

impact the precision machining of nonoptical components. In the future, the improvement of all
machine tools will likely be driven by both optical and nonoptical applications, with diamond-
turning machines possibly reaching the accuracy level that will allow visible and ultraviolet optics to
be fabricated by machining or grinding without postpolishing.
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ABSTRACT

Zernike circle polynomials are in widespread use for wavefront analysis because they are orthogo-
nal over a unit circle and represent balanced classical aberrations for imaging systems with circular
pupils. However, they are not suitable for systems with noncircular pupils. Examples of such pupils
are annular as in astronomical telescopes, elliptical as in the off-axis pupil of an otherwise rotation-
ally symmetric system with a circular on-axis pupil, hexagonal as in the hexagonal segments of a
large telescope, for example, Keck, and rectangular and square as in high-power laser beams. In
this chapter, we list the orthonormal circle, annular, elliptical, hexagonal, rectangular, and square
polynomials. The polynomials for a noncircular pupil can be obtained by orthogonalizing the circle
polynomials over the pupil using the recursive Gram-Schmidt process or a nonrecursive matrix
approach. These polynomials are unique in that they are not only orthogonal across such pupils,
but also represent balanced classical aberrations for such pupils, just as the Zernike circle polyno-
mials are unique in these respects for circular pupils. The polynomials are given in terms of the
circle polynomials as well as in polar and Cartesian coordinates. The orthonormal polynomials for a
one-dimensional slit pupil are given as a limiting case of a rectangular pupil. The polynomials cor-
responding to Seidel aberrations are illustrated isometrically, interferometrically, and with the cor-
responding point-spread functions (PSFs).

11.1 GLOSSARY
a  half width of a unit rectangular pupil
a; jth expansion coefficient
A area of pupil
b aspect ratio of a unit elliptical pupil

“The author is also an adjunct professor at the College of Optical Sciences, University of Arizona, Tucson, Arizona and
Department of Optics and Photonics, National Central University, Chung Li, Taiwan. He gratefully acknowledges helpful discus-
sions with Drs. Guang-ming Dai and Bill Swantner.
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E].(x, y)  orthonormal elliptical polynomial in Cartesian coordinates (x, y)
F  focal ratio of the image-forming light cone
F(x,y) jth orthonormal polynomial
H{x,y)  orthonormal hexagonal polynomial
j  polynomial number
N, number of polynomials through an order n
P(x)  orthonormalslit polynomial along the x axis
P ()  Legendre polynomial of order n
R(x,y)  orthonormal rectangular polynomial
R™(p)  Zernike circle radial polynomial
R"(p; €)  Zernike annular radial polynomial
Sj(x, y)  orthonormal square polynomial
W(x,y)  wave aberration at a point (x, y)
Zj(p, 0) orthonormal Zernike circle polynomial in polar coordinates (p, 6)
Z].(p, 0;€) orthonormal Zernike annular polynomial
o standard deviation
o?  variance
€ obscuration ratio of an annular pupil
11.2 INTRODUCTION

Optical systems generally have a circular pupil. The imaging elements of such systems have a cir-
cular boundary. Hence they also represent circular pupils in fabrication and testing. As a result, the
Zernike circle polynomials have been in widespread use since Zernike introduced them in his phase
contrast method for testing circular mirrors.! They are used in optical design and testing to under-
stand the aberration content of a wavefront. They have also been used for analyzing the wavefront
aberration introduced by atmospheric turbulence on a wave propagating through it.2 Their utility
stems from the fact that they are orthogonal over a unit circle and they represent balanced classi-
cal aberrations yielding minimum variance over a circular pupil.>® They are unique in this respect
since no other polynomials have these properties. Because of their orthogonality, when a wavefront
is expanded in terms of them, the value of an expansion coefficient is independent of the number
of polynomials used in the expansion. Hence, one or more polynomial terms can be added or sub-
tracted without affecting the other coefficients. The piston coefficient represents the mean value of
the aberration function and the variance of the function is given simply by the sum of the squares of
the other expansion coefficients.”

For systems with noncircular pupils, the Zernike circle polynomials are neither orthogonal
over such pupils nor do they represent balanced aberrations. Hence their special utility is lost.
However, since they form a complete set, an aberration function over a noncircular wavefront can
be expanded in terms of them. The expansion coefficients are no longer independent of each other
and their values change as the number of polynomials used in the expansion changes. The piston
coefficient does not represent the mean value of the aberration function, and the sum of the squares
of the other coefficients does not yield the aberration variance.

The reflecting telescopes, such as the Hubble, have annular pupils and require polynomials that
are orthogonal across an annulus to describe their aberrations.®!! The primary mirrors of large
telescopes, such as the Keck, consist of hexagonal segments.'? The wavefront analysis of such seg-
ments requires polynomials that are orthogonal over a hexagon. The pupil for off-axis imaging by
a system with an axial circular pupil is vignetted, but can be approximated by an ellipse.’* When a
flat mirror is tested by shining a circular beam on it at some angle (other than normal incidence),
the illuminated spot is elliptical. Similarly, the overlap region of two circular wavefronts that are
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displaced from each other, as in lateral shearing interferometry' or in the calculation of the optical
transfer function of a system,!” can also be approximated by an ellipse. In such cases we need poly-
nomials that are orthogonal over an ellipse. In Refs. 14 and 15, the polynomials that are orthogonal
over an elliptical region were obtained simply by scaling the Cartesian coordinates by its aspect
ratio. However, such orthogonal polynomials cannot represent classical aberrations. For example,
defocus, which varies as p?, has the same scale for both the x and y coordinates. Similarly, they can-
not represent balanced classical aberrations, for example, coma balanced with tilt. High-power laser
beams have rectangular or square cross sections'® and require polynomials that are orthogonal over
a rectangle or a square, respectively.

The polynomials orthonormal over a unit annulus, hexagon, ellipse, rectangle, and a square
inscribed inside a unit circle may be obtained from the circle polynomials by the recursive Gram-
Schmidt orthogonalization process!”!® or a nonrecursive matrix approach.!” The orthonormal
polynomials representing balanced aberrations for a slit pupil can be obtained as a limiting case of
the rectangular polynomials, where one dimension of the rectangle approaches zero. They are the
Legendre polynomials.?’ We use the circle polynomials as the basis functions for the orthogonaliza-
tion process, so that the relationship of a noncircle polynomial to the circle polynomials is evident,
since the former is a linear combination of the latter. We give the orthonormal form of the polyno-
mials so that when an aberration function is expanded in terms of them, each expansion coefficient
(with the exception of piston) represents the standard deviation of the corresponding expansion
term. The noncircle polynomials are given not only in terms of the circle polynomials, but in polar
and Cartesian coordinates as well. The circle, annular, hexagonal, and square polynomials are given
up to the eighth order, and the elliptical and rectangular polynomials are given up to the fourth
order. Just as the Zernike circle polynomials uniquely represent the orthogonal and balanced aberra-
tions across circular pupils, similarly, the orthonormal polynomials for the noncircular pupils given
in this chapter also uniquely represent the orthogonal and balanced aberrations across such pupils.

Orthogonal square polynomials were obtained by Bray by orthogonalizing the circle polynomi-
als, but he chose a circle inscribed inside a square instead of the other way around.?! Thus his square
with a full width of unity has regions that fall outside the unit circle. Defining a unit square in this
manner has the disadvantage that the coefficient of a term in a certain polynomial does not repre-
sent its peak value. Products of x and y Legendre polynomials,!” which are orthogonal over a square
pupil, have been suggested for analysis of square wavefronts.”? But they do not represent classical
or balanced aberrations. For example, defocus is represented by a term in x* + y*. While it can be
expanded in terms of a complete set of Legendre polynomials, it cannot be represented by a single
two-dimensional Legendre polynomial (i.e., as a product of x and y Legendre polynomial). The
same difficulty holds for spherical aberration and coma, and the like.

Although in many imaging applications, the amplitude across the pupil is uniform, such is not
always the case, for example, a system with an apodized pupil. An example of such a pupil is the
Gaussian pupil, where the amplitude has the form of a Gaussian due either to an amplitude filter
placed at the pupil or to the wave incident on the pupil being Gaussian, as in the case of a Gaussian
laser beam. Again, the balanced aberrations for a Gaussian pupil have a form that is different from
the corresponding balanced aberrations for a uniform pupil due to the amplitude weighting of the
pupil.?*2 The amount of defocus to optimally balance spherical aberration, or the amount of wave-
front tilt to optimally balance coma, for example, is different for a Gaussian pupil than its correspond-
ing value for a uniform pupil.

11.3 ORTHONORMAL POLYNOMIALS

In Cartesian coordinates (x, ), the aberration function W(x, y) for a certain pupil may be expanded
in terms of J polynomials Fj(x, ) that are orthonormal over the pupil:2®

]
W(x,y)= Y a,F(x,) (1)
j=1
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where a. is an expansion or the aberration coefficient of the polynomial F; (x, ¥). The orthonormality
of the polynomials is represented by

R ,y)dvdy =5, ()
pupil

where A is the area of the pupil inscribed inside a unit circle, the integration is carried out over the
area of the pupil, and 5]] is a Kronecker delta. If F =1, then the mean value of each polynomial,

except for j = 1, is zero, that is,

1 .
y J. Fj(x,y)dxdyzo forj=1 (3)

pupil

as may be seen by letting j = 1 in Eq. (2). The aberration coefficients are given by

=—Jw%wuww@ @)

pupil

as may be seen by substituting Eq. (1) into Eq. (4) and using the orthonormality Eq. (2).
The mean and the mean square values of the aberration function are given by

W(x, y))=4, (5)

and
J
M%y=2 (6)
Accordingly, the variance 62 of the aberration function is given by

J
02 =(W2(x, )= (W(x, y))* =Y a? 7
j=2

where o is the standard deviation of the aberration function. The number of polynomials J used in
the expansion is a sufficiently large that the variance obtained from Eq. (6) equals the actual value
obtained from the function W(x, y) within some prescribed tolerance.

11.4 ZERNIKE CIRCLE POLYNOMIALS

An aberration function W(p, 6), across a unit circle can be expanded in terms of the orthonormal
Zernike circle polynomials Z(p, 6) in the form>°

Za Z,(p,0) (8)

where (p, 6) are the polar coordinates of a point on the circle, 0 < p <1, 0 < 6 < 27, and a; are the
expansion coefficients. The polynomials may be written in the form

chenj(p,9)=«/2(n+l)R:[”(p)cosmG,m;tO (9a)
Zodd],(p, 0)=+/2(n+1)R"(p)sinm 6, m#0 (9b)

Zj(p,9)=\/n+1R2(p),m=0 (9¢)
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where n and m are positive integers (including zero) and n — m > 0 and even. It is evident from Egs. (9)
that the circle polynomials are separable in the polar coordinates p and 6. A radial polynomial R"(p)
is given by

(n—m)/2
—1)*(n—s)!
RI(p)= 3, CUWZE (10)
= n+m n—m
s! —s|! —s|!
with a degree n in p containing terms in p", p"2, ..., and p™. It is even or odd in p depending on

whether # (or m) is even or odd. Also, R"(p)=p", R"(1)=1, and R"(0)=4,, for even n/2 and -6,
for odd n/2. The polynomials R"(p) obey the orthogonality relation

1

JRZ’(p)R;'?(p)pdp=

0

1
2(n+1)5“"’ (n

The orthogonality of the angular functions yields

cosmBcosm’@ , jand j are both even
T |cosm@sinm’6 jisevenand j is odd
J sinm@cosm’@ , jisoddand j’iseven

sinm@sinm’@ , jand j" are both odd

n(1+08,,)0, ., jand j” are both even
=s , jand j" are both odd (12)

0 , otherwise

Therefore, the Zernike polynomials are orthonormal according to

127 1 2rm

[ [zp.00Z,(p,0)pdpas | [ [ pdpdo=5, (13)

The expansion coefficients are given by

127

1
a.=;j [W(p,0)Z(p,0)pdpde (14)

]
00

as may be seen by substituting Eq. (8) into Eq. (14) and using the orthonormality Eq. (13).

While the index # represents the radial degree or the order of a polynomial, since it represents
the highest power of p in the polynomial, m is referred to as its azimuthal frequency. The index j is a
polynomial-ordering number and is a function of both n and m. The polynomials are ordered such
that an even j corresponds to a symmetric polynomial varying as cosm®, while an odd j corresponds
to an antisymmetric polynomial varying as sinm6. A polynomial with a lower value of 7 is ordered
first, and for a given value of #, a polynomial with a lower value of m is ordered first.

The Zernike circle polynomials are unique in that they are the only polynomials in two variables
p and 6, which (a) are orthogonal over a circle, (b) are invariant in form with respect to rotation of
the coordinate axes about the origin, and (c) include a polynomial for each permissible pair of n and
m values.*?’

The orthonormal Zernike circle polynomials and the names associated with some of them when
identified with classical aberrations are listed in Table 1a for n < 8. The polynomials independent of
0 are the spherical aberrations, those varying as cos0 are the coma aberrations, and those varying as
cos26 are the astigmatism aberrations. The variation of several radial polynomials R”(p) with p is
illustrated in Fig. 1.
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TABLE 1a Orthonormal Zernike Circle Polynomials Zj(p, 6) Ordered Such That an Even j
Corresponds to a Symmetric Polynomial Varying as cosm@ , While an Odd j Corresponds to an
Antisymmetric Polynomial Varying as sinm®

=2

Z(p, 0

Aberration Name*

O 0 N O U R W N

[N I N T S T S S S S
N U W= O 0N YU e W N = O

W W W W W L W NN
AN U R WD~ O O

= W W W
S O oo N

@ 0 00 00 NN NNNNNNOOOO NNl s R R R R W W W W N NN ==

e L = R A =

—

[ ST S R e s N S S L R Y N =) W =) W~ N NS R (S R e S Y S )

1
2pcosb
2psin@

32p-1)

\/gpz sin260

\/gpz cos20

\/§(3p3 —2p)sin@

\/§(3p3 —2p)cosO

\/§p3 sin30

\/gp3cos39

J5(6p*~6p*+1)

\/ﬁ(4p4 —3p?)cos26
\ﬂ(4p4 —3p?)sin26

\/Bp“ cos46

\/Bp“ sin46

V12(10p° -12p% +3p)cos
J12(10p° 1293 +3p)sin@
\/E(5p5 —4p)cos30
\E(Sp5 —4p°)sin30

\/Ep5 cos50

\/Epf’ sin50
J7(20p6-30p* +12p7 1)
J14(15p° —20p* +6p?)sin20
J14(15p5 —20p* +6p?)c0s20
\ﬂ(6p6 —5p*)sin46
\/H(6pf’ —5p*)cos46
\/H6p6 sin60

\/Hpé cos60

4(35p” —60p° +30p> —4p)sin@
4(35p” —60p° +30p° —4p)cosO
4(21p7 =30p> +10p*)sin360
4(21p7 —=30p° +10p°)cos360
4(7p7”-6p°)sin560

47p” —6p°)cos50

4p7sin760

4p7 cos76

3(70p° —140p° +90p* —20p? +1)
J18(56p% —105p° +60p* ~10p?)cos 20
J18(56p% —105p° +60p* —10p?)sin 20

JV18(28p® —42p5 +15p*)cos46

Piston
x tilt
ytilt

Defocus

Primary astigmatism at 45°
Primary astigmatism at 0°
Primary y coma

Primary x coma

Primary spherical aberration
Secondary astigmatism at 0°

Secondary astigmatism at 45°

Secondary x coma

Secondary y coma

Secondary spherical aberration
Tertiary astigmatism at 45°

Tertiary astigmatism at 0°

Tertiary y coma
Tertiary x coma

Tertiary spherical aberration
Quaternary astigmatism at 0°

Quaternary astigmatism at 45°

(Continued)



TABLE 1a Orthonormal Zernike Circle Polynomials Zj(p, 6) Ordered Such That an Even j
Corresponds to a Symmetric Polynomial Varying as cosm@ , While an Odd j Corresponds to an
Antisymmetric Polynomial Varying as sinm@ (Continued)

j n m Zj(p, 0) Aberration Name*
a8 4 J18(28p8 —42p° +15p*)sin46

2 s 6 J18(8p°—7p)cos60

3 8 6 J18(8p%—7p°)sin66

44 8 8 \/Epscosfie

58 8 J18p%sin8O

*“The words orthonormal Zernike circle are to be associated with these names, e.g., orthonormal Zernike circle

primary astigmatism at 0°.

(®)

FIGURE 1 Variation of a Zernike circle radial polynomial R"(p) with p:
(a) defocus and spherical aberrations; (b) tilt and coma; and (c) astigmatism.
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0.5F

R(p)

FIGURE 1 (Continued)

The number of polynomials of a given order # is # + 1. Their number through a certain order n
is given by

N, =(n+1)(n+2)/2 (15)

For a rotationally symmetric imaging system, each of the sinm®@ terms is zero.*?*-* Accordingly the
number of polynomials of an even order is (#/2) + 1 and (n + 1)/2 for an odd order. Their number
through an order 7 is given by

2
Nﬂz(§+l) for evenn (16a)

=(n+1)(n+3)/4 foroddn (16b)

Relationships among the Indices n, m, and j

The number of polynomials N, through a certain order n represents the largest value of j. Since
the number of terms with the same value of n but different values of m is equal to n + 1, the small-
est value of j for a given value of n is N, — n. For a given value of n and m, there are two j values,
N,—n+m—1and N, —n + m. The even value of j represents the cosm® term and the odd value of
j represents the sinm@ term. The value of j with m =0 is N, —n. For example, for n =5, N =21,
and j = 21 represents the sin50 term. The number of the corresponding cos50 term is j = 20. The
two terms with m = 3, for example, have j values of 18 and 19 representing the cos30 and the sin30
terms, respectively.
For a given value of j, n is given by

n=[(2j—-1)"*+0.5] (17)

. -1
integer
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FIGURE 2 Cartesian and polar coordinates (x, y) and
(p, ), respectively, of a point Q in the plane of a unit circle
representing the circular exit pupil of an imaging system.

where the subscript integer implies the integer value of the number in brackets. Once 7 is known,
the value of m is given by

2{[2j+ 1-n(n+ 1)]/4}integer when n is even (18a)
m=

{2+ -n(n+1)/4} -1 when n is odd (18b)

integer

For example, suppose we want to know the values of n and m for the term j = 10. From Eq. (17),n=3
and from Eq. (18b), m = 3. Hence, it is a cos30 term.

The polar coordinates (p, 6) and the Cartesian coordinates (x, y) of a pupil point Q, as illustrated
in Fig. 2, are related to each other according to

(x, y)=p(cosH, sinB) (19)

The circle polynomials in the Cartesian coordinates (x, y) of a pupil point are listed in Table 1b. It is
quite common in the optics literature to consider a point object lying along the y axis when imaged
by a rotationally symmetric optical system, thus making the yz plane the tangential plane.*?-*2 To
maintain symmetry of the aberration function about this plane, the polar angle 6 of a pupil point
is accordingly defined as the angle made by its position vector OQ with the y axis, contrary to the
standard convention as the angle with the x axis. We choose a point object along the x axis so that,
for example, the coma aberration is expressed as x(x? + »?) and not as y(x? + y?). A positive value of
our coma aberration yields a diffraction point spread function that is symmetric about the x axis
(or symmetric in y) with its peak and centroid shifted to a positive value of x with respect to the
Gaussian image point.
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TABLE 1b  Orthonormal Zernike Circle Polynomials Z(x, y) in Cartesian
Coordinates (x, y), Where x=pcos 6, y= psin 6, and 0<p=,/x>+y> <1

Polynomial Z{xy)
Z, 1
Z, 2x
Z, 2y
z, Ve -1
Z, 246 xy
z, Vo(a?—y?)
z, J8y(3p?-2)
Z, J8x(3p*-2)
Z, J8y(3x2—y?)
Z, \/gx(xz—Syz)
Z, \/5(6p“—6p2+1)
z, Vi0(x> - ) (4p?-3)
Z, 2\/Exy(4p2—3)
z, Vi0(p*~8x2y?)
Zs 4\/ﬁxy(x2—y2)
Z, Vi2x(10p* -12p% +3)
z, Vi2y(0p*-12p*+3)]
Z, Vi2x(x2-3y?)(5p? - 4)
z, V12y(3x2=?)(5p7 - 4)
Z, VI2x(16x* —20x2p* +5p*)
z, V12 y(16y* —20y%p? +5p*)
z, J7(20p°=30p* +12p%—1)
z, 2W14xy(15p7—20p% +6)
z, V14(x2 = y2) (15p* = 20p +6)
Zys 4\ﬂxy(x2—yz)(6p2—5)
Z, J14(8x* —8x2p* +p*) (69> —5)
z, Jlaxy(32x* =32x7p? +6p*)
Z,, V14 (3256 - 48x* p? +18x2p* — p°)
Z,, 4y(35p5—60p" +30p2 —4)
Zy, 4x(35p5 —60p* +30p* —4)
Z,, 4y(3x2—y?)(21p*—30p%*+10)
Z, 4x(x2=3y%)(21p* —30p?+10)
Z,, 47p?—6)[4x*y(x2—y*)+ y(p* —8x%y?)]
Z, 47p*=6)[x(p* —8x*y*)—4xy*(x*—y?)]
Z,s 8x2y(3p*—16x2y?)+4y(x>—y?)(p*—16x%y?)
Zy 4x(x? —y*)(p*—16x%y*)—8xy*(3p* —16x2y?)
Z, 3(70p® —140p+90p* —20p2 +1)
Z, V18 (5605 —105p* +60p2 —10) (x2— ?)
z, 2/18xy(56p° —105p* +60p? —10)
Z, J18(28p* —42p2 +15)(p* —8x2y?)
z, 418xy(28p* — 4292 +15) (x> — y?)
z, VI8(x2=y?)(p* ~16x27)(8p>~7)
Z, 2\/Exy(3p4—16x2y2)
z, 2\/E(p4—8x2y2)2—p3
Zys 8\/Exy(x2—y2)(p4—8x2y2)




ORTHONORMAL POLYNOMIALS IN WAVEFRONT ANALYSIS 11.13

11.5 ZERNIKE ANNULAR POLYNOMIALS

The aberration function W(p, 8; €) across a unit annulus with an obscuration ratio €, representing the
ratio of its inner and outer radii, as illustrated in Fig. 34, can be expanded in terms of a complete set of
Zernike annular polynomials Z] (p, 6; €) that are orthonormal over the unit annulus in the form®!!

W(p, 6; e):Zaij(p, 6;€) (20)
j

where a. is an expansion coefficient of the polynomial, e < p<1and 0 < 0 < 2. The annular polyno-
mials are written in a manner similar to the circle polynomials. Thus

Zevenj(p, 0; €)=+/2(n+1) R"(p; €)cosmB,m#0 (21a)
Zoddj(p, 0; €)=+/2(n+1) R"(p; €)sinm@, m#0 (21b)
Zj(p,B; €)=+n+1R%(p; €),m=0 (21¢)

where #n and m are positive integers (including zero) and n — m = 0 and even. The radial annular
polynomials R"(p; €) obey the orthogonality relation

1
1-€2
R (s Rz (s e)pdp=2(n—jl)5nn, (22)

Accordingly, the annular polynomials obey the orthonormality condition

127 127

| { Z(p,6:Z,(p, 6 ©)pdpdo / | ! pdpdo=3, (23)

The Zernike expansion coefficients are given by

121
1

= ier j { W(p, 65 €)Z,(p, 65 €)pdpde (24)

as may be seen by substituting Eq. (20) into Eq. (24) and using Eq. (23) for the orthonormality of
the polynomials.

The annular polynomials are similar to the circle polynomials, except that they are orthogonal
over an annular pupil. They can be obtained from the circle polynomials by the Gram-Schmidt
orthogonalization process.'” The radial polynomials are accordingly given by

(n—m)/2

R (p;e)=Ny| R (p)= D, (n=2i+1)<RI(p)RY, (p;€)>R" ,.(p; €) (25)
i1
where
2 1
<RIPIRI(ps > = Rz ()R (s €)pdp (26)

and N is a normalization constant such that the radial polynomials satisfy the orthogonality Eq. (22).
Thus, R”(p;€) is a radial polynomial of degree n in p containing terms in p", p"~2,..., and p™ with
coefficients that depend on €. The radial polynomials are even or odd in p depending on whether n



]
—

(a) (b)
A y
D(0, b)
D(—u, \1 —az) A (a, \1 —az)
C(-1,0) A(1,0)
- X X
o 6}
C(—a,—\ll—uz) B(u,—\ll—az)
B(0,-b)
(c) (d)
y y
D (-112,1/42) A (1N2,1/N2)
0 x 1 = ¢1 X
C (-1N2,-1/A2) B (1/N2,-1/42)
(e) (f)

FIGURE 3 Unit pupils inscribed inside a unit circle: (a) annulus of obscuration ratio €; (b) hexagon; (c) ellipse of aspect ratio b;
(d) rectangle of half width a; (e) square of half width 1/ \/5 ;and (f) slit.

11.14
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(or m) is even or odd. For m = 0, the radial polynomials are equal to the Legendre polynomials P (-)
according to

R (p;€)=P, {%—1} (27)

Thus, they can be obtained from the circle radial polynomials RY (p) by replacing p by
[(p*—€?)/(1—€?)]Y3, that is,

I 1/2
RS (p;€)=RY, (p — J (28)

It can be seen from Egs. (22) and (25) that

1/2
R'(p; €)= p”/ [Zez’} (29)
i=0

=pn {(1_62)/[1_62(n+1)]}1/2 (30)

Moreover,

np"—(n—-D[A-€>")/(1-e*"V)]p"2 (31)
{(1—62 )—l[nZ(l_EZ(nH))_(nZ _1)(1_ 62")2 /(l_ez(n—l))] }1/2

R (ps €)=

It is evident that the radial polynomial R"(p; €) differs from the corresponding circle polynomial
R"(p) only in its normalization. We also note that

R"(1;€)=1, m=0
#1, m#0 (32)

The variation of several Zernike annular radial polynomials with p is shown in Fig. 4 for € = 0.5.

It is evident from Egs. (21) that the annular polynomials, like the circle polynomials, are sepa-
rable in the polar coordinates p and 6. This is a consequence of the radial symmetry of the annular
pupil. As may be evident from the Gram-Schmidt orthogonalization process, each annular poly-
nomial is a linear combination of the circle polynomials.*® Accordingly, each radial polynomial
R™(p; €) can be written as a linear combination of the polynomials R”(p), R ,(p), . . ., and R"(p).
For example,

(e )= 1 2\RI( )94 Pl
Rp O ayrse rser e L HERP2€ R ()] (339)
and
Ri(pi &)= s RI(p) -3 R p)+ X1+ RYp)] (330)

The Zernike annular radial polynomials for n < 8 are listed in Table 2a. The number polynomi-
als of a certain order or through a certain order 7 is given by the same expressions as in the case of
Zernike circle polynomials. Table 2b lists the full annular polynomials illustrating their ordering. In
Table 2, they are given in the Cartesian coordinates.
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0.5 0.6 0.7 0.8 0.9 1

(b)

0.5 0.6 0.7 0.8 0.9 1

FIGURE 4 \Variation of a Zernike annular radial polynomial
R"(p; €) with p for € =0.5: (a) defocus and spherical aberrations; (b) tilt
and coma; and (c) astigmatism.
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TABLE 2a Zernike Annular Radial Polynomials R"(p; €), Where € Is the Obscuration Ratio of
Annular Pupilande<p<1

n m R"(ps €)
0 0 1
1 1 pl(1+e2)?
2 0 2p*-1-€*)/(1-€?)
2 2 pr(1+e*+e?)?
5 ) 31+€2)p’—2(1+€*+€h)p
(1-€*)[(1+€?)(1+4€> +€*) ]2
3 3 PPlA+€* +e* +€°%)?
4 0 [6p* —6(1+€*)p* +1+4€* +€*]/(1—€*)?
. 4p*=3[(1-€)/1- €9 |p?
{(1-€?)'[16(1—€"")—15(1—€®)?/(1—€®)]"2}
4 4 pH(1+€ +et+e°+ed)?
5 ) 10(1+4€2+€*)p° —12(1+4€* +4€* +€°)p> +3(1+4€> +10€* +4€° +€)p
1-€ 1+4€°+€*)(1+9€” +9€" +€
( 2)2[( 2 4)( 9 2 9 4 6)]1/2
50° —4[(1-€)/(1-€®)]p?
5 3
{1-€?)1[25(1—€'?)—24(1—€'0)?/(1—€®)]}2
5 5 P°lA+€> +€e* +€ +€* +e')?
6 0 [20p°—30(1+€?)p* +12(1+3€> +€*)p? —(1+9€> +9€* +€°) ]/(1—€)®
15(1+4€>+10€* +4€° +€%)p°® —20(1+4€> +10€* +10€° +4€% +€'%) p*
6 5 +6(1+4€>+10€* +20€® +10€® +4€'° +€'2) p?
(1+€2)*[(1+4€>+10€* +4€° +€®) (1+9€> +45€* +65€° +45€® +9€'° + €'2) ]2
6 4 6p°—5[(1-€")/(1-€")]p*
[(1—€)1[36(1- €)= 35(1-€2)2/(1-€) |}
6 6 Pe/(1+€e*+et +e +eb+e'¥ +€'2)?
7 1 alp’ +blp’+clp’+dip
7 3 ap’ +bp’ +cp’
;s 7p” —6[(1-€")/(1-€")]p
{(1-€>)7'[49(1—€'®)—48(1—€™)?/(1—€'?)]}2
7 7 P l1+€e*+et +e +eb +e'' + €2 +e)?
s 0 70p® —140(1+€?)p® +30(3+8€* +3€* ) p* —20(1+6€> +6€* +€5)p* +€)
(1-€2)*
8 2 a;p®+b;p®+cipt+dg p*
8 4 agp®+bip®+cip
8 6 asp®+bSp°
8 8 Pel1+e+e* +e0 +ed +€e'0+e'? +e* +€!0)?

(Continued)
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TABLE 2a Zernike Annular Radial Polynomials R"(p; €), Where € Is the Obscuration Ratio of
Annular Pupil and € < p< 1(Continued)

a}, =35(1+9€ +9¢* +€°)/A}

b} =—60(1+9€> +15€* +9¢° +€°)/A]

b =30(1+9€* +25¢* +25€° +9€® +€'°)/Al

d; —4(1+9€> +45€* +65€° +45€® +9€'° + €'2)/A]

=(1-€2)’(1+9€? +9€* +€°)"?(1+16€> +36€* +16€° +€°)"2
3 21(1+4€” +10€* +20€° +10€® + 4€'” +€'2)/A3
b2 =—30(1+4€>+10€* +20€° +20€® +10€'° + 4€'* + €' )/A>
c; =10(1+4€”+10€* +20€®+35€® +2Oe”’+10€‘2+46’“+e“‘)/A3

Al =(1-€?)*(1+4€” +10€" +20€° +10€® + 4€'" +€'2) "2
X(1+9€? +45€* +165€° +270€% +270€'* +165€'? + 45€'* +9¢€'° + €'®)2
el =1+16€ +36€* +16€° +€*
a2 =56(1+9€ +45€* +65€° +45€° +9¢'* +€'?)/Al
by =—105(1+9€> +45€* +85€ +85€® +45€'% +9¢'* + €'*)/A}
2= 60(1+9€? +45€* +115€5 +150€ +115€!” +45¢12 + 9 +€16)/A2
8
d3 =—10(1+9€* +45€* +165€° +270€® +270€'* +165€'> +45€'* +9¢€'® +€')/A?
A2=(1-€>)*(1+9€* +45€* +65€° + 45€® +9€'* +¢!2)!/?
X (1+16€> +136€* +416€° +626€® +416€'° +136€'> +16€'* +€'°)/?
ag =28(1+4€* +10€* +20€° +35€® +20€'* +10€' + 4€' +€'6)/A]
b =—42(1+4€* +10€* +20€° +35€® +35€'° + 20€'2 +10€'* +4€'6 +€'*)/A}
ca =15(1+4€> +10€* +20€° +35€" +56€'" +35¢'? +20€' +10€'® + 4€'S +€2°)/A}
A =(1-€?)*(1+4€>+10€* +20€°+35€" +20€' +10€'2 + 4€' +€'6)">
X(1+9€2+45€* +165€° +495€® +846€'° +994€'% +846€'* +495€'° +165€'® +45€%° +9¢?? +€24)!/2
=8(l+€e*+e' +eS +eb +€'" +€'?)/AS
be=—7(1+€* +€' +€° +€* +€'0 + e +e')/AS
Ab=(1-€*)(1+€e* +e' +e +eb +e0 +e'?)?

X (1+4€*+10€* +20€° +35€® +56€'° +84€'? +56€'* +35€!¢ +20€'8 +10€? + 4€? + €)1
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TABLE 2b Orthonormal Zernike Annular Polynomials Z].( P, 6; €), Ordered in the
Same Manner as the Zernike Circle Polynomials in Table 1a

j n m Zj(p, 0;€)* Aberration Name*
1 0 0 Ri(p;€)=1 Piston
2 1 1 2R!(p; €)cosH x tilt
3001 1 2R!(p; €)sinf y tilt
4 2 0 \/gRg(p; €) Defocus
5 2 2 \/ERZZ( p; €)sin20 Primary astigmatism at 45°
6 2 2 \/ERZZ( p; €)cos26 Primary astigmatism at 0°
7 3 1 \/gR;(p; €)sinf Primary y coma
8 3 1 \/gR;(p; €)cosO Primary x coma
9 3 3 JBR3(p; €)sin30
0 3 3 JBR3(p; €)cos36
11 4 0 \/g Rf( s €) Primary spherical aberration
12 4 2 \/ERf (p; €)cos20 Secondary astigmatism at 0°
13 4 2 \/ERf(p; €)sin26 Secondary astigmatism at 45°
14 4 4 \/ER;‘(p; €)cos40
15 4 4 JI0R! (p; €)sin46
16 5 1 \/ER;(/); €)cosb Secondary x coma
17 5 1 \/ER;(/); €)sinf Secondary y coma
18 5 3 \/ERg(p; €)cos36
9 5 3 J12R3(p; €)sin30
20 5 5 J12R3(p; €)cos50
2005 5 J12R3(p; €)sin50
2 6 0 J7 RY(ps €) Secondary spherical aberration
23 6 2 \/ER (p; €)sin20 Tertiary astigmatism at 45°
24 6 2 \/7R2 (p; €)cos20 Tertiary astigmatism at 0°
25 6 4 \/7R“ (p; €)cos40
2% 6 4 \/ﬁRﬁ(p, €)sin46
27 6 6 \/—R(’(p, €)sin66
2 6 6 J—Rg(p,e cos66
29 7 1 4R} (p; €)sinf
30 7 1 4R}(p; €)cosO
31 7 3 4R3(p; €)sin36
32 7 3 4R’ (p; €)cos30
3 7 5 4R3(p; €)sin56
34 7 5 4R>(p; €)cos50
35 7 7 4R](p; €)sin70
36 7 7 4R](p; €)cos70
37 8 0 3RI(p; €) Tertiary spherical aberration
38 8 2 \/ﬁ Rsz( p; €)cos26 Quaternary astigmatism at 0°
39 8 2 \/ﬁ RBZ( p; €)sin26 Quaternary astigmatism at 45°
40 8 4 \/ﬁRg(p; €)cos40
4 8 4 JI8R!(p; €)sin46
42 8 6 \/— RS(p; €)cos60
43 8 6 \/ERﬁ( €)sin66
44 8 8 \/—Rs(p, €)cos80
458 8 \/—Rs(p, €)sin8é

“The words “orthonormal Zernike annular” should be added to the name, e.g., orthonormal
Zernike annular primary spherical aberration.
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TABLE 2¢ Orthonormal Zernike Annular Polynomials Z] (x, y; €) in Cartesian Coordinates
(%, y), Where x = pcosf, y = psin6, and e< p=,/x* + y* <1

Polynomial Z.(% y; €)
z 1
Z, 2x/(1+€?)"?
z, 2y/(1+€)12
z, V32p—1-e)/(1-€)
Z 2\/gxy/(1+ez+e“)”2
Z, \/g(xz—yz)/(l+ez+e“)”2
5 8y +€)p? —2(1+€ +€4)]
7 (1-€®)[1+€e?)(1+4€*+€*)]"?
5 V8x[3(1+€2)p? —2(1+ € +€*)]
§ (1-€*)[1+€*)(1+4€* +€*)]"?
Z, \/gy(sz—yz)/(l+ez+e4+66)”2
Z, \/gx(xz—3)/2)/(1+52+e4+56)”2
z, V5(6p" —6(1+€2)p? +(1+4€ +€) |/(1-€)?
5 J10(x2 - y?)[4p? —3(1—€*) /(1—€°)]
. {(1—€*)[16(1-€")-15(1-€")* / (1—€') ]}
5 210xy[4p> =3(1-€*)/(1-€%)]
13 {(1-e*)'[16(1—-€0)—15(1—€®)> / (1—€5)]}2
Z, \/B(p“—8x2y2)/(1+62+&“+66+68)”2
Z, 4\/Exy(x2—)/2)/(1+€2+E4+€6+€8)1/2
s JI2X[10(1+4€> +€*)p* —12(1+4€> +4€* +€8)p? +3(1+4€> +10€* + 4€5 + %) ]
1 (1—€?)*[(1+4€> +€*) (1+9€* +9€* +€°) ]2
5 VI2[10(1+4€> +€*)p* —12(1+ 4€? + 4e* +€9)p? +3(1+4€> +10€* +4€5 +€%)]
o (1-€)?[(1+4€> +€*) (1+9€> +9€* + €)1
s Vi2x(x?=3y) [5p> —4(1-€")/(1-€")]
1 {(1-€)"[25(1-€'?)—24(1-€"")*/(1-€*) ]}
\/Ey(sz -y [5p* —4(1—€")/(1—€*)]
Z19 2\-1 12 102 8 1/2
{(1—€*)"[25(1—€'?)—24(1—€')* /(1—€®)]}
Z,, \/Ex(l6x4—20x2p2 +5p1)/(1+ € +€e* +e° +eb +e'0)?
Z, \/E)/(16)/4 —20y2p*+5p*)/(1+€* +€* +€° +€° +€'0)2
z, V712008 =301 +€2)p* +12(1+3€> +€*)p? —(1+9€> +9€* +€°) /(1 - €2)°
214xy[15(1+ 4€> +10€* +4€5 +€8)p* — 20(1+ 4€? +10€* +10€° + 4€° +€0) p?
z +6(1+4€>+10€* +20€° +10€® +4€'0 +€'2)]
3 (1-€2)*[(1+4€*+10€* +4€® +€®) (1+9€> +45€* +65€° +45€® +9€'0 +€'2) ]2
VI4(x? = 57) [15(1+ 4€> +10€* + 4€° +€*)p* — 20(1+ 4€> +10€* +10€° +4€® +€'0)p?
z +6(1+4€2 +10€* +20€° +10€® +4€'% +€'?)]

(1-€?)*(1+4€> +10€* +4€° +€®) (1+9€? +45€* +65€° +45€® +9€'* +€'2)"/?

(Continued)
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TABLE 2c¢ Orthonormal Zernike Annular Polynomials Z] (x, y; €) in Cartesian Coordinates
(x, ), Where x = pcosb, y = psin6, and € < p=,/x? + y* <1 (Continued)

Polynomial ZJ (%, y; €)
5 4J14xy(x> - y?)[6p> =5(1—€2)/(1-€9)]
= {(1-€?)"'[36(1—€'*)—35(1—€'?)?/(1—€'0)]}2
P J14(8x* —8x2p* + p*)[6p? —5(1—€2)/(1- )]
% {(1-€*)'[36(1—€")—35(1—-€2)*/(1-€") ]}
Z, \/ﬁxy(SZx4 —32x2p2 +6p*)/(1+€* +€* +€° +€° + €0 +€2)?

- \/ﬁ(.’)2x6—48x“p2 +18x2p* —p®)/(1+€* +e* +€ +€b +€'0 +€'2)?

11.6 HEXAGONAL POLYNOMIALS

Figure 3b shows a unit hexagon inscribed inside a unit circle. Each side of the hexagon has a length
of unity. The area of the hexagon is A=3/3/2. The orthonormality of the hexagonal polynomials
H].(x, y) implies that?

2
— H.(x, y)H .(x, y)dxdy=9.., (34)
3\/5 hex'a[gon ! g ! g 4 Y

The orthonormal hexagonal polynomials are given in Tables 3 up to the eighth order in three dif-
ferent but equivalent forms. In Table 34, each hexagonal polynomial is written in terms of the circle
polynomials, thus illustrating the relationship between the two. In particular, it helps determine
the potential error made when a hexagonal aberration function is expanded in terms of the circle
polynomials.’* The polynomials up to H,, are given in their analytical form, but those with j > 19
are written in a numerical form because of the increasing complexity of the coefficients of the circle
polynomials. In Table 3b, the hexagonal polynomials are given in polar coordinates, showing one-
to-one correspondence with the circle polynomials, but illustrating the difference from them. This
form is convenient for analytical calculations because of the integration of trigonometric functions
over symmetric limits. Finally, in Table 3¢, they are given in Cartesian coordinates, as they would be
used for any quantitative numerical analysis of, say, an interferogram.

From Table 3a, we note that each hexagonal polynomial consists of cosine or sine terms, but not
both. Unlike the circle,® annular,® " or Gauss*>?* polynomials, the hexagonal polynomials are gen-
erally not separable in p and 6 due to the lack of radial symmetry of the hexagonal pupil. The first
13 polynomials, that is, up to H, ,, are separable, but H,, and H ; are not; H, through H,, are sepa-
rable, but H,, and H,, are not. Accordingly, the notion of two indices 7 and m with dependence on
m in the form of cosm® or sinm@, as in the case of circle polynomials, loses significance. For exam-
ple, the Zernike polynomial Z , for n =4 and m = 4 varies as cos46, but H , has a term in cos26 also.
Hence, the hexagonal polynomials can be ordered by a single index only. While the polynomials H
and H,, representing the balanced primary and secondary spherical aberrations are radially sym-
metric, the polynomial H,, representing the balanced tertiary spherical aberration is not, since it
consists of an angle-dependent term in Z,; or cos68 also. If this term is not included in the polyno-

mial H,, the standard deviation of the aberration increases from a value of unity to 1.3339.

11.7 ELLIPTICAL POLYNOMIALS

Figure 3¢ shows a unit ellipse of an aspect ratio b inscribed inside a unit circle. The semimajor and
semiminor axes of the ellipse have lengths of unity and b, respectively. Of course, a unit ellipse is not
unique, since b can have any value between 0 and 1. It is represented by an equation

x2+yrb?=1 (35a)
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TABLE 3a Orthonormal Hexagonal Polynomials H; in Terms of Zernike Circle Polynomials Z,

H1 = Z1
Hy = \/6/52,
Hs = /6/5Z3

Hy = \/5/4371 + (24/15/43) Z4

Hs = /10/7Zs

He = /10/7Z

H7 = 164/14/11055Z5 4 104/35/2211 2
Hg = 164/14/11055Z5 + 10 /35/2211 %5

Hg = (2/5/3)Zy
Hio = 2+/35/103Z10

Hip = (521/V/1072205)Z1 + 884/15/214441Z4 + 14 /43/4987Z11

Hyp = 225, /6/492583Z¢ + 424/70/70369Z12

Hi3 = 2254/6/492583Z5 + 424/70/70369Z13

His = —25254/14/297774543Z¢ — (14954 /70/99258181/3)Z12 + (1/378910/18337/3) Z14
His = 25254/ 14/297774543Z5 + (14954 /70/99258181/3) Z13 + (1/378910/18337/3) Z15
His = 30857+/2/3268147641Z5 + (49168//3268147641) Zg + 42, /1474/1478131Z16

Hi7 = 308574/2/3268147641Z3 + (49168/+/3268147641) Z7 + 42/ 1474/1478131 217

His = 3864/770/295894589Z1¢ + 64/ 118965/2872763Z15

Hig = 64/ 10/9729 —+ 14\ / 5/291Z19
Hyo = —0.71499593Z5 — 0.72488884Zg — 0.466364417Z16 + 1.72029850Z2¢
Hoy 0.71499594 73 + 0.72488884 77 + 0.46636441Z17 + 1.7202985072;
Hgyp = 0.58113135Z; + 0.89024136Z4 + 0.89044507Z11 + 1.32320623Z22
Ha3 = 1.15667686Z5 + 1.107755992Z13 + 0.43375081Z15 + 1.39889072Z23
Hyy = 1.15667686Z¢ + 1.107755992Z12 — 0.43375081Z14 + 1.39889072Z24
Has = 1.31832566Z5 + 1.14465174Z13 + 1.94724032Z15 + 0.67629133Z23 + 1.75496998 Z25
Hog = —1.31832566Z¢ — 1.144651747Z15 + 1.94724032Z14 — 0.67629133 724 + 1.75496998 Z2¢
Ho7 = 24/77/93Z27
Hog —1.073628897, — 1.525461622Z, — 1.28216588Z11; — 0.70446308Z22 + 2.09532473Z25
Hog = 0.97998834 73 + 1.16162002Z7 4 1.04573775Z17 + 0.40808953Z21 + 1.36410394Z59
Hszo = 0.979988347> + 1.16162002Zg + 1.04573775Z16 — 0.40808953Z2¢ + 1.36410394Z3¢
H3p = 3.635137587Z9 + 2.920844147Z19 + 2.11189625Z31
Hgzz = 0.69734874Z10 + 0.67589740Z18 + 1.22484055Z32
H3z = 1.56189763Z3 + 1.699853092Z7 + 1.29338869Z17 + 2.57680871Z21 + 0.67653220Z29
+1.95719339Z33
H3zy = —1.56189763Z5 — 1.69985309Zg — 1.29338869Z16 + 2.57680871Z3¢ — 0.67653220Z3¢
+1.95719339Z34
Hszs = —1.63832594 23 — 1.74759886Z7 — 1.27572528Z17 — 0.77446421Z5; — 0.60947360Z29
—0.36228537Z33 + 2.24453237Z35
—1.63832594 7> — 1.74759886Zg — 1.27572528Z1¢ + 0.77446421Z5¢ — 0.60947360Z30
+0.36228537Z34 + 2.24453237Z36
Hsz7 = 0.82154671Z1 + 1.27988084Z4 + 1.32912377Z11 + 1.11636637Z22 — 0.54097038Z25
+1.37406534Z37
1.54526522Z¢ + 1.577852427Z15 — 0.89280081Z14 + 1.28876176Z24 — 0.60514082Z5¢
+1.43097780Z38
H3g = 1.5452652275 4 1.577852427Z13 4 0.89280081715 4 1.28876176Z23 4+ 0.60514082Z25
+1.43097780Z39
Hyo = —2.51783502Z¢ — 2.38279377Z12 + 3.424589337Z14 — 1.69296616Z54 + 2.56612920Z2¢
—0.85703819Z35 + 1.89468756 Z40
2.5178350275 + 2.38279377Z13 + 3.42458933 715 4+ 1.69296616Z23 + 2.56612920Z25
+0.85703819Z39 + 1.89468756 Z41

&
I

=
I

=
I

(Continued)
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TABLE 3a Orthonormal Hexagonal Polynomials H; in Terms of Zernike Circle Polynomials Z,
(Continued)

Hyo = —2.7291964621 — 4.02313214Z4 — 3.69899239711 — 2.49229315Z25 + 4.36717121Z55
—1.13485132Z37 + 2.52330106Z42

Hys = 13624 /77/20334667 Z27 + (260/3) /341 /655957 Z43

Hyy = —2.76678413Z¢ — 2.50005278 Z15 + 1.48041348 214 — 1.62947374Z24 + 0.95864121 Zag
—0.69034812Z35 + 0.40743941 Z40 + 2.56965299Z44

Hys = —2.76678413Z5 — 2.50005278 Z15 — 1.48041348Z15 — 1.62047374 Z3 — 0.95864121Z25
—0.69034812Z39 — 0.40743941Z4, + 2.56965299Z 45

TABLE 3b  Orthonormal Hexagonal Polynomials H(p, 0) in Polar Coordinates

Hy=1
Hy =24/6/5pcos@
Hs =24/6/5psin 6
Hy = /5/43(=5 + 12p?)

Hs = 24/15/7p sin 26
He = 24/15/7p> cos 26
H7 = 4+/42/3685(—14p + 25p°) sin 0
Hg = 44/42/3685(—14p + 25p>) cos 0

Hy = (4/10/3)p° sin 30

Hip = 44/70/103p° cos 36

Hii = (3/V/1072205)(737 — 5140p% + 6020p%)
Hip = (30/+/492583)(—249p% + 392p*) cos 260
Hiys = (30/+/492583)(—249p% + 392p*) sin 20

Hi4 = (10/3)+/7/99258181[10(297 — 598p?)p? cos 20 + 5413p* cos 46]
His = (10/3)/7/99258181[—10(297 — 598p2)p? sin 20 + 5413p* sin 46]
Hig = 24/6/1089382547(70369p — 322280p° + 309540p°) cos 6

Hy7 = 24/6/1089382547(70369p — 322280p> + 309540p°) sin 6

Hig = 44/385/295894589(—3322p> 4 4635p°) cos 30

Hig = 44/5/97(—22p> + 35p°) sin 30

Hazo = (—2.17600248p + 13.23551876p° — 16.15533716p°) cos 0 4 5.95928883p° cos 50

Ha1 = (2.17600248p — 13.23551876p° + 16.15533716p°) sin 6 + 5.95928883p° sin 50

Hgo = —2.47059083 + 33.14780774p> — 93.07966445p* + 70.01749250p°

Haz = (23.72919095p% — 90.67126833p* + 78.51254738%) sin 26 + 1.37164051p" sin 46

Hag = (23.72919095p2 — 90.67126833p* + 78.51254738%) cos 20 — 1.37164051p* cos 40

Has = (7.55280798p2 — 36.13018255p* + 37.95675688p°) sin 20 + (—26.67476754p*
+39.39897852p°) sin 46

Hag = (—7.55280798p2 + 36.13018255p* — 37.95675688p%) cos 20 + (—26.67476754p*
+39.398978520%) cos 460

Ha7 = 144/22/93p% sin 60

Hsg = 0.56537219 — 10.44830313p2 + 38.71296332p* — 37.27668254p° + 7.83998727 % cos 66

Hag = (—15.56917599 + 130.07864353p% — 288.33220017p* + 190.97455178p°%)p sin 6
+2.82732724p° sin 36 + 1.41366362p° sin 56

H3o = (—15.56917599 + 130.07864353p% — 288.33220017p* + 190.97455178p°%)p cos 6
+2.82732724p° cos 360 + 1.41366362p° cos 50

H3z1 = (54.28516840 — 202.83704634p> + 177.39928561p%)p> sin 360

H3z = (41.60051295 — 135.27397959p% + 102.88660624p%) p> cos 30

H3z = (—3.87525156 4 41.84243767p% — 193.65605837p* + 204.31733848p%)psin 6 + (76.09262860
—109.60283027p%) p° sin 30 + (38.04631430 — 54.80141514p2)p° sin 50

Hzy = (3.87525156 — 41.84243767p2 4 117.56342977p* — 94.71450820p°)p cos 6 + (—76.09262860
+109.60283027p2) p° cos 30 + (38.04631430 — 54.80141514p2)p° cos 56

o

(Continued)
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TABLE 3b Orthonormal Hexagonal Polynomials Hj(p, 0) in Polar Coordinates (Continued)

Hss = (3.10311187 — 34.93479698p2 4+ 114.10529848p* — 87.65802721p%)psin 6 + (12.02405243
—2.33172188p2) p® sin 36 + (12.02405243 + 3.68030434p2)p° sin 50 + 6.01202622p" sin 76

Hze = (3.10311187 — 34.93479698p + 114.10529848p* — 87.65802721p°%)p cos 6 + (12.02405243
—2.33172188p%) p° cos 30 + (12.02405243 + 3.68030434p2)p° sin 560 + 6.01202622p" cos 760

Hs7 = 2.74530738 — 60.39881618p2 + 300.22087475p* — 518.03488742p% + 288.55372176p°
—2.02412582p° cos 60

H3s = (—42.96232789 4 287.78381063p> — 565.13651608p* + 339.98298180p*)p? cos 20
+(8.49786414 — 13.58537785p2 ) p* cos 40

Hzg = (—42.96232789 4 287.78381063p% — 565.13651608p* 4 339.98298180p*)p? sin 260
+(8.49786414 — 13.58537785p2) p* sin 40

Hyo = (14.79181046 — 121.61654135p% + 286.77354559p* — 203.62188574p°%)p? cos 20
+(83.39879886 — 280.00664075p2 + 225.07739907p*)p* cos 460

Hy1 = (—14.79181046 + 121.61654135p% — 286.77354559p* + 203.621885740%)p? sin 260
+(83.39879886 — 280.00664075p2 + 225.07739907p* ) p* sin 46

Hys = —0.84269170 + 24.65387703p2 — 158.21741244p* + 344.75780000p° — 238.31877895p°
+(—58.59775991 + 85.64367812p2)p% cos 60

Hyz = 24/22/20334667(—23443 + 32240p2)p® sin 60

Hyq = (9.64776957 — 85.41873843p2 + 216.08041438p* — 164.018347500%)p? cos 20
+(12.67622930 — 51.08055822p2 + 48.40133344p%)p* cos 40 4 10.90211434° cos 80

Hys = (9.64776957 — 85.41873843p% 4 216.08041438p* — 164.018347500%)p? sin 20
—(12.67622930 — 51.08055822p% + 48.40133344p*)p* sin 46 + 10.90211434° sin 86

TABLE 3¢ Orthonormal Hexagonal Polynomials H(x, y) in Cartesian Coordinates, Where pr=x*+y?

Hy =1

Hy =2,/6/5x

Hi =2,/6/5y

Hy = +/5/43(=5 + 12p?)

Hs = 44/15/Tzy

He =24/15/7(2% — y?)

H7 = 44/42/3685(—14 + 25p°)y

Hg = 44/42/3685(—14 + 25p%)x

Hy = (4/3)V10(3¢%y — 4°)

Hio = 44/70/103(z® — 3zy?)

Hii = (3/+/1072205)(737 — 5140p2 + 6020p%)

Hiz = (30/1/492583)(392p% — 249) (22 — y?)

Hysz = (60/1/492583)(392p% — 249)zy

Hyy = —(10/3)4/7/99258181[567x* + 32478x%y? — 11393y* — 2970(x2 — y?)]
His = (40/3)+/7/99258181(—1485 + 8403z2 — 2423y?)zy
Hig = 24/2/3268147641(211107 — 966840p% 4 928620p* )z
Hy7 = 24/2/3268147641(211107 — 966840p% + 928620p* )y
Hiyg = 44/385/295894589(—3322 + 4635p2) (2> — 32¢?)

Hig = 44/5/97(—22 + 35p%)(32%y — ¢*)

Hayp = (—2.17600247 + 13.23551876p2 — 10.19604832z* — 91.90356268x%y> + 13.64110702y* )z

Hy1 = (2.17600247 — 13.23551876p> + 45.95178134a* — 27.28221405z2y2 + 22.11462599y%)y

Hys = —2.47059083 + 33.14780774p% — 93.07966445p* + 70.01749250°

Has = (47.45838189 — 175.85597460z2 — 186.82909872y2 + 157.02509476x*
+314.05018953z%y + 157.02509476y* ) zy

Hoy = (23.72919094 — 92.04290884x2 + 78.51254738z*)x? + (—23.72919094 + 8.22984309:>
+89.29962781y2 + 78.51254738x* — 78.51254738z2y2 — 78.51254738y%)y?
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TABLE 3¢ Orthonormal Hexagonal Polynomials H(x, y) in Cartesian Coordinates, Where p?=x%+y?* (Continued)

Hsys = (15.10561596 — 178.95943525z2 + 34.43870505y* + 233.509427862*

Hae

+151.82702751z2y? — 81.68240034y*)zy

= (—7.55280798 + 9.455415012> + 1.442221642*)2> + (7.55280798 + 160.04860523>

Har =
= 0.56537219 — 10.44830312p2 + 38.71296332z% + 77.4259266422y2 + 38.71296332y*

Hss

Hag =

Hso
Hgz,
Hso

Hss

—62.80495008y2 — 234.951649502* — 159.03813574z2y2 + 77.35573540y*)y>
(40.855370392* — 136.18456799x2y? + 40.85537039y*)zy

—29.43669525z% — 229.42985678x4y? + 5.76976155x%y* — 45.11666981y°

(—15.56917599 + 7.06831810x* — 14.13663621x%y> + 1.41366362y* + 130.07864353 p>
—291.15952741p* 4 190.97455178p°%)y

—15.56917599 — 1.41366362x* + 14.13663621x%y? — 7.06831810y* + 130.07864353p>
—291.15952741p* + 190.97455178p%)z

162.8555052022 — 54.28516840y% — 608.51113904x2p? + 202.83704634y2 p?
+532.19785685z2 p* — 177.39928561y2p*)y

[(41.60051295 — 135.2739795922 + 102.886606242*)x? + (—124.80153887 + 270.547959192:2
+405.82193879y% — 102.88660624x* — 514.43303123z2y? — 308.65981874y*)y>]z

= [—3.87525156 + (41.84243767 — 307.7950012922 + 368.721583892*)x? + (41.84243767

Hzyq =

Hss
Hse
Hgzz

Hss

Hsg

Hy

[S)

Hyo

Hys
Hyq =

Hys

+145.3362834922 — 155.60974407y? + 10.13644892z* — 209.06921162z2y? + 149.51592334y*)y?]y
[3.87525156 4 (—41.84243767 4+ 79.51711547z2 — 39.91309306x*)x? + (—41.84243767
+615.5900025922 — 72.66814174y> — 777.35626084z* — 558.1506002922y2 + 179.29256748y*)y?]z

= [3.10311187 4 (—34.93479698 + 132.1413771222 — 73.19935100z*)22 4 (—34.93479698

+144.04222993z2 4 108.09327226y2 — 519.493496812* + 23.85771799z2y% — 104.44842531y")y? |y

= [3.10311187 4 (—34.93479698 + 96.06921983x% — 66.20418535x* )2 + (—34.93479698

+264.28275425x2 4 72.02111496y> — 535.81555000z* + 7.53566481x2y? — 97.45325965y*)y?]x

= 2.74530738 — 60.39881618p2 + 300.22087475p* + 288.55372176p° — 520.059013242°

—1523.74277487x%y? — 1584.466549662°y* — 516.01076159y°

= (—42.96232789 + 296.281674782% — 578.72189394x* + 339.98298180x°% )22 + (42.96232789

—50.98718488z2 — 279.28594648y> — 497.20962679z* + 633.06340537z2y% + 551.55113822y*
+679.965963602° — 679.9659636022y* — 339.98298180y%)y>

= [—85.92465579 + (541.57616468 — 1075.93152073z2 + 679.965963602%)x? + (609.55907786

—2260.54606433z2 — 1184.61454360y% + 2039.89789081x* + 2039.89789081z2y? + 679.96596360y%)y>]zy

= (14.79181046 — 38.21774249z2 + 6.76690483x* + 21.4555133225)22 + (—14.79181046

—500.3927931922 4 205.01534022y2 + 1686.80674937z* 4 1113.25965819x%y> — 566.78018634y*
—1307.553367792°% — 2250.77399075x%y? — 493.06582480x2y* + 428.699284824%)y?
[—29.58362093 + (576.82827818 — 1693.5736542122 4 1307.55336779x%)22 4+ (—90.36211274
—1147.09418236x2 + 546.47947184y? + 2122.04091078z* + 321.42171817x%y? — 493.06582480y*)y>]zy
—0.84269170 + (24.65387703 — 158.217412442:2 + 286.16004008z* — 152.6751008225)z>
+(24.65387703 — 316.4348248922 — 158.21741244y2 + 1913.23979875z* 4+ 155.30700127x2y>
+403.35555992y* — 2152.286609532° — 1429.91267370x*y? + 245.7363779222y* — 323.96245707y°)y?

2,/22/20334667(62%y — 202°y® + 6zy°)(—23443 4 32240p?)

(9.64776957 — 72.74250912x2 + 164.99985615x% — 104.71489971x%) x> + ( 9.64776957
—76.057375852:2 + 98.09496774y? + 471.48320551z* + 39.3223767422y% — 267.16097261y*
—826.901230322° 4 279.134669332%y? — 170.82784030z2y* + 223.32179529y6)y2

= [19.29553915 + (—221.54239411 + 636.48306167x2 — 434442511407#1)352 + (—120.13255963

+864.32165754x2 4 227.83859586y2 — 1788.23382186x* — 179.98634818x%y? — 221.64827593y*)y>]xy

or

y=1by1-x* (35b)

Its area is equal to 7rb. The orthonormality of the elliptical polynomials E].(x, ) is represented by*®

P L e
— 36
w14 | B0 yE o ydy=s (36)
1 b
The orthonormal elliptical polynomials up to the fourth order are given in Tables 4 in three dif-
ferent but equivalent forms, as in the case of hexagonal polynomials. As in the case of a hexagonal
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TABLE 4a Orthonormal Elliptical Polynomials E; in terms of Zernike Circle Polynomials Z;, Which
Reduce to the Corresponding Circle Polynomials as the Aspect Ratio b — 1

=7
E2 = Z2
By = (1/v/3 =2 + 3b%)[V3(1 — b*) Z1 + 274
Es = Zs/b

Eo = [1/(2v/20*V/3 = 202 + 30%)][—V/3(3 — 4b* + b*) Z1 — 3(1 — b*) Z4 + V/2(3 — 2b* + 3b*) Zg]

Er = [1/(bv/5 — 6b2 + 9b%)][6(1 — b*) Z5 + 2v/2Z7]

Es = (2/V/9 — 6b% + 50%)[(1 — b%) Z2 + v/2Zs]

= [1/(2V2b*V/5 — 667 + 9b%)][—2v/2(5 — 8b* + 3b*) Z3 — (5 — 2b% — 3b*) Z7 + (5 — 6b% + 9b*) Zo]

Ero = [1/(2V2b°V9 — 6b2 + 5b%)][—2v/2(3 — 4b® + b*) Z2 — (3 + 2b* — 5b*) Zs + (9 — 6b> + 5b*) Z10]

En = (1/a)[f(7 — 1067 4 3b*) Z1 + 4v/15(1 — b%) Zs — 2/30(1 — b*) Z6 + 8Z11]

Eis = \ﬁ 8b=2(195 — 475b% + 558b* — 422b° 4+ 1596° — 15b'9) 371 7,

—+/15/8b72(105 — 205b + 194b* — 114b° + 5b® 4 156') 71 Z,4
++/15/4(75 — 155b% + 174b* — 134b° + 556° — 156'°)371 Zs
—10v2b72(3 — 2b% 4+ 2b° — 3b%)87' Z11 + b 2ay " Z12

E1s = [1/(bv/5 — 662 + 5b)][VI5(1 — b*) Z5 + 2Z13]

Ers = (1/5/2/4)(1 — 6%)274(35 — 106> — b*)y ™' Z1 + +(5+/15/2/8)(1 — b*)%b —4(7+ 207 — by 2y
—(v/15/8)(35 — 70b* + 56b* — 260° + 5b%)y "1 Z6 + [5/(8v/2)](1 — b2)2b~4(7 + 106% 4 Tb*)y 1 Z1,
—(5/8)b™*(7 — 6b + 6b° — Tb*)y "' Z12 + [v/(86*)] Z14

Eis = —(V15/4)b73(5 — 8b% + 3b%)6 7 Z5 — (5/4)(1 — b")b 387 Z13 + [6/(2b%)) Z15

|| o

(45 — 60b% + 94b* — 60b° + 450%)1/2

= (1575 — 4800b% + 12020b* — 17280b° + 21066b° — 17280610 + 1202062 — 48006** + 1575616)1/2
(35 — 6002 + 114b* — 60b° + 35b°%)1/2

(5 — 6b% + 5b*)1/2

o«qmg

TABLE 4b Orthonormal Elliptical Polynomials E, (p, 6) in Polar Coordinates

E1 =1
Es> =2pcosb
Es5 = (2psinf) /b
Ey=/3/(3—2b2 +3b%)(—1 — b + 4p°)
E5 = (v/6/b)p?sin 20
= [1/(26%)]/6/(3 — 22 + 3b4)[2b% (1 — b?) — 3(1 — b*)p® + (3 — 2b + 3b*)p* cos 26)
E7 = [4/(bv/5 — 6b2 + 9b%)][— (1 + 3b%)p + 6p°] sin O
= (4/v/9 — 662 + 5b%)[—(3 4 b?)p + 6p°] cos 0
= [1/(b*V5 — 6b2 + 96%)]{3[4b*(1 — b*)p — (5 — 2b* — 3b*)p°] sin 6 + (5 — 66 + 9b*)p? sin 36]}
E10 = [1/(b*V9 — 662 + 5b%)]{3[4b* (1 — b*)p — (3 + 2b* — 5b*)p?] cos O + (9 — 6b> + 5b*)p* cos 30]}
Er11 = V/5[3 4 26 + 3b* — 24(1 4 b?)p? + 48p* — 12(1 — b?)p? cos 20]«
Eiz = [V10a/(70%)](—3p* + 4p*) cos 20 + [/5/2/(2b*B)] [~ 1267 (5 — 2b2 + 2b° — 5b°)
+6(15 4+ 125b% — 194b* 4 19465 — 125b° — 15b'%)p? 4 240(—3 4 2b% — 205 + 3b%)p*
+6(75 — 155b% + 174b* — 134b° + 55b6% — 156'%) p? cos 26)]
Er3 = (V10/b)5 71 [=3(1 + b?)p® + 8p*] sin 20
E1a = [VI0/(86)]{3(1 — b2)2[8b* — 40b(1 + b2)p? + 5(7 + 1002 + 7b*)p?]
+4[6b% (5 — 7% 4+ Tb* — 5b°) — 5(7 — 6b% + 6b° — 7b%)p?]p* cos 20 + (35 — 60b% + 114b*
—60b° + 356%)p* cos 46}
Ei5 = (vV/10/6%)6 1 {[6b%(1 — b?) — 5(1 — b*)p?]p? sin 20 + [(5 — 6b% + 5b%) /2] p? sin 40}
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TABLE 4¢_ Orthonormal Elliptical Polynomials E, (x, y) in Cartesian Coordinates, Where p* = x* + y*, - 1 <x

<1,and —y1-b%x? < y</1-b%x?

E =1
EQZQ.’E
E3 = 2y/b

By = (V3/v3 — 262 + 3b%)(—1 — b* + 4p?)

FBs = (2v6/b)xy

Es = [V/3/(0*V6 — 4b% + 6b7)][b*(1 — b?) + b2(3b* — 1)z — (3 — b?)?)

E7 = [4/(bv/5 — 662 + 9b%)][— (1 + 3b2) + 6p%]y

Es = (4/V9 — 602 + 5b%)[—(3 + b%) + 6p°]x

By = [4/(b*V/5 — 6b2 + 964)][3b% (30 — 1)z® — (5 — 3b%)y® + 3b*(1 — b))y

Ero = [4/(0*V9 — 6b2 4 5b%)|[b%(5b — 3)x? — 3(3 — %)y + 3b%(1 — b%)]z

En = (V5/a)[48p" — 12(3 + b%)z* — 12(1 + 30%)y® + 3 + 2b* + 3b7)

Eiz = [V10a/ (b*y)][(2* — y*)(4p* — 3) + [V5/(2v26* )] [240(—3 + 2b* — 2b° + 36%)p*
—60(—9 + 3b% 4+ 2b* — 6b° 4 Tb® 4 3b')2? — 24(15 — T0b* 4 926* — 8205 + 45b°%)y/?
+12b% (=5 + 2% — 2b° + 5b%))

Eis = [2V/10/(b6)](8p% — 3 — 30" )ay

Era = [V10/(b*)][b* (3 — 3062 + 35b%)z* 4 6b%(5 — 18b% + 5b*)xy? 4 (35 — 30b° + 3b*)y*
—6b*(1 — 6b% + 5b*)2® — 6b%(5 — 6b% + b*)y? + 3b*(1 — b?)?]

Ers = [4V/10/(30)][b% (502 — 3)z? — (5 — 3b%)y® + 3b2(1 — b)]zy

pupil, each elliptical polynomial consists of either cosine or sine terms, but not both. For example, E
is a linear combination of Z, Z,, and Z,. It also shows that the balancing defocus for (zero-degree)
Seidel astigmatism is different for an elliptical pupil compared to that for a circular,>*® annular,®!!
or a Gaussian pupil.”=> Moreover, E,  is a linear combination of Z, , Z, Z,, and Z,. Thus, spherical
aberration p* is balanced with not only defocus p? but astigmatism p? cos?6 as well. The ellipti-
cal polynomials are generally more complex in that they are made up of a larger number of circle
polynomials. These results are a consequence of the fact that the x and y dimensions of the elliptical
pupil are not equal. As expected, the elliptical polynomials reduce to the circle polynomials as b — 1,
that is, as the unit ellipse approaches a unit circle.

11.8 RECTANGULAR POLYNOMIALS

Figure 3d shows a unit rectangle inscribed inside a unit circle. While the distance of a corner point of
the rectangle, such as A, from its center O is unity, the half widths of the rectangle along the x and y
axes are a and +/1—a?, respectively. Accordingly, the aspect ratio of the rectangle is v1—a*/a, and

its area is 4av/1—a”. As in the case of a unit ellipse, a unit rectangle is also not unique, since a can
have any value between 0 and 1. The orthonormality of the rectangular polynomials R,(x, y) is rep-
resented by?®

R
| dy [ R R, (x, y)dx=8,, (37)

daVl-a*> _[— 2, ”
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The rectangular polynomials thus obtained up to the fourth order are given in Tables 5 in
the same manner as the hexagonal and elliptical polynomials. As in the case of hexagonal and
elliptical polynomials, each rectangular polynomial also consists of either cosine or sine terms,
but not both. Like the elliptical polynomials, the rectangular polynomials also consist of a larger
number of circle polynomials. The rectangular polynomial R, like the elliptical polynomials
E,, representing a balanced primary spherical aberration is not radially symmetric, since it
consists of a term in astigmatism Z_ or cos26. As discussed below, the rectangular polynomials
reduce to the square polynomials as a—1/\2 , and the slit polynomials for a slit pupil parallel
to the x axis asa — 1.

TABLE 5a Orthonormal Rectangular Polynomials R; in Terms of Zernike Circle Polynomials Z; Which
Reduce to the Corresponding Square Polynomials as a —1/ J2

Ri =7

Ry = [V3/(2a)] 2>

Rs = [V3/(2V1 —a?)|Z;

Ry = [V5/(4V1 = 2a% + 2a%)](Z1 + V/3Z4)

Rs = [/3/2/(20v/T = %)) 2s

Rs = {V/5/[8a*(1 — a®)V/T — 2a% + 2a%]}[(3 — 10a* + 12a* — 8a°®)Z1 + V/3(1 — 2a%)Zs
+v/6(1 — 2a* + 2a*) Ze)

R7 = [V21/(4v/2V/27 — 81a? + 116a* — 62a%)][v/2(1 + 4a*) Z3 + 5Z7]

Rs = [V21/(4v/2a+/35 — T0a2 + 62a7)][v/2(5 — 4a®) Z2 + 5Zs]

Ry = {4/5/21/(27 — 54a? + 62a%) /(1 — a?)/[16a%(27 — 81a® + 116a* — 62a°)]}[2v2(9 — 364>
+52a* — 60a°)Z5 + (9 — 184 — 26a*) Z7 + (27 — 54a® + 62a*) Zo]

Rio = {/5/2/[16a%(1 — a*)v/35 — 70a% + 62a7]}[2v/2(35 — 112a® + 128a* — 60a°) Z2
+(35 — 70a* 4 26a*) Zs + (35 — 70a* 4 62a™*) Z10)

Ri1 = [1/(16p)][8(3 + 4a® — 4a*) Z1 + 25v/3Z4 4+ 10V/6(1 — 2a*) Zs + 217/5711]

Riz = {3u/[16a%vn]}{(105 — 550a* + 1559a* — 2836a° + 26954® — 1078a'%) Z;
+5v/3(14 — 74a® + 205a* — 360a°® + 335a® — 134a'°) Zs + (5v/3/2)(35 — 156a>
+421a* — 530a® + 2650°) Zs + 21v/5(1 — 4a® + 6a* — 4a®) Z11 + [(7/2)/5/2n/(1 — a*)| Z12}

Ris = [V21/(16v2av/1 — 3aZ + 4a* — 2a5))(v/3Z5 + V/5Z13)

Ry = 7[6(245 — 1400a® 4 3378a* — 4452a° + 3466a® — 1488a'° + 496a'?) 7,
+15v/3(49 — 2524 + 522a* — 540a° + 270a%) Zs + 15v/6(49 — 252a* + 534a* — 596a°
+360a® — 144a'°) Z6 + 3v/5(49 — 196a® + 282a* — 172a° + 86a*) Z11
+147V10(1 — 4a® + 6a* — 4a°) Z12 + 31002 Z14]

Ris = {1/[32a%(1 — a®)(1 — 3a® + 4a* — 2a°)'/?]}[3,/7/2(5 — 18a® + 24a* — 16a°)Z5
+4/105/2(1 — 2a*) Z13 + v/210(1 — 2a® + 2a™) Z15]

= (9 —36a% 4 103a* — 134a° + 67a%)*/?

v = (49 — 196a® + 330a* — 268a° + 134a%)"/2

7 =1/[128va*(1 — a*)?]

n=9—45a% + 139a* — 23745 + 210a® — 67a'°
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TABLE 5b Orthonormal Rectangular Polynomials R(p, 6) in Polar Coordinates

Ri=1

Ry = (v/3/a)pcosf

Rs =+/3/(1 —a?)psind

Ry = [v/5/(2v1 —2a? +2a%)](3p — 1)

Rs = [3/(2av/1 — a?)]p? sin 20

Res = {V/5/[4a*(1 — a®)v1 — 2a2 + 2a%]}[3(1 — 2a® + 2a*)p? cos 20 + 3(1 — 2a?)p?
—2a*(1 — a®)(1 — 2a?)]

R7 = [V/21/(2/27 — 81a2 + 116a* — 62a°)](15p* — 9 + 4a*)psin 6

Rs = [V/21/(2av/35 — 70a2 + 62a%)](15p* — 5 — 4a®)pcos 0

Ry = {V5,/(27 — 54a? + 62a%) /(1 — a2)/[8a*(27 — 81a® + 116a* — 62a°)]}{(27 — 54a® + 62a")
xp® sin 30 — 3[4a”(3 — 13a? + 10a) — (9 — 18a* — 26a*)p*]psin 4}

Rio = {V5/[8a*(1 — a*)Vv/35 — T0aZ + 62a*]}{(35 — 70a® + 62a)p® cos 30
—3[4a*(7 — 17a® + 10a*) — (35 — 70a* + 26a*)p*]p cos 0}

Ri1 = [1/(8w)][315p" + 30(1 — 2a2)p? cos 20 — 240p* + 27 + 164 — 16a*]

Riz = [31/(8a%vn)][315(1 — 2a®)(1 — 2a® + 2a*)p* + 5(7u?p* — 21 + 72a® — 225a* + 306a®
—153a®)p® cos 20 — 15(1 — 2a°)(7 + 4a® — 7T1la* + 134a8 — 67a®)p?
+a2(1 — a®)(1 — 2a2)(70 — 233a* + 233a%)]

Riz = [v21/(4av/1 — 3a2 + 4a* — 2a5)(5p* — 3)p? sin 20

Ris = 67{5%p* cos 40 — 20(1 — 2a%)[6a*(7 — 16a* + 18a* — 9a%) — 49(1 — 2a* + 2a*)p?]p? cos 20
+8a*(1 — a*)?(21 — 62a” + 62a*) — 120a*(7 — 30a” + 46a* — 23a°)p?
+15(49 — 196a* 4 282a* — 172a° + 86a%)p*}

Ris = {V21/[8¢%(1 — a®)*/2(1 — 242 + 2a*)Y?]}[—(1 — 2a?) (64> — 6a* — 5p?)p? sin 20
+(5/2)(1 — 2a® + 2a*)p* sin 46]

TABLE 5¢  Orthonormal Rectangular Polynomials R(x, y) in Cartesian Coordinates, Where
pPP=x*+y%,—a<x<a, and —/1-a*> <y<y1-a?

Ri=1

Ry = (V/3/a)z

R3 =+/3/(1 —a?)y

Ry = [V5/(2V1 = 2a% + 2a%)](3p* — 1)

Rs = [3/(av1—a?)]zy

Re = {V/5/[2a*(1 — a®)V/1 — 2a2 + 2a3]}[3(1 — a®)?2? — 3a’y® — a*(1 — 3a® + 2a")]

Ry = [vV21/(2v/27 — 81a2 + 116a* — 62a°)](15p° — 9 + 4a?)y

Rs = [V21/(2a+/35 — 70a2 + 62a%)|(15p> — 5 — 4a®)x

Ry = {V/51/(27 — 54a? + 62a%) /(1 — a2)/[2a*(27 — 81a® + 116a" — 62a°)]}[27(1 — a*)?z?
—35a*y* — a*(9 — 39a* + 30a*))y

Rio = {V/5/[2a*(1 — a*)V/35 — 70a2 + 62a%]}[35(1 — a*)z* — 27ay? — a®(21 — 51a® + 30a?)]x

Rui = [1/(81)][315p" — 30(7 + 2a*)x? — 30(9 — 2a%)y® + 27 + 16a* — 16a’]

Ri> = [3u/(8a”vn)][35(1 — a®)?(18 — 36a* + 67a*)z* + 630(1 — 2a°)(1 — 2a* + 2a*)2%y?
—35a*(49 — 98a? + 67a*)y* — 30(1 — a®)(7 — 10a® — 12a* + 75a°® — 67a®)x?
—30a*(7 — 77a* + 189a* — 193a°® + 67a%)y* + a*(1 — a®)(1 — 2a2)(70 — 233a” + 233a*)]

Ris = [V21/(2av/1 — 3a2 + 4a* — 2a5)](5p* — 3)zy

Ria = 167[735(1 — a®)*2* — 540a* (1 — a*)?2?y? + 735ay* — 90a*(1 — a*)*(7 — 9a?)2?
+90a°(1 — a?)(2 — 9a*)y? + 3a*(1 — a*)?(21 — 62a° + 62a*)]

Ris = {V21/[2a3(1 — a®)v/1 — 3aZ + 4a® — 2a5]}[5(1 — a?)%z? — 5a*y? — a®(3 — 9a* + 6a™)]zy
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11.9 SQUARE POLYNOMIALS

Figure 3e shows a unit square inscribed inside a unit circle, as in the case of a rectangle. The distance
of a corner point of the square, such as A, from its center O is unity, but each of its sides has a length
of +/2 and its area is 2. The orthonormality of the square polynomials Sj(x, y) is represented by

w2 N2
5 | ar | s.6e98,x ydx=85, (38)
-IN2 -In2

The square polynomials through the eighth order are given in terms of the Zernike polynomials in
Table 6a. The first 15 polynomials are given in their analytical form, but those with j > 15 are written in
a numerical form because of the increasing complexity of the coefficients of the circle polynomials. The
corresponding polynomials in polar and Cartesian coordinates are given in Tables 6b and 6c, respec-
tively. Of course, up to the fourth order, they can be obtained simply from the rectangular polynomials
R(x, ¥) given in Tables 5 by lettlng a=1/ \/5 The square polynomial S, representing the balanced
pr1mary spherical aberration is radlally symmetric, but the polynormal S , representing the balanced
secondary spherical aberration is not, since it consists of a term in Z,, or cos48 also. Similarly, the poly-
nomial S, representing the balanced tertiary spherical aberration is also not radially symmetric, since
it consists of terms in Z , and Z, both varying as cos46.

11.10 SLIT POLYNOMIALS

11.11

By letting a — 1 in the rectangular pupil, we obtain a unit slit pupil that is parallel to the x axis, as
illustrated in Figure 3f. The corresponding orthonormal polynomials representing balanced aberra-
tions for such pupils can be obtained from the rectangular polynomials R(x, y) given in Table 5c by
letting y — 0 and a — 1. Half of the rectangular polynomials thus reduce %o zero. Some of the other
polynomials are redundant. For example, the one-dimensional defocus and astigmatism can not be
distinguished from each other. The slit polynomials are orthonormal according to*

> [Pep =5, (39)
-1

The relevant orthonormal slit polynomials are listed in Table 7. They are the Legendre polynomials, !’
which represent balanced aberrations uniquely.?>?® Since the pupil is one dimensional along the x
axis, the aberrations vary with x only.

ABERRATION BALANCING AND
TOLERANCING, AND DIFFRACTION FOCUS

For small aberrations, the Strehl ratio of the image of a point object is approximately given by 1 — o>
or exp(—0?) when the standard deviation o of the aberration is in units of radians.*>3> The Zernike
circle and annular polynomials are separable in p and 6. The balanced spherical aberrations for these
radially symmetric pupils are radially symmetric, and the balanced primary astigmatism for them
has the same form. This is also true of a Gaussian circular or annular pupil, again because of the
radial symmetry of the pupil and the amplitude across it.***> From the orthonormal form H, of

defocus for a hexagonal pupil, the sigma of the defocus aberration p? is given by (1/12)y/43/5. The

hexagonal polynomials H, and H, show that the balanced astigmatism has the same form as the cir-
cle polynomials Z_ and Z, respectively. Thus the relative amount of defocus p* that balances classi-
cal or Seidel astigmatism p?cos?6 is the same for a hexagonal pupil as for a circular pupil. Hence, for
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TABLE 6a Orthonormal Square Polynomials S, in Terms of Zernike Circle Polynomials Z;

S1 =2
Sy = +/3/22,
S3 = +/3/2Z3
Sa = (\/5/2/2)71 + (1/15/2/2)Z4
Ss = +/3/2Z5

S¢ = (V15/2)Z¢

Sy = (31 /21/31/2)Zs + (5+/21/62/2) Z7

Ss = (31/21/31/2) 7> + (5,/21/62/2) Zs
S = —(7\ /5/31/2)Z3 — (13+/5/62/4) Z7 + (1/155/2/4) Zo

S0 = (7\ / 5/31/2 Zz + (13\ / 5/62/4 Zg + (\/ 155/2/4)Z10

S11 = (8/V67)Z1 + (254/3/67/4) Zs + (214/5/67/4) Z11

S12 = (45v/3/16)Zs + (21V5/16) Z12

S13 = (3V7/8)Z5 + (V105/8) Z13

S14 = 261/(8V/134)Z1 + (3454/3/134/16)Z4 + (129+/5/134/16)Z11 + (3v/335/16) Z14

S15 = (V105/4) Z15

= 1.71440511Z5 + 1.71491497Zg + 0.65048499Z1¢ + 1.52093102Z1¢

S17 = 1.71440511Z3 + 1.71491497Z7 — 0.65048449Z¢ + 1.52093102Z;

S1s = 4.10471345Z5 + 3.45884077Zs + 5.34411808Z1¢ + 1.51830574Z16 + 2.80808005Z15

S19 = —4.10471345Z3 — 3.45884078 2 + 5.34411808Z9 — 1.51830575Z17 + 2.80808005Z 19

Sa0 = 5.57146696Z> + 4.44429264Zg + 3.00807599Z1¢ + 1.70525179Z16 + 1.16777987Z15
+4.19716701 Z20

So1 = 5.57146696Z3 + 4.44429264Z7 — 3.00807599Z9 + 1.70525179Z17 — 1.16777988Z19
+4.19716701Z2;

Saa = 1.331599357Z1 + 1.946959127Z, + 1.74012467Z11 + 0.65624211Z14 + 1.50989174Z52

Sos = 0.95479991Z5 + 1.01511643Z13 + 1.28689496 Z23

Saq = 9.87992565Z¢ + 7.28853095Z12 + 3.38796312Z24

Sos = 5.61978925Z15 + 2.84975327 Z25

Sag = 11.006502752Z1 + 14.00366597Z4 + 9.22698484 711 + 13.557657202Z14 + 3.18799971Z22
+5.11045000 Z26

Sa7 = 4.24396143Z5 + 2.70990074Z13 + 0.84615108 Z23 + 5.17855026 Z27

Sag = 17.58672314Z6 + 11.15913268Z12 + 3.57668869Z24 + 6.44185987 Zog

Sag = 2.427642897Z3 + 2.69721906Z7 — 1.56598064Z9 + 2.12208902Z17 — 0.93135653Z19
+0.25252773Z21 + 1.59017528 Z29

S30 = 2.427642897Z> + 2.69721906Zg + 1.56598064 Z1¢ + 2.12208902Z16 + 0.93135653 Z15
+0.25252773Z20 + 1.59017528Z30

S31 = —9.103009827Z3 — 8.799782087Z + 10.69381427Z9 — 5.37383385Z17 + 7.01044701 2,9
—1.263472727Z2; — 1.90131756 Z29 + 3.07960207 Z3;

S32 = 9.103009827Z5 + 8.79978208Zs + 10.69381427Z1¢ + 5.37383385Z16 + 7.01044701Z1g
+1.26347272Z50 + 1.90131756 Z30 + 3.07960207 Z32

S33 = 21.39630883Z3 + 19.76696884Z; — 12.70550260Z9 + 11.05819453Z17 — 7.02178756 Z19
+15.80286172Z21 + 3.29259996 Z29 — 2.07602718Z31 + 5.40902889Z33

S34 = 21.39630883Z5 + 19.76696884Zs + 12.70550260Z10 + 11.05819453Z16 + 7.02178756Z15
+15.80286172Z20 + 3.29259996Z30 + 2.07602718Z32 + 5.40902889Z34

S35 = —16.5445446273 — 14.89205549Z + 22.18054997 Zg — 7.945248497Z17 + 11.85458952 71

—6.18963457 221 — 2.19431441Z29 + 3.24324400Z3; — 1.72001172Z33 + 8.16384008Z35
16.54454462 75 + 14.89205549Z5 + 22.18054997Z1¢ + 7.94524849716 + 11.85458952Z15
+6.18963457 Zao + 2.19431441Z3¢ + 3.24324400Z35 + 1.72001172Z34 + 8.16384008 Z36

0
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(Continued)
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TABLE 6a Orthonormal Square Polynomials S, (p, 6) in Terms of Zernike Circle Polynomials
(Continued)

Sz7 = 1.752389602Z + 2.72870567Z4 + 2.76530671 211 + 1.43647360Z14 + 2.12459170Z22
40.92450043 Z26 + 1.58545010Z37

S3s = 19.24848143Z¢ + 16.41468913Z12 + 9.76776798Z24 + 1.47438007Z2s + 3.83118509Z35

Szg9 = 0.46604820Z5 + 0.841242907Z,3 + 1.00986774Z23 — 0.42520747 Z27 + 1.30579570Z39

Sa0 = 28.181045312Z; + 38.52219208Z4 + 30.18363661Z11 + 36.44278147Z14 + 15.52577202Z22
+19.21524879 Zo¢ + 4.44731721Z37 + 6.00189814 Z4

S41 = (369/4)+/35/3574Z15 + [11781/(32V/3574)] Zas + (2145/32)+/7/3574Z41

S42 = 85.33469748Z¢ + 64.01249391Z12 + 30.59874671Z24 + 34.09158819 228 + 7.75796322 735
+9.37150432Z4>

Saz = 14.30642479Z5 + 11.17404702Z13 + 5.68231935Z23 + 18.15306055Z27 + 1.54919583 Z39
+5.90178984 Z43

Saa = 36.125674247Z; + 47.953052247Z, + 35.30691679Z11 + 56.72014548Z14 + 16.36470429Z25
+26.32636277Z26 + 3.95466397Z37 + 6.33853092Z40 + 12.38056785Z44

Sas = 21.45429746Z15 + 9.94633083Z25 + 2.34632890Z41 + 10.39130049Z45

TABLE 6b Orthonormal Square Polynomials Sj(p, 0) in Polar Coordinates

Sl =1

Sy = \/épcosa

S3 = V6psin @

Sy =+/5/2(3p% - 1)

S5 = 3p? sin 20
S6 = 34/5/2p? cos 20

S7 = +/21/31(15p% — T)psin §
Sg = 1/21/31(15p% — T)pcos
So = (1/5/31/2)[31p> sin 30 — 3(13p? — 4)psin 6]

S0 = (\/%/2)[31;)3 cos 30 4 3(13p? — 4)p cos 6]
S11 = [1/(2V67)](315p* — 240p2 + 31)
S12 = [15/(2v2)](7p* — 3)p” cos 20

\/21/2(5p% — 3)p? sin 260

S14 = [3/(8V/134)](335p* cos 40 + 645p* — 300p + 22)

S15 = (5/2)/21/2p" sin 40

S16 = 1/ 55/1966[11p3 cos 30 4+ 3(19 — 97p% + 105p)p cos 0]

Si7 = 1/55/1966[—11p> sin 36 + 3(19 — 97p% + 105p*) p sin 6]

Sis = (1/4)4/3/844397[5(—10099 + 20643p?)p> cos 30 + 3(3128 — 23885 + 37205p%) p cos 6]
S19 = (1/4)4/3/844397[5(—10099 + 20643p?)p> sin 360 — 3(3128 — 23885p% + 37205p)psin 6]
S0 = (1/16)/7/859[2577p° cos 50 — 5(272 — 717p?)p> cos 36 + 30(22 — 196p2 + 349p*)p cos 6]
So1 = (1/16)4/7/859[2577p° sin 56 + 5(272 — 717p%)p°> sin 36 4 30(22 — 196p? + 349p*)p sin 6]
Soo = (1/4)4/65/849(1155p° + 30p* cos 40 — 1395p* + 453p* — 31)

Soz = (1/2)+/33/3923(471 — 1820p2 + 1575p*)p? sin 20

Soq = (21/4)4/65/1349(27 — 140p> + 165p*)p? cos 26

Sas = (7/4)/33/2(9p% — 5)p* sin 40

Sos = [1/(16+/849)][5(—98 + 2418p% — 12051p* + 15729p5) + 3(—8195 + 17829p%)p* cos 46]
Sa7 = [1/(16/7846)][27461 % sin 66 + 15(348 — 2744p> + 4487p*)p? sin 26]

Sog = [21/(32+/1349)][13490° cos 60 + 5(196 — 1416p? + 2247p*)p? cos 20]

»n
w
Il

(Continued)
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TABLE 6b Orthonormal Square Polynomials Sj(p, 0) in Polar Coordinates (Continued)

Sag = (—13.79189793p 4 125.49411319p> — 308.13074909° 4 222.624540350" ) sin 6
+(8.47599260p° — 16.13156842p°) sin 30 + 0.87478174p° sin 50

S30 = (—13.79189793p + 125.49411319p> — 308.13074909p° + 222.62454035p") cos O
+(—8.47599260p> + 16.13156842p°) cos 360 + 0.87478174p° cos 50

S31 = (6.14762642p — 79.44065626p> + 270.16115026p° — 266.18445920p" ) sin 6

+(56.29115383p° — 248.12774426p° + 258.68657393p") sin 30 — 4.37679791p° sin 56

Ssa = (—6.14762642p + 79.44065626p° — 270.16115026° + 266.184459207 ) cos 0

+(56.29115383p° — 248.12774426p° + 258.68657393p") cos 36 + 4.37679791p° cos 560

Sss = (—6.78771487p + 103.15977419p° — 407.15689696p° + 460.96399558" ) sin 6
+(—21.68093294p> + 127.50233381p° — 174.38628345p") sin 30
+(—75.07397471p° + 151.45280913p") sin 560

Ss4 = (—6.78771487p + 103.15977419p° — 407.15689696° + 460.963995587 ) cos 0
+(21.68093294p° — 127.50233381p° + 174.38628345p") cos 36
+p°(=75.07397471 + 151.45280913p2) cos 50

S5 = (3.69268433p — 59.40323317p° + 251.40397826° — 307.20401818p") sin 0
+(28.20381860p% — 183.86176738p° + 272.43249673p") sin 360
+(19.83875817p% — 48.16032819p") sin 50 + 32.65536033p" sin 760

S36 = (—3.69268433p + 59.40323317p° — 251.40397826p° + 307.20401818p") cos 0
+(28.20381860p° — 183.86176738p° + 272.43249673p") cos 36
+(—19.83875817p° + 48.16032819)7) cos 50 + 32.65536033p" cos 76

Sa7 = 2.34475558 — 55.32128002p2 + 296.53777290p" — 553.46621887p° + 332.94452229,°

+(—12.75329096p* + 20.75498320p°) cos 40

Szg = (—51.83202694p + 451.93890159p? — 1158.49126888p° + 910.24313983p%) cos 20

+5.51662508p°% cos 60

Sz9 = (—39.56789598p2 + 267.47071204p* — 525.02362247p% + 310.24123146p°) sin 26

—1.59098067 0% sin 66
1.21593465 — 45.42224477p% + 373.41167834p* — 1046.32659847p° + 933.93661610p°
+(137.71626496p* — 638.10242034° 4 712.98912399%) cos 460

(9/8)+/7/1787(1455 — 5544p2 + 5005p%)p? sin 460

%)

N

o
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Saa2 = (—40.45171657p + 494.75561036p* — 1738.64589491p% + 1843.19802390°%) cos 26

+(—150.76043598% + 318.07940431%) cos 66

Sz = (—9.12193686p> + 110.47679089p* — 371.21215287p°% + 368.07015240p%) sin 20

+(—107.35168289p° + 200.31338972p%) sin 66

S44 = 0.58427150 — 25.29433513p2 + 242.54313549p* — 795.02011474p% + 830.47943579p°
+(90.22533813p* — 538.44320774p% + 752.97905752p%) cos 46 + 52.52630092p° cos 80
Sus = (31.08509142p* — 194.79990628° 4 278.72965314p%) sin 40 + 44.08655427 p® sin 860

TABLE 6¢ Orthonormal Square Polynomials Sj (% ) in Cartesian Coordinates, Where p? = x> + y2, -1/ \/5 <x<

1/\/5, and, —l/\/g <y< 1/\/5

S1=1

Sz = \/5.1

S5 = V6y

Sa = +/5/2(3p% — 1)
S5 = 6zy

S = 34/5/2(a® — y?)

Sr = \/21/31(150% — T)y

Ss = \/21/31(15p% — )

So = 1/5/31(27z% — 35y% 4 6)y

S10 = 1/5/31(352% — 27y* — 6)x

S11 = [1/(2v67)](315p* — 240p* + 31)
Sz = [15/(2v2)](z* — y*)(7p* — 3)
Sis = V42(5p% — 3)zy

(Continued)



TABLE 6¢ Orthonormal Square Polynomials S]. (% ¥), in Cartesian Coordinates, Where p% = x* + y2, —1/\/5 <x<
1/\/5, and, —1/\/5 <y< 1/\/5 (Continued)

S14 = [3/(4V/134)][10(49z* — 36222 + 49y*) — 150p2 + 11]

Sis = 5V42(x? — y?)zy

Si6 = 4/55/1966(315p* — 28022 — 324y + 57)x

S17 = 4/55/1966(315p* — 32422 — 280y> + 57)y

Sis = (1/2)4/3/844397[105(1023z* + 80z2y? — 943y*) — 61075z + 39915y> + 4692]x

S1o = (1/2)4/3/844397[105(943z* — 80z2y? — 1023y*) — 3991522 + 61075y — 4692]y

Sao = (1/4)4/7/859[6(693z* — 50022y? 4 525¢y*) — 181022 — 450y + 165]x

Sa1 = (1/4)4/7/859[6(525x* — 50022y? 4 693y*) — 45022 — 1810y + 165y

Sao = (1/4)4/65/849[1155p5 — 15(91a* + 198z2y? + 91y*) + 453p% — 31]

Saz = 4/33/3923(1575p* — 1820p2 + 471)zy

Soa = (21/4)4/65/1349(165p* — 140p% 4 27)(z? — y?)

Sas = 74/33/2(90° — 5)zy(z? — y*)

Sas = [1/(8v/849)][42(1573z°® — 375x%y? — 37522y + 1573y%) — 60(707z* — 225x2y? + 707y*)
+6045p2 — 245]

Sa7 = [1/(2V7846)][14(2673x? — 250022 y? + 2673y*) — 10290p% + 1305]zy

Saog = [21/(8v/1349)][31462° — 2250x%y? 4 225022y* — 314695 — 1770(x* — y*) + 245(z2 — y?)]

Sag = (—13.79189793 + 150.92209099z2 + 117.01812058y% — 352.15154565z* — 657.27245247x2y>
—291.12439892y* + 222.62454035z° + 667.87362106x*y> + 667.8736210622y* + 222.62454035y° )y

Sz0 = (—13.79189793 + 117.01812058x2 + 150.92209099y% — 291.12439892z* — 657.2724524722y>
—352.15154565y* + 222.62454035x° + 667.87362106x1y? + 667.8736210622y* 4 222.62454035y° )z

S31 = (6.14762642 + 89.4328052222 — 135.73181009y% — 496.10607212z* + 87.83479115x2y>
+513.91209661y* + 509.875262602° + 494.87949207x%y? — 539.86680367x2y* — 524.87103314y°%)y

Szo = (—6.14762642 + 135.73181009x2 — 89.43280522y2 — 513.91209661x* — 87.8347911522y>
+496.10607212y* + 524.871033142°% + 539.86680367x%y? — 494.87949207x2y* — 509.87526260y%)x

S33 = (—6.78771487 + 38.11697536x2 + 124.84070714y> — 400.01976911z* + 191.4306208922y>
—609.73320550y* + 695.06919087z° — 246.30347616z*y? — 154.56957886x2y* + 786.80308817y%)y

Szq4 = (—6.78771487 + 124.84070714x> + 38.11697536y> — 609.73320550z* + 191.43062089z>2y>
—400.01976911y* + 786.80308817x® — 154.56957886x*y? — 246.3034761622y* 4 695.06919087y°)x

S35 = (3.69268433 + 25.2082226422 — 87.60705178y> — 200.98753298z* — 63.303159992:2y°
+455.10450382y* + 497.87935336z° — 461.58554163z*y2 + 470.02596297x2y* — 660.45220344°)y

Sz = (—3.69268433 + 87.60705178z2 — 25.20822264y% — 455.104503822* + 63.3031599922y2
+200.98753298y* + 660.452203442:% — 470.02596297x4y> + 461.58554163z2y* — 497.879353361%)x

Ss7 = 9.37902233 — 221.28512011p2 + 1186.15109160p* — 2213.86487550° + 1331.77808917p°
+0.0190064(z* — 622y + y*)(—671 4+ 1092p?)

Szs = (—51.83202694 + 451.9389015922 — 1152.97464379z* 4 910.243139832%)z2 + (51.83202694
—451.93890159y2 — 1241.24064523z% + 1241.24064523z2y? 4 1152.97464379y* + 1820.48627967x°
—1820.48627967x%y* — 910.24313983y5)y?

S39 = (—79.13579197 + 534.94142408x2 + 534.94142408y? — 1059.59312899z* — 2068.27487642x%y>
—1059.59312899y* + 620.482462922°% + 1861.44738877xy? + 1861.44738877x2y*
+620.48246292y%)zy

Sa0 = 1.21593465 + (—45.42224477 + 511.1279433122 — 1684.42901882z* + 1646.925740092°)z2
+(—45.42224477 — 79.47423312z2 4 511.12794331y> + 51.53230630z* + 51.53230630z2y>
—1684.42901882y* + 883.78996844x% — 1526.27154329zy? + 883.78996844x2y*
+1646.92574009y° )y

S41 = (409.790844152% — 409.79084415y% — 1561.42985567x% + 1561.42985567y* + 1409.624175252°
+1409.62417525x%y? — 1409.624175252%y* — 1409.62417525y%)zy

Sao = (—40.45171657 + 494.7556103622 — 1889.40633090z* + 2161.277428212°%)2? + (40.45171657
—494.75561036y2 + 522.76064491z* — 522.7606449122y? + 1889.40633090y* — 766.71561254x°
+766.71561254z2y* — 2161.27742821y5)y?

S43 = (—18.24387372 + 220.95358178z2 + 220.95358178y2 — 1386.53440310x* + 662.18504631x2y>
—1386.53440310y* + 1938.02064313z° — 595.96654168zy? — 595.96654168z2y*
+1938.02064313y%)zy

Sya = 0.58427150 + (—25.29433513 + 332.76847363z2 — 1333.46332249z* + 1635.9847942425)z>
+(—25.29433513 — 56.26575785x2 + 332.76847363y2 + 307.15569451x* + 307.15569451 2% y>
—1333.46332249y* — 1160.734912842° + 1129.92710444z*y? — 1160.73491284x2y*
+1635.98479424y°)y?

S4s = (124.3403657122 — 124.34036571y% — 779.19962514x* + 779.19962514y* + 1467.61104674z°
—1353.92842666:%y? + 1353.9284266622y* — 1467.61104674y%)xy

11.34
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TABLE 7 Orthonormal Polynomials for a Unit Slit Pupil

j  Aberration Orthonormal Polynomials

1 Piston 1

2 Tilt V3

3 Defocus (v/5/2)(32% — 1)

4 Coma (V7/2) (523 — 3z)

5 Spherical aberration (3/8)(35x* — 3022 + 3)

6 Secondary coma (v/11/8)(63z° — 7023 + 15z)

7 Secondary spherical aberration  (v/13/16)(2312% — 3152* + 10522 — 5)

a small amount of astigmatism, the diffraction focus for an inscribed hexagonal pupil is the same as
for a circular pupil.*® For an image with a focal ratio of F, it lies along the z axis at a distance of —8F>
times the amount of the balancing defocus from the Gaussian image point. However, the hexagonal
polynomials H, and H, show that the relative amount of tilt pcos6 that optimally balances classi-
cal or Seidel coma p*cos6 is —14/25 = —0.56 compared to —2/3 for a circular pupil. The diffraction
focus in this case lies along the x axis at a distance of —2F times the amount of tilt from the Gaussian
image point. Similarly, the hexagonal polynomial H,, shows that the relative amount of defocus that
optimally balances classical primary or Seidel spherical aberration p* is —257/301 = —0.85 compared
to a value of —1 for a circular pupil. It has the consequence that the diffraction focus lies closer to
the Gaussian image point in the case of coma, and closer to the Gaussian image plane in the case of
spherical aberration, compared to their corresponding locations for a circular pupil. While the bal-
anced primary and secondary spherical aberrations H | and H,, are radially symmetric, the balanced
tertiary spherical aberration H,, is not. The tertiary spherical aberration p® is balanced not only by
defocus p? and primary and secondary spherical aberrations p* and p®, but by a term in Z,; or p®
cos 60 as well.

In the case of an elliptical pupil, the sigma of Seidel astigmatism p*cos@ is given by o = 1/4,
independent of its aspect ratio b, and thus equal to that for a circular pupil. Since Seidel astigmatism
x*varies only along the x axis for which the unit ellipse has the same length as a unit circle, the sigma
is independent of b. The amount of balancing defocus p?* for astigmatism is different in the case of
an elliptical or a rectangular pupil from the value of —1/2 for a circular pupil. Moreover, for these
pupils, spherical aberration p* is balanced not only by defocus p? but astigmatism p*cos’6 as well.
This is a consequence of the fact that the x and y dimensions of the these pupils are not equal.

A square pupil is a special case of a rectangular pupil for which a=1/ \/5 . It is evident from the
square polynomials S, and S, that they have the same form as the corresponding circle polynomials.
Thus there is no additional defocus for balancing astigmatism, as may be seen by the absence of a
Z, term in the expression for S.. Hence, the diffraction focus of a system does not change when its
circular pupil is replaced by an inscribed square pupil. Unlike an elliptical or a rectangular pupil,
the primary spherical aberration in a square pupil is balanced by defocus only, as is evident from
the radially symmetric expression for S,,. However, the balanced secondary and tertiary spherical
aberrations are not radially symmetric, since they contain angle-dependent terms varying as cos46.
From the polynomials S, S, and S, ,, the diffraction foci in the case of coma and spherical aberra-
tion are closer to the Gaussian image point and the Gaussian image plane, respectively, compared to
their corresponding locations for a circular pupil.

The sigma of Seidel aberrations with and without balancing are listed in Table 8 for elliptical and
rectangular pupils. The corresponding values for a circular, hexagonal, square, and a slit pupil are
listed in Table 9.2° As expected, the results for an elliptical pupil reduce to those for a circular pupil

as b—1, and the results for a rectangular pupil reduce to those for a square pupil as a 12 . As
the area of a unit pupil decreases in going from a circular to a hexagonal to a square pupil (from 7

to 3\/5 /2=2.6 to 2), the sigma of an aberration decreases and its tolerance for a certain Strehl ratio
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TABLE 8 Standard Deviation or Sigma of a Primary and a Balanced Primary Aberration for Elliptical and

Rectangular Pupils
Sigma  Elliptical Rectangular
oa (1/4)[(3 — 20 + 3b%)/3]'/2 (2/3)[(1 — 2a% 4 2a*)/5]/?
Ta 1/4 2a%/(3+/5)
Oba b2/[6(3 — 262 + 3b%)]1/2 2a%(1 — a?)/{3[5(1 — 2a2 + 2a*)]*/?}
oe (5426 +b4)'/2/8 al(7 + 8a*)/105]*/2
Obe (9 — 6b% + 5b%)1/2 /24 2a(35 — 70a® + 62a*)'/2 /(15+/21)
o (225 + 6062 — 58b* + 600° + 225b%)1/2/(24+/10)  4(63 — 16242 + 206a* — 88a® + 44a®)'/? /(45v/7)
Tbe (45 — 60b% + 94b* — 60b° + 45b%)/2/(48V/5) (8/315)(9 — 3642 4 103a* — 134a8 + 67a®)'/?

TABLE 9 Standard Deviation or Sigma of a Primary and a Balanced
Primary Aberration for Circular, Hexagonal, Square, and Slit Pupils

Sigma  Circle Hexagon Square Slit

o4 1/(2v3) (1/12)/43/5 1/3)v2/5 2/(3v5)
=1/3.464 =1/4.092 =1/4.743 =1/3.354

ou 14 (1/24)/1275  1/(3V5) .

=1/4.762 =1/6.708 -

o 1/(2V6)  (1/4)\/7/15 1/(3v/10) -
=1/4899 =1/5.855 =1/9.487 -

oe 1/(2v2)  (1/4)/83/70 \V/3/70 V7
=1/2.828 =1/3.673 =1/4.831 =1/2.646

o 1(6VD)  (1/20)/TT20  (1/15)(/BI/2 2/(5V7)
=1/8.485 =1/10.676 =1/12.346 =1/6.614

s 2/(3v5) (1/6)1/59/35 (2/45)/101/7  4/15
=1/3.354 =1/4.621 =1/5.923 =1/3.750

Obs 1/(6v/5) (1/84)\/4987/215 (2/315)V/67  8/105
=1/13.416 =1/17.441 =1/19.242 =1/13.125

increases. The slit pupil is more sensitive compared to a circular pupil, except for spherical aber-
ration for which it is slightly less sensitive. To obtain the Seidel coefficients from the orthonormal
coefficients of a noncircular wavefront, all significant coefficients that contain a Seidel term must be
taken into account, just as in the case of Zernike coefficients.’®

11.12 ISOMETRIC, INTERFEROMETRIC, AND PSF
PLOTS FOR ORTHONORMAL ABERRATIONS

The aberration-free point-spread functions (PSFs) for unit pupils considered in this chapter are
shown in Fig. 5, illustrating their symmetry, for example, 6-fold symmetry for a hexagonal pupil.
Their linear scale is such that the first zero of the PSE, for example, for a square pupil occurs at unity
in units of AF (corresponding to 1.22 for a circular pupil). Here A is the wavelength of the object
radiation and F is the focal ratio of the image-forming light cone. These PSFs are the ultimate goal
of fabrication and testing. The obscuration ratio of the annular pupil in Fig. 5b is € = 0.5; the aspect
ratio of the elliptical pupil in Fig. 5d is b = 0.85; and the half width of the rectangular pupil in Fig. 5e
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(a) (b) (©)
(d) (e) (f)

FIGURE 5 Aberration-free PSFs for different unit pupils: (a) Circular; (b) annular with obscu-
ration ratio € = 0.5; (c) hexagonal; (d) elliptical with aspect ratio b = 0.85; (e) rectangular with half
width a = 0.8; and (f) square.

is a = 0.8. The orthonormal polynomials corresponding to a Seidel aberration for a hexagonal,
elliptical, rectangular, and square pupils are illustrated in three different but equivalent ways in Fig. 6.7
In Fig. 64, as in Fig. 5a the aspect ratio of the elliptical pupil is b = 0.85. In Fig. 6e, as in Fig. 5e, the half
width of the rectangular pupil is a = 0.8. For each polynomial, the isometric plot at the top illustrates
its shape as produced, for example, in a deformable mirror. The standard deviation of each polyno-
mial aberration in the figure is one wave. An interferogram, as in optical testing, is shown on the left.
The number of fringes, which is equal to the number of times the aberration changes by one wave as
we move from the center to the edge of a pupil, is different for the different polynomials. Each fringe
represents a contour of constant phase or aberration. The fringe is dark when the phase is an odd
multiple of 7 or the aberration is an odd multiple of A/2. On the right for each polynomial are shown
the PSFs, which represent the images of a point object in the presence of a polynomial aberration.

11.13 USE OF CIRCLE POLYNOMIALS
FOR NONCIRCULAR PUPILS

Since the Zernike circle polynomials form a complete set, any wavefront, regardless of the shape
of the pupil (which defines the perimeter of the wavefront) can be expanded in terms of them.**
However, unless the pupil is circular, advantages of orthogonality and aberration balancing are
lost. For example, the mean value of a Zernike circle polynomial across a noncircular pupil is not
zero, the Zernike piston coefficient does not represent the mean value of the aberration, the other
Zernike coefficients do not represent the standard deviation of the corresponding aberration terms,
and the variance of the aberration is not equal to the sum of the squares of these other coefficients.
Moreover, the value of a Zernike coefficient changes as the number of polynomials used in the



11.38 TESTING

S

FIGURE 6 Isometric plots, interferograms, and PSFs for defocus (j = 4), astigmatism (j = 6),
coma (j = 8), and spherical aberration (j = 11) in unit pupils. (a) Circular; (b) annular with € = 0.5;
(¢) hexagonal; (d) elliptical with aspect ratio b = 0.85; (e) rectangular with half width a = 0.8; and
(f) square.
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expansion of an aberration function changes. Hence, the circle polynomials are not appropriate
for analysis of noncircular wavefronts. The polynomials given in this chapter for various pupils
uniquely represent balanced classical aberrations that are also orthogonal across those pupils, just
like the Zernike circle polynomials are for a circular pupil. Since each orthonormal polynomial is a
linear combination of the Zernike circle polynomials, the wavefront fitting is as complete with the
latter as it is with the former. However, since the circle polynomials do not represent the balanced
classical aberrations for a noncircular pupil, the Zernike coefficients do not have the physical signifi-
cance of their orthonormal counterparts. But the tip/tilt and defocus values in an interferometrically
obtained aberration function, representing the lateral and longitudinal errors of an interferometer
setting, obtained from the corresponding Zernike circle coefficients when the function is approxi-
mated with only the first four circle polynomials in a least square sense are identically the same as
those obtained from the corresponding orthonormal coefficients. Accordingly, the aberration func-
tion obtained by subtracting the tip/tilt and defocus values from the measured aberration function
is independent of the nature of the polynomials used in the expansion, regardless of the domain of
the function or the shape of the pupil, so long as the nonorthogonal expansion is in terms of only
the first four circle polynomials. The difference function is what is provided to the optician to zero
out from the surface under fabrication by polishing.

11.14 DISCUSSION AND CONCLUSIONS

The Zernike circle polynomials are in widespread use for wavefront analysis in optical design and
testing, because they are orthogonal over a unit circle and represent balanced aberrations of systems
with circular pupils. When an aberration function of a circular wavefront is expanded in terms of
them, the value of an expansion coefficient is independent of the number of polynomials used in
the expansion. Accordingly, one or more terms can be added or subtracted without affecting the
other coefficients. The piston coefficient represents the mean value of the aberration function and
the other coefficients represent the standard deviation of the corresponding terms. The variance of
the aberration is given simply by the sum of the squares of those other aberration coefficients.

We have also listed the orthonormal polynomials for analyzing the wavefronts across noncircular
pupils, such as annular, hexagonal, elliptical, rectangular, and square. These polynomials are for unit
pupils inscribed inside a unit circle. Such a choice keeps the maximum value of the distance of a
point on the pupil from its center to be unity, thus easily identifying the peak of value of a classical
aberration across it. Each orthonormal polynomial for the pupils considered consists of either the
cosine or the sine terms, but not both due to the biaxial symmetry of the pupils. Whereas the circle
and annular polynomials are separable in their dependence on the polar coordinates p and 6 of a
pupil point due to the radial symmetry of the pupils, only some of the polynomials for other pupils
are separable. Hence polynomial numbering with two indices n and m, as for circular and annular
polynomials, loses significance, and must be numbered with a single index j. The hexagonal polyno-
mials H,, and H,, representing the balanced primary and secondary spherical aberrations are radi-
ally symmetric, but the polynomial H,, representing the balanced tertiary spherical aberration is not,
since it conta