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PREFACE

Fourier analysis is a ubiquitous tool that has found application to diverse areas of
physics and engineering. This book deals with its applications in optics, and in partic-
ular with applications to diffraction, imaging, optical data processing, and holography.

Sincethe subject covered isFourier Optics, it isnatural that the methodsof Fourier
analysis play akey roleasthe underlying analytical structure of our treatment. Fourier
analysis is a standard part of the background of most physicists and engineers. The
theory of linear systemsis also familiar, especially to electrical engineers. Chapter 2
reviews the necessary mathematical background. For those not already familiar with
Fourier analysis and linear systemstheory, it can serve astheoutlinefor a more detailed
study that can be made with the help of other textbooks explicitly aimed at this subject.
Ample references are given for more detailed treatments of this material. For those
who have already been introduced to Fourier analysis and linear systems theory, that
experience has usually been with functions of a single independent variable, namely
time. The materia presented in Chapter 2 deals with the mathematics in two spatial
dimensions (asis necessary for most problems in optics), yielding an extra richness not
found in the standard treatments of the one-dimensional theory.

The original edition of this book has been considerably expanded in this second
edition, an expansion that was needed due to the tremendous amount of progress in
the field since 1968 when the first edition was published. The book can be used as a
textbook to satisfy the needsof several different typesof courses. It isdirected towards
both physicists and engineers, and the portions of the book used in the course will in
general vary depending on the audience. However, by properly selecting the material to
becovered, the needsof any of a number of different audiencescan be met. ThisPreface
will make several explicit suggestions for the shaping of different kinds of courses.

First a one-quarter or one-semester course on diffraction and image formation can
be constructed from the materials covered in Chapters 2 through 6, together with all
threeappendices. If timeisshort, thefollowing sectionsof these chapters can be omitted
or left as reading for the advanced student: 3.8, 3.9, 5.4, and 6.6.

A second type of one-quarter or one-semester course would cover the basics of
Fourier Optics, but then focus on the application area of analog optical signal process-
ing. For such a course, | would recommend that Chapter 2 be left to the reading of
the student, that the material of Chapter 3 be begun with Section 3.7, and followed
by Section 3.10, leaving the rest of this chapter to a reading by those students who
are curious as to the origins of the Huygens-Fresnel principle. In Chapter 4, Sections
4.2.2 and 4.5.1 can be skipped. Chapter 5 can begin with Eq. (5-10) for the amplitude
transmittance function of a thin lens, and can include all the remaining material, with
the exception that Section 5.4 can be |eft asreading for the advanced students. If time
Is short, Chapter 6 can be skipped entirely. For thiscourse, virtually all of the material
presented in Chapter 7 isimportant, asis much of the material in Chapter 8. If itis nec-
essary to reduce the amount of material, | would recommend that thefollowing sections
be omitted: 8.2, 8.8, and 8.9. It isoften desirable to include some subset of the material
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on holography from Chapter 9 in this course. | would include sections 9.4, 9.6.1, 9.6.2,
9.7.1,9.7.2, 9.8, 9.9, and 9.12.5. The three appendices should be read by the students
but need not be covered in lectures.

A third variation would be a one-quarter or one-semester course that covers the
basics of Fourier Optics but focuses on holography as an application. The course can
again begin with Section 3.7 and be followed by Section 3.10. The coverage through
Chapter 5 can beidentical with that outlined abovefor the course that emphasi zes op-
tical signal processing. In this case, the material of Sections 6.1, 6.2, 6.3, and 6.5 can
beincluded. In Chapter 7, only Section 7.1 is needed, although Section 7.3 is a useful
addition if thereistime. Chapter 8 can now be skipped and Chapter 9 on holography
can be the focus of attention. If time is short, Sections 9.10 and 9.11 can be omitted.
Thefirst two appendices should be read by the students, and the third can be skipped.

In some universities, more than one quarter or one semester can be devoted to this
material. In two quarters or two semesters, most of the material in this book can be
covered.

The above suggestions can of course be modified to meet the needs of a particular
set of students or to emphasize the material that a particular instructor feelsismost ap-
propriate. | hope that these suggestions will at least give someideas about possibilities.

There are many people to whom | owe a special word of thanksfor their help with
this new edition of the book. Early versions of the manuscript were used in courses at
several different universities. | would in particular like to thank Profs. A.A. Sawchuk,
JF. Walkup, J. Leger, P. Pichon, D. Mehrl, and their many studentsfor catching so many
typographical errorsand in some cases outright mistakes. Helpful comments were also
made by |. Ertezaand M. Bashaw, for which | am grateful. Several useful suggestions
were also made by anonymous manuscript reviewersengaged by the publisher. A spe-
cia debt is owed to Prof. Emmett Leith, who provided many helpful suggestions. |
would also like to thank the studentsin my 1995 Fourier Optics class, who competed
fiercely to seewho could find the most mistakes. Undoubtedly there are others to whom
| owe thanks, and | apologize for not mentioning them explicitly here.

Finaly, | thank Hon Mai, without whose patience, encouragement and support this
book would not have have been possible.

Joseph W. Goodman
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CHAPTER 1

A R B T O I S A D B R T

| ntroduction

11
OPTICS, INFORMATION, AND COMMUNICATION

Since the late 1930s, the venerable branch of physics known as optics has gradually
developed ever-closer ties with the communication and information sciences of elec-
trical engineering. The trend is understandable, for both communication systems and
imaging systems are designed to collect or convey information. In the former case, the
information isgenerally of atemporal nature (e.g. amodulated voltage or current wave-
form), whilein thelatter caseit isof aspatial nature (e.g. alight amplitude or intensity
distribution over space), but from an abstract point of view, this difference is a rather
superficial one.

Perhaps the strongest tie between the two disciplinesliesin the similar mathemat-
ics which can be used to describe the respective systems of interest — the mathematics
of Fourier analysisand systems theory. Thefundamental reason for the similarity is not
merely the common subject of "information™, but rather certain basic properties which
communication systems and imaging systems share. For example, many electronic net-
worksand imaging devices share the properties called linearity and invariance(for def-
initions see Chapter 2). Any network or device (electronic, optical, or otherwise) which
possesses these two properties can bedescribed mathematically with considerable ease
using the techniquesof frequencyanalysis. Thus, just asit isconvenient to describe an
audio amplifier in terms of its (temporal) frequency response, so too it is often conve-
nient to describe an imaging system in terms of its (spatial) frequency response.

Thesimilarities do not end when the linearity and invariance properties are absent.
Certain nonlinear optical elements (e.g. photographic film) have input-output relation-
ships which are directly analogous to the corresponding characteristics of nonlinear
electronic components (diodes, transistors, etc.), and similar mathematical analysiscan
be applied in both cases.
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It is particularly important to recognize that the similarity of the mathematical
structures can be exploited not only for analysis purposes but also for synthesis pur-
poses. Thus, just as the spectrum of a temporal function can be intentionally manipu-
lated in a prescribed fashion by filtering, so too can the spectrum of a spatial function
be modified in various desired ways. The history of opticsisrich with examples of im-
portant advances achieved by application of Fourier synthesistechniques - theZernike
phase-contrast microscope is an examplethat was worthy of a Nobel prize. Many other
examples can be found in the fields of signal and image processing.

1.2
THE BOOK

The readers of this book are assumed at the start to have a solid foundation in Fourier
analysis and linear systems theory. Chapter 2 reviews the required background; to
avoid boring those who are well grounded in the analysis of temporal signals and sys-
tems, the review is conducted for functions of two independent variables. Such func-
tions are, of course, of primary concern in optics, and the extension from one to two
independent variables provides a new richness to the mathematical theory, introducing
many new properties which have no direct counterpart in the theory of temporal signals
and systems.

The phenomenon called diffraction is of the utmost importance in the theory of
optical systems. Chapter 3 treats the foundations of scalar diffraction theory, including
the Kirchhoff, Rayleigh-Sommerfeld, and angular spectrum approaches. In Chapter 4,
certain approximations to the general results are introduced, namely the Fresnel and
Fraunhofer approximations, and examples of diffraction-pattern calculations are pre-
sented.

Chapter 5 considerstheanalysisof coherent optical systemswhich consist of lenses
and free-space propagation. The approach is that of wave optics, rather than the more
common geometrical optics method of analysis. A thin lensis modeled as a quadratic
phase transformation; the usual lens law is derived from this model, as are certain
Fourier transforming properties of lenses.

Chapter 6 considers the application of frequency analysis techniques to both co-
herent and incoherent imaging systems. Appropriate transfer functions are defined and
their properties discussed for systems with and without aberrations. Coherent and in-
coherent systems are compared from various points of view. The limits to achievable
resolution are derived.

In Chapter 7 the subject of wavefront modulation is considered. The properties
of photographic film as an input medium for incoherent and coherent optical systems
are discussed. Attention is then turned to spatial light modulators, which are devices
for entering information into optical systemsin real time or near rea time. Finaly,
diffractive optical elements are described in some detail.

Attention is turned to analog optical information processing in Chapter 8. Both
continuous and discrete processing systems are considered. Applications to image
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enhancement, pattern recognition, and processing of synthetic-aperture radar data are
considered.

The fina chapter is devoted to the subject of holography. The techniques devel-
oped by Gabor and by Leith and Upatnieks are considered in detail and compared.
Both thin and thick holograms are treated. Extensions to three-dimensional imaging
are presented. Variousapplications of holography are described, but emphasisison the
fundamentals.



CHAPTER 2

Analysis of Two-Dimensona Signals
and Systems

Many physical phenomena are found experimentally to share the basic property that
their response to several stimuli acting simultaneously isidentically equal to the sum of
theresponses that each component stimuluswould produce individually. Such phenom-
enaarecalled lineal; and the property they shareiscalled linearity. Electrical networks
composed of resistors, capacitors, and inductors are usually linear over a wide range of
inputs. In addition, as we shall soon see, the wave equation describing the propagation
of light through most media leads us naturally to regard optical imaging operations as
linear mappings of "' object™ light distributions into "image' light distributions.

The single property of linearity leads to a vast simplification in the mathematical
description of such phenomenaand represents the foundation of a mathematical struc-
turewhich weshall refer to hereaslinear systemstheory. The great advantage afforded
by linearity istheability to express the response (beit voltage, current, light amplitude,
orlightintensity) to acomplicated stimulusin termsof the responsesto certain "' elemen-
tary" stimuli. Thusif astimulusisdecomposed into alinear combination of elementary
stimuli, each of which produces a known response of convenient form, then by virtue
of linearity, the total response can be found as a corresponding linear combination of
the responses to the elementary stimuli.

In thischapter wereview some of the mathematical toolsthat are useful in describ-
ing linear phenomena, and discuss some of the mathematical decompositions that are
often employed in their analysis. Throughout the later chapters we shall be concerned
with stimuli (system inputs) and responses (system outputs) that may be either of two
different physical quantities. If the illumination used in an optical system exhibits a
property called spatial coherence, then we shall find that it is appropriate to describe
the light as a spatial distribution of complex-valued field amplitude. When the illumi-
nation is totally lacking in spatial coherence, it is appropriate to describe the light asa
gpatial distribution of real-valued intensity. Attention will be focused here on the anal-
ysisof linear systems with complex-valued inputs; theresults for real-valued inputsare
thusincluded as special cases of the theory.
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21
FOURIER ANALYSSIN TWO DIMENSIONS

A mathematical tool of great utility in theanalysisof both linear and nonlinear phenom-
enaisFourier analysis. Thistool iswidely used in the study of electrical networks and
communication systems; it is assumed that the reader has encountered Fourier theory
previously, and therefore that he or she isfamiliar with the analysis of functionsof one
independent variable (e.g. time). For a review of the fundamental mathematical con-
cepts, see the books by Papoulis [226], Bracewell [32], and Gray and Goodman [131].
A particularly relevant treatment is by Bracewell [33]. Our purpose hereis limited to
extending the reader's familiarity to the analysisof functionsof two independent vari-
ables. No attempt at great mathematical rigor will be made, but rather, an operational
approach, characteristic of most engineering treatmentsof the subject, will be adopted.

2.1.1 Definition and Existence Conditions

The Fourier transform (alternatively the Fourier spectrum orfrequency spectrum) of
a(in general, complex-valued) function g of two independent variablesx andy will be
represented here by F{g} and i s defined by!

o0

Flg) = f f g(x y)exp|— 2 fx + fry)] dxdy. 2-1)

—00

Thetransform so defined is itself a complex-valued function of two independent vari-
ables fx and fy, which we generally refer to asfrequencies. Similarly, the inverse
Fourier transform of afunction G(fx, fr) will be represented by F~!{G} and is de-
fined as

F UG} = J J G, fy)expliza(fix + fynldfdfy. 2-2)

Note that as mathematical operations the transform and inverse transform are very sim-
ilar, differing only in the sign of the exponent appearing in the integrand. The inverse
Fourier transform is sometimes referred to as the Fourier integral representation of a
function g(x, y).

Before discussing the properties of the Fourier transform and its inverse, we must
first decide when (2-1) and (2-2) are in fact meaningful. For certain functions, these
integrals may not exist in the usual mathematical sense, and therefore this discussion
would be incomplete without at least a brief mention of **existence conditions™. While
avariety of setsof sufficient conditions for the existence of (2-1) are possible, perhaps
the most common set is the following:

‘When asingle limit of integration appears above or below a double integral, then that limit applies to both
integrations.
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[a—y

. g must be absolutely integrable over theinfinite (x, y) plane.

2. g must have only afinite number of discontinuities and a finite number of maxima
and minimain any finite rectangle.

3. g must have no infinite discontinuities.

In general, any one of these conditions can be weakened at the price of strengthen-
ing one or both of the companion conditions, but such considerations lead us rather far
afield from our purposes here.

AsBracewell [32] has pointed out, "' physical possibility isavalid sufficient condi-
tion for theexistence of a transform.” However, it isoften convenient in the analysis of
systemsto represent true physical waveformsby idealized mathematical functions, and
for such functions one or more of the above existence conditions may be violated. For
example, it iscommon to represent a strong, narrow time pulse by the so-called Dirac
deltafunction? often represented by

8(t) = ,'VL”L N exp(—N?m1d), (2-3)

where the limit operation provides a convenient mental construct but is not meant to be
taken literally. See Appendix A for more details. Similarly, an idealized point source of
light i s often represented by the two-dimensional equivalent,

8(x, ) = Aime N2 exp[—N2ar(x? + y2)). (2-4)

Such "functions”, being infinite at the origin and zero elsewhere, have an infinite dis-
continuity and thereforefail to satisfy existence condition 3. Qther important examples
are readily found; for example, the functions

fey) =1 and f(x y) = cos(2m fxx) (2-5)

both fail to satisfy existence condition 1.

If the majority of functionsof interest are to be included within the framework of
Fourier analysis, some generalization of the definition (2-1) isrequired. Fortunately, it
is often possible to find a meaningful transform of functionsthat do not strictly satisfy
the existence conditions, provided those functions can be defined as the limit of a se-
quence of functions that are transformable. By transforming each member function of
the defining sequence, a corresponding sequence of transforms is generated, and we
call the limit of this new segquence the generalized Fourier transform of the original
function. Generalized transforms can be manipulated in the same manner as conven-
tional transforms, and the distinction between the two cases can generally be ignored,
it being understood that when a function fails to satisfy the existence conditions and
yet issaid to have a transform, then the generalized transform is actually meant. For a
moredetailed discussion of this generalization of Fourier analysisthe reader isreferred
to the book by Lighthill [194].

To illustrate the calculation of a generalized transform, consider the Dirac delta
function, which has been seen to violate existence condition 3. Note that each member
function of the defining sequence (2-4) does satisfy theexistence requirements and that
each, in fact, hasa Fourier transform given by (see Table 2.1)

ZFor amore detailed discussion of the delta function, including definitions, see Appendix A.
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2 2
FIN? exp[-N2m(:2 T y))} = exp[— %&—)] (2-6)
Accordingly the generalized transform of 8(x, y) isfound to be
2 2
F5(s )} = lim {exp[—%ﬁ—m]} -1 @7)

Note that the spectrum of a deltafunction extends uniformly over the entire frequency
domain.
For other examples of generalized transforms, see Table 2.1.

2.1.2 The Fourier Transform as a Decomposition

Asmentioned previously, when dealing with linear systemsit is often useful to decom-
pose acomplicated input into a number of more simple inputs, to cal cul ate the response
of the system to each of these " elementary™ functions, and to superimpose the individ-
ual responses to find the total response. Fourier analysis provides the basic means of
performing such a decomposition. Consider the familiar inverse transform relationship

g0 = | _G(hexstizmsoar 2-8)

expressing the time function g in terms of its frequency spectrum. We may regard this
expression as a decomposition of the function g(z) into a linear combination (in this
casean integral) of elementary functions, each with a specific form exp(j2#f t). From
thisit is clear that the complex number G(f) is simply a weighting factor that must
be applied to the elementary function of frequencyf in order to synthesize the desired
g().

Inasimilar fashion, we may regard the two-dimensional Fourier transform asade-
composition of afunctlon g(x,y) into alinear combination of elementary functions of
theform exp[ j2m( fxx Tt fyy)]. Such functions have anumber of interesti ng properties.
Note that for any particular frequency pair (fx, fy) thecorresponding elementary func-
tion has a phase that is zero or an integer multiple of 2+ radians along lines described
by the equation

__K )
y fyx+f (2-9)

where nisan integer. Thus, asindicated in Fig. 2.1, this elementary function may be
regarded as being " directed"” in the (x, y) plane at an angle 8 (with respect to thex axis)
given by

0 = arctan(f Y) (2-10)
fx

In addition, the spatial period (i.e. the distance between zero-phase lines) is given by
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In conclusion, then, we may again regard the inverse Fourier transform as providing a
meansfor decomposing mathematical functions. TheFourier spectrum Gof afunction g
issimply adescription of the weighting factors that must be applied to each elementary
function in order to synthesize the desired g. The real advantage obtained from using
this decomposition will not befully evident until our later discussion of invariant linear
systems.

(2-11)

2.1.3 Fourier Transform Theorems

The basic definition (2-1) of the Fourier transform leads to a rich mathematical
structure associated with the transform operation. We now consider a few of the
basic mathematical properties of the transform, properties that will find wide use in
later material. These properties are presented as mathematical theorems, followed
by brief statements of their physical significance. Since these theorems are direct
extensions of the analogous one-dimensional statements, the proofs are deferred to
Appendix A.

1. Linearity theorem. Flag * Bh} = aF{g} T BF{hn}; that is, the transform of a
weighted sum of two (or more) functions is simply the identically weighted sum of
their individual transforms.

2. Smilarity theorem. If F{g(x,y)) = G(fX, fr), then

F{glax, by)) = | B G(fx ];y)’ (2-12)
that is, a" stretch™ of the coordinates in the space domain (x, y) resultsin a contrac-
tion of the coordinates in thefrequency domain (fx, fy), plusachangein the overall
amplitude of the spectrum.

3. Shift theorem. If F{g(x, y)} = G(fx, fr), then

Fle(x —a,y — b)} = G(fx, fr)expl— j2m(fxa + fyb)]; (2-13)

that is, tranglation in the space domain introduces a linear phase shift in the fre-
guency domain.
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4. Rayleigh's theorem (Parseval's theorem). If F{g(x, y)} = G(fx, fr), then

0 0

[[ lex it axay = [[ 6. sk s sy (2-14)

— —o0

The integral on the left-hand side of this theorem can be interpreted as the energy
contained in the waveform g(x, y). Thisin turn leads us to theidea that the quantity
|G(fx, fr)? can beinterpreted as an energy density in the frequency domain.

5. Convolutiontheorem. If F{g(x,y)) = G(fx, fr)and F{h(x, y)} = H(fx, fr), then

F “ o&m) h(x — £y — m) dEdn s = G(fx, f) H(fx, fr).  (2-15)

The convolution of two functions in the space domain (an operation that will be
found to arise frequently in the theory of linear systems) is entirely equivalent to
the more simple operation of multiplying their individual transforms and inverse
transforming.

6. Autocorrelationtheorem. If F{g(x, y)} = G(fx, fr), then

F J J e g€ - -y dEdns = GG P (2-16)

Similarly,

Fllgtx y)) = U G, MG (€ — foom — fy) dE dn. (2-17)

Thistheorem may beregarded asaspecial caseof the convolution theorem in which
we convolve g(x, y) with g*(—x, —y).
7. Fourier integral theorem. At each point of continuity of g,

FF Ye(x, y)} = F1F{g(x, y)} = g(x, ). (2-18)

At each point of discontinuity of g, the two successive transforms yield the angular
average of the values of g in a small neighborhood of that point. That is, the suc-
cessive transformation and inverse transformation of afunction yields that function
again, except at points of discontinuity.

The above transform theorems are of far more than just theoretical interest. They
will be used frequently, sincethey provide the basic toolsfor the manipulation of Fourier
transforms and can save enormous amounts of work in the solution of Fourier analysis
problems.



10 Introductionto Fourier Optics

214 Separable Functions

A function of two independent variables is called separable with respect to a specific
coordinate system if it can be written as a product of two functions, each of which
depends on only one of the independent variables. Thus the function g is separablein
rectangular coordinates (x, y) if

8(x y) = gx(x) gr(y), (2-19)
whileit is separablein polar coordinates (r, 8) if
g(r,0) = gr(r) ge(0). (2-20)

Separable functions are often more convenient to deal with than more general
functions, for separability often allows complicated two-dimensional manipulations to
be reduced to more simple one-dimensional manipulations. For example, a function
separable in rectangular coordinates has the particularly simple property that its two-
dimensional Fourier transform can be found as a product of one-dimensional Fourier
transforms, as evidenced by the following relation:

Q0

Flgx, y)} = f f g(x, y)expl— j2a(fiex + fyy)ldxdy

—0

e o]

= | _ex explj2mfxidx | _gv(y) explj2m iyl dy

= Fx{gx}Frigr}. (2-21)

Thusthetransform of g isitself separableinto a product of two factors, one afunction
of fx only and the second a function of fy only, and the process of two-dimensional
transformation simplifies to a succession of more familiar one-dimensional manipula-
tions.

Functions separable in polar coordinates are not so easily handled as those sep-
arable in rectangular coordinates, but it is still generally possible to demonstrate that
two-dimensional manipulations can be performed by a series of one-dimensional ma-
nipulations. For example, the reader is asked to verify in the problems that the Fourier
transform of a general function separable in polar coordinates can be expressed as an
infinite sum of weighted Hankel transforms

0

Fgrn 0t = > cx(— ) exp(jkd) Hilgr(r)} (2-22)

= —00

where

2ar

1 .
o = 5 jo 20(0) exp(— jk0) do

and H,{} isthe Hankel transform operator of order k, defined by
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Hil{gr(n)} = 2wJ0 r gr(r) JRmrp)dr. (2-23)

Here the function J isthe kth-order Bessel function of the first kind.

2.1.5 Functionswith Circular Symmetry: Fourier-Bessal Transforms

Perhaps the simplest class of functions separable in polar coordinates is composed of
those possessing circular symmetry. The function g is said to be circularly symmetric
if it can be written asafunction of r alone, that is,

g(r,0) = gr(r). (2-24)

Suchfunctions play an important rolein the problemsof interest here, since most optical
systems have precisely this type of symmetry. We accordingly devote special attention
to the problem of Fourier transforming a circularly symmetric function.

The Fourier transform of g in a system of rectangular coordinates is, of course,
given by

o0

G(fx. fr) = J J g(x, y)expl— j2m(fxx + fry)] dxdy. (2-25)

el

Tofully exploit the circular symmetry of g, we make a transformation to polar coordi-
nates in both the (x, y) and the (fx, fr) planes asfollows:

r= Jx2+y? X = rcos8

0 = arctan(z) y = rsinf
* (2-26)
p= VRt fx = pcosd
¢ = arctan (ﬁ) fr = psin.
fx
For the present we write the transform as a function of both radius and angle,?
F{gt = Golp. ®). (2-27)

Applying thecoordinate transformations (2-26) to Eq. (2-25), the Fourier transform
of g can be written
|

2 ©
Go(p, @) = . de J drrgr(r)expl— j2mrp(cos @ cos¢ + sinfsing)] (2-28)
0

or equivalently,
2m

Go(p, @) = Jw dr rgR(r)f df exp[— j2mrpcos(0 — ¢)). (2-29)
0 0

3Note the subscript in G, is added simply because the functional form of the expression for the transform
in polar coordinatesis in general different than the functional form for the same transform in rectangular
coordinates.
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Finally, we use the Bessel function identity

27

Jo(a) = LI exp[— jacos(@ — ¢)] do, (2-30)
2 0

where Jy isaBessel function of thefirst kind, zero order, to simplify the expression for

the transform. Substituting (2-30) in (2-29), the dependence of the transform on angle

¢ isseen to disappear, leaving Gy as thefollowing function of radius p,

0

Golp. #) = Golp) = 2 | ren(u(@mrp)dr 2:31)

Thus the Fourier transform of a circularly symmetric function is itself circularly
symmetric and can be found by performing the one-dimensional manipulation of (2-
31). This particular form of the Fourier transform occursfrequently enough to warrant
aspecial designation; it isaccordingly referred to as the Fourier-Bessel transform, or
aternatively as the Hankel transform d zero order (cf. EQ. (2-23)). For brevity, we
adopt the former terminology.

By means of argumentsidentical with those used above, the inverse Fourier trans-
form of acircularly symmetric spectrum G,(p) can be expressed as

o]

a(r) = 27 | pGo(pMo2rp)dp 2-32)
Thus for circularly symmetric functions there is no difference between the transform
and the inverse-transform operations.

Using the notation B{} to represent the Fourier-Bessel transform operation, it fol-
lows directly from the Fourier integral theorem that

BB Ygr(r)} = B™'B{gr(r)} = BB{gr(r)} = gr(r) (2-33)

at each value of r where gg(r) is continuous. In addition, the similarity theorem can be
straightforwardly applied (see Prob. 2-6¢) to show that

1

Bigr(ar)} = 25Go (e) (2-34)
a

When using theexpression (2-31) for the Fourier-Bessel transform, the reader should re-

member that it isno morethan aspecial case of the two-dimensional Fourier transform,

and therefore any familiar property of the Fourier transform has an entirely equivalent

counterpart in the terminology of Fourier-Bessel transforms.

2.1.6 Some Frequently Used Functionsand Some Useful Fourier Transform
Pairs

A number of mathematical functionswill find such extensive usein later material that
considerable time and effort can be saved by assigning them special notations of their
own. Accordingly, we adopt the following definitions of some frequently used func-
tions:
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rect(x) sinc(x)
05 0S5
1 3 0 05 1 \/2 x
X
sgn(x)
A(x)
1
) 1 1 2 05
X
1 0 1 X
comb(x)
3 2 1 [+] 1 2 3
X
FIGURE 2.2
Special functions.
1 |x <3
Rectangle function rect(x) = % x| = %
0 otherwise
Sinc function sinc(x) = sin(7rx)
X
1 x>0
Signum function sgn(x) =<0 x=0
-1 x<0

Triangle function A(x) = {(1)_ A L);Ihesrv;ise

Comb function comb(x) = > 8(x-n)
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TABLE 2.1
Trangform pairs for some functions separablein
rectangular coordinates.

Function Trandorm 7
2 2
ex - (a%by)] ﬁ exp[—q-r(% + %)]
rect(ax) rect(by) ﬁ sinc( fx/a) sinc( fy/b)
Aax) Alby) ﬁ sinc( fy/a) sinc*(fy/b)
8(ax, by) kllbl
expljm(ax + by)] 8(fx —al2, fy — bl2)
ab 1 1

sgn(ax) sgn(by) b jafk juky

1

comb(ax) comb(by) —_ comb(fx/a) comb(fy/b)
|abl
. ) )
explin(@x? By exp[‘jﬂ'(% " i”_)]

1 2 2
lab] 1+ Qmfila)? 1+ Q2w fy/b)?

expl—(alx| + bly))}

Circlefunction cire( Vx2 + y?) = /x2+y2 =1
{0 otherwise.

Thefirst five of these functions, depicted in Fig. 2.2, are all functions of only one in-
dependent variable; however, a variety of separable functions can be formed in two
dimensions by means of products of these functions. The circle function is, of course,
unique to the case of two-dimensional variables; see Fig. 2.3 for an illustration of its
structure.

We conclude our discussion of Fourier analysis by presenting some specific two-
dimensional transform pairs. Table 2.1 lists a number of transforms of functions sep-
arable in rectangular coordinates. For the convenience of the reader, the functions are
presented with arbitrary scaling constants. Since the transforms of such functions can
be found directly from products of familiar one-dimensional transforms, the proofs of
these relations are |eft to the reader (cf. Prob. 2-2).

On the other hand, with afew exceptions (e.g. exp[—m(x2 + y%)], which is both
separable in rectangular coordinates and circularly symmetric), transforms of most
circularly symmetric functions cannot be found simply from a knowledge of one-
dimensional transforms. The most frequently encountered function with circular sym-
metry is:

1 r<li
circ(r) = % r=1
0 otherwise
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Accordingly, someeffort is now devoted to finding the transform of thisfunction. Using

the Fourier-Bessel transform expression (2-31), the transform of the circlefunction can
be written

1
Bicirc(r)} = 2'7TJ' rdoQmrp)dr.
0
Using achange of variables r' = 27rp and the identity
| enra = xneo

we rewrite the transform as

J12mp)

27
B{circ(r)} = J' pr’Jo(r’) dr' = (2-35)

2mp? Jo
where J; isaBessel function of the first kind, order 1. Figure 2.3 illustrates thecircle
function anditstransform. Notethat thetransform iscircularly symmetric, as expected,
and consists of acentral lobeand aseriesof concentric rings of diminishingamplitude.
Itsvalue at theoriginis o. Asamatter of curiosity we note that the zeros of thistrans-
form arenot equally spaced inradius. A convenient normalized version of thisfunction,
with value unity at theorigin, is 24272 This particular function iscalled the™ besinc”
function, or the “jinc” function.

For a number of additional Fourier-Bessel transform pairs, the reader isreferred to
the problems (see Prob. 2-6).

22
LOCAL SPATIAL FREQUENCY
AND SPACE-FREQUENCY LOCALIZATION

Each Fourier component of afunction isacomplex exponential of a unique spatial fre-
guency. As such, every frequency component extends over the entire (x, y) domain.
Therefore it is not possible to associate a spatial location with a particular spatial fre-
quency. Nonetheless, we know that in practice certain portions of an image could con-
tain parallel grid lines at a certain fixed spacing, and we are tempted to say that the
particular frequency or frequencies represented by these grid lines are localized to cer-
tain spatial regions of the image. In this section we introduce the idea of local spatial
frequencies and their relation to Fourier components.

For the purpose of this discussion, we consider the general case of complex-valued
functions, which we will later see represent the amplitude and phase distributions of
monochromatic optical waves. For now, they arejust complex functions. Any suchfunc-
tion can be represented in the form

g(x, y) = alx, y)expljod(x, y)] (2-36)

where a(x, y) is a real and nonnegative amplitude distribution, while ¢(x, y) is a real
phasedistribution. For thisdiscussion we assumethat theamplitudedistribution a(x, y)
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isaslowly varying function of (X, y), so that we can concentrate on the behavior of the
phase function ¢(x, y).

Wedefinethelocal spatialfrequency of thefunction g asafrequency pair ( fix, fir)
given by

_ 1 d 190
fix = Eﬂcb(x’ »  fir = gﬁ—qu(X, ») (2-37)
In addition, both f;x and f;y aredefinedto be zero in regions where thefunction g(x, y)
vanishes.
Consider theresult of applying these definitions to the particular complex function

g(x, y) = explj2a(fxx + fry)l

representing a simple linear-phase exponential of frequencies (fx, fy). Weobtain

1 1
fix = gmgRme s o) = fx i = 5o Raxt )] =

Thus we see that for the case of a single Fourier component, the local frequencies do
indeed reduce to the frequencies of that component, and those frequencies are constant
over theentire (x, y) plane.

Next consider a space-limited version of a quadratic-phase exponential function:
which we call a" finitechirp' function,’

y
g(x,y) = expljmB(x* + y*)] rect(2—z;> fe“(m)' (2-38)

Performing thedifferentiations called for by thedefinitionsof local frequencies, wefind
that they can be expressed as

X

Jix = Bx rect(2 Lx) fiv = By rect(%;). (2-39)

We see that in this case the local spatial frequencies do depend on location in the
(X, y) plane; within arectangle of dimensions 2Ly X 2Ly, fix varies linearly with the
x-coordinate while f;y varies linearly with they-coordinate. Thusfor thisfunction (and
for moést others) there isadependence of local spatial frequency on position in the(x, y)
plane.

Sincethelocal spatial frequencies are bounded to covering a rectangle of dimen-
sions2Ly X 2Ly, it would be tempting to conclude that the Fourier spectrum of g(x, y)
isalso limited to the same rectangular region. In fact thisis approximately true, but not
exactly so. The Fourier transform of this function is given by the expression

4For atutorial discussion of theimportanceof quadr atic-phasefunctionsin variousfieldsof optics, see [229].
>The name" chirp function” , without thefinite length qualifier, will be used for theinfinite-lengthquadratic
phaseexponential,exp[ jmB (x* + y?)].

$From the definition (2-37) thedimensionsof fix and fiy areboth cyclesper meter; in spite of what might
appear to beacontrary implicationof Eq. (2-39). Thedimensionsof 8 are meters™2.
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G(fo fy) = j . f B ImBGR) = 2 et o) g dy.
—Lx J-Ly
This expression is separable in rectangular coordinates, so it suffices to find the one-
dimensional spectrum
Ly
eI TBX? pi2mfyx gy
X

Gx(fo = |

Completing the squarein the exponent and making a change of variables of integration
fromxtot = /2B (x — %)yields

_ L g (PR o
Gx(fx) \/ﬁe J_W(LN%)exp 5 dt.

This integral can be expressed in terms of tabulated functions, the Fresnel integrals,
which are defined by

z 2 z 2
C(2) = f cos(ﬂ)dz S@z) = f sin<ﬂ)dt. (2-40)
0 2 0 2

The spectrum Gx can then be expressed as

Y

Gx(h) = {C[\/Z_B(LX - &)] _ C[ (-t _@)]

+jS[Jﬁ(LX - %)] - jS[Jz_B(—LX - %)]}

The expression for Gy is of course identical, except the Y subscript replaces the X
subscript. Figure 2.4 showsa plot of |Gx(fx)| vs. fx for the particular caseof Ly = 10
and B8 = 1. Ascan be seen, the spectrum is almost flat over the region (= Ly, Lx) and

Gty
1.2

|

0.8
0.6
0.4]

0.2
J \\ FIGURE 24

15 10 5 5 10 15 The spectrum of the finite chirp function,
fx Ly=108=1.
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almost zero outside that region. We conclude that local spatial frequency has provided
agood (but not exact) indication of wherethe significant values of the Fourier spectrum
will occur. However, local spatial frequencies are not the same entity as the frequency
components of the Fourier spectrum. Examples can befound for which thelocal spatial
frequency distribution and theFourier spectrumarenotin asgood agreement asfoundin
theaboveexample. Good agreement can be expected only when thevariations of ¢(x, y)
are sufficiently ""dow" in the (x, y) plane to allow ¢(x, y) to be well approximated by
only three terms of its Taylor series expansion about any point (X, y), i.e. a constant
term and two first-partial-derivative terms.

Local spatial frequencies are of specia physical significance in optics. When the
local spatial frequencies of the complex amplitude of a coherent optical wavefront are
found, they correspond to the ray directions of thegeometrical opticsdescription of that
wavefront. However, we are getting ahead of ourselves; we will return to thisideain
later chaptersand particularly in Appendix B.

23
LINEAR SYSTEMS

For the purposes of discussion here, we seek to define the word system in a way suf-
ficiently general to include both the familiar case of electrical networks and the less-
familiar case of optical imaging systems. Accordingly, a system isdefined to be a map-
ping of a set of input functions into a set of output functions. For the case of electrical
networks, the inputs and outputs are real-valued functions (voltages or currents) of a
one-dimensional independent variable (time); for the case of imaging systems, the in-
puts and outputs can be real-valued functions (intensity) or complex-valued functions
(fieldamplitude) of atwo-dimensional independent variable (space). Asmentioned pre-
viously, the question of whether intensity or field amplitude should be considered the
relevant quantity will be treated at alater time.

If attention isrestricted to deterministic (nonrandom) systems, then a specified in-
put must map to a unique output. It is not necessary, however, that each output corre-
spond to a unique input, for as we shall see, avariety of input functionscan produceno
output. Thus we restrict attention at the outset to systems characterized by many-to-one
mappings.

A convenient representation of a system isa mathematical operator, S{}, which we
imagine to operate on input functions to produce output functions. Thus if thefunction
g1(x1, y1) represents the input to a system, and g, (x», y») represents the corresponding
output, then by the definition of S{}, the two functionsare related through

82(x2, y2) = S{g1(x1, yDk (2-41)

Without specifying more detailed properties of the operator S{}, it is difficult to state
more specific properties of the general system than those expressed by Eq. (2-41). In
the material that follows, we shall be concerned primarily, though not exclusively, with
arestricted class of systems that are said to be lineal: The assumption of linearity will
befound to yield simple and physically meaningful representations of such systems; it
will aso alow useful relations between inputs and outputs to be devel oped.
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2.3.1 Linearity and the Superpostion Integral

A system is said to be linear if the following superposition property is obeyed for all
input functions p and ¢ and all complex constants aand b:

Slap(xy, y1) + bg(x1, y1)} = aS{p(x1, y1)} + bS{g(x1, y1)} (2-42)

As mentioned previously, the great advantage afforded by linearity is the ability
to express the response of a system to an arbitrary input in terms of the responses to
certain " elementary”* functions into which the input has been decomposed. It is most
important, then, to find a simple and convenient means of decomposing the input. Such
adecomposition isoffered by the so-called sifting property of thed function (cf. Section
1 of Appendix A), which states that

gi(xy, y1) = U g€ nd(x — &y —mdédn. (2-43)

This equation may be regarded as expressing g, as a linear combination of weighted
and displaced 6 functions; the elementary functionsof thedecomposition are, of course,
just these 6 functions.

To find the response of the system to theinput g;, substitute (2-43) in (2-41):

92002, y2) = S f J 1€, m)8(xs — £,y — mdEdn . (2-44)

Now, regarding the number g(¢, 1) as simply a weighting factor applied to the ele-
mentary function 6(x; — &, y; — n), the linearity property (2-42) isinvoked to allow
S{} to operate on theindividual elementary functions; thus the operator S{ } is brought
within theintegral, yielding

[s2]

g2(x2, y2) = j j g1(&, ) SI8(x1 — € 1 — M)} dé d. (2-45)

—co

Asafinal step we let the symbol A(x;, y;; €, 1) denote the response of the system at
point (x2, y2) of the output space to a6 function input at coordinates (£, n) of theinput
space; that is,

h(x2, y2;6,m) = S{6(x1 — &, 1 — M} (2-46)

The function h is called the impulse response (or in optics, the point-spreadfunction)
of the system. The system input and output can now be related by the simple equation

[+2]

02(x2, y2) = f f 21(€, ) h(x2, y3€, m) dé dn. (2-47)

—0

This fundamental expression, known as the superposition integral, demonstrates
thevery important fact that alinear system iscompletely characterized by its responses
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to unit impulses. To completely specify the output, the responses must in general be
known for impulses located at all possible points in the input plane. For the case of
alinear imaging system, this result has the interesting physical interpretation that the
effects of imaging elements (lenses, stops, etc.) can be fully described by specifying
the (possibly complex-valued) images of point sources located throughout the object
field.

232 Invariant Linear Systems. Transfer Functions

Having examined theinput-output relations for a general linear system, we turn now to
an important subclass of linear systems, namely invariant linear systems. An electrical

network issaid to betime-invariant if itsimpul se response a(t; 7) (that is, itsresponse at
timet toaunitimpul se excitation applied at time r) depends only on the time difference
(t — 7). Electrical networks composed of fixed resistors, capacitors, and inductors are
time-invariant since their characteristics do not change with time.

In a similar fashion, a linear imaging system is space-invariant (or equivalently,
isoplanatic) if itsimpul seresponse A(x3, y»; &, 1) depends only on thedistances (x; —§)
and (y; — m) (i.e. thex and y distances between the excitation point and the response
point). For such a system we can, of course, write

h(x2, ¥2:5,m) = h(xz — £, y2 — Q). (2-48)

Thusan imaging system is space-invariant if theimage of a point source object changes
only in location, not in functional form, as the point source explores the object field. In
practice, imaging systems are seldom isoplanatic over their entire object field, but it
is usually possible to divide that field into small regions (isoplanatic patches), within
which the system is approximately invariant. To completely describe theimaging sys-
tem, the impulse response appropriate for each isoplanatic patch should be specified;
but if the particular portion of the object field of interest is sufficiently small, it often
suffices to consider only the isoplanatic patch on the optical axis of the system. Note
that for an invariant system the superposition integral (2-47) takes on the particularly
simpleform

g2(x2, y2) = j j & Y h(xs — £ y2 — mydEdn (2-49)

which we recognize as a two-dimensional convolution of the object function with the
impulse response of the system. In the future it will be convenient to have a short-
hand notation for a convolution relation such as (2-49), and accordingly this equation
iswritten symbolically as

82 =81®h

where a @ symbol between any two functions indicates that those functions are to be
convolved.

Theclassof invariant linear systems hasassociated withit afar moredetail ed math-
ematical structure than the more general class of all linear systems, and it is precisely
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becauseof thisstructurethat invariant systemsaresoeasily dealt with. Thesimplicity of
invariant systems begins to beevident when we notethat theconvolution relation (2-49)
takesa particularly simpleform after Fourier transformation. Specifically, transforming
both sides of (2-49) and invoking the convolution theorem, the spectra G»(fx, fy) and
G1(fx, fr) of the system output and input are seen to be related by the simple equation

G2(er fY) = H(er fY) Gl(fX! fY)s (2'50)
where H is the Fourier transform of the impulse response

oo

H(fx, fy) = j j h(E, 1) expl— j2m( fx€ + fym)]dé dn. (2-51)

—0o0

Thefunction H, called the transfer function of the system, indicates the effects of the
system in the " frequency domain™. Note that the relatively tedious convolution opera-
tion of (2-49) required to find the system output is replaced in (2-50) by the often more
simple sequence of Fourier transformation, multiplication of transforms, and inverse
Fourier transformation.

From another point of view, we may regard the relations (2-50) and (2-51) asindi-
cating that, for a linear invariant system, theinput can be decomposed into elementary
functionsthat are more convenient than the § functions of Eq. (2-43). These alternative
elementary functions are, of course, the complex-exponential functions of the Fourier
integral representation. By transforming g, we are simply decomposing the input into
complex-exponential functions of various spatial frequencies (fx, fr). Multiplication
of the input spectrum G, by the transfer function H then takes into account the effects
of the system on each elementary function. Note that these effects are limited to an
amplitude change and a phase shift, as evidenced by the fact that we simply multiply
the input spectrum by acomplex number H( fx, fy) at each (fx, fr). Inverse transfor-
mation of the output spectrum G, synthesizes the output g, by adding up the modified
elementary functions.

The mathematical term eigenfunction isused for afunction that retainsitsorigina
form (up to a multiplicative complex constant) after passage through a system. Thus
we see that the complex-exponential functions are the eigenfunctions d lineal; invari-
ant systems. The weighting applied by the system to an eigenfunction input is called
the eigenvalue corresponding to that input. Hence the transfer function describes the
continuum of eigenvalues of the system.

Finally, it should be strongly emphasized that the simplifications afforded by
transfer-function theory are only applicable for invariant linear systems. For applica-
tions of Fourier theory in the analysis of time-varying electrical networks, the reader
may consult Ref. [158]; applications of Fourier analysis to space-variant imaging
systems can befound in Ref. [199].

24
TWO-DIMENSIONAL SAMPLING THEORY

It is often convenient, both for data processing and for mathematical analysis pur-
poses, to represent a function g(x, y) by an array of its sampled values taken on a
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discrete set of points in the (x, y) plane. Intuitively, it is clear that if these samples
are taken sufficiently close to each other, the sampled data are an accurate representa-
tion of the original function, in the sense that g can be reconstructed with considerable
accuracy by simple interpolation. It is a less obvious fact that for a particular class of
functions (known as bandlimitedfunctions) the reconstruction can be accomplished ex-
actly, provided only that theinterval between samplesisnot greater than acertain limit.
Thisresult was originally pointed out by Whittaker [298] and was later popularized by
Shannon [259] in his studies of information theory.

The sampling theorem appliesto the class of bandlimited functions, by which we
mean functions with Fourier transforms that are nonzero over only a finite region R
of the frequency space. We consider first aform of this theorem that is directly analo-
gous to the one-dimensional theorem used by Shannon. Later we very briefly indicate
improvements of the theorem that can be made in some two-dimensional cases.

24.1 The Whittaker-Shannon Sampling Theorem

To derive what is perhaps the simplest version of the sampling theorem, we consider a
rectangular lattice of samples of thefunction g, as defined by

g(xy) = comb(%) comb(%) g(x,y). (2-52)

The sampled function g; thus consistsof an array of & functions, spaced at intervals of
width X in theX direction and width Y in they direction, asillustrated in Fig. 2.5. The
areaunder each 8 function is proportional to the valueof thefunction g at that particular
point in the rectangular sampling lattice. Asimplied by the convolution theorem, the
spectrum G; of g, can befound by convolving the transform of comb(x/X) comb(y/Y)
with the transform of g, or

Gi(fx, fr) = 5’-‘{ comb(%) comb(%)} ® G(fx, fr)

7_
FIGURE 25
The sampled function.
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FIGURE 2.6a
Spectrum of the original function.

where the ® again indicates that a two-dimensional convolution is to be performed.
Now using Table 2.1 we have

F { comb(%) comb(% >} = XY comb(X fx) comb(Y fy)

while from the results of Prob. 2-1b,

XY comb(X f)comb(Yfy) = > > 8 (fx ~ 2 fr - %)

n=—00om=—00
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(b)

FIGURE 2.6b
Spectrum of the sampled data (only three periods
are shown in each direction for this infinitely

periodic function).
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It follows that

G(fo fr) = >, > G(fx - fr - %) (2-53)

n——oom=—0

Evidently the spectrum of gs can befound simply by erecting the spectrum of g about
each point (n/X, m/Y) in the (fx, fy) plane as shown in Fig. 2.6b.

Since thefunction g isassumed to be bandlimited, its spectrum G is nonzero over
only afiniteregion R of thefrequency space. Asimplied by Eq. (2-53), theregion over
which the spectrum of the sampled function is nonzero can be found by constructing
theregion R about each point (n/X, m/Y) in thefrequency plane. Now it becomesclear
that if X and Y are sufficiently small (i.e. the samples are sufficiently close together),
then the separations 1/X and 1/Y of the various spectral islands will be great enough
to assure that the adjacent regions do not overlap (see Fig. 2.6b). Thus the recovery of
the original spectrum G from G can be accomplished exactly by passing the sampled
function g through a linear invariant filter that transmits the term (n = 0, m = 0) of
Eq. (2-53) without distortion, while perfectly excluding all other terms. Thus, at the
output of thisfilter wefind an exact replicaof theoriginal data g(x, y).

As stated in the above discussion, to successfully recover the original data it is
necessary to take samples close enough together to enable separation of the various
spectral regions of G;. To determine the maximum allowable separation between sam-
ples, let 2Bx and 2By represent the widthsin the fx and fy directions, respectively, of
the smallest rectangle’ that completely encloses the region R. Since the various terms
in the spectrum (2-53) of the sampled data are separated by distances 1/X and 1/Y in
the fx and fy directions, respectively, separation of the spectral regionsis assured if

1 1
X | 3By and Y1 5 (2-54)
The maximum spacings of the sampling latticefor exact recovery of theoriginal func-
tion arethus (2Bx)~! and (2By)!.

Having determined the maximum allowable distances between samples, it remains
to specify the exact transfer function of the filter through which the data should be
passed. In many cases there is considerable latitude of choice here, since for many
possible shapesof theregion R therearea multitude of transfer functionsthat will pass
the(n = 0, m = 0) term of G, and exclude all other terms. For our purposes, however,
it suffices to note that if the relations (2-54) are satisfied, thereisone transfer function
that will always yield thedesired result regardless of the shape of R, namely

= rect 2%\ rect{ L1 i
H(fx, fy) = rect(ZBX ) rec 3B, ) (2-55)
The exact recovery of G from G; is seen by noting that the spectrum of the output of
such afilter is

'For simplicity we assumethat thisrectangleis centered on theorigin. If thisisnot the case, the arguments
can be modified in a graightforward manner to yield a somewhat moreefficient sampling theorem.



26 Introduction to Fourier Optics

G, (fx fy) reCt(ZB )reCt(sz}/ ) G(fx, fy)

The equivalent identity in the space domainis

[comb(%) comb(%) g(x, y)] ® h(x, y) = g(x, ) (2-56)
where h is theimpulse response of thefilter,
_ fx fr\|l ‘ .
h(x,y) = { rect(2 By ) rect(2 By )] = 4Bx By sinc(2Bx x) sinc(2ByYy).

Noting that

comb(X>comb( )g(x y) = XY Z Z g(nX, mY)d(x — nX,y — mY),

n=—0om=—00

Eq. (2-56) becomes

g(x,y) = 4BxByXY > > g(nX, mY)sinc[2Bx(x — nX)]sinc[2By(y — mY)].

n=—oom=—m

Finally, when the sampling intervals X and Y are taken to have their maximum allow-
able values, the identity becomes

g(x,y) = }: Z g(@; E)SIHCPBX (x - 2Zx )] S‘“C{ZBY< B 2’1731 )]

- (2-57)

Equation (2-57) represents a fundamental result which we shall refer to as the
Whittaker-Shannon sampling theorem, It implies that exact recovery of a bandlimited
function can be achieved from an appropriately spaced rectangular array of its sampled
values; therecovery isaccomplished by injecting, at each sampling point, an interpola-
tion function consistingof a product of sinc functions, whereeach interpolation function
is weighted according to the sampled value of g at the corresponding point.

The above result is by no means the only possible sampling theorem. Two rather
arbitrary choices were made in the analysis, and alternative choices at these two points
will yield alternative sampling theorems. The first arbitrary choice, appearing early
in the analysis, was the use of a rectangular sampling lattice. The second, somewhat
later in the analysis, was the choice of the particular filter transfer function (2-55).
Alternative theorems derived by making different choices at thesetwo pointsareno less
valid than Eq. (2-57); in fact, in some cases alternative theorems are more ™ efficient™ in
the sense that fewer samples per unit areaare required to assure complete recovery. The
reader interested in pursuing this extra richness of multidimensional sampling theory
is referred to the works of Bracewell [31] and of Peterson and Middleton [230]. A
more modern treatment of multidimensional sampling theory isfound in Dudgeon and
Mersereau [85].
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2.4.2 Space-Bandwidth Product

Itispossible to show that no function that is bandlimited can be perfectly space-limited
aswell. That is, if the spectrum G of a function g is nonzero over only a limited re-
gion R in the (fx, fr) plane, then it is not possible for g to be nonzero over only a
finiteregion in the (x, y) plane simultaneously. Nonetheless, in practice most functions
do eventually fall to very small values, and therefore from a practical point-of-view
it is usually possible to say that g has significant values only in some finite region.
Exceptions are functions that do not have Fourier transforms in the usua sense, and
have to be dealt with in terms of generalized Fourier transforms (e.g. g(x,y) = 1,
8(x, y) = cos[2m(fxx + fry)], etc.).

If g(x,y) isbandlimited and indeed has significant value over only afinite region
of the(x, y) plane, thenitispossibletorepresent g with good accuracy by a finite number
of samples. If g isof significant valueonly intheregion —Ly = x <Ly, - Ly =y <
Ly, and if g issampled, in accord with the sampling theorem, on a rectangular lattice
with spacings (2Bx)~}, (2By)~! in the x and y directions, respectively, then the total
number of significant samples required to represent g(x, y) is seen to be

M = 16LxLyByxBy, (2-58)

which we call the space-bandwidth product of the function g. The space-bandwidth
product can be regarded as the number of degrees of freedom of the given function.

The concept of space-bandwidth product is also useful for many functions that
are not strictly bandlimited. If the function is approximately space-limited and ap-
proximately bandlimited, then arectangle (size 2Bx X 2By) within which most of the
spectrum is contained can be defined in the frequency domain, and a rectangle (size
2Ly X 2Ly) within which most of the function iscontained can be defined in the space
domain. The space-bandwidth product of the function is then approximately given by
Eq. (2-58).

The space-bandwidth product of a function is a measure of its complexity. The
ability of an optical system to accurately handle inputs and outputs having large space-
bandwidth products is a measure of performance, and isdirectly related to the quality
of the system.

PROBLEMS-CHAPTER 2
2-1. Provethefollowing propertiesof & functions:

(a) 8(ax, by) = ra'—b[S(x, y).

(b) comb(ax)comb(by) = oy i i Slx-2y-m)

n=—wom=—w

2-2. Provethefollowing Fourier transform relations:

(&) Flrect(x)rect(y)} = sinc(fx) sinc(fy).
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2-3.

2-5.

2-6.

Introduction to Fourier Optics

(b) FA®AW} = sinc®(fx) Sinc™(fy).

Prove thefollowing generalized Fourier transform relations:

() F{1} = 8(fx, fr)-

@ Flsgnx)sen} = (727 ) (75 )

Provethefollowing Fourier transform theorems:

(@ FFgxy) = F'F Ye(x,y)) = 9(—x, —y) a all pointsdf continuity of g.
(b) Fg(x, y) h(x, y)} = F{g(x, y)} ® F{h(x, y)}.

(©) F{Ve(xy)) = —4m2(f2 T f2)F{g(x, y)) whereV? is the Laplacian operator

9* 9*

vV = + —.
Ixt  Iy?

Let thetransform operators Fa{ } and F5{} be defined by

#alg) = 1 || o€ mexe| 22t + sym)| dean
Flgt = 3 [ st€.meso] 5 g + ym| agan

(8) Find asimpleinterpretation for
Fp{Falg(x, ni

(b) Interpret theresultfora> banda < b.

The"equivalent area’” Axy of afunction g(x, y) can be defined by

I gz y)drdy

A — "°°—,
XY 2(0,0)

whilethe equivalent bandwidth™" Ay, 5, of g isdefinedin termsdf itstransform G by
H G(fx, fr)dfxdfy
Afxfy = G(0,0)
Showthat  Axy Ay, g, = 1.

Provethefollowing Fourier-Bessel transform relations:

(@) If gr(r) = 8(r — rp), then
B{gr()} = 2mroJo(2mrop).
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2-9.

2-10.

2-11.
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(b) If gr(r) = 1fora= r = 1and zero otherwise, then
Blgr(r)} — Ji27p) — Fi1J1(27rap)

(©) 1 Blgr(r)} = G(p), then
1 .(p
Blgg(ar)} = a—zG(z)-

(d) Bfexp(—mr?)} = exp(—rrp?).
Let g(r, 8) be separablein polar coordinates.

(@) Show that if g(r, 8) = gr(r)e/™, then
Flg(r, 00} = (= j) e’ Hulgr(n)}
where H,,{} is the Hankel transform of order m,

Holgr() = 2 L ror(r) Im2mrp)dr

and (p,¢) are polar coordinates in the frequency space. (Hint: exp(jasinx) =
> Ji(a)exp(jkx))

= —00

(b) With the help of part (&), prove the general relation presented in Eq. (2-22) for func-
tions separable in polar coordinates.

. Suppose that a sinusoidal input

g(x, y) = cos[2m(fxx + fry))

is applied to a linear system. Under what (sufficient) conditions is the output a rea si-
nusoidal function of the same spatial frequency as the input? Express the amplitude and
phase of that output in terms of an appropriate characteristic of the system.

Show that the zero-order Bessel function Jo(27p,r) is an eigenfunction of any invariant
linear system with a circularly symmetric impulse response. What is the corresponding
eigenvalue?

TheFourier transform operator may beregarded asamapping of functions into their trans-
forms and therefore satisfies the definition of a system as presented in this chapter.

(a) Isthissystemlinear?
(b) Can you specify atransfer function for this system? If yes, what isit?1f no, why not?

The expression
pxy) = gxy)® [comb(%) comb(% )]

defines a periodic function, with period X in thex direction and period Y in they direction.



30 Introduction to Fourier Optics

(8) Show that the Fourier transform of p can be written

Pfuf = > > G(%%)S(fx— %= f;-)

where G is the Fourier transform of g.
(b) Sketch the function p(x, y) when
y
glx,y) = rect( X)rect(z Y)
and find the corresponding Fourier transform P(fx, fy).

2-12. Show that afunction with no nonzero spectral components outside acircle of radiusB in
the frequency plane obeys the following sampling theorem:

A 2773\/ - ﬁ)z
g(x, y) = "ZW_Z_ (23 2B>ﬂ 2[ B\/x—LB %l ]

2-13. The input to a certain imaging System is an object complex field distribution U,(x, y)
of unlimited spatial frequency content, while the output of the system is an image field
distribution U;(x, y). The imaging system can be assumed to act as a linear, invariant
lowpass filter with atransfer function that isidentically zero outside theregion|fx| = Bx,
| fr] = By inthefrequency domain. Show that thereexistsan " equivalent™ object Uj(x, y)
consisting of arectangular array of point sources that produces exactly the sameimage U;
asdoesthetrue object U,, and that the field distribution across the equivalent object can
bewritten

Ueyn=> S j j U, (€, 1) sinc(n — 2Bxg) sinc(m — 2Byn) dg d

n=—wm=-—w

Xo|x— il
* 2B YT 3By )
2-14. The Wigner distributionfunction of a one-dimensional function g(x) isdefined by

W) = [ g6+ xi2)g€ - xiexp(- j2m 6 d

and is a description of the simultaneous (one-dimensional) space and spatial-frequency
occupancy of asignal.

(8 Find the Wigner distribution function of theinfinite-length chirpfunction by inserting
g(x) = exp(jmBx?) inthe definition of W(f , x).

(b) Show that the Wigner distribution function for the one-dimensional finite chirp

2
g(x) = exp(jwBX )reCt(ZL)
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isgiven by
W(f, x) = QL — |x])sinc{ 2L — |x]) (Bx - )]

for |x| < 2L and zero otherwise.

(c) If you haveaccessto acomputer and appropriatesoftware, plot the Wigner distribution
function of the finite-length chirp for L = 10 and 8 = 1, with x ranging from —10
to 10 andf ranging from —10to 10. To make the nature of thisfunction clearer, also
plot W(0, x) for |x| = 1.
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Foundations of Scalar Diffraction Theory
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The phenomenon known as diffraction plays a role of utmost importance in the
branches of physics and engineering that deal with wave propagation. In this chap-
ter we consider some of the foundations of scalar diffraction theory. While the theory
discussed here is sufficiently general to be applied in other fields, such as acoustic-
wave and radio-wave propagation, the applications of primary concern will bein the
realm of physical optics. To fully understand the properties of optical imaging and
data processing systems, it is essential that diffraction and the limitations it imposes
on system performance be appreciated. A variety of referencesto more comprehensive
treatments of diffraction theory will befound in the material that follows.

31
HISTORICAL INTRODUCTION

Before beginning a discussion of diffraction, it is first necessary to mention another
phenomenon with which diffraction should not be confused —namely refraction. Re-
fraction can be defined as the bending of light rays that takes place when they pass
through a region in which thereis agradient of thelocal velocity of propagation of the
wave. The most common exampleoccurs when alight wave encounters a sharp bound-
ary between two regions having different refractive indices. The propagation velocity in
thefirst medium, having refractive index n;, isv; = ¢/ny, ¢ being the vacuum velocity
of light. The velocity of propagation in the second mediumiswv, = c/n,.

Asshown in Fig. 3.1, theincident light rays are bent at the interface. The anglesof
incidence and refraction are related by Srnell’s law, which is the foundation of geomet-
rical optics,

nlsin01 = nzsin02, (3'1)

wherein this example, n, > n; and therefore 6, < 8;.
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o1 FIGURE 3.1
Snell's law & a sharp boundary.

Light rays are also bent upon reflection, which can occur at a metallic or dielectric
interface. The fundamental relation governing this phenomenon is that the angle of
reflection is always equal to theangle of incidence.

The term diffraction has been defined by Sommerfeld (Ref. [2707) as "any de-
viation of light rays from rectilinear paths which cannot be interpreted as reflection or
refraction.” Diffraction iscaused by theconfinement of thelateral extent of awave, and
is most appreciable when that confinement is to sizes comparable with a wavelength of
theradiation being used. The diffraction phenomenon should also not be confused with
thepenumbra effect, for which the finite extent of a source causes the light transmitted
by a small aperture to spread as it propagates away from that aperture (see Fig. 3.2).
As can be seen in the figure, the penumbra effect does not involve any bending of the
light rays.

There is a fascinating history associated with the discovery and explanation of
diffraction effects. The first accurate report and description of such a phenomenon
was made by Grimaldi and was published in the year 1665, shortly after his death.
The measurements reported were made with an experimental apparatus similar to that
shown in Fig. 3.3. An aperture in an opaque screen was illuminated by a light source,
chosen small enough to introduce a negligible penumbra effect; the light intensity
was observed across a plane some distance behind the screen. The corpuscular theory
of light propagation, which was the accepted means of explaining optical phenomena
at the time, predicted that the shadow behind the screen should be well defined, with
sharp borders. Grimaldi's observations indicated, however, that the transition from
light to shadow was gradual rather than abrupt. If the spectral purity of thelight source
had been better, he might have observed even more striking results, such as the pres-
enceof light and dark fringes extending far into the geometrical shadow of the screen.
Such effects cannot be explained by a corpuscular theory of light, which requires rec-
tilinear propagation of light raysin the absence of reflection and refraction.

The initial step in the evolution of a theory that would explain such effects was
made by thefirst proponent of the wave theory of light, Christian Huygens, in the year

Screen with
pinhole

Extended
source

FIGURE 3.2

Penumbra
The penumbra effect.
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FIGURE 33
Arrangement used for observing
Z diffraction of light.

1678. Huygens expressed the intuitive conviction that if each point on the wavefront
of a disturbance were considered to be a new source of a " secondary" spherical dis-
turbance, then the wavefront at a later instant could be found by constructing the
“envelope” of the secondary wavelets, as illustrated in Fig. 3.4.

Progress on further understanding diffraction was impeded throughout the entire
18th century by thefact that |saac Newton, a scientist with an enormous reputation for
his many contributions to physicsin general and to opticsin particular, favored the cor-
puscular theory of light asearly as 1704. Hisfollowers supported this view adamantly.
It was not until 1804 that further significant progress occurred. In that year, Thomas
Y oung, an English physician, strengthened the wave theory of light by introducing the
critical concept of interference. Theideawasaradical one at thetime, for it stated that
under proper conditions, light could be added to light and produce darkness.

The ideas of Huygens and Young were brought together in 1818 in the famous
memoir of Augustin Jean Fresnel. By making some rather arbitrary assumptions about
the amplitudes and phases of Huygens' secondary sources, and by allowing the various
wavelets to mutually interfere, Fresnel wasable to calculate the distribution of lightin
diffraction patterns with excellent accuracy.

At Fresnel's presentation of his paper to a prize committee of the French Academy
of Sciences, his theory was strongly disputed by the great French mathematician
S. Poisson, a member of the committee. He demonstrated the absurdity of the theory

wavelets

\ "~ Envelope

(new wavefront)

Primary

wavefront ™.

FIGURE 34
Huygens envel ope construction.
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by showing that it predicted the existence of a bright spot at the center of the shadow
of an opague disk. F. Arago, who chaired the prize committee, performed such an ex-
periment and found the predicted spot. Fresnel won the prize, and since then the effect
has been known as " Poisson's spot™.

In 1860 Maxwell identified light as an electromagnetic wave, a step of enormous
importance. But it was not until 1882 that the ideas of Huygens and Fresnel were put
on a firmer mathematical foundation by Gustav Kirchhoff, who succeeded in show-
ing that the amplitudes and phases ascribed to the secondary sources by Fresnel were
indeed logical consequences of the wave nature of light. Kirchhoff based his mathe-
matical formulation upon two assumptions about the boundary values of the light in-
cident on the surface of an obstacle placed in the way of propagation of light. These
assumptions were later proved to be inconsistent with each other, by Poincaré in 1892
and by Sommerfeld in 1894." As a consequence of these criticisms, Kirchhoff's for-
mulation of the so-called Huygens-Fresnel principle must be regarded as a first ap-
proximation, although under most conditions it yields results that agree amazingly well
with experiment. Kottler [174] attempted to resolve the contradictions by reinterpret-
ing Kirchhoff's boundary value problem as a saltus problem, where salrus is a Latin
word signifying a discontinuity or jump. The Kirchhoff theory was also modified by
Sommerfeld, who eliminated one of the aforementioned assumptions concerning the
light amplitude at the boundary by making use of the theory of Green's functions. This
so-called Rayleigh-Sommerfeld diffraction theory will be treated in Section 3.5.

It should be emphasized from the start that the Kirchhoff and Rayleigh-Sommer-
feld theories share certain major simplifications and approximations. Most important,
light is treated as a scalar phenomenon, neglecting the fundamentally vectorial na-
ture of the electromagnetic fields. Such an approach neglects the fact that, at bound-
aries, the various components of the electric and magnetic fields are coupled through
Maxwell's equations and cannot be treated independently. Fortunately, experimentsin
the microwave region of the spectrum [262] have shown that the scalar theory yields
very accurate results if two conditions are met: (1) the diffracting aperture must be
large compared with a wavelength, and (2) the diffracting fields must not be observed
too close to the aperture. These conditions will be well satisfied in the problems treated
here. For a more complete discussion of the applicability of scalar theory in instrumen-
tal optics the reader may consult Ref. [28] (Section 8.4). Nonetheless, there do exist
important problems for which the required conditions are not satisfied, for example in
the theory of diffraction from high-resolution gratings and from extremely small pits
on optical recording media. Such problems are excluded from consideration here, since
the vectorial nature of the fields must be taken into account if reasonably accurate re-
sultsareto be obtained. Vectorial generalizationsof diffraction theory do exist, thefirst
satisfactory treatment being due to Kottler [172].

The first truly rigorous solution of a diffraction problem was given in 1896 by
Sommerfeld [268], who treated the two-dimensional case of a plane wave incident on
an infinitesimally thin, perfectly conducting half plane. Kottler [173] later compared
Sommerfeld’s solution with the corresponding results of Kirchhoff's scalar treatment.

'For amoredetailed discussion of these inconsistencies, see Section 3.5.
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Needless to say, an historic introduction to a subject so widely mentioned in the
literature can hardly be considered complete. The reader is therefore referred to more
comprehensivetreatmentsof diffraction theory, for exampleRefs. [13], [29], and [145].

32
FROM A VECTOR TO A SCALAR THEORY

The most fundamental beginningfor our analysisisMaxwell's equations. In MK S units
and in the absence of free charge, the equations are given by

IH
X e J—
VxE “or
o€
XH = e— 3-2
VXH = €, (3-2)
V-e£=0
V-pji=0.

Here € istheelectric field, with rectilinear components (£x, £y, £z), and H is the mag-
neticfield, with components(Hx, Hy, Hz). p and e are the permeability and permittiv-
ity, respectively, of the medium in which thewaveis propagating. £ and # arefunctions
of both position Pand timet. The symbols X and represent a vector Cross product and
avector dot product, respectively, whileV = £i (t ;"v 7t 2 k wherei, jand k are unit
vectorsin thex, y, and z directions, roﬁpectlvely

We assume that the wave is propagating in a dielectric medium. It is important to
further specify some properties of that medium. The mediumislinear if it satisfiesthe
linearity properties discussed in Chapter 2. The mediumisisotropic if its propertiesare
independent of the direction of polarization of the wave (i.e. thedirections of the £ and
H vectors) Themediumis homogeneous if the permittivity is constant throughout the
region of propagation. The medium is nondispersive if the permittivity is independent
of wavelength over the wavelength region occupied by the propagating wave. Finally,
all mediaof interest in this book are nonmagnetic, which means that the magnetic per-
meability isalways equal to w, the vacuum permeability.

Applying the V< operation to the left and right sidesof thefirst equation for &, we
make use of the vector identity

VX (VXE) =VV-E) - V2. (3-3)

If the propagation medium is linear, isotropic, homogeneous (constant €), and nondis-
persive, substitution of the two Maxwell's equationsfor £ in Eq. (3-3) yields

22 N 2 92¢ _ )
ViE- o7 =0 (3-4)
where n is the refractive index of the medium, defined by
12
n = (i) , (3-5)

€0
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€9 1S the vacuum permittivity, and cisthe velocity of propagation in vacuum, given by
1

c = . (3-6)
V H0€0
The magnetic field satisfies an identical equation,
2 924
2" _ _}z_& H =
VeH Ry 0

Since the vector wave equation isobeyed by both £ and #, an identical scalar wave
equation isobeyed by all components of those vectors. Thus, for example, £x obeys the
equation

n? g€
2 X _
Viéx - c2 9 0
and similarly for &y, £z, Hx, Hy, and Hz. Therefore it is possible to summarize the
behavior of all components of £ and H through a single scalar wave equation,

n2 32u(P, 1)
or?

W(Pn— =0, (3-7)
where u(P, t) represents any of the scalar field components, and we have explicitly
introduced the dependence of « on both position Pin space and timett.

From above we concludethat in adielectric medium that islinear, isotropic, homo-
geneous, and nondispersive, al components of the electric and magnetic field behave
identically and their behavior isfully described by asingle scalar wave equation. How,
then, isthe scal ar theory only an approximation, rather than exact?Theanswer becomes
clear if we consider situations other than propagation in the uniform dielectric medium
hypothesi zed.

For example, if the medium is inhomogeneous with a permittivity e(P) that de-
pends on position P (but not ontime ), it isasimple matter to show (see Prob. 3-1) that
the wave equation satisfied by £ becomes

W&uwevmm————=a (3-8)

where n and c are again given by Egs. (3-5) and (3-6). The new term that has been ad-
ded to the wave equation will be nonzerofor arefractiveindex that changes over space.
More importantly, that term introduces a coupling between the various components of
the electric field, with the result that £y, £y, and £z may no longer satisfy the same
wave equation. This type of coupling isimportant, for example, when light propagates
through a “thick” dielectric diffraction grating.

A similar effect takes place when boundary conditions are imposed on a wave that
propagates in a homogeneous medium. At the boundaries, coupling is introduced be-
tween & and ??as well as between their various scalar components. As aconsequence,
even when the propagation medium is homogeneous, the use of a scalar theory entails
some degree of error. That error will be small provided the boundary conditions have
effect over an areathat isasmall part of theareathrough which awave may be passing.
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In the case of diffraction of light by an aperture, the £ and  fields are modified only at
the edges of the aperture where light interacts with the material of which the edgesare
composed, and the effects extend over only afew wavelengths into the aperture itself.
Thus if the aperture has an area that is large compared with a wavelength, the cou-
pling effects of the boundary conditions on the £ and # fields will be small. As will
be seen, thisis equivalent to the requirement that the diffraction angles caused by the
aperture are small.

With these discussions as background, we turn away from the vector theory of
diffraction to the simpler scalar theory. We close with one final observation. Circuit
theory is based on the approximation that circuit elements (resistors, capacitors, and
inductors) are small compared to the wavelength of the fields that appear within them,
and for this reason can be treated as lumped elements with simple properties. We need
not use Maxwell's equationsto analyze such elements under these conditions. In asimi-
lar vein, the scalar theory of diffraction introduces substantial simplificationscompared
with afull vectorial theory. The scalar theory is accurate provided that the diffracting
structures are large compared with the wavelength of light. Thus the approximation
implicit in the scalar theory should be no more disturbing than the approximation used
in lumped circuit theory. In both cases it is possible to find situations in which the ap-
proximation breaks down, but aslong as the simpler theories are used only in cases for
which they are expected to be valid, the losses of accuracy will be small and the gain
of simplicity will be large.

3.3
SOME MATHEMATICAL PRELIMINARIES

Before embarking on a treatment of diffraction itself, we first consider a number of
mathematical preliminaries that form the basis of the later diffraction-theory deriva-
tions. These initia discussions will also serve to introduce some of the notation used
throughout the book.

3.3.1 The Hemholtz Equation

In accord with the previous introduction of the scalar theory, let the light disturbance
at position P and timet be represented by the scalar function u(P, t). Attention is now
restricted to the case of a purely monochromatic wave, with the generalization to poly-
chromatic waves being deferred to Section 3.8.

For a monochromatic wave, the scalar field may be written explicitly as

u(P, t) = A(P) cos[2mvt + ¢(P)] 3-9)

where A(P) and ¢(P) aretheamplitude and phase, respectively, of the wave at position
P, while v is the optical frequency. A more compact form of (3-9) isfound by using
complex notation, writing

u(P,t) = Re{U(P) exp(— j2mv1)}, (3-10)
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where Re{} signifies"'real part of", and U(P) is acomplex function of position (some-
times called aphasor),

U(P) = A(P) exp[— jo(P)]. (3-11)

If the real disturbance u(P,t) is to represent an optical wave, it must satisfy the
scalar wave equation
c? or?
at each source-free point. As before, V2 is the Laplacian operator, n represents the re-
fractive index of the dielectric medium within which light is propagating, and ¢ repre-
sents the vacuum velocity of light. The complex function U(P) serves as an adequate

description of the disturbance, since the time dependence is known a priori. If (3-10) is
substituted in (3-12), it follows that U must obey the time-independent equation

(V2 + kU = 0. (3-13)
Herek istermed the wave number and isgiven by

Viu — =0 (3-12)

v _ o
c A

and A is the wavelength in the dielectric medium (A = ¢/nw). The relation (3-13) is
known as the Helmholtz equation; we may assume in the future that the complex am-
plitude of any monochromatic optical disturbance propagating in vacuum (n = 1) orin
a homogeneous dielectric medium (n > 1) must obey such a relation.

332 Green's Theorem

Calculation of the complex disturbance U at an observation point in space can be ac-
complished with the help of the mathematical relation known as Green’s theorem. This
theorem, which can befound in most texts on advanced calculus, can be stated asfol-
lows:

Let U(P) and G(P) be any two complex-valued functionsof position,and let S be a closed
surface surroundinga volume V. If U, G, and their firg and second partial derivativesare
single-valued and continuous within and on S then we have

M(UWG - GV U)dv = H (U%g - G%%)ds (3-14)
1% M

where £ signifiesa partial derivativein the outward normal direction at each point on S.

This theorem isin many respects the prime foundation of scalar diffraction theory.
However, only a prudent choice of an auxiliary function G and a closed surface Swill
allow its direct application to the diffraction problem. We turn now to the former of
these problems, considering Kirchhoff’s choice of an auxiliary function and the conse-
quent integral theorem that follows.
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FIGURE 35
Surface of integration.

3.3.3 Thelntegral Theorem of Hedmholtz and Kirchhoff

The Kirchhoff formulation of the diffraction problem is based on acertain integral the-
orem which expresses the solution of the homogeneous wave equation at an arbitrary
point in termsof the values of the solution and itsfirst derivative on an arbitrary closed
surface surrounding that point. This theorem had been derived previously in acoustics
by H. von Helmholtz.

Let the point of observation be denoted Py, and let S denote an arbitrary closed
surface surrounding Py, asindicated in Fig. 3.5. The problem is to express the optical
disturbance at Py in terms of its values on the surface S To solve this problem, we
follow Kirchhoff in applying Green's theorem and in choosing as an auxiliary function
a unit-amplitude spherical wave expanding about the point Py (the so-called free space
Green's function). Thusthe valueof Kirchhoff’s G at an arbitrary point Py isgiven by?

exp(jkro1)
ro1 ’

G(Py) = (3-15)
where we adopt the notation that rg; is the length of the vector 7y pointing from Py
to P;.

Before proceeding further, a short diversion regarding Green's functions may bein
order. Suppose that we wish to solve an inhomogeneous linear differential equation of
theform

2
az(x)‘illej + al(x)%(x{ + ap(x)U = V(x) (3-16)

where V(x) isadriving function and U(x) satisfiesa known set of boundary conditions.
We have chosen a one-dimensional variable x but the theory is easily generalized to
amultidimensional x. It can be shown (see Chapter 1 of [223] and [16]) that if G(x)
is the solution to the same differential equation (3-16) when V(x) is replaced by the

2The reader may wish to verify that, for our choice of clockwise rotation of phasors, the description of an
expanding wave should have a  sign in the exponential.
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impulsive driving function é(x — x') and with the same boundary conditions applying,
then the general solution U(x) can be expressed in terms of the specific solution G(x)
through a convolution integral

Ulx) = J G(x - X) V(X)dx'. (3-17)

Thefunction G(x) isknown asthe Green’s function of the problem, andisclearly aform
of impulse response. Various solutions to the scalar diffraction problem to be discussed
in the following sections correspond to results obtained under different assumptions
about the Green's function of the problem. The function G appearing in Green's theo-
rem may be regarded either as simply an auxiliary function which we cleverly choose
to solveour problem, or it may eventually berelated to the Green's function of the prob-
lem. Further consideration of the theory of Green's functionsis beyond the scopeof this
treatment.

Returning now to our central discussion, to be legitimately used in Green's theo-
rem, thefunction G (aswell asitsfirst and second partial derivatives) must be continu-
ous within theenclosed volume V. Therefore to exclude the discontinuity at Py, asmall
spherical surfaceS, of radiuse, isinserted about the point Py. Green's theorem isthen
applied, the volume of integration V' being that volume lying between S and S, and
the surface of integration being the composite surface

S'=8S+S.

asindicated in Fig. 3.5. Note that the" outward normal to the composite surface points
outward in the conventional senseon S but inward (towards Pg) on S.

Within the volume V', the disturbance G, being simply an expanding spherical
wave, satisfies the Helmholtz equation

(V2 + k)G = 0. (3-18)
Substituting the two Helmholtz equations (3-13) and (3-18) in the left-hand side of
Green's theorem, we find
JU(UVZG —- GV*U)dv = — M(U(;k2 — GUK*)dv=0.
v’ v’
Thus the theorem reduces to

oG oU
U( %‘GE)"S =0
SI

G U oG oU
S

Se

Note that, for a general point P; on S', we have

Giry - 90
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and

dG(Py)
an

exp(jkro1)
o1

= cos(#n, Fy1) <jk — —1—> (3-20)
ro1

where cos(#, 7)) represents the cosine of the angle between the outward normal 7 and

the vector 7y, joining Py to P,. For the particular case of Py on S, cos(#, 7o;) = —1,
and these equations become
Jke Jjke .
GP)) = < and —‘9(;(:‘) = "e—e - Jk)-

Letting e becomearbitrarily small, thecontinuity of U (and itsderivatives) at Py alows
usto write

. oG oU
1‘333” (U% G%)"’s
S

€

— lim 4e? [U( py)SXPUKe) (1 _ jk)_ QU(Py) exp(jke)
€—0 € € an €

} = 4w U(Py).

Substitution of this result in (3-19) (taking account of the negative sign) yields
UPy = L ” { oU [exp(jkroo] _ud {exp(jk"m)]] & a2

4 on o1 on rol

This result is known as the integral theorem d Helmholtz and Kirchhoff, it plays an
important role in the development of the scalar theory of diffraction, for it alows the
field at any point Py to be expressed in terms of the "boundary values" of the wave
on any closed surface surrounding that point. As we shall now see, such a relation is
instrumental in thefurther development of scalar diffraction equations.

34
THE KIRCHHOFF FORMULATION OF DIFFRACTION BY
A PLANAR SCREEN

Consider now the problem of diffraction of light by an aperture in an infinite opagque
screen. Asillustrated in Fig. 3.6, a wave disturbance is assumed to impinge on the
screen and the aperture from the left, and the field at the point Py behind the aperture
isto be calculated. Again thefield is assumed to be monochromatic.

3.4.1 Application of the Integral Theorem

Tofind thefield at the point Py, we apply theintegral theorem of Helmholtz and Kirch-
hoff, being careful to choose a surface of integration that will allow the calculation
to be performed successfully. Following Kirchhoff, the closed surface Sis chosen to
consist of two parts, as shown in Fig. 3.6. Let a plane surface, S, lying directly behind
thediffracting screen, bejoined and closed by alarge spherical cap, S», of radiusR and
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FI QURE 36
Kirchhoff formulation of diffraction by a plane screen.

centered at the observation point Po. The total closed surface Sissimply the sum of S,
and S,. Thus, applying (3-21),

1 ou G
Uk = 2= H (Ga—n“’%)ds
S1+S8

where, as before,

G = exp(jkro1)
ro1
AsRincreases, S, approachesalarge hemispherical shell. It istempting to reason that,
since both U and G will fall off as 1/R, theintegrand will ultimately vanish, yielding a
contribution of zero from the surface integral over S,. However, the area of integration
increasesas R?, so thisargument isincomplete. It is also tempting to assume that, since
the disturbances are propagating with finite velocity cln, R will ultimately be so large
that the waves have not yet reached S, and the integrand will be zero on that surface.
But thisargument isincompatiblewith our assumption of monochromatic disturbances,
which must (by definition) have existed for all time. Evidently a more careful investi-
gation is required before the contribution from S, can be disposed of.
Examining this problem in more detail, we see that, on S2,

_ exp(jkR)
G= R
and, from (3-20),
0G _ (. _ 1\exp(jkR) _ .
on (Jk R) R JkG

where the last approximation is valid for large R. The integral in question can thus be

reduced to
U ) _ Q_L_/' . 2
H [GW U(JkG)] ds = L)G(an ]kU)R dw,
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where () isthe solid angle subtended by S, at Py. Now the quantity |[RG| is uniformly
bounded on S,. Therefore the entire integral over S; will vanish as R becomes arbi-
trarily large, provided the disturbance has the property

. ou
IL'_TO R(gg ]kU) =0 (3-22)
uniformly in angle. This requirement is known as the Sommerfeld radiation condi-
tion [269] and is satisfied if the disturbance U vanishes at |east as fast as a diverging
spherical wave (see Prob. 3-2). It guarantees that we are dealing only with outgoing
waveson S, rather than incoming waves, for which theintegral over S, might not van-
ish as R + . Since only outgoing waves will fall on S, in our problem, the integral
over S, will yield a contribution of precisely zero.

3.4.2 The Kirchhoff Boundary Conditions

Having disposed of theintegration over the surface S,, it is now possible to express the
disturbance at Py in terms of the disturbance and its normal derivative over theinfinite
plane S, immediately behind the screen, that is,

1 [((3U, 3G

S

The screen is opague, except for the open aperture which will be denoted . It
therefore seems intuitively reasonable that the major contribution to the integral (3-23)
arises from the points of S, located within the aperture 2, where we would expect the
integrand to belargest. Kirchhoff accordingly adopted thefollowing assumptions [162]:

1. Across the surface Z, the field distribution U and its derivative dU/dn are exactly
the same as they would be in the absence of the screen.

2. Over the portion of S, that lies in the geometrical shadow of the screen, the field
distribution U and itsderivative 3U/dn areidentically zero.

These conditions are commonly known as the Kirchhoff boundary conditions. The
first allows us to specify the disturbance incident on the aperture by neglecting the
presence of the screen. The second allows us to neglect al of the surface of integration
except that portion lying directly within the aperture itself. Thus (3-23) isreduced to

U(Py) = 211—” (&G - Uﬁ)ds (3-24)

' on on

While the Kirchhoff boundary conditions simplify the results considerably, it is
important to realize that neither can be exactly true. The presence of the screen will
inevitably perturb the fields on 3, to some degree, for along the rim of the aperture
certain boundary conditions must be met that would not be required in the absence of
the screen. In addition, the shadow behind the screen is never perfect, for fields will
inevitably extend behind the screen for a distance of several wavelengths. However, if
the dimensions of the aperture are large compared with a wavelength, these fringing
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effects can be safely neglected,® and the two boundary conditions can be used to yield
results that agree very well with experiment.

3.4.3 The Fresnd-Kirchhoff Diffraction Formula

A further simplification of the expression for U(Py) isobtained by noting that the dis-
tancerg; from the aperture to theobservation point isusually many optical wavelengths,
and therefore, since k > 1/ry;, EQ. (3-20) becomes

dG(P1) _ cos(7, fm)(jk“ L)CXP(Jka)
an roi o1

exp(jkror)
Yol '

= ]k COS(ﬁ, F(n) (3-25)

Substituting this approximation and the expression (3-15) for G in Eq. (3-24), wefind

U(Pg) = 1 ” ;cﬂ%“—) [%—g — jkU cos(#, Fm)} ds. (3-26)
b

47
Now suppose that the apertureisilluminated by a single spherical wave,
Aexp(jkra1)

)

arising from a point source at P,, adistance ry; from P; (see Fig. 3.7). If rz; is many
optical wavelengths, then (3-26) can be directly reduced (see Prob. 3-3) to

A [ J expljk(ra1 + ro1)] [ cos(a, 7o) — cos(A, Fa1)

UPy) =

U(Py) = — ds. 3-27
(Fo) JA J r21toi 2 ] -27)

—TZ'I 1 701
T TR
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n

FIGURE 37
Point-sourceillumination o a plane screen.

3As we shall see, objections to the use of the Kirchhoff boundary conditions arise, not because of the fring-
ing effects, but rather because of certain internal inconsistencies.
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This result, which holds only for an illumination consisting of a single point source, is
known as the Fresnel-Kirchhojfdijfractionformula.

Note that Eq. (3-27) is symmetrical with respect to the illumination point source
at P, and the observation point at Py. Thus a point source at Py will produce at P, the
same effect that a point source of equal intensity placed at P, will produce at Py. This
result isreferred to as the reciprocity theorem of Helmholtz

Finally, we point out an interesting interpretation of the diffraction formula (3-27),
to which we will return later for a more detailed discussion. Let that equation be rewrit-
ten asfollows:

U(P) = J J U'(Pl)ﬂ’% ds (3-28)

where

(3-29)

U'P,) = L |:A exp(jkr21)} [cos(ﬁ, Fo1) — cos(#, F21) '
JjA r21 2
Now (3-28) may beinterpreted asimplying that the field at Py arises from an infinity
of fictitious' secondary" point sources|ocated within the aperture itself. The secondary
sources have certain amplitudes and phases, described by U'(P)), that are related to
the illuminating wavefront and the angles of illumination and observation. Assump-
tions resembling these were made by Fresnel rather arbitrarily in his combination of
Huygens' envelope construction and Young's principle of interference. Fresnel as-
sumed these properties to hold in order to obtain accurate results. Kirchhoff showed
that such properties are a natural consequence of the wave nature of light.
Note that the above derivation has been restricted to the case of an apertureillumi-
nation consisting of asingle expanding spherical wave. However, as we shall now see,
such alimitation can be removed by the Rayleigh-Sommerfeld theory.

35
THE RAYLEIGH-SOMMERFELDFORMULATION OF DIFFRACTION

The Kirchhoff theory has been found experimentally to yield remarkably accurate
results and is widely used in practice. However, there are certain internal inconsis-
tencies in the theory which motivated a search for a more satisfactory mathematical
development. The difficulties of the Kirchhoff theory stem from thefact that boundary
conditions must beimposed on both the field strength and its normal derivative. In par-
ticular, itisawell-known theorem of potential theory that if atwo-dimensional potential
function and its normal derivative vanish together along any finite curve segment, then
that potential function must vanish over the entire plane. Similarly, if a solution of the
three-dimensional wave equation vanishes on any finite surface element, it must vanish
in al space. Thus the two Kirchhoff boundary conditions together imply that the field
is zero everywhere behind the aperture, a result which contradicts the known physical
situation. A further indication of these inconsistencies is the fact that the Fresnel-
Kirchhoff diffraction formula can be shown to fail to reproduce the assumed boundary
conditions as the observation point approaches the screen or aperture. In view of these
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contradictions, it isindeed remarkabl e that the Kirchhoff theory has been found to yield
such accurate results in practice.*

The inconsistencies of the Kirchhoff theory were removed by Sommerfeld, who
eliminated the necessity of imposing boundary values on both the disturbance and its
normal derivative simultaneously. This so-called Rayleigh-Sommerfeld theory is the
subject of this section.

3.5.1 Choice of Alternative Green's Functions

Consider again Eq. (3-23) for the observed field strength in terms of the incident field
and its normal derivative across the entire screen:

1 oU G
U(Py) = yp U (%G - U%)ds. (3-30)

5
The conditionsfor validity of thisequation are:

1. Thescaar theory holds.
2. Both U and G satisfy the homogeneous scalar wave equation.
3. The Sommerfeld radiation condition is satisfied.

Suppose that the Green's function G of the Kirchhoff theory were modified in such a
way that, while the development leading to the above equation remains valid, in addi-
tion, either G or dG/dn vanishes over the entire surface S;. In either case the necessity
of imposing boundary conditions on both U and dU/dn would be removed, and the
inconsistencies of the Kirchhoff theory would be eliminated.

Sommerfeld pointed out that Green's functions with the required properties do in-
deed exist. Suppose G is generated not only by a point source located at Py, but also
simultaneously by a second point source at a position Py which isthe mirror image of
P, on the oppositeside of the screen (see Fig. 3.8). Let the source at Py be of the same
wavelength A as the source at Py, and suppose that the two sources are oscillating with
a 180° phase difference. The Green's function in thiscase is given by

exp(jkro1) _ exp(jkFor) (3-31)

G-(Py) = =
ro1 ro1

Clearly such afunction vanishes on the plane aperture %, leaving thefollowing expres-
sionfor the observed field:

Ui(Py) = ;—ﬂl_” U%ds. (3-32)
2

We refer to thissolution as the first Rayleigh-Sommerfeld solution.

“The fact that one theory isconsistent and the other is not does not necessarily mean that the former ismore
accurate than the latter.



48 Introductionto Fourier Optics

. 01 ] 701

~> |
n

FIGURE 38
Rayleigh-Sommerfeld formulation of
diffraction by a plane screen.

To specify this solution further let #, be the distance from Pqy to P;. The corre-
sponding normal derivativeof G- is

aG_ . ‘ 1\ exp( ikr
8_(P1) = cos(#, "01)(]/( — _)M
" foi Yol

~ cos(ii %n(ﬂ« - i)e—"l’—(i’@‘—) (3-33)
)| ro1
Now for P; on S;, we have
ro1 = For
cos(7i, Fp1) = — cos(#, Fo1)
and therefore on that surface
9GP _ 5 cos(ii 701)(jk - i)g‘p—(ﬂf’o—l). (3-34)
on roi ro1
For rg; >> A, the second term above can be dropped, leaving
‘7G-’(1P D _ 2k cos(i, fOI)——e"p('”k’O”, (3-35)
01

which isjust twicethenormal derivativeof the Green's function G used in the Kirchhoff
analysis, i.e.

dG-(P) _ 2f9G(P1)
on B n

With this result, the first Rayleigh-Sommerfeld solution can be expressed in terms of
the more simple Green's function used by Kirchhoff,

-1 G
Ui(Py) = o ” U% ds. (3-36)
2
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An aternative and equally valid Green's function is found by allowing the two
point sources to oscillate in phase, giving

exp(jkro1) + exp(jkior)
roi For

It isreadily shown (see Prob. 3-4) that the normal derivative of thisfunction vanishes
across the screen and aperture, leading to the second Rayleigh-Sommerfeld solution,

Un(Py) = 4L ” &G,L ds. (3-38)

T on

G (P) =

(3-37)

It can be shown that, on 3 and under the condition that ro; > A, G, istwicethe Kirch-
hoff Green's function G,

G: = 2G.

Thisleads to an expression for U(Py) in terms of the Green's function used by Kirch-
hoff,

1 U
U][(P()) = EJJ EGdS. (3'39)
2

3.5.2 The Rayleigh-Sommerfeld Diffraction Formula

Let the Green's function G- be substituted for G in Eq. (3-23). Using (3-35), it follows
directly that

UiPy) = = [ 0 ZEEEL cos(i oy s (3-40)
JA rol
Sy
whereit has been assumed that r; >> A The Kirchhoff boundary conditions may now
be applied to U alone, yielding the general result

Ui(Py = = [ [ (P RURO) i 7or) ds (3-41)
J 4 ro1

Since no boundary conditions need be applied to dU/dn, the inconsistencies of the
Kirchhoff theory have been removed.
If the alternative Green's function of (3-37) is used, the result can be shown to be

1 oU(Py) exp(jk
Un(Po) = %U o"(n ) p%lrm) ds.

(3-42)

We now specialize Eq. (3-41) and Eq. (3-42) to the case of illumination with a
diverging spherical wave, allowing direct comparison with Eq. (3-27) of the Kirchhoff
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theory. Theillumination of the aperturein all casesisa spherical wave diverging from
a point source at position P, (see Fig. 3.7 again):

exp(jkrar)

U(P)) = A
r21

Using G- weobtain

cos(, rg1) ds. (3-43)

Us(Po) = i J J expl jk(ra1 + roi)]
JA d 21701

This result is known as the Rayleigh-Sommerfeld diffraction formula. Using G +,and
assuming that r,; > A, the corresponding result is

A exp[ jk(ra; + r -
Us(Po) = —.—” PLK(21 + 1o oo 7,1y ds (3-44)
JA J 1701

where the angle between 7 and 7, isgreater than 90°.

3.6
COMPARISON OF THE KIRCHHOFF AND
RAYLEIGH-SOMMERFELD THEORIES

Webriefly summarize thesimilaritiesand differencesof the Kirchhoff and theRayleigh-
Sommerfeld theories. For the purposes of this section, let Gk represent the Green's
function for the Kirchhoff theory, while G- and G, are the Green's functions for
the two Rayleigh-Sommerfeld formulations. As pointed out earlier, on the surface Z,
G, = 2Gg and dG-/dn = 29Gglon. Therefore the general results of interest are as
follows. For the Kirchhoff theory (cf. Eq. (3-24))

oG
U(P) = j}; g (%’GK - U;etn’i)ds, (3-45)
T on
for thefirst Rayleigh-Sommerfeld solution (cf. Eg. (3-36))
_ 1 oGk
2

and for the second Rayleigh-Sommerfeld solution (cf. EQ. (3-39))

1 oU
Un(Py) = %” %Gxds. (3-47)
2

A comparison of the above equations leads us to an interesting and surprising
conclusion: the Kirchhoff solution is the arithmetic average of the two Rayleigh-
Sommerfeld solutions!
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Comparing theresultsof thethree approachesfor the caseof spherical waveillumi-
nation, we see that the results derived from the Rayleigh-Sommerfeld theory (i.e. Egs.
(3-43) and (3-44)) differ from the Fresnel-Kirchhoff diffraction formula, Eq. (3-27),
only through what is known as the obliquity factor , which isthe angular dependence
introduced by the cosine terms. For all cases we can write

A J j expljk(ra1 + ro1)] W ds (3-48)

(Po) JA J 21701

where

L[cos(d, 7a1) — cos(#, 721)] ~ Kirchhoff theory
¥ =< cos(i, 7o) First Rayleigh-Sommerfeld solution (3-49)
— cos(fi, 1) Second Rayleigh-Sommerfeld solution.
For the specia case of an infinitely distant point source producing normally incident
plane wave illumination, the obliquity factors become

111 + cosg] Kirchhoff theory
¥ =< cosf First Rayleigh-Sommerfeld solution (3-50)
1 Second Rayleigh-Sommerfeld solution,

where 6 is the angle between the vectors 7 and 7o; .

Several authors have compared the two formulations of the diffraction problem.
We mention in particular Wolf and Marchand {301], who examined differences be-
tween the two theories for circular apertures with observation points at a sufficiently
great distance from the aperture to be in the "far field" (the meaning of this term will
be explained in the chapter to follow). They found the Kirchhoff solution and the two
Rayleigh-Sommerfeld solutions to be essentially the same provided the aperture diam-
eter is much greater than a wavelength. Heurtley [143] examined the predictions of
the three solutions for observation points on the axis of a circular aperture for all dis-
tances behind the aperture, and found differences between the theories only close to the
aperture.

When only small angles are involved in the diffraction problem, it is easy to
show that all three solutions are identical. In al three cases the obliquity factors
approach unity as the angles become small, and the differences between the results
vanish. Note that only small angles will be involved if we are far from the diffract-
ing aperture.

In closing it is worth noting that, in spite of its internal inconsistencies, there
is one sense in which the Kirchhoff theory is more general than the Rayleigh-
Sommerfeld theory. The latter requires that the diffracting screens be planar, while
the former does not. However, most of the problems of interest here will involve
planar diffracting apertures, so this generality will not be particularly significant. In
fact, we will generally choose to use the first Rayleigh-Sommerfeld solution because
of its simplicity.
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3.7
FURTHER DISCUSSION OF THE HUYGENS-FRESNEL PRINCIPLE

The Huygens-Fresnel principle, as predicted by the first Rayleigh-Sommerfeld solu-
tion® (see Eq. (3-40)), can be expressed mathematically as follows:

U(Py) = _1} ” U(PQM cos 6 ds, (3-51)
J $ ro1

where 8 is the angle between the vectors 7 and 7y,. We give a" quasi-physical" inter-
pretation to this integral. It expresses the observed field U(Py) as a superposition of
diverging spherical waves exp(jkrg;)/ro; originating from secondary sources located
at each and every point P; within the aperture 2. The secondary source at P; has the
following properties:

1. It has a complex amplitude that is proportional to the amplitude of the excitation
U(P,) at the corresponding point.

2. It has an amplitude that isinversely proportiona to A, or equivalently directly pro-
portional to the optical frequency v.

3. It has a phase that |eads the phase of the incident wave by 90°, asindicated by the
factor 1/j.

4. Each secondary source has a directivity pattern cosé.

The first of these properties is entirely reasonable. The wave propagation phe-
nomenon is linear, and the wave passed through the aperture should be proportional
to the wave incident upon it.

A reasonable explanation of the second and third properties would be as follows.
Wave motion from the aperture to the observation point takes place by virtue of changes
of thefield in the aperture. In the next section we will see more explicitly that the field
at Py contributed by a secondary source at P, depends on the time-rate-of-change of
thefield at P,. Since our basic monochromatic field disturbance is a clockwise rotating
phasor of theform exp(— j2mvt), the derivative of thisfunction will be proportional to
both »andto — j = 1/j.

The last property, namely the obliquity factor, has no simple " quasi-physical’ ex-
planation, but arises in slightly different forms in all the theories of diffraction. It is
perhaps expecting too much to find such an explanation. After all, there are no material
sources within the aperture; rather, they all lie on the rim of the aperture. Therefore
the Huygens-Fresnel principle should be regarded as arelatively simple mathematical
construct that allows us to solve diffraction problems without paying attention to the
physical details of exactly what is happening at the edges of the aperture.

It isimportant to realize that the Huygens-Fresnel principle, as expressed by Eq.
(3-51), is nothing more than a superposition integral of the type discussed in Chapter
2. To emphasize this point of view we rewrite (3-51) as

SHereafter we drop the subscript on the first Rayleigh-Sommerfeld solution, sinceit will be the solution we
use exclusively.
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UPo) = || po. POUP) s, (3-52)
3
where the impulse response A(Py, P,) isgiven explicitly by

1 exp(kro)

h(Py, P)) = —
o P1) A o

os 8. (3-53)
Theoccurrence of a superposition integral asaresult of our diffraction analysis should
not be a complete surprise. The primary ingredient required for such aresult was pre-
viousdly seen to be linearity, a property that was assumed early in our analysis. When
we examine the character of the impulse response A(Py, P,) in more detail in Chapter
4, we will find that it is also space-invariant, a consegquence of the homogeneity as-
sumed for the dielectric medium. The Huygens-Fresnel principle will then be seen to
be a convolution integral.

3.8
GENERALIZATION TO NONMONOCHROMATIC WAVES

The wave disturbances have previously been assumed to be ideally monochromatic in
all cases. Such wavescan beclosely approximated in practiceand are particularly easy
to analyze. However, the more general case of a nonmonochromatic disturbance will
now be considered briefly; attention isrestricted to the predictions of thefirst Rayleigh-
Sommerfeld solution, but similar results can be obtained for the other solutions.
Consider thescalar disturbance u( Py, t) observed behind an aperture  in an opague
screen when a disturbance «(Py, t) is incident on that aperture. The time functions
u(Py, t) and u(P;, t) may be expressed in termsof their inverse Fourier transforms:

s 2}

u(Py,t) = J U(P,, vyexp(j2mvt)dv

- (3-54)

[ee]

u(Py,t) = |n U(Pg, v)exp(j2mvt)dy,

where U(Py, v) and U(P,, v) are the Fourier spectra of u(Py, t) and u(Py, t), respec-
tively, and v represents frequency.
Let Egs. (3-54) be transformed by the change of variables v’ = —v, yielding

o0

u(Py, 1) = j U(Py, —v')exp(— j2mv't)dv'

(3-55)

oc

u(Py,t) = j U(Py, — V') exp(— j2mv't)dv'.

Now these relations may be regarded as expressing the nonmonochromatic time
functions u(P,, t) and u( Py, t) asalinear combination of monochromatic time functions
of the type represented by Eq. (3-10). The monochromatic elementary functions are of
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variousfrequencies v', thecomplex amplitudesof thedisturbanceat frequency »' being
smply U(P;, — V') and U(Py, — V'). By invoking thelinearity of the wave-propagation
phenomenon, we use the results of the previous section to find the complex amplitude
at Py of each monochromatic component of the disturbance, and superimpose these
resultsto yield the general time function u(Py, t).

To proceed, Eq. (3-51) can bedirectly used to write

' ' 2w v'ro/ -
U(Py, -v') = —j% JJ U(Py, —v )exp(J :(T)IV ro1/v) cos(#i, Fo;)ds, (3-56)

where v is the velocity of propagation of the disturbance in a medium of refractive
index n (v = ¢/n), and therelation »'A = v has been used. Substitution of (3-56) in the
second of Egs. (3-55) and an interchange of the ordersof integration give

u(Po, t) = U %(i'—)j - 2av'U(Py, —v') exp[ - j2mv’ (t — %):Idv'ds.

Finaly, the identity

d d
au(Pl,t) = (_:I_t(_ U(P1, —v')exp(—j2av't) dv'

= J — j2mv'U(Py, —v')exp(— j2mv'Hydv’
can be used to write

_|[[ cos(n, 7o1) d _ 1ol
u(PO,t) = J‘(m—au(Pl,t 2 )df (3 57)

The wave disturbance at point P is seen to be linearly proportional to the time
derivative of the disturbance at each point P on the aperture. Sinceit takes time rg; /v
for the disturbance to propagate from P, to Py, the observed wave depends on the
derivative of theincident wave at the" retarded” timet — (rg1/v).

This more general treatment shows that an understanding of diffraction of mono-
chromatic waves can be used directly to synthesize the results for much more general
nonmonochromatic waves. However, the monochromatic resultsaredirectly applicable
themselves when the optical source has a sufficiently narrow spectrum. See Prob. 3-6
for further elucidation of these points.

39
DIFFRACTION AT BOUNDARIES

Inthestatement of the Huygens-Fresnel principle, wefound it convenient to regard each
point on the aperture as a new source of spherical waves. It was pointed out that such
sources are merely mathematical conveniences and have no real physical significance.
A more physical point-of-view, first qualitatively expressed by Thomas Y oungin 1802,
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is to regard the observed field as consisting of a superposition of the incident wave
transmitted through the aperture unperturbed, and a diffracted wave originating at the
rimof the aperture. The possibility of a new wave originating in the material medium
of the rim makes thisinterpretation a more physical one.

Young's qualitative arguments were given added impetus by Sommerfeld's rigor-
ous electromagnetic solution of the problem of diffraction of a plane wave by a semi-
infinite, perfectly conducting screen [268]. Thisrigorous solution showed that the field
in the geometrical shadow of the screen has the form of a cylindrical wave originat-
ing on the rim of the screen. In the directly illuminated region behind the plane of the
screen thefield wasfound to be asuperposition of thiscylindrical wave with thedirectly
transmitted wave.

The applicability of a boundary diffraction approach in more general diffraction
problems was investigated by Maggi [202] and Rubinowicz [249], who showed that
the Kirchhoff diffraction formula can indeed be manipulated to yield a form that is
equivalent to Young's ideas. More recently, Miyamoto and Wolf [250] have extended
the theory of boundary diffraction. For further discussion of these ideas, the reader
should consult the referencescited.

Another approach closely related to Young's ideas is the geometrical theory of
diffraction developed by Keller [161]. In this treatment, the field behind a diffracting
obstacle isfound by the principles of geometrical optics, modified by the inclusion of
"diffracted rays” that originate at certain pointson the obstacleitself. New rays are as-
sumed to be generated at edges, corners, tips, and surfaces of the obstacle. This theory
can often be applied to calculate the fields diffracted by objects that are too complex to
be treated by other methods.

3.10
THE ANGULAR SPECTRUM OF PLANE WAVES

It isalso possible to formulate scalar diffraction theory in aframework that closely re-
sembles the theory of linear, invariant systems. As we shall see, if the complex field
distribution of a monochromatic disturbance is Fourier-analyzed across any plane, the
various spatial Fourier components can be identified as plane wavestraveling in differ-
ent directionsaway from that plane. Thefield amplitudeat any other point (or across any
other parallel plane) can becal culated by adding the contributions of these plane waves,
taking due account of the phase shifts they have undergone during propagation. For a
detailed treatment of thisapproach to diffraction theory, as well asitsapplicationsin the
theory of radio-wave propagation, the reader isreferred to the work of Ratcliffe[240].

3.10.1 The Angular Spectrum and Its Physical I nterpretation

Suppose that, due to some unspecified system of monochromatic sources, a wave is
incident on a transverse (X,y) plane traveling with a component of propagation in the
positive z direction. Let the complex field across that z = 0 plane be represented by
U(x,y,0); our ultimate objectiveisto calculatetheresulting field U(x, y, z) that appears
across a second, parallel plane adistance z to the right of thefirst plane.
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Across the z = 0 plane, the function U has a two-dimensional Fourier transform
given by

o0

A(fx, fr;0) = H U(x, y, 0)expl— j2m(fxx T+ fry)ldxdy. (3-58)

—00

As pointed out in Chapter 2, the Fourier transform operation may be regarded as a
decomposition of a complicated function into a collection of more simple complex-
exponential functions. To emphasize this point-of-view, we write U as an inverse
Fourier transform of its spectrum,

oo

Ux, y,0) = ” A, fri0) expli2m(fxx + fepldfxdfy.  (3-59)

—co

To give physical meaning to the functions in the integrand of the above integral,

consider theform of asimple plane wave propagating with wave vector k, where & has
magnitude 27r/A and has direction cosines (a, B8, y), asillustrated in Fig. 3.9. Such a
plane wave has a complex representation of theform

p(x, y, z;1) = expljlk - F — 2mvr)] (3-60)

where3 = xx + y$ + zZisaposition vector (the " symbol signifiesa unit vector), while
k= 27”(002 + B35+ y%). Dropping thetime qlependence, the complex phasor amplitude
of the plane wave across a constant z-plane is

P(x,y,2) = exp(jk- 7) = e/ F@x+BNIFre (3-61)
Note that the direction cosines are interrelated through
Yy = Jv1—a?-p2

Thusacrosstheplanez = 0, acomplex-exponential function exp[ j27(fxxT fry)]
may be regarded as representing a plane wave propagating with direction cosines

a=Mx B=Afr v=J1-Qf)2- QM2 (3-62)
In the Fourier decomposition of U, the complex amplitude of the plane-wave com-
ponent with spatial frequencies (fx, fy) is simply A(fx, fr;0)dfxdfy, evaluated at
(fx = a/A, fy = B/A). For thisreason, the function

=4

cos la

cosly

cos'1B
FIGURE39
y The wave vector k.
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« B o\ || _or(®e 1 B ]
A(X,x,0>— ” U(x,y,O)exp[ ]277(/\)64‘ Ay)]dxdy (3-63)

iscalled theangular spectrum of the disturbance U(x, v, 0).

3.10.2 Propagation of the Angular Spectrum

Consider now the angular spectrum of the disturbance U across a plane parallel to the
(x,y) plane but at a distance z from it. Let the function A(a/A, B/A; z) represent the
angular spectrumof U(x, y, z);that is,

A(ax, %;Z) = H Ulx, y 2) exp[ — j2m (%x + %y)}dxdy. (3-64)

Now if the relation between A(a/A, B/A;0) and A(a/A, B/A; z) can be found, then the
effects of wave propagation on the angular spectrum of the disturbance will be evident.
To find the desired relation, note that U can be written

Ux, y,2) = H A(%, %;z) exp [j27r (%x n %y)}d%d%. (3-65)

In addition, U must satisfy the Helmholtz equation,
ViUt KU =0

at all source-free points. Direct application of this requirement to Eq. (3-65)shows that
A must satisfy the differential equation

2 f(a B 21\ s . fa B\
B—Z—EA(X, X,Z)‘I‘(T) [1 - —B ]A(X,X,Z)— 0.

An elementary solution of this eguation can be written in theform

A (3, E;z) = A(ﬁ ﬁ;o>exp<j2—" J1—aZ-p2 z)‘ (3-66)

ATA AA A
Thisresult demonstratesthat when the direction cosines (a,8) satisfy
2t pr<i, (3-67)

as all true direction cosines must, the effect of propagation over distance zissimply a

changeof therelative phasesof the various componentsof the angular spectrum. Since

each plane-wave component propagates at a different angle, each travels a different

distance between two parallel planes, and relative phase delays are thus introduced.
However, when (a,B) satisfy

a?+p?>1,

adifferent interpretation isrequired. Notethat since A(a/A, B/A;0) isthe Fourier trans-
form of afield distribution on which boundary conditions are imposed in the aperture
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plane, it is quite possible that this spectrum will contain components that satisfy the
above equation. Under such a condition, a and 8 are no longer interpretable as direc-
tion cosines. Now the square root in Eq. (3-66) isimaginary, and that equation can be
rewritten

a B . \_ ,(x B, _ -
A(X,X,z)——A(X,X,O)exp( n2) (3-68)

where

p,=g)\£‘/a2+32—1‘

Since u isapositive real number, these wave componentsare rapidly attenuated by the
propagation phenomenon. Such componentsare called evanescent waves and are quite
analogous to the waves produced in a microwave waveguide driven below its cutoff
frequency. Asinthecaseof the waveguidedriven below cutoff, these evanescent waves
carry no energy away from the aperture.®

Finally, we note that the disturbance observed at (x, y, z) can be written in terms of
theinitial angular spectrum by inverse transforming Eq. (3-66), giving

Ux,y,2) = ” A(% %;0> exp(joﬂ mz)

« B a
x cire( Ja? + 82) exp| j2m\xx Tt 27 g)c d

where the circ function limits the region of integration to the region within which Eqg.
(3-67) issatisfied.” Note that no angular spectrum components beyond the evanescent
wave cutoff contribute to U(x, y, z). Thisfact is the fundamental reason why no con-
ventional imaging system can resolve a periodic structure with a period that is finer
than the wavelength of the radiation used. It is possible, though, to couple to evanes-
cent waves with very fine structures placed in very close proximity to the diffracting
object, and thereby recover information that would otherwise be lost. However, we will
focushereon conventional optical instruments, for which the evanescent wavesare not
recoverable.

B
A, (3-69)

3.10.3 Effectsof a Diffracting Apertureon the Angular Spectrum

Suppose that an infinite opaque screen containing a diffracting structure is intro-
duced in the plane z = 0. We now consider the effects of that diffracting screen on the

®Note that evanescent wavesare predicted only under the very same conditionsfor which the useof thescalar
theory is suspect. Nonetheless, they are a real phenomenon, although perhaps more accurately treated in a
full vectoria theory.

"We can usually assumethat thedistancez islarger than afew wavelengths, allowing usto completely drop
the evanescent components of the spectrum.
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angular spectrum of the disturbance. Define the amplitude transmittance function of
the aperture as the ratio of the transmitted field amplitude U,(x, y; 0) to the incident
field amplitude U;(x, y; 0) at each (x, y) in the z = 0 plane,

Ui(x, y;0)

Ui(x, v,0) (3-70)

tA(x’ )’) =
Then

Uix, y,0) = Ui(x, y,0) ta(x, y)

and the convolution theorem can be used to relate the angular spectrum A;(a/A, B/A)
of theincident field and the angular spectrum A,(a/A, B/A) of the transmitted field,

a B _|, aB a B ]
(5% ‘[A'(A' MO Ay oD
where
T(% %) = J f 1a(x, y)exp[— j21'r<%x+ %y)}dxdy, (3-72)

and & isagain the symbol for convolution.

Theangular spectrum of the transmitted disturbance isthus seen to be the convolu-
tion of theangular spectrum of theincident disturbance with a second angular spectrum
that is characteristic of the diffracting structure.

For the case of a unit amplitude plane wave illuminating the diffracting structure
normally, the result takes a particularly simple form. In that case

(2 BY\_g5 2B
A’(A’ /\)_ alA" A)
and
« B _5 2B « B\_, (2B
Thus the transmitted angular spectrum is found directly by Fourier transforming the
amplitude transmittance function of the aperture.
Note that, if the diffracting structureis an aperture that limits the extent of thefield
distribution, the result isabroadening of the angular spectrum of the disturbance, from
the basic properties of Fourier transforms. The smaller the aperture, the broader the an-

gular spectrum behind the aperture. Thiseffect isentirely analogous to the broadening
of the spectrum of an electrical signal asitsduration isdecreased.

3.10.4 The Propagation Phenomenon asa Linear Spatial Filter

Consider again the propagation of light from the plane z = 0 to a parallel plane at
nonzero distance z. The disturbance U(x, y, 0) incident on the first plane may be con-
sidered to be mapped by the propagation phenomenon into a new field distribution
U(x, Y, 2). Such a mapping satisfies our previous definition of a system. We shall, in
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fact, demonstrate that the propagation phenomenon actsasalinear space-invariant sys-
tem and is characterized by arelatively simple transfer function.

The linearity of the propagation phenomenon has already been discussed; it isdi-
rectly implied by the linearity of the wave equation, or aternatively, by the superpo-
sition integral (3-52). The space-invariance property is most easily demonstrated by
actually deriving a transfer function that describes the effects of propagation; if the
mapping hasa transfer function, then it must be space-invariant.

To find the transfer function, we return to the angular spectrum point-of-view.
However, rather than writing the angular spectra as functions of the direction cosines
(a,B), it isnow more convenient to |eave the spectra as functions of spatial frequen-
cies (fx, fr)- The spatial frequencies and thedirection cosines are related through Eg.
(3-62).

Let the spatial spectrum of U(x, Y, z) again be represented by A( fx, fr;z), while
the spectrumof U(x, y; 0) isagain written A(fx, fr;0). Thuswemay express U(x, Y, 2)
as

oo

U(x,y,2) = j j Afx, fos Dexplizafix + frnldfx dfy.

—c0

But in addition, from Eq.(3-69),

Ulx 3 2) = f J Afx fr30) cire( JOSO? + AfP)

< exp |27 JT= (AP = (WP 2fexpli2mtfu + Syl i d,

where we have again explicitly introduced the bandwidth limitation associated with
evanescent waves through the use of a circ function. A comparison of the above two
equations shows that

Afx, fri2) = A(fx, fr;0) cire( J(Afx)? + (Afr)?)

X exp [ij% V1= fx)? - (/\fy)z]- (3-73)

Finally, the transfer function of the wave propagation phenomenon is seen to be

H(fx, fr) = {e"p [ﬂwf V1= fx)? - ("fY)Z] VR <3 34
0 otherwise.

Thus the propagation phenomenon may be regarded as a linear, dispersive spatial
filter with afinite bandwidth. The transmission of thefilter iszero outsideacircular re-
gion of radiusA-' in thefrequency plane. Within that circular bandwidth, the modulus
of the transfer function is unity but frequency-dependent phase shifts are introduced.
The phase dispersion of the system is most significant at high spatial frequencies and
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vanishes as both fx and fy approach zero. In addition, for any fixed spatial frequency
pair, the phase dispersion increases as the distance of propagation z increases.

In closing we mention the remarkabl e fact that, despite the apparent differences of

their approaches, the angular spectrum approach and the first Rayleigh-Sommerfeld
solution yield identical predictions of diffracted fields! This has been proved most
elegantly by Sherman [260].

PROBLEMS-CHAPTER 3

3-1.

3-2.
3-3.
3-4.

3-5.

3-6.

3-7.

Show that in an isotropic, nonmagnetic, and inhomogeneous diel ectric medium, Maxwell's
equations can be combined to yield Eq. (3-8).

Show that a diverging spherical wave satisfies the Sornrnerfeld radiation condition.
Show that, if r; >> A, Eq. (3-26) can be reduced to Eq. (3-27).

Show that the normal derivative of Eq. (3-37) for G, vanishes across the screen and aper-
ture.

Assuming unit-amplitude normally incident plane-wave illumination, find the angular
spectrum of

(a) A circular apertureof diameter d.
(b) A circular opague disk of diameter d.

Consider areal nonmonochromaticdisturbance u( P, t) of center frequency 3and bandwidth
Av. Let arelated complex-valued disturbance «_ (P,t) be defined as consisting of only the
negative-frequency components of u(P, t). Thus

0

u-(P1) =J U(P, v)exp(j2mvt)dv

where U(P, v) is the Fourier spectrum of «(P, t). Assuming the geometry of Fig. 3.6 show
that if

A—V<<1andi>>ni01
) Av v

then

|

” u_(Py, I)M cos(n, ro1) ds
01

—c

u-(Po, t) =

J

o>

where A = v/ and k = 2#/A. In the above equations, n is the refractive index of the
medium and v is the velocity of propagation.

For awave that travelsonly in directions that have small angles with respect to the optical
axis, the general form of the complex field may be approximated by

U(x, y, 2) = A(x, y, 2) exp(jkz),

where A(x, y, 2) isaslowly varying function of z.
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(8 Show that for such a wave the Helmholtz eguation can be reduced to

aA
V2 + { —_— = ,
,A ]2k Z 0

where V2 = §2/9x2 T d2/dy? is the transverse portion of the Laplacian. This equation
is known as the paraxial Helmholtz equation.
(b) Show that a solution to thisequation is given by
Ay x4+ y?
AX, y,2) = = Sl A
(x,y,2) e exp[jk 39%)

for any complex ¢(z) having dizq(z) =1

(c) Given
11 + A
4@ R@  Jawiay
show that the solution U(x, y, z) takes theform

_ 4. Wo p’ . AP .
U(x, y,2) = Ay W exp[— m} exp [jkz + Jk%@;g} + jO(2)
where W, is a constant (independent of z) and 6(z) is a phase angle that changes with
z. Notethat thisisa beam with a Gaussian profileand with a quadratic-phase approxi-
mation to a spherical wavefront.



CHAPTER 4

Fresnel and Fraunhofer Diffraction

In the preceding chapter the results of scalar diffraction theory were presented in their
most general forms. Attention is now turned to certain approximations to the general
theory, approximations that will allow diffraction pattern calculationsto be reduced to
comparatively simple mathematical manipulations. These approximations, which are
commonly made in many fields that deal with wave propagation, will be referred to
as Fresnel and Fraunhofer approximations. In accordance with our view of the wave
propagation phenomenon as a *'system™, we shall attempt to find approximations that
arevalid for awideclass of "input" field distributions.

4.1
BACKGROUND

In this section we prepare the reader for the calculationsto follow. The concept of the
intensity of a wavefield isintroduced, and the Huygens-Fresnel principle, from which
the approximations are derived, is presented in aform that isespecially well suited for
approximation.

4.1.1 The Intensty of a Wave Field

In the optical region of the spectrum, a photodetector responds directly to the optical
power falling on its surface. Thus for a semiconductor detector, if optical power P is
incident on the photosensitive region, absorption of a photon generates an electron in
the conduction band and a hole in the valence band. Under theinfluence of internal and
applied fields, the hole and electron move in opposite directions, |eading to a photocur-
rent i that is the response to the incident absorbed photon. Under most circumstances
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the photocurrent islinearly proportiona to the incident power,
i = RP. (4-1)
The proportionality constant R iscalled the responsivity of the detector and isgiven by

_ Mgeqd
R = oy 4-2)
where ng. is the quantum efficiency of the photodetector (the average number of
electron-hole pairs released by the absorption of a photon, aquantity that islessthan or
equal to unity in the absence of internal gain), q istheelectronic charge (1.602 x 101
coulombs), hisPlanck's constant (6.626196 X 10~34 joule-second), and v istheoptical
frequency.!

Thusin opticsthedirectly measurablequantity isoptical power, and it isimportant
to relate such power to the complex scalar fields u(P, t) and U(P) dealt with in earlier
discussions of diffraction theory. To understand thisrelation requires areturn to an elec-
tromagnetic description of the problem. We omit the details here, referring the reader
to Ref. [253], Sections 5.3 and 5.4, and simply state the major points. Let the medium
be isotropic, and the wave monochromatic. Assuming that the wave behaveslocally as
atransverse electromagnetic plane wave (i.e. £, H, and k form a mutually orthogonal
triplet), then the electric and magnetic fields can be expressed locally as

£ = Re{E, exp[— jQmvt — k- A1}
H = Re{H, expl—jQmvt — k- A1},
where Eo and H, are locally constant and have complex components. The power flows
in the direction of the vector k& and the power density can be expressed as
Ey-Ey  E}y +E}, + E}
p= 02 0 _ ~ox 1) 4 OZ, (4_4)
U] 27
where 7 is the characteristic impedance of the medium and is given by
i

n= €

(4-3)

In vacuum, n isequal to 37752. The total power incident on a surface of areaA isthe
integral of the power density over A, taking into account that the direction of power
flow isin thedirection of %,

7=l

A

Here 7 is a unit vector pointing into the surface of the detector, while k/|k] isa unit
vector in the direction of power flow. When & is nearly normal to the surface, the total
power P issimply theintegral of the power density p over the detector area.

'The reader may wonder why the generation of both an electron and a hole does not lead to a charge 2q
rather than g in thisequation. For an answer, see [253], p. 653.
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The proportionality of power density to the squared magnitudeof the Eq vector seen
in Eq. (4-4) leads usto define theintensity of a scalar monochromatic wave at point Pas
the squared magnitude of the complex phasor representation U(P) of the disturbance,

I(P) = |U(P)|. (4-5)

Note that power density and intensity are not identical, but the latter quantity isdirectly
proportional to the former. For this reason we regard the intensity as the physically
measurable attribute of an optical wavefield.

When awaveis not perfectly monochromatic, but is narrow band, a straightforward
generalization of the concept of intensity is given by

I(P) =< |u(P,0)]? >, (4-6)

wherethe angle brackets signify an infinite time average. In some cases, the concept of
instantaneousintensity is useful, defined as

I(P.t) = |u(P, D). 4-7)

When calculating a diffraction pattern, we will generally regard theintensity of the
pattern as the quantity we are seeking.

4.1.2 The Huygens-Fresnel Principlein Rectangular Coordinates

Beforeintroducing a seriesof approximations to the Huygens-Fresnel principle, it will
be helpful to first state the principle in more explicit form for the case of rectangular
coordinates. Asshown in Fig. 4.1, thediffracting apertureisassumed to lieinthe (¢, n)
plane, and is illuminated in the positive z direction. We will calculate the wavefield
across the (x, y) plane, which is parallel to the (¢, n) plane and at normal distance z
fromit. The z axis pierces both planes at their origins.

According to Eqg. (3-41), the Huygens-Fresnel principle can be stated as

UPg) = J J up) PR (o6 4, (4-8)
JA o

where 0 is the angle between the outward normal # and the vector 7y, pointing from Pg

to P;. Theterm cos@ isgiven exactly by

FIGURE 41
Diffraction geometry.
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z
cosf = —,
o1

and therefore the Huygens-Fresnel principle can be rewritten

ik
UG = = j f U, mZR g an, @-9)
3 01

where the distance g, is given exactly by
ro = V2 (x - €2+ (y - )P (4-10)

There have been only two approximations in reaching this expression. One is the ap-
proximation inherent in the scalar theory. The second is the assumption that the obser-
vation distance is many wavelengths from the aperture, ro; = A. We now embark on
aseries of additional approximations.

42
THE FRESNEL APPROXIMATION

To reduce the Huygens-Fresnel principle to a more simple and usable expression, we
introduce approximations for the distance ro; between P, and Py. The approximations
are based on the binomial expansion of thesquareroot in Eq. (4-10). Let b bea number
that isless than unity, and consider the expression /1 + b. The binomial expansion of
the square root isgiven by

\/1+b=1+%b—%b2+---, (4-11)

where the number of terms needed for a given accuracy depends on the magnitude
of b.

To apply the binomial expansion to the problem at hand, factor a z outside the
expression for ry;, yielding

2 2
S @12
4 Z

Let the quantity bin Eq. (4-11) consist of the second and third terms under the square
root in (4-12). Then, retaining only thefirst two termsof the expansion (4-11), we have

| /x— £V N2
- zz[l +§(xz§) +%(y z")]. (4-13)

The question now arises as to whether we need to retain all the termsin the approxi-
mation (4-13), or whether only thefirst term might suffice. The answer to this question
depends on which of the several occurrences of ry is being approximated. For the 73,
appearing in the denominator of Eq. (4-9), the error introduced by dropping all terms
but z is generally acceptably small. However, for the ry; appearing in the exponent,
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errors are much more critical. First, they are multiplied by a very large number k, a
typical value for which might be greater than 107 in the visible region of the spectrum
(e.g. A = 5% 1077 meters). Second, phase changes of aslittle asafraction of aradian
can change the value of the exponential significantly. For this reason we retain both
terms of the binomial approximation in the exponent. The resulting expression for the
field at (X, y) therefore becomes
ez ] k
Ux, y) = —” UG, n)eXP{j— [((x =&+ (y - n)z]] dédn, (4-14)
JAZ 2z
where we have incorporated thefinite limitsof the aperturein the definition of U(, 0),
in accord with the usual assumed boundary conditions.
Equation (4-14) isreadily seen to be g convolution, expressible in the form

0

Ulx, y) = J J UG, m) h(x — £ y — m)dé dn (4-15)
where the convolution kernel is
et Jk( 24 2
h(x, y) = j—/\zexp[z—z (x + yo. (4-16)

We will return to this viewpoint a bit later. .
Another form of the result (4-14) is found if the term exp[ 4 (x? + y?)] is factored
outside the integral signs, yielding

‘k 0
Ux, y) = ;J_)\: PEACESD) U { U, n)ejz";(§2+n2)} o B (xE+ym) d¢édn, (4-17)

-—00

which we recognize (aside from multiplicative factors) to be the Fourier transform of
the product of the complex field just to the right of the aperture and a quadratic phase
exponential.

We refer to both forms of the result, (4-14) and (4-17), as the Fresnd diffraction
integral. When this approximation is valid, the observer is said to be in the region of
Fresnel diffraction, or equivalently in the near field of the aperture.?

4.2.1 Postivevs. Negative Phases
We have seen that it is common practice when using the Fresnel approximation to

replace expressions for spherical waves by quadratic-phase exponentials. Thequestion
often arises asto whether the sign of the phase should be positive or negativein agiven

ZRecently an interesting relation between the Fresnel diffraction formulaand an entity known asthe ™ frac-
tional Fourier transform™ has been found. The interested reader can consult Ref. {225] and the references
contained therein.
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expression. Thisquestion isnot only pertinent to quadratic-phase exponentials, but also
arises when considering exact expressions for spherical waves and when considering
plane waves propagating at an angle with respect to the optical axis. We now present
the reader with a methodology that will help determine the proper sign of the exponent
in all of these cases.

Thecritical fact to keepin mind isthat we have chosen our phasorsto rotate in the
clockwise direction, i.e. their time dependence is of the form exp(— j2wvt). For this
reason, if we move in space in such a way as to intercept portions of a wavefield that
were emitted later in time, the phasor will have advanced in the clockwise direction,
and therefore the phase must become more negative. On the other hand, if we movein
space to intercept portions of a wavefield that were emitted earlier in time, the phasor
will not have had timeto rotate asfar in the clockwisedirection, and therefore the phase
must become more positive.

If we imagine observing a spherical wave that is diverging from a point on the Z
axis, the observation being in an (X, y) planethat is normal to that axis, then movement
away from the origin always results in observation of portions of the wavefront that
were emitted earlier in time than that at the origin, since the wave has had to propa-
gate further to reach those points. For that reason the phase must increase in a posi-
tive sense as we move away from the origin. Therefore the expressions exp( jkro;) and
expl[ jz—’;(x2 +y2)] (for positive z) represent adiverging spherical wave and aquadratic-
phase approximation to such awave, respectively. By the sametoken, exp(— jkro;) and
exp[—Jj '2%("2 + y?)] represent a converging spherical wave, again assuming that Z is
positive. Clearly, if z is a negative number, then the interpretation must be reversed,
since a negative sign is hidden in Z.

Similar reasoning applies to the expressions for plane waves traveling at an angle
with respect to the optical axis. Thus for positive a, the expression exp(j2wa y) rep-
resents a plane wave with a wave vector in the (y, z) plane. But does the wave vector
point with a positive angle with respect to the z axisor with a negative angle, keeping in
mind that a positive angle is one that has rotated counterclockwise with respect to the
axis? If we move in the positivey direction, the argument of the exponential increases
in a positive sense, and therefore we are moving to a portion of the wave that was
emitted earlier in time. This can only be trueif the wave vector points with a positive
angle with respect to the z axis, asillustrated in Fig. 4.2.

Wavefront Y
emitted
earlier LS

z Wavefront

emitted ——— 7 FIGURE 42

later \ Determining the sgn o

the phases of exponential
representations of () spherica
) (b) waves and (b) plane waves.

W)
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4.2.2 Accuracy of the Fresnel Approximation

Considering the approximation in the exponent which is the most critical approxima—
tion, it can be seen that the spherical secondary wavelets of the Huygens-Fresnel prin-
ciple have been replaced by wavelets with parabolic wavefronts. The accuracy of this
approximation is determined by the errors induced when terms higher than first order
(linear in b) are dropped in the binomial expansion (4-11). A sufficient condition for
accuracy would be that the maximum phase change induced by dropping the 5%/8 term

be much less than 1 radian. This condition will be met if the distance z satisfies

2> —[(x -6+ (v — D axe (4-18)

For a circular aperture of size 1 cm, a circular observation region of size 1 cm, and a
wavelength of 0.5 wm, this condition would indicate that the distance z must be >> 25
cm for accuracy. However, as the next comment will explain, this sufficient condition
is overly stringent, and accuracy can be expected for much shorter distances.

For the Fresnel approximation to yield accurate results, it is not necessary that the
luguei‘ order terms of the expan31on be small, Oi‘uy that Lucy’ not ui‘c‘ti‘ige the value of the
Fresnel diffraction integral significantly. Considering the convolution form of the result,
Eq. (4-14), if the major contribution to the integral comes from points (¢, 1) for which
& =~ x and n = y, then the particular values of the higher-order terms of the expansion
are unimportant.

To investigate this point more completely, expand the quadratic-phase exponential

of Eq. (4-16) into its real and imaginary parts,

:T(x2+y2>]= ,17{Los[ﬂ;(x +y ]+]sm[w x +y ﬂ (4-19)

JK L7 L/ 1)

J L [ A

A\
N

where we have dropped the unit magnitude phasor e/** simply by redefining the phase
reference, and we have replaced k by 277/A. The volume under this function can readily
be shown to be unity (Prob. 4-1). Figure 4.3 shows plots of one-dimensional quadratic-
phase cosine and sine functions cos(7rx?) and sin(7 x?). Each of these functions has area

1/ \/5 Using this fact it can be shown that all of the unit area under the two-dimensional

1miancinnal cimion
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Figure 4.4 shows the magnitude of the integral of a quadratic-phase exponential

function
i ull\/tl\lll,

‘ﬁc(ﬂx)ﬂ/z—s(ﬁx){

X

[ exp(ijz)dx =
-X

i |

which has also been expressed in terms of the Fresnel integrals C(z) and S(z) mentioned
in Section 2.2. As can be seen from the figure, the integral grows toward its asymptotic
value of unity with increasing X. Note in particular that the integral first reaches unity
when X = 0.5, and then oscillates about that value w1th dimimshmg ﬂuctuations We
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of thisfunction with asecond function that issmooth and slowly varying will comefrom
the range — 2 < X < 2, due to the fact that outside this range the rapid oscillations of
theintegrand do not yield a significant addition to the total area.

For the scaled quadratic-phase exponential of Egs. (4-14) and (4-16), the corre-
sponding conclusion is that the majority of the contribution to the convolution integral
comes from a square in the (£, 5) plane, with width 4/Az and centered on the point
(¢ = x,m = y). This square grows in size as the distance z behind the aperture in-
creases. In effect, when this square lies entirely within the open portion of the aperture,
the field observed at distance z is, to a good approximation, what it would be if the
aperture were not present. When the square lies entirely behind the obstruction of the
aperture, then theobservation point liesin aregion that is, to agood approximation, dark

FIGURE 43
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due to the shadow of the aperture. When the sguare bridges the open and obstructed
parts of the aperture, then the observed field is in the transition region between light
and dark. The detailed structure within these regions may be complex, but the general
conclusions above are correct. Figure 4.5 illustrates the various regions mentioned. For
the case of a one-dimensional rectangular slit, the boundaries between the light region
and the transition region, and between the dark region and the transition region, can be
shown to be parabolas (see Prob. 4-5).

Note that if the amplitude transmittance and/or the illumination of the diffracting
apertureisnot arelatively smooth and slowly varying function, the above conclusions
may not hold. For example, if the amplitude of the field transmitted by the aperture
has a high-spatial -frequency sinusoidal component, that component may interact with
the high frequencies of the quadratic-phase exponential kernel to produce a nonzero
contribution from alocation other than the square mentioned above. Thustherestriction
of attention to the square of width 4 Az must be used with some caution. However,
theideais valid when the diffracting apertures do not contain fine structure and when
they are illuminated by uniform plane waves.

If the distance z isallowed to approach zero, i.e. the observation point approaches
the diffracting aperture, then the two-dimensional quadratic-phase function behavesin
thelimit like adeltafunction, producing afield U(x, y) that isidentical to the aperture
field U(¢, n) in the aperture. In such a case, the predictions of geometrical optics are
valid, for such atreatment would predict that the field observed behind the apertureis
simply ageometrical projection of the aperture fields onto the plane of observation.

Our discussion above is closely related to the principle d stationary phase, a
method for finding the asymptotic values of certain integrals. A good discussion of
this method can be found in Appendix III of Ref. [28]. For other examinations of the
accuracy of the Fresnel approximation, see Chapter 9 of Ref. [227] and also Ref. [271].
Thegeneral conclusions of al of these analysesaresimilar; namely, the accuracy of the
Fresnel approximation isextremely good to distancesthat are very close to theaperture.

4.2.3 The Fresnd Approximation and the Angular Spectrum

Itisof someinterest to understand the implications of the Fresnel approximationsfrom
the point-of-view of the angular spectrum method of analysis. Such understanding can

Aperture
stop
|
|
|
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|
|
: 5
l | FIGURE 45
Incident Light, dark, and transition regions
wavefront behind a rectangular dlit aperture.
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be developed by beginning with Eq. (3-74), which expresses the transfer function of
propagation through free space,

2w /1 — (Afx)? — (A fy)? 2+ fF<i
Hfx, fy) = eprWA\/ (Afx) (Afy) \/?X+fy<,\ (4-20)

0 otherwise.

Thisresult, which is valid subject only to the scalar approximation, can now be com-
pared with the transfer function predicted by the results of the Fresnel analysis. Fourier
transforming the Fresnel diffraction impul se response (4-16), we find (with the help of
Table 2.1) atransfer function valid for Fresnel diffraction,

Jjkz ]
H(fx,fy)=f[jA xp[ 1t +y)]

(4-21)

= ef"zexp[—jm\z(f)? t f,?) :

Thus in the Fresnel approximation, the general spatial phase dispersion representing
propagation is reduced to a quadratic phase dispersion. The factor e/*Z on the right of
this equation represents a constant phase delay suffered by all plane-wave components
traveling between two parallel planes separated by normal distancez. The second term
represents the different phase delays suffered by plane-wave components traveling in
different directions.

Theexpression (4-21) isclearly an approximation to the moregeneral transfer func-
tion (4-20). We can obtain the approximate result from the general result by applying
a binomial expansion to the exponent of (4-20),

Ai) (ARY
f— Afx ) = (AFy) ~1—(€X) —(J;Y), 4-22)

which isvalid provided (Afx| << | and (Afy| << 1. Such restrictionson fy and fy are
simply restrictions to small angles. So we see that, from the perspective of the angular
spectrum, the Fresnel approximation is accurate provided only small angles of diffrac-
tion areinvolved. It isfor this reason that we often say that the Fresnel approximations
and the paraxial approximation are equivalent.

4.2.4 Fresnd Diffraction Between Confocal Spherical Surfaces

Until now, attention has been focused on diffraction between two planes. An alternative
geometry, of more theoretical than practical interest but nonetheless quite instructive,
isdiffraction between two confocal spherical surfaces (see, for example, [24], [25]). As
shown in Fig. 4.6, two spheres are said to be confocal if the center of each lies on the
surface of the other. In our case, the two spheres are tangent to the planes previously
used, with the points of tangency being the points where the z axis pierces those planes.
The distance ry; in our previous diffraction analysisis now the distance between the
two spherical caps shown.
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FIGURE 4.6
Confocal spherical surfaces.

A proper analysiswould write equationsfor theleft-hand spherical surface and for
the right-hand spherical surface, and then use those equations to find the distance ry,
between the two spherical caps. In the process it would be helpful to simplify certain
sguare roots by using the first two terms of their binomial expansions (i.e. to make
paraxial approximations to the spherical surfaces). Theresult of such an analysisisthe
following simple expression for rg, valid if the extent of the spherical caps about the
z-axisissmall compared with their radii:

roi %z—xg/z *)’TI/Z-
The Fresnel diffraction equation now becomes

124
UG y) = 5 || v me TG agan, (4-23)
which, aside from constant multipliers and scale factors, expresses the field observed
on the right-hand spherical cap as the Fourier transform of the field on the left-hand
spherical cap.

Comparison of this result with the previous Fourier-transform version of the Fres-
nel diffraction integral, Eq. (4-17), showsthat the quadratic-phase factorsin (x,y) and
(¢, m) have been eliminated by moving from the two planes to the two spherical caps.
The two quadratic phase factors in the earlier expression are in fact simply paraxial
representations of spherical phase surfaces, and it is therefore reasonable that moving
to the spheres has eliminated them.

One subtle point worth mention is that, when we analyze diffraction between two
spherical caps, itis not really valid to use the Rayleigh-Sommerfeld result as the basis
for the calculation, for that result was explicitly valid only for diffraction by a planar
aperture. However, the Kirchhoff analysis remains valid, and its predictions are the
sameasthose of the Rayleigh-Sommerfeld approach provided paraxial conditions hold.

4.3
THE FRAUNHOFER APPROXIMATION

Before presenting several examples of diffraction pattern calculations, we consider
another more stringent approximation which, when valid, greatly simplifies the cal-
culations. It wasseenin Eq. (4-17) that, in theregion of Fresnel diffraction, theobserved
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field strength U(x, y) can befound from a Fourier transform of the product of the aper-
ture distribution U(£, ) and a quadratic phase function exp[j(k/2z)¢* T g?)]. If in
addition to the Fresnel approximation the stronger (Fraunhofer) approximation

k(§2 + 772)max
2

is satisfied, then the quadratic phase factor under the integral sign in Eq. (4-17) is ap-
proximately unity over theentire aperture, and the observed field strength can befound
(up to a multiplicative phase factor in (x, y)) directly from a Fourier transform of the
aperture distribution itself. Thus in the region of Fraunhofer diffraction (or equiva-
lently, in the far field),
k2 i k(2 4y?) (]
Ulx,y) = ”TJ(J( U, n)exp -j%(xé +yn)| dédn. (4-25)

—%C

Asidefrom multiplicative phasefactors preceding theintegral, thisexpression issimply
the Fourier transform of the aperture distribution, evaluated at frequencies

fx = xlhz

fr = ylhz.

At optical frequencies, the conditions required for validity of the Fraunhofer approxi-
mation can be severe ones. For example, at a wavelength of 0.6 wm (red light) and an
aperture width of 2.5 cm (1 inch), the observation distance z must satisfy

> (4-24)

(4-26)

z > 1,600 meters.

An dternative, less stringent condition, known as the " antenna designer's formula”,
states that for an aperture of linear dimension D, the Fraunhofer approximation will be
valid provided
2
s (4-27)
A

where the inequality isnow > rather than >=>. However, for thisexample the distance z
isstill required to belarger than 2,000 meters. Nonetheless, therequired conditionsare
met in a number of important problems. In addition, Fraunhofer diffraction patternscan
be observed at distances much closer than implied by Eq. (4-24) provided the aperture
is illuminated by a spherical wave converging toward the observer (see Prob. 4-16),
or if a positive lens is properly situated between the observer and the aperture (see
Chapter 5).

Finally, it should be noted that, at first glance, there exists no transfer function
that can be associated with Fraunhofer diffraction, for the approximation (4-24) has
destroyed the space invariance of the diffraction equation (cf. Prob. 2-10). The sec-
ondary wavelets with parabolic surfaces (as implied by the Fresnel approximation)
no longer shift laterally in the (X, y) plane with the particular (¢, n) point under con-
sideration. Rather, when the location of the secondary source shifts, the corresponding
quadratic surfacetiltsin the(x, y) planeby an amount that depends on thelocation of the
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secondary source. Nonetheless, it should not be forgotten that since Fraunhofer diffrac-
tion isonly a special case of Fresnel diffraction, the transfer function (4-21) remains
valid throughout both the Fresnel and the Fraunhofer regimes. That is, it isalways pos-
sibleto calculatediffracted fieldsin the Fraunhofer region by retaining thefull accuracy
of the Fresnel approximation.

4.4
EXAMPLESOF FRAUNHOFER DIFFRACTION PATTERNS

We consider next several examples of Fraunhofer diffraction patterns. For additional
examples the reader may consult the problems (see Probs. 4-7 through 4-10).

Theresultsof the preceding section can beapplied directly tofind thecomplex field
distribution acrossthe Fraunhofer diffraction pattern of any given aperture. However, of
ultimate interest, for reasons discussed at the beginning of this chapter, istheintensity
rather than the complex field strength. The final descriptionsof the specificdiffraction
patterns considered here will therefore be distributionsof intensity.

441 Rectangular Aperture

Consider first arectangular aperture with an amplitude transmittance given by

ta€. m) = rect(2§ )rect(zzy)

The constants wx and wy are the half-widths of the aperturein the ¢ and n directions.
If the apertureisilluminated by a unit-amplitude, normally incident, monochromatic
plane wave, then thefield distribution across the aperture isequal to the transmittance
function 4. Thus using Eq. (4-25), the Fraunhofer diffraction patternis seen to be

eIk gi (X +y)

iz FUE 7}

Ux,y) =

fr=xIAz
fr=y/Az

Noting that F{U (¢, n)} = A sinc(Rwy fx) sinc(2wy fy), whereA istheareaof the aper-
ture (A = 4wxwy), wefind

eJkZeJT(x +y2) 2 3.....“
U(x,y) = ——jhz— Asinc OXT ) sine (2212 ),
Az Az

and

2
I(x,y) = —A—Z— sinc? (2»;;@) sinc? (Zv)t:;y ) (4-28)

Figure 4.7 shows a cross section of the Fraunhofer intensity pattern along the x
axis. Note that the width of the main lobe (i.e. the distance between the first two ze-
ros) is
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Normalized
intensity
FIGURE 4.7
Cross section of the Fraunhofer
2wyx/ Az diffraction pattern of a rectangular
-3 1 2 3 aperture.

FIGURE 4.8
The Fraunhofer diffraction pattern of a rectangular aperture (wx/wy = 2).
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Ax = —. (4-29)

Figure 4.8 shows a photograph of thediffraction pattern produced by a rectangular
aperture with a width ratio of wx/wy = 2.

44.2 Circular Aperture

Consider adiffracting aperturethat iscircular rather than rectangular, and let theradius
of the aperture bew. Thusif qis a radius coordinate in the plane of the aperture, then

ta(q) = ci rc(i).

w

Thecircular symmetry of the problem suggests that the Fourier transform of Eq. (4-25)
be rewritten as a Fourier-Bessel transform. Thus if r is the radius coordinate in the
observation plane, we have

Jkz )
Ur) = '5'/\2‘ exp(j%)B{U(q)} (4-30)

p=riAz

whereq = /€2 + n? representsradiusin the aperture plane, and p = /f# + f# rep-
resents radius in the spatial frequency domain. For unit-amplitude, normally incident

plane-waveillumination, thefield transmitted by the apertureisequal to the amplitude

transmittance; in addition,
Blare(2] = 42872

TWP

where A = 7w?. The amplitude distribution in the Fraunhofer diffraction pattern is
seen to be

U(r) = el
0= ret g

’

12 .A [ZJI kw /z)]

and theintensity distribution can be written

AV Jl(kwr/z)]2
&) [P @31

I(r) = (

Thisintensity distribution is referred to as the Ary pattern, after G.B. Airy who first
derived it. Table 4.1 shows the values of the Airy pattern at successive maxima and
minima, from which it can be seen that the width of the central lobe, measured along
thex ory axis, isgiven by

d = I.ZZE. (4-32)
w
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TABLE 4.1
L ocations of maxima and minima of the
Airy pattern.
i
[21 1(77x) T max,
x wx min
0 1 max
1.220 0 min
1.635 0.0175 max
2.233 0 min
2.679 0.0042 max
3.238 0 min
3.699 0.0016 max

Figure4.9 showsa cross section of the Airy pattern, while Fig. 4.10isaphotograph
of the Fraunhofer diffraction pattern of acircular aperture.

4.4.3 Thin Sinusoidal Amplitude Grating

In the previous examples, diffraction was assumed to be caused by aperturesin infinite
opaque screens. In practice, diffracting objects can be far more complex. In accord
with our earlier definition (3-68), the amplitude transmittance ¢4(£, i) of a screen is
defined as the ratio of the complex field amplitude immediately behind the screen to
the complex amplitude incident on the screen. Until now, our examples have involved
only transmittance functionsof the form

_ [ 1 intheaperture
a6, m) = [0 outside the aperture.

It is possible, however, to introduce a prescribed amplitude transmittance function
within a given aperture. Spatial attenuation can be introduced with, for example, an
absorbing photographic transparency, thus allowing real values of ¢4 between zero
and unity to be realized. Spatial patterns of phase shift can beintroduced by means of
transparent platesof varying thickness, thusextending the realizable values of z4 to all
points within or on the unit circlein the complex plane.

Normalized
intensity
FIGURE 49
Cross section of the Fraunhofer
diffraction pattern of a circular
3 2 1 2 3 2R paure
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FIGURE 410
Fraunhofer diffraction pattern of acircular aperture.

As an example of this more general type of diffracting screen, consider a thin si-
nusoidal amplitude grating defined by the amplitude transmittance function

ty(é,m) = % + % cos(277f0§)] rect (i%) rect (%) 4-33)
where for simplicity we have assumed that the grating structureis bounded by a square
aperture of width 2w. The parameter m represents the peak-to-peak change of ampli-
tude transmittance across the screen, and f; isthe spatial frequency of the grating. The
term thin in this context means that the structure can indeed be represented by asimple
amplitude transmittance. Structures that are not sufficiently thin can not be so repre-
sented, a point we shall return toin alater chapter. Figure 4.11 shows a cross section of
the grating amplitude transmittance function.

If the screen is normally illuminated by a unit-amplitude plane wave, the field
distribution across the apertureis equal simply to¢4. To find the Fraunhofer diffraction
pattern, wefirst Fourier transform

1

1
}-[5 + %COS(Z?Tfo)} = 55(fx, Jr)

+ T8+ fo fr) + T8k — fo fr) (4-34)
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t
1'0T A

0.5

Pu—

FIGURE 411
£ Amplitude transmittance function o the
sinusoidal amplitude grating.

and

F {rect (2—%) rect (2135 )] = Asinc(2w fy) sinc(2w fy),

the convolution theorem can be used to write

FUE 7)) = % sinc(2w fy) {sinc(Zw fx) + -’27—1 sinc [2w( fx + fo)]

+% sinc [2w(fx — fo)]} ,
whereA signifies theareaof the aperture bounding the grating. The Fraunhofer diffrac-
tion pattern can now be written

A o iko2ny . 2wy . 2wx
= Jkz 4 j 3 (x°+y)
U(x, y) j2/\ze el smc( v ){smc( v )

+ —’;—sinc [%\l:—(x + fo)tz)] + g—sinc [%(x - foz\z)]} . (4-35)

Finally, the corresponding intensity distribution is found by taking the squared
magnitude of Eq. (4-35). Note that if there are many grating periods within the aper-
ture, then f, > 1/w, and there will be negligible overlap of the three sinc functions,
allowing theintensity to becal culated asthe sum of the squared magnitudes of thethree
termsin (4-35). Theintensity isthen given by

1A 2 o 2wy\[. o [2wx
I(x, y) = [m] sinc (—A?){smc v

2 2
m . 52w m- . oal2w, i
+ —4—smc [—/\—Z(x + foz\z)] + 1 sinc [/\Z (x fo/\z)]}. (4-36)
Thisintensity patternisillustrated in Fig. 4.12. Notethat some of theincident light
isabsorbed by the grating, and in addition the sinusoidal transmittance variation across
the aperture has deflected some of the energy out of the central diffraction pattern into
two additional side patterns. The central diffraction pattern is called the zero order of
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Normalized
14 intensity

/\ FIGURE 412
aN 1

y ' Fraunhofer diffraction pattern for a thin
—Azfg —=| Az |a— AZfp X sinusoidal amplitude grating.

the Fraunhofer pattern, whilethetwo side patternsare called the first orders. The spatial
separation o the first orders from the zero order is fyAz, while the width of the main
lobe df all ordersisAz/w.

Another quantity of some practical interest in both holography and optical informa-
tion processingis the diffraction efficiency of the grating. The diffraction efficiency is
defined as the fraction of the incident optical power that appearsin asinglediffraction
order (usualy the +1 order) of the grating. The diffraction efficiency for the grating
o interest can be deduced from Eq. (4-34). The fraction of power appearing in each
diffraction order can be found by squaring the coefficientsof the deltafunctionsin this
representation, for it is the deltafunctions that determine the power in each order, not
the sinc functionsthat simply spread these impulses. From this equation we conclude
that thediffractionefficienciesng, n+1, 71— associated with the threediffraction orders
aregiven by

10 = 0.25
N+ = m*16 (4-37)
n-1 = m2/16

Thus asinglefirst diffraction order carriesat most 1/16 = 6.25% o the incident
power, a rather small fraction. If the efficiencies of the three orders are added up, it
will be seen that only 1/4 + m?/8 of thetotal is accounted for. Therest is lost through
absorption by the grating.

4.4.4 Thin Snusoidal Phase Grating

As afinal example o Fraunhofer diffraction calculations, consider a thin sinusoidal
phase grating defined by the amplitude transmittancefunction

_ el i™s £ Veat[ L ]
t4(€,m) = exp [] > sm(277f0§)] rect (2W) rect (2W) (4-38)
where, by proper choice of phase reference, we havedropped afactor representing the
average phase delay through the grating. The parameter m represents the peak-to-peak
excursion o the phasedelay.



82 Introductionto Fourier Optics

If the grating isilluminated by a unit-amplitude, normally incident plane wave,
then the field distribution immediately behind the screen is given precisely by Eq.
(4-38). Theanalysisissimplified by use of theidentity

exp[ iz sin (27 fo& ] Z Jq( )exp (j27mq fof)
q——OO
where J, isaBessel function of thefirst kind, order g. Thus
.m . - m
f{exp [15 Sln(27Tf0§)]} = 2> (7) Sfx—afe fr) (439
g=—»

and
f{U(g’ 1’)} = ~¢.{tA(§9 77)}

]

[A sinc(2w fx) sincw fy)] ®

qg= —o0

Z J ( )3(fx - qfo fy)]

— Z AJ, ( )SI nc[2w(fx - qfo)] sinc2w fy).

qg=-a

Thus thefield strength in the Fraunhofer diffraction pattern can be written

A 2
jkz J L (x2+y?)
Ulx,y) = J . el

g=-= S

Az

If we again assume that there are many periods of the grating within the bounding
aperture (fy => 1/w), thereis negligible overlap of the various diffracted terms, and
the corresponding intensity pattern becomes

I(x, y) = ( ) Z 12( )smc [—%(x—qfox\z)Jsincz(zl\Lzy) (4-41)

g=—

x > Jq(:f )sinc[_g;\—”_:(x - qfo)\z)] Sinc(i“"’?), (4-40)

The introduction of the sinusoidal phase grating has thus deflected energy out of
the zero order |nto a multitude of higher orders. The peak intensity of the gth order is
[AJ (m/2)//\z] while the displacement of that order from the center of thediffraction
pattern IS qfoAz. Figure 4.13 shows a cross section of the intensity pattern when the
peak-to-peak phase delay m is 8 radians. Note that the strengths of the various orders
are symmetric about the zero order.

Thediffraction efficiency of the thin sinusoidal phase grating can be found by de-
termining the squared magnitude of the coefficientsin Eq. (4-39). Thusthe diffraction
efficiency of the gth order of thisgrating is

ng = JX(ml2). (4-42)
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Normalized
intensity
0.2

: L | A U FIGURE 4.13

' . ‘ i «  Fraunhofer diffraction pattern for a thin
-4Azfy  —2Azfy ——| |—— 2azfy 4z sinusoidal phase grating. The *1 orders

Aziw have nearly vanished in this example.

Figure 4.14 shows a plot of n, vs. m/2 for various values of g. Note that whenever
m/2 isaroot of Jo, the central order vanishes entirely! The largest possible diffraction
efficiency into oneof the t1and — 1 diffraction ordersisthemaximumvalueof J2. This
maximum is33.8%, far greater than for the case of athin sinusoidal amplitude grating.
No power isabsorbed by thisgrating, and therefore the sum of the powers appearing in
all orders remains constant and equal to theincident power as mis changed.

4.5
EXAMPLESOF FRESNEL DIFFRACTION CALCULATIONS

In a previous section, several different methods for calculating Fresnel diffraction pat-
terns have been introduced. For the beginner, it is difficult to know when one method
will beeasier than another, and therefore in this section two examplesare presented that
provide some insight in this regard. The first example, Fresnel diffraction by a square
aperture, illustrates the application of the classical approach based on the convolution
representation of the diffraction calculation. The second example, Tabot imaging, il-
lustrates a case in which a frequency-domain approach has a large advantage.

2
Jq (m/2)

FIGURE 4.14
Diffraction efficiency J;(m/2) vs.
m/2 for three values of q.
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45.1 Fresnd Diffraction by a Square Aperture

Suppose that a squareaperture of width 2w isnormally illuminated by a monochromatic
planewaveof unit amplitude. Thedistribution of complex field immediately behind the
apertureis

2w

U, n) = rect (—g—) rect (%)

The convolution form of the Fresnel diffraction equation is most convenient for this
problem, yielding

jkz ¢
UGy = o f f exp{j{z- (= €72+ (y— n)z]} dédn.

—W

Thisexpression can be separated into the product of two one-dimensional integrals,

ikz
UGx, y) = "’J. TOIT() (4-43)
where

1 w

I(x) = \/—)\_J exp [j%(f - x)z] 3
Z -w

_ L (" T2
1(y) = \/A—ZJ_WCXP[J T y)Jdn-

To reduce these integrals to expressions that are related to the Fresnel integrals men-
tioned on several previous occasions, make the following change of variables:

2 2
a=\//\:z(§_x) B = Xg(”l—)’),

2]
[ e
)

B2
1) = = | " exe 582 .
8

yielding

I(x) =

Y

a2> da

—_ x“._
(o]

where thelimits of integration are

/2 2
@ = — E(w+x) oy = )t_z(w X)

2 2
B = —\//\:Z(wﬂ’) B = ;\—Z(w—y).
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At this point we define the Fresnel number, N = w?/Az, and weintroduce normalized
distance variablesin theobservation region, X = xIVAzand Y = y/V/Az, yieldingsim-
pler expressions for the limits of integration,

6¥1=—\/§(\/N_F+X) a; = ﬁ(ﬁ—x)
Br=-V2(/Nr+Y)  B= V2(VNr-7Y)

TheintegralsZ(x) and Z(y) arerelated to the Fresnel integrals C(z) and S(z) of Sections
2.2 and 4.2. Noting that

a) oy a)
qu exp(;%az) da = J exp(j%az) da —J exp (j-;zaz) da,
[+ 3] 0 0

we can write

(4-44)

1
I(x) = —={[Cla2) = C(a)] + j[S(@2) — S(an)]]

J2

(4-45)
70) = (02— C(B) + i [B) ~ S(BY))-
Finally, substitution of (4-45) in (4-43) yields a complex field distribution
Ulx,y) = e—z{j.—z{[c(az) = C(ay)] + j[S(az) = S(apl}
XA[C(B2) — C(BV] + jIS(B2) — S(BVI}- (4-46)

Now recall from Section 4.1 that the measurable physical quantity is the intensity of
the wavefield, I(x, y) = |U(x, y)|?>, whichin this caseis given by

1x,y) = Z{C(@2) = C@n + [S(@2) = S@)P}

X A{[C(B2) — C(BI* + [S(B2) — S(BNI*}. (4-47)

The Fresnel integrals are tabulated functions and are available in many mathemat-
ical computer programs (e.g. see Ref. [302], p. 576).2 It is therefore a straightforward
matter to calculate the above intensity distribution. Note that, for fixed w and A, as
z increases the Fresnel number Nr decreases and the normalization increasingly en-
larges the true physical distance represented by a fixed distance on the x axis. Figure
4.15 shows a series of graphs of the normalized intensity distribution along the x axis
(y = 0) for various normalized distances from the aperture, as represented by different
Fresnel numbers.

3In the pad it has been customary to introduce a graphical aid known as" Cornu's spiral" as a tool for
estimatingvaluesof Fresnd integrals.M odem computer softwar e packagesthat contain the Fresnd integrals
have madethis graphical aid largely obsolete, so we have omitted it here.
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FIGURE 4.15
Fresnel diffraction patterns a different
distances from a square aperture.
Distance increases as the Fresne
number Ng shrinks. The size of the
x  original rectangular apertureis indicated
3 -2 - 1.2 3 4 by the shaded boxes.

-4

Attention is called to thefact that, as the observation plane approaches the plane of
the aperture (Nr becomes large), the Fresnel kernel approaches the product of a delta
function and afactor /%%, and the shape of thediffraction pattern approaches the shape
of theapertureitself. Infact, thelimit of this processisthe geometrical optics prediction
of thecomplex field,
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y
U(x, y,2) = elkzy(yx, y,0) = e/¥ reci w) rect (2—w>

where, to avoid confusion, we haveexplicitly included thez coordinate in the argument
of the complex field U.

Note also that, as the distance z becomes large (Nr grows small), the diffraction
pattern becomes much wider than the size of the aperture, and comparatively smooth
inits structure. In this limit the diffraction pattern is approaching the Fraunhofer limit
discussed earlier.

4.5.2 Fresnd Diffraction by a Sinusoidal AmplitudeGrating=- Talbot | mages

Our final example of a diffraction calculation considers again the case of a thin sinu-
soidal amplitude grating, but this time within the region of Fresnel diffraction rather
than Fraunhofer diffraction. For simplicity we neglect the finite extent of the grating
and concentrate on the effects of diffraction and propagation on the periodic structure of
thefields transmitted by thegrating. In effect, wearelimiting attention to the central re-
gion of the Fresnel diffraction pattern associated with any bounding aperture, between
the two transition regionsillustrated in Fig. 4.5.

The geometry isillustrated in Fig. 4.16. The grating is modeled as a transmitting
structure with amplitude transmittance

ta€,m) = % [1 + mcos(27r§/L)]

with period L and with the grating lines running parallel to the n axis. The field and
intensity will be calculated some distance z to theright of the grating. The structureis
assumed to beilluminated by a unit-amplitude, normally incident plane wave, so the
field immediately behind the grating is equal to the amplitude transmittance written
above.

There are several possible approachesto calculating the fields behind the grating.
We could use the convolution form of the Fresnel diffraction equation, i.e. EQ. (4-14),
or the Fourier transform form of Eq. (4-17). Alternatively, we could use the transfer
function approach represented by Eq. (4-21), and reproduced here as

H(fx, fr) = exp{—jmAz(ff + [}, (4-48)
Grating
n structure y
T " x
/
- z > FIGURE 416
Geometry for diffraction calculation.
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where we have omitted a constant term exp(jkz). In this problem, and indeed in any
problem that deals with a purely periodic structure, the transfer function approach will
yield the simplest calculations, and we adopt that approach here.

Thesolution beginsby first finding the spatial frequency spectrumof thefield trans-
mitted by the structure. To that end we Fourier transform the amplitude transmittance
above, yielding

Flta€, )} = %a(fx, fr)+ %5( X — fY)"' — 6 (fX + = fY) (4-49)

Now the above transfer function has value unity at the origin, and when evaluated at
frequencies (fx, fr) = (x1,0) yields

i LTTAZ
+_ = _;07< -
H(_ I O) exp{ J Tz } (4-50)

Thus after propagation over distance Z behind the grating, the Fourier transform of the
field becomes

F{U(x, y)} = %a(fx,fy)-f- %e_j%ﬁ( Y — %,fy)-i- %e_j%a(fx + %, fy)

Inverse transforming this spectrum we find the field at distance z from the grating to be
given by

Ulx,y) = % %e_j%ej% + %e_’ﬂ?ge i
which can be simplified to
1 j= 2mTXx
Ux,y) = 5 1 +me cos A (4-51)

Finally, theintensity distribution is given by
TAZ 27X 27x
+ + m2cos?2 (222 -
I(x,y) = 21[1 2mcos( 17 )cos( 7 ) m< cos ( T )J (4-52)

We now consider three special cases of this result that have interesting interpreta-
tions.

1. Suppose that the distance z behind the grating satisfies "L"Z =2nmorz= Z”ALZ,
wherenisan integer. Then theintensity observed at thisdistance behind the grating

is
I 23\
I(x,y) = [1 + mcos< :x)]

which can be interpreted as a perfect image of the grating. That is, it is an exact
replicaof theintensity that would beobserved just behind thegrating. A multiplicity
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of such images appear behind the grating, without the help of lenses! Such images
arecalled Talbot images (after the scientist who first observed them), or simply self-
images. A good discussion of such imagesisfound in Ref. [280].

2. Suppose that the observation distance satisfies 74 = (2n+ Dmr, or z =

Then
1 2mx\f
T
I(x,y) = Z[l - mcos(—i—)] .

This distribution is also an image of the grating, but this time with a 180° spatial
phase shift, or equivalently with a contrast reversal. This, too, is called a Talbot
image. N

3. Finadly, consider distances satisfying ”T"zl =(2n - DHZ, or z = i f)L . Then
cos("L—éz) = 0, and

1 2 of2mx}| 1 m? m? 4mrx
I(x,y)——z[l+m COS (T>:|—Z[(l+7)+ —2-COS -—L—— .

Thisimage hastwicethefrequency of theoriginal grating and has reduced contrast.
Such an image is called a Talbot subimage. Note that if m << 1, then the periodic
image will effectively vanish at the subimage planes.

2
%\HI .

Figure 4.17 shows the locations of the various types of images behind the original
grating.

The Talbot image phenomenon is much more general than just the particular case
analyzed here. It can be shown to be present for any periodic structure (see Prob. 4-18).

Talbot subimages

/N-ﬁ

| |
—_— t | 1 1 | 1
ey b y !
| i I | | I I | |
—
A
—,
P T T R T
——. ! | ] ] | '
| } | | I ) |
Grating Phase- Talbot Phase- Talbot
reversed image reversed image
Talbot Talbot
image image
le— 212 A—»]
FIGURE 4.17

Locationsof Talbot image planes behind the grating.
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PROBLEMS-CHAPTER 4

4-1.

4-2.

44,

4-6.

Consider the quadratic-phase exponential 3 exp[Jj i (x* + ¥2))-
(a) Show that the volume (with respect to x and y) under this function is unity.

(b) Show that the two-dimensional quadratic-phase sinusoidal part of this function con-
tributes all of the volume and the two-dimensional quadratic-phase cosinusoidal part
contributes none of the volume.

(Hint: Make use of Table 2.1.)

Consider a spherical wave expanding about the point (0, 0, —zo) in a cartesian coordinate
system. The wavelength of thelight is A, and zg > 0.

(a) Express the phase distribution of the spherical wave across an (x, y) plane located
normal to the z axisat coordinate z = 0.

(b) Using aparaxial approximation, express the phase distribution of the parabolic wave-
front that approximates this spherical wavefront.

(c) Find an exact expression for the phase by which the spherical wavefront lags or leads
the phase of the parabolic wavefront. Doesit lag or lead?

. Consider aspherical wave converging towards the point (0, 0, +zo) in acartesian coordi-

nate system. The wavelength of thelight isA and zo > 0.

(a) Express the phase distribution of the spherical wave across an (X, y) plane located
normal to the z axis at coordinate z = 0.

(b) Using aparaxial approximation, express the phase distribution of the parabolic wave-
front that approximates this spherical wavefront.

(c) Find an exact expression for the phase by which the spherical wavefront lagsor leads
the phase of the parabolic wavefront. Doesit lag or lead?

Fresnel propagation over a sequence of successivedistanceszi, 22, .. ., Z» must be equiv-
alent to Fresnel propagation over thesingledistancez = z; t 22 t+-. + z,.. Find asimple
proof that thisisthe case.

. Show that the top "transition region™ shown in Fig. 4.5 is bounded by the parabola

(W — x)? = 4\z and the bottom transition region by (w * x)? = 4Az, where the aperture
is2w wide, the origin of the coordinates is a the center of the aperture, z is the distance
from the plane of the aperture, and x is the vertical coordinate throughout the figure.

A spherical wave is converging toward a point (0, 0, zp) to the right of acircular aperture
of radius R, centered on (0, 0, 0). The wavelength of the light is A Consider the field
observed at an arbitrary point (axial distance z) to the right of the aperture. Show that
the wavefront error made in a paraxial approximation of the illuminating spherical wave
and theerror incurred by using a quadratic phase approximation in the Fresnel diffraction
equation partially cancel one another. Under what condition does compl ete cancellation
occur?
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47. Assuming unit-amplitude, normally incident plane-wave illumination:

(8 Find the intensity distribution in the Fraunhofer diffraction pattern of the double-dlit
aperture shown in Fig. P4.7.

(b) Sketch normalized cross sections of this pattern that appear along the x and y axes
in the observation plane, assuming X/Az = 10m~!, ¥/Az = 1m~!, and Alhz =
312m™!, z being the observation distance and A the wavelength.

FIGURE R4 7

4.8. (a) Sketch the aperturedescribed by the amplitude transmittance function
]
1) = {[rect(§)rect(fyl)J® [% comb(ﬁ)&(f)” rect(m>

where N isan odd integer and A > Y.

(b) Find an expression for the intensity distribution in the Fraunhofer diffraction pattern
of that aperture, assuming illumination by a normally incident plane wave.

(c) What relationship between Y and A can be expected to minimize the strength of the
even-order diffraction components while leaving the zero-order component approxi-
mately unchanged?

4-9. Find an expression for the intensity distribution in the Fraunhofer diffraction pattern of
the aperture shown in Fig. P4.9. Assume unit-amplitude, normally incident plane-wave
illumination. The apertureis square and has a square central obscuration.

FIGURERL9
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4-10. Find an expression for the intensity distribution in the Fraunhofer diffraction pattern of

the aperture shown in Fig. P4.10. Assume unit-amplitude, normally incident plane-wave
illumination. The apertureis circular and has acircular central obscuration.

. | 2wo

FIGURE P4.10

4-11. Twodiscretespectra linesof asourcearesaid to be"just resolved" by adiffraction grating

4-12.

if the peak of the 9th-order diffraction component due to source wavelength A; fallsex-
actly on thefirst zero of the 9th-order diffraction component due to source wavelength As.
The resolving power of the grating is defined as the ratio of the mean wavelength A to
the minimum resolvable wavelength difference AA. Show that the resolving power of the
sinusoidal phase grating discussed in thischapter is

A
A 2gwfo = gM

where g is the diffraction order used in the measurement, 2w is the width of the square
grating, and M is the number of spatial periods of the grating contained in the aperture.
What phenomenon limits the use of arbitrarily high diffraction orders?

Consider athin periodic grating whose amplitude transmittance can be represented by a
complex Fourier series,

) = > crel T
whereL isthe period of the grating and
L2
a=1| n@©TE
L) in
Neglect theaperture that boundsthegrating, sinceit will not affect thequantitiesof interest
here.

(a) Show that the diffraction efficiency into the kth order of the grating issimply nx =
|Ck|2.

(b) Calculate the diffraction efficiency into the first diffraction order for a grating with
amplitude transmittance given by
3
CosS (T )‘

ta() =
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4-13. The amplitude transmittance function of a thin square-wave absorption grating is shown

in Fig. P4. 13. Find the following properties of thisgrating:
(& Thefraction of incident light that i s absorbed by the grating.
(b) Thefraction of incident light that is transmitted by the grating.

(c) Thefraction of light that is transmitted into a singlefirst order.

tal€)
1/2tm, # o 17244,

AN A

\{_

4-14.

415.

4-16.

le— L —»| FI GURER. 13

A thin square-wave phase grating has a thickness that varies periodically (period L) such
that the phase of the transmitted light jumps between 0O radians and ¢ radians.

(a) Find thediffraction efficiency of thisgrating for thefirst diffraction orders.

(b) What value of ¢ yields the maximum diffraction efficiency, and what is the value of
that maximum efficiency?

A "sawtooth” phase grating is periodic with period L and hasadistribution of phasewithin
one period from O to L given by
2mé
I
(8 Find thediffraction efficiencies of al of the ordersfor this grating.

&(¢) =

(b) Suppose that the phase profiledf the grating is of the more general form

_ bt
&) = 2=

Find a general expression for the diffraction efficiency into all the ordersof this new
grating.

An aperture > in an opagque screen isilluminated by a spherical wave converging towards
apoint Plocated in aparallel plane adistance z behind the screen, asshownin Fig. P4. 16.

(8) Find a quadratic-phase approximation to the illuminating wavefront in the plane of
the aperture, assuming that the coordinates of Pin the (x, y) plane are (O, Y).

(b) Assuming Fresnel diffraction from the plane of the aperture to the plane containing
P, show that in the above case the observed intensity distribution is the Fraunhofer
diffraction pattern of the aperture, centered on the point P.
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4-17.

4-18.

4-19.

4-20.
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FIGURE P4.16

Find the intensity distribution on the aperture axis in the Fresnel diffraction patterns
of apertures with the following transmittance functions (assume normally incident, unit-
amplitude, plane-waveillumination):

(@) ta& m) = circ JE + 72,
(b) taé,m) = {1 a=< JE+792<b

0 otherwise
wherea < |, b< 1 anda< b.

Consider a one-dimensional periodic object with an amplitude transmittance having an
arbitrary periodic profile. Neglect the size of any bounding aperture, ignore the evanes-
cent wave phenomenon, and assume that paraxial conditions hold. Show that at certain
distances behind this object, perfect images of the amplitude transmittance are found. At
what distances do these " self-images™ appear?

A certain two-dimensional non-periodic object has the property that all of the frequency
components of itsamplitude transmittancefall on circlesin the frequency plane, the radii
of the circles being given by

Pm = v2ma m=0123,...,

where a is a constant. Assume uniform plane-wave illumination, neglect the finite size
of the object and the evanescent wave phenomenon, and assume that paraxial conditions
hold. Show that perfect images of the object form at periodic distances behind the object.
Find the locations of these images.

A certain circularly symmetric object, infinite in extent, has amplitude transmittance
ta(r) = 2aJo(2ar) + 4mwy(4mr)

where J, is a Bessel function of the first kind, zero order, and r is radius in the two-
dimensiona plane. Thisobject isilluminated by anormally incident, unit-amplitude plane
wave. Paraxial conditions are assumed to hold. At what distances behind this object will
we find a field distribution that is of the same form as that of the object, up to possible
complex constants? (Hint: The Fourier transform of the circularly symmetric function
Jo(2mr) isthecircularly symmetric spectrum 5= 8(p - 1).)
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4-21. Anexpandingcylindrical wavefallsonthe™input™ plane of an optical system. A paraxial
approximation to that wave can be written in theform

. T
Uy) = exP{JA_zo [(n — )’0)2]} ,
where A isthe optical wavelength, while zo and yo are given constants. Theoptical system
can be represented by a paraxial ABCD matrix (see Appendix B, Section B.3) that holds
between the input and output planes of the system. Find a paraxial expression for the
complex amplitude of thefield acrossthe™ output™ plane of the optical system, expressing
theresultsintermsof arbitrary elementsof theray matrix. Assumethat therefractiveindex
in the input and output planesis unity. You may treat this problem as one-dimensional.



CHAPTER 5

R

GRS

ave-Optics Analysis of Coherent
Optical Systems

The most important components of optical imaging and data processing systems are
lenses. While a thorough discussion of geometrical optics and the properties of lenses
would be helpful, such atreatment would requirearather lengthy detour. To provide the
most rudimentary background, Appendix B presents a short description of the matrix
theory of paraxial geometric optics, defining certain quantities that will be important in
our purely ""wave-optics” approach in thischapter. The reader will be referred to appro-
priate material in the appendix when needed. However, the philosophy of our approach
isto make minimum useof geometrical optics, and instead to develop purely wave-optic
analyses of the systems of interest. The results of this approach are entirely consistent
with the results of geometrical optics, with the added advantage that diffraction effects
areentirely accountedfor in the wave-opticsapproach, but not in thegeometrical-optics
approach. Our discussions will be limited to the case of monochromatic illumination,
with generalization to nonmonochromatic light being deferred to Chapter 6.

51
A THIN LENS AS A PHASE TRANSFORMATION

A lensiscomposed of an optically dense material, usually glass with a refractive index
of approximately 1.5, in which the propagation velocity of an optical disturbanceis
less than the velocity in air. With reference to Appendix B, alensissaid to be a thin
lensif aray entering at coordinates (x, y) on one face exits at approximately the same
coordinates on the opposite face, i.e. if thereisnegligible trandlation of aray within the
lens. Thus a thin lens simply delays an incident wavefront by an amount proportional
to the thickness of the lens at each point.

Referring to Fig. 5.1, let the maximum thickness of thelens (on itsaxis) be Ag, and
let the thickness at coordinates (x, y) be A(x, y). Then the total phase delay suffered by
the wave at coordinates (X, y) in passing through the lens may be written
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AY 1 ]
: — Alxy)
X AO
N/ FIGURE 5.1
b The thickness function. (a) Front view,
(a) (b) (b) Side view

d(x, y) = knA(x, y) + k[Ap — A(x, )]

where n is the refractive index of the lens material, knA(x, y) is the phase delay intro-
duced by thelens, and k[A¢ — A(x, y)] is the phase delay introduced by the remaining
region of free space between the two planes. Equivalently the lens may be represented
by a multiplicative phase transformation of the form

1(x, y) = expljkAo] expljk(n — 1A(x, y)I. (-1

The complex field U, (x, y) across a plane immediately behind the lens is then related
to the complex field U;(x, y) incident on a plane immediately in front of the lens by

Ui(x, y) = ti(x, y) Ui(x, y). (5-2)

The problem remains to find the mathematical form of the thicknessfunction A(x, y) in
order that the effects of the lens may be understood.

5.1.1 The ThicknessFunction

In order to specify the forms of the phase transformations introduced by a variety of
different types of lenses, we first adopt a sign convention: as rays travel from left to
right, each convex surface encountered is taken to have a positive radius of curvature,
while each concave surface is taken to have a negative radius of curvature. Thus in
Fig. 5.1(b) theradiusof curvatureof theleft-hand surfaceof thelensisa positive number
R;, whiletheradiusof curvature of the right-hand surface isa negative number R;.
Tofind the thicknessA(x, y), we split thelensinto three parts, asshownin Fig. 5.2,
and write thetotal thicknessfunction asthe sum of three individual thicknessfunctions,

A(x, y) = Ai(x, ) + Ba(x, y) + Asz(x, y). (5-3)
Referring to the geometries shown in that figure, the thicknessfunction A; (x, y) isgiven

by
Ai(x,y) = Apr — (Rl - JRi— % - )’2)

(5-4)
x2+ 2
=A01—R1<1— 1 — R%y).
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A3 — r— Calculation of the thickness function.
(a) Geometry for Ay, (b) geometry for A,,
(©) and (c) geometry for As.

The second component of the thickness function comes from a region of glass of con-
stant thickness Ag,. The third component is given by

2_|__y2
=Ap+Rf1- 1-2 ,
03 2( R% )

where we havefactored the positive number — R, out of the square root. Combining the
three expressionsfor thickness, the total thicknessis seen to be

2 2 2 2
A(x,y)=A0—R1(1— 1—";'2y)+1e2(1— 1—";2)’), (5-6)
1 2

(5-5)

where Ao = A01 + A02 + Ao}.

5.1.2 The Paraxial Approximation

The expression for the thickness function can be substantially simplified if attention is
restricted to portions of the wavefront that lie near the lens axis, or equivalently, if only
paraxial rays are considered. Thus we consider only valuesof x andy sufficiently small
to allow thefollowing approximations to be accurate:
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x* + y?
1-E3Y o
Rl
1_x2+y2~ _x2+y2
R; 2R

B X+ y?
2R3

1
(5-7)
1

The resulting phase transformation will, of course, represent the lens accurately over
only a limited area, but this limitation is no more restrictive than the usual paraxial
approximation of geometrical optics. Note that the relations (5-7) amount to approx-
imations of the spherical surfaces of the lens by parabolic surfaces. With the help of
these approximations, the thickness function becomes

2 +y2 (1 1
A(x,y) = Ap — > Y (R_l - R—2) (5-8)

5.1.3 The Phase Transformation and Its Physical Meaning

Substitution of Eq. (5-8) into Eq. (5-1) yields the following approximation to the lens
transformation:

x?t

. . 2 (1 1
t(x, ¥) = expljknlo] exp[—jk(n - 1) 3 Y (R_l — R—2>J

The physical properties of the lens (that is, n, R;, and R;) can be combined in asingle
number f called thefocal length, which isdefined by

1 1 1
Neglecting the constant phase factor, which we shall drop hereafter, the phase transfor-
mation may now be rewritten

ti(x, y) = exp {‘jfkf(xz + yz)]. (5-10)

Thisequation will serve as our basic representation of the effects of a thin lenson an
incident disturbance. 1t neglects the finite extent of the lens, which we will account for
later.

Note that while our derivation of this expression assumed the specific lens shape
shown in Fig. 5.1, the sign convention adopted allows the result to be applied to other
typesof lenses. Figure 5.3 illustratesseveral different types of lenses with various com-
binations of convex and concave surfaces. In Prob. 5-1, the reader is asked to verify
that the sign convention adopted implies that the focal lengthf of a double-convex,
plano-convex, or positive meniscus lens is positive, while that of a double-concave,
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Double-convex Plano-convex Positive
meniscus
Double-concave Plano-concave Negative FIGURES.3

meniscus  Vaioustypesof lenses.

plano-concave, or negative meniscus lensis negative. Thus Eq. (5-10) can be used to
represent any of the above lenses, provided the correct sign of thefocal lengthis used.

The physical meaning of thelens transformation can best be understood by consid-
ering theeffect of thelenson anormally incident, unit-amplitude plane wave. Thefield
distribution U; infront of thelensisunity, and Egs. (5-1) and (5-10) yield thefollowing
expression for U; behind the lens:

Ultx,y) = exp[—j%(acz " y2>].

We may interpret this expression as a quadratic approximation to a spherical wave. If
the focal length is positive, then the spherical wave is converging towards a point on
the lens axis a distancef behind the lens. Iff is negative, then the spherical waveis
diverging about a point on the lens axisa distancef in front of the lens. The two cases
areillustrated in Fig. 5.4. Thus a lens with a positive focal length is called apositive
or converging lens, while alenswith a negative focal length isa negativeor diverging
lens.

Our conclusion that alens composed of spherical surfaces maps an incident plane
wave into a spherical wave is very much dependent on the paraxial approximation.
Under nonparaxial conditions, the emerging wavefront will exhibit departures from
perfect sphericity (called aberrations— see Section 6.4), even if the surfaces of the
lens are perfectly spherical. In fact, lenses are often " corrected for aberrations by
making their surfaces aspherical in order to improve the sphericity of the emerging
wavefront.

We should emphasize, however, that the results which will be derived using the
multiplicative phase transformation (5-10) are actually more general than the analysis
leading up to that equation might imply. A thorough geometrical-opticsanalysis of most
well-corrected lens systems shows that they behave essentially in the way predicted by
our more restrictive theory.
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fi FIGURE 54
Effects o a converging lens and a diverging
1<0 lens on a normdly incident plane wave.

52
FOURIER TRANSFORMING PROPERTIES OF LENSES

One of the most remarkable and useful properties of a converging lensis its inherent
ability to perform two-dimensional Fourier transforms. This complicated analog oper-
ation can be performed with extreme simplicity in a coherent optical system, taking
advantage of the basic laws of propagation and diffraction of light.

In the material that follows, several different configurations for performing the
transform operation are described. In all cases the illumination is assumed to be
monochromatic. Under this condition the systems studied are "coherent™ systems,
which means that they are linear in complex amplitude, and the distribution of light
amplitude across a particular plane behind the positive lensisof interest. In some cases
thisisthe back focal planeof thelens, which by definitionisa plane normal to the lens
axis situated a distancef behind thelens (in the direction of propagation of light). The
information to be Fourier-transformed isintroduced into the optical system by adevice
with an amplitude transmittance that i s proportional to the input function of interest. In
some cases this device may consist of a photographic transparency, while in others it
may be a nonphotographic spatial light modulator, capable of controlling the amplitude
transmittance in response to externally supplied electrical or optical information. Such
input devices will be discussed in more detail in Chapter 7. We will refer to them
as input "transparencies”, even though in some cases they may operate by reflection
of light rather than transmission of light. We will also often refer to the input as the
" object”.

Figure 5.5 shows three arrangements that will be considered here. In al cases
shown, theillumination isacollimated plane wave which isincident either on theinput
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. (——~ Geometriesfor performing the Fourier transform operation
(c) with a positive lens.

transparency or on thelens. Incase (a), theinput transparency is placed directly against
the lensitsalf. In case (b), the input is placed a distance d in front of the lens. In case
(c), theinput is placed behind thelens at distance d from thefocal plane. An additional,
more general case, will be studied in Section 5.4.

For alternative discussions of the Fourier transforming properties of positive len-
ses, the reader may wish to consult Refs. [243], [73], or [235].

5.2.1 Input Placed Againg the Lens

Let a planar input transparency with amplitude transmittancera(x, y) be placed imme-
diately infront of aconverging lensof focal lengthf, asshown in Fig. 5.5(a). Theinput
is assumed to be uniformly illuminated by a normally incident, monochromatic plane
wave of amplitude A, in which case the disturbance incident on the lensis

Ui(x, y) = Ata(x, y). (5-11)

The finite extent of the lens can be accounted for by associating with the lens a pupil
function P(x, y) defined by

_ | 1 insidethelensaperture
Px») [O otherwise.

Thus the amplitude distribution behind the lens becomes, using (5-10),
L3
2f

To find the distribution Uf(u,v) in the back focal plane of the lens, the Fresnel
diffraction formula, EQ. (4-17), isapplied. Thus, puttingz = f,

Uj(x, y) = Ui(x, y) P(x, }’)CXP[‘j (x* + y2)]~ (5-12)
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expl (12 Tv2)]

Ur(u,v) = Y

. (5-13)
.k 2
X U Ui(x, y) exp[J—2 7 (x* + yz)] exp [—Jﬁ(xu + yv)] dx dy,

where a constant phase factor has been dropped. Substituting (5-12) in (5-13), the
guadratic phase factors within the integrand are seen to exactly cancel, leaving

exp | jyr(u® +v%)]
JAf

Uf(u! U) =
(5-14)
dxdy.

o ¢] . 2
x H Uit ) P(x y)xp| = 57 (xu + ¥

—00

Thusthefield distribution U is proportional to the two-dimensional Fourier transform
of that portion of the incident field subtended by the lens aperture. When the physical
extent of theinput issmaller than thelens aperture, thefactor P(x, y) may be neglected,
yielding

[+

exp|j(u? + v?)
Ur(u,v) = plJ 2;;; ) ” Ui(x, y)exp [—ji—;(xu + yv)} dxdy. (5-15)

—Co

Thus we see that the complex amplitude distribution of the field in the focal plane of
the lens is the Fraunhofer diffraction pattern of the field incident on the lens, even
though the distance to the observation plane is equal to the foca length of the lens,
rather than satisfying the usual distance criterion for observing Fraunhofer diffraction.
Notethat the amplitude and phase of thelight at coordinates (u, v) in thefocal planeare
determined by the amplitude and phase of the input Fourier component at frequencies
(fx = wlAf, fr = VAf).

The Fourier transform relation between the input amplitude transmittance and the
focal-plane amplitude distribution is not a complete one, due to the presence of the
guadratic phase factor that precedes the integral. While the phase distribution across
the focal plane is not the same as the phase distribution across the spectrum of the
input, the difference between the two is a simple phase curvature.

In most cases it is the intensity across the focal plane that is of real interest. This
phase term is important if the ultimate goal is to calculate another field distribution
after further propagation and possibly passage through additional lenses, in which case
the complete complex field is needed. In most cases, however, the intensity distribution
in the focal plane will be measured, and the phase distribution is of no consequence.
Measurement of theintensity distribution yields knowledge of the power spectrum (or
more accurately, the energy spectrum) of the input. Thus
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2

[o2]

2 2
I¢(u,v) = )\;‘—f? ” ta(x, y)exp [—j%(xu + yv)] dxdy| . (5-16)

—e0

5.2.2 Input Placed in Front of the Lens

Consider next the more general geometry of Fig. 5.5(b). Theinput, located a distance
d in front of the lens, isilluminated by a normally incident plane wave of amplitude
A. The amplitude transmittance of the input is again represented by z4. In addition, let
Fo(fx, fr) represent the Fourier spectrum of the light transmitted by the input trans-
parency, and F;(fx, fr) the Fourier spectrum of the light incident on the lens; that is,

Fo(fx, fr) = FlAta}  Fi(fx fr) = AU}
Assuming that the Fresnel or paraxial approximation is valid for propagation over dis-
tanced, then F, and F; are related by means of Eq. (4-21), giving
Fi(fx, fv) = Fo(fx, fr)exp| = jmAd(fz + )], (5-17)

where we have dropped a constant phase delay.
For themoment, thefiniteextent of thelens aperture will be neglected. Thus, letting
P = 1, Eq. (5-14) can berewritten

exp [ j & (u? + v?)
Us(u,v) = p[h;)\f il ,(% %) (5-18)
Substituting (5-17) into (5-18), we have
expjaz (1 — 4)@* +v%) v
Ut o) = | . f) Fol iz 27
Aexp|jt (1 — L)(u? + 7))
Vst o) - <j/\ff)
(5-19)

2@

x [[ e, mexp [—j e+ nv)] d¢ dn.

—0C

Thus the amplitude and phase of the light at coordinates (u,v) are again related to
the amplitude and phase of the input spectrum at frequencies (u/Af ,v/A f). Notethat a
quadratic phasefactor again precedesthe transform integral, but that it vanishes for the
very special cased = f. Evidentlywhen the input is placed in the front focal plane of
the lens, the phase curvature disappears, leaving an exact Fourier transform relation!
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Vignetting o the input. The shaded areain the input plane represents
the portion of the input trangparency that contributes to the Fourier
trandform & (uy, vy).

To this point we have entirely neglected the finite extent of the lens aperture. To
includetheeffectsof thisaperture, we use ageometrical optics approximation. Such an
approximation is accurate if the distance d is sufficiently small to place the input deep
within theregion of Fresnel diffraction of thelensaperture, if thelight were propagating
backwards from thefocal planeto the plane of theinput transparency. Thisconditionis
well satisfied in the vast majority of problems of interest. With referenceto Fig. 5.6, the
light amplitude at coordinates (u;, v,) isasummation of all the rays traveling with di-
rection cosines (¢ = u,/ f,n = v,/ f). However, only afinite set of theseraysis passed
by the lens aperture. Thus thefinite extent of the aperture may be accounted for by geo-
metrically projecting that aperture back to theinput plane, the projection being centered
on aline joining the coordinates (u,, v;) with the center of the lens (see Fig. 5.6). The
projected lens aperture limits the effective extent of the i