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Preface

I dedicate this book to those generations of students who suffered
through endless revisions of my class notes in statistical mechanics and,
through their class participation, homework and projects, helped shape the
material.

My own undergraduate experience in thermodynamics and statistical me-
chanics, a half-century ago at MIT, consisted of a single semester of Sears’
Thermodynamics (skillfully taught by the man himself.) But it was a subject
that seemed as distant from “real” physics as did poetry or French literature.
Graduate study at the University of Illinois in Urbana-Champaign was not
that different, except that the course in statistical mechanics was taught by
the brilliant lecturer Francis Low the year before he departed for... MIT.
I asked my classmate J.R. Schrieffer, who presciently had enrolled in that
class, whether I should chance it later with a different instructor. He said
not to bother — that he could explain all T needed to know about this topic
over lunch.

On a paper napkin, Bob wrote “e#H”_ “That’s it in a nutshell!” “Surely
you must be kidding, Mr Schrieffer,” I replied (or words to that effect.) “How
could you get the Fermi-Dirac distribution out of THAT? “Easy as pie,” was
the reply®... and I was hooked.

I never did take the course, but in those long gone days it was still pos-
sible to earn a Ph.D. without much of a formal education. Schrieffer, of
course, with John Bardeen and Leon Cooper, went on to solve the statistical
mechanics of superconductors and thereby earn the Nobel prize.

The standard book on statistical physics in the late 1950’s was by T. L.
Hill. It was recondite but formal and dry. In speaking of a different text that
was feebly attempting the same topic, a wit quipped that “it was not worth

#See Chapter 6.
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X Statistical Mechanics Made Simple

a bean of Hill’s.” Today there are dozens of texts on the subject. Why add
one more?

In the early 1960’s, while researching the theory of magnetism, I de-
termined to understand the two-dimensional Ising model that had been so
brilliantly resolved by Lars Onsager, to the total and utter incomprehension
of just about everyone else. Ultimately, with the help of Elliot Lieb and Ted
Schultz (then my colleagues at IBM’s research laboratory,) I managed to
do so and we published a reasonably intelligible explanation in Reviews of
Modern Physics. This longish work — parts of which appar in Chapter 8
— received an honorable mention almost 20 years later, in the 1982 Nobel
lecture by Kenneth G. Wilson, who wrote:

“In the summer of 1966 I spent a long time at Aspen. While there I carried
out a promise I had made to myself while a graduate student, namely [to
work] through Onsager’s solution of the two- dimensional Ising model. I
read it in translation, studying the field-theoretic form given in Lieb, Mattis
and Schultz ['s paper.] When I entered graduate school I had carried out
the instructions given to me by my father and had knocked on both Murray
Gell-Mann’s and [Richard] Feynman’s doors and asked them what they were
currently doing. Murray wrote down the partition function of the three-
dimensional Ising model and said it would be nice if I could solve it....
Feynman’s answer was “nothing.” Later, Jon Mathews explained some of
Feynman’s tricks for reproducing the solution for the two-dimensional Ising
model. I didn’t follow what Jon was saying, but that was when I made my
promise. ... As I worked through the paper of Mattis, Lieb and Schultz 1
realized there should be applications of my renormalization group ideas to
critical phenomena. ..”P

Recently, G. Emch has reminded me that at the very moment Wilson was
studying our version of the two-dimensional Ising model I was attending a
large IUPAP meeting in Copenhagen on the foundations and applications of
statistical mechanics. My talk had been advertised as, “The exact solution
of the Ising model in three dimensions” and, needless to say, it was well
attended. I did preface it by admitting there was no exact solution but that
— had the airplane taking me to Denmark crashed — the title alone would
have earned me a legacy worthy of Fermat. Although it was anticlimactic, the
actual talk® demonstrated that in 5 spatial dimensions or higher, mean-field
theory prevails.

PFrom Nobel Lectures in Physics (1981-1990), published by World Scientific.
°It appeared in the Proceedings with a more modest title befitting a respectable albeit
approximate analysis.



Preface xi

In the present book I have set down numerous other topics and tech-
niques, much received wisdom and a few original ideas to add to the “hill
of beans.” Whether old or new, all of it can be turned to advantage. My
greatest satisfaction will be that you read it here first.

D.C.M.
Salt Lake City, 2003
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Introduction: Theories of Thermodynamics,
Kinetic Theory and Statistical Mechanics

Despite the lack of a reliable atomic theory of matter, the science of
Thermodynamics flourished in the 19th Century. Among the famous thinkers
it attracted, one notes William Thomson (Lord Kelvin) after whom the
temperature scale is named, and James Clerk Maxwell. The latter’s many
contributions include the “distribution function” and some very useful
differential “relations” among thermodynamic quantities (as distinguished
from his even more famous “equations” in electrodynamics). The Maxwell
relations set the stage for our present view of thermodynamics as a science
based on function theory while grounded in experimental observations.

The kinetic theory of gases came to be the next conceptual step. Among
pioneers in this discipline one counts several unrecognized geniuses, such as
J. J. Waterston who — thanks to Lord Rayleigh — received posthumous
honors from the very same Royal Society that had steadfastly refused to
publish his works during his lifetime. Ludwig Boltzmann committed suicide
on September 5, 1906, depressed — it is said — by the utter rejection of his
atomistic theory by such colleagues as Mach and Ostwald. Paul Ehrenfest,
another great innovator, died by his own hand in 1933. Among 20th Century
scientists in this field, a sizable number have met equally untimely ends. So
“now”, (here we quote from a well-known and popular text®) “it is our turn
to study statistical mechanics”.

The postulational science of Statistical Mechanics — originally
introduced to justify and extend the conclusions of thermodynamics but
nowadays extensively studied and used on its own merits — is entirely a
product of the 20th Century. Its founding fathers include Albert Einstein
(who, among his many other contributions, made sense out of Planck’s Law)
and J. W. Gibbs, whose formulations of phase space and entropy basically

aD. H. Goodstein, States of Matter, Dover, New York, 1985.
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anticipated quantum mechanics. Many of the pioneers of quantum theory
also contributed to statistical mechanics. We recognize this implicitly when-
ever whenever we specify particles that satisfy “Fermi-Dirac” or “Bose—
Einstein” statistics, or when we solve the “Bloch equation” for the density
matrix, or when evaluating a partition function using a “Feynman path
integral”.

In its most simplistic reduction, thermodynamics is the study of
mathematical identities involving partial derivatives of well defined
functions. These relate various macroscopic properties of matter: pressure,
temperature, density, magnetization, etc., to one another. Phase transitions
mark the discontinuities of one or more of these functions and serve to
separate distinct regions (e.g. vapor from solid) in the variables’ phase space.
Kinetic theory seeks to integrate the equations of motion of a many-body
system starting from random initial conditions, thereby to construct the
system’s thermodynamic properties. Finally, statistical mechanics provides
an axiomatic foundation for the preceding while allowing a wide choice of
convenient calculational schemes.

There is no net flow of matter nor of charged particles in thermody-
namic equilibrium. Away from equilibrium but in or near steady state, the
Boltzmann equation (and its quantum generalizations by Kubo and others)
seeks to combine kinetic theory with statistical mechanics. This becomes
necessary in order to explain and predict transport phenomena in a
non-ideal medium, or to understand the evolution to equilibrium when start-
ing from some arbitrary initial conditions. It is one of the topics covered in
the present text.

Any meaningful approach revolves about taking N, the number of distinct
particles under consideration, to the limit N — oo. This is not such a dim
idea in light of the fact that Avogadro’s number, Ny = 6.022045 x 1023 per
mole.P

Taking advantage of the simplifications brought about by the law of large
numbers and of some 18th Century mathematics one derives the underpin-
nings for a science of statistical mechanics and, ultimately, finds a theoretical
justification for some of the dogmas of thermodynamics. In the 9 chapters
to follow we see that a number of approximate relations at small values of NV
become exact in the “thermodynamic limit” (as the procedure of taking the

PA mole is the amount of a substance that contains as many elementary entities as there
are carbon atoms in 12 gm of Carbon 12. E.g.: 1 mole of electrons (e™) consists of N
particles of total mass 5.4860 x 10~* gm and total charge —96.49 x 10 coulombs.
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limit N — oo is now known in all branches of physics, including many-body
physics and quantum field theory).

Additionally we shall study the fluctuations O(v/N) in macroscopic O(N)
ertensive quantities, for “one person’s noise is another person’s signal”. Even
when fluctuations are small, what matters most is their relation to other
thermodynamic functions. For example, the “noise” in the internal energy,
(E?)—(E)?, is related to the same system’s heat capacity dFE/dT. Additional
examples come under the rubric of the “fluctuation-dissipation” theorem.

With  Bose—Einstein  condensation,  “high”-temperature super-
conductivity, “nanophysics”, “quantum dots”, and “colossal” magnetore-
sistance being the order of the day, there is no lack of contemporary ap-
plications for the methods of statistical physics. However, first things first.
We start the exposition by laying out and motivating the fundamentals and
methodologies that have “worked” in such classic systems as magnetism and
the non-ideal gas. Once mastered, these reductions should allow one to pose
more contemporary questions. With the aid of newest techniques — some
of which are borrowed from quantum theory — one can supply some of the
answers and, where the answers are still lacking, the tools with which to
obtain them. The transition from “simple” statistical mechanics to the more
sophisticated versions is undertaken gradually, starting from Chapter 4 to
the concluding chapters of the book. The requisite mathematical tools are
supplied as needed within each self-contained chapter.

The book was based on the needs of physics graduate students but it is
designed to be accessible to engineers, chemists and mathematicians with
minimal backgrounds in physics. Too often physics is taught as an idealized
science, devoid of statistical uncertainties. An elementary course in thermo-
dynamics and statistical physics can remedy this; Chapters 1-4 are especially
suitable for undergraduates aspiring to be theoreticians. Much of the mate-
rial covered in this book is suitable for self-study but all of it can be used
as a classroom text in a one-semester course.

Based in part on lecture notes that the author developed during a decade
of teaching this material, the present volume seeks to cover many essential
physical concepts and theoretical “tricks” as they have evolved over the past
two centuries. Some theories are just mentioned while others are developed
in great depth, the sole criterion being the author’s somewhat arbitrary
opinion of the intellectual depth of the posed problem and of the elegance
of its resolution. Here, function follows form.

Specifically, Chapters 1 and 2 develop the rudiments of a statisti-
cal science, touching upon metastable states, phase transitions, critical
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exponents and the like. Applications to magnetism and superconductivity
are included ab initio. Chapter 3 recapitulates thermodynamics in a form
that invites comparison with the postulational statistical mechanics of
Chapter 4. van der Waals gas is studied and then compared to the exactly
solved Tonks’ gas. Chapters 5 and 6 deal, respectively, with the quantum
statistics of bosons and fermions and their various applications. We distin-
guish the two principal types of bosons: conserved or not. The notion of
“quasiparticles” in fermion systems is stressed. We touch upon semiconduc-
tor physics and the role of the chemical potential p(7") in n-type semicon-
ductors, analyzing the case when ionized donors are incapable of binding
more than one excess electron due to 2-body forces. Chapter 7 presents the
kinetic theory of dilute gases. Boltzmann’s H-function is used to compute
the approach to thermodynamic equilibrium and his eponymous equation is
transformed into an eigenvalue problem in order to solve for the dispersion
and decay of sound waves in gases.

Chapter 8 develops the concept of the transfer matrix, including an
Onsager-type solution to the two-dimensional Ising model. Exact formulas
are used to calculate the critical exponents of selected second-order phase
transitions. The concept of “frustration” is introduced and the transfer ma-
trix of the “fully frustrated” two-dimensional Ising model is diagonalized
explicitly. A simplified model of fracture, the “zipper”, is introduced and
partly solved; in the process of studying this “classical” system, we learn
something new about the equations of continuity in quantum mechanics!

Chapter 9, the last, is devoted to more advanced techniques: Doi’s
field-theoretic approach to diffusion-limited chemical reactions is one and
the Green’s functions theory of the many-body problem is another. As illus-
trations we work out the eigenvalue spectrum of several special models —
including that of a perfectly random Hamiltonian.

Additional models and calculations have been relegated to the numer-
ous problems scattered throughout the text, where you, the reader, can test
your mastery of the material. But despite coverage of a wealth of topics this
book remains incomplete, as any text of normal length and scope must be.
It should be supplemented by the monographs and review articles on critical
phenomena, series expansions, reaction rates, exact methods, granular ma-
terials, etc., found on the shelves of even the most modest physics libraries.
If used to good advantage, the present book could be a gateway to these
storehouses of knowledge and research.



Chapter 1

Elementary Concepts in Statistics
and Probability

1.1. The Binomial Distribution

We can obtain all the binomial coefficients from a simple generating function
Gn:

N
N n V23
Gn(p1,p2) = (1 +p2)Y =D <n1>p11p22 ; (1.1)

n1=0

where the (ﬁ ) symbol® stands for the ratio N!/nilng! of factorials. Both
here and subsequently, no = N — n;.

If the p’s are positive, each term in the sum is positive. If restricted to
p1+p2 = 1 they add to Gy (p1,1—p1) = 1. Thus, each term in the expansion
on the right-hand side of (1.1) can be viewed as a probability of sorts.

Generally there are only three requirements for a function to be a prob-
ability: it must be non-negative, sum to 1, and it has to express the relative
frequency of some stochastic (i.e. random) phenomenon in a meaningful way.
The binary distribution which ensues from the generating function above can
serve to label a coin toss (let 1 be “heads” and 2 “tails”), or to label spins
“up” in a magnetic spin system by 1 and spins “down” by 2, or to identify
copper atoms by 1 and gold atoms by 2 in a copper-gold alloy, etc. Indeed
all non-quantum mechanical binary processes with a statistical component
are similar and can be studied in the same way.

It follows (by inspection of Eq. (1.1)) that we can define the probability
of n1 heads and ny = N — n tails, in IV tries, as

N n T
WN(nl) = <n1>p11p22 ) (1-2)

2Spoken: “N choose n1”. Recall n! = 1 x 2--- x n and, by extension, 0! = 1, so that

(=) =1
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subject to po = 1—p;. This chapter concerns in part the manner in which one
chooses p; and po in physical processes. These are the parameters that pre-
determine the relative a priori probabilities of the two events. Of course, by
just measuring the relative frequency of the two events one could determine
their respective values a posteriori after a sufficiently large number of tries
N, and on the way measure all other properties of the binary distribution
including as its width (second moment), etc.

But this is not required nor is it even desirable. One might attribute
p1 = p2 = 1/2 by symmetry to a perfectly milled coin, without performing
the experiment. Tossing it N times should either confirm the hypothesis or
show up a hidden flaw. Similarly one can predict the width of the binary
distribution from theory alone, without performing the experiment.

Thus it becomes quite compelling to understand the consequences of a
probability distribution at arbitrary values of the parameters. Experiment
can then be used not just to determine the numerical values of the parameters
but also to detect systematic deviations from the supposed randomness.

These are just some of the good reasons not to insist on p; + po = 1
at first. By allowing the generating function to depend on two independent
parameters p; and py it becomes possible to derive all manners of useful (or
at least, entertaining), identities. In the first of these one sets p; = ps =
1in (1.1) and immediately obtains the well-known sum rule for binomial

coefficients:
N
N
> < ) =N, (1.3a)
n1=0 ni
Setting p; = —po yields a second, albeit less familiar, sum rule:
N
N
> < )(-1)”1 =0. (1.3b)
n1=0 n1
n+k 71,12

Next, expand (p+p2) in powers of p|'p5? as in Eq. (1.1) and similarly
for each of the two factors (pi + p2)™ x (p1 + p2)* separately. Upon equating
the coefficients term by term one derives the “addition theorem” for the

()=5005) -

Two special cases of this formula may prove useful. In the first, set k = 1,
so that t is restricted to r — 1 and r. Recalling that 0! = 1 and 1! = 1 we
deduce (") = (") + (") from Eq. (1.3c).

T

binomial coefficients:



1.2.  Length of a Winning Streak 3

In the second example set k = n = r. Then (1.3¢) yields:

()-5006)-£()-

Moreover, by retaining p; and py as independent variables in G it be-
comes possible to obtain all moments of the distribution simply by differen-
tiating the generating function multiple times, following which p; +ps =1
is imposed. Let us start by evaluating the lowest moment, i.e. the average of
ny, denoted (n1) (sometimes also written 71).

N
)= 32 mWis(on) = {plaiplcmpl,m}

_ 9 N
= {pl an (p1 +p2) }

p2=1—p1

= Np1. (1.4a)
p2=1-p1

Similarly,

2
(n2) = {(p%) (m +p2>N}

For higher powers also, n]* < (p10/0p1)™ is always the correct substitu-
tion. A measure of the width or “second moment” of the distribution may
be derived from the variance o, here defined as 0 = ((ny; — (n1))?/N) =
({(n2?) —(n1)?)/N. In the present example, inserting the result (1.4a) in (1.4b)

we find 0 = \/p1p2 = v/p1(1 — p1). This result can be put to immediate and
practical use.

= (Np1)? + Npi(1 —p1). (1.4b)
p2=1-p1

1.2. Length of a Winning Streak

In casino gambling, unlike some other real-life situations, persistence defi-
nitely does not “pay”. Take as an example the most favorable situation of a
“winning streak”. Under the assumption that a coin toss resulting in “heads”
wins and “tails” loses, d = n; — ny measures the net winnings (or losses, if
negative). With an honest coin, p; = p2 = 1/2 and therefore the most
probable (d) = 0. However, by (1.4b), (d?) = N/2. Therefore we estimate
the maximum winnings (or losses) after N tries as & the “root mean-square”
(rms) value (with d,;,s = the positive root of (d?),)

drms = /N/2. (1.5)
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earnings in $
400
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time
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—400 \\
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Fig. 1.1. Examples of most probable gambling streaks.

This plot of “Earnings versus Time spent playing”, shows the most probable gam-
bling trajectory (according to elementary biased RW theory), as a thin straight
line. The top curve is the *
most probable; after an initial winning spurt “in the black” it goes “into the red”
after ¢ > 100, for the arbitrary parameters used in this illustration. Lower curve
(the losing streak), also one standard deviation from the most probable, is negative
from the start. Asymptotically any reasonably probable trajectory lying between
these two curves must end up deeply “in the red”.

‘winning” streak at one standard deviation from the

This assumption yields the most probable winning streak although a
losing streak with dys = —+/N/2 is equally probable. In either case the
player must contend with the percentage retained by the casino, generally
proportional to the number N of plays (or time t spent playing). However
small this percentage might be, ultimately it always exceeds the winnings.
Asymptotically the player loses, as shown in the example of Fig. 1.1 with
N o t. This model is analogous to the one dimensional Brownian motion
known as the biased Random Walk, to which we return in Problem 1.1.

1.3. Brownian Motion and the Random Walk

The Scottish botanist Robert Brown observed in 1827 that grains of pollen,
coal dust, or other specks of materials in liquid suspension and visible under
a microscope, appeared to jump randomly in position and direction. The
physical explanation provided by FEinstein in 1906 invoked multitudes of
invisible molecules striking the visible particles, imparting large numbers
of random impulses to them. Let us consider one simplified version of this
kinetic theory; a second will follow.

Consider a completely random walker (RW) (either the above mentioned
speck or the proverbial “drunken sailor”) whose position from the origin
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after n steps is r,. Each step is s,+1 = rpy1 — ry,. Assume a given step
length s, and a perfectly random direction §,,, each step being uncorrelated
with those preceding it. By symmetry (s,) = 0. We define A\? = (s2) as the
average square step-length. Then if rpy is the destination,

2

N N-1 N
(r}) = <<Z sn> > =NAM+2> Y (sy-sm). (1.6)
n=1

n=1 m=n+1

Due to the lack of correlations all the terms in the double sum can be
factored, i.e. (s;, - S;m) = (sp) - (smm) = 0, and vanish. Thus the rms distance
achieved by RW is R = AV N and lies with equal probability at any point
on the surface of a sphere of radius R in three dimensions (3D), on a circle
of radius R in 2D and at the two points =R in 1D. As the number of steps
can be assumed to be proportional to the elapsed time (N o t) the most
probable distance from the origin increases as R o v/t. This power law is
recognized as the signature of classical diffusive motion, just as R o t is the
signature of ballistic motion.

Problem 1.1. A given biased RW is defined by (s,) = a and (s2) = )2,
with a and A constants. Determine the two rms loci of this biased random
walker after N steps in 1D (and cf. Fig. 1.1) and generalize to 2D and 3D,
as function of a; /A, a,/X and in 3D, a,/A.

1.4. Poisson versus Normal (Gaussian) Distributions

Both of these well-known statistical distributions can be derived as differ-
ent limiting cases of the binomial distribution. In this regard the Gamma
Function I'(z) and Stirling’s approzimation to N! and I'(/N +1) prove useful.
First, define

I(z) = /Ooo Qe (1.7)

as a function that exists everywhere in the complex z-plane except on the
negative real axis. After partial integration on t*~! one finds,

[(2)=2"'T(z+1), ie T(z+1)=2T(z2). (1.8)

I'(1) = 1 from Eq. (1.7) (by inspection). Hence I'(2) = 1, I'(3) = 2-1 and by
induction on any positive integer N, I'(V) = (N —1)! Hence, I'(1) = 0! =1,
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and (—N)! = oo by extension. This allows the limits on the sum in Eq. (1.1)
to be extended, from 0 <n < N, to —oco < n < +oo, if desired.

Half-integer arguments are of equal importance. To obtain them, first one
calculates I'(3):

1 2 oo oo
{F <—)} E/ dtt_1/2e_t/ ds s H2es
2 0 0
:/ da:e_xg/ alye_y2

27 oo
:/ dqb/ drre ™ =1 (1.9)
0 0

(as obtained by substituting ¢t = 22, s = y?, then switching to radial coordi-
nates). Thus: I'(3) = /m, ['(3) = /7, T'(3) = 3 - 1 /7, etc.

Problem 1.2. Find a formula for area of unit sphere S(d) in d dimensions.

lHint . using r’ = r% + r% + -+ r?l, compute :

/ddr e = S(d)/ drrd=le ™ = —S;d)/ dt (2Dt
0 0

ALy ]

Evaluate S(d) explicitly for d = 1,2,3,4,5.

Stirling’s approximation to I'(N 4 1) is obtained by setting tVe™ =
explg(t)] and evaluating it by steepest descents. At the maximum of g(t),
defined as t = tg, ¢'(t) = 0/0t{—t + Nlogt}l;, = 0 = to = N. Approx-
imating ¢(t) by the first few terms in its Taylor expansion we find ¢(t) =
g(to) + [(t — t0)*/2!]g" (to) + [(t — t0)?/3!]g" (to) + - -+, with ¢"(to) = —1/N.
Third and higher derivatives become negligible in the large N limit. Thus,
g(t) = Nlog N — N — (1/2N)(t — N)? is to be inserted into the integral for
(N +1):

o) t2
I'(N +1) = N!=exp(Nlog N — N)/ dt exp (——)
_N 2N

= V2N7mexp(NlogN — N). (1.10)
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The logarithm of this result yields the more familiar expression, log(N!) =
Nlog N— N +1/2log(2N7). We note that in most applications the first two
terms suffice and the last term is omitted.

Problem 1.3. Estimate the fractional errors in Stirling’s approximation
arising from the two sources: the neglect of the next term (1/3!g" (t — t9)?)
in the expansion of ¢g(t) and the approximation of —N by —oo in the limits
of integration. Compare Stirling’s result with the exact values of I'(z) for
z = 3, 3.5, 10 and 10.5 and obtain the fractional errors numerically. How
well do they agree with your estimate?

The Poisson distribution is named after the renowned 19th Century
mathematician and physicist who, in the Napoleonic wars, was required to
analyze the tragic, albeit uncommon, problem of soldiers kicked to death by
mules. Was it greater than random? The distribution that bears his name
applies to trick coins, radioactive decay of metastable nuclei, and other
instances in which some remarkable event being monitored is highly im-
probable; it is obtained as a limiting case of the binary distribution in the
lim-p; — 0. Define A = Np; as a new, finite, parameter of O(N®), in the
thermodynamic lim-N — oo. Thus n; < N and no ~ N. It then becomes
permissible to approximate N!/ng! = N(N —1)--- (N —n3+1) by N™ and
(1 —p1)™ by (1 — A/N)N — e (recall the definition of e). With these
substitutions Wy (n1) — P(n1), the Poisson distribution:

e—)\

P(n) = W)\" [Poisson)] . (1.11)

Remarkably, despite several approximations the normalization is pre-
served — that is, the sum rule > P(n) = 1 continues to be satisfied exactly.
The more familiar, i.e. normal, distribution is that due to Gauss. The
Gaussian distribution can also be derived from the binomial whenever the p’s
are both nonzero and the number N — oo. Its applications are ubiquitous:
the distribution of grades in large classes, of energies in a classical gas, etc.
Because both n; and ng scale with N the ratios n1/N and ny/N can, in
some sense, be treated as continuous variables (this is not possible if ny is
O(1) as in the Poisson distribution). Clearly, W (n1) has its maximum at
some 71 which is then defined as the “most probable” value of nj. As Wy (ny)
must be “flat” at the maximum we look for solution of W (n1£1) = Wy (ny).
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Using Eq. (1.2), we obtain to leading order in 1/N:

N _ .
1= (ﬁ_ - 1) pi(1—p)~ Y, e g =piN = (ng). (1.12)
1
In other words, the most probable value of ny turns out to equal its average
value. (Similarly for ns.)
Next, use Stirling’s approximation to expand log W about its optimum
value. The result (left as an exercise for the reader), is:

_ _ 1 (n1 —m1)? _ 3
log WN(nl) = log WN(nl) — EW + O((m — nl) ) y (1.13)
using the result obtained in Sec. 1.1, 0> = pyps. The normal (Gaussian)
distribution P follows from the first two terms alone:

. 1 (n1 — ’I~21)2
WN — P(nl) = W exp l—W [Gauss], (114&)
or
1 (x — )2
Px) = —_ 1.14
(@) =~ exp [ = ] , (1.11)

upon defining z = nl/\/ﬁ

Problem 1.4. Derive Eq. (1.13) explicitly and show that the next term in
the expansion, O((ny — 71)?), is C = (p3 — p?)(n1 — 71)3/3!N?0*. Observe
that because (1.14a) effectively restricts n; to the range 71y £ O(v/N), C' — 0
in the thermodynamic limit. [Note: C' = 0 if py = po = 1/2.] Define x = (nq —
711)/v'N as a continuous measure of the fluctuations, in the thermodynamic
limit. Then derive P(z) as in (1.14b), especially the lack of a factor 1/v/N,
and show it to be normalized, i.e. [ dxP(z) = 1. Then calculate (x?).

Problem 1.5. Using the normal distribution (1.14a) and the result of the
preceding Problem, show that:

(k—1)---5-3-1-(No?)¥?2 if kis even,

— )k =
(1 =7 )') {0 if k is odd.
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1.5. Central Limit Theorem (CLT)

This useful theorem formalizes the preceding results and helps derive the
normal distribution without reference to the binomial expansion. Definitions
and an example follow.

Generally speaking, the CLT applies to any process that results from
a large number of small contributions — as in the example of Brownian
motion, where the motion of a dust particle is the results of its unobservable
collisions with a myriad of smaller, invisible, host molecules. To analyze such
situations in more detail we must learn to formulate probabilities for two or
more variables.

Let us start with 2 and generalize to N by induction. Let P(s,t) be the
probability distribution of 2 independent variables s and ¢ over a finite range.
The requirements are that P must be non-negative over that range and its
integral normalized, [ds [dt P(s,t) = 1. If one integrates over all ¢, the
remainder is a probability for s. Denote it: Py (s) = [ dt P(s,t). Unless P(s, )
is a symmetric function, P; differs from the analogously defined P,(t) =
Jds P(s,t).

Averages over arbitrary functions of the two variables are evaluated in
the usual way,

(f(s,1)) = /ds/dtf(s,t)P(s,t).

Consider f = g(s)h(t) in the special case where s and t are statistically
independent. Then (f) = (g)1(h)2 (the subscripts indicate averages over P;
or P, respectively). This holds for arbitrary g and h iff®> P(s,t) = Py(s)Pa(t).
The generalization is P(s,t,u) = Pi(s)Pa(t)P3(u), etc. In the following we
examine the z-dependence of a one-dimensional RW in which the end-point
T = 81+ 89+ --- + sy is the sum over N individual steps, each assumed
statistically independent of the others but all governed by the same proba-
bility p(s),¢ i.e. P(s1,...,sn5) = [Ip(sj).

At this point it is helpful to introduce the Dirac delta function 6(z),
a function that is zero everywhere except at the origin where it is infinite
— such that its integral is 1. With the aid of this singular function we

PIf and only if.
°The reader might wish to consider a case in which the p’s differ, e.g. suppose the individual
Pn(sn) to depend explicitly on n.
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can write,
P(x) :/d81/d82“‘/d8]\/5<3§'—7§18n> P(s1,892,...,8N)
= /dslp(sl)/dSQp(SQ)"'/dsz(sN)5<a:—ésn> . (1.15a)

The Dirac delta function has numerous representations, such as the limit
of an infinitely high and narrow rectangle of area 1, etc. The one most
particularly helpful here is: §(Ax) = (1/27) [T2°dk e*A%. As we saw in
Sec. 1.2, the most probable Az = (z — N{s,)) is O(v/N). The dominant
contributions to the integration in (1.15a) are from regions where the product
kAx is O(1). Therefore the important values of k are at most O(1/v/N) — 0.

P) =5 [ ket QU

:%_Oo

where

Q) = [ dse " p(s)

=1- %m@ + %(—'W(s% + %(—z‘k)‘"’(s% +--- . (1.15Db)

Collecting powers, we evaluate log () to leading orders:

Q(k) = o ik(s) o —(k%/2)((s*)—(5)?) LO(K®) (1.16)

The coeflicients in the exponent are the so-called moments of the distribu-
tion (also denoted cumulants or semi-invariants) at each individual step. We
identify the second moment as the variance 0 = (s2) — (s)? of an individual
step in the above, to obtain:

P(z) = 2i / dk ek e =ThN(S) = (VK207 /2) N-O(K?) (1.17a)
s

The integration is rendered more transparent by a change of variables. Let
r = N(s) + £&V/N where ¢ is a measure of the fluctuations of = about its
systematic (i.e. biased) value N (s).

In the present application we find that all moments beyond the second
are irrelevant. For example, N - O(k3) in the above exponent is N - N=3/2 —
0 throughout the range that contributes most to the integration. Higher
moments are smaller yet. Replacing k& by the rescaled dummy variable of
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integration ¢ = kv/N we obtain? P(¢):

PE) = = /dq i€ o=a°0° /2, N-O(¢*N—3/2) : 1 e=E/20% (1.17b)
27 lim-N—o0 /9752
This is the prototype normal distribution for the fluctuations. It is indepen-
dent of (sy). The derivation has preserved the norm: the integral of P(§)
over ¢ in the range —oo to +00 remains precisely 1.
The generalization to the 2D or 3D RW appears simple, but that may be
misleading. With r = N (s) 4+ £€v/N one readily derives:

1 2 .2
P&)=—— ¢ &/% i i ions . 1.1
&) @ro?)1? e , in d dimensions (1.18)
However, it remains to define o2 appropriately for d > 2. This is not neces-
sarily straightforward. Consider the two distinct scenarios.

(1) In this model, the Cartesian components at each step, sg, sy,..., are
uncorrelated (statistically independent) but subject to (s?) = a.
(2) Here the individual step lengths are constrained by s?> = a?, hence the

Cartesian components are not independent.

The proof of (1.18) and definition of o in each of these two instances is left as
an exercise for the reader. (Hint for #1: the motion in each of the d directions
is uncorrelated. For scenario #2: use the three-dimensional Dirac function
appropriately.) We conclude this section with some related observations:

e The step distribution needs be neither differentiable nor smooth, for the
CLT be valid. For example let each step have equal probability 1/2 to
be +a, independent of the preceding steps. Then Q(k) = cos ka and even
though p(sy,) is a singular function, Eq. (1.17b) continues to be valid with
0% = (s?) = a?.

e Finally, if instead of distance traveled we investigate the momentum p
transferred (or impulses imparted) to an object of mass M by numerous
collisions with lighter, invisible molecules of mass m < M, as in Brown’s
experiments, we now know (essentially, by inspection) that the result has
to be

1 _p2/252

We can turn the variance into a measure of temperature 1" by defining

0?2 = MEkgT, identifying with thermal fluctuations and where kg is the

4Note: to preserve probability P(¢) = P(z(€))(dx/d¢) = P(z(€))V/N.
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Boltzmann constant. Then the CLT implies the familiar Mazwell-Boltzmann
distribution in the momentum space of an “ideal” gas of mass M particles.
The exponent expresses the energy of the particles in units of kg7, the
thermal unit of energy. Note this derivation does not ensure that any similar
expression exists for the momentum distribution of the unseen molecules of
lighter mass m.©

1.6. Multinomial Distributions, Statistical Thermodynamics

After making some apparently ad hoc identifications and generalizations we
intend to use the previous results to derive some sort of thermodynamics
from “first principles”. This section is designed to motivate the following,
more rigorous, chapters.

Assume particles carry r distinguishable labels. For example, r = 2 for
the coin toss, 6 for dice and 25+ 1 for spins S (S = 1/2,1,3/2,...) The total
number of particles is then N = ) n;, where n; is the number of particles
with label j running from 1 to 7. Independent of any a priori probabilities p;
the statistical factors are “N choose ni,ns,...”. The multinomial probability
distribution is,

ro N
p.
Vn(ny,ng,...,n.) = N'[] —n{' : (1.20)
j=1"""

These are all positive quantities that can be obtained from the expansion
of a generalized generating function G = (3 pj)N . Therefore if the p; add
up to 1, G =1 and the V’s are also normalized.

The V'’s are sharply peaked about a maximum. Our experience with the
binomial distribution has shown that even though V' is highly singular its
natural logarithm can be expanded in a Taylor series about the maximum.
Let us first examine this maximum.

log Viy = anlog(pj) + log(N!)—Zlog(nj!) . (1.21a)
j=1 j=1

We then arbitrarily identify the first bracket on the rhs of the equation
(which involves the parameters p;), with the negative of the energy of the
system. Similarly we identify the second, purely statistical, bracket with the

¢Just as the Gaussian P (&) does not mirror arbitrary p(s) in Egs. (1.15)—(1.17).
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product of its entropy and the temperature. Then, the above takes the form,

llog Vi) = B[~ E] + BIT.]. (1.21b)

The overall-factor 3 has units [energy] !, introduced to make the expression

dimensionless. Each bracketed quantity in (1.21a) is eztensive (x N), hence
FE and . are also extensive. This requires the temperature T to be intensive,
i.e. independent of N.

The signs have been chosen such that the maximum V behaves properly
in two known limiting cases. It must correspond to an energy minimum
(i.e. the “virtual forces” all vanish) when . and T are held constant, and
with mazimal entropy at constant £ and T

Similarly let us identify the LHS of the equation with —3F, where F' is
defined as a “free energy”. Upon dividing by 3 we recapture the well-known
thermodynamic relation: F' = F —T.%. (Still lacking is identification of 3 as
1/kgT.) Thus, maximizing V' is the same as minimizing the free energy F.

To minimize the free energy we make use of Stirling’s approximation in
(1.21a) and optimize w.r. to each n; (treated as a continuous variable.)

a%j{njlogpj—nj [log (%) —1]} =0, forj=1,...,r. (1.22)

Note that we can add any arbitrary multiple of (N — 3 n;) = 0 to the
expression in curly brackets.

The solution of (1.22) yields the most probable values of the n;’s, denoted
n; as before. We observe once again that the most probable value is also the
average value: 7; = p; N = (n;).

In the mantra of kinetic theory (and of statistical mechanics) the so-
called ergodic hypothesis occupies a place of honor. Crudely put, it states
that any system permitted to evolve will ultimately, or asymptotically, tend
to a state of maximal probability — beyond which it must cease to evolve.
One makes the connection with thermodynamics by identifying the most
probable configurations with those found in thermodynamic equilibrium. In
the axiomatic statistical mechanics outlined in Chapter 4, this common-sense
notion is elevated to a high principle.

Here, to make a more explicit connection with elementary thermo-
dynamics, we identify the a priori probabilities with Boltzmann factors,
p; = exp[—fB(e; — p)]. The quantity €; is the energy of a particle in the jth
state and the “chemical potential” p is chosen to allow p; to satisfy > p; = 1.

fThese quantities will be given a rigorous definition in the next chapter.
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Some recognizable results can be found upon using this p; in Eq. (1.21a).
For example, the statistically averaged (also, the most probable) internal
energy is

T
NZe_ﬂ(af_“)(sj —p)=FE —uN,
j=1

in which F is defined as the total averaged “physical” energy. We shall find
similar expressions in connection with the theory of ideal gases.

1.7. The Barometer Equation

To show that the identification of the p; with the energy exponential was
not entirely capricious we now derive the well-known law for the drop in
barometric pressure with altitude.

Consider an (imaginary) vertical tube of cross-section A in the atmo-
sphere, across which we stretch two horizontal membranes to measure the
pressure at altitudes z and z + dz. Clearly, the drop in pressure is:

dp = —mgpdz , (1.23)

where p is the particle density at z. The ideal gas law p = pkpT is useful in
this context. Replacing p by p/kgT in this relation we obtain:

p = poe” 9%/ kBT (1.24)

where pg is the pressure at the reference surface, z = 0.

This suggests that both the kinetic and the potential energies are dis-
tributed exponentially in the dilute or ideal gas. This remarkable result is
also quite reasonable, considering that either form of energy can always be
transformed into the other, but a proof requires statistical mechanics as
developed in a later chapter.

1.8. Other Distributions

There are instances in which the lognormal distribution plays a role, in
which it is the logarithm of the random variable that is normally distributed.
Among other, more exotic distributions, we count the stretched exponential,
the Lorentzian, and numerous others for which the moments do or do not
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exist, as covered in numerous texts on mathematical statistics.® We deal
with some of them elsewhere in this book. But with the sole exception of
the “Lorentzian”, P(x) = x;ﬁyg, what makes them exotic is their rarity in
physical applications, in comparison with either the Gauss or Poisson distri-

butions. On the other hand, the far more esoteric stochastic matrices have
found their niche in physics ever since their introduction by Wigner,® who
approximated the Hamiltonian of the quantum nuclear many-body problem
by a random matrix.

It is helpful to visualize a random matrix as some kind of a quantum-
mechanical RW in which the nth step connects not just the nth position of
the random walker to the n + 1st, but also to all other positions that he ever
has or ever will occupy. One may denote this process a “multiply-connected”
RW and represent it by an N x N real, symmetric, matrix:

mi1 Mmi2

~ mi2  Ma22
M=| . —_— . (1.25)

mMmNN

In one well-known example, the individual matrix elements m;; are real,
random and normalized as follows: m;; = &;;/V/N, with (g;;) = 0 and
(i) = 0. All N(N + 1)/2 matrix elements on or above the main dia-
gonal are statistically independent. One can prove that such a matrix has
N real eigenvalues A, which, in the thermodynamic limit N — oo, are
smoothly distributed according to a distribution function P(A) in the interval
—20 < A < +20. Asin the CLT, the global result does not depend on the dis-
tribution of the p(e) of the individual random variables. So one can assume
for the latter whichever is more convenient: the binomial distribution (each
independent €;; = 0 with equal probability) or the continuous Gaussian
ensemble, P(g;;) with o = 1.

€See, e.g., M. Evans, N. Hastings and B. Peacock, Statistical Distributions (Wiley, New
York, 1993). This 2nd edition describes 39 “major” distributions.
hSee M. L. Mehta, Random Matrices (Academic, New York, 1967).
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Problem 1.6. (a) Using a random number generator for the individual
e’s, use your PC' to numerically diagonalize the matrix M in Eq. (1.25),
specifying N = 101. List the eigenvalues A, in ascending order. Plot the
level spacings A\p1+1 — A, as a function of A,.

(b) Estimate how large N must be in order that Py(\) approach its
asymptotic limit function P(\) to within +1% everywhere in the interval
—2 < A < +2. (Note: the analytical form of P()) is derived in a later
chapter of this book.)




Chapter 2

The Ising Model and the Lattice Gas

2.1. Some Background and Motivation

The formulation of the statistical theory of fluids poses many formidable
challenges, including that of disentangling the geometry of 3- and 4-body
collisions. The theory of magnetism poses a different but no less daunting set
of difficulties, mainly those associated with the commutation relations of spin
operators. Amazingly, there does exist one highly simplified approach that
can be used to study both magnetism and fluid dynamics. In the context of
magnetism it is known as the Ising model. The elementary spins are discrete
vector-like entities localized on lattice sites. They point “up” or “down” or,
equivalently, are quantified as 1. In the study of defective solids and fluids
the same theory goes by the name of lattice gas model: atoms are present
(4+1) or absent (—1) on given lattice sites. In both applications, any lack in
realism is amply compensated by an utter simplicity. In this chapter we shall
develop an informal but plausible version of statistical thermodynamics on
the basis of this model.

It is not important that this theory accurately fit existing magnetic or
crystalline materials, although it does have numerous such physical appli-
cations. Here it is used as a pedagogical device to introduce key concepts
of thermodynamics and statistical mechanics. Historically, the Ising model
has had its greatest success not in physics but in such far-flung fields as
sociology, genetics, economics, etc. Moreover, with only slight generalizations
(e.g. “Potts model”) it has been used to model multi-component alloys and
establish their stability diagrams, to simulate the process of crystal growth
from the melt, to quantify the surface roughness of materials, to analyze the
spread of forest fires, etc., etc.

17
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2.2. First-Principles Statistical Theory of Paramagnetism

Let us consider N atomic spins s; = £1, each carrying an elementary
magnetic dipole moment mg immersed in a common external magnetic
field B. The energy of a spin parallel (+ or “up”) to the external field
is —mgB, that of an antiparallel spin is +mgB. The unit of energy is
thus eg = mgB. Assume n; spins are up and no = N — ny are down. If
one neglects the electromagnetic- and exchange- interactions among spins
(assuming they are too distant from one another to couple effectively),
the total energy comes from interactions of each dipole with the external
field:

E(x)=—-N2x —1)ey, wherez =mn;/N. (2.1)

The energy is a function of x in the interval 0 < z < 1. In the thermo-
dynamic limit N — oo the average energy of a spin e(z) = E/N becomes
a continuous function of = even though any given spin has only the two
possibilities +ey. The total magnetization M (r) = Nmg(2z—1) also appears
to be proportional to the energy in (2.1), but this proportionality is pure
coincidence and disappears once mutual interactions amongst the dipoles is
taken into account.

We call E and M “extensive”, to distinguish them from intensive quan-
tities such as B or x, which do not depend on N, the size of the system. One
can always determine which variables are extensive and which are intensive
by observing how they scale when the size of the system is doubled.

Most often an intensive force and an extensive quantity exist as conjugate
pairs. B and M are such a pair, as are p (the “chemical potential”) and N,
or p and V (pressure and volume). We shall examine properties of such
conjugate variables in due course.

In order for a thermodynamic equation to make sense all terms have to
carry the same units. What is more, they must all scale with the same power
of N— or else in the thermodynamic limit N — oo the equation becomes ill
defined.

To proceed with the Ising paradigm we seek a physical principle with
which to specify the a priori probabilities p; and pa(= 1 — p1) of a given
spin being up or down. There were some hints at the end of the preceding
chapter. In non-relativistic dynamics, whether classical or quantum, the en-
ergy is a privileged constant of the motion. In dynamical equilibrium it is
a minimum. Thermodynamically, regardless of energy, one can only access
those configurations that are most probable. The reconciliation of these two
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requirements provides a framework in which to construct the model statis-
tical thermodynamics of this chapter.

By analogy with Wy let us start by constructing the probability Qx(n1)
of ny spins being up. It is the product of two factors: P that depends solely
on the energy and W that depends solely on statistical probability, P x W.
This (un-normalized) probability to accompany Eq. (2.1) is

N
ni

Qn(x) = P(E) x < ) , where x = % (2.2)

The statistical factor strongly favors the most numerous, i.e. most probable,
configurations at * = 1/2 in the present instance. On the other hand, P
should be so constructed as to favor the lowest or ground state energy. In
the present model, —F peaks at x = 1, just where the statistical factor is
smallest! Clearly, the joint probability Q y(x) peaks at an intermediate value.
To determine the optimal x approximate log () with the aid of Stirling’s
formula. From (1.21a),

log Qn(x) =log P(E(z)) — N[zlogx + (1 — z)log(1 — x)]. (2.3)

Because the last term is extensive, log ) and log P must both be extensive
as well. P has to be defined so as to encourage low energies and discourage
high energies. The most logical candidate for log P is therefore —SE(x),
i.e. —Npe(z), in which we introduce a parameter § which is intensive and
carries units of energy ™! designed to render log P dimensionless.

Similarly, we re-label the left-hand side of this equation log Qn(z) =
—BF(x) = —Ngf(z). If QN is to be a mazimum in thermodynamic equilib-
rium, F and f must be at a minimum.* We give the “free energy functions”
F(z) and f(x) special names once they are optimized with respect to all
variables.” At, and only at, its minimum, is F denoted the “free energy’.
The corresponding quantity f = F/N is then the free energy per spin.

Minimizing (2.3) w.r. to x yields the most probable value of z,

1

T 1 4 e 2Be

; (2.4)

#The proof is by contradiction: if Q were not initially a maximum the system would evolve
in time until ultimately it reached maximum probability- i.e. thermodynamic equilibrium.
PNote: in the present model there is only a single variable, z.
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labeled by a tilde, as before. Insert this in Eq. (2.3) to obtain an explicit
expression for the free energy:

F=F(z)= —% log[2 cosh fBeg] . (2.5)

An expansion, e.g. Qn(7) = exp{—BF (%) — A(x —%)?+---}, used as an (un-
normalized) probability function, makes it possible to calculate fluctuations
of thermodynamic quantities about their optimal values. (We address this
interesting side issue in Problem 2.2 below.) Finally, note that if we replace
B by —B, x — 1—x. However, the free energy in (2.5) remains invariant and
is therefore a “scalar” (as are such other quantities such as 7" and  under
this transformation).

Problem 2.1. Show that the equilibrium magnetization in this model is
(M) = Nmg tanh Sey.

Problem 2.2. (A) Show that the variance in the number of spins up is
{((n1 —n1)%)/N = m and thus: (M (ny) — (M))?) is extensive. (B) Is
((F(n1) — F)?) also extensive? Calculate this using Qx(x) and discuss.

We have not yet named the statistical contribution in Eq. (2.3),
—Nlzlogz + (1 — x)log(1l — x)]. It is a dimensionless entity that we now
identify with entropy and henceforth denote k~'.#, where k is Boltz-
mann’s constant. After replacing it in Eq. (2.3), the equation now reads:
F = FE — (Bk)~L.%. Identifying (Bk)~! with temperature T yields the ther-
modynamic expression, 6F = 0FE — T0.7.

Still, T is not arbitrary but is determined by the condition that F' be
minimized. Setting 6F = 0 = T = 6E/67|opt. We may take this to
be the fundamental definition of temperature. As a result, T is intensive
and generally restricted to positive values because, under most (albeit not
alll)® circumstances, the entropy increases monotonically with increasing
energy.

°The remarkable concept of negative temperature applies to weakly interacting spins. If
a strong external magnetic field is rapidly reversed the lowest energies become the high-
est and the derivative defining 7' changes sign. But this is only quasi-equilibrium. Once
the spins have time to rotate to the new orientation, true thermodynamic equilibrium is
restored and T becomes positive once again.



2.3. More on Entropy and Energy 21

2.3. More on Entropy and Energy

Given N(E) as the number of configurations of energy FE, the entropy is
quite generally defined as . = klog N. It is an extensive quantity and is
naturally conjugate to the temperature 7. But the phase space at E has
to be discrete in order to be countable. In the late 19th Century J. Willard
Gibbs had already found it necessary to discretize the phase space in classical
statistical mechanics so as to limit the magnitude of .# in the ideal gas.
Although done for purely technical reasons, this discretization uncannily
anticipated quantum mechanics.

But even where counting is possible it remains a tedious task. It may be
impractical to measure (or sometimes even to calculate) .7 directly in non-
trivial models of interacting particles or spins, but one can always deduce it
from . = (E — F)/T or from . = —0F/0T.

Finally, because F' is stationary the partial derivative equals the total
derivative and .¥ is also given by . = —dF/dT. Similarly, E = 0(8F) /00 =
d(BF)/dB. Thus the energy FE and the entropy . are both first derivatives
of a stationary F. We exploit this property when deriving helpful thermo-
dynamic identities in the next chapter.

2.4. Some Other Relevant Thermodynamic Functions

The most salient feature of the model under scrutiny is its magnetization,
also an “order parameter” of sorts. In Problem 2.1 it was found that when
the optimal x is inserted into the expression for (M) the result was (M) =
Nmg tanh feg. The same result is obtained by differentiating F' in (2.5) using
the following definition:

—9F(B,T,...)

M(B,T,...) = 55 , (2.6a)
which can be integrated to yield
B
F(B,T) = F(0,T) — / dB'M(B',T), (2.6b)
0

in which F(0,7) = Fy(T) is the free energy in zero external field. In the
present model, as well as in many non-ferromagnetic real materials, M (B)
vanishes at B = 0 and is proportional to B at small fields. This linear
dependence is written M(B) = xoB, with the constant of proportionality
or zero-field magnetic susceptibility xo being positive in paramagnetic sub-
stances (these are the most common) and negative in diamagnetic materials
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(including some molecules and semi-metals but, more typically, supercon-
ductors). In weak fields, then, the free energy is

1
F~F— 5;(032. (2.6¢c)
The preceding expression makes it clear that paramagnetic substances are
attracted to the source of magnetic fields and diamagnetic ones are repelled,
as should be apparent from their Greek etymology. More generally y itself
is a function of B, T, and other parameters. In arbitrary field B it is defined
by x(B,T,...) = %, revealing it as a second derivative of F.
The heat capacity is another such thermodynamic function. Again,
because F' is stationary, C' can be written in either of two ways:
dE ds
C=—=T——.
dr drT
But .¥ = —dF/dT, hence C = —T(d*F/dT?). Therefore the heat capacity
is also a second derivative of F'. Later we prove under the most general

(2.7)

conditions that C' and .¥ are always positive, therefore F' is a monotonically
decreasing convex function of T.

Both the susceptibility and the heat capacity are extensive quantities. It
is convenient to divide each by N to obtain intrinsic quantities, independent
of the amount of material. The ratio C' + N (or C =+ Volume, depending on
context) is just such an intrinsic property. Denoted specific heat, it is written
with a lower-case c. The specific susceptibility x + N is another intrinsic
property, frequently written also as x without much risk of confusion.

In future applications it will be important to note that all physical pro-
perties intrinsic to a material or to a mathematical model of a material
(its specific heat, electrical and magnetic susceptibilities, dielectric constant,
compressibility,. . ., etc.) can be expressed as second derivatives of the free
energy. For free spins in an external field the two most relevant such quan-
tities are:

’rfL()B/k‘T)2
cosh?(moB/kT)

m3/kT

B,T) =k .
. ) cosh?(moB/kT)

and x(B,T)=

(2.8)

In the lim-B — 0 at finite T, the heat capacity ¢ vanishes identically while
X — Xo = m/kT. (This is Curie’s Law). On the other hand at any finite
value of B, however small, ¢ is always positive and peaks at T' o< moB/k.
In the lim-T" — 0, x(B,0) = 2md(B) (using the delta function previously
defined in connection with Eq. (1.15)). The singularity at B =T = 0 identi-
fies the critical point of the free-spin model; internal interactions may push
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the singularity to finite 7', transforming it into a true order-disorder phase
transition. We examine this phenomenon next.

2.5. Mean-Field Theory, Stable and Metastable Solutions

One century ago P. Weiss introduced the insightful (but approximate) con-
cept of a molecular field, a concept so useful that it has been adapted to
many-body quantum physics, quantum field theory and other applications
too numerous to mention. His approach, now generally known as mean-field
theory, was itself based on a reading of van der Waals’ derivation of an equa-
tion of state for a non-ideal gas (cf. Chapter 3), although of two parameters
used by van der Waals, Weiss needed only one.

He supposed each spin to be subject not only to the external field Boyt
but, additionally, to an internally generated field Biy simulating the physical
interactions with all the other spins. This internal field is related to an order
parameter which, for spins, is defined as 0 = M/Nmyg (formerly denoted
2z — 1). Let Bjy = Boo, where By is a parameter measuring the strength
of the internal forces — i.e. it is a physical property of the system. The
expression for the magnetization in Problem 2.1 is now generalized to,

(Bext + Bint) (Bext + O'BO)
kT kT ’

Expressing Byt in units of By (achieved by setting Bey = bBy) results in
the following dimensionless equation, plotted overleaf:

m m
M = Nmgtanh 0 or, o = tanh 0

(2.9a)

1.
o = tanh ?(b +o0). (2.9b)

When rotated by 90° the above figure is a plot of o(b,t') as a function of
t' = T /T, at various values of b. It has both positive and negative solutions.
For the physically stable solutions the sign of ¢ is that of b; there are no
other adjustable parameters.

Metastable solutions (those in which ob < 0) can play a role in the
context of “spin resonance”. In NMR (nuclear magnetic resonance) or ESR
(electron spin resonance) it is common to invert an external magnetic field
(rotate it by 180°) in a time rapid compared with the inherent relaxation
time of the magnetic system. The spins are then out of equilibrium and
their precession towards a new equilibrium yields useful information on the
internal forces. The change of external b — —b at constant o is equivalent,
for weakly interacting spins, to imposition of a negative temperature. We
can also infer this from Fig. 2.1.
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Fig. 2.1. Mean-field ferromagnetic phase diagram.

Plot of ¢ = T/T. (vertical axis) versus o, the order parameter or magnetization
per site (horizontal azis), according to the mean-field theory, Eq. (2.9). The curve
labeled b = 0 is the only one which is continuous over the entire range —1 < o < +1;
it marks a true thermodynamic phase transition (“critical point”) at the point o = 0,
¢ =T/T.=1.

In nonzero external field the 4 curves b = £0.1, £0.2 above the one labeled b = 0
fail to intersect the T axis, showing there can be no phase transition for b # 0 at
any finite T'. The 4 curves below b = 0 are unstable (i.e. metastable) solutions of
Eq. (2.9) that correspond to a mazimum in the free energy.

Ezxercise for the reader: extend this diagram to negative temperatures ¢’ < 0, either
by extrapolation of the above figure or by numerical calculation.

But how is o to be kept constant? From Eq. (2.9b), the present “equation
of state”, we extract the dependence of external field on ' = T/T, at o
constant:

20

log(1£2)

t—/) — 1) ,  with 7(0) =

T(o

bt')=0o (

(Note: lim - T—0>1 .) Thus in an adiabatic process b has to be lowered linearly

with ¢/, with slope o/7(0). (Lowering it too far, into the range ¢’ < 7 causes
b to have a sign opposite to ¢ and brings the system into a metastable regime
— as shown in the figure and discussed in the caption.)
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Thus the way to induce long-range order in a ferromagnet is to start by
heating it above T, in a magnetic field. Not a new idea! A prescription for the
manufacture of compass needles, in Chapter XII of one of the earliest texts in
modern physics, William Gilbert’s De Magnete, ca. 1600, states: “...let the
blacksmith beat out upon his anvil a glowing mass of iron. . .[while] standing
with his face to the north. . .better and more perfectly in winter in colder air
when the metal returns more certainly to its normal state...”

In zero external field the £ branches meet at T° = T.. Because the
symmetry of either branch is lower than that of the model, either of these
solutions demonstrates spontaneous symmetry breaking, a phenomenon
associated with the spontaneous generation of long-range order for T' < T,
(in which the majority of spins are parallel, being “up” or “down”).

The “critical” properties of the model near T, are obtained by expanding
int=(T-1T.)/T. =t —1; o and b are also assumed to be small or zero.
Expanding Eq. (2.9b) near T, one obtains in leading order,

1 1
———|o+b—Z(c+b3+---| =0.
=17 1° 3(0 )

This has roots:

o ==4(=3t)"/2 (for b=0and t < 0),
o =sgn(b) x (3b))Y/% at t =0, and (2.10)

a/bﬁx(]:t_l fort > 0.

Near the critical point, the leading terms are in agreement with the solutions
plotted in Fig. 2.1. Two critical indices denoted 8 and 0 are conventionally
used to fit o to power laws: 0 o (—t)? (for t < 0 and b = 0) and o
sgn(b)|b|*/? (at t = 0.) In Weiss’ model, according to Eq. (2.10) the critical
exponents are § = 1/2 and § = 3 respectively, their so-called “classical
values”. A third critical exponent o measures the singularity in the specific
heat at T, at b = 0, through ¢ o< 1/]t|* When b = 0 in the present model,
E x —0? «ctfort <0and E =0 for t > 0. Hence c is discontinuous at
t = 0, with o = 0 being the (best?) fit to the classical specific-heat exponent.
A fourth critical exponent  serves to fit the zero-field susceptibility xg to
a power-law, yo « t77. From Eq. (2.10) we deduce v = 1 in the mean-field
theory.

da = 0 is the “best” fit to a power-law in two cases: piece-wise discontinuous functions or

functions that are logarithmically divergent.
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The critical exponents o« =0, = 1/2, v =1 and § = 3 just derived are
typical mean-field exponents and agree with detailed calculations on more
realistic models in d > 4 dimensions. In d = 2 or 3 dimensions the mean-
field predictions are typically less reliable, and in d = 1 they are flat-out
wrong. (In Secs. 2.7 and 2.8 we work out one-dimensional examples in which
mean-field theory fails explicitly). Nonetheless the mean-field may provide a
useful starting point for more sophisticated theories in which fluctuations are
taken into account explicitly; under some circumstances it may be possible
to “patch in” the fluctuations so as to correct the mean-field results in d < 4
dimensions.

2.6. The Lattice Gas

Imagine a three-dimensional grid dividing space into N cubes of volume a?

each capable of accommodating 1 atom at most. The volume is Na?, the
number of atoms Ny < N, and the particle density p = Ny /N. As we have
seen in Chapter 1, in the absence of forces the statistical factor ( ]\],Z t) stands
alone and peaks at p = 1/2, half occupancy.

Let us assign spin “up” to an occupied site s, = +1 and spin “down”

S$m = —1 to an unoccupied (vacancy) site. That identifies the local particle
density as p, = H% and its average as p = #

A one-body energy term Hy = —pu Y, p, can serve to adjust the value of p
from 0 to 1. At p© = 0 the most probable density is 1/2. Thus 2p — 1 is
the quantity analogous to o while u, the chemical potential, is analogous to
Bext /2. For stability we need a two-body interaction energy. Its mean-field
value is Hy = —%Nﬁt = —%N p?, which is tantamount to modifying p by
an internal field piny = —Up. This completes the analogy of the mean-field
lattice gas to the Curie-Weiss model of magnetism. We can use it to derive
an equation of state.

2.7. The Nearest-Neighbor Chain: Thermodynamics in 1D

In one dimension the mean-field approach fails, but there are other
approaches that work well. We examine a one-dimensional ferromagnet
originally studied by Ising. First, set b = 0.

Here the energy of the nth bond is H, = —Js,s,1+1. As before, each s,
can assume the two values +1 and n ranges from 1 to N. In the absence
of an external field the total energy is H = > H,,. For present purposes we
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can calculate the thermodynamic properties by transforming the initial set
of coordinates as follows: s1 — Ty, S0 — T Ty, S3 — T1TaT3, etc. Because
(tn)?> = 1, H, — —J7,11. Thus the model reduces to N — 1 “7” spins in
a uniform external field J. Using the previous results, Eq. (2.5), we obtain
without further calculations,

F = —(N — 1)kT log[2 cosh J/KT] . (2.11)

Because the free energy is explicitly analytic for 7' > 0 there can be no phase
transition at any finite 7' > 0. Thus the linear-chain Ising model is always in
its disordered “high-temperature phase”. The problem below illustrates both
the absence of long-range order and the exponential decay of the short-range
order.

Problem 2.3. Show that the spin-spin correlation functions satisfy
(Snsntp) = exp—|p|/¢, where ((T') the “correlation length” is given by
¢(T) = 1/log[coth(J/kT)]. Show that in lim-T" — 0, {(T") — exp(2J/kT).

Problem 2.4. Obtain the internal energy per bond from F' and compare
with the calculated —J(sp,Sp+1).

This solution to this one-dimensional model dates to 1925 and provides
an interesting footnote to the history of physics. Ising believed his result
to be applicable in three dimensions. Because the lack of long-range order
invalidated the model as a theory of ferromagnetism, far more complicated
alternatives proposed by Bloch, Heisenberg, and others took over the field
— for a while. Ising became a High School science teacher in New Jersey.

Almost two decades were to pass before the misapprehension was laid to
rest in 2D — where Kramers and Wannier showed it does exhibit long-range
order and spontaneous symmetry-breaking below a critical temperature 7.
It was in the 1940’s that Onsager derived the exact free energy for the 2D
Ising model, both below and above T.. This discovery would usher in the
contemporary era in statistical mechanics. In a later chapter we return to
this problem, using the methods of quantum field theory to achieve an exact
solution of this — essentially classical — problem. But the solution to the
3D model still lies — tantalizing — just beyond our grasp.
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2.8. The Disordered Ising Chain

The 1D chain is readily generalized to instances in which the energy of
the nth bond is —J,S$pSp+1 and the J, are arbitrary. In a random chain
they are distributed according to a normalized probability distribution P(.J).
Replacing Eq. (2.11) we obtain straightaway,

F=—(N—1kT / d.JP(.J)log[2 cosh J /KT . (2.12)

Upon differentiating this expression the specific heat is obtained in the form:
c=C/(N —1)=k(kT)™? /dJP(J)ﬂ/cosh?(J/kT). (2.13)

We can deduce the low-temperature limiting behavior from this expression,

provided P(J) is approximately constant at a value P(0) for small |J|. Then,
in the range of T where kT is small compared with the typical |.J|, we obtain

2
c=~T, wherey=Ek*P(0) / dx ( ) = 1.64493k*P(0).  (2.14)

cosh x

This result is just one example of what one finds in “glassy” or amorphous
materials. These typically exhibit a universal law, ¢ oc T" at low temperatures
— regardless of such “details” as the dispersion, dimensionality, coordination
number, topology, etc.

2.9. Other Magnetic Systems in One Dimension

The Ising model is not unique in being easily solved in 1D. The statistical
properties of similar other models are just as simple, provided there are
no external fields coupling to the natural order parameter. “Simple” means
that, as in (2.12), F' takes the form:

F = —NkT¢(a|T), (2.15)

where ¢ involves T and a set of parameters symbolized by a.

As a generic example, consider the classical Heisenberg model, in which
vector spins are represented by classical dipoles s of fixed length s but
arbitrary orientation and the total energy is the sum of all nearest-neighbor
scalar bond energies —Js;, - s,11. If we use the unit vector s,/s to define
the z-axis for the next spin, s,1, the spins decouple and the free energy is
then just N — 1 times that of a single spin, each in an effective “external”



2.9. Other Magnetic Systems in One Dimension 29

magnetic field Js. Here,

o(J|T) = log {/dQeXp—(JS2 cos@)/kT} :
Performing the indicated integration over the unit sphere, we find:
o(J|T) = log{4n(kT/Js?)sinh(Js*/kT)} . (2.16)

As in the example of the Ising model, the very construction of this solution
precludes long-range order at any finite T'. Indeed, the free energy is analytic
in T for all T' > 0, and there is no phase transition.

Problem 2.5. (A) Calculate and plot the internal energy per site
—Js%(cos §)14, the specific heat, and the entropy for the Heisenberg model,
as a function of 7', and compare to the Ising model results. What are the
limiting values as T" — 0 and asymptotically, as T' — oco? What is the for-
mula for the correlation function G, = (cos 6, cos ,,4,)? (B) Generalize the
model and repeat the calculations for the disordered Heisenberg chain, in
which each J,, is distributed according to a uniform probability P(J), just
as in Sec. 2.8.
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Chapter 3

Elements of Thermodynamics

3.1. The Scope of Thermodynamics

Thermodynamics expresses general laws governing the transformation of one
kind of energy into another. Out of the huge number of dynamical variables
that characterize a macroscopic system, only an irreducible few need be
specified. However few they may be, these variables are not even independent
but are related through an equation of state.

For a fluid or gas, the usual intensive variables include temperature 7',
pressure p, density p and chemical potential p. For magnetic systems we
should add the magnetic field intensity B to this list, and for dielectric
materials the electric field strength E. Among extensive quantities, there
are the potential and kinetic energies, entropy, free energy, heat capacity,
magnetization or electric polarization and more generally, particle number
N and volume V. (Of course, these last are related to the intensive quantities,
density p and specific volume v, via p = N/V = 1/v.) Some aspects of the
two-body correlation function S(q) may also be relevant.

In most instances this enumeration exhausts the quantity of thermody-
namic information which is either available or required. The few variables
which have been selected are representative of a far greater number of
internal variables, N’, of the order of Avogadro’s number N4 per mole. The
latter include hidden dynamical variables such as the spatial coérdinates,
momenta, and spins of individual particles and their collective motions such
as sound waves, etc. It is necessary to average over them. Consequently
the observable properties are governed by the law of large numbers, with
Gaussian probabilities subject to the CLT.

A contrasting view of thermodynamics sees it merely as the branch of
applied mathematics that deals with coupled partial differential equations
in several variables. That is how we shall approach it at first. Starting only

31
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from elementary common-sense notions we derive the equations satisfied by
the free energy, the equations of state, the Maxwell relations, chain rules,
etc., in the context of simple fluids made up out of identical particles. The
role of internal forces shows up only in the latter parts of this chapter.

3.2. Equations of State and Some Definitions

The equation of state constrains the smallest number of observables required
to characterize a given phase (“state”) of a given substance. For over two
centuries it has been known that a simple formula relates the pressure and
temperature of any given gas to its density in thermodynamic equilibrium.
The exact formula varies from gas to gas, but theorists have labored to
place it in a universal context. Consider the “ideal gas” law, which applies
to many gases at sufficiently high 7" and low p: it is simply p/kgT = p.
In practical terms, this means that the equilibrium state of an ideal gas is
uniquely specified by any 2 variables out of 3.

More generally the equation of state takes the form p/kT = pG(p,T),*
with G a function to be determined experimentally or calculated with the
aid of statistical mechanics. The mere existence of such an equation of state
ensures that partial derivatives such as 0V/0p (related to compressibility)
and OV/OT (related to thermal expansion), to pick one example, are not
independent but are mathematically related.

At fixed N one can write the generic equation of state of any gas as
fp,V,T) =0 (with f = F — Fy if we wish). If then we alter p by dp, V by
dV and T by dT', this quantity also changes: f — f + df. The requirement
that df also vanish leads to

_9f

i =0=7

af af
dp+ 2L av+ 2L ar. 3.1
VT oV lpr Tl (3.1)

The subscripts identify the variables being held constant, in accordance with
standard notation.

For more insight into (3.1) it is useful to visualize the equation of state
f = 0 as an hypersurface in 3-dimensional p,V,T space. By definition of
the equation of state, the fluid is in thermodynamic equilibrium only on this
hypersurface. The condition df = 0 constrains the variables to this hypersur-
face and ensures that all changes occur under conditions of thermodynamic
equilibrium.

#Where there can be no confusion we shall omit the subscript in kp.
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Setting p constant (i.e. dp = 0) in (3.1) we derive the first of the equations
below, (3.2a). V' = constant and T' = constant are used to obtain (3.2b) and

(3.2¢).

v _(or|\ " _ 0f/oTv, (3.22)

arl,  \ovl,)] = af/oVir =
-1

or| _ (@ ) __0f/Oplvr (3.2D)

op |y oT |y of /0T v,
-1

op| _ (8_V ) — _W' (3.2¢)

oV |r op |r of/oplv.r

The so-called chain rule relates the product of three derivatives:
oV [oT|, - 0T /9p|y - Op/OV |1 = —1, (3.3)

an identity that the reader can easily, and should, verify.
Let us expand the internal energy, F(,V,N), as we did f, but without
specifying that F remain constant:

dE = 0E/0.7 |y nd.S + OE [0V |y #dV + OE/ON|y vdN . (3.4)

All four differentials dFE, d., dV and dN are extensive, therefore all three
coefficients on the rhs are intensive. Identifying them with some common-
place, measurable, quantities we name them temperature, pressure and
chemical potential:

T=0E/0S yN, p=-0E/0V|Ny, and pu=0E/ON|sy. (3.5)

These are definitions that supersede any qualitative notions we may have
harbored concerning the “real” meaning of these primordial variables.
However, it is not always convenient to use the extensive variables ., V
and N in (3.4) to determine the change in energy. Were it necessary to
specify T', V and N instead, how would one reéxpress the energy? The
answer is simple, even though requires defining a new entity, the Helmholtz
Free Energy F' = E —T.%. Upon plugging in Eq. (3.4) we obtain,

dF = dE — d(T.%) = dE — Td — .%dT = —dT — pdV + pdN . (3.6)

The infinitesimals on the rhs reveal the new independent variables, thus
we write: F' = F(T,V,N). The change from E to F with the concomitant
change in the set of independent variables constitute what is known as a
Legendre transformation.
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Two more such “free energy” quantities are constructed through
additional Legendre transformations. The Gibbs Free Energy is defined as
G = F + pV, therefore

dG = dF + pdV + Vdp = —dT + Vdp + pdN . (3.7)

Again the infinitesimals help us identify the independent variables, T, p,
and N. Thus G is G(T,p, N). A third and final® transformation defines the
enthalpy (< ,p,N) =G+ T.7, ie.

A = Td. + Vdp + pdN (3.8)

for which ., p and N are the independent variables.

Each of the free energies has its preferred applications. 7 is the
simplest quantity in problems involving flow or chemical reactions, wher-
ever a “pressure head” Ap is specified. F' is easiest to calculate with the
aid of statistical mechanics. As for GG, a function of only a single extensive
variable N, its role is paramount in the study of phase transitions.

We next want to prove a remarkable identity, G = pN. Starting with
(3.4), after multiplying each extensive quantity by an arbitrary dimensionless
parameter A (e.g. A = 2 would correspond to doubling the size of the system),
we obtain: d(AE) = Td(A\Y) — pd(AV) + pd(AN). Treating A and d\ as
independent variables and collecting coefficients one finds:

AdE — (Td.% — pdV + pdN)] = —dA[E — (T.% — pV + uN)].  (3.9)

By (3.4) the lhs vanishes. Hence so must the rhs. Because d\ is arbitrary
the square bracket must vanish, proving the contention:

[E—(T.# —pV +uN)| =F +pV —uN =G —uN =0, QED.
It is now possible to generalize the definitions in Eq. (3.5):
T =0E/0S\yNn =00 |pN
P = —8E/8V|N7y = —8F/8V‘N,T
p=0E/ON|yy =0F/ON|ry =0G/ON|r, =G/N
& =0F /0T |y,y = 0G/OT |p N

(3.10)

The definitions of the various thermodynamic variables in (3.10) are
not just pedantic. They clarify what originally had been very fuzzy ideas

PFour more Legendre transformations, consisting of subtracting uN from each of E, F, G,
and H, yield only trivially different free energies.
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concerning thermodynamic systems. For instance, the very motion of tem-
perature was confused with that of heat until the end of the 18th Cen-
tury, when it came under the scrutiny of the American physicist Benjamin
Thompson (later, Count Rumford), an expatriate colonial residing in Eng-
land. Further refinements are due to a French military engineer, Sadi Carnot,
and an Englishman, James P. Joule. Their names remain in the core vocab-
ulary of physical sciences and engineering.

3.3. Maxwell Relations

Let us differentiate the quantities in (3.10) once more, making use of the
identity 02 f(x,y)/0x0y = 0*f(x,y)/0ydx, valid wherever f is an analytic
function of its variables. For example, at constant N:

9 _i{_a_F _i{_a_F ] _ 97
oT|y oT | aViply, ov | oT|yl, ov

T T

This establishes the first of four Maxwell relations (all of them obtained
in similar fashion). They are,

Op/dT|y = 8.7 )0V |y (3.11a)
OT oV |y = —0p/0.7 |y (3.11b)
oV /0.7, = T /p|» (3.11c)
0.7 |dp|r = —0V /T, . (3.11d)

Their number can be augmented by additional degrees of freedom, such as
the magnetic variables in the following example.

Problem 3.1. Prove (3.11b—d). Then extend E and the various free ener-
gies by adding —B - dM to each. How many new Maxwell relations can one
derive involving B and/or M and what are they?

3.4. Three Important Laws of Thermodynamics

(1) The First Law: Energy is Conserved.
(i) Suppose work dW is done on a closed system and “heat” d@ is simulta-
neously introduced into the same system, whilst carefully maintaining
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(iii)

(iv)

(iii)

3. Elements of Thermodynamics

thermodynamic equilibrium. The First Law states that the change in
the thermodynamic function FE, the internal energy, is dE = dW + dQ.
If the work is performed adiabatically, such that it preserves all classical
adiabatic invariants or internal quantum numbers (i.e. in such a way
that the number of accessible configurations remain constant), then .7
remains constant and dE = —pdV = dW for mechanical work.® It
follows that d@ = 0. (For work performed by an external field on a
magnetic substance one has dE = —B - dM instead, etc.)

If, on the other hand, heat is introduced through the walls with no
change in volume, magnetization, nor in any other such variable, dW =
0 hence dE' = T'd.”. Thus the First Law as stated here and in (ii) above
essentially restates the definitions of 7" in Egs. (3.5) and (3.10) when N
is constant.

If, however, dN # 0, the same equations yield dE8 = pdN. This ex-
presses the fact that particles enter the system carrying energy .4
Not being a relativistically invariant quantity, energy is not conserved
in systems accelerated to near the speed of light. Therefore the First
Law is modified in relativistic thermodynamics.

(2) The Second Law: In Equilibrium, Entropy is Maximized.

In its simplest terms the Second Law states that thermodynamic equi-
librium corresponds to maximal probability. Thus the approach to equi-
librium has to be characterized by an entropy that increases steadily up
to the asymptotic value corresponding to equilibrium. This defines an
essentially irreversible process. In a reversible process with dW = 0 the
entropy necessarily remains fixed at whatever maximal value it had.

It follows that when two closed systems are brought into thermal con-
tact, heat flows from the hotter to the cooler until the temperatures
are equal. [Proof: let Ty = T —t, Ty = T + t, where |t| < T. In-
voke the First Law: (T — t)0.% + (T + t)0.% = 0, hence 0.91 /0. =
—(T+1t)/(T —t). Expressing 0. = 0.91 + 0-%5 in terms of 0.7, we find
0 = 05(—2t/(T —t)). Therefore 0. > 0 implies 0.7, < 0. Because
0.5 ~ 8AQ2/TQ, AQ2 < 0. QED]

If particles are permitted to flow from one container to the another at
equal pressure and temperature, they do so from the higher chemical

°p = force per unit area and dV = dxdA, where z is normal to A.
dSpecial interpretations are required if p lies in a range where there are no admissible
quantum states. (Well-known examples include lightly-doped semiconductors and the “low-

temperature

” “s-gapped” superconductors.)
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potential into the lower, until the two become equal. [Proof: along the
lines of (ii). Details left to the reader.]

The entropy of a system (“A”) cannot decrease merely by chance; any
decrease must be the consequence of some physical, chemical or bio-
logical organizing force acting on A. Then, suppose A to be entirely
embedded in a larger, closed, system B. Even if the entropy of A is de-
creasing the total entropy of B must increase, as shown in example (ii)
above. The exothermic combination of two species to form a third, e.g.
a+ B — 7, provides a less obvious example. The species’ . obviously
decreases but once the entropy of the released radiation (“heat”) is
taken into account the total .# again increases.

(3) The Third Law (Nernst’s 1905 Theorem): .//N — 0 as T'— 0

From basic assumptions we know that, in equilibrium, entropy increases
with total energy; thus it must be a minimum in the state of lowest en-
ergy, i.e. at T'= 0. The Third Law stipulates that the entropy per par-
ticle is not just a minimum, but that it actually vanishes in the ground
state. This can be proved rigorously for bosons, as their ground state
wavefunction is nodeless (regardless of interactions), hence unique. This
Law seems to hold in other contexts as well, so the result may be more
general than the derivation. Known counter-examples have invariably
proved to be artificial, mathematical, models devoid of fluctuations.

As a consequence of Nernst’s theorem, in the lim-T" — 0 the specific
heat, ¢(T') = T0s(T") /0T, also vanishes. The proof is almost trivial:

s(T) = .#(T)/N = /OT dT’C(TT//)

cannot vanish at 7" = 0 unless ¢ does. The vanishing of ¢(T") at T = 0
is sometimes (incorrectly) referred to as the Third Law although that
alternative formulation could be paradoxical (see below).

Problem 3.2. An “electron gas” (i.e. metal) has low-temperature heat
capacity ¢(T') = yT' — 0 as T' — 0. The low-temperature heat capacity of
acoustic phonons is ¢(T') < T®, also vanishing in the lim -7 — 0. Show both
examples are compatible with the Third Law. By way of contrast, consider
an hypothetical system A, in which ca(T") = co/log(1 + Typ/T), with ¢y and
Tp fixed parameters. At T'= 0, c4(T') also vanishes. Nevertheless, A violates
the Third Law as given above. Show this.
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Historically the Third Law antedated quantum mechanics although its
significance only became clear after the symmetries of quantum mechanical
many-body ground states were revealed. In this text we use it to obtain
a simple identity in the theory of superconductivity. Although occasionally
one may find this law useful, Simon® surely overstated the case in 1930 by
calling it “...the greatest advance in thermodynamics since van der Waals’

time. ..
of his own discovery. Dugdale! reports that

even though this assessment concurred with Nernst’s high opinion

... Nernst was very proud of his achievement in formulating what he
referred to as “my law”. He noted there were three people associated
with the discovery of the First Law, two with the Second and only
one with the Third. From this he deduced that there could be no
further such Laws.!

But not all writers agreed on the importance of the Third Law; in fact,
Fowler and Stern called it “irrelevant and useless”.f Nor is it destined to be
the final word: there have already been formulations of a “Fourth Law”, in
a sequence that will not likely end soon.

3.5. The Second Derivatives of the Free Energy

With few exceptions, the principal intrinsic characteristics of matter have
been found to be functions that can be expressed as a second derivative
of some free energy, such as the previously discussed heat capacity and
magnetic susceptibility. Additional quantities of this type are compressibility
and dielectric susceptibility.® We next derive some relations and inequalities
governing such functions. For example, define C, = T0.% /0T |,. Then,

B TO*F
oT?

v

B TG

= ik

Similarly, C, = (3.12)

Fix N and expand: d = 0.7/0p|rdp + 0.7/0T|,dT. After multi-
plying by T/dT and specifying V' = constant, we find Td./dT|, =

°F. Simon, Ergeb. Ezakt. Naturwiss. 9, 222 (1930).

fSee discussion in J. S. Dugdale, Entropy and Its Physical Meaning, Taylor & Francis,
London, 1996, p. 145.

€At finite frequency and wavevector this generalizes to the complex dielectric function
e(w,q) = e1(w,q) + ie2(w, q). The imaginary part of ¢ relates to electrical conductivity,
Joule heating, etc.
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10 /0p|rdp/dT |, + TS /OT|p, relating Cy to Cp. The Maxwell rela-
tion (3.11d) eliminates 0.7 /0p|r in favor of —0V/dT|,; the chain rule (3.3)
eliminates the latter. Then,
dp 2
C,=VT — Cs. 3.13
p=vrer (g7,) + (319)
In the above we used the isothermal compressibility, a material property
that is itself a second derivative of Gibbs’ free energy:

o= — LV
T op |
1 0°G 10V 1 0°E
= —=— Similarly : Ky = — =—| =— =—= ) (3.14)
V8p2T < V oply V8p2y

(Note the — signs). k. is the adiabatic (or isentropic) compressibility. It is
a given that compressibility is non-negative (application of pressure causes
compression, not dilation)! Thus Eq. (3.13) serves to establish a general
inequality: C}, > Cy.

In magnetic systems one defines isothermal and adiabatic magnetic
susceptibilities as:

oM oM

- d -7
XT 9B |7 and  X. 9B |,

respectively. (3.15)

The heat capacities Cp and C}; are then related by,

OM| 12

=7 (3.16)

Cp=0Cyp+T(xr)™! [

B

But unlike the compressibility, which is always positive, x7 can either
be positive (in paramagnetic or ferromagnetic materials) or negative (in
diamagnetic materials, including all superconductors). Therefore the sense
of the inequality C'p > C)s depends on the sign of x7.

3.6. Phase Diagrams for the van der Waals Gas

A plot of the equation of state in the neighborhood of the ferromagnetic-
paramagnetic phase transition, as in Fig. 2.1, or of the liquid-vapor phase
transition, yields valuable information.

Consider the liquid-vapor phase transition. Certainly the ideal-gas equa-
tion of state, p = NkT/V = kT /v, does not admit a condensed phase; its
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isotherms (plots of p versus v at constant 7') march in parallel formation,
with nary a kink.

The first systematic theory of a non-ideal gas was that of the Dutch
scientist, Johannes D. van der Waals [1837-1923], who derived the following
equation of state entirely on empirical grounds:

p= M a <1)2 . (3.17)

Tv—b v

The parameter b measures the excluded volume per particle, and a the inter-
molecular attraction. The measured b turned out to depend on v and T for
reasons which escaped van der Waals, but which we can now understand
on the basis of the virial expansion (vide infra). Nevertheless, on the basis
of this equation of state he was able to explain the existence of a critical
point (pe, ve, Te) for the vapor-liquid phase transition (this had already been
experimentally identified by 1869) and to derive a Law of Corresponding
States in 1880." In his Nobel prize acceptance speech, van der Waals saw
the qualitative agreement of his theory with experiment as a major victory
for the “atomistic” theory of matter — stressing that this view had still
remained controversial at the turn of the Century!

The critical point can be derived from (3.17) by identifying the equation
as a cubic in v and finding the point at which its 3 roots coincide. One solves
3 equations for the 3 unknowns: dp/dv = 0 (i.e. Ky — o0), d*p/dv? = 0
together with Eq. (3.17) itself. As a result, Eq. (3.17) can be replaced by a
generic,

8t 3
-1 2’ (3.18)

p=

where p = p/pe, V =v/ve, and t = T/T,, and p, = 325 Ve = 3b, KT = 28—7117.
This reformulation in term of dimensionless and presumably universal
variables renders van der Waals’ Law of Corresponding States explicit.
Neat as it appears, Eq. (3.18) is not entirely satisfactory. Plotting it one
can identify not just two distinct phases (gas and liquid) but also regions
of negative compressibility and of negative pressure — both proscribed in
thermal equilibrium. The necessary “fix” to the coexistence region is pro-
vided by Maxwell’s construction discussed below, which achieves one of the
requirements of the Second Law, i.e. that pvapor = fliquia Whenever the two

b According to this Law, all gases satisfy a universal equation of state once their variables
are expressed in dimensionless form.
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Fig. 3.1. Isotherms in van der Waals’ universal equation of state.

p the pressure in dimensionless units) versus v (the volume per molecule in di-
mensionless units) at various (dimensionless) temperatures, as in Eq. (3.18). From
bottom curve to top: T/T, = 0.80, 0.85, 0.90, 0.95, 1.00, 1.05.

fluids coexist. However, Maxwell’s construction is paradoxical insofar as it
makes use of van der Waals’ isotherm p(v) in the unphysical region.
Experimentally, laws of Corresponding States somewhat different from
(3.18) have been found to hold in a variety of different fluids, although details
such as power laws disagree with (3.18). Indeed, the search for a better
formula has spurred an entire field of investigation concerned with “critical

» i

point phenomena”.
Clearly the plotted isotherms are unphysical wherever p is negative,
and also wherever their slope is positive (i.e. where the compressibility is

'Near second-order phase transitions length scales such as the interparticle separation or
the lattice parameter becomes irrelevant as fluctuations occur at all wavelengths. This
allows to construct correlation lengths based on small quantities such at T'— T, or B (ex-
ternal field) and to express all thermal properties in terms of these. This “scaling” “critical
theory” attributable in large part to early work by M. E. Fisher and by L. P. Kadanoff
is the subject of H. E. Stanley’s Introduction to Critical Phenomena, Oxford, 1971. Later,
ca. 1984, it was discovered that in 2D the continuum hypothesis is well matched to math-
ematical concepts of conformal invariance. This identification allows to solve practically
any 2D physical model near its phase transition. Many relevant papers are to be found in
C. Itzykson, H. Saleur and J. Zuber’s massive reprint volume, Conformal Invariance and
Applications to Statistical Mechanics, World Scientific, 1988.
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Fig. 3.2. van der Waals’ loop, and Maxwell’s construction.
Along a given isotherm, with increasing v the pressure first decreases to A in
accordance with Eq. (3.17), then stays constant (at the value ps determined by
Eq. (3.19)) while the ratio of liquid-to-vapor diminishes until the pure vapor phase
is reached at B. Thereafter p(v,T) satisfies Eq. (3.17) once again. The black loop
has the same area as the white, hence Maxwell’s construction Eq. (3.19) applies.
The fraction p4 of liquid is a variable decreasing from 1 to 0 in the coéxistence
region, along the straight line joining A to B.
The entire curve between points A and B is unphysical in thermodynamic equi-
librium — not merely the portions (between the two dots) that exhibit negative
compressibility. The weakness of Maxwell’s construction is that it uses the solu-
tion of Eq. (3.17) to position the points A and B precisely in the range where the
equation is unphysical, hence unreliable.

negative). Maxwell’s construction, shown in Fig. 3.2, connects the point
A(T) on the liquid side (small value of v) to the point B(T') on the vapor
side (large v), by an horizontal line at pg = p(va,T) = p(vp,T). The value
of p4 is determined by the nonlocal condition that the work from A to B
along the isobar equals the integrated work along the van der Waals loop.
This fixes pg = pup = u, allowing the free interchange of molecules between
the liquid (at A) and the vapor (at B) at constant p, T'. Quantitatively:

pa-(vi—va) = [ duple,T). (3.19)

The integrand p(v,T) is that given in Eq. (3.17). Figure 3.2 illustrates
the solution of Eq. (3.19), p.(T") and va p(T), for a typical isotherm
below T..

The locus of points A(T) and B(T') defines a coézistence curve in the
p,v plane, in the shape of a distorted inverted parabola with its apex at
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Fig. 3.3. Coexistence curve in p,T plane.

Crossing the coéxistence curve (left to right) at a point p, T changes v from v4 to
vp discontinuously. This denotes a first-order phase transition characterized by a
latent heat, L(T) which decreases with increasing T to L(T.) = 0. At T, precisely,
v4 = vp = v, and the transition is second-order. For T > T, the equation of state
is continuous (no transition) and the two phases are indistinguishable, merged into
a single fluid phase. The box illustrates the construction in the Clausius—Clapeyron
relation.

the point (ve,p.)) The agreement with experiment is qualitatively good al-
beit quantitatively defective: the measured curve is flatter than a parabola
at its apex. In Fig. 3.4 we exhibit experimental results from a variety of
fluids. While displaying universal behavior predicted by van der Waals in
his Law of Corresponding States, the curve does not assume the parabolic
shape required by his theory. It is better fitted to a cubic form.

Above the critical point (7" > T.) where the isotherms decrease mono-
tonically with v, the vapor can no longer be objectively distinguished from
the liquid. This is best seen in the schematic plot of p(v4(T"),T') versus T in
Fig. 3.3.

3.7. Clausius—Clapeyron Equation

First-order phase transitions such as those just documented are character-
ized by a discontinuity in a first derivative of some free energy such as the
entropy, internal energy, or density. Given the coéxistence of the two phases,
the Second Law generalizes Maxwell’s construction by guaranteeing that the

JOr, in the dimensionless coordinates of Fig. 3.1, at the point (1,1).
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Fig. 3.4.% Temperature (units T.) versus density (v./v).
When plotted in dimensionless units, the coéxistence curves (the locus of points A
and B for all temperatures T < T, in Fig. 3.2) in the p, 1/v diagram of 8 disparate
fluids, all lie on, or close to, a single universal curve: a sort of “Law of Corresponding
States”. Although van der Waals’ equation together with Maxwell’s construction
predicts a parabolic T versus 1/v dependence near the critical point at (1, 1), the
experimental results are more nearly cubic (solid curve).

Gibbs free energy per particle, u, is the same in both phases at given T" and

p!

The Clausius-Clapeyron equation is based on this simple observation. It
relates the difference in specific volume Av = vg — v4 between the two
phases to the difference in the specific entropies (entropy per particle) s.
Consider two distinct infinitesimal displacements along the critical curve in
Fig. 3.3, starting from a point (7,p). The first displacement, immediately
above the curve, is in the liquid phase and is parametrized by d1' and s
and dp and v. The other, immediately below, lies in the vapor phase and is
parametrized by dT" and s’ and dp and v'. Because the p’'s remain equal,
dy' = —5'dT +V'dp = —sdT + vdp = du. Collecting coefficients of dp and dT
and defining

L(T)=T(s' —s) =TAs

kAdapted from E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
!See statement of Second Law, part (iii).
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the latent heat for the transition, we obtain the Clausius-Clapeyron equation,

in truth an identity,

d L
D ———(both L and Av being known functions of T'). (3.20)

dT  TAv

The lhs is obtained from experiment (Fig. 3.3), as is Av (Fig. 3.4). Thus
(3.20) is used to measure s experimentally. If dp/dT remains finite at T, this
formula also links two apparently independent phenomena: the vanishing of
L at the critical point T, and the vanishing of Av at that same point.

But this last applies only to a phase transition that connects two fluid
phases of one and the same material. If the condensed phase were a solid
there could be no critical point at finite 7. (We shall explain this important
distinction between the solid state and the liquid by invoking the long-range
order associated with the former.) Nor would the phase diagram be quite so
simple if there were several distinct fluids in solution.

Sgas
B
Critical
point
C-o- /
Mixed phase
>
Q.
o
c
L
A
T~ Siiquid
|
TC

Temperature

Fig. 3.5. Entropy versus temperature along coexistence curve.
The latent heat can be obtained using the formula L(T) = T(Fgas — Siquid) Up
to the critical temperature. Note that L must vanish at T, if the curves A and B
meet without discontinuity, as in the drawing. The gas fraction in the mixed phase
region between the two curves is approximately (C' — A)/(B — A).
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The source of latent heat in the phase transition governed by the
Clausius—Clapeyron Eq. (3.20) is exhibited graphically in Fig. 3.5 above.

3.8. Phase Transitions

Even though the latent heat vanishes at the critical point, as illustrated on
the preceding page, the isothermal compressibility diverges, as is apparent
from one of the equations dp/dv = 0 that helps define 7.

Thus a phase transition which is first order across the coéxistence curve at
temperatures T° < T, become second-order at its end-point T, before being
extinguished altogether. We have noted that second-order phase transitions
are the result of a discontinuity (or a singularity) in any second derivative of
the free energy; the compressibility is just such a quantity. In some instances,
it is a third-order derivative that is discontinuous.

But in all such cases, or under even more obscure circumstances where
the discontinuity is fourth order or higher, or in instances where all deriva-
tives are continuous but the free energy exhibits an essential singular-
ity,™ the conventional nomenclature remains the same: any phase transition
that is not first-order is deemed, by default, to be a second-order phase
transition.

If the phase on one side of a phase boundary has long-range order and
that on the other side does not, there is no critical point. The explanation is
this: in Fig. 3.3 we see it is possible to proceed continuously from the vapor
phase to the liquid by circling about the critical point without crossing the
critical line nor any hypothetical curve at which long-range order might set
in. Thus, if a critical fluid-solid critical point were to exist, it would have to be
at T'— oo to forbid such trajectories. Interestingly, a solid can coéxist with
its liquid and vapor both, at a “triple point” which marks the intersection
of the two coéxistence curves.

The familiar example of HoO illustrates this, in Fig. 3.6 next.

This figure perforce omits many interesting details, such as the many
different phases of ice and the solid-solid phase transitions which separate
them. On this scale one can barely observe the negative slope of the solid-
liquid coéxistence curve near the triple point, due to the lower density of ice
relative to water. There exist microscopic theories for this physical attribute,
uniquely responsible for the winter sports of ice skating and skiing.

TE.g.: F = Fo+ F1exp(—|A|/|T —T¢|), and all derivatives of F, are continuous at T, in the
case of the two-dimensional “plane-rotator”, but there is nevertheless a phase transition.
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Fig. 3.6. Schematic phase diagram for H5O.

Pressure (bars) versus Temperature (°C).

Distinct phases of a given molecular species may differ in their density,
texture, compressibility, susceptibility, etc., and will generally also differ in
their order parameters including X-Ray structure factors, magnetization,
electric polarization, and the like. Phase diagrams of compound substances
present a more complex set of issues. In the solid state, the various ordered
and disordered alloys compete while in the liquid phase one finds either
intimate mixes or phase separations such as oil on water. Whatever the case,
the appropriate generalization of the total Gibbs’ free energy in any of these
applications is always just G = ) u;N;. The individual chemical potentials
given by u; = 0G/ON,|r,, are continuous across all phase boundaries. Armed
just with this observation (plus elementary algebra and some uncommonly
good “common sense” ), Gibbs devised the following inequality governing the
coéxistence of r phases in a mix of n species at some fixed, given, p and T

Gibbs’ Phase Rule: 7 > n + 2. The deficit, f = n+ 2 —r, equals the total
number of independent variables that have to be specified when the r phases
are in thermodynamic equilibrium.

e Fzxample: in the case of pure HoO n = 1. Therefore the maximum number
of species r (water, vapor, ice) is > 3. No more than 3 phases can coéxist
— vide Fig. 3.6 showing the unique “triple point” with f = 0 (hence
requiring no extra variable). Where just 2 phases coéxist, as in the wa-
ter /vapor coéxistence region, the deficit f = 1 and precisely 1 free variable
is required. It may be chosen as p(v), ranging from p4 to pp along the
isobar from A to B in Fig. 3.2 or along the isotherm in Fig. 3.5.
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Fig. 3.7. Phase diagram for mixtures of tin and lead.”
Temperature versus composition for n = 2, r = 4. The « phase refers to a Sn
structure with Pb impurities, 3 to the equivalent Pb structure, and o + 3 to the
solid-state alloy of the two. Starting from the liquid mixture at high temperature,
the condensation occurs initially for one or the other constituent (e.g. to a+ liquid
mixture on the left). Coéxistence regions are lines, except for the one point (where
r = 4, hence f = 0) where both constituents condense simultaneously, called the
“eutectic” point.

Far more complicated phase diagrams (such as the typical one of a binary
alloy illustrated above) are simplified by the application of Gibbs’ rule. The
proof of it now follows.

Proof. Start by labeling the phases by a = 1,2,...,r and defining the
density of the jth species in the ath phase as pj(«). Each p; in a given
phase « is a function of p, T, and of the (n — 1) ratios of densities:

Co(a) = pa(a)/p1(a), ps(a)/p1(), ..., pn(a)/p1(a). This makes for a total
247 x (n—1) independent variables. The chemical potential for each species

is constant, i.e. p1(1) = p1(2) = -+ = pi(r), p2(l) = p2(2) = -+ = pa(r),
etc. Each of these n x (r — 1) equations involves all the independent
variables. O

For a common solution to exist, the number of equations cannot exceed
the number of variables. Hence 2 + 7 x (n — 1) > n x (r — 1). Rearranging
the terms, r <n+ 2, QED.

"From T. D. Massalski, Ed., Binary Alloy Phase Diagrams, ASM International, Materials
Park, Ohio, 1990.
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3.9. The Carnot Cycle

We examined the non-ideal gas at constant 7' along an isotherm and at
constant p along an isobar (known to earlier generations as an isopiestic).
We now find it necessary to examine the trajectory at constant entropy along
an adiabatic (a.k.a. isentropic). The traditional picture is that of a piston
quasi-statically compressing a fluid; work is done on the working substance,
while heat flows neither in nor out.

For an ideal, collisionless, monatomic, gas it is easy to show® that the
internal energy NkT = K/ V2/3, where K is a constant. Hence, the equa-
tion of state yields pV®/3 = K on the adiabatic trajectories, curves which
are steeper than the isotherms and therefore intersect the latter. Typical
adiabats and isotherms are sketched in Fig. 3.8. The closed cycle of two
adiabats and two isotherms drawn in this figure illustrates the Carnot cycle
— whether operated as an engine (driven clockwise) or as a refrigerator
(counterclockwise).

In reality, engines and refrigerators as ordinarily constructed are subject
to complex conditions — neither isothermal nor adiabatic, and are generally
not operated in thermodynamic equilibrium — hence they are not amenable
to any simple analysis. The working substance is often far from the ideal gas
and a quasi-static operation may be out of the question. For example, the
familiar internal combustion engine has taken a century to perfect simply
because it functions so far out of equilibrium that it is not subject to any
of the simplifications of an equation of state. Although widely studied, this
particular cycle remains inherently inefficient and to this day the number of
possibilities for its improvement remains endless.

In comparison with such everyday machines the hypothetical Carnot cycle
is unique in its simplicity, in its efficiency, and in the way it illuminates
the Second Law. Carnot devised his reversible virtual engine in 1824. Its
efficiency? 7 cannot be surpassed by any real motor (cf. Problem 3.3 below).
Moreover, this is a machine that can be operated as a motor (heat in, work
out) or in reverse, as a refrigerator (work in, heat out). We illustrate the
former mode; the reader is invited to work out the latter.

With reference to the Figure, each cycle consists of the four trajectories
A — B,....D — A, in sequence. In the first leg, a piston adiabatically

°With p, the momentum of a gas particle in the z direction, prl/d is an adiabatic
invariant in d dimensions. Therefore the particles’ kinetic energy o 1/ V2/4 This quantity
is proportional to T', hence to pV. QED.

Pn = work output + heat input.
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Fig. 3.8. Schematic phase diagram of a working fluid illustrating the
Carnot Engine [as adapted from 1911 Encyclopedia Britannica].

Showing curves of constant temperature (isothermals) and constant entropy (adia-
batics or isentropics), lines of constant pressure (isopiestics) and constant volume
(isometrics). The work delivered by the engine equals the area of the figure ABCD,
traversed in the sense of the arrows. 7V > T” and &/ > .%”. In the refrigerator

mode the sense of the arrows is reversed.

compresses the fluid from a volume V, and temperature T” to a smaller
volume V, at a higher temperature T’. By definition, A.¥4 p = 0. The
second leg is an isothermal expansion to V.. The change in entropy is
S =S = Ao = Qpc/T, where @ is the heat supplied to the work-
ing substance. The third leg is an adiabatic expansion (A.?c p = 0) in the
course of which the temperature reverts to 7" and the volume to Vp. The
final leg is an isothermal compression back to A, with A.%p 4 = —QD,A/T”.
The cycle repeats for as long as the energy source ()p ¢ is available at the
temperature 7.

Because . is a function of state the sum of the changes A.¥ around the
cycle add to zero. By conservation of energy (i.e. the First Law) the work
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Wapep = @B,c — @p,a. Solving two equations in the two unknowns one
obtains for the efficiency:P

n=1- =1- =, (3.21)

Were the process not quasi-static an extra A.¥ would be created in each
cycle. If we write it in the form A.xa = 2Qp,¢/T’, with 2 measuring the
irreversibility, the net work done is Wapcp = (1 — 2)@Qp,c — @p,a and 7
in (3.21) is thereby reduced by z. In fact, (3.21) is the maximum efficiency
available to any device — not just Carnot’s — run between temperatures
T" and T". The proof:

An hypothetical engine, denoted F', assumed to have efficiency exceeding
7, is coupled to Carnot’s cycle, R, run in refrigerator mode at the ambient
temperature T"”. The work delivered by F', fueled by the heat output of R at
T’, exceeds the work actually needed to run the refrigerator and is stored.
Such a “perpetual motion” machine effectively converts ambient heat into
stored energy in each cycle, thereby violating the Second Law.4

Problem 3.3. Work out the details of the proof, showing that even if the
First Law were satisfied by the above R—F couple the Second Law would be
violated.

3.10. Superconductivity

Some aspects of superconductors are understood by means of purely ther-
modynamic arguments, without benefit of microscopic theory. For example,
consider features shared by a number of “conventional” superconductors”
such as lead, mercury, niobium, etc.: as the temperature is lowered below a
critical value T, ranging from 0 to 25 K, depending on the material, a jump
in the specific heat signals the onset of perfect conductivity. The extreme
diamagnetism of such “type I low-7. superconductors” serves to exclude
magnetic flux at all temperatures below T.. However, once the external field
exceeds a critical value Bc it does penetrate the material and the normal

9For this reason the US patent office has, since the mid-19th Century, required a “working
model” (!) before processing purported perpetual motion inventions.

"The novel high temperature superconductors based on CuQOsz layers have a distinct set of
properties and of “corresponding states”.
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Fig. 3.9. Heat capacity in a conventional superconductor.
The linear specific heat indicates an ordinary metallic phase and the exponential

curve a gapped superconductor. The jump in cgyp occurs at T, precisely at the
threshhold for superconducting behavior.

metallic state is restored. It is found that the ratio B.(1")/B.(0) is a function
only of T'/T,, a sort of “law of corresponding states”.

In the figure above, the measured heat capacity cs(7) of a superconductor
(at temperatures T' < T) is compared with that of the normal metal, co(T") =
~T (at temperatures T' > T, continued by a dashed line to T = 0). The
parameter vy is obtained experimentally.

Because the normal-to-superconducting phase transition in zero field is
second-order the entropy of both phases is continuous through the phase
transition. According to Nernst’s theorem the entropy of either phase
vanishes at T = 0. Thus, equating the integral over ¢/T from T = 0 to
T. in each phase leads to .5(T.) = S, (T.F):

Te
/ a0 _ (3.22)
0 T

To satisfy this equation the excess in the specific heat of the superconductor
just below T relative to that of the normal metal, vT', has to be compensated
by a reduction in specific heat relative to vT', over the lower temperature
range. Figure 3.9 illustrates this behavior. Equation (3.22), a sort of Maxwell
construction, is confirmed experimentally and affirmed by the microscopic
BCS theory.®

A second thermodynamic identity connects the critical field B, to the
specific heat anomaly in zero field via the magnetic analogue of the Clausius—
Clapeyron relation. The latent heat of the superconducting-to-normal phase
transition (in which the magnetic field penetrates the metal, destroying the

J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 106, 162 (1957), and 108, 1175
(1957).
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superconducting phase) in an homogeneous field B.(T) is precisely L =
2
~T9 (%) /OT. Thus,

_ 0 (L T 9%, ,
Ac = Csup —’)/T = _Ta_T <ﬁ) = 8_71'@(36)

T {[/0B.\? 9%B.
= — B.|—5 ]| . 2
4%[(8T> + C<8T2 (3.23)
At T,, the critical field B, vanishes. Thus, only the first term contributes
and the discontinuity is precisely equal to Ac|y, = Z—;(@Bc/aT\Tc)2. This
thermodynamic identity, too, is in excellent accord both with experiment

and with predictions of the microscopic “BCS” theory of Bardeen, Cooper
and Schrieffer.®
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FElements of Thermodynamics



Chapter 4

Statistical Mechanics

4.1. The Formalism — and a False Start

Like the ancient Japanese game of Go, axiomatic statistical mechanics has
few rules, all easy to remember. The art is entirely in the implementation. A
single formula, at the very core of the theory, defines the Partition Function
Z.® an un-normalized sum in which every allowed configuration is assigned
a probability proportional to its Boltzmann factor:P

Z =Tr{e PH} . (4.1)

Here $ = 1/kT and Tr (the abbreviation of “trace”) means: sum over all
accessible “states” (or configurations).

Although the same definition applies whether the particles satisfy classical
dynamics or quantum mechanics, the implementation differs in the two cases.
The classical non-relativistic Hamiltonian H{g;,p;} is a scalar function of a
set of 3N dynamical coordinates ¢; and their conjugate momenta p;. Due to
the constraints of classical dynamics H is a constant of the motion, the value
of which, F, is denoted the “energy”. The energy is continuously distributed
and, in some instances, labeled by the other constants of the motion such as
momentum, angular momentum, etc. “Trace” consists of an integral over all

In quantum theory H is an operator; its eigenvalue is the energy F,
generally labeled by a set of quantum numbers. The energy can be discrete
(i.e. “quantized”), or, as in classical dynamics, in a continuum. “Trace” here
consists of a sum over all state-averages.

247” for “Zustandsumme”.
PIn quantum parlance Z 7! exp —(BH) is designated the “density matrix”.

55
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The normalized quantity {Z !exp —3H}, frequently denoted the den-
sity matriz, is used in the calculation of thermodynamic averages such as
the internal energy E' = (H)74. On the other hand, Z is itself postulated to
be related to a quantity F', Z = exp —(F. Soon we shall identify F' thermo-
dynamically.

Applying these relations immediately yields the following:

dlogZ  0(BF)
o 08
which is just the thermodynamic identity first derived on p. 21 on the basis

E=2"'Tr{He P} = - (4.2)

of the “stationarity” of F'. Combining F' and E we also extract the entropy:
F-FE=-TY =F—-0(BF)/08 =TOF/0T, i.e. ¥ = —0F/0T, consistent
with the definitions in Chapter 2.

Continuing in the same vein we differentiate the first two expressions in
(4.2) to find the heat capacity C = dF/dT given by:

C = g ((H ~ (Hra))ra, (43)

i.e. the derivative of the average energy is proportional to the variance or

“noise” in the distribution of energies. Equation (4.3) proves the heat capa-
city to be positive definite, as previously claimed.

Frequently one probes a system by some potential H' to obtain its

response characteristics. In many cases (but not all!) this perturbation af-

fects the Hamiltonian linearly: H — H — gH’. Then the system’s response

<H/>TA iS,

Tr{H' e PH—gH')
(H/>TA — { }

= kT =——. 4.4

Tr{e-BH-gH")} dg dg (44)

Like Eq. (2.6), this has the solution, F' = Fy — [ dg(H")7a(g).
Differentiating (4.4) once again w.r. to g, we find for —9?F/dg?:

X = B(H = (H")ra)*)14, (4.5)

similar to the formula for heat capacity. In the lim - ¢ — 0, the generalized
susceptibility xo = 0(H')1r4/0g is one of the characteristic physical proper-
ties of the system. (It belongs to the class of “second derivatives” introduced
in Chapter 3.)

Equation (4.5) expresses, and indeed proves, the following theorem:

Concavity Theorem: Whenever H = Hy — gH', 0°F/0¢®> <0 Vg.
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We start actual calculations with classical statistical mechanics. Define
the “trace” over all coordinates and momenta as:

N
Zo = (2wh) 3N H /d?’qi/d?’pj exp{—0H}.
j=1

The integration is over each of N point particles in 3D. The factor
(27h)~3, introduced into statistical mechanics well before the discovery
of quantum theory, defines the size of an hypothetical “cell” in the
six-dimensional phase space and renders the integrations dimensionless. In
non-relativistic dynamics Zj is both dimensionless and a scalar.© By defini-
tion Fy = —kT log Z is the “free energy”, presumably extensive and carrying
the units of energy.

An immediate application of (4.1) is to an ideal monatomic gas of N
non-interacting spherical atoms of mass m in volume V. This could be any
gas, provided it is sufficiently dilute that the effects of both interactions and
of quantum statistics are negligible and can be ignored. An exact criterion
is stated in later sections.

We now calculate Zj explicitly:

3N VarmkT \ ™
Zo = VY (2rh) 3N ( / dpe_pQ/kaT) =% <%> . (4.6a)

The derived “free energy” Fy has just one flaw: it is not extensive.

Fy = —kTN [log (V/v0) + 3 log (’Z—fﬂ . (4.6b)
To exhibit the various quantities in dimensionless form, we have multiplied
and divided the ratio in (4.6a) by an arbitrary length Lg. The reference
volume is vog = Lg and the reference energy is g9 = h227r/ng. By this
artifice the argument of each of the two logarithms is rendered dimensionless
while the total Fy in (4.6b) remains rigorously (if not explicitly) independent
of the actual value of Ly.4 At constant density Fy is dominated by N log N
> N.

“The present discussions do not extend either to special- or to general relativity. “Scalar”
in the present context means invariant to the choice of coordinate system and all rotations,
Galilean transformations, etc., thereof.

9The proof is left for the reader. For definiteness pick Lo to be of the order of inter particle
spacing, i.e. Lo = (V/N)/3.
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4.2. Gibbs’ Paradox and Its Remedy

If the free energy in statistical mechanics is to be a useful quantity and
comparable to the thermodynamic free energy it must, among its other
attributes, be extensive. F. W. Gibbs discovered the following paradox
resulting from Fp, along with its resolution.

Suppose there are two identical containers of the identical gas at equal
density, pressure and temperature. The total free energy must be Fon =
2Fy, where Fy is obtained from Zjy. Opening the partition between the two
containers, allowing the 2N particles to occupy the joint volume 2V, should
not affect this result. But, as the reader will verify (using Eq. (4.6a or b))
the actual result is Foy = 2Fy — 2NkT log 2. Given that the two methods
of obtaining the free energy of the joint systems fail to agree, we can only
conclude that the free energy per particle calculated using Eq. (4.6b) is
ill-defined. To remedy this, Gibbs introduced his eponymous factorial into
the definition of the Canonical Partition Function,

1
Z(N,V,T) = —(2rh) 3N d3q;d®p; exp{—BH} . (4.7)
N! ;Lﬂ 7

It is Z and mot Zy which needs to be used. The resulting F' = —kT log Z
is explicitly extensive. In the case of the ideal gas (i.e. no interactions), the
procedure of the preceding section yields:

2/3
EC:—MWP%<JL)+;%<M% ﬂ, (4.8)

NVO €0

using Stirling’s approximation (recall, log N! = NlogN — N) and e =
2.718... If we use the free energy as given in (4.8) we now find the joint
free energy of the two identical containers to be, correctly, twice the free
energy of either one, whether or not they are connected.

Nevertheless it should be clear that if two distinct species were involved,
according to the Second Law the mixture should have a lower joint free
energy (and a higher total entropy) than did the separated gases, even though
the total energy is unchanged when they are mixed. This is explored in
Problem 4.1 and again in Chapter 7.

Problem 4.1. The joint partition function of two separate, non-
interacting species is the product of the two: Z = Z(Ny,Va,Ta) X
Z(Np,Vp,Tp). Calculate the total free energy when T4 = Tp = T.
Calculate the “entropy of mixing” and the change in total energy after
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the two species are merged, using the total free energy derived from
Z(Nag,Va+ VB, T)x Z(Np,Va+ Vp,T). What if the two species are indis-
tinguishable? Discuss this in the context of the Second Law and the energy
required in gaseous isotope separation.

The substantive difference between (4.6b) and (4.8) is that in the latter,
the free energy per particle Fig /N is a function of density p and temperature
T only. (It is also possible to derive Eq. (4.8) from first principles using a
different form for Z of a dilute gas, as shown in the next section.) The
entropy is extracted in the usual way: . = —0F/0T. Comparison of the
calculations in (4.7) performed at given V' and 7" with the formulas in (3.10)
allow one to identify F' with the quantity previously defined in Chapter 3
and in Eq. (4.2). Thus, the pressure in the ideal gas is,

oOF 8Flg‘ KT N < k:T)
V|1 v |y V P= (4.9)

p:

(precisely the ideal gas equation of state!) We also calculate u = Gy /N for
the ideal gas. Replacing pV/N by kT,

OF Fi¢  3kT 2mh?
K ON vV, T + N 2 8 mv2/3kT (4 10)8
s 3 kT \%4 ’
=—kT |log| — ) +=log|— ]|, wherev=—.
Vo 2 €0 N

The condition for an ideal gas is an inequality: p < —kT. If at low T this
inequality fails to be satisfied, either quantum statistics or inter-particle
interactions cause the gas to condense into a liquid or superfluid or to trans-
form into one of a variety of solids.

4.3. The Gibbs Factor

The Gibbs factor should not be thought of as a correction, but rather as
mathematically required in the normalization of the partition function of
a classical gas of indistinguishable particles — as the following approach
demonstrates. Allow a small neighborhood of each point in phase space oo =
(q,p) to constitute a separate thermodynamical reservoir. In the absence
of interactions the partition function is just a product of the Z,’s over the

®Strictly speaking, one should then use the equation of state to eliminate V/N in favor of
kT /p in this expression to obtain u(p,T).



60 4. Statistical Mechanics

distinct values of . The total number of particles remains constrained at a
given value, N. Using the by-now-familiar delta function:

1 g , .
= / dt e T[[1 + elit=Pp%/2m) 4., (4.11a)

[13 9

refers to the sum of contributions e2(#=AP*/2m) from possible
double occupation of p, e3(it=6p*/2m) fr4m triple occupation, etc. Regardless
whether such multiple occupancies are permitted (in fact, they are prohibited
for fermions), most momentum states are, in fact, unoccupied in a sufficiently

Here

dilute gas. Under the assumption that no momentum-state is occupied by
more than one particle, one replaces (4.11a) by an expression that is identical
to within neglected terms O(“...”) and expands the exponential in powers
of e,

1 ™ . V . 2
_ L dt e—itN { /d3 it—pBp?/2m) }
2w /—7r ‘ P (QWh)3 Pe i

v
in which we replaced Z by o h) / d®p,

v d3pe=PP%/2m Yy 4.11b
= e 16 (4115)

The logarithm of Z;5 now yields the correct Fig as in Eq. (4.8).

Far from being an afterthought, Gibbs’ factor ensures that each configu-
ration of indistinguishable particles is counted just once. It provides evidence
of the long shadow cast by the correspondence principle, according to which
the quantum mechanics of identical particles devolves into classical theory
in the limit 7 — 0.

4.4. The Grand Ensemble

Fluctuations O(v/N) in the number of particles N should make no obser-
vable difference in any observable result if IV is sufficiently large. Moreover,
allowing such fluctuations by fixing p instead of N makes it that much
easier to study non-ideal fluids. We start by verifying that the momentum
states are not multiply-occupied, as claimed (without proof) in the preceding
derivation.

The “trick” is simply to re-calculate (4.11b) by steepest descents. Let
it = 7, a complex variable. We need to solve for the value of 7 that renders
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the exponent stationary,
d/dr {—NT + v /d3p6(7_6p2/2m)} =0,
(27h)3
ie.
N=V / Ppfo(ep), (4.12)

where 7,  f0(g,) = (2h)3e™ exp —(p?/2mkT), is seen to be the famous
Boltzmann distribution (cf. Eq. (4.14) below) once 7 is identified as [u.

In evaluating Eq. (4.12) we find perfect agreement with the earlier
Eq. (4.10), ie. 7 = Bu = (3/2)log(2nh?/mv?*/3kT). Because i, o exp B,
Br K —1 = np < 1in a dilute gas. This, in turn, fully justifies the neglect
of the terms indicated by ...” in (4.11a) provided kT > 2rxh%/mv?/3.

In studying the binomial expansion in Chapter 1 we found that a series
could be approximated by its dominant term. The same holds for the parti-
tion function in Eq. (4.11) and motivates the replacement of Z by 2, which
is a simpler, unconstrained, product over a:

7 =]+ eBr=0p*/2m) | 2Bu—Fp*/2m) 4 ] (4.13)

Except for trivial factors, this last is equivalent to Z exp(BuNV). Note that
each « includes all points in the volume V', i.e. an integral over space.

Let us write the free energy corresponding to the partition function in
Eq. (4.13) as # = —kTlog % = F — uN, differing from the original by
a Legendre transformation. Where F' was a function of (N,V,T,) Z is a
function of (u, V,T'). Now the total number of particles hovers about a most
probable value (N) determined by the choice of p. This particular change of
independent variables does not entail any substantial change in any of the
physical results and for this reason one rarely distinguishes .# from F. On
the other hand, the new procedure does have one significant advantage.

Because Z is a product over distinct sectors, with no integration linking
them, the evaluation of averages such as 7, allows treating each « indepen-
dently of the others. Thus, when an average at p is performed, any term
which does not refer to p cancels out. Explicitly:

0-141-ePHeP?/2mkT | . 1 4 eBre—p?/2mkT o .
np =

1+ eﬁ#e_p2/2ka + .. 1+ @ﬁ#e‘P’2/2ka + ...
P

p'#
— exp Buexp —p?/2mkT + - - - (4.14)
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This ensemble of states, in which all values of IV are allowed, is called the
“Grand” canonical ensemble, to distinguish it from the number-conserving
canonical ensemble of the preceding sections. If instead of relaxing the
conservation of N one required greater restrictions, the microcanonical
ensemble discussed in the following problem would be of use. In the micro-
canonical ensemble, both N and F are strictly conserved and the calculations
of thermodynamic properties from statistical mechanics are correspondingly
more complicated.

Problem 4.2. The microcanonical partition function W conserves energy
and numbers of particles. Explicitly: W = Tr{6(E — H)}. Using the now-
familiar representation of the delta function and the method of steepest
descents valid at large N and E, show this W = exp(.(E)/kp) at a sta-
tionary point it = z. Relate the “effective” temperature to E at the point
of steepest descents by using 8’2(;3) g—g = 8‘55(EE) and invoking the definition
of T in Egs. (3.5) and (3.10). Now that E is “sharp”, T is not. What is the

distribution of T" about its most probable value? of 37

4.5. Non-Ideal Gas and the 2-Body Correlation Function

The most common two-body interactions involve the coordinates g; but not
the momenta. Therefore that part of the partition function that refers to
the momenta of interacting particles is unchanged from its value in the ideal
gas, and the effects of interactions are incorporated solely in the spatial
configurations.t Specifically,

N
Z=0ic-Q- VN, where Q= H /d3qj{e_ﬁU(q1’q2""’qN)} (4.15)
j=1

where U(qy, g2, . ..) is the total potential energy. Note: QV N = (e™PV), .
However strong the interactions might be, by translational invariance the

density of particles p is constant in the fluid phase — regardless whether it

is liquid or vapor; this symmetry is broken only in the solid. Our proof starts

fAccording to the ergodic hypothesis (plausible but unproved), this procedure yields iden-
tically the same results as if we evaluated Z by first integrating the equations of motion
starting from some set of initial conditions, and then averaged over initial conditions.
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with the strict definition of p:

N N N
plr) = 3200 —rvra = G I [ s [ draotr et
i=1 j=2

in which the second equality follows from permutation symmetry. Because
U is actually a function of just N — 1 vectors v} = 141, i = 2,..., N, we can
take r1 as the origin and integrate over r1 getting V. Then @ is as follows:

N
Q=V H /d?’r;e_’gU(ré"“’r;V) . (4.15a)
j=2

We transform the dummies of integration in p similarly, obtaining

N - N
= Q H /d?’r;e_ﬂU(Q"“’r") /d37“1(5(r —r) = v (4.16)
=2

a constant, QED. Translational symmetry is broken only in solids.

Whereas particle density is just a “one-body” property that distinguishes
solids from fluids, the (dimensionless) 2-body correlation function g(r) is
more descriptive of correlations in the fluid phases. It is defined as,

g(r) = ZZ (r4r1;—1))74. (4.17)

i j>1

In the fluid phase of interacting particles, g(r) has to be isotropic. Hence g
can only depend on the magnitude r of r and not on its orientation. If U
vanishes (as it does in the ideal gas), the averaged quantity (§(r —ri;))74 =
1/V is a constant (all intermolecular distances are equally likely), and grg =
1. Unless the forces are infinite-ranged g must approach this ideal-gas value
asymptotically at large r. By permutation symmetry all terms in the above
sum are equal after thermal averaging, therefore we need consider just one
out of the N (N — 1) distinct bonds. Then,

g(r) =V {(r—ra+r1))r4
_Vv H/d3 ’/d3 o BU(rh,rhenr /d3r1

V2
el H /d?’r;- exp —BU(r,rh, ..., T'N) . (4.18)
j=3
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It is often convenient to consider, as we do now, only those simple cases
where the total potential energy is the sum of two-body potentials and de-
pend only on the intermolecular separations, i.e.

ZZ u(rij) -

)
By an obvious symmetry,

N(N —1)

(U)ra = 5

(u(r12))TA

H /d3ru /d?’r' exp —BU (r,7%, .. /d?’rl
When combined with the 2nd line of (4.18) this yields,

(U)pa = N(gfiv_l) / Pru(r)g(r), (4.19)

an intuitively obvious result. Both (U)r4 and g(r) are also functions of T
Including the kinetic energy, the total internal energy at constant N, V,
and T is E = (H)ra = (3/2)NET + (U)r4.. We shall try to calculate g(r)
shortly but — to motivate these arduous calculations — let us first relate
g(r) to the equation of state.

4.6. The Virial Equation of State

As a straightforward application of the preceding one can derive an exact
equation of state of the interacting fluid, expressing the pressure entirely as
an integral over the two-body correlation function g(r). Recall the definition
in Eq. (3.10). Using (4.15),

p= kTil (ZIGQNT—/{T +kT<VN>i<%>. (4.20)

ov VN Q ) oV

The dependence of (Q/V™) on V comes entirely from U, as each spatial
integration is normalized by V.

€All calculations are explicitly for 3D. The changes required for d dimensions are obvious:
d®r — dr, (3/2)NKT — (d/2)NkT and ri; o« VY%, ; in §4.6.
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More specifically,

0 . du(nj) 0
gy i) = dry; oV 9
But
rig o Vo4,
thus:8
0 ’I”Z'j
_Tij = —=.
oV 3V

By Eq. (4.15a), it follows that

0 Q —N(N —1) B3 du 3 Ul(r 3
W(W)Z 6VN+1kT/ 2 QH/drleﬁ(w /d”

N(N - 1)Q d
N 6I(<:TVN—-|22 & ZE"T)'TQ(T)' (4.21)

This last is rigorous provided only that U is the sum of two-body radial
potentials, u(|r;;|). Subject to this mild restriction, the generic equation of
state of any non-ideal fluid, vapor or liquid, becomes:

p = pkT [1—%—T/ d3r d“ rg(r)] . (4.22)

4.7. Weakly Non-Ideal Gas

Consider special cases: either of a dilute gas of molecules with arbitrarily
strong, but short-ranged, interactions, or else of a fluid with weak, finite-
ranged interactions at arbitrary density. In either case an expansion intro-
duced by J. Mayer in the 1930’s can be used to obtain leading correction
terms to the ideal gas approximation.

Define: exp —fu(ri;) = 1+ f(ri;), where f(ri;) = fij = exp —Pu(r;;) — 1
is a small, temperature-dependent quantity ranging from —1 at small r;; (as-
suming a hard-core) to a small positive value in the region of inter-molecular
attraction. Figure 4.1 on the next page compares the dimensionless quan-
tities —Qu(r) and f(r), at a relatively high temperature (T = 27}). For
definiteness we have used the so-called “6-12” intermolecular potential in
this example, a potential frequently used to fit the interactions of neutral,
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Fig. 4.1. f;; and “6-12” potential —u;;/kT, versus r/rg in the range
0.8 to 2.

The functions f(z) = e® — 1 (upper curve) and z = —(1/t)(1/5)%(1/s% — 1), are
plotted versus s = r/rg, where t = T'/Tj is the temperature in units of the potential
and s is the intermolecular separation in units of the hard-core diameter O(1A)
(cf. Eq. (4.23)). The function f(x) shown is calculated specifically for ¢ = 2 but
exhibits the features typical of high ¢: x and f are almost identical for s > 1
whereas, in the range 0 < s < 1, x — —o0 and f remains finite and integrable, i.e.
f— -1

spherically symmetric, atoms:

u(r) = kTy (%0)6 ((%)6 - 1) . (4.23)

This potential is attractive at distances greater than rg, the hard-core
diameter, and strongly repulsive at distances shorter than this. Its strength
is given as kTp, in temperature units. The related quantity f(r) is close to
—pu(r) in the attractive region r > ry where —u is positive, but unlike the
latter (which diverges in lim -r — 0), it saturates at —1 for r < rg and it is
therefore integrable.

The calculation will make use of I(T"), the integral over f(r):

I(T) = /d3rf(r) ~ _%”rg [1 - 23%] .

The approximate formula is a good stand-in for an exact evaluation. To de-

(4.24)

rive it we retained just the leading terms in the high-temperature expansion,
replacing f by —fu(r) for r > ry and by —1 for 0 < r < r¢. Although one
can do better this type of simple formula is accurate enough for purposes of
demonstration.

In addition to numerous complicated higher-order terms the configura-
tional partition function () incorporates a clearly identifiable leading power
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series in the “small” parameter f;;. Knowing it must be an exponential form,
we try to guess what it is:

‘“NHII/fn1+h

1=1 j#i
1+Zf1] 'me Z fkl+

—VWH/fn
(i) (A0

This expansion leads itself to a diagrammatic expansion. If this is to your
taste, see the books in footnote h. Evaluation of the first few terms shows
the leading contribution to be,

9 o [YI 1)
VN 2V

The virial expansion of p is defined as a power series in the small quantity
p, with T-dependent coefficients (the so-called wvirials):

p=FkTlp+ p*B(T) + p°C(T) + -] (4.27)

(4.25)

I(T)] ;  hence p = pkT [1 — %pI(T)] . (4.26)

Comparing the two preceding equations we deduce that the second wvirial
coefficient B(T) = —I(T)/2, with I(T) defined (and then approximated) in
Eq. (4.24). Calculation of the third virial coefficient C'(T") requires integra-
tions over three-body clusters such as f;; fjx, etc. However with just the aid
of (4.26) we are already able to compare these results with van der Waals’
intuitive equation of state, Eq. (3.17). Inserting (4.24) for I(T) into (4.26):

kT ( b)
p= +
v v

Here we defined vy = 4718 / 3, the effective atomic volume. Aside from any

1\? kT,
(—) , with b= % and a = V03 0 (4.28)

\

additional corrections O(v~3) due to higher terms in the virial expansion,
Eq. (4.28) agrees formally with Eq. (3.17) if in the latter we allow van der
Waals’ b to depend on v as follows: b = vo/(2 + vo/v). This may serve to
explain why b is not independent of v and T in real gases (an experimental
fact that was noted by van der Waals with some chagrin).

Explicit but formal expressions, in terms of integrals over “irreducible
clusters” of m particles, have been obtained for all virial coefficients.” But
two factors: the technical difficulty of computing many-body cluster integrals

"D, H. Goodstein, op. cit., Chapter 4; J. Mayer and M. Mayer, Statistical Mechanics,
J. Wiley, New York, 1940; H. L. Frisch and J. L. Lebowitz, The FEquilibrium Theory of
Classical Fluids, Benjamin, New York, 1964.
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and the knowledge that, even if all the coefficients were known, the virial
expansion converges only up to the first singularity — whether it occurs at
the critical point, the triple point, or somewhere in the complex p plane,! have
stymied widespread applications. Without a valid closed-form expression p
cannot be analytically continued into the condensed regions.

4.8. Two-body Correlations

We return to g(r). When the structure of materials is probed by elastic X-Ray
or elastic neutron diffraction, it is the built-in correlations that are observed.
After being scattered just once by the entire material, the diagnostic particle
— whether it is an X-Ray, a neutron, or an electron — has momentum hq
imparted to it. The phase coherence of the scattering of the incident beam
k to k + q is proportional to I(q). In the lowest-order Born approximation,

2

N
I(q) = < Z ¢l > . (4.29a)
7=1 TA

This expression can also be written in more transparent form: I(q) =
[ d®re’9T¢(r), this being the Fourier transform of ¢(r) = No(r) +
SN0 + ry))ra = No(r) + X0 g(r) with g(r) the two-body
correlation function as defined in (4.17). So,

I(q) = N [1 ) / dgreiq'rg(r)] . (4.29b)

After excluding forward scattering (¢ = 0) this expression simplifies further
in terms of h(r) = g(r) — 1. The structure factor S(q) is defined as,

1 .
S(q) = % = [1 + p/d?’re‘q'rh(r)} , forq#0. (4.30)
Because g — 1 asymptotically, h(r) vanishes at large .
S(q) mirrors g(r) in reciprocal space. It is isotropic in fluids and in an
ideal gas, S(¢) = 1. In denser fluids S(q) is computed from (4.30) using a
known h(r), or it is obtained directly from experiment. Measurements on a

1J. Groeneveld, Phys. Lett. 3, 50 (1962). But for a practical examination of the properties
of fluids see J. Stephenson, Phys. Chem. Lig. 10, 229 (1981) and “Hard- and Soft- Core
Equations of State”, in Proc. 8th Symposium on Thermophysical Properties, Vol. 1, J.
Sengers, Ed., ASM, New York [book # 100151], pp. 38—44.
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Fig. 4.2. Two-body correlation g(r) for a highly correlated liquid.

(Schematic plot). g(r) vanishes at separations less than the hard-core diameter and
first peaks where the attractive well is deepest. The asymptotic value at g(r) = 1 is
also the two-body correlation function of a very dilute (i.e. “ideal”) gas at high T'.

AN
/

q

Fig. 4.3. Structure factor S(q) of a normal fluid.

(Schematic plot). At finite T'lim-¢ — 0, S(g) # 0 (see text).
At large ¢, S(¢) — 1.

few widely different fluid systems are displayed below, either schematically
or accurately.

The schematic plot of ¢g(r) in Fig. 4.2 indicates that this spherically sym-
metric function vanishes for r < ry, peaks at the bottom of the attractive
well at r,,, and exhibits smaller peaks at higher- “shell” diameters. In a weakly
interacting or dilute gas only the first peak would be observed.

The Structure Factor, a.k.a. the Fourier transform S(q) of g(r) defined
in Eq. (4.29b) is shown (also schematically) in Fig. 4.3.

It can be proved that in lim-gq — 0, S(q) — pkTkp; thus this
plot contains valuable thermodynamic as well as structural information.
Figure 4.4 illustrates similar behavior in a superfluid (*He) just below the
critical temperature for the onset of superfluidity.
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Fig. 4.4. Structure function S(k) for superfluid “He.

Note 1: S(k) — 1 at large k for a superfluid also.
Note 2: S(0) # 0 at finite T
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Fig. 4.5. Structure function of Amorphous Selenium.]

(experimental — — — — —— , modeled ~ )

Exceptionally some solids, such as amorphous selenium (Se), display
liquid-like features. Figure 4.5 suggests graphically that at least some glasses
are, in essence, “frozen liquids”.

JAdapted from S. C. Moss and D. L. Price, 1985.
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All these examples indicate that gases, fluids, superfluids and glasses
all have similar, isotropic, diffraction patterns. (The diffraction patterns of
crystalline materials differ sharply from these, as we shall soon see). The
question at hand is, how do we calculate or estimate g or A in a fluid, to
understand the behavior in somewhat greater detail?

In the dilute gas we might guess g(r) = go(r) ~ exp —fu(r) as in the
“barometer equation”, normalized to satisfy the boundary conditions gy = 0
at r = 0 and g9 — 1 asymptotically. Insertion into the virial equation of
state Eq. (4.22) shows this does yield the identical second virial coefficient
B(T) as that found in Egs. (4.26) and (4.27):

6]<:T/d3 du(r re~Bulr) — /d?’r?“ —Bulr) _ 1);

after a partial integration this is,

on /OOO dr (e ) —1) = =2 [ drs) = —1(1)2.

This checks out for a very dilute gas. But even though exp —Bu(r) vanishes
for r < rg and peaks at r,,, this approximation to g(r) lacks the subsequent
maxima that are indicative of long-range multiparticle correlations.

It has been shown rigorously that the systematic expansion of g(r) in
powers of the density can be cast in the form,!

log g(r = 0m (4.31)
1

with d,, = m-fold integral over clusters of m+1 f’s (not to be confused with
the Dirac function.) The leading order correction is,

o1(r12) = /d3T3f13f23. (4.32)

Problem 4.3. FEwvaluation of 6;. Generalize Eq. (4.24) to I(T) =
[ d®ret* T f(r), calculating I1(T) to the same accuracy as I(T) in the text.
Invert the Fourier expansion to obtain f in terms of Iy, then express 01 (r),
defined above, as an integral over |I;|?> and determine the positions of its
maxima relative to r,,. (They reflect the maxima in g. Are they in the
“right” place?) Use this result to estimate the third virial coefficient, C'(T")
in Eq. (4.27).
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Problem 4.4. Obtain I(T), Ix(T), B(T) and C(T) for hard (impenetra-
ble) spheres of radius ry. Compare your results with the known® values:
B(T) = 2mriy/3, C(T) = (5/8)(B(T))?.

In the next order,

92(212) = % / Prad®rafisfsafoa(2 + fos + frafos) - (4.33)

The two corrections (4.32) and (4.33) allow to calculate and verify the
second- and third-shell peaks in g and in S of highly correlated fluids and
to evaluate the next higher virial coefficient. Higher-order corrections 6,
can all be obtained geometrically from “irreducible clusters”, in a tour de
force diagrammatic representation of the series expansion of Eqgs. (4.25) and
(4.31).}1’k We do not dwell on this because, near critical points, no finite
number of correction terms (“diagrams”) in the power expansion will suffice.
Instead, two distinct schemes have evolved over time, each seeking to sum
the “most relevant” terms in this series up to infinite order: the hypernetted
chain and the Percus-Yevick equations.! The advantage of either of these
approximations is that the form of the solution allows analytic continuation
of the themodynamic functions through the vapor-liquid phase transition
and beyond.

Even though the magnitude of the errors which result from omission
of “less relevant” terms cannot be quantitatively assessed, the hypernetted
chain and the Percus—Yevick equations marked an important development
in physical chemistry. They encouraged the theoretical study of multi-
component fluids and electrolytes.” Further generalizations have allowed
the study of inhomogeneities in liquid solutions caused by surfaces and,
most importantly, of the “Helmholtz layer” which forms in electrolytes
near electrodes. But, given the uncertainties and difficulties in an analytical
approach, contemporary trends have led elsewhere: to molecular dynam-
ics and to “Monte Carlo” simulations, in which computer “experiments”

L. Boltzmann (1899): see H. Happel, Ann. Physik 21, 342 (1906). Beyond these, the next
few virial coefficients for hard spheres have been known for some decades; B. Nijboer and
L. van Hove, Phys. Rev. 85, 777 (1952) and for the fifth and sixth, F. H. Ree and W. G.
Hoover, J. Chem. Phys. 40, 939 (1964).

The original derivations and the solutions of these two equations — which, unfortunately,
are not in perfect agreement — are reprinted, together with variants and useful commen-
tary, in the compendium by Frisch and Lebowitz.® The most up-to-date explanations are
found in N.H. March and M. P. Tosi, Introduction to Liquid State Physics, World Scientific,
2002.
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simulate physical reality and output the required processed data without
uncontrolled error.

Two exceptions stand out: one-dimensional fluids, for which we calculate
the partition function in closed form, and three-dimensional solids in the
low-temperature (harmonic) regime. However, in the latter the statistical
mechanics of phonons and of vacancies, interstitials, dislocations and other
structural defects requires quantum mechanics. So first let us see what makes
1D systems distinctive.

4.9. Configurational Partition Function in 1D™

In 1936, L. Tonks first calculated the configurational partition function of a
gas “of elastic spheres” in 1D, i.e. the one-dimensional gas with hard-core
repulsions. Here the Boltzmann factor exp —U is trivial: it is = 0 whenever
any two particles come too close, i.e. whenever any pair |z; — z;| < b, and
it is = 1 otherwise. The ordering of the particles --- < x, < xp4+1 < -+ can
never change as they cannot “get around” one another. Hence,

L TznN—b r3—b x2—b
Q= N!/ da:N/ drxn_1-- / dacg/ dxq1, (4.34a)
(N-1)b (N—2)b b 0

upon picking any representative order. Next, a change of variables simplifies
the integration: let y,, = x,, — (n — 1)b. Then,

L—(N-1)b YN Y3 Y2 N
Q= N!/ dyn dyn—1-- / dy2 [ dy1l=(L— (N —1)b)
0 0 0 0
= LN(1 - pb)V, (4.34b)

with p = N/L. Therefore the free energy of Tonks’ gas is precisely Fropks =
Frg — NET log(1 — pb). Upon differentiating w.r. to L at constant N and T
one obtains Tonks’ equation of state,

p = pkT + p?bkT/(1 — pb) = pkT'/(1 — pb). (4.35)

Adding a constant, infinite-ranged, two-body attractive interaction w;; =
—2a(N —1)/L changes Fronks = Fudgw = Fronks — aN (N — 1)/ L. Differenti-
ation of Fyg, w.r. to L yields van der Waals’ equation of state, Eq. (3.17),
precisely! (A similar approach in 3D yields a similar result). But the very
artificiality of this force-free, infinite-ranged two-body potential u;; shows

"References and calculations of some exact correlation functions in 1D are given in D.
Mattis, The Many-Body Problem, World Scientific, 1994, Chap. 1.
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van der Waals’ equation of state to have been the expression of a mean-field
“toy model” — rather than the law of Nature he so dilligently sought.

Takahashi was first to recognize that one could include a more physically
sensible short-ranged potential and still be able to evaluate (). Let it vanish
at separations exceeding 2b, so that only nearest-neighbors atoms interact,
as before. () then takes the form:

Lx Y3 Y2 N-1
Q=N [ dyy--- /0 dy2 /0 dyrexp—B S wlynss —vm)  (4.36)
n=1

where L* = L — (N — 1)b is the “effective” length of the chain. This has
the form of an iterated convolution, the type of multiple integration best
evaluated by Laplace transform. Let Q/N! = C(L*). The Laplace transform
of C(L¥) is,

O(s) = /0 T AL (L)t = 52K ()N (4.37)

where K(s) = [5°dye *v7PW) and s is determined wia the equation,
—% log K(s) = (y) = L*/N; the equation of state is constructed by combin-
ing this equation with the usual definition of p. The inverse Laplace trans-
form of the rhs of (4.37) shows @ to be analytic in 3; even if there is a phase
transition it occurs at 7' = 0 (8 = oo) and the system is thus in its high-T
phase at all finite T.

The multiple integral (4.36) can also be evaluated by defining a transfer
matriz M. We examine this in some detail, for similar procedures prove useful
in later applications. Assume that after n—1 integrations the result is propor-
tional to a normalized W,,(y,); then, [§""" dy, exp —Bu(Ynt1 — Un)Vn(yn) =
nVn+1(Yn+1). Here, using a step function (f(z) =0 for = <0, 8(x) =1 for
x > 0,) the transfer matriz is: M (Yn+1 —Yn) = 0(Yn+1 — Yn) €Xp —Bu(Yn+1 —
Yn). By iteration,

This integration turns into an eigenvalue problem once we posit M has a
complete set of eigenfunctions ® in which the ¥’s can be expanded. As the
integral is iterated, the coefficient of the eigenfunction ®y with the largest
eigenvalue qg grows the fastest and ultimately dominates. Hence after n > 1
iterations, ¢, — qo and ¥,, tends to (. This leads to the eigenvalue equation:

/0 Sy My — 1) ®0y) = a0o(y) (4.38)
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for the largest ¢ = ¢o. Once found, we can set log Q = log N! + N log qo
(+ inessential terms lower-order in N,) and the problem is solved; indeed,
the value of gy is deduced below.

However the eigenfunction ®¢(y) is itself of some interest. It is non-
negative (the integrands in (4.36) are all non-negative) and once normalized,
such that [; dy®(y) = 1, it is identified as the probability distribution for
the nearest-neighbor inter-particle separation y. For ®(y) to be normalizable
it must vanish sufficiently fast at large y to allow the upper limit of the in-
tegrations to be set at co. Also, ®(0) = 0. (This follows immediately from
Eq. (4.38) upon noting that M vanishes identically wherever its argument
is negative).

Define

F(s) = /0 h dy®o(y) exp —(sy)

and insert into Eq. (4.38):

|y [y e = e eV a0(y) = aoF(s)
0 0

The integration over y on the [hs can be shifted into an integral over z =
y —y'. Mindful that M (z) vanishes for z < 0 one finds F(s)K(s) = qoF(s).
Hence qo = K (s), recovering the earlier results in lim -N — oo.

4.10. One Dimension versus Two

Whereas in 1D there are several complementary ways to understand the lack
of any long-range order (LRO), the proofs in 2D are both subtler and less
universal.

Consider the famous proof, attributed to Landau, of the absence of LRO
in 1D. If one severs an arbitrary linear array assumed to possess LRO by
breaking it into two uncorrelated segments, the energy cost Ae is indepen-
dent of the size of the system. However, assuming there are N equivalent
places where the cut can take place, the entropy is enhanced by klog N
by a single cut. It follows that, at any finite 7', the change in free energy
~ Ae — kT log N is always favorable to this break-up.

Subsequently each severed part can be cut in turn, each cut again low-
ering the over-all free energy. This continues until the average, individual,
uncorrelated segments are no bigger than e2¢/*T at which point the free en-
ergy is at a minimum. Therefore at finite 7" there is no LRO in 1D and even
short-range order (SRO) typically decays exponentially with distance. When
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Fig. 4.6. Liquid-vapor phase transition in 2D."
(A), (C) and (E) are snapshots of the positions of millimeter-sized like-charged
metal balls at three densities ¢ = pd?. (B), (D) and (F) are plots of the two-body
correlation functions g(R) at the same three densities. (The dashed line in (D)
indicates the average inter-particle distance at ¢ = 0.14.)

combined with the preceding section, where we showed that the largest eigen-
value of the transfer matrix to be analytic in 3, this is convincing evidence
that even if an ordered phase existed at T' = 0, in thermal equilibrium only
the high-temperature phase exists in any 1D system at finite T". In 2D the
simple version of Landau’s argument is invalidated, as the energy required
to destroy LRO by cutting the plane rises to O(Aey/N) while the entropy
gain remains at O(klog N).

Examination of long-wavelength excitations shows the actual situation to
be more nuanced. If the dynamical variables (such as the distance between
nearest-neighbor (n-n) atoms or the angle between n-n spins’ orientation)
are continuous there can be no LRO at any finite T'. If, however, there is an

"Adapted from B. V. R. Tata et al., Phys. Rev. Lett. 84, 3626 (2000).
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energy gap against elementary excitations (as in the Ising model or in the
lattice gas), the ground state LRO may persist to finite 7' and one may need
to account for several distinct phases, including some with LRO.

But even the absence of LRO does not necessarily preclude phase transi-
tions. In 2D, two distinct fluid phases may be allowed — even if the forces
are purely repulsive. A striking demonstration is shown in Fig. 4.6 for like-
charged metal balls, each of diameter d = 1.59 mm, on a 2D “table”. The
two-body correlation function changes character from correlated liquid to
dilute gas as a dimensionless density ¢ = pd? is lowered from 0.2 to 0 at
fixed T'.

4.11. Two Dimensions versus Three:
The Debye-Waller Factors

It is fortunate for us that the world as we know it is imbedded in at least
3 spatial dimensions (and perhaps as many as 10 or 11 according to some
theorists), as the very existence of elastic solids in fewer than 3 dimensions
is problematical. In fact, even if one assumed LRO in a given lattice at
low temperatures in d < 3 dimensions, either quantum or thermal lattice
vibrations destroys it. The importance of fluctuations in low dimensions can
already be understood within the context of the structure factor. Let us start
in 3D.
Recall the definition of S(q) in Eqs. (4.29) and (4.30):

2

1 /|
s= 1 (o)
j=1

TA

Now, in an “ideal” 3D solid the positions r; of individual atoms are
R%(ni,n2,m3) = nit; + naoty + nst3, with the t, a set of non-coplanar
“primitive translation vectors” and the n,’s arbitrary integers. Starting from
any cell one can find the position of any other cell, however distant, by an
appropriate choice of three n,’s; that is the nature of a space lattice with
LRO. It is then simple to calculate Sy(q), the ideal structure factor.

First, one defines three non-coplanar primitive translation vectors of the
“reciprocal lattice”,

to X t t3 Xt t1 Xt
Ki=2n—2"3  Ky=27r—3"1  Ky=2r—""2  (4.39)
t1 -ty X t3 t1 -ty X t3 t1 -ty X t3
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Fig. 4.7. Laue back-reflection pattern of oriented AgCl crystal.

X-Ray pattern of a single crystal silver chloride oriented along a principal (100)
direction.

They have the property that any point in the reciprocal lattice can be writ-
ten in the form qg(mq, mg, m3) = mi1K; + moKo + m3Ks, with m,’s arbi-
trary integers. For any and all such gg’s, terms of the form exp(iqg - R?) =
exp(i2m X integer) = 1. That makes Sp(q) = N if q = qp and Sp(q) = 0 if
q = qo- Indeed, the X-Ray diffraction pattern of an ideal solid does consist
of discrete Laue spots, each characterized by a different value of qg. Once
a few have been tallied it is easy to extract the three primitive vectors K,
and by inversion of (4.39), to obtain the structure and geometry of the space
lattice.

This discrete spectrum Sp(q), of which a typical example is shown in
Fig. 4.7, differs noticeably from the isotropic, continuous, structure factor
in fluids shown in Figs. 4.3-4.5. The discreteness is a direct consequence of
LRO. Now, what if the actual atomic positions differ from their ideal values?
We shall see that the answer depends crucially on the number of dimensions.
But first, the usual theory in 3D as it is recounted in textbooks on solid-state
physics.

At finite T the atomic positions are shifted from their ideal values,
ie. r; = Rg-) + dr;. The structure factor becomes,

1 /& N
-3 (f o o

j'=1
J'#3 TA

=14+ % eiQ'R? <€iq~(6r]-—6r0)>
J#0

oy (4.40)
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setting j’ as the origin (n; = ny = ng =0). Expand or in normal modes,
ik- RO ok RY
orj = ~ E e' , and drj—org = ~ E Du(k). (4.41)

Only those normal modes with excursion u parallel to q contribute to the
exponent. If the forces are perfectly elastic, as one may assume for small
excursions, thermal averaging expresses the potential energy of each normal
mode as a quadratic form. This is inserted in the Boltzmann exponent,
exp —(8/2)MK?s%|u(k)|?, where M is the mass of the unit cell and s the
speed of sound. Thus,

—%5M32k2|u(k:)|26iq~(6rj —dro)

(eiq~(6rj—6ro)>TA _ Hk fdu(k)e

[Ty J du(k)e 22l

Substituting (4.41) in the exponent and completing the square yields us the
Debye-Waller factor for elastic scattering of X-Rays,

(4.42)

2 0
o (51 —5 B ¢*kT 1 (I —cosk-R})
(o) = exp— | Try Nkz 32
CcBZ

(4.43a)

The sum over k is constrained to the first Brillouin Zone, as the first unit
cell about the origin in reciprocal space is called. Its volume K; - Ky x K3
contains precisely N points k, reflecting the number of cells in the space
lattice. The sum in the exponent is named after Ewald, a pioneering practi-
tioner of X-Rays, and can be identified as the Coulomb potential of discrete
charges placed on an equivalent lattice. For present purposes it is unneces-
sary to know it in detail; we are just investigating its singularities. In the
thermodynamic limit it can be approximated by a simpler integral,

, 2k 1 —cosk-RY)
iq-(6rj—0ro) (qa(]) k ao d3]€( J 4.43b
G )TA = €exp — <7_ﬂ [22r) Jns 12 (4.43Db)

where a3 = t; -ty X t3 is the volume of a unit (space) cell. At relatively small
distances R? the integral is bounded but does grow as R2.

Asymptotically, at large R, it is permissible to neglect the oscillatory
cosk - R term altogether and the integral reaches its ultimate value, which

(qag)?kT  ag / 3, 1) (qag)?*T
exp < M52 (on) BZd ka /2 exp 0 ) (4.44)

independent of R. Here we have introduced the “Debye theta” 6p, a quan-
tity having the units of temperature. Multiplied by Boltzmann’s constant,

is:
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kOp ~ O(Ms?) it marks the boundary separating classical from quantum
behavior in the dynamics of a solid.® 0p is listed for numerous materials
in specialized handbooks and is known to range from a few degrees Kelvin
in the softest material to a few hundred or 1000’s in the hardest. Classical
statistical mechanics, used in Eqgs. (4.42) and (4.43) to evaluate the thermal
average, is valid in the high-temperature regime 7" > 0p.

Although the sum over j in Eq. (4.40) still restricts the diffraction to those
discrete values of q which coincide with the reciprocal lattice, once inelastic
scattering of the X-Rays is included the calculated Laue spots acquire a
finite breadth — also observed in experiments.? Summarizing these results:
with increasing temperature the low-order points become broader while high-
order (large o) Laue spots become so broad that they virtually disappear.
The X-Ray picture Fig. 4.7 illustrates the increased breadth of the Laue
points with distance from the origin.

Now we turn to 2D. Modifying (4.44) for the dimensionality, one has

(qag)*kT 1 / 5 1
_ e = 4.4
P < M2 (@n) Jp 2 ) =0 (4.45)

vanishing because of an infrared divergence (i.e. at small k).4 Therefore the
summand in Eq. (4.40) vanishes in the asymptotic region. This limits the
number of terms which contribute to the sum in Eq. (4.40) to the sites closest
to the origin.

To estimate S(gq) in this case let us take an extreme view and assume that
the thermal averaged factor takes the value exp —[a(gap)?] at n.-n. sites and
effectively vanishes beyond the first shell. Then evaluating Eq. (4.40) for the
square (sq) lattice one obtains the structure factor

S(q) = 1+ 2(cos gzag + cos qyao)e_a(qa())Q
1
~1+2 (2 — i(an)Q) e—a(an)Q ‘ (4.46)

This function is continuous, virtually isotropic, and tends to 1 at large q.
Although derived for an ordered state, the resulting S(q) is, for gag = 1,
closer to that of a fluid than to the discrete spectrum of a crystal.

°Again we use kp without the subscript, but it should not be confused with the momentum
dummy variable k in the integrations.

PThe reason: instead of qo one may have qo + dq owing to the emission or absorption of
a phonon of wavevector dq, with dq ranging over the BZ.

9In 1D the IR divergence is even more severe!
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This result is not a fluke. In a later chapter we shall confirm the lack
of LRO at finite T" in all systems having a continuous symmetry (such as
phonons) in sufficiently low-dimensions.
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Chapter 5

The World of Bosons

5.1. Two Types of Bosons and Their Operators

Nature seems to favor particularly two types of particles: fermions and
bosons. Other types are few and far between. This chapter deals only with
bosons. Oscillations of coherent systems, bearing such names as “phonons”
in ordered materials, “photons” in the electromagnetic field, “magnons” in
magnetic systems, “plasmons” in charged fluids, “gluons” in high-energy
physics, etc., are all typically bosons. However these constitute just one type
of boson.

Even numbers (2,4,...) of fermions bound together with a large binding
energy, such as alpha particles and helium or argon atoms, constitute a differ-
ent genus of boson. Whereas oscillations can be freely created or destroyed,
the number N of atoms is conserved — at least in the usual contexts where
thermodynamics is applicable. Number conservation can be an issue unless
it is amicably resolved, e.g. by the introduction of a chemical potential. Such
reconciliation cuts a little deeper in quantum mechanics than heretofore; in
these pages we shall derive and/or review all the quantum theory necessary
for this purpose.

Our first example, the one-dimensional harmonic oscillator, can, like
many similar models, be viewed in two contexts. At first let us solve it
as the canonical model of the dynamics of a mass M tethered to the origin
by a spring K whose Hamiltonian is,

2
HZQP—M—I—ga:Q, where pz%%. (5.1)
The characteristic frequency is w = /K /M. Quantum theory requires pz —
Tp = %, ie. p= %8/ Oz. It also requires us to solve an eigenvalue problem for
the energy eigenvalues E, and for the corresponding wave functions ¥, (x).

83
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The Schrodinger equation HY,,(z) = E, V¥, (z) is typically solved by series
expansion, which yields ¥,, as the product of an Hermite polynomial in z
of degree n and of a Gaussian. The result: E, = hw(n + 1/2), with n =
0,1,2,.... The “zero point” energy is hiw/2. Here n just indicates the degree
to which the system is excited — and not the number of particles occupying
energy level hw as in the “number representation” to be introduced shortly.

There exists an efficient operator procedure to solve the same problem. It
involves the two operators, a and its Hermitean conjugate a™, respectively
“lowering” and “raising” operators:

p—ixvVKM L+ ptizxvKM

6="——"—~-, and o =-—F7r—F——- (5.2)

(2hV/EK M)/’ (2hV/EK M)/’

normalized so as to satisfy aa™ — ata = 1. Direct substitution of (5.2) into
(5.3) and comparison with (5.1) shows that H can also be written as,

H=hw(ata+1/2). (5.3)

It follows that a™a¥,, = n¥,, in general, with n =0,1,2,... , and aTa¥y =
0 in the ground state. This last implies a¥y = 0, an homogeneous first-
order differential equation for Wq(z). Its solution yields A exp —x2/d?, where
d> = 2h/v/KM and A, the normalization constant, is adjusted such that
22 dx|Wo(x)|? = 1. Once Wy(z) is normalized, the probability density for
finding the particle at x in the ground state is P(x) = [¥o(z)|%.

Excited states are simply found by repeated applications of a™ onto the
ground state. Using only normalized ¥’s one finds,

U, (z) = %(cﬁ)”%(@, e, W, (x) = %awn_l(x). (5.48)

Just as a™ steps m up one integer at a time, a steps it down by precisely
one integer:

a¥,(z) = vn¥,_1(v) (5.4b)

Actually, all this information is summarized in the following commutator
algebra:

aat—ata =[a,aT)=1, aH—Ha = [a, H|=hwa, and [H,a%]=hwa™. (5.5)
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Problem 5.1. Prove the commutation relations in (5.5), using the defi-
nitions (5.1)—(5.3) for the various operators. Prove, then use the following
identities to simplify the calculations:

1. [a, AB] = Ala, B] + |a, A] B, where a, A and B are arbitrary,

2. [A,B] = —[B, 4], and

3. (AB)t = BtA*
AT is denoted “Hermitean conjugate” of A if each is the transpose and the
complex-conjugate of the other. The operators a and a™ are Hermitean
conjugates of one another, whereas H is its own Hermitean conjugate —
i.e. it is “self-adjoint”.

After inverting Eq. (5.2) for p and x, expressing them as linear com-

binations of a and a™,

4. prove x and p in this representation are both self-adjoint.

The time-dependent Schrodinger equation, H®(z,t) = thd®(z,t)/0t can
be solved in general using arbitrary coefficients ¢,,

O(z,t) = Y ey Uy (x)e /M (5.6)
n=0

At t = 0, ® is matched to initial conditions, subject to 3" |c,|? = 1. Then
the probability distribution P(z,t) = |®|? describes the quantum-mechanical
motion of the particle. If P is sharply peaked at a value x(t) (this may require
including states of sufficiently high n in the wavepacket (5.6),) it is found
that the peak of the wavepacket at x(t) ~ xgcoswt emulates the harmonic
motion of a classical particle. In summary, the Hamiltonian in (5.1) and its
eigenstates describe every detail of the single normal mode.

Next we want to see the results of perturbing this Hamiltonian. As a
solvable example, suppose the perturbation of the quadratic potential to be
linear.®

H=hw(aTa+1/2) +gla+a™) (5.7)

The shift transformation preserves the commutation relations (5.5) and
Hermitean conjugation: @ = b + f and a™ = bt + f* where f is a

2If the perturbation were chosen differently, say as H' = g’(a+a+)4, H could not be diag-
onalized explicitly as in (5.8). Still, there always does exist a complete set of eigenfunctions
¥, (provided only that the perturbation H' is Hermitean). The low-lying eigenvalues E,,
can, in fact, be calculated to arbitrary accuracy.
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number and b an operator similar to a. It is therefore unitary. The new
H=nhw((bt+ )0+ f)+1/2)+gb+ f+b" + f*).

We choose the transformation parameter f = —g/hw to cancel all the
linear terms. The final result H = hw(b™b + 1/2) — ¢?/hw appears simple,
ie.

Em(9) = hw(m +1/2) — ¢* /hw, (5.8)

but eigenstates are strongly affected. For example expanding the old ground

state W( in the new W/ ’s yields: e~ 5 S S -0, Next, we examine
how to accommodate the many-body problem to the thermodynamic limit
N — oo, starting with “free” particles (i.e. individual particles with no
mutual interactions).

5.2. Number Representation and the Many-Body Problem

Next let us suppose N identical, noninteracting particles “live” in, i.e. share,
the same parabolic well. Their Hamiltonian is,

H= ZH Z{—Jr%?}. (5.9)

Because they don’t interact, their wave functions and probabilities should
just multiply, i.e. P(z1,...,2x) = [¥p(21) ¥ (22) ... |2 In the event they
are all bosons with the same mass and are subject to the same poten-
tial, P should be invariant under permutations. Clearly, the product is not
symmetric unless all subscripts m,m/,... are identical. The solution: sym-
metrize the over-all wave function ¥(zq,...,xy) under permutations of the
particles. Thus, let

U(z1,22,...) =C > P{Un(21) W (22)...} (5.10)
P

where P stands for any one of the nontrivial permutations of the N coor-
dinates and C' is the requisite normalization factor.” The permutations are
all “degenerate”, i.e. share a common energy E = Y >~ Ep,(0)ny,, with n,
the number of particles in the mth level and E,,(0) = hw(m + 1/2). From
this we deduce the following feature of bosons, seemingly trivial but in fact

PIf all the quantum numbers are different, there are N! such permutations and C' = 1/v/N'.
If all the quantum numbers are the same, there is just one and C' = 1. In general C lies
between these two extremes.
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central to their statistical mechanics: if the particles are in fact totally indis-
tinguishable, one is only entitled to know how many particles share m, how
many share m/, etc., in a given eigenstate, and not which ones are in m, in
m’, etc. Thus we can rewrite (5.9) in the following terms:

o0

H=> En0)chcnm (5.11)
m=0

where ¢, and ¢;}, are new boson annihilation and creation operators in a new
infinite-dimensional occupation-number space. In any acceptable eigenstate
U, we must have Y00 cf ¢, ¥ = NW.

The harmonic oscillator analogy “works” very well for the c¢,,’s. The
generalization of the commutator algebra in Eq. (5.5) to these new oper-
ators is:

[cm,c;/] =Omm s [Cm, O] = [c;/,c:;] =0, [em,cheml=cm. (5.12)

The bosonic nature of the particles is mirrored by the fact that the creation
+ ot

operators commute with one another, i.e. cjc;r\ll =cj ¢ U for any state W.
Therefore one may not count permutations as new, linearly independent,
states. This indistinguishability rule is what mandates Gibbs’ factor 1/N! in
the correspondence (classical) limit, as discussed previously. The harmonic
oscillators underlying this number representation are abstract, there exist
no corresponding dynamical codrdinates p and x to which they refer. An
independent harmonic oscillator mode is arbitrarily assigned to each one-
particle level in the original problem. Dirac’s notation labels their states in
an intuitive manner, as follows:

|0) is the lowest occupation state, alias “the vacuum”. Its Hermitean
conjugate state is (0|. Normalization is expressed through the relation (0]0) =

1. Normalized excited states

()"

\I/:|...nm...>:H i |0)

m

are specified by the set of occupation numbers {n,,}. Because the opera-
tors ¢t commute they may be ordered in any way that is convenient. The
Hermitean conjugate states are written as
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5.3. The Adiabatic Process and Conservation of Entropy

Let us pursue the example of noninteracting particles in a common potential.
If the parameters of the harmonic well were changed there would be a new
set of one-body energies F,,(g). It would still be necessary to specify the
new occupation numbers. Of course the total energy changes in the process,
as H =3, En(g9)c} cm. Suppose the initial eigenstate to be | ..., ny,...),
labeled by the eigenvalues of the set of occupation numbers {c; ¢, }, i.e. by
the set {n,,}. If they remain unchanged as the parameter g is “turned on”
we denote this a quantum adiabatic transformation. The constancy of the
occupation numbers (if not of the individual energies nor even of the total
energy) is what defines the quantum adiabatic process.®

At a given total energy E the entropy .#(F) is defined proportional to
the logarithm of the number of distinct configurations with energy E.

Let W(R, N) be the number of ways in which N = )" n,, particles have
energy £ = hw(R + N/2), with R = " mn,,. Suppose R = 3. Without in
any way distinguishing the N particles in the initial state, this value of R
can only be achieved in the following 3 distinct modes:

1. ng =1, ng = N — 1, all other n’s = 0.
2. no=n1 =1, ng=N — 2, all other n’s = 0.
3. n1 =3, ng =N — 3, all other n’s =0.

Assuming each state 1,2,3 to have equal probability, we find: W (3, N) = 3
and . (E) = klog3 for E = hw(3 + N/2) in this example.

By definition, in a quantum adiabatic transformation the occupation
numbers in each of the states remain unchanged. Perturbing H as in Eq. (5.7)
causes the energy of each member of the triplet to change to a new value
E = hw(3+ N(1/2— (g/hw)?). In this example the degeneracy of the triplet
remains the same — hence so does the entropy .#. Here, adiabatic implies
1sentropic.

Problem 5.2. Compute W(R, N) for R = N/10. Call this Wy(N). Show
log Wp(IN) o< N in large N limit (Hint: modify the procedure of Sec. 1.2.)

“Regardless of appearances this constancy is not yet related to entropy; any boson state
|...,Nm,...) is unique, hence has no entropy when considered by itself. A microscopic
discussion of entropy has to start with a collection of such states, all of approximately the
same energy.
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But this special example of an isotropic harmonic well undergoing an
adiabatic transformation via the linear shift analyzed above or, alternatively,
through a gradual change in the spring constant or frequency w(g), is almost
unique — insofar as the transformation preserves all the individual multi-
plet structures — hence .¥ as well. One other plausible case is that of the
three-dimensional well with sides L, L,, L, changing by a common factor:
Ly, Ly, L, — ALz, ALy, A\L.. This too maintains initial symmetry and mul-
tiplet structure. But wherever the quantum adiabatic process changes the
symmetry?d it also affects the multiplet structure; the entropy must then be
reévaluated in a statistical sense and averaged over a finite energy range
AFE.° This challenge remains to be met.

But a greater challenge remains, which is to define the quantum adiabatic
process for interacting particles — given that there is no set of well-defined
individual quantum numbers to be preserved in this instance — let alone to
identify in an isentropic process! We return to this topic ultimately, from a
different perspective.

5.4. Many-Body Perturbations

As an alternative to making implicit changes in the underlying one-body
Hamiltonian due to perturbing potentials affecting the individual E,,, we
can introduce changes in the Hamiltonian explicitly using the field operators
themselves. If the perturbation is in the one-body potentials the perturbing
Hamiltonian has to be bilinear in the field operators, e.g.:

Hi=9 > Vimmwchom, (5.13)

m,m’

where g is a coupling constant which is “turned on” from 0 to 1 and Vj,
is a given, known, matrix. Whatever the matrix elements gV, ,» may be,
H, automatically conserves total number — even though it explicitly causes
the occupation numbers of individual levels to change. In the many-body
re-formulation of the solved example of Egs. (5.7) and (5.8) one writes H =

9E.g. in the popular example of a piston adiabatically changing the length of a cylindrical
cavity, the aspect ratio does change and the quantum adiabatic process is not obviously
microscopically isentropic.

°Generally a quantum adiabatic process can only preserve the coarse-grained quantity
Z(E,N)AE, with .# averaged over a range of energies E &+ AE, and not the microscopic
function .(E, N) itself.



90 5. The World of Bosons
Hy + Hy, where:

1 00
HQ = Z hw <m + 5) C;;Cm, Hl =dg Z \/E{C;;_lcm + C;;Cm_l} .
m m=1
(5.14)

Two-body interactions generically take the form:

Hy=yg Z VimkiCpy CrCrCl - (5.15)

nmkl

Problem 5.3. (A) Show the quadratic form Hy + H; in (5.14) general-
izes Eq. (5.7); exhibit the basis set for N = 1,2 particles at g = 0. (B) The
perturbations above, H1 and Hs, share an important property: for every fac-
tor c there is a factor ¢*. It seems obvious that such perturbations explicitly
conserve the total number. However, the more standard way to prove that
Nop = 3°0°_ ¢ e 1s conserved is to show it commute with the Hamiltonian
and is thus a “constant of the motion”. Therefore, prove: [Hq, Nop] = 0 and
repeat the calculation for Hy given in (5.15).

5.5. Photons

Photons are transverse excitations of the electromagnetic field polarized
perpendicular to the given direction of propagation (determined by the
orientation of the wavevector k.) The two polarizations of circularly po-
larized light are clockwise and counter-clockwise. (Alternatively, there exist
linearly polarized waves along two orthogonal, transverse, axes. Either way,
there are just two fields to quantize.) H takes the form,

H = Z hckazaak,a.
k,a

a = 1,2 labels the two possibilities (e.g. cw or ccw), and a™a is the individual
modes’ number operator, with eigenvalues ny, = 0,1,2,... We can now
calculate Z to obtain E(T'), and p(V,T) and other thermodynamic properties
of the photons “gas” of interest in astrophysics, optics, etc.

The ny, o are the sole dynamical degrees of freedom, hence they are to
be summed after being weighed by the appropriate Boltzmann factor. As
the number of photons is not subject to any conservation law, there are
no extra constraints or Lagrange parameters such as a chemical potential.
(Neither the individual ny o nor their total number > ny , are prescribed.)
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Then,

Z =Tr{e P} = H Z(eka), where g o = helk| >0,
k,a

independent of «, and each Z(ej o) takes the form Z(e),
o
Z(e) = Tr{e P} = Z ePen = (1 —eP8)71, (5.16)
n=0

The sum over occupation number n (short for nj,) in Eq. (5.16) is
identified as a standard, convergent, geometric series (1 + z + 22---) =
(1 — z)~! that can be immediately evaluated as shown.

Using this result let us calculate the thermal-average occupancy,

_ 0+ 1z +22% +---
S ltztaad+

(1k,0)

where © = e~ Eq. (4.4) suggests an easier way to get the same answer:!

x 1
1—x ePhck _q

(nka) = —k:Tg log Z(e) =

o (5.17)

(basically, Planck’s law). At low energy compared with k7', (n) reduces to
the classical equipartition result plus a correction eliminating the quantum
zero-point motion, wviz.

1 kT 1
= ——. 5.18
() ePhek — 1 gack—o (hck) 2 (5.18)
It remains to calculate F' = —kT log Z, a different kind of sum. Because

Z = [lg.a Z(€k,a), a product, its logarithm is a sum over allowed k’s:
F=2kT log{l — e """} = 2VkT / dep(e)log{l — e P} (5.19a)
k

with the factor 2 for the two polarizations «. The internal energy is

_0(BF) hek e
E = 78ﬁ = 22}; Bhek —1 = 2V/d<€p(<€)7eﬁ6 — (5.20a)

Here we find it convenient to introduce the kinematic concept of density
of states (dos) p(e), to take into account the manner in which the k’s are
selected. The following derivation explains how this is done.

fTreating ¢ as the coupling constant.
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In a box L3 the component k, = 2wm,/L, with m, = 0,+1,+2,...
and similarly with k, and k.. The m’s form a simple-cubic 3D grid
m = (mg,my, m;) with unit lattice parameter. The Riemann sum ), is
over mg,my, and m, and reduces, in the large volume limit, to a three-
dimensional Riemann integral.

In summing any continuous function of the photons’ energy ¢ = hck, say
®(hck), one should always proceed in the same manner:

Xk:@(hck) = /// dmydmydm,®(hck) = (%)3/613]@(1)(716/%)

= oo (hc)_347r/d552<19(5) (using k = ¢/hc)

—v / dep(e)D(e) (5.21)
Comparison of the third line with the second defines the dos p(e):
[for photons] p(e) = in g? (5.22)
P pe) = (2mhe)3 '
When used in (5.19a) this leads to:
F = oviT— " / dee®log{1 — e 7%} (5.19b)
- (2rhe)? & ’ '
hence
O(BF) 4 / 3 1
EFE=——-=2V——F— [ d . 5.20b
ap (27he)3 e 1 ( )

According to Eq. (3.10) the radiation pressure on the walls of the box V
has to be calculated isentropically. Following the discussion in Sec. 5.3 we
shall evaluate it adiabatically, by keeping the number of photons at each m
explicitly constant as the volume is changed — all the while maintaining
spatial isotropy. Following this prescription one writes:

OF 9 he2my /m2 + m2 + m?2
b= VN, ‘2; 3L20L L (k)74
E
= (5.23)
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The alternative in (3.10) uses Eq. (5.19a):

9 ~Bhe2n|m
P= 3753 [%TZlog{l — g~ Phe2ml I/L}] = (1/3)E/V,
m T

and yields an identical result, as the reader will wish to verify.
E as given in the form (5.20b) can be calculated in closed form. With

Be = x a dummy of integration, £ = QV%;F ';LT w Jo o d
13, a special case of I,:

n—/ dm

B Ood n o 1 1
= /0 T T € +2”+1+W+“'

=T(n+1)x((n+1) (5.24)

This integral is

ezl

—/ dra™e™ +e 2 43T 4. ]

with I'(z) the gamma function (cf. Chapter 1) and ((z) = _,,—; m™" the
Riemann zeta function, another function that frequently comes up in statis-
tical mechanics. Both are extensively tabulated. In particular, I'(4) = 3! and
C(4) = 74/90, i.e. I3 = n*/15.

Max Planck was awarded the 1918 Nobel prize in physics for obtaining
the above results and extracting from them the following expressions for the
energy and radiation pressure,

2 2

Braa = Ve (kT)" and prag = ———
d (KT)" and - prad = 35753

15(hc)3 (kT)". (5.20¢)

Stefan’s 1879 law, Eq. (5.20c), as these formulas were originally known, sum-
marized observations on emitted energy and radiation pressure from earthly
and astronomical objects in experiments dating as far back as the mid-19th
Century. Despite an earlier heuristic classical derivation by Boltzmann, this
law is, in fact, incompatible with classical thermodynamics of the electromag-
netic spectrum. It is therefore only historical justice that this work earned
Planck the sobriquet, “father of the quantum”.

5.6. Phonons

The speed of sound of long wavelength transverse vibrational modes (quan-
tized as “phonons”) in solids is related to the shear modulus, that of the
longitudinal modes to the bulk modulus. These are the so-called “acoustic
modes”. In solids with a basis, that is, whose unit cell contains two or more
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ions, internal oscillations of each cell produces distinct, “optical”, modes. As
indicated by this nomenclature, their oscillating dipole moment gz (t) readily
emits or absorbs photons, typically in the infrared.

In a solid consisting of N unit cells of z atoms each, there are 3Nz
normal modes. Of these, 2N are the transverse “acoustical phonons” which
propagate at the speed of sound s (all z atoms in each cell remaining more
or less in phase), and N are longitudinal phonons (compressional waves)
propagating at a somewhat higher speed s;. The remainder constitute the
“optical phonon” spectrum, based on intra-cell oscillations; as the dispersion
of optical modes is of no great import one often ignores it altogether and
assigns to the optical modes a common frequency wp. Similarly, statistical
mechanical calculations are simpler if one treats the three acoustic modes
on a common basis, using a suitably averaged speed of sound.®

In the early 20th Century, Albert Einstein and Peter Debye proposed
competing theories for the vanishing of the heat capacity in non-metallic
solids at low temperatures, both based on Planck’s formulation for the pho-
tons. As it turned out, both were right. Whereas Einstein’s theory applies to
optical phonons, wherever they exist — such as in NaCl — Debye’s theory
applies to the acoustical phonons present in all solids.

We examine the Einstein theory first, as it is the simpler. One supposes
there are Ng distinct normal modes having a common frequency wg, with
Npg some integer multiple of the number of cells, N. Neglecting nonlineari-
ties, interactions among normal modes, scattering etc., the relevant partition
function is simply:

1 Ne

The internal energy is,

1

Corresponding to a heat capacity,
Cp(T) = kENg[z(T)/sinh z(T))?, where z(T) = hwg/2kT.  (5.27)
At high temperatures x — 0 and the heat capacity attains its classical limit,

the Dulong—Petit law: k per harmonic oscillator. At low temperatures z > 1

&There is no space here for deriving these standard results and the interested reader is
encouraged to delve into books on the solid state or more specialized treatises such as J.
Ziman’s Electrons and Phonons (Oxford Univ. Press, London, 1960).
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and the heat capacity vanishes, although when compared to observation it is
observed that the exponential decrease C' o exp —hwg/kT is far too abrupt.

Debye’s theory reconciles theory to experiment. Let Np = 3N normal
modes have dispersion w(k) = sk, or energy e(k) = hsk, where the speed
of sound s o (elastic constant/atomic mass)'/?. The maximum k denoted
kp, is the radius of the “Debye sphere”, chosen to have the same volume
as the first Brillouin Zone. Therefore, like the latter, it contains precisely
N = (L/ap)? points:

4 <l<:DL

3
(o ) =N = kp = (3/2)3(2n1)*3/ag = 3.89778/ay.  (5.28a)

37
The cutoff ep = hskp = kfp is also o (elastic constant/atomic mass)'/?.
We can obtain the dos of acoustic phonons without additional calculation
by comparing this with Eq. (5.22) for the photons, setting p(e) = Ag? for
€ < ep and p = 0 for € > ep. Assuming the speeds of longitudinal and
transverse modes are equal and using the definition of the cutoff,

k6
A/ Y dec? = N = A= 3N(kp)~>. (5.28b)
0

The total energy of the 3 branches of acoustic phonons is,

Ep=3{A / H decd— L\ IN (ET)z 3 / s (5.29)
b= 0 efe —1( 0 et —1 ’

where x = (0p/T). At low temperatures, x is large and can be taken to infin-
ity. Then — except for the trivial replacement of s by ¢ and for a numerical
factor 2/3 — Eq. (5.29) reduces to the analogous expressions for photons,
Egs. (5.20a—). Explicitly: as T — 0, Ep — N(97%/15)(kT)*/(kfp)3. Thus,
the heat capacity vanishes as T at low temperatures, far less abruptly than
the exponential decrease of the optical phonons. In insulators the value of
fp is determined experimentally by fitting the low temperature C, to this
result. In metals the far greater heat capacity of electrons masks the Debye
terms.

In the high-temperature limit z — 0. The integral (5.29) reduces to x3/3.
Then EFp — 3NKT and C attains its Dulong—Petit “classical” limit 3Nk.
To examine Ep at intermediate temperatures, or to determine the rate of
approach to either limit, one requires the Debye integral® Ds.

"Defined and tabulated in NBS Tables, Abramowitz and Stegun, Eds.
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Other Debye integrals D,, have proved useful as well. In general they are
defined as follows:

/ dttn
n—1 n—2

o~k L, 1
_kz_:l k {?—1—11—]{:2 +n(n—1)—— Bt +n'k‘ +1}- (5.30a)

F(n+1){(n+1)

A different series expansion converges more efficiently at small x:

s Ebk$
Dp(z) = 2" = — .
(z) == {n n+1 2:: 2k +n) 2k)} (5-30D)

where B,, are the Bernoulli numbers.

The generating function of the Bernoulli numbers is

t > "
; = E B,—, ie. By=1,B;=-1/2,By,=1/6,
et —1 n!
n=0
By =—1/30,Bs = 1/42, Bg = —1/30, B1g = 5/66, etc.

Odd-subscripted B’s beyond B all vanish.

Whenever extraordinary accuracy is required (beyond the Debye the-
ory) one may have recourse to the exact dos, p(¢) defined as follows:
=+ k.o 0(6—€a(k)) for arbitrary dispersion €, (k), and evaluated numerically.
The resulting corrections to the Debye theory are typically most pronounced
in the vicinity of 7'/0p = 1, and negligible elsewhere.

5.7. Ferromagnons

Consider a fully polarized ferromagnet of spins S with its magnetization
precisely along the z-axis. Its magnetic moment is M = NS. An excitation,
denoted ¢;, is constructed out of a lowered spin S, = S — 1 on the jth site
(with S, remaining = S on all the other sites.) Because the choice of site
is arbitrary, the eigenstate (“magnon”) is a plane-wave linear combination
o< 3 @€ 1. One calculates the energy of this eigenstate as e(k) = JS(kag)?



5.7.  Ferromagnons 97

3Nk

Cv

Tl

Fig. 5.1. Heat capacity of a Debye insulating solid.

C(T/0p)/Nkp, calculated with the aid of Eqs. (5.29)ff, is a universal function of
T/0p.

at long wavelengths, with .J the so-called exchange parameter.! The Brillouin
zone containing N points is again approximated by a Debye sphere of radius
kp as given in Eq. (5.28a).

With each magnon decreasing the magnetization by one unit, the Curie
temperature is obtained as that temperature 7T, at which NS magnons
are thermally generated, i.e. at which M — 0. Once again the density of
states (dos) is helpful to obtain the answer. However, because the dispersion
is now quadratic, we can no longer use the formulas derived for photons
and phonons with linear dispersion. We derive expressions appropriate to
quadratic dispersion as follows: setting e = Ak? (with A = J agS and ag the
lattice parameter), an arbitrary sum takes the form,

Zk: O(AK?) = (%)3 / d3k®(AK?)

1/2
2W3A3/2/d55/<1> V/dsp

Comparison of the last two terms yields p(¢),

ple) = (2m) 243212 (5.31)

See D. C. Mattis, The Theory of Magnetism I, Springer, Berlin, 1981, Chap. 5, or The
Theory of Magnetism Made Simple, World Scientific, forthcoming.
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The 1/2 power is characteristic of quadratic dispersion in 3D. Then,

with €, the energy cut-off at Ak%. If this last is approximated by oo, 8 can
be factored out of the integration to obtain Bloch’s T3/2 law:

M ~ NS[1— (T/T.)*?], (5.33)

upon making use of the definition of T, as the point at which spontaneous
LRO disappears.

Although it proves useful at low temperatures, Bloch’s law fails at
temperatures comparable to T, owing to several sources of error:

e a finite cutoff €, cannot be approximated by oo near T; (5.33) is therefore
a lower bound to M as given by the “Debye integral” in (5.32).

e the dispersion is not well approximated by k? at large k, and finally,

e the existence of non-negligible magnon-magnon interactions.

The last are particularly significant in low dimensions, where they cause
multi-magnon bound states (and other complexes) to be created at low
energies. These are capable of destroying the long-range order at all finite
temperature, effectively eliminating the Curie transition by pushing it down
to T, = 0. But in d > 3 dimensions the bound states — if any — exist only
at finite energy and their low-T" contributions are exponentially small. Also,
according to calculations by F. J. Dyson, the correction to the magneti-
zation in 3D due to such magnon-magnon scattering is only O(T/T.)* <
O(T/T.)%/?, i.e. insignificant at low T < T,.

Problem 5.4. Generalizing Egs. (5.32) and (5.33), find k7, and the cor-
rect form of M(T/T.) in 3D, 4D,..., dD,..., as a function of JS, for
S=1/21,...,00.

Problem 5.5. In the antiferromagnet, two interpenetrating sublattices
have oppositely oriented magnetizations. The effect of a magnon is to
decrease magnetization in each sublattice by one unit of angular momen-
tum. Given that the dispersion for “antiferromagnons” is (k) = JSaglk|,
i.e. linear, derive the law for the low-temperature sublattice order parameter
o (Note: o = 1 if the sublattices are perfectly ordered and o = 0 at the Néel
point Ty ).
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5.8. Conserved Bosons and the Ideal Bose Gas

Atoms having even numbers of electrons and nucleons qualify as “conserved”
bosons, although the formation of diatomic or multi-atomic molecules
(bound states) inordinately complicates matters, as they must be consid-
ered separate species from the point of view of the statistical theory. With
its closed shells and weak van der Waals’ attraction, and its light mass,
helium (*He) is incapable of forming diatomic molecules and comes closest
to the ideal. We’ll consider the properties of a perfect gas of bosons first
and derive the theory of the so-called ideal bose gas condensation, a strange
phenomenon that occurs only in the absence of two-body forces.

In later sections we examine the effects of dimensionality and of one-
and two-body forces, and then touch upon the theories of liquid, superfluid,
helium. Here we shall assume a 3D volume V' containing /N non-interacting
bosons. Fixing the number of particles at N in the volume V requires (as
it did in Eq. (4.13)) the introduction of a chemical potential p(7') into the
individual energies. We add and subtract u/N into the Hamiltonian:

h2k?
H = Z <— - u) cfep + ulN . (5.34)

With (k) = h?k?/2M, the constraint takes the following form:
N = Z eﬁ(a(k = V/ dep(e ) T (5.35a)

p(e) being given in (5.31) as the dispersion is quadratic, with A = h*/2M.
This yields pu(N/V,T). [Exercise for the reader: verify that Eq. (5.35a) is
equivalent to 0F/0u = 0.] The requirement that ny = (exp B(e(k) — pu) —
1)~! > 0 for all k including k — 0 obliges i to be negative. As T is decreased,
i, the solution to (5.35a), approaches the axis and effectively vanishes at a
temperature T, as seen in the figure on p. 101.

Let us reéxamine this equation carefully. Above T, it reads:

1

_ —3173/2 < 12
N = V(2rh) 3 M3 2472 /0 dee!l? 55—

(5.35b)

But at T, precisely, where y — 0, the integral simplifies:

N = V(2rh) 3 M* 2 4nv/2(KT,.)* 21, (5.35¢)
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According to Eq. (5.24), I/, = I'(3/2)¢(3/2), with T'(3/2) = /7/2 and
¢(3/2) = 2.612.... Then, N/V = 2.612(MKT./(27h?))*/2. Defining 3 =
V/N as the volume per particle (the “specific volume”) we solve for kT, as
a function of r:

h2

Below T, we consider the occupation of momentum k = 0 explicitly:
1
fig = (exp B0 —p) — 1) = —kT/pu + 5 +OW/kT) + -+ (5.37)

If 41 is not strictly zero but is O(1/L?) this occupation number can become
macroscopic, O(L?). That feature is the essence of Bose-Einstein condensa-
tion. What about the occupancy of the next lowest levels in the hierarchy,
say at £, = (2m)2h%/2M L?, in this temperature range? First, note 1 > |/,
hence p drops out and

fp = (expBler —p)—1)"! ~ kT/El-i-%—l-O(El/ij)-i-' o LA(--2) (5.38)

As this is only O(L?)n; is submacroscopic in 3D, hence of no consequence in
the thermodynamic limit. (Of course, this argument requires reéxamination
in 2D and even more so in 1D!)

Adding the occupation of the discrete level at k = 0 to that of the remain-
ing levels (still expressed as an integral,) we now find for the conservation
law in the low-temperature range T' < T¢:

o 1
N =ng + V(27rh)—3M3/24m/§/ dee'/? ———

0 e’e — 1
= fig + V (2rh) 3 M3 24nV2(KT)32 1, 19

= iig + N(T/T.)>/? (5.35d)

upon using (5.35c) explicitly to eliminate the constants and other
parameters.

As it was for the magnetization, the result is again a T%/2 law for the
order parameter o = fg/N:

o=[1—(T/T.)%?. (5.39)
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detail

Fig. 5.2. Schematic plot of p versus T near T..

In 3D, at T, the chemical potential vanishes: ;1 — 0. However, V-1 # 0, as indicated
in the detail.

Above T, we simplify (5.35b) by using (5.35¢) to eliminate parameters,
obtaining the following implicit equation for p(T):

o0 1
/0 dazml/QW = (T./T)**1, )5 . (5.40)
The bose fluid and the ideal ferromagnet, two physically distinct systems,
satisfy similar sets of equations: Egs. (5.35)-(5.39) versus Egs. (5.32)-
(5.33). The existence of such a correspondence had been previously noted in
connnection with the lattice gas. £(T") given in (5.40), plotted in Fig. 5.3 for
T > T,, complements Fig. 5.2. Next, consider d¢/dT near T..

Differentiation of both sides of Eq. (5.40) w.r. to § at T¢. yields 97'/0¢]|.x
finite quantity on the right and a divergent integral on the left. Consequently
0T /9|, = oo (this can be barely discerned in the figure.) We thus establish
Ou/0T|. = 0. Because = 0 for 0 < T < T, we now know that both yu and
Ou/OT are continuous across the phase transition. Is then this phase transi-
tion second-order? Before deciding one must examine this rather paradoxical
fluid in greater detail. As the first and crucial step let us next examine the
internal energy in the fluid, E(T).

5.9. Nature of “Ideal” Bose-Einstein Condensation

The internal energy of the ideal bose gas is given by distinct expres-
sions below and above T, although in principle, it is always just E(T) =

JOr rather, for the more convenient quantity £ = exp(—u/kT) < 1, a.k.a. “fugacity”.
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Fig. 5.3. (T/T.) versus & = exp —u/kT for T > T..

Numerical solution of Eq. (5.40) in the temperature interval T, to 27.

st(k)wlg(k)_l, with e(k) = h*k?/2M and € = 1 for T < T,. Above Ty,
&(T) is given by the solution of Eq. (5.40) as illustrated in the above figure.

Below T, we can use Eq. (5.35¢) to eliminate various constants and to
show that F o« NN, i.e. that it is properly extensive. After some straightfor-
ward algebra one obtains expressions involving gamma and zeta functions
at low temperatures:

_ 3/2L(5/2)C(5/2)
B(T) = NKT(T/T) porsea oy for T<T. (5.41a)
and above T, involving &(T") as well:
Jo© dt t32 e
_ 3/2 §(T)et—1
B(T) = NKT(T/T.)** = GG T T (5.41b)

At low temperature C, o< T%2. At high temperature C,(T) — 3/2Nk, the
Dulong-Petit limit for this model.X Because Op/0T and 9¢/OT vanish at
T., C, is continuous through the phase transition. It does however peak at

XNote: This is half the high-T" limiting value for a solid of N atoms, a reasonable enough
result given the absence of potential energy in the ideal gas. However, T3/? is not a good
fit to the low-temperature heat capacity of liquid Helium.
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a cusp. Differentiating (5.41a) we obtain the value at the apex at T:

Cy(Ty) = (g) (g) %N}f = (%) (%) Nk =1.925Nk. (5.42)

Although a cusp in the heat capacity seemingly indicates a third-order
discontinuity in F', in this instance it does not unambiguously determine the
nature of the phase transition. Let us examine the equation of state. The
pressure is obtained, much as it was for the photon gas in Eq. (5.23), by the
use of Eq. (3.10):

2
9 2wy /m2 +m?2 +m?2
p=—3" ( Y R2J2M | (ni)7a

3L20L L

2E
== 5.43
Ve (5.43)

Then,

i ['(5/2)¢(5/2)
- ﬁkT(T/TC)?’ﬂW

below T..
Elimination of T, with the aid of (5.36) simultaneously eliminates r from
the formula and produces a most unusual low-temperature equation of state:

p=~T""? for T <T,, (5.44)

in which ~ is a lumped constant independent of N,V or T'. Because dp/0V =
0, the isothermal compressibility, Eq. (3.14a), diverges everywhere along the
coéxistence curve for T' < T,:

KT:_%%_‘;T_)OO (5.45)
as might be expected in a regime where there are two phases (the condensed
portion at k = 0 being the “superfluid” phase, and the rest the “normal”
phase) in thermodynamic equilibrium. Such a two-phase regime argues for a
first-order phase transition similar to the liquid-vapor transition treated in
an earlier chapter, and identifies T, with the critical point.

When (5.45) is inserted into Eq. (3.13) we find C, — oo in the entire
temperature range T < T.. This is an absurdity that counts as one of the
many paradoxes of the “ideal” bose gas phenomenon. Such inconsistencies
can only be cured by introducing interactions — however weak they might
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be — among the constituent particles. But before doing so, we investigate
the effects of dimensionality.

5.10. Ideal Bose-Einstein Condensation in Low Dimensions

It is generally (but, as we shall see, erroneously) believed that Bose-Einstein
condensation occurs only in dimensions d > 3. The argument, detailed in the
following paragraph, is based on number conservation and on the peculiari-
ties of the dos p(e) at the band edge (¢ — 0).

Problem 5.6. Show that for free particles in d dimensions, with €
k2, ple) = Age 1142 for ¢ > 0 and is = 0 for ¢ < 0. Determine Ay for
d=1,2,3.

Insert p(e¢) = M/2rh? = constant (for € > 0) in 2D and p(e) =
\/ (M /27212) x e=Y/2 in 1D (for € > 0) (cf. Problem 5.6) into Eqs. (5.35).
The important feature to notice is that in d > 2 dimensions p(¢) vanishes at
the band edge, € — 0, whereas for d < 2 it does not.

Next define the interparticle separation parameter r in terms of particle
density: in 2D, N/L? = 1/r? while in 1D, N/L = 1/r. To obtain the critical
temperature, set = 0 and modify Eq. (5.35c) for the lower dimensions by
using the appropriate dos. It yields:

M 2mh?
_ 72 i = i
N=1L W“CTC)IO’ 1.e. ]CTC = m m 2D7
and similarly, (5.46)
M 212h?
N=1L kT2, kT,= ———— in1D.
2712712( 2 O Mr_y "

The relevant integrals, Iy in 2D and I_;/, in 1D, special cases of the
integral defined in Eq. (5.24), are both manifestly divergent. Hence T, = 0 in
both instances. This might seem to ensure that at finite 7" in low dimensions
the fluid is always in its high-temperature, normal, phase. However, the very
same feature that causes I, to diverge for n < 0 also renders the system
unstable against arbitrarily weak random perturbations and promotes the
appearance of bound states at energies € < 0 in d < 3 dimensions. Whether
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these bound states are isolated or form an “impurity band”, their presence
completely alters the situation.

This feature can be demonstrated just by introducing a single weak, short-
ranged, potential well at some fixed, random, position in 2D. If sufficiently
short-ranged it will sustain only a single bound state with finite binding
energy. The modified dos is

p(e) = (1/L*)8(e + A) + M/27h%0(¢) (5.47)

where A is the binding energy and 6(x) is the unit step ((x) =1 for x > 0
and 0 for z < 0.) Now u can never exceed —A, and if there is a nonvanishing
T., this will have to be determined using Eq. (5.35) after setting u = —A:

o 1
R 2\—1
N = L2(2nh?) M/O de—oray 1
1

o
12 2\—1

(5.48a)
This integral can be evaluated in closed form. The result is an implicit equa-
tion for T,

2mh? 1

For A > 0 this equation always has a solution. The rhs increases monotoni-
cally with T, from 0 to oo, allowing for a unique solution 7,(r) at any given
value of r.

Below T, the number of particles Na condensed into the eigenstate at
e = —A is found by straightforward application of Eq. (5.35d) to the present
example. It is,

(5.49)

Tlog(1 — e~ 2/kT)
Na=N|{1-
. ( To(r)log(1 — e~/kT)

At sufficiently low temperature all particles are accommodated in the
bound state at —A, giving rise to a second paradox of ideal Bose-Einstein
condensation: suppose the bound state wavefunction to be, qualitatively,
U(r) = Cexp —|r|/€, taking the position of the impurity to be the origin.
C = (2/m)Y/2 /¢ is the constant of normalization and ¢ the effective radius
of the bound state. The single-particle density in this bound state is U?(r);
if Na particles are bound, the particle density jumps to NaW?(r).
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We now estimate the actual particle density, n(r). For T' < T, n(r) =
(1= Na/N)N/I? + (Na/N)(@N/m)e > exp —2Ir/€, ic.

o _ e—A/KT
n(r):<Tlg(1 ))N

T.log(1 — e~ A/KTe) | 12
Tlog(l — e 2/kT) \ 2N

(1o Llos(l=ze ) ) 2N aiele (5.50)
T.log(1 — e=A/KTe) | 7&2

In any regular homogeneous system, the particle density has to be inten-
sive, i.e. independent of size in the thermodynamic limit. The first contribu-
tion to n(r) in (5.50) is quite properly O(N/L?) but the term on the next
line is quite different, as it is explicitly extensive over a finite-sized region
of extent O(£2). And as such, it dominates the rhs of this equation at all
temperatures T' < T.. This unphysical result comes about because an infinite
number of particles, Nao = O(NV), are “sucked into” a finite-sized region.

In essence the impurity potential has localized the Bose—Einstein conden-
sation and caused it to occur in coérdinate space! This phenomenon is not
just restricted to low dimensionalities but can occur in 3D, whenever the
particles are subject to attractive potential wells sufficiently deep or wide to
have stable bound states.

None of this could happen if we included a hard core potential ab initio,
one that allows only a finite number of particles to fit into a finite space. We
next examine such the hard core repulsion in 1D, where the model can be
solved in closed form.

5.11. Consequences of a Hard Core Repulsion in 1D

We generalize the discussion of Tonks’ gas in Sec. 4.9 and solve the quantum
problem in closed form.

Start with a many-body wavefunction ®(x1,x9,x3,...,2y), all z in the
range 0 < x < L, subject to boundary conditions ® = 0 for any |z, —xz,,| < b,
to reflect the presence of a hard core potential of diameter b. We assume a
“natural” ordering, x,, < x,+1. Although the initial ordering cannot change
dynamically! we may construct different particle orderings by applying a
particle permutation operator:

/ / / / . / / / /
PO(xy,20,23,...,xN5) = (2], x5, 25, ..., 27), with 7,25, z5,..., 2y

"There can be no “tunneling” through a finite region of infinite, repulsive, potential.
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a permutation of the coordinates x1,xs2,x3,...,xy. For bosons, symme-
try dictates that P®(x1,x9,z3,...,2n) = +®(21,22,23,...,2n). Next, we
solve the model by obtaining all the eigenstates, using the natural order-
ing x, < x,y1. Once this is achieved the preceding rules (symmetry under
permutations of the particles) yield the states for arbitrary orderings of the
particles.

First, change variables to y, = x, — (n — 1)b. Now ®(y1,¥y2,¥3,---,YN)
satisfies a Schrodinger equation for free particles subject to the set of bound-
ary conditions: ® = 0 if y; = 0, any y, = Yn41 or yy = L — (N — 1)b. When
no two y’s are equal, the problem is just that of N free particles between 2
walls (one at 0 and the other at L* = L — (N — 1)b.) The eigenfunctions are:
W(k1, k2, knsy, v, yn) = 1, Pr(n)(¥n) and constructed out of the

normalized factors
2
Pr(y) =/ 77 sinky, (5.51)

subject to kL* = mm, with m = 1,2,3,... (This condition “quantizes”
the k’s in the product function.) There are N! different WU’s constructed by
assigning the ks to the y,,s. There exists just one linear combination of
U’s that satisfies the given boundary conditions. It is:

(y1,...,yn) = \/—Z DFPU (ki k.o kNG Y1, - YN -

Here the permutations P are not of the codrdinates (denoted y;) but of the
set of k’s; clearly this ® is the determinantal function,

By, yv) = \%N_!detmm(yn)] , (5.52)

by the very definition of a determinant. From this it follows that unless the
k’s are all distinct, two or more rows in the determinant are equal causing
the determinant to vanish identically. According to the rules of quantum
mechanics, a function that vanishes everywhere cannot be normalized and
may not be used as an eigenfunction.

All the permutations of the k’s have the same total energy, £ = 3 h2 J\]f; ng.
Because any given k is present at most once in a given determinant, the
occupation-number operators nj for each are restricted to the two eigenval-
ues, 0 and 1, just as for fermions. The ground state wave function, ®, is

positive everywhere.
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We can express the energy of an arbitrary state by reference to the ground
state energy Fy,

N 2 2 2
h?(7m)? (hm)® (N 3 1
Ey = =N — 14+ —
0 mz::l oM L*2 6M (L) [ ton Tane
The highest occupied energy level (“Fermi level”) is at ep = 522]5/7[%\/*)22‘

We best express these results by defining 1/r = N/L and 1/r* = N/L* =
2

1/(r —b), ie ep = 27}\/[ Jin’and Ey = (N/3)er. The following is, effectively,

the Hamiltonian:

nA(k* —kg)
H=FEy—+ Z Wi ak o + Z
k>kp 0<k<kp

2
uat kF RE = F) gra (5.53)

where a and (3 operate on states above and below the Fermi level, respec-
tively. The eigenvalues of each occupation-number operator a™a and 573 is
restricted to 0 and 1. At low temperatures all are 0 except for those within
a range ~ £4k7T from the Fermi level. For states within the narrow confines
of this band of energy we can approximate the energy by 2 tangent curves
at +kp setting W ~ h|vrl|lq|. Here vp = ha/Mr* is the speed of
particles at the Fermi level and ¢ = w|m — N|/L* measures the “distance”
from this reference level. For each of +kp the partition function of the a’s
(the levels above ep) is identical to that of the 3’s (those below ) and
therefore we need the 4th power of the one:

4
Z = e PFo <H[1 + exp —ﬂhqu]> .

q

The free energy is then
F=FE,— 4I<:T210g[1 + exp —fhvrpq|,
q

ie.:
F = Ey — AL(kT)? i dy log(1+¢€7Y)
TUE Jo
* 2
— By AL 54
0 (kT) hmvp 12 (5.54)

Letting the hard core radius vanish, i.e. taking lim-b — 0, does not
eliminate Ey = Nh2m?/6Mr*?, which decreases only to the finite limiting
value Nh?72/6Mr2. On the other hand, without the hard core the ground
state energy should and must vanish as all particles would be in the lowest
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state.™ But because the hard core affects boundary conditions (® = 0 when
two hard-core bosons collide,) it cannot be “turned off” merely by taking its
radius to zero.

Owing to permutation symmetry, the Fourier transform of the ground
state ®(z1, ..., zy) undoubtedly exhibits an anomalously large £ = 0 compo-
nent — sufficiently for there to be at least a hint of “condensation”. However,
there is not even a hint of a critical T, although this is not unexpected in 1D.
Note: if, instead of hard core bosons, we had considered hard core fermions
in 1D, the free energy would have remained precisely the same as in (5.54)
even though fermions require P®(zy, xa,...,2x5) = (—=1)F®(z1,29,...,2N),
the sign depending on whether the permutation is even or odd. For in 1D a
hard core preserves the particles’ initial ordering, in which case the inherent
“statistics” or permutational symmetry is irrelevant to the free energy.

5.12. Bosons in 3D Subject to Weak Two-Body Forces

The theory outlined below, originally proposed by Bogolubov™ for weakly
interacting bosons in 3D, was later generalized by Lee, Huang and Yang® to
hard spheres at low density. The idea is simple: if bosons can be “kicked”
out of the k = 0 state at finite T' by thermal fluctuations, then so can they
be ejected by the interparticle interactions. The bose condensation is then
“nonideal”, depending as it does on the nature and strength of the two-body
forces. Let us start with the Hamiltonian of the nonideal system, consisting
of kinetic and potential energies:

Zv2+gZZV i — 1) (5.55)

1§

The potential energy has a short-range repulsive part and a longer range
attractive part, and is possibly of the form V(r) = [f2(|r|) — 2f(|r|)], with
g measuring its strength and f(|r|), a monotonic decreasing function of
lr| such as exp —(|r| — 7,)/€ or |r,/r|®, determining its shape. A similar
interaction potential was previously introduced and plotted in Sec. 4.6. When
reéxpressed in second quantization (i.e. using occupation-number operators

N particles would each have the minimum energy, h%n®/2ML?, so Eo < 1/rL — 0.
"N. N. Bogolubov, J. Phys. USSR 11, 23 (1947).
°T. D. Lee, K. Huang and C. N. Yang, Phys. Rev. 106, 1135 (1957).
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attached to states labeled by k) the Hamiltonian becomes:

H =Y e(k)afar+ 575 > > Y vl aiawvar+uN . (5.56)
k kK q

where e(k) = M — u and gv(q) = gv(—q), assumed real, is the Fourier
transform of gV( ). For ultimate simplification we have added and sub-
tracted terms proportional to pu— just as in the grand ensemble. However,
the Hamiltonian explicitly conserves particles in the following sense: if one
starts with a state of N particles, matrix elements of (5.56) can only connect
it to other states that also have precisely N particles. Therefore in solving
for the eigenstates of H one should pick only those states |¥) for which
S ajag|V) = N|¥), so that both H and F are totally independent of .

Note that while number conservation was automatic (if implicit) in the
“first quantized” representation of (5.55), in the modified, second quantized
form of Eq. (5.56), it seems to have become somewhat of a chore! We rectify
this henceforth by enforcing only the following, weaker, condition.

Let p be fixed at a value that makes F stationary, i.e. 0F/du = 0,
with N then allowed to vary about a specified mean value. The solution
to OF/0p = 0 that optimizes F' determines the “best” p. The condition
OF /0 = 0 is functionally equivalent to conserving the number of particles
on average, i.e. to a constraint:

N = Z(azakﬁA. (5.57)
k

We subject F' and the eigenstates of H to this weaker condition only.

We now attempt to construct a complete set of solutions to Schrodinger’s
time- independent eigenvalue equation, H|¥ = E|V), subject to Eq. (5.57).
First we make the following shift, suggested by ideal bose condensation:

ag — ag + +/no and ag — ag + /1o, (5.58)

in which ng is the macroscopic number that are expected to condense in the
k = 0 mode at a given T" and g. Once ng is properly chosen it will allow
(afa) to be small — at most O(1) — for any k. After the shift (5.57)
becomes:

N —no Y {afap) + vnolao + af) - (5.59)
k

The last term, (ag + ag ) = (go), actually vanishes as shown below.
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H now contains several distinct parts. First, extensive constants:

gv(0)
203

Ho= —pno+ L5202 4 uN (5.60a)

Optimizing Hy w.r. to ng yields u = gv(0)ng/L> = gv(0)/r3, where ro =
L/ nl/ % in 3D. This is a fortuitous choice, as it simultaneously serves to cancel
two linear operators,

0
—ulao + ag )v/no + 21;(3)(a0+a3)ng/2:0, from H.

A bilinear contribution in the k = 0 field operators also appears in leading
order in H, Hy = —pag ao+ % (0) [4ad ag+ (a3 + ad?)] = 3gv(0)[(ao +af)? —
1]/r3. To this order the Hamlltoman does not contain operators of the form
(ap — ag ), therefore g3 = (ap + ag)? is a constant of the motion. We set it
equal to zero, as previouly promised, to minimize the energy. But, whatever
its value, H{ is not extensive and thus cannot contribute meaningfully to F.

The next terms are even less relevant to F', %5 ].Eg) [2(ad a0 + ag ad)\/no +
ag?al], being O(1//N) and O(1/N) respectively. Thus the first nontrivial

operator contributions are:

Hy = Z e(k)aj ak
k0

3 Z Yaga_p +a” Tar Y 4 2(v(0) + v(k:))a:ak] . (5.60b)
"0 k0

The Hamiltonian Hs yields the normal modes of the condensed system. It is
easily reduced to quadratureP by combining terms in k and —k and express-
ing it in the form,

=> Iy, (5.61)

k>0

where hj, = mk(aﬁak + afka_k) + yr(aga_g + afkaﬁ) and

m =g ~ it g0 ek) = S e and g = gu(k)/r5

Each k-sector is diagonalized separately. After some calculation (to
follow) one finds hy, — hy = wk(a,jak—i—afka_k)—k’yk, exhibiting a phonon-like

PThis quaint terminology derived from plane geometry means, more or less, “eureka’.
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spectrum at long wavelengths and a “binding energy” ~j:

R2k2 (B2k2 2gu(k)
— 2 2 _ —
wk—\/azk—yk—d 5 <2 + 3 = hks(k),

with (5.62)
gu(k) h2k2rd
k)= 14— d = Wi —
s(k) J M3 < T Diguky ) MG TR
Also,
Tk 1 1
<az_ak>TA = mcoth§ﬂwk - 5 . (563)

Summing up: after diagonalization the quadratic Hamiltonian contains only
constants and number operators,

Hy— > wy (akak—i- )——Zxk (5.64)

k#0 k#£0

while the condition for (average) number conservation at finite 7' and g,
Eqs. (5.57) and (5.59), takes on the appearance:

1
N =ng+ —coth Bw ——. (5.65)

The summand depends on ng. As T is raised (at fixed g,) no decreases
monotonically from its value at T' = 0, ultimately vanishing at the same T,
as in the ideal bose gas, Eq. (5.36). Above T, the quadratic terms o 1/r8
vanish altogether. (In 2D the integral in (5.65) is finite at 7' = 0 but diverges
at any finite T, i.e. T = 0.)

To obtain these results the quadratic Hamiltonian was solved by means
of Bogolubov’s transformation. This conserves momentum but not particle
number. Fortunately — in light of the discussion surrounding Eq. (5.57)ff. —
the lack of number conservation is no longer a concern. The transformation
mixes operators labeled by k with those labeled by —k, as follows:

ap — ag cosh 0y, + afk, sinh 6y,
(5.66)

a_p — a_y cosh 0y + a,j sinh 6y,
The operators a' transform as the Hermitean conjugates of the above,

e.g. a; — a,j cosh 0 + a_j sinh 0, etc. The parameter 6 is a real, sym-
metric, function of k. It is trivial to verify that this transformation
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Interaction strength
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Fig. 5.4. Interaction strength (in units of k7T.) versus ng at T' = 0 in
3D, i.e. Ground State Depletion.

This plot, generated from Eq. (5.65) in lim-7" = 0, shows that the stronger the
interaction the more depleted is the condensed phase.

e preserves Hermitean conjugation and
e preserves the commutation relations among the operators, (requirements
that must be met in any unitary transformation.)

The transformed operators are inserted into the individual Ay and 6} is
chosen to eliminate off-diagonal operators such as aia_j; and its Hermitean
conjugate. This requires

tanh 20, = —yk/xk . (5.67)

After some more elementary algebra, the diagonal operator in Eq. (5.62)
emerges.

The cubic and quartic terms are responsible for the scattering and
breakup (finite lifetime) of the normal modes generated in Hy. Moreover they
dominate the phase transition (the point at which the leading, quadratic,
interactions vanish in proportionality to ng). Prior to the Bogolubov trans-
formation they were, respectively:

g\/n_oz

)(af ag—qaq +a az k) (5.68)

(all subscripts # 0 in the sums) and

H, = 2L3 Z ak,+qak @k (again, all subscripts # 0).  (5.69)
k,k’,q
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Fig. 5.5. Low-T phase diagram for ‘He.

The transformation (5.66) replaces each factor a or a* by the sum of
two operators, hence the summands in both (5.68) and (5.69) acquire 16
terms. At this point the theory loses its charm along with its simplicity,4
although some of its features are in surprising accord with the remarkable
properties of liquid helium. For example, at temperatures T' < T, Eq. (5.62)
yields a smooth spectrum w(k) which is, at first, linear in k, rising smoothly
to h2k%/2M + const. The speed of sound s(0) at small k can be fitted to
experiment, as can “second sound”, the entropy-temperature waves.

Still, Eq. (5.62) fails to yield the roton spectrum and the signature
temperature-dependence of the roton gap, hallmarks of the neal superfluid
4He to which we turn our attention next.

5.13. Superfluid Helium (He IT)

In the famous phase diagram of *He exhibited above, A indicates the line of
phase transitions separating normal He I from the superfluid He II. This
last is one of the most interesting substances known. First liquefied by
Kamerlingh Onnes in 1908, it is the founding member of the exclusive club
of boson superfluids.

As the A line is crossed, furious boiling ceases — as though the thermal
conductivity or perhaps c,, had suddenly diverged. The nature of the lambda

9However, the version of this theory adapted for fermions parallels the BCS theory which
spectacularly explains and predicts thermodynamic properties of superconductors.
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transition was subsequently discovered to be second-order and is associated
with with a logarithmically infinite heat capacity C o< log 1/|1—T/Ty|. (The
shape of this curve, similar to the Greek letter, is what gives the transition
its name.)

Some aspects of the ideal bose gas and of its extension to the quadratic
Bogolubov theory are borne out in the superfluid phase. For example, the
condensed fraction n, is not 1 at T' = 0, but is reduced to 13.9 & 2.3% by
the interactions. According to Fig. 5.4 this reduction requires an interaction
strength which, while quite weak, is approximately one order of magnitude
greater than k7). This estimate is not too far from the mark. Given the light
mass of the He atoms the attractive portion of the van der Waals potential
is too shallow and short-ranged to allow a solid phase to be stable at T'=0
and atmospheric pressure. The lack of a solid phase at low p and T is borne
out in the phase diagram above.

The “T3/2” law for the temperature-dependence of the decrease in n,
derived in Eq. (5.39), should be replaced by a T3 law when the dispersion
is linear, as in the Bogoliubov theory (rather than quadratic as in the ideal
bose gas.) This point is investigated in the following problem.

Problem 5.7. Using Egs. (5.61)(5.65), calculate and plot 1—ng(T)/no(0)
for several values of g in the Bogolubov theory, assuming in (5.62) v(k) =~
v(0), a constant. Derive the T2 law analytically.

Experimentally” ng does follow a T'* law, with oo = 3.6+1.4, in qualitative
agreement with the Bogolubov theory. The low temperature heat capacity
also vanishes approximately as T° (again as expected for bosons with a linear
dispersion law, by analogy with the exact results for photons and phonons
derived earlier).

The dramatic decrease of viscosity in phase II, the decrease in inertia
of the superfluid, the quantization of circulation (rotational motion) and
the existence of novel branches of sound, including propagating waves of
oscillations in ng and T (“second sound”), all point to a rich spectrum of
elementary excitations. Explanations proposed by Landau and by Tisza in-
volve 2 coéxisting fluids: one a normal liquid and the other a “condensed”
superfluid of ng particles devoid of viscosity, similar to what we had found
in the £ = 0 state in the ideal bose gas.

"E. C. Svensson, Proc. of Los Alamos Workshop LA-10227-C, Vol. 2, 1984, p. 456.
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Fig. 5.6. Speed of second sound c;.
Theory predicts cs — s(0)/v/3 (5(0) = ordinary speed of sound) at T' = 0.
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Fig. 5.7. Experimental and theoretical spectrum of phonons and rotons.

Energy of elementary excitations w(k) (in degrees K) versus wavenumber k (in A1)
Magnitude of the roton “gap” D = wpy, near k = 2 A-1 is a function of T.

Feynman was able to deduce the spectrum in Fig. 5.7 out of a “varia-
tional” reconstruction of the elementary excitations.®

Let us suppose we knew the exact ground state ®y and its energy
Ey and use it to construct an operator Q(k|ri,p1;...;rn,pn) that carries
momentum k implicitly or explicitly. The variational excitation spectrum
is w(k) = E(k) — Ey, where E(k) is the energy of the variational state

°In the variational method, an approximate solution is constructed and yields an upper
bound to the energy of the exact, but unknown state.
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Q(k|---)®g. Then,

(BolQ"HQ — Q QH|Bg)  (B|Q [H, Q]| o)

CB) = GGy (@l 2ld)

(5.70)

The choice of € is crucial. Iff it is an exact raising operator of H the operator
relation [H, Q] = w'Q holds and (5.70) yield w(k) = w'.

The approximate raising operator introduced by Feynman in 1953 was
simply Q = Z;-V:l e’ With it, the numerator is,

h? —ik- 2 _iker;
—Nm(@o\e g lej:[vj,ez "i]|®g)

h2 —ik-r ik-r,; .
= =N (®ole 12];6 i{2ik - V; — k*}|®0)

= NK2k?/2M . (5.71)

in which by permutation symmetry, one of the N identical particles is singled
out, labeled “1” and its contribution multiplied by N.

Derivation: We have used the fact that 2 commutes with V' which then
drops out of the expession. Because ® is real, ®oV®q = 1/2V(®()? appears
in the integrand. A partial integration yields k2, canceling —k? in the curly
bracket precisely if j # 1. If j = 1 the partial integration yields 0. The final
result is given in the last line.

The denominator in (5.70) is the ground state (or 7' = 0) value of I(k) =
NS(k) (cf. Eq. (4.26);) a plot of the experimental S(k) at 7' = 2 K is shown
in Fig. 4.4; it extrapolates to S(k) o k at T'= 0. Combining numerator and
denominator one obtains,

w(k) = B2k%/(2MS(k)), (5.72)

an expression from theory that combines two independent measurements.
The dashed curve in Fig. 5.7 reflects the accuracy of this formula. As sub-
sequently refined by Feynman with the aid of his student M. Cohen, the
variational fit to experiment has become even closer.

‘R. P. Feynman, Phys. Rev. 91, 1291 and 1301 (1953), 94, 262 (1954) and R. P. Feynman
and M. Cohen, Phys. Ev. 102, 1189 (1956).
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The roton gap and minimum are revealed in the figure. The energy of an
elementary excitation near the minimum is

~ (‘p| - pmin)2
e(p) ~ A+ o (5.73)

a function of |p| that is independent of angles. This form of dispersion allows
the construction of stationary wavepackets of elementary excitations similar
to smoke rings. Note that the velocity vanishes, V,e(p) = 0, at the roton
minimum.

A detailed discussion of the resulting vortex dynamics and of Feynman’s
speculations concerning the specific heat anomaly at the lambda point are
to be found in the last chapter of his 1961 lectures on statistical mechanics."

“R. P. Feynman, Statistical Mechanics, Addison-Wesley, Reading, 1998, p. 312.



Chapter 6

All About Fermions: Theories of Metals,
Superconductors, Semiconductors

6.1. Fermi-Dirac Particles

Electrons, protons, neutrons, and a number of other distinct particles and
“quasiparticles” have been found to satisfy the Pauli principle, which states
that the wavefunctions ®(1,2,...,N) of identical particles are totally anti-
symmetric under any odd permutations, such as the simple interchange of
any pair (i,7), and symmetric under any even permutation of the identical
particles. The probability density |®(1,2,..., N)|? thus remains symmetric
under all permutations of the identical particles, as physically required. In-
sofar as we are primarily concerned with the statistical mechanics of a large
number of particles, N will generally stand for a macroscopic, extensive
quantity.

According to Dirac’s relativistic quantum mechanics, not only does spin
accompany Fermi—Dirac statistics but — with some exceptions — so does
charge. The latter labels a “particle” or “antiparticle”, i.e. the electron or
the positron, two sides of the same coin. Because antiparticles play little if
any role in statistical mechanics on earth,* wherever possible we shall avoid
these issues in the present text. We saw in Sec. 5.11 that in 1D a hard-core
interaction enforces a non-statistical “exclusion principle” on bosons, turning
them into what are, effectively, spinless fermions. A similar transformation
informs the spin operators of the Ising model in 2D. Therefore we shall
consider fermions with, and without, a spin degree of freedom, treating spin,
whenever it is relevant, as a label not much different from the band index
attached to electron states in solids.

#Leaving statistical space physics including primordial matter, neutron stars, black holes,
intergalactic dust, ..., to specialized treatises.

119
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Just as there were 2 kinds of bosons, some fermions are conserved
and others nonconserved. The former can be studied either with ordinary
quantum mechanics or with the aid of field theory (second quantization),
whereas the latter (often called “quasiparticles”) yield only to second-
quantization. We encounter quasiparticles in connection with the Ising
model, and also in metal physics and in superconductivity.

6.2. Slater Determinant: The Ground State

Because of the Pauli principle the eigenstates of noninteracting fermions
bound to a common potential well cannot, despite the lack of correlations, be
simple product states. However a linear combination of product states always
“works”. Let us show this for spinless fermions. Suppose the normalized
one-particle eigenstates of the jth fermion of in this potential well to be
¢k (r;). The product state is ®(ry,...,rj,...) = Iyg(r;). Let P be any of
the N! permutation operators on the set of k’s in this product. Construct
the sum, ¥(ry,...,r;,...) = C Y p(=1)PP®(ry,...,7;,...). Each of the N!
product states in this sum is orthogonal to the others and each is normalized;
therefore the over-all normalization factor is C' = 1/4/N! Slater recognized
that this totally antisymmetric function concides with his eponymous N x N
determinant:

V(.. v ) = \/% detfgn, (r;)] (6.1)

in which m labels the columns and j the rows, or vice versa. Clearly all the
quantum labels k,, have to be distinct, as a secondary consequence of the
Pauli principle (which originally only required that ¥ be antisymmetric in
the r’s). The implications are deep, as they ultimately allow the quantum
numbers themselves to serve as identifiers of the indistinguishable fermions
instead of the spatial coordinates.

The kinetic energy is the sum of the individual kinetic energies. Because
the masses M of the indistinguishable particles are identical (isotopes are
not indistinguishable!) the kinetic energy is symmetric (i.e. invariant) under
permutations. Thus, each one of the N! permutations in ¥ has an identical
energy,

h?k2,
oM

(6.2)

Bk, ) =3 3%

Mg My Mz

with each ky, = (Kkzm,Kkym,kzm) a vector. The precise values of the k’s
depend on the boundary conditions. In Sec. 5.11 we used hard-wall boundary
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conditions in 1D but in 3D it proves more convenient to adopt periodic
boundary conditions: ¢(x+ Ly) = ¢(z), and similarly for y and z. Assuming
isotropy and L, = L, = L, = L, this produces ¢;(r) = L3 expik - r
provided k is of the form k; ,, = 27m, 1, etc., i.e.

km = 27(mg, my,m;)/L, where m,, m, and m, are integers.  (6.3)

The points m,, m, and m_ form a cubic grid of unit lattice parameter.

The ground state of N particles is special. Let us analyze it first. The oc-
cupied states have k within a “Fermi sphere” containing precisely N points.
The radius kg of this sphere is defined by,

3 ™
N:ZZZ1;»(2LT)3%1§}. (6.4)

My My Mz

kp is intensive. To add (or subtract) a single particle it is necessary to find an
unoccupied (or occupied) state close to the surface of this sphere, i.e. with
energy close to h2k%/2M . This further identifies the chemical potential,
w=h%k%/2M.

At finite temperature it is reasonable to expect that states within kT
above the surface of the Fermi sphere will become partly occupied while
those within kT below the Fermi surface will become partly depleted. For
more precise information let us perform the statistical mechanics of the ideal
Fermi—Dirac gas next.

6.3. Ideal Fermi-Dirac Gas

The partition function Zy is obtained by allowing each and every k a single
choice: occupied (with an appropriate Boltzmann factor), or unoccupied. The
counting is subject only to an over-all, global, requirement that the occupied
states always add up to IV precisely. Using a method introduced in Chapter 1
we write:

_ i iNo —i0_—e(k)/ET
In = ]{dee 1;[(1 +e Y ), (6.5)

with e(k) = h?k?/2M. After exponentiating the product the integral is eva-
luated using steepest descents. As before,

2 ; —i0 —e(k)/kT _
5 {z@N—I—Zk:log(l—l—e e Y =0 (6.6)



122 6. All About Fermions

identifies the stationary point. It is recognized to be on the imaginary axis:
i = —Bu(B), with 3 = (KT)~'. Then, (6.6) yields:

N = Z +1_Zf (6.7)

with f(g) the Fermi function sketched in the following figure.
To within some negligible corrections, the free energy F' = —kT log Zy

is proportional to the logarithm of the maximum value of the integrand as
determined in Eq. (6.6), i.e.

F=—kTlogZy = uN — kT Y log(1 + e~ EW=m/kT) (6.8)
k

The functional derivative —kT§/delog F' helps to obtain the same Fermi
function f(e) of Fig. 6.1 by a more direct method. First, let us vary just
one of the eigenvalues, £(k), e(k) — (k) + de. Then, H — H + dec} cg. By
Eq. (4.4) the derivative of F w.r. to d¢ is (¢ cx)ra = f(e(k)), QED.

The energy E' is the sum of the individual energies. The thermodynamic
definition E = 0(8F) /0 shows it to be so.

0
E=- 5 BuN — Zlog (14 e PE®=m) 1 =" c(k) f (k). (6.9)
k
In arriving at the above result one makes use of Eq. (6.7) to cancel out two
contributions proportional to du/08. Equation (6.9) confirms f(e) as the
average occupancy of a state of given energy €. Although it is definitely not

f(e)

A

Fig. 6.1. Fermi function versus energy at T =0 and T > 0.

o is the chemical potential at T = 0. u(7") deviates from po somewhat; see text
for details.
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a probability the “distribution function” f(e) is often mistaken for one, in
that it is positive, ranges from 1 to 0, and that we average quantities over it.

Note that f = 1/2 at € = u precisely, at all T'. Thus the locus of f =1/2
determines the Fermi surface (spherical in our simple isotropic example).
The volume of the Fermi sphere at T" = 0 has to allow for N occupied one-
particle states. This requirement uniquely determines the 7' = 0 value of the
chemical potential .

The entropy is found most easily through . = (E — F')/T, using the
two equations above. Next we examine the effects of introducing an extra
quantum number such as the spin.

6.4. Ideal Fermi-Dirac Gas with Spin

Under the ideal-gas assumption of no inter-particle interactions, Fermi—Dirac
particles of spin “up” are statistically independent of those with spin “down”,
hence their partition functions factor. Assuming once again a total of N
particles, Zy = Zy1Zn |, with Ny + N| = N. In the absence of an external
magnetic field, yy = 1| = p. Also, the spin polarization M, = 1/2(Ny — N)),
a quantity proportional to the total spin, vanishes.

Thus, Zy = (ZN/Q)Q, Fn = 2Fy/9, EN = 2B/, etc. But what is the
energetic cost of establishing and maintaining a nonvanishing M,?

F(N,M;) = Fy + F| = (pp Nt + p N} )

— kT Z[log(l + e—(a(k)—m)/kT) + log(1 + e—(a(k)—ul)/kT)] ]
k
(6.10)

When expanded about M, = 0, to leading order in M, this is expected
to take the form F(M.) = F(0) + M2/2xo with F(0) = 2Fy/, and xo an
extensive material property, the paramagnetic “spin susceptibility” of the
Fermi-Dirac gas. It is both interesting and important to extract yg from
(6.10), for in the presence of an external magnetic field B (expressed in
some appropriate units), F' = F(M,) — BM,. When this F' is minimized
w.r. to M,(OF/OM, = 0) it yields the usual low-field relation, M, = xoB.
The sums in (6.10) as well as those in the preceding Eqgs. (6.7) ff., appear
rather formidable even in the limit where they become integrals. Certainly
the various quantities depend on dimensionality, as the density of states (dos)
varies with dimensionality. Fortunately there exists a method for calculating
Fermi integrals efficiently and accurately, in arbitrary dimensions, provided
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only that p and p| do not differ much from each other and from p and that
| M| is small (i.e. < N) and that kT < p.

6.5. Fermi Integrals

Here we deal with the purely mathematical task of evaluating Fermi integrals
of the type:

1) = [ degle)f(c). (6.11)

with g(g) containing the dos and arbitrary other functions of €.

Because the effects of finite 7" and B, the shifts in u, etc. are all restricted
to the vicinity of the T'= 0 Fermi surface (“FS”), it is important to choose
variables that reflect this. Write f(e) = 0(n—¢) + 6 f, with 6 the usual step
function,” p the temperature-dependent w(T), and 0f expressed as follows
in terms of a new dimensionless independent variable, t = (¢ — p)/kT"

t
of(t) = sen(t) , odd in ¢ and discontinuous at F'S. (6.12)
eltl +1

Most functions g(e) that we shall encounter are smooth and featureless
on a scale of kT, allowing for a Taylor series expansion,

2 92
9(e) = g(p +tkT) = g(n) + 1t ]{;—!Taga(;) - t(k;) 8896(25)

e=p
=g(p) +tT(t, 1) . (6.13)

Inserting the above into the integral one obtains a power series whose sole
nonzero coefficients are odd derivatives of g (written as, dg/de = g(), etc.)
evaluated at the F'S:

(T, p) =10, p)

o
+2KT D (KT)* ¢ (20 + 2)(1 — 27 Bn ) gBntl )l (6.14)
n=0 E=
Admittedly only an asymptotic expansion (due to neglect of terms

O(exp —u/kT)), this expansion converges rapidly to the exact results at

P0(x) = 1 for > 0 and 0 otherwise.



6.6. Thermodynamic Functions of an Ideal Metal 125

low temperatures, kT < u. The derivation follows:

(T, p) = /0“ deg(e) +kT{/+ZTdt|t|F(t’u)} .

—u eltl +1

The error in extending the lower limit to —oo is just O(exp —u/kT). (In
typical metals the magnitude of u/kT easily exceeds 40 at room tempera-
ture,® hence the estimated error is in the tenth decimal place!) In applications
for which g(e) is a function only of ¢ and does not depend separately and
explicitly on u,

a o (RT)*r d?Hlg(p) (4o opyy 1

This last integral is evaluated in terms of the gamma and zeta functions:

Io° dtztz—:l = (1 —2'7*)I'(2)¢(2), so it only remains to set z = 2n + 2 to

obtain the expansion in (6.14). To O(KT/u)®, this expansion is explicitly:
d
I = 1000 + (KT (e%/6) 22
d’g(p)
dp?

with the first few terms sufficing for most practical purposes.

+ (kT)* (771 /360) e (6.15)

Problem 6.1. Prove Eq. (6.12) and Eq. (6.13).

6.6. Thermodynamic Functions of an Ideal Metal

Let us use this formula to evaluate the leading terms in the low temperature
energy, heat capacity, entropy, paramagnetic spin susceptibility, and other
thermodynamic properties of the ideal Fermi-Dirac gas in various dimen-
sions. We start by expressing E(T') as a function of T, N and p and finish
by obtaining u(7") itself.

The calculation of £ demonstrates the proper way to utilize the power
expansion. In arbitrary dimensions d the dos of particles with quadratic
dispersion (g o< k?) is p(e) o< €21, Therefore in 3D the dos o /¢ and
E = N [°dee2f(e)] [° dee/? f(€). Use of the ratio of Eqs. (6.7) and
(6.9) allows the constants in the dos to cancel.

°kpx room temperature is &~ 1/40 eV while p lies in the range 1 — 10 eV.
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We carry out the expansion of numerator and denominator separately:

E(T, p)

{(2/5)p°% + (KT)(x%/6)(3/2)p!/? — (KT)* (7 /360)(3/8)u=3/?}
{(2/3)u3/2 + (KT)2(w2/6)(1/2) /2 + (KT)*(774/360)(3/8) =5/}
_ 3yt (KT/p)?(5n2/8) — (KT /p)* (Tn" /384)}
=5 U (WT )2 (72/8) + (KT /) (777 /640)}

= gNu{l + (KT /p)*(72/2) — (kT /p)* ()(0.013541666 .. .)} . (6.16)

Similarly, we express N(u,T) in terms of Ny = N(uo,0):

i) 0 [ ()
= No(p/p0)** {14(kT /1) (7 /8)+ (kT /p)* (T /640)+ - - -} . (6.17)

If N is held constant, Eq. (6.17) yields an implicit equation for x(7") in terms
of po = w(0). If p were constant (e.g. if the metal is connected to a battery)
the equation yields the temperature-dependence of the particle number in
the metal.

Assuming N = constant for an isolated metal, solve Eq. (6.17) to leading
orders? in T'/Tr after adopting the short-hand kT = puo:

247
25920

oo =1— i(7rT/TF)2 — %(WT/TF)‘l — (7T /TF)® +--- (6.18)

12

(Note: one could as easily have solved for 1/u) At constant N:

3 5 1
E = =Npo {1 + = (WT/TF) - 1—6(7TT/TF)4 —

1235
36288

(WT/TF)ﬁ} . (6.19)

One obtains the heat capacity by differentiating F, as given in Eq. (6.16)
as a general function of p(7") and T,

OF

Cv(T) = 8—T

= 2 Nof(aafdt + pdfaTY(L+ (KT /)P (22) )

4E. Kiess, Am. J. Phys. 55, 1006 (1987).
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Whether at constant N or at constant p, in leading order this quantity is
linear in T, i.e. Cyo(T) = NoyT + O(T?),
Cyo(T) = Nokp(72/2)(T/TF) + O(T/Tr)®  (at const. N)

} (6.20)
= Nokp(372/5)(T/Tr) + O(T/Tr)? (at const. u)

after returning the subscript B to Boltzmann’s constant to emphasize that ¢,
has the units of kp; its leading linear dependence on T is a generic property
of metals® that is independent of dimensions.

Problem 6.2. Typically one plots ¢,/T versus T2 to obtain the coeffi-
cients of the linear term (the intercept) and of the cubic term, the slope.
(A) Evaluate all the corrections O(T/Tr)? in the expression (6.20) and (B)
compare them, in magnitude, to the low-temperature 7% Debye law derived
in Sec. 5.6, assuming exactly one electron per cell (i.e. N = Ny = number
of electrons = number of atomic cells). Identify the important parameters
and determine whether it is possible the electronic 73 contributions might
obscure those of the phonons in an ordinary metal. Use the parameters:
Tr = 0(10°%), 6p = O(10?).

Problem 6.3. Rederive Egs. (6.16)—(6.20) in closed form in 2D. Note the
simplifications brought about by a constant dos. In what way do these results
fail to be rigorously exact?

The equation of state of the Fermi—Dirac gas in 3D: pV = 2E/3, with E
given in (6.19) is obtained most easily from a relation that was proved earlier
for any and all ideal gases of particles with quadratic dispersion. Its entropy
. is obtained in either of two ways: as an integral over C/T (see Sec. 3.4)
or from 7. = 5F/3 — uN. The reader should verify that to leading order
in T the quantities .¥ = C are identical. (Therefore ordinary metals satisfy
the Third Law.)

Problem 6.4. Let puy = p+ A, pp = pp— A, in 3D. Calculate M, (A, T)
to leading orders in the parameters T/Tr and A/u, both assumed small.
Obtain the dependence of xo(7) = lim-A — 0{M,(A,T)/A} on T.

®And also of glasses and amorphous substances at low T, although for different reasons
altogether.
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6.7. Quasiparticles and Elementary Excitations

For many purposes it proves convenient to have as a starting point not
the absence of particles, but the ground state of the Fermi—Dirac gas. At
T = 0 all states below the F'S are occupied and those above it are empty.
Deviations from this idealized state are described in terms of quasiparticles;
an electron added above the F'S of a metal is a “quasielectron”, while an
electron removed from below the F'S of the same metal leaves behind a
“quasihole”.

An “elementary excitation” of the Fermi sea is actual a compound,
created by promoting an electron at k of spin o (o is £1/2, i.e. T or |)
below the F'S to k' and ¢’ above it. In the new terminology, this promo-
tion creates 2 quasiparticles: a positively charged quasihole at —k, —o and
a quasielectron at k’, o’. The signs are introduced to simplify conservation
of charge, momentum and spin angular momentum. In second quantization,
the transformation to quasiparticles consists of ¢ , < cfk’_g for |k| < kp

and to no change above kr. Then with e, = h2k2/2m — U,

Z ekc'khack,g = Z ek(l — Ctk7_ac_k7_g) .
k<kp,o k<kp,o

On the rhs the sum without operators reproduces the ground state energy
FEy. Assuming inversion symmetry e_; = e, the operator on the rhs becomes
Y k<kpo |ek|c:ﬁck70 and is formally the same as for k > kp. Thus the total
excitation Hamiltonian, Hy — Ejy, is

Hy—Eo= Y lexlcf scro- (6.21)
all k,o

The effective energy of a quasiparticle ¢, = |ex| is plotted in the following
figure. Near the F'S the symmetric cusp in quasiparticle energies reflects the
essential similarity of quasiholes and quasielectrons. This low-energy sym-
metry is quite general, as it is independent of dispersion or dimensionality.
(Any asymmetry in particles and holes, as evidenced in the figure, occurs
only at greater energies. It depends specifically on the dispersion but is sig-
nificant only at high 7'.) The figure also illustrates the gap A introduced
into the quasiparticle spectrum in the BCS theory of superconductivity, to
be derived in Sec. 6.13.

The dos at the F'S is p(u) = 27(2m)*/?(27h) ~37\/u(T) and is assumed
constant within a few kT of p(7T). Under this assumption, certainly valid
at low T or in small external fields, an equal number of quasiholes and
quasielectrons are thermally produced. Thus the total number of physical
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Fig. 6.2. Quasiparticle Spectrum.

Normal metal, solid lines. Changes to the spectrum in the superconducting phase,
dashed segment.

particles is automatically conserved at finite T. The total internal energy is
merely,

© €

= Eo + L34p(p)(7? /12)(kT)? (6.22)

the factor 4 coming from the two factors: spin (factor 2) and quasiparti-
cles (2 types). The Fermi integral was previously evaluated in Sec. 6.5; the
relevant zeta function ¢(2) = 72/6.

Using Ny = 2(4nk3/3)L3(27) 73 to eliminate L3 and setting p ~ po =
kpTr, one obtains E(T) = Ey + Nokp(m/2)2T?/TF in perfect agreement
with the two leading terms in the expansion (6.19).

The corresponding specific heat is:

co(T) = 8p(p)(w?/12)(kET) = kp(n?/2)(T/TF)

identical to leading order in 7" with a result previously obtained in Eq. (6.20)
by direct computation, assuming an isolated system at constant V.

Next we calculate the electronic paramagnetic susceptibility initiated in
Sec. 6.4 and sketched in Problem 6.4. At T"= 0 “pour” a small number of
electrons from the surface of the spin-down Fermi sea onto the surface of the
spin-up Fermi sea. If ;1) is lowered by A the number of quasiparticle holes
involved is L3p(1) A and the energy to create them is L31/2 p(1)A2%. An equal
number of particles is then deposited onto the spin-up F'S, raising its energy
also by L31/2p(u)A2%. Thus for a net magnetization M, = L3p(u)A the
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cost in energy is AFE = 2L3 x 1/2 p(u)A2?. Comparison with AE = M2 /2xq
identifies xo = L3p(p). Finite T' corrections are perforce O(T/Tr)? and are
thus negligible.

Although p(p) may not be known precisely, owing to uncertainties in m
and u, nevertheless in the case of an ideal Fermi-Dirac gas one predicts that
the dimensionless ratio, (C,/k%T) <+ (x0), takes on a universal value 272 /3
as T'— 0. (It should be emphasized that the derivation leading to this ratio
is valid in any dimension and for any dispersion, as d and 7" influence only
terms higher order in T'.)

If however the particles are allowed to scatter and interact, as in fact they
do in Nature, many-body effects will blur the F'S and may change the ratio
by a significant factor.

6.8. Semiconductor Physics: Electrons and Holes

The generic dynamical, thermodynamical and electrical properties of
insulators are, on their face, pretty dull. Fully occupied bands of “valence”
electrons are separated by a substantial energy gap from unoccupied
“conduction” bands. Any dynamics is mostly the result of atomic motion,
i.e. phonons. One of the major discoveries of the twentieth century concerned
the dilute doping of certain insulators by selected impurities, transforming
them into semiconductors. To the extent that doping introduces electrons
(negatively charged particles) into the conduction bands they are called n-
type; holes, i.e. positively charged carriers in the valence band, are the charge
carriers in p-type semiconductors. The Fermi level generally lies between the
bands where there are no allowed energy levels.

Photons of energy greater than the energy gap are absorbed in the mate-
rial, where they release quasielectrons and quasiholes in equal numbers into
the respective, separate, bands. These mobile carriers give rise to photocon-
ductivity, a property useful in photography and in imaging. Figure 6.3 illus-
trates the energy spectrum in an n-type semiconductor and shows “donor”
impurity states at an energy A below the conduction band edge, within the
“forbidden” energy gap. The Fermi level p lies, typically, at or below the
donor level.

The energy of a conduction electron as measured from the band min-
imum is typically parabolic: ¢ = p?/2m, with m} a parameter of the
band structure that is only loosely related to the free electron mass m,; and
ranges from 1072 to 10 times m,; in the various materials. It is measured
in such experiments as cyclotron resonance that yield resonant microwave
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Fig. 6.3. Schematic band structure of a semiconductor.
This band structure is appropriate to an n-type “direct gap” semiconductor, in
which the valence band maximum and conduction band minimum are both at k& = 0.
The donor levels at E; — A are shown.

absorption at w. = eB/m} c. It can also be computed, more or less accurately,
starting from first principles. The solid-state “band structure” calculations
incorporate both the nature of the atoms and the geometrical structure,
especially the periodicity, of the material.

Much the same holds for a hole, the energy of which is measured down
from the the valence band maximum. The effective mass of a hole my is
typically greater that that of the electron, m;.

In what follows we shall specialize to n-type semiconductors. (Analogous
results apply to p-types, mutatis mutandis.) The properties to be analyzed
include the number of carriers N, as a function of T', the number of neutral
and ionized “donors”, NC? and N C'[ , the position of the chemical potential
(Fermi level) as a function of 7" and last but not least, the statistical conse-
quences of the electrons’ Coulomb repulsion — sufficiently strong to prevent
2 electrons from being localized on a common donor.

6.9. n-Type Semiconductor Physics: The Statistics

Out of NV atomic sites, a much smaller number Ny are substitutional impuri-
ties of valence +1 higher than the host, i.e. donor atoms. For hosts that are
tetravalent such as germanium or silicon, the donors are typically pentava-
lent, e.g. phosporus. Because it is not covalently bonded the fifth electron
is easily released (“donated”) to the conduction band. Its binding energy A
can be as small as 0.01 eV and, in any event, far smaller than E; ~ O(1 eV).
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Thus at room temperature, T ~ 0(0.025 eV)/kp, the donors are pretty
much ionized while the valence band remains full occupied.

The excess electrons have just two places to go: either into a bound state
on one of the available donors or as free electrons in the conduction band.
At first we shall treat the spin degeneracy in a trivial way, multiplying all
the extensive quantities by a factor 2, postponing discussion of the Coulomb
interaction to the following section. The maximum number of carriers in the
conduction band is small, at most Ny < N, well within the dilute limit
where the Boltzmann approximation to the Fermi-Dirac function is known
to become valid. With N C? being the number of occupied donor levels, and
the number of ionized donors being N = N,;, the equation that regulates
the donors is Ny = Ng + N7, ie.

— Na L y? 3 1
Na =2 5080 1t (ﬁ) /d PBE®—m + 1

o Na LY [ BB

Evaluating the integral on the second line yields

= 3

27h
Thus reduced to a quadratic in exp(Gu) > 1, Eq. (6.23) is readily solved for

the relevant quantity, u(7"). Next we discuss this equation in greater detail.

6.10. Correlations and the Coulomb Repulsion

According to the preceding section, one might think that the a priori proba-
bility that any given donor is neutral (e.g. carries 4+1 = 5 valence electrons)
and has spin +1/2, i.e. that the fifth electron has spin “up”, is just given by

the Fermi function, f = m. If so, the inclusion of both spin orienta-
tions should yield twice that, 2f = m. At T =0, u— —A (cf. lower

curve in Fig. 6.4), and f — 1/2; thus there are N;/2 electrons with spin
“up” and Ny4/2 with spin “down” in the ground state of the donors, given
that the respective probabilities are equal.

But this gives rise to a paradox. Insofar as the two species of electrons are
uncorrelated some donors are then, statistically, occupied by two electrons
of opposite spin (and thereby transformed into negative ions). The number

of such ions is f2Ng = (m)%\fd, a quantity that approaches Ng/4 as
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T — 0. Clearly this result is implausible, given that the sum (2f + f2) will
exceed 1 at low T! To evaluate the consequences of statistical correlations
and to understand the important role played by Coulomb interactions in
keeping an ion neutral, one has to return to “first principles”: to the partition
function and to a definition of the probabilities.

Consider the contribution to the partition function of a single donor site
that can sustain n = 4,5, or 6 electrons in the absence of the Coulomb
interaction:

Zg=1+2e PB4 o720 (6.24)

where the Boltzmann exponents are —(n—4)5(—A —pu) respectively. The two
occupation numbers n = 4 electrons and n = 6 electrons are unique, carry
total spin 0, and correspond to the positive and negative ions respectively.
The occupation n = 5 corresponding to a neutral donor carries the choice of
spin “up” or “down”, hence the extra factor 2. When normalized by Z; each
of the individual terms in the sum s a genuine probability as exhibited below.

Thus, at arbitrary 7" the probability of the donor being neutral is not 2f
but rather,

2¢—B(=A—p)
1 + 2¢—B(—=A—p) + e—26(—A—p)

Py = %sech2ﬂ(A + ).

On the other hand the probability of a negative ion occupied by one electron
of spin “up” and one of spin “down”, is

e—28(=A—p) 1
14 2eB(=A-p) 4 —28(-A-p) (1 + eB=A-p)2°

Finally the probability of a positive ion, unoccupied by electrons of either
spin, is just

1 1

P = 1+ 2e P21 4 e=28(=A~n) (1 4 e B(=A-m)2"

By construction these probabilities do add up exactly to 1 at all T.

The Fermi function reflects average occupancy by an electron of either
spin and its resemblance to a probability is purely coincidental. In the present
case f is,
0+ e B(=A—p) 4 o=26(-A—p)

Zq
e PR 5 (1 4 e B=A—W) 1

(14 e=B(=2-p)2 T eB(=A-n) 41

f(=A) = (cgrcar) =
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and when multiplied by 2 (for spin orientation) x N4 (for number of available
sites) it yields the first term on the rhs of Eq. (6.23), but it is clearly not
the correct value, PyNy.

In the lim -7 — 0, 4 — —A and each of the exponentials in Z; — 1 and
Z4 — 4. Thus at the Absolute zero the probability of a negative or positive
ion — 1/4 each, and of a neutral ion — 1/2. This is how we arrived at
the conclusion that at 7' — 0 the total number of bound electrons equals
the number of donor sites. But the existence of negative ions on some sites
offends the physics. Consider the following facts:

The lowest energy on a given donor site is that of the neutral configura-
tion; the energy of a positive ion exceeds it by A at the least, and therefore
it should not be present at T = (0. However the negative ion has a much
higher energy U > A and is entitled to even less of a presence. Physically,
the quantity U comes from the additional Coulomb repulsion of the excess
electron orbiting a common donor center. Thus the correct Z; is not (6.24),
but rather, Z; = 1+ 2 P21 4 o282~ e=BU 1n lim -U > kT the last
term drops out altogether, and

Zg =1+ 2 P=0-1) (6.25)
With the aid of this function, the correlated probabilities are found to be:

2¢—B(=A—p) 2 1

e R T R e e

and P_ = 0, quite a different microscopic result! With Eq. (6.23) now dis-
credited, the correct equation Ny = Ng + N; has to be,

B 2Ny LN [ 4 1
Na= Z5ea=m o 2 (ﬁ) / e = ) T 1
~__ 2Na LN [ s o))
~ ATy T2 <ﬁ> /d pe . (6.26)

Because the “free” electrons in the conduction band are in extended
states one is justified in neglecting the Coulomb interaction among them.
Equation (6.26) bears a superficial resemblance to (6.23) but its solution is
quite different in the details, with p starting at —A/2 at T = 0 and decreas-
ing from there. The correct and the incorrect solutions, with and without
correlations, are compared in the figure that follows.
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Fig. 6.4. u(T)/A versus kT /A with (better theory, upper curve) and
without (less physical) Coulomb Repulsion on Individual Donor sites.

Here 11 < 0 as measured from the bottom of the upper (conduction) band.

6.11. Miscellaneous Properties of Semiconductors

1. Density of Carriers. Previously we found that the density of free electrons
in the conduction band was, to good accuracy,

Na/L? =n = 2(2xh) =3 (2rmi k1) 2eH .
By analogy,
Ny/L? = p = 2(2nh) =3 (2am3kT)? 2 AltEo)

is the density of holes in the valence band. It follows that the product
n x p = n? is independent of ;i and therefore of the density of donors
or acceptors. Define n; = 2(2rh)=3(2xkT)3/? (m,ﬁm;)?’/‘le_ﬁEﬂ/Q, the
so-called “intrinsic” carrier concentration, a function only of the m*’s,
E, and T. In an undoped semiconductors (no donors or acceptors,)
n = p = n; for reasons of electrical neutrality. In that case the Fermi
level lies approximately mid-gap, u(T') = —Eg/2 + (3kT/4) log(m,/my,).
2. Rectification. If a semiconductor is abutted to a metal a net flow of charge
from one material to the other is required to equalize the u’s. The excess
charge at the interface forms a dipole layer known as a “Schottky barrier”,
and is responsible for the rectification. The “cat’s whiskers” germanium
diodes used in radio reception in the 1920’s were elevated to the status
of an amplifying triode, the transistor as it was named by its inventors
Bardeen, Brattain and Schockley in the late 1940’s. Figure 6.5, based on
a drawing in John Bardeen’s 1962 Nobel address, shows how the electro-



136 6. All About Fermions
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Fig. 6.5. Energy level scheme of metal-semiconductor diode.
The semiconductor that is n-type in the bulk (z — 4o00; conduction-band electrons
indicated by “— — —”) becomes p-type in the vicinity of the metal surface (holes
symbolized by “ooo...” in the valence band). In thermodynamic equilibrium the
electrostatic dipole layer lifts the semiconductor’s energy levels at the surface rela-
tive to those in the bulk, in an amount approaching E, = E; — E, = O(1 V), the
height of the Schottky barrier, while maintaining ;1 = Ep constant (so as to ensure
no current flow). Surface energy-states are indicated as short horizontal lines.

static forces “bend” the bands while keeping the Fermi level constant in
equilibrium.

3. Junctions. A similar barrier created at the interface of two dissimilar
semiconductors, e.g. of an n-type and a p-type, is known as a p-n junction.
For details refer to texts specialized in semiconductors. The following
illustrates a Schottky diode.

In thermal equilibrium a small current I, flows from left to right, compen-
sated exactly by I_ flowing in the opposite direction. Let us call these quan-
tities Iy. Now let us suppose that a potential V is applied to the barrier and
is dropped almost entirely in the high-resistance (semiconductor) vicinity of
the barrier, i.e. 4 = Erp + V on the semiconductor side. The net current in
the diode is then

I(V) = IyePV — I, (6.27)

limited to —Ij if BeV < 0 and exponentially large if SeV > 0. At small
|BeV ], i.e. for voltages < 1/40 V' at room temperature, the current is ohmic.
In a triode a third electrode capable of changing V' — V + 6V permits an
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exponentially larger change in current at a given dV, hence produces signal-
and possibly power-amplification.

6.12. Aspects of Superconductivity: Cooper Pairs

The BCS theory of superconductivity,’ based on the pairing of electrons of
opposite spins and momenta, was spawned in a brief interval in the years
1956-1958. Prior to that, a number of competing theories sought to explain
aspects of this mysterious phenomenon discovered in 1911; a crude time-line
follows.®

By 1934, Gorter and Casimir’s theory of super conductivity as a two-
fluid model predicted a thermodynamic second-order phase transition and
by 1935, F. and H. London’s theory of magnetic flux exclusion indicated
a “stift” ground state wavefunction. By 1950 the equations of Ginzburg
and Landau allowed calculation of inhomogeneous properties, especially near
surfaces. Already an “isotope effect” had been observed, implicating phonons
in what was otherwise a purely electrical phenomenon. Most significantly, all
experiments were compatible with the existence of a temperature-dependent
electronic energy gap pinned — by a force or forces yet to be identified —
to the Fermi surface of each superconductor. The difficulties lay primarily in
the fomulations, and not in the lack of physical understanding. With some
exceptions (superfluidity, lattice vibrations, ferromagnetism), prior the BCS
theory in 1956 many-body theory had yet to be successfully formulated and
applied to realistic problems in solid-state physics.

Superconductivity was not a ubiquitous phenomenon. It seemed to in-
volve a small fraction of the charge carriers, possibly fewer than 1 out of
10,000. In metals such as mercury (Hg), lead (Pb) or niobium (Nb) or their
alloys the room-temperature resistivity is an order of magnitude higher than
in copper (Cu), the reference material. Yet it is just these “poor” met-
als, not copper, that superconduct at characteristically low temperatures,
T<T.~10 K.

In a 1956 address, Feynman noted" that characteristic energies of normal
metals are approximately 10,000-100,000 K while those of a superconduc-
tor are 10 K. (In this one respect superconductivity differs markedly from

fSee references in Chapter 3, footnote 19.

&These historical references are from the review “Recent developments in superconductiv-
ity” by J. Bardeen and J. R. Schrieffer, Chapter 6 in Vol. III, Progr. Low Temp. Phys.,
C. J. Gorter, Ed., North-Holland, 1961.

hR. P. Feynman, Rev. Mod. Phys. 29, 205-212 (1957).
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superfluidity, in which the characteristic phenomena have energies of the
same order of magnitude as the potentials.) Considering that the principal
one-particle energies: the band-stucture, the Fermi energy, the two-body in-
teractions, etc., are never known to better than a few %, we might expect
the search for a quantitative theory of superconductivity to be like a quixotic
search for one particular grain of sand at the beach. In conclusion, Feynman
counseled that

“...what we must do is not compute anything, but simply guess what
makes the ground state isolated at a lower energy. That is, guess what
kind of correlation exists at long distances. Why haven’t we theoret-
ical physicists solved this problem yet? ...It has nothing to do with
experiments. .. . The only reason that we cannot do this problem of
superconductivity is that we haven’t got enough imagination.”®

But there was an imaginative breakthrough and it came just a few months
later.

Trained as a “particle” physicist, Leon Cooper was a post-doctoral assis-
tant to John Bardeen at the University of Illinois in 1956 when he conjured
up the following model of 2 electrons bound in a singlet configuration, with
total momentum hAg. This “Cooper pair” was constrained to live outside
the Fermi sphere, but was bound by attractive forces generated through the
exchange of a virtual phonon. At ¢ = 0 the pair’s wavefunction is,

cosk-(r1 —r
U(1,2) = Zm%mz — 1112),
k
where ¢y, satisfies a Schrodinger equation:
U
(2ep — E)op — a > dw =0. (6.28)
k/

h;n]f — u, £ is the volume and F < 0 is the energy of the bound

pair. All k£ are restricted to the range 0 < exr < kpfp. By definition all
states of energy e < 0 are occupied and therefore unavailable. The upper

Here, e, =

limit on e is the maximum energy of a phonon, a natural cut-off inherent
in the phonon-exchange mechanism.! To solve the above equation, replace

'This last seemed the most plausible mechanism for the existence of a short-ranged,
velocity-dependent, attractive potential —U in metals, and was in accord with the isotope
effect. Various other mechanisms had been proposed and debated. Indeed, a distinctly dif-
ferent mechanism is presumed responsible for the copper oxides exhibiting high-temperature
superconductivity at O(100 K).
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the sum by an integration over p(u), the one-particle dos evaluated at the
Fermi surface.

Thus, for E < 0, ¢ = ¢(e) = Up(u)T'(2e + |E|)~!, where T' = 3, ¢y is
the “lumped” parameter,

k0p
I = (Up(wT'} { / dﬁ} - {%Upm)r} {log(1 + 2k0p/|E])}

This equation always has a trivial solution I' = 0. The nontrivial is,

2k0p

E = =55t 1

~ —2kfpe” 2/ VPt (6.29)

Above the bound state there lies a continuum of scattering solutions to
Eq. (6.28), of energies 2e;, + O(1/92) > 0, separated from the bound state by
an “energy gap” |E|.

By 1956 the “isotope effect” had already been established in some super-
conducting metals for which numerous isotopes are readily available, such as
Hg, Sn, Pb, Th. Collective properties of the electron gas, including the en-
ergy gap and T, together with the “critical” magnetic field B.(0), all scaled
with the atomic (isotopic) mass \/1/M, just as does §p. Cooper’s formula,
Eq. (6.29), linking electronic properties to the lattice vibrations, yields a
natural® explanation of the dependence of a sensitive electronic property on
atomic mass. Additionally, the very ezistence of an energy gap explains the
exponentially small specific heat of superconductors observed at low temper-
atures T' < T, as shown in Fig. 3.9. The seeming paradox that the
metals (those with the highest room-temperature electrical resistance) make
the “best” superconductors (highest 7.), received a plausible explanation
in this type model: an increase in electron-phonon scattering increases the
effective attraction U, hence boosts |E| and T¢ at the same time it decreases
the electrons’ mean-free path.

“worst”

Despite numerous inconclusive details the excellent results obtained
from such a “toy” model were tantalizing to Bardeen, Cooper and —
most especially — to Bardeen’s graduate student Bob Schrieffer, who
had undertaken the theory of superconductivity as his Ph.D. project.!
Schrieffer soon “guessed” the imaginative many-body gound state satisfy-
ing all the requirements that Bardeen and Cooper had set out in earlier,

iSee §5.6, Eq. (5.28a) and the discussion on ©p, s, etc.

kProvided U is independent of M, as it generally is found to be.

'For an historical overview of the original BCS theory, see J. R. Schrieffer, Theory of
Superconductivity, Benjamin, New York, 1964.
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semiphenomenological, analyses. All three were to share the Nobel prize for
their efforts, an unprecedented second such honor for John Bardeen.

6.13. Aspects of BCS Theory

In its simplest form, this many-body theory of superconductivity pairs each
electron of momentum nk and spin “up” to an electron of opposite momen-
tum and spin. The result is a collective state with no net magnetic moment
that carries no current. Elementary excitations are separated from the gound
state by an energy gap that is temperature dependent and vanishes at T,.. As
we shall see, the very form of the solution suffices to explain both the com-
plete lack of resistance and the Meissner effect (as the expulsion of magnetic
field from the bulk of the superconductor is called).

It proves useful to introduce the fermion operators in occupation-number
space: creation and annihilation operators ¢™ and c. Unlike boson operators,

these anticommute: ci, sCpr o +Cpr o7 Cke = 0. The anticommutator or “curly”
bracket is just {A, B} = AB + BA, i.e.

{¢ho ek o} =0= {cz,g,c:,ﬁ,}, and  {ckq, cz,’g,} = 0k k0,07 (6.30)

k labeling the wave-vector of a free electron and o = | or T (i.e. £1/2) its
spin. Differently labeled pairs of such operators commute:

[Ch,oC—k,—0s Cht o C—k—o7] = 0.

In this sense, paired fermion operators resemble the boson operators of
Eq. (5.12). Ultimately this proves to be a false cognate, as paired fermions
fail to satisfy the totality of commutator relations required of bosons. In
particular, ¢y ,C_k —o, cJ_r,“_UcZﬂ] is an operator that is # 1 or 0. This is the
principal reason paired fermions are not generally considered to be bosons
unless the binding energy is enormous.

The selection of which Hamiltonian to diagonalize hinges on the total
current carried by the system. (In the absence of persistent currents and
of magnetic fields the total momentum and total spin are both zero.) At
arbitrary current densities the relevant interactions included by BCS in their
famous “reduced” Hamiltonian consists of kinetic energy, plus that part of
the attractive interactions compatible with momentum conservation:

_ + +
Her(q) = Z(€k+q/2ck+q/2,Tck+q/2,T + ek—q/2c—k+q/2,lc—k+q/27l)
k

U + +
~ 0 2 hra/21 ha/2, Ok /2L a2 (6.31)
kK
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The rest of the Hamiltonian is treated by perturbation theory and is found
to be largely irrelevant. At q = 0 the variational solution,

Uy = > oeiicty 1),
kOp>er>0
with |F') the filled Fermi sphere, satisfies Cooper’s Eq. (6.28) and yields his
ground state energy in (6.29). But note that this £ was only O(1) lower
than the unperturbed energy of the Fermi sphere, whereas the ground state
energy of this many-body problem has to be extensive!
BCS proposed a current-carrying ground state of the type,™

H{sin o1 + cos gbkcl;k+q/2’TcJ_rk+q/27l}|0> (6.32)
all k

with J = eNghq/m the current, and ¢ a function to be determined vari-
ationally for the lowest ground state energy. The model’s dynamical and
thermodynamical properties were derived using an ingeniously constructed
complete set of orthonormal states.!

Alternatively, the ground state can be found by linearizing the Hamil-
tonian. This procedure works only because quartic terms in the interaction
can be factored into the product of two macroscopic quadratic sums. For
example, A7 = % >k CIJCF,TC——Fk, | Is an intensive quantity O(1) whose fluctua-
tions have to be negligible, O(1/+/Q). After replacing A}, by its average A*
and adding a trivial constant to the Hamiltonian (6.31), it is linearized as
follows (at q = 0):

H= Z ek(c:,Tck,T + Ctk7lc—k,l -1)
&

— Z(A*C—k’,lckﬂ + ACI;TCtk,L) + Q|A|2/U (6.33)
k
with A and A* parameters to be determined self-consistently.

The Bogolubov transformation used to diagonalize this quadratic form
itself has to be linear and preserve momentum, spin and the anticommuta-
tion relations. It is only possible to satisfy all these conditions by violating
particle-conservation:

Cho = (€08 Vy o )Ck. o + (sin z9k7c,)cfk,7_a ) (6.34)

™A somewhat different (number conserving) analysis of the ground state solution to the
nonlinear Hamiltonian in Eq. (6.31), D. C. Mattis and E. H. Lieb, J. Math. Phys. 2, 602
(1961), leads to the same conclusions.
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Still, the total number of electrons is conserved — but only on average. That
is consistent with fixing p (and not N) in a metal, and seemingly does not
lead to any problems or paradoxes.™

Problem 6.5. Prove that for the above transformation to be unitary and
preserve the anticommutator algebra (6.30), ¥y, has to be real and odd
either in k or in o but not both: ¥_, = —U or 9_, = —9,.

It is left as an exercise for the reader to derive the following, diagonal,
form of (6.33) by optimizing ¥y, ,.

1
H=Y e (c;ﬁck,ﬂ _ 5) + QAR (6.35)
k,o

where ¢, = y/e? + |A|? > 0 is the quasi-particle’s energy. Due to this pairing
the total free energy achieves a minimum. It is,

F=—kTY log(l+e ) = e + QIAPP/U. (6.36)
k,o k

The normal metal’s quasiparticle spectrum has to be modified to take
into account the “gap parameter” A. The effect, indicated by the dashed
segment sketched in Fig. 6.2 on p. 150, is to eliminate the cusp and pin the
gap squarely onto the Fermi surface.

One must optimize w.r. to the temperature-dependent gap A. Treat-
ing A = %Zk@_k, (k)74 and A* as independent variables, one evaluates
OF/0A* =0 in (6.36) obtaining;:

U Oep, _UA tanh %ﬁsk

=q a aAa- L 2f(en)} = 5o 4 (6.37)

&k

Now, either A = 0 or there exists a nontrivial, real, solution. In the thermo-
dynamic limit, the sum becomes an integral. If A # 0, divide (6.37) by A:

1= Up( )/kﬂDd tanh 2+/e2 1 AZ
S T VaEEAr

At T =0, tanh % Ber, — 1 and this integral can be evaluated in closed form,
yielding A(0) = kfp cosech(1/Up(p)) =~ 2kfp exp(—1/Up(p)).

(6.38)

"Tn more sophisticated treatments a phase factor e*# can be attached to each ¢ in (6.34).
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(T)A(Q)

TIT,

Fig. 6.6. Dimensionless gap function in weak-coupling (Up — 0).
Example of BCS’s “law of corresponding states”: A(T")/A(0) versus T'/T.
Solid line: BCS theory, Eq. (6.36b). Points: experimental (for tin, Sn).

The exponential approximation is appropriate to the weak-coupling limit
Up — 0. For T > 0, A(T) is extracted numerically, as plotted in dimension-
less form in Fig. 6.6.

The critical temperature 7T, is extracted numerically from the same tran-
scendental equation, assuming A, — 0.

k0p  tanh 5%+ 0p/2Tc  tanh
1=Up(p) / de——2Te — U p(p) / Py (6.39)
0 0

e ZT

In the weak-coupling limit (Up — 0), T, — 1.140p exp(—1/Up(n)). Accor-
ding to this, the dimensionless ratio 2A(0)/kT. = 3.528. (In “strong-
coupling” (U — oo) this ratio is 4). The ratio A(T")/A(0) is one of the
universal functions of BCS’s “law of corresponding states”.

In addition to exhibiting zero electrical resistance, the superconductor is
a cross between an ideal Fermi gas, i.e. an ordinary metal, and an insulator,
given the gap that hinders the production of quasiparticles. Thus, features
that depend on the dos at the F'S are affected when a metal becomes su-
perconducting. This phase transition can be first-order (as in decreasing the
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magnetic field from above to below B.(T) at T' < T.), or second-order (by
lowering T' to below T, in zero field). Either way, numerous experiments
confirmed the BCS predictions in some detail.

From among several well-known examples we mention ultrasonic atten-
uation. There, the presence of a gap prevents damping by the Fermi sea
through the production of a wake of low-energy quasiparticle pairs, therefore
the propagation of low-frequency waves — again, a property of the atomic
masses — is greatly enhanced. In NMR the energy gap affects the number
of quasiparticles within +hw of the FS able to flip their spins and thus
interact with the nuclear spins, decreasing them at low T'/T, but actually
increasing their dos near T, near “resonance”, i.e. for hw ~ 2A(T). To this
list we should add “optical” absorption (really, microwave and far infrared
absorption). As in an insulator, this becomes vanishingly small at frequencies
hw < 2A(T). But the salient feature of superconductors is the disappearance
of all dc electrical resistance. How does the BCS theory deal with that? The
following simplistic explanation, essentially a form of two-fluid theory, may
suffice.®

Suppose a shift iq in the origin of the Fermi sphere causes a current J
to flow. We perform a Galilean transformation onto the moving coérdinate
system. With phonons effectively “frozen out” at low T° < 6p, only elastic
scattering mechanisms that break the translational invariance of the crystal,
such as surfaces, grain boundaries and impurities, are capable of scatter-
ing a current once it flows. Consider the simplest example, that of a single
point scatterer at the origin. Its Hamiltonian before and after the Bogolubov
transformation is:

H = %ch;ock’ﬂ

ko k'
= % Z Z[(cos Vg o cO8 Uy 5 + sindy, , sin 19143/70)6;06;@/,0
ko K
— (cos Vg o sinp o )cf cf, _ + H.C. (6.40)

Two distinct terms are seen on the rhs: elastic scattering (¢*c) terms and
inherently inelastic pair creation/annihilation terms. Although the latter
cannot damp a dc current without changing the energy, the elastic scattering

°More convincing explanations exist, but they can become mathematically rather in-
volved; see Chapter 6 entitled “electrodynamics”, in G. Rickayzen’s thoughtful monograph,
Theory of Superconductivity, Wiley, New York, 1965.
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may (although at T' = 0 there are no quasiparticles present and thus there
are none to be scattered!) At finite T, thermal quasiparticles present can
be scattered. Even though this scattering does not vanish identically, the
super- and quasiparticle-currents flow in parallel. Thus, any superconducting
current “shorts out” the normal currents below 7., immediately upon the
onset of a nonvanishing energy gap.

For it seems that, once created, the paired “bulk” current J = eNghq/m
persists indefinitely at T' = 0, there being no low-order mechanism whereby
it could be elastically scattered by one-body perturbations such as (6.40).
Indeed, in experimental studies the lifetimes of persistent currents, ulti-
mately limited by higher-order processes, have been estimated to exceed
thousands of years.

Exclusion of magnetic flux — the Meissner effect — is a related pheno-
menon that can be understood semiphenomenologically in the same manner.

In a magnetic field, each p; — p; — eA/c. Considering this to be as a
local shift in the origin of the Fermi sea in the amount hq = —eA/c, one
uses the preceding arguments to obtain a current density in the amount
j = —nae?A/mc, where n, = N /Q. The relevant Maxwell equation is
VxB= —47” j. Combining the two one obtains a wave equation,

4 2
VXxVxB=-VB=_—"d°
mc

Its solution, for the geometry where B is parallel to the metal’s surface and
decays with distance z into the bulk, is B(z) = B(0)exp —(z/\), where
AL = /(mc?/4mnge?) is the “London penetration distance”.P Beyond this
distance the magnetic field within the bulk of the superconductor is effec-
tively zero. Thus, a metallic, superconducting ring of radius R will trap
magnetic flux within its circumference; the amount of trapped flux ® is quan-
tized due to the requirement that |¢| in (6.31) = integer/R = 2e|A|/hc.2 The
quantized trapped flux is therefore ® = BrR? = 27| A|R = h/e x integer.

Once the surface magnetic field exceeds a critical magnitude B.(T"), the
energy of the excluded magnetic field is too high for the superconductor to
sustain and the normal state is restored. This is a first-order phase transi-
tion, previously analyzed in Sec. 3.11 using generic Clausius—Clapeyron type
arguments.

PF. London and H. London, Proc. Royal Soc. (London) A149, 71 (1935) and Physica 2,
341 (1935). For details, see Rickayzen, op. cit. (footnote o).
9We use 2¢e in this formula, as it is the charge of a bound Cooper pair.
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6.14. Contemporary Developments in Superconductivity

The interest surrounding the BCS theory stimulated numerous discoveries,
including the pair-breaking effects of magnetic impurities that can signifi-
cantly decrease the energy gap A and to a lesser degree, T,.. The discovery
of type II superconductors that magnetic fields could penetrate by creat-
ing arrays of vortices with non-superconducting cores added to the general
excitement. Inhomogeneities of this type became understood with the aid
of semiphenomenological Landau-Ginsberg equations, once they had been
mated to the BCS theory.®

The Josephson effect and numerous other tunneling phenomena soon
became major concerns,” although the real push was on to raise T, to where
practical applications might ensue. For a period of 3 decades all known su-
perconducting materials were alloyed and mixed with one another in a futile
attempt to raise T, above some 25° K. In fact, a number of theoretical specu-
lations (too erudite to repeat) purported to show that 7. = 30° K could never
be exceeded by the mechanism of the electron-phonon interaction alone.

The situation changed dramatically in late 1986 and the Nobel prize was
awarded to J. Bednorz and K. Miiller shortly thereafter for their discovery
of the first “high-temperature superconductor” — doped lanthanum copper
oxide, a layered mineral belonging to the perovskite family, exhibiting type II
superconductivity up to T' = 35 K. Numerous other minerals, all contain-
ing layers of the two-dimensional spin-1/2 antiferromagnet CuQOs, were soon
developed in a frantic search for successively higher T.. Interestingly, the
normal conductivity in these materials is highly anisotropic: highly con-
ductive in the ab plane, they are approximately semiconductors along the
perpendicular crystallographic c-axis. On the other hand the superconduct-
ing phase is quasi-isotropic, possibly owing to Josephson tunneling between
planes that is lacking in the normal phase.

Critical temperatures upwards of 160 K have already been attained (or
at least, reported) and at the date of writing, some hope remains that a
room-temperature superconductor will be found. It is not far-fetched to say
that such a discovery would soon revolutionize contemporary electronics,
electrical engineering and perhaps all of technology.

For a variety of reasons: the absence of significant isotope effect, carrier
mobility too high to be compatible with strong electron-phonon coupling,

"Brian Josephson won the 1973 Nobel prize for his 1962 predictions of oscillations and tun-
neling associated with pairs and quasiparticle tunneling; see D. Langenberg, D. Scalapino
and B. Taylor, Scientific American 214, 30 (1966).
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etc., it has been suspected that the pairing interactions in the copper oxides
are mediated by antiferromagnetic exchange interaction among the spins
of the charge carriers. Just such a mechanism is incorporated in the “t-J
model” of the electron gas, itself loosely based on a mechanism called
“superexchange” that is known to be operative in insulating magnetic metal
oxides including CuQOs. A related spin-wave exchange mechanism is thought
to cause pairing and superfluidity in the fermion liquid 2He at extremely
low temperatures, O(10~3 K). But at the date of writing, it is still not un-
derstood why high-temperature superconductivity seemingly occurs only in
materials containing two-dimensional CuQO2 and not in other antiferromag-
nets or geometries.

Indeed, at the time of writing, the mechanism whereby charge carriers
in CuO4 attract and form Cooper pairs remains controversial and mysteri-
ous. Also controversial is the nature of the energy gap in high-temperature
superconductors; the concensus has it that it exhibits a d-wave symmetry
— vanishing along two crystal directions — instead of being constant along
surfaces of constant energy, as it is in the “classic” low-T,. superconductors.
Possibly the lack of definitive answers is due not so much to the lack of
experimental data, but (to quote Feynman once again) to the fact that we

still .. haven’t got enough imagination”.!
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Chapter 7

Kinetic Theory

7.1. Scope of This Chapter

Presently we shall describe attempts to extend thermodynamical concepts
beyond thermodynamic equilibrium. Among applications we count the spon-
taneous approach to equilibrium starting from arbitrary initial conditions, a
formulation of transport theory and a theory of the propagation and attenu-
ation of collective modes (e.g. sound waves) in gases. In a subsequent chapter
we expand our technical arsenal with the aid of boson and spin operators,
Green functions and elementary quantum field theory.

Kinetic theory is an approximation justified only if interactions among
“ideal gas” constituents are weak or their collisions infrequent, sufficiently
so that neither significantly affects the thermodynamic functions. But ideal
gases have 3N constants of the motion and are incapable of any approach
to thermodynamic equilibrium! Therefore one anticipates that weak inter-
actions induce nontrivial changes in a system. It is necessary to determine
how weak interactions have to be before we can unequivocally use kinetic
theory.

In the systems under consideration the constituent “particles” can be
any of various atomic or molecular species, bosons, fermions, or even nor-
mal modes, etc. The rearrangements can result from scattering, typically
P1, P2 € P1+4q, P2 — q, or from a chemical reaction (actually, a general-
ized form of scattering), such as 2Hy + O9 < 2H5O0.

Defining, deriving and then using the notion of “detailed balance” (the
absence of any net flow or transitions in thermodynamic equilibrium) we shall
show that the very form of the collision integral determines the “statistics”
of colliding particles and can reveal whether they are bosons, fermions, or
classical entities! This is the approach pioneered by Einstein in his derivation
of Planck’s distribution law for photons in blackbody radiation. We start by

149
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determining the direction of flow (heat flow, particle flow, electrical current
flow, etc), by recapitulating arguments derived from the Second Law alone.

Then with the aid of the collision integral we show the approach to
equilibrium to be monotonic, first by proving then by using Boltzmann’s
“H-theorem”, and deriving a “Master Equation”. Finally, combining
“streaming” terms with the collision integral we establish Boltzmann equa-
tion and solve it in selected examples, deriving Ohm’s law of electrical con-
duction on the one hand and sound propagation and attenuation in gases on
the other.

7.2. Quasi-Equilibrium Flows and the Second Law

Connect two containers via a slow-moving piston while isolating them from
the outside, such that V;+V5 = V remains constant and £ = E;+ F5 remains
constant as well. According to the Second Law the entropy in thermodynamic
equilibrium always tends to a maximum, therefore if there is a change d.¥
it must be > 0. Now,

dEy  p1dVi dEy  p2dVs
Ao = A = 222 . 1
5% T + T S o + o (7.1)
Therefore d.¥1 + d.% > 0 implies,
Ty — Ty p11o — p2Ty }
E - - -~ - . 2
{ L }d 1+{ e L (7.2)

As dFy and dVj are arbitrary, each term must independently be > 0. Thus,
if p1/Ty = pa/Ts, the temperature difference T, — T7 must have the same
sign as dFn, i.e. if container #1 is gaining energy container #2 must be at a
higher temperature. If the temperatures are equal but the pressures are not,
p1 — p2 has the sign of dV7, i.e. the piston moves from the region of higher
to that of lower pressure. A similar argument, using N7 + Ny = constant,
governs the flow of particles from higher to lower u. Finally, the flow of
dissimilar particles entails the additional “entropy of mixing”.

The following example, previously treated in Problem 4.1, should serve:
let N particles of isotope #1 be in container of volume V at p,T while N
particles of isotope #2 are under identical conditions. Abruptly, the barrier
separating the two volumes is removed. It is desired to show that asymp-
totically, after conditions of thermodynamic equilibrium have been restored,
each species will occupy both containers fully. The proof: Eq. (4.4) speci-
fies the free energy F' of an ideal gas, . = —0F/JT its entropy. Because
N and T are unchanged if both constituents occupy the joint volume 2V,
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AFotal = (Fl,ﬁnal + F2,ﬁnal) - (Fl,initial + F2,initial) = —2kTN log2. Hence
A = 2kN log?2 > 0 is the entropy of mixing.

Ezercise for the reader: in the event the two species had been strictly
indistinguishable, show that the use of the correct Gibbs factors would have
resulted in AFisa1 = 0 and the same mixing would have been thermody-
namically irrelevant or inconsequential.

7.3. The Collision Integral

Although it might seem obvious that thermodynamic equilibrium is attained
only when the entropy (read, “probability”), is maximized, the process of
redistribution of the individual particles’ energies via molecular collisions
is rather complicated. In fact there is no general, rigorous, proof that the
sequence of these collisions is teleological, i.e. so organized as to result in an
optimal state. Still, no sensible person disputes the usefulness of the ergodic
hypothesis — an attractive and commonsensical conjecture that we discuss
later. In any event, for any such study a detailed understanding of molecular
collisions is essential.

If their potentials are short-ranged two particles are able to exchange
some momentum (i.e. “collide”) only if b, the distance of nearest-approach
(aka impact parameter), shown in the figure, does not exceed the range of
the potential. A good, intuitive, example is that of two billiard balls of radius
a that do not collide unless their trajectories bring their centers closer than
b = 2a.

P

Fig. 7.1. A scattering event, indicating the impact parameter b.



152 7. Kinetic Theory

Thus there is a correlation between the particles’ positions and their
collisions. A number of conservation laws govern the scattering events, among
which conservation of momentum and energy play vital roles.

Quantum theory provides a framework in which to compute transition
probabilities per unit time. In low-order perturbation theory it yields what
is known as the “Born approximation”. From it one finds the incremental
probability of a collision to be proportional to 3 independent factors:

e a rate K = collision cross-section x relative velocity,
e a “statistical” factor W related to the generalized Pauli Principle,
e and the (infinitesimal) passage of time dt.

Delta functions enforce the conservation laws. In the case of collisions among
identical particles the incremental probability is:

dP = K(1,2[1",2)¥(1,2]1",2))(p1+p2—p —Ph)d(e1+ea—e —eh)dt . (7.3)

K > 0is a kinematical factor that is generally the same for fermions as
for bosons. It is symmetric under the interchange of the incoming (colliding)
particles® 1,2 and under the interchange of the outgoing particles 1’,2’, and
symmetric under the interchange of the incoming pair (1,2) wih the outgoing
pair (1/,2').

The factor ¥(1,2[1',2") = —W(1',2/|1,2) is antisymmetric under the
interchange of the incoming pair 1,2 with the outgoing pair 1’,2". It ex-
presses the principle of detailed balance. Let us write it more explicitly as:
U(1,2]1,2") = ¢,(1,2|1,2") — U (1,2'|1,2). The fundamental nature of
the particles — that which determines whether they are bosons, fermions or
whatever — is entirely contained within ¥, .

In the generalized transition matrix element (“ME”) that is used to
compute U, there is a destruction operator ¢ for each of the incoming
particles and a creation operator ¢t for each of the outgoing particles. In the
special case of initially free particles (appropriate for the study of the quasi-
ideal gas), the operators are labeled to take conservation of total momentum
explicitly into account. Take as an example the collision shown in Fig. 7.1,
for which the probability amplitude for a transition from an initial state |i)
to a final state (f] is

ME = <f\c;1+qc;2_qcp2cpl|z’> ,

*If each particle carries spin and/or other identifying labels, “1” stands for the complete
set of labels of the first particle, “2” for the second, etc.
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The probability is the square of the modulus (absolute value) of the proba-
bility amplitude, |[M E|?. To find the form of the answer, sum |ME|? over
all states |f) to obtain® a quantity we’ll define as M?:

2 . + + 4+ + .
M* = (Z|Cp1+qCp1+qCp2—qCp2—qcpgcp2CplCm|Z>-

The thermodynamic average of M? performed in the neighborhood where
the collision takes place, at time ¢, yields W,. That is,

vy = <M2>TA = ((1 £ 1py4¢) (1 £ npy—g)Mpypy )74 - (7.4)

The upper sign (+) is for bosons, the lower sign for fermions. This result is
perfectly intuitive although it deserves some discussion.

In the classical (dilute) limit, (n,)74 = f(p) < 1; in thermal equilibrium
f must reduce to precisely the Maxwell-Boltzmann distribution discussed
in Eqs. (4.12)—(4.14). To leading order in the density we may then set
U, = f(p1) - f(p2), proportional to the density of particles in each of the
incoming channels.® Regardless of the ultimate value of f, in setting® (nins)
specifically = f1 - fo (rather than some correlation function g(pi,p2)), we
have implicitly assumed the average occupancy of p; to be statistically in-
dependent of the average occupancy of ps prior to the collision in question,
i.e. we have approximated the expectation value by that in an ideal gas. The
true effects of this collision (one of which is to correlate the states), have to
be be found post-hoc by different means.

For fermions, a similar decoupling leads to,

Uy =f(p1) flp2) x (1= f(p1+q) - (1—flp2—19)),

with the two additional factors clearly reflective of Pauli’s exclusion principle
in some thermodynamically averaged way.
For bosons:

Uy = f(p1)  f(p2) x A+ f(p1+q) - (1+ f(p2 —q))-

PUsing the “completeness” theorem of quantum mechanics.

“This formula was surmised long before the advent of quantum mechanics. Note that here
f is as yet unspecified and may be a function of time and position.

4This decoupling, frequently called “hypothesis of molecular chaos” and originally denoted
“Stosszahlansatz” by Boltzmann, presupposes that previous collisions had not set up cor-
relations among the various channels, i.e. that collisions are just small and uncorrelated,
like RW steps in some phase space.
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In the factors (1 + f), the constant “1” represents “spontaneous” emission
and “f” the “stimulated” emission.®

Because dP is to be the net change in probability during the time interval
dt, the reverse process has to be subtracted. According to

The principle of detailed balance

In thermodynamic equilibrium the rate at which pq, p2 convert into p1 + q,
P2 — q must equal precisely the rate at which p; + q, p2 — q convert back
into p1, p2; this holds for each pair p1, p2 and for each value of q.

This notion is based solely on the reversibility of the microscopic equa-
tions of motion.! The very form (antisymmetric) chosen for ¥ guarantees
that, regardless of the details of the scattering process, the population in
each and every channel remains absolutely stationary in thermodynamic
equilibrium. This form is believed to be exact in the limit that the scatter-
ing is either very weak or infrequent.

We next examine the approach to equilibrium of a classical, dilute, gas
of particles, derive the “classical” Maxwell-Boltzmann distribution function
and prove Boltzmann’s notorious “H-theorem”.

7.4. Approach to Equilibrium of a “Classical” Non-Ideal Gas

From the preceding we can compute the rate at which the occupancy of
momentum state p decreases due to collisions, as

00| [, [, [
coll

x K (p1,pa|ph, p5)0(p1 + p2 — Py — ph)d(e1 + €2 — €] — £5)

ot
<{f(pr, 1) f (p2,t) — f (P, 1) f (P2 1)} - (7.5)

In writing this expression we tacitly assumed f(p,t) to be spatially homoge-

neous and K to have become averaged over all r1, ro, ry/, ror. This simplifica-
tion is not always justified and should be reéxamined for processes occuring
at surfaces or interfaces.

Integrating over p; instead of py would yield 0f(p2,t)/0t but no new in-
formation, as p; and ps range over an identical set of values. Owing to its

®Paraphrasing Einstein’s derivation of Planck’s Law (governing the distribution of photons
in blackbody radiation), to which we shall return in due course.
fOr, more technically, on the Hermitean nature of the scattering Hamiltonian.



7.4. Approach to Equilibrium of a “Classical” Non-Ideal Gas 155

symmetry, Eq. (7.5) conserves particles, kinetic energy and all three compo-
nents of total momentum. For example,

0—/d3 8fp1,)

in which the first equality follows from the antisymmetry of W, the curly
bracket and the second, from interchanging 0/0t with the integration. The
4 other conservations laws can be proved in a similar manner.

0N

= 7.6
coll ot ( )

coll

Problem 7.1. Use Eq. (7.5) to prove conservation of total energy
OE/0t|con = 0 and conservation of each of the 3 components of total
momentum OP/0t|.on = 0, assuming the ideal-gas definitions E(t) =
[ @pe(p)f(p,t) and P(t) = [ d*ppf(p,t) to hold.

The entropy of this quasi-ideal gas is, of course, the key to the approach
to equilibrium. As originally given in Eq. (1.21), the entropy in each channel
p is related to (lognp!)ra. Boltzmann selected the closely related quantity
f(p)log f(p) — f(p) with which to construct his “H-function”,

= [l o) 108 £ .1) ~ Flp.1). (77)
He then used Eq. (7.5) with which to evaluate the time derivative:

dH (t)

4
a | =11 /d3piK(p1,pzlpi,p’2)5(p1 +pa — pr — pa)

coll

x8(e1+ea—er—ea ){f(p1,t) f(p2,t)—f (D1, t) f (Ph. 1)} og f(p1,t)

writing p; for p.

Note that with the exception of the log term, all factors in the
12-dimensional integration are antisymmetric under the interchange of the
incoming with the outgoing pairs. We can symmetrize the integrand without
affecting the outcome of the integration:

dH (t)

4
1
dt 4 H /d3piK(Plap2|p/17pl2)5(p1 +p2 — pr — D)
e

coll

x (e1 + ez —ev — e ){f(p1,t) f(p2,t) — F(p1, 1) f (P, 1)}

f(p1,t) f(past)
F@L ) f(pht)

x log (7.8)
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The { } terms x the log terms now have the form {x — y}log(z/y). The
reader will verify that this quantity is > 0 for any z,y real numbers. The
delta functions and K are inherently > 0, hence the integrand is everywhere
non-negative and the integral > 0.

If it is a thermodynamic function, H cannot decrease forever and 0H /0t
must ultimately vanish when thermal equilibrium is established. Eq. (7.8)
shows this can occur iff the integrand vanishes identically at all values of the
arguments, i.e. iff asymptotically,

f(p1,00) f(p2,00) = f(p},00) f(ph, 00)
i.e.
log f(p1,00) 4 log f(p2, 00) = log f(p}, 00) + log f(ph, 00) .

Now, scattering occurs “on the energy shell” and all three components
of total momentum are conserved. It follows that the conditions above,
which are the conditions for thermodynamic equilibrium, are satisfied by
log f(p,00) = a-p + be(p) + ¢, where a,b, and ¢ constitute a set of 5 con-
stants coresponding to 5 conservation laws: 3 for momentum, 1 for energy
and 1 for constants, e.g. u.

In a system at rest there is no preferred direction, hence we must choose
a = 0,b = —f and, finally, ¢ as the constant required to normalize f to IV.
These choices ensure that asymptotically, f is just the equilibrium Maxwell—
Boltzmannn distribution function. The actual values of 8 (a function of b)
and N (a function of b and c¢) in the system depend on initial conditions and
cannot be derived from the calculation. One may also ask whether, after
including explicit time diferentiations and supplementing the collision term
in Eq. (7.8) by adding 0H /0t to it, we could choose the asymptotic a, b and
c as functions of t?7 The answer is found in the following Problem.

Problem 7.2. Using the laws of conservation of energy and momentum
to somewhat “sharpen” the conclusions of Problem 7.1, prove that the 5
parameters in the asymptotic distribution function found above must be
constants in time — that a, b, ¢, cannot be periodic or aperiodic functions
of t.

7.5. A New Look at “Quantum Statistics”

For fermions the curly bracket in Egs. (7.5) and (7.8) is replaced by
(W (1,2117,2) = W (U, 211, 2)} = {f(p1,8) - f (P2, 8) - (1 = fp1+ ¢, 1)) - (1 —
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fp2—q,t)) = f(p1+aq.t)-f(p2—q,t)- (1= (p1,t))- (1= f(p2,t)) }. This bracket
vanishes asymptotically only when log ¥, (1,2[1",2") = log ¥ (1’,2/|1,2). We
rewrite the present result using the f’s, and collect terms:

f(p1,t) f(p2,t)
T o VT fmn)

_ Sy, 1) f (P, 1)
TOET D T T

The asymptotic solution occurs, presumably, what ¢ — oo. It is

log % = a- p+be(p)+c, with the constants having the same meanings

as before. We identify b = —(3, ¢ = B, and set a = 0. The result for a system

(7.9)

at rest is,

1

f(p,00) = f(p) = P mEm (fermions) (7.10a)

For bosons the reader will verify that,

F(,00) = f(p) = =+ (bosons)  (7.10b)

B — 1

Quite generally the vanishing of the {¥} bracket signifies both thermal
equilibrium and detailed balance. Amazingly, we have used collisions to de-
termine the distribution functions of the ideal gases! This is only possible
because of our neglect of correlations.

Let us review how nearly 100 years ago Einstein deduced Planck’s law
from detailed balance. Suppose Ny is the number of atoms capable of emit-
ting radiation Aw and Ny the number that remain after the emission (with
Niotal = Nexe+No). The relevant ¥ = {Nex (14 f)— No f } vanishes when the
number of photons is f = [Ny/Nexc — 1]71. If the emitting atoms are in ther-
mal equilibrium, Ny/Nexe = exp hw. From this follows Planck’s law, precisely
as derived from “first principles”, i.e. statistical mechanics, in Eq. (5.17).
The vanishing of the {¥} bracket signifies that the radiation is, on average,
in thermal equilibrium with the excited and ground-state atoms; although
photons are constantly emitted they are being absorbed at precisely the rate
required to keep their number and the fraction of excited atoms constant.
Fluctuations (“noise”) are ignored in this formulation, as are correlations.

A laser can emit at the given frequency only to the extent that the number
of excited atoms exceeds the thermal value, Ny exp —hw, and therefore some
dynamic, non-equilibrium mechanism has to be found to “feed” this excited
state. Equations that govern the ebb and flow of probability distributions fall
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under the general category of “Master Equations”, of which the simplest
example, radioactive decay, is treated next.

7.6. Master Equation: Application to Radioactive Decay

Master Equation is the name given to any equation regulating the flow of
probabilities in a stochastic process. A master equation can be used to for-
mulate transport theory or fluctuations. It can allow the detailed study of a
diffusive chemical reaction. A master equation is at the basis of any satis-
factory theory of turbulence that allows the study of fluctuations as well as
the evolution of averages of quantities.

In this simplest of applications, we examine the decay of N nuclei in the
absence of any correlations among them. Even so, the law of large numbers
allows the solution of the master equation to predict properties of the en-
semble that the study of a single radioactive nucleus would not be able to
reveal. We shall wish to know P(n|t), the probability that n out of the initial
N nuclei have decayed after time ¢ has elapsed.

Let me emphasize what we are not doing: we do not look just for what
is the average number of decayed nuclei after time t, a question that is
immediately resolved by solving the following trivial equation, d(n)/dt =
(N —(n))/7, with 7 the empirical 1/e lifetime of an individual nucleus. That
would be the “Boltzmann equation”type approach. Subject to the initial
condition n(0) = 0, is (by inspection) (n)(t) = N(1 — exp —t/7), a mono-
tonically increasing function whose asymptotic value is N. But as in some
examples of the RW of Chapter 1, such information is incomplete. It does not
help us determine the time dependence in (n?)(¢) nor the time-dependence
of the related quantity o2(t) = ([n — (n)(t)]?) that measures the “noise” in
the distribution as a function of t. The key point is the presence everywhere
of (---), requiring us to find a probability over which to average.

The equation satisfied by P(n|t) is what we seek, the “master equation”
in the present context. It is, quite intuitively,

dP(nlt) = {(N — n+ 1)P(n — 1t) — (N — n)P(n|t)}% (7.11)

and it expresses the change in heights of the histograms P forn =0,1,..., N
in the brief time interval dt.

In words: there is a probability P(n|t) that precisely n have decayed. It
decreases by dPj if an additional decay occurs in time dt; the probability of
this happening is o< (N —n)P(n|t)/7. Conversely, if only n — 1 had decayed
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at time ¢, the decay of a single additional nucleus in time dt(o< (N —n + 1)
P(n—1|t)/T) boosts P(nl|t) by dP,. The incremental time dt must be chosen
< 7 in order that the probability of any two nuclei decaying within dt tends
to zero and does not affect the conclusion. Then dP = dP, — dP;.

A complete solution of this difference-differential equation requires ob-
taining P(n|t) for all integers n =0,..., N at all times ¢ > 0, subject to the
initial condition: P(n|0) = J, 0 and normalization ¥, P(n|t) = 1. It is not
easy to solve this equation straightforwardly and we shall require a “trick”.
But it is trivial to show that if P is a solution to Eq. (7.11) and normal-
ized at t = 0, it remains normalized subsequently. [Ezercise for the reader:
using Eq. (7.11) to evaluate d/dt X%, P(nlt), show that two sums cancel and
Y, P(nlt) is therefore a constant, equal to its initial value at ¢ = 0.]

Difference equations are typically solved using Fourier transformation.
Here, instead of exp in ¢, we introduce a new variable z with which to
construct the following generating function:

N
1 o"
G(z,t) = Z N=np(n|t), therefore, P(N — n|t) = E@G(Z,t)
n=0 : z=0

(7.12)

N [reader: why?] and,

It is subject to the initial condition G(z,0) = z
according to (7.11), satisfies the p.d.e.:

N

0G(z,t) 1 o
= ;;::OZN {(N =n+1)P(n —1|t) — (N —n)P(n|t)}
— ;(Z _ 1)% . (7.13)

This equation is satisfied by any real function G(z,t) = G(log(z—1)—t/7).
Initially, G(z,0) = 2V = [¢!°8(>=1) 1 1]V, Therefore at finite ¢ one may infer:

G(Z,t) _ [elog(z—l)—t/T + 1]N _ e—Nt/T[Z — 14+ et/T]N

= ¢~ NU/T i\’: <N> 2N — 1) (7.14)

n=0 n

Equating powers of z here and in (7.12) yields the normalized P’s,

P(n|t) = e NUT @ ) (el/T —1)". (7.15)
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For the purpose of calculating (n), (n?),..., one does not even need to
know the P’s and can just use G directly as follows:
9 \?
(V=) = (252 ) Gt (7.16)
82 =1

where G is expressed explicitly in (7.14).

Problem 7.3. (A) Compute and plot o2(t) = ((n?) — (n)?)/N.

(B) Compute the maximum P(n|t) at fixed ¢; call this nyax(t). Sketch or
plot nmax(t), compare with (n)(t).

(C) Supposing a lethal dose of radiation were determined to be njetn, =
Ne= for N = 10%. Plot the integrated probability of being exposed to a
lethal dose (or greater!) as a function of /7.

Problem 7.4. The initial condition under which this model was solved
was given as P(n,0) = d,0. But typically we know only the total number
N of nuclei at t = 0, as some of them may have decayed previously. Absent
any other information except that their average age >>> 7 at t = 0, show
that the statistically most probable initial condition P(n,0) is some sort of
exponential or Poisson distribution, and find what it is.

7.7. Boltzmann Equation

As we saw, the motion of particles is influenced by their collisions with other
particles although their net migration is mainly influenced by applied forces
and by density gradients. Upon combining the latter, the so-called “stream-
ing terms”, with the collision integral, we obtain the Boltzmann equation.

The Boltzmann equation (“BE”) regulates the average flow of particles,
hence the density, pressure, and other thermodynamically averaged pro-
perties of the dilute gas, but not fluctuations. Because it is so economically
and persuasively formulated this equation is frequently extended beyond its
strict domain of legitimacy.

Aside from the transport of conserved fermions the BE is also used to
study the transport of heat by phonons (a typical example of non-conserved
bosons), and the transport properties of mixed fermion and boson systems.
The same equation is used to study collective modes, such as sound waves
in an ordinary neutral, monatomic, dilute gas, and to compute transport
parameters (electrical conductivity, Hall coefficient, thermal conductivity,
etc.), in systems where scattering plays only a secondary role.
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We first set up the BE, treat transport in the following sections and turn
to the collective modes after that. Recall the Liouville Fquation of classical
dynamics, governing the motion of points (either their density n(r,p,t) or
their probability) through phase space. With (n(r,p,t)) = f(r,p,t), the
effects of spatial drift, of external forces, and of any explicit time-dependence
on f are all collected in the Liouville operator L = {0/0t +v -V, +F -V, }:

Of(r,p,t)/Ot|stream = {0/0t +v -V, +F -V, }f(r,p, 1) (7.17a)

where v = p/m = dr/dt for particles of mass m and F = dp/dt. The
average number of particles in an infinitesimal 6-dimensional cube d®rd>p is
f(r,p,t)d®>rd®p and Eq. (7.17a) gives the rate at which it increases. However,
the streaming of particles into d3rd®p is countered by collisions. According
to Eq. (7.5), and assuming spatial homogeneity, this rate is:

Of(x,p,t)/Ot|con. = — // Ppod3p, PPy K (p, polply, pb)
Xd(p+p2— P —Pp2)i(e+e2 —er — o)
x {f(p,t) f(pa,t) — f(p1, ) f(Ph, 1)}
= —Co{f(r,p,1)} (7.17b)

defining the two-body collision integral as a functional operator C5 acting
on f. It conserves energy and momentum. Other, distinct, collision integrals
need to be introduced for inelastic processes and for scattering processes at
impurities and at surfaces in which momentum is not conserved.

The Boltzmann equation (“BE”) combines (7.17a) and (7.17b). With
df /dt|net = L{f(r,p,t)} + Co{f(r,p,t)} = 0 for particle conservation,

Of (r,p,t)/0t|stream = Of (r,p,t)/0t|con. (BE) (7.18)

After some time has elapsed this equation may acquire an asymptotic
solution f(r,p) that is independent of time, possibly sustaining a constant
flow of current. It is tempting to conjecture that the collision term drives
the distribution toward a steady-state of optimal entropy production just
as it does in equilibrium (cf. Boltzmann’s H-Theorem). A time-independent
current-carrying solution cannot correspond to thermodynamic equilibrium
because — essentially by definition — in equilibrium, no currents can flow.
But a constant solution to (7.18) is compatible with a new and different
state of matter denoted the steady-state.

One stretches the notion of “steady-state” to encompass cases where
the applied forces F oc u(t), periodic functions of time. For example, if
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f(r,p,t) becomes asymptotically synchronous with the applied force, i.e. if
flr,p,t) — f(r,p)+0f(r,p)u(t), one denotes this the steady-state solution
as well.

The BE is rather difficult to solve in certain cases, either because of the
complexity of the non-linear scattering kernels or because of the involvement
of several species that share the total available energy and momentum. An
example of the latter is the electrical conduction in highly purified metals
where electron-phonon scattering affords the principal mechanism of electri-
cal resistance.

We note, in passing, the existence of a variational principle that allows
a direct calculation of average transport parameters even if the BE proves
intractable. In the case of electrical transport the variational integral is con-
structed in such a way that the exact (albeit, unknown) distribution yields
an absolute minimum in the resistivity 1/o, with o the electrical conductiv-
ity. Thus if the resistivity were calculated using a suitable “trial” distribution
and minimized with respect to the adjustable parameters, the result would
be a satisfactory upper bound to the exact answer, i.e. a lower bound to
the exact 0. The derivation of this theorem found in John Ziman’s book®
is based on the original work of Lord Rayleigh” in the context of hydrody-
namics, as generalized subsequently by Onsager;' it is called the principle of
least entropy production.

7.8. Electrical Currents in a Low-Density Electron Gas

Initially let us assume a constant but small charge density allowing us to
study the electron gas in the classical limit. Physically this scenario ap-
plies to homogeneous n-type semiconductors but, after a trivial change in
the sign of the charge e, it applies to p-type semiconductors as well. After
minor modification, it applies to metals as well. However, interfaces, such
as found at rectifying junctions, create a density gradient that requires a
special treatment beyond the scope of the present discussion.

In the absence of a density gradient there is no diffusion term. Assume
a spatially homogeneous time-dependent electrical field E,, cos wt along the
z-axis. For charge carriers of charge e and effective mass m the BE takes on

&J. Ziman, Electrons and Phonons, Oxford, 1960, pp. 280 ff.

hLord Rayleigh (J. W. Strutt), Phil. Mag. 26, 776 (1913).

L. Onsager, Phys. Rev. 37, 405 and 38, 2265 (1931), L. Onsager and S. Machlup, Phys.
Rev. 91, 1505 and 1512 (1953).
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the following form:

{8815 +eE, cos wtaiz] f(p,t) = =Ci{f(p,t)} — Co{f(p,t)}, (7.19)

where Cy was defined in (7.17b) and C} is an additional, one-body collision
operator, corresponding to elastic collisions of the individual charge carriers
with impurity atoms, surfaces and other imperfections spoiling the transla-
tional invariance of the crystal. Explicitly,

Ci{f(p,t)} Z/d3p’K(plp’)5(6( ) —e(@){f(p,t) = f(0", 1)}, (7.20)

While this integral is on the “energy shell” it does not conserve momentum.
Assuming the kernel K to be even in p and p’,J this takes the generic form:

f(pv t) — gO(p, t)
7(p)

where L = [ d*K(plp)5((p) — (/) and @(p,t) = (f(p,1)) are both
isotropic. The quantity 7(p) is the “mean-free-time” of a carrier of energy
g(p) between “collisions” and is related to the “mean-free-path” I(p) by
7(p) = l(p)/v(p), where v(p) = dc/Ip = p/m. In the event [ is constant,
7(p) = ml/p.

To illustrate in closed form the possibilities arising from the BE, let us
choose [(p) o p instead, hence 7(p) = 7 = constant. This results in a “toy
model” that can be solved for the time dependence of the current j, and of
the Joule heating j- E without our ever solving for f(p,t). The procedure is
as follows:

Multiply both sides of the BE by erv,/V and sum over all p. The term
in Cy vanishes by conservation of momentum, while — with C in the form
of Eq. (7.21) — one sees that the sum over v,p(p,t) in Cy vanishes by
symmetry. What remains is,

832
"ot

C{f(p,t)} = (7.21)

_TE coswt—sz ‘];(ﬁ;t) =7, (7.22)

We change the sum into an integral and follow this by a partial integration
on p,. This results in an expression in which only n = N /V and j = j,
figure:
2

05 e‘T )
7‘8—‘1 — FnEw coswt = —j . (7.23)

JE.g. a function of p and p’ only.
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The quantity p, = e>7/m is defined as the electrons’ mobility, a measure
of the quality of the material. The d-c¢ electrical conductivity o, = nuy,.
Assuming the electric field is “turned on” at ¢t = 0, the explicit solution of
this first-order d.e. for j(t) is

= ﬁﬂu{cos wt + (wT) sinwt — e 7Y (7.24)

J(t)

Ohm’s law is satisfied: the current is linearly proportional to the electric
field. The electrical conductivity is the in-phase component, og(w) = 0,/[1+
(w7)?]. The out-of-phase or inductive component is o;(w) = —o,wr/[1 +
(wr)Q]. Together they yield the well-known “Drude conductivity” of the clas-
sical electron gas.X The exponential represents the transient response to the
step function at ¢ = 0.

Next, multiply the BE by p?/2mV and sum over p. The collision terms
vanish identically (both Cj and Cy are “elastic”, i.e. conserve energy) and
the remainder yields an equation for for the rate of increase of the total
kinetic-energy-density e(t) = E(t)/V,

de(t)/dt = (E,, coswt)j(t) (7.25)

with j(¢) given in the preceding equation. When integrated, this gives the
equation for the time-dependence of the “Joule heating” of the electron
gas. Asymptotically, the energy shows a linear rate of increase, e(t) =

(t/2)0(w)(Ew)*.

Problem 7.5. Carry out the derivation of Eq. (7.25). Then perform the
calculations outlined above to obtain the carriers’ kinetic energy as a function
of t. Distinguish the systematic increase, the out-of-phase oscillations and
the transient contribution under the two different scenarios: 7w > 1 and
Tw < 1 [N.B.: the d-c¢ limit is w — 0.] [Hint: express ¢ in units of ~ 2/w.]

We conclude that in the absence of inelastic collisions there can not be
a true asymptotic steady state! (For the energy stored in the electron gas
increases without bound; if it were legitimate to assign a temperature to this
ensemble, it too would increase linearly with t.)

*Had we used a complex driving field E,, exp(iwt), the complex conductivity resulting from
this equation would be written as or(w) + ior(w) = 0o /[1 + iwT].
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7.9. Diffusion and the Einstein Relation

Integration of the BE over all p yields the equation of continuity,

M +V-jr,t)=0 (7.26)
ot
with n(r,t) the local carrier density and j(r,t) the local particle-current
density. Note that, by detailed balance, both C'; and C5 vanish upon being
summed and do not appear in this result.
Fick’s Law expresses empirically a linear dependence of diffusion currents
on the concentration gradient. With D the diffusion coefficient, Fick’s law
states:

jp(r,t) = —DVn(r,t). (7.27)
Combining it with the equation of continuity yields the diffusion equation:
w — DV2n(r,t) =0. (7.28)

Fourier transformation of the diffusion equation yields the signature disper-
sion for diffusion: w = iDk>.

Now, in a charged gas consisting solely, say, of electrons, Poisson’s equa-
tion relates en(r,t) to V- E(r,t). So it seems the diffusion equation can relate
the conductivity to the diffusion coefficient. Actually, Einstein was first to
consider the sum of charge currents, oo F — eDVn, with o9 = ngp,; using
the barometer equation, n = ngexp(—V(r)/kT) and E = —VV he extracted
the “Einstein relation” connecting the diffusion coeficient and the mobility:

D=—u, (7.29)
le]

upon setting jiot = 0 in thermodynamic equlibrium. This formula applies to
electrons and /or holes separately in semiconductors and to other types of dif-
fusing charge carriers, including vacancies and inerstitials in semiconductors
and in ionic crystals.

7.10. Electrical Conductivity of Metals

In a dense electron gas such as that in a metal, the streaming terms in the
BE are formally unchanged, remaining precisely as given in Eq. (7.17a). Of
course, the initial conditions are different. At ¢ = 0 the initial distribution in
the semiconductor is a Maxwell-Boltzmann distribution, while in the metal
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it is the Fermi—Dirac distribution at the initial time. But if o can be obtained
knowing just the particle density n — without even requiring details about
f — such distinctions become irrelevant!

On the collision side of the BE, (4 is unaltered, because in one-body
scattering processes the factor {f(1—f")— f'(1—f)} reduces to { f—f’}, hence
the exclusion principle plays no apparent role. Also, in a dense, degenerate,
electron gas only those states within k7" of the Fermi surface are important.
Thus, in metals, there is little error in setting 7(p) = 7(pr) = constant in
Eq. (7.21). On the other hand Cjy is affected by the exclusion principle. It
now takes the form:

Coff(r,p, 1)} = /// & pad’ py P py K (p, palp, p)
xd(p+p2—Pr —Pr)i(c+e2—er —ey)
< {f(p.t) f(p2,t)(1 — f(P1, ) (1 — (P2, 1))
— FPLOf P51 = fp, 1)L = f(p2,1)} . (7.30)

But the procedure outlined in Eqgs. (7.22)-(7.25) never involved Cy!' Thus,
the formulas obtained for the dilute gas remain true for metals. Explicit
proof is given in the following Problem.

Problem 7.6. Repeat the calculations in Eqs. (7.19)—(7.23) using Cs ap-
propriate to Fermi-Dirac statistics, as given above, to re-derive Eqgs. (7.24)-
(7.25). Compare magnitudes of 7 and of n in the metal to those in the
semiconductor, using reasonable estimates.

7.11. Exactly Solved “Backscattering” Model

Let us revisit Egs. (7.19)—(7.21), replacing the isotropic kernel by one sharply
biased in the forward and backward directions, i.e. by K o< §(1 — cos? 6, ),
where 0,y = cos~1p-p’/pp is the scattering angle. The following replaces
Eq. (7.21):

f.t) — f(=p,t)

Ci(f(p,t)) = 5y

(7.31)

'Because Cy explicitly conserves total momentum, two-body collisions can not affect the
total current in cases where the effective mass tensor can be defined, i.e. where v; « pg,
Uy X Py, etc., as is usually the case in semiconductors.
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This defines the “backscattering model”.™ We found previously in Eqgs. (7.22)
ff that if 7 is independent of p one can obtain the time dependence of the
current density without any knowledge of the distribution function whatso-
ever. With the special scattering function defined here, this earlier cnclusion
remains substantially unchanged, but it will now be possible to determine
what kind of f(p,t) makes the steady-state current possible.

With the electric field along the z-direction it seems clear that the dis-
tribution in p, and p, is affected by neither the streaming terms nor by the
collisions. For the low density gas it is thus possible to factor f as,

—p2 _

2
f(p,t)anp< e — Py

W) f(pz, t) .

This reduces the BE to a one-dimensional p.d.e. equation for f(p,,t),

Although we only analyze the dilute case in this text, the diligent reader

may wish to apply the same method to the metallic limit."
First, introduce the even and odd parts of f in p,, denoted F' and G re-
spectively, as the new dependent variables. Each satisfies a different equation:

OF (p.,t) 0G(p.,t)
T +el o, 0 (7.33a)

and

8G(pZ7 t) 8F(pZ7 t) _ G(pZ7 t)
R (7.33D)

Differentiation of (7.33a) w.r. to ¢t and (7.33b) w.r. to p, yields a second-order
differential equation in F',

O*F N 10F 2 O°F

o2 T ot op?

The solution to this wave equation is easily expressed in the “natural”
variables ' = /27, @y = (2mkT)~"? and a(z) = [1 - (2reEx)?)V/2 Tt

(eE) 0. (7.34)

"This section is extracted from D. C. Mattis, A. M. Szpilka and H. Chen, Mod. Phys.
Lett. B3, 215 (1989); also, see J. Palmeri, J. Stat. Phys. 58, 885 (1990), who extends the
work and derives the connection to hydrodynamics.

"In the case of a dense electron gas (metal), f is not separable but takes the form
f(eay,p=yt), With ey = (p2 + pi)/2m remaining fixed. The initial condition is then
f = Fermi-Dirac function at ¢ = 0. The p.d.e. is then solved, exactly as here, although
with this different initial condition it has a different outcome.
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Fig. 7.2. Evolution of distribution function with time.
Exact distribution function f(p,,t) as given in Eq. (7.35), at t = 0, t; = 500 x (27),
and to = 5000 x (27). The scaled momentum is in units of 1/xy. The parameter
21eFExqg is set = 0.1 in this calculation. Asymmetry in the distribution function
f(p2,t) is highlighted by horizontal line segments. Despite all external appearances,
f continues to evolve (broaden and flatten out in time), all the while the current
density remain strictly constant and ohmic (proportional to the electric field).

is subject to initial conditions appropriate to a dilute-gas: at ¢ = 0, f =
Maxwell-Boltzmann distribution. Explicitly,

a:)2

F(p.,t) = ie_t/ - dx(cos x)e_(”o
2z . - Pz

x {(1 + L) ef'o(@ 4 (1 — L) e—t’a@)} (7.35a)

a(z) a(z)
The odd part can then be inferred from (7.33a),

TelE [ rsinp,xr _(_z )2
G(pZ7t) = %e t / dITQQZ‘))Ze (2“30)
—00

t'a(x)

x [ef' (@) — g=t'al@)] (7.35b)

The desired result f(p,,t) = F(p.,t) + G(p.,t) is plotted in Fig. 7.2 as a
function of p, at various values of t.
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Conclusion: despite the absence of a mechanism for heat dissipation it
is possible for the current to evolve into an ohmic steady state. However,
absent any plausible mechanisms for heat dissipation, the distribution func-
tion f continues to evolve forever. The introduction of any such additional
mechanism should affect this conclusion mightily.

7.12. Electron-Phonon Scattering

The electron-phonon scattering mechanism allows both the momentum and
the excess energy in the electron gas to be transfered to the phonons. Because
the latter are neutral this process detracts from the overall electrical current.

The collision integral that we shall wish to add to the rhs of the BE in
(7.19) is — Cepn{f(p,t),ng(t)}. In semiconductors the equilibrium distri-
butions, ensuring that C,p, = 0 initially, are the Maxwell-Boltzmann for f
and the Planck for n,. At later times, ¢ > 0,

Comt I prt) (0} = [ AR @O+ 1y ()5 — 2prg — hiy)
+ng(t)d(ep — Eptq + hwy)]
— F(p+ @O+ ng(t)3(ep — g + Tisy)
g (1)3(ep — Eprq — hioy)]) (7.36)

in which both w, and K(g) are assumed to be even functions of q.° Clearly
there is no qualitative change in the solution to the electrons’ BE except that
T decreases with an increasing number of phonons. In a closed system, a
steadily increasing number of phonons picks up momentum and energy from
the electrons at a rate determined by a collision integral rather similar to the
above. We should also write a BE for the phonons. Coupled equations of this
type have recently been solved to a good approximation so as to yield details
of the decay of nonequilibrium populations of carriers and/or phonons.P

But at this juncture the reader might be curious to learn of a simpler
and general procedure, that allows to deal with all manners of transport and
scattering mechanisms.

°In metals, f(p,t) in the above is replaced by f(p,t)[1— f(p+4q,t)] and f(p+q,t) by f(p+
q,t)[1 — f(p,t)]. In metals momentum non-conservation, associated with Bragg scattering
(umklapp) of carriers at the F'S, i.e. those with relatively high momentum, plays an essential

role. For details see J. Ziman, op. cit.®
PSee P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
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7.13. Approximating the Boltzmann Equation

In the preceding section we briefly examined a nonlinear scattering term
and had to be satisfied with just an estimate of the behavior (although
quantitative results do exist in the literature.®4) In a metal the terms inside
the integral appear to be even more highly nonlinear owing to the presence
of the extra Pauli-principle factors of (1— f). If, however, we had determined
that the forces and/or the spatial gradients were especially weak compared
to kT (or to ep in a metal), and that a steady-state close to thermodynamic
equilibrium had been established, a set of simplifications impose themselves.

For example, assume that f(p,t) differs from its thermal average fo(¢/kT)
and n4(t) from the corresponding Planck function ng(q) = n(hsq/kT) by
small quantities only, linear in the perturbing forces or density gradients.
After we discard terms in the BE that are nonlinear in the perturbing forces
or density gradients, what remains can, as in most simple linear equations,
be solved explicitly. This approximation is called “linearizing the BE”.

A second approximation, generally denoted the “relaxation-time approx-
imation” to the BE, is more severe and, as we shall determine subsequently,
harder to justify. Let us illustrate it with the aid of the one-body collision
term Cj of Eq. (7.21), which is already inherently linear in f.

The relaxation-time approximation consists of replacing ¢(p,t) by
fo(e/kT), ensuring that, asymptotically, f — fo once the streaming term
is turned off. This approximation is most commonly used in the (other-
wise unwieldy) calculation of transport coefficients, including electrical and
thermal conductivities, and in the calculation of Hall coefficients (electrical
transport in an external magnetic field).4

In semiconductors, where the dispersion relation of conduction particles
differs significantly from the simple ¢ = p?/2m, transport coefficients have to
be expressed as components of a tensor. The relaxation-time approximation
provides a simple way to calculate them. Let us illustrate this, first by solving
for the electrical conductivity of a Maxwell-Boltzmann gas of charge carriers,
of arbitrary dispersion (p) and scattering lifetime, 7, = 7(e(p)). With static
electric field £ now assumed to be along the z-direction, the linearized BE
is just,

Vs dfolep) f(p) — folep)

= (7.37)

FE
¢ Oep Tp

9These and many other examples of its use are calculated in A. Smith, J. Janak and
R. Adler, Electronic Conduction in Solids, McGraw-Hill, New York, 1967.
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where v, = 0g),/0p,. The error is O(E x (f — fo)), ie. it is quadratic in
the external field parameter. Equation (7.37) is solved by inspection: f =
foll + h], where h, = eET,v,;/kT is linear in the small quantity E. Hence
the electrical current density along the « axis is

. 2E
Joa = ﬁ /d?’pfO(Ep)Tpvaa

(where a = z,y, or z) and the components of the conductivity tensor defined
by jo = >_50a,Ep are,

62
O = 7 / d*p folep) Tpvavs, (7.38a)

with fo normalized to the particle density, [ dpfo(e,) = ne. This yields,

(TpvavB)TA - (7.38b)

For spherical energy surfaces, e, = mv?/2, (7.38b) simplifies further, to
Oap = 000a,p With 09 = nge?r/m. Here 7 = (27,¢,/3kT) 74 is a lumped
parameter.

The linearized approximation f = fyo[l + h| fails if |h| is not < 1 as
originally postulated. Where this postulate fails (i.e. at large |vz| x 1/|E|)
it is the pre-factor that becomes vanishingly small, fy exp(2|e T ‘2) Thus,
although it is not exact, the linearized solution is seen to be accurate where
1t counts.

7.14. Crossed Electric and Magnetic Fields

The electric field is not the only force that can be exerted on a charge carrier.
In crossed electric and magnetic fields, the Lorentz force is responsible for
what is in effect an induced, transverse, electric field, first discovered in 1879
by E. H. Hall. With the applied electric field along the z-direction and the
current flowing along the same direction, assume the magnetic field B to be
aligned along the z-axis of a rectangular bar. The Lorentz force is along the
y-axis; but as no current flows in this direction it must be countered by an
equal and opposite electric force £, caused by an accumulation of charge
carriers. F, is proportional to j, and to B. The constant of proportionality
is the Hall constant, Ry, and the non-diagonal component o, , is the Hall
conductivity.
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A simple calculation yields Ry = 1/nec, where n = density of carriers and
e is their charge." The Hall conductivity is 0., = nec/B. The arguments
are as follows: for no net force along the y-axis, £, = (v;)B/c. Then set
(vg) = jaz/me to obtain the stated result forthwith. The generalization of
Eq. (7.37) is,

0fo Ofo eB of of of
E,—+E,~— — vy — Vp C ==
el Ops + y@py] c [Uy8pz Y Opy v Or
_ L= hle) (7.39)
Tp
If one specializes to &, = p?/2m = mv?/2 and generalizes to time-

dependent applied and induced electric fields, the substitution f = fy[1+ A,
followed by division by fy, yields:

) o1
—e [Ex(t)% + Ey(t)%] Ogafz(g”)

mc

= - 4

eB Oh Oh v @ n @ h
or ot 1,

a p.d.e. in py, py, r and t for h(r,p,t). The quantity |eB/mc| = w, is the
“cyclotron frequency” for carriers of charge e and mass m. This equation
can be solved by the usual methods, that is: to any special solution add the
general solution of the rhs (homogeneous in h) chosen so as to satisfy any
imposed boundary conditions in space and time. The first such calculations
were carried out by Fuchs and others half a century ago, in an effort to gauge
the effects of surfaces on electrical conductivity in thin metallic wires and
in thin films, and later in the calculation of the Hall efect and cyclotron
resonance in semiconductors and in metals.®

In the case of the dc Hall effect, Eq. (7.39) suffices if we can approximate
Tp by a constant, 7, as is demonstrated in the following Problem.

*That is, Ry is negative for electrons and positive for holes.

°K. Fuchs, Proc. Camb. Phi. Soc. 34, 100 (1938). E. H. Sondheimer, Advances in Phys.
1, 1 (1952) and Proc. Roy. Soc. A224, 260 (1954). For conductivity and Hall effect with
anisotropic energy surfaces in semiconductor thin films: F. S. Ham and D. C. Mattis, IBM
Journal 4, 143 (1960).
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Problem 7.7. Assuming 7, is independent of p and the density n is con-
sant, multiply both sides of Eq. (7.39) by Tev, and sum over all p; repeat
with Tev,. Using the boundary condition j, = 0 to determine E,, obtain Ry
and o, , without actually calculating f.

7.15. Propagation of Sound Waves in Fluids

We know from common experience that sound waves propagate at a speed
s after being generated, while their intensity decays exponentially in a time
7. Experiment has shown that both these quantities are functions of the
wavelength. The following theory of sound propagation confirms this. It is
based on a linearization of the BE and is appropriate to small amplitude
waves and therefore not to large amplitude noises or “shock waves”.

For molecules in a dilute gas only two-body collisions enter into Eq. (7.18).
They provide both the mechanism by which sound is propagated and that
by which it is dissipated (as the energy and momentum in the collective
mode becomes transferred to the incoherent motion of individual molecules).
Again we write f = fy(1 + h) and retain only term linear in h. Thereupon
Eq. (7.17b) becomes:

Co(f(p.7 1)) = folp) / &ps / oy / &Bpa' K (p, palpy’, p2')

X 6(p+p2—p1i’ — p2)S(P* + p2® — m"* — p2"?) fo(p2)
X {h(p7 T, t) + h(p27 T, t) - h(plla T, t) - h(p2/7 T, t)} (741)

assuming the collision occurs over a small distance so ro & r. It is convenient
to rewrite the above as Ca(f) = nfo(p)C(h(p,r,t)), where C is a linear,
integral, operator on h, having a complete spectrum of eigenfunctions W
and eigenvalues \; = 1/27; (see footnote v, infra) and n = N/Ny is the
dimensionless particle density N/L? in units of a reference density No/L3.
We shall use a number of theorems taken from linear algebra. Consider, for
example,

C(V,) =\, . (7.42)

The eigenvalues A and eigenfunctions ¥ of the 2-body collision operator

are infinite in number and are known explicitly only in special instances."

‘L. Waldmann, Handbuch d. Physik Vol. 12.
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They usually have to be obtained by numerical means. As we shall show
shortly, all \’s are non-negative; the lowest 5 eigenvalues are zero while all the
others are positive. Unless the scattering kernel is singular or nonintegrable,
they are also bounded from above, lying in the interval Apin < A < Amax-
In any case, it is always permissible to expand the scattering operator in
its eigenfunctions and eigenvalues, as we shall do shortly. We express the
orthonormality of the eigenstates (with fp a weighting function) through

[ Epfo)VE @) 2s(0) = b (7.43)

Having factored out n, henceforth we normalize fo(p) to unity: [ d>pfo(p) =
1. The completeness of the ¥’s means that an arbitrary function h(p) can be
expanded in a “Fourier” series

h(p) = Aa¥a(p), with A, = / &p fo(" )V (0)h(p'). (7.44)
Inserting this expression for A, into the expansion of h yields,

hp) = [ / d°p' folp )V (p’)h(p')] Va(p)

all

= /d3p’ {fo(p') > ‘l’l'(p')‘l’a(l?)} h(p') .-

all «

As h is arbitrary this uniquely determines the {---} above,

S(p—p) = o) D VL) Talp)

all

= fo@') D Vi (p)Va(p). (7.45)

all

Problem 7.8. Prove that the preceding Fourier expansion of h is essen-
tially exact by showing explicitly:

2
[ &phoo) |hip) = 3 Ao =0.
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The scattering kernel has the following expansion in terms of its eigen-
functions and eigenvalues:

C = fol') D MUTE) U (p) = fol') D MU ()T, (). (7.46)

v>5 v>5
In this form it automatically satisfies the eigenvalue equation, (7.42):
Ca) = [ & | 1ol) X 2050, ()| Tal)
v>5
= A Pu(p). (7.47)

As we shall show, the first 5 eigenfunctions correspond to the 5 constants
of the motion and have A = 0. Therefore they need not be included in the
sums above. Upon multiplication of both sides of the equation above by
fo(p)\IJBr (p) and integration over all p, one obtains:

[ ) ¥ BIC W) = Aabya (7.48)
proving that the collision operator is a diagonal operator (o« = () in the

representation of its eigenfunctions, the ¥’s.
Now, the lhs of Eq. (7.47) originally stood for

C(V,) = /dng(p,pzlpl’,pz’)

X 8(p+p2 — p1i’ — p2 )6 (P + p2® — p1”* — p2"?) fo(p2)
X {\I/a(p) + \Ila(p2) - \Ija(pl/) - \I/a(p2/)} .

Inserting this definition into the lhs of Eq. (7.48) with 8 = «, we obtain:

[ dehe)

/dng(p,pﬂpl/,pz/)(s(p +p2—p1’ —p2)
2 2 12 12 / /
X 0(p* + p2” — 1" — p2"7) fo(p2){¥a(p) + Ya(p2) — Valpi') — Yalp2')}

1
=1 /d12pK(p,p2|p1',p2,)5(p +p2—p1’ — p2,)5(p2 +pa? —pi? — p2'2)

% fo(p) fo(p2) {¥a(p) + Va(p2) — Ta(pr') — Yalp2)}* 2 0

= A (7.49)
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(Recall the similar construction in the H-Theorem.) The integrand is
non-negative. There exist 5 linearly independent eigenstates having zero
eigenvalue: the 5 constants of the motion, ¥ = 1, p;,py,p. & p?. All others,
starting with g, have eigenvalues A > 0.

To determine the collective modes in the BE suppose the driving force
in F(r,t) = (0,0, F,(r,t)) takes the form F,(r,t) = 3, e!*"=“) [ . Within
the linear approximation and according to the superposition principle, it is
permissible to consider the response to each Fy , separately, as the response
is linearly additive. Then the BE factors into separate equation for each
mode. Each takes the form:

i <—w + ip . k) hi.w(p) + Fk,wi log fo(ep) = —nC'(hikw(p)).  (7.50)
m p.

The solution of Eq. (7.50) determines the response, viz., hi o, (p) = Fi wGr o
in the Fourier decomposition of h(r,t;p) = >y, oo (p)e =40 " A reso-
nance occurs wherever Gy, diverges, e.g. at a pole wr(k) — iwr(k) in the
complex plane. Fluids are isotropic. Thus the orientation of k is immaterial
and the pole is at w(k) = wr(k) — iwr(k), where k = |k|. We identify the
pole in the response function as a sound wave and the dependence of wgr on
k as its dispersion, with wr(k) measuring the rate of decay or half-inverse
lifetime, 1/27(k)." The study of dispersion involves only the homogeneous
part of the BE. We now derive the coupled equations for a new eigenvalue
problem that will determine w = wr(k) — iwr(k).

/d‘"’pfo(p)\lfg(p)z' <—w + %p : k) %:Aa‘ya(p)

~ / Epfo(p) V5 () S Aaha¥a(p),

wAg — %Z Ao / pfo(p) V5 (p)k - pa(p) = —inAgds.  (7.51)

These coupled equations have a solution iff a secular determinant
vanishes, i.e. det||Mpg | = 0, where .

Mg = (w+inAg)dga — % / Epfo(p) VS (p)k - pPal(p). (7.52a)

“If the energy in the sound wave decays at a rate o< 1/7, the rate of decay of the amplitude
is, by definition, 1/27.
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Let us work out the first 5 solutions, properly normalized and orthogonalized.
Define u = p(2mkT) "2, v = w(m/2kT)Y/? and Ty, = n\y(m/2kT)Y/2. In
these units fo(u) = 7 3/2exp —u? and I'y,...,T'5s = 0 and the entries in the
secular determinant are given by

Mo = (v +iT5)550 — / AP fo(u) U (w)k - ul(u) (7.52b)

Problem 7.9. Show that ¥q,..., V5 below are an orthonormal set in u,
Le. [ dPufo(u)W; (u)W;(u) = & ; with fo(u) = 7732 exp —u?:

Uy =1, (Uy, U3, Ty) = v2u, Uy = (2/3)2(u? —3/2). (7.53)

An elementary theory can be constructed using just the first 5 eigenfunc-
tions. Choose the direction of k as the z-axis. The 5 x 5 secular determinant
contains only the following nonzero entries:

M, o=v for a=1,2,3,4,5, My 4=My 1= — k/V/2 and My 5=Ms4 = —k/V/3.

Elementary algebra shows that three roots are zero, with the remaining two
being v = £k+/5/6. In physical units,

w = +k(5kT/3m)"2 . (7.54)

This result is also well known from elementary thermodynamical considera-
tions in the limit £ — 0 although clearly, the ideal gas theory does not deal
adequately with the collisions and neither does the 5 x 5 matrix used here.
To involve collisions, one must extend the theory and calculate the complex
w as a function of k using 6 or more eigenfunctions. Both real and imaginary
parts of w now involve the I'’s. A simple-minded extension is suggested in
the following problem but it does not go far enough.

Problem 7.10. Construct a sixth eigenstate extending the preceding re-
sults, by postulating Ug = a((u?)?+bu®+c), obtaining a, b, ¢ by requiring g
to be orthogonal to W1 and W5 and to be normalized. Calculate the nontriv-
ial matrix element that connects g to U5. Using (7.52b), solve for the now
complex v(k), written in the form vg = +kp(k/Tg), and vy = Tex(k/Ts)
and compare the functions ¢ and y you have calculated with the results
found in Sec. 7.16.
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7.16. The Calculations and Their Result

Although one might plausibly believe that by extending the set of basis
functions in which to construct the secular determinant one achieves higher
accuracy, the opposite may be true. It is known that the convergence is
slow and uncertain. A non-perturbational approach in which all the W’s are
included imposes itself, as outlined briefly below.

Rather than excluding an infinite number of states, keep the 5 eigenstates
with zero A (the constants of the motion) and approximate the remaining
Aj’s (j > 5) by Amin," i.e.,

v,) = / &0 | Fo) S Amin @ ()05 (p) | Walp)

v>5
AminVea(p) for a > 5
= (?) (7.55a)
0 fora<h

Let us invoke completeness to render this expression more transparent:

)| Yal(p') (7.55b)

5
fo(p Z

= )\mm\p - mln /d p

We now include this formula in the homogeneous BE — including streaming
parts — as reéxpressed in the more convenient, dimensionless, language of
the u’s, v’s and I''s.

The sound wave amplitude ®(u) satisfies the integral equation:

[+ min — kuy|P(u) = iCypinm ™~ 3/2/d3 T

X {1+2u-ul+§ <u2—g> (u’Q—gﬂ d(u') (7.56)

VIt is even possible to verify the accuracy, by repeating the calculation using Amax. In
cases where the spectrum between Amin and Amax is rather narrow the results of the two
calculations would nearly coincide.
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obtained by explicitly writing out the bilinear sum over the first 5 eigenfunc-
tions given in Eq. (7.53). The kernel in the integral equation is the sum of
5 separable kernels. The equation itself is solved by defining a, b and ¢ as
follows:

a= # /d3u/e_“/2<1>(u’), b= # /d3u’e_“/2u/<l>(u/)
and
Byl o 3 /
= /d ( _ 5) &) (7.57)
Then Eq. (7.56) yields the explicit solution for &:

[a+2b-u+ 2c(u? — 2)]
[0+ il min — ku,] '

®(u) = Tmin (7.58)

Inserting this into the integrals in (7.57) yields 5 equations in a, b and
c. With each being explicitly complex, this substitution actually yields 10
linear equations in 10 unknowns. However, after making the self-consistent
assumption b, # 0, b, = b, = 0 their number is reduced to 3 complex
equations in 3 complex unknowns; a, b,, and c.

a = Zrmm 3/2 / du/ /2 —u” /0 d’l9/ sin 19/

[a+ 2bu’ cos ¥ + Zc(u? — 3)]

[V + il min — ku' cos V'] (7.59)
x ' cos la +{jﬁi}fﬁ:{—;§/c§iiﬁ)g ) (7.50b)

and
(P
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These have no solution unless the determinant of the coefficients of a, b, and
c vanishes, that is:

A11A12A13
det A21A22A23 =0 (760)
A1 Az2 Ass

where

1
A11 =1- ’irminJ(l), A12 = —z’I‘minJ(2u’ COS 19/), A21 = 51412 s

. 2 3
A1z = —il'minJ (gua - 1) , Az = 51413,

Ay =1— iI‘minJ(2u'2 cos? 9,

2
Aoz = —ilmind (u' cos ¥’ <§u'2 - 1>> ,
9 2
Azp = 3A3, Azz=1—1ilpinJ <§ ( — §> )

and

_ du'ue™ ’Q/Wdﬁ/- 9 g
7r3/2 / we 0 St [v 4 T min — ku/ cos ']’

where g is any of the polynomials in %’ and cos®’ in the preceding list. The
results simplify if we first perform the integration over ©’.

/Wdﬂ/ sin 1 _ 1 og vt Lanin + kv
0 [+ il min — ku' cos '] ku! v+ il i — ku'’
/ﬂdﬂ' sin g’ cos ¥ v+ ilin gl + il min + kv’ 2
0 [v 4 il — ku' cos ] (ku!)? & + il in — k! ku'’
and

/ 2 19/

29 sin cos

/0 St [v 4+ il min — ku' cos V]

(v + il min)? o + il min + ku' U+ ilmin
(ku/)3 & v+ Z.Fmin — ku! (ku’)2
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Fig. 7.3. Dispersion and decay of sound waves.V

Universal plots based on Eq. (7.60). Vertical azis (in units of I'nin = the effective
two-particle scattering cross-section times the density): the frequency vg (curve la-
beled R) and decay rate vy (labeled I) of a sound wave.

Horizontal axis: the wavevector k (also in units of I'yiyn). The curves are, to good
accuracy, linear and parabolic respectively. Within the approximations of this the-
ory, the speed of sound s = wgr/k remains accurately constant over the entire
range of wavelengths where the sound wave can propagate, i.e. for k not exceeding
O(1.75' win) (wavelengths A no shorter than ~ ZI'y,). This illustrates an alto-
gether non-intuitive but inescapable conclusion: the denser the gas, i.e. the stronger

the collision parameter -, the better the sound propagation!

The integrations over u’ in the J’s have to be performed numerically. The
corresponding A, ,, are inserted into (7.60) to find the nontrivial roots vp —
tvr as functions of k and I'yi,. With the results displayed on the next page,
we note from an expansion in powers of k that the solutions have to be in

“These results and the graphs in Fig. (7.3) are based on the numerical evaluation of
Eq. (7.60) obtained by Dr. Prabasaj Paul at the University of Utah using Mathematica.
The author is grateful to Dr. Paul for his help.
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the universal form:

/2
VR = (g)l E-[1+4c(k/Tmin)? + co(k/Tmin)* + -]
and
v7 = dyTiin(k/Tnin)2[1 — do(k/Tmin)? + - - -] (7.61)

where the calculated ¢; =~ 0.1 and d; ~ 0.5.% Convergence of either series
becomes poor for k > 1.5I'nin. At fixed k the lifetime of the sound wave
T o 1/vr vanishes o I'yin in the absence of collisons.

Similar results are found in liquids by solving the linearized equations of
hydrodynamics — with wy o k? being associated with diffusivity.

*N.H. March and M. P. Tosi, Introduction to Liquid State Physics, World Scientific, 2002;
p- 184.



Chapter 8

The Transfer Matrix

8.1. The Transfer Matrix and the Thermal Zipper

We first encountered the transfer matrix in Sec. 4.9 in connection with
the classical configurational partition function for interacting particles in
1D. This methodology really comes into its own in 2D, where it allows a
number of classical configurational partition functions to be reéxpressed
in terms of the lowest eigenvalue of a solvable one-dimensional quantum
system.? Ising’s ferromagnet, studied later in this chapter, is the “cleanest”
and most successful example of this technique but we discuss other, simpler,
applications as well, starting with the “thermal zipper” of this section.
Consider a two-dimensional square (“sq”) grid, with objects at sites
(n,m), as shown in Fig. 8.1, and interactions along the connecting verti-
cal or horizontal bonds. We wish to sum (or integrate) the Boltzmann factor
over the 6 internal degrees of freedom (pPy.m, rn.m) of each object. Because of
the interactions, the task is usually quite onerous. For this reason we limit
the discussions to classical statistical mechanics, in which the momenta and
coordinates are variables that can be independently specified. Similarly, in
those classical magnetic systems we are able to solve, the spins will be vector
quantities of fixed lengths® pointing along precisely specifiable directions.
The zipper illustrated above is an amusing, nontrivial, system with which
to start. Vectors ry ., = (Znm, Yn,m, 2n,m) Mmeasure the deviation of the
“particle” on the “n-m”th site from its ideal position on the rectangular
grid. The “vertical” bonds K/2 X (Tym — Tnmt1)? (ie. those connecting

#The transfer matrix can also be used to map problems in 3D statistical mechanics onto
2D quantum systems, but unfortunately the latter are generally as difficult to solve as the
former is to evaluate. ..

PIn the so-called “spherical model”, even this mild condition is relaxed.

183
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m+1

n-1 n n+1

Fig. 8.1. Model for a thermal “Zipper”.
Shown: a rectangular grid of N columns xM rows. The atoms are on vertices
connected to their nearest-neighbors (thick lines). Vertical bonds are “unbreakable”
harmonic oscillators while horizontal bonds are inelastic and can be torn open. The
zipper is shown opening up between nth and n+ 1st column above the m + 1st row.

nearest-neighbors along the same columns) are elastic and wunbreakable,
as there is a restoring force no matter how great the separation. The
“horizontal” bonds denoted U are Uy p—1.m = —Vo if |rpm — m—1m| < a
and 0 otherwise; if stretched sufficiently they “break” and the 2D fabric is
rent into separate, disconnected vertical strings.

Let us evaluate a typical vertical bond K/2(r, ., — I'n7m_1)2 by integrat-
ing over the coordinates of the (n, m — 1)st site. For typographical simplicity
write r,, , = r for the “target” variable and ry, ,,,—1 = 1’ for the dummy of in-
tegration. Of course, prior integrations over the rows m—2, m—3, ... have re-
sulted in a non-negative but otherwise arbitrary function ¥(ry, ,,—1) = ¥(r').
It, too, appears in the integral shown below. Now, the following identity

r—r )2 T 3/2 kT 2
/d3 '{ (%T ) }\If(r') _ <2KkT> BV (8.1)

proves helpful, as it replaces the Gaussian kernel in this integral expression
by a differential operator acting on the target site’s coordinate. This identity
is verified below.

Problem 8.1. Let U(r') = expiq -1’ and show that both sides of the
above equation yield identical results. Using Fourier’s theorem, show that
this identity holds for any arbitrary function W.
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Thus, the following operator Vi is the functional equivalent to integrating
over all N vertical bonds connecting the m — 1st row to the mth. It acts on
a normalized function ¥ of the positions of particles in the mth row:

3N

1= <27rk:T) ’ e(S_T)(Zi\l[l ne1 Vi) (8.2a)°
K

We find it necessary also to include a factor V5 with which to account for

the horizontal “zipper” bonds situated within the mth row:

Vy = e P nUlrnia=rn) (8.2b)°
Combining the two we obtain

ViVaU,,(ry,...,rn) = 2¥,41(r1, ..., TN) .

If the Mth row is connected back to the first the system is translationally
invariant in the vertical direction. The largest eigenvalue of a translationally
invariant, positive, operator belongs to a translationally invariant, positive,
eigenfunction. Thus ¥, 1 = ¥,, = ¥, is independent of row and,

ViVaU(ry,...,ry) = 29(ry,...,rn), where Q = 2™ . (8.3)

Formally, this same result can be obtained by recognizing that the trace over
the variables in the mth row is an inner product connecting matrix operators
in the mth and m + 1st rows. The configurational partition function (@ is:

Q=tr{ - (ViVa)m=1- ViVa)m - ViVa)mg1 -}

Next, introduce a transformation exp S with which to diagonalize V;V5,
Q=tr{--)- (e "V1Vae%) - (e 9V Vae®) - (-}

Each diagonal V115 has a set of eigenvalues zy > z; > --- (listed in de-
scending order), and thus Q = 3.5 zJM = (20)M[1 + ZBl(zj/zo)M] =
(20)M in lim-M — oco. Thus, in the thermodynamic limit, only the largest
eigenvalue zg contributes to Q. This allows the identification of z in Eq. (8.3)
as zg, the largest eigenvalue of V;V5, in accord with the general thermody-
namic principle that — given a choice — the correct () is always the largest,
ensuring the lowest possible, stablest, thermodynamic free energy.

°The row index m is common to all the dynamical variables and is omitted henceforth
from the operators and codrdinates, for typographical simplicity.

9The numbers N and M are respectively the total number of sites along each row or
column and are ultimately taken to the thermodynamic limit.



186 8.  The Transfer Matriz

Because of the exponentiated sums in V' we infer z takes the form exp aV,
where « is some constant, hence log Q) o< NM. This shows that the config-
urational free energy is extensive, as it should be. There is one additional
bonus; according to a theorem of Frobenius:

The eigenfunction ¥y({r,}) corresponding to the largest eigenvalue zy of
a positive operator (or of a matrix with only non-negative elements) has no
nodes; hence it is (or can be made) > 0.

It is therefore natural that, after being appropriately normalized, ¥ (not
|Wg|?) will play the role of a probability function, the so-called reduced density
matriz governing the correlations among all 3N dynamical variables of a
single row, ry,...,ry, that constitute its arguments.

8.2. Opening and Closing a “Zipper Ladder” or Polymer

In the attempt to gauge the difficulty in solving the zipper problem, we
rewrite the exponent in Vj as:

S V=Y LV Vi)

and consider the eigenvalue equation governing a single term in this sum,
i.e. we study the single bond r, 1 — r,, (denoted r):

3
(2”KkT> BV AU g (r) = VNG (r) | (8.4)
The solution to Eq. (8.4) does not actually solve (8.3), as the exponentiated
operators %(V% + VZ,,) do not commute with functions of r,1o — rp4q
and r, — r,_1. However, one may view (8.4) as the eigenvalue problem of
a two-column “ladder” (N = 2) with breakable rungs, i.e. of a two-stranded
cross-linked polymer.

The nodeless solution of (8.4) has to be spherically symmetric, i.e. ¥(r) =
@(r)/r. Expressing /N as (27T/€T/K)% exp fw one is first tempted to
combine the exponents and solve a “pseudo-Schrodinger” radial equation
for ¢,

e de(r)
— 2 Ur)plr) = —wilr) (5.5)
for its lowest bound state (i.e. the state with greatest binding energy w).

Here m* = (FL]:TI){Q The equivalent problem in elementary quantum theory is

solved as follows. The boundary condition ¢(0) = 0 allows only the solution
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p = Asin kr within the spherical well. For r > a, outside the well, a second
boundary condition ¢(oco) = 0 admits only ¢ = Be™9" as a permissible
solution. A, B are two constants and k is related to ¢ by QZQL (P +EH) =1,
The usual conditions that both ¢ and d¢/dr be continuous at r = a yield
kacot ka = —ga, and a condition for the existence of one or more bound
states, Vp > 475 T
state in the high-temperature range, i.e. the binding energy vanishes, w = 0,
if T'> T, where

Recalling the definition of m* we infer there is no bound

T, = 2 RV, (8.6)
wkp

Although the one-bond zipper is “broken” above T it does heal below T.
The binding energy, w, the negative of the singular part of the configrational
free energy, is plotted in Fig. 8.2. As the temperature is lowered below T, w
rises quadratically from zero. This signals a second-order phase transition at
T..

This conclusion is somewhat disturbing, given that the two-stranded
molecule is essentially a one-dimensional entity performing a random walk
in 3D. It is generally thought that thermodynamical systems do not exhibit
a phase transition at any finite 7" in 1D. But is it wrong?

To check whether the precedlng is, in fact, valid we next solve for the
ezact eigenvalues Z; YN (27}]§T)2 exp fw; of Eq. (8.4).

Spherically symmetric solutions can be analyzed with the aid of the fol-
lowing lemma:

2p(r) 1 d° e (r)
v T rdr? 2Pl = r

thus for all positive integer n,

V%M _ 1 42n o(r) SD(2n)(7a) ‘

r r dr2n r

(8.7)

(The proof is by induction.)
The following variational principle yields w as the extremum of the rhs:

r2 42

s _ Jo drp(r)e” 37Oz e3P Oip(r)
<= 50 12 (8.8a)
Jo~ drg(r)
Here we have expressed Vi V5 in the more symmetric form: Vl/ 2V1 V1/2 The

requirement that w be maximal against arbitrary variations dy of ¢ generates
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the following eigenvalue equation,

n2 42

PV (r) = =3PV P 47 = 38U (1) (8.8b)

identical, to within a similarity transformation, to the original (8.4) (after it
is simplified with the aid of (8.7)).

Problem 8.2. Expanding ¢(r) in the exact (but unknown) eigenstates W
of (8.8b) belonging to w; (wp > wy > ---) show that the rhs of (8.8a) is an
absolute maximum when ¢ = Wq. This proves the largest rhs ratio yields
the desired wy = Max{w}.

We know the solution of (8.8b) in the two regions: ¢(r) = sinkr for
0 <7 < aand Dsinka exp—q(r — a) for r > a respectively. Absent any
requirement that ¢ or its derivative be continuous, we must allow D to be
arbitrary (albeit, real). The ordinary condition 223 -(¢® + k?) =V} ensures
that wo = h?¢%/2m* is the same in the two regions. To determine ¢(r) near

the discontinuity at » = a &€ and to ensure that w is constant there too, we
next integrate the two sides of Eq. (8.8b) from a — ¢ to a + ¢ and proceed to
the lim. ¢ — 0.

a-+

lim-(e — O)/ Edr ePo(r) = O(e) —

a—e&

a+te h2 d2
0= / dr e~ 38U () P 4z o= 3BV ()
a

—E&

2
( h )n d2n—l

_ : qa 2m* —qr
= D(sin ka)e zn: T”L”; T
v ( 7’1_2*)71 2n—1
— P Z 2;”' Jpan sin kr|,—q
— !

Upon summing the individual series we obtain the expression

2 2 * 2
@ (18Vo _ Bh2(qa)? /2m* a
D= o cot ka g (8.9a)

that allows the eigenvalue equation for ¢ to be satisfied everywhere, including
at the discontinuity at » = a. Now let us insert this eigenfunction into the
variational principle, Eq. (8.8a).
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We wish the numerator to be proportional to the denominator, with a
constant of proportionality exp Bwg. Once again the infinitesimal neighbor-
hood about a yields an extra contribution, denoted X. The condition for X
to vanish is precisely,

qa 180 _ ofh*(qa)? /2m* a®

2 —_ =
D = a cot ka g ] (8.9b)

In order for the two expressions (8.9a and 8.9b) to be compatible, D must
be set = either 0 or 1. The first choice is unphysical, while the second causes
() to be continuous (as we might have guessed all along!) However, unlike
in quantum theory, here there is no requirement for dy/dr to be continuous
at r = a. Instead, after setting D = 1 we are required to satisfy (8.9a or
8.9b).

In the required nodeless solution, ka is limited to the range 5 < ka < 3.
Then Egs. (8.9) (with D = 1), augmented by the constant energy condition

2
@+ k) =V,

2m*
are solved simultaneously. Here the calculations are much less transparent
than before and the precise expressions for w and for the related configura-
tional free energy do differ somewhat from what is graphed in Fig. 8.2. Still,
the phase transition is confirmed to be of second order and to occur at the
identical T, given in Eq. (8.6).

w
Vo
]

0.8
0.6
0.4
0.2-|

T

T

0.2 0.4 0.6 0.8 c

Fig. 8.2. “Binding energy” w/Vp (i.e. (—1) X configurational free en-
ergy) at temperatures T < T..

Solution of Eq. (8.5) vanishes as (T, — T')? near T, and is =0 at T > T..
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In only one important detail do the exact solutions differ from those of
Eq. (8.5). When solved properly, the exact equations reveal 1 additional,
nontrivial, quasi-bound state solution at w = 0 from 7. down to 1/2 T..
Below 1/2 T, it disappears.

Although the w = 0 solution could never be accessed in thermodynamical
equilibrium, its mere existence allows for hysteresis when the zipper ladder
is rapidly cooled through the critical point starting from some temperature
T > T, and subsequently re-warmed from below 1/2 T.. Such hysteresis is
unusual in a second-order transition — but then, so is the model!

8.3. The Full Zipper (N > 2)

Setting U(ry,...,ry) = Hn% in the form of a trial function
incorporating all nearest-neighbor correlations, we define the variational

eigenvalue as

3N
2

2= (T) T e,

K

According to Frobenius’ theorem ¢ should be taken to be nodeless if one is
to optimize z. It is then permissible to integrate both sides of the eigenvalue
Eq. (8.3) over all the coordinate variables without risking to obtain zero on
either or both sides:

H / dBr, e(5%)Vh = BAU (r41-7n) ) ¥lrnts = ral)
|Tn+1 - Tn|

ﬂwNH/d3 Y(|rn+1 — 1al) (8.10)

|Tn+1 - Tn|

The integrals on the rhs are easily decoupled, after specifying the origin of
the nth integration (over r,) to be at r,41, forn=1,2,...

On the [hs we must be careful to maintain the various factors in their
natural order, given that the exponentiated derivatives commute neither
with the potential energy terms nor with the ¢ /r factors in W. We therefore
order the operators on the lhs as follows:

--/d3r +1€(§—T)Vfl+le—ﬁU(rn+2—rn+1)w(|rn+2 — rpt1l)
n
T2 — Tyl

« /d3r S22 U (r =) YTntt = Tnl)
n
‘Tn-l—l - Tn‘
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and once again shift the origin of the nth integration for each r, to ryy;.
This causes the various integrals to decouple, just as they did on the rhs.
Extraction of the Nth root of Eq. (8.10) yields,

/OO d37ﬂ€(§_;T()v2e—,3U(T) w(r) _ 6,6’711 /OO d3’l”¢(r) ) (811)
0 T 0 T
Certainly the binding energy @ is optimized by the “best” solution to this

equation, viz., e’

k_T)v2e_,3U(r)¢(7”) _ P W(r) . (8.12)

e(2r
T T

If we now identify % with 2 U p(r), Bq. (8.12) becomes formally iden-
tical with Egs. (8.4) and (8.8b), the subject of the preceding section. We can
only conclude that w = w to a good approximation and that a second-order,
possibly hysteretic, phase transition occurs at or near 7T, the value of which
is given in Eq. (8.6) to good accuracy.

8.4. The Transfer Matrix and Gaussian Potentials

Here we examine the amusing example of U(r) = %K 'r2 in the preceding
model, i.e. the special case of horizontal links that are unbreakable and
harmonic, just like the vertical links. The thermodynamics in this model
are already known and trivial (cf. the Dulong—Petit law) and the spectrum
of normal modes is easily obtained. Still, the evaluation of the transfer matrix

poses a special challenge. One needs to combine exponentials such as A, B,

2
Q, = *oz e B (8.13a)°

We give a passing nod to this mathematical challenge (academic though it
may be) as ultimately it may spawn practical applications.
First, it is necessary to symmetrize §2:

82
Qgym = e~ 257 A0z 2B (8.13b)
After a number of algebraic manipulations one finds,

stm = e—w(a*a—i—%)

where w = 210g()\—10), A = V1+AB — VAB, and the eigenvalues
of ata are n = 0,1,2,.... Because Qg generates a geometric series

¢Assuming the originating operators to be separable in z, y, and z.
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it is easily resummed:

TH{O} = Tr{Quym} = 2\/% .

Exercise for the reader. To arrive at these results one must prove a
Lemma:

a2 2 1 Fa?
eAsz e~ Fz” _ 76_(1+4FA)

V1+4FA

Prove, or verify, this Lemma.

8.5. Transfer Matrix in the Ising Model

In the Ising model we start by examining functions G of the spin variable
Shn, given that S, = +1. An arbitrary function G can always be expanded
as G(S,) = a + Spb, with a the even part of G in S,, and b the odd. E.g.:
log(1 + aSy,) =logv1 — a? + Sy, log \/g

The Hamiltonian for the nearest neighbor two-dimensional Ising ferro-
magnet is,

H=-J)_ 5;, (8.14)
(i-4)

where (7,7) refers to nearest neighbors on an N by M lattice as before.
The partition function Z consists of the sum of exp —3H over all 2™ spin
configurations. In the spirit of the present chapter we evaluate Z using the
transfer matrix.

The key to the thermodynamic properties of the two-dimensional zipper
was the integral identity Eq. (8.1). Here, with K = J3 assumed > 0, it is

the trace identity,
trg{exp(KSS")Gy(S")} = 2(acosh K + bSsinh K) (8.15)

where by trgs we mean the sum over the two values +1 of S’ and
continue to use G§(S,) = a + Spb. This identity can also be written,
trg{exp(KSS")Gyp(S")} = (2cosh K)Gy (S), where b/ = btanh K.

Problem 8.3. Using trg/{1} =2 and trg/{S’'} = 0, prove (8.15).
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In the spirit of Eq. (8.1) we next construct a local operator (one for each
vertical strand) that will reproduce (8.15). Denote this operator I'(G). It
must yield the rhs of (8.15) for arbitrary G(a,b):

I'(G(S)) =T'(a+bS) =2(acosh K + bSsinh K). (8.16)

Because G can only assume one of the 2 possibilities, G = a+b, depending
on whether S = 1 or —1, it can alternatively be written as a 2-component
“spinor’”: G = [a + b,a — b]. In this language T" is a 2 x 2 matrix and (8.16)

is equivalent to the following 2 equations, in matrix notation and using
to indicate ordinary matrix multiplication:

IR D a+b B 2a cosh K + 2bsinh K (8.17)
o1 Ty | |a—b| |2acosh K —2bsinh K | '
We solve for the matrix elements I';;:
INTR AT ek e K K K
I'= = =le” 4o, 8.18a
[Fgl F22‘| [e_K el v ( )

where 1 is the unit 2 x 2 matrix and o, is the first of the three Pauli matrices
(each transforming as the component of a vector in 3D).

0 1 0 = 1 0
O = y Oy = | . y Oz = 5
1 0 i 0 0 1

These matrices are unitary, Hermitean, and idempotent (032» = 1) and,
together with the unit matrix, form a complete set in which to expand any
2 x 2 operator. In particular, for ferromagnetic coupling K > 0 we can also

write the logarithm of T' in terms of these operators:

I'= Ae7" where A = (25inh2K)? and tanh K = ¢ 25, (8.18b)

Problem 8.4. (a) Show that e®% = cosh B + ojsinh B for j = z,y, or z.
Using this, derive the expressions for I' in terms of A and K as given above,
assuming K is positive. Then, given (8.18b), prove the so-called “duality
relations” (b) tanh K = e=2K and (c) sinh 2K sinh 2K = 1.

Problem 8.5. Derive the applicable exponentiated expressions replacing
(8.18b) for I' for antiferromagnetic coupling fJ = K < 0.
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In the following we continue to assume gJ = K > 0, i.e. we consider only
ferromagnetic, nearest-neighbor, bonds. The figure below illustrates the dual
K’s of Eq. (8.18D).

For N vertical strands, the “local” part of the transfer matrix is the
product of (8.18) over all vertical chains:

Vi =]]1; = [[(4e"7=9) (8.19)
J J

where o, ; refers to the o, matrix on the jth vertical strand on the mth row;

it commutes with all o operators on the other strands. Because all operators

now refer to the mth row only we can omit the index m. As with the zipper,

we must also include into the transfer operator the horizontal bonds within

the same row:

V, = eK Zj Txj+1025 (8.20)

This way of writing Vo may require elaboration. We did not write Vo =

K 255155 o1 we don't immediately know how these spins related to the
o’ s in V;. Consider just the jth bond in V: €595 = cosh K 4+ S5’ sinh K.
This 4-valued expression (S and S’ can each assume a value +1) can be
considered to be the diagonal element of a matriz operator:

(mm'|e’7=% |m/m) = cosh K + (mm/|o.o"|m'm) sinh K (8.21)

in which the 4 possible states |m'm) are m’ and m both “up”, i.e. | 11),
and the three other configurations: | T]),| [T) and | T]). This operator
representation turns out extraordinarily fruitful.

Once V7 and V5 are formulated in terms of Pauli operators, it becomes ap-
parent that they do not commute.! The product of the two non—commutil}g

operators V4 V5 (or, better, their symmetric product, e.g. V = VléVgi)
constitutes the transfer matriz of the ferromagnetic Ising model on the sq
lattice. It has dimension 2V, large enough to discourage brute-force numeri-
cal solutions of the relevant secular determinant. But the form of V' is simple
enough to yield an exact solution — even in the large N limit. However, be-
fore going down that road let us start modestly with N = 2.

fBut then, neither did V4 and V; in Eq. (8.2) of the zipper problem.
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I

1.5 2 25 3

Fig. 8.3. Plot of 1/K and 1/K versus 1/K (= kT/J).
Intersection gives kT,/.J in the self-dual 2D Ising Model on sq. Lattice

8.6. The Ising Ladder® or Polymer

The symmetric transfer matrix for just two vertical strings (together with
the cross-links) is,

K K
V — A2e?(Uz,1+0'z,2)eKUz,20'z,le?(gz,l‘i‘gzﬂ) (822&)

Figure 8.3 indicates that at small K the operator V; dominates and that
at large K it is V5. Regardless, at any K there is something to be gained by
performing a rotation R of 90° about the y-axis:

V — RVR™! = A2 (014022) Kowoen o F(0ni402) (8.22b)

A rotation cannot affect the spectrum of eigenvalues z. In the new rep-
resentation the 4 x 4 matrix simplifies: it decouples into two noninteracting
2 x 2 sub-blocks, one subspace for parallel spins and the other for antiparallel
spins. This being a model of ferromagnetism, the ground state eigenvector
must have the form:

U=c|11)+d| |l]l), withc+d=1and c,dboth >0. (8.23)

€Recent soluble problems based on the mathematics of the Ising chain or ladder, in an
external transverse magnetic field, include the modeling of biological evolution, E. Baake,
M. Baake and H. Wagner, Phys. Rev. Lett. 78, 559 (1997) and of nonequilibrium energy
transport, T. Antal, Z. Racz and L. Sasvari, ibid., 167.
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The arrows refer to “up” or “down” orientations relative to the rotated
z-axis. After factoring out A2, the secular determinant is,

det le{ cosh K — A\ sinh K 0
e N =0.
sinh K e 2K cosh K — \

The formulas in Problem 8.4 are used next to eliminate K. One finds for
the larger solution (the one compatible with ¢, d in Eq. (8.23) both > 0):

A = yfcosh? K + (2sinh K)~2 + \/sinh? K + (2sinh K)~2 (8.24)

The eigenvalue z = AA%. By inspection, z is analytic in 7" at all real 7' > 0.
We also note that the ladder is ordered at 7' = 0 (all spins T or all spins |)
and disordered at T — oo. Analyticity precludes a sharp phase transition
at any finite 7', thus it follows that the order-disorder phase transition is
pinned to T'= 0" and that this model ladder is disordered at all finite T'.

8.7. Ising Model on the Isotropic Square Lattice (2D)"

We next generalize the transfer operator (8.22b), in the rotated codrdinate
system, to N columns and M rows:

& =N N " =N
= . o0, K L Og 1105 = 04
V = ANe 2 j=1%%d ¢ E :]:1 @, j+102,j 53 E :]:1 z,j ’ (8.25)

again omitting, for typographical simplicity, the row index m common to all

the spin operators. Let us now reéxpress them in terms of the spin raising

and lowering operators o*:

n 0 1 _ 0 0
ol = ®1 and o; = ®1 (8.26)
J 0 0 J 1 0

where 1 refers to the unit operator in the space of all spins other than j.
The nomenclature derives from the following properties of o*:

(1) (0 1) (1) (0N [0 1Y\ [0\ (1)
o = =0 and o] = = ;
7\0 0 0/\O 7 \1 0 0/ \1 0
"The reader may be interested in the rather convoluted history of Ising’s model, skillfully
recounted by S. G. Brush in Rev. Mod. Phys. 39, 833 (1967). Primary references for the
phase transition include L. Onsager, Phys. Rev. 65, 117 (1944) and Onsager’s student
Bruria Kaufman, Phys. Rev. 76, 1232 (1949). For the spontaneous magnetization see
L. Onsager, Nuovo Cimento (Suppl.) 6, 261 (1949) and C. N. Yang, Phys. Rev. 85, 808

(1952). The present treatment follows the exegesis by T. Schultz, D. Mattis and E. Lieb
in Rev. Mod. Phys. 36, 856 (1964), based on the techniques of “fermionization”.
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and similarly for the lowering operators:

- D00 0)- -

the spinors referring to the two states of the jth spin. The reader will easily
verify the following identities:

Opj = J;-r +o; and o0,;= 20‘;_0']-_ —1. (8.27)

Rewriting the exponents in (8.25) using (8.27) we recognize them as
quadratic forms that normally could be easily diagonalized. (If a and b are
either fermions or bosons, expressions such as ; ;a;Qi;b; are evaluated by
diagonalizing the underlying matrix Q.) However thls simplification fails to
“work” here.

Spms present a real conundrum. For example, a;ra + o; a;“ =
{ 0;,0; —} =1, i.e. the Pauli raising and lowering operators antzcommute at
the same site just like the creation and annihilation operators of fermions.
But at distinct sites it is the commutator a;a —o, a;“ =0 j, o, ] = 0 that
vanishes, as for bosons. Thus, for spins an arbitrary quadratic form cannot
be made diagonal by any known, trivial, transformation.

This difficulty could be circumvented if anticommutation relations were
imposed for j # n as well, i.e. if the spins are fermionized. This nonlinear
transformation, due to Jordan and Wigner in the 1920’s, is not always fruit-
ful. However, in the present instance (where there are only nearest-neighbor
bonds), a mapping of spins o+ onto fermions ¢t and ¢ does pan out. Define:

;L:UJ ™ Dan<; 71O , G = ™ Do TR o . (8.28)

Problem 8.6. Using the algebra of the Pauli spin operators, prove the
following anticommutators for the ¢; operators defined in (8.28)

{Cszj} = Cz’cj +cjci =0

(a)
{elcf

and (b)  {¢.gy=46; (=0ifi+#jand1ifi=j).

it
Tej=0Fo;, and e G = 1,

(¢c) Additionally, prove ¢ 1 0;

J

Making use of part (c) of Problem 8.6, one inverts (8.28):

ot

—T . Cp C — ™ .Cp C
T =e 2iney "cj and o; =cje 2incsnen (8.29)
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Plug the results into the two quadratic forms in the exponentials of V,
Eq. (8.25):

J

dooai=> (2¢f¢; - 1), (8.30a)
J
and

et e
Y Oujt10wy = Y (¢ ¢ (e 4 ¢)
! ! . . (8.31a)
= Z(Cj+1 + ¢j1)(cj — i )
J

This last is most surprising, but it is the crux of the simplification. Be-
cause j, j + 1 are nearest-neighbors in the numbering scheme all operator
phase factors cancel between them except for those relating to j. In the last
line of (8.31a) one sees that even these are trivial phases.!

. .
Problem 8.7. Prove /™ ¢¢t = —¢T and €€ ‘¢ = +-c.

To simplify the solution further we shall assume periodic boundary con-
ditions (PBC) for the fermions, so as to expand the ¢, ¢t operators in plane
waves:

1 ”
Cp = —— Z ape™™ and similarly for ¢ . (8.32)
VN kCBZ
The PBC require expikN =1, i.e. k = 2rn/N with n an integer in the
range —N/2 < n < N/2 (the “first Brillouin Zone” or BZ). The results of
Problem 8.6 allow us to recognize the ay’s, as a set of fermions. That is,

{ag,ap} ={a},af;} =0 and {ay,a);} = Spp - (8.33)

Because of translational invariance, the various normal modes decouple
— as they did in the weakly interacting Bose gas and in the BCS theory of
superconductivity — and the solution of the two-dimensional Ising model
becomes “reduced to quadrature”. Consider Eq. (8.30a),

d @cfei—1) = > (2afar—1) (8.30b)
J kcBZ

For next-nearest-neighbor couplings the phase factors would not have canceled so neatly
and the quadratic form in o,’s could at best only be reduced to a quartic form in the
fermions.
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and (8.31a),

S +en)eg—c) = Y e ¥ of +ap)ay—aty)  (831D)
J kCBZ

Because this last mixes £ and —k, we have to combine k, —k into a single
sector, i.e.

™

Z (2a;a, — 1) = Z 2(afar +atay —1) (8.30¢)
kCBZ k>0

and similarly,

Y le ™ (ay + ap)(ar — aty) + (T + ar)(a_g — af)
k>0

= Z 2[sin k(iaf a®) + H.C.) + cosk(ajar +atpa_ —1)]  (8.31c)
k>0

There are 4 possible configurations of fermions at each k, —k: the vacuum
|0), the one-particle states a; |0) and a*,|0), and a doubly-occupied configu-
ration a; a®, |0). The anticommutation relations forbid all other occupancies
(algebraically: (a;7)? = (a™})? = 0). An obvious symmetry emerges as each
quadratic operator separately preserves even or odd occupations. Thus al-
though [0) and a; a™,|0) are connected (as are a; |[0) and a*t,|0)), the two
sets are disjoint. Therefore, instead of diagonalizing 4 x 4 matrices we need
only diagonalize 2 x 2 matrices in each even/odd set.

In more detail: Eq. (8.25) takes the form V = [[;sq Vi, where Vj, =
A2eK 8k 2K R o KSk with exponents S = (aﬁak + afk,a_k — 1) and Ry
[(sink)(iaf a®), + H.C.) + (cosk)(af ap +atpa_y — 1)].

1. Odd subspaces. If all of the occupation numbers of the k’s are in their
respective odd-numbered subspaces each of the exponents S, and Ry is
identically zero (by inspection!) The product yields z = AV,

2. Even subspaces. In the subspace |0) and a;fa™,|0), we identify Sy = o,
and R, = oysink + o, cosk. The o’s are the Pauli matrices discussed
earlier. Here, in the even subspace, Vj, has the representation:

Vk: _ AQef{aZ €2K(0Z cos k—oy sink) ef(az ]
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Being a 2 x 2 matrix it can be expanded in Pauli operators:

Vi — A2 f((cosh 2K +sinh 2K cos k) isinh2K sink
k= ~
—isinh 2K sinh k e~ 2K (cosh 2K —sinh 2K cos k)
1(cosh 2K cosh 2K +sinh 2K sinh 2K cos k)
= A? + 0 (cosh 2K sinh 2K cos k+sinh 2K cosh 2K) (8.34)
—0y(sinh 2K sink)

To simplify further we define an “excitation energy” e,
cosh g (T') = cosh 2K cosh 2K + sinh 2K sinh 2K cos k

= cosh 2K cosh 2K + cos k (8.35)

(making use of Problem 8.4, part (c).) Next, rotate the z-y plane about the
x-axis so as to align the spin operators along the z-axis.

Vi, = A?{(cosh 2K cosh 2K + cos k)

+o0, % \/(sinh 9K cosh 2K + cosh 2K sinh 2K cos k)2 + (sinh 2K sin k)2}
= A?{coshey(T) + o, sinh ey (T)} . (8.36a)

This expression renders Vj, diagonal and reproduces the 2 even-occupancy
eigenvalues explicitly. Once Vj is re-exponentiated and o, is reassigned its
primitive definition Sy (item #2 on preceding page) in terms of fermions, all
4 eigenvalues (not just the even eigenvalues) appear correctly as listed here:

Vi, = A2 Mutnie=1)ang 2 = A (M) 1.1 75D} (8.36D)

Here each n, = a:ak is a fermionic “occupation number operator” having
two eigenvalue, 0,1. The largest z; is the first one listed above. The total
transfer matrix V and its largest eigenvalue, z, are,

_ AN H k(M (G=)  and 5 = NlogA+5 D en(T) (8.37)
all k

on the mth row; here n; = aka;gF = 1—ny = 0 in the optimal state. As there
are M rows, Z = zM. The free energy is then,

—+m

F/NM = —kJT{ log(2sinh 2K) —|— — dkak } ,
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good enough to use, but able to be further simplified:

2 s ™
F/NM:—k:T{log2+—/ dk:/ dk’
0 0

(2m)?
log[cosh? 2K — sinh 2K (cos k 4 cos k/)]} (8.38)
The last result is obtained using an integral identity given by Onsager,
1 2
= — dklog[2 cosh x — 2 cos k], (8.39)
21 Jo

and has the advantage of rendering explicit the two-dimensional symmetry
inherent in the modelJ We discuss the consequences of this formula next.

Problem 8.8. Derive (8.38) using (8.39).

8.8. The Phase Transition

From inception, e (7T) is symmetric in K and K (cf. definition on p. 238).
Interchange of the two equates to a mapping of high- onto low-temperatures,
so-called “duality”. That is, if we know F' at high temperatures T' > T, we
can obtain it for low temperatures 1" < T, using duality.

If there is a phase transition (and that fact is not yet established!) it
can only be located at the intersection of the two regimes at K = K, as
shown graphically in Fig. 8.3 or found from the solution of sinh2K, = 1
(cf. Problem 8.4). The resulting value of T, is a little more than half the
mean-field estimate of kT, /J = 4,

kT./J = 2/log(1 +v2) = 2.26919...

Let us examine the dispersion ¢ (T') at T, and at other temperatures T,
whether greater or less than 7,.. The following figure illustrates a singular
behavior at T, for long wavelengths.

At — and only at — T, &) vanishes in lim-k — 0. (It does so linearly
with |k|.) According to Eq. (8.36b) this causes a degeneracy in the eigen-
value spectrum of Vi—¢ in this limit, which is directly responsible for the
onset of LRO. Moreover, this dispersion anomaly results in a singularity in

JOnsager’s solution was for the more general case in which horizontal bonds J, differ from
vertical bonds Jy. In this way he could analyze the disappearance of the phase transition
when J, — 0. For explanations cf. Schultz, Mattis and Lieb."
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the thermodynamic properties at 7. and signals a phase transition at that
temperature.

We can get an idea of the nature of this transition by calculating
the specific heat in this model. The internal energy per site is w(T) =
(1/NM)O(BF)/03, and after some algebra is found to be:

2
u = —Jcoth2K (1 + Z(2tanh? 2K — 1)K1(q)> (8.40)
7'('

in which K = J/kT as before. Ki(q) = [i/?d¢(1 — ¢®sin?¢) % is
the complete elliptic integral of the first kind, with an argument ¢ =
(2sinh 2K/ cosh? 2K . Tt exhibits a logarithmic singularity at ¢ = 1. There-
fore, so too does the derivative of u, the specific heat ¢(T"), plotted in Fig. 8.5.

8.9. A Question of Long-Range Order

Evidently, the nearest-neighbor ordering, (S, n+1Smn)T4, correlates with
u(T), but then so do the more distant, albeit short-range, correlation
functions C(p) = (Smnt+pSmn)T4a that decay (to a first approximation) as

-3 -2 -1 1 2 3

Fig. 8.4. Dipersion of the eigenvalue £;(T) at T. (lower curve) and at
some T < T, (or at its dual T' > T.) (upper curve).

This figure illustrates two aspects of the exact solution: (1) linear dispersion for
small k found at, and only at, T, and (2) a parabolic minimum at k = 0 together
with a temperature-dependent gap £o(T") at £ = 0 (“mass-gap”) at all other values
of T.
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1. 2.5 3 3.5 4 J

Fig. 8.5. ¢(T) = du/dT exhibits logarithmic singularity near T..

Curve obtained by differentiating (8.40) analytically, using Mathematica. (in units
kp=1and J=1)

~ C(1)P! at finite p. For long-range order (LRO) no finite p will do. It is nec-
essary to proceed to the limit p — oo. For consider the (intensive quantity)
magnetization density, or rather, its square:

(g, e

a quantity presumably independent of the row (index m) on which it is
evaluated. There are N contributions C'(0) = 1 that vanish when divided
by N? in the thermodynamic limit N — oo (as do C(£1), C(42), C(+£3),
...etc). If, however, C(p) achieves a non-zero limiting value for C(co0) at
large |p|, then m? — |C(cc)|? in the thermodynamic limit, a manifestation
of ferromagnetic LRO.

The calculation of C(o0) requires the evaluation of determinants of
Toeplitz matrices® (poor cousins of the determinants of cyclic matrices).
After lengthy analysis, an explicit result can be obtained in the present case.
It is,

m? = (1 — 1/sinh? QK)% for T' < T¢ and zero otherwise, (8.42)

kSee G. Newell and E. Montroll, Rev. Mod. Phys. 25, 353 (1953) or footnote h.
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i.e. the spontaneous magnetization disappears as (T, — T)ﬁ near the criti-
cal point T — T,.! The same exponent 3 = 1/8 (not to be confused with
(6 = 1/kT) is found in all nearest-neighbor Ising ferromagnets in 2D: on
triangular, hexagonal, etc. lattices. The other critical exponents also depend
on d but not on geometry.

The related paramagnetic susceptibility xo = dm/dB|p_o can also be
calculated. Although defined in terms of an external magnetic field xo(T) is
actually, like ¢(T"), a physical property of the model even in the absence of
an external field.

Given H = H; — Bzmm Sm,n, where Hy is the Ising Hamiltonian, the
susceptibility is:

1 d Tr{E s Smpe B2 Sy
~ NMdB Tr{e BH+BBY Smon )

X

2
_ <(Zm,n(sm,;z\7;4<l‘j;,n>TA)) >TA ‘ (8.43)

When evaluated in zero field x is denoted xo as usual. For the Ising
ferromagnet, regardless of whether the lattice is sq, hexagonal, triangular,
or whatever, one again finds a universal law in 2D:

X0 X 1 , the critical exponent being v = 7/4. (8.44)
|T — T,|"

This susceptibility is far more singular near the critical point than is Curie’s

Law (7 = 1). Numerical studies of the Ising model in 3D indicate this critical

exponent to be somewhat smaller but still > 1 : v = 5/4 in 3D, whether

the lattice is sc, bee, fec or whatever. But as the number d of dimensions is

increased v drops to its mean-field value y = 1 in all d > 5.

8.10. Ising Model in 2D and 3D

There exist but a handful of models of interacting particles that can be solved
in 3D; unfortunately the Ising model is not among them. A reasonable guess
might entail generalizing the two-dimensional expression (8.38) to a cube

This result was first announced at the blackboard by Onsager, without any explanation;
the first published derivation, some years later, is that of C. N. Yang.®
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L x M x N having a cube-like BZ:
1 2m 2m 2m
F/LNM:?—kT{10g2—I—73/ dk/ dk// dk”
2(27‘() 0 0 0
log[cosh? 2K cosh 2K, — sinh 2K (cos k+ cos k') — sinh 2K, cos k”]}

This expression reduces to (8.38) if one sets the new bonds K, — 0. For
the isotropic sc lattice K, = K this integrand has a singularity at k& =
K = k" = 0 at a value of K that satisfies cosh® 2K, = 3sinh 2K, i.e. it
predicts kT, ~ 4.79J. Expanding the integral about that temperature reveals
o = 1/2, i.e. a singular specific heat with ¢ oc [T — T,|~Y/2. Is any of this
believable? The answer is, No.

Accurate series for the various thermodynamic functions — especially
the zero-field susceptibility and the specific heat — both diverge explicitly
at T,.. These include low-temperature expansions in powers of exp —J/kT
at low T and high-temperature expansions in powers of tanh J/kT at high
temperatures, resummed in irreducible clusters.™ Comparison of the nu-
merical results with the above guesswork is not favorable to the latter.
Unambiguously, the series expansions yield k7T, =~ 4.5J in the sc lattice,
lower than the guessed value! In the diamond (zincblende) lattice, each spin
has 4 nearest-neighbors, just as in the sq lattice solved earlier. But as shown
in the figure on the next page, kT, in this 3D lattice is found to be ~ 3.4J,
closer to the mean-field value, 4J, than is 2.3J for the 2D lattice with iden-
tical coordination number.

As determined from not just series expansions but also from the exact
transfer matrix solutions, all Ising ferromagnets with short-range unfrus-
trated interactions on all 2D lattices have a logarithmic singularity in the
specific heat. They also share all other critical exponents but not T, which
varies for each.™

In 3D the series expansions on a variety of lattices with n nearest-neighbor
Ising interactions reveal an almost mean-field critical temperature kT, ~
nx3/4J (£20%). The thermal exponent « in ¢ = 1/|T —T,|*, has a common
value @ = 1/8 in 3D, far from the initial guess 1/2. Detailed agreement of
the numerical expansions with the experimental data such as that shown in

"There exists a vast literature and some books on this topic. Some references: M. Sykes
et al., J. Phys. A5, 6241 f, 640ff, 667ff (1972), A6, 1498, 1506 (1973).

"Onsager finds arctan[sinh 2K.] = p/n in the hexagonal, sq, and triangular 2D lattices,
i.e. kT, = 1.59... on the hexagonal lattice (n = 3), 2.27... on the sq lattice (n = 4) and
3.64...(n = 6) where n = codrdination number of nearest-neighbors = 4,6,3 respectively.
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c/kg

0
2.0 2.5 3.0 3.5 4.0
—>T(K)

Fig. 8.6. Specific Heat ¢(T) of DyPO,4 (consisting of Ising Spins on
3D Diamond Lattice): “Exact” Theory (series expansions) (—) versus
Experiment (000).

The solid curves are well fitted by o = 1/8, the thermal exponent expected for 3D
Ising lattices.

Fig. 8.6, deals the final coup de grace to the guessed integral at the top of
the preceding page.

8.11. Antiferromagnetism and Frustration

As we saw, the type of lattice is almost irrelevant in ferromagnetism, but this
“detail” becomes important when the interactions favor nearest-neighbors
to be antiparallel, as in antiferromagnets. Bi-partite lattices (sq, hexagonal,
sc (simple cubic), bee (body-centered cubic)) can be decomposed into two
sublattices, such that the spins on the A sublattice interact only with spins
on the B sublattice. Then if the sign of J favors antiparallelism, a simple
“gauge” transformation on the Ising spins: all S; — —5;, performed only
on the A sublattice, transforms the model into a ferromagnet in the new
“pseudospins’. Let us assume this pseudo-ferromagnet to have been solved.
Even so, the interaction with an homogeneous external field is changed:

+B D> Sun— D Smn]| - (8.45)

m,neA m,neB

°From L. deJongh and A. Miedema, Adv. Phys. 23, 1-260 (1974).
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It favors pseudospins on the two sublattices to be antiparallel, whereas the
internal forces now favor parallelism. Because the internal and external or-
der parameters differ, it is possible to impose a finite magnetic field |B| <
B.(T') on an antiferromagnet without destroying the phase transition. The
“spin-flop field” B, is maximum at 7" = 0 and decreases with increasing T,
vanishing at 7.

Problem 8.9. Show: B.(0) = |J|/2 on sq lattice (2D) and sc (3D).

The triangular lattice is not bipartite: each spin has 6 nearest-neighbors,
of which each is itself a nearest-neighbor to 2 out of the 6. Wannier? was
first to study the ground-state properties of the Ising nearest-neighbor an-
tiferromagnet on this lattice. Instead of a phase transition he found that
the high-T" phase extends to T" = 0, where there is a very high ground-state
degeneracy. The following are exact results, obtained analytically using the
transfer matrix.

The ground-state entropy is %y = kp0.32306. .. per spin (approximately
half the T" = oo entropy per spin, kplog2 = kp0.69315...; also cf. the
entropy at 1. on the sq lattice: k50.30647..., or on the hexagonal lattice:
kp0.26471...) A high ground-state entropy is a patent violation of Nernst’s
theorem; it is the typical consequence of frustration. The root cause is this
geometry, in which it is impossible to satisfy all AF' bonds. But even if the
bonds are not all the same, some being antiferromagnetic (J) and others
ferromagnetic (—J), one can also achieve frustration — as in the following
example, illustrated in Fig. 8.7.

An odd number (either 1 or 3) of AF bonds frustrates any given square
plaquette. All 3 plaquettes are frustrated in the above example. Moreover in
the absence of external fields they are equivalent. To verify this, just change
the orientation of the z-axis by 180° on sites #1 and #2 only. This gauge
transformation cannot affect the spectrum of eigenvalues. All three plaque-
ttes are now formally identical to the bottom one and the ground state
energy (given by the configuration of all spins “up”) is found by inspec-
tion: Ey = —4J. In exchange for a substantial cost in energy, frustration
creates a high ground-state degeneracy. This degeneracy is the hallmark of
spin-glasses, materials in which the nearest-neighbor interactions on a given
lattice are random.

PG. Wannier, Phys. Rev. 79, 357 (1950); for a review: C. Domb, Adv. Phys. 9, 149-361
(1960). See also Ref. h, p. 196.
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Problem 8.10. Find the ground-state degeneracy of the 3-plaquette
system illustrated in Fig. 8.7.

8.12. Maximal Frustration

Figure 8.8 is a generalization of Fig. 8.7 to 2D. Too regular to be a spin
glass, this is an homogeneous realization of the case of 25% AF bonds with
no fluctuations in their distribution. Note that adding just 1 more AF' bond
will decrease the frustration, as would subtracting just 1. Thus, this is an
example of mazimum frustration. J. Villain called it “a spin-glass without
disorder.” We can ask some interesting questions of this model: is there an
order-disorder phase transition at any finite 77 What is the ground state
energy? Is the ground state entropy macroscopic? And after solving for the
eigenvalues of the transfer matrix, we might wish to obtain the thermal
properties of this model and its ground state energy and entropy.

Some of these goals present a challenge, albeit not an insuperable one.
Others are easily met and are relegated to the following Problem.

1 AF
AF AF
5 AF
AF
e
AF AF

Fig. 8.7. Illustration of frustration on an Ising spin ladder.

Each of the 3 plaquettes shown is frustrated! All are, despite appearances, essen-
tially equivalent. Let the bond between any two neighbors be +.JS55’, with —J for
ferromagnetic and +.J for AF. The Ising spins are £1. If the bonds were all +J or
all —J, the ground state energy of the 9 bonds shown would be —9J; as it is, the
lowest Fy = —4.J.
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AF AF
AF AF
AF AF

Fig. 8.8. Maximally frustrated Ising model on the sq lattice (2D).

Bonds on every second riser are AF, as indicated; all other bonds are ferromagnetic.
The direction for the transfer matrix is now horizontal.

Problem 8.11. Find the ground state energy of the maximally frustrated
nearest-neighbor Ising model illustrated below. FEstimate, if you can, the
corresponding ground-state degeneracy.

As will be shown, the model is exactly solvable. We indicate the solution
but because it is so complicated do not carry it out in detail, except for
obtaining a proof that there is no phase transition at finite 7" in this model.

Here the transfer matrix is simpler when it is evaluated along the horizon-

N/2

tal. There are 2 columns in each unit cell, so Z = z*/“, with z the eigenvalue:

VeVaAr¥ = 20,
As on pp. 199-200, decompose V' into k-sectors:

Vi = Ve Vapy = A4€2f<ske2KRk e2f<sk€—2KRk ‘

Inserting parentheses in strategic spots, then performing a similarity
transformation to an explicitly Hermitean form, obtain:

Vi, = A4 ezksk 2K Ry ezksk o~ 2K Ry,
— A4(621~((67KR1€S;€6KR1€)) . (62K(6KRkSke’KRk)) (8 46)
Rotating c.c.w. by k in the z,y plane transforms Sy and Ry:
Sy =0, = o0,cosk +oysink, Rp=o,cosk—oysink=o0,.
The exponents are now:

(eiKR’c SkejFKRk) = 0, cosk + oy sink cosh 2K F 10, sin ksinh 2K .
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After some further manipulations, the eigenvalues are found. After being
expressed entirely in K and k the largest ones are z, = A* exp 2¢5(7T'), where

2

h2e (T) =1+ ————
o8 k() +sinh2 2K

x (1 4 sinh? 2K sin? k) (8.47)

As T approaches absolute zero, e,(T) — (sinh 22K + sin? k)/2. The
“gap” 1/sinh 2K disappears at 7" = 0. Thus F' has an essential singularity
(a high-order phase transition), but only at 7" = 0.

Other aspects of this model have been studied extensively.4

The concept of geometrical frustration extends to phenomena other than
antiferromagnetism. These include ice formation, surface adhesion, etc., and
to exotic materials, e.g. pyrochlores. The reader is directed to the pioneering
compilation by Ramirez.”

Problem 8.12. (a) Derive (8.47). (b) Calculate the ground state energy
per spin Fy. (c¢) Obtain the ground state entropy per spin . by calculating
(Eo — F)/NMT in the lim-T" — 0. above.

8.13. Separable Model Spin-Glass without Frustration

Because frustration is the joint property of geometry and antiferromagnetism
it is expected to play a major réle in systems with random bonds — especially
in spin-glasses. In this section we examine simpler counter-examples consist-
ing of systems that are random but devoid of frustration. In some instances
their properties can be mapped precisely onto their non-random counter-
parts. In the following example, the bonds connect only nearest-neighbors
and take the separable form J;; = —Je;e; where the ¢; = £1 at random
((¢;) = 0). In this model the disorder is site-centered rather than bond-
centered as previously. The Hamiltonian of the nearest-neighbor separable
Ising spin-glass in an external field B is:

H=> JyjSiS;— B> S (8.48)
(i.9) i

def. G. Forgacs, Phys. Rev. B22, 4473 (1980) and references therein.
"A. P. Ramirez, Geometrical Frustration, Handbook of Magnetic Materials, 1999.
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0.8

0.6
0.4 /
0.2

0.5 1 1.5 2 25 3

Fig. 8.9. Zero-field susceptibility xo(T") (arbitrary units) as function of
T/T,.

Calculated for 2D Separable Ising spin-glass, showing the cusp at T'/T.

After defining the local direction at the ith site by &; we can replace the
spins S; by a new set T; = S;e;, also +1. Then,

H= —-JY T.T;—BY &T;. (8.49)
(4,3) i
In zero external field, the phase transitions is patently identical to that in
the corresponding Ising ferromagnet. The zero-field magnetic susceptibility
is a different matter. Assuming (¢;) = 0, the configurational averages of
<S¢>TA = 5i<Tz’>TA =&gm all vanish.
(> Si)2>TA — (X Si>2TA N

xo(T) = - — 0= mi)  (550)

where m = |(T;)74| ~ (1 — T/T,)? is the spontaneous magnetization below
T.. If xo satisfies Curie’s Law 1/T for T > T, and a different law ~ (T/T,)"
below T, it must exhibit a discontinuity in slope at T, proper. Such a cusp,
as in Fig. 8.9 is indeed frequently observed in spin glasses.

Combining frustration with randomness lowers 7T, or may even eliminate
the phase transition altogether. Realistic spin-glasses exhibit hysteresis and
multiple other interesting properties® while models of spin glasses have found

exciting applications."

°See K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801-976 (1986).
'E.g., code-breaking or error-correcting: H. Nishimori, Statistical Physics of Spin Glasses
and Information Processing, Oxford Univ. Press, Oxford, 2001.
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Our simple separable model, also called a “gauge glass”, can be extended
to systems with “z-y” interactions (bonds: J;;(S; »Sj « +Si4S;,y)) but not to
“z-y-z” Heisenberg models (bonds: J;;(S; ¢S+ + SiySjy+Si,25j,2)), because
it is permissible to invert one or two coordinate axes, but not all three.

Problem 8.13. Mean-Field Model. Supppose N Ising spins 5;, each con-
nected to all the others via random bonds J;; = —Jeie; /N, €; = £1. Find
the thermodynamic configurationally averaged functions ¢(7") and xo(7") (A)
if J > 0 and (B) if J < 0 (maximally frustrated case). (C): repeat (A) &
(B) for spins interacting via z-y bonds J;;."

8.14. Critical Phenomena and Critical Exponents

Over the last few decades a great deal of attention has been paid to critical
phenomena, the thermodynamic properties of systems at or near a phase
transition. Such studies were originally informed by “critical opalescence”,
in which an ebullient substance refracts all optical wavelengths equally and
there appears to be no characteristic scale or distance. The importance of
the initial studies became magnified by their universal applicability. Whether
a material is a fluid or a ferromagnet, its critical properties can be virtu-
ally identical! They depend on such parameters as d (the number of spatial
dimensions), the order parameters (including the number of components,
q, and whether the components transform as components of a vector, or
scalars, etc.), so ultimately, on the universality class to which the material
belongs.

This field was pioneered in the early 1960’s by B. Widom," C. Domb, G.
Rushbrooke and their many students and was brought to general notice in
two articles: one authored by L. P. Kadanoff and students enrolled in his
class at the University of Illinois™ and the other by M. E. Fisher.* While the
theory originated in series expansions it was ultimately reinterpreted on the
basis of scaling. Stanley’s text¥ surveys the original bases of this topic. So-
phisticated derivations based on renormalization group and “e-expansions”

“"Phase diagram in: P. Sollich et al, J. Phys. Soc. Jpn. 69, 3200 (2000).

YB. Widom, J. Chem. Phys. 43, 3898 (1965).

VL. P. Kadanoff et al., Rev. Mod. Phys. 39, 395-431 (1967).

*M. E. Fisher, Rep. Progr. Phys. 30, 615 (1967).

YH. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford U.
Press, Oxford 1971).
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Table 8.1.
Magnetic System

Critical Phenomena and Critical Exponents
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Definitions of Critical Exponents.

Fluids

Power Law

Zero-field specific heat cp

Specific Heat at constant
volume cy

cox 1/t

Zero-Field Spontaneous
Magnetization m

Liquid-gas Difference in
Density p; — pg

m or p — pg x (—t)?

Zero-Field
Susceptibility xo

Isothermal
Compressibility

Xo or kr o 1/|t]Y

Correlation Length

Correlation Length

g oc 1/Jt"

Spin-Spin Correlation
Function at T,

Density-density Correlation
Function at T,

G(R) o 1/R3=2+n

Critical Isotherm (¢t = 0)

Critical Isotherm (¢t = 0)

|B| o< [m)°

or [p — pe| o |p — pyl°

about 4 dimensions followed.? In 2D, all solved models could be related via
conformal invariance.?® A simple up-to-date survey of these topics by Yeo-
mans is available.PP

In the following pages we recount only a few results, where they relate to
material covered in this and previous chapters. For greater detail we suggest
the readings in Refs. v—bb before confronting what has lately become a rather
extensive and daunting literature on the subject.

Consider the 2-body correlation function g(R) = (exp —R/€)/R*¥2*" for
d > 2, in which 7 is an “anomalous” exponent to fit the actual correlations;
the correlation distance & ~ 1/t¥(t = T/T. — 1) diverges at the the criti-
cal point, i.e. at T'= T, and B = 0 in ferromagnetic systems. The scaling
hypothesis assumes a simple equation of state, B = moW(t/m'/#) and a sim-
ple form for the singular part of the free energy, F(t, B) = t*~“p(t/BY/#9).
All quantities having dimension “length” are proportional to &, regardless
whether they originate in an external B#0att=0orint# 0 at B =0.

Consider the 2D Ising model with g(R;;) the 2-spin correlation function.
The calculated exponent of the magnetization is 3 = 1/8, implying n = 1/4.
This and other critical exponents are defined in Table 8.1 and their values

“S. J. Amit, Field Theory, the Renormalization Group and Critical Phenomena (McGraw-
Hill, New York, 1978).

3. Ttzykson, H. Saleur and I.-B. Zuber, Conformal Invariance and Applications to Sta-
tistical Mechanics, World Scientific, Singapore, 1988.

PbJ M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford,
1992.
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Table 8.2. Some Models and their Critical Exponents.

Name or Symmetry Q@ 16} ¥ § v n Physical
Universality Example
Class
2D Ising 1 component 0 1/8 7/4 15 1 1/4 Hydrogen
scalar adsorbed on Fe
surface
3D Ising " 0.1 0.33 5/4 4.8 0.63 0.04 Lattice gas
3D X-Y 2 component 0.01 0.34 1.3 4.8 0.66 0.04 Superfluid
vector Superconductor
3D 3 component —0.12 0.36 1.39 4.8 0.71 0.04 Ferro- and
Heisenberg  vector antiferro-
magnets,
ordinary fluids®®
Mean-Field any 0 1/2 1 3 1/2 0 Infinite-ranged
ferromagnetic

forces; van der
Waals fluids

given in Table 8.2. (N.B.: when fitted to a power law, both the logarithmic
singularity and the discontinuity in the specific heat are accorded the same
exponent o = 0, this being the closest exponent.)

For the derivations we exhibit some of the so-called scaling or hyperscaling
relations that relate the various exponents in d dimensions:

a+284+7=2, a+pB(1+6) =2, v=p8(6-1),

(8.51)
2—a=dv, y=(2-nyv.

Some of these relations were originally expressed as inequalities, the first
of which being the subject of the Problem below. The second was originally
known as Griffiths’ Inequality, the fourth one is due to Josephson and the
last to Fisher.

For a prototype derivation, recall Eq. (3.16):

Cp = Oy + T(xr) ' [om/0T | ]?

““Fluids share with the spin 1/2 ferromagnet a hard-core repulsion, short-range attraction
and diffusive motion; therefore logically belong to the same, universality class. Recall
Guggenheim’s plot, Fig. 3.4, indicating 8 ~ 1/3 (and not 1/2 as predicted by van der
Waals) for a variety of fluids.
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Set B = 0 and omit the specific-heat term on the rhs:

OB:() > T(XT)_1[8W/8T|B:0]2 (8.52)

Problem 8.14. Prove Rushbrooke’s Inequality, o + 28 + v > 2, using
Eq. (8.52).

Assuming there is a critical surface near a critical point, two parameters
must govern the approach to the critical point, hence there are just two
critical numbers, y; and yo. Whenever this holds, the physical exponents
(o, B,...etc.) except for n (given by the last equation in (8.51),) are all
expressible in the two y’s, as follows:

a=2—d/yi, B=d-y2)/vyi, 7v=QRy2—d)/y1, 6=1y2/(d—1y2)

The reader will wish to check the ostensible accuracy of the various
Egs. (8.51), using these data.

8.15. Potts Models

While the 3D Ising model mimics a lattice gas (spin “up” corresponds to an
atom, “down” to a vacancy) there is need for a greater number of degrees
of freedom to characterize an alloy (e.g.: ¢ = 3 to describe atom A, B
and vacancy at any given site, or arbitrary ¢ for an alloy composed of ¢
constituents.)

The following model, suggested in the early 1950’s by Cyril Domb as a
Ph.D. topic for his student R. B. Potts, turned out to be both useful and
flexible. The Potts model relates to the Ising model and to alloy formation.
In its simplest version it is,

Ho=—2J ) 6(ni,ny) (8.53)
(i,4)

Each site is characterized by a coordinate n; = 1,2,...,q. If the
coordinates of two neighboring sites coincide, § = 1 and the energy is lowered
by 2J, otherwise = 0 and there is no energy gain or loss. Thus the ground
state is g-fold degenerate (one of ¢ ferromagnetic-type states in which all
sites have the same n;.) The natural tendency of a system at finite T being
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to increased disorder, it is clear that there can occur an order-disorder phase
transition of some sort at some temperature 7T, which depends on ¢ and d.

Dynamically, the Ising model is the ¢ = 2 version of Potts’ model, there-
fore we know that the latter has a second-order phase transition for ¢ = 2
in d > 2 dimensions. But what is the nature of the phase transition, if any,
for ¢ > 3 in d > 2 dimensions? And what of the many generalizations of the
Potts model? For example,

H=-=> 2J(n;)8(ni,n;) —>_ > _ b(m)d(n;,m). (8.54)
(i.4) i m

What of the “antiferromagnetic” versions? There exists a famous coloring
problem: how many ways are there to color a map such that no two adjacent
countries are the same color? (Answer: it is given by the ground state entropy
for J < 0.) There is available an excellent review that deals with the many
physical aspects of this topic®® and an extensive mathematical/analytical
book on the subject.f

As in other applications the transfer matrix approach to solving Potts’
model is at its most useful in 2D although it provides only a starting point in
higher dimensions. Using algebraic duality it is possible to pinpoint the phase
transition where there is one. An abbreviated construction of the transfer
matrix of the two-dimensional model and derivation of the duality relation
follow.

The two conjugate variables are n; and p; = —i0/0n; each spanning
q values at each site: n = 0,1,...,¢g — 1 and the eigenvalues of p being
0, £27/q,... The unsymmetrized transfer operator is V' = V;V5 as usual,
with Vo = exp28J 3; d(nj,n;+1) providing the Boltzmann factors for all
the bonds within the mth row. V] is once again replaced by a local operator
that mimics the trace operation on a vertical bond connecting a site of the
m — 1st row to the mth. For each such bond we set U(n) = expipn and
seek a T, such that 3", 2870070 (/) = ' P)W(n); we straightaway obtain
['(p) = log(e?¥? — 1 + ¢6p0). Then, the difference between the larger I'(0)
and the smaller I'(p # 0) is Ay = log(iié%”{q), ultimately to be compared
to the difference between the maximum and minimum exponent in Vs, i.e. to
206J.

ddFor ¢ =2, S = 41, 26(n,n’) = 1/2{(S+ 1)(S' + 1) + (S —1)(S" — 1)} = S5’ + 1. Thus,
at ¢ = 2 the Potts interaction is an Ising interaction + irrelevant additive constant.
°°F.Y. Wu, Reviews of Modern Physics 54, 235 (1982).

TP Martin, Potts Models and Related Problems in Statistical Mechanics, World Scientific,
Singapore 1991.
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Table 8.3. Critical Exponents in 2D Potts Models.

Type « 8 ~y 1) v 7 kT./J
g=2 0 18 7/4 15 1 1/4 2271
g=3 1/3 1/9 13/9 14 5/6 4/15 1.99
g=4 2/3 1/12 7/6 15 2/3 1/4 182

Duality comes about by the interchange of V; with V5. If we take n;—n;41
to be a new variable s; such that the eigenfunctions of V' are expressed in
the s’s, then p; is replaced by i(% - %). A final substitution s; <
—i0/0s; results in the effective interchange of Vi and Vs, mapping the low-
T region onto the high-T" region. Then, if there is a phase transition the two
expressions have to coincide at a point that we identify as T,:

28cJ _ 1 2
log () 95,7, de KL= —20 (8.55)
e?el —1 log(1 +¢2)

It is further possible to prove the phase transition in 2D is second-order
for ¢ = 4 and first-order for ¢ > 4. The critical indices in the second-order
transitions for the ¢ = 3 and 4 models have been calculated precisely and
are as given in Table 8.3. For ¢ = 2 the model coincides with the 2D Ising
model (cf. Table 8.2).

Again, the conscientious reader will wish to confront Egs. (8.51) with
these data. Ultimately, the importance of the Potts model rests in its gen-
eralizations to large ¢ in 3D. Its solutions, even if approximate, can be used
to interpret real alloying phase diagrams® such as in Fig. 3.7, more-or-less
from “first principles”.
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Chapter 9

Some Uses of Quantum Field Theory in
Statistical Physics

9.1. Outline of the Chapter

This final chapter spins several apparently disconnected threads into a
common skein. They include diffusion-limited reactions, the Hohenberg—
Mermin—Wagner theorems (proving the lack of long-range order in low-
dimensions), thermodynamic Green functions and their equations of motion
as popularized in the 1960’s and finally, the application of this methodology
to the study of glass — the ultimate random medium.

In the first instance, what starts as an essentially classical topic is best
understood in the terminology of a modified Bose-Einstein quantum field
theory (QFT). First formulated by Doi in the 1970’s,*P the quantum-field-
theoretic formulation of the master equation of diffusion-limited processes
allows a systematic investigation of any number of nonequilibrium events,
ranging from fluorescence to explosions. In the remaining instances some
applications of QFT to statistical physics are noted, including a theory of
glass from the point of view of a quasi-elastic medium in which the normal
modes — phonons — are scattered at random.

We begin by examining diffusion — the macroscopic consequence of
multiple microscopic random walks. For simplicity we shall assume all pro-
cesses occur on hypercubic lattices.®

9.2. Diffusion on a Lattice: Standard Formulation

In all dimensions d > 1, it is diffusion (alias Brownian motion) that brings
the reactants into contact and nourishes the reactions. Let us first consider

*M. Doi, J. Phys. A9, 1465 and 1479 (1976).
PReferences and review in D. C. Mattis and M. L. Glasser, Rev. Mod. Phys. 70, 979 (1998).
°Continuum theories can be derived by proceeding to the limit a — 0.

219
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the example of a single entity (particle, vacancy, or whatever) diffusing on the
N vertices of a space lattice. For simplicity, we restrict random hopping from
any given point R to just its immediate nearest-neighbors situated at R+ 4.
Given P(R|t) as the probability that R is occupied at time ¢, the master
equation for diffusion involves the evolution of probabilities and takes the
form:

P(R|t) = —D > {P(RJt) — P(R +|t)}
19
=-D> {1-€"PR}yP(RIt). (9.1)
1)

The rhs follows from a Taylor series expansion in §, as is well-known in
condensed matter physics. The special solution to this equation, subject
to an initial condition P(R|0) = §(R — Rp) at ¢ = 0,° is commonly
denoted the diffusion Green function or propagator G(R — Ry|tD). Now
suppose Q(Ry) to be the probability of the particle being initially at Ry.
Then the general solution of (9.1) is just

P(R[t) =) G(R — Ro[tD)Q(Ry).
Ro

The dispersion relation is found by solving (9.1) using a plane wave with
imaginary frequency, i.e. exp(—wt + ik - R). It is,

=D Z — k) (9.2)

On hypercubic lattices in d dimensions the vertices (lattice points) are
at r = a(ny,ng,...,ng) where the n’s are integers. In this simple case
the dispersion w(k) is separable, ie. w(k) = d _1w(kj), with w(k;) =
4Dsin?(kja/2) along the jth axis. At long Wavelengths w(k) ~ Dk?a?,
where a is the lattice parameter. Because D has dimensions sec™! in our
units, D x a® = the usual continuum diffusion coefficient, that we denote D’.

To construct the hypercubic lattice Green function at r = R — Ry one
averages over all admissible plane waves whose k’s are restricted to the first
Brillouin Zone (BZ) of the lattice. This reduces G to a Kronecker delta at
t = 0. In the thermodynamic limit the sum over k£ is replaced by an integral.
Given the definition of the Bessel functions of imaginary argument, I,,(z),
one expresses G on the hypercubic lattices, making the dependence on D

d1.e. given a differentiable function f(z), f(z + a) = /9% f(z) = e'®P=/" f(z).
°The same as requiring, with unit probability, that the particle start out at a specified Rp.
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explicit henceforth, as follows:

G(RItD) :% T ik A-tDu()
kCBZ

d
= H % %dkﬁ] COS ]{Jjnje_tDw(kj)
7j=1

d
= e ?PU] I, (2tD) (9.3)
j=1

At large R and t,G given in Eq. (9.3) smoothly reduces to the contin-
uum G = (4ntD')~%2 exp —(R?/4tD’'a?) so that the probability of finding a
particle within a radius R oc v/ from the origin is O(t~%?), from which it
might be inferred that, ultimately, particle density decays as t~%?2 owing to
various causes such as recombination, etc. But this is not always the case.

Consider the interesting case of particle-antiparticle recombination
(electron-hole recombination in an amorphous semiconductor where each
species performs a random walk to find the other, or vacancy-interstitial
recombination), when initially there are equal numbers of both species the
density of each decays as t~' in high dimensions (d > 4) and as t~%* in
d<atf

Note that the one-body diffusion Green function is directly generalizable
to many-body diffusion. For example, in the case of 1 particle of each of 2
diffusing species, the two-body Green function is given as the product of the
two respective one-body Green functions, by

G(r,r/\tDl,tDz)Z% 3 elikertikr—tDiw(i+Dew (k)

k,k'CBZ

(This expression resembles a one-body Green function on a 2d-dimensional
lattice). The Green functions for n > 2 particles can be obtained from this,
by induction, as higher products of n one-body Green functions.

Diffusion Green functions are normalized, i.e. Y. G(R|tD) = 1, at
t > 0. They also satisfy a convolution theorem. Using the Kronecker
lattice delta-function,

1 kR _
N2 =

{1 for R=0
kCBZ

0 forR#0

fD. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).
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one derives,

> G(Ry— R'[t1Do)G(R' — Ro|t2Dg) = G(Rg — Ra|ti Do + t2Dg) . (9.4)
Rl

9.3. Diffusion as Expressed in QFT

The field-theoretic expression for the dimensionless operator part of the rhs
of (9.1) is the Hermitean operator €2,

Q= Z Z{GRGR — QRysAR} = Z Z — GR45)AR - (9.5)

It graphically expresses the “hopping”# of a particle from R to R + ¢ (and
operates on a probability operator |¥(t)) that now replaces P. The following
equation (not unlike the Schréodinger equation), replaces (9.1):

O (1)) = —DRUT(D)). (9.6)

Along with this equation comes an arcane set of rules. Consider the boson
operators: the raising (a};) and lowering operators (ar) at every site R. The
usual commutation relation [ag, a%] = dg r holds." With |0) defined as the
“particle vacuum” annnihilated by a (i.e. a|0) = 0), we define the basis states
[n) as follows:

In) = (a®)"|0), ie. aln)=mn|n—1). (9.7)

Each |n) is an eigenstate of a*a with eigenvalue n. Under a simple linear sim-
ilarity transformation parametrized by an arbitrary constant A, an arbitrary
function F' of the operators a and a* transforms as follows:

e F(a")e ™ = F(a*+ A) and e 4 F(a)e ™ =F(a—A). (9.8)

If the similarity transformation has a diagonal quadratic exponent, an arbi-
trary function F' of a and a* transforms as:

AT (a,a*)e” A = F(ae ™, a*e?) . (9.9)

This last is a rescaling transformation: a — Ca and a* — a*/C.
The careful reader will observe that although a and a* were defined as
boson operators, they not Hermitean conjugates of each other and the left

£Diagonal terms in ajar correspond to 1 and ag,sar to €°?/?% in (9.1). Thus, the eige-
nalues of D) coincide with the previously calculated w(k)’s.
"Hence for most purposes a can be represented by 0/0a™.
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eigenstates of {2 are not simply related to its right eigenstates. The norma-
lization of states |n) cannot be quite the same as in the quantum mechanics
of bosons. Given that the operators are meant to deal with essentially
classical “particles” (e.g. interstitial atoms) that propagate on the given
space lattices, it should not be surprising that there are discrepancies.

The essence of what we wish to accomplish is summarized in the definition
of the right-hand state |¥(t)) as generating function for the probabilities
P(n|t). At any given site, it is:

) =Y Pnlt)ln) =) P(n[t)(a")"|0) (9.10)
n=0 n=0

P(n|t) is the probability of n particles on this site. The projection operators
with which to recover the P’s are < 0|a”/n! Thus,

(o) = £ oo

To test the norms we introduce a reference state for this site:

n

a n
arlm

> = P(nt). (9.11)

(A = (0]e*  (having the property that (A\|n) =1, all n.) (9.12)

Then for any rh state of the type defined in (9.10) the normalization is, and
remains, independent of time:

(| (t) ZP nlt) = (9.13)

The reference state (A| is itself a special case of the Glauber state
(0]e*®*, a left eigenstate of the operator a* with eigenvalue «. Thus, given
any normal-ordered function F' of a and a*,

(A|F(a*,a) = (A\F(1,a) = (0|F(1,a)e”. (9.14)
For example, given two arbitrary integers s,q > 0:
n! n
Aa*a)|W(t)) = ———P(nlt) = ¢! 9.15
Oaa (1) = 3 o Pl <(q>> (9.15)

a function of ¢ and of time ¢ but independent of s.
It is easy to find averages of operator quantities, as follows:

(\|F(a*a)|®(t) ZF P(n|t) = (F)(1). (9.16)

Next, consider X species (individually labeled by x = 1,2,..., X), and
solve for their joint time-dependence. The multispecies generalization of
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Eq. (9.6) is 0¢|V(t)) = — > D, Q.| ¥(¢)). This first-order pde has the explicit
solution:

|9 (t)) = e 20 Px 2| (0)) (9.17)
in which the diffusion operators €, are:

Q=Y > {airasr — 0 Ris0ar} = O wal(k)ci(k)ea(k)  (9.18)
R 4 k

(with af = \/_1N Sy eF e (k) and ¢* (k) = \/_1N Sre #®Ea% ) The ¢'s are the
Fourier transforms of the a’s. w;(k) is given in (9.2) with D set = 1, but is
often approximated by its leading term, w(k) ~ k2a?.

Next, let us just examine diffusion of a single particle of species z. At
t=0,|¥(0)) = af|0) (omitting the subscript ). This reads as: “one particle
(of species x) is initially at R”.

Use (9.16) to find the time-dependent state, substituting the plane wave
operators c¢ for that of the localized particle. Inverting the transformation
and invoking Eq. (9.1) to recover D we find:

W(t) = Y G(R - R|tD,)a, p|0) (9.19)
>

exactly as expected. (See Problem below.) In this example, the multi-site,
1-species reference state is:

(A] = (0]e=r R = (0]eVNeO) (9.20)

According to (9.16), the average occupancy of any given site R at t is
(AMatyap|¥(t) = (AMlag |¥(t)) = G(R — R'|tD), again just what might be
expected.

Problem 9.1. (A) Derive (9.19) explicitly, with the aid of the first line in
Eq. (9.3). (B) Assuming the initial configuration consisted of one x-particle
at each of M sites: Ry, Ra, Rs, ..., Ry, (again omitting subscript x) show
that at ¢ > 0,

[©(1)) = > [ {G(R; = Rj[tDy)a} }0). (9.21)

Ry Ry, Ry Ry,

(C) Must this result be modified if some of the R;’s coincide, i.e. if there are
initially two or more particles at some of the sites?
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In some instances it may be simpler to work in the k representation. The
multi-species reference state on the N given sites is then,

(A] = (0] T] % = (0]eVN 20 (©) (9.22)
z,R

and is seen to involve only the k£ = 0 mode for each species.

9.4. Diffusion plus One-Body Recombination Processes

Taking |¥(t)) to be the generalization of the generating function (9.10) to
numerous sites and species, the master equation becomes:

(1)) = —H| (1)) (0.23)

in which H includes all reaction processes plus diffusion.
Thus, for pure one-body decay at each site, one would include in H terms
such as

1
Hy =3 — 3 (a3 gas,r — au,R)-
z Tz R
This H, commutes with the diffusion operator because at k = 0, w,(0) =0
in the latter. Thus the total wave operator simply factors as,

W) = e W(0)) = e (e 2 He B 0))) (9.24)
where

Hy(k) = Dy = Dy > wach(k)ea (k)
k

as before. We define e ' 24 Hx(k)|\ll(0)) = |®(t)), previously calculated in
Eq. (9.21).

® is a state in which the members of each species have been rearranged
as a function of ¢ by the process of diffusion while their respective total
numbers remain constant.

To compute the decay in the number of the x’th species due to the 7
process we evaluate (ng g), i.e.

1 1 1
<N gRjnR> = (Al 3 ma ) = 7 (Ales O)19(0)

Q‘

= #(me\/ﬁc”(o)cw(o)\‘l’(t»'
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So,

(na.g) (£) = ——(0]eV N O ¢, (0)e~ 7 (5 OeaO=VNe: O g )y

1
VN
After the diffusion operator is commuted all the way to the left, it drops out
and the expression simplifies to:
e—t/Tz

VN

This simple result — exponential decay — should not be surprising. |¥(t)) is

(ne,r)(t) = (0le2 (0)[2(0)) = e~/ () (0). (9.25)

merely the generating function for the probabilities in a model of radioactive
decay that we examined earlier, in Sec. 7.6.! Although the model is here
generalized to the case of diffusing particles, the total decay is independent
of where the particles are situated and therefore diffusion is irrelevant.

Problem 9.2. Calculate the variance in n and check whether it too agrees
with the calculation in Sec. 7.6 for particles decaying in situ.

9.5. Diffusion and Two-Body Recombination Processes

Next, we allow z to span 2 species A and B that recombine at a rate 1/7
whenever they occupy the same site. The resulting particle C' (if any) is
then immediately swept out of the system. In the case of A, B annihilation
no particle ensues but assume that any energy released is also immediately
swept out of the system. The zero-range recombination operator is

1 * *
H, = - Z(aRaRbRbR — aprbr) .
R

Upon including the diffusion operator, the time development of |¥(t)) is
given by the master equation 0|V (t)) = —H|¥(t)), with H = Hp + H,.
Here the c4’s are Fourier transforms of the a’s, etc.

H = S wBDach(ealb) + Dic(R)en(r)

1
+ ; Z(a}aRb*RbR — CLRbR) B (926)
R

fAnd also solved by operator methods such as used here, on pp. 981-983 paper cited in
footnote b.
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A minimal solution of this model requires finding the decay of each species
and calculating their correlation functions. Now, if only average quantities
(k = 0) were involved in the final results we could just solve the simple
mean-field equation. For equal ng = np the master equation reduces to
oma = —(1/7)n?, having the solution ny = 7/(t + to), where n4(0) = 7/tg
defines ¢y and the asymptotic value of n4 is 7/t at large t. This last is, in
fact, the correct asymptotic behavior in dimensions d > 4.

More generally, the solution of the master equation is,

[T (1)) = e | W(0)), (9.27a)

although a second, equivalent, time-ordered solution, is more adaptable to a
perturbation-theoretic expansion in powers of 1/7:

W(1)) = e Ho e Jo #H- g o)) (9.27b)

Time-dependence is defined by op(t) = (exptHp)op(exp —tHp). The time-
ordering operator T' ensures that in the expansion of (9.27b), operators at
later times are written to the left of those at earlier times.

For d < 4, when the fluctuations dominate, the problem becomes quite
difficult. One analyzes the problem qualitatively as follows: in neighbor-
hoods where the densities are not exactly equal due to normal fluctuations,
recombination exhausts the minority species rapidly. This leaves a surfeit of
majority species; for these to disappear they must diffuse to distant regions
where the population imbalance is the reverse.

For this reason one names this process “diffusion limited” recombination.
Although it still satisfies a power law, the asymptotic rate of decay has to
be far slower than in the mean-field limit and thus the exponent must be
quite smaller.

The exponent d/4 in the asymptotic behavior (n) o 1/t%* for 2-body
2-species recombination in d < 4 was first found numerically and semi-
phenomenologically in Ref. f. The reader is referred to this paper for a more
complete explanation. The field-theoretical solution of the model is broached
in Ref. b, where numerous references to more recent literature can be found.
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Problem 9.3. One-species two-body recombination is modeled by a re-
combination operator
1 %2 2 2
Hr = o~ (agak —ag),
R
similar to the preceding two-species operator. However, in d < 4 the density
decays much faster asymptotically in the diffusion-limited one-species model
than in the two-species model discussed in the text. After musing on this
point and referring back to Sec. 9.2, argue persuasively why an asymptotic

behavior 1/t7(4 with ~v(d) > d/4 is appropriate in the one-species case. What
1s the value of v in 1D?

9.6. Questions Concerning Long-Range Order

In the concluding sections of Chapter 4 we analyzed the Bragg (X-Ray)
spectrum of lattices at finite 7" and remarked on the Debye—Waller exponent
that diverged in d < 2 dimensions. This indicated the lack of long-range
order (LRO) in low dimensional systems that suffer an infrared divergence
in the numbers of phonons.

The absence of LRO is easiest to understand in 1D. Consider a chain of
atoms located at discrete points x,, where z,11 = x, + a + A, and A, is
a random variable caused either by thermal fluctuations or some mismatch
of bonds. If the root cause is thermal, A will be distributed according to
a probability P(A), such that (A) = 0 and (A?) = o?T, with o a small
constant. If due to a mismatch, we shall assume A,, = +4(, where the £
are distributed at random and Ag is an arbitrary parameter. Either way, we
find for the distance R,, and its variance, between atoms at n and n + m,

n+m—1
R, = ma + Z A; and ((Rp — Rp)?) = m(A?%). (9.28)

J=n

The latter grows with m regardless of the “smallness” of the fluctuations. The
effective correlation distance £ is found by asking: at what m do the rms
fluctuations exceed the nominal lattice parameter a, making it uncertain
whether the last atom is the n + mth or the n 4+ m £ 1st This suggests that
correlations decay exponentially as exp —|R,,|/¢ with & = a®/(A2).

In two dimensions, a logarithmically divergent Debye—Waller exponent
does suggest the lack of LRO in elastic two-dimensional solids at finite T’
although the discrete 2D Ising model does have LRO at all finite T' < 7.
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The issue of LRO in 2D is not clear-cut, as some models have it in 2D and
some do not. Is there a relation between thermal fluctuations in quantum
systems and LRO?

Building on inequalities developed by Bogolubov and also by Hohenberg,
Mermin and Wagner! finally resolved this conundrum by proving that — if
there is a continuous local symmetry — there can be no LRO at any finite
T in dimensions d < 2.

Their theorem applies not just phonons but also to the “X-Y-Z”
Heisenberg models of ferromagnetism (J < 0) and anti-ferromagnetism
(J > 0). But, given that in both models 7, = 0 in 1D and 2D, they are
obviously in their high-T" disordered phases at any finite T and therefore the
Mermin-Wagner theorem is redundant!

Still, this theorem does have a nontrivial consequence in the “X-Y”
model® in 2D. The X-Y model exhibits a continuous phase transition (known
as the Kosterlitz-Thouless transition!) at a finite critical temperature Tp.
In this instance the theorem proves™ (and independent calculations have
confirmed), that not only is the high-temperature phase disordered, but so
is the low-temperature phase — similar to vapor-liquid phase transitions
in 3D.

But the 2D Ising model and the 2D g-state Potts models (and the corre-
sponding lattice gases) behave quite differently. Both have a phase transition
at finite 7, (at small ¢) and both do exhibit LRO in the low-temperature
phases.

How do the differences in the low-temperature behavior arise? The
Ising and Potts models differ from the X-Y and Heisenberg models only
in that they have discrete local symmetries; their excited states are sepa-
rated from the ground state by a finite energy gap A,. It is reasonable then
to expect that the ground state LRO persists throughout the low temper-
ature regime, k7' < O(A,). In the following we prove the Mermin-Wagner
theorem and examine its consequences for systems with continuous local
symmetry.

IN. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 and 1307 (1966).

kAlso known as the “plane-rotator” as the interactions among neighbors involve only the
components S, and Sy in the z-y plane.

'J. Kosterlitz and D. Thouless, J. Phys C6, 1181 (1973). See also: V. L. Berezinskii, Sow.
Phys. (JETP) 32, 493 (1971) and D. Mattis, Phys. Lett. 104, 357 (1984).

"™See Problem 9.5 below.
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9.7. Mermin-Wagner Theorem

This theorem, stating the absence of spontaneous LRO for systems with a
continuous local symmetry in 1D and 2D, takes the form of an inequality.
In the presence of an external field (homogeneous field B for a ferromagnet
or a staggered magnetic field By in an antiferromagnet), one can show that
the relevant order parameter™ o is bounded as follows:

T 2/3 B 1/3
0<o< (Tl) (F) in 1D, (9.29)
1
where T7 and B; are constants, and
T 1/2 B -1/2
0<o< (?2) log ‘52 in 2D, (9.30)

where Ty and By are different constants.
No matter how low the temperature, these formulas predict o vanishes in
zero-field.® Hence there is no spontaneous symmetry-breaking and no LRO.
The proof comes in two stages. For now, we make use of Bogolubov’s
mnequality,

(304 A N2allC 1.0 )ra) > GTUIC, ADral) (931

to prove (9.29) and (9.30); we derive this inequality in the next section. Here
{,} is an anticommutator and [,] a commutator.

Isotropic Heisenberg Hamiltonian. Let us illustrate using this simple case.
It is governed by the Hamiltonian,

H = Z J(RZ])SZ . Sj — B Z Sj,zeiK'Rj (932)
i,J i
where each quantum spin obeys the usual relations for angular momentum:
[S=,S8%] = 2hS.,[S., SF] = £hST and S§% = h?s(s + 1) with s = 1/2,1,. ..
Spin operators on different sites commute. Next, pick

C=87(k) = Ze_ik'RjS;f and A=S(-k—-K). (9.33)
J

"o o the magnetization in a ferromagnet or, in a two-sublattice antiferromagnet, the
difference of the two antiparallel sublattice magnetizations.

°Note that if the inequalities were replaced by equalities, it would imply x — oo in zero-
field at all T' (recall x x do/0B). At high T this is clearly impossible! It follows that the
“<” signs in (9.29) and (9.30) have to be replaced by “<” at sufficiently high T'.
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The three important quantities are: the order parameter,

ZezKR i )TA (9.34)

and the anticommutator,

{A, A Nra = 5{ST(k + K), 87 (—k — K)})1a

N —
MlH

which is to be summed over k and bounded from above:

—Z {ST(k,K),S™ (—k — K)})ra

- Z 52 + 52 <s(s+1). (9.35a)
Thus,
kT ([C, ATl
s(s+1) > ~ Zk: TC. H]. 07 (9.35b)

The numerator on the rhs of (9.35b) is precisely,
(IC, ADral? = [([ST(k), ST (=k = K)])ral* = (hNo)*. (9-35¢)

The denominator of (9.35b) is the only quantity involving H and J. It will
be replaced by a generous upper bound:

([C,H,C Yra < — ((Z |J(R |R2> K + |BJ|) (9.35d)

Combining the above, one obtains

s(s+1)( 1 1 !
S T ((W/Bzddk<s<s+1>zj|J<Rj>\R§>k2+|Ba|> - 030

The integral diverges for d < 2 if, in the denominator, one takes the limit
B — 0. Then, according to (9.36), 0> =0, QED.

If, instead, one assumes B to be small (but non-zero), it is possible
to manipulate the transcendental inequality (9.36) to obtain the Mermin—
Wagner inequalities (9.29) and (9.30).
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Problem 9.4. Do just that: obtain inequalities (9.29) and (9.30) (to
leading orders in B and o) starting from Eq. (9.36) above with B # 0.

Problem 9.5. Analyze the X-Y model at low T in the same way as for the
preceding Heisenberg model. Because of anisotropy you must now consider
two cases: (a) external field B and order parameter in the z-direction or
(b) both along the (noninteracting) z-direction. Show there is no LRO at
finite T" when B — 0.

The Heisenberg and X-Y models govern purely magnetic degrees of
freedom and may not be appropriate in metals in which the spin polarized
electrons are itinerant. In that case, can 1D or 2D metals be either ferromag-
netic, antiferromagnetic, or sustain spin-density waves or any form of LRO?
The answer again is, no.

Low-Dimensional Metals. Consider a Fermi sea of interacting electrons in
the conduction band of a metal. In terms of the complete set of anticommut-
ing Bloch operators ¢y, and CZ,W the order parameter analogous to that in
(9.34) is

1
0 =35> (G xrkr = Gk Or))TA - (9.37)P

The analogous operators can be chosen as,

C=S8"(k)= Z C_I:’Tckl‘i‘kl and A= Z c_k'—’-l—klck/—KT . (9.38)4
k/

The Hamiltonian H consists of three parts: the motional (“kinetic”)
energy Hy plus the two-body charge interactions gH’ and the magnetic
interactions

B
+ +
D) Z(CkH(,TCk,T - ck+K,Lck’,l) .
k

The first two contributions to H are modeled by:
2.2
k=

ck:,m

1
Sy cem and gH' = 3 Zzj:V(Rij)nmj (9.39)

PUse “47 sign for charge-density type order parameter.
9For charge-density studies use a modified C' and a similarly modified A, i.e. C = p(k) =

+
Zk’,m:T,i Crt \m Ck +k,m-
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where m* is the “effective mass” parameter (as obtained from band-structure
calculations or experiment) and

1 o
L i(k'—k)-R; +
nj=x2_ ¢ 6 it m
m kk’

is an occupation-number operator.
Because gH’ commutes with the operators A and C in (9.38)," for the
purposes of inequalities (9.35) we can write

B
_ + +
H =H, - P Z(CHK,T%T - ck-}-K,lck,l) :
k

This shows we are dealing with what is effectively a “free electron” system,
one that notoriously has no tendency for spontaneous symmetry-breaking!®

Problem 9.6. With the aid of the o, A and C appropriate to free electrons,
use (9.31) to construct the tightest possible bounds on spontaneous LRO in
the free-electron model as defined above in 1D and 2D.

We turn next to the derivation of the crucial inequality (9.31).

9.8. Proof of Bogolubov Inequality

Define a new type of “inner-product” bracket, (A, D), as follows:

1 e e P e PE;
(A,D) = Z;;(”A\J) (Z\DU)ﬁ- (9.40)

For an upper bound on the last factor use: 0 < (e —e %) + (y — x)
< (1/2)ae™%, where ¢ is z or y, whichever is smaller. It follows that

"Note to the reader: prove this assertion.

SStrictly speaking, this only shows that static spin-density waves are excluded in 1D and
2D. However, charge-density waves are also completely ruled out in d < 2 by virtue of
similar inequalities applied to slightly modified operators (as indicated in the preceding
footnotes).
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(A4,4) < %K, where

K= % > @AY GIAe ™ + 37 (lATj){(j|Al)e”
i J#i FED)
Bj<E; Ei>E;
A superior bound to K is obtained by removing the restrictions £; < (or >)
FE;. Interchange of 4, j in the second sum yields,

(4,4) < S(44, 4% ) (9.41)

We invoke a generalized Schwartz’ inequality, relevant to the “inner product”
(9.40), wviz.

(A, A)(D,D) > |(A,D)*. (9.42)
If one chooses
D =[C*,H], then (A, D)= (A[CT, H)).

When this last is inserted into (9.40) the denominator is canceled and one
obtains the expression ([C, A])r4 appearing on the rhs of (9.31). The same
holds for (D, D) and so (9.42) reduces to (9.31).

9.9. Correlation Functions and the Free Energy

Q: What do Bragg scattering, electrical conductivity, magnetism, specific
heat and order-disorder phase transitions have in common?

A: All can be analyzed using some sort of correlation function.

At present let us list some correlation functions that have been much
discussed over the years. One distinguishes static (e.g. LRO) and time-
dependent (alias frequency-dependent conductivity o(w)) correlations. But
all can be studied with the aid of some “two-time Green function”, as
introduced in the following section.

The ultimate goal is an exact or accurate computation of such quantities
as, (A(t)B(t'))r4, where A and B are arbitrary operators, not necessarily
distinct. Some tangible examples follow.

In the study of the interacting Bose-Einstein fluid undertaken in
Chapter 5, it is generally useful to know correlation functions such as

Chkig(9,T) = (a;+qa—kh—qak’ak>TA
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both above and below T, given that the thermal average is with respect to
an ensemble determined by the full Hamiltonian including Hy (the kinetic
energy part of free bosons) plus the interaction term gH':

g
H=Hy+ mquZa:ﬂa;_qak/ak, (943)
q kK’

with v, the spatial Fourier transform of the two-body interaction V (|r; —7;|).
The a’s are boson operators subject to the familiar commutation relations,
lak, af,] = Ok (all other commutators = 0). The Free energy (and from it,
a number of other thermodynamic functions) is given ezactly by,

1 g
F=FR+— qu/ dg' > Chig(g'T) (9.44)
vol q 0 P

where Fj is the (known) free energy of the ideal boson gas of N particles at
the given temperature.

How to choose A and B in this t = ¢/ = 0 example? There are several
strategies that can be adopted: A = p(q) = Y, a,";qak and B = p(—q) or
A = Yy pa_pa, and B = A% are distinct bilinear choices. The results
for weakly-interacting bosons in Sec. 5.12 can be generalized after further
factorization into corelation functions quadratic in the field operators. This
requires factoring aa qazr,_ o Ok O into all possible bilinear factors such as

+ + +
2a:+q<ak,_qak'>TAak + 2a;, an <ak/_qak>TA
+ o+ + o+
+ (ak+qak,_q>TAak/ak + ak+qak,_q<ak/ak>TA .

If to this approximation we add the assumption that thermal averaging
(TA) conserves translational invariance, quantities such as (a;, g )TA =
<ag,ak/>TA5q,o simplify greatly, as does <a§,_qak>TA = (a:awTAék/_q,k, and
as do the anomalous averages (apar)7a = (a—pak)TA0k . All can be
calculated self-consistently, after diagonalizing the momentum-conserving
quadratic form similar to Hy in Chapter 5. These self-consistent solutions
can be made to yield a mean-field theory of the fluid-superfluid phase tran-
sition in d > 2. But for d < 2, owing to the absence of LRO this does not
“work” and (a_pag)ra vanishes.

If one extends this analysis to the 3D solid phases of Bose—Einstein par-
ticles, there is an even greater number of nonvanishing terms including;:

<a]i_/_qak’>TA = Z<alj—Qnak/>TA5Q7Qn

n
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and the anomalous average

(awar)Ta = ) {0kt Qu k)T A ~k+Q
n
the sums ranging over vectors @), of the solid’s reciprocal lattice.
The electron gas provides yet another example in which correlation func-
tions play an important réle. To the Hamiltonian of the free electron gas,
expressed in a complete set of anticommuting operators, the ¢’s and c*’s,

Hy = Z (e(k) — M)C;mck’,mv
k,m=T1,|

we add the Coulomb interaction Hamiltonian,

B 47re? 1

gH' = — > ?P(Q)P(—Q)a (9.45)

(qz>0)

in which p = p; + p; and pp,(q) = D% C;Lq,mck,m- The Coulomb interaction
energy scales with® 1/r, hence with krag (ap is the physical lattice parame-
ter). The kinetic energy scales with (kpag)?.

Hence, at extremely low density and temperature the Coulomb energy
becomes paramount. To minimize it, the translational symmetry has to be
broken and the 3D electron gas condenses spontaneously into the antiferro-
magnetic “Wigner lattice”." Because Bragg reflections are part and parcel of
any space lattice with LRO, some set of p(Q,) have a nonvanishing expec-
tation value and (p(Qn)p(—Qn))1a = (p(Qn))1A{(p(—Qr))1Ta+ fluctuations.

At a slightly smaller value of ry the 3D lattice “melts” into a partly
ferromagnetic translationally invariant fluid, such that (S tota1)74 # 0. Thus
there is magnetic LRO in the ground state. The order parameter presumably
persists over a range of temperature. At the date of writing the dependence
of the Curie temperature on the density has not been established.

At smaller r, still, in the range of densities that are typical of ordinary
metals (kpa > 1,) the 3D Coulomb gas behaves very much like a noninter-
acting, ideal, Fermi—Dirac gas. The relevant correlations are

Cqle®) = (p(a)p(—q))1a

as in Eq. (9.45) or, more microscopically, <CZ+q o ChmChr 1 Chrtqm)TA (Which
can then be summed to obtain Cj). Using this quantity in conjunction with

73 is o volume occupied by each electron o< 1/electron density.

"This can be either hexagonal close packed or body-centered cubic, and has lattice
parameter = rs.
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Eq. (9.45) we obtain the exact free energy of the electron fluid as:
21 1 [¢
F=Fy+—=> = [ de?Cye?). 9.46
vy L fy 4 (9.46)

In short, correlation functions are ubiquitous. They are closely related
to thermodynamic and transport properties and they are valuable tools
for the calculation of critical phenomena, critical exponents, etc. The no-
LRO theorems in low dimensions were based on bounds on some appropri-
ate correlation functions. Unfortunately, with some exceptions there is no
straightforward, self-consistent way to obtain correlation functions directly
from first principles. We must proceed indirectly by solving the equations of
motion of the related Green’s functions. Next, we examine the connections
between the two.

9.10. Introduction to Thermodynamic Green’s Functions

Ever since their invention by the 19th Century English mathematician
George Green, his eponymous functions have served to solve differential
equations and, when this is not possible, to replace them by equivalent
but more transparent integral equations that easily incorporate the stated
boundary conditions. Students of quantum theory are familiar with this
application of Green’s functions fundamental to the development of scat-
tering theory. Those who are familiar with aspects of quantum field theory
will recognize the usefulness in the many-body perturbation theory of the
“time-ordered Green functions”, generally known as propagators. These are
similar to G(w) = ﬁ Using such G’s one can obtain the density-of-states
p(w) for any arbitrary Hermitean Hamiltonian using the obvious formula:
p(w) = £Tr{G(w —ic) — G(w + ie)}.

The thermodynamic functions that are the subject of this section are quite
special and were developed in the late 1950’s specifically to calculate the
various correlation functions in many-body problems of interacting particles
at a finite 7. A number of useful results are summarized in a clear and
readable contemporary review by Zubarev.V

The Green functions come in 3 genuses or 6 distinct types: retarded,
advanced and causal, each of which can be used in conjunction with either

¥D. N. Zubarev, Sov. Phys. (Uspekhi) 3, 320-345 (1960) (English translation of the original
in Usp. Fiz. Nauk 71, 71-116 (1960)). Also: G. D. Mahan, Many-Particle Physics 2nd
Edition, Plenum, New York, 1990, pp. 81-234.
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Fermi—Dirac or Bose—Einstein statistics. The following shows the intimate
connection between Green functions and their correlation functions:

. + +
i /+°o temis—t) G (@) = GFY ()
21 J oo ePv +1 '

(B(t)A(t))1a (9.47)
The (£) superscripts are paired with (£) in the denominator. They refer to
commutator (—) or anticommutator (+) Green functions, The subscript a
refers to “advanced” and r to “retarded”, two branches of a single function
G(#) in the complex z = w+ie plane with singularities (poles or a branch cut)
exclusively on the real axis. Thus, G, (w) = G(w+ie) and G, (w) = G(w—ie).
Although simple,” the proof of (9.47) is too lengthy to reproduce here.

In the time domain, GF(t — t') = (' — t)([A(t), B(t')]+)74 is defined
in terms of a commutator (—) or anticommutator (+), [A(t), B(t')]+ =
A(t)B(¢) + B(t)A(t). The retarded function is, G\=)(t — t/) = —id(t —
t"){([A(t), B(t')]+)ra. Here 9(t) is the Heaviside function (the unit step, 1
for t > 0 and zero for ¢t < 0). The Fourier transform of both is a common
function written more suggestively as ((A|B)),, or even better, as G4 p(w).

The function G5~ (t) satisfies a simple equation of motion:

ingi)(t — )

dt = o(t —t')([A(t), B(t)]+)1a

9 1) < [dAu) B

— 9.48a
dt jE>TA ( )

where idA/dt = AH — HA = [A, H]_, assuming the time-dependence of
operators to be the usual A(t) = (exp +itH)A(exp —itH ). Here and through-
out, we take h = 1. Now note the last term in the above equation is also an
advanced Green function, of a new type:

—9(t' —t) < {%it), B(t")

> — (' —)([[A(t), H], BE))ra  (9.48D)
/14

in which C' = AH — H A takes the place of A. We could work out its equation
of motion and iterate indefinitely in this manner, until either there is closure
or we perform an arbitrary truncation.

The retarded function satisfies a similar equation. Assuming that equal
time commutators are independent of ¢ and that the 2-time commutators
are a function of ¢t — ¢’ alone, we can Fourier transform these equations to
obtain a single equation of motion for both,

w((A|B))w = ([4, Blt)w + (([A, H]|B))o - (9.49)
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For operators A, B that commute at equal times one generally elects to use
the commutator [A, B] = [A, B]_ while for operators A, B that anticommute
at equal times it is preferable to use {A, B} = [A, B], instead. The quantity
[A, H] on the rhs is always the commutator [A, H]_.

“A picture is worth a thousand words”. To conclude this book we provide
the examples below to illustrate some uses of Green functions in many-body
physics.

Example 1. Free Electrons: time-dependent correlations.

Hy = Z Ze(k)c;mck,m, where e(k) = e(k) — u.
L m

Let A = ¢y, and B = c,j/ . De fermion operators satisfying the usual
anticommutators: {CZW Ck/m' } = Ok k' Om,ms - We opt for the anticommutator
Green functions. Now Eq. (9.49) reads:

W<<ka m|k,m,>>w = 5k,k’5m,m/ + €(k’)<<l€, m|k/m/>>w ) (950)

in which only the relevant quantum numbers (k,m) are retained and the ¢
symbols are omitted for brevity. Here closure comes immediately. We solve
for Green’s function:

0 ’5m m/
((ky Ik '), = 2= R (9.51)

Then, according to (9.47) the correlation function is:
o—iw(t—t')

7 +o0
<$ww%wmm=%Mngﬁw“%mIT

1 1
— . .52
X{w—i—i’y—e(k:) w—ify—e(k:)} (9:52)
In lim -y — 0 the curly bracket is exactly —i27wd(w — e(k)), hence

o—ie(k)(t—t")

+ ! =
{Cirmy ()t (D)4 = OOt gy 7 -

This vanishes unless the quantum numbers are the same. If they are, then
we recover the familiar Fermi function at equal times. For ¢ # ' the same
formula yields the one-particle auto-correlation function.

Problem 9.7. Verify that the use of a commutator Green function with
the above choices of fermion operators, A and B would not be quite so
simple.
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Example 2. Free Bosons: Ho = Ype(k)afar (with all e(k) > 0, of
course.) Let A = a; and B = ak,, be boson operators satisfying the usual com-
mutation relations. The only nonvanishing commutators are [a, ak/] = k.1
The equations of motion of the commutator Green functions are:

W{(EIK'))w = O + (k) ((KIK))e (9.53)
having a solution,
n Ok
((k|k"))., = 7w—e(k) . (9.54)

The correlation function is:

e +oo e—zw t t/)
N B
y { _ L } (9.55)
w—l—w—e(kz) w—iy—e(k)) " '
The curly bracket is —i2wd(w — e(k)), i.e.
o —ie(k)(t—t") ) »
<Ck’(t )Ck(t)>TA = 5k’k/m and <nk>TA = (6 — 1) .

Example 3. Scattering of Normal Modes: Let H = Hy + gH’, with H
being the Hamiltonian of the free bosons in Example 2; gH’ is the scattering
from a localized impurity at Ry, the mass or spring constants of which differ
from those of the host in an amount g:

VolZ Z =R Br Je(k)e(k!) (ar + aty,)(ak +aty) . (9.56)

Clearly for the thermodynamic function we need the correlations ((ap +
a®y))(ak+at,))ra as a function of g; call this Fj, 4/ (g). Choosing the position
of the impurity to be the origin, Ry = 0, we find:

F = F0+/ dy' o ZZ\/ e(k") Fp (g) - (9.57)

kK

To obtain F' we require two distinct Green functions: not just

({(ax +aZp)l(a—p + a0)))w = Grp (@)

but also (((ax —a™})|(a—k + a}))))w = Kppr(w), to which G connects.
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Then, the coupled equations of motion for G and K are:
WG (w) = e(k) K (w) (9.58a)

and

wKp g (w) = 20 17 + e(k)Grpr (w) + % > elk)e(k") G g (w) . (9.58b)

k,ll

Eliminating K in (b) by the use of (a):

2e

- (Ok;)g > ek G o (w) .-

w? G (w) = 2e(k)0k 1 + €(k) G (w) + %
k//

Denote o >y /e(kK”)Gyr jy (w) = Ty (w). Then the above has the solution,

2e(k)dpe e (k)

G (w) = w? —e2(k)  w? —e2(k)

QQFk/ (w) . (959&)

This solution is complete once G is inserted into the definition of I', whence
one obtains:

3
2 1 e2 (k')
Ty = — 9.59b
v @) = T X T g5w) (i) (9:59D)
where S(w) = ﬁZk" % To evaluate S as an integral we next

introduce the density-of-states function p(e) for the eigenstates of Hy. S(w)
is inherently complex; it has a discontinuity (branch-cut) across the real w
axis:
) e o0 e?
S(wtic) = F=wp(w)+ P-P- / dep(e)
2 0 w? — €2
e
= ZF;wp(w) + R(w) (9.60)

with P - P- the abbreviation for a “principal part” integration and ¢ — 0;
note that R(0) = —1. Equation (9.57) yields a free energy

g 1 1 00 1
F=F dq' Je(k k’—/ d
°+/0 9 Jyrgr 2= 2 Vel o s

kK

X {Gk,k’(w - iE) - Gk,k/(w + ZE)} . (9.61&)
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After inserting the solutions and combining terms this expression simplifies
further:

F F+2/gd”/ood !
— wi
0 0 g9 . eﬁ“’—l

wp(w)
X (1—2¢RW))2+ ¢2(rwp(w))? (9.61b)

Problem 9.8. In order to fully reduce this expression to quadrature,
first evaluate the integral over ¢’ in terms of the “phase shift” (g,w) =
%; then estimate the leading dependence of F' — Fy = AF on
T at low T assuming p o w?.

arctan

Example 4. Eigenvalues of Random Matrix. A real, symmetric N x N
matrix is characterized by 1/2N(N + 1) independent parameters, an Her-
mitean matrix by N2. Assume a symmetric matrix, each of whose matrix
elements m;; is real, independently random about a zero mean and has a
given, constant, rms value g/v/N. In the thermodynamic limit, what is the
distribution of its eigenvalues?

Mathematically, the problem is identical to that of finding the density-
of-states of an Hamiltonian H = \/LN ZZ’J Eijc;rcj (where g;; = ¢j; = £1 at
random) in the N-dimensional space of occupancy 1. For one particle the
commutation relations do not matter and we can choose the ¢’s to be either
fermions or bosons. Let us pick fermions. Then we write the equation of
motion of the appropriate Green function as,

w{{doldg ))w =1+ g1{{d1|dg ) - (9.62a)
Here we have taken any one of the N ¢;’s and identified it as d,. By
definition this yields d;, defined by [dy, \/—lﬁ 2i eijci¢j] = di. Notice that

{d1,df} = 1+ O(1/N). Tterating: the commutator [d,,, \/Lﬁsijcjcj] —dp_1 =
dn+1 defines da, ds, . ... Then, for n > 1,

w({dnldg ) = gn{{dn-1ldg ))w + gnr1{{dnr1ldg ) - (9.62b)

Each coefficient g, is the product of g times the length of a 1D random
walk of N steps each of length ~ 1/y/N; these, to a first approximation,
are all equal to g. (Indeed, the fluctuations disappear in the thermodynamic
limit N — oo0.) We also note that Eqgs. (9.62) are generic, i.e. independent
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of the choice of the initial ¢; to be identified with dy in the thermodynamic
limit. We call this type of matrix “self-averaged”. Let us now define

G(w) = Tr{d{ (w — H) 'dy} - and its related dos

p(w) = ;—W(G(w —ig) = G(w + ig)) . (9.63)

As noted above, p(w) is independent of the initial choice of dy. Upon
examination of the coefficients in Eqs. (9.62), one identifies the array of
coefficients as a tri-diagonal Toeplitz-type matrix:

0g00000. ..

~ g0g0000. ..
0g0g000... |’
00g0g00. ..

whose eigenvectors are (by inspection) v(k) = \/%(sin k,sin 2k, sin 3k, .. .),
each with a corresponding eigenvalue w = 2g cos k. Here the k’s have to be
chosen to satisfy a boundary condition sin kN = 0. Then, k = pr /N, where
p=1,2,...,N. Evaluating (9.63) in this diagonal representation, we obtain:

plw) = Zsm kd(w —2gcosk) = / dksin® k 6(w — 2g cos k)

= ﬁ (29)2 — w? for w? < (29)* (zero otherwise), (9.64)
known as “Wigner’s semicircular dos”. In light of this exact result the diligent
reader might now wish to revisit his/her solution to Problem 1.6.

A similar methodology has been applied to the thermodynamics of glasses
by the author and his students,” under the assumption that the principal
effect of random spatial fluctuations is to scatter plane-wave normal modes of
an underlying lattice. A linear dependence of the specific heat ¢ « T is found
in the theory™ but only for sufficiently large disorder: g > g., while Debye’s
law is recovered for g < g. at low-T'. Experiments have consistently revealed
a linear low-T specific heat in all glasses and amorphous substances, ¢ o< T'.
This is a most significant departure from Debye’s Law (Chapt. 5) that had
firmly established ¢ oc 72 in all crystals. Thus, our calculation indicate that
the glass phase (¢ > g.) constitutes a thermodynamic phase that is both
distinct and distinguishable from that of the disordered crystal (¢ < g.).

“M. Molina and D. Mattis, Phys. Lett. A159, 337 (1991), also J. Yanez, M. Molina and
D. Mattis, ibid. A288, 277 (2001).
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