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Preface to the First Edition

Subatomic Physics, the physics of nuclei and particles, has been one of the
frontiers of science since its birth in 1896. From the study of the radiations emitted
by radioactive nuclei to the scattering experiments that point to the presence of
subunits in nucleons, from the discovery of the hadronic interactions to the real-
ization that the photon possesses hadronic (strong) attributes, and that weak and
electromagnetic forces may be intimately related, subatomic physics has enriched
science with new concepts and deeper insights into the laws of nature.

Subatomic Physics does not stand isolated; it bears on many aspects of life.
Ideas and facts emerging from studies of the subatomic world change our picture of
the macrocosmos. Concepts discovered in subatomic physics are needed to under-
stand the creation and abundance of the elements, and the energy production in the
sun and the stars. Nuclear power may provide most of the future energy sources.
Nuclear bombs affect national and international decisions. Pion beams have be-
come a tool to treat cancer. Tracer and Mossbauer techniques give information
about structure and reactions in solid state physics, chemistry, biology, metallurgy,
and geology.

Subatomic Physics, because it reaches into so many areas, should not only be
accessible to physicists, but also to other scientists and to engineers. The chemist
observing the Mossbauer effect, the geologist using a radioactive dating method, the
physician injecting a radioactive isotope, or the nuclear engineer designing a power
plant have no immediate need to understand isospin or inelastic electron scattering.
Nevertheless, their work may be more satisfying and they may be able to find new
connections if they have a grasp of the basic principles of subatomic physics. While
the present book is mainly intended as an introduction for physicists, we hope that
it will also be useful to other scientists and to engineers.

Subatomic Physics deals with all entities smaller than the atom; it combines
nuclear and particle physics. The two fields have many concepts and features in
common. Consequently, we treat them together and attempt to stress unifying
ideas, concepts and currently unsolved problems. We also show how subatomic
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physics is involved in astrophysics. The level of presentation is aimed at the se-
nior undergraduate or first-year graduate student who has some understanding of
electromagnetism, special relativity, and quantum theory. While many aspects of
subatomic physics can be elucidated by hand waving and analogies, a proper un-
derstanding requires equations. One of the most infuriating sentences in textbooks
is “It can be shown...” We would like to avoid this sentence but it is just not possi-
ble. We include most derivations but use equations without proof in two situations.
Many of the equations from other fields will be quoted without derivation in order
to save space and time. The second situation arises when the proper tools, for
instance Dirac theory of field quantization, are too advanced. We justify omission
in both situations by an analogy. Mountain climbers usually like to reach the un-
explored parts of a climb quickly rather than spend days walking through familiar
terrain. Quoting equations from quantum theory and electrodynamics corresponds
to reaching the starting point of an adventure by car or cable car. Some peaks can
only by reached by difficult routes. An inexperienced climber, not yet capable of
mastering such a route, can still learn by watching from a safe place. Similarly,
some equations can only be reached by difficult derivations, but the reader can still
learn by exploring the equations without following their derivations. Therfore, we
will quot some relations without proof, but we will try to make the result plausible
and to explore the physical consequences. Some more difficult parts will be denoted
with bullets (e); these parts can be omitted on first reading.




Preface to the Third Edition

Subatomic Physics has continued to make rapid strides since the 2nd. Edition
was published in 1991 (by Prentice-Hall). New particles have been found; the dis-
tributions of electric charge and magnetism within the proton have been found to
be significantly different; neutrinos have been found to have masses and undergo
oscillations, and the standard model needs to be accordingly modified; CP violation
has been established to be compatible with the Cabibbo-Kobayashi-Maskawa ma-
trix; chiral and effective field theories have been developed, lattice QCD has made
enormous strides. Nuclear structure far from the region of stability has started to
been studied, relativistic heavy ions have opened new doors and understanding, and
astrophysics and cosmology have provided us with a much improved understanding
of the world around us. Data has become much more precise. Although there is
a perception that physics has changed from being a unified science to a series of
subfields that ignore each other, here we find the opposite: in the last twenty years
there has been much progress at the intersection between atomic, nuclear, particle,
and astro physics.

In the new edition we have updated all the material trying to expose the ex-
citment that we feel about progress in the last two decades. We have reorganized
chapters to make the material more clear, we have written new sections where new
discoveries justified it, and we have trimmed parts of the 2nd Edition to allow us
to incorporate new material. We have included new problems and, on the basis
of comments we have received on the previous editions, we have starred problems
which require the student to find library material. Overall there is more material
in this edition than in the previous ones and we do realize that this is too much to
be covered in a single quarter or semester. We nevertheless believe that this gives
some freedom for the instructor to concentrate on the areas of choice. In addition,
it gives the students the possibility of using the additional material to explore it on
their own.

Hans Frauenfelder, who was one of the authors of the first two editions (1976,
1991) has been out of the field long enough to ask not to participate in the present
work.

xi
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General Bibliography

The reader of the present book is expected to have some understanding of electro-
magnetism, special relativity, and quantum theory. We shall quote many equations
from these fields without proof, but shall indicate where derivations can be found.
the books listed here are referred to in the text by the name of the author.

Electrodynamics J.D. Jackson, Classical Electrodynamics, 3rd edition, Wiley,
New York, 1999. Jackson’s book is not an undergraduate text, but it is beautifully
written and provides an exceptionally lucid treatment of classical electrodynamics.
An alternative textbook undergraduates are more familiar with is D.J. Griffiths,
Introduction to Electrodynamics, 3rd edition, Prentice Hall, NJ, 1999.

Modern Physics P.A. Tipler and R.A. Llewellyn, Modern Physics, 4th edition,
W.H. Freeman and Co., New York, 2002. This book gives most of the needed back-
ground in special relativity, quantum mechanics, and atomic theory. An alternative
is R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei,
and Particles, John Wiley & Sons, NY, 1985.

Quantum Mechanics E. Merzbacher, Quantum Mechanics, Wiley, New York,
3rd Edition, 1998; R. Shankar, Principles of Quantum Mechanics, 2nd edition,
Springer Science, 1994; D.J. Griffiths, Introduction to Quantum Mechanics, 3rd
edition, Pearson Prentice Hall, 2005. R.P. Feynman, R.B. Leighton, and M. Sands,
The Feynman Lectures on Physics, Addison-Wesley, Reading, MA, 1965.

Mathematical Physics G.B. Arfken and H.J. Weber, Mathematical Methods of
Physicists, 5th edition, Harcourt Acad. Press, San Diego (2001); or J. Mathews
and R.L. Walker, Mathematical Methods of Physics, Benjamin Reading, MA, 1964,
1970, are easy-to-read books that cover the mathematical tools needed.

Data In the textbook we make extensive reference to data that has been evaluated
by the Particle Data Group which we will refer to as ‘PDG’. Their last publication
is W.-M. Yao et al., J. Phys. G 33,1 (2006) and the data can be found online at

xiii
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http://pdg.lbl.gov/. For nuclear structure we refer to the National Nuclear Data
Center at Brookhaven, online at http://www.nndc.bnl.gov/.

Miscellaneous Finally we should like to say that physics, despite its cold appear-
ance, is an intensely human field. Its progress depends on hard-working people. Be-
hind each new idea lie countless sleepless nights and long struggles for clarity. Each
major experiment involves strong emotions, often bitter competition, and nearly al-
ways dedicated collaboration. Each new step is bought with disappointments; each
new advance hides failures. Many concepts are connected to interesting stories and
sometimes funny anecdotes. A book like this one cannot dwell on these aspects,
but we add a list of books related to subatomic physics that we have read with
enjoyment.

L. Fermi, Atoms in the Family, University of Chicago Press, Chicago, 1954.

L. Lamont, Day of Trinity, Atheneum, New York, 1965.

R. Moore, Niels Bohr, A.A. Knopf, New York, 1966.

V.F. Weisskopf, Physics in the Twentieth Century: Selected Essays, MIT Press,
Cambridge, 1972.

G. Gamow, My World Line, Viking, New York, 1970.

E. Segre, Enrico Fermi, Physicist, University of Chicago Press, Chicago, 1970.

M. Oliphant, Rutherford Recollections of the Cambridge Days, Elsevier, Amsterdam,
1972.

W. Heisenberg, Physics and Beyond; Encounters and Conversations, Allen and
Unwin, London, 1971.

R. Jungk, The Big Machine, Scribner, New York, 1968.

P.C.W. Davies, The Forces of Nature, Cambridge University Press, Cambridge,
1979.

E. Segre, From X Rays to Quarks, Freeman, San Francisco, 1980.

Y. Nambu, Quarks, World Sci., Singapore, 1981.

P. Davies, Superforce, Simon & Schuster, New York, 1984.

F. Close, The Cosmic Onion, American Institute of Physics, New York, 1983.
R.P. Feynman, Quantum Electrodynamics, Princeton University Press, Princeton,
1985.

H.R. Pagels, Perfect Symmetry, Simon & Schuster, New York, 1983.

A. Zee, Fearful Symmetry, MacMillan Publishing Co., New York, 1986.

R.E. Peierls, Atomic Histories, American Institute of Physics, New York, 1997.

F. Close, Lucifer’s Legacy, Oxford University Press, Oxford, 2000.

F. Close, M. Marten, and C. Sutton, A Journey to the Heart of Matter, Oxford
University Press, Oxford, 2002.
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Chapter 1

Background and Language

Human existence is based on two pillars: compassion and curiosity.
Compassion without curiosity is ineffective. Curiosity wihtout compas-
sion is inhuman.

Victor F. Weisskopf

The exploration of subatomic physics started in 1896 with Becquerel’s discovery
of radioactivity; since then it has been a constant source of surprises, unexpected
phenomena, and fresh insights into the laws of nature.

In this first chapter we shall describe the orders of magnitude encountered in
subatomic physics, define our units, and introduce the language needed for studying
subatomic phenomena.

1.1 Orders of Magnitude

Subatomic physics is distinguished from all other sciences by one feature: it is the
playground of three different interactions, and two of them act only when the objects
are very close together. Biology, chemistry, and atomic and solid-state physics are
dominated by the long-range electromagnetic force. Phenomena in the universe are
ruled by two long-range forces, gravity and electromagnetism. Subatomic physics,
however, is a subtle interplay of three interactions—the strong, the electromagnetic,
and the weak—and the strong and the weak vanish at atomic and larger distances.
The strong (or hadronic, or nuclear) force holds nuclei together; its range is very
short, but it is strong. The weak interaction has an even shorter range. At this
point strong, weak, and short range are just names, but we shall become familiar
with the forces as we go along.

Figures 1.1, 1.2, and 1.3 give an idea of the orders of magnitude involved in
the various phenomena. We present them here without discussion; they speak for
themselves.
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Table 1.1: Basic UNITS. c is the velocity of

light.

Quantity Unit Abbreviation
Length Meter m

Time Second sec or s
Energy Electron volt eV

Mass eV/c?
Momentum eV/e

Table 1.2: PREFIXES FOR POWERS OF 10.

Power Name Symbol Power Name  Symbol

101 Deca da 10-1 Deci d
102 Hecto h 10~2 Centi c
103 Kilo k 1073 Milli m
108 Mega M 106 Micro °w
109 Giga G 10—9 Nano n
1012 Tera T 10-12  Pico P
1015 Peta P 10~ Femto f
1018 Exa E 1018 Atto a

1.2 Units

The basic units to be used are given in Table 1.1. The prefixes defined in Table 1.2
give the decimal fractions or multiples of the basic units. As examples, 10% eV =
MeV, 10712 sec = psec, and 10~ 1%m = fm. The last unit, femtometer, is often also
called Fermi, and it is extensively used in particle physics. The introduction of the
electron volt as an energy unit requires a few words of justification. One eV is the
energy gained by an electron if it is accelerated by a potential difference of 1 V
(volt):

1eV=1.60x10"" C(coulomb) x 1 V
=1.60 x 1072 J (joule)
=1.60 x 1072 erg. (1.1)

The electron volt (or any decimal multiple thereof) is a convenient energy unit
because particles of a given energy are usually produced by acceleration in electro-
magnetic fields. To explain the units for mass and momentum we require one of the
most important equations of special relativity, connecting total energy E, mass m,
and momentum p of a free particle(!):

E? = p*c + m2ch. (1.2)

ITipler & Llewellyn, Eq. (2-31), or Jackson, Eq. (11.55).
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This equation states that the total energy of a particle consists of a part independent

2

of the motion, the rest energy mc”, and a part that depends on the momentum.

For a particle without mass, Eq. (1.2) reads

E = pc; (1.3)
on the other hand, for a particle at rest, the famous relation

E = mc? (1.4)

follows. These equations make it clear why the units eV/c? for mass and eV /c for
momentum are convenient. For instance, if the mass and energy of a particle are
known, then the momentum in eV/c follows immediately from Eq. (1.2). In the
previous equations, we have denoted a vector by p and its magnitude by p. In
equations where we require electromagnetic quantities we shall use Gaussian units.
Gaussian units are used by Jackson and his Appendix 4 gives clear prescriptions for
the conversion from Gaussian to mks units.

1.3 Special Relativity, Feynman Diagrams

In our discussions we shall use concepts and equations from electrodynamics, special
relativity, and quantum mechanics. The fact that we need some electrodynamics
is not surprising. After all, most particles and nuclei are charged; their mutual
interaction and their behavior in external electric and magnetic fields are governed
by Maxwell’s laws.

The fact that the theory of special relativity is essential can be seen most clearly
from two features. First, subatomic physics involves the creation and destruction
of particles, or, in other words, the change of energy into matter and vice versa. If
the matter is at rest, the relation between energy and matter is given by Eq. (1.4);
if it is moving, Eq. (1.2) must be used. Second, the particles produced by modern
accelerators move with velocities that are close to the velocity of light, and nonrel-
ativistic (Newtonian) mechanics does not apply. Consider two coordinate systems,
K and K’. System K’ has its axes parallel to those of K but is moving with a
velocity v in the positive z direction relative to K. The connection between the
coordinates (a',y’, 2/, t') of system K’ and (z, y, z, t) of K is given by the Lorentz
transformation,(?

o=z, Y=y
2 =y(z — vt), (1.5)

t':’y<t—é2>,
c

2Tipler & Llewellyn, Eq. (1-20); Jackson, Eq. (11.16).
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where
1 v

= =—. 1.6
Momentum and velocity are connected by the relation
p = mryv. (1.7)

Squaring this expression and using Egs. (1.2) and (1.6) yields

_ pe

p E

v
p (1.8)
As one application of the Lorentz transformation to subatomic physics, consider the
muon, a particle that we shall encounter often. It is basically a heavy electron with
a mass of 106 MeV /c2. While the electron is stable, the muon decays with a mean
life 7:

N(t) = N(0)e~ /",

where N(t) is the number of muons present at time ¢. If N(¢;) muons are present
at time t1, only N(¢;)/e are still around at time t3 = ¢; + 7. The mean life of a
muon at rest has been measured as 2.2usec. Now consider a muon produced at the
FNAL (Fermi National Accelerator Laboratory) accelerator with an energy of 100
GeV. If we observe this muon in the laboratory, what mean life 71, do we measure?
Nonrelativistic mechanics would say 2.2usec. To obtain the correct answer, the
Lorentz transformation must be used. In the muon’s rest frame (unprimed), the
mean life is the time interval between the two times t5 and ¢; introduced above,
T = to — t1. The corresponding times, t§ and ¢}, in the laboratory (primed) system
are obtained with Eq. (1.5) and the observed mean life 7,5, = t, — ¢} becomes

Tlab = YT

With Egs. (1.6) and (1.8), the ratio of mean lives becomes

Tlab E

T mc?

(1.9)

With E = 100 GeV, mc? = 106 MeV, 7.,/7 ~ 103. The mean life of the muon
observed in the laboratory is about 1000 times longer than the one in the rest frame
(called proper mean life).

Although we will not use relativistic notation (e.g., four-vectors) very often, we
introduce it here for convenience. The quantity A = A, = (Ao, A) is called a
four-vector if it transforms under a Lorentz transformation like (ct, ). The time
component is Ag. The scalar product of two four vectors A and B is defined as

3
A-B= Z g,u,uAp.Bl/:AOBO_A'B5 (110)

w,v=0
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with goo = 1,9:s = —1 (¢ = z,y,z or 1,2,3) and g¢,, = 0 for 4 # v. Such a
scalar product is a Lorentz scalar; it remains constant or invariant under a Lorentz
transformation. The four-vectors that occur most often are

time—space z, = (ct, ),
four-momentum p, = p
four-current Ju = (cp, J) (1.11)
four-potential A, = (Ao, A), .
four-gradient V= (%% _V) ‘

(note the sign)

Relativistic kinematics are introduced in Section 2.6. In order to transform
energies and momenta from one frame of reference to another, it is helpful to use a
relativistic invariant of the above type. For example, in the collision of particles a
and b, we have

(pap,c +pbuc)2 = (Ea + Eb)2 - (pac + pbc) Mabc (112)

with My, an invariant.

Quantum mechanics was forced on physics because of otherwise unexplained
properties of atoms and solids. It is therefore not surprising that subatomic physics
also requires quantum mechanics for its description. Indeed the existence of quan-
tum levels and the occurrence of interference phenomena in subatomic physics make
it clear that quantum phenomena occur. But will the knowledge gained from atomic
physics be sufficient? The dominant features of atoms can be understood without
recourse to relativity, and nonrelativistic quantum mechanics describes nearly all
atomic phenomena well. In contradistinction, subatomic physics cannot be ex-
plained without relativity, as outlined above. It is therefore to be expected that
nonrelativistic quantum mechanics is inadequate. An example of its failure can
be explained simply: assume a particle described by a wave function ¥ (x,t). The
normalization condition(®)

+oo

U (x, ) (x, t)dPr =1 (1.13)
— 00

states that the particle must be found somewhere at all times. However, the creation
and destruction of particles is a phenomenon that occurs frequently in subatomic
physics. A spectacular example is shown in Fig. (1.4). On the left-hand side,
a bubble chamber picture is reproduced. (Bubble chambers will be discussed in
Section 4.4.) On the right-hand side, the important tracks in the bubble chamber
are redrawn and identified. We shall describe the various particles in Chapter 5.
Here we just assume that particles with the names indicated in Fig. 1.4 exist and
do not worry about their properties. The figure then tells the following story. A

3The integral should properly be written as [/ d®z. Following custom, we write only one of
the three integrals.
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Figure 1.4: Liquid hydrogen bubble chamber picture. This photograph and the tracing at right
show the production and the decay of many particles. Part of the story is told in the text.
[Courtesy Brookhaven National Laboratory, where the photograph was taken in 1964.]

K, or negative kaon, enters the bubble chamber from below. The bubble chamber
is filled with hydrogen and the only particle with which the kaon can collide with
appreciable probability is the nucleus of the hydrogen atom, namely the proton.
The negative kaon indeed collides with a proton and produces a positive kaon, a
neutral kaon, and an omega minus. The Q~ decays into a = and a 7, and so
forth. The events shown in Fig. 1.4 make the essential point forcefully: particles
are created and destroyed in physical processes. Without special relativity, these
observations cannot be understood. Equally strongly, Eq. (1.12) cannot be valid
since it states that the total probability of finding the particle described by ¥ must
be independent of time. Nonrelativistic quantum mechanics cannot describe the
creation and destruction of particles.(®)

We need at least a language to describe these phenomena. Such a language
exists and is used universally. It is the method of Feynman diagrams or graphs.
The diagrams, which are a pictorial representation of particle interactions, have a
more sophisticated use than would appear from the way we describe them here.
Arrows indicate the time sense. Energy, momentum, and charge are conserved at
vertices. Lines entering a Feynman diagram indicate initial state free particles and
those leaving it are final state free particles. The Feynman graphs for two of the
processes contained in Fig. 1.4 are given in Fig. 1.5. The first one describes the
decay of a lambda (A?) into a proton and a negative pion, and the second one

4The theorem that nonrelativistic quantum mechanics cannot describe unstable elementary
particles was proved by Bargmann. The proof can be found in Appendix 7 of F. Kaempffer,
Concepts in Quantum Mechanics, Academic Press, New York, 1965. The appendix is entitled “If
Galileo Had Known Quantum Mechanics.”
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Time +
T p K° X 0

& &

A° K- p
(a) (b)

Figure 1.5: Feynman diagrams for (a) the decay A° — pm~ and (b) the reaction K~ p —
K°K+tQ~.

the collision of a negative kaon and a proton, giving rise to a neutral and a pos-
itive kaon and an omega minus. In both diagrams, the interaction is drawn as a
“blob” to indicate that the exact mechanism remains to be explored. In the follow-
ing chapters we shall use Feynman diagrams often and explain more details as we
need them.

1.4 References

Special relativity is treated in many books, and every teacher and reader has his
favorites. Good first introductions can be found in the Feynman Lectures, Vol. 1,
Chapters 15-17. A concise and complete exposition is given in Jackson, Chapters 11
and 12. These two chapters form an excellent base for all applications to subatomic
physics. Some more recent useful references are W Rindler, Introduction to Special
Relativity, 2nd Ed., Clarendon Press, Oxford, 1991; R.P. Feynman, Siz Not-so-Easy
Pieces, Addison Wesley, Reading, MA, 1997; J.B. Kogut, Introduction to Relativity,
Harcourt/Academic Press, San Diego 2001; W.S.C. Williams, Introductory Special
Relativity, Taylor and Francis, London, 2002.

Books on quantum mechanics have already been listed at the end of the Preface.
However, a few additional remarks concerning Feynman diagrams are in order here.
There is no place where Feynman diagrams can be learned without effort. Relatively
gentle introductions can be found in

R.P. Feynman, Theory of Fundamental Processes, Benjamin, Reading, Mass., 1962.

F. Mandl, Introduction to Quantum Field Theory, Wiley-Interscience, New York,
1959.

J.M. Ziman, Elements of Advanced Quantum Theory, Cambridge University Press,
Cambridge, 1969.

K. Gottfried and V.F. Weisskopf, Concepts in Particle Physics, Oxford University
Press, New York, Vol. I, 1984, Vol. II, 1986.
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Problems

1.1.

1.2

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

* Use what information you can find to get a number characterizing the
strength of each of the four basic interactions. Justify your numbers.

Discuss the range of each of the four basic interactions.

List a few important processes for which the electromagnetic interaction is
essential.

For what cosmological and astrophysical phenomena is the weak interaction
essential?

It is known that the muon (the heavy electron, with a mass of about
100 MeV/c?) has a radius that is smaller than 0.1 fm. Compute the min-
imum density of the muon. Where would the muon lie in Fig. 1.37 What
problems does this crude calculation raise?

Verify Eq. (1.8).
Verify Eq. (1.9).

Consider a pion with a kinetic energy of 200 MeV. Find its momentum in
MeV/ec.

A proton is observed to have a momentum of 5 MeV /c. Compute its kinetic
energy in MeV.

For a certain experiment, kaons with a kinetic energy of 1 GeV are needed.
They are selected with a magnet. What momentum does the magnet have to
select?

Find two examples where special relativity is essential in subatomic physics.

How far does a beam of muons with kinetic energy of

(a) 1 MeV,
(b) 100 GeV

travel in empty space before its intensity is reduced to one half of its initial
value?

Repeat Problem 1.12 for charged and for neutral pions. Also repeat for an
intensity reduction to one half of its initial value.

Which subatomic phenomena exhibit quantum mechanical interference
effects?
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1.15. If the strong and weak forces are assumed to be approximately constant over
1 fm, find the order of magnitudes for

Fh:Fem:Fweak:Fgravit

for two protons that are 1 fm apart. Use any physical knowledge or arguments
at your disposal to obtain the desired ratios.



Part I

Tools

One of the most frustrating experiences in life is to be stranded without proper
tools. The situation can be as simple as being in the wilderness with a broken shoe
strap but no wire or knife. It can be as simple as having a leaking radiator hose
in Death Valley and no tape to fix it. In these instances we at least know what
we miss and what we need. Confronted with the mysteries of subatomic physics,
we also need tools and we often do not know what is required. However, during
the past century, we have learned a great deal, and many beautiful tools have been
invented and constructed. We have accelerators to produce particles, detectors to
see them and to study their interactions, instruments to quantify what we observe,
and computers to evaluate the data. In the following three chapters we sketch some
important tools.
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Chapter 2

Accelerators

2.1 Why Accelerators?

Accelerators cost a lot of money. What can they do? Why are they crucial for
studying subatomic physics? As we proceed through various fields of subatomic
physics, these questions will be answered. Here we shall simply point out a few of
the important aspects.

Accelerators produce beams of charged particles with energies ranging from a
few MeV to several TeV. Intensities can be as high as 10'7 particles/sec, and the
beams can be concentrated onto targets of a few mm? or less in area. The particles
that are most often used as primary projectiles are protons and electrons.

Two tasks can be performed well only by accelerators, namely the production
of new particles and new states, and the investigation of the detailed structure
of subatomic systems. Consider, first, particles and nuclei. Only very few stable
particles exist in nature—the proton, the electron, the neutrino, and the photon.
Only a limited number of nuclides are available in terrestrial matter, and they are
usually in the ground state. To escape the narrow limitations of what is naturally
available, new states must be produced artificially. To create a state of mass m,
we need at least the energy E = mc?. Very often, considerably more energy is
required, as we shall find out. So far, no limit on the mass of new particle states
has been found, and we do not know if one exists. It is suspected that the Planck
mass, (hic/G4)'/? = 1.22 x 10%® eV/c? may set a limit; here G, is the gravitational
constant. Clearly, higher energies are a prerequisite to finding out.

High energies are not only needed to produce new states; they are also essential
in finding out details concerning the structure of subatomic systems. It is easy to see
that the particle energy has to be higher as the dimension to be looked at becomes
smaller. The de Broglie wavelength of a particle with momentum p is given by

where h is Planck’s constant. In most expressions, we shall use the reduced de
Broglie wavelength,

13
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A h
A=—=—, (2.2)
2r  p
where h-bar, or Dirac’s h, is
h —22
h= o = 6.5821 x 10™“° MeV sec. (2.3)
s

As is known from optics, in order to see structural details of linear dimensions d, a
wavelength comparable to, or smaller than, d must be used:

X<d. (2.4)

The momentum required then is

pP=

SIS

. (2.5)

To see small dimensions, high momenta and thus high energies are needed. As
an example, we consider d = 1 fm and protons as a probe. We shall see that a
nonrelativistic approximation is permitted here; the minimum kinetic energy of the
protons then becomes, with Eq. (2.5),

p2 h2

Exin=5—=5—%.
K 2my,  2mypd?

(2.6)
It is straightforward to insert the constants A and m, (see PDG.) However, we
shall use this example to compute FEy;, in a more roundabout but also more con-
venient way: Express as many quantities as possible as dimensionless ratios. Fyiy
has the dimension of an energy, as does m,c®> = 938 MeV. The kinetic energy is
consequently rewritten as a ratio:

Ban _ 1 ( h )’
mpc?  2d% \myc)

The quantity in parentheses is just the Compton wavelength of the proton

h he 197.3 MeV fm
Xp = —— = - =0.210 f 2.7
P mpe  mp2 | 938 MeV o 27

so that the kinetic energy is given by

Eun 1 (%)
= — _— = . 2. 2.
mpc? 2 < d ) 0.0 (28)

The combination Ac will be found very useful throughout the text. The kinetic
energy required to see linear dimensions of the order of 1 fm is about 20 MeV.
Since this kinetic energy is much smaller than the rest energy of the nucleon, the
nonrelativistic approximation is justified. Nature does not provide us with intense
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particle beams of such energies; they must be produced artificially. (Cosmic rays
contain particles with much higher energies, but the intensity is so low that only
very few problems can be attacked in a systematic way.)

The common way to produce a particle beam of high energy is to accelerate
charged particles in an electric field. The force exerted on a particle of charge ¢ by
an electric field FE is

F =¢E. (2.9)

In the simplest accelerator, two grids with a potential difference V at a distance d
(Fig. 2.1), the average field is given by |E| = V/d, and the energy gained by the
particle is

E=Fd=qV. (2.10)

Of course, the system must be placed in a vacuum; otherwise the accelerated par-
ticles will collide with air molecules and continuously lose much of the acquired
energy. Figure 2.1. therefore includes a vacuum pump. Moreover, an ion source is
also indicated—it produces the charged particles. These elements—particle source,
accelerating structure, and vacuum pump—appear in every accelerator.

Ton source Can particle beams of 20 MeV be reached with
simple machines as sketched in Fig. 2.17 Any-
one who has played with high voltages knows that
such an approach is not easy. At a few kV, voltage
breakdowns can occur and it requires experience
to exceed even 100 kV. Indeed, it has taken con-
siderable ingenuity and work to bring electrostatic
Vacuum pump

generators to the point where they can produce

. particles of charge |e| with energies of the order of
Elgure 2.1: Prototype of the tens of MeV.
simplest accelerator.

However, it is impossible to achieve energies that are orders of magnitude higher, no
matter how sophisticated the electrostatic generator. A new idea is needed, and such
an idea was found—successive application of a given voltage to the same particle.
Actually, a few times during the long road to the giant accelerators of today it looked
as though the maximum accelerator energy had been reached. However, every
apparently unsurmountable difficulty was overcome by an ingenious new approach.

We shall discuss only three types of accelerators: the electrostatic generator, the
linear accelerator, and the synchrotron.
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Figure 2.2: An incident monoenergetic beam is scattered by a target; the counter observing the
scattered particles makes an angle # with respect to the incident beam direction, subtends a solid
angle d2, and records dN particles per unit time.

2.2 Cross Sections and Luminosity

Before we describe accelerators we need to understand two quantities that are of
interest to describe their power. Collisions are the most important processes used
to study structure in subatomic physics. The behavior of a collision is usually
expressed in terms of a cross section. To define cross section, a monoenergetic
particle beam of well-defined energy is assumed to impinge on a target (Fig. 2.2).
The flux F' of the incident beam is defined as the number of particles crossing a unit
area perpendicular to the beam per unit time. If the beam is uniform and contains
n; particles per unit volume, moving with velocity v with respect to the stationary
target, the flux is given by

F = n;v. (2.11)

In most calculations, the number of incident particles is normalized to one particle
per volume V. The number n; is then equal to 1/V. Particles scattered by the target
are observed with a counter that detects all particles scattered by an angle 6 into
the solid angle d©Q2. The number dN\ recorded per unit time is proportional to the
incident flux F', the solid angle df2, and the number N of independent scattering
centers in the target that are intercepted by the beam():

AN = FNo(6)dS. (2.12)

The coefficient of proportionality is designated by o(0); it is called the differential
scattering cross section, and we also write

o(0)dQ =do(0) or  o(f) = (2.13)

dQ

Tt is assumed here that each particle scatters at most once in the target and that each scattering
center acts independently of each other one.
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The total number of particles scattered per unit time is
obtained by integrating over all solid angles, Area 4 intercepted

by the beam
Mg :FNO'tOt, (214)

where

Ctot = /J(G)dﬂ (2.15)

is called the total scattering cross section. Equa-
tion (2.14) shows that the total cross section has the N 'scattering centers,
dimension of an area, and it is customary to quote sub- each with total
atomic cross sections in barns (b) or decimal fractions of cross section 7y,
barns, where

!

Figure 2.3: An area a of

1b=10"%cm? = 100 fm?. the target is struck by the
incident beam. The area
a contains N scattering
centers, each with cross
section otot.

The significance of gy can be understood by computing the fraction of particles
that are scattered. Figure 2.3 represents the target seen in the beam direction. The
area a intercepted by the beam contains IV scattering centers. The total number of
incident particles per unit time is given by

Mn:Fa;

the total number of scattered particles is given by Eq. (2.14) so that the ratio of
scattered to incident particle numbers is

Ms_No'tot
Ma @

(2.16)

The interpretation of this relation is straightforward: if no multiple scattering events
occur, then the fraction of particles scattered is equal to the effective fraction of
the total area occupied by scattering centers. Noot consequently must be the total
area of all scattering centers and o,y the area of one scattering center. We stress
that oot is the area effective in scattering. It depends on the type and energy of
the particles and is only occasionally equal to the actual geometrical area of the
scattering center.

Finally, we note that if n is the number of scattering centers per unit volume, d
the target thickness, and a the area intercepted by the beam, N is given by

N = and.
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If the target consists of nuclei with atomic weight A and has a density p,n is given
by
= Nop
ik
where Ny = 6.0222 x 1023 mole™ ! is Avogadro’s number.
Equation (2.14) describes the number, N, of events per unit time in a fized
target experiment, where the incident beam impinges on a stationary target. Since

(2.17)

the number N of scattering centers in a solid or liquid target is very large, N
is measurable even for processes with small cross sections. We have, however,
shown in Section 2.7 that the energy available in the c.m. is limited in fixed target
experiments. In colliding beam experiments (Section 2.8), high energies can be
obtained, but the number of scattering events becomes much smaller. The number
of events per unit time is characterized by the luminosity L, defined as the number
of events per unit cross section that take place at a single beam encounter region per
unit time. In the simplest situation, each colliding beam contains a single bunch, the
bunches collide head-on, and each beam is uniform over an area A. If the bunches
collide with a frequency f and if bunch ¢ contains N; particles, the luminosity in
the interaction region of beams 1 and 2 is given by
Ny NiNof

£:

. (2.18)

Otot A

As an example the design luminosity for the Large Hadron Collider at CERN is

~ 103%* cm~2sec L.

2.3 Electrostatic Generators (Van de Graaff)

It is difficult to produce a very high voltage directly, for instance, by a combination
of transformer and rectifier. In the Van de Graaff generator,(?) the problem is
circumvented by transporting a charge ) to one terminal of a condenser C; the
resulting voltage, 0

V= rok (2.19)
is used to accelerate the ions. The main elements of a Van de Graaff generator are
shown in Fig. 2.4. Positive charges are sprayed onto an insulating charging belt by
using a voltage of about 20-30 kV. The positive charge is carried to the terminal
by the motor-driven belt; it is collected there by a set of needles and travels to
the terminal surface. Positive ions (protons, deuterons, etc.) are produced in the
ion source and are accelerated in the evacuated accelerating column. The beam
emerging from the column is usually deflected by a magnet onto the target. If the
entire system is placed in air, voltages of up to about a few MV can be reached before
artificial lightning discharges the terminal. If the system is placed in a pressure tank

2R. J. Van de Graaff, Phys. Rev. 38, 1919A (1931); R. J. Van de Graaff, J. G. Trump, and
W. W. Buechner, Rep. Prog. Phys. 11,1 (1948).
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Figure 2.4: Schematic diagram of a Van de Graaff generator.

filled with an inert gas (Ng, COq, SFg at ~ 15 atm are used) voltages of up to 20
MV can be obtained.

Charging belt
Negative-ion
Deflecting magnet Terminal source

e )
2 LWL
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+ & +\+ + J
Positive-ion Stripping canal Input negative
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Target Analyzing

magnet

Figure 2.5: Tandem Van de Graaff. Negative ions are first accelerated to the central terminal.
There they are stripped of their electrons and accelerated as positive ions to the target.

Twice the maximum voltage can be utilized in tandem machines, sketched in
Fig. 2.5. Here, the terminal is in the middle of a long high-pressure tank; the ion
source is at one end and it produces negative ions, for instance H™. These ions
are accelerated toward the central terminal where they are stripped of their two
electrons by passage through a foil or a gas-containing canal. The positive ions
now accelerate away from the terminal and again acquire energy. The total energy
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Photo 1: The tandem Van de Graaff accelerator at the University of Washington, Seattle, WA.

Generator

A hédﬁbl._.ldr__l%

~ N ¥ v X

Figure 2.6: Drift tube linac. The arrows at the gaps indicate the direction of the electric field at
a given time.

gain is therefore twice that of a single-stage machine. Photo 1 shows the Tandem
accelerator at the University of Washington.

Van de Graaff generators in various energy and price ranges can be obtained
commercially, and they are ubiquitous. They have a high beam intensity (up to
100 pA); this beam can be continuous and well collimated and the output en-
ergy is well stabilized (£10 keV). Until the end of the last century, they were the
workhorses of nuclear structure research and some are still in use. However, their
present maximum energy is limited to about 30-40 MeV for protons, and they can
therefore not be used in elementary particle research.

2.4 Linear Accelerators (Linacs)

To reach very high energies, particles must be accelerated many times over. Con-
ceptually the simplest system is the linear accelerator,® sketched in Fig. 2.6.

3R. Widerde, Arch. Elektrotech. 21, 387 (1928); D. H. Sloan and E. O. Lawrence, Phys. Rev.
38, 2021 (1931).



2.4. Linear Accelerators (Linacs) 21

A series of cylindrical tubes are connected to a high-frequency oscillator. Succes-
sive tubes are arranged to have opposite polarity. The beam of particles is injected
along the axis. Inside the cylinders the electric field is always zero; in the gaps it
alternates with the generator frequency. Consider now a particle of charge e that
crosses the first gap at a time when the accelerating field is at its maximum. The
length L of the next cylinder is so chosen that the particle arrives at the next gap
when the field has changed sign. It therefore again experiences the maximum ac-
celerating voltage and has already gained an energy 2 eVj. To achieve this feat,
L must be equal to %UT, where v is the particle velocity and T the period of the
oscillator. Since the velocity increases at each gap, the cylinder lengths must in-
crease also. For electron linacs, the electron velocity soon approaches ¢ and L tends
to %CT. The drift-tube arrangement is not the only possible one; electromagnetic
waves propagating inside cavities can also be used to accelerate the particles. In
both cases large rf power sources are required for the acceleration, and enormous
technical problems had to be solved before linacs became useful machines.

Photo 2: A view of the linac at RHIC. Its purpose is to provide currents of up to 35 milliamperes
of protons at energies ~ 200 MeV for injection in a synchrotron for further acceleration. The basic
components of the linac include a radiofrequency quadropole pre-injector, and nine accelerator
radiofrequency cavities spanning the length of a 150 meters tunnel (shown above.) [Courtesy of
Brookhaven National Lab.]

At present, Stanford has an electron linac that is 3 km (“2 miles”) long and
produces electrons of 50 GeV energy. A proton linac of 800 MeV energy with a
beam current of 1 mA, a so-called meson factory, was constructed at Los Alamos.
It is now primarily used to bombard targets made of neutron-rich elements and
produce neutrons that are subsequently used to study properties of materials. The
Relativistic Heavy Ion Collider (RHIC) at Brookhaven has as one of its components
a linac (see Photo 2) and the planned Rare Isotope Accelerator (RIA) will produce
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large numbers of rare isotopes by bombarding a variety of targets with beams of
stable ions accelerated with a linac.

2.5 Beam Optics

In the description of linacs we have swept many problems under the rug, and we shall
leave most of them there. However, one question must occur to anyone thinking
about a machine that is a few km in length: How can the beam be kept well
collimated? The beam of a flashlight, for instance, diverges, but it can be refocused
with lenses. Do lenses for charged particle beams exist? Indeed they do, and we shall
discuss here some of the elementary considerations, using the analogy to ordinary
optical lenses. In light optics, the path of a monochromatic light ray through a
system of thin lenses and prisms can be found easily by using geometrical optics. ¥
Consider, for instance, the com-
bination of a positive and a neg-
ative thin lens, with equal focal \
lengths f and separated by a dis- \
tance d (Fig. 2.7). This combina- o
tion is always focusing, with an v
overall focal length given by
f2

d .

fcomb = g (220) i /
/
r
/

In principle one could use electric
or magnetic lenses for the guid-
ance of charged particle beams. |
The electric field strength re- I
quired for the effective focusing of
high-energy particles is, however,
Figure 2.7: The combination of a fo-

1mPOSSIb1y high, and only mag- cusing and a defocusing thin lens with
netic elements are used. equal focal lengths is always focusing.

The deflection of a monochromatic (monoenergetic) beam by a desired angle, or the
selection of a beam of desired momentum, is performed with a dipole magnet, as
shown in Fig. 2.8. The radius of curvature, p, can be computed from the Lorentz
equation,® which gives the force F' exerted on a particle with charge ¢ and velocity
v in an electric field F and a magnetic field B:

F:q<E—|—1v><B>. (2.21)
c

4See, for instance, E. Hecht, Optics, 4th. Ed., Addison-Wesley, San Francisco, 2002.
5Jackson, Eq. (6.113).
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Figure 2.8: Rectangular dipole magnet. The optical analog is a prism, shown at the right.

The force is normal to the trajectory. For the normal component of the force,
Newton’s law, F' = dp/dt, and Eq. (1.7) give
_pv

Fu : 2.22
P (2.22)

so that with Eq. (2.21) the radius of curvature becomes (©)

pc

=B (2.15)

p

Problems arise when a beam should be focused. Figure 2.8 makes it clear that
an ordinary (dipole) magnet bends particles only in one plane and that focusing can
be achieved only in this plane. No magnetic lens with properties analogous to that
of an optical focusing lens can be designed, and this fact stymied physicists for many
years. A solution was finally found in 1950 by Christofilos and independently by
Courant, Livingston, and Snyder in 1952.(7) The basic idea of the so-called strong
focusing can be explained simply by referring to Fig. 2.7: If focusing and defocusing
elements of equal focal lengths are alternated, a net focusing effect occurs. In beam
transport systems, strong focusing is most often achieved with quadrupole magnets.
A cross section through such a magnet is shown in Fig. 2.9. It consists of four
poles; the field in the center vanishes and the magnitude of the field increases from

SEquation (2.15) is given in Gaussian units, where the unit for B is 1 G, and the unit of
potential is 1 stat V' = 300V. To compute p for a particle with unit charge (|g| = e), express pc in
eV; then Eq. (2.15) yields

1%
B(Gauss) X p(cm) = —. 2.23a
(Gauss) x plem) = - (2:23)
As an example, consider an electron with a kinetic energy of 1 MeV; pc follows from Eq. (1.2) as

pe = (B, + 2Exinmc?)/? = 1.42 x 10%eV.

V then is 1.42 x 10V and Bp = 4.7 x 103G cm. Equation (2.15) can also be rewritten in mks
units, where the unit of B is

1 T (Tesla) = 1 Wb (Weber)m ™2 = 10*G.

"E. D. Courant, M. S. Livingston, and H. S. Snyder, Phys. Rev. 88, 1190 (1952).
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Defocusing plane

Focusing plane

Figure 2.9: Cross section through a quadrupole magnet. Three positive particles enter the magnet
parallel to the central symmetry axis at points A, B, and C. The particle at A is not deflected, B
is pushed toward the center, and C is deflected outward.

the center in all directions. To understand the operation of a quadrupole magnet,
consider three positive particles, going into the magnet at the points denoted by A,
B, and C. Particle A in the center is not deflected; the Lorentz force, Eq. (2.21),
pushes particle B toward and particle C away from the central symmetry axis.
The magnet therefore behaves as a focusing element in one plane and a defocusing
element in the other plane. A combination of two quadrupole magnets focuses in
both planes if the second magnet is rotated around the central axis by 90° with
respect to the first one. Such quadrupole doublets form essential elements of all
modern particle accelerators and also of the beam lines that lead from the machines
to the experiments. With these focusing devices, a beam can be transported over
distances of many km with small intensity loss.

2.6 Synchrotrons

Why do we need another accelerator type? The linac obviously can produce particles
of arbitrary energy. However, consider the price: since the 50 GeV Stanford linac is
already 3 km long, a 1-TeV accelerator would have to be about 60 km long with the
same technology; construction and power costs would be enoermous. (Nevertheless
a 1/2-1 TeV International Linear Collider with superconducting magnets is being
planned.) It makes more sense to let the particles run around a smaller track
repeatedly. The first circular accelerator, the cyclotron, was proposed by Lawrence
in 1930.¢®) Cyclotrons have been of enormous importance in the development of
subatomic physics, and some very modern and sophisticated ones are currently
in operation. We omit discussion of the cyclotron here because its cousin, the
synchrotron, has many similar features and achieves higher energies.

8E. O. Lawrence and N. E. Edlefsen, Science 72, 376 (1930); E. O. Lawrence and M. S.
Livingston, Phys. Rev. 40, 19 (1932).



2.6. Synchrotrons 25

Vacuum chamber (donut)

Ei?fc‘ed peart = ,__‘._\\\:f\\ Deflection magnet
e ~Y Focusing magnets
/// 4& (quadrapate doublets)
I/\ v

i \ Erf generator

\\\ Accelerating (rf) cavity
Ny A
) AN 2
Injector T ==
= S —
e =

Vacoum pumps

Figure 2.10: Essential elements of a synchrotron. Only a few of the repetitive elements are shown.

The synchrotron was proposed independently by McMillan and by Veksler in
1945.09 Tts essential elements are shown in Fig. 2.10. The injector sends particles
of an initial energy E; into the ring. Dipole magnets with a radius of magnetic
curvature p bend the particles around the ring while quadrupole systems maintain
the collimation. The particles are accelerated in a number of rf cavities which are
supplied with a circular frequency w. The actual path of the particles consists of
straight segments in the accelerating cavities, the focusing elements, and some other
elements and of circular segments in the bending magnets. The radius of the ring,
R, is therefore larger than the radius of curvature, p.

Now consider the situation just after injection of the particles with energy F; and
momentum p;, where energy and momentum are connected by Eq. (1.2). Assume
that the rf power has not yet been turned on. The particles will then coast around
the ring with a velocity v, and the time T for one full turn is given with Eq. (1.8)
as

2 2nRE;
p - 2 _ 2niEs (2.16)
v pic
The corresponding circular frequency, €2, is
21 pic?
Q=—= 2.1
T RE;’ (2.17)
and the magnetic field required to keep them on the track follows from Eq. (2.15)
as

lalp
Once the rf power is turned on, the situation changes. First, the radio frequency

(2.18)

w, must be an integer multiple, k, of 0 in order to always give the circulating

9E. M. McMillan, Phys. Rev. 68, 143 (1945); V. Veksler, J. Phys. (USSR) 9, 153 (1945).
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particles the push at the right time. Equation (2.17) then shows that the applied rf
must increase with increasing energy up to the point where the particles are fully
relativistic so that pc = E. The magnetic field also must increase:

ke pc kc pc

_ _ e p_re 2.19
R E R lalp (2.19)

If these two conditions are satisfied, then the particles are properly accelerated.
The procedure is as follows: A burst of particles of energy FE; is injected at the time
t = 0. The magnetic field and the rf are then increased from their initial values
B; and w; to final values By and wy, always maintaining the relations (2.19). The
energy of the bunch of particles is increased during this process from the injection
energy IJ; to the final energy E¢. The time required for bringing the particles up to
the final energy depends on the size of the machine; for very big machines, a pulse
per sec is about par.

Equation (2.19) shows another feature of these big accelerators: particles cannot
be accelerated from start to the final energy in one ring. The range over which the
rf and the magnetic field would have to vary is too big. The particles are therefore
preaccelerated in smaller machines and then injected. Consider, for instance, the
1000 GeV synchrotron at FNAL: The enormous dimensions of the entire enterprise
are evident from Photo 4.(10)

Synchrotrons can accelerate protons or electrons. Electron synchrotrons share
one property with other circular electron accelerators: they are an intense source
of short-wavelength light. The origin of synchrotron radiation can be explained
on the basis of classical electrodynamics. Maxwell’s equations predict that any
accelerated charged particle radiates. A particle that is forced to remain in a circular
orbit is continuously accelerated in the direction toward the center, and it emits
electromagnetic radiation. The power radiated by a particle with charge e moving
with velocity v = ¢ on a circular path of radius R is given by(!V)

B 2e2¢  (B*

L (220)

The velocity of a relativistic particle is close to ¢; with Egs. (1.6) and (1.9) and with
0~ 1, Eq. (2.20) becomes

2¢%c , 2e%c( E *

The time T for one revolution is given by Eq. (2.16), and the energy lost in one
revolution is

10J. R. Sanford, Annu. Rev. Nucl. Sci. 26, 151 (1976); H. T. Edwards, Annu. Rev. Nucl.
Part. Sci. 35; 605 (1985).
M Jackson, Eq. (14.31).
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Photo 3: The photographs a-d show the essential parts of the 1 TeV proton synchrotron (Tevatron)
at the Fermilab. Protons are accelerated to 750 keV in an electrostatic accelerator (Cockcroft—
Walton, photo a); a linear accelerator (photo b) then brings the energy up to 400 MeV and injects
the protons into a booster synchrotron. The booster synchrotron (photo c) raises the energy to
about 8 GeV and the main ring (lower on photo d) to 150 GeV. The final energy of approximately
1 TeV is achieved in the Tevatron ring. [Courtesy Fermilab.]
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Photo 4: Aerial photograph of Fermi National Accelerator Laboratory (FNAL), at Batavia, Illinois.
The beam originates at the top left and is accelerated in the linac (visible as a straight line) to get
into the main injector (the bottom ring) where it is brought to 150 GeV. The Tevatron is the top
ring, approximately 2 kilometers in diameter, where the beam is accelerated to 1 TeV. (Courtesy
Fermi National Accelerator Laboratory.)
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Ame? [ B \*
—0FE =PT ~ — ) . 2.22

3R (m02 ) (222)
The difference between the proton and electron synchrotron is obvious from
Eq. (2.22). For equal radii and equal total energies E, the ratio of energy losses is

% = @)4 ~10%. (2.23)

The energy loss must be taken into account in the design of electron synchrotrons.
Fortunately, the emitted radiation permits unique research in many other fields,
from solid-state physics to surface science and biology.(12)

2.7 Laboratory and Center-of-Momentum Frames

Trying to achieve higher energies with ordinary accelerators is somewhat like trying
to earn more money—you do not keep all you earn. In the second case, the tax
collector takes an increasing bite, and in the first case, an increasing fraction of
the total energy in a collision goes into center-of-mass motion and is not available
for exciting internal degrees of freedom. To discuss this fact, we briefly describe
the laboratory (lab) and center-of-momentum (c.m.) coordinates. Consider the
following two-body reaction,

a+b—c+d, (2.24)

and call a the projectile and b the target particle. In the laboratory frame, the target
is at rest and the projectile strikes it with an energy E'®P and a momentum p'2b.
After the collision both particles in the final state, ¢ and d, are usually moving. In
the center-of-mass frame or, more correctly, the center-of-momentum frame, both
particles approach each other with equal but opposite momenta. The two frames
are defined by

lab frame : pi™® = 0, E;*® = myc? (2.25)

cm. frame: p™ + p;™ = 0. (2.26)

It is only the energy of one particle relative to the other one that is available for
producing particles or for exciting internal degrees of freedom. The uniform motion
of the center of momentum of the whole system is irrelevant. The energies and
momenta in the c.m. system are thus the important ones.

12 Synchrotron Radiation Research, H. Winick and S. Doniach, eds., Plenum, New York (1980);
Neutron and Synchrotron Radiation for Condensed Matter Studies, Vols. T and II, ed. J. Baruchel
et al., Springer Verlag, New York, 1993; H. Wiedemann, Synchrotron Radiation, Springer , New
York, 2003.
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A simple example can provide an understanding of
how much one is robbed in the laboratory system.
New particles can, for instance, be produced by

® — bombarding protons with pions,

mp — TN,
Before collision
. where N* is a particle of high mass (my+ > m, >

N .
T my). In the c.m. frame, the pion and proton col-

© lide with opposite momenta; the total momentum

After collision in the initial and hence also in the final state is

zero. The highest mass can be reached if the pion

Figure 2.11:  Production of a and the N* in the final state are produced at rest

new particle, N*, in a collision
mp — wN*, seen in the c.m.
frame. tion.

because then no energy is wasted to produce mo-

This collision in the c.m. frame is shown in Fig. 2.11. The total energy in the final
state is
W™ = (m, +my-)c? ~ my-c?. (2.27)

The total energy is conserved in the collision so that

The pion energy, E*P, required in the laboratory system to produce the N*, can be
computed by using the Lorentz transformation. Here we make use of the relativistic
invariance of W™ that was introduced in Chapter 1, Eq.(1.12). Consider a system
of ¢ particles with energies E; and momenta p,. In a derivation similar to the one

that leads to Eq. (1.12) it is possible to show that one can write

2 2
<Z E) - (Zpi> = M?*. (2.29)

where M is called the total mass or invariant mass of the system of ¢ particles; it
is equal to the sum of the rest masses of the i particles only if they are all at rest
in their common c.m. frame. The right-hand side (RHS) is a constant and must
therefore be the same in all coordinate systems. It then follows that the left-hand
side (LHS) is also a relativistic invariant (sometimes called a relativistic scalar)
that has the same value in all coordinate systems. We apply this invariance to the
collision equation (2.24) as seen in the c.m. and the lab systems,

(Eg.m. 4 Eg.m.)Q _ (plcl.m. +pg.m.)262
= (EE 4 B = (4 gl (2:30
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or with Egs. (2.25) and (2.26),

W2 — (Eg.m. + Eg.m.)Q _ (Eclzab + mb02)2 _ (pLabC)Q (2 31)
= 2E"Pmyc? 4 (m2 4+ m)ct. .

Equation (2.31) connects W2, the square of the total c.m. energy, to the laboratory
energy. With E2P > m,c% myc?, the energy W becomes

W = (2E2Pm, )12 (2.32)

Only the energy available in the c.m. frame is useful for producing new particles or
exploring internal structure. Equation (2.32) shows that this energy, W, increases
only as the square root of the laboratory energy at high energies.

2.8 Colliding Beams

The price for working in the laboratory system is high, as is stated plainly by
Eq. (2.32). If the machine energy is increased by a factor of 100, the effective
gain is only a factor of 10. In 1956, Kerst and his colleagues and O’Neill therefore
suggested the use of colliding beams to attain higher energies.(!3)

Two proton beams of 21.6 GeV colliding head-on would be equivalent to one 1
TeV accelerator with a fixed target. The main technical obstacle is intensity; both
beams must be much more intense than the ones available in normal accelerators
in order to produce sufficient events in the regions where they collide.

The solution to this problem came in part from progress in vacuum technology,
and in beam storage and cooling, techniques that are described further below. As
an example, Fig. 2.12 shows the colliding beam arrangement at CERN, where an
electron—positron collider (LEP) of 2 x 50 GeV was completed in 1989 and ran until
2000, and where the next Large Hadron Collider will soon start running. At DESY
in Hamburg, the HERA electron-proton collider was constructed in the 1990’s.
Electrons are accelerated to 28 GeV, protons to 820 GeV in the same tunnel, with
the proton accelerator on top of the electron one. The proton accelerator uses
superconducting magnets with coils cooled to liquid helium temperatures, whereas
the electron ring uses normal magnets.

2.9 Superconducting Linacs

A limiting factor in obtaining beams at the highest energies is the maximum attain-
able strength of the magnetic fields. Consider a circular accelerator. Equations (1.3)
and (2.18) imply that, for a given radius of curvature in a magnet, the particle en-
ergy F is proportional to the magnetic field B. In an iron magnet, the field can be

13D, W. Kerst et al., Phys. Rev. 102, 590 (1956); G. K. O’Neill, Phys. Rev. 102, 1418 (1956).
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of the order of 20 kG (or 2 Tesla = 2 T), and it becomes expensive to exceed this
value. (In recent years, power costs have largely determined the fraction of time
during which large accelerators are used.)

Superconducting magnets
can yield fields up to about 85
kG (8.5 T) and use less en-
ergy. Despite the enormous

YoMS

Large Hadron
Collider

technical difficulties, “super-
conducting” accelerators can
be built. FExamples are the
Main Injector and Tevatron
at Fermilab in Batavia, the
Large Electron-Positron col-
2 lider and its successor, the
ALICE N LHC-b Large Hadron Collider, at
R CERN in Switzerland, the
electron linear accelerator at
Thomas Jefferson Laboratory
in Virginia, and the Relativis-
tic Heavy Ion Collider in Long
Island.

Fig. 2.13 shows that the
Figure 2.12: Sketch (not to scale) of parts of the com- available energy has grown ex-
plex accelerator system at CERN. The proton beams ponentially in time and the
are initially accelerated by a LINAC, then futher ac-

celerated in the proton synchrotron (SPS) and injected
into the LHC loop. The stars indicate beam-collision was been greatly helped by

points. Isolde is a fixed-target experiment used to pro- the use of superconducting
duce radioactive beams for studies of nuclear astro-

physics among other things.

progress in the last decades

magnets.

2.10 Beam Storage and Cooling

In addition to reaching higher energies accelerators for finding new physical pro-
cesses need higher beam intensities as well.(14)

One technique that made possible for colliding beam experiments to reach the
necessary intensities was beam cooling. This has been crucial for particle-anti-
particle colliders, like the ete™ collider at CERN and the pp collider at Fermi

MN. Dikansky and D. Pestrikor, The Physics of Intense Beams and Storage Rings, Am. Inst.
Phys. New York (1993); P.J. Bryant and K. Johnson, The Principles of Circular Accelerators and
Storage Rings, Cambridge Univ. Press, Cambridge, 1993. An up-to-date and complete guide can
be found in A.W. Chao and M. Tigner, Handbook of Acceleartor Physics and Engineering, World
Sci., Singapore, 1999.
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lab. The antiparticles (of which we will learn more in Chapters 5 and 7) are gener-
ated with initial collisions in an accelerator. For a pp collider,®), for example, in
order to get sufficient pp collisions, the total number of antiprotons circulating in
the ring must be larger than 10!!. This is achieved at Fermilab by bombarding a
Ni target with protons with energies of 120 GeV from the main injector. However,
the number of antiprotons that can be produced and accelerated onto a beam per
unit time is approximately 10% per sec. Antiprotons must consequently be accumu-
lated and stored for approximately 103 sec. Since the antiprotons are produced by
high energy collisions, they also have considerable random motions in various direc-
tions, or in other words, the antiproton beam has considerable temperature and
entropy.

The beam can only be stored efficiently if it is focused, so as to have a small
diameter and a small momentum spread. To reach such a state, the beam must be
“cooled.” In order to cool a “hot” system, it is brought into contact with a system
of low temperature and entropy. For a hot antiproton beam, cooling can be achieved
through contact with a colder electron beam.('8) The antiprotons are first confined
in a storage ring of very large aperture. Electrons are passed through a straight
section of the ring so that they move parallel to the average path of the antiprotons
with the same average speed. The electrons have a much lower temperature and
through collisions carry off the randomly directed momentum components of the
antiprotons. The hot antiproton gas transfers heat and entropy to the cold electron
gas. At the end of the straight section, antiprotons and electrons are separated by a
magnet; the electrons are removed but the antiprotons continue and are recirculated
through the cooling section. Electron cooling was first proposed by Budker in 1966
and demonstrated in Novosibirsk in 1974. Another method is stochastic cooling,
first suggested by van der Meer in 1972(17) and used at CERN for the high energy
pp colliders. In stochastic cooling the temperature of the beam is lowered through a
feedback mechanism. At Fermilab a combination of electron and stochastic cooling
is employed. Cooling is also helpful at lower energy accelerators and was used, for
instance, at CERN for low energy antiprotons at LEAR.

Although the main trend observed in Fig. 2.13 is reaching for ever higher en-
ergies, a high-intensity e™-e™ collider with energies on the TeV range, could be
extremely useful in finding new physics. Because the energy radiated by these par-
ticles moving on a circle would be too large the only possibility is to build a linac.
This machine would be = 30 km long and would consist of approximately 21,000
RF cavities, each providing an acceleration of ~ 50 MeV.(18)

I5M.D. Shapiro and J.L. Siegrist, Annu. Rev. Nucl. Part. Sci. 41, 97 (1991); N. Ellis and T.S.
Vira, ibid, 44, 413 (1994).

16G. 1. Budker, Atomnaya Energiya 22, 346 (1967); Part. Accel. 7, 197 (1976).

17S. van der Meer, CERN/ISR, P.O./72-31 (1972).

18 Future Colliders by 1. Hinchliffe and M. Battaglia, Physics Today, 57, 49 (2004).
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Figure 2.13: The energy in the center-of-mass frame of eT-e~ and hadron colliders: filled circles
and squares, constucted; open circle and square, planned. The energy in the hadron colliders has
been reduced by factors of 6-10 because the incident proton energy is shared by its quark and
gluon constituents. [From W. K. H. Panofsky and M. Breidenbach, Rev. Mod. Phys. 71, S121

(1999).]
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Problems

2.1. An electron accelerator is to be designed to study properties of linear dimen-
sions of 1 fm. What kinetic energy is required?

2.2. Estimate the capacity of a typical Van de Graaff terminal with respect to the
ground (order of magnitude only). Assume that the terminal is to be charged
to 1 MV. Compute the charge on the terminal. How long does it take to reach
this voltage if the belt carries a current of 0.1 mA?

2.3. Consider a proton linac, working with a frequency of f = 200 MHz. How long
must the drift tubes be at the point where the proton energy is

(a) 1 MeV?
(b) 100 MeV?

What is approximately the smallest energy with which the protons can be
injected, and what determines the lower limit? Why does the frequency at
the Los Alamos linac change from 200 to 800 MHz at a proton energy of about
200 MeV?

2.4. A proton beam of kinetic energy of 10 MeV enters a dipole magnet of 2 m
length. It should be deflected by 10°. Compute the field that is necessary.

2.5. A proton beam of kinetic energy 200 GeV enters a 2 m long dipole magnet
with a magnetic field of 20 kG. Compute the deflection of the beam.

2.6. The magnetic field that can be obtained in a superconducting magnet is about
50 kG. Assume an accelerator that follows the Earth’s equator. What is the
maximum energy to which protons can be accelerated in such a machine?

2.7. Use photo 4 and the data given in Section 2.6 to estimate over what range
the frequency and the magnetic field must be changed in the main ring of the
FNAL machine during one accelerating cycle.

2.8. Verity Eq. (2.29).
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2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

Accelerators

Assume collisions of protons from the accelerator described in Problem 2.6
with stationary protons. Compute the total energy, W, in GeV in the c.m.
frame. Compare W with the corresponding quantity obtained in a colliding
beam experiment, with each beam having a maximum energy Ey. How big
must Fy be in order to get the same W?

(a) Verity Eq. (2.20).

(b) Compute the energy loss per turn for a 10 GeV electron accelerator if
the radius R is 100 m.

(¢) Repeat part (b) for a radius of 1 km.

* Describe a typical ion source. What are the physical processes involved?
How is one constructed?

In what way is a conventional cyclotron different from a synchrotron? What
limits the maximum energy obtainable in a cyclotron? Why are high-energy
accelerators predominantly synchrotrons?

What is meant by phase stability? Discuss this concept for linacs and for
synchrotrons.

What is the duty cycle of an accelerator? Discuss the duty cycle for the Van de
Graaff generator, the linac, and the synchrotron. Sketch the beam structure,
i.e., the intensity of the ejected beam as a function of time for these three
machines.

How is the beam ejected in a synchrotron?

How and why is superconductivity important in the field of accelerator
physics?

Why is it expensive to build very-high-energy electron synchrotrons or very-
high-energy proton linacs?

* Modern cyclotrons exist in various places, for instance, at the Paul Scherrer
Institute (PSI) and at Michigan State University (superconducting cyclotron).
Sketch the principles on which two of these cyclotrons are designed. In what
way do they differ from the classic cyclotrons?

Discuss the direction of emission and the polarization of synchrotron radiation.
Why is it useful in solid-state studies?

Compare the ratio of the appropriate (kinetic or total) c.m. energy to the
laboratory energy for

(a) Nonrelativistic energies.
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2.21.

2.22.

2.23.

2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

References 37

(b) Extreme relativistic energies.

Compare a typical colliding beam luminosity (~ 103* particles per second) to
that for a beam of protons of 1 pA colliding with a stationary liquid hydrogen
target 30 cm long.

(a) Why is beam cooling important for pp colliders?
(b) Describe electron cooling.

)
(¢) Describe stochastic cooling.
)

(d) * Describe the arrangement at Fermilab for beam cooling and pp colli-
sions.

(e) Why can thin foils not be used for beam cooling?

Discuss heavy ion accelerators. What are the similarities and differences to
proton accelerators? How are the heavy ions produced? List some of the ions
that have been accelerated and give the maximum energies per nucleon.

Find the center-of-mass energy at HERA (see Section 2.7).

(a) An imaginary accelerator consists of colliding beams of electrons and
protons, each of 2 TeV total energy. What laboratory energy would be
required to achieve the same center-of-mass energy if electrons collide
with stationary protons (hydrogen)?

(b) Repeat part (a) for an energy of 2 GeV instead of 2 TeV.

An electron beam of 10-GeV energy and a current of 10~8 A is focused onto
an area of 0.5 cm?. What is the flux F?

Assume that a beam pulse at a 100-GeV accelerator contains 102 protons, is
focused onto a 2 cm? area, and is extracted uniformly over a time of 0.5 sec.
Compute the flux.

A copper target of thickness 0.1 cm intercepts a particle beam of 4 cm? area.
Nuclear scattering is observed.

(a) Compute the number of scattering centers intercepted by the beam.

(b) Assume a total cross section of 10 mb for an interaction. What fraction
of the incident beam is scattered?

Positive pions of kinetic energy of 190 MeV impinge on a 50 cm long liquid hy-
drogen target. What fraction of the pions undergoes pion—proton scattering?
(See Fig. 5.35.)
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Accelerators

2.30. Beams of electrons and protons, both traveling at almost the speed of light,

2.31.

collide. The electrons and protons are in bunches 2 cm in length in two
rings of 300 m circumference, each of which contains one bunch. Each bunch
contains 3 x 10! particles, and the circulating frequency is 10%/ sec for each
beam, so that 10 bunches collide with each other per second. Assume that
the particles are distributed uniformly over a cross sectional area of 0.2 mm?,
and that this is also the area of the intersecting collision region.

(a) Determine the luminosity.

(b) If the cross section for collisions is 10 pb, determine the number of
scattering events that would be observed in a counter totally surrounding
the intersection region.

(¢) Find the average flux of electrons.

(d) If the beam of electrons scatters from a stationary target of liquid hydro-
gen (density ~ 0.1 g/ cm®) 2 cm long, rather than with the circulating
proton beam, find the number of scattering events and compare to the
answer of (b).

Experimenters A and B are trying to produce as much 4”Ca as possible using
the 4Ca(d, p) reaction. They have a limited amount of “6Ca and a choice of
two situations: a small-diameter beam and a thick, small-diameter target or a
large-diameter beam with a thin, large-diameter target. The number of target
atoms (the volume and the density) and beam current are identical, and the
beam energy loss in the target is negligible for both situations. Experimenter
A proposes to use the smaller-diameter beam because the number of incident
particles per unit area and time (flux) is larger. Experimenter B argues that
there should be no difference in the production of 4”Ca per unit time since the
number of (¥9Ca) target atoms exposed to the beam and the beam currents
are identical. Who is correct and why?



Chapter 3

Passage of Radiation Through Matter

In everyday life we constantly use our understanding of the passage of matter
through matter. We do not try to walk through a closed steel door, but we brush
through if the passage is only barred by a curtain. We stroll through a meadow
full of tall grass but carefully avoid a field of cacti. Difficulties arise if we do not
realize the appropriate laws; for example, driving on the right-hand side of a road
in England or Japan can lead to disaster. Similarly, a knowledge of the passage
of radiation through matter is a crucial part in the design and the evaluation of
experiments. The present understanding has not come without surprises and acci-
dents. The early X-ray pioneers burned their hands and their bodies; many of the
early cyclotron physicists had cataracts. It took many years before the exceedingly
small interaction of the neutrino with matter was experimentally observed because
it can pass through a light year of matter with only small attenuation. Then there
was the old cosmotron beam at Brookhaven which was accidentally found a few km
away from the accelerator, merrily traveling down Long Island.

The passage of charged particles and of photons through matter is governed
primarily by atomic physics. True, some interactions with nuclei occur. However,
the main energy loss and the main scattering effects come from the interaction
with the atomic electrons. We shall therefore give few details and no theoretical
derivations in the present chapter but shall summarize the important concepts and
equations.

3.1 Concepts

Consider a well-collimated beam of monoenergetic particles passing through a slab
of matter. The properties of the beam after passage depend on the nature of
the particles and of the slab, and we first consider two extreme cases, both of
great interest. In the first case, shown in Fig. 3.1(a), a particle undergoes many
interactions. In each interaction, it loses a small amount of energy and suffers
a small-angle scattering. In the second, shown in Fig. 3.1(b), the particle either
passes unscathed through the slab or it is eliminated from the beam in one “deadly”
encounter. The first case applies, for instance, to heavy charged particles, and the

39
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Figure 3.1: Passage of a well-collimated beam through a slab. In (a), each particle suffers many
interactions; in (b), a particle is either unharmed or eliminated.

second one approximates the behavior of photons. (Electrons form an intermediate
case.) We shall now discuss the two cases in more detail.

Many Small Interactions. FEach interaction produces an energy loss and a de-
flection. Losses and deflections add up statistically. After passing through an
absorber the beam will be degraded in energy, will no longer be monoenergetic, and
will show an angular spread. Characteristics of the beam before and after passage
are shown in Fig. 3.2. The number of particles left in the beam can be observed
as a function of the absorber thickness z. Up to a certain thickness, essentially
all particles will be transmitted. At some thickness, some of the particles will no
longer emerge; at a thickness Ry, called the mean range, half of the particles will
be stopped, and finally, at sufficiently large thickness, no particles will emerge. The
behavior of the number of transmitted particles versus absorber thickness is shown
in Fig. 3.3. The fluctuation in range is called range straggling.

“All-or-Nothing” Interactions. If an interaction eliminates the particle from
the beam, the characteristics of the transmitted beam are different from the one
just discussed. Since the transmitted particles have not undergone an interaction,
the transmitted beam has the same energy and angular spread as the incident
one. In each elementary slab of thickness dr the number of particles undergoing
interactions is proportional to the number of incident particles, and the coefficient
of proportionality is called the absorption coefficient p:

dN = —N(z)udz.

Integration gives
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Figure 3.2: Energy and angular distribution of a beam of heavy charged particles before and after
passing through an absorber.

The number of transmitted particles decreases exponentially, as indicated in
Fig. 3.4. No range can be defined, but the average distance traveled by a particle
before undergoing a collision is called the mean free path, and it is equal to 1/pu.

3.2 Heavy Charged Particles

Heavy charged particles lose energy mainly through collisions with bound electrons
via Coulomb interactions. The electrons can be lifted to higher discrete energy
levels (excitation), or they can be ejected from the atom (ionization). Ionization
dominates if the particle has an energy large compared to atomic binding energies.
The rate of energy loss due to collisions with electrons has been calculated classically
by Bohr and quantum mechanically by Bethe and by Bloch.(!) The result, called
the Bethe equation, is

(3.2)

dE dmnz2Z%et 2m e v> (U)T
¢

Cdr T mer? nI[l —(v/e)?]

Here —dFE is the energy lost in a distance dx, n the number of electrons per cm?
in the stopping substance and Z its atomic number; m, the electron mass; ze the
charge and v the speed of the particle and I is the mean excitation potential of the
atoms of the stopping substance. (Eq. (3.2) is an approximation, but it suffices for

our purpose.)

IN. Bohr, Phil. Mag. 25, 10 (1913); H. A. Bethe, Ann. Physik 5, 325 (1930); F. Bloch, Ann.
Physik 16, 285 (1933).
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N(x)
A
In N(x)
N(0)
N(0)
2
ext ~
Figure 3.3: Range of heavy charged Figure 3.4: In all-or-nothing interac-
particles. N(z) is the number of par- tions, the number of transmitted par-
ticles passing through an absorber of ticles, N(z), decreases exponentially
thickness z. Ry is the mean range; Rext with the absorber thickness x.

is called the extrapolated range.

In practical applications, the thickness of an absorber is not measured in length
units but in terms of pz, where p is the density of the absorber. px is usually given
ing/ ch, and it can be found experimentally by determining the mass and the area
of the absorber and taking the ratio of the two. The specific energy loss tabulated

or plotted is then
dE 1dE

dpr) — pdz’
Figure 3.5 gives the specific energy loss of protons, pions, and muons in several
materials as a function of the momentum p. Figure 3.5 and Eq. (3.2) show the salient

features of the energy loss of heavy particles in matter clearly. The specific energy
loss is proportional to the number of electrons in the absorber and proportional to

the square of the particle charge. At a certain energy, for protons about 1 GeV,
an fonization minimum occurs. Below the minimum, dF/d(px) is proportional to
1/v2. Consequently, as a nonrelativistic particle slows down in matter, its energy
loss increases. However, Eq. (3.2) breaks down when the particle speed becomes
comparable to, or less than, the speed of the electrons in the atoms. The energy
loss then decreases again, and the curves in Fig. 3.5 turn down below about 1 MeV.
Above the ionization minimum, dE/d(pz) increases slowly. It is often useful to
remember that the energy loss at the minimum and for at least two decades above
is about the same for all materials and that it is of the order

(at minimum) ~ 1.62% MeV /g cm ™. (3.3)
d(pz)
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Figure 3.5: Specific energy loss, dE/d(px), for protons, pions, and muons in several materials.[From
PDG]
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Figure 3.6: Range of particles in liquid hydrogen (bubble chamber), helium gas, carbon, iron,
and lead. For example, for a pion of momentum 230 MeV/c, 3y = 1.4. For lead we read
R/M =~ 400 g cm—2 GeV ™!, and so the range is ~ 56 g cm~2. [From PDG.]
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Equation (3.2) also shows that the specific energy loss does not depend on the mass
of the particle (provided it is much heavier than the electron) but only on its charge
and speed. The curves in Fig. 3.5 therefore are valid also for particles other than
the protons if the energy scale is appropriately shifted.

The range of a particle in a given substance is obtained from Eq. (3.2) by
integration:

O dr
R= . (@) (3.4)
Here T is the kinetic energy and the subscript 0 refers to the initial value. Some use-
ful information concerning range and specific energy loss is summarized in Fig. 3.6.
Two more quantities shown in Fig. 3.2, the spread in energy and the spread in
angle, are important in experiments, but they are not essential for a first view of the
subatomic world. We shall therefore not discuss them here; the relevant information

can be found in the references given in Section 3.6.

3.3 Photons

Photons interact with matter chiefly by three processes:

1. Photoelectric effect.
2. Compton effect.
3. Pair production.

A complete treatment of the three processes is rather complicated and requires the
tools of quantum electrodynamics. The essential facts, however, are simple. In the
photoelectric effect, the photon is absorbed by an atom, and an electron from one
of the shells is ejected. In the Compton effect, the photon scatters from an atomic
electron. In pair production, the photon is converted into an electron—positron pair.
This process is impossible in free space because energy and momentum cannot be
conserved simultaneously when a photon decays into two massive particles. It occurs
in the Coulomb field of a nucleus which is needed to balance energy and momentum.

The energy dependences of processes 1-3 are very different. At low energies,
below tens of keV, the photoelectric effect dominates (which accounts for the sharp
edges), the Compton effect is small, and pair production is energetically impossible.
At an energy of 2mec?, pair production becomes possible, and it soon dominates
completely. Two of the three processes, photoelectric effect and pair production,
eliminate the photons undergoing interaction. In Compton scattering, the scattered
photon is degraded in energy. The all-or-nothing situation described in Section 3.1
and depicted in Fig. 3.1(b) is therefore a good approximation, and the transmit-
ted beam should show an exponential behavior, as described by Eq. (3.1). The
absorption coefficient y is a sum of three terms,

K = Hphoto + HCompton + Mpair (35)

and each term can be computed accurately.
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Figure 3.7: Mean free path (A = p/u) versus photon energy. [From PDG.]

3.4 Electrons

The energy-loss mechanism of electrons differs from that of heavier charged particles
for several reasons. The most important difference is energy loss by radiation;
this mechanism is unimportant for heavy particles but dominant for high-energy
electrons. Radiation makes it necessary to consider two energy regions separately.
At energies well below the critical energy E., given approximately by

600 MeV
EFo~x ——,
A

(3.6)
excitation and ionization of the bound absorber electrons dominate. [In Eq. (3.6), Z
is the charge number of the absorber’s atoms.] Above the critical energy, radiation
loss takes over. We shall treat the two regions separately.

Ionization Region (E < E.) In this region, the energy loss of an electron and a
proton of equal speed are nearly the same and Eq. (3.2) can be taken over with some
small modifications. There is, however, one major difference, as sketched in Fig. 3.8.
The path of the heavy particle is straight and the N(x) against « curve is as given
in Fig. 3.3. The electron, owing to its small mass, suffers many scatterings with
considerable angles. The behavior of the number of transmitted electrons versus
absorber thickness is sketched in Fig. 3.8. An extrapolated range R, is defined
as shown in Fig. 3.8. Between about 0.6 and 12 MeV the extrapolated range in
aluminum is well represented by the linear relation

R,(in g/cm®) = 0.526 By (in MeV) — 0.094. (3.7)
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Figure 3.8: Passage of a proton and an electron with equal total pathlength through an absorber.
The N(z) against x behavior for electrons is given at right.
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Figure 3.9: Coulomb scattering. (a) Elastic scattering. (b) The accelerated electron radiates and
loses energy in the form of a photon (Bremsstrahlung).

Radiation Region (E > E.) A charged particle passing by a nucleus of charge
Ze experiences the Coulomb force and it is deflected (Fig. 3.9(a)). The process is
called Coulomb scattering. The deflection accelerates (decelerates) the passing par-
ticle. As pointed out in Section 2.6, acceleration produces radiation. In the case of
electrons in a synchrotron, it is called synchrotron radiation; in the case of charged
particles scattered in the Coulomb field of nuclei, it is called Bremsstrahlung (brak-
ing radiation). Equations (2.21) and (2.22) show that, for equal acceleration, the
energy carried away by photons will be proportional to (E/mc?)*. Bremsstrahlung
is thus an important energy-loss mechanism for electrons, but it is very small for
heavier particles, such as muons, pions, and protons.



48 Passage of Radiation Through Matter

Table 3.1: VALUES OF THE CRITICAL ENERGY E. AND THE RADIATION LENGTH X
FOR VARIOUS SUBSTANCES.

Radiation Length

Density Critical Energy

Material Z (g/cm?) (MeV) (g/cm?) (cm)
Ha (liquid) 1 0.071 340 62.8 887
He (liquid) 2 0.125 220 93.1 745
C 6 1.5 103 43.3 28
Al 13 2.70 47 24.3 9.00
Fe 26 7.87 24 13.9 1.77
Pb 82 11.35 6.9 6.4 0.56
Air 0.0012 83 37.2 30870
Water 1 93 36.4 36.4

Actually, Eq. (2.21) has been calculated by using classical electrodynamics.
Bremsstrahlung, however, must be treated quantum mechanically. Bethe and
Heitler have done so, and the essential results are as follows.(?) The number of
photons with energies between hiw and fi(w + dw) produced by an electron of energy
E in the field of a nucleus with charge Ze is proportional to Z?2/w:

N(w)dw o 22%‘". (3.8)

Owing to the emission of these photons, the electron loses energy, and the distance
over which its energy is reduced by a factor e is called the radiation or attenuation
length and conventionally denoted by Xg. In terms of X, the radiative energy loss
for large electron energies is

dF FE
(=) == E = Ege™%/%o, :
(dx >rad X, or e (3.9)

The radiation length is given either in g/ em? or in cm; a few values of Xy and of
the critical energy E. are given in Table 3.1.

According to Eq. (3.9), a highly energetic electron loses its energy exponen-
tially and after about seven radiation lengths has only 1072 of its initial energy
left. However, concentrating on the primary electron is misleading. Many of the
Bremsstrahlung photons have energies greatly in excess of 1 MeV and can produce
electron-positron pairs (Section 3.3). In fact, the mean free path, that is, the aver-
age distance, X, traveled by a photon before it produces a pair, is also related to

the radiation length:

9
X, = = Xo. (3.10)

2H. A. Bethe and W. Heitler, Proc. R. Soc. (London) A146, 83 (1934).
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Figure 3.10: Number n of electrons in a shower as a function of the thickness traversed, t, in
radiation lengths. [These curves were taken from the work of B. Rossi and K. Greisen, Rev.
Modern Phys. 13, 240 (1941).]

In successive steps, a high-energy electron creates a shower. (Of course a shower
can also be initiated by a photon.) The detailed theory of such a shower is very
complicated and in practice computer calculations are performed. Figure 3.10 shows
the number n of electrons in a shower as a function of the thickness of the absorber.
The energy Ej of the incident electron is measured in units of the critical energy;
the thickness is expressed in units of the radiation length Xg. Figure 3.10 expresses
the development and death of a shower: The increase in the number of electrons
is very rapid at the beginning. As the cascade progresses, the average energy per
electron (or per photon) becomes smaller. At some point it becomes so small that
the photons can no longer produce pairs, and the shower dies.

3.5 Nuclear Interactions

If the passage of particles through matter were governed entirely by the phenomena
described in Sections 3.1-3.4, neutral particles would pass through matter without
being affected, and muons and protons of the same energy would nearly have the
same range. The facts, however, are different; the electrically neutral neutrons have
a strong short-distance interaction with matter, and high-energy protons have a
much shorter range than muons. The reason for this behavior, and for the discrep-
ancy between naive expectation and reality, is the neglect of nuclear interactions.
The treatment in Sections 3.1-3.4 is based entirely on the electromagnetic interac-
tion, and nonelectromagnetic forces between the nucleus and the passing particle
are neglected. These interactions, the hadronic and the weak ones, form the central
topic of subatomic physics and they will be explored and described in the following
parts.
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3.6 References

The basic ideas underlying the computation of the energy loss of charged particles in
matter are described lucidly in N. Bohr, “Penetration of Atomic Particles Through
Matter,” Kgl. Danske Videnskab. Selskab Mat-fys Medd. XVIII, No. 8 (1948),
and in E. Fermi, Nuclear Physics, notes compiled by J. Orear, A. H. Rosenfeld,
and R. A. Schluter, University of Chicago Press, Chicago, (1950); J.F. Ziegler, J.P.
Biersack, and W. Littmark, Stopping Powers and Ranges Pergamon Press, New
York, 1985; M.A. Kumak and E.F. Komarov, Radiation from Charged Particles in
Solids, transl. G. Kurizki, Amer. Inst. Phys., New York, 1989; see also PDG for
an up-to-date review and further references.

Problems

3.1. An accelerator produces a beam of protons with kinetic energy of 100 MeV.
For a particular experiment, a proton energy of 50 MeV is required. Compute
the thickness of

(a) a carbon and

(b) a lead absorber,

both in cm and in g/ch, necessary to reduce the beam energy from 100 to
50 MeV. Which absorber would be preferable? Why?

3.2. A counter has to be placed in a muon beam of 100-MeV kinetic energy. No
muons should reach the counter. How much copper is needed to stop all
muons?

3.3. We have stated that the transmission of charged particles through matter is
dominated by atomic, and not nuclear, interactions. When is this statement
no longer true; i.e., when do nuclear interactions become important?

3.4. A beam stop is required at the end of accelerators to prevent the particles
from running wild. How many meters of solid dirt would be required at
FNAL to completely stop the 200 GeV protons, assuming only electromagnetic
interactions? Why is the actual beam stop length less?

3.5. Cosmic-ray muons are still observed in mines that are more than 1 km un-
derground. What is the minimum initial energy of these muons? Why are no
cosmic-ray protons or pions observed in these underground laboratories?

3.6. Discuss and understand the simplest derivation of Eq. (3.2).

3.7. Show that the mean free path of a particle undergoing exponential absorption
as described by Eq. (3.1) is given by 1/pu.
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3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

A beam of 1-mA protons of kinetic energy of 800 MeV passes through a 1-cm?
copper cube. Compute the maximum energy deposited per sec in the copper.
Assume the cube to be thermally insulated, and compute the temperature rise
per sec.

Compare the energy loss of nonrelativistic 7, K+, d, He*", 4He?™ = a to
that of protons of the same energy in the same material.

In an experiment, alpha particles of 200 MeV energy enter a scattering cham-
ber through a copper foil that is 0.1 mm thick.

(a) Use the form of Eq. (3.2) to find approximately the energy of the proton
beam that has the same energy loss as the a beam.

(b) Compute the energy loss.

Use Eq. (3.2) and Fig. 3.5 to sketch the ionization along the path of a heavy
charged particle (Bragg curve).

Use Eq. (3.2) to calculate numerically the energy loss of a 20 MeV proton in
aluminum (I = 150 eV).

A radioactive source emits gamma rays of 1.1 MeV energy. The intensity of
these gamma rays must be reduced by a factor 10* by a lead container. How
thick (in ¢m) must the container walls be?

5TFe has a gamma ray of 14 keV energy. A source is contained in a metal
cylinder. It is desired that 99% of the gamma rays escape the cylinder. How
thin must the walls be made if the cylinder is

(a) Aluminum?

(b) Lead?

A source emits gamma rays of 14 and 6 keV. The 6 keV gamma rays are 10
times more intense than the 14 keV rays. Select an absorber that cuts the
intensity of the 6 keV rays by a factor of 10® but affects the 14 keV rays as
little as possible. What is your choice? By what factor is the 14 keV intensity
reduced?

The three processes discussed in Section 3.3 are not the only interactions of
photons. List and briefly discuss other types of photon interactions.

A radioactive source contains two gamma rays of equal intensity with energies
of 85 and 90 keV, respectively. Compute the intensity of the two gamma lines
after passing through a 1 mm lead absorber. Explain your result.
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3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

Passage of Radiation Through Matter

Electrons of 1 MeV kinetic energy should be stopped in an aluminum absorber.
How thick, in cm, must the absorber be?

What is the energy of an electron that has approximately the same total (true)
pathlength as a 10 MeV proton?

An electron of 103GeV energy strikes the surface of the ocean. Describe the
fate of the electron. What is the maximum number of electrons in the resulting
shower? At which depth, in m, does the maximum occur?

A 10-GeV electron passes through a 1-cm aluminum plate. How much energy
is lost?

Show that pair production is not possible without the presence of a nucleus
to take up momentum.

Show that the maximum energy that can be transferred to an electron in
a single collision by a non-relativistic particle of kinetic energy T and mass
M(M > me) is (4me/M)T.



Chapter 4

Detectors

What would a physicist do if he were asked to study ghosts and telepathy? We
can guess. He would probably (1) perform a literature search and (2) try to design
detectors to observe ghosts and to receive telepathy signals. The first step is of
doubtful value because it could easily lead him away from the truth. The second
step, however, would be essential. Without a detector that allows the physicist to
quantify his observations, his announcement of the discovery of ghosts would be
rejected by Physical Review Letters. In experimental subatomic physics, detectors
are just as important and the history of progress is to a large extent the history
of increasingly more sophisticated detectors. Even without accelerators and using
only neutrinos or cosmic-ray particles, a great deal can be learned by making the
detectors bigger and better. In the following sections, we shall discuss different
types of detectors. Many beautiful and elegant tools are not treated here; however,
once the ideas behind typical instruments are understood, it is easy to pick up more
details concerning others. We also add a brief section about electronics because it
is an integral part of any detection system.

4.1 Scintillation Counters

The first scintillation counter, called spinthariscope, was constructed in 1903 by
Sir William Crookes. It consisted of a ZnS screen and a microscope; when alpha
particles hit the screen, a light flash could be seen. In 1910, Geiger and Mars-
den performed the first coincidence experiment. As Fig. 4.1 shows, they used two
screens, S1 and So, and two observers with microscopes M; and M. If the radioac-
tive gas between the two screens emitted two alpha particles within a “short” time
and if each hit one screen, each observer would see a flash. They probably shouted
to indicate the time of arrival. The human eye is slow and unreliable and the scin-
tillation counter was abandoned for many years. It was reintroduced in 1944 with a
photomultiplier replacing the eye. The basic arrangement for a modern scintillation
counter is shown in Fig. 4.2.
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Figure 4.1: Coincidence ob-
servation “by eye”.  (From
E. Rutherford, Handbuch der
Radiologie, Vol. 11, Akademis-
che Verlagsgesellschaft,
Leipzig, 1913.)

Up to 14 multiplying stages
are used, and overall multiply-
ing factors of up to 10° can
be achieved. The few incident
photons therefore produce a
measurable pulse at the out-
put of the multiplier. The
shape of the pulse is shown
schematically in the insert of
Fig. 4.2. The pulse height is
proportional to the total en-
ergy deposited in the scintil-
lator.

Figure 4.2: Scintillation counter.

Detectors

A scintillator is joined to one (or more) pho-
tomultipliers through a light pipe. A parti-
cle passing through the scintillator produces
excitations; deexcitation occurs through emis-
sion of photons. These photons are transmit-
ted through a shaped light pipe to the photo-
cathode of a photomultiplier. There, photons
release electrons which are accelerated and fo-
cused onto the first dynode. For each primary
electron hitting a dynode, two to five secondary
electrons are released.
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through the scintillator produces light which is transmit-
ted through a light pipe onto a photomultiplier.
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Compton events

Pulse Height

Figure 4.3: Scintillation spectrum,
Nal(Tl) crystal.

Two types of scintillators are
widely used, sodium iodide and
plastics. Sodium iodide crystals
are usually doped with a small
amount of thallium and denoted
by NalI(Tl). The T1 atoms act as
luminescence centers.
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The efficiency of these inorganic crystals for gamma rays is high, but the decay of
each pulse is slow, about 0.25us. Moreover, Nal(T1) is hygroscopic and large crystals
are very expensive. Plastic scintillators, for instance polystyrene with terphenyl
added, are cheap; they can be bought in large sheets and can be machined in nearly
any desired shape. The decay time is only a few ns, but the efficiency for photons
is low. They are therefore mainly used for the detection of charged particles.

A few remarks are in order concerning the mechanism of observation of gamma
rays in Nal(Tl) crystals. For a gamma ray of less than 1 MeV, only photoeffect
and Compton effect have to be considered. Photoeffect results in an electron with
an energy I, = E, — Ey, where Ej, is the binding energy of the electron before it
was ejected by the photon. The electron will usually be completely absorbed in the
crystal. The energy deposited in the crystal produces a number of light quanta that
are then detected by the photomultiplier. In turn, these photons result in a pulse
of electric charge proportional to F. and with a certain width AFE. This photo
or full-energy peak is shown in Fig. 4.3. The energy of the electrons produced by
the Compton effect depends on the angle at which the photons are scattered. The
Compton effect therefore gives rise to a spectrum, as indicated in Fig. 4.3. The
width of the full-energy peak, measured at half-height, depends on the number of
light quanta produced by the incident gamma ray; typically AE/E, is of the order of
20% at E, =100 keV and 6-8% at 1 MeV. At energies above 1 MeV, the incident
gamma ray can produce an electron—positron pair; the electron is absorbed, and
the positron annihilates into two 0.51 MeV photons. These two photons can escape
from the crystal. The energy deposited is E, if no photon escapes, E, — mec? if
one escapes, and E, — 2m.c? if both annihilation photons escape.

The energy resolution AE/E deserves some additional consideration. Is a res-
olution of about 10% sufficient to study the gamma rays emitted by nuclei? In
some cases, it is. In many instances, however, gamma rays have energies so close
together that a scintillation counter cannot separate them. Before discussing a
counter with better resolution, it is necessary to understand the sources contribut-
ing to the width. The chain of events in a scintillation counter is as follows: The
incident gamma ray produces a photoelectron with energy E. ~ E,. The photoelec-
tron, via excitation and ionization, produces ni4 light quanta, each with an energy
of Fr1q = 3 eV(A =~ 400nm). (For clarity we call the incident photon the gamma ray
and the optical photon the light quantum.) The number of light quanta is given by

E,
Ni1q = - €light,

Eiq

where €jigne is the efficiency for the conversion of the excitation energy into light
quanta. Of the niq light quanta, only a fraction eco are collected at the cathode
of the photomultiplier. Each light quantum hitting the cathode has a probability
€cathode Of €jecting an electron. The number n, of electrons produced at the input
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of the photomultiplier is therefore

By

Ne =
Eiq

€light €coll€cathode- (41)

Typical values for the efficiencies are
€light ~ 017 €coll ~ 047 €cathode =~ 02;

so that the number of electrons released at the photocathode after absorption of
a 1 MeV gamma ray is n. ~ 3 x 10*. (The value elight ~ 0.1 is appropriate for a
Nal crystal; for plastic scintillator ejjgn; ~ 0.03. The value €con is only a nominal
value. The transmission of light through a scintillator decreases exponentially with
its length, as seen in Chapter 3. Typical attenuation lengths are: ~ 1 —5 m.) Since
all processes in Eq. (4.1) are statistical, n. will be subject to fluctuations, and these
produce most of the observed line width. An additional broadening comes from the
multiplication in the photomultiplier which is also statistical. To discuss the line
width, we digress to present some of the fundamental statistical concepts.

4.2 Statistical Aspects

Random processes play an important part in subatomic physics. The standard
example is a collection of radioactive atoms, each atom decaying independently of
all the others. We shall consider here an equivalent problem that came up in the
previous section, the production of electrons at the photocathode of a multiplier.
The question to be answered is illustrated in Fig. 4.4.

g In Each incident photon produces n photoelectrons
as output. We can repeat the measurement of the
Ui number of output electrons N times, where N is
% very large. In each of these N identical measure-
ments, we shall find a number n;,¢ = 1,..., V.
The average number of output electrons is then
Random given by

1
= > ni. (4.2)

i=1
¢¢¢¢¢ The question of interest can be stated: How are

n electrons

the various values n; distributed around m? An-
Out . .

other way of phrasing the same question is: What

Figure 4.4: Production of is the probability P(n) of finding a particular value

photoelectrons as a random . . . if th

process. n in a given measurement if the average number

ism?
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Or, to make it more specific, consider a process where the average number of output
electrons is small, say m = 3.5. What is the probability of finding the value n = 27
This problem has occupied mathematicians for a long time, and the answer is well
known("): The probability P(n) of observing n events is given by the Poisson
distribution,

P(n) = (m)" e " (4.3)

where 7 is the average defined by Eq. (4.2). As behooves a probability, the sum
over all possible values n is 1, >.°° P(n) = 1. With Eq. (4.3), the previous
questions can now be answered, and we first turn to the most specific one. With
n=3.5n=2, Eq (4.3) gives P(2) = 0.185. It is straightforward to compute the
probabilities for all interesting values of n. The corresponding histogram is shown
in Fig. 4.5. It shows that the distribution is very wide. There is a nonnegligible
probability of measuring values as small as zero or as large as 9. If we perform only
one measurement and find, for instance, a value of n = 7, we have no idea what the
average value would be.

A glance at Fig. 4.5 shows that it is not enough to measure and record the
average, m. A measure of the width of the distribution is also needed. It is customary

to characterize the width of a distribution by the variance o2

o? = Z(ﬁ —n)2P(n), (4.4)
or by the square root of the variance, called the standard deviation.

For the Poisson distribution, Eq. (4.3), vari- oo
n, _
ance and standard distribution are easy to A 1”23'5

/
// /////,,,,

o’=m, o=Vn. (4.5)

For small values of 7, the distribution is 7
n

not symmetric about m, as is evident from

Fig. 4.5.

So far we have discussed the Poisson distri- 123456789
bution for small values of m. Experimentally, Figure 4.5: Histogram of the Poisson
such a situation arises, for instance, at the distribution for @ = 3.5. The distribu-

first dynode of a photomultiplier, where each tion is not symmetric about 7.

incident electron produces two to five sec-
ondary electrons. Data are then given in the
form of histograms, as in Fig. 4.5.

LA derivation can, for instance, be found in H. D. Young, Statistical Treatment of Experimental
Data, McGraw-Hill, New York, 1962, Eq.(8.5); R.A. Fisher, Statistical Methods, Ezperimental
Design, and Scientific Inference, Oxford Univ. Press, Oxford, 1990.
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In many instances, 7 can be very large. In the case of the scintillation counter
discussed in the previous section, the number of photoelectrons at the photomulti-
plier is on the average m = 3 x 10%. For > 1, Eq. (4.3) is cumbersome to evaluate.
However, for large n, @ can be considered a continuous variable, and Eq. (4.3) can

be approximated by

—(m—n)

P(n) = (27rn)1/2 P { 2n

] (46)

which is easier to evaluate. Moreover, the be-
havior of P(n) is now dominated by the factor
(m—n)? in the exponent. Particularly near the
center of the distribution, n can be replaced by
7 except in the factor (W—n)?, and the result is

exp [_(ﬁ :”)2} L)

P(n) =

(27m)1/2 2n

This expression is symmetric about 7 and is
called a normal or Gaussian distribution. The
standard deviation and the variance are still

P(n) X 10°

8

I

A = 3000

o =Vi =55

6
An = 2350 = 130

L L
0 2900 3000 3100

Figure 4.6: Poisson distribution for
m > 1 where it becomes a normal dis-
tribution.

given by Eq. (4.5).

As an example of the limiting case where the Poisson distribution can be rep-
resented by the normal one, we show in Fig. 4.6 P(n) for m = 3 x 10, the number
of photoelectrons of our example in the previous section. The standard deviation
is equal to (3 x 10%)1/2 = 55, resulting in a fractional deviation ¢/7 =~ 2%. To
compare this value to AE/E, we note that AFE is the full width at half maximum
(FWHM). With Eqgs (4.5) and (4.7) it is straightforward to see that An, the full
width at half maximum, is related to the standard deviation by

An = 2.350.

With AE/E, = An/7, the expected fractional energy resolution becomes about
5%. Since the value must still be corrected for additional fluctuations, for instance,
in the multiplier, the agreement with the experimentally observed resolution of
6-8% is satisfactory.

As another example, we apply the statistical considerations to an experiment in
which a quantity n is measured N times and where the distribution of n is Gaussian.
The variance o2 is determined from the measured values n; and the average 7 as

N

— N9 ]- —
o?=m—n;)? = N Z(n— ni)?.

i=1

Note that o2 does not decrease with increasing number N; it describes the width
of the distribution. Nevertheless, with increasing N, the value of @ becomes better
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known. This fact is expressed through the variance of the mean, given by

2 _ Zi]\il(ﬁ_ni)2 _ o’

= = . 4.8
m T TN(N 1) (N 1) (48)

The measured quantity with its standard deviation o, is usually quoted as
result =7 £ oy, (4.9)

4.3 Semiconductor Detectors

Scintillation counters started a revolution in the detection of nuclear radiations, and
they reigned unchallenged from 1944 to the late 1950s. They are still essential for
many experiments, but in many areas they have been replaced by semiconductor
detectors. Before discussing these, we compare in Fig. 4.7 a complex gamma-ray
spectrum as seen by a semiconductor and by a scintillation detector. The superior
energy resolution of the solid-state counter is obvious. How is it achieved? In the
scintillation counter, the efficiencies in Eq. (4.1) reduce the number of photoelectrons
counted; it is difficult to imagine how each of the efficiency factors in Eq. (4.1) could
be improved to about 1. A different approach is therefore needed and the solid-
state (semiconductor) detector offers one. The idea underlying the semiconductor
counter is old and it is used in ionization chambers: A charged particle with kinetic
energy F. moving through a gas or a solid produces ion pairs, and the number of

Figure 4.7: Complex gamma-ray spectrum, due to gross fission products, observed by a germanium
detector (upper curve) and a scintillation detector (lower curve). [From F.S. Goulding and Y.
Stone, Science 170, 280 (1970). Copyright 1970 by the American Association for the Advancement
of Science.]
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these pairs is given by
E.

ion = Trr 4.10
T (4.10)

where W is the energy needed to produce one ion pair. If the ion pairs are separated
in an electric field and if the total charge is collected and measured, the energy of
the electron can be found.

A gas-filled ionization chamber uses this principle, but it has two disadvantages:
(1) The density of a gas is low so that the energy deposited by a particle is small.
(2) The energy needed for the production of an ion pair is large (W = 42 eV
for He, 22 eV for Xe, and 34 eV for air). Both disadvantages are avoided in a
semiconductor detector, as sketched in Fig. 4.8. If a charged particle passes through
a semiconductor, ion pairs will be created. The energy W is about 2.9 eV for
germanium and 3.5 eV for silicon. The energies are so low because ionization does
not occur from an atomic level to the continuum but from the valence band to the
conduction band.(? The electric field will sweep the negative charges toward the
positive and the positive charges toward the negative surface. The resulting current
pulse is fed to a low-noise amplifier. At room temperature, thermal excitation
can produce an unwanted current, and many semiconductor detectors are therefore
cooled to liquid nitrogen temperature. The low value of W and the collection of
all ions explains the high energy resolution of semiconductor detectors shown in
Fig. 4.7. Figure 4.9 presents the energy resolution as a function of particle energy
for germanium and silicon detectors.

While semiconductor detectors have a much higher density than gas-filled ion-
ization chambers, they are much more expensive for large volumes. Semiconductor
counters can have volumes of ~ 1000 cm?. Scintillation counters can be made orders
of magnitude larger, and they do not have to be cooled. For any given application
one must therefore consider which type of counter will be more suitable and more
convenient.

Typically Ge detectors are used for detection of gamma rays, while Si detectors
are used to detect charged particles. Stripped Si detectors have become available
which allow position resolution of < 0.1 mm.

Over the past three decades arrays of multiple Ge detectors have been produced
and used mainly to measure gamma rays from fastly rotating nuclei. Figure 4.10
shows one example composed of 110 Ge detectors. A new generation of detectors,
presently under developement, would track photons and allow for more efficient
detection, determination of the polarization, better determination of multiplicity
and better determination of original photon directions. Here instead of having an
array of Ge detectors, one would use fewer highly-segmented detectors. Figure 4.11
shows an example.

2The band structure of semiconductors can be found in C.Hamaguchi, Basic Semiconductor
Physics, Springer Verlag, New York, 2001, K.F. Brennan, The Physics of Semiconductors, Cam-
bridge Univ. Press, Cambridge, 1999, or in the Feynman Lectures, Vol. III, Chapter 14.
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+V

To
amplifier

N layer P layer
Bulk

Figure 4.8: Ideal, fully de-
pleted semiconductor detector
with heavily doped surface layers
of opposite types.

Figure 4.10: Gammasphere: 110 high-purity
Ge detectors were put together in a 47 array.
This photo shows approximately half of the
array around the chamber that holds the tar-
get where the beam impinges under vacuum.
[Courtesy of A.O. Macchiavelli.]

61

10? —rrrrrmy T T I
-
Z ol
ML -
< | -
= Silicon
; o (Electrons,
w10 Y's, x rays) -
E:;
E Germanium
3 ot (Electrons,
3 v’s, X rays) g
z -
F ]
1072 il | 4 \
1073 1072 107! 10° 10! 102

Energy (MeV)

Figure 4.9: Optimal energy resolution of semicon-
ductor counters as a function of energy. [From F.S.
Goulding and Y. Stone, Science 170, 280 (1970).
Copyright 1970 by the American Association for
the Advancement of Science.] FWHM means full
width at half maximum.

Figure 4.11: Developments for GRETA:
Gamma-ray energy tracking array. This de-
tector has 36 segments. The energy deposited
in each segment can be read separately which
allows for photon tracking. An array covering
47 would be built with several of these units.
[Courtesy of A.O. Macchiavelli.]
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4.4 Bubble Chambers

Bubble chambers became popular in the 1950-1980’s as a tool to track particles
through large volumes. Since its invention by Glaser in 1952, it played a crucial

role in the elucidation of the properties of subatomic particles.

Particle
path

Glass window

3)

The physical phenomenon underlying the bub-
ble chamber is best described in Glaser’s own
words(®: “A bubble chamber is a vessel filled
with a transparent liquid which is so highly
superheated that an ionizing particle moving

$ mmmmmmn 3

through it starts violent boiling by initiating
the growth of a string of bubbles along its
path.” A superheated liquid is at a tempera-
ture and pressure such that the actual pressure
is lower than the equilibrium vapor pressure.
The condition is unstable, and the passage of
a single charged particle initiates bubble for-
mation. To achieve the superheated condition,
Mechanical the liquid in the chamber (Fig. 4.12) is first

drive
system

kept at the equilibrium pressure; the pressure

is then rapidly dropped by moving a piston.
Figure 4.12: Bubble chamber—
schematic diagram.

A few ms after the chamber becomes sensitive, the process is reversed and the cham-
ber pressure is brought back to its equilibrium value. The bubbles are illuminated
with an electronic photoflash and recorded.

In the times when bubble chambers were popular for high-energy experiments,
the time during which the chamber was sensitive was synchronized with the ar-
rival time of pulses of particles from an accelerator. Pictures were taken and later
analyzed visually. Glaser’s first chambers contained only a few ecm? of liquid. De-
velopment was rapid, however, in less than twenty years, the volume increased by
more than 10°. Eventually bubble chambers became very large and costed millions
of dollars. They required enormous magnets to curve the paths of the charged par-
ticles. The superheated liquid, often hydrogen, was explosive when in contact with
oxygen, and accidents did occur. Bubble chambers could produce tens of millions
of photographs/y, and data evaluation was complex.

Two examples demonstrate the beautiful and exciting events that were seen.
Figure 1.4 shows the production and the decay of the omega minus, a most remark-
able particle that we shall encounter later. Figure 4.13 represents the first neutrino
interaction observed in pure hydrogen. It was found on November 13, 1970, in the

SL.W. Alvarez, Science 165, 1071 (1969).
4D. A. Glaser and D. C. Rahm, Phys. Rev. 97, 474 (1955).
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Photo 5: Bubble chamber. Some versions become very large and sophisticated. [Courtesy
Lawrence Berkeley National Laboratory.]
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Figure 4.13: Neutrino interaction in a hydrogen bubble chamber. A neutrino enters from the right
and interacts with the proton of a hydrogen atom to yield a muon (the long track that extends
to the top left), a positive pion (the short top track), and a proton (the short bottom track).
[Courtesy Argonne National Laboratory.]

3.6 m (12 ft) hydrogen bubble chamber of the Argonne National Laboratory which
contained about 20,000 liters of hydrogen. A superconducting magnet produced a
field of about 18 kG in the chamber volume of 25 m?.

Because of their slow response, bubble chambers are seldomly used in present
days for experiments with high counting rates. However, they are still being used for
applications with low counting rates in combination with CCD cameras.(®) Some
versions can be triggered using the spike in pressure when a pulse develops. In the
next section we explain in more detail what triggering means.

4.5 Spark Chambers

Whereas spark chambers are no longer state-of-the-art, they illustrate the basic
principles of a triggerable detector clearly. Spark chambers are based on a simple
fact. If the voltage across two metal plates, spaced by a distance of the order
of c¢m, is increased beyond a certain value, a breakdown occurs. If an ionizing
particle passes through the volume between the plates, it produces ion pairs, and
the breakdown takes the form of a spark that follows the track of the particle. Since
the ions remain between the plates for a few us, the voltage can be applied after
passage of the particle: A spark chamber is a triggerable detector.

The elements of a spark chamber system are shown in Fig. 4.14. The problem
to be studied in this simplified arrangement is the reaction of an incoming charged
particle with a nucleus in the chamber, giving rise to at least two charged products.
Thus the signature of the desired events is “one charged in, two charged out.”
Three scintillation counters, A, B, and C, detect the three charged particles. If the
particles pass through the three counters, the LOGIC circuit activates the high-

5See, for example, W.J. Bolte et al., Journal of Physics: Conference Series 39, 126 (2006);
http://collargroup.uchicago.edu/
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voltage supply, and a high-voltage pulse (10-20 kV) is applied to the plates within
less than 50 ns. The resulting sparks are recorded on stereophotographs.

The standard spark chamber Heliurn-neon gas

arrangement of the type just A /yd«\g
i i Iny yS

discussed has been used in 0 oo,h/./7 g\ L0 o«\c\e

many experiments, and cham- RUN 9 Sy

bers have been designed to c
solve many problems. Thin

plates are employed if only the “ e 590y
direction of charged particles

+
is desired; thick lead plates | High-voltage pulse|-
are used if gamma rays are o
to be observed or if electrons >

have to be distinguished from
muons. The electrons produce

Figure 4.14: Spark chamber arrangement. The spark cham-
ber consists of an array of metal plates in a helium—neon
showers in the lead plates and mixture. If the counter-and-logic system has decided that
a wanted event has occurred, a high-voltage pulse is sent
to alternate plates, and sparks are produced along the ion-
ization trails.

can thus be recognized.

Spark chambers have been replaced in high-energy experiments by silicon semicon-
ductor detectors and by drift chambers, but they are still used in some experiments
because they are simple and inexpensive.

4.6 Wire Chambers

Bubble and spark chambers share one disadvantage: Events must be photographed
and then evaluated later. In experiments where a large amount of data is collected
this approach is cumbersome.(®)

Wire chambers (multi-wire proportional counters), pioneered by Charpak, avoid
this disadvantage. Wire chambers have very good time resolution, very good posi-
tion accuracy, and are self-triggered. Their use has spread from high-energy physics
to many other fields such as nuclear medicine, heavy ion astronomy, and protein
crystallography. A cross section through a wire chamber is sketched in Fig. 4.15. A
chamber may be a few m long and high. Tungsten wires of diameter 2a(~ 20um)
are stretched in one direction and a voltage of a few kV is applied between the
anode wires and the cathode surfaces. The resulting field lines are indicated for two
wires in Fig. 4.15. An ionizing particle passing through the chamber creates ion
pairs. Electrons produced close to the wire are accelerated towards the wire with an
energy sufficient to produce additional pairs and an avalanche results which leads
to a negative pulse on the wire. In many wire chambers, each wire is connected to

6G. Charpak and F. Sauli, Annu. Rev. Nucl. Part. Sci. 34, 285 (1984).



66 Detectors

Cathode Planes

Anode

wires
L]
>
3k
lonizing particle e
—_— S
T — _ O

- -
. T —

Counter gas °
(e.g- argon—CO,) [~ .
s
e—— /| —>e I

Figure 4.15: Cross section through a multi-wire proportional counter. Typical dimensions are
| =8 mm, s =2 mm. Field lines are shown for two wires.

a separate amplifier and pulse shaper; the output pulse indicates position and time
of the particle.

4.7 Drift Chambers

Drift chambers(") are like wire detectors, but can provide much better spatial res-
olution (< 200um) at lower cost because fewer wires are required. Drift chambers
use a low electric field (~ 1 keV /cm) to make electrons drift to one or more anode
wires. To produce a relatively constant electric field strength, potential wires are
introduced between neighboring anode wires. Close to the anode wires, the electric
field gets very large and an avalanche results. The drift time is used to define the
position of the particle. The drift velocity is given by

etk

4.11
iy (411)

vp =
where e is the charge of the particle, 7 is the mean collision time, E is the electric
field intensity, and m is the mass of the particle. The distance traversed to reach
the avalanche region is
t1
Az :/ vpdt (4.12)
to
where tg is the creation time and ¢; is the arrival time of the electron. For elec-
trons, for which the chamber is most useful, the approximate drift speed is about
50 mm/us and the drift distance of the order of 5-10 cm.

“W. Blum and L. Rolandi, Particle Detection with Drift Chambers, Springer Verlag, New York,
1993.
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Figure 4.16: Drift chambers can be used to track charged particles. In this picture a scientist checks
part of the TWIST apparatus,(® which used 44 drift chamber planes to do precision measurements
of muon decay. The drift chambers are circular planes whose edges can be seen in the photograph.
[Courtesy Bob Tribble.]

Drift chambers are still very popular because they are reliable and not expensive.
Figure 4.16 shows a picture of the TWIST apparatus which used drift chambers to
track electrons from muon decay.®

A drift chamber can be planar or cylindrical. In the latter form it can be made
into a time projection chamber.

4.8 Time Projection Chambers

Wire chambers have one major disadvantage: they only yield information about one
spatial direction. To determine both coordinates, a second wire chamber must be
used. This requirement makes the experimental arrangement complicated and re-
duces the solid angle subtended by the detector. Time projection chambers (TPCs),
invented in 1974 by David Nygren, avoid this limitation and are nearly ideal detec-
tors: TPCs have large solid angles, give excellent spatial resolution in three dimen-
sions, yield charge and mass information, and allow good pattern recognition.(%-10)

TPCs can be as small as a grapefruit or weigh as much as 10 tons. The main
features are illustrated in Fig. 4.17. The drift chamber is filled with a gas, usually a
mixture of Ar and CHy because it is inexpensive and allows high electron mobility.
Uniform electric (E) and magnetic (B) fields are applied parallel to the axis (beam
pipe). A charged particle passing through the chamber produces ion pairs along its

8TWIST Collaboration, Phys. Rev. Lett. 94, 101805 (2005).

9R. J. Madaras and P. J. Oddone, Phys. Today 37, 38 (August 1984).

10«The Time Projection Chamber”, ed. J.A. MacDonald, AIP Conference Proceedings No. 108,
American Institute of Physics, New York, 1984.
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Endcap sense

Endcap sense
wires

Negative high
voltage electrode

Beam pipe 192 dE/dx wires per sector;

12 spatial wires per sector

Figure 4.17: Schematic drawing of a Time Projection Chamber. Charged particles which traverse
the chamber ionize the gas of the TPC; the electrons that result drift to the endcaps under the
influence of the axial electric and magnetic fields. [Courtesy of Lawrence Berkeley Laboratory.]

trajectory. The applied electric field accelerates the electrons of these pairs towards
one end of the chamber. The magnetic field causes the electron trajectories to be
tiny spirals along the B field parallel to the beam axis. The point of impact of the
electrons at the ionization (wire) chambers on the end caps consequently traces the
projection of the particle trajectory, thereby yielding two coordinates. The third
coordinate is determined by the arrival time of the electrons. The total charge
deposited at the ends gives the total ionization and hence the total energy lost by
the particle in passing through the chamber. Eq.(3.2) then permits calculation of
the particle speed v. The curvature of the particle in the magnetic field B can
be computed from the particle coordinates; Eq.(2.15) then yields the momentum.
Momentum and velocity together determine the particle mass and thus identify the
particle. Since the detectors can surround the beam pipe completely, the solid an-
gle is very large. The large number of sensitive elements at each end permits the
simultaneous observation of many particles and thus allows efficient pattern recog-
nition. Because of their many advantages, TPCs are now used in many nuclear and
high-energy laboratories.

4.9 Cerenkov Counters

Cerenkov counters use the light emitted by Cerenkov radiation to obtain the velocity
of a particle; if the momentum is also measured, then the mass of the particle can
be obtained and the particle can be identified.

If the speed, v, of a particle is faster than that of light in a medium with index
of refraction n, then radiation is emitted at an angle 6, with cosf = ¢/(vn). Thus
the angle can be used to determine the particle’s speed. The maximum cone angle
is Opnae = cos~11/n. The energy loss per path length is small, of the order of 500
eV/cm in the visible region.
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Figure 4.18: Example of the use of Cerenkov detectors: the SNO detector consited of 1000 Tons of
heavy water and 9456 photomultiplier tubes in a spherical array. Left: artist’s view of the detector,
which was located deep underground. Right: the appearance of a neutrino event is shown. Each
dot indicates a photomultiplier tube that detected Cerenkov light. [Courtesy J. Wilkerson]

The number of photons emitted per unit path length and energy is (V)

d’N az? c?
dzdE ~ he (1 a 02n2> ’ (4.13)

where ze is the charge of the particle and « is the fine structure constant @ =
e?/(he) = 1/137.

A recent spectacular application of Cerenkov detectors has been their use to
detect neutrinos. In a typical situation a neutrino scatters from electrons in water
and the electrons generate Cerenkov ‘rings’ that are detected with photomultiplier
tubes. Figure 4.18 shows an example of a neutrino event from the SNO detector.

4.10 Calorimeters

Modern high energy accelerators and heavy ion accelerators both produce a mul-
titude of events per collision. Calorimeters are used to measure the energies of
particles by stopping them and thus having them deposit all of their energy in-
side the detector. Thus a large mass detector is required. There are two types of
calorimeters, namely those for electrons and those for hadrons.

As discussed in Section 3.4, high energy electrons slow down primarily by brems-
strahlung, with the photons then producing electron-positron pairs; these pairs
produce further photons and the process results in a “shower” of ete™ pairs. In
one radiation length, Xy, the inital energy Fy leads to two particles of energy Fy/2.
After n iterations or in a distance of n Xy, there will be 2™ particles with an average

118ee Jackson, Sect. 13.4.
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energy £ = Ey/2". The shower stops when E = E., when loss of energy by
ionization becomes important.

The impact point of any particle can be obtained from the lateral spread of the
shower. In the case of an incident electron, the shower is well defined and can be
traced back.

High energy hadrons are generally not contained in an electron calorimeter, so
that a hadron calorimater tends to surround or be placed behind an electron one.
Hadrons slow through collisions with nuclei and give rise to secondary hadrons which
produce more hadrons. The exception is a particle like a 7°, which decays primarily
into two photons and thence produces an electron shower. The mean free path of
a hadron depends on the cross section for collisions with nuclei and on the density
of the material. A typical hadron will traverse about 135 g/cm? in Fe. A typical
calorimater of Fe may be 2 m deep and 1/2 m in a transverse direction. For 95%
containment of the particle in the calorimeter, its length L ~ (9.41n F(GeV) + 39)
cm.

The shower development for electrons and for hadrons is a statistical process.
Thus, the relative accuracy increases with energy, the error being proportional to
1/V/Ey, where Ej is the incident energy.

Muons, tauons, and neutrinos do not produce showers. Muons leave an ion-
ization trail which can be identified and then detected in a muon chamber (like a
calorimeter, but the muons have a high probability of not being absorbed and reach-
ing the layers of the chamber). In Fig. 4.19 we show examples of expected tracks
of particles through a detector planned for the LHC showing the calorimeters. The
size of the detector can be gauged by the scale on top.

4.11 Counter Electronics

The original scintillation counter, and even the original coincidence arrangement
(Fig. 4.1), needed no electronics; the human eye and the human brain provided the
necessary elements, and recording was achieved with paper and pen. Nearly all
modern detectors, however, contain electronic components as integral elements. A
typical example is the circuitry associated with the scintillation counter (Fig. 4.22).
A well-regulated power supply provides the voltage for the photomultiplier. The
output pulse of the multiplier is shaped and amplified in the analog part. The
height V' of the final pulse is proportional to the height of the original pulse. In the
ADC, the analog-to-digital converter, the information is transformed into digital
form. The output is an integer number (usually expressed in binary units) that is
proportional to the pulse height (or area) and can be recorded by a computer.
The example here is a simple one in which only one parameter, the height of
the pulse, is digitized and stored. In most experiments, for every event, many
parameters are recorded. In modern experiments events rates can be too large
for all of them to be recorded, so an electronic system to decide which events are
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Figure 4.19: Tracks of particles through the CMS detector being constructed for the Large Hadron
Collider. The longest (central) track corresponds to a muon, the shortest track that stops in the
electromagnetic calorimeter is an electron, and hadrons stop in the hadron calorimeter. [Courtesy
CMS collaboration.]
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Figure 4.20: Logic elements in a count- Figure 4.21: Logic element.
ing system.

interesting enough to be recorded is used. This electronic trigger needs to be very
fast and can be a very sophisticated electronic system.

Decades ago, nuclear and particle physicists assembled their electronics from
components, resistors, capacitors, and vacuum tubes (yes). Later, transistors made
the electronics smaller, faster, and more reliable. Now integrated circuits of contin-
uously increasing complexity have become the building blocks. Moreover, much of
the instrumentation has been standardized and can be bought; several international
standard for modular instrumentation (CAMAC, VME) exist. Setting up a detector
electronics system is usually straightforward because many standardized building
blocks can be bought; the physicist selects and matches the proper components.
We shall not discuss the building blocks here in detail.

4.12 Electronics: Logic

As mentioned before electronic units do considerably more than just process the
data from one counter. A simple example, shown in Fig. 4.20, is the stopping
of muons in matter. Muons from an accelerator pass through two counters and

High
voltage

Output
Counter Analog ADC Digital

L =
"o _ﬂ_ Standard pulse
Ly or

Shaped and
amplified
pulse

IV

Scintillator
pulse

no pulse

Figure 4.22: Schematic representation of the main components of counter electronics.
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Table 4.1: FUNCTION OF THE FOUR LocGic ELEMENTS AND,
OR, NAND, AND NOR. 1 denotes a standard pulse, 0 no
pulse. The elements are symmetric in A, B, and C. Only
typical cases are shown.

Input Output
A B C AND NAND OR NOR
1 1 1 1 0 1 0
1 1 0 0 1 1 0
1 0 0 0 1 1 0
0 0 0 0 1 0 1

enter an absorber where they slow down and finally decay into an electron and two
neutrinos:

n— evv.

We have already mentioned in Sectionl.3 that the mean life for the decay of a
muon at rest is 2.2us. The procedure in the experiment sketched in Fig. 4.20 is
now as follows: the muon should pass through counters A and B but should stop
in the absorber and therefore not traverse counter C. After a delay of about 1us,
an electron should be observed in counter D. The logic must record a muon only
if these events happen as described. In shorthand, the requirement can be written
as ABCD(delayed), where the ABCD means a coincidence between ABD and an
anticoincidence of this threefold coincidence with C. Furthermore, D must respond
at least 1us later than A and B. Such problems can be solved in a straightforward
way with logic circuits.

Four logic elements are particularly important and useful: AND, OR, NAND,
and NOR. The function of these four types can be explained with the aid of Fig. 4.21.
The general logic element shown has three inputs and one output. Input and out-
put pulses are of standard size (called 1); 0 denotes no pulse. An AND element
produces no output (0) if only one or two pulses arrive. If, however, three pulses
arrive within the resolving time (a few ns), a standard output pulse (1) results. OR
produces an output pulse if one or more input pulses arrive. NAND (NOT AND)
and NOR, (NOT OR) are the logical complements; they produce pulses whenever
AND, respectively OR, would not produce a pulse. The functions of the four ele-
ments are summarized in Table 4.1. The element NOR requires one remark. It puts
out a steady signal as long as there is no input pulse present; the signal disappears
if at least one pulse arrives.

4.13 References

Particle detectors are reviewed by PDG.
Some references appear throughout the chapter. Additional references are:
W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd edition,
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Springer, New York, NY, 1994; C. Leroy P.-G. Rancoita Principles of Radiation In-
teraction in Matter and Detection, World Sci., Singapore, 2004; A.C. Melissinos, J.
Napolitano, Experiments in Modern Physics, 2nd edition, Academic Press, Elsevier,
(2003); Ezperimental Techniques in High Energy Physics, (T. Ferbel, ed.), Addison-
Wesley, Menlo Park, CA, 1987; C. Grupen, Particle Detectors, Cambridge Univ.
Press, Cambridge 1996; D. Green, The Physics of Particle Detectors, Cambridge
Univ.Press, Cambridge, 2000.

There exist many good books on the application of statistics to experiments:
P. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Phys-
ical Sciences, McGraw-Hill, 2003; B.P. Roe, Probability and Statistics in FExperi-
mental Physics, Springer-Verlag, NY, 2001; J.R. Taylor, An Introduction to Error
Analysis: The Study of Uncertainties in Physical Measurements, University Science
Books, 1997. Detailed treatments of statistical methods are given in D. Drijard,
W.T. Eadie, F.E. James, M.G.W. Roos, and B. Sadoulet, Statistical Methods in
Ezxperimental Physics, North-Holland, Amsterdam, 1971; T. Tanaka, Methods of
Statistical Physics, Cambridge University Press, New York, 2002.

Various aspects of data gathering and evaluation are surveyed in Data Acquisi-
tion in High-Energy Physics. (G. Gologna and M. Vincelli, eds.), North-Holland,
Amsterdam, 1982.

Electronics is treated in a number of texts, for instance: P. Horowitz, W. Hill,
The Art of Electronics, Cambridge University Press, 1989; J.J. Brophy, Basic elec-
tronics for scientists, McGraw-Hill, 1983.

A recent review on all components of detectors for the LHC can be found in D.
Froidevaux, P. Sphicas, Annu. Rev. Nuc. Part. Sci. 56, 375 (2006).

Problems

4.1. * Find the circuit diagram for a photomultiplier. Discuss the importance and
the choice of the components.

4.2. A proton with kinetic energy Fj impinges on a 5 cm thick plastic scintillator.
Sketch the light output as a function of Ej.

4.3. Three-MeV photons are counted by a 7 x 7em? Nal(Tl) counter.

(a) Sketch the spectrum.

(b) Find the probability of observing the photon in the full-energy peak.

4.4. The 14 keV gamma rays from " Fe must be counted with a NaI(Tl) counter.
Higher-energy gamma rays are a nuisance. Find the optimum thickness of the
Nal(T1) crystal.

4.5. Compute and draw the Poisson distribution for m = 1 and 7 = 100.



4.18.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.
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Sketch the derivation of Eq. (4.3). Verify Eq. (4.5).

Compute the variance of P(n) in Eq. (4.7).

Verify that Eq. (4.7) is the limiting case of a Poisson distribution.
For the Poisson distribution, compare

P(2n)
Pm)

for @ = 1,3, 10, 100.

A scintillation counter used underground counts, on the average, eight
muons/hr. An experiment is run for 103hr, and counts are recorded every
hr. How often do you expect to find n =2, 4, 7, 8, 16 counts in the records?

Consider a germanium counter. Discuss the processes in more detail than in
the text. In particular, answer the questions

(a) Why does the major part of the counter have to be depleted?

(b) Why is it not possible to simply use metal foils on both sides to collect
the charge?

(¢) How big a current pulse can be expected for a 100 keV photon?

(d) What limits the low-energy range of such a counter?
Compute the efficiency of a 1 cm thick germanium counter for photons of

(a) 100 keV.

(b) 1.3 MeV.

Sketch the construction of a large bubble chamber.

Consider the 12 ft. Argonne bubble chamber. What is the highest-energy
proton that will stop in the chamber? Assume that the same chamber is
filled with propane. Compute the range of the proton in this chamber. What
energy proton can now be stopped?

Estimate the magnetic energy stored in the Argonne 12 ft bubble chamber.
From what height (in m) would an average car have to be dropped to equal
this energy?

* Discuss the principle of a streamer chamber. How is the voltage produced
that is necessary to cause streamers?
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4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

Detectors

* What limits the speed with which a spark chamber can be triggered? Find
typical delay times in the various components of the logical chain.

Use the elements listed in Table 4.1 to sketch the logic for the experiment of
Fig. 4.20.

Sketch electronic circuits with which the four logic elements AND, OR,
NAND, and NOR can be realized.

If the time resolution of a drift chamber is 1 ns and the drift speed is 5 cm/ s,
what spatial resolution can be achieved?

If the index of refraction of a material is independent on frequency, what
energy is lost in Cerenkov radiation between frequency f; and fo 7

A muon is created in the ocean by an upward going neutrino and continues
to move vertically upwards

(a) What is the minimum energy of the muon to emit Cerenkov radiation?
Take nyater = 1.33.

(b) If the muon has an energy of 200 GeV, will the Cerenkov light be totally
(internally) reflected at the surface of the ocean? If not, what will be
the angle of emission (refraction) of the light coming out of the ocean?

What is the number of generations that develop in a shower after n radiation
lengths?



Part 11

Particles and Nuclei

The situation is familiar. At a meeting we are introduced to some stranger. A
few minutes later we realize with embarrassment that we have already forgotten his
name. Only after being reintroduced a few times do we begin to fit the stranger into
our catalog of people. The same phenomenon takes place when we encounter new
concepts and new facts. At first they slip away rapidly, and only after grappling
with them a number of times do we become familiar with them. The situation is
particularly true with particles and nuclei. There are so many that at first they
seem not to have sharp identities. So what is the difference between a muon and a
pion?

In Part II we shall introduce many subatomic particles and describe some of
their properties. Such a first introduction is not sufficient to give a clear picture,
and we shall therefore return again to particle and nuclear characteristics in later
chapters. They will lose their “look-alike” status, and it will become clear, for in-
stance, that muons and pions have less in common than man and microbe. The first
and most obvious questions are: What are particles? Can composite and elemen-
tary particles be distinguished? We shall try to explain why it is difficult to respond
unambiguously to the apparently simple questions. Consider first the Franck—Hertz
experiment(!) in which a gas, for instance helium or mercury, is studied by the pas-
sage of electrons through it. Below an energy of 4.9 eV in mercury vapor, the Hg
atom behaves like an elementary particle. At an electron energy of 4.9 eV the first
excited state of Hg is reached, and the mercury atom begins to reveal its structure.
At 10.4 eV, an electron is knocked out; at 18.7 eV, a second electron is removed
and it is apparent that electrons are atomic constitutents. A similar situation exists
with nuclei. At low electron energies, the electron cannot excite the nuclear levels,
and the nucleus appears as an elementary particle. At higher electron energies, the
nuclear levels become apparent, and it is possible to knock out nuclear constituents,
protons and neutrons. The question is now shifted to the new actors, proton and
neutron. Are they elementary? Protons and neutrons can also be probed with elec-
trons. At energies of a few hundred MeV it becomes apparent that the nucleons,

IR. Eisberg, Section 5.5; W. Kendall and W.K.H. Panofsky, Sci. Amer. 224, 60 (June 1971).
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neutron and proton, are not point particles but have a “size” of the order of 1 fm.
It also turns out that the nucleons have excited states, just as atoms and nuclei do.
These excited states decay very rapidly, usually with the emission of a particle, the
pion. At still higher energies, more particles are created; finally, above 10 GeV, it
becomes clear that proton, neutron, and all the created particles are not elementary,
but are composed of quarks.(?) At present we believe that quarks, like electrons,
are point particles; electron scattering reveals no structure at the level of 1078 m
Thus, the conceptually simple experiment of hitting a target with electrons of ever
increasing energy reveals that the notion of “elementary particle” has no simple
meaning and depends on the energy and means of observation. It also shows,
however, that the very large number of observed particles can be explained in terms
of a relatively small number of “elementary constituents”, the quarks. Thus leptons
and quarks are the building blocks of the present particle zoo. It is not known if
these building blocks are, in turn, composed of even more fundamental entities,®)
possibly “superstrings”.(*) A second set of particles, called gauge bosons, appear
when we consider the forces between leptons and/or quarks. It is now accepted that
the forces between particles are carried by fields and their quanta.(®) In subatomic
physics, these quanta, the gauge bosons, all have spin = 1h; the best known one is
the photon which transmits the electro-magnetic force between charged particles.
The hadronic force is mediated by gluons and the weak force by the exchange of
“intermediate bosons”, of which there are three.(®) In the next two chapters we
describe some of the salient experimental facts concerning subatomic particles.

2H. Fritzsch, Quarks, Basic Books, New York, 1983.

3H. Harari, Sci. Amer. 248, 56 (April 1983).

4M.B. Green, Sci. Amer. 255, 48 (September 1986), B. Greene, The Elegant Universe: Super-
strings, Hidden Dimensions, and the Quest for the Ultimate Theory, W.W. Norton, New York,
1999.

5C. Quigg, Sci. Amer. 252, 84 (April 1985).

6C. Rubbia, Rev. Mod. Phys. 57, 699 (1985), P. Watkins, Story of the W and Z, Cambridge
Univ. Press, Cambridge, 1986.



Chapter 5

The Subatomic Zoo

A conventional zoo is a collection of various animals, some familiar and some
strange. The subatomic zoo also contains a great variety of inhabitants, and a
number of questions concerning the catching, care, and feeding of these come to
mind: (1) How can the particles be produced? (2) How can they be characterized
and identified? (3) Can they be grouped in families? In the present chapter, we
concentrate on the second question. In the first two sections, the properties that are
essential for the characterization of the particles are introduced. Some members of
the zoo already appear in these two sections as examples. In the later sections, the
various families are described in more detail. Since there are so many animals in
the subatomic zoo, some initial confusion in the mind of the reader is unavoidable.
We hope, however, that the confusion will give way to order as the same particles
appear again and again.

5.1 Mass and Spin. Fermions and Bosons

A first identification of a particle is usually made by measuring its mass, m. In
principle, the mass can be found from Newton’s law by observing the acceleration,
a, in a force field, F"

F|

al’ (5.1)
Equation (5.1) is not valid relativistically, but the correct generalization poses no
problems. We only note that with mass we always mean rest mass. The actual de-
termination of masses will be discussed in Section 5.3. The rest masses of subatomic
particles vary over a wide range. The photon has zero rest mass. The lightest mas-
sive particles are the neutrinos with rest masses less than 1eV//c?; the electron is the
next lightest particle with a mass, m., of about 10~27g ~ 0.51MeV/c?. Then comes
the muon with a mass of about 200m,. From there on, the situation gets more com-
plex, and many particles with strange and wonderful properties have masses that lie
between about 270 times the electron mass to several orders of magnitude higher.
Nuclei, which of course are also subatomic particles, start with the proton, the nu-
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cleus of the hydrogen atom, with a mass of about 2000m,.. The heaviest known
nucleus is about 260 times more massive than the proton. The masses (not count-
ing zero) consequently vary by a factor of over a billion. We shall return to the
masses a few more times, and details will become clearer as more specific exam-
ples appear. However, just as it is impossible to understand chemistry without a
thorough knowledge of the periodic table, it is difficult to obtain a clear picture
of the subatomic world without an acquaintance with the main occupants of the
subatomic zoo.

A second property that is essential in classifying particles is the spin or intrin-
sic angular momentum. Spin is a purely quantum mechanical property, and it is
not easy to grasp this concept at first. As an introduction we therefore begin to
discuss the orbital angular momentum which has a classical meaning. Classically,
the orbital angular momentum of a particle with momentum p is defined by

L=rxp, (5.2)

where 7 is the radius vector connecting the center of mass of the particle to the point
to which the angular momentum is referred. Classically, orbital angular momen-
tum can take any value. Quantum mechanically, the magnitude of L is restricted
to certain values. Moreover, the angular momentum vector can assume only cer-
tain orientations with respect to a given direction. The fact that such a spatial
quantization exists appears to violate intuition. However, the existence of spatial
quantization is beautifully demonstrated in the Stern-Gerlach experiment,(!) and
it follows logically from the postulates of quantum mechanics. In quantum mechan-
ics, p is replaced by the operator —ifi(0/0z,0/0y,0/0z) = —ihV and the orbital
angular momentum consequently also becomes an operator(?) whose z component,
for instance, is given by

‘ 0 0 .0
L,=—ih <x8—y - y%> = —zh%, (5.3)

where ¢ is the azimuthal angle in polar coordinates. The wave function of a particle

with definite angular momentum can then be chosen to be an eigenfunction of L?
and L,:(®

L2¢lm = l(l + 1)h2¢lm
Lz¢lm - mhwlm

ITipler and Llewellyn, Chapter 7; Feynman Lectures, 11-35-3.

2Tipler and Llewellyn, Chapter 7; Merzbacher, Chapter 9.

3Some confusion can arise from the usual convention that classical quantities (e.g., L) and the
corresponding quantum mechanical operators (e.g., L) are denoted by the same symbol. More-
over, the quantum numbers are often also denoted by similar symbols (I or L). We follow this
convention because most books and papers use it. After some initial bewilderment, the meaning
of all symbols should become clear from the context. Occasionally we use the subscript op for
quantum mechanical operators.

(5.4)
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Figure 5.1: Vector diagram for an angular momentum with quantum number ! = 2, m = 1. The
other possible orientations are indicated by dashed lines.

The first equation states that the magnitude of the angular momentum is quantized
and restricted to values [I(I4-1)]'/2%. The second equation states that the component
of the angular momentum in a given direction, called z by general agreement, can
assume only values mh. The quantum numbers [ and m must be integers, and for
a given value of [, m can assume the 2] 4+ 1 values from —[ to +I. The spatial
quantization is expressed in a wvector diagram, shown in Fig. 5.1 for [ = 2. The
component along the arbitrarily chosen z direction can assume only the values
shown.

We repeat again that the quantization of the orbital angular momentum Eq. (5.2)
leads to integral values of | and hence to odd values of 2] 4+ 1, the number of
possible orientations. It was therefore a surprise when the alkali spectra showed
unmistakable doublets. Two orientations demand 2/ +1 = 2 or [ = % Many
attempts were made before 1924 to explain this half-integer number. The first half
of the correct solution was found by Pauli in 1924; he suggested that the electron
possesses a classically nondescribable two-valuedness, but he did not associate a
physical picture with this property. The second half of the solution was provided by
Uhlenbeck and Goudsmit, who postulated a spinning electron. The two-valuedness
then arises from the two different directions of rotation.

Of course, a way has to be found to incorporate the value % into quantum
mechanics. It is easy to see that the quantum mechanical operators that correspond
to L, Eq. (5.2), satisfy the commutation relations

LoLy — LyL, = ihL,
LyL.— L.L, = ihL, (5.5)
L.L, — LyL. = ihL,.

It is postulated that the commutation relations, Eq. (5.5), are more fundamental
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than the classical definition, Eq. (5.2). To express this fact, the symbol L is reserved
for the orbital angular momentum, and a symbol J is introduced that stands for
any angular momentum. J is assumed to satisfy the commutation relations

Judy = JyJs = ih.
Jyde — J.Jy = ihJ, (5.6)
Jody = Jud. = ihJ,.

The consequences of Eq. (5.6) can be explored by using algebraic techniques.®
The result is a vindication of Pauli’s and of Goudsmit and Uhlenbeck’s proposals.
The operator J satisfies eigenvalue equations analogous to the ones for the orbital
operator, Eq. (5.4):

T2y = J(J + D)E% (5.7)
JZ¢JM = Mh'@[)JM

However, the allowed values of J are not only integers but also half-integers:
J=0,41,32.... (5.9)
For each value of J, M can assume the 2J + 1 values from —.J to +.J.

Equations (5.7)-(5.9) are valid for any quantum mechanical system. As for
any angular momentum, the particular value of J depends not only on the system
but also on the reference point to which the angular momentum is referred. Now
we return to particles. It turns out that each particle has an intrinsic angular
momentum, usually called spin. Spin cannot be expressed in terms of the classical
position and momentum coordinates, as in Eq. (5.2), and it has no analog in classical
mechanics. Spin is often pictured by assuming the particle to be a small fast-
spinning top (see Fig. 5.2.) However, for any acceptable radius of the particle
the velocity at the surface of the particle then exceeds the velocity of light, and
the picture therefore is not really tenable. In addition, even particles with zero rest
mass, such as the photon and the neutrino, possess a spin. The existence of spin has
to be accepted as a fact. In the rest frame of the particle, any orbital contribution
to the total angular momentum disappears, and the spin is the angular momentum
in the rest frame. It is an immutable characteristic of a particle. The spin operator
is denoted by J or by 8;(%) it satisfies the eigenvalue equations (5.7) and (5.8). The
quantum number J is a constant and characterizes the particle, while the quantum
number M describes the orientation of the particle in space and depends on the
choice of the reference axis.

4A clear and concise derivation is given in Messiah, Chapter XIII.
58 will later also be used for strangeness, and therefore S does not always denote the spin
quantum number.
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How can J be determined experimentally? For a macroscopic system, the classi-
cal angular momentum can be measured. For a particle such a measurement is not
feasible. However, if we succeed in determining the number of possible orientations
in space, the spin quantum number J, usually just called the spin, follows because
there are 2.J + 1 possible orientations.

We have noted above that integer J values occur in connection with orbital
angular momentum, which has a classical limit, but that half-integral values have
no classical counterpart. As we shall see soon, particles with integer and half-integer
spins exist. Examples for the integer class are the photon and the pion, whereas
electrons, neutrinos, muons, and nucleons have spin % Does the difference between
integer and half-integer values express itself in some profound way? It indeed does,
and the two classes of particles behave very differently. The difference becomes
apparent when the properties of wave functions are studied. Consider a system of
two identical particles, denoted by 1 and 2. The particles have the same spin J, but
their orientation, given by Jy), can be different. The wave function of the system
is written as

P, I 2, T2 = (1, 2).

If the two particles are interchanged, the wave function becomes (2,1). It is a
remarkable fact of nature that all wave functions for identical particles are either
symmetric or antisymmetric under the interchange 1 = 2:

¥(1,2) = 4+¢(2,1), symmetric

5.10
¥(1,2) = —¢(2,1), antisymmetric. (5.10)

Complete symmetry or antisymmetry under interchange of any two particles is easily
extended to n identical particles.(®)

There exists a profound connection between spin and symmetry that was first
noted by Pauli and that was proved by him using relativistic quantum field theory:
The wave function of a system of n identical particles with half-integer spin, called
fermions, changes sign if any two particles are interchanged. The wave function
of a system of n identical particles with integer spin, called bosons, remains un-
changed under the interchange of any two particles. The spin-symmetry relation is
summarized in Table 5.1.

The connection between spin and symmetry leads to the Pauli exclusion princi-
ple. Assume that two particles have exactly the same quantum numbers. The two
particles are then said to be in the same state. An interchange 1 = 2 will leave the
wave function unchanged. However, if the two particles are fermions, the wave func-
tion changes sign, and it consequently must vanish. The exclusion principle hence
states that one quantum mechanical state can be occupied by only one fermion.(”)
The principle is extremely important in all of subatomic physics.

6Park, Chapter 11.
7Pauli describes the situation in the following words:
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Table 5.1: BOSONS AND FERMIONS.

Behavior of Wave Function Under Interchange
Spin J Particles  of Any Two Identical Particles

Integer Bosons Symmetric

Half-integer ~ Fermions  Antisymmetric

5.2 Electric Charge and Magnetic Dipole Moment

Many particles possess electric charges. In an external electromagnetic field, the
force on a particle of charge ¢ will be given by Eq. (2.21),

F:q<E+lva>. (5.11)
C

The deflection of the particle in a purely electric field E determines ¢/m. If m
is known, ¢ can be determined. Historically, progress went the inverse way: The
electron charge was determined by Millikan in his oil drop experiment. With ¢ and
g/m known, the electron mass was found.

The total charge of a subatomic particle determines its interaction with F and B,
as expressed by the Lorentz equation (5.11). It is a remarkable and not understood
observation that, for all observed particles, the charge always appears in integer
multiples of the elementary quantum e. Because of this fact, the total charge gives
little information about the structure of a subatomic system. Other electromagnetic
properties, however, do so, and the most prominent is the magnetic dipole moment.
A classical particle with charge and spin contains currents and consequently presents
a magnetic dipole moment (Fig. 5.2).

If electric charges are distributed throughout the particle, they will spin also and
give rise to current loops, which produce a magnetic dipole moment, u. How does
such a current distribution interact with an external magnetic field B? Classical
electrodynamics shows that a current loop as in Fig. 5.3. leads to an energy

Emag = —p- B, (5.12)

“If one pictures by boxes the nondegenerate states of an electron in an atom, the exclusion
principle maintains that a box can contain no more than one electron. This, for example, makes
the atoms much larger than if many electrons could be contained in the innermost shell. Quantum
theory maintains that other particles such as photons or light particles show opposite behavior;
that is, as many as possible fill the same box. One can call particles obeying the exclusion principle
the ‘antisocial’ particles, while photons are ‘social.” However, in both cases sociologists will envy
the physicists on account of the simplifying assumption that all particles of the same type are
exactly alike.”

From W. Pauli, Science 103, 213 (1946). Reprinted in Collected Scientific Papers by Wolfgang
Pauli (R. Kronig and V. F. Weisskopf, eds), Wiley-Interscience, New York, 1964.
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Positive

electric

current
Figure 5.2: Magnetic dipole moment. In a Figure 5.3: A current loop gives rise to a mag-
classical picture the spinning particle gives netic moment . The direction of the mag-
rise to electric current loops, which, in turn, netic moment is perpendicular to the plane
produce a magnetic dipole moment. bounded by the current.

where the magnitude of the magnetic dipole moment g is, in Gaussian units,
given by

| = —current X area. (5.13)
c

The direction of w is perpendicular to the plane of the current loop; positive current
and p form a right-handed screw.(®) A connection between magnetic moment and
angular momentum is established by considering a particle of charge ¢ moving with
velocity v in a circular orbit of radius r (Fig. 5.4).

The particle revolves v/(27r) times/sec L
and hence produces a current gv/27r. With
Egs. (5.2) and (5.13), p and L are related by

q
= —L. 5.14
K 2me ( )

This result suffers from two defects. It has
been derived by using classical physics, while
the subatomic particles we are interested in Figure 5.4: A particle of mass m and

charge ¢ on a circular orbit produces

. K . . R a magnetic moment @ and an orbital
particle moving in a circular orbit. angular moment L.

here are not classical, and it applies to a point

Nevertheless, Eq. (5.14) exhibits two significant facts: p points in the direction
of L, and the ratio /L is given by g/2mec. These two facts indicate a way to define
a quantum mechanical operator p for a particle with mass m and spin J. Even in

8 Jackson, Egs. (5.57) and (5.59).
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this case, p should be parallel to J because there is no other preferred direction;
the operators pu and J are consequently related by

p = const.J.

According to Eq. (5.14), the constant has the dimension e/mec, and it is convenient
to write const. = g(e/2mc). The new constant ¢ is then dimensionless, and the
relation between g and J becomes

e
=g—1»J. 5.15
n=g95— (5.15)

The constant g measures the deviation of the actual magnetic moment from the
simple value e/2mc. Note that e and not ¢ is used in Eq. (5.15). While ¢ can
be positive or negative, e is defined to be positive, and the sign of p is given by
the sign of the g factor. J has the same units as h so that J/h is dimensionless.
Equation (5.15) is therefore rewritten as

J

= gpor (5.16)
eh
Ho Ime (5.17)

The constant p is called a magneton, and it is the unit in which magnetic moments
are measured. Its value depends on the mass that is used. In atomic physics and in
all problems involving electrons, m in Eq. (5.17) is taken to be the electron mass,
and the unit is called the Bohr magneton (up):

eh

mecC

UB = = 5.7884 x 107'° MeV/G. (5.18)

In subatomic physics, magnetic moments are expressed in terms of nuclear magne-
tons, obtained from Eq. (5.17) with m = m,:

eh

mpC

N = = 3.1525 x 107 '® MeV/G. (5.19)

The nuclear magneton is about 2000 times smaller than the Bohr magneton.
Information about the structure of a particle is contained in the g factor. For a

large number of nuclear states and for a small number of particles, the g factor has

been measured. It is the problem of theory to account for the observed values.
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The energy levels of a particle with mag-
netic moment p in a magnetic field B are

M
l obtained from the Schrédinger equation,
—r -3/2 Hy = EY,

guy B where the Hamiltonian H is assumed to

/_*_ Y have the form
Eo—x 2uB H:H0+Hmag:H0_H'Bv

1/2
or, with Eq. (5.16),
» H=Hy— 9—2‘0 J-B. (5.20)
B=0 B+#0 The spin-independent Hamiltonian Hy
gives rise to an energy FEy : Hoy = Ep.
Figure 5.5: Zeeman splitting of the en- To find the energy values corresponding
ergy levels of a subatomic particle with to the complete Hamiltonian, the 2z axis

spin J and g factor g in an external . iently ch ] th .
magnetic field B. B is along the z axis, 1s conveniently chosen along the magnetic

g > 0. field so that J - B = J,B, = J,B.
With Eq. (5.8), the eigenvalues E of the Hamiltonian H are
E = Ey — guoMB. (5.21)

where M assumes the 2J + 1 values from —J to +J. The corresponding Zeeman
splitting is shown in Fig. 5.5 for a spin J = %

Experimentally the splitting AE = guoB between two Zeeman levels is deter-
mined. If B is known, g follows. Nevertheless the value quoted in the literature is
usually not g but a quantity u, defined by

U= glod, (5.22)

where J is the quantum number defined in Eq. (5.7). As can be seen from Fig. 5.5,
2uB is the total splitting of the Zeeman levels. (Quantum mechanically, p is the
expectation value of the operator Eq. (5.16) in the state M = J). To determine
u, g and J have to be known. J can in principle be found from the Zeeman effect
because the total number of levels is equal to 2.J + 1.

5.3 Mass Measurements

The mass is the home address of a particle or nucleus, and it is therefore no surprise
that there exist many methods for its measurement. We shall discuss only three
here, and we have selected three that are different in character and apply to very
different situations.
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Subatomic particles are quantum systems, and

E nearly all of the ones that are not elementary par-

"""" ticles possess excited states. Schematically the
E, level diagrams appear as shown in Fig. 5.6. Even

E though the basic aspects are similar for nuclei and

E=0m particles, units and notation differ. In the case

of nuclei, the mass of the ground state is quoted

NUCLEUS not for the nucleus alone but for the neutral atom,

including all electrons. The international unit for

the atomic mass is one twelfth of the atomic mass

of 12C. This unit is called the atomic mass unit

and is abbreviated u. In terms of grams and MeV,
----- it is

(mc?), 1 u~1.66054 x 10724 g (mass)
~ 931.494 MeV/c?. (5.23)

The masses of nuclear ground states are given in u.

The excited nuclear states are not characterized by

their masses but by their excitation energies (MeV

(mc?), above ground state). In the case of particles, rest
energies are given, and they are quoted in MeV or

PARTICLE GeV. This procedure is arbitrary but makes sense
because in the nuclear case excitation energies are

Figure 5.6: Level diagrams small compared to the rest energy of the ground
of nuclei and particles. The
notation is explained in the

text. gies and ground-state energies are comparable.

state, whereas in the particle case excitation ener-

After these preliminary remarks we turn to mass spectroscopy, the determination
of nuclear masses. The first mass spectrometer was built in 1910 by J. J. Thomson,
advanced by F. W. Aston. The components of Aston’s mass spectrometer are
shown in Fig. 5.7. Atoms are ionized in an ion source. The ions are accelerated
by a voltage of 20-50 kV. The beam is collimated by slits and passes through an
electric and a magnetic field. These fields are so chosen that ions of different velocity
but with the same charge-to-mass ratio are focused on the photographic plate. The
positions of the various ions on the photographic plate permit a determination
of the relative masses with accuracy. However, the most accurate determination of
nuclear masses have been performed with ion traps (see Section 6.5 for a description
of Penning traps) where instead of measuring the deflection of charged particles in a
field one determines the frequency of oscillations in a field. In recent years there has
been great progress in using these techniques to accurately determine the masses of
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(points into paper)
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Figure 5.7: Aston’s mass spectrometer.

short-lived isotopes,® an issue of great importance to understand the production
of elements in stars (see Chapter 19.)

Mass spectroscopy works well for nuclei, but it is difficult (or impossible) to
apply to most particles. In the mass spectrometer, all ions start with a very small
(thermal) velocity and are accelerated in the same field. Their relative masses
can therefore be determined very accurately. However, particles are produced in
reactions, and their initial velocities are not accurately known. Moreover, some of
the particles are neutral and cannot be deflected. Different approaches are necessary,
and they are based on Egs. (1.2) and (1.7):

E? = p*c?+mict (1.2)

p = myv (1.7)
1

NP — (1.6)

(1= (v/e))t/2

These relations show that the mass of a particle can be computed if momentum
and energy or momentum and velocity are known. Many techniques are based on
this fact, and the arrangement shown in Fig. 5.8 provides an example. A magnet
selects particles with momentum p. Two scintillation counters, S; and Ss, record
the passage of a particle. The time delay between pulses S2 and S; can be measured
and, with the distance between S; and S5 known, the velocity can be computed.
Together, momentum and velocity give the mass.

The method just discussed fails if the particle is neutral or if its life-time is so

9These techniques have been brought to a fine point by H.-J. Kluge and collaborators, see K.
Blaum, Phys. Rep. 425, 1 (2006).
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Figure 5.8: Determination of the mass of a particle by selecting its momentum p and measuring

its velocity v.

short that neither momentum nor velocity can be measured. As an example of
how it is even then possible to obtain a mass, we discuss the invariant mass plot.

Consider the reaction
prT — nmw

taking place in a hydrogen bubble chamber.

The reaction can proceed in two different
ways, shown in Fig. 5.9. If it proceeds as
in Fig. 5.9(a), the three particles in the final
state will be created incoherently. It is, how-
ever, also possible that a neutron and a new
particle, called a meutral rho, will be pro-
duced (Fig. 5.9(b)). The neutral rho then
decays into two pions. Is it possible to dis-
tinguish between the two cases? Yes, as we
see now. If the rho lives for a sufficiently
long time, there will be a gap between the
proton and the pion tracks. We shall see
in Section 5.7 that the lifetime of the p° is
about 6 x 10724sec. Even if the p° moves
with the velocity of light, it will travel only
about 1.5 fm during one mean life, about a
factor 10 less than needed for observation.
How can the p° be detected and its mass be
determined? To see how the trick is done,
consider the energies and momenta involved
(Fig. 5.10).

T, (5.24)
Tt
n I
(a) G
14 T
P
n m
///’po
(b) D
p m

Figure 5.9: The reaction pr~ —
nnt7n~ can proceed in two different
ways: (a) The three particles in the
final state can all be produced in one
step, or (b) in the first step, two par-
ticles, n and p°, are created. p° then
decays into two pions.
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Earlier, in Eq. (2.29), we defined the total or invariant mass of a system of
particles. Applying this definition to the two pions and using the notation defined
in Fig. 5.10, the invariant mass mq2 of the two pions is

1
mig = 0—2[(E1 + E2)* — (py +p2)202]1/2- (5.25)

If a magnetic field is applied to the bubble
chamber, the momenta of the two charged
pions can be determined. The energy can
be found from their range (Fig. 3.6) or
their ionization. For every observed pion
pair, the invariant mass mj2 can then
be computed from Eq. (5.25). If the re-
action proceeds according to Fig. 5.9(a),
with no correlation between the two pi-
ons and the neutron, they will share en-
ergy and momentum statistically. The
number of pion pairs with a certain in-
variant mass, N(m12), can be calculated

in a straightforward way, and the result
is called a phase-space spectrum. (Phase
space will be discussed in Section 10.2.) Figure 5.10: Energies and momenta in-
It is sketched in Fig. 5.11. volved in the decay of the p°.

If, on the other hand, the reaction proceeds via the production of a p, energy
and momentum conservation demand

Ep:E1+E2) pp:p1+p2' (526)

2) as

The mass of the rho is given by Eq. (1.
e st

or, with Eqgs. (5.25) and (5.26), as
m, = M. (5.27)

If the pions result from the decay of a particle, their invariant mass will be a
constant and will be equal to the mass of the decaying particle. Figure 5.12 shows
an early result, the invariant mass spectrum of pion pairs produced in the reaction
Eq. (5.24) with pions of momentum 1.89 GeV/c. A broad peak at an invariant mass
of 765 MeV/c? is unmistakable. The particle giving rise to this peak is called the
rho. Even though it lives only about 6 x 10724
and its mass known.

sec, its existence is well established
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N(mu)

Decay of
rhos

Phase space
spectrum

Figure 5.11: Invariant mass spectrum if pion pairs are produced independently (phase space) or if
they result from the decay of a rho of small decay width.

The invariant mass spectrum is not restricted to particle physics; it has also
been used in nuclear physics. Consider, for instance, the reaction

3

2
8Be + a. (5.28)

p+11B—>{

Since ®Be lives only for 2 x 10716 sec before decaying into two alpha particles, three
alphas are observed in either case. Nevertheless, the formation of ®Be can be studied
with the invariant mass spectrum.

5.4 A First Glance at the Subatomic Zoo

The techniques discussed so far have led to the discovery of well over 100 particles
and a much larger number of nuclei. How can these be ordered in a meaningful
way? A first separation is achieved by considering the interactions that act on each
particle. Four interactions are known to exist, as pointed out in Section 1.1. In order
of increasing strength they are the gravitational, the weak, the electromagnetic, and
the hadronic interaction.(!?) In principle, then, the four interactions can be used to
classify subatomic particles. However, the gravitational interaction is so weak that
it plays no role in present-day subatomic physics. For this reason we shall restrict

10We shall see later that all but the gravitational interaction are connected within the standard
model.
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Figure 5.12: Invariant mass spectrum of the two pions produced in the reaction pr~ — na 7.
[After A. R. Erwin, R. March, W. D. Walker, and E. West, Phys. Rev. Lett. 6, 628 (1961).]

our attention to the three other interactions. We sall see later that the standard
model connects the weak and electromagnetic interactions into an electroweak one.

How can we discover which interactions govern the behavior of a particular
particle? First consider the electron. It clearly is subject to the electromagnetic
interaction because it carries an electric charge and is deflected in electromagnetic
fields. Does it participate in the weak interaction? The prototype of a weak process
is the neutron decay,

n — pe V.

This decay is very slow; the neutron lives on average for about 15 min before de-
caying into a proton, an electron, and a neutrino. If we call the neutron decay a
weak decay, then the electron participates in it. Does the electron interact hadron-
ically? To find out, nuclei are bombarded with electrons, and the behavior of the
scattered electrons is investigated. It turns out that the scattering can be explained
by invoking the electromagnetic force alone; the electron does not interact hadron-
ically. Decay and collision processes are also used to investigate the interactions of
all other particles. The result is summarized in Table 5.2.

Subatomic particles can be divided into three groups, the gauge bosons, lep-
tons, and hadrons. Among the gauge bosons, the best known is the photon which
takes part in the electromagnetic interaction, despite the fact that it has no electric
charge. This fact follows, for instance, from the emission of photons by acceler-
ated charges [Eq. (2.20)]. The massive gauge bosons, W* and Z° take part in the
weak interaction and the gluon mediates the strong interaction. Neutrinos, elec-
tron, muon, and tau are grouped together under the name leptons. All leptons have
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Table 5.2: INTERACTIONS AND SUBATOMIC PARTICLES. Entries not in
parentheses are for particles that exist free in nature. The particles
in parentheses are permanently confined.

Particle Type Weak  Electromagnetic  Hadronic
Photon Gauge boson No Yes No
w*, 20 Gauge bosons Yes Yes No
(Gluon) Gauge boson No No Yes
Leptons
Neutrino  Fermion Yes No No
Electron Fermion Yes Yes No
Muon Fermion Yes Yes No
Tau Fermion Yes Yes No
Hadrons
Mesons Bosons Yes Yes Yes
Baryons Fermions Yes Yes Yes
(Quarks)  Fermions Yes Yes Yes

a weak interaction. The charged leptons, in addition, are also subject to the elec-
tromagnetic force. All other particles, including nuclei, are hadrons; their behavior
is governed by the strong, the electromagnetic, and the weak interactions. In the
following sections we describe the particles listed in Table 5.2 in more detail. We
include quarks and gluons; they cannot be observed directly but their existence is
based on firm arguments.

5.5 Gauge Bosons

The first group of particles in Table 5.2 lists three types of quanta, called gauge
bosons, the photon, the W+, W~ and Z°, and the gluons. We are all familiar
with the photon, but the other quanta and the name “gauge boson” require some
introductory remarks. These particles are the carriers of forces as will be discussed in
Section 5.8. Three types of forces are important in subatomic physics, the hadronic,
the electromagnetic, and the weak. We therefore expect three types of particles to
be responsible for the three forces between the leptons and quarks. Indeed, the
photon mediates the electromagnetic force, the massive bosons, W* and Z° carry
the weak force, and the gluons are the field quanta of the hadronic force. As we
will show later, the form of the interaction is determined by a symmetry principle
called gauge invariance; hence the name gauge bosons. We begin the discussion of
the gauge bosons with the photon, the quantum of light. The particle properties of
light invariably lead to some confusion. It is not possible to eliminate all confusion
at an elementary level because a satisfactory treatment of photons requires quantum
electrodynamics. However, a few remarks may at least make some of the important
physical properties clearer.
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Figure 5.13: An electromagnetic wave can be said to be composed of photons with energy E and

momentum p.

Consider an electromagnetic wave with circu-
lar frequency w and with a reduced wavelength
X = A\/27 moving in a direction given by the unit
vector k (Fig. 5.13). Instead of giving k and X
separately, a wave vector k = k /X is introduced.
It points in the direction k and has a magni-
tude 1/X. According to Einstein, a monochro-
matic electromagnetic wave is composed of N
monoenergetic photons, each with energy E and
momentum p, where

E=ho, p=hk. (5.29)

The number of photons in the wave is such that
the total energy W = NE = Nhw is equal to the
total energy in the electromagnetic wave. Equa-
tion (5.29) shows that photons are endowed with
energy and momentum. How about angular mo-
mentum? In 1909, Poynting predicted that a
circularly polarized electromagnetic wave carries
angular momentum, and he proposed an experi-
ment to verify this prediction: If a circularly po-
larized wave is absorbed, the angular momentum
contained in the electromagnetic field is trans-
ferred to the absorber, which should then rotate.
The first successful experiment was performed by
Beth in 1935.011)

]

Circular
waveguide
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GlaSS\ n‘/“Bead”
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Figure 5.14: A drop-suspended dipole
exposed to a circularly polarized mi-
crowave rotates because the angular
momentum of the electromagnetic field
exerts a torque. [From P. J. Allen, Am.
J. Phys. 34, 1185 (1964).]
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A modern variant, a microwave motor, is shown in Fig. 5.14. A circularly
polarized microwave impinges on a suspended dipole at the end of a circular wave
guide. Some energy and some angular momentum are absorbed by the dipole and
it begins to rotate. The ratio of absorbed energy to absorbed angular momentum
can easily be calculated, and it is('?)

AE
AJ,

w. (5.30)

This relation shows that the torque experiment is easier with microwaves than with
optical light because the angular momentum transfer for a given energy transfer
increases as 1/w. Equation (5.30) has been computed on the basis of classical
electro-magnetism. It can be translated into quantum mechanics by assuming that
n photons, moving along the z axis with energy AE = nhw and with angular
momentum AJ, = n.J,, are absorbed. Equation (5.30) then yields

J.=h. (5.31)

The angular momentum carried by one photon is 4. This result can be restated by
saying that the photon has spin 1.

Spin 1 for the photon is not surprising. Remember that a spin-1 particle has
three independent orientations. To describe the three orientations, a quantity with
three independent components is needed. A vector fills the bill, since it has three
independent components. The electromagnetic field is a vector field: It is described
by vectors E and B and corresponds to a vector particle—a particle with spin
1.(12,13)

There is, however, a fly in the ointment. It is well known from classical optics
that an electromagnetic wave has only two independent polarization states. Could
it be that the photon has spin %? This possibility can be ruled out quickly. The
connection between spin and symmetry, discussed in Section 5.1, would make a spin-
% photon a fermion, and it would obey the exclusion principle. Not more than one
photon could be in one state; classical electromagnetic waves and television would
be impossible. The solution to the apparent paradox comes not from quantum
theory but from relativity. The photon has zero mass; it is light and moves with
the velocity of light. There is no coordinate system in which the photon is at
rest. The argument leading to Eq. (5.8) and to the 2J + 1 possible orientations
is, however, made in the rest system, and it breaks down for the photon. In fact,
any massless particle can at most have two spin orientations, parallel or antiparallel

1R, A. Beth, Phys. Rev. 50, 115 (1936). Reprinted in Quantum and Statistical Aspects of
Light, American Institute of Physics, New York, 1963.

12Gee, for instance, R. T. Weidner and R. L. Sells, Elementary Classical Physics, Allyn and
Bacon, Boston, 1965, Eq. (47.5).

13The situation is actually somewhat more complicated. The correct description of the electro-
magnetic field is through the potential; the scalar and the vector potential together form a four
vector, (A9, A). It therefore appears at first as if this four vector corresponded to four degrees of
freedom. However, the Lorentz subsidiary condition removes one degree and we are back to three.
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to its momentum, regardless of its spin.(!¥) We can summarize the result of the
previous arguments by saying that the free photon is a spin-1 particle that can
have its spin either parallel or antiparallel to the direction of motion.(*3) The two
states are called right- and left-circularly polarized or states of positive and negative
helicity, respectively.

The carriers of the weak force, the gauge bosons W+ and Z°, were found after a
long search; (1) their masses are 81 GeV/c? for the W and 91 GeV/c? for the Z°.
Their spin is also 1A; since they are massive, the spin can have three orientations.
The evidence for gluons is indirect, because gluons cannot exist freely. They are
“confined” and only occur inside hadrons. They are massless and have spin 14.(17)

5.6 Leptons

Electrons, muons, taus, and neutrinos are all called leptons. Originally the name
indicated that these particles were much lighter than nucleons. With the discovery
of the tau,('®19)  with a mass of 1.78 GeV/c?, the name “lepton” has become a
misnomer, but it has been retained. The properties of the electron and muon are
extremely well measured and the theoretical description of some of their properties,
in particular the g-factor, is incredibly successful. Until recently, however, the “rai-
son d’étre” of the muon was a mystery and it appeared as an unwelcome intruder.
With the discovery of the tau, a reason for the number of leptons has emerged as we
will sketch in Section 5.11. Half of all leptons are listed in Table 5.3. The word half
requires preliminary explanation. One of the best-documented facts of subatomic
physics is that each particle has an antiparticle, with opposite charge, but other-
wise very similar properties. FEach of the leptons in Table 5.3 has an antilepton,
et, pt, and 7 (and 7; for each neutrino.) A more careful explanation of the idea
of antiparticles will follow in Section 5.10.

The manner in which we have introduced the neutrino and the muon here is re-
ally terrible. It can be compared to introducing a master criminal, such as Professor
Moriarty,(??) by listing his weight, height, and hair color rather than by telling of

ME, P. Wigner, Rev. Mod Phys. 29, 255 (1957).

15Two words of warning are in order here. Single photons do not have to be eigenstates of
momentum and angular momentum. It is possible to form linear combinations of eigenstates that
correspond to single photons but do not have well-defined momentum and angular momentum.
The second remark concerns the term polarization vector. In electromagnetism it is conventional
to call the direction of the electric vector the polarization direction. A photon with its spin along
the momentum has its electric vector perpendicular to the momentum.

16C. Rubbia, Rev. Mod. Phys. 57, 699 (1985).

ITPLUTO collaboration, Phys. Lett. 99B, 292 (1981).

I8M.L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975); reprinted in New Particles. Selected
Reprints. (J. L. Rosner, ed.), American Association Physics Teachers, Stony Brook, NY 1981.

9M.L. Perl, Ann. Rev. Nucl. Part. Sci. 30, 299 (1980); B.C. Barish and R. Stroynowski,
Phys. Rep. 157, 1 (1987).

20A. C. Doyle, The Complete Sherlock Holmes, Doubleday, New York, 1953.
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Table 5.3: CHARGED LEPTONS.*

Magnetic Moment

Lepton Spin  (Mass)c? Unit (eh/2mc) Lifetime
e 1/2 0.5109989 MeV  —1.001159652 1859  Stable
nw- 1/2 105.6584 MeV —1.001 165 9208 2.197 14 psec
T 1/2 1777 MeV -1.0 2.91 x 10713 sec

*The neutral leptons are called neutrinos, with mass eigenstates vy, va, v3,
are known to have masses below ~ 2 eV and are stable. Upper limits on
their magnetic moments are given by PDG. The neutrinos are produced by
the weak interaction and appear as linear combinations (called ve, vy, vr)
of the mass eigenstates.

his feats. In reality, the neutrino behaved like a master criminal, and it escaped
suspicion at first and then detection for a long time. The muon arrived disguised
as a hadron and managed to confuse physicists for a considerable period before it
was unmasked as an imposter. The introduction, as we have performed it, can be
excused only by noting that excellent accounts of the histories of the neutrino and
muon exist. (2!

5.7 Decays

Two facts compel us to digress and talk about decays before attacking the hadrons.
The first is the comparison of muon and electron. The electron is stable, whereas the
muon decays with a lifetime of 2.2 usec. Does this fact indicate that the electron
is more fundamental than the muon? The second fact emerges from comparing
Figs. 5.11 and 5.12. In Fig. 5.11, the rho is indicated as a sharp line with mass
m,; the actually observed rho displays a wide resonance with a width of over
100 MeV/c?. Ts this width of experimental origin, or does it have fundamental
significance? To answer the questions raised by the two observations we turn to a
discussion of decays.

Consider an assembly of independent particles, each having a probability A of
decaying per unit time. The number decaying in a time dt is given by

dN = —AN(t) dt, (5.32)

where N(t) is the number of particles present at time ¢. Integration yields the
exponential decay law,

N(t) = N(0)e . (5.33)

21W.C. Haxton and B.R. Holstein, Am. Jour. Phys. 72, 18 (2004).
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Half-life, ¢, ,,

Mean life

log ’:’“’) / (Lifetime) Re y(1)

'T"‘
12 f——2

1/e

—

t Figure 5.16: Real part of the
wave function of a decaying state.
It is assumed that the decaying
Figure 5.15: Exponential decay. state is formed at t = 0.

Figure 5.15 shows log N (t) plotted against ¢. Half life and mean life are indicated.
In one half life, one half of all atoms present decay. The mean life is the average
time a particle exists before it decays; it is connected to A and ¢, /o by

1 i

A In2
To relate the exponential decay to properties of the decaying state, the time de-
pendence of the wave function of a particle at rest (p = 0) is shown explicitly
as

= 1.44t) /5. (5.34)

1Et
w(0) = v e (- ). (5.35)
If the energy E of this state is real, the probability of finding the particle is not a
function of time because

[B()]* = [$(0)*.

A particle described as a wave function of the type of Eq. (5.35) with real E does
not decay. To introduce an exponential decay of a state described by ¥(¢), a small
imaginary part is added to the energy,

E = Ey — T, (5.36)

where Fy and I' are real and where the factor % is chosen for convenience. With
Eq. (5.36), the probability becomes

(O = oo Pexn (). (5.37)
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It agrees with the decay law (Eq. (5.33)) if

T =\ (5.38)
With Egs. (5.35) and (5.36) the wave function of a decaying state is

W (t) = ¥(0) exp (_ifot) exp (;—?) . (5.39)

The real part of 1(t) is shown in Fig. 5.16 for positive times. The addition of a small
imaginary part to the energy permits a description of an exponentially decaying
state, but what does it mean? The energy is an observable; does an imaginary
component make sense? To find out we note that 1(¢) in Eq. (5.39) is a function
of time. What is the probability that the emitted particle has an energy E?7 In
other words, we would like to have the wave function as a function of energy rather
than time. A change from v (¢) to ¥(F) is effected by a Fourier transformation, a
generalization of the ordinary Fourier expansion. A short and readable introduction
is given by Mathews and Walker;(??) here we present only the essential equations.
Consider a function f(t). Under rather general conditions it can be expressed as an
integral,

“+o0
F(t) = (2m)1/2 / dw g(w) exp(—iwt). (5.40)

—00
The expansion coefficient in the ordinary Fourier series has become a function g(w).
Inversion of Eq. (5.40) gives

+oo
g(w) = (27)"1/? / dtf (1) exp(+iwt). (5.41)

— 00
The variables t and w are chosen so that the product wt is dimensionless; oth-
erwise exp (iwt) does not make sense. Thus ¢ and w can be time and frequency
or coordinate and wave number. We now set f(¢) in Eq. (5.41) equal to (¢),
Eq. (5.39). If the decay starts at the time ¢ = 0, the lower limit on the integral can
be set equal to zero, and g(w) becomes

g(w) = (2m) 7 /24(0) /OOO dt exp {—i—i (w - %) t] exp (—%) (5.42)
or

_(0) ih
9@ = G (o~ Bo) 702

(5.43)

22Mathews and Walker, Chapter 4. Short tables of Fourier transforms are given in the Standard
Mathematical Tables, Chemical Rubber Co., Cleveland, Ohio. Extensive tables can be found in
A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms,
McGraw-Hill, New York, 1954.
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The function g(w) is proportional to the probability amplitude that the frequency
w occurs in the Fourier expansion of ¥(¢). Since E = hw, the probability density

P(E) of finding an energy F is also proportional to |g(w)|? = g* (w)g(w)®:
; h? [¥(0)?
P(E) = const. ¢*(w)g(w) = const.% (E_ B2 1721
The condition
+oo
/ P(E)E =1 (5.44)
yields
¢ Tr
const. = ————
h2[4(0)[?
and P(F) finally becomes
r 1
P(E) (5.45)

T2 (E-Eo? + (/272

The energy of a decaying state is not sharp. The small imaginary part in Eq. (5.36)
leads to a decay and it introduces a broadening of the state. The width acquired
by the state because of its decay is called natural line width. The shape is called a
Lorentzian or Breit-Wigner curve; it is sketched in Fig. 5.17. T turns out to be the
full width at half maximum. With Egs. (5.34) and (5.38), the product of lifetime
and width becomes

T =h. (5.46)

This relation can be interpreted as a Heisenberg uncertainty relation, AtAE > h.
To measure the energy of the state or particle to within an uncertainty AE =T, a
time At = 7 is needed. Even if a longer time is used, the energy cannot be measured
more accurately.

We can now answer the second question posed at the beginning of this section:
The width observed in the decay of the rho is caused by decay; the instrumental
width is much smaller. Since I', ~ 150 MeV, the lifetime becomes

Ty == ~ 4.4 x 10" sec.
P
We still have not answered the first question: Are decaying particles less fundamen-
tal than stable ones? To answer it, a few examples of unstable particles are listed
in Table 5.4. A number of facts emerge from this Table:

23For photons, the relation E = hw connects the energy to the frequency of the electromagnetic
wave. For massive particles, it defines the frequency w; the derivation leading to Eq. (5.45) remains
correct because it is independent of the actual form of w.
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Figure 5.17: Natural line shape of a decaying state. I' is the full width at half maximum.

1. No connection between simplicity and decay appears. Electron and muon

differ only in mass, yet the muon decays. The deuteron, a composite of
neutron and proton, is not listed because it is stable, but the free neutron
decays. The charged pions decay slowly, but the neutral one decays rapidly.
The data suggest that a particle decays if it can and that it is stable only
if there is no state of lower energy (mass) to which it is allowed to decay.
Stability does not appear to be a criterion for elementarity.

. Comparison of particles with about the same decay energy shows that classes

occur. We know that hadronic, electromagnetic, and weak forces exist and
thus expect corresponding decays. Indeed, all three types show up. Detailed
calculations are required to justify that the three interactions can give rise
to decays with the listed lifetimes. Nevertheless, a very crude idea of typical
lifetimes can be gained by comparing the delta (A), the neutral pion, and the
lambda. These have decay energies between 40 and 160 MeV and decay into
two particles. Approximate values for the corresponding lifetimes are

hadronic decay(A) 10~ 23 sec
electromagnetic decay(7?) 1078 sec (5.47)
weak decay(A) 107 9sec.

The ratios of these lifetimes give approximately the ratios of strengths of
the three forces. To obtain better measures of the relative strengths, the
interactions must be studied in more detail, as will be done in Part IV.

. The type of particle or quantum emitted is not always an indication of the

interaction at work. Lambda and delta both decay into proton and pion, yet
the delta decays about 10'# times faster. Selection rules must be involved,
and it will be one of the tasks of later chapters to find these rules.
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Table 5.4: SELECTED DECAYS. The entry under Class indicates the type of
decay. W means weak, EM electromagnetic, and H hadronic.

Mass Decay Energy Lifetime

Particle (MeV/c2)  Main Decays (MeV) (sec) Class
m 106 15%7 105 22x107% W
7+ 140 v 34 26x107% W
70 135 vy 135 8.7x 10717 EM
n 549 vy, AT 549 6.3x 107 EM
p 769 T 489 43x107 H
n 940 pe~ D 0.8 0.90 x 103 W
A 1116 pr—, nm’ 39 2.6x 10710 W
A 1232 N7 159 6 x 1024 H
D* 1869 KO+... 02x 10718 W
DO 1865 K+ 4... 43x10718 W
8Be* 3726 20 3 6 x 1022 H

5.8 Mesons

In Table 5.2, hadrons are separated into mesons and baryons. We shall explain the
difference between these two types of hadrons in more detail in Chapter 7, where a
new quantum number, the baryon number, will be introduced. It is similar to the
electric charge: Particles can have baryon numbers 0,+1, £2,.... The prototype of
a baryon-number-1 particle is the nucleon. Like the electric charge, baryon number
is “conserved,” and a state with baryon number 1 can decay only to another state
with baryon number 1. Mesons are hadrons with baryon number 0. All mesons
have a transient existence and decay through one of the three interactions discussed
in the previous section.

The first meson to appear in the zoo was the pion. Since its existence was
predicted more than 10 years before it was found experimentally, it is worth ex-
plaining the basis of the prophecy. To do so, it is necessary to return to the photon
and the electromagnetic interaction. Because of relativity, it is generally assumed
that no interactions at a distance exist.(?¥) The electromagnetic force between two
electrons, for instance, is assumed to be mediated by photons.

24In Newton’s theory of gravitation it is assumed that the interaction between two bodies is
instantaneous. A rapid acceleration of the Sun, for instance, would affect the Earth immediately
and not after 8 min. This basic tenet is in conflict with the special theory of relativity which
assumes that no signal can travel faster than the speed of light. This inconsistency led Einstein
to his general theory of relativity. [S. Chandrasekhar, Am. J. Phys. 40, 224 (1972).] In quantum
theory a force that is transmitted with at most the speed of light is pictured as being caused by
the exchange of quanta. Even the possible existence of particles with speed exceeding that of light
(tachyons) does not change the argument. [O. M. Bilaniuk and E. C. G. Sudarshan, Phys. Today,
22, 43 (May 1969); G. Feinberg, Phys. Rev. 159 1089 (1967), L. M. Feldman, Am. J. Phys. 42,
179 (1974).]
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Figure 5.18 explains the idea. One electron
emits a photon which is absorbed by the other
electron. The exchange of photons or field
quanta gives rise to the electromagnetic in-
teraction between the two charged particles,
whether it occurs in a collision or in a bound
state, such as positronium (e~e™ atom). The
exchange process is best considered in the c.m.
of the two colliding electrons. Since the colli-
sion is elastic, the energies of the electrons are  Figure 5.18: Exchange of a photon be-

unchanged so that Ei = Fy, Eé = E5. Before tween two electrons, 1 and 2. The vir-
tual photon is emitted by one and ab-

the emission of the photon, the total energy is g, ped by the other electron.

E=F + Es.

After emission but before reabsorption of the quantum the total energy is given
by E = E1 + E» + E,, and energy is not conserved. Is such a violation allowed?
Energy conservation can indeed be broken for a time At because of the Heisenberg
uncertainty relation

AE At > L. (5.48)

Equation (5.48) states that the time At required to observe an energy to within the
uncertainty AE must be greater than i/AFE. Nonconservation of energy within an
amount AF is therefore unobservable if it occurs within a time T' given by

T (5.49)

h
< —.
~ AFE
A photon of energy AF = hw consequently cannot be observed if it exists for less
than a time

T=—=-—. 5.50

o (5.50)

Since the unobserved photon exists for less than the time T, it can travel at
most a distance

r=cl = o (5.51)

The frequency w can be arbitrarily small, and the distance over which a pho-

ton can transmit the electromagnetic interaction is arbitrarily large. Indeed, the

Coulomb force has a distance dependence 1/7? and presumably extends to infinity.
Since the exchanged photon is not observed, it is called a virtual photon.

By 1934, it was known that the strong force is very strong and that it has a

range of about 2 fm, but there was total ignorance as to what caused it. Yukawa, a
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Japanese theoretical physicist, then suggested in a brilliant paper that a “new sort
(25)

of quantum” could be responsible.

Yukawa’s arguments are more mathemati-
cal than we can present here, but the analogy
to the virtual photon exchange permits an es-
timate of the mass m of the “new quantum,”
the pion. In Yukawa’s approach, the force be-
tween two hadrons, for instance two neutrons,

is mediated by an unobserved pion, as sketched Figure 5.19: Exchange of a virtual
in Fig 5.19 pion between two neutrons.

The minimum energy of the virtual pion is given by E = m,c? and its maximum
velocity by ¢. With Eq. (5.49), the maximum distance that the virtual pion is
allowed to travel by the uncertainty relation is given by

h
R< = ~ 1.4 fm. (5.52)

- MyC

The range is therefore at most equal to the Compton wavelength of the pion. Orig-
inally, of course, the argument was turned around, and the mass of the postulated
hadronic quantum was estimated by Yukawa as 100 MeV /c?.

Physicists were delighted when a particle with a mass of about 100 MeV /c? was
found in 1938. Delight turned to dismay when it was realized that the newcomer, the
muon, did not interact strongly with matter and hence could not be held responsible
for the hadronic force. In 1947, the true Yukawa particle, the pion, was finally
discovered in nuclear emulsions.(6) After 1947, more mesons kept turning up, and
at present the list is long. Some of these new mesons live long enough to be studied
by conventional techniques. Some decay so rapidly that the invariant-mass-spectra
method, discussed in Section 5.3, had to be invented. A list of the known mesons
can be found in PDG.

The fact that the idea of virtual quanta led to the prediction of the existence
of a new particle is important. Even more important, however, is the powerful
concept that forces between elementary particles are caused by the exchange of
virtual particles and we will return to this concept again later.

5.9 Baryon Ground States

The spectrum of baryons is even richer than that of mesons. We begin the survey
by considering nuclear ground states. By about 1920 it was well established that the

25H. Yukawa, Proc. Math. Soc. Japan 17, 48 (1935). Reprinted in D.M. Brink, Nuclear Forces,
Pergamon, Elmsford, N. Y., 1965. This book also contains a reprint of the articles by G.C. Wick
on which our discussion of the connection between force range and quantum mass is based.

26C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini, and C. F. Powell, Nature 159, 694 (1947).
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Table 5.5: HADRONICALLY STABLE MESONS. The
mesons listed here decay either by weak or by elec-
tromagnetic processes.

Mass Charge Mean Life

Particle  (MeV/c?) (e) (sec)

70 135.0 0 0.84 x 10~16
ot 139.6 +,— 2.60 x 10—8
K* 493.7 +,— 1.24 x 10~8
KO 497.7 0 Complicated
n 547.8 0 5.1 x 1019
D* 1869 +,— 1.0 x 10~12
DO 1865 0 4.1 x 10718
B* 5279 +,— ~1.7 x 10712
BY 5279 0 ~1.5 x 10712

electric charge Q and the mass M of a particular nuclear species are characterized
by two integers, Z and A:

Q=Ze (5.53)
M ~ Am,,. (5.54)

The first relation was found to hold accurately, and the second one approximately.
The nuclear charge number Z was determined by Rutherford’s alpha-particle scat-
tering, by X-ray scattering, and by the measurement of the energy of characteristic
X rays. It was also found that Z is identical to the chemically determined atomic
number of the corresponding element. The mass number A was extracted from mass
spectroscopy, where it turned out that a given element can have nuclei with different
values of A. The ground state of any nuclear species can, according to Egs. (5.53)
and (5.54), be characterized by two integers, A and Z. Before the discovery of the
neutron, the interpretation of these facts was rather unclear. When the neutron
was finally found by Chadwick in 1932,(27) everything fell into place: A nucleus (A,
Z) is composed of Z protons and N = A — Z neutrons; since neutrons and protons
are about equally heavy, the total mass is approximately given by Eq. (5.54). The
mass number, A, is thus the sum of the number of neutrons and protons and is
also called the baryon number. The charge is entirely due to the protons so that
Eq. (5.53) is also satisfied.

At this point, we can get some definitions out of the way: A nuclide is a par-
ticular nuclear species with a given number of protons and neutrons: isotopes are
nuclides with the same number of protons, Z; isotones are nuclides with the same

27J. Chadwick, Nature 129, 312 (1932); Proc. R. Soc. (London) A136, 692 (1932).
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neutron number, N; isobars are nuclides with the same total number of nucleons,
A. A particular nuclide is written as (A4, Z) or Zelement. The alpha particle, for
instance, is characterized by (4, 2) or 3He or simply *He.

Stable nuclides, characterized by
N = A — Z and Z, are represented
as small squares in an N — Z plot
in Fig. 5.20. The plot indicates that
stable nuclides exist only in a small
band in the N — Z plane. The band
starts off at 45° (equal proton and neu-
tron numbers) and slowly veers toward
neutron-rich nuclides. This behavior
will provide a clue to an understand-
ing of properties of the nuclear force.
Figure 5.20 contains only stable nu-
clides. In Section 5.7 we have pointed
out that stability is not an essential
criterion in considering hadrons. Un-
stable nuclear ground states therefore
can also be added to the N — Z plot.
We shall explore some properties of
such an extended plot in Chapter 16.

T T T — T T
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Figure 5.20: Plot of the stable nuclides. Each
stable nuclide is indicated as a square in this
N — Z plot. The solid line would correspond to
nuclides with equal proton and neutron num-
bers. (After D.L. Livesey, Atomic and Nuclear
Physics, Blaisdell, Waltham, MA, 1966.)

At the mass number A = 1, nuclear and particle physics meet. The proton and
the neutron, the two building blocks of all heavier nuclides, can either be considered
the simplest nuclei or they can be called particles. It is a surprising fact that the
two nucleons are not the only A = 1 hadrons. Other baryons with the mass number

A =1 exist; they are called hyperons.

As an example of the investigation of hyperons, we -~ A°
consider the production of the lambda. If negative -1 KO /7”
pions of a few GeV of energy pass through a hydro- TY~ng-
gen bubble chamber, events such as the one shown
in Fig. 5.21 are observed: The negative pion “dis- Figure 5.21: Observation of

appears,” and further downstream two V-like events the process pr~ — AYKO in

appear. At first, the two V's seem to be very similar.

a hydrogen bubble chamber.

However, when the energies and momenta of the four particles are determined (Sec-
tion 5.3) it turns out that one V' consists of two pions, and the other of a pion
and a proton. Invariant mass plots, such as explained in Section 5.3, show that
the particle giving rise to the two pions has a mass of about 500 MeV /c?, while
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Table 5.6: HADRONICALLY STABLE BARYONS.

Charge Mass Mean Life
Particle (e) (MeV/c?) (sec)
N + 938.3 >3 x 1037 = 1030 y
0 939.6 0.89 x 103
A 0 1115.7 2.63 x 10~10
b)) + 1189.4 8.02 x 10~ 11
0 1192.6 7.4 x 10~20
- 1197.4 1.48 x 1010
= 0 1314.8 2.90 x 10~10
— 1321.3 1.64 x 1010
Q — 1672.5 0.82 x 10~10
A + 2284.9 2.0 x 10713

the particle decaying into proton and pion has a mass of 1116 MeV/c2. The first
particle is the neutral kaon, and the second particle is called lambda. (The name, of
course, refers to the characteristic appearance of the tracks of the proton and the
pion.) The lifetime of each particle can be computed from the distance traveled in
the bubble chamber and from its momentum. A complete reaction reads

pr~ — A°KO | (5.55)
ANKY  — (pr7) (nm7). (5.56)

The lambda is not the only hyperon; a number of other hadronically stable
particles of similar character have been found. These earn the designation hadron-
ically stable because their lifetimes are much longer than 10~22 sec, and they are
called baryons because they all ultimately decay to one proton or neutron. The
hadronically stable baryons are listed in Table 5.6.

5.10 Particles and Antiparticles

We have mentioned antiparticles many times, but have not yet explained the con-
cept. The particle-antiparticle concept is actually one of the most fascinating ones
in physics. The present section is brief and restricted and will leave many problems
unsolved. At the same time some of the aspects that are needed in later sections
and chapters should become somewhat clearer.

The story begins about 1927 with Eq. (1.2):

E? = (pc)? + (mc?)2. (1.2)
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Consider a particle with momentum p and mass m. What is its energy? All of us
were taught early in our life to write a square root with two signs,

E* = +[(pc)? + (mc*)/2, (5.57)

Two solutions appear,
a positive and a neg-
ative one. What does Particle moving with

the negative energy so- positive Kinetic energy

lution mean? In classi-

cal physics, it did not Particle at rest

cause havoc. ~ When 0 —— | Forbidden region

the classical gods cre-
ated the world, they
chose the initial con-
ditions without nega-
tive energies.  Conti-
nuity then guaranteed
that none would appear
later. In quantum me-
chanics, the situation is

Particle at rest

Particle moving with
negative kinetic energy

Figure 5.22: Positive and negative energy states of a particle
: with mass m.
far more serious.

Consider the energy levels of a particle with mass m. Equation (5.57) states
that positive and negative energy levels are possible, and these levels are shown in
Fig. 5.22. The smallest possible positive energy is E = mc?; the largest negative
energy is —mc?. According to Eq. (5.57), the particle can have any energy from mc?
to 400 and from —mc? to —oo. Do the negative energy states lead to observable
consequences? We shall see that they do and that there is an enormous amount
of experimental evidence to back up this claim. Before doing so, we mention a
mathematical argument that also calls for their existence: One of the most funda-
mental theorems in quantum mechanics states that any observable has a complete
set of eigenfunctions.(®) It can be shown in relativistic quantum mechanics that
eigenfunctions do not form a complete set without the negative energy states.

If the negative energy states exist, what do they mean? They cannot be normal
energy states as indicated in Fig. 5.22; otherwise, ordinary particles could make
transitions to the negative energy states with emission of energy, and matter would
rapidly disappear. The first workable interpretation of the negative energy states
is due to Dirac,®*?) who identified particles missing from the negative energy states
(holes) with antiparticles. We shall not discuss his hole theory but proceed imme-
diately to a more modern interpretation, first proposed by Stueckelberg and later

28 Merzbacher, Section 8.3.
29P. A. M. Dirac, Proc. R. Soc. (London) A126, 360 (1930).
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again in more powerful form by Feynman.()

We present this approach in a pedestrian
version and first consider a particle moving
along the positive x axis with positive mo-
mentum p and positive energy E+. The tra- ]
jectory of this particle is shown in an zt plot [E7|, E-<Q
in Fig. 5.23. Its wave function is of the form

i(px — EH)] .

- (5.58)

$(,1) = exp [
E*>0

The fact that it moves to the right can be > x

seen most easily by noting that the phase of

the wave function is constant if Figure 5.23: The particle with positive

energy, E1, moves like any ordinary

particle. The particle with negative en-

ergy, £, is represented as a particle

with positive energy |E~|, but moving

or if n backwards in time. Both travel to the
v = E?t. (5.59) "B

px — ETt = const.

The point  moves to the right. (This argument can be made more rigorous by
using a wave packet.) For the negative energy solution,

) —E~t
W(z,t) = exp {%] E- <0, (5.60)
the relation (5.59) becomes
E” B, _ |E7]
e N e N e Y 5.61
) ) P (5.61)

and it can be interpreted as a particle moving backward in time but having a positive
energy, |[E~|.

What is a particle moving backward in time? The classical equation of motion
of a particle of charge —¢ in a magnetic field becomes, with the Lorentz force
[Ba.(2.21)),

d’x —qgdx q dx
m— =——XxXB==
dt? c dt cd(—t)

x B. (5.62)

A particle with charge ¢ moving backward in time satisfies the same equation of
motion as a particle with charge —¢ moving forward in time.(3%)

30E. C. G. Stueckelberg, Helv. Phys. Acta, 14, 588 (1941); R. P. Feynman, Phys. Rev. T4, 939
(1948).

31The argument becomes more convincing in the covariant formulation, given, for instance, in
Jackson, Chapter 12.
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The content of Egs. (5.61) and (5.62) can be combined: Eq. (5.61) suggests that
a negative energy solution can be looked at as a particle moving backward in time
but having a positive energy. Equation (5.62) demonstrates that a particle moving
backward in time satisfies the same equation of motion as a particle with opposite
charge moving forward in time. Taken together, the two relations imply that a
particle with charge ¢ and megative energy behaves like a particle with charge —¢q
and positive energy. The negative energy states thus behave like antiparticles.

With  this interpreta-
tion the processes shown in
Fig. 5.24 can be described in
two different but equivalent
ways: in the conventional lan-
guage, a particle-antiparticle
pair is produced at time t;
and position x;. The antipar-
ticle meets another particle at

time to and position o, giv-

ing rise to two gamma quanta

that propagate forward ) ) ) )
Figure 5.24: Pair production at (z1,t1) and particle—

antiparticle annihilation at (z2,t2). As noted in Chapter 3,
Feynman language, the parti- pair production can occur only in the field of a nucleus
cle is the primary object and Ezitttla)ukes up momentum. A nucleus is implied near point
it weaves through space and o

time, backward and forward:

at time to, the particle emits two photons and turns back in time to reach the spot
(z1,t1). There it is scattered by a photon and again moves forward in time. What
is the advantage of this way of looking at negative energy states? Negative energy

in time. In Stueckelberg—

states have disappeared from the discussion, and they are replaced by antiparticles
with positive energy. The description makes it obvious that the antiparticle concept
applies just as well to bosons as to fermions.

Assuming an antiparticle to be a particle moving backward in time, a number
of conclusions can be drawn immediately. A particle and its antiparticle must have
the same mass and the same spin because they are the same particle, just moving
in a different direction in time:

m(particle) = m(antiparticle) (5.63)
J(particle) = J(antiparticle). '

However, particle and antiparticle are expected to have opposite additive internal
(not connected to space—time) quantum numbers. Consider the pair production at
the time ¢; in Fig. 5.24. For times ¢ < ¢;, only a photon is present in the region
around z1, and its additive quantum numbers ¢, A, L, and L, are zero. If these
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quantum numbers are conserved, the sum of the corresponding quantum numbers
for the particle—antiparticle pair must also add up to zero so that

N (particle) = — N (antiparticle). (5.64)

Here N stands for any additive quantum number whose value for the photon is zero.

A final remark about a technical point in labeling
Feynman diagrams may help prevent some confu-
sion. A pair production process is usually drawn
as shown in Fig. 5.25(a). The outgoing particle
has its arrow along its momentum. The antipar-
ticle, however, is shown with the arrow reversed.
This convention makes reading diagrams unam-
biguous, and the example in Fig. 5.25(b) should
be clear. Are the Stueckelberg—Feynman concepts

(a)

of particles and antiparticles correct? Only experi-
ment can tell, and experiment has indeed provided
impressive support. Dirac predicted the antielec- (h)
tron in 1931, and it was found in 1933.32) After
this major success, the question arose whether an
antiproton existed, but even persistent search in
cosmic rays failed to turn it up. It was finally
discovered in 1955 when the Bevatron in Berke-

ley began working.(33) Since then, antiparticles to Figure 5.25: Arrow conven-
tion for particles and antipar-

essentially all particles have been found. o
1Ccles.

A spectacular example is the observation of the antiomega.(®®) This hyperon was
produced in the reaction
dKT — QAApr T~ (5.65)

An example of detection of the production and decay of the antiomega are shown
in Figs. 5.26 and 5.27.

Finally we note that a neutral particle can be its own antiparticle, e.g., 7%, or it
might be different, e.g. K° and K°. We will come back to this issue in Chapter 11.

5.11 Quarks, Gluons, and Intermediate Bosons

When is a particle officially admitted to the zoo? This question has no simple
answer, as we learn from history. The photon, introduced by Einstein in 1905, was

32C. D. Anderson, Phys. Rev. 43, 491 (1933); Am. J. Phys. 29, 825 (1961).

330. Chamberlain, E. Segre, C. Wiegand, and T. Ypsilantis, Phys. Rev. 100, 947 (1955).

34A. Firestone, G. Goldhaber, D. Lissauer, B.M. Sheldon, and G.H. Trilling, Phys. Rev. Lett.
26, 410 (1971).
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p
p
-~
-
A
+
incident —
Figure 5.27: Production of the 2, observed
in a study of KTd interactions at a momen-
Figure 5.26: Drawing of the reaction dK+T — tum of 12 GeV/c, in the 2 m SLAC (Stan-
QAAprt7~ and the resulting decays. [A. ford Linear Accelerator Center) bubble cham-
Firestone et al., Phys. Rev. Lett. 26, 410 ber. (Courtesy Gerson Goldhaber, Lawrence

(1971).] Berkeley Laboratory.)
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not accepted by Planck for at least 15 years. The neutrino, postulated by Pauli in
1930, was considered to be speculative for many years even by Bohr. In the case of
the photon, the observation of the Compton effect dispelled the doubt; in the case
of the neutrino, detection in absorption by Reines and coworkers in 1956 convinced
the last disbelievers. As we have said in Section 5.3, we will never see the rho
“directly”. Can we still consider it a particle? We will not establish a firm criterion
here, but instead introduce particles for which either the experimental evidence is
very strong, or for which the theoretical arguments are convincing. In either case,
the introduction of these particles makes the discussion of experiments and results
much more elegant.

We have already stated in the introduction to Part II that experiments at en-
ergies above 10 GeV reveal that the proton, for instance, is not elementary but
composed of subunits. These experiments, discussed in Section 6.7, and many ad-
ditional data provide unambiguous evidence for the existence of quarks.(*® We
will treat quarks in detail in Chapter 15. Here we only describe the properties
that we will need for a preliminary understanding. Baryons are fermions built pri-
marily from three quarks, and mesons are bosons built from a quark (¢) and an
antiquark (q):

baryon (qqq)

meson (qq).

In order to describe the presently known baryons and mesons, six quarks and the
corresponding antiquarks are needed. In Table 5.7, we give the most important
properties of quarks. At the same time we list the leptons again, in order to point
out a striking similarity in the grouping of the two otherwise very different sets of
particles.

Leptons and quarks are fermions; all particles in Table 5.7 have spin 1/2 and
possess antiparticles. The particles divide into three generations or families, light,
intermediate, and heavy. Recent evidence from the decay of the Z° shows conclu-
sively that there are only three generations of neutrinos of small mass. (¢) Within
each family, there are two different “flavors”, and the table contains six flavors of
leptons and six of quarks.

The quark property that immediately catches the eye is the electric charge:
quarks have charges (2/3)e and —(1/3)e! These charges, of course, permit the as-
signment Eq. (5.66). With the charges given in Table 5.7 it is easy to see that the
combination (uud) has the correct charge to be a proton, (udd) a neutron. Despite
great efforts to catch a free quark, none has been seen (see Chapter 15); strong
theoretical arguments imply that quarks must remain confined within hadrons.7”)

358, L. Glashow, Sci. Amer. 33, 38 (October 1975).

36The present limit is N, = 2.984 4 0.008 See PDG.

37Y. Nambu, Sci. Amer. 2385, 48 (November 1976); K. A. Johnson, Sci. Amer. 241, 112 (July
1979); C. Rebbi, Sci. Amer. 248, 54 (February 1982).
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Table 5.7: LEPTONS AND QUARKS. From PDGT.

Leptons Quarks
Charge Mass Charge Mass?
(e) eV/c? Flavor (e) MeV/c?

V1 0 <2 u up 2/3 3
e -1 5.1 x 10° | d down -1/3 6
Vo 0 <2 ¢ charmed 2/3 1.3 x 103
m -1 1.1 x 10® | s strange -1/3 110
v3 0 <2 t top 2/3 1.8 x 10°
T -1 1.8 x 10° | b bottom -1/3 4.2 x 103

TWe show the mass eigenstates. As will be shown in Chapter 11,
the weak eigenstates are linear combinations of the latter.
fThe masses for the quarks are only approximate because they
are deduced from composite states in which their strong inter-
actions have to be taken into account. All quarks come in three
colors.

Since no free quarks are available, their masses cannot be measured and the
mass estimates in Table 5.7 are based on theoretical arguments. %)

Quarks have another remarkable property, color! Each quark comes in three
colors, red, green, and blue. Of course, flavor and color have nothing to do with
taste or vision; they are names chosen to describe previously unknown but well-
defined physical properties. While flavor denotes the type of quark (u,d,s,...),
color charge refers to a hadronic “charge.” Just as the electric charge characterizes
the strength of a particle’s interaction with an electromagnetic field [Eq. (5.11)],
color charge represents its interaction with the hadronic field of force. Antiquarks,
like quarks, also have three colors, antired, antigreen, and antiblue. Since no colored
particle has ever been observed, the combinations in (5.55) must be colorless or
white. Consequently, a proton can, for instance, contain a red and a green up
quark and a blue down quark, but not two red u quarks. If you, the reader, at
this point feel you have inadvertently picked up a science fiction story, you are
forgiven. Nature, however, is strange (and charmed) and the concepts introduced
here without justification do make sense. We will justify the concepts later in
more detail. Table 5.8 lists the principal quark composition of some mesons and
baryons.

More particles or quanta emerge when we consider the forces that rule subatomic
physics. In Section 5.8 we told the story of the prediction of the pion as the quantum
mediating the interaction between nucleons. The conviction that no action at a
distance exists and that all forces are transmitted by quanta(?*) leads to the quanta
listed in Table 5.9.

38]. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).
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Table 5.8: PRINCIPAL QUARK COMPOSITION OF SOME MESONS AND
BARyONs.

Mesons Baryons
at, 70 7~  wud,vu+dd, du | p,n uud, ddu
pt, p°, p~ ud, wu — dd, du
w0 T + dd
n° ul 4 dd + € s5 A0 uds
o s3 s+, %0 »— uus, uds, dds
Kt, K~ us, su =0 =2- uss, dss
KO, KO ds, sd Q- $88
D+, D~ cd, de AT ude
DY, DO cu, uc E;H', Ej‘, Eg, uuc, ude, ddc
BT, B~ ub, bu
BO, BO db, bd

fThe numbers are only approximate and not normalized.

Table 5.9: FIELDS AND QUANTA.

Field Quanta Mass Spin  “Charge”
Electromagnetic  Photon 0 1 0
Hadronic Gluon 0 1 8 colors
Weak w+ 81 GeV/c? 1 +e

A 91 GeV/c? 1 0
Gravitational Graviton 0 2 ?

Table 5.10: THE BASIC PARTICLES AND FORCES OF
THE STANDARD MODEL OF SUBATOMIC PHYSICS.

Constituents' Forces Gauge boson

Quarks Hadronic Gluon
u c t

d s b
Electromagnetic Photon

Leptons
vy vz V3
e u T
‘Weak Wi7 Z0

TWe show the mass eigenstates. As will be shown
in Chapter 11, the weak eigenstates are linear com-
binations of the latter.
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We have already encountered the photon, the W+ and Z° gauge bosons, and
have sketched in Fig. 5.18 how the force between two electrically charged particles is
transmitted by a virtual photon. Similarly the gluons are the quanta that transmit
the force between two quarks. They are the gauge bosons of the strong force, akin to
the photon in the electromagnetic force. The electromagnetic interaction between
two particles with electric charges g1 and g2 is proportional to the product qgs.
Similarly the hadronic charge on a quark, called the color charge, is introduced and
the hadronic force between the two quarks is proportional to the product of the two
color charges. There are, however, major differences between the photon and the
gluon. The photon is electrically neutral and leaves the electric charges of the two
interacting particles unchanged. Moreover, two photons cannot interact directly
with each other. Gluons, however, carry color and consequently can change the
color of the interacting quarks. Gluons also can interact directly with each other;
the theory predicts that they can form bound states, called glueballs.

The weak interaction is transmitted by three quanta, W+, W~ and Z°.(39 In
Chapters 11 and 13, we will discuss weak processes in detail. One well-known
example of a weak process is the decay of the neutron, n — p e T.. In 1938,
Klein?) suggested that this decay was, in reality, a two-step process,

n—p W=,
W= —e v
In the quark model, depicted in Fig. 5.28, protons proton
and neutrons consist of quarks, and the weak in- udu e~ v,
teraction occurs between the quarks. One quark,
a d for instance, may emit a W, and as a result,
the neutron changes into a proton:
-
W
d—u W= |
W— —e v,
or udd
neutron
n(Udd) - p(UUd) € Ve Figure 5.28: Quark model

description of the beta decay
of a neutron.

The W and the corresponding neutral Z° are gauge bosons and sometimes
are called “intermediate bosons”. Theory predicted the masses of the W+ and Z°
before they were discovered; the predictions are given in Table 5.9. The large masses

39P. Q. Hung and C. Quigg, Science 210, 1205 (1980).
400. Klein in Les Nouvelles Théories de la Physique, Institut International de Coopération
Intellectuelles, Paris, 1939.
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of the W (~ 80 GeV/c?) and of the Z(~ 90 GeV/c?) imply that their production
requires extremely high energies. The long search for the W finally came to an
end in 1983 when five clear cases of W production and decay were observed in pp
collisions at 2 x 270 GeV at the CERN SPS (Fig. 2.12).(*) The Z° was found
shortly thereafter.(4?)

Why have we not listed the pion as a field quantum in Table 5.97 In the picture
we have presented, the pion itself is viewed as a quark—antiquark state and the
long-range force between nucleons, mediated by the pion, is not elementary. At the
more basic level, all three forces—strong, electromagnetic, and weak—are mediated
by gauge bosons of spin one.

Together with the basic constituents of matter, the three subatomic forces make
up the so-called “standard model.” Its basic features have been introduced in this
and previous sections and will be discussed in more detail in later chapters. We
summarize its main features in Table 5.10.

The standard model is believed to be a rather accurate description of nature:
The basic constituents of matter are three families of point quarks and three of point
leptons. There are also three basic non-gravitational gauge-type forces. The quarks
interact through all three forces and the (charged) leptons interact only through
the electromagnetic and weak forces. All three forces are carried by gauge bosons.

5.12 Excited States and Resonances

In atomic physics, the development of concepts and theories is intimately linked
with the exploration of excited states, in particular those of the hydrogen atom.
The Balmer series, the Ritz combination principle, the Bohr theory, the Schrédinger
equation, the Dirac equation, and the Lamb shift are all connected with the hydro-
gen spectrum. Without the simplicity and the richness of the hydrogen spectrum,
progress would have been slower. In subatomic physics, the situation is more com-
plex. The nuclear system that most closely resembles the hydrogen atom is the
deuteron, a bound system consisting of a proton and a neutron. This system has
only one bound state and consequently does not provide the richness of information
that the hydrogen atom yielded. It is necessary to consider the excited states of
more complicated systems, such as heavier nuclides. Moreover, excited states of
baryons and mesons exist, and they must be studied in detail in the hope that they
will provide clues to an understanding of hadronic physics.

An understanding of the features of excited hadronic states requires a knowledge
of some results of quantum mechanics, and these can be discussed most easily by

41@G. Arnison et al., Phys. Lett. 122B, 103 (1983); M. Banner et al., Phys. Lett. 122B, 476
(1983).

42G. Arnison et al., Phys. Lett. 126B, 398 (1983); P. Bagnaia et al., Phys. Lett. 129B,
130 (1983); for a summary, see E. Rademacher in Progress Particle Nuclear Physics, Vol 14
(A. Faessler, ed) (Pergamon, New York), p. 231 (1985) and P. Watkins, Story of the W and Z
(Cambridge University Press, Cambridge, 1986).



5.12. FEzxcited States and Resonances 119
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Figure 5.29: Energy levels in a square well. The ground state is sharp. The excited states can
decay to the ground state by photon emission, and they display a natural line width. States with
positive energy form a continuum.

treating the square well. Consider a particle with mass m in a square well as
shown in Fig. 5.29. It is straightforward to solve the Schrédinger equation for this
problem and to find the allowed energy levels. First consider the case F < 0, where
the numerical or graphical solution of the Schrédinger equation produces a number
of bound states. Bound indicates that a particle in one of these levels will remain
attached to the force center.

The Schrédinger equation for the square well is an eigenvalue equation, Hy =
E;1, and the eigenvalues E; represent sharp energy states. In reality, however, all
states but the lowest one usually decay, for instance by photon emission. We have
seen in Section 5.7 that decaying states possess a finite width and that the energy is
composed of a large real and a small imaginary part, as in Eq. (5.36). For a bound
state, the large real component is negative if the zero point of the energy is taken
to be the value of the potential at infinity, as in Fig. 5.29.

For positive energies, F can have any value. In other words, the spectrum forms
a continuum. One would therefore guess that nothing interesting can happen in
this region. This guess is false. To study the situation, scattering events have to
be considered. In the one-dimensional case, as in Fig. 5.30, scattering is simple: A
particle beam is assumed to impinge on the potential well from the left (Fig. 5.30).
Classically, such a particle will pass unhindered over the well. In quantum mechanics
the situation is more interesting. The Schrédinger equation can easily be solved,
and it turns out that only a fraction of the incident beam is transmitted; another
fraction is reflected at the barrier. The transmitted fraction, T, is given by(*3)

43Tipler and Llewellyn, Chapter 6; Park, Eq. (4.38).
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Incident and
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Figure 5.30: Scattering of a particle with energy E from a one-dimensional potential well. Clas-
sically, all incident particles will be transmitted. Quantum mechanically, at small energies, the
transmission coefficient T' is unity only at certain energies. The appearance of transmission res-
onances in the behavior of the transmission as a function of particle energy E is shown at the
right.

! =1+ v in? k (5.66)
T TaEE+v) St '

where E is the kinetic energy of the incident particles, V(< 0) the depth, and a the
width of the potential well. The wave number k is given by

k* = = (E +|V]). (5.67)

Equations (5.66) and (5.67) demonstrate that the transmission coefficient T is unity
only at certain energies. The behavior of T" as a function of E is sketched in
Fig. 5.30, where the appearance of transmission resonances is evident. The behavior
of a particle with an energy FE, corresponding to maximum transmission can be
investigated by using wave packets rather than plane waves to describe the incident
beam. It turns out that the incident particle remains in the well region for a time
that is much longer than that expected from classical mechanics.(*¥) The mean
time spent in the well region, 7, and the width of the corresponding resonance, I,
satisfy Eq. (5.46). Mathematically, the existence of a resonance at the energy FE,

can again be described, in analogy to Eq. (5.36), by introducing a complex energy,
E=F, — %if‘.

Here E,. is positive, and I' can be comparable to E,..
The appearance of a resonance in the continuum is not restricted to the simple
one-dimensional case just discussed but is a more general phenomenon. To treat

44Detailed discussions can be found in Merzbacher, Chapter 6, and in D. Bohm, Quantum
Theory, Prentice Hall, Englewood Cliffs, N. J., 1951, Chapters 11 and 12.
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Figure 5.31: Classification of the energy levels of a quantum system in the complex energy plane.
Re E = 0 is determined by the potential at infinity. The widths I' in actual resonances are usually
much smaller than indicated here.

the problem with more relevance to actual situations, scattering of particles from a
three-dimensional potential has to be studied. The basic ideas, however, are already
contained in our simple example: Resonances can appear in the continuous energy
spectrum, and they are characterized by the energy of their maximum, E,, and
by their width, I'. Width and position together can be described by introducing a
complex energy, £ = E, — %iF.

The use of a complex energy allows a classification of the energy levels of a
quantum system. The classification is illustrated in Fig. 5.31. A point in the
complex energy plane represents energy and width of a particular state. In addition
to resonamnces, every positive energy corresponds to a permissible solution of the
scattering problem. This fact is expressed in Fig. 5.31 by drawing the continuum
along the positive energy axis. (45

Resonances are characterized by unique quantum numbers; energy, width, and
quantum numbers of the states appearing in a particular system depend on the
constituents of the system and on the forces acting among them. It is the task
of experimental subatomic physics to find the levels and determine their quantum
numbers, and it is the goal of theoretical subatomic physics to explain and predict
the properties of the observed bound states and resonances in terms of models and
forces.

451n a more advanced treatment of scattering, the bound states and the resonances appear as
poles, and the continuum as a cut of the scattering matrix in the complex energy plane.
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5.13 Excited States of Baryons

The problem of finding all excited states of the baryons is probably hopeless. It is
crucial, however, to find enough states to be able to discover regularities, get clues
to the construction of theories, and test the theories. Even this more restricted
requirement is very difficult to fulfill in subatomic physics. A great deal of ingenuity
and effort has been expended on nuclear and particle spectroscopy, the study of
nuclear and particle states. In the present section we shall give some examples of
how excited states and resonances are found.

As a first example, we consider the nuclide ®®Fe, with a natural abundance of
0.31%. Two ways in which the energy levels of °®Fe have been investigated are
sketched in Fig. 5.32. An accelerator, for instance, a Van de Graaff, produces a
proton beam of well-defined energy. The beam is momentum-analyzed and trans-
ported to a scattering chamber where it hits a thin target. The target consists of an
iron foil that has been enriched in *®*Fe. The transmission through the foil can be
studied as a function of the energy of the incident proton, or the scattered protons
can be momentum-analyzed. Consider the second case, denoted by (p,p’). The
notation (p, p’) indicates that incoming and scattered particles are protons but that
the scattered particle has a different energy in the c.m. The momentum and hence
the energy of the scattered proton p’ are determined in a magnetic spectrometer,
i.e., a combination of bending magnet, slits, and detectors. If the kinetic energy of
the incident proton is £, and that of the scattered one is £, the nucleus received an
energy I, — I/, and a level at this energy was excited. The experiment constitutes
a nuclear Franck-Hertz effect. (A correction has to be applied because the *®Fe*
nucleus recoils, and the recoil energy must be subtracted from Ej, — E}, in order to
find the correct excitation energy.) A typical result of such an experiment is shown
in Fig. 5.33. The appearance of many excited levels is unmistakable. The reaction
(p,p’) is only one of many that are used to excite and study nuclear levels. Other
possibilities are (e, e’), (v,7), (v,n), (p, n), (p,7), (p, 2p), (d, p), (d, n), and so
forth. Decays are also sources of information, and Fig. 4.7 gives an example of a
partial gamma-ray spectrum. Data from a large variety of experiments are used to
piece together a level diagram of a particular nuclide. For °®Fe, the level diagram
is shown in Fig. 5.37.

As the excitation energy is increased, the situation becomes more complex. In
a simplified picture it can be discussed by referring to Fig. 5.30 with the essential
aspects shown in Fig. 5.34. At an excitation energy of about 8 MeV, the top of
the well is reached, and it becomes possible to eject a nucleon from the nucleus, for
instance, by a reaction (v,n), (v,p), (e, ep), or (e, en). Just above the well, such
processes are still not very likely, and most excited states will return to the nuclear
ground state by the emission of one or more photons, because particle emission is
inhibited by reflections from the nuclear surface (Fig. 5.30), angular momentum ef-
fects, and the small number of states available per unit energy (small phase space).
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Figure 5.32: Investigation of energy levels by transmission and by inelastic scattering.
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Figure 5.33: Spectrum of protons scattered from enriched 8Fe (75.1%) target. The detector
consists of photographic plates so that many lines can be observed simultaneously. [From A.
Sperduto and W. W. Buechner, Phys. Rev. 134, B142 (1964).] Since the target still contains

some isotopes other than ?8Fe, additional lines appear. The iron lines are labeled by the mass
number A.
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Table 5.11: NUCLEAR ENERGY LEVEL CHARACTERISTICS FOR THE THREE
REGIONS SHOWN IN FIG. 5.34. E is the excitation energy, I' the average
level width, and D the average level spacing.

Typical Values

Region Characteristics E (MeV) T (eV) D (eV)
I. Bound states T<D=~E 1 1073 105
II. Resonance region T<D<E 8 1 102
III. Statistical region DT KE 20 104 1

Nevertheless, the states are no longer bound but are now classed as resonances. In
the idealized cross-section curve in Fig. 5.34, the individual resonances are shown in
region II. As the energy is further increased, the resonances become more numerous
and their widths increase. They begin to overlap, and the individual structure aver-
ages out. In region III, called the statistical region, the envelope of the overlapping
individual resonances is measured, and it displays a prominent feature, called the
giant resonance: At around 20 MeV excitation energy, the total cross section goes
through a pronounced maximum. At much higher energies, the continuum loses all
features.

The three regions shown in Fig. 5.34 are characterized by three numbers, the
average level width, I'; the average distance between levels, D; and the excitation
energy, F. Typical values of these three quantities for the three regions are given
in Table 5.11. Details vary widely from nuclide to nuclide, but the gross features
remain. Exploration of the excited states of baryons with A = 1 is more difficult for
three reasons: (1) No bound states exist and resonances are harder to study than
bound states. (2) Most of the resonances decay by hadronic processes, their widths
are large, and it is difficult to separate individual levels. (3) The only stable baryon
that can be used as a target is the proton; liquid hydrogen targets are standard
equipment in all high-energy laboratories. No isolated neutron targets exist. All
other baryons (Table 5.6) have such a short lifetime that experiments of the type
shown in Fig. 5.32 are not possible, and indirect methods must be used.

The first excited proton state was discovered by Fermi and collaborators in 1951.
They measured the scattering of pions from protons and found that the cross section
increased rapidly with energy up to about 200 MeV pion kinetic energy and then
leveled off or decreased again.(*®) Brueckner suggested that this behavior could
be interpreted as being due to a nucleon isobar (excited nucleon state) with spin
3/ 2.(47) Tt took some more time and many more experiments before it became clear
that the Fermi resonance is only the first of many excited states of the nucleon.

The investigation of excited proton states proceeds similarly to the study of

46H. L. Anderson, E. Fermi, E. A. Long, and D. E. Nagle, Phys. Rev. 85, 936 (1952).
47K. A. Brueckner, Phys. Rev. 86, 106 (1952).
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Figure 5.34: Typical features of the excited states of a nucleus. The cross-section curve is idealized;
it can be investigated by inelastic electron scattering or by studying the absorption of gamma rays
as a function of gamma-ray energy. Three regions are distinguished: I, bound (discrete) states; II,
individual resonances; and III, statistical region (overlapping resonances).
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Figure 5.35: Total cross section as a function of pion kinetic energy for the scattering of positive

m?2.)

and negative pions from protons. (1 mb = 1 millibarn = 1027

Ground state and excited states of S®Fe

S4 GeV

1 GeV Excited states

S —E=mc* =0 A = i e— Nucleon

Figure 5.36: Total rest energies of the states in ®8Fe and of the nucleon and its excited states.
On the scale shown here, the excited states of the nuclide Fe are so close to the ground state
that they cannot be distinguished without magnification. A magnified spectrum is provided in

Fig. 5.37.
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Figure 5.37: Ground state and excited states of the nuclide °®Fe and of the nucleon (neutron and
proton). The region above the nuclear ground state in Fig. 5.36 has been enlarged by a factor of
about 5000. The spectrum of the nucleon in Fig. 5.36 has been magnified about 40 times. The
nuclear states have widths of the order of eV or less and consequently can be observed separately.
The excited particle states or resonances, on the other hand, have widths of the order of a few
hundred MeV; they overlap and are often very difficult to find. It is likely that many additional

levels exist.
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excited nuclear states. High-energy particles, mainly electrons or pions, impinge on
a hydrogen target, and the transmitted and the scattered beams are detected and
analyzed. The behavior of the total cross section for pions on protons is given in
Fig. 5.35. The appearance of resonances is evident. Since 1951, a great deal of effort
has been expended to find such resonances and determine their quantum numbers.
The Fermi resonance discussed above and shown as the first peak in Fig. 5.35 is
called A(1232), where the number denotes the rest energy of the resonance in MeV.

In Figs. 5.36 and 5.37, we compare the energy spectra of the nuclide *®Fe and
of the nucleon. Figure 5.36 depicts the total masses (rest energies), while Fig. 5.37
presents the excitation spectra, namely the energies above the ground states. The
figures make it clear that the nuclear excitation energies are very small compared
to the rest energy of the ground state, whereas the particle excitation energies can
be large compared to the rest energy of the ground state. The particle excitation
energies are 2 to 3 orders of magnitude larger than nuclear excitation energies.
Another difference exists between nuclear and particle excited states: Nuclei possess
bound states and resonances, as indicated in Fig. 5.34. The excited particle states,
on the other hand, are all resonances.

Finally, we note that we have treated nuclear and particle spectroscopy here
extremely briefly; we have sketched only one way of finding the excited states. Many
other ones exist. Moreover, the determination of the various quantum numbers of
a state (spin, parity, charge, isospin, magnetic moment, quadrupole moment) can
be an exceedingly difficult business. In fact, some of these quantum numbers can
be measured only for very few states. The references in Section 5.14 describe most
of the techniques and ideas of subatomic spectroscopy, but we shall not treat this
topic further.

5.14 References

The properties of elementary particles are reviewed in PDG. The properties of nu-
clear levels are summarized in Table of Isotopes, 8th Ed. (R.B. Firestone, V.S.
Shirley, eds.) John Wiley & Sons, New York, 1996. The information can be found
online at http://www.nndc.bnl.gov/. Current information can be found in the jour-
nals Nuclear Data Tables and Nuclear Data Sheets published by Academic Press,
as well as in special issues of Nucl. Phys. A.

Nuclear spectroscopy is reviewed in many places, and the following books provide
additional information on most of the problems treated in the present chapter:
F. Ajzenberg-Selove, ed., Nuclear Spectroscopy, Academic Press, New York, 1960
(two volumes); K. Siegbahn, ed. Alpha-, Beta-, and Gamma-Ray Spectroscopy,
North-Holland, Amsterdam, 1965 (two volumes); J. Cerny, Nuclear Spectroscopy
and Reactions, Academic, New York, 1974.

A nice introduction to particles can be found in S. Weinberg, The Discovery
of Subatomic Particles, Cambridge, 2003. The photon concept, treated very briefly
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in Section 5.5, often leads to long and heated arguments. An interesting brief
discussion is given in M.O. Scully and M. Sargent III, “The Concept of the Photon,”
Phys. Today 25, 38 (March 1972). A more complete exposition can be found in
M. Sargent 111, M.O. Scully, and W.E. Lamb, Jr., Laser Physics, Addison-Wesley,
Reading, 1974. A recent review of the photon’s history and on upper limits on its
mass and charge are given by L.B. Okun Acta Phys. Polon. B37, 565 (2006); also
at hep-ph/0602036.

Charged leptons are discussed by M.L. Perl, Phys. Tod. 50, 34 (Oct. 1997),
and neutrinos by W.C. Haxton and B.R. Holstein, Am. Jour. Phys. 72, 18 (2004).

Examples of recent findings of new particles can be found in T.M. Liss, P.L.
Tipton Sci. Am. 277, 54 (1997) (on the top quark) and in R.M. Thurman-Keup,
A.V. Kotwal, M. Tecchio, A. Byon-Wagner, Rev. Mod. Phys. 73, 267 (2001) (on
the W boson).

Problems

5.1. * Does a vanishing mass indicate that the corresponding particle has no grav-
itational interaction? If not, how can the force in a gravitational field be
defined?

5.2. * Discuss the Mossbauer experiment that indicates that photons falling in the
earth’s gravitational field gain energy. Why can such an experiment not be
performed with optical photons? [R.V. Pound and J.L. Snider, Phys. Rev.
140B, 788 (1965).]

5.3. Use Eq. (5.4) and the corresponding complete expressions for the operators
L? and L, to find the eigenvalues | and m for the functions

™

1/2
Y20, ) = % <§> cos 6

H_

o 1/ 3\2
Y (0,0) = §<%> sin 0 exp (% ip).

Here 6 and ¢ are the angles defining spherical coordinates.
5.4. Verify Eq. (5.5).

5.5. Assume that electron and muon are uniform spheres with a radius of 0.1 fm.
Compute the velocity at the surface caused by the rotation with spin (2)/2h.

5.6. Consider a system consisting of two identical particles and assume that the
total wave function is of the form

Y(@1, 22) = AY(z1)p(22) + BY(22)0(21).
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5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.
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If ¢ and ¢ are orthonormal, find the values of A and B that make the total
wave function normalized to unity and (a) symmetric, (b) antisymmetric, or
(¢) neither under interchange 1 = 2.

Does a particle with zero electric charge necessarily have no interaction with
an external electromagnetic field? Give an example of a neutral particle that
does interact with an external electromagnetic field. Find an example for a
particle that does not. Does a particle with electric charge necessarily interact
with an external electromagnetic field?

A nucleus with a spin J = 2 and a g factor of ¢ = —2 is placed in a magnetic
field of 1 MG.

(a) Where can such a field be found?

(b) Sketch the corresponding splitting of the energy levels. Label the levels
with magnetic quantum numbers M. Find the value of the splitting
between two adjacent levels in eV and in K.

Show that the magnetic dipole moment of a particle with spin J = 0 must
vanish.

*Discuss the setup and basic features of the experiment to determine masses
of short-lived isotopes using Penning traps. (See K. Blaum, Phys. Rep. 425,
1 (2006).)

The determination of the mass of a particle often requires knowledge of its ve-
locity. Discuss the principle of the Cerenkov counter. Show that the Cerenkov
counter is a velocity-dependent detector.

How were the masses of the following particles determined:

(a) Muon

(b) Charged pion
(c)
)
)
)

Neutral pion
(d) Charged kaon

e) Charged sigma

(
(f) Cascade particle (2).

Use wave packets to justify the interpretation of a particle with negative en-
ergy being a particle with positive energy but moving backward in time.
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5.14. Use the covariant formulation of the equation of motion of a charged particle

5.15.

5.16.

5.17.

0.18.
5.19.

5.20.

0.21.

in an electromagnetic field to show that a particle with charge —¢ moving
backward in time behaves like an antiparticle of charge ¢ moving forward in
time.

In Eq. (5.24), 7~p — nntm~, the neutron in the final state escapes unob-
served. The fact that the “missing” particle is a neutron is verified by using
a missing mass plot: Assume a reaction of the forma+b—14+2+3+---.
Denote the total energy by E, = E, + E} and the total momentum of the two
colliding particles by p, = pa + pp. Similarly, denote the corresponding sums
for all observed particles in the final state by Eg and pg. The unobserved
(neutral) particles then carry away the “missing” energy E,, = E, — Ej3 and
the “missing” momentum p,, = po — pg. The “missing mass” is defined by

m2 ¢t = B2 — p2 2.

(a) Sketch a missing mass plot, i.e., a plot of the number of events expected
with mass m,, against m,,, if the only unobserved particle is a neutron.
(b) Repeat part (a) for the case where a neutron and a neutral pion escape.

(¢) Find a missing mass plot in the literature.

0

* Discuss the reaction dmt — pprTn~7Y. The invariant mass spectrum of

the three pions in the final state provides evidence for two short-lived mesons.
Read the relevant literature and discuss how these mesons have been found.

Consider Eq. (5.24). Assume that the two pions do not form a resonant state
(rho) but are emitted independently. Compute the upper and lower limit on
the phase-space spectrum in Fig. 5.11.

Verify Eq. (5.30).

* Discuss the determination of the present limit on the mass of

(a) The electron neutrino and

(b) The muon neutrino.

(c) How can the limit on the mass of the muon neutrino be improved?
How can the stability of electrons be measured? Try to design a simple ex-

periment and estimate the limit on the lifetime that you expect to get from
your experiment.

What was Professor Moriarty’s profession? Where did he finally disappear?
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5.22. Describe the experimental facts that led Pauli to postulate the existence of
the neutrino.

5.23. %4Cu decays with a branching ratio of 62% to %*Ni and with a branching ratio
of 38% by electron emission to %4Zn. The overall half life of *Cu is 12.8 hr. A
spectrometer (magnet and scintillation counter) is adjusted so that only the
electron decay to %4Zn is observed. How long does it take until the intensity
of this decay mode is reduced by a factor of 27

5.24. Verify Eq. (5.34).
5.25. Find the Fourier transform of the function

L |z <a,

fle) = {O, |z| > a.

5.26. Find the Fourier transform of

0
f(x): %a —1<$<1,
0

5.27. Verify Eq. (5.43).

5.28. The level giving rise to the 14.4 keV gamma ray in °“Fe decays with a half
life of 98 nsec. Compute I, the full width at half-height, in eV.

5.29. Verify Eq. (5.45).

5.30. * Discuss methods to measure lifetimes of the order of

(a) 10°y
(b) 1 sec
(c) 10~ 8sec
(d) 1072 sec
(e) 10729 sec.

5.31. The rho is believed to contribute to the hadronic force between hadrons.
Compute the range of this force.
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9.33.

5.34.

9.35.

5.36.

5.37.

5.38.

5.39.

5.40.
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* What experiments would you perform to check if the muon is the quantum
predicted by Yukawa? Compare your proposal to the actual evidence that led
to the conclusion that the muon is not the Yukawa particle. [M. Conversi, E.
Pancini, and O. Piccioni, Phys. Rev. 71, 209 (1947); E. Fermi, E. Teller, and
V.F. Weisskopf, Phys. Rev. 71, 314 (1947).]

Does an electron bound in an atom satisfy Eq. (1.2)?

Discuss the following methods for determining the nuclear charge Z:

(a) X-ray scattering.

(b) Observation of characteristic X rays.
Before the discovery of the neutron, the nucleus was pictured as consisting of
A protons and A — Z electrons. Discuss arguments against this hypothesis.

At which pion kinetic energy does the process pnr~ — A°K° begin to occur?
(i.e., determine the threshold for the reaction).

List two reactions that lead to the production of the =~ ; compute the corre-
sponding threshold energies.

(a) Derive Eq. (5.66).

(b) Sketch the transmission T as a function of E/V} for a one-dimensional
square well with the parameters (2mV;)'/2a/h = 100.

Consider a one-dimensional potential well with a half-width a = 1 fm and a
depth Vp = 100 MeV. Find (numerically or graphically) the lowest two energy
levels of a proton in this well.

Consider a well as shown in Fig. 5.38.

Voo

Fig. 5.38

(a) Indicate the energy region where bound states exist.
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(b)
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How will particles behave in the region above Vo7

5.41. * The experiment discussed in Section 5.12 demands the use of enriched *®Fe.

(a)
(b)

How is enriched iron prepared?

What is the price of 1 mg of enriched *Fe?

5.42. In elastic and in inelastic scattering, some energy is given to the target particle
in the form of recoil.

5.43

5.44

5.45.

5.46.

5.47

(a)

Consider the reaction *3Fe(p, p’)*Fe*. Assume that the incident protons
have an energy of 7 MeV, that the scattered proton is observed at 130°
in the laboratory, and that excitation to the first excited state of *Fe
is studied. What is the energy of the scattered proton?

Assume that you try to excite the first nucleon resonance, N*(1232), by
inelastic proton-proton scattering and that the primary proton kinetic
energy is 1 GeV. What is the maximum scattering angle at which the
scattered proton can be observed? At which energy will the peak in the
inelastically scattered protons occur at this angle?

. * Discuss resonance fluorescence:

(a)
(b)
()

What is the process?
How can resonance fluorescence be observed in nuclei?

What information can be obtained from it?

. * Describe the discovery of the W=,

(a)
(b)

(b)

How are taus produced in ete~ collisions?

If the e and e~ beams have equal energy, what is the minimum beam
energy required for 7 production?

Protons striking a stationary hydrogen target can produce 7’s through
the reaction pp — 777~ X, where X is any set of hadron(s). What is
the minimum proton energy for this reaction to occur?

Can the Z° be produced in ete™ collisions? What is the minimum
energy required?

How can you determine that the Z° has been produced in the reaction

(a)?

. Based on the masses of the heavy gauge bosons (W¥, Z%), what is the range
of the weak force?



Chapter 6

Structure of Subatomic Particles

In Chapter 5 the members of the subatomic zoo have been classified according to
interaction, symmetry, and mass. In the present chapter, we shall investigate some
particles in more detail; in particular, we shall study the charged leptons, some
hadrons and the ground-state structure of some nuclides. What do we mean by
ground-state structure? For atoms, the answer is familiar: Structure denotes the
spatial distribution of the electrons, and it is described by the ground-state wave
function. For the hydrogen atom, neglecting spin, the probability density p(x) at
point x is given by

p(x) = ¢ (x)P(z), (6.1)

where 1 (x) is the electron wave function at . The electric charge density is given by
ep(x); the charge and the electron probability density are proportional to each other.
Actually, the structure includes the excited states, and only if the wave functions
of all possible atomic states are known is the structure completely determined. We
shall, however, restrict the discussion to the ground state.

For nuclei, the concept of a charge distribution still makes sense, but charge
and matter distribution are not identical. For nucleons, a new problem arises. The
momenta needed to investigate the structure are so high that the nucleons, which
are initially at rest, recoil with velocities that are close to the velocity of light. It
is then very difficult to compute the nucleon charge distribution from the observed
cross section. To avoid this problem, the nucleon structure is described in terms of
form factors. While it takes some time to get used to this concept, it is closer to the
experimental information than the charge distribution. For leptons, no structure is
found at all, even at the smallest distances studied, less than 10~'® m. They appear
to be true pointlike Dirac particles.

6.1 The Approach: Elastic Scattering

Elastic scattering experiments have provided a great deal of insight into the struc-
ture of subatomic particles. How do such studies differ from the spectroscopic
experiments discussed in Chapter 57 There is no sharp boundary, but the essential
aspects can be described as follows. Both kinds of studies use an arrangement of

135
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the type shown in Fig. 5.32. In spectroscopy one angle is selected, and the spectrum
of the scattered particles is explored at this angle. The energy levels of the nuclide
under investigation can be taken from data similar to the ones given in Fig. 5.34.
In structure (elastic form factor) experiments the detector looks only at the elastic
peak. The intensity of the elastic peak is then determined as a function of the
scattering angle. (Note that the energy at the elastic peak changes with scattering
angle because of the recoil of the target particle; the detector must be adjusted cor-
respondingly at each angle.) The observed intensity is translated into a differential
cross section, a quantity that we shall define in Section 2.2. From the cross section,
the information concerning the structure of the target particle can be obtained.

In 1911, Rutherford observed the elastic scattering of alpha particles from nu-
clei; he found a small deviation from the scattering law derived for point nuclei
and therefrom got a good idea concerning the size of the nucleus.(!). Many of the
later investigations were also done with hadrons, mainly alpha particles or protons.
These experiments, however, have one serious drawback: Nuclear size effects are
intertwined with nuclear force effects, and the two must be disentangled. Leptonic
probes do not suffer from this handicap, and the most detailed information concern-
ing the nuclear charge distribution has been obtained with electrons and muons.

6.2 Rutherford and Mott Scattering

The classical picture of elastic scattering of an alpha particle by the Coulomb field of
a nucleus of charge Ze is shown in Fig. 6.1. This event is called Rutherford scattering
if the nucleus is spinless; the alpha particle also has spin 0. The cross section for
scattering of a spin-0 particle by a spinless nucleus can be computed classically or
quantum mechanically, with the same result. The Rutherford scattering formula is
one of the few equations that can be taken over into quantum mechanics without
change, and this fact was a source of great pride to Rutherford.(®)

A fast way to derive the differential cross section for Rutherford scattering is
based on the first Born approximation. In general, the differential cross section is
written as

o~ ia)P, (62)

where f(q) is called the scattering amplitude and q is the momentum transfer,

gq=p-p. (6.3)
p is the momentum of the incident and p’ that of the scattered particle. For

elastic scattering, Fig. 6.1(b) shows that the magnitude of the momentum transfer
is connected to the scattering angle 6 by
LE. Rutherford, Phil. Mag. 21, 669 (1911).

2Rutherford scorned complicated theories and used to say that a theory is good only if it could
be understood by a barmaid. (G. Gamow, My World Line, Viking, New York, 1970.)
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(@) (b)

Figure 6.1: Rutherford scattering. (a) Classical trajectory of a particle with charge Zie in the
field of a heavy nucleus with charge Ze. (b) Representation of the collision in momentum space.

q = 2psin 6. (6.4)

In the first Born approximation it is assumed that the incident and the scattered
particle can be described by plane waves. The scattering amplitude can then be
written as(®)

_m T\ 5
flq) = 573 V(x) exp (T) d°z. (6.5)
V(x) is the scattering potential. If it is spherically symmetric, integration over
angles can be performed, and the scattering amplitude becomes, with x = |x|,

2m [

f(@® = g /. dzx sin (%) V(x). (6.6)

Since f no longer depends on the direction of g but only on its magnitude, it is now
written as f(q?).

For Rutherford scattering, the potential V(z) is the Coulomb potential.(*) Or-
dinarily, the Coulomb interaction between two charges g1q2 at a distance x is writ-
ten as

Viz) = %

3We introduce Eq. (6.2) and the Born approximation here without derivation. This omission
will be rectified later, in Section 6.11 and, with a different approach, in Problem 10.3. The student
who has not yet encountered Egs. (6.2) and (6.5) should simply use them as a tool here and then
study their derivation later. Derivations are also given in Merzbacher, Section 13.4; and Park,
Section 9.3.

4In the original Rutherford experiments, the probing particles were o particles. These are
hadrons, and if they get close to the nucleus, the hadronic force must also be taken into account.
The experiments discussed here are performed with electrons, and no problems from hadronic
forces arise.
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In the scattering experiment shown in Fig. 6.1, the nucleus is surrounded by its
electron cloud, and the nuclear charge Ze is shielded. Shielding is taken into account
by writing

Vo) = 22 e () 67

T a

where a is a length characteristic of atomic dimension. Eq. (6.7) enables the integral
in Eq. (6.6) to be done, and the scattering amplitude becomes

2mZ, Ze?
¢* + (h/a)?’
In all collisions exploring the structure of nuclei, the momentum transfer ¢ is at

least of the order of a few MeV /¢, and the term (h/a)? can be neglected completely.
With Egs. (6.8) and (6.2) the Rutherford differential cross section becomes

do\ 4m?(Z, Ze?)?
), q* ’

(@) = (6.8)

(6.9)

The Rutherford scattering formula, Eq. (6.9), is based on a number of assump-
tions. The four most important ones are

1. The Born approximation.
2. The target particle is very heavy and does not take up energy (no recoil).
3. The incident and target particle have spin 0.

4. The incident and target particle have no structure; they are assumed to be
point particles.

These four restrictions have to be justified or removed. We shall retain and justify
the first two and partially remove the second two.

1. The Born approximation assumes that the incident and the outgoing particle
can be described by plane waves. Such an assumption is allowed as long as

21262
he

If condition (6.10) is not satisfied, a more detailed calculation is necessary
(phase-shift analysis or higher Born approximations) .(®) The essential physical

< 1. (6.10)

aspects can, however, be understood by using the first Born approximation,
and we shall not go beyond it.

5D.R. Yennie, D.G. Ravenhall, and R.N. Wilson, Phys. Rev. 95, 500 (1954).
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2. Only elastic scattering is considered here. The target particle remains in
its ground state, and it does not accept excitation energy. Moreover, it is
assumed to be so heavy that its recoil energy can be neglected. However, as
Fig. 6.1(b) shows, a very large momentum can be transferred to the target
particle. At first the idea of a collision with large momentum transfer but with
negligible energy transfer seems unrealistic. A simple experiment will convince
an unbeliever that such a process is possible: take a car or motorcycle and
race straight into a concrete wall. If well constructed, the wall will take up
the entire momentum but will accept very little energy. Most of the later
discussion will be concerned with the scattering of electrons from nuclei and
nucleons. In this case, restriction 2 is satisfied as long as the ratio of incident
electron energy to target rest energy is small. At higher energy, the cross
section can be corrected for nucleon or nuclear recoil in a straightforward
manner. Essential results remain unaffected, and we shall therefore not treat
the recoil corrections.

3. As just pointed out, most experiments to be discussed concern the scattering
of electrons. In this case, the spin has to be taken into account. Scattering of
spin—% particles with charge |Z1] = 1 from spinless target particles has been
treated by Mott, and the cross section for Mott scattering is(®)

do B E? . o0
(m)MOtt = 4(Ze?)? PBL (1 — 3%sin 5) . (6.11)

E is the energy of the incident electron and v = (¢ its velocity. The term
% sin? §/2 comes from the interaction of the electron’s magnetic moment with
the magnetic field of the target. In the rest frame of the target, this field
vanishes, but in the electron’s rest frame, it is present. The term is peculiar
to spin %, it disappears as # — 0, and it is as important as the ordinary
electric interaction as 0 — 1 since the magnetic and electric forces are then of
equal strength. In the limit 3 — 0(E — mc?), the Mott cross section reduces
to the Rutherford formula, Eq. (6.9).

4. The aim of the present chapter is the exploration of the structure of subatomic
particles, and restriction 4 must consequently be removed. This task will be
performed in the following section.

6 A relatively easy-to-read derivation of Eq. (6.11) can be found in R. Hofstadter, Annu. Rev.
Nucl. Sci. 7,231 (1958). A more sophisticated proof is given in J.D. Bjorken and S.D. Drell,
Relativistic Quantum Mechanics, McGraw-Hill, New York, 1964, p. 106, or in J. J. Sakurai,
Advanced Quantum Mechanics, Addison-Wesley, Reading, Mass., 1967, p. 193.
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6.3 Form Factors

How is the cross section modified if the colliding particles possess extended struc-
tures? We shall treat leptons in Section 6.5 and find that they behave like point
particles. This fact renders them ideal as probes, and the modification of Eq. (6.11)
must take only the spatial distribution of the target particle into account. For
simplicity, we shall assume here that the target particle possesses a spherically
symmetric density distribution. It will then be shown below that the cross section
for scattering of electrons from such a target is of the form

do  (do 9v 12
o (%) rer (6.12)

The multiplicative factor F(q?) is called the form factor, and

@ =@p-p)° (6.13)

is the square of the momentum transfer.

Form factors play an important role in subatomic physics because they are the
most convenient link between experimental observation and theoretical analysis.
Equation (6.12) expresses the fact that the form factor is the direct result of a
measurement. To discuss the theoretical side, consider a system that can be de-
scribed by a wave function ¥ (7), which in turn can be found as the solution of a
Schrédinger equation. For an object of charge @, the charge density can be written
as Qp(r), where p(r) is a normalized probability density, [ d®rp(r) = 1. It will be
shown below that the form factor can be written as the Fourier transform of the
probability density

F(g%) = /dgrp(r) exp(iq - r/h). (6.14)

The form factor at zero momentum transfer, F'(0), is usually normalized to be 1
for a charged particle; however for a neutral one, F/(0) = 0. The chain linking the
experimentally observed cross section to the theoretical point of departure can thus
be sketched as follows:

Experiment Comparison Theory
d
d—; — |F(¢?)| & F(¢*) «— p(r) «— 1b(r) «—Schrédinger equation

In reality, individual steps can be more complicated than shown here, but the
essential aspects of the chain remain.

We verify these introductory remarks by computing the scattering of a spinless
electron from a finite spherically symmetric nucleus in the first Born approximation
(Fig. 6.2).
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The scattering potential V(z) in
Eq. (6.5) at the position of the elec-
tron consists of contributions from the 1 Electron
entire nucleus. Each volume element TT~C
d®r contains a charge Zep(r)d®r and N

gives a contribution (Eq. 6.7)

A 2

dV(z) = e exp (_f) p(r) d®r,
o a Finite
nucleus

so that

2 3 p(’r‘) z Figure 6.2: Scattering of a spinless electron by
V() =—Ze /d 7'7 €Xp " a spinless nucleus with extended charge distribu-

(6.15) tion.

where z = |z| and the vector z is shown in Fig. 6.2. Introducing V' (z) into Eq. (6.5)
and using x = r + z yields

2 - D (— i -
f(@* = 7;1_27; /d3rexp (lth) p(r‘)/oﬁxie p(zz/a) exp (thz> )

For fixed 7, d®z can be replaced by d®z. The integral over d3z is then the same as
encountered in the evaluation of Eq. (6.8), and it gives

5 exp(—z/a) iq-z 4rh? 4rh?
= . .1
[t e (M52) = i — (0:16)

The integral over d>r is the form factor, defined in Eq. (6.14), and the cross section
do/d2 = | f]? becomes

do do

— == F(g®)|%. Nl

- (G) (6.17)
The computation for electrons with spin follows the same lines; Eq. (6.12) is the

correct generalization of Eq. (6.17). One remark is in order concerning the density
p(r). By Eq. (6.14), the density p(r) has been defined in such a way that

/p(r)dgr =1. (6.18)

Equation (6.12) indicates how the form factor |F(g?)| can be determined ex-
perimentally: The differential cross section is measured at a number of angles, the
Mott cross section is computed, and the ratio gives |F(g?)|. The step from F(q?)
to p(r) is less easy. In principle, Eq. (6.14) can be inverted and then reads

o) = s [ 0 Fla e (—iq,;; ) | (6.19)
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Equations (6.14) and (6.19) are the three-dimensional generalization of Eqs. (5.40)
and (5.41). The expression for p(r) shows that the probability distribution is deter-
mined completely if F(¢?) is known for all values of ¢?>. Experimentally, however,
the maximum momentum transfer is limited by the available particle momentum.
Moreover, as we shall see soon, the cross section becomes very small at large values
of ¢?, and it is then extremely difficult to determine F(¢?). The practical approach
is therefore different: Forms for p(r) with a number of free parameters are assumed.
The parameters are determined by computing F(q?) with Eq. (6.14) and fitting the
expression to the measured form factors.(”

To provide some insight into the meaning of form factors and probability dis-
tributions, we shall connect F(g?) to the nuclear radius and give examples of the
relation between form factor and probability distribution. For ¢R < &, where R is
approximately the nuclear radius, the exponential in Eq. (6.14) can be expanded,
and F(q?) becomes

1

F(‘I?):l—@q

2r?) 4 - (6.20)

where (r?) is defined by

(r?)y = /d3r r2p(r) (6.21)

and is called the mean-square radius. For small values of the momentum transfer,
only the zeroth and second moments of the charge distribution are measured, and
further details cannot be obtained.

If the probability density is Gaussian,

p(r) = poexp [— (g)Q] (6.22)

then the form can be computed easily, and it becomes

2 ¢’ 2 3.9
F = -, = —b*. 6.23
@ =eo (25 ). =3 (6.23)
If b becomes very small, the distribution approaches a point charge and the form
factor tends toward unity. This limiting case is the point from which we started. A
few probability densities and form factors are given in Table 6.1.

A final word concerns the dependence of the form factor on experimental quan-
tities. Equation (6.14) shows that F(q?) depends only on the square of the mo-
mentum transferred to the target particle and not on the energy of the incident

7One famous problem is apparent from the chain shown after Eq. (6.14). Experimentally, the
absolute square of the form factor is obtained and not the form factor. The same problem appears
in X-ray structure determinations. To get more information on the form factor, interference effects
must be studied. In X-ray investigations of large molecules, interference is produced by substituting
a heavy atom, for instance, gold, into the large molecule, and the resultant change of the X-ray
pattern is observed. What can be used in subatomic physics?
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Table 6.1: PROBABILITY DENSITIES AND FORM FACTORS
FOR SOME ONE-PARAMETER CHARGE DISTRIBUTIONS. [After
R. Herman and R. Hofstadter, High-Energy Electron Scatter-
ing Tables, Stanford University Press, Stanford, CA, 1960.]

Probability Density, p(r) Form Factor, F(q?)

o(r) 1

po exp(—r/a) (1+ q%a?/r?)~2

po exp[—(r/b)?] exp(—gq?b®/4h?)

po,r < R 3[sin(|q|R/h) —(1g|R/h) cos(|q|R/h)]
0.r>R (qIR/m)

particle. F(q?), for a specific value of g2, can therefore be determined with pro-
jectiles of different energies. Equation (6.4) indicates that it is only necessary to
change the scattering angle correspondingly, and the same value of F(q?) should
result. Incidentally, the fact that F(q?) depends only on g? is true only in the first
Born approximation; it is not valid in higher order. It can therefore be used to test
the validity of the first Born approximation.

6.4 The Charge Distribution of Spherical Nuclei

The investigation of nuclear structure by electron scattering has been pioneered by
Hofstadter and his collaborators.(®) The basic arrangement is similar to the one
shown in Fig. 5.32: An electron accelerator produces an intense beam of electrons
with energies between 250 MeV and a few GeV. The electrons are transported to
a scattering chamber where they strike the target. The intensity of the elastically
scattered electrons is determined as a function of the scattering angle. Many im-
provements have occurred since the early experiments by Hofstadter. In addition to
higher energies and higher intensity electron beams, which allow higher momentum
transfers to be studied, much higher resolution (~ 100 keV or < 1073 of the beam
energy) has been achieved. The high resolution allows one to separate elastic from
inelastic scattering and to study inelastic scattering to individual levels in addition
to elastic scattering. The differential cross section for the scattering of 500 MeV
electrons from 4°Ca is shown in Fig. 6.3. The data can be seen to extend over 12
orders of magnitude; they yield values of |F(q?)| and from these values information
about the charge distribution is obtained.(?)

The crudest approximation to the nuclear charge distribution is a one-parameter

8R. Hofstadter, H.R. Fechter, and J.A. McIntyre, Phys. Rev. 92, 978 (1953); for a review, see
C.J. Batty, E. Friedman, H.J. Gils, and H. Rebel, Adv. Nucl., Phys., ed. J.W. Negele and E.
Vogt, Plenum Press, New York, 19, 1 (1989).

9A nice review with data tables can be found at H. De Vries, C.W. De Jager and C. De Vries,
Atom. Data Nucl. Data Tabl. 36, 495 (1987).
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function, for instance, a uniform or a Gaussian distribution. Such distributions
give poor fits, and the simplest useful approximation is the two-parameter Fermsi
distribution

B N
plr) = 1+ exp[(r —c)/a]’
N is a normalization constant and ¢ and a are the parameters describing the nucleus.
The Fermi distribution is shown in Fig. 6.4; c¢ is called the half-density radius and
t the surface thickness. The parameter a in Eq. (6.24) and ¢ are related by

(6.24)

t=(41n3)a. (6.25)

The results of many experiments can be summarized in terms of the parameters
defined in Egs. (6.21) and (6.24):

1. For medium- and heavyweight nuclei the root-mean-square charge radius can
be approximated by the relation

(V2 =1 AY3 g =0.94 fm, (6.26)

where A is the mass number (number of nucleons). The nuclear volume con-
sequently is proportional to the number of nucleons. The nuclear density is
approximately constant; nuclei behave more like solids or liquids than atoms.

2. The half-density radius and the skin thickness satisfy approximately

c(in fm) = 1.18 A3 — 048,  t~ 2.4 fm. (6.27)
From these values, the density of nucleons at the center follows as
pn =~ 0.17 nucleon/fm*. (6.28)

This value approaches the density of nuclear matter, namely the density that
an infinitely large nucleus, without surface effects, is presumed to have.

3. In the older literature, written at a time when the shape of nuclei was not
yet well known, it was customary to describe the nuclear radius differently.
A nucleus of uniform density and radius R was assumed. From Eq. (6.21) it
follows that R? and (r?) are connected by

R o 4
3rdr 3
2y — ¢ / T _ 2R 2
(r*) T e 5R (6.29)

R approximately satisfies the relation

R = RyA'/3, Ry =1.2 fm. (6.30)
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Figure 6.3: Elastic scattering cross section of electrons from 49Ca from experiments performed at
Stanford and Saclay, France. [Courtesy I. Sick, Phys. Lett. 88B, 245 (1979).]
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Figure 6.4: Fermi distribution for the nuclear charge density. c is the approximate half-density
radius and t the surface thickness.

4. The actual charge distribution is more complex than the two-parameter Fermi
distribution. In particular the density in the interior of nuclei is not constant
as assumed in Eq. (6.24); it can decrease or increase toward the center, as
shown in Fig. 6.5 for “°Ca and 208Pb.(%) These variations arise, primarily,
from shell structure effects; see Chapter 17. It is possible to extract the
charge distribution from the measured electron scattering cross section in an
almost model-independent manner('® by writing the charge distribution as a
superposition of Gaussians,

pocZAexp[ 5R)].

The charge distributions shown in Fig. 6.5 were obtained in this manner.(®)

5. Nuclei that have nonzero spins also possess magnetic moments; the distribu-
tion of the magnetization can also be described by a form factor. Experimen-
tal information about the magnetization density is obtained from large angle
(backward)(*:12) electron scattering.

The information given so far in this section provides a glimpse into the structure
of nuclei. Considerably more is known—finer details have been investigated,(®:3)
still higher momentum transfers have been studied with 4 and 10-20 GeV electrons,
particularly in the lightest nuclei, 2H,? He,> H.(1?2) In addition, inelastic scattering

101, Sick, Nucl. Phys. A218, 509 (1974).

1S K. Platchkov et al., Phys. Rev. C25, 2318 (1982); S. Auffret, Phys. Rev. Lett. 54, 649
(1985); T.W. Donnelly and I. Sick, Rev. Mod. Phys. 56, 461 (1984).

12R.G. Arnold et al., Phys. Rev. Lett. 35, 776 (1975); B.T. Chertok, Prog. Part. Nucl. Phys.,
(D.H. Wilkinson, ed.), 8, 367 (1982); P.S. Justen, Phys. Rev. Lett. 55, 2261 (1985); R.G. Arnold
et al., Phys. Rev. Lett. 58, 1723 (1987).

13J.M. Cavedon et al., Phys. Rev. Lett. 58, 1723 (1987).
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Figure 6.5: Probability distribution for 4°Ca and 298Pb, as obtained from electron scattering.
[From I. Sick. Phys. Lett. 88B, 245 (1979).]

to many excited nuclear states have been examined.("®) We must, however, re-

member that the information provided by charged lepton scattering concerns the
nuclear charge and current distributions and that corresponding data on hadronic
structure (matter distribution) require a different probe, such as hadrons(*®or the

weak interaction of electrons.(16)

6.5 Leptons Are Point Particles

We return now to the g factor of the electron. By 1926, the idea of the spinning
electron and its magnetic moment was generally accepted,(!”) but the value of the
g factor (Eq. (5.16)),

9(1926) = —2,

had to be taken from experiment. (The minus sign indicates that the magnetic
moment points in the direction opposite to the spin for a negative electron.) It was
exactly twice as large as the g factor for orbital motion, Eq. (5.14). In other words,
even though the electron has spin %, it carries one Bohr magneton. In 1928, Dirac

14J. Heisenberg and H. P. Blok, Annu. Rev. Nucl. Part. Sci. 33, 569 (1983).

15A.W. Thomas, Nucl. Phys. A354, 51c (1981); R. Campi, Nucl. Phys. A374, 435c (1982).

16C.J. Horowitz, S.J. Pollock, P.A. Souder, and R. Michael, Phys. Rev. C 63, 025501 (2001).

17A fascinating description of the history of the spin is presented by B.L. Van der Waerden,
in Theoretical Physics of the Twentieth Century (M. Fierz and V.F. Weisskopf, eds.), Wiley-
Interscience, New York, 1960. See also S.A. Goudsmit, Phys. Today 14, 18 (June 1961) and P.
Kusch, Phys. Today 19, 23 (February 1966).
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Figure 6.6: A physical electron is not just a pure Dirac electron. The presence of virtual photons
affects the properties of the electron; in particular it changes the g factor by an amount that can
be calculated and measured.

introduced his famous equation; the existence of a magnetic moment and the value
g = —2 turned out to be natural consequences.('®)

In 1947, Kusch and Foley measured the g factor carefully by using the then-new
microwave technique and discovered that it showed a small deviation from —2.(19)
Within a very short time, Schwinger could explain the deviation. The experiment
was accurate to about 5 parts in 10°, and the theory was somewhat better. Since
then, theoretical and experimental physicists have been in a race to improve the
numbers. The winner has consistently been physics, because everybody has learned
more. Since the comparison between theory and experiment is very important, a
few words on both are in order here.

The theoretical explanation invokes virtual photons, a concept already discussed
in Section 5.8. A physical electron does not always exist as a Dirac electron. Part of
the time it emits a virtual photon which it then reabsorbs. (Classically, this process
corresponds to the electron’s interaction with its own electromagnetic field.) The
measurement of the g factor involves the interaction of the electron with photons;
the presence of virtual photons changes the interaction and consequently also the
g factor. Figure 6.6 shows how the simple interaction of a photon with a Dirac
electron is altered and complicated by the electron’s own electromagnetic field.
The net effect is to add an anomalous magnetic moment. An enormous amount of
labor has been put into calculating the magnetic moment of a Dirac particle taking
into account corrections of the type shown in Fig. 6.6. The result is expressed in
terms of the number

a= |m_2 (6.31)
2
18For a derivation of the magnetic moment of the electron in Dirac theory, see, for instance,
Merzbacher, Section (24.7), or Messiah, Section XX, 29. Actually, the magnetic moment can
already be derived as a nonrelativistic phenomenon, as, for instance, in A. Galindo and C. Sanchez
del Rio, Am. J. Phys. 29, 582 (1961), or R.P. Feynman, Quantum Electrodynamics, Benjamin,
Reading, Mass., 1961, p. 37.
9P, Kusch and H.M. Foley, Phys. Rev. T2, 1256 (1947); 74, 250 (1948).
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Figure 6.7: Basic approach underlying the direct determination of a = (|g| — 2)/2. For details see
the text.

A pure Dirac particle, that is, a particle with properties as predicted by the Dirac
equation alone, would have a value a = 0. The value of a for a physical electron has
been computed by many people, and the present best theoretical value is(2?)

ot =1 (£) — 0.328478965 (g>2 +1.181241456 (9)3 — 1.7366160 (9)4 +oe
2 \m T us us
(6.32)
where « is the fine structure constant, o = e2/hc.

The early experimental results for a. were based on an approach that can be
explained with Fig. 5.5: if an electron is placed in an external magnetic field, Zeeman
splitting results. A precise determination of the energy difference between levels
and of the externally applied field yields g. Indeed, the discovery of a nonvanishing
parameter a. occurred with such a technique. Present experiments determine |g| —
2, and not ¢.?" Two different approaches exist and because they are of such
importance to subatomic physics, we will sketch both.

The first approach, pioneered by Crane,(?2) is based on the following idea. In
a uniform magnetic field, the spin and the momentum of a particle with spin %
and |g| = 2 retain a constant angle between them. Now consider an experimental
arrangement as in Fig. 6.7. Longitudinally polarized electrons, i.e., electrons with

20T, Kinoshita An Isolated Atomic Particle at Rest in Free Space in A Tribute to Hans Dehmelt,
Nobel Laureate; E. Henley, N. Fortson, W. Nagourney, eds., Alpha Science Limited International,
Pangbourne, UK, (2005); V.W. Hughes and T. Kinoshita, Rev. Mod. Phys. 71, S133 (1999).

21 A more detailed description of the ideas underlying the |g| — 2 experiments is given in R. D.
Sard, Relativistic Mechanics, Benjamin, Reading, Mass., 1971.

22H. R. Crane, Sci. Amer. 218, 72 (January 1968); A. Rich and J. C. Wesley, Rev. Mod. Phys.
44, 250 (1972).



150 Structure of Subatomic Particles

Figure 6.8: (a) Penning trap—a combination of a magnetic field B and a cylindrical electric
quadrupole field. (b) Motion of an electron in the combined fields of the Penning trap. (c)
Magnetic energy levels of the electron in the trap.

spin and momentum pointing in the same or opposite direction, are injected into
a solenoidal magnetic field. In this field, the electrons move in circular orbits, and
their spins and momenta are observed after a large number of revolutions. If the g
factor were exactly 2, spin and magnetic moment of the outcoming electrons would
still be parallel, regardless of the time spent in the field B. The small anomalous
part a, however, causes a slightly different rotation for spin and magnetic moment.
After a time ¢ in the field B, the angle o between p and J becomes

a = awct, (6.33)
where
B
Wy = = (6.34)
me

is the cyclotron frequency. If the product Bt is very large, « also becomes very large
and a can be measured very accurately. This method has been applied to electrons
and muons of both signs.

The linear field arrangement shown in Fig. 6.7 works well for electrons because
they are stable and reach the end of the coil after many turns even if they have a
small velocity. Muons, however, decay and it is desirable to use muons with large
velocity in order to gain flight time and distance [Eq. (1.9)]. The number of turns
of high-energy muons in a linear field is too small to achieve the desired accuracy.
The problem was overcome at CERN by replacing the linear by a circular field.

Pions of 3.1 GeV /¢ momentum were injected into a storage ring of 14 m diameter;
their decay in flight into muons produced polarized muons in the storage ring. With
such an arrangement, |g| — 2 could be determined with great accuracy for muons of
both signs.(®3) A more recent experiment at the Brookhaven National Laboraory
AGS uses the same energy pions, but the muons from their decays are injected

23F.J.M. Farley and E. Picasso, Annu. Rev. Nucl. Part. Sci. 29, 243 (1979).
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directly into the ring. This method provides a gain in the number of stored muons
by a factor of about 10. The magnetic field in the storage ring is optimized for
uniformity. The results are sumarized in Table 6.2.

The second approach to the measurement of |g| — 2, pioneered by Dehmelt
and his collaborators,?¥ is based on a sophisticated form of a Zeeman experi-
ment and constitutes a triumph of experimental ingenuity. A single electron is
confined for weeks in a “trap” formed by a combination of a magnetic and an elec-
tric quadrupole field (Penning trap). Electron and apparatus constitute an atom
with macroscopic dimensions that is called geonium, the earth atom. In the trap,
sketched in Fig. 6.8(a), the electron performs a motion that consists of three com-
ponents illustrated in Fig. 6.8(b): a cyclotron motion in the uniform magnetic field,
an axial motion in the electric field, and a magnetron motion in the combined
fields. Consider first an electron with spin down. The motion of this electron in
the magnetic field is quantized. The orbits shown in Fig. 6.8(a) and (b) can have
only energies allowed by quantization; the higher the energy the larger the radius.
The energy difference between any two Zeeman levels [Fig. 6.8(c)] is given by the
cyclotron frequency w., Eq. (6.34), as

hwe =2 pupB. (6.35)

The energy can, however, also be changed by flipping the spin. If the spin is
reversed from down to up, the corresponding energy change, indicated in Fig. 6.8(c)
is

hws = g upB. (6.36)
By applying the proper rf field, transitions can be induced in which only the orbit is
changed, or in which spin and orbit both change. The resonance frequency is given
by w, in the first case and by

_ _ (gl =2)psB
Wg =Ws —We = —F
h
in the second case. The ratio of the two frequencies yields
wa _ (lg/—2)
— = 6.37
o 5 (6.37)

By measuring these frequencies accurately, the values of |g| — 2 for the electron
and the positron were measured with extreme accuracy.(?>26) In Table 6.2, we list

24R.S. VanDyck, Jr., P.B. Schwinberg and H.G. Dehmelt in New Frontiers in High Energy
Physics, (B. Kursunoglu, A. Perlmutter, and L. Scott, eds) Plenum, New York, 1978, p. 159; P.
Ekstrom and D. Wineland, Sci. Amer. 243, 105 (August 1980); H. Dehmelt, in Atomic Physics,
Vol 7. (D. Kleppner and F. Pipkin, eds) Plenum, New York, 1981.

25R.S. VanDyck, Jr., P.B. Schwinberg, and H.G. Dehmelt, Phys. Rev. Lett. 38, 310 (1977); P.
B. Schwinberg, R. S. VanDyck, Jr., and H. G. Dehmelt, Phys. Rev. Lett. 47, 1679 (1981); R.S.
VanDyck Jr., P.B. Schwinberg and H.G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987); B. Odom et
al., Phys. Rev. Lett. 97, 030801 (2006).

26@G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. 97, 030802
(2006).
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Table 6.2: COMPARISON OF THEORETICAL AND EXPERI-
MENTAL VALUES OF a = (|g| — 2)/2.

Particle Exp./Th. a
e Exp. 1159 652 180.85(76) x 10~ 12¥
et Exp. 1159 652 187.9(43) x 10121
et Th. 1 159 652 180.85 x 10~ 12*
I’ Exp. 1165 921 4(9) x 10—10 1
ut Exp. 1165 920 3(8) x 10~10 ft
ut Th. 1165 918 8(8) x 1010 ft

TSee Ref. (25) and references therein.

* The uncertainty in the theory is about 1/3 of the experi-
mental uncertainty. The number quoted here is identical
to the measurement because presently these values are
used to extract the value of the fine structure constant.
See Ref. (26).

TG.W. Bennet et al., Phys. Rev. Lett. 92, 161802
(2004), and references therein. The uncertainties in the
calculation are dominated by uncertainties on the contri-
bution from virtual loops that can be better estimated
by using data from ete™ collisions and from 7 decays.
We use an uncertainty that encompasses both.

values of a = (|g] — 2)/2.

For the case of the electron the experimental and theoretical uncertainties are
small enough that one can use the magnetic moment measurements to get the fine
structure constant with better precision than any other experiment.2%) The values
from different experiments agree to within experimental uncertainties. Quantum
electrodynamics (QED), the quantum theory of the interactions of charged leptons
and photons, is a superbly successful theory.

The theoretical calculations for the electron are performed under the assumption
that the leptons are point particles with only electromagnetic interactions. For the
more massive leptons, the muon and the tau, strong and weak interactions also
become important at the level of accuracy obtained experimentally. In addition to
the diagrams of the kind shown in Fig. 6.6, strong and weak vacuum polarization
terms, illustrated in Fig. 6.9 must be taken into account. For the muon, strong
corrections are of the order of 7 x 10~°, weak ones are estimated as 1 x 107°. These
corrections are much less important for the electron because they scale as the square
of the mass of the lepton.(27)

The agreement between experiment and theory expressed in Table 6.2 not only
confirms the strong interaction correction for the muon, but can also be used to
set an upper limit on the size of the leptons. Both the muon and electron must be
smaller than 107! m

Experiments performed with high energy charged leptons also demonstrate that

27K. Hagiwara et al, Phys. Lett. B 557, 69 (2003).
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Hadron

Figure 6.9: Strong and weak correction terms that appear in the interaction of a charged lepton
with photons.

quantum electrodynamics predicts all observed phenomena correctly if proper the-
oretical corrections, such as the strong vacuum polarization shown in Fig. 6.9, are
carried out. Measurements in colliding beam experiments, in particular,

e et — efeJr, e et — ;f;ﬁ, and e et — 7177

Jr

show that QED holds to distances smaller than about 10~8 m.(*8) We consequently
cannot yet answer the question raised by the incredible success of QED: Will the
theory break down, and if so, at what scale?

6.6 Nucleon Elastic Form Factors

By 1932 it was well known that electrons have spin % and a magnetic moment of
1pp, (Bohr magneton), as predicted by the Dirac equation. Two other spin-3 par-
ticles were also known to exist, the proton and the neutron. It was firmly believed
that these would also have magnetic moments as predicted by the Dirac equation,
one nuclear magneton for the proton and zero moment for the neutron. Enter Otto
Stern. Stern had principles in selecting his experiments: “Try only crucial exper-
iments. Crucial experiments are those that test universally accepted principles.”
When he started setting up equipment to measure the magnetic moment of the
proton, his friends teased him and told him that he should not waste his time on an
experiment whose outcome was foreordained. The surprise was great when Stern
and his collaborators found a magnetic moment of about 2.5 py for the proton and
about —2 px for the neutron.(>?)

How can the departure of the magnetic moments of the proton and the neutron
from the “Dirac values” be understood? Before quarks were introduced, the expla-
nation of the anomalous magnetic moments of the nucleons was based on virtual

28K.G. Gan and M.L. Perl, Int. J. Mod. Phys. A3, 531 (1988).
291. Estermann, R. Frisch, and O. Stern, Nature 132, 169 (1933); R. Frisch and O. Stern, Z.
Physik 85, 4 (1933).
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mesons that are present in their structures. The virtual mesons surround (“clothe”)
the Dirac (“bare”) nucleon. It is now clear that nucleons are composed primarily
of three quarks, the proton has the composition (uud), the neutron (udd), where
u stands for an up quark and d for a down one. Nucleons contain not just one
point particle and a meson cloud; three point particles reside there. The interaction
among the quarks is transmitted by gluons; the force is weak at short distances
(<0.1 fm) and strong at large ones (Z0.5 fm). The corresponding theory is called
“QCD,” quantum chromodynamics. As the interaction is a strong one, it is dif-
ficult to calculate detailed structure effects from first principles. The mesons are
an effective means of describing “large” distance hadronic structure. Pions are the
lightest mesons, thus they account for the outermost part of the structure and are
therefore the most important ones to consider in addition to the quarks. How-
ever, the quark composition given above is sufficient to give the correct ratio of the
magnetic moments of the neutron to proton;®% this result was considered one of
the early successes of the use of quarks. In addition, a number of “bag” models
have been constructed; some of the more successful ones include a pion cloud in
addition to quarks to explain the structure of the nucleon.®" In such a picture,
illustrated in Fig. 6.10, a photon interacts not only with the core (bare proton or
quarks), but also with the surrounding meson cloud. Since the pions do not leave
the nucleon and have to return, they can only go to about half the pion Compton
wavelength [Eq. (5.52)]. The radius of the nucleons consequently is expected to be
about f/2 myc or about 0.7 fm. In this model, which can account for the static
properties of both the proton and neutron, the quarks and the pion cloud contribute
to the magnetic moment. The anomalous magnetic moments of the nucleons are due
to hadronic effects, thus they cannot be computed to anywhere near the accuracy
of the anomalous g factors for the leptons.

The best way to explore the charge and current distributions of nucleons is again
electron scattering. Experimentally, the problem is straightforward for protons. A
liquid hydrogen target is placed in an electron beam, and the differential cross sec-
tion of the elastically scattered electrons is determined. For neutrons, the situation
is not so easy. No neutron targets exist, and it is necessary to use deuteron targets
and subtract the effect of the proton. The subtraction procedure introduces uncer-
tainties. The e~ n elastic scattering cross section is consequently less well known
than the e p cross section.(32)

For spinless target particles, the form factor can be extracted from the cross sec-
tion by using Eq. (6.12). Nucleons have spin %, and Eq. (6.12) must be generalized.
Without calculation, we can guess some features of the result. F(q¢?) in Eq. (6.12)
describes the distribution of the electric charge, and it can be called an electric form

30F. E. Close, An Introduction to Quarks and Partons, Academic Press, New York, 1979; Chs. 4
and 7.

31A.W. Thomas and G.A. Miller, Phys. Rev D24, 216 (1981). See also the review by D.O.
Riska, Adv. Nucl. Phys. 22,1 (1996), ed. J.W. Negele and E. Vogt, Plenum Press, New York.

32G. Warren et al, Phys. Rev. Lett. 92, 042301 (2004).
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Figure 6.10: A physical proton is pictured as a superposition of many states, for instance a bare
proton or three quarks, a bare neutron plus a pion, and so forth.

factor. The proton also possesses, in addition to its charge, a magnetic moment. It
is unlikely that it behaves like a point moment and sits at the center of the proton.
It is to be expected that the magnetization is also distributed over the volume of the
nucleon and this distribution will be described by a magnetic form factor.(®3) The
detailed computation indeed proves that elastic electromagnetic scattering from a
spin—% particle with structure must be described by two form factors; the laboratory
cross section can be written as

do do G% +bG3, 2 5 (0
d_Q = <d—Q)MOtt |:17—|—b + 2bGM tan <§):| 5 (638)
where
2
—q

Equation (6.38) is called the Rosenbluth formula;(*%) m is the mass of the nucleon, 6
the scattering angle, and ¢ the four-momentum transferred to the nucleon.®® The
Mott cross section is given by Eq. (6.11). Gg and G are the electric and magnetic

33Nuclei with spin J > 1/2 also possess magnetic moments, and the magnetization is also
distributed over the volume of the nucleus. For such nuclei, the discussion given in Section 6.4
must be generalized.

34M.N. Rosenbluth, Phys. Rev. 79, 615 (1950).

35Here a word of explanation is in order: The variable g is the four-momentum transfer. It is

defined as
E FE ,
q=y———HP—P -
c c

1
=5 E-EY-(p-p)= (B E'? — ¢,

Its square,

is a Lorentz-invariant quantity. Since ¢ is a Lorentz scalar, its use is preferred in high-energy

physics. For elastic scattering in the c.m. or at low energies, ¢> = —q>.
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form factors, respectively, and they are both functions of ¢?. The designations
electric and magnetic stem from the fact that for ¢ = 0, the static limit, they are
given by

. Gu(?=0)= MLN (6.40)

where (@ and p are the charge and magnetic moment, respectively, of the nucleon.
Specifically, Gg(0) and Gs(0) for the proton and the neutron are

G5 (0)

1, G'%(0) =0, (6.41)
G2,(0) = 2. |

79, G7(0)=—1.91.

Early electron—proton scattering experiments,(®®) performed with an electron
energy of 188 MeV, were analyzed by fitting the observed differential cross section
with an expression of the form of Eq. (6.38) with fixed values of the parameters G.
An example is shown in Fig. 6.11. Comparison of the various theoretical curves with
the experimental one indicates that the proton is not a point particle. The con-
clusion based on the discussion of the anomalous magnetic moment is consequently
verified by a direct measurement. However, an electron energy of about 200 MeV
is too small to permit studies at significant values of the momentum transfer and
to get information on the ¢? dependence of G and Gj;. Since 1956, many ex-
periments have been performed at accelerators with much higher electron energies.
To extract the form factors from the measured elastic scattering cross sections, the
cross section for a fixed value of ¢? is normalized by division by the Mott cross
section and plotted against tan? #/2, as shown in Fig. 6.12. Such a plot should
yield a straight line; from the slope, the value of G2, is obtained. The intersection
with the y axis then yields G%.

Figure 6.13 gives the magnetic form factor of the proton. For convenience,
Gar/(p/ ) is plotted, where p is the proton magnetic moment. For comparison
we show also a plot of the function:

1
1+ lgl/a8)*
with ¢2 = 0.71(GeV/c)?. This function in conjunction with Table 6.1 can help the
reader picture the distribution of magnetism in the proton. Although it is clear that
at values of |¢|? > 10 (GeV/c)? the dipole function does not reproduce the data very
well, it has become customary to compare the form factors to Gp©7. Initially both
the electric and magnetic form factors were determined by the procedure sketched
in Fig. 6.12. This method has the disadvantage that, as |q|? gets larger it becomes
more difficult to extract Gg as is apparent from Eq. 6.38. Recently there has

Gp(d*) = (6.42)

36R.W. McAllister and R. Hofstadter, Phys. Rev. 102, 851 (1956).
37Gp goes down as |q| =% as |q|? — oo, a behavior that is predicted by QCD.
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Figure 6.11: Electron—proton scattering with 188 MeV electrons. [R. W. McAllister and R. Hofs-
tadter, Phys. Rev. 102, 851 (1956).] The theoretical curves correspond to the following values of

Gg and Gpr: Mott (1;0), Dirac (1;1), anomalous (1;2.79).
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Figure 6.12: Rosenbluth plot. See the text for description.
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Figure 6.13: Left: Magnetic form factor for the proton plotted against the squared momentum
transfer |g|?. The different symbols correspond to different experiments. The ‘dipole’ function
—described in the text and shown as a continuous line— describes the Gj; data quite accurately
below |g|2 &~ 10 (GeV/c)?. Right: Gg/Gar. The distributions of charge and magnetism in the
proton are quite different. [See C.Hyde-Wright and K. de Jager, Annu. Rev. Nucl. Part. Sci.
54, 217 (2004).]

been significant progress using polarized electron scattering on polarized targets to
extract directly the ratio of the electric and magnetic form factors. The conclusions
are summarized in Fig. 6.13.

Some features of the nucleon structure emerge from these relations:

1. Nucleons are not point particles. For point particles, the form factors are
constant.

2. The proton charge distribution, although not acurately described by the dipole
formula, shows that nucleons are extended systems but do not have well-
defined surfaces.

3. The charge distribution is small within the neutron:

G ~ 0. (6.43)

4. The proton and neutron magnetic form factors are roughly described by the
dipole formula, Eq. (6.42), so the radial distribution follows from Table 6.1 as

p(r) = p(0) exp (—2) a= qﬁo =0.23 fm. (6.44)

One remark must be added: The Fourier transform used here is valid only for
small values of |q|?. For large values of |¢|?, the proton that was initially at
rest recoils with a velocity approaching that of light, and Gg (G ) no longer
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Figure 6.14: Magnetic (left) and electric (right) form factors for the neutron. Here we show
the magnetic form factor divided by the dipole formula. The magnetic form factor shows rough
agreement with the dipole formula for |g|2 < 5 (GeV/c)?. [See C.Hyde-Wright and K. de Jager,

Annu.

Rev. Nucl. Part. Sci. 54, 217 (2004).]

represents the charge (magnetic) distribution. The contributions of charge
and magnetism are mixed in both Gg and G)y.

The distribution of electric and magnetic charges within the proton are sig-
nificantly different. Since G falls faster with ¢? than G the electric charge
is spread out more than the magnetic one.

If a certain property, for instance the charge, is described by a form factor G,
with G(0) = 1, then Eq. (6.20) shows that the mean-square radius for this
property can be found from the slope of G(q?) at the origin:

(r?) = —6h2 (dG(q2)) . (6.45)
¢?=0

dg?

From the dipole fit, Eq. (6.42), one obtains (r%(proton)) ~ 0.7 fm*. However,
a more accurate estimation®®) yields (r%(proton)) ~ 0.8 fm®. Nevertheless,
the mean-square radii are in the range

(r%,(proton)) ~ (r3, (proton))

~ (r?,(neutron)) =~ 0.7 — 0.8 fm?. (6.46)

The estimate for the proton radius, given earlier in this section, by considering
virtual pions, qualitatively agrees with this value. The assumption that the

381, Sick, Phys. Lett. 576, 62 (2003).
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deviation of the electromagnetic moments from the Dirac values is caused by
the hadronic structure is therefore verified.

7. Determination of the mean square charge radius of the neutron is made dif-
ficult by uncertainties that arise from the use of a deuterium target. Fortu-
nately, there is another way to determine (r%(neutron)), namely by scattering
low-energy neutrons from electrons bound in atoms. Much ingenuity goes into
disentangling the different components to the scattering to extract the charge
radius.(®?40) The result is:

(r%(neutron)) = —0.116 & 0.002. fm? (6.47)

The negative sign (keeping in mind Egs. (6.20), (6.14) and the fact that the
charge distribution is given by Qp(r)) implies that the neutron, although of
net zero charge, has negatively-charged consituents further from the center
than positive ones.(*!) This can be understood by considering the neutron
partially as a virtual negative pion around a proton or in terms of quarks.

6.7 The Charge Radii of the Pion and Kaon

So far we have learned that the lepton radius is extremely small or vanishes alto-
gether, while the radius of the proton charge distribution is given by Eq. (6.46) as
rp ~ 0.8 fm. The intense pion and kaon beams available at accelerators have made
it possible to determine also the charge radii of the charged pion*?) and charged
kaon.*3) Pions and kaons have spin 0, and scattering of electrons and pions or
electrons and kaons is described by Eq. (6.12), with just one form factor. The
experiments are performed by observing the elastic scattering of high energy pion
or kaon beams from the electrons in a liquid hydrogen target. Evaluation of the
scattering cross section with Eq. (6.12) gives the form factor as a function of ¢?; the
slope of the form factor at the origin determines the radius as shown in Eq. (6.45).
The root mean square radii are

VrZ) =0.67+0.01 fm, /(r%) = 0.56 =+ 0.03 fm. (6.48)

The pion radius is smaller than the proton radius, but larger than that of the kaon.
These differences are not fully understood.

398. Kopecky et al., Phys. Rev. Lett 74, 2427 (1995); PDG.

40For recent proposals to improve on this determination, see J.-M. Sparenberg, H. Leeb Phys.
Rev. C 66, 055210 (2002) and F. Wietfeldt et al., Physica B 385, 1374 (2006).

41 An additional relativistic correction to Eq. (6.47) associated with the magnetic moment of the
neutron, called the Foldy term, which used to be considered dominant, has been shown to cancel
in constituent quark models; see N. Isgur Phys. Rev. Lett. 83, 272 (1999).

42G.T. Adylov et al., Phys. Lett. 51B, 402 (1974); E.B. Dally et al., Phys. Rev. Lett. 48, 375
(1982); T.F. Hoang et al., Z. Physik C12, 345 (1982); S. Amendolia et al., Nucl. Phys. B277,
168 (1986).

43E.B. Dally et al., Phys. Rev. Lett. 45, 232 (1980); S.R. Amendolia et al., Phys. Lett. 178B,
435 (1986).
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6.8 Inelastic Electron and Muon Scattering

In inelastic scattering, the differential cross section is measured for electrons that
have lost a certain amount of energy to the target. The diagrams for elastic and
inelastic electron scattering from a proton are shown in Fig. 6.15. The interac-
tion between the electron and proton, or nucleus, is mediated by a photon, as in
Fig. 5.18. In elastic scattering, the final state is the same as the initial one and no
new particles are created. In inelastic scattering, excited nuclear states are reached
or additional particles are produced. For a nuclear target, a typical scattering spec-
trum is sketched in Fig. 6.16. Several features stand out, an elastic peak, relatively
narrow resonances, a broad shoulder or resonance, and a continuum. The narrow
resonances correspond to excited states of the nucleus, which can be studied in
detail;(144) for example transition form factors can be obtained. The shoulder or
broad resonance is called a quasi-elastic peak; the name stems from its explanation
as elastic scattering from a single nucleon rather than the whole nucleus. In the
laboratory system, the recoil energy of the nucleus in elastic scattering is also the
energy loss, v, of the electron

Hadrons

E'p Eypypm  E'p Ey oy W

Eh»Ph,m Ep Eh,ph,m

Proton Proton

(a) Elastic (b) Inelastic

Figure 6.15: Elastic and inelastic electron scattering.

v=E—-FE (6.49)

It is given by
V= ﬁ, (6.50)
2ma
where m 4 is the mass of the nucleus and ¢2 is the square of the four-momentum

transferred from the electron to the nucleus, 3%
V2 V2
¢=5-P-p)=7F-p (6.51)

where p and p’ are the electron momenta before and after the collision, respectively,
and pj, the momentum of the hadron after the collision, as shown in Fig. 6.15(a),
44B. Frois, Annu. Rev. Nucl. Part. Sci. 37, 133 (1987).
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Figure 6.16: Typical double differential cross section, normalized by dividing through by the Mott
cross section, for inelastic electron scattering from a nucleus. The final rise shown is due to the
onset of pion production.

but in the laboratory system where p, = 0. For quasi-elastic scattering, on the
other hand, the energy loss is taken up by a single nucleon that is usually ejected
from the nucleus; v is

y=11 (6.52)

where m is the mass of a nucleon. The peak is not sharp because the nucleon is
bound in the nucleus and therefore has a momentum spread of order of magnitude
given by the uncertainty principle, namely i/R ~ 100 MeV/c, where R is the
nuclear radius. Finally, one reaches a characterless continuum region where many
broad states are excited. For the measurement of the differential cross section in this
continuum region and for broad resonances it is necessary to determine the double
differential cross section d?c/dE'dS), which is proportional to the probability of a
scattering occurring in a given solid angle df) and into an energy interval between
E’ and E'+dE’. At still higher energies, barely shown in Fig. 6.16 pion production
occurs and new features appear.

A scattering spectrum on a proton target is sketched in Fig. 6.17. Its appearance
resembles that of Fig. 6.16 except that it is plotted as a function of E’ rather than
v and there is no quasi-elastic peak. The reason for this absence is that quarks are
permanently confined inside the proton and cannot be ejected. The elastic cross
section, already discussed in Section 6.6, is shown in Fig. 6.18 normalized by division
through the Mott cross section, Eq. (6.11). The differential cross sections for the
production of particular resonances can also be studied; their angular distributions
have features similar to the elastic case. Like the nucleus, the nucleon in its excited
states has a spatial extension similar to that in its ground state.
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Figure 6.17: Inelastic electron scattering from protons.
electrons with energy E’. Note that this figure is backwards relative to Fig. 6.16.
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N(E') gives the number of scattered

(do/dmott- (d20/dE'dQY)/oMots, in GeV ™1, is given for W = 2, 3, and 3.5 GeV. [After M.
Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969).] Better data now exist, but we show these
results because they demonstrate the salient features clearly.
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6.9 Deep Inelastic Electron Scattering

The Thomson model of the atom, in vogue before 1911, assumed that the positive
and negative charges were distributed uniformly throughout the atom. Rutherford’s
scattering experiment(!) proved that one charge is concentrated in the nucleus; this
discovery profoundly affected atomic physics and founded nuclear physics. Highly
inelastic electron scattering has had a similar impact on particle physics and we
consequently discuss the most surprising results of these experiments here.

In deep inelastic scattering, usually only the energies and momenta of the initial
and final electron are observed, but not the particles produced from the target.
These measurements result in what is often called inclusive cross sections. Never-
theless some kinematical information about the final hadronic state can be gleaned.
Energy and momentum conservation give for the energy Fj and momentum p), of
the final hadrons in the laboratory system (see Fig. 6.15)

E]/I =v+ m027 p;"b =P _p/v (653)

where m is the mass of the struck particle. In terms of Ej and p}, or ¢ and v one
can define the relativistically invariant effective mass, W, of all the hadrons in the
final state

W2 = Ej2 — (phc)> = m*c* + ¢°c® + 2umc®. (6.54)

Since g2 and W? are relativistic scalars or invariants, Eq. (6.54) makes it clear that
v is also a Lorentz invariant, and therefore has the same value in any frame of
reference. Indeed, we can write v in terms of the target particle’s energy FE; and
momentum pfz)

V= = )
m mc m

which makes its Lorentz invariance manifest.

At different scattering angles, what energies E’ should be selected? The answer
can be obtained from elastic scattering and inelastic scattering to resonances: elastic
scattering corresponds to looking at a final state with W = mc?; observation of a
resonance means selecting a final state with W = mycsc?, where m,s is the mass of
the resonance. W characterizes the total mass of the hadrons in the final state here
also, and the cross section d?c/dE’dS for the continuum is consequently determined
as a function of ¢ for a fixed value of W.

Inelastic electron—proton scattering into the continuum has been studied both
at medium energies (E ~ 0.5 —4 GeV) on nuclei and with high energy electrons and
positrons.(*®) At SLAC the primary electron energy was varied between about 4.5

and 24 GeV; v reached values as high as 15 GeV and |¢?| over 20(GeV/c)2. At the

45 A. Abramowicz and A.C. Caldwell, Rev Mod. Phys. T1, 1275 (1999).
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HERA collider with 27.5 GeV e* on 820 GeV protons | ¢ | can be varied between
0.1 (GeV/c)? and 5000 (GeV/c)?. Since the late 1970s muon beams at Fermilab and
CERN have also been used for deep inelastic scattering from hydrogen, deuterium,
i.(46:47) " The ratios

d’o . d_cr
dE'dQ "\ dQ ) \ron

for three values of W from early measurements are shown in Fig. 6.18. The difference

and heavier nucle

between the elastic and the inelastic continuum scattering is dramatic: The ratio
for the elastic cross section decreases rapidly with increasing |¢?|, whereas it is
nearly independent of |¢?| for the inelastic case. The ratio represents a form factor,
and Table 6.1 states that a constant form factor implies a point scatterer. This
conclusion is reinforced by looking at the magnitude of the cross section ratio.
The cross section d?c/dE’dQ2 displayed in Fig. 6.18 represents the cross section for
scattering into the energy interval between E’ and E’ + dE’, where dE’ is 1 GeV.
To get the total inelastic cross section from the continuum, d?c/dE’dQ) must be
integrated over all values of E’. To do this integration crudely, we note that the
cross section ratio shown in Fig. 6.18 is nearly independent of ¢ and W over a wide
range. Equation (6.53) implies that it is then also independent of E’. Integration
over dE’ can hence be replaced by multiplication with the total range of E'. E’
ranges over nearly 10 GeV. Thus the total cross section for inelastic scattering into
the continuum is nearly 10 times bigger than d?c/dE’dS2 in Fig. 6.18, or

do\ 1 (dr
ds2 contN 2 dQ Mott.

Shades of Rutherford. The Mott cross section applies to a point scatterer, and
the deep inelastic scattering thus behaves nearly as if it were produced by point
scatterers inside the proton.

Further evidence for the existence of point constituents inside the nucleon has
come from other experiments. The cross section for the production of muon pairs
by 10 GeV photons, for instance, is much larger than expected on the basis of a
smooth charge distribution.(*8) Initially, the nature of these point scatterers was
not clear. Feynman coined the word “partons” to describe them.*?) By now, it is
generally acknowledged that the charged subunits are quarks and in the context of

46B. Adeva et al., Phys. Lett B420, 180 (1998); M.R. Adams et al. (Fermilab E665 Collabora-
tion) Phys. Rev. D 54, 3006 (1996).

47J.J. Aubert et al., Phys. Lett. 123B, 123 (1983); D. Bollikni et al., Phys. Lett. 104B, 403
(1981); J. Ashman et al., Phys. Lett. 202B, 603 (1988).

48] F. Davis, S. Hayes, R. Imlay, P.C. Stein, and P.J. Wanderer, Phys. Rev. Lett. 29, 1356
(1972).

49R.P. Feynman, in High Energy Collisions, Third International Conference, State University
of New York, Stony Brook, 1969 (C.N. Yang, J.A. Cole, M. Good, R. Hwa, and J. Lee-Franzini,
eds.), Gordon and Breach, New York, 1969; R.P. Feynman, Photon-Hadron Interactions, W.A.
Benjamin, Reading, MA, 1972, Lectures 25-35.
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deep inelastic scattering are often called quark-partons.(®®) Indeed, deep inelastic
scattering provided some of the first evidence for quarks. Some conclusions con-
cerning the subunits can be obtained with simple arguments from the pioneering
experiments (Fig. 6.18).

The wavelength corresponding to the momentum
transferred is sufficiently small that the interaction
of the electron is with individual quarks, as shown in
Fig. 6.19. The collision with each quark is elastic, and
that with different quarks incoherent. The charge Ze
in Eq. (6.9) then is the charge of a quark, and the
observed scattering should be obtained by summing
the square of the charges of the three quarks in a
proton, and dividing by the number of quarks, so that
we can talk of an “average quark”:

Figure 6.19: Deep inelastic

scattering of electrons from
wud: <(Ze)2> = (%)[(%)2 + (%)2 + (%)2]62 = (%)62' the quarks of a proton.

The cross section for deep inelastic scattering from an average quark in the pro-
ton should consequently be about 1/3 of that for a point scatterer of charge e. this
estimate is in good agreement with experiment. (The argument is unaltered by the
fact that each quark comes in three colors because the electromagnetic interaction
is color-blind.)

As for elastic scattering, two form factors are required to describe deep inelastic
scattering from protons. These two functions are related to each other if v > mc?.
To a good approximation scaling holds for these two functions in that they are
independent of ¢*> and depend only on ¢?/ 2mu.(35) These features are explained in
more detail in the next section.

6.10 Quark—Parton Model for Deep Inelastic Scattering

We can gain further insight by examining deep inelastic scattering more quantita-
tively. First we note that the masses of the leptons can be neglected at the energies
being considered. The momentum transfer to the target is so large that the interac-
tion of the electron with the quarks is almost instantaneous and certainly very fast
relative to the period of the quark motion in the nucleon. These conditions suggest
that an impulse approximation can be used. In this approximation the binding
(confinement) of the quarks can be neglected during the collision. The quarks can

50]. D. Bjorken, Phys. Rev. 163, 1767 (1967); J. D. Bjorken and E. A. Paschos, Phys. Rev.
185, 1975 (1969); J. Kuti and V. F. Weisskopf, Phys. Rev. D4, 3418 (1971).
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be visualized as being free, but with a momentum distribution determined by their
wavefunctions (see Fig. 6.19). The impulse approximation is well known from nu-
clear physics,(®!) where it has been used successfully for studying the collision of
fast particles with nuclei. The nucleons are considered to be free during the short
collision time, but with a momentum distribution that is determined by their bound
state wave function. A simple picture is to consider a collision with a particle at-
tached to the end of a spring. If the collision time is short compared to the spring
oscillation period, the spring can be neglected at the time of collision except for
giving the particle a momentum determined by the spring constant and the par-
ticle’s position. Thus, in deep inelastic scattering from a hydrogen target, we can
measure the momentum distribution of the quarks in a proton. With a deuterium
target, the momentum distribution of the quarks in a neutron can also be found.
What happens to the particles after the very fast collision is on such a relatively
long time scale that it does not affect the cross section, so that “final state” inter-
actions among the particles can be neglected. Since the collision with each quark
is elastic, the cross section is given by Eq. (6.11) if the quarks have spin zero and
are very heavy. Since experiments provide clear evidence that the quark—partons
have spin 1/2 and are very light, the formula must be generalized. For two spin
1/2 point particles of charge e and of negligible mass compared to their energies,
the differential cross section in the laboratory system is given by Eq.(6.46) with
Gg = Gpr = 1 For the application that follows, it is more useful to have the cross
section in terms of the four-momentum transfer, ¢, rather than the solid angle,

do 2ma’h? B2
=" 1+ (=
dlq|? ¢t E

In an arbitrary frame of reference the differential cross section is given by

. / 2
+ (M) . (6.56b)
Ph D
where p; - p; = EiEj/c2 —p; - p;. In Eq. 6.56b, p and p’ are the four-momenta of
the electron before and after the collision, respectively, and p;, and pj, are those of
the target particle, as in Fig. 6.15.

The deep inelastic cross section can be described by an equation similar to
Eq. (6.38) with two different form factors,

(6.56a)

do _ 2w 2
dlq?| q*

d?c  Ama’h*E’
dlgl2dv — ¢*mcE

x {Wa(q?,v) + 2W1 (¢, v) — Wa(q?, v)] sin® %0}, (6.57)

51See e.g., L. S. Rodberg and R. M. Thaler, Introduction to the Quantum Theory of Scattering,
Academic Press, New York, NY, 1967, Ch. 12.
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where the momentum transfer ¢ is

1
¢?c® = —AFFE'sin? 59, (6.58)

with E and E’ the electron energies before and after collision; in the energy region
considered here E = |p|c and E' = |p/|c. For inelastic scattering, W7 and Wy are
functions of both the momentum transfer and the energy loss; they are referred to
as structure functions. For elastic scattering, in the laboratory system, v is given
by Eq. (6.52), and W7 and W5 can be related to Gg and Gy by (see Eq. (6.38)]

_ G% 4+ bG3,

_ 2
Wy = =Bt W =Gy, (6.59)

In the region of deep inelastic scattering, Bjorken(®%52) conjectured that, in the
limit ¢ — oo and v — oo, but ¢c?/v finite, the structure functions depend only
on a single dimensionless parameter, x,
2
—q
x = . 6.60
2my ( )

This conjecture is based on the absence of a dimension to set the scale in this limit;
the conjecture is called a scaling property. Instead of W7 and W5 one introduces in
this limit

Fi=W, and F,= ——W, (6.61)
mc

and these structure functions are most closely connected with the quark momentum
distributions, as we shall now show. We will also see that W7 and W5 are related to
each other in this limit. Of course, if infinite momentum transfers or energy losses
really had to be reached, the conjecture of Bjorken would not be useful. As shown
in Fig. 6.20,(47-°2) however, scaling sets in at quite low values of ¢> and v (e.g., a
few GeV?).

To build a picture of deep inelastic collisions, we consider quark ¢ to carry a
fraction x; of the longitudinal (along the direction of motion) momentum of the
proton of momentum pp,.(%¥) Because py, is large in the frame of reference being
considered, it is unlikely that any quark moves with a velocity opposite to pp, so
that we have

0<z <1, and Y ;=1 (6.62)

where the sum on 7 is over all quarks. The dimensionless fraction of momentum, x,
is equal to the kinematical variable = introduced in Eq. (6.60). Thus, for an elastic

52J. T. Friedman and W. H. Kendall, Annu. Rev. Nucl. Sci. 22, 203 (1972).

53The analysis is actually carried out in a momentum frame in which a proton moves with a
speed almost equal to that of light both before and after the collision. In this frame, the momentum
perpendicular to the motion can be neglected and will not be mentioned in our derivation.
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Figure 6.20: F» for the proton as a function of || for x = 0.225. [From HEPDATA.]

collision of an electron with a quark of momentum xpp, we have with the use of
energy and momentum conservation

(zp)? = mic® = (apn + q)*,

— (6.63)

x = .

2pn - q
But Eq. (6.55) gives v = py, - ¢/m, so that with Eq. (6.63) we obtain v = —¢?/2mx
and thus z = —¢?/2mv.

Let P(x;) be the probability of finding quark ¢ with momentum x;py,. The cross
section for elastic scattering from the quark is then given by Eqs. (6.56a) and (6.56b)

and for the proton we have in the laboratory system

o 2ma’h? E'\®
wd? - @ " <E> o) (6.64)
A2 E 2 '
_Amal BV 4 Y py
¢t FE mz 4EE’
since E? + B2 = v?2 + 2EFE’ and x = —q?/2mv. We have defined P(z) by

2
i

P(x) = ?73 (). (6.65)

i
We see that the deep inelastic scattering can be described by a single structure
function related to the probability of finding a quark with momentum fraction .
Equation (6.64), of course, resembles Eq. (6.57). We see the correspondence more
clearly if we note that

dr = (¢*/2mv?) dv = —(z/v) dv, (6.66)
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so that Eq. (6.64) can be rewritten as

d*c dra’h? E' 1
d|q|2du ) (1/ + —5 sin —9) P (x) (6.67)

By comparing Eq. (6.67) with Eqgs. (6.57) and (6.61), we obtain
Fo(x) = 2P (2),

me2 (6.68)
2F (z) — TFQ(;U) =P (x).
Since z; < 1 and V/mc2 > 1, we obtain the Callan—Gross relation(®%)
Fy(z) = 2zF (), (6.69)

and thus note that W; and W5 are related. The Callan—Gross relationship is spe-
cific to spin-1/2 particles; for spin-zero quarks F; = 0. In Fig. 6.21 we show an
experimental comparison of F» and zFj. This shows that quarks have spin 1/2.
Let us, for a moment, return to the probability P. If we call the probability of
finding an up quark in the proton u? and a down quark d?, then we can write(®®)

4 1
P(x) = gu” + 5d”, (6.70)
9 9
since the charges of the up and down quarks are £ and -3 respectively. However,

we know the total probability, namely

/0 uP(x)dr =2 and /0 dP(z)dr =1, (6.71)

since there are two up quarks and one down quark in a proton. The average mo-
mentum carried by the quarks can be written as

1
(pq> = /0 xpy, (uP + dP)dz. (6.72)

The same analysis can, of course, be repeated for a neutron. Experimentally, it
is found that (p,) = 0.5py,, so that the quarks carry only about 50% of the nucleon’s
momentum. Therefore other, neutral, particles must carry the remaining 50% of
the momentum; these particles are assumed to be the gluons.

If we are more careful we must include a correction to Eq. 6.70. In addition to
the valence quarks, the nucleons contain sea quarks which provide a non-negligible
background. These sea quarks are assumed to arise from gluons and vacuum fluctua-
tions splitting into quark-antiquark pairs and are particularly important for z < 0.2.

54C.G. Callan and D.G. Gross, Phys. Rev. Lett. 21, 311 (1968); Phys. Rev. D22, 156 (1969).

55For simplicity, we neglect all but “valence” quarks; there is a small contribution from other
“sea quarks.”

56For recent data, see PDG and HEPDATA.
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Figure 6.21: The ratio 2z F} /F» from SLAC electron—nucleon scattering experiments. The Callan—
Gross relation predicts unity for this ratio. [From D. H. Perkins, Introduction to High Energy
Physics, 3rd ed, Addison Wesley, Menlo Park, CA, 1987.]

A plot of the parton distribution functions of the proton, multiplied by x, is
shown in Fig. 6.22.0°6) The corrected formula is:

4 1 .
Pla) = 5w + ") + 5 (d” +d + " + 5°), (6.73)

where @P, dP,5P and sP represent pure sea quarks whereas u? and d” include both
valence and sea quarks.

Further surprises were in store. Experiments at CERN by the European Muon
Collaboration (EMC) revealed that the structure functions deduced from deep in-
elastic scattering in iron and copper differed from those in deuterium. In Fig. 6.23
we show the ratio of Fy(Fe)/Fy(d) and F»(Cu)/F»(d). Since deuterium is bound
by a very small energy, these results appear to indicate that a nucleon in a nucleus
is different from a free one. The difference at very small x is thought to be due
to “shadowing” of the struck nucleon by other ones in the nucleus, 7) a concept

57F. E. Close and R. G. Roberts, Phys. Lett. 213B, 91 (1988); P.R. Norton, Rept. Prog. Phys.
66, 1253 (2003).
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Figure 6.22: Plot of parton distribution functions, f(z), times z, as a function of x for the proton.
From PDG.

we will discuss in more detail in Chapter 10. The decrease in the ratio of Fy for
0.2 < x < 0.7 is now known to be, at least in part, due to the binding of the nucleon
in the nucleus and the increase beyond = = 0.7 is caused by the motion of these
bound nucleons (see Chapter 16).(5®) Is this the complete explanation, or are there
subtle differences between a bound and free nucleon? Is a nucleon somewhat larger
(say ~ 5%) in a nucleus than when free? Such questions have been raised and the
so-called EMC effect remains of keen interest, because it has not yet been fully
explained.

6.11 More Details on Scattering and Structure

The material in Sections 6.3-6.10 demonstrates that much information concerning
subatomic structure can be obtained from scattering experiments. Even a glance at
a differential cross section, without detailed computation, can reveal gross features.
As an example, the information contained in Figs. 6.3, 6.5, 6.11, and 6.13 is repro-
duced schematically in Fig. 6.24. It highlights one difference between heavy nuclei
and nucleons: Typical heavy nuclei have well-defined surfaces; as in optics, interfer-
ence effects then produce diffraction minima and maxima in the differential cross
section. Nucleons, in contrast, do not have such surfaces; their density decreases
smoothly, and they do not show prominent diffraction effects.

The Scattering Amplitude In the present section, we shall treat scattering in
somewhat more detail than we have done before. A glance at any current book on
scattering®® will show that the material presented here constitutes only a minute

58D.F. Geesaman, K. Saito, and A.W. Thomas, Annu. Rev. Nucl. Part. Sci. 45, 337 (1995).
59M. L. Goldberger and K. M. Watson, Collision Theory, Wiley, New York, 1964; R. G. Newton,
Scattering Theory of Waves and Particles, McGraw-Hill, New York, 1966; L. S. Rodberg and R. M.
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Figure 6.23: Ratios of the nucleon structure functions deduced from F>(Cu)/Fa(d) and
Fy(Fe)/F>(d). [From J. Ashman et. al., European Muon Collaboration, Phys. Lett. 202B,
603 (1988).] Later data looks similar.

fraction of what is actually used in research. Even so, it should provide some insight
into the connection between scattering and structure.

We begin the discussion with a simple case, nonrelativistic scattering by a fixed
potential, V (), and we approximate the incoming particle by a plane wave moving
along the z axis, ¢ = exp(ikz).

The solution to the scattering problem is a solution of the time-independent
Schrodinger equation,

2
_2h_mv2¢ +Viy=Ey or (6.74)
(V2 + k%) = 2—?%

where the wave number k is related to the energy E by

omE. (6.75)

Far away from the scattering center, the scattered wave will be spherical, and it
will originate at the scattering center, which is assumed to be at the origin of
the coordinate system. The total asymptotic wave function, shown in Fig. 6.25,
consequently will be of the form

eikr

= e+, Vs = f(8, QD)T. (6.76)

Thaler, Introduction to the Quantum Theory of Scattering, Academic Press, New York, 1967; W.O.
Amrein, J.M. Jauch, K.B. Sinha, Scattering theory in quantum mechanics : physical principles
and mathematical methods, Reading, Mass. : W. A. Benjamin, Advanced Book Program, 1977.
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Figure 6.24: Cross section and charge distribution: The appearance of diffraction minima in the
cross section for heavy nuclei implies the existence of a well-defined nuclear surface. Nucleons, in
contrast, possess a charge density that decreases smoothly.
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Figure 6.25: The asymptotic wave function consists of an incoming plane wave and an outgoing
spherical wave.



6.11. More Details on Scattering and Structure 175

The scattering amplitude f describes the angular dependence of the outgoing spher-
ical wave; its determination is the goal of the scattering experiment.

The connection between differential cross section and scattering amplitude is
given by Eq. (6.2). To verify the relation, we note that for the present case of
one scattering center (N = 1), Egs. (2.12) and (2.13) give for the differential cross
section

do (AN /dQ)
aQ F.

The outgoing flux, the number of particles crossing a unit area a at distance r per
unit time, is connected to dN'/dS) by

p WAV
U da  r2dQ

so that

do 1%2F.u
o= (6.77)

Since the flux is given by the probability density current, the computation of do/df2
is now easy. For the incident wave, 1 = exp(ikz), we find

ho, . hk
Fin = 2—|¢ Vi — Vo[ = —.

mi m
In all directions except forward (0°), the scattered wave is given by the second term
in Eq. (6.76) so that

Bk >
Fout - mr2 |f(97¢)| .

With Eq. (6.77), the relation (6.2) between scattering amplitude and cross section
is verified.(60)

In the forward direction, the interference between the incident and the scattered
wave can no longer be neglected. It is necessary for the conservation of flux: The
scattered particles deplete the incident beam, and the scattering in the forward
direction and the total cross section must be related. The relation is called the
optical theorem: The total cross section and the imaginary part of the forward
scattering amplitude are connected by(61)

47

I f(0°). (6.78)

Otot —

60The derivation given here is superficial. A careful treatment can be found in K. Gottfried,
Quantum Mechanics, Benjamin, Reading, Mass., 1966, Subsection 12.2.

61For derivations of the optical theorem, see Park, p. 376; Merzbacher, p. 532; and Messiah,
p. 867.
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The Scattering Integral Equation e To find the general solution of the
Schrodinger equation, Eq. (6.74), we recall that it can be written as the sum of a
special solution and of the appropriate solution of the corresponding homogeneous
equation, where V' = 0. To find a special solution of Eq. (6.74), it is convenient to
consider the term (2m/h?)V on the right-hand side as the given inhomogeneity,
even though it contains the unknown wave function ¢. As a first step, then, we solve
the scattering problem for a point source for which the inhomogeneity becomes a
three-dimensional Dirac delta function and Eq. (6.74) takes on the form

(V2 +E5)G(r,v") = 6(r — 7). (6.79)
The solution of this equation that corresponds to an outgoing wave is

-1 eik|7'7’l"'|

G(r,r') = (6.80)

Am r—vr!|
To verify that this Green’s function indeed satisfies Eq. (6.79), we set, for simplicity,
r’ =0, |r| = r, and use the relations(62)

V2 <1> = —476(r) (6.81)

V2(FG) = (V*F)G
+2(VF)-(VG) + FV3G (6.82)

10 9
VZ(polar coord.) = = ( 2_)

" or
1 o (. 0 1 9?
r2sinf 00 (51n0%> * r2sin? 0 06 (6.83)
After some calculations we obtain
eik’r )
(VQ + kQ)T = —47'('5(7')6“674
= —47i(r). (6.84)

The second step in this identity follows from the fact that

/d3r§(7')f(r) and /d3r5(7') exp(ikr) f(r)

give the same result, f(0), for any continuous function f. The solution of Eq. (6.55)
for a potential V() is found by assuming that the inhomogeneity (2m/h2)V (r)(r)

62For a derivation of Eq. (6.81) see, for instance, Jackson, Section 1.7.
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is built up from delta functions, §(r’), each with a weight (2m/h?)V (r")3(r") so
that

be(r) = Qh—T / B G WV (o (), (6.85)

where G(r,r’) is the Green’s function for a delta function potential, Eq. (6.80). The
appropriate solution of the homogeneous Schrédinger equation describes a particle
that impinges on the target along the z axis; the general solution is therefore

wlr) =4 38 [ @GV o). (6.36)

The original Schréodinger differential equation for the wave function ¢ has been
transformed into an integral equation, called the scattering integral equation. For
many problems, it is more convenient to start from such an integral equation rather
than from the differential equation.

In scattering experiments, the incident beam is prepared far outside the scatter-
ing potential, and the scattered particles are also analyzed and detected far away.
The detailed form of the wave function inside the scattering region is consequently
not investigated, and what is needed is the asymptotic form of the scattered wave,
Ys(x). With # = r/r and k = k#, as indicated in Fig. 6.26, | — r’| becomes

o - / 2y 1/2
|r—r'|:r{1—£+r } — =77 (6.87)

r2 r2 T—00

and the Green’s function takes on the asymptotic value

-1 ik
Glr,r') ~_ E@ exp(—ik - 7). (6.88)
Inserting G (7, r’) into Eq. (6.85) and comparing with Eq. (6.76) yields the expression

for the scattering amplitude,

_—m
T omh?

f(0,¢) /dBT’eik'TIV(r’)w(r’).o (6.89)

The First Born Approximation The first Born approximation corresponds to
the case of a weak interaction. If the interaction were negligible, the scattering
amplitude would vanish and ¢ (r’) would be given by exp(ikz’) = exp(iko - r'). As
a first approximation, this value of the wave function is inserted in Eq. (6.89), with
the result

—m

f0,0) = omh2

/d3r’V(r’) exp(iq - r'/h), (6.90)
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Figure 6.26: Vectors involved in the description of scattering.

where g = h(k, — k) is the momentum that the scattered particle imparts to the
scattering center, as already defined in Eq. (6.3). Equation (6.90) is called the first
Born approximation; we quoted this expression in Eq. (6.5) without proof. The
scattering of high-energy electrons by nucleons and light nuclei and weak processes
can be described adequately by the Born approximation. In Section 6.2, we used
it to derive the Rutherford cross section. Next we shall turn to an approximation
that is valid under certain conditions even if the force is strong.

Diffraction Scattering—Fraunhofer Approximation When the wavelength
of the incident particle is short compared to the size of the interaction region, a
semiclassical approach can be used, even if the force is strong. Such an approxima-
tion is justified because the average trajectory followed by the particle approaches
the classical one. The approximation used for elastic scattering is well known from
optics, namely Fraunhofer diffraction. In the scattering of electromagnetic waves,
optical or microwaves, the appearance of diffraction patterns has been known for a
long time, and their description is well understood.(®® A characteristic example,
diffraction from a black disk, is shown in Fig. 6.27. Black means that any photon
hitting the disk is absorbed. Optical diffraction displays a number of characteristic
features of which we stress three:

1. A large forward peak, called diffraction peak.

2. The appearance of minima and maxima, with the first minimum approxi-
mately at an angle

A
Hmin N o5
2Ry

where Ry is the radius of the disk.

(6.91)

63E. Hecht. Optics, 4th. Ed., Addison-Wesley, Reading, MA 2002; Jackson, Chapter 10.
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Figure 6.27: Optical diffraction pattern produced by a black disk.

3. At very small wavelengths (corresponding to the energy going to infinity)
the total cross section for the scattering of light by the disk tends to a
constant value,

o — const. for E — oo. (6.92)

A detailed examination of the diffraction pattern for a number of wavelengths per-
mits conclusions to be drawn concerning the shape of the scattering object. Diffrac-
tion scattering occurs not only in optics but also in subatomic physics, where it is a
useful tool for structure investigations. Diffraction phenomena appear because the
wavelength of the incident particles can be chosen to be smaller than the dimension
of the target particle. The Fraunhofer approximation applies because the incident
and the outgoing wave can be taken to be plane waves. To illustrate Fraunhofer
diffraction we will present some examples in nuclear and particle physics. Consider
first nuclei. Figure 6.28 shows the differential cross section for elastic scattering
of 42 MeV alpha particles from 2*Mg.(64) A sharp forward peak and pronounced
diffraction minima and maxima stand out clearly. A simple model that considers
the nucleus as a dark disk reproduces the position of the minima and maxima well,
but with increasing scattering angle, the observed maxima are increasingly smaller
than the predicted ones.

The reason for the disagreement is that nuclei are not exactly ‘black disks’.
First, Figure 6.5 indicates that they have a skin of considerable thickness rather
than sharp edges, and, further, nuclei are not always spherical but may have a
permanent deformation, as will be discussed in Section 18.1. Finally, nuclei are
partially transparent for low- and medium-energy hadrons. The simple theory can

641. M. Nagib and J. S. Blair, Phys. Rev. 165, 1250 (1968); S. Fernbach, R. Serber, and T. B.
Taylor, Phys. Rev. 75, 1352 (1949).

65E. Gadioli and P. E. Hodgson, Rep. Prog. Phys. 49, 951 (1986); P. E. Hodgson, Growth
Points in Nuclear Physics, Vol. 1, Pergamon, Elmsford, NY, 1984.
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be modified to take these complications into account, and the resulting theory fits
the experimental data reasonably well.(64:65)

Diffraction phenomena appear also in high-energy physics.(96:67) We restrict the
discussion to elastic proton—proton scattering because it already displays charac-
teristic diffraction features. Differential cross sections, do/d|t|, with [t| = |q|?, for
elastic pp scattering at various momenta are shown in Fig. 6.29.(%%) The spectacular
forward peak stands out clearly, and some other diffraction traits are also evident.
In particular, the value of do/dJt| at |t| = 0 is approximately independent of the
incident momentum, and this turns out to be a prediction of the simple dark-disk
model mentioned above. The total cross section can be extracted from these mea-
surements via the optical theorem, Eq. (6.78) and it is shown in Fig. 6.30.

Fig. 6.30 shows also the pp cross section and confirms a prediction of high en-
ergy physics, namely, that particle and antiparticle cross sections on a given target
should approach each other at very high energies because there are so many possible
reactions that the difference becomes blurred.

In nuclear physics, the most outstanding diffraction structure is the occurrence
of maxima and minima as shown in Fig. 6.28. In particle physics, the smooth
distribution of the electric charge and presumably also of nuclear matter washes out
the diffraction structure up to momenta of at least 20 GeV/c. At higher momenta,
however, the first minimum and the following maximum appear as shown in the
lowest curve in Fig. 6.29.

The Profile Function(®® The black-disk approximation reproduces the coarse
features, but not the finer details, of diffraction scattering. It can be improved by
assuming the scatterer to be gray. The shadow of a gray scatterer is not uniformly
black; its grayness (transmission) is a function of p, where p is the radius vector
in the shadow plane (Fig. 6.31). Knowing the shadow allows calculation of the
scattering amplitude, f(6). In the black-disk approximation the total wave, ¥ (r') =
¥(p), in the shadow plane is zero behind the scatterer. For a gray scatterer it is
assumed that the total wave behind the scatterer in the shadow plane is given by

b(p) = eFoPeix(P), (6.93)

66F. Zachariasen, Phys. Rep. C2, 1 (1971); B. T. Feld, Models of Elementary Particles,
Ginn/Blaisdell, Waltham, Mass., 1969, Chapter 11. M. Kawasaki et al, Phys. Rev. D 70, 114024
(2004).

67M. M. Islam, Phys. Today 25, 23 (May 1972); for details see Diffraction 2000, R. Fiore et al.
eds, North-Holland, Elsevier (2001), Nucl. Phys. B Proceedings, suplements; 99A (2001).

68]. V. Allaby et al., Nucl. Phys. B52, 316 (1973); G. Barbiellini et al., Phys. Lett. 39B, 663
(1972); A. Bohm et al., Phys. Lett. 49B, 491 (1974).

69R.J. Glauber, in Lectures in Theoretical Physics, Vol. 1 (W. E. Brittin et al., eds.), Wiley-
Interscience, New York, 1959, p. 315; R.J. Glauber, in High Energy Physics and Nuclear Structure
(G. Alexander, ed.), North-Holland, Amsterdam, 1967, p. 311; W. Czyz, in The Growth Points
of Physics, Rivista Nuovo Cimento 1, Special No., 42 (1969) (From Conf. European Physical
Society).
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Figure 6.28: Differential cross section for
the elastic scattering of alpha particles from
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t0 prap = 19.3 GeV/c have been measured at
the CERN proton synchrotron; the one for
Plap = 1500 GeV/c has been obtained with
the CERN Intersecting Storage Rings (ISR).
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Figure 6.30: Total proton-proton and antiproton-proton cross sections as a function of laboratory
momentum and the equivalent square of the c.m. energy. The cross section is roughly constant
around the region of the relatively wide minimum. The lines show calculations [From M.M. Block
and F. Halzen, Phys. Rev. D 63, 114004 (2001).]
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Figure 6.31: Gray scatterer and profile of its shadow. I'(p) and p are discussed in the text.

The total wave is modified by a multiplicative factor. For a black disk, the phase x
is purely imaginary and large. The factor exp(iko - p) is equal to 1, but we keep it
because it will turn out to be convenient. Since

¥(p) = ™ +s(p) (6.94)
and kz = kg - p in the shadow plane, the scattered wave is:
¥s(p) = —exp(iko - p)L(p), (6.95)
where
D(p) =1—eXP) (6.96)

is called the profile function.(©9)
For small scattering angles, cos € ~ 1, the scattering amplitude can be shown to
be:

f@ =5 [ Epexp (%) I(p). (6.97)

where ¢ = hi(ko — k) is the momentum transfer. The scattering amplitude is the
Fourier transform of the profile function. If the scatterer possesses azimuthal sym-
metry, integration over the azimuthal angle yields

£(6) = ik / dp pT(p) o (kph). (6.98)

This expression coincides with f(6) for a black scatterer if I'(p) = 1 (see Problem
6.31.) The relation connecting I'(p) and f(6) in Eq. (6.98) is called a Fourier-Bessel
(or Hankel) transform.(™® Given a profile function, the scattering amplitude can
be calculated. As an example, assume a Gaussian profile function,

70W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Functions of
Mathematical Physics, 3d. Ed. (English), Springer Verlag, New York, 1966, p. 397; see also
P.M. Morse and H. Feshbach, Methods of Thoretical Physics, McGraw-Hill, New York, 1953, p.
944-962.
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T'(p) = T(0) exp [_ (p_’;) ] . (6.99)

The Fourier—Bessel transform then becomes("®)

1(6) = 3T ()3 exp [— (’”’“) ] |

2
With —t = |¢?| ~ (hk6)?, the corresponding differential cross section is

do T P2
—— = —T%(0)p5 — (=% ) |- 6.100
= O |- (45 )1 (6.100)
A Gaussian profile function leads to an exponentially decreasing cross section do /dt.
The physical interpretation of the profile function becomes clear by considering
the total cross section. The optical theorem, Eq. (6.78), with Eq. (6.97) for § = 0°,
yields

Ttot = 2/d2pReF(p). (6.101)

For a black scatterer, I'(p) = 1 is real, and f(#) is purely imaginary. If we assume
that in the limit of very high energy the amplitude is imaginary,("") then T is real,
and Eq. (6.101) becomes

Ttot = 2/d2pr(p). (6.102)

2I'(p) can consequently be interpreted as the probability that scattering occurs in
the element d?p at the distance p from the center (see Fig. 6.31.) T'(p) is the
scattering probability density distribution in the shadow plane; hence the name
profile function.

As an application of these considerations, we return to elastic pp scattering.(6)
Figure 6.29 shows that the diffraction peak drops exponentially for many orders
of magnitude. This behavior suggests that the cross section in the region of the
forward peak can be approximated by

d d

9 (s,t) = d—‘t’(s,t = 0) eb@IH, (6.103)
where s is the conventional symbol for the square of the total energy of the colliding
protons in their c.m. and b(s) is called the slope parameter. It is remarkable that
the experimental data over a wide range of s and ¢ can indeed be fitted by such a
simple expression. The slope parameter turns out to be a slowly varying logarithmic

function of the total energy s, as shown in Fig. 6.32. The exponential drop of do/dt

"I The ratio between the real and the imaginary part of the proton—proton forward scattering
amplitude is expected to become small at high incident momenta.
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Figure 6.32: Slope parameters, b, corresponding to the cross sections shown in Fig. 6.30 [From
M.M. Block and F. Halzen, Phys. Rev. D 63, 114004 (2001).] It is seen from the figure that b(pp)
approaches b(pp) asymptotically.

can be interpreted in terms of a Gaussian profile function, as given in Eq. (6.99).
Identification of Egs. (6.100) and (6.103) leads to the relation

po = h(20)'/2. (6.104)

po characterizes the width of the Gaussian profile function describing the scattering
of two extended protons by hadronic forces. It is therefore not legitimate to compare
p2, or a corresponding mean-square radius, directly with the mean-square radius of
the proton as determined with electromagnetic probes. Nevertheless, it is reassuring
that the two measures of the proton size are comparable: The electromagnetic radius
is given by Eq. (6.46) as (r?) ~ 0.7 fm, whereas a value of b = 10( GeV/c)~2, taken
from Fig. 6.32, leads to pp ~ 0.9 fm.

The “size” of the proton and slope parameter b(s) are related through
Eq. (6.104); a constant pg implies a constant b(s). Fig. (6.32) shows, however,
that at the highest energies b(s) increases logarithmically with the square of the
c.m. energy, s. Since b(s) describes the width of the diffraction peak, an increase of
b(s) means a shrinking diffraction peak, and it suggests an increase in the size, po,
of the interaction region. This behavior can be understood with a geometric picture
in which the area of the interaction region is related to the total cross section.(7?)
We saw in Fig. (6.30) that the total cross section increases with s or laboratory
momenta at very high energies. Indeed, the ratio b/oyo ~ constant, (73
noted from a comparison of Figs. (6.32) and (6.30).

as can be

72M. Kamran, Phys. Rep. 108, 275 (1984); K. Goulianos, Phys. Rep. 101, 169 (1983).
73M.M. Block and F. Halzen, Phys. Rev. D 63, 114004 (2001).
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™) So far we have treated diffraction scatter-

ing from a single object. We shall now turn to the coherent scattering of a projectile

The Glauber Approximation (6%

from a target made up of several subunits, for instance, a nucleus built from nucle-
ons. An incoming high-energy particle can collide with a single nucleon, with many
in succession, or it can interact strongly with several at once. The treatment of
such a multiscattering process is difficult, but diffraction theory makes the problem
manageable; it leads to the Glauber approximation.(7)

To arrive at the Glauber approximation, we consider first the optical analog,
the passage of a light wave with momentum p = Ak through a medium with index
of refraction n and thickness d. The electric vector, F;, after passage of the wave

through the absorber is related to the electric vector of the incident wave, Eq, by (")

E, = Egexp(ix1), x1=k(1—-n)d. (6.105)

If the index of refraction is complex, then its imaginary part describes the absorption
of the wave. If the wave traverses successive absorbers, each characterized by a phase
Xi, the end result is

E, = Eqexp(ix1) exp(ix2) - - - exp(ixn)
= Egexpli(x1 + -+ xn)] (6.106)

The phases of the various absorbers add. The same technique can be applied to
the scattering of high-energy particles. Equation (6.93) shows that the wave behind
a single scatterer is related to the incident wave as the electric waves are related
in Eq. (6.105). In the Glauber approximation it is assumed that the phases from
the individual scatterers in a compound system, such as a nucleus, also add. To
formulate the approximation, we assume that the individual scatterers are arranged
as shown in Fig. 6.33. The distance of the center of each scatterer to the axis
perpendicular to the shadow plane is denoted by s;. The distance that determines
the profile function for each nucleon is no longer p but p — s;, and the phase factor
for the ¢th nucleon is given by Eq. (6.96) as

eXi =1 -Ty(p— ;).

For the total phase factor, additivity of the individual phases gives

exp(ix) = exp(ix1) exp(ixza) - - -exp(ixa)

A
= H[l —Ti(p — si)],

=1

74R.J. Glauber, Phys. Rev. 100, 242 (1955).
75 The Feynman Lectures 1-31-3.
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Figure 6.33: Arrangement of the individual scatterers in a nucleus.

and for the complete profile function

A
P(p) = 1= =Tilo = 5. (6.107)

=1

This relation describes the Glauber approximation. If the profile functions for the
individual nucleons are known, the profile function for the entire nucleus can be
calculated. One more step is needed to arrive at the Glauber expression for the
scattering amplitude. Nucleons are not fixed, as shown in Fig. 6.33; they move
around and their probability distribution is given by the relevant wave function.
For elastic scattering, initial and final wave functions are identical, and T'(p) in
Eq. (6.97) must be replaced by

/d3x1 Br s (21, ..., x)T(p)p(x1,...,x4)
= (IT(p)i).

The scattering amplitude equation (6.97) thus becomes

flq) = % /deeXp (%) (T (p)]7), (6.108)

with an inverse which is

o = 5 [ew (-2 rla) e

As an example, we consider the elastic scattering of a high-energy projectile from
the simplest nucleus, the deuteron (Fig. 6.34). When the energy of the incident
particle is so high that its wavelength is much smaller than the deuteron radius

(R =~ 4 fm), one could at first assume that neutron and proton scatter independently
and that the total cross section is simply the sum of the individual ones. Use of the
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r Shadow plane

Figure 6.34: Coordinates used in the description of the scattering from deuterons.

Glauber approximation shows that this assumption is wrong, and experiment bears
out the calculations. For the deuteron, with r = r, — 7, Eq. (6.107) becomes

Ta(p) =T, (p 4 %r) 4T, <p _ %7’)
T, (p + %'r) r, <p - %r) . (6.109)

Inserting I'q(p) into Eq. (6.108), and using the fact that the deuteron wave func-

tion, ¥4(r), is only a function of the relative coordinate r, gives, for the scattering
function of the deuteron,

ful@) = fola)F (%q) Th@F (%q) e

X /F(q’)fp (%q - q’) fa (%q + q’) d*q, (6.110)

where F(q) is the form factor for the deuteron ground state,

ra) - [ dSrexp("q,f) a2 (6.111)

Note that because of the symmetry of the deuteron wave function F(q) = F(—q).
The first two terms in Eq. (6.110) describe the individual scatterings; the last one
represents the double scattering correction. For the total cross section, the optical
theorem Eq. (6.78) yields

04 =0p+on

4 2 / d2q F(q)Relf,(~q) fu(q)]. (6.112)
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The deuteron radius is considerably larger than the range of the hadronic interac-
tion; the form factor F(q) hence is sharply peaked in the forward direction, and the
total cross section becomes

2 _
04~ op+ 05+ ﬁRe[fp(O)fn(O)Kr a4,
where (r=2), is the expectation value of 7=2 in the deuteron ground state. If the
scattering is again assumed to be entirely absorptive so that the forward scattering
amplitudes are imaginary, then

1
04~ op + 0o — EUpUn<T72>d. (6.113)

The last term here shows the shadow effect of one nucleon on the other one.

The shadow or double scattering term has a negative sign: the total cross section
is smaller than the sum of that from the individual nucleons. This feature follows
already from Eq. (6.109), where the double scattering contribution has the oppo-
site sign from the single scattering one. More generally, expansion of Eq. (6.107)
shows that the signs of successive terms alternate. This behavior has been verified
experimentally.
The angular distribution of the scat-
tering from deuterons provides consid-
erably more information than the to-
tal cross section. Using Eq. (6.2) and
t = —q* = (2hksin )2, do/dt is

do —T

To compute do/dt, fa(q) from
Eq. (6.110) is inserted into Eq. (6.114).
Consider specifically proton—deuteron
scattering. The scattering amplitudes
fn and f, can then be obtained from
electron scattering on the proton and

neutron; the corresponding ideas have
102 L ! . ! A already been treated in Sect. 6.7. To
0 04 0.8 1.2 )

L Gev/o find the form factor F'(q), a specific
form of the deuteron wave function

must be assumed; for a given
Figure 6.35: Measured and calculated pd elastic ! & v, fd(q)
scattering cross section versus —t = ¢2. [After M. and hence dg/dt can be calculated.
Bleszynsky et al., Phys. Lett. 87B, 198 (1979).]  Figure 6.35 shows do/dt for scatter-
ing of 1 and 2 GeV protons from

deuterons.
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Some characteristic features stand out: an initial rapid drop, a shallow minimum,
and then a slower decrease in do/dt. These features can be understood with
Eq. (6.110). The first two terms, corresponding to single scattering, possess diffrac-
tion peaks of widths o 1/k, as expected from diffraction from a dark disk (see
Eq. 6.91.) In double scattering, each nucleon absorbs half the momentum trans-
fer; the corresponding diffraction width is larger. The first rapid drop-off is due
to single scattering; the double scattering dominates at larger values of . The ex-
plicit calculation of do/dt shows that scattering indeed explores the structure of a

(76)  As we shall discuss in more detail in Section 14.5, the two nucleons

nucleus.
in the deuteron are predominantly in a state with relative orbital angular momen-
tum L = 0 (s state), but there is a small admixture of angular momentum L = 2
(d state) (Fig. 14.8). To obtain the good agreement exhibited by the solid lines,
this small d-state admixture (4-6%) is required; it washes out the deep interference
minimum between single and double scattering.

The technique described here for the deuteron has been used to explore the
structure of other nuclides.(6%-77) It can also be applied if particles other than the

proton, for instance, pion or antiproton, are employed as probes. e
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Problems

6.1. Consider the collision of an alpha particle with an electron. Show that the
maximum energy loss and the maximum momentum transfer in one collision
are small. Compute the maximum energy loss that a 10-MeV alpha particle
can suffer by striking an electron at rest.

6.2. Sketch the derivation of the Rutherford scattering formula.

6.3. Show that Eq. (6.6) follows from Eq. (6.5) for a spherically symmetric poten-
tial.

6.4. Verify Eq. (6.8).

6.5. (a) Show that in all experiments that can give information concerning the
structure of subatomic particles the term (h/a)? in Eq. (6.8) can be
neglected.

(b) For what scattering angles is the correction term (h/a)? important?

6.6. Rewrite Eq. (6.9) in terms of the kinetic energy of the incident particle and
of the scattering angle. Verify that the resulting expression agrees with the
standard Rutherford formula.

6.7. An electron of 100 MeV energy strikes a lead nucleus.

(a) Compute the maximum possible momentum transfer.

(b) Compute the recoil energy given to the lead nucleus under the conditions
of part (a).
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(¢) Show that the electron can be treated as a massless particle for this
problem.

6.8. Verify Eq. (6.20) and find the next term in the expansion.

6.9. Assume that the probability distribution is given by (z = |x|)
px)=po <R
p(x) =0 forz > R.
(a) Compute the form factor for this “uniform charge distribution.”

(b) Calculate (z2)'/2.
6.10. 250 MeV electrons are scattered from 4°Ca.

(a) Use equations given in the text to compute numerically values of the
cross section as a function of the scattering angle for the following as-
sumptions:

(al) Spinless electrons, point nucleus.
(a2) Electrons with spin, point nucleus.
(a3) Electrons with spin, “Gaussian” nucleus [Eq. (6.23)].

(b) Find experimental values for the cross section and compare with your
computations. Determine a value for b in Eq. (6.23).

6.11. (a) What are muonic atoms?
(b) Why can muonic atoms be used to study nuclear structure?

(c) Compute the energy of the 2p — 1s muonic transition in 2°®Pb under
the assumption that Pb is a point nucleus. Compare with the observed
value of 5.8 MeV.

(d) Use the values computed and given in part (c) to give an order-of-
magnitude estimate of the nuclear radius of Pb (whose actual nuclear
charge radius is ~ 6 fm).

6.12. Use Eq. (6.18) to determine the normalization constant N in Eq. (6.24).

6.13. Use the values given in Eq. (6.27) to find an average value for the internucleon
distance in a nucleus.
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6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

Structure of Subatomic Particles
Discuss the g — 2 experiments for the electron and the muon.

(a) Derive Eq. (6.33) for the nonrelativistic case.

(b) Sketch the experimental arrangement for the g — 2 experiment for neg-
ative electrons. How were the electrons polarized? How was the polar-
ization at the end measured?

(¢) Repeat part (b) for muons.

* How did Stern, Estermann, and Frisch determine the magnetic moment of
the proton?

* (a) How was the magnetic moment of the neutron first determined (indirect
method)?

(b) Discuss a direct method to determine the magnetic moment of the free
neutron.

(¢) Can storage rings for neutrons be designed? If yes, sketch a possible
arrangement and describe the physical idea.

Assume that a neutron consists part of the time of a Dirac neutron with 0
magnetic moment and part of the time of a Dirac proton (1 nuclear magneton)
plus a negative pion. Assume that the negative pion and the Dirac proton
form a system with an orbital angular momentum of 1. Estimate the fraction
of time during which the physical neutron has to be in the proton—pion state
in order to get the observed magnetic moment.

Verify Eq. (6.45).

* Discuss one of the methods used to determine the mean-square electric
charge radius of the neutron from the scattering of slow neutrons from matter.

In the determination of the elastic form factor of the proton by electron scat-
tering, ¢ values higher than 20( GeV/c)? are reached. In pion-electron scat-
tering, the highest ¢? values are of the order of 1( GeV/c)?. Why?

* Describe the Penning trap (Section 6.5) in detail. Could you trap a p? Could
the Dehmelt technique be used to measure |g| — 2 for the p?

What squared momentum transfer ¢ is required to observe the structure of the
electron if its radius is 1 am (107!® m). What beam energy is required for the
experiment in e~e™ collisions? In collisions of energetic e~ with a stationary
heavy atom target?
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6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31
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Show that the argument for the cross section in deep inelastic scattering of
electrons with the three quarks of charges % and —% in a proton, i.e., (Ze?) =
%62, are unaltered by the property that each quark comes in three colors as

long as all three colors are present in equal proportion.

The order of magnitude of a cross section is very roughly related to the
strength of an interaction. Use ideas similar to those which led to Eq. (5.47)
to derive approximate total cross sections for hadronic, electromagnetic, and
weak interactions.

Estimate the width of the quasi-elastic peak, centered at |¢?|/2m, found in
the scattering of electrons from nuclei, Fig. 6.16.

(a) Show the correctness of Eq. (6.50).
(b) Prove Eq. (6.55) and show that it corresponds to Eq. (6.49).

What are the maximum values of W, Eq. (6.54), which could be reached at
Fermilab with muons scattering on hydrogen?

(a) Show that Eq. (6.58) is correct.
(b) Obtain the relation between dq? and dQ.
(¢) Use parts (a) and (b) to show the equality of the two equations (6.57).

Show that ¢ = —2py, - ¢ for elastic scattering. Here p;, and ¢ are 4-vectors
with pn-q = Enqo/c* — p, - @ and py, is the initial momentum of the hadron.
(See Section 6.10).

(a) Determine the ratio for the deep inelastic cross section of electrons on
neutrons to that on protons.

(b) Determine the ratio of the deep inelastic cross section of electrons on
an isospin zero target (i.e., with an equal number of w and d quarks) to
that on protons.

Use Eq. 6.97 to calculate the scattering amplitude from a black disk and show
that the elastic cross section is 7R3, where Ry is the radius of the disk. Use
the optical theorem to calculate the total scattering cross section.
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Part II1

Symmetries and Conservation Laws

If the laws of the subatomic world were fully known, there would no longer be a
need for investigating symmetries and conservation laws. The state of any part of
the world could be calculated from a master equation that would contain all symme-
tries and conservation laws. In classical electrodynamics, for example, the Maxwell
equations already contain the symmetries and the conservation laws. In subatomic
physics, however, the fundamental equations are not yet established, as we shall
see in Part IV. The exploration of the various symmetries and conservation laws,
and of their consequences, therefore provides essential clues for the construction of
the missing equations. One particular consequence of a symmetry is of the utmost
importance: Whenever a law is invariant under a certain symmetry operation there
usually exists a corresponding conservation principle. Invariance under translation
in time, for instance, leads to conservation of energy; invariance under spatial ro-
tation leads to conservation of angular momentum. This profound connection is
used both ways: If a symmetry is found or suspected, the corresponding conserved
quantity is searched for until it is discovered. If a conserved quantity turns up, the
search is on for the corresponding symmetry principle. One word of warning is in
place here: Intuitive feelings can be misleading. Often a certain symmetry principle
looks attractive but turns out to be partially or completely wrong. Experiment is
the only judge as to whether a symmetry principle holds.

Conserved quantities can be used to label states. A particle can be characterized
by its mass or rest energy because energy is conserved. Or consider the electric
charge, ¢q. It is conserved and comes only in units of the elementary quantum e.
The value of ¢/e can thus be used to distinguish particles of the same mass. Positive,
neutral, and negative pions can be christened; pion is the family and positive the
first name.

In the next three chapters we shall discuss a number of symmetries and con-
servation laws. Additional symmetries exist, and we shall encounter some later on.
Some of the symmetries are perfect even under closest scrutiny, and no breakdown
in the corresponding conservation law has ever been found. Rotational symmetry
and conservation of angular momentum are one example of this “perfect” class.
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Other symmetries are “broken,” and the corresponding conservation law holds only
approximately. There are two kinds of symmetry breaking; one is a symmetry bro-
ken by small effects.Invariance under mirroring (parity) provides one example of
such a broken symmetry. A second kind of symmetry breaking is called “sponta-
neous”. Here the forces have the symmetry, but the ground state does not. We
shall encounter both types of symmetry breaking, the first kind in Chapter 7 and
the second kind in Chapter 12. At the present time it is not understood why some
symmetries are broken and others are not. It is not even clear whether the question
should be phrased “Why are symmetries broken?” or “Why are some symmetries
perfect?” We must continue to explore symmetries and their consequences and hope
that a more complete understanding will be reached at some point.(*)

1The meaning of symmetries in physics, and more generally, in human endeavor are beautifully
described in the following references: R. P. Feynman, R. B. Leighton, and M. L. Sands, The
Feynman Lectures on Physics, Vol. I, Addison-Wesley, Reading, Mass., 1963, Chapter 52; H.
Weyl, Symmetry, Princeton University Press, Princeton, N.J., 1952; E. P. Wigner, Symmetries
and Reflections, Indiana University Press, Bloomington, 1967; C. N. Yang, Elementary Particles,
Princeton University Press, Princeton, N.J., 1962; R. P. Feynman, The Character of Physical Law,
MIT Press, Cambridge, MA, 1965; A. V. Shubnikov and V. A. Kopstik, Symmetry in Science and
Art, Plenum, New York, 1974; J. P. Elliott and P. G. Dawber, Symmetry in Physics, Oxford
University Press, New York, 1979; F. Close, Lucifer’s Legacy, the Meaning of Asymmetry, Oxford
University Press, New York, 2000.



Chapter 7

Additive Conservation Laws

In this chapter we shall first discuss the connection between conserved quantities
and symmetries in a general way. Such a discussion is somewhat formal, but it
paves the way for an understanding of the connection between symmetries and
invariances.(!). We shall then treat some additive conservation laws, beginning with
the electric charge. The electric charge is the prototype of a quantity that satisfies
an additive conservation law: The charge of an assembly of particles is the algebraic
sum of the charges of the individual particles. Moreover it is quantized and has only
been found in multiples of the elementary quantum e. Other additive conserved and
quantized observables exist, and in the present chapter we shall discuss the ones
that are established beyond doubt.

7.1 Conserved Quantities and Symmetries

When Is a Physical Quantity Conserved? To answer this question, we consider
a system described by a time-independent Hamiltonian H. The wave function of
this system satisfies the Schrodinger equation,

ih% = Hy. (7.1)

The value of an observable(®) F in the state 9 (t) is given by the expectation value,
(F'). When is (F) independent of time? To find out, we assume that the operator
F' does not depend on ¢, and we compute (d/dt)(F):

d, . d R dy* -
E<F> = a/d%m/; Fiy = /d%ﬁF@H/d%w F%.

IThe connection between symmetries and invariants was first discovered by E. Noether; See
Emmy Noether, Collected Papers, Springer-Verlag 1983.

2Tt is a well-known fact that the concepts of observable and matriz element are at first foreign
to most students. Continuous exposure and occasional rereading of a quantum mechanics text—
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To evaluate the last expression, the complex conjugate Schrodinger equation is
needed:
dip*

—ih— - = (HY)" = ¢"H. (7.2)

Here the reality of H has been used. With Eqs (7.1) and (7.2), (d/dt){F) becomes

%m = %/d%W(HF — FH). (7.3)

The term HF — F'H is called the commutator of H and F and it is denoted by
brackets:

HF — FH = [H, F). (7.4)

Equation (7.3) shows that (F') is conserved (i.e., is a constant of the motion) if the
commutator of H and F' vanishes:

[H,F| = 0 — %<F> 0. (7.5)

If H and F' commute, the eigenfunctions of H can be chosen so that they are also
eigenfunctions of F,

Hi = Evp

7.6
Fy = fi. (70

Here, FE is the energy eigenvalue and f the eigenvalue of the operator F' in the state

1.

for instance, Chapter 8 of Merzbacher—will remove the problem. We only remark that an observ-
able is represented by a quantum mechanical operator F' whose expectation value corresponds to
a measurement. The expectation value of F' in the state 1, is defined as

(F) = / B () Fa ().

Since the expectation value of F' can be measured, it must be real, and F therefore must be
Hermitian. If two states are considered, a quantity similar to (F') can be formed by writing

Fa = / & u () Fa ().

Fp, is called the matrix element of F' between states a and b. The expectation value of F' in state
a is the diagonal element of Fy, for b = a:

(F) = Faa.

The off-diagonal elements do not correspond directly to classical quantities. However, transitions
between states a and b are related to Fp, (Merzbacher, Section 5.4).
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How Can Conserved Quantities Be Found? After resolving the question as
to when an observable is conserved, we attack the more physical problem: How can
conserved quantities be found? The direct approach, writing down H and inserting
all observables into the commutator, is usually not feasible because H is not fully
known. Fortunately, H does not have to be known explicitly; a conserved observable
can be found if the invariance of H under a symmetry operation is established. To
define symmetry operation, we introduce a transformation operator U. U changes
a wave function ¢ (x,t) into another wave function ¢’ (x, t):

P (x,t) = Up(z, t). (7.7)

Such a transformation is admissible only if the normalization of the wave function
is not changed:

/d%ww = /d3x(U¢)*U¢ = /d%w*UTUw.
The transformation operator U consequently must be unitary,®
Ulv=uut =1. (7.8)

U is a symmetry operator if U1 satisfies the same Schrodinger equation as . From

d(U d
n 20 _ HUW it follows that ihl = U= HU,
dt dt
where U is assumed to be time independent and where U ! is the inverse operator.

Comparison with Eq. (7.1) gives
H=U'HU =U'HU or HU-UH = [H,U] =0. (7.9)

The symmetry operator U commutes with the Hamiltonian.

Comparison of Egs. (7.5) and (7.9) shows the way to find conserved observables.
If U is Hermitian, it will be an observable. If U is not Hermitian, a Hermitian
operator can be found that is related to U and satisfies Eq. (7.5). Before giving
an example of such a related operator, we recapitulate the essential facts about the
operators F' and U.

3 Notation and definitions: If A is an operator, the Hermitian adjoint operator Af is defined
by

/d3z(Aw)*¢:/d3z¢*ATq5.

The operator A is Hermitian if AT = A; it is unitary if AT = A=1 or ATA = 1. Unitary operators
are generalizations of e’®, the complex numbers of absolute value 1 (Merzbacher, Chapter 14).
Notation: If A is a matrix with elements a;p, A* with elements a}; is the complex conjugate
matrix. A with elements ay; is the transposed matrix. A with elements ay, is the Hermitian
conjugate (H.C.) matrix. (AB)T = BT At. I is the unit matrix. The matrix F is called Hermitian
if Ft = F. The matrix U is unitary if UTU = UUT = I.
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The operator F' is an observable; it represents a physical quantity. Its expecta-
tion values must be real in order to correspond to measured values, and F' conse-
quently must be Hermitian,

Fi=F (7.10)

Note the difference between F' and U which is a transformation operator. The latter
is unitary and changes one wave function into another one, as in Eq. (7.7).

In general, transformation operators are not Hermitian and consequently do
not correspond to observables. However, there exist exceptions, and to discuss
these we note that nature contains two types of transformations, continuous and
noncontinuous ones. The continuous ones connect smoothly to the unit operator;
the noncontinuous ones do not. Among the latter category we find the operators
that are simultaneously unitary and Hermitian. Consider, for instance, the parity
operation (space inversion) which changes @ into —x and represents a mirroring
at the origin. Such an operation is obviously not continuous; it is impossible to
mirror “just a little bit.” Mirroring is either done or not done. If space inversion is
performed twice, the original situation is regained; noncontinuous operators often
have this property:

Up =1. (7.11)

As can be seen from Eqs. (7.8) and (7.10), U, then is unitary and Hermitian and
it is an observable.

A well-known example of a continuous transformation is the ordinary rotation.
A rotation about a given axis can occur through any arbitrary angle, o, and « can
be made as small as desired. In general, a continuous transformation can always be
made so small that its operator approaches the unit operator. The operator U for
a continuous transformation can be written in the form

U=e¢l (7.12)

where € is a real parameter and where F' is called the generator of U. The action
of such an exponential operator on a wave function 1 is defined by

Utp = eFyp = <1+¢6F+ (ij)z +---)¢.

As a rule exp(ieF) # exp(—ieF") and U is not Hermitian. However, the unitarity
condition, Eq. (7.8), yields (if [F, F'{] = 0)

exp(—ieF1) exp(ieF) = explie(F — FT)] =1
or

Fi=F (7.13)
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The generator F' of the transformation operator U is a Hermitian operator, and
it is the observable connected to U if U is not Hermitian. To find F, it is usually
most advantageous to consider only infinitesimally small transformations:

U=¢f' —U=1+4ieF, eF<1. (7.14)

If a system is invariant under the finite transformation, it surely is invariant under
the infinitesimal transformation, and investigation of infinitesimal transformations
is much less cumbersome than that of finite transformations. In particular, if U is
a symmetry operator, it commutes with H, as shown by Eq. (7.9). Inserting the
expansion (7.14) into Eq. (7.9) gives

H(1+ieF) — (1+icF)H =0
or

[H, F] = 0. (7.15)

The generator F' is a Hermitian operator that is conserved if U is conserved.

The arguments in the present section have been quite formal and abstract. The
applications will show, however, that the rather dry considerations have far-reaching
consequences. Continuous and noncontinuous transformations play important roles
in subatomic physics. Invariance under a continuous transformation leads to an
additive conservation law, and relevant examples will be discussed in the present
and the following chapters. Invariance under a noncontinuous transformation can
lead to a multiplicative conservation law, and specific examples will be given in
Chapter 9.

An Example. The treatment in the following sections and chapters is concen-
trated, and we therefore present first one simple example in considerable detail, in
order to make the following cases easier to digest.

We consider the behavior of a particle (or system) moving in one dimension, x.
Two positions of the particle, together with the corresponding wave functions, are
shown in Fig. 7.1. ¢(z) is the wave function of the particle centered at position
xo and > (z) is the wave function of the particle that has been displaced by the
distance A. According to Eq. (7.7), ¥ and ¥® at the same point x are connected
by a transformation operator U,

VA (2) = U(A)y(2). (7.72)

So far, no invariance arguments have been used, and the wave functions 1 and >
can have completely different shapes. If the system is invariant under translation,
1 and ¥? satisfy the same Schrodinger equation, and H and U commute. The
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Y(x) TN
/

Figure 7.1: Particle in one dimension. Two different positions and the corresponding wave func-
tions are shown. The two positions are displaced by a distance A.

invariance implies that the wave function does not change shape as it is displaced
with the particle along z, and hence, as is apparent from Fig. 7.1,

b(x) = 2 (z + A).

The goal is now to find an explicit expression for the symmetry operator U and for
the corresponding generator F'. For infinitesimally small displacements A, expan-
sion of the last equation gives

dyp ()

Y(x) ~ ¢A(x) + TA = <1 + A%) wA(x).

Multiplication from the left with (1 — Ad/dz) and neglecting the term proportional
to A? yields
d
A
~(1-A— .
W~ (1-57 ) vlo)
Comparison with Eq. (7.7a) shows that

d
UA)=1-— A%.
The general infinitesimal operator U is shown in Eq. (7.14); identifying the real
parameter € with the displacement A demonstrates that the generator F' is propor-
tional to the momentum operator p,:

d 1
F=il —_2p
Yaz = R

Since U commutes with H, so does F, as shown in Eq. (7.15). Invariance under
translation along x leads to conservation of the corresponding momentum p,.
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7.2 The Electric Charge

As a further example of a conserved quantity we consider the electric charge. We
are so used to the fact that electricity does not appear or disappear spontaneously
that we often forget to ask: How well is electric charge conservation known? A
good way to look for a possible violation of charge conservation is to search for a
decay of the electron. If charge were not conserved, the decay of the electron into
a neutrino and a photon,

e — v,

would be allowed by all known conservation laws. How could such a process be
observed? If an electron bound in an atom decays, it will leave a hole in the shell.
The hole will be filled by an electron from a higher state, and an X ray will be
emitted. No such X rays have ever been seen, and the mean life of an electron is
longer than 4.6 x 1026 3y.() The result is generalized by saying that the total charge
in any reaction is conserved; the electric charge in the initial and final state of any
reaction must be the same:

Z Qinitial = Z Qfinal- (716)

The conservation law is in agreement with all observations.

Quantization of the electric charge permits us to express charge conservation
in a somewhat different form. Quantization follows from Millikan’s oil droplet ex-
periment; all investigations are in agreement with the observation that the electric
charge of a particle is always an integral multiple of the elementary quantum e:

g = Ne. (7.17)

N is called the electric charge number, or sometimes, loosely, the electric charge.
If free quarks were to exist, charges could occur in multiples of e/3. Relation
(7.17) implies that the neutron charge must be exactly zero and that the charges
of electron and proton must be equal in magnitude. Indeed, observation of the
behavior of neutron and neutral-atom beams in electric fields indicates that the
neutron charge is less than 2 x 10~ 2'e and that the electron—proton charge sum is
less than 1 x 10~2'e.(¥) An electric charge number N is therefore assigned to all
particles. Conservation of the electric charge, Eq. (7.16), demands that N satisfies
an additive conservation law: In any reaction

a+b—c+d+e
the sum of the charge numbers remains constant,

N, + Ny = N, + Ny + N.. (7.18)

1PDG.
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Equation (7.16) is an example of a conservation law. We have stated in the
introduction that each conservation law is related to a corresponding symmetry
principle. What is the symmetry principle that gives rise to the conservation of the
electric charge? To answer this question, we repeat the arguments of Section 7.1
specifically for electric charge conservation. While reading the following derivation,
it is a good idea to follow the more general steps in Section 7.1 in parallel. Assume
that v describes a state with charge ¢ and that it satisfies a Schrédinger equation,
Eq. (7.1): ;

o dy

zhE = H. (7.19)
If @ is the charge operator, we know from Egs. (7.5) and (7.6) that (@) is conserved
if H and @Q commute. v then can also be chosen to be an eigenfunction of @,

QY = qi, (7.20)

and the eigenvalue ¢ is also conserved. What symmetry guarantees that H and
Q commute? The answer to this question was given by Weyl®® who considered a
transformation of the type of Eq. (7.12):

P = ey (7.21)

where € is an arbitrary real parameter and ) the charge operator. The transforma-
tion is called a “global” gauge transformation,(®) since it is independent of space and
time coordinates. Gauge invariance means that v’ satisfies the same Schrodinger
equation as does 1:

L dy’ /
.
Mt ¥

or
. d 1eQ eQ
zha(e ) = He" .

Multiplying from the left with exp(—ie@), noting that @ is a time-independent and
Hermitian operator, and comparing with Eq. (7.19) give

e QHeC = H. (7.22)

Since € is an arbitrary parameter, it can be taken to be so small that eQ < 1.
Expanding the exponential yields

(1—ieQ)H(1 +icQ) = H

5H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York, 1950, pp. 100,
214.

6The word “gauge” stems from a translation of Hermann Weyl’s first introduction of the subject
in 1919 as a scale invariance; H. Weyl, Ann. Physik 59, 101 (1919). The idea lay dormant for
about forty years because Weyl’s use of it was shown to be incorrect.
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or

(@, H]=0. (7.23)

Invariance under the gauge transformation (7.21) guarantees conservation of the
charge ¢. It is an additive conservation because when products of wavefunctions
are transformed by the operator in Eq. (7.21), the Hermitian operator @ occurs in
the exponent, so that Eq. (7.18) is obtained for the charges.

In addition to a global gauge transformation, we can define a “local” gauge
transformation, where the parameter € in Eq. (7.21) becomes an arbitrary function
e(x,t) of space and time. In that case, the phases at two different space—time points
are no longer related. This local gauge transformation and the associated symmetry
is the crucial underpinning of all modern subatomic physical forces, the hadronic,
electromagnetic, and weak. Here we only illustrate the usefulness of the local gauge
symmetry by a simple example. We will return to local gauge transformations in
more detail in Chapter 12.

We have proven that a global gauge invariance leads to charge conservation, but
we have not identified the charge as an electric one. To do so requires a local gauge
invariance, as we shall now show. We assume that ¢ is an electric charge and place
the system in a static electric field, E, defined in terms of the scalar potential Ay,

E = —VA,. (7.24)
The Hamiltonian H in the Schrodinger equation (7.1) can then be written as
H = Hy+ qAg (7.25)

where Hy describes the system in the absence of the field Ag; for a free particle of
mass m,
2 _p2v2
Hy— L= - 2"V
2m 2m

It is well known from classical electricity and magnetism that the electric and mag-
netic field vectors E and B are unchanged by a gauge transformation Ay — Ap, A —
AI

1 0A(x,t)

where A(x,t) is an arbitrary function of « and ¢.(7) We replace the global gauge
transformation of Eq. (7.21) by a local gauge transformation

Y = TRy, (7.27)

Although in general, the phase e(x,t) is an arbitrary function of space and time, it
is sufficient for our purpose here to take A and e to be constant in space and only

7Jackson, Section 6.3.
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functions of time, i.e., A(t) and ¢(t). This restriction simplifies the arithmetic and
will be removed in Chapter 12. Invariance under the local gauge transformation
requires that the Schrodinger equation for ¥ and ¢’ have the same form,

Loy
ih 5

= (Ho + gAY (7.284a)

Under the simultaneous gauge transformations of ¢ and Ay, Eqgs. (7.26) and (7.27),
and with Eq. (7.24), the Schrédinger equation (7.28) becomes

0 —h?v? qgoA\
i Lie(t)Q, ) _4vya ie(t)Q
Zhate v ( om 4 c ot ) ¢ v

. 2%72
L)@ (WW B BCM%) _ i@ (_h VoA qu) 0. (7.28b)

ot 2m T

Comparison of Egs. (7.1) with (7.25) and (7.28) shows that the invariance condition
implies

Je(t) _ qIA(Y)

=7 2
hQ ot c Ot (7:29)
Since €(t) and A(¢) are arbitrary functions of space and time, we set
A(t) = hice(t) (7.30)

so that Eq. (7.29) becomes identical with the eigenvalue equation (7.20). Eq. (7.25)
means that ¢ is the electric charge and @, therefore, is the electric charge operator.
The global gauge transformation leads to the introduction of a conserved quantum
number, the local gauge transformation (7.27) together with the gauge transforma-
tion of the electromagnetic field, Eqgs. (7.26), identifies the charge. The phase of
the wavefunction varies in space and time as described by e(x,t); the variation is
counteracted by corresponding changes in the electromagnetic potential as given by

Az, t) = hice(x, t)

so that no net effect is observable.

7.3 The Baryon Number

Conservation of the electric charge alone does not guarantee stability against decay.
The proton, for instance, could decay into a positron and a gamma ray without
violating either charge or angular momentum conservation. What prevents such a
decay? Stueckelberg first suggested that the total number of nucleons should be
conserved.(® This law can be formulated compactly by assigning a baryon number
A = 1 to the proton and the neutron and A = —1 to the antiproton and the

8E. C. G. Stueckelberg, Helv. Phys. Acta 11, 225, 299 (1938); E. P. Wigner, Proc. Am. Phil.
Soc. 93, 521 (1949).
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antineutron. (See Section 5.10 for a discussion of antiparticles.) Leptons, photons,
and mesons are assigned A = 0. (Particle physicists use B for baryon number, but
we follow the convention of the nuclear physicists here.) The additive conservation
law for the baryon number then reads

ZAi = const. (7.31)

The extent to which Eq. (7.31) holds can be described by a limit on the lifetime of
the nucleons. A geochemical method examining decays of nucleons in 3°Te gives a
lower limit of 1.6 x 1025.(9 A better limit is found by measuring possible decays
in a large quantity of water, which contains many protons, and with very large
counters that are shielded from cosmic rays by being deep underground.(!®) The
limit then becomes about 103%y:; for the specific decay p — et 7%, the lower limit is
1.6 x 10%3y.(1Y) We do not have to live in fear of wasting away through the decay
of nucleons.

The discovery of strange particles led to a generalization of the law of nucleon
conservation. Consider, for instance, the decays

A° —s nr®

s { — e
— Ae™v
T —nm.
In each of these decays, the baryon number is conserved if it is generalized to read

A=1 forp,n, A3 = Q

and A = —1 for the corresponding antiparticles. Similarly, resonances and nuclei
can be characterized by their baryon number A. Since nuclei are built up from
protons and neutrons, the baryon number A is identical to the mass number, intro-
duced in Section 5.9. Hypernuclei are similar to nuclei, but one or two nucleons are
replaced by a hyperon.

As in the case of the electric charge, the question of the symmetry responsible
for baryon conservation arises. Again, a global gauge transformation

P = qpeid (7.32)

leads formally to the conservation law, Eq. (7.31). If the gauge invariance were a
local one then there should be a long range field, similar to the electromagnetic

9J.C. Evans and R.J. Steinberg, Science 197, 989 (1977).

10S. Weinberg, Sci. Amer. 231, 50 (July 1974); J. M. Lo Secco, F. Reines, and D. Sinclair, Sci.
Amer. 252, 54 (June 1985).

HPDG. Also J. Bartelt et al., Phys. Rev. Lett. 50, 651 (1983); M. Goldhaber in Interactions
and Structures in Nuclei, (R. J. Blin-Stoyle and W. D. Hamilton, eds.) Adam Hilger, Philadelphia,
1988, p. 99.
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one, associated with it. No such field has been found. This is one reason that it is
believed that the symmetry is not an exact one and that the proton decays.

The data given so far appear to indicate that further searches for a violation of
baryon conservation are unnecessary since the limits of 103%y and 1.6 x 1033 are very
long compared to the age of the universe, which is only about 10'%y. Theoretical
arguments, however, suggest that the proton lifetime, although long, is finite. It is
important to realize that there is a profound difference between the conservation
laws for electric charge and baryon number. The conservation of electric charge is
related to, or obtained from, the continuity equation for the electric current and
to gauge invariance, which in turn are connected to the Maxwell equations. No
such sound theoretical basis has been found for baryon conservation, which thus is
an empirical rule based on precise experimental measurements. Furthermore, the
success of the unification of the weak and electromagnetic interactions, which we
will discuss in Chapter13, has led theorists to speculate about a (grand unified)
theory that also encompasses gravity and the strong interactions.(!213)  All of these
theories and connected arguments for the excess of matter over antimatter in our
universe contain a very small violation of baryon conservation.('*) The predicted
lifetime of the proton depends on the particular theory, but many models place it
somewhere between 1033 and 10%%y.

7.4 Lepton and Lepton Flavor Number

In Section 5.6 the basic characteristics of six leptons (electron, muon, tau and the
three neutrinos) were sketched, and we pointed out that six antileptons also exist.
To explain the absence of some decay modes allowed by all other conservation laws,
Konopinski and Mahmoud introduced a lepton number, L, and lepton number con-
servation.(!®) They assigned L = 1 to e, u~, v, and v, L = —1 to the antileptons
et, pt, e, and 7,,; and L = 0 to all other particles.

Z L; = const. (7.33)

If lepton conservation indeed holds, leptons can be destroyed or created only in
particle-antiparticle pairs. High-energy photons can produce pairs such as

y—eet, yv—pp,

12G. Oycho, Grand Unified Theorem, Nova Science Publ, Commack, New York, 1999.

3P, Ramond, Ann. Rev. Nucl. Part. Sci. 33,31 (1984); H. P. Niles, Phys. Rep. 110, 1 (1984);
P. Davies, Superforce, W. Heinemann Ltd, London, 1984; J. Griblin, The Search for Superstrings,
Symmetry, and the Theory of Everything, Little Brown, and Co, Boston, 1988; B. Greene, The
Fabric of the Cosmos, A. Knopf, New York, 2004.

14R.S. Chivukula et al, Ann. Rev. Nucl. Part. Sci., 45, 255 (1995); .Lepton and Baryon Num-
ber Violation in Particle Physics, Astrophysics and Cosmology, ed. H. V. Klapdor-Kleingrothaus
and [.V. Krivosheina, Bristol, Philadelphia, 1999.

15E. J. Konopinski and H. M. Mahmoud, Phys. Rev. 92, 1045 (1953).
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but not ¥ — e~ p. (Remember that these processes can happen only in the field of
a nucleus that takes up momentum; see Problem 3.22 .)

Evidence for lepton conservation comes partially from neutrino reactions. Con-
sider first antineutrino capture,

Tep — e n. (7.34)

This process is allowed by lepton conservation because the lepton number on both
sides of the equation is —1. Antineutrino capture has been observed by Reines,
Cowan, and collaborators with antineutrinos from a nuclear reactor.(!®) A reactor
produces predominantly antineutrinos because fission yields neutron-rich nuclides.
These decay through processes involving the mode

n — pe Te. (7.35)

Since the neutron has L = 0, the right-hand side must also have L = 0, and the
particle emitted together with the negative electron must be an antineutrino. The
observation of the reaction Eq. (7.34) is in agreement with Eq. (7.35). However, re-
actions of the type 7.n — e~ p and v.p — eTn are forbidden by lepton conservation.
Davis has searched for a reaction of this type,

7.57C1 — e 37 Ar, (7.36)

again using antineutrinos from reactors. Here, L = —1 on the left-hand side and
L = +1 on the right-hand side, and lepton conservation would be violated if the
reaction were observed. Davis did not see reaction (7.36) and thus was able to
set a limit™") (2 x 10~*2cm?/atom) on the cross section of the reaction caused by
antineutrinos. Note, however, that the reaction

v37Cl — e 737 Ar (7.37)

should occur and was observed by Davis. This result shows that antineutrinos and
neutrinos have different characteristics.

16F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, and H. W. Kruse, Phys. Rev. 117,
159 (1960).

17R. Davis, Phys. Rev. 97, 766 (1955); J. K. Rowley et al., in Solar Neutrinos and Neutrino
Astronomy, (M. L. Cherry, K. Lande and W. A. Fowler, eds) American Institute of Physics, New
York, 1985) p. 1.
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In Chapter 5 we pointed out that photons

present two states of helicity, according as

Neutrino to whether their spin points along or op-

posite the direction of their momentum.

J Experiments on beta decay have shown

<—|:> that antineutrinos are produced mainly

with right-handed helicity(*®) and neutri-

nos mainly with left-handed helicity (see

Fig. 7.2.) Under the assumption that neu-

trinos are different than antineutrinos('®)

%ﬁ (Dirac neutrinos) we find reactions like

) . Eq. 7.36 to put severe constraints on lep-
AnTI'nGUTrInO ton number non-conservation.

Why have we also distinguished a muon

Figure 7.2: Neutrino and antineutrino (or tau) and an electron neutrino? Both
are always polarized if we neglect their
very small masses. The neutrino has its

have L = 1. In what way are they differ-

spin always opposite to its momentum; ent? To attack this question, another of
the antineutrino has parallel spin and the puzzles that surround neutrinos must
momentum. be told

The muon, for example, decays through the mode
W — e, (7.38)

but the possibility
w— ey (7.39)

is allowed by all the conservation laws discussed so far. Over the years many groups
have searched for the gamma decay of the muon, without any success, and the
1imit(?9) on the branching ratio is less than 1.2 x 10~!. The simplest way to explain
the absence of the muon gamma decay is a new conservation law, conservation of
flavor (e, w, or 7) number, e.g., L,,. L, = +1 is assigned to the negative and L,, = —1
to the positive muon. The lepton number of the neutrinos associated with muons
can then be found from the pion decays:

O T 7 Tt — uty,

L, :
" 0 1-1 0 -1 1

(7.40)

U, is labeled an antineutrino because it is right-handed. The muon neutrino has
a flavor number L, = 1, and the muon antineutrino L, = —1. These particles

18Because the neutrino is neutral it can be its own antiparticle (Majorana vs.) This interesting
scenario implies lepton number nonconservation and will be discussed in Chapter 11. Here we
assume that the neutrino and the antineutrino are not identical particles (Dirac vs.)

19See M. Goldhaber, L. Grodzins, and A.W. Sunyar, Phys. Rev. 109, 1015 (1958) for the first
determination of antineutrino helicity.

20M.L. Brooks et al.(MEGA collaboration), Phys. Rev. Lett. 83, 1521 (1999); see also PDG.
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all belong to the same “family”. All other particles are assigned L, = 0. Helicity
considerations would not forbid the reaction in Eq. (7.39), but we shall see in
Ch. 11 that neutrino flavor (whether ve,v,,v;) is not strictly respected; during
their propagation neutrinos can and do transform (oscillate) from one flavor to
another.

Conservation of the flavor number accounts for the absence of the decay u —
ey. However, if the introduction of the muon number does nothing else, it is not
meaningful. Actually, it does lead to new predictions, as can be seen by considering
the two reactions

vyn — QT p, vyn— e p. (7.41)

If the muon number is conserved, only the first one is allowed; the second one is
forbidden. The reactions can be tested because the pion decay, Eq. (7.40), produces
almost only muon neutrinos. The experimental observation is difficult because neu-
trinos have an extremely small cross section and the detector for the reaction equa-
tion (7.41) must be guarded against all other particles. In 1962, a Columbia group
performed a successful experiment at the Brookhaven accelerator and indeed found
that no electrons were produced by muon neutrinos.(>!) Since this first experiment,
the fact has been verified many times, but muon number is not conserved exactly,
since, for example, v, < v,.

The discovery of the tau lepton has led to the introduction of yet a new lepton
quantum number, the tau flavor number. Allowed decays of the tau are numerous
and include

T — U Uuls
— T Vs
— e Velr.

These modes and others have been seen.(22)

7.5 Strangeness Flavor

In 1947, Rochester and Butler observed the first V particles(®3) (Fig. 5.21). By
about 1952, many V events had been seen, and a mystery had developed: the V
particles were produced copiously but decayed very slowly. The production, for
instance, through Eq. (5.56), pr~ — A°K?, occurred with a cross section of the
order of mb, whereas the decays had mean lives of about 1071?sec. Cross sections
of the order of mb are typical of the hadronic interactions, whereas decays of the
order of 10719 sec are characteristic of the weak interaction: kaons and hyperons

21G. Danby, J.M. Gaillard, K. Goulianos, L.M. Lederman, N. Mistry, M. Schwartz, and J.
Steinberger, Phys. Rev. Lett. 9, 36 (1962). See also Adventures in Ezxperimental Physics., Vol.
«, World Sci. Communic., Princeton, NJ, 1972.

22PDG; A.J. Weinstein, R. Stroynowski, Ann. Rev. Nucl. Part. Sci. 43, 457 (1993).

23G.D. Rochester and C.C. Butler, Nature 160, 855 (1947).
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are produced strongly but decay weakly. Pais made the first step to the solution of
the paradox by suggesting that V particles are always produced in pairs.(?¥) The
complete solution came from Gell-Mann and from Nishijima, who both introduced
a new quantum number.(®*®) Gell-Mann called it strangeness and the name stuck.
We shall describe the assignment of this new additive quantum number by using
well-established hadronic reactions. (2%

We begin by assigning strangeness S = 0 to nucleons and pions, and note that
strangeness is not defined for leptons. Strangeness is assumed to be a conserved

quantity in all interactions that are not weak:

Z S; = const. in hadronic and electromagnetic interactions. (7.42)

2

We have introduced here the first example of a “broken” symmetry: S is assumed
to be conserved in hadronic and electromagnetic interactions but violated in weak
ones. With such a quantum number, the mystery of copious production and slow
decay can be explained easily. Consider the production reaction pr~ — A°K° and
assign a strangeness S = 1 to K°. The total strangeness on both sides of the
reaction must be zero, since only nonstrange particles are present initially. The A°
consequently must have strangeness —1 and Pais’ rule is explained: In reactions
involving only nonstrange particles in the initial state, strange particles must be
produced in pairs. Moreover, a single strange particle cannot decay hadronically or
electromagnetically to a state involving only nonstrange particles; such decays must
proceed by the weak interaction, and they are therefore slow. Thus the observed
long lifetime of the strange particles is also explained.

The assignment of strangeness flavor to the various hadrons is based on reactions
that are observed to proceed hadronically. By definition, the strangeness of the
positive kaon is set equal to 1:

S(Kt)=1. (7.43)
The reaction
pr” — nKTK~ (7.44)

is observed to proceed with a cross section characteristic of hadronic interactions,
and it therefore yields

S(K™) = —1. (7.45)

24 A. Pais, Phys. Rev. 86, 663 (1952).

25M. Gell-Mann, Phys. Rev. 92, 833 (1953); T. Nakano and K. Nishijima, Prog. Theor. Phys.
10, 581 (1953).

26 The assignment is much easier now than in 1952 or 1953. An enormous number of reactions
are known now, whereas Pais, Gell-Mann, and Nishijima had to work with very few clues and had
to make imaginative guesses.
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Positive and negative kaons have opposite strangeness, and we assume, with
Eq. (5.64), that they form a particle-antiparticle pair.

Next we turn to the stable baryons, like the proton and neutron(2”). We first see
that all have A = 1, and therefore they are all particles. The corresponding set of
antiparticles also exists, and the strangeness quantum numbers for the antiparticles
are opposite to the ones of the particles that we are about to find.

The two charged kaons are excellent tools for establishing values of S. Consider
first the reaction

pn- — XK. (7.46)

The initial state contains only nonstrange particles, and the observation of reaction
7.46 consequently gives S(X) = —S(K). The hyperon X has S = —1 if the kaon
is positive and S = 41 if the kaon is negative. At modern accelerators, separated
kaon beams are available, and reactions of the type

(7.47)

or the corresponding ones with positive kaons can also readily be observed. In
the first of the reactions (Eq. (7.47)), S(X) = S(K~) = —1 and in the second
S(X’) = —2. Reactions 7.46 and 7.47 are only two prototypes; far more involved
processes occur and serve to find S.

As an example of reaction 7.46, the process

prT — NTKT
assigns S = —1 to the negative sigma. An example of Eq. (7.47) is
pK~ — StaT,

which gives S(X1) = —1. ¥~ and &1 are both baryons with A = 1; they have
the same strangeness but opposite charge. This fact does not contradict Eq. (5.64),
which demands only that antiparticles have opposite charge but does not state that
a pair with opposite charges has to be a particle-antiparticle pair.
The reactions
pp — pX'K+T and pK~ — A%

assign strangeness —1 to AY and X°. The reaction
pK~™ — Z7KT

yields S = —2 for ==. Similarly, the strangeness of Q2™ is found to be —3, and the
strangeness of O follows from Eq. (5.64) as +3.
Now we return to the kaons. Reaction (5.54),

pr~ — AYK©,

27See PDG for a complete list.
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determines the strangeness of the K as positive. This assignment raises a question.
We have

S(KT)=1, S(K7)=-1

S(K% =1, ?

Something is missing: We have two kaons with S = 1 and only one with S = —1.
Gell-Mann therefore suggested that K° should also have an antiparticle, K°, with
S = —1. This antiparticle was found; it can, for instance, be produced in the
reaction.

prt — pKTKO.

The existence of the two neutral kaons, different only in their strangeness but in no
other quantum number, gives rise to truly beautiful quantum mechanical interfer-
ence effects; they will be discussed in Chapter 9. These effects are the subatomic
analog to the inversion spectrum of ammonia.

For some discussions it has become customary to use the hypercharge Y rather
than strangeness for ordinary and strange particles; the hypercharge Y is defined by

Y =A+S. (7.48)

In Table 7.1 we list the values of baryon number, strangeness, and hypercharge for
some hadrons. In the last column we give the average value of the charge number
of the particles listed in the relevant row. This quantity will be used later.

Table 7.1 provides considerable food for thought, and a few remarkable facts
stand out. Some of these we shall be able to explain later. First we note that
the number of particles in each row varies. There are three pions, two kaons,
two nucleons, one lambda, and so forth. Why? We shall give an explanation in
Chapter 8. Second, we remark that all antiparticles exist and have been found.
In some cases the set of antiparticles is identical to the set of particles. When
can this happen? Equation (5.64) states that a particle can be identical to its
antiparticle only if all additive quantum numbers vanish. The only particles in
Table 7.1 satisfying this condition are the photon and the neutral pion. The pion
set is identical to its own antiset, and the positive pion is the antiparticle of the
negative one. All other entries in Table 7.1 are different from their antiparticles.
Third, we note that for physical particles

Y = 2(N,) :2<g>, (7.49)

and this relation will be used later.

7.6 Additive Quantum Numbers of Quarks

The additive quantum numbers listed in Table 7.1 are not complete; additional ones
have been discovered. Before discussing the newer ones, we change the basic style
of assignments. Up to now we have discussed the quantum numbers of the observed
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Table 7.1: BARYON NUMBER A, STRANGENESS S,
HYPERCHARGE Y, AND AVERAGE VALUE OF THE
CHARGE NUMBER Ny = ¢/e.

Particle A S Y  (Ng)
Photon ¥ 0 0 0 0
Pion atalz= 0 0 0 0
Kaon K+KO 0 11 z
Nucleon  pn 1 0 1 %
Lambda A° 1 -1 0 0
Sigma LrY0y- 1 -1 0 0
Cascade Z—=° 1 -2 -1 —%
Omega [ 1 -3 =2 -1

particles, baryons and mesons. The principles become much more transparent,
however, if we assign additive quantum numbers to the quarks, which are the coun-
terparts to the leptons. Recall that a baryon is composed of three quarks, (gqq), a
meson of a quark and antiquark, (¢q). Each quark has a specific individual additive
flavor quantum number, which distinguishes it from the others and is conserved in
hadronic and electromagnetic interactions. By assigning additive quantum numbers
to each quark, we easily find the quantum numbers of any hadron as the sum of
those of its component quarks. In order to agree with the values assigned by early
experiments, it is necessary to assign strangeness —1 to the s quark. Then the KT,
composed of (u3), has the assigned strangeness of +1; the A%, composed of (uds),
has the desired strangeness —1; values of S for other hadrons are readily obtained.
These assignments also explain why baryons can have strangeness S ranging from 0
to —3, with the O~ being composed of all s quarks (sss), whereas mesons only can
have strangeness S = 0, and +1. The additive quantum number S, connected to the
quark s and the antiquark S, can appear in a covert or overt way: (s3) contains two
strange objects, a strange quark and strange antiquark, but appears to the outside
as nonstrange. On the other hand, (u3) contains one strange object, and exhibits
strangeness explicitly.

By 1964, three quarks had been introduced, but four leptons were known. Sug-
gestions for the existence of a fourth quark were made, for instance, by Bjorken and
Glashow,®®) who described the hypothetical quark by the additive quantum num-
ber “charm.” In 1970, Glashow, Iliopoulos, and Maiani(??) introduced a model that
included the fourth quark, charm, showed quark—lepton symmetry, and explained
one unsolved problem, the strong suppression or absence of decays like K — ptpu~
and K* — nfete™ (see Section11.4). The major breakthrough occurred with the
“November revolution” in 1974. Ting and his group at Brookhaven(®®) and Richter

28]. D. Bjorken and S. L. Glashow, Phys. Lett. 11, 255 (1964).
298, L. Glashow, J. Tliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).
30J. J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974).
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Table 7.2: QUANTUM NUMBER ASSIGNMENTS
FOR THE SIX QUARKS.

Quantum Number
Quark A S C B T Ygen

d 3 0 0 0 0 1/3
u 3 0 0 0 0 1/3
s /3 -1 0 0 0 -2/3
c 13 0 1 0 0  4/3
b /3 0 0 -1 0 -2/3
t 3 0 0 0 1  4/3

and his collaborators at SLAC®Y simultaneously discovered a new particle, J/1).
The long lifetime, the decay characteristics, and the excited states of this particle
proved that it was the bound state (¢¢). We will return to the J/4 in Section10.9.

Here we use only one result of these experiments, namely the existence of the
new additive quantum number C. With four leptons and four quarks, lepton—
quark symmetry is satisfied, and nature might have stopped here. However, more
particles with new additive quantum numbers were discovered. In Section 5.6, we
briefly described the heaviest known lepton, the tau. If lepton—quark symmetry
holds, and there are sound theoretical reasons for this symmetry, the tau and its
neutrino call for two more quarks called bottom and top with associated quantum
numbers B and 7T'. Indeed, in 1977, Lederman and his collaborators found a new
particle which they called upsilon (Y).(32) The experimental evidence implies that
the upsilon is a (bb) bound state; we will return to it in Section 10.9. The particle
(tt) has also been found, and we list some of the quantum numbers of all six quarks
in Table 7.2.

With the new additive quantum numbers C, B, and T, a generalized hypercharge
can be introduced and Eqs. (7.48) and (7.49) become

Yoen= A+ S+C+ B+T =2(q/e). (7.50)

7.7 References

A guide to the literature on new particles and reprints of many papers quoted in the

present chapter can be found in J.L. Rosner, New Particles, A.A.P.T., Stony Brook,

New York, 1981. It is based on “Resource Letter NP-1", Am. J. Phys. 48, 290

(1980). A further guide is Quarks, (O.W. Greenberg, ed.) A.A.P.T.; Stony Brook,

New York, 1986 based on “Resource Letter Q-1 Am. J. Phys. 50, 1074 (1982).
31]. E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974).

329 W. Herb et al., Phys. Rev. Lett. 39, 252 (1977); L.M. Lederman, Sci. Amer. 239, 72
(October 1978).
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1983;; F Close,M. Martin, and C. Sutton, The Particle Odyssey: A Journey to
the Heart of Matter, Oxford University Press, New York, 2002; S Weinberg The
Discovery of Subatomic Particle, Scientific Amer. Books, New York, 1983. See
also, J.A. Appelquist, Ann. Rev. Part. Nucl. Sci, 42, 367 (1992) and R. Cester and
P.A. Rapidis, loc.cit. 44, 329 (1994).
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(June 1975); S. L. Glashow, Sci. Amer. 233, 38 (October 1975); S. C. Ting, Science
196, 1167 (1977), Rev. Mod. Phys. 49, 235 (1977); B. Richter, Science 196 , 1286
(1977); see also R.M. Barnett, H. Miiehry, and H.R. Quin, The Charm of Strange
Quarks: Mysteries and Revolutions of Particle Physics, AIP Press, Springer, New
York, 2000.
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J.J. Sakurai, Invariance Principles and Elementary Particles, Princeton University
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Simon and Schuster, New York, 1985; A. Zee, Fearful Symmetry, Macmillan, New
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1959 are treated in G. Feinberg and M. Goldhaber, Proc. Natl. Acad. Sci. U.S.
45, 1301 (1959). Although old this article is clear and interesting to read.

Problems

7.1. Show that the reality of the expectation value (F) demands that the operator
F be Hermitian.

7.2. Discuss more carefully and in more detail than in the text

(a) Quantum mechanical operators and matrices associated with these op-
erators. How is a matrix associated with an observable F' and a trans-
formation operator U?

(b) How is Hermiticity defined for operators and for the corresponding ma-
trices?

(¢) How is unitarity defined for operators and for matrices?

7.3. Discuss the evidence for conservation of the electric charge and the electric
current in macroscopic systems (classical electrodynamics).

7.4. Devise an experiment that would measure a possible neutron charge. Use
realistic values of neutron flux, neutron velocity, electric field strength, and
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7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

Additive Conservation Laws

spatial resolution of neutron counters to obtain an estimate on the limit that
could be obtained.

Assume that nucleons decay with a lifetime of 10'°y and that all the energy
of the nucleons decaying in the earth is transformed into heat. Compute the
heat flow at the surface of the earth. Compare the energy produced with the
energy that the earth receives from the sun during the same time.

* Sketch an experimental arrangement for measuring the lifetime of protons
and explain its basic functioning. [See e.g., C. McGrew et al., Phys. Rev. D
59, 052004 (1999) or K. Kobayashi et al., Phys. Rev. D 72, 052007 (2005).]

The cross section for the absorption of antineutrinos with energies as emitted
2

by nuclear reactors is about 10~*3cm?.
(a) Compute the thickness of a water absorber needed to reduce the inten-
sity of an antineutrino beam by a factor of 2.

(b) Consider a liquid scintillator with a volume of 103 liters and an an-
tineutrino beam with an intensity of 1037/cm?sec. How many capture
events [Eq. (7.34)] are expected per day?

(c) How can the antineutrino capture be distinguished from other reactions?

* How can the reaction of Eq. (7.37) be observed? [See e.g., R. Davis, Jr.
Rev. Mod. Phys. 75, 985(2003).]

Suppose we assign an additive quantum number to a pion: +1 for 7+, 0 for 70,
and —1 for 7—. What are the simplest reactions which allow the production
of pions by photons on protons? What are they for 7~ on protons? For 7+
on protons?

Can the following reactions occur? If so, do they proceed via strong, electro-
magnetic, or weak interactions? Give reasons.

Can strange particles be produced singly by reactions that involve only non-
strange particles? If yes, give a possible reaction.
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7.12. Follow the production and decay of Q in Figs. 5.26 and 5.27 and verify that
the additive quantum numbers A and ¢ are conserved in every interaction.
Where is S conserved and where not?

7.13. *Discuss the reaction(s) that allows the assignment S = —3 to Q™ and S = +3
to Q.

7.14. Which of the following reactions can take place? If forbidden, state by what
selection rule. If allowed, indicate through which interaction the reaction will
proceed.

pp — ntr a0n .

v,p — etn.
vep — et AOKP,

Vep — ¢~ NTKT.

7.15. Estimate the lifetime of the proton if it decayed through gravitational forces.

7.16. * Sketch the experiment of Ting and collaborators that led to the discovery
of the J/1.

7.17. (a) Assume fermion number conservation, but not separate lepton and
baryon number conservation. List some of the possible decay modes
of a proton into a lepton and other particles. What is the minimum
number of other particles required? Why?

(b) List some decays of the proton that do not conserve B and L separately
but conserve B+L; repeat for B-L.

(¢) Repeat a) for decays into antileptons plus other particles.
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Chapter 8

Angular Momentum and Isospin

In this chapter we shall show that invariance under rotation in space leads to con-
servation of angular momentum. We shall then introduce isospin, a quantity that
has many properties similar to ordinary spin, and discuss the “breaking” of isospin

invariance.

8.1 Invariance Under Spatial Rotation

Invariance under spatial rotation provides an important application of the general
considerations presented in Section 7.1.

Consider an idealized experi-
mental arrangement, shown in
Fig. 8.1. We assume for sim-
plicity that the equipment is
in the zy plane; its orienta-
tion is described by the an-
gle ¢. We further assume that
the result of the experiment is
described by a wave function
¥(x). Next, the equipment is
rotated by an angle o about
the z axis. This rotation is de-
noted by R, (), and it carries
a point x into a point a*:

z® = R, (a)x. (8.1)

Figure 8.1: Rotation around the z axis. The angle ¢ fixes
the position of the original equipment axis; it does not de-
note a rotation. The equipment is rotated about the z axis
by an angle a. Invariance under rotation means that the
outcome of the experiment is not affected by the rotation.

The rotation changes the wave function; the relation between the rotated and un-
rotated wave function at point x is given by Eq. (7.7) as

Vfi(x) = U.(a)(z). (8.2)
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The notation indicates that the rotation is by an angle a about the z axis. So far,
no invariance properties have been used and Eqs. (8.1) and (8.2) are valid even if
the system changes during rotation.

Invariance arguments can now be used to find U. If the state of the system
is unaffected by rotation, the wave function at point & in the original system is
identical to the rotated wave function at the rotated point %,

P(a) = T (). (8.3)

Note the difference between Egs. (8.2) and (8.3). The first connects () to ¢ at
the same point, and the second to ¥ at the rotated point . U can be found if
Y (x?) can be expressed in terms of 1)®(x). Because the rotation is continuous,
any rotation by a finite angle can be built up from rotations by infinitely small
angles. An infinitesimal rotation suffices to find U. If the system is rotated by an
infinitesimal angle Ja about the z axis, 1 (x) becomes

R
() = v (z) + MTE@M = (1 + 5aa%> vi(z).
This relation can be inverted by multiplication by [1 —da(9/9¢)]. Neglecting terms
in da? and using Eq. (8.3) then yields

0
R
=(1-da— . 8.4
0(@) = (1o ) via) (8.4
Comparison with Eq. (8.2) shows that the operator in front of ¢(x) is U,(da). The
general expression for the operator for an infinitesimal unitary transformation is
given by Eq. (7.14). Identifying € with do and comparing the two expressions for
U yields the desired Hermitian operator F,(!)
0
F=i—. (8.5)
dg
If U commutes with H, so will F, according to Eq. (7.15), and we have found the
desired conserved observable. We could start exploring the physical consequences

1Some confusion can arise because formally FT = —i0/0¢ looks different from F. However,
Hermiticity is not a property of an operator alone but also of the wave functions and the region
of integration. For a Hermitian operator, with FT = F, the equation in footnote 3 in Chapter 7
reads

/ dBax(F)* ¢ = / d3zy* Fo.

F = i0/0¢p satisfies this relation:

N S S A R O
/d m<1@> qbfl/d x<—2@>'¢) ¢7l/d ) z%.

In the last step, a partial integration has brought the operator to the right of ¥»*. The explicit
form of a Hermitian operator depends on its position with respect to the wave functions.
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of F' and find the eigenfunctions and eigenvalues. This procedure is not necessary
because F' is an old friend. Equation (5.3) shows that
L,

F—-= (8.6)

Not unexpectedly, F' is proportional to the z component of the orbital angular
momentum. Invariance of a system under rotation around the z axis leads to con-
servation of F' and thus also of L.

Two generalizations are physically reasonable, and we give them without proof:
(1) If the system has a total angular moment J (spin plus orbital), then L, is
replaced by J,. (2) U for a rotation by an angle ¢ around the arbitrary direction 7
(where 7 is a unit vector) is

(8.7)

Un(0) = exp (ﬂ> .

h

If the system is invariant under rotation about n, the Hamiltonian will commute
with Up, and consequently also with 7 - J:

[H,Up] =0 — [H,7-J] =0. (8.8)

The component of the angular momentum along 7 is conserved. If i can be taken
to be any direction, all components of J are conserved, and J is a constant of the
motion.
With Eq. (8.7) it is straightforward to find the commutation relations for the
components of J:
[Tz, Jy] = ik, (5.6)
cyclic.

The steps in the derivation are outlined in Problem 8.1 The commutation relations
(Eq. (5.6)) are a consequence of the unitary transformation (Eq. (8.7)), which in
turn is a consequence of the invariance of H under rotation.

8.2 Symmetry Breaking by a Magnetic Field

A particle with spin J and magnetic moment p can be described by a Hamiltonian
H = Hy + Hpag, (8.9)

where Hp,ag is given in Eq. (5.20). Usually, Hy is isotropic, and the system described
by Hj is invariant under rotations about any direction. This fact is expressed by

[Ho,J] = 0. (8.10)

The energy of the particle is independent of its orientation in space. If a magnetic
field is switched on, the symmetry is broken, and Eq. (8.10) no longer holds:

[H’ ‘]] = [HO + Hmaga J] 7é 0. (811)
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(If needed, the commutator can be calculated with Eqgs. (5.20) and (5.6).) The
component of the angular momentum along the field, however, still remains con-
served. It is customary to select the quantization axis z along the magnetic field.
Equations (5.6) and (5.20) then give

[Ho + Hag, J.] = 0. (8.12)

The system is still invariant under rotations about the direction of the externally
applied field, namely the z axis. However, the introduction of a preferred direction
through the application of the magnetic field has broken the overall symmetry, and
J is no longer conserved. Before the application of the field, the energy levels
of the system were (2J + 1)-fold degenerate, as shown on the left-hand side of
Fig. 5.5. The introduction of the field results in a removal of the degeneracy, and
the corresponding Zeeman splitting is shown in Fig. 5.5.

8.3 Charge Independence of Hadronic Forces

In 1932, when the neutron was discovered, the nature of the forces holding nuclei
together was still mysterious. By about 1936, crucial features of the nuclear force
had emerged.(®) Particularly revealing was the analysis of pp and np scattering
data. Of course, at that time, such scattering experiments could be performed
only at very low energies, but the outcome was still surprising: After subtracting
the effect of the Coulomb force in pp scattering, it was found that the pp and
the np hadronic force were of about equal strength and had about equal range.®)
This result was corroborated by studies of the masses of >H and 3He which gave
approximately equal values for the pp, np, and nn interactions. Strong evidence
for a charge independence of the nuclear forces was also found by Feenberg and
Wigner.(¥) Charge independence for nuclear forces can be formulated by stating
that the forces between any two nucleons in the same state are the same, apart from
electromagnetic effects. Today, the experimental evidence for charge independence
is very strong, and it is known that all hadronic forces, not just the one between
nucleons, are charge-independent.(® We shall not discuss the experimental evidence
for charge independence here but only point out that the concept of isospin, which
will be discussed in the following sections, is a direct consequence of the charge
independence of hadronic forces.

2In 1936 and 1937, Bethe and collaborators surveyed the state of the art in a series of three
articles, later known as the Bethe bible. These admirable reviews in Rev. Mod Phys. 8, 82 (1936),
9, 69 (1937), and 9, 245 (1937), reprinted in Basic Bethe, Am. Inst. Phys., New York, 1986, can
still be read with profit.

3G. Breit, E.U. Condon, and R.D. Present, Phys. Rev. 50, 825 (1936).

4E. Feenberg and E.P. Wigner, Phys. Rev. 51, 95 (1937).

5The evidence for charge independence of the hadronic forces is discussed by G.A. Miller and
W.T.H. van Oers in Symmetries and Fundamental Interactions, ed. W.C. Haxton and E.M.
Henley, World Sci., Singapore (1995), p. 127.
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8.4 The Nucleon Isospin

Charge independence of nuclear forces leads to the introduction of a new conserved
quantum number, isospin. As early as 1932, Heisenberg treated the neutron and the
proton as two states of one particle, the nucleon N.(®) The two states presumably
have the same mass, but the electromagnetic interaction makes the masses slightly
different. (The mass difference of the u and d quarks also contributes, but we neglect
this effect here and throughout this chapter.)

To describe the two states of the nucleon, an isospin space (internal charge space)
is introduced, and the following analogy to the two spin states of a spin—% particle
is made:

Spin—% Particle in Ordinary Space  Nucleon in Isospin Space

Orientation Up Up, proton
Down Down, neutron

The two states of an ordinary spin—% particle are not treated as two particles but as
two states of one particle. Similarly, the proton and the neutron are considered as
the up and the down state of the nucleon. Formally, the situation is described by
introducing a new quantity, isospin I.(D The nucleon with isospin % has2I+1=2
possible orientations in isospin space. The three components of the isospin vector I
are denoted by Iy, Is, and I3. The value of I3 distinguishes, by definition, between
the proton and the neutron. I3 = +3 is the proton and I3 = —1 is the neutron.(®)
The most convenient way to write the value of I and I3 for a given state is by using
a Dirac ket:
|1, I3).

Then proton and neutron are
proton |3, 1), neutron |3, —1). (8.13)
The charge for the particle |I, I3) is given by
qg=ce(l3+ 3). (8.14)

With the values of the third component of I3 given in Eq. (8.13), the proton has
charge e, and the neutron charge 0.

6W. Heisenberg, Z. Physik 77,1 (1932). [Translated in D. M. Brink, Nuclear Forces, Pergamon,
Elmsford, N.Y., 1965].

"To distinguish spin and isospin, we write isospin vectors with an arrow.

8In nuclear physics, isospin is sometimes called isobaric spin; it is often denoted by T, and the
neutron is taken to have I3 = % and the proton Iz = —%, because there are more neutrons than
protons in stable nuclei and I3(73) is then positive for these cases.
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8.5 Isospin Invariance

What have we gained with the introduction of isospin? So far, very little. Formally,
the neutron and the proton can be described as two states of one particle. New
aspects and new results appear when charge independence is introduced and when
isospin is generalized to all hadrons.

Charge independence states that the hadronic forces do not distinguish between
the proton and the neutron. As long as only the hadronic interaction is present,
the isospin vector I can point in any direction. In other words, there exists rota-
tional invariance in isospin space; the system is invariant under rotations about any
direction. As in Eq. (8.10), this fact is expressed by

[Hy, T]=0. (8.15)

With only Hj, present, the 21 + 1 states with different values of I3 are degenerate;
they have the same energy (mass). Said simply, with only the hadronic interaction
present, neutron and proton would have the same mass. The electromagnetic in-
teraction (and the up—down quark mass difference) destroy the isotropy of isospin
space; it breaks the symmetry, and, as in Eq. (8.11), it gives

[Hp + Hepm, 1] # 0. (8.16)

However, we know from Section 7.1 that the electric charge is always conserved,
even in the presence of Hepy,:

[Hp, + Hem, Q] = 0. (8.17)

Q is the operator corresponding to the electric charge g; it is connected to I3 by
Eq. (8.14): Q =e(Is + %) Introducing @ into the commutator, Eq. (8.17), gives

[Hy, + Hop, I = 0. (8.18)

The third component of isospin is conserved even in the presence of the electromag-
netic interaction. The analogy to the magnetic field case is evident; Eq. (8.18) is
the isospin equivalent of Eq. (8.12).

It was pointed out in Section 8.4 that charge independence holds not only for
nucleons but for all hadrons. Before generalizing the isospin concept to all hadrons
and exploring the consequences of such an assumption, a few preliminary remarks
are in order concerning isospin space. We stress that T is a vector in isospin space,
not in ordinary space. The direction in isospin space has nothing to do with any
direction in ordinary space, and the value of the operator TorI;in isospin space
has nothing to do with ordinary space. So far, we have related only the third
component of I to an observable, the electric charge ¢ (Eq. (8.14)). What is the
physical significance of I1 and I5? These two quantities cannot be connected directly
to a physically measurable quantity. The reason is nature: in the laboratory, two
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magnetic fields can be set up. The first can point in the z direction, and the second
in the z direction. The effect of such a combination on the spin of the particle
can be computed, and the measurement along any direction is meaningful (within
the limits of the uncertainty relations). The electromagnetic field in the isospin
space, however, cannot be switched on and off. The charge is always related to
one component of f, and this component is traditionally taken to be I3. Renaming
the components and connecting the charge, for instance, to Is does not change the
situation.

We now assume the general existence of an isospin space, with its third compo-
nent connected to the charge of the particle by a linear relation of the form

qg=al3+b. (8.19)

With such a relationship, conservation of the electric charge implies conservation of
I5. I3 is therefore a good quantum number, even in the presence of the electromag-
netic interaction. The unitary operator for a rotation in isospin space by an angle
w about the direction & is

Us(w) = exp(—iwé - T), (8.20)

where [ is the Hermitian generator associated with the unitary operator U, and we
expect I to be an observable. As in the case of the angular momentum operator J,
the arguments follow the general steps outlined in Section 7.1. To study the physical
properties of f, we assume first that only the hadronic interaction is present. Then
the electric charge is zero for all systems, and Eq. (8.19) does not determine the
direction of Is. Charge independence thus implies that a hadronic system without
electromagnetic interaction is invariant under any rotation in isospin space. We
know from Section 7.1, Eq. (7.9), that U then commutes with Hp:

[H),, Us(w)] = 0. (8.21)

As in Eq. (7.15), conservation of isospin follows immediately,

-

[Hy,T]=0.

Charge independence of the hadronic forces leads to conservation of isospin.

In the case of the ordinary angular momentum, the commutation relations for J
follow from the unitary operator (8.7) by straightforward algebraic steps. No further
assumptions are involved. The same argument can be applied to Us(w), and the
three components of the isospin vector must satisfy the commutation relations

I, L] =ils, [Io,Is)=ily, [Is,1,] =il,. (8.22)

The eigenvalues and eigenfunctions of the isospin operators do not have to be com-
puted because they are analogous to the corresponding quantities for ordinary spin.
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The steps from Eq. (5.6) to Egs. (5.7) and (5.8) are independent of the physical
interpretation of the operators. All results for ordinary angular momentum can be
taken over. In particular, I? and I3 obey the eigenvalue equations

L I3) = I(I + 1)|1, I3) (8.23)
I3,0p| 1, I3) = Is|1, I3). (8.24)

Here Igp and I3 ., on the left-hand side are operators, and I and I3 on the right-
hand side are quantum numbers. The symbol |1, I3) denotes the eigenfunction ¢y z,.
(In a situation where no confusion can arise, the subscripts “op” will be omitted.)
The allowed values of I are the same as for J, Eq. (5.9), and they are

1=0,3,1,3,2,.... (8.25)

N[

For each value of I, I3 can assume the 27 + 1 values from —1I to I.

In the following sections, the results expressed by Eqgs. (8.22)—(8.25) will be
applied to nuclei and to particles. It will turn out that isospin is essential for
understanding and classifying subatomic particles.

e We have noted above that the components I; and I5 are not directly connected
to observables. However, the linear combinations

I =1 +il, (8.26)

have a physical meaning. Applied to a state |I,Is), I raises and I_ lowers the
value of I3 by one unit:

I\ Is) = [(I T LY(I £ Is+ 1)])Y2|1,15 £ 1). (8.27)

Equation (8.27) can be derived with the help of Eqs. (8.22) to (8.24).()

8.6 Isospin of Particles

The isospin concept was first applied to nuclei, but it is easier to see its salient
features in connection with particles. As stated in the previous section, isospin is
presumably a good quantum number as long as only the hadronic interaction is
present. The electromagnetic interaction destroys the isotropy of isospin space, just
as a magnetic field destroys the isotropy of ordinary space. Isospin and its mani-
festations should consequently appear most clearly in situations where the electro-
magnetic interaction is small. For nuclei, the total electric charge number Z can be
as high as 100, whereas for particles it is usually 0 or 1. Isospin should therefore be
a better and more easily recognized quantum number in particle physics.

If isospin is an observable that is realized in nature, then Egs. (8.15) and (8.23)-
(8.25) predict the following characteristics: The quantum number I can take on

9Merzbacher, Section 16.2; Messiah, Section XIII.I.
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the values 0, %, 1, %, -
absence of the electromagnetic interaction, a particle with isospin I is (21 + 1)-fold
degenerate, and the 21 + 1 subparticles all have the same mass.

For a given particle, I is an immutable property. In the

Since Hj, and I commute, all subparticles have

. . . . H_off H__ on
the same hadronic properties and are differentiated em

em

only by the value of I3. The electromagnetic interac- 1
tion partially or completely lifts the degeneracy, as /
shown in Fig. 8.2, and it thus gives rise to the isospin -1 0

analog of the Zeeman effect. The 2741 subparticles \
-1

belonging to a given state with isospin I are said to
form an isospin multiplet. The electric charge of T
1

each member is related to Is by Eq. (8.19). Quan-
tum numbers that are conserved by the electromag-
netic interaction are unaffected by the switching on (21+1)-fold degenerate
of Hep,. Since most quantum numbers have this

property, the members of an isospin multiplet have Figure 8.2: A particle with

isospin [ is (21 + 1)-fold degen-

very nearly identical properties; they have, for in- erate in the absence of the elec-
stance, the same spin, baryon number, hypercharge, tromagnetic interaction. Hem
and intrinsic parity. (Intrinsic parity will be dis- lifts the degeneracy, and the re-

A : sulting subparticles are labeled
cussed in Section 9.2.) by Is.

The different members of an isospin multiplet are in essence the same particle
appearing with different orientations in isospin space, just as the various Zeeman
levels are states of the same particle with different orientations of its spin with
respect to the applied magnetic field. The determination of the quantum number
I for a given state is straightforward if all subparticles belonging to the multiplet
can be found: Their number is 27 + 1 and thus yields I. Sometimes counting is not
possible, and it is then necessary to resort to other approaches, such as the use of
selection rules.

The arguments given so far can be applied most easily to the pion. The possible
values of the isospin of the pion can be found by looking at Fig. 5.19: If virtual
pions are exchanged between nucleons, the basic Yukawa reaction

N—N+nx

should conserve isospin. Nucleons have isospin %; isospins add vectorially like an-
gular momenta, and the pion consequently must have isospin 0 or 1. If I were 0,
only one pion would exist. The assignment I = 1, on the other hand, implies the
existence of three pions.(!?) Indeed, three and only three hadrons with mass of

10N. Kemmer, Proc. Cambridge Phil. Soc. 34, 354 (1938).
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about 140 MeV/c? are known, and the three form an isovector with the assignment

+1 7, m =139.569 MeV/c?,
Ii={ 0 7° m=134.964MeV/c2
-1 7, m=139.569 MeV/c%.

The charge is connected to I3 by the relation
q=els, (8.28)

which is a special case of Eq. (8.19). The pion shows particularly clearly that the
properties in ordinary and in isospin space are not related because it is a vector in
isospin space but a scalar (spin 0) in ordinary space.

In the ordinary Zeeman effect, it is easy to demonstrate that the various sublevels
are members of one Zeeman multiplet: if the applied magnetic field is reduced to
zero, they coalesce into one degenerate level. This method cannot be applied to
an isospin multiplet because the electromagnetic interaction cannot be switched
off. It is necessary to resort to calculations to show that the observed splitting
can be blamed solely on He,,. Comparison of the pion and the nucleon shows
that the problem is not straight forward: the proton is lighter than the neutron,
whereas the charged pions are heavier than the neutral one. Nevertheless, the
computations performed up to the present time account for the mass splitting by
the electromagnetic interaction and the mass difference between the up and down
quarks.(*!)

After having spent considerable time on the isospin of the pion, the other hadrons
can be discussed more concisely.

The kaon appears in two particle and two antiparticle states. The assignment
I = % is in agreement with all known facts.

The assignment of I to hyperons is also straightforward. It is assumed that
hyperons with approximately equal masses form isospin multiplets. The lambda
occurs alone, and it is a singlet. The sigma shows three charge states, and it is an
isovector. The cascade particle is a doublet, and the omega is a singlet.

The hadrons encountered so far can all be characterized by a set of additive
quantum numbers, A, ¢, Y, and I3. For pions, charge and I3 are connected by
Eq. (8.28). Gell-Mann and Nishijima showed how this relation can be generalized
to apply also to strange particles. They assumed charge and I3 to be connected by
a linear relation as in Eq. (8.19). The constant ¢ in Eq. (8.19) is determined from
Eq. (8.28) as e. To find the constant b, we note that Is ranges from —I to +I. The
average charge of a multiplet is therefore equal to b:

(q) =b.

HSee e.g., A. De Rujula, H. Georgi, and S. L. Glashow, Phys. Rev. D12, 147 (1975); N. Isgur
and G. Karl, Phys. Rev. D 20, 1191 (1979); J. Gaisser and H. Leutwyler, Phys. Repts. 87, 77
(1982); E.M. Henley and G.A. Miller, Nucl. Phys. A518, 207 (1990).
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The average charge of a multiplet has already been determined in Eq. (7.49):
(q) = ieY. (8.29)

Only particles with zero hypercharge have the center of charge of the multiplet at
g = 0; for all others, it is displaced. Consequently the generalization of Egs. (8.14)
and (8.28) is

g=e(I3+3Y)=e(l3+3A+39). (8.30)

This equation is called the Gell-Mann—Nishijima relation. If ¢ is considered to be an
operator, it can be said that the electric charge operator is composed of an isoscalar
(3€Y) and the third component of an isovector (el3). For particles with charm,
bottom, or top quantum numbers, Y in Eq. (8.30) is replaced by Ygen, Eq. (7.50).

The  Gell-Mann—Nishijima

relation can be visualized in a

Y versus ¢g/e diagram, shown

in Fig. 8.3. A few isospin v

multiplets are plotted. The A

multiplets with Y # 0 are <qle> = %Y

displaced: Their center of 2F /

charge is not at zero but, as //

expressed by Eq. (8.29), at A- Jao [/ & a*t

%eY.
The considerations in the /

present section have shown o ot l -
that isospin is a wuseful -2 -1 ¢ 2 > ale
quantum number in particle /
physics. The value of I for =

a given particle determines /;: Eng
/
/

the number of subparticles O Center of charge

belonging to this particular a-
isospin multiplet. The third é i
component, I3, is conserved
in hadronic and electromag-

netic interactions, whereas

-, Figure 8.3: Isospin multiplets with Y # 0 are displaced:
I is conserved only by the

Their center of charge (average charge) is at %eY. A few
hadronic force. representative multiplets are shown, but many more exist.

In the following section we shall demonstrate that isospin is also a valuable
concept in nuclear physics.
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8.7 Isospin in Nuclei

A nucleus with A nucleons, Z protons, and N neutrons, has a total charge Ze.

The total charge can be written"? as a sum over all A nucleons with the help of
Eq. (8.14):
A
Ze=Y qi=e(Is+ 3A), (8.31)
i=1

where the third component of the total isospin is obtained by summing over all
nucleons,

A
I3 = ZIM. (8.32)
i=1

The isospin I behaves algebraically like the ordinary spin J, and the total isospin
of the nucleus A is the sum over the isospins from all nucleons:

I=>"TI. (8.33)

i=1

Do these equations mean something? All states of a given nuclide are characterized
by the same values of A and Z. What are the values of I and I3? According to
Eq. (8.31), all states of a nuclide have the same value of I3, namely

A=Yz -N). (8.34)

The assignment of the total isospin quantum number I is not so simple. There are
A isospin vectors with [ = %, and, since they add vectorially, they can add up to
many different values of I. The maximum value of I is %A, and it occurs if the
contributions from all nucleons are parallel. The minimum value is |I3|, because a
vector cannot be smaller than one of its components. I therefore satisfies

|Z-N|<I<3ia (8.35)

N
N[—=

Can a value of I be assigned to a given nuclear level, and can it be determined
experimentally? To answer these questions, we return to a world where all but the
hadronic interactions are switched off, and we consider a nucleus formed from A
nucleons. [ is a good quantum number in a purely hadronic world, and each state
of the nucleus can be characterized by a value of I. Equation (8.35) shows that I is
integer if A is even and half-integer if A is odd. The state is (21 +1)-fold degenerate.

125, P. Wigner, Phys. Rev. 51, 106, 947 (1937); Proc. Robert A. Welch Confer. Chem. Res.
1, 67 (1958).
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If the electromagnetic interaction Lz
is switched on, the degeneracy is 114 TBe
broken, as indicated in Fig. 8.4.

-1/2 3 L

Each of the substates is char-
acterized by a unique value of
I3 and, as shown by Eq. (8.31),
appears in a different isobar.

. I=1/2
As long as the electromagnetic H_ oft H,, on

interaction is reasonably small

[(Z@Q/hc) < 1] it is expected that Flg.ure. 8.4: Is.ospln doublet. Without the electromag-
. netic interaction, the two substates are degenerate.
real nuclear states will behave as  With H.,, switched on, the degeneracy is lifted, and

described and consequently can  each sublevel appears in a different isobar. The levels
be labeled by I in the real nuclides are said to form an isospin multi-

plet.

It turns out that I can even be assigned to states in heavy nuclei where this
condition is not fulfilled. Such states are called isobaric analog states; they were
discovered in 1961.013) Figure 8.4 is the nuclear analog to Fig. 8.2. Both are the
isospin analogs of the Zeeman effect shown in Fig. 5.5. In the magnetic (spin) case,
the levels are labeled by J and J,, and in the isospin case by I and I3. In the
magnetic case, the splitting is caused by the magnetic field, and in the isospin case
by the Coulomb interaction.

The way to find the value of I is similar to the one used for particles: If all
members of an isospin multiplet can be found, their number can be counted; it
is 2I + 1, and I is determined. As pointed out in Section 8.6, all members of an
isospin multiplet are expected to have the same quantum numbers, apart from I3
and q. Properties other than discrete quantum numbers can be affected by the
electromagnetic force but should still be approximately alike. The search is started
in a given isobar, and levels with similar properties are looked for in neighboring
isobars. In contrast to particle physics, where the effect of the electromagnetic
interaction is difficult to compute, the positions of the levels can be predicted with
confidence: The electromagnetic force produces two effects, a repulsion between
the protons in the nucleus and a mass difference between neutron and proton.
The Coulomb repulsion can be calculated, and the mass difference is taken from
experiment. The energy difference between members of an isospin multiplet in
isobars (A,Z 4+ 1) and (4, Z) is

AE =E(A,Z+1)— E(A, Z) ~ AEcou — (my, — mp)c2. (8.36)

The energies refer to the neutral atoms and include the electrons; (m, — mg)c? =
0.782 MeV is the neutron-hydrogen atomic mass difference. The simplest estimate
of the Coulomb energy is obtained by assuming that the charge Ze is distributed

13]J. D. Anderson and C. Wong, Phys. Rev. Lett. 7, 250 (1961). Isobaric analog states are
discussed in Section 17.6.
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uniformly through a sphere of radius R. The classical electrostatic energy is then

given by

(Ze)
R

and it gives rise to the shift shown in Fig. 8.4. The energy difference between isobars

with charges Z + 1 and Z becomes approximately

3
Ecou = 5 (8.37)

AECoul ~-—7 (838)

if both nuclides have equal radii. (They should have equal radii since their hadronic
structures are alike.) Values for R can be taken from Eq. (6.30), and the Coulomb
energy difference can then be calculated.

The values of nuclear spins vary all the way from 0 to more than 10. Does a
similar richness exist in the values of isospin? It does, many isospin values occur,
and we shall discuss a few in order to show the importance of the isospin concept.
All examples will show one regularity: The isospin of the nuclear ground state
always assumes the smallest value allowed by Eq. (8.35), Imin = |Z — N|/2.

Isospin singlets, I = 0,
can appear only in nuclides
with N = Z, as is evident
from Eq. (8.35). Such nuclides
are called self-conjugate. The
ground states of 2H, *He, SLi,
8Be, 12C, N, and %0 have
I =0. "N is a good example,
and the lowest levels of the

6.2 MeV :

6.1 MeV

A = 14 isobars are shown in //0

Fig. 8.5. Since A is even, only 7

integer isospin values are al- 514 Mev
lowed. If the N ground state 0

had a value of I # 0, similar e . o -

levels would have to appear in

14C and 140, with I3 = +1. Figure 8.5: A = 14 isobars. The labels denote spin and

These levels should have the parity, for instance, 0t. The ground state of N is an
isospin singlet; the first excited state is a member of an

same spin and parity as the isospin triplet.

1N ground state, namely 17.

Equation (8.36) permits a calculation of the approximate position: The level in 14O
should be about 3.0 MeV higher, and the level in *C should be about 2.5 MeV
lower than the *N ground state. No such states exist. On the oxygen side, the first
level appears at 5.14 MeV and it has spin 1 and negative parity. On the “C side,
the first level is higher and not lower, and it also has spin 1 and negative parity.
All evidence indicates that the '*N ground state has isospin 0.
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Isospin doublets occur in mir- g Mev) I EMeV) I
ror nuclides for which Z = :
(A £ 1)/2. An example is n2e b
shown in Fig. 8.6. The ground '
state and the first five ex- 0%

cited states have isospin 2.

_11.01f 327,32

:. 3/27,3/2 32-.10

- 7127, 1/2

_9.9K
T 927
7/27, 12

2

Equation (8.36) predicts an 721 5127, 1/2
energy shift of 1.3 MeV, which 7.46 | {5127, 12" ___673F 527,112
is in reasonable agreement 6.68 | 152712 '

with the observed shift of 0.86

MeV v "4.57 7/2-,1/2
An example of an isospin 4.63 f {77212

triplet is shown in Fig. 8.5.
The ground states of 14C and
40 form an I = 1 triplet

with the first excited state 0.429 {12712
14 [ B - 38 243/27,1)2

of N.. All thre.e' states 0.478 fom 112 172 ;AE:O'“ oy

have spin 0 and positive par- 0 TP R VP —_——

ity. The energies agree rea- L iBe

sonably well with the predic- Figure 8.6: Level structure in the two isobars Li and
tion of Eq. (8.36). Quartets  "Be. These two nuclides contain the same number of nucle-
and quintets have also been ons; apart from electromagnetic effect, their level schemes
should be identical. J* denotes spin and parity of a level,
I its isospin. Parity will be discussed in Chapter 9. [For
isospin multiplets in isobars is  reference see F. Ajzenberg-Selove, Nucl. Phys. A490, 1

well established. (1988).]

found,(** and the existence of

8.8 References

General references to invariance properties are given in Section 7.6. In addition to
these, the following books and articles are recommended.

Rotations in ordinary space and the ensuing quantum mechanics of angular
momentum are important in all parts of subatomic physics. We have only scratched
the surface. For further details, the texts by Messiah and Merzbacher are useful.
The subject is treated in more detail in D.M. Brink and G.R. Satchler, Angular
Momentum, Oxford University Press, London, 1968.

The early ideas concerning isospin are lucidly described in E. Feenberg and E.
P. Wigner, Rep. Prog. Phys. 8, 274 (1941), and in W. E. Burcham, Prog. Nucl.
Phys. 4, 171 (1955). A later review is D. Robson, Annu. Rev. Nucl. Sci. 16,
119 (1966). The book Isospin in Nuclear Physics (D. H. Wilkinson, ed.), North-
Holland, Amsterdam, 1969, provides a review of the entire field. Even though many

14]. Cerny, Annu. Rev. Nucl. Sci. 18, 27 (1968); W. Benenson and E. Kashy, Rev. Mod. Phys,
51, 527 (1979); F. Ajzenberg-Selove, Nucl. Phys. A449, 1 (1986).
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contributions in this volume are far above the level of the present course, the book
can be consulted if questions arise. A further review is that of E.M. Henley and
G.A. Miller in Mesons in Nuclei, (M. Rho and D. Wilkinson, eds.), North-Holland,
Amsterdam, 1979 p. 406. An up-to-date account of the present status is given by
E.M. Henley in Prog. Part. Nucl. Phys. (A. Faessler, ed.) 20, 387 (1987); G.A.
Miller, B.M.K. Nefkens, and I Slaus, Phys. Rept. 194, 1 (1990) and G.A. Miller and
W.T.H. van Oers in Symmetries and Fundamental Interactions, ed. W.C. Haxton
and E.M. Henley, World Sci., Singapore (1995), p. 127.

Equation (8.37) for the Coulomb energy is good enough for estimates. For de-
tailed arguments, it must be improved. A thorough discussion of Coulomb energies
is given in a review by J.A. Nolan, Jr., and J.P. Schiffer, Annu. Rev. Nucl. Sci.
19, 471 (1969).

Problems

8.1. Derive the commutation relation between J, and Jy:

(a) Equation (8.2) gives the relation between a wave function before and
after rotation, 1t = U4. Matrix elements of an operator F can be taken
between the original and the rotated states. It is, however, also possible
to consider rotation of the operator F' and leave the states unchanged.
Justify that the relation between the rotated and the original operator
is given by

FR=UTFU.

(b) Assume J = (Jg, Jy, J.) to be a vector. Consider an infinitesimal rota-
tion of J by the angle € about the y axis. Express J& = (JE, JE JR)

Yy 1Yz
in terms of J and e.

(¢) Assume J to be the generator of the rotation U, Eq. (8.7). Use infinites-
imal rotations to derive the commutation relation between J, and J, by
setting F' = J, in part (a) and using the result of part (b).

8.2. Cousider the operator U = exp(—ia - p/h), where a is a displacement in real
space and p is a momentum vector.

(a) What operation is described by U?

(b) Assume that H is invariant under translation in space. Find the con-
served quantity corresponding to this symmetry operation and discuss
its eigenfunctions and eigenvalues.

8.3. Discuss some evidence for charge independence in the pion-nucleon interac-
tion.
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8.4.
8.5.

8.6.

8.7.

8.8.
8.9.

8.10.

8.11.

Verify the steps in footnote 1.
Calculate the commutator (8.11).

Justify that the isospin of the deuteron is zero

(a) By using experimental information.

(b) By considering the generalized Pauli principle stating that the total wave
function, assumed to be a product of space, spin, and isospin parts, must
be antisymmetric under the exchange of the two nucleons.

The reaction

dd — amr®

has been observed (see E.J. Stephenson et al., Phys. Rev. Lett. 91, 142302
(2003)), but with a very small cross section. The isospin of the deuteron and
the alpha particle are known to be zero. What does the abnormally small
cross section of the reaction tell us?

Verify Eq. (8.37), Eq. (8.38).

* Study the energy levels of the A = 12 isobars.

(a) Sketch the energy level diagrams.

(b) Justify that the ground state and the first few excited states of 12C have
isospin zero.

(c) Find the first I = 1 state in '2C and justify that it forms an isospin
triplet with the ground states of 2B and '2N.

Consider the reactions

d*°0 — !N

d*2C — pi3cC.

Assume isospin invariance. What are the values of I of the states in 4N
and 13C that can be reached by these reactions? (160, 2C, a, and d denote
ground states; 1N and *C can be excited.)

* Consider the beta decay of 14O to the first and second excited states in *N.
Normally, a beta decay will have a lifetime that is approximately proportional
to E~°, where E is the maximum energy of the beta particles. Use isospin
invariance to explain the observed branching ratio.
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8.12.

8.13.

8.14.

8.15.

8.16.

8.17.

Angular Momentum and Isospin

* Compare AFEcoy for A = 10,80, and 200. Why is it more difficult (or
impossible) to find all the members of an isospin multiplet in heavy nuclei
than in light nuclei?

Consider the reactions

~yA — nA’

dA — pA’

dA — oA’
SHeA” —? HA'.

If A is a self-conjugate (N = Z) nuclide, what are the isospin states in A’ that
can be reached by these reactions? The photon “carries” isospin 0 and 1. If
A" has isospin 0, or %, or %, what are the possible values of the isospin states
in A’?

(a) Prove the commutation relations

[+, 1% =0, [I3,14]==+1s, [I4,1_]=2I;.

(b) Use these commutation relations and Eq. (8.24) to prove Eq. (8.27).

(a) Use the generalization of Eq. (8.30) to deduce the strangeness content of
the D° meson of isospin 1/2, the 1, meson of isospin 0, the A} baryon
of isospin 0. Assume that B =T = 0.

1ifC=

(b) Repeat part (a) for bottomness content for the B~ of isospin 3,

T=0.

The angular distribution of neutral pions produced in the reaction np — dr®
is found to be (almost) symmetrical about 90° in the c.m. (see A.K. Opper et
al., Phys. Rev. Lett. 91, 212302 (2003)) Show that this follows from isospin
conservation.

Projection operators have the properties that Pla) and PJb) = 0 if (a|b) =0
and P? = P. In terms of the isospin operator I3 ,, determine a projection
operator P, for the proton and P, for the neutron, such that P,|p) = 1,
Py|n) =0, Py|n) =1, Py|p) = 0. (For isospin 1/2 I3 ,, = 1/4).



Chapter 9

P,C,CP,and T

In the previous chapter we have discussed two continuous symmetry operations:
rotations in ordinary space and in isospin space. These rotations can be made
as small as desired and consequently can be studied by employing infinitesimal
transformations. Invariance under these rotations leads to conservation of spin
and isospin, respectively. In this chapter we shall discuss examples of discontinuous
transformations, which can lead to operators of the type already given in Eq. (7.11),
namely
U =1.

Such operators are Hermitian and unitary. Invariance under U leads to a multi-
plicative conservation law in which the product of quantum numbers is an invariant.

9.1 The Parity Operation

Parity invariance, loosely stated, means invariance under an interchange left =
right, or symmetry of mirror image and object. For many years, physicists were
convinced that all natural laws should be invariant under such mirror reflections.
Clearly this belief has little to do with everyday observations because our world is
not left-right-invariant. Keys, screws, and DNA have a handedness. Why, then,
the belief in invariance under space reflection? The history of the parity operation
shows how a concept is found, how a concept is understood, how a concept becomes
a dogma, and how finally the dogma falls: In 1924, Laporte discovered that atoms
have two different classes of levels;(!) he established selection rules for transitions
between the two classes, but he could not explain their existence. Wigner then
showed that the two classes follow from invariance of the wave function under space
reflection.(®) This symmetry was so appealing that it was elevated to a dogma. The
observed left—right asymmetries in nature were all blamed on initial conditions.
It came, therefore, as a rude shock when Lee and Yang, in 1956, showed that
no evidence for parity conservation in the weak interaction existed® and parity

LO. Laporte, Z. Physik 23, 135 (1924).
2E. P. Wigner, Z. Physik 43, 624 (1927).
3T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

239



240 P, C,CP, and T

nonconservation was subsequently found by Wu and collaborators in beta decay.(®
The fall of parity, however, was only partial. Parity is conserved in hadronic and
electromagnetic processes.

The parity operation (space inversion), P, changes the sign of any true (polar)
vector:

z 2 -z, p 2, —p. (9.1)

Axial vectors, however, remain unchanged under P. An example is the orbital
angular momentum, L = r X p. Under P, both r and p change sign, and L
consequently remains unchanged. A general angular momentum vector, J, behaves
the same way:

JZ . (9.2)

This behavior follows from the y
observation that P commutes

with an infinitesimal rotation

and hence also with J. More- x
over, the transformation (9.2) >+«—-———————— P — x
leaves the commutation rela-
tions for angular momentum, «
Eq. (5.6), invariant. The ef- P J
fect of the parity operation 2

on momentum and on angu-
Figure 9.1: The parity operation changes @ into —x, p into

—p, but leaves the angular momentum J unchanged. For
Fig. 9.1. clarity, only two dimensions are shown.

lar momentum is shown in

The parity operator is a special case of the transformation operator U discussed in
Section 7.1; P changes a wave function into another wave function:

Pi(@) = (~a). (9.3)

If P is applied a second time to Eq. (9.3), the original state is regained,®)

P2)(z) = Py(~z) = ¥ (), (94)

and P consequently satisfies the operator equation

P =1. (9.5)

4C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105,
1413 (1957).
5For relativistic wave functions, Eq. (9.4) must be generalized.
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P is an example of the operator (7.11), which was denoted by U and which is
Hermitian and unitary at the same time. Equation (9.5) shows that the eigenvalues
of P are +1 and —1.

Up to this point, no invariance arguments have been introduced. The discussion
was restricted to the parity operation, and it dealt only with what happens under
P. The wave functions ¢(x) and 1(—x) can be wildly different. The situation
becomes orderly when invariance under parity is introduced. Assume a system to
be described by a Hamiltonian H that commutes with P:

[H, P] = 0. (9.6)

In this case, the wave function ¥ (x) can be chosen to be an eigenfunction of the
parity operator, as can be seen as follows. ¥(x) is an eigenfunction of H,

Hy(z) = E(x).
Operating with P and using Eq. (9.6) give
HP(w) = PHU(x) = PEG() or Hy'(x) = Bv'(),

where

V(@) = Py().

The wave functions ¥ (x) and Py(x) satisfy the same Schrodinger equation with
the same energy eigenvalue E, and two possibilities now exist. The state with
energy E can be degenerate so that two different physical states, described by the
wave functions ¢(x) and 9/ (x) = Py (x), have the same energy. If the state is not
degenerate, then ¥ (x) and P (x) must describe the same physical situation, and
they must be proportional to each other:

Py(x) = npi(). (9-7)

This relation has the form of an eigenvalue equation, and the eigenvalue np is called
the parity of the wave function ¢(x). The argument following Eq. (9.5) implies that
the eigenvalue must be +1 or —1:

np = +1. (98)

The corresponding wave functions are said to have even (+) or odd (—) parity.
Since P commutes with H, according to Eq. (9.6), parity is conserved, and np is
the observable eigenvalue associated with the Hermitian operator P.

A particularly useful example of a parity eigenfunction is ¥;(6, ¢), the eigen-
function of the orbital angular momentum operator. In Eq. (5.4), we wrote this
eigenfunction as v, and defined it as the eigenfunction of the operators L? and
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L. The function Y, is called a spherical harmonic. () In polar coordinates, the
parity operation @ — —x is given by
r—, 0 — m—10, o — T+ p, (9.9)
and under such a transformation, ¥;™ changes sign if / is odd and remains unchanged
if [ is even:
PY™ = (-1)'y™. (9.10)

Conservation of parity leads to a multiplicative conservation law, as can be seen
by considering a reaction
a+b— c+d.

Symbolically, the initial state can be described as
initial) = |a)|b)|relative motion),

where |a) and |b) describe the internal state of the two subatomic particles and
[relative motion) is the part of the wave function characteristic of the relative motion
of a and b. Space inversion affects each factor so that

Plinitial) = P|a)P|b) P|relative motion). (9.11)

Equation (9.9) shows that the radial part of the relative-motion wave function is
unaffected by P and the orbital part gives the contribution (—1)!, where [ is the
relative orbital angular momentum of the two particles a and b. The expressions
Pla) and P|b) refer to the internal wave functions of the two particles. We can
assign intrinsic parities to particles so that, for instance,

Pla) = np(a)la).
Equation (9.11) then becomes

np(nitial) = np(@)np ()(~1). (9.12)

A similar equation holds for the final state, and parity conservation in the reaction
demands that

ne(@)ne(0)(—1)" = np(c)ne(d)(-1)", (9.13)

where [’ is the relative orbital angular momentum of the particles c and d in the final
state. Equation (9.13) implies that parity is a conserved multiplicative quantum
number.

6Properties of the Y™ and their explicit form can be found for example in Morse and Feshbach.
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Why does a gauge transformation lead to an additive quantum number while
P leads to a multiplicative one? P is a Hermitian operator in itself, while in a
gauge transformation, the Hermitian operator appears in the exponent. A product
of exponentials leads to a sum of exponents and hence to an additive law.

9.2 The Intrinsic Parities of Subatomic Particles

Can intrinsic parities be assigned to subatomic particles as assumed in Section 9.17
We shall show that such assignments are feasible, but we shall also encounter a fine
example of an unsuspected trap.

As in all cases where a sign is involved, the starting point must be defined. In
electricity, the charge on cat fur is defined to be positive, whence the proton acquires
a positive charge. The intrinsic parity of the proton is also defined to be positive,

np(proton) = +. (9.14)

The determination of the parity of other particles is based on relations of the
type of Eq. (9.13). As an example, we consider the capture of negative pions by
deuterium.(” Low-energy negative pions impinge on a deuterium target, and the
reaction products are observed. Of the three reactions,

dm~ — nn (9.15)
dm™ — nny (9.16)
dr~ — nnr® (9.17)

only the first two are observed; the third one is absent. Parity conservation for the
first reaction leads to the relation

np(d)np(n)(=1) = np(n)np(n)(-1)" = (-1)".

First consider spin and parity of the initial state. The deuteron is the bound
state of a proton and a neutron. The nucleon spins are parallel and add up to a
deuteron spin 1. The relative orbital angular momentum of the two nucleons is
predominantly zero. (We shall discuss the deuteron in more detail in Chapter 14.)
Consequently the deuteron parity is np(d) = np(p)np(n). The negative pion slows
down in the target and is finally captured around a deuteron, forming a pionic
atom. With emission of photons, the pion rapidly falls to an orbit with zero orbital
angular momentum from where reactions (9.15) and (9.16) occur. Consequently
the orbital angular momentum [ is zero, and the parity of the initial state is given
by np(r~)np(p)np(n). The angular momentum !’ in the final state can also be
obtained easily: The total wave function in the final state must be antisymmetric

"W. K. H. Panofsky, R. L. Aamodt, and J. Hadley, Phys. Rev. 81, 565 (1951).
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(two identical fermions). If the spins of the two neutrons are antiparallel, the spin
state is antisymmetric, and the space state must be symmetric; consequently I’ must
be even, and the possible total angular momenta are 0, 2, .... The total angular
momentum in the initial state is 1; angular momentum conservation therefore rules
out the antisymmetric spin state. For the symmetric spin state, where the two spins
are parallel, the orbital angular momentum !’ must be odd, I’ = 1,3,.... Only in
the state I’ =1 can the total angular momentum be 1, and the final state therefore
is 3P;. With I’ = 1 the parity relation becomes

ne(p)np(n)ne(r™) = —1. (9.18)

Two solutions exist, and with the standardization (9.14) they are

ne(p) =np(n)=1,  np(r )= -1, (9.19)

and

ne(p)=np(r”)=1,  np(n)=-1 (9.19a)

The two solutions are equivalent, experimentally. No experiment can be devised
that gets around the ambiguity and measures the relative parity between proton
and neutron. The choice is made on theoretical grounds: proton and neutron form
an isodoublet. According to Eq. (8.15), the members of an isospin multiplet should
have the same hadronic properties, and it is assumed that they do have the same
intrinsic parity. By setting

np(neutron) = + (9.20)

the parity of the pion becomes negative; the pion is a pseudoscalar particle. The
absence of the reaction (9.17) indicates that the neutral pion is also a pseudoscalar.

e Why can the relative parity of the proton and the neutron, or of the positive
and the neutral pion, not be measured? The reason is connected with the existence
of additive conservation laws. Consider the parity equations for the proton and the
neutron.

Plp) = |p)
Pln) = |n).

A modified parity operator, P’, is introduced through the definition

P’ = Pei™@ (9.21)

where @ is the electric charge operator. Physically, the new operator P’ is indistin-
guishable from P. It performs the same function (for instance, changes x into —x),
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and, according to Eq. (7.22), it commutes with H. P and P’ therefore are equally
good parity operators. Applied to |p) and |n), P’ gives

P'|p) = Pe'™?|p) = —Plp) = —|p),
P'|n) = |n).

The modified parity operator assigns negative intrinsic parity to the proton and
leaves the neutron parity unchanged. Since P and P’ are equally good parity
operators and we have no reason to prefer one over the other, we conclude that
the relative parity between systems of different electric charge is not a measurable
concept. Then, there is no way to determine experimentally which of the two
solutions given in Eq. (9.19) is correct; the assignment of equal parities to the proton
and neutron cannot be verified by a measurement, but it rests on firm theoretical
grounds.
Instead of the modification (9.21), parity operators of the form

P// _ Pei-rrA

can be introduced, where A is the baryonic (or another conserved additive) number
operator. The arguments proceed as above, and it becomes clear that the relative
parity is observable only for systems that have equal additive quantum numbers.

We have just shown that the relative parity of two systems is measurable only
if the two systems have equal additive quantum numbers. This restriction limits
the usefulness of the parity concept, but not as much as could be suspected. It is
only necessary to fix the intrinsic parities of as many hadrons as there are addi-
tive quantum numbers; the parities of all other hadrons can be found by building
composite systems of the standard particles and measuring the relative parities of
all other states with respect to these. The parities of the proton and the neutron
have already been set positive; next it is customary to add the lambda as the third
standard particle so that

np(proton) = np(neutron) = np(lambda) = +. (9.22)

With this definition, the parities of all nonstrange and strange hadrons, including
all nuclear states, can in principle be determined experimentally. To include par-
ticles with other additive quantum numbers, for instance charm, the parities of a
corresponding number of particles with these quantum numbers must be defined.
The gauge bosons 7, gluon, W=, Z° all have negative intrinsic parities; that of the
photon has been determined from experiments. Leptons have been omitted here for
reasons that will become clear in Section 9.3.

We have restricted the above paragraph to particle systems; the intrinsic parities
of antiparticles is also needed and is not arbitrary. For bosons, the parity of an
antiparticle is the same as that of the particle. The 7° is its own antiparticle and



246 P, C,CP, and T

the antiparticle of the 7% is the 7=. The parity of an antiboson is thus seen to
be the same as that of the boson. This no longer holds for fermions. As predicted
by the Dirac theory, the intrinsic parity of an antiparticle is opposite to that of
the particle. The parities of et, u*, and p are opposite to those of the e=, u~, p,
respectively. These assignments can be checked experimentally, for instance, in the
annihilation of pp into two pions (see problems 9.44 and 9.45) and was first shown
experimentally by Wu and Shaknov ®) by means of the decay of positronium (a
bound state of e*, e™) in the 1.Sj state to two photons, eTe~ — ~v. For an angular
momentum 0 state the decay amplitude must be a scalar under rotation. For two
photons of polarization €; and €3, the two such scalars under rotation which can be
formed are

AS = €1-€2,
Aps

€1 - xk,

where k is the relative momentum of the two photons. A is even under a parity
transformation, but because the momentum is odd under parity, A,s is a pseu-
doscalar, odd under parity. Wu and Shaknov measured the polarization of the two
emitted photons and showed that they tended to be perpendicular to each other as
predicted by A, rather than parallel, as predicted by As. Since the electromag-
netic interaction conserved parity, this implies that the 'S state of positronium is a
pseudoscalar of negative parity. For an S-state the orbital angular momentum has
positive parity (see Eq. (9.10)); thus the intrinsic parity of the e™ must be opposite
to that of the electron, e™. e

A first example of the determination of the parity of a particle has already been
given above where it was shown that the reaction (9.15) leads to the assignment of
negative parity to the pion. As a second example, consider the following reactions:

dd — p°H (9.23)
dd — n*He (9.24)
d*H — n*He. (9.25)

Spin and parity of the deuteron, d, have already been discussed above where it was
found that the assignment is 1. The spins of 3H, 3He, and *He can be measured
with standard techniques; studies of reactions (9.23)—(9.25) yield values of [ and I’
and the assignments J”™ becomes %Jr for *H and 3He and 0% for *He.

In principle, parities of other states can be investigated with similar reactions.
One more example is shown in Fig. 9.2. Assume that the assignment 07 for 228Th is
known and that the spins of the various states in 224Ra have also been determined.

8C.S. Wu and I. Shaknov, Phys. Rev. 77, 136 (1950).
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As stated above, the alpha particle has
spin 0 and positive parity. If it is
emitted with orbital angular momen-
tum L, it carries a parity (—1)~. Since
the initial state of the decay has spin
0, an alpha emitted with angular mo-
mentum L can only reach states with
spin J = L. The parities of these

states then must be (—1)F = (1) or = ol
0F,1-,2%,37,4%,.... Such states in- Ra

deed are seen to be populated by the Figure 9.2: Alpha decay of 222 Th. The intensities
alpha decay in Fig. 9.2. of the various alpha branches are given in %.

The examples given so far are simple. In the actual assignment of parities to
particles and excited nuclear states, more complex methods are often necessary,
but the basic ideas remain the same. The various methods used in nuclear and in
particle physics are described in the references listed in Section 5.14.

9.3 Conservation and Breakdown of Parity

In the previous section we have discussed the experimental determination of the
intrinsic parities of some subatomic particles. Implied in all arguments was conser-
vation of parity in the processes used to find np. How good is the evidence for parity
conservation in the various interactions? To answer this question in a quantitative
way, a measure for the degree of parity conservation must be introduced. If |«) is
a nondegenerate state of a system with, for instance, even parity, it is written as

|a) = |even).

If parity is not conserved, |a) can be written as a superposition of an even and an
odd part,

|a) = cleven) + d|odd), |c|* + |d* = 1. (9.26)

A state of this form, with ¢ # 0 and d # 0, is no longer an eigenstate of the parity
operator P because

Pla) = cleven) — d|odd) # np|a).

Fp = d/c is a measure for the degree of parity nonconservation (d < ¢). Parity
violation is maximal if the state contains equal amplitudes of |even) and |odd), or
it |Fp| = 1.
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A sensitive test for parity conservation in the hadronic and ]

the electromagnetic interaction is based on selection rules 1

for alpha decay. In Fig. 9.2 it was shown how the occur- /2_
rence of an alpha decay can be used to determine the par-

ity of a state to which a transition occurs. The approach '>C 4

can be inverted: Since an alpha particle with orbital an-

gular momentum L carries a parity (—1)¥, decays such as

17 50t or2= 5 0F are parity-forbidden. They can occur

only if one or both of the states involved contain an ad-

mixture of the opposite parity. Figure 9.3 shows the levels

used for an experiment(®: A 1~ state in 160 at an exci- %0
tation energy of about 9.6 MeV is populated by the decay '

of 18N, and it can decay by alpha emission leaving '?C in gf;ri? ‘jgf;rih:t:f::}iﬁ
its ground state. This transition is parity-allowed, because  60. The decays from

vector addition of angular momenta permits emission of  the latter violate parity.
Only levels of interest are

. . _ . Ry — « +
an alpha particle with L = 1 in a transition 1~ — 0. Shown.

However, N decays also to a 27 state in 10 with excitation energy of 8.9 MeV,
which can only go with L = 2; the corresponding parity is positive, and the decay
2= % O is parity-forbidden. Seeking such a parity-forbidden branch consequently
constitutes a search for |Fp|2. Analysis of the data show that the decay occurs with
a width of I' = (1.03 £ 0.28) x 10~ 1%V; when it is compared to the typical alpha
decay width of 2% states in 0, we deduce that for the strong interaction:

|Fpl? <1071, (9.27)

This tiny parity violation is due to the weak interaction. Such a small number
provides very good evidence for parity conservation in the hadronic interaction.
At the same time, it shows that parity is also conserved in the electromagnetic
interaction. If parity were violated electromagnetically, the nuclear wave functions
would also be of the form of Eq. (9.26), and parity-forbidden alpha decays would
become possible. Since the electromagnetic force is weaker than the hadronic one
by about a factor of 100, the limit on the corresponding violation is less stringent
than Eq. (9.27) by about 10%(|Fp|? < 1071), which is still very low.

Before 1957, the limits were much less convincing. However, since parity conser-
vation had already become a dogma, very few physicists were willing to spend their
time improving a number that was considered to be safe anyway. The astonishment
was therefore great when it was found early in 1957 that parity was not conserved in
the weak interaction.'®) The puzzle that motivated the crucial thinking developed

9N. Neubeck et al., Phys. Rev. C10, 320 (1974).

10The discovery of parity nonconservation in the weak interaction came as a great shock to most
physicists. The background and the story is described in a number of books and reviews. We
recommend R. Novick, ed., Thirty Years Since Parity Nonconservation—A Symposium for T.
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before 1956. By 1956, it had become clear that two strange particles with remark-
able properties existed. They were called the tau and the theta, and they appeared
to be identical in every respect (mass, production cross section, spin, charge) ex-
cept in their decay. One decayed to a state of negative parity, and the other to a
state of positive parity. The dilemma thus was as follows: either two practically
identical particles with opposite parities existed or parity conservation had to be
given up. Lee and Yang studied the problem in depth® and found, much to their
surprise, an overlooked fact: Evidence for parity conservation existed, but only for
the hadronic and the electromagnetic interactions, and not for the weak one. The
decays of the tau and the theta were so slow that they were known to be weak;
Lee and Yang suggested experiments to test parity conservation specifically in the
weak interaction. The first experiment was performed by Wu and collaborators,
and it brilliantly showed the correctness of Lee and Yang’s conjecture.(*) The tau
and theta are now known to be one and the same particle, the kaon.

The concept underlying the Wu et al. experiment is explained in Fig. 9.4. %°Co
nuclei are polarized so that their spins J point along the positive z axis. When
the nuclei decay through the intensity of the emitted electrons is measured in the
two directions 1 and 2. The electron momenta are denoted by p; and p,, and the
corresponding intensities by I3 and I5. Under the parity transformation, the spins
remain unchanged, but the momenta p; and p,, and the intensities I; and I, are
interchanged. Invariance under the parity operation means that the original and
the parity-transformed situations cannot be distinguished. Figure 9.4 shows that
the two situations give identical intensities if I; = Is. Parity conservation demands
that the intensity of electrons emitted parallel to J is the same as for electrons
emitted anti-parallel to J.

0Co —O Ni+e™ 47,

In a more formal way, the essential aspect of the experiment is the observation
of the expectation value of the operator

P=J-p, (9.28)

where J is the spin of the nucleus and p is the momentum of the emitted electron.

D. Lee, Birkhéuser, Boston, 1988. A letter from Pauli to Weisskopf (German but with English
translation) is reprinted in W. Pauli, Collected Scientific Papers, Vol. 1 (R. Kronig and V. F.
Weisskopf, eds.), Wiley-Interscience, New York, 1964, p. xii. The letter shows how much the fall
of parity affected physicists.
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‘P is a pseudoscalar; under the
parity operation it transforms
as

Jopt—Jp. (9.29)

l
i
l
Invariance under the parity ! [ 1
|
I
|
[

)
opera- P !
tion means that the transition 80Co P

—_——

rates in the two situations,
J -pand —J - p, are identical. :
Equation (9.29) instructs the |
experimental physicist how to ’Iz :

[

test parity invariance: Mea-
sure the transition rate for a
Figure 9.4: Concept of the Wu et al. experiment. A
polarized nucleus emits electrons with momenta p; and
and compare the result to the  p,. The original situation is shown at the left, and the
parity-transformed one at the right. Invariance under par-
ity means that the two situations cannot be distinguished.

fixed orientation of J and p

transition rate for the state
_J . p.

The state —J - p can be reached by inverting J or p. The experiment of Wu and
collaborators consisted of comparing the transition rates for J -p and —J - p by
inverting J through inverting the polarization of the %°Co nuclei.

In a radioactive source at room temperature, the nuclear spins are randomly
oriented. It is necessary to polarize the nuclei so that all spins J point in the same
direction. The transition rate for electron emission parallel and antiparallel to J can
then be compared. To describe the experimental approach, we use a hypothetical
decay, shown in Fig. 9.5(a). A nuclide with spin 1 and g factor g > 0 decays by
emission of an electron and an antineutrino to a state with spin 0. To polarize
the nuclei, the sample is placed in a strong magnetic field B and cooled to a very
low temperature T'. The magnetic sublevels of the initial state split as in Fig. 9.5;
the energy of a state with magnetic quantum number M is given by Eq. (5.21) as
E(M) = Ey— gunyBM. The ratio of populations, N(M')/N (M), of two states, M’
and M, is determined by the Boltzmann factor,

N(ﬁ) — exp{~[E(M") — E(M)]/kT}, (9.30)
or, with Eq. (5.21),
]]\\[[((Ajé)) = exp W . (9.31)

If the condition
kT < gunB (9.32)
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is satisfied, only the lowest e
Zeeman level is populated, L N " w=o
the nucleus is fully polarized, \\\ NM= .
and its spin points in the di- Ne

rection of the magnetic field \\\

[Fig. 9.5(b)].  The change 720 —SA—

J-p — —J -p is obtained by @ )

reversing the direction of the Figure 9.5: (a) Beta decay from a state with spin 1 to a
external field, B. The exper- state with spin 0. (b) At very low temperatures in a high
magnetic field, only the lowest Zeeman level is populated,
and the nucleus (with g > 0) is fully polarized and points
mastery of many techniques. in the direction of B.

imental arrangement requires

The radioactive nuclei are introduced into a cerium-magnesium-nitrate crystal
and cooled to a temperature of 0.01 K by adiabatic demagnetization. The mag-
netic field required to satisfy Eq. (9.32) is very high. To obtain such a high field,
paramagnetic atoms are chosen, and the field at the nucleus is then predominantly
produced by its own electronic shell. The radioactive source must be thin so that
the electrons can escape and be counted in a detector placed in the cryogenic system
[Fig. 9.6(a)]. Data are reproduced in Fig. 9.6(b). The result is striking. The expec-
tation value of P = J - p does not vanish, and parity is not conserved in beta decay.
Many additional experiments have borne out the remarkable result that parity is vi-
olated in weak interactions. We can now return to an earlier figure and understand
it better. In Fig. 7.2, neutrino and antineutrino are shown to be fully polarized.
Full polarization means that neutrino and antineutrino have a nonvanishing value
of J - p and therefore are a permanent expression of parity nonconservation in the
weak interaction.

It is customary to describe the polarization of a spin—% particle not by J - p,
(particularly for massless particles or for particles with energy > mc? ) but by the
helicity operator R

H = 2%, (9.33)
where P is a unit vector in the direction of the momentum. The expectation value
of H for a particle that has its spin along its momentum is 4+1 and such a particle
is said to be right-handed; (|H|) = —1 characterizes a particle with spin opposite to
P, a left-handed particle. Particles with nonvanishing helicity can be produced in
many experiments; common to all these is the existence of a preferred direction, for
instance, given by a magnetic field. If no preferred direction exists, a nonvanishing
value of (|J - p|) and hence also of (|H|) is a sign of parity nonconservation. An
example is the helicity of leptons emitted from isotropic weak sources, such as beta
or muon decay. The helicity of both neutral and charged leptons in such weak
decays has been measured.('?)

1H. Frauenfelder and R. M. Steffen, in Alpha-, Beta- and Gamma-Ray Spectroscopy, Vol. 2, (K.
Siegbahn, ed.), North-Holland, Amsterdam, 1965; M. Goldhaber, L. Grodzins and A. W. Sunyar,
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The result, Flectron
v /Radioac(ive
<H(e )> =~ (934) source - — ;] asy,mme;ry T
(H(eh)) =+, YAy
25 1
where v is the lepton ve- é";
=]
locity, confirms parity non- égm
conservation in the weak in- ~

8 12 16

Cryostat

teraction. , ' Time (min)
Cerium-magnesium

We have stated above that nitrate crystal

parity is conserved in the elec- (2) ®)

tromagnetic and the hadronic Figure 9.6: (a) Arrangement to measure beta emission
interaction. This statement from polarized nuclei. (b) Result of the earliest experi-
ment showing parity nonconservation [C. S. Wu, E. Am-
bler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson,
Neglecting the gravitational — Phrys. Rev. 105, 1413 (1957).] A normalized counting rate
interaction, the total Hamilto-  in the beta detector is shown for two directions of the ex-
ternal magnetic field. After adiabatic demagnetization, the
source warms up, the polarization decreases, and the effect
disappears.

requires some explanations.

nian can be written as
H=H), + Hey + Hy.

Cross sections or transition probabilities are always proportional to |H|?; conse-
quently interference terms between the weak and the other two interactions will
occur. Since H,, does not conserve parity, the interference terms should also show
parity violation. Experiments to detect these interference terms are extremely diffi-
cult, but parity violating asymmetries of the expected order of magnitude have in-
deed been seen in many experiments.(*?) The interference of the weak and hadronic
interactions has been observed in nuclear reactions, radiative transitions and in
nucleon—nucleon scattering. The effect for the electromagnetic interaction has been
verified in atomic physics,(!3) in electron-electron scattering,(!¥) and in polarized

(15)

electron- proton and -nucleus scattering experiments.

9.4 Charge Conjugation

In Section 5.10, the concept of antiparticles was introduced. This concept gives
rise to long and mainly philosophical discussions centered around questions such as

Phys. Rev. 109, 1015 (1958).

12E. G. Adelberger and W. Haxton, Annu. Rev. Nucl. Part. Sci. 35, 501 (1985); E. M. Henley
in Prog. Part. Nucl. Phys., (A. Faessler, ed.) 20, 387 (1987); W. Haeberli and B.R. Holstein in
Symmetries and Fundamental Interactions, ed. W.C. Haxton and E.M. Henley, World Scientific
Singapore, 1995, p. 17.

13E. A. Hinds, Amer. Sci. 69, 430 (1981); E. N. Fortson and L. L. Lewis, Phys. Rept 113, 289
(1984); M. C. Noecker, B. P. Masterson, and C. E. Wieman, Phys. Rev. Lett. 61, 310 (1988).

P L. Anthony et al., SLAC E158 Collaboration, Phys. Rev. Lett. 92, 181602 (2004).

15C.Y. Prescott et al., Phys. Lett. T7B, 347 (1978), 84B, 524 (1979); T. M. Tto et al. (SAMPLE
Collaboration), Phys. Rev. Lett. 92, 102003 (2004); K.A. Aniol et al. (HAPPEX Collaboration),
Phys. Rev. C 69, 065501 (2004); D. S. Armstrong et al. (GO Collaboration), Phys. Rev. Lett.
95, 092001 (2005).
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“Is there really a sea of negative energy states?” or “Can a particle really move
backward in time?” The important features, however, are not connected with such
vague aspects but concern the undeniable fact that antiparticles exist. In the present
section, the particle-antiparticle connection will be put into a more formal frame
than in Section 5.10. Many of the ideas are similar to the ones already introduced
in connection with parity in Section 9.1 so that the discussion can be brief.

We describe a particle by the
ket |ggen), Where qge, stands
for all internal additive quan- TZZZI7777777 -

|
|
|
tum numbers such as A, ¢, S, M |' ____W,///p'
J | )
|
|

L, and L,. The operation of

charge conjugation, C, is then T . I
defined by ) —_— )
C|Qgen> = | — Qgen>- (935)

Figure 9.7: Charged particle traversing an electric field.
. . Charge conjugation, acting on the whole system, reverses
Charge conjugation reverses the additive quantum numbers of a particle but leaves

the sign of the additive quan-  space-time properties (p, J) unchanged. If the charges of
the external field are also reversed the trajectories of par-

tum numbers but leaves mo- ticle and antiparticle are the same.

mentum and spin unchanged.

C' is sometimes also called particle-antiparticle conjugation to express the fact that
not only the electric charge but all internal additive quantum numbers change sign.
The situation is depicted in Fig. 9.7. Charge conjugation invariance means that
to every particle there exists an antiparticle with the same mass, spin, and other
space-time properties (e.g. decay lifetime), but with opposite internal additive
quantum numbers. If C' is applied twice the original charges are regained so that

Cc? =1. (9.36)

C, like P, is a discontinuous operator of the type of Eq. (7.11), and it is unitary
and Hermitian.

Equation (9.36) indicates that, if [C, H] = 0, the eigenvalues of the charge conju-
gation operator are +1 and —1. However, as we shall see now, there is a considerable
difference between P and C because C' does not always have eigenstates. To explore
this new feature, we write tentatively

Clqgen) = 7e|dgen) (9.37)

and ask when such a relation is meaningful. As an example, the state |ggen) is
taken to be an eigenstate of the charge operator, (). For a particle with charge ¢,
described by |g), the eigenvalue equation

Qla) = dlq) (9.38)
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holds. By Eq. (9.35) however, C applied to |q) gives
Clo) =|-a)-

The commutator of the two operators  and C, when operating on |g), can now be
obtained in a straightforward way:

CQlg) =qClg) =q| —q)
QClg) = Q| —q) = —ql —q)

or

(CQ —QO)|q) = 2q| — q) = 2CQ|q). (9.39)

The operators C' and () do not commute; this result can be expressed as an operator
equation,

[C, Q] =20Q. (9.40)

Since the two operators C' and () do not commute, it is, in general, not possible
to find states that are simultaneous eigenstates. A charged particle cannot satisfy
an eigenvalue equation of the form of Eq. (9.37) since nature has chosen particles
to be eigenstates of (). The argument just given applies to all quantum numbers
ggen. Particles appear in nature as eigenstates of operators corresponding to ggen
and these operators also do not commute with C. There is one loophole, however.
Fully neutral particles, that is particles for which all quantum numbers gge, vanish,
can be in an eigenstate of C. For such systems, Eq. (9.37) applies:

C|Qgen = 0> = 770|Qgen = 0>7 Tle = +1, (941)

and 7. is called the charge parity (or charge conjugation quantum number). It
satisfies a multiplicative conservation law.

What is the charge parity of the fully neutral particles, such as the photon,
the gluon, the neutral pion, and 7°? A satisfactory answer requires quantum field
theory, but the correct values can be obtained with some hand waving. The photon
is described by its vector potential A. The potential is produced by charges and
currents and consequently changes sign under C":

A% A (9.42)

An example of this sign change has already been shown in Fig. 9.7. Equation (9.42)
suggests the assignment
ne(y) = —1. (9.43)
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The 7% and 1° decay electromagnetically into two photons.

70 — 2y and n° — 2y,

and therefore must have positive C' parity if C' is conserved in the decay:

ne(r®) =1, n(n)=1. (9.44)

If C parity were applicable only to the photon, 7% and 1°, it would not be
very useful. However, there exist many particle—antiparticle systems that are fully
neutral. Examples are positronium (ete™), 7" 7™, pp,nn. The C parity of these
systems depends on angular momentum and spin, and it is a useful quantity for
discussing the possible decay modes.

Use of charge parity for discussion of a decay requires 7. to be a good quantum
number. It is conserved if C' commutes with the Hamiltonian H. It is easy to see
that C' is not conserved in the weak interaction,

[H,,C] # 0. (9.45)
Fig. 7.2 shows that neutrino and antineutrino have opposite polarization (helicity).
If charge conjugation were conserved in the weak interaction, the two particles would
have to have the same helicity.
C conservation in the hadronic interactions has been tested in numerous reac-
tions, such as

pp — i wl. (9.46a)

C acting on the reaction gives

pp — m b, (9.46b)

If the proton produces the 7% forward and the p the 7~ backwards in the re-
action (9.46a), then the reaction (9.46b) would give rise to 7~ forward and 7+
backward. Thus, if the hadronic Hamiltonian commutes with C, the angular dis-
tribution and energy spectra of the positive and negative pion must be identical.
Comparison of the two distributions and similar tests in other reactions show the
expected symmetry. The result can be stated as(16)

C-nonconserving amplitude

< 0.01. 9.47
C-conserving amplitude | ™ ( )

To test conservation of C' in the electromagnetic interaction, charge—parity-
forbidden decays are looked for. Consider the decays

7 — 3y and 7’ — 3.

16C. Baltay, N. Barash, P. Franzini, N. Gelfand, L. Kirsch, G. Liitjens, J. C. Severiens, J.
Steinberger, D. Tycko, and D. Zanello, Phys. Rev. Lett. 15, 591 (1965).
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7 and n° have positive charge parity; the three photons in the final states have
negative charge parity, and the decay is forbidden. The decays have not been found.
Perhaps the best limit comes from the reaction

ete” — ;ﬁ;ﬁ.

Charge conjugation invariance requires the angular distribution of the positive or
negative muon to be symmetric about 90°. Experimentally, a small asymmetry is
found (see Chapter 10), of a magnitude that is consistent with it being caused by the
weak interaction. This experiment shows that C is conserved in the electromagnetic
interaction. Thus, the present evidence indicates that charge conjugation is a valid

symmetry for both the hadronic and electromagnetic Hamiltonians.

9.5 Time Reversal

In the two previous sections, the discrete transformations P and C' were introduced.
Both operations are unitary and Hermitian and give rise to multiplicative quantum
numbers. In the present section, a third discrete transformation is introduced, time
reversal, T. It will turn out that 7T is not unitary, and a complication is thus
introduced; no conserved quantity such as parity or charge parity is associated with
it. Nevertheless, time-reversal invariance is a very useful symmetry in subatomic
physics.
Formally, the time-reversal operation is defined by

TR Tz . (9.48)

Since classically p = dx/dt, momentum and angular momentum change sign under
T:

p——-p, J--J (9.49)

In classical mechanics and electrodynamics, the basic equations are invariant under
T: Newton’s law of motion and Maxwell’s equations are second-order differential
equations in ¢ and are therefore unaffected by the replacement of ¢ by —t.

The essential aspects of time-reversal invariance appear already in the treatment
of a nonrelativistic spinless particle, described by the Schrodinger equation,

i %ﬁt) — Hy(b). (9.50)

This equation is formally similar to the diffusion equation which is not invariant
under t — —t. The feature that distinguishes T" from P and C turns up when the
connection between 1 and T is explored. According to the arguments given in
Section 7.1, T is a symmetry operator and satisfies

[H,T] =0 (9.51)
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if T4 (t) and 1 (t) obey the same Schrodinger equation. The Schrodinger equation

for T (t) is

dT'p(t)
dt
The simplest attempt to satisfy this equation,

ih = HT(t). (9.52)

Ty(t) = v(-1), (9.53)
is incorrect: inserting Eq. (9.53) into Eq. (9.52) and writing —t = ¢’ gives
dy(t’
—ih 12; ) = Hy(t). (9.54)

This equation is not the same as Eq. (9.50). The fact that Eq. (9.54) is written in

terms of ¢’ rather than ¢ is immaterial because ¢ is only a parameter. What counts

is form invariance: () and T (t) must satisfy equations that have the same form.
The correct time-reversal transformation was found by Wigner, who set(1”)

Tip(t) = 9™ (). (9.55)

Inserting ¢*(—t) into Eq. (9.52) and taking the complex conjugate of the entire
equation produces a relation that has the same form as the original Schrodinger
equation if H is real.

The simplest application of the time-reversal transformation (9.55) is to a free
particle with momentum p, described by the wave function

i(p-x—Et)]

b(,t) = exp [ .

The time-reversed wave function is

Ti(@,t) = ¥ (2, ~t)
— exp {—i(p : :;z + Et)} — oxp {i(—p : ; - Et)} .

The time-reversed wave function describes a particle with momentum —p, in accord
with Eq. (9.49). It is not necessary to interpret the function T (x,t) as describing
a particle going backward in time. The more physical interpretation of 1" is motion

(9.56)

reversal: T reverses momentum and angular momentum,

Tp,J)=|-p,~J). (9.57)

ITE. Wigner, Nachr. Akad. Wiss. Goettingen, Math. Physik. Ki. Ila, 31, 546 (1932).
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When we played the game with P and C, at this point we asked for conserved
eigenvalues. The answers were parity np and charge parity 7.. Does T have ob-
servable and conserved eigenvalues? Such eigenvalues would be solutions of the
equation

Ty(t) = nrip(t).
Equation (9.55) shows, however, that T' changes 1 into its complex conjugate, and
the eigenvalue equation makes no sense. This fact is connected with the antiunitarity
of T. P and C are unitary operators; unitary operators are linear and satisfy the
relation

U(Cﬂ/}l + CQ¢2) =c1 U1 + caU1hs. (9.58)

Antiunitary operators, however, obey the relation

T(Cﬂﬂl + CQ¢2) = CTT’lﬂl + C;Tlﬂz. (959)

The time-reversal transformation is antiunitary. Why are P and C unitary but not
T7? In Sections 9.1 and 9.4 we justified the choice of P and C' as unitary operators
by saying that they must leave the norm N invariant, where N is

N = /dew*(m)@/J(:c).

An antiunitary operator also leaves N invariant, as can be seen by inserting
Eq. (9.55) into N. The choice between the two possibilities is dictated by the
physical nature of the transformation. For P and C, the transformed wave func-
tions satisfy the original equations if the transformation is unitary. For T', form
invariance demands that it be antiunitary.

We have just seen that T' does not have observable eigenvalues; states can
therefore not be labeled with such eigenvalues, and invariance under 1" cannot be
tested by searching for time—parity-forbidden decays. Fortunately there are other
approaches. Time-reversal invariance predicts, for instance, equality of transition
probabilities for a reaction and its inverse (principle of detailed balance) and it de-
mands that the electric dipole moments of particles vanish. A great deal of effort
has gone into testing time-reversal invariance, but no evidence for a violation in the
strong, electromagnetic, or in the flavor-conserving part of the weak interaction has
been found.(*® All findings are in flavor-changing systems and can be accounted
for as a phase in the CKM matrix, as will be discussed in Chapter 11. Among very
sensitive tests are searches for the electric dipole moments of electrons,(*?) ultracold

20)

bottled neutrons,®?) and of atoms.(2") The electric dipole moment of the electron is

181.. Wolfenstein, Annu. Rev. Nucl. Part. Sci. 36, 137 (1986); E. M. Henley in Progr. Part.
Nucl. Phys., (A. Faessler, ed.) 20, 387 (1987).

19B.C. Regan et al., Phys. Rev. Lett. 88, 071805 (2002).

20C.A. Baker et al., Phys. Rev. Lett.,97, 131801 (2006); see also R. Golub and S.K. Lamoreaux,
Phys. Rep. 237, 1 (1994) for a proposal that is now being persued.

2IM.V. Romalis et al., Phys. Rev. Lett. 86, 2505 (2001).




9.5. Time Reversal 259

found to be < 7 x 10725 e-cm in magnitude; that of the neutron < 6.3 x 10726 e-cm,
and that of the mercury atom < 2.1 x 1072® e-cm. Since the size of the neutron
is roughly 1 fm, the upper limit on the size of the neutron electric dipole moment
means that that the T-odd effect, Fr, is less than about 1072, The electric dipole
moment of the Hg atom improves this limit by about a factor of 5. To-date, no elec-
tric dipole moments have been found. These experiments probe for physics beyond
the standard model, which predicts even smaller electric dipole moments. How-
ever, after more than thirty years of effort, a time reversal violation was observed
in 1998 in a strangeness-changing reaction, an indirect comparison of the reaction
rates K9 « K© and in a correlation experiment in the final state of a particular
decay of the neutral kaon.(?2)

It is important to note
that an electric dipole mo- Spin

ment requires that both parity d; d,
and time reversal invariance l T
are violated; this can be il- Spin

M

lustrated by a simple picture, d: d
shown in Figure 9.8. Con- T T

sider a particle with spin rep-

resented by a sphere. The @Q%QQAQ/

spin defines a direction in . dy,

d. d
space, which we here take to T l
be upwards. We assume the

particle to have a net positive
charge distributed as shown in
Fig. 9.8 so that it has a clas-
sical electric dipole moment, Figure 9.8: A spinning positively charged particle is repre-
dp. Since the particle is ro-  sented here as a spherical object. Its mirror (located in the
horizontal midplane) image and its time reversed image are

tating 1t also has a classical shown. The magnetic dy; and electric dg dipole moments
magnetic dipole moment, dj;.  are also shown.

Spin

By performing a parity inversion about the midplane, we see that the parity
inverted particle has an electric dipole moment oppositely directed relative to the
spin of the particle, whereas the magnetic dipole moment remains parallel to the
spin. Thus, if parity is conserved, the particle cannot have an electric dipole moment
since you can tell the mirror picture from the original one. If we perform a time
reversal transformation, as shown, the particle will spin in the opposite direction;
the magnetic dipole moment changes its direction as well and remains parallel to the
spin, but the electric dipole moment fails to do so. Thus, you can tell the difference

22A. Angelopoulos et al., CPLEAR Collaboration, Phys. Lett. B 444, 43 (1998); A. Halavi-
Harati et al., the KTEV Collaboration Phys. Rev. Lett. 84, 48 (2000); see also L. Wolfenstein,
Int. J. Mod. Phys. E8, 501 (1999) and E. M. Henley, Fizika B10, 161 (2002).
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between the direct and time reversed pictures if the particle has an electric dipole
moment, and this is not allowed if time reversal is a valid symmetry.

9.6 The Two-State Problem

As an introduction to the discussion of neutral kaons, we consider two identical
unconnected potential wells L and R shown in Fig. 9.9(a). The energies of the
stationary states |L) and |R) are given by the Schrodinger equations,

Hy|L) = Ey|L), Hy|R) = Ey|R).
Since Hy does not connect the two wells, we write
(L|Ho|R) = (R|Ho|L) = 0.

For simplicity it is assumed that only the states |L) and |R) play a role. All other
states are assumed to have so much higher energies that they can be neglected. If we

Ey

S
ILALITTITIRL IR NN R R N Y

s
’
2%,

% Z
//////////./////// x /////I/%é///lll/ x
0 0
(a) H° (b) H® + Hy,

Figure 9.9: Eigenvalues and eigenfunctions of a particle in two identical
potential wells, without and with transmission through the barrier.

switch on a perturbing interaction, Hiy, that lowers the barrier between the wells
and induced transitions L = R, the stationary states of the system are determined
by

Hy) = (Ho + Hin)|t)) = E). (9.60)

The problem consists of finding the eigenvalues and eigenfunctions of the total
Hamiltonian H = Hy + Hiy. Since the two unperturbed states |L) and |R) are
degenerate, the solution requires use of the correct linear combinations of the un-
perturbed eigenfunctions.(?*) These combinations can be found by symmetry con-
siderations. Since the potentials are placed symmetrically about the origin, the

23 Merzbacher, Section 17.5; Park, Section 8.4.
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Hamiltonian is invariant under reflections through the origin, and H and the parity
operator P commute,

[H,P] = [Ho + Hint, P] = 0. (9.61)
With the choice of coordinates shown in Fig. 9.9, the parity operator gives

PIL),=|R)  PIR)=|L). (9.62)

The simultaneous eigenfunctions of Hy and P are easy to find; they are the sym-
metric and antisymmetric combinations of the unperturbed states |L) and |R):

) = VHID + IR}, o) = /4D~ IR)). (9.63)

These combinations indeed are eigenstates of P,

P|s) = +|s), Pla) = —|a). (9.64)
Egs. (9.61) and (9.64) together prove that H does not connect |a) and |s):

(al H|s) = (al HP|s) = {a| PH]3) = (al P'H]s) = —(al H]3)
(a|H|s)y = 0. (9.65)

Ordinary perturbation theory can consequently be applied to the states |a) and |s).
The energy shift caused by the perturbation, Hiy, is given by the expectation value
of Hiyg, or

(s|Hint|s) = E' + AE
(a|Hipgla) = B — AE, (9.66)
where
(LIHine|L) = (R|Hint|R) = E'
(L|Hint|R) = (R|Hins|L) = AE. (9.67)
The interaction lowers the center of the energy levels by E’ and splits the degenerate
levels by an amount 2AF, as indicated in Fig. 9.9(b). The splitting shows up in

the hydrogen molecule ion and particularly clearly in the inversion spectrum of
ammonia.(?4)

24T wo-state systems and the ammonia MASER are beautifully treated in R. P. Feynman, R. B.
Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 111, Addison-Wesley, Reading,
Mass., 1965, Chapters 8—11.
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What happens to a particle that is dropped into one potential well, say L, at
time ¢t = 07 Equation (9.63) gives its state at t = 0 as

6(0)) = L) = \/3{Is) + la}}; (9.68)

the state does not have definite parity and is not an eigenstate of H. To investigate
the behavior of the particle at later times, we use the time-dependent Schrodinger
equation

in (1)) = (Ho + Hu)(0) (9.69)

and the expansion

[¥(®)) = a(®)|L) + B{)|R)

()] + |8(t)|* = 1. (9.70)

Inserting the expansion (9.70) into the Schrédinger equation (9.69) and multiplying
in turn from the left by (L| and (R|, yields a system of two coupled differential
equations for «(t) and S(¢):

iha(t) = (Eo + E")al(t) + AEB(t)

- / (9.71)

thp(t) = AEa(t) + (Eo + E')B(2).
The solution of these equations with the initial conditions a(0) = 1 and £(0) = 0
gives

|1h(t)) = exp [M} {cos (%) |L) —isin <%) |R>} . (9.72)

The probability of finding the particle, dropped into well L at t = 0, in well R at a
time ¢ is given by the absolute square of the expansion coefficient of |R), or

AEt
prob(R) = sin® (T) : (9.73)
The particle hence oscillates between the two wells with a circular frequency 2w,
where

AE

w= =2 = (L[ HwR)5. (0.74)

St =
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9.7 The Neutral Kaons

Hypercharge is the only quantum number that distinguishes the neutral kaon from
its antiparticle: Y (K°) = 1,Y(K9) = —1. Since the hadronic and the electromag-
netic interactions conserve hypercharge, K and K° appear as two distinctly

different particles in all experiments involving

these two forces. However, the weak interaction K°
does not conserve hypercharge, and virtual weak [AY| =1 4Weak
transitions between the two particles can occur. ,/ \\
Both particles decay, for instance, into two pions, mt LS
K° — 27 and KO — 27. They are therefore con- \\ /
nected by virtual second-order weak transitions, IAY| = 1 ’
Weak
K° =21 = KO, (9.75) K0

shown in Fig. 9.10. The existence of these vir- - 010 E e of a virtual
tual transitions leads to remarkable effects, as first selfcl)lrfcel order w;i(mtrr)ais?tic?nwl(roui
pointed out by Gell-Mann and Pais.(?%) KO,

The effects are easy to understand if the analogy to the two-well problem is recog-
nized: In the absence of the weak interaction, |K°) and |K°) are two unconnected
degenerate states just like |L) and |R) before switching on Hi,,. The weak inter-
action, H,, then plays the same role as H,; and connects the two states |K°) and
|K0). With minor changes, the equations and results of the previous section can be
applied to the neutral kaon system by setting

Ho=Hy, + Hop = Hy,  Hi = H,. (9.76)

To find the transformation that corresponds to Eq. (9.62), we note that charge
conjugation changes K° into K9 and vice versa,

C|K% = |K%), C|K%) = |K"). (9.77)

Gell-Mann and Pais used these relations in their original work in place of Eq. (9.62)
in order to find the proper linear combinations of the unperturbed eigenstates | K°)
and |KO). When the breakdown of parity was discovered it became clear that C' does
not commute with the total Hamiltonian, and this fact is expressed in Eq. (9.45).
The combined parity, CP, is a better choice, as can be seen as follows. C applied
to a neutrino with negative helicity changes it into an antineutrino with negative
helicity, in disagreement with experiment. C'P, however, changes a negative helicity
neutrino into an antineutrino with positive helicity, in agreement with observation.
To find the effect of CP on states |[K°) and |K°), we note that the intrinsic parity
of the kaons is negative,

25M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955).
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P|K% = —|K®), P|K% = —|K9), (9.78)
so that the effect of the combined parity is given by

CP|K°) = —|K%), CP|KO) = —|K"). (9.79)

If the total Hamiltonian conserves C'P,

[H,CP)] = [H, + H,,CP] =0, (9.80)

then the eigenstates of H can be chosen to also be eigenstates of CP. (We shall
return to the question of C'P conservation in Section 9.8.) Just as in Eq. (9.63), we
write these eigenstates as(®%)

KD = /1K) — [K0))

(9.81)
IK9) = \/HIK®) + KO},

with
CPIKY) = +K?), CPIKY) = —|KQ). (9.82)

K has a combined parity ncp of +1, and K3 one of —1.

The analogy with the two-well problem in Section 9.6 is obvious: The states
|K°) and |K0), just as the states |L) and |R) are eigenstates of the unperturbed
Hamiltonian. The states |KY) and |KY), just as |s) and |a), are simultaneous
eigenstates of the total Hamiltonian and of the relevant symmetry operator. The
results of Section 9.6 can be applied to the neutral kaons and remarkable predictions
ensue:

1. K° is the antiparticle of K9. The two should therefore have the same mass
and the same lifetime. K¢, however, is not the antiparticle of K9, and the
two particles can have very different properties.

2. The thought experiment of “dropping the particle at ¢ = 0 into one well,”
discussed in Section 9.6, can be realized with kaons. Kaons are produced by
hadronic interactions, for instance by 7=p — KC®A°. Such a production in
a state of well-defined hypercharge corresponds to dropping the particle into
one well. Equations (9.72) and (9.73) predict that the particle will tunnel into
the other well. The other well corresponds to the opposite hypercharge: A
neutral kaon, produced in a state of Y = 1, should partially transform to a
state with Y = —1 after a certain time.

26The freedom allowed by the arbitrary phases in the definitions of C' and P has led to different
ways of writing the linear combinations (9.81). The usual choice is to introduce a phase of 180°
in either C or P so that CP | K% = + | K°),CP | K% = + | K°). The observable consequences
are unchanged by the phase choice.
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3. The states |s) and |a) have slightly different energies, as is shown by Eq. (9.66)
and Fig. 9.9. The corresponding kaon states, |KY) and |KY), should therefore
have slightly different rest energies.

In the following we shall describe the verification of these three predictions.

1. KY and K9 Decay Differently. Energetically, kaons can decay into two or
three pions. Since the kaon spin is zero, the total angular momentum of the pions
in the final state must also be zero. Consider first the two-pion system, 77 ~.
In the c.m. of the two pions, the parity operation exchanges 7™ and n~. Charge
conjugation exchanges 7~ and 7+ again so that the combined operation C'P leads
back to the original state. The same argument holds for two neutral pions so that

CP|rm) = +|rm) in all states with J = 0. (9.83)

Two pions with total angular momentum zero have a combined parity ncp = +1.
If the total Hamiltonian conserves CP, as assumed by Eq. (9.80), C'P must be
conserved in the decays of the neutral kaons. K9, with nop = 1, then can decay
into two pions. K9, with nop = —1, cannot decay into two pions; it must decay
into at least three:

K9\~ 27 if CP conserved. (9.84)

The decay energy available for the two-pion mode is about 220 MeV, and for the
three-pion mode about 90 MeV. The phase space available for decay into three pions
is therefore considerably smaller than for that into two pions (Chapter 10), and the
mean life 71 of K f is expected to be much smaller than the mean life 5 of KS.

The decay of K° (or of F) is more complicated. Consider, for instance, K°
produced by a reaction such as 7~ p — K9A%. At ¢t = 0, the state has hypercharge
Y =1; with Eq. (9.81) the initial state is

[t =0) = K% = \/H{IKD) + |K3)}. (9.85)

If the particle is allowed to decay freely, it will do so through the weak interactions.
We have observed above that K? and K are expected to decay with different
lifetimes 7, and 7o. K° will therefore not decay with a single lifetime. Gell-Mann
and Pais expressed their prediction in these words(®*®): “To sum up, our picture of
the K° implies that it is a particle mixture exhibiting two distinct lifetimes, that
each lifetime is associated with a different set of decay modes, and that not more
than half of all K%s can undergo the familiar decay into two pions.” They also
stated “Since we should properly reserve the word ‘particle’ for an object with a
unique lifetime, it is the K? and the K9 quanta that are the true ‘particles.” The
K and the KO must, strictly speaking, be considered ‘particle mixtures.” ”

The unequivocal predictions of Gell-Mann and Pais concerning the decay prop-
erties of K° posed a challenge to the experimental physicists: Does K° possess a
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long-lived component that decays into three pions? At the time of Gell-Mann and
Pais’ paper, neutral kaons were known to decay with a lifetime of about 107'%sec. A
longer-lived component was found by a Columbia—Brookhaven group using a cloud

chamber.(?”) The experimen-

tal arrangement is sketched in
Fig. 9.11. A 90 cm cloud
chamber was exposed to the
neutral beam emitted from a
copper target hit by 3 GeV
protons.  Charged particles
were eliminated by a sweeping
magnet. The 6 m flight path
from target to chamber cor-
responded to about 100 mean
lives for the known decay com-
ponent; the KY component
hence was absent in the cham-
ber. The observation of many
V events that could not be fit-
ted kinematically by two-pion
decays established the exis-
tence of a long-lived three-
pion decay of KY and con-
stituted a clear verification of
the brilliant proposal by Gell-
Mann and Pais. Later experi-
ments substantiated this con-
clusion, and the mean lives
of the two components were
found to be 7(K39) = 0.517 x
1077 sec and 7(KY) = 0.894 x

3 GeV protons Cu target

e

Sweeping
magnet

4

K°

.

Charged
particle

Bubble
chamber

Figure 9.11: Observation of the long-lived neutral kaon
component, Kg , by a Columbia—Brookhaven group in a
cloud chamber. [K. Lande et al., Phys. Rev. 103, 1901
(1956); 105, 1925 (1957).] The charged particles are swept
out of the beam by a magnet; the neutral particles in the
beam are observed after a flight of about 3 x 10~8 sec. The
observed V' events cannot be explained by two-particle de-
cays.

J/\p Lp

—_—— A%
- -
Production -
of K°
) Pure K beam Gl
K‘l’ decay rapidly equal parts
K° and K° K° interaction

Figure 9.12: Observation of the KO component of an ini-

—10
10 sec. tially pure K° beam.

2. Hypercharge Oscillations.*® Equation (9.72) predicts that a particle that
was dropped into one well at time ¢t = 0 will continuously oscillate between the two
wells, with a circular frequency given by Eq. (9.74). If neutral kaons were stable,
they would do the same. However, they decay, and the oscillations are damped.
Consider a situation where at time ¢ = 0 a K° was produced, as described by
Eq. (9.85). After a time that is long compared to 7(K?Y), all K{s will have decayed,

27K. Lande, E. T. Booth, J. Impeduglia, L. M. Lederman, and W. Chinowsky, Phys. Rev. 103,
1901 (1956); 105, 1925 (1957).
28 A. Pais and O. Piccioni, Phys. Rev. 100, 1487 (1955).
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and only K9s are left, as shown in Fig. 9.11. Equation (9.81) expresses K3 in terms
of the eigenstates of hypercharge as

IK9) = /LK) + [KO)}.

The kaon beam will consist of equal parts K° and K°. A kaon beam that has
been produced in a pure Y = 1 state has changed to one containing equal parts
Y =1and Y = —1. Experimentally, the appearance of the K0 component can
be verified through the observation of hadronic interactions such as K9 — 7 A%,
Since nucleons have Y = 1 and the A has Y = 0, a state 77 A° can be produced
only by K9, not by K9. The features of the observation of the K0 component are
shown in Fig. 9.12.

3. Regeneration and Mass Splitting. If the pure KJ beam shown in Fig. 9.12
passes through matter, the short-lived component K will reappear; this process is
called regeneration and is sketched in Fig. 9.13.

Since the experiment involves the
hadronic interaction of the kaons
with matter, we return to the de- Regenerator
scription in terms of K° and K9,

KY = @{u{% + |[K9)}. Incident
beam
K° and KO interact differently with
matter; the K9 can participate in re-
actions such as K% — 7tA° and

K9y, — 70A0 that are forbidden to Figure 9.13: Regeneration of a K?. A pure.Kg
beam that passes through matter transforms into

0
the K because of strangeness con- a beam that again contains a K? component.
servation. We describe the effects of The K9 s decay close to the regenerator into two
the regenerator by two Complex num- pions and are thus unambiguously identifiable.
bers, f and f.
Neglecting decay effects, the amplitude of the regenerated beam immediately after
the regenerator becomes

veg) = \/S{IIK") + FRD)} = §(F — PIKD) + 5(F + HIKY.  (9.86)

Because K and KO interact differently, f and f are different and the regenerated
beam contains again a KY component. Experimentally, this component can be
recognized by the emergence of two-prong events close to the regenerator.(2%)
Regeneration is one of the methods by which the mass difference between the
KY and the K9 can be determined.®” Consider the simplest case, coherent forward

29R.H. Good et al., Phys. Rev. 124, 1223 (1961).

30The various methods for mass determination are described in T.D. Lee and C.S. Wu,
Annu.  Rev. Nucl. Sci. 16, 511 (1966); for recent measurements see the CPLEAR
(http://cplear.web.cern.ch/cplear) and KTEV (http://kpasa.fnal.gov:8080/public/) results.
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regeneration. The wavefunction of the K§ moving through the regenerator will be
proportional to exp(ipexz/h). Thus, at each point x along the path, regeneration
of the K also will be proportional to exp(ipaz/h), but the regenerated wave will
move through the absorber with a wavefunction proportional to exp(ip1z/h). The
interference between the two waves at the end of the regenerator of length L will
thus contain a term proportional to expli(pz — p1)L/A]. In the forward direction no
energy is lost so that p%c? + m2c* = constant, or

Apc = <%) Amc?,
p

where Ap = py — p1, and Am = mj — mg is the mass difference between the K?
and the K. Measurements of the probability of finding a K¢ after a regenerator of
length L as a function of L yields the mass difference.(®") Additional experiments
also give the sign of the mass difference, with the result

Am =my —mg = —3.489 x 107° eV /2. (9.87)

The mass splitting is incredibly small; it is of second order in the weak interaction
strength. The ratio Am/mx =~ 1074 proves that the weak interaction is responsible
for Hint, Eq. (9.76), as shown in Fig. 9.10.

All predictions of the Gell-Mann—Pais theory thus have been verified experimen-
tally. In addition to yielding deep insight into the kaon system, the experiments also
show that particles have wave-like properties and behave as demanded by quantum
mechanics.

9.8 The Fall of CP Invariance

Kaons are a wonderful source of surprises. In Section 9.3 we described how the
observation of two different decay modes of the charged kaons led to the fall of parity
invariance. In the previous section, we showed that the coherence properties of the
neutral kaons give rise to two different decay mean lives, to hypercharge oscillations,
and to regeneration. The coherence properties were predicted theoretically, and
the subsequent experimental verification was exciting but not unexpected. The
breakdown of parity was unexpected, but it was taken in stride and was quickly
incorporated into the theoretical framework. In this section we shall treat the next
major surprise, the fall of C'P invariance.

Three features that were discussed in the previous section underlie the experi-
ments demonstrating C'P violation:

1. A neutral kaon beam far away from the point of production is in a pure |KJ)
state.

31T, Fujii et al., Phys. Rev. Lett. 13, 253, 324 (1964); J. H. Christenson et al., Phys. Rewv.
140B, 74 (1965).
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2. The state |K3) is an eigenstate of the total Hamiltonian. In vacuum, no
transitions from |KY9) to |KY) can occur. For the two wells, the absence of
such transitions is expressed by Eq. (9.65). The corresponding relation for
kaons follows from Egs. (9.80) and (9.81) as

(KY|H|KY) = 0. (9.88)
3. As stated by Eq. (9.84), K9 cannot decay into two pions if C'P is conserved.

In 1964, a Princeton group performed an experiment to set a lower limit on
the two-pion decay of Kg.(32) Another experiment was simultaneously done by an
Illinois group.®®3) Both gave the astounding result that decays into two pions do
occur; the branching ratio was found to be approximately

Int(KY — 7ntn™)

~2x107° 9.89
Int(KY — all charged modes) 8 (9:89)

We have switched notation here and denote the long-lived neutral kaon with K9
and the short-lived one with K3. The reason for the switch is Eq. (9.82), which
defines KY and K9 to be eigenstates of CP. Equation (9.89) indicates, however,
that the long-lived kaon is not an eigenstate of C'P. It is customary to retain the
notation K and K3 for the eigenstates of C'P and to denote the real particles with
K9 and K9.

The news of violation of C'P traveled through the world of physics with nearly
the speed of light, just as, seven years earlier, had the news of parity breakdown.
It was greeted with even more scepticism. To describe the reason for the disbelief,
we digress to describe the celebrated CPT theorem. The CPT theorem is easy to
understand but difficult to prove. In a somewhat sloppy way, it can be stated as
follows: the product of the three operations T', C, and P commutes with practically
every conceivable Hamiltonian, or

[CPT, H] = 0. (9.90)

In other words, our world and a time-reversed parity-reflected antiworld must be-
have identically. The order of the three operators T, C, and P is irrelevant.(**) The
operation CPT is thus very different from the individual operations T', C', and P.
It is easy to construct a Lorentz-invariant Hamiltonian that violates, for instance,

32]. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
V. L. Fitch, Rev. Mod. Phys. 53, 367 (1981); Science 212, 939 (1981); J. W. Cronin, Rev. Mod.
Phys. 53, 373 (1981); Science 212, 1221 (1981).

33A. Abashian, R. J. Abrams, D. W. Carpenter, G. P. Fisher, B. M. K. Nefkens, and J. H.
Smith, Phys. Rev. Lett. 13, 243 (1964).

34Since the order of the operations T, C, and P does not matter, there exist 3! possibilities of
naming the theorem. Liiders and Zumino checked that their choice, TCP, agreed with the name of
a well-known gasoline additive. Despite this, we use the more standard order, namely CPT. [G.
Liders, Physikalische Bldtter 22, 421 (1966).]
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P and C, and we shall discuss one in Chapter 11. However, it is extremely difficult
to construct a Lorentz-invariant Hamiltonian that violates CPT. (These statements
are somewhat oversimplified, but the essential features are correct.)

The CPT theorem was something of a sleeper. In preliminary form, it was
discovered independently by Schwinger and by Liiders.(®) Pauli then generalized
the theorem.(®%) Up to 1956, however, it was considered to be rather esoteric.
Dogma held that the three operations T, C, and P were separately conserved, and
the CPT theorem was assumed to give little experimentally usable information.
When violation of parity became a possibility, the CPT theorem suddenly acquired
more meaning®”): Equation (9.90) states that if P is violated, some other operation
must also be violated. Indeed, we have mentioned in Section 9.4 that C is also not
conserved in the weak interaction.

The CPT theorem can be tested. For instance, it predicts that the masses and
lifetimes of weakly decaying particles and antiparticles, such as the negative and
positive muon, should be identical, even though charge conjugation invariance does
not hold in the weak interactions. No violation of the CPT theorem has been
found, despite a resurgence of interest caused by some (string) theories which try
to unify gravity with the other interactions. Tests that are as good or better than
the equality of the masses of the neutral kaons , K and K° to about 1 part in 1014
have been performed. %)

After this digression, we return to the situation in 1964. The observed C'P
violation in the decay of the neutral kaons together with the CPT theorem leads
nearly inescapably to one of two conclusions: either T is not conserved or the CPT
theorem is wrong. Theorists had in the meantime found even stronger proofs for
it(®) and were rather reluctant to give it up. On the other hand, time reversal is
also a cherished symmetry. Certainly the easiest way out would have been capitu-
lation of the experimentalists with an admission that the experiments were wrong.
Additional data, however, strengthened the earliest conclusions. Detailed analysis
of all the information from the decays of the neutral kaons at least provides some
further insight. The analysis implies that the CPT theorem holds but that not only
CP but also T invariance is violated.*?)

35]. Schwinger, Phys. Rev. 82, 914 (1951); 91, 713 (1953); G. Liiders, Kgl. Danske Videnskab
Selskab, Mat.fys. Medd. 28, No. 5 (1954).

36W. Pauli, in Niels Bohr and the Development of Physics, (W. Pauli, ed.) McGraw-Hill, New
York, 1955.

37T. D. Lee, R. Ochme, and C. N. Yang, Phys. Rev. 106, 340 (1957).

38 CPT and Lorentz Symmetry ITI, (Alan Kostelecky, ed.), World Sci., Singapore, 2005.

39Proofs of the CPT theorem require relativistic field theory and are never easy. For the reader
who wants to convince himself of this fact, we list here a few references, approximately in order
of increasing difficulty: J. J. Sakurai, Invariance Principles and Elementary Particles, Princeton
University Press, Princeton, N.J., 1964; G. Liiders, Ann. Phys. (New York) 2, 1 (1957); R.
F. Streater and A. S. Wightman, PCT, Spin, and Statistics, and All That, Benjamin, Reading,
Mass., 1964.

40R. C. Casella, Phys. Rev. Lett. 21, 1128 (1968); 22, 554 (1969); K. R. Schubert, B. Wolff, J.
C. Chollet, J. M. Gaillard, M. R. Jane, T. J. Ratcliffe, and J.-P. Repellin, Phys. Lett. 31B, 662
(1970); G. V. Dass, Fortsch. Phys. 20, 77 (1972).
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e There are three possible causes of CP Violation in kaon decays: The first one
is in the K7 and K3 mixing (mass mixing):

K Ks + €K,y K K —eK>
L: T — S: T
V1t |e? V1 |e?

where € is a measure of the CP-violation. It is the K and Kg which have definite
lifetimes. Experimentally, it is found that

(9.91)

€=(2.284+0.014) x 1073, (9.92)

The second possibile cause of CP Violation is in the decay matrix element itself.
A third one is an interference beween these two causes. The CP violation in the
decay matrix element, measured by a parameter called €', occurs due to an admix-
ture of isospin 2 to isospin 0 (or change of isospin by 3/2 vs. 1/2 in the decay), see
Problem 9.46. The ratio of € to € is of the order of 1073,
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Problems

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

(a) Show that an infinitesimal rotation, R, and space inversion (parity), P,
commute by showing in a sketch that PR and RP transform an arbitrary
vector @ into the same vector x’.

(b) Use part (a) to show that P and J commute, where J is the generator
of the infinitesimal rotation R.

Show that the commutation relations for angular momentum remain invariant
under the parity operation.

Use the Schrédinger equation with a Hamiltonian H = (p?/2m)+V (). Show
that i (—x) satisfies the Schrodinger equation if ¢ (x) does, provided that
V(z) =V(—a).

Show that the eigenfunctions v, given in Problem 5.3 are eigenfunctions of
P. Compute the eigenvalues and compare the result with Eq. (9.10).

Use a gauge transformation of the form of Eq. (7.32), with a properly chosen
value of €, to show that the relative parity of the proton and the positive pion
is not a measurable quantity.

Would it be possible to assign meaningful intrinsic parities to all hadrons if
in Eq. (9.22) instead of the parity of the lambda the parity of

(a) 7 or

(b) K+

had been chosen? Justify your answers.

*Discuss the reaction

np — dy

and use information in the literature (e.g., nuclear physics texts) to determine
the intrinsic parity of the deuteron.
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9.8.

9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

* Find information on the reactions
dd — p*H
dd — n>He
and discuss the parities of the *H and 3He.
* Discuss the determination of the parity of a hyperon (not the lambda).

* How would you determine the parity of the kaon? Compare your proposal
with actual experiments.

The operator for the emission of electric dipole gamma radiation is of the form
qx, where ¢ is a charge. The matrix element for a transition ¢ — f is of the
form

Fy; = / dez/J;Z (z)gx); (x).
Use this expression to find the parity selection rule for electric dipole radiation.

Discuss the arguments and facts that assign spin 0 and positive parity to the
alpha particle (ground state of *He).

Electrons and positrons emitted in weak interactions can be characterized by
their momenta and their spins.

(a) Show that a nonvanishing value of the expectation value (J - p) implies
parity nonconservation.

(b) Discuss an experiment that can be used to measure the helicity of elec-
trons.

Assume a nucleus with a magnetic moment g factor of ¢ = 1 to be in a
magnetic field of 1 MG. Compute the temperature at which at least 99% of
the nuclei are polarized.

Use the information given in Figs. 7.2 and 9.6 to answer the following question.
Are electron and antineutrino emitted predominantly in the same direction
or in opposite directions? (For simplicity assume the 5°Co state to be 1t and
that of ®°Ni to be 07.)

Discuss the evidence for parity nonconservation in the decay 7t — pt v,

(a) What polarization of the muon is expected?

(b) How can the muon polarization be observed?
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9.17.

9.18.

9.19.

9.20.

9.21.

9.22.

9.23.

9.24.

9.25.

9.26.

P,C,CP, and T
Electrons emitted in nuclear beta decay are found to have negative helicity,
whereas positrons show positive helicity. What can be deduced from this

observation?

Consider a system consisting of a positive and a negative pion, with orbital
angular momentum [ in their c.m.

(a) Determine the C' parity of this (71 7~) system.

(b) If I =1, can the system decay into two photons? Justify your answer.

Show that Maxwell’s equations are invariant under time reversal.

(G
o= (
(05
to be a two-component Pauli spinor, satisfying the Pauli equation. Find the
wave function T that satisfies the Pauli equation.

Assume

Discuss one test of time-reversal invariance in the hadronic and one in the
electromagnetic interaction.

Show that the helicity J - p is invariant under the time-reversal operation.

A very small violation of parity invariance has been observed in nuclear decays
(Fp ~ 1077). How can this violation be explained without giving up parity
conservation in the hadronic interaction?

Sketch the application of the two-well model to ammonia. How big is the
total splitting 2AFE between states |a) and [s)? Which state lies higher?
Are transitions between states |a) and |s) observed? If yes, where are these
transitions important?

(a) Find the general solution of Egs. (9.71).

(b) Verify that Eq. (9.72) is the special solution of Eq. (9.71) with the initial
conditions «(0) =1 and 5(0) = 0.

Neutron and antineutron are neutral antiparticles, just as K° and KO are.
Why is it not meaningful to introduce linear combinations Ny and Na, similar
to K¥ and K9?
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9.27. Assume that K is produced at t = 0.

(a) Justify that the wave function of K° at rest at time ¢ can be written as

i —imic*t 1
t) = \/;{|K1>exp (T - 2—71)

. 2
—1meac“t t
K9 A i
+| 2>exp( h 27_2>}7

where m; and 7; are mass and lifetime of Kj;.

(b) Express |t) as a function of |K°) and |KO).

(c) Compute the probability of finding KO at time ¢ as a function of Am =
my — Ma.

(d) Sketch the probability for

h 2h

Am:(), Am:2—, Am:2—
Cc*T1 C°T1

9.28. K{ and K9 have slightly different rest masses.

(a) Estimate the magnitude of the mass difference by assuming that the
splitting is due to a second-order weak effect and that the weak interac-
tion is about a factor of 107 weaker than the hadronic one.

(b) Describe how the magnitude of the mass difference can be determined.

(¢) Compare the actually observed value with your estimate.

9.29. (a) Assume that K° and K° beams, of equal energy, pass through a slab of
matter. Will the beams be attenuated equally? If not, why not?

(b) A pure K§ beam passes through a slab of matter. Will the emerging
beam still be a pure K3 beam? Explain your answer.

(c) How can it be experimentally decided if the K9 beam is still pure after
passage through the slab?

9.30. * Describe the experimental arrangements that were used to detect the two-
pion decay of the long-lived neutral kaon.

9.31. Assume that you are in contact with physicists on another galaxy. The con-
tact is restricted to exchange of information. Can you find out if the other
physicists are built from matter or antimatter? Discuss the following three
possibilities:
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(a) C, P, and T are conserved in all interactions.
(b) C and P are violated but C'P is conserved in the weak interaction.

(¢) C, P, and C'P are violated, as discussed in Section 9.8.

9.32. Show that CPT invariance guarantees that a particle and its antiparticle have
equal mass.

9.33. Show that the decay of the K°

(a) to w7 is forbidden if the spin of the K° is odd,

(b) to 7%y is allowed if the spin of the K is not zero.

9.34. How can one determine the parity of the photon? Describe a possible experi-
ment.

9.35. (a) For the cross section, determine the order of magnitude of the ratio
of the interference term of the amplitudes of the parity-violating weak
interaction to that of the electromagnetic interaction in elastic electron
scattering on hydrogen at an energy of 20 GeV and a momentum transfer
of 1 GeV/c. Compare to experiment.

(b) Repeat part (a) for the total cross section of proton—proton scattering
at a laboratory energy of about 50 MeV.

9.36. Show that the rate of the parity-forbidden alpha decay of the 2~ level in 2°Ne
or %0 is proportional to the square of the weak interaction, i.e., to |F|?,
and does not depend on an interference term between the weak and strong
amplitudes.

9.37. The decay of the n is useful for testing C-invariance. Which of the following
decays are allowed and which are forbidden by C-invariance?

7
n— 'y

n — 707070

n— 3y

+ 0

n—mT'T T
9.38. Show that the neutron or any other non-degenerate system cannot have an
electric dipole moment unless both P and T conservation are violated.
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9.39.

9.40.

9.41.

9.42.

9.43.

9.44.

9.45.

Compare the expected orders of magnitude of the electric dipole moments of
a neutron and a heavy neutral atom. Explain or show reasoning.

A B® meson consists of a bottom antiquark and a down quark. Consider the
system of a B® and B9 and compare it to that of a K° and K9. Should there
be a BY and BY? Do you expect CP to be violated in the decays? If the
system is produced in e*e™ collisions, can C'P be tested? If so, suggest some
possible experiments to test C'P in this system?

Estimate the energy difference between a neutron and proton, if they are
made up of up and down quarks, with the average mass of the quarks being
330 MeV/c?, but the down quark being 5 MeV/c? heavier than the up quark.

The p° meson decays hadronically to two pions. Its spin is 1h, 7, = —1,7. =
—1, and its isospin I = 1. Can the p° decay to 7°7°? to 7t7~? Can it decay
electromagnetically to 70v?

(a) If we define a spherical harmonic by Y™ = i'Y;™(6, ¢), where Y;™ is the
usual spherical harmonic, show that under a time reversal transforma-
tion

Tylm‘(07 ¢) = (_1)l_mylim(97 ¢)
(b) With the use of part (a), we can write

T|a7 S? m> = (_l)s_m|aT7 57 _m>)

where a stands for other quantum numbers than the spin s and its magnetic
quantum number m, and ap are the time reversed quantum numbers corre-
sponding to a. Make use of this equation to show that the Hermitian operator
T? has eigenvalues +1 for bosons and —1 for Fermions.

Consider the annihilation of an antiproton by a proton at rest (or in a pp atom
in an S-state) into two pions.

(a) Show that this decay is forbidden from a 1S; state.

(b) Show that the decay can occur from a 3S; state into 7tz .

(c) Show that the decay is forbidden into 7°70.

Consider the annihilation of an antiproton by a proton in a P-state into two
pions.

(a) Is the decay 7~ allowed from both ' P, and Py states, from only one
of these, or from neither? If allowed from only one of the states, which one is
it?
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9.46.

P,C,CP, and T

(b) Is the decay 7%7% allowed from either of the two states listed in part (a),
from only one of them or from neither? if allowed from only one of them,

which one is it?

With respect to CP violation originating in the matrix element: it was men-
tioned that an admixture of isospin 2 into isospin 0 in the neutral Kaon system
would give raise to CP-violating decays. Show that isospin 1 is not allowed.



Part IV

Interactions

In the previous nine chapters, we have used the concept of interaction without
discussing it in detail. In the present part, we shall rectify this omission, and we
shall outline the important aspects of the interactions that rule subatomic physics.

It is useful in the treatment of interactions to distinguish between bosons and
fermions. Bosons can be created and destroyed singly. Lepton and baryon conserva-
tion guarantee that fermions are always emitted or absorbed in pairs. The simplest
interaction is thus one in which a boson is emitted or absorbed. Two examples
are shown in Fig. IV.1. The interactions occur at the vertices where three particle
lines are joined. The fermion does not disappear, but the boson either is created or
destroyed. In both cases, the strength of the interaction can be characterized by a
coupling constant. This coupling constant is written next to the vertex. A boson
can also transform into another boson, as shown in Fig. IV.2. There a photon dis-
appears, and a vector meson, for instance, a rho, takes its place. Again the coupling
constant is indicated near the vertex.

Ground Excited \N p'|| Vector

state nucleon meson
S
Vertex Vertex X 8
\\
AN
Excited Nucleon[N ™\ g Photon
state N
Figure IV.1: Emission and absorption Figure IV.2: Transformation of one
of a boson by a fermion. The coupling boson into another.

constants are denoted by e and frnn*-

The force between two particles is usually assumed to be mediated by particles,
as discussed in Section 5.8. The exchange of a pion between two nucleons, shown
in Fig. 5.19, is again represented in Fig. IV.3. The forces represented by Figs. IV.1
and IV.3 are, however, no longer considered to be elementary. As discussed in
Section 5.11, baryons and mesons are composed of quarks and the more fundamental
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.ﬁ!NN ________ erN
Nucleon Nucleon
Figure IV.3: The force between two nucle- Figure IV.4: The force between two quarks,
ons is mediated by the exchange of mesons, q, is produced through the exchange of
for instance, pions, as shown here. gluons.

Ve e

Figure IV.5: The weak force is mediated through the exchange of W’s and Z’s.

interactions occur between quarks and between leptons. Fig. IV.4 represents the
hadronic force between quarks, mediated by a gluon; Fig. IV.5 shows the weak force
between two leptons, mediated by a W boson. The examples given here provide
some glimpses of the forces acting between particles in the standard model. In the
following chapters we shall study interactions in more detail.



Chapter 10

The Electromagnetic Interaction

In this chapter we will examine the electroweak interaction of the standard model,
and, in particular, the electromagnetic part of it. We relegate the weak part to the
next chapter. The electromagnetic interaction is important in subatomic physics
for two reasons. First, it enters whenever a charged particle is used as a probe.
Second, it is the only interaction whose form can be studied in classical physics,
and it provides a model after which other interactions can be patterned.

Without at least some approximate computations, interactions cannot be under-
stood. In the simplest form, such computations are based on quantum mechanical
perturbation theory and, in particular, on the expression for the transition rate
from an initial state « to a final state (:

Who = 22 (5] Himg 1) 2 (D). (10.1)

““h
Fermi called this expression the golden rule, because of its usefulness and impor-
tance. In Section 10.1 we shall derive this relation; in Section 10.2, we shall discuss
the density-of-states factor p(F). Readers who are familiar with these topics can
omit these two sections.

10.1 The Golden Rule

Consider a system that is described by a time-independent Hamiltonian Hy; its
Schrodinger equation is

)
ma_‘f = Hoyp. (10.2)

The stationary states of this system are found by inserting the ansatz,

—iE,t
© = up(x) exp ( lh ) (10.3)
into Eq. (10.2). The result is the time-independent Schrédinger equation
Hyu,, = E,u,. (10.4)

281
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For the further discussion it is assumed that this equation has been solved, that the
eigenvalues E,, and the eigenfunctions u,, are known, and that the eigenfunctions
form a complete orthonormal set, with

/d3xu}‘v(w)un(w) = Onn. (10.5)

If the system is produced in one of the eigenstates u,, it will remain in that state
forever and no transitions to other states will occur.
We next consider a system that is similar to the one just discussed, but its

Hamiltonian, H, differs from Hy by a small term, the interaction Hamiltonian,
Hintv

H = Hy + Hip.

The state of this system can, in zeroth approximation, still be characterized by the
energies F,, and the eigenfunctions u,. It is still possible to form the system in a
state described by one of the eigenfunctions u,,, and we shall call a particular initial
state |a).

However, such a state will in general no longer
be stationary; the perturbing Hamiltonian Hiy

. " . I la>
will cause transitions to other states, for instance,
|3). In the following we shall derive an expres- v
sion for the transition rate |o) — |3). Two exam-
ples of such transitions are shown in Fig. 10.1. In >
Fig. 10.1(a), the interaction is responsible for the
decay of the state via the emission of a photon. (a)

In Fig. 10.1(b), an incident particle in state |a) is
scattered into the state |3).

To compute the rate for a transition, we use the
Schrédinger equation,

oy

>

Hi.nt (b)

To solve this equation, v is expanded in terms of
the complete set of unperturbed eigenfunctions, Figure 10.1: The interaction
Eq (10 3). Hamiltonian Hj,¢ is respon-
' o sible for transitions from the
_iEt unperturbed eigenstate |a) to
P = an(t)un exp ( n ) 10.7 the unperturbed eigenstate

> oy exo (= to7) e

The coefficients a,,(t) generally depend on time and |a,(t)|? is the probability

of finding the system at time ¢ in state n with energy F,. Inserting ¢ into the
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Schrodinger equation gives (a,, = day,/dt)
—iE,t —iE,t
ihzn:dnun exp ( lh ) + ;Enanun exp ( lh )
—iE,t
= Zan(Ho + Hipt )uy, €xp ( Zh ) )

With equation (10.4), the second term on the left-hand side and the first term on
the right-hand side cancel. Multiplying by u} from the left, integrating over all
space, and using the orthonormality relation, produce the result

i(En — En)t} .

than = Z<N|Him|n)an exp [ -

n

(10.8)

Here, a convenient abbreviation for the matrix element of Hj, has been introduced:
(N|Hint|n) = /d3xu}‘\, (z)Hingun (). (10.9)

The set of relations (10.8) for all N is equivalent to the Schrédinger equation (10.6)
and no approximation is involved.

A useful approximate solution of Eq. (10.8) is obtained if it is assumed that
the interacting system is initially in one particular state of the unperturbed system
and if the perturbation Hiy is weak. In Fig. 10.1, the initial state is |a); it can,
for instance, be a well-defined excited level. In terms of the expansion (10.7), the
situation is described by

aq(t) =1, all other a,(t) =0, fort < tp. (10.10)

Only one of the expansion coefficients is different from zero; all others vanish. The
assumption that the perturbation is weak means that, during the time of obser-
vation, so few transitions have occurred that the initial state is not appreciably
depleted, and other states are not appreciably populated. In lowest order it is then
possible to set

ag(t) =1, an(t) <1, n#a, allt. (10.11)

Equation (10.8) then simplifies to

N = (i)~ (N Hine|0) exp {M] .

h

If Hiy is switched on at the time ¢ty = 0 and is time-independent thereafter, inte-
gration, for N # a, gives

an(T) = (ih)~(N|Hilo) [ e [M}
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or

an(T) = % {1 — exp [M} } . (10.12)

The probability of finding the system in the particular state IV after time T is given
by the absolute square of ay(7'), or

,sin?[(Ex — E,)T/2h]

PNa(T) — |U«N(T)|2 = 4|<N|Hint|a>| (EN — Ea)Q

. (10.13)

If the energy En is dif-
ferent from F,, then
the factor (Ey — E,) ™2
depresses the transition
probability so much that
transitions to the corre-
sponding states can be
neglected for large times
T. However, there may
be a group of states with
energies Fny ~ FE,, such
as shown in Fig. 10.2(a),
for which the matrix el-
ement (N|Hin|o) is al-
most independent of N.

This case occurs, for in- Figure 10.2: (a) Transitions occur mainly to states with ener-
stance, if the states N lie gies En that are close to the initial energy Fo. (b) Transition

. . robability as a function of the energy difference En — Fq.
in the continuum. P Y &y N a

To express the fact that the matrix element is assumed to be independent of
N, it is written as (8|Hint|e). The transition probability is then determined by
the factor sin?[(Exy — FEo)T/2h](Ex — Eo)~2, and it is shown in Fig. 10.2(b). The
transition probability is appreciable only within the energy region

Eo—AEto E,+AE, AE= 2%71 (10.14)

As time increases, the spread becomes smaller: within the limits given by the
uncertainty relation, energy conservation is a consequence of the calculation and
does not have to be added as a separate assumption.

Equation (10.13) gives the transition probability from one initial state to one
final state. The total transition probability to all states Fn within the interval
(10.14) is the sum over all individual transitions.

P =3 Py = 418l 3 SN Do T2, (10.15)
N N
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where it has been assumed that the matrix element is independent of N. This
assumption is good as long as AE/E, is small compared to 1. With Eq. (10.14),
the condition becomes

2Lh N 4 x 1072 MeV-sec
E, = Eq(in MeV)

T > (10.16)

where T is the time of observation. In most experiments, this condition is satisfied.

Now we return to the original
problem, shown, for instance,
in Fig. 10.1(a). Here, the en-
ergy in the initial state is well
defined, but in the final state,
the emitted photon is free and E(N)  Photon
can have an arbitrary energy Particle Particle
(Fig. 10.3). The discrete en-

ergy levels En of Fig. 10.2(a) a
consequently are replaced by

a continuum. This fact is ex-

Continuum

pressed by writing the energy

as E(N). N now labels the

energy levels of the photon o _— — e

in the continuum, and it is a Initial state h Fimal <tate g

continuous variable. The to-

tal transition probability fol- Figure 10.3: In the initial state the subatomic particle is in
X the excited state a, and no photon is present. In the final

lows from Eq' (10'15) if the state, the subatomic system is in state [, and a photon

sum is replaced by an integral,  with energy E(N) has been emitted. The energy of the

ZN _ f dN: photon “is in the continuum.

(E(N) — E,)T/2h]
(E(N) = Ea)?

sin?
P(T) = (6l Himla)? [ 2 N, (1017)

The integral extends over the states to which the transitions can occur. Since the
integral converges very rapidly, the limits can be extended to +oo. With

the transition probability becomes

AN T [T  sin?z
Pm=mwmmﬁ——/ pauity
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The integral has the value 7, so that the transition probability finally becomes

2T ,dN

(10.18)
The notation (3| Hiyt|) indicates that the transition occurs from states |a) to states
|3). Since Hipg is assumed to be time-independent, the transition probability is
proportional to the time 7. The transition rate is the transition probability per
unit time, and it is
dN

<ﬂ|Hint|Oé>|2E- (10.19)
We have thus derived the golden rule. (Actually Fermi called it the golden rule No.
2.) Tt is extremely useful in all discussions of transition processes and we shall refer

to it frequently. The factor

. 2w
wsa = P(T) = |

dN

I5 =
is called the density-of-states factor; it gives the number of available states per unit
energy, and it will be discussed in Section 10.2.

e In some applications it happens that the matrix element (3| Hint |}, connecting
states of equal energy, vanishes. The approximation that leads to Eq. (10.18) can
then be taken one step further. Fermi called this result the golden rule No. 1, and
it can be stated simply: Replace the matrix element (3|Hint|c) in Eq. (10.19) by

(B|Hint|o) — — Z <ﬂ|HiIz§|n>_<T;!jHint|a>' (10.21)

n

(E) (10.20)

The one-step transition |a) — |3) from the initial to the final state is replaced
by a sum over two-step transitions. These proceed from the initial state |a) to all
accessible intermediate states |n) and from there to the final state |3). o

10.2 Phase Space

In the present section, we shall derive an expression for the density-of-states factor
p(E) = dN/dE. We consider first a one-dimensional problem, where a particle
moves along the x direction with momentum p,. Position and momentum of the
particles are described simultaneously in an x — p, plot (phase space). The repre-
sentation is different in classical and in quantum mechanics. In classical mechanics,
position and momentum can be measured simultaneously to arbitrary accuracy,
and the state of a particle can be represented by a point (Fig. 10.4(a)). Quantum
mechanics, however, limits the description in phase space. The uncertainty relation

AzAp, > h

states that position and momentum cannot be simultaneously measured to unlim-
ited accuracy. The product of uncertainties must be bigger than 7, and a particle
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pl ‘ px
e~y 1
g | & : p
|
[ NN lJ
L |
T
x x
(a) Classical (b) Quantum mechanical

Figure 10.4: Classical and quantum mechanical one-dimensional phase space. In the classical case,
the state of a particle can be described by a point. In the quantum case, a state must be described
by a cell of volume h = 2mh.

consequently must be represented by a cell rather than a point in phase space. The

shape of the cell depends on the measurements that have been made, but the volume

is always equal to h = 27h. In Fig. 10.4(b), a volume Lp is shown. The maximum

number of cells that can be crammed into this volume is given by the total volume
divided by the cell volume,

Lp

= —. 10.22

27h ( )

N is the number of states in the volume Lp.(!)

The density of states factor p(E) in one dimension is obtained from Eq. (10.22),

with E = p?/2m, as

AN _dNdp L 2m

)= —=92— — -
AE) =75 dp dE 27k p
(10.23)
_i 2_m
T 271h E -

The factor 2 in Eq. (10.23) is introduced because for each energy E there are two
degenerate states of momentum p and —p.

Equation (10.22) can be verified by considering a free wave in a one-dimensional
“box” of length L. The normalized solution for the Schrodinger equation in the
box,

d*>y  2m 1

— Tq _ ikx
q2 + ﬁE?ﬁ =0 is Y =—=e"".
Periodic boundary conditions, ¥ (x) = (x + L), give

$(0) = (L), and k:i%Tn, n=0,1,2,... (10.24)

INote that N is the number of states, not particles. One state can accommodate one fermion
but an arbitrary number of bosons.
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The number of states per unit momentum interval for n > 1 is given by

An —dn ldn L
Ap ~dp  hdk ~ 27R’
in agreement with Eq. (10.22).
Equation (10.22) is valid for a particle with one degree of freedom. For a particle
in three dimensions, the volume of a cell is given by h3 = (27h)3, and the number
of states in a volume [ d®zd®p in the six-dimensional phase space is

1
Ny = @iy /d3xd3p. (10.25)

The subscript 1 indicates that N is the number of states for one particle. If the
particle is confined to a spatial volume V/, integration over d>x gives

v
Ny = d*p. 10.26
' (2rh)? / b ( )
The density-of-states factor, Eq. (10.20), can now be computed easily:
dNy
= — dp dS2, 10.27
=0 T 27rh3dE/ 27rh3dE/p P (10.27)

where df) is the solid-angle element. With E? = (pc)? + (mc?)?, d/dE becomes
4 _Ed
dE ~ pc2dp

and consequently (with (d/dp) [ dp — 1)

V. pE
P1= iy /Q (10.28)

For transitions to all final states, regardless of the direction of the momentum p,
the density-of-states factor for one particle is

VpE

——. 10.2
2m2c2h? (10-29)

p1=

Next we consider the density of states for two particles, 1 and 2. If the total

momentum of the two particles is fixed, the momentum of one determines the

momentum of the other and the extra degrees of freedom are not really there. The

total number of states in momentum space is the same as for one particle, namely

Ny, as in Eq. (10.26). However, the density-of-states factor, ps, is different from
Eq. (10.28) because E is now the total energy of the two particles:

2= 27rh (27h)3 dE / 2775 (27h)3 dE /pl dp d2y, (10.30)
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where
plc pac’
2

The evaluation is easiest in the c.m. where p; + py, =0, or

(E1 + Ez)cz

pt =p3 — pidp1 = padpz, and dE = pidp
E{FEs

The density-of-states factor is then given by

1% FE1FEs d / 9
= — dp1 d©)
P2 2rh)3e (Er + E2)pr dpr prap1 1

or

14 EEaopy /
Q 10.31
2= P (B + B) ) E (10-31)

The extension of Eq. (10.30) to three or more particles is straightforward. Consider
three particles; in their c.m. the momenta are constrained by

P+ P, +p3=0. (10.32)

The momenta of two particles can vary independently, but the third one is deter-
mined. The number of states therefore is

V2
Ny=— [ d d®po, 10.33
3 (27771)6/ pl/ b2 ( )
and the density-of-states factor becomes
V2 od
=———[d d*po. 10.34
5= rhys dE/ pl/ bz (10-34)
For n particles, the generalization of Eq. (10.34) is
yn-t d
w=——-— [ &Pp- [ Ppp_y. 10.35
Pr = onh)3n—1) dE/ b1 / Pn-t (10.35)

We shall encounter an application of Eq. (10.34) in Chapter 11, and we shall discuss
the further evaluation there.

10.3 The Classical Electromagnetic Interaction
The energy (Hamiltonian) of a free nonrelativistic particle with mass m and mo-
mentum py,.. is given by

p}
Hppee = —=¢. 10.36
£ 2m ( )



290 The Electromagnetic Interaction

How does the Hamiltonian change if the particle is subject to an electric field E
and a magnetic field B? The resulting modification can best be expressed in terms
of potentials rather than the fields E and B. A scalar potential Ay and a vector
potential A are introduced and the fields are related to the potentials through the
vector relations(?)

B=VxA (10.37)
10A
E=-VAy— ——. 10.38
0T T (10.38)
The Hamiltonian of a point particle with charge ¢ in the presence of the external
fields is obtained from the free Hamiltonian by a procedure introduced by Larmor.®)
Energy and momentum of the free particle are replaced by

q
Hfree H— qAOv DPtree p— EAa (1039)
or, in four-vector notation,

c(pu)free S (Cpp, - qu,) (1040)

Here py is the Hamiltonian H. The resulting interaction is called minimal elec-
tromagnetic interaction. Eq. (10.40) satisfies local gauge invariance; that is, it is
unchanged under a local gauge transformation (see Sec. 7.2). The term was coined
by Gell-Mann to express the fact that only the charge ¢ is introduced as a funda-
mental quantity. All currents are produced by the motion of particles. In particular,
the current of a point particle is given by gqv. All higher moments (dipole moment,
quadrupole moment, etc.) are assumed to be due to the particle’s structure; they
are not introduced as fundamental constants.
With the substitution (10.39), the Hamiltonian (10.36) changes to

1 q \?2
H=_— (p - —A) +qAo (10.41)
2m c
or
2 42
A
H = Hree Hin ) 10.42
{3 + t + 2m02 ( O )
where Hpee is given by Eq. (10.36) and Hiyy is
Hig(x) = ——Lp- A+ qAq. (10.43)
mc

2Jackson, Section 6.2.

3J. Larmor, Aether and Matter, Cambridge University Press, Cambridge, 1900. See also Mes-
siah, Sections 20.4 and 20.5; Jackson, Section 12.1; and Park, Section 7.6. Note that g can be
positive or negative, whereas e is always positive.



10.3. The Classical Electromagnetic Interaction 291

For all practical field strengths, the last term in Eq. (10.42) is so small that it can
be neglected. If no external charges are present, the scalar potential vanishes, and
the interaction energy becomes

Hulx)=-Lp - A=-2p. 4. (10.44)
mc c

Hin(x) in Eq. (10.43) is the interaction energy of the nonrelativistic point par-
ticle at the position & with the fields characterized by the potentials A and Ag.
For many applications, this form is already sufficient. In particular, it allows a
description of the emission and absorption of photons. For some other applications,
for instance, the electromagnetic interaction between two particles, the equations
must be rewritten by expressing the potentials in terms of the currents and charges
producing them. Rather than deriving the general expression, we shall treat specific
examples that are useful later.

The simplest situation arises if the electromagnetic field is produced by a point
charge, ¢/, at rest at &’. The potential is then given by

/
q
Ag(x) = ————, 10.45
@) = i (10.45)
and the interaction is the ordinary Coulomb energy, already encountered in
Eq. (6.7). If the charge ¢’ is distributed over a volume, for instance the volume
of a nucleus, the scalar potential is given by

/ !
Ap(z) = q'/d?’x'%, (10.46)
and the interaction is of the form found in Eq. (6.15). The charge contained in the
volume d3z’ at point ' is given by ¢/p’(z’)d3x’, and the probability density p’(x’)
is normalized by Eq. (6.18).

The interaction of a point particle with a vector potential is given by Eq. (10.44).
For a particle with an extended structure described by the charge distribution gp(x),
the factor gp/m = qv in Eq. (10.44) must be replaced by

q/dep(w)v(w).
It is straightforward to see that
gp(x)v () = qj(z), (10.47)

where gj(x) is the charge current density, namely the charge flowing through unit
area per unit time. With Eq. (10.47), the interaction with an external potential
A(x) becomes

Hipe = —g / Brj(z) Alz). (10.48)
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Here the famous “jay-dot-A” has turned up. Equation (10.48) is one of the funda-
mental equations on which many calculations are based.
The vector potential A(x) produced by a current density ¢’j’(z’) is given by

A(z) = //d3 @) (10.49)

c e —a'|

Inserting this expression into Eq. (10.48) yields

(ot
Hipe = — P NEICINFUCOY (10.50)
c? |e — x|

Such a current—current interaction was first written down by Ampere, and it will
be a helpful guide in elucidating the weak interaction.

One additional classical relation is a useful guide in subatomic physics, namely
the continuity equation. Maxwell’s equations show that the density p and the current
density j satisfy

p

— +V-53=0, 10.51

5 TV I ( )
or in four-vector notation

gMVijV =0. (1052)

A connection between the continuity equation and the conservation of the electric
charge is established by integrating Eq. (10.51) over a volume V:

/dBa /d%Vg— /ng

Here, S is the surface bounding the volume V. If the surface is far away from the
system under consideration, the current through it will vanish. Interchanging inte-
gration and differentiation on the left-hand side and multiplication by the constant

q give
0

ot

The continuity equation unphes conservation of the total electric charge.

0
d3 4p(x) = 5-Qrotar = 0. (10.53)

10.4 Photon Emission

The relations in the previous section are classical and consequently cannot be ap-
plied to the elementary processes in quantum mechanics.(* The task facing us then

4The problems inherent in any treatment of radiation theory make it difficult to write a really
easy introduction. Probably the easiest-to-read first article is the beautiful review by E. Fermi,
Rev. Mod. Phys. 4, 87 (1932). A more modern readable introduction is R. P. Feynman, Quantum
Electrodynamics, Benjamin, Reading, Mass., 1962. The basic ideas are explained lucidly in R.
P. Feynman, QFED, Princeton University Press, Princeton, 1985 and V.N. Gribov and J. Nyiri,
Quantum Electrodynamics, Cambridge University Press, Cambridge, 2001. The present section is
somewhat more difficult than the others, and parts of it can be omitted without losing information
that is essential for later chapters.
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is a twofold one. First, the interaction energy must be translated into quantum me-
chanics where it becomes an operator, the interaction Hamiltonian. Second, once
Hiy, is found, the transition rate or the cross section for a particular process must
be computed so that it can be compared with experiment. We cannot proceed
very far with the solution of these tasks without hand waving. A major part of
the problem lies with the photon. It always moves with the velocity of light, and a
nonrelativistic description of the photon makes no sense. In addition, in most of the
processes of interest, the particles involved have energies large compared to their
rest energies, and they also must be treated relativistically. A proper discussion of
quantum electrodynamics is far above our level. We shall only treat one process
here in some detail, namely the emission of a photon by a quantum mechanical
system.

Many of the ideas that are important in quan- Quantum Particle
tum electrodynamics will show up in this simple
problem. The elementary radiation process, the
emission or absorption of a quantum, is shown in
Fig. 10.5. Two types of questions can be asked

18>

J

about such a process, kinematical and dynamical Interaction

ones. The kinematical ones are of the type “What region

is the energy and momentum of the photon if it

is emitted at a certain angle?” They can be an- la> v,

swered by using energy and momentum conserva- P,

tion. The dynamical ones concern, for instance,

the probability of decay or the polarization of the Figure 10.5: Emission of a
itted diation: th b d v if photon by an atomic or sub-

emitted radiation; they can be answered only i atomic system in a transition

the form of the interaction is known. |y — |8).

In the present section we shall solve the simplest dynamical problem, the com-
putation of the lifetime of an electromagnetic decay, by using the golden rule,
Eq. (10.1). The first step is the choice of the proper interaction Hamiltonian,
Hiy. An appealing candidate is Eq. (10.44) in Section 10.3.¢®) For an electron,

with charge ¢ = —e, e > 0, the interaction Hamiltonian, now denoted as Hey,, is
- A
Hop =22 (10.54)
me

The three factors in this expression can be associated with the elements of the
diagram in Fig. 10.5: The vector potential A describes the emitted photon, (p/mc)
characterizes the particle, and the constant e gives the strength of the interaction.

5Many students claim that the best way to solve physics problems in undergraduate courses is
the following: list the physical quantities that appear in the problem. Find the equation in the text
that contains the same symbols. Insert. Hand in. We are apt to laugh at such a naive approach
but do the same when confronted with a new phenomenon. We see what observables nature has
given us and then form the combination that has the properties expected from invariance laws.
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The classical quantity He,, becomes an operator by translating p and A into
quantum mechanics. The momentum p is straightforward; it becomes the momen-
tum operator

p — —ihV. (10.55)

This substitution is well known from nonrelativistic quantum mechanics. The cor-
responding substitution for A depends on the process under consideration. Two
kinds of emission events occur from the state |a). The first takes place in the
presence of an external electromagnetic field, produced, for instance, by photons
incident on the system. A is the field due to these photons, and it gives rise to
stimulated or induced emission of photons. Stimulated photon emission is the basic
physical process involved in lasers. Here we are interested in the second kind of
emission, called spontaneous. The state |a) can decay even in the absence of an ex-
ternal electromagnetic field. The expression for A for spontaneous emission cannot
be obtained from nonrelativistic quantum mechanics, because photons are always
relativistic. We circumvent quantum electrodynamics by postulating that A is the
wave function of the created photon.(®) The form of A can be found by considering
the vector potential of a classical electromagnetic plane wave,

A = apécos(k - x — wt). (10.56)

Here € is the polarization vector and ag the amplitude. If this wave is contained in
a volume V| the average energy is given by

v
=—|E]?
w 471_| 2,

or with Eq. (10.38).

2,2
Vw<ag

8me? -

Vv 2.2
W = 4w ZOSiHQ(k-m—wt):
e

(10.57)

If A is to describe one photon in the volume V', W must be equal to the energy
E, = hw of this photon. This condition fixes the constant ag as

FL 2 1/2
ao = <8ZVC ) . (10.58)

With E, = hw and p, = hk, the wave function of the photon, Eq. (10.56), is
determined. A is real because classically it is connected to the observable, and
therefore real, fields E and B by Eqs. (10.37) and (10.38). For the application to
emission and absorption it will turn out to be convenient to write Eq. (10.56) into

6This step can be justified by using quantum electrodynamics. Here we have no choice but to
postulate it without further explanation. See Merzbacher, Chapter 23; Messiah, Section 21.27.
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the form

orh2c?\ i(p, @ — Eyt)
A(one photon) = ( > € {exp [7—]
BV 7

—i(pv'm—Evt)H.

(10.59)

+ exp { 3

Here, A is no longer a classical vector potential, but it is postulated to be the wave
function of the emitted photon. A is a vector, as is appropriate for photons which
are spin-1 particles (Section 5.5). The next step is the construction of the matrix
element of H.,,,

(BlHenla) = [ d*20; Honb

h
= /d3x¢;p¢a A= —ie—/dew;V¢a LA (10.60)
mc mc

To evaluate (8|Hepm|o), we make approximations. The first is the electric dipole
approrimation. The momentum part of the exponent in A can be expanded,

+ip. -x -x
exp( I;; )zl:l:ipwh 4+ (10.61)

The exponential can be replaced by unity if p., - < h. To obtain an approximate
idea of what this condition implies, we assume that x has roughly the size of the
system that emits the photon, and we denote this dimension by R. The condition
imposed on the gamma-ray energy then is

he 197 MeV-fm
E, = L = ——. 10.62
VTEPES R R(in fm) ( )
The second approximation applies to the decaying system. We assume it to be
spinless and so heavy that it is at rest before and after the emission of the photon.
The wave functions v, and 13 can then be written as

Ya(@,t) = Pa(z) exp <_i§at> (10.63)

a(ant) = Bl exp (T2

where ®,(x) and ®g(x) describe the spatial extension of the system before and
after the photon emission (Chapter 6). E, and Eg are the rest energies of the
initial and final states. Energy conservation demands that

Eo = Es+ E,. (10.64)
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With Egs. (10.59), (10.61), and (10.63), the matrix element, Eq. (10.60), be-
comes

—ik2e [ 21 \'/? i(Eg — By — Eg)t
=2 (2) o 25

(B + E, — E)t]) .
+exp {Z( i h” )t}}e-/d%@quw. (10.65)

The two exponential factors that appear in the matrix element behave very differ-
ently. With Eq. (10.64), the first one becomes exp(—2iE,t/hk). Perturbation theory
in the form derived in Section 10.1 is valid only if, according to Eq. (10.16), the
time ¢ is large compared to 2wh/E,. For such times, the exponential factor is a
very rapidly oscillating function of time. Any observation involves an averaging
over times satisfying Eq. (10.16), and the rapid oscillation wipes out any contribu-
tion to the matrix element from the first term. The second exponential factor is
unity because of energy conservation, Eq. (10.64), and the emission matrix element
becomes

ne [ 2m \'/* 3
(B|Hem ) = —i— <E,YV) e-/d r®5V O, (10.66)
If a photon is absorbed rather than emitted in the transition |a) — |3), Eq. (10.64)
reads E, + E, = Eg. The first exponential in Eq. (10.65) is then unity, and the
second one does not contribute. The transition rate for spontaneous emission is
now obtained with the golden rule, Eq. (10.19), which we write as

dwge = (Bl Homl0) (). (10.67)

il
h
With p, = E,/c, the density-of-states factor p(E,) is given by Eq. (10.28) as

E2VdQ
p(E’Y) = (27’(’FLC)3 .

(10.68)

Here dwg,, is the probability per unit time that the photon is emitted with momen-
tum p,, into the solid angle d€2. With the matrix element Eq. (10.66), the transition

rate becomes
2

W;cgﬁ-/d%@;V@aF dQ. (10.69)

dwga =
If the wave functions ®, and ®z are known, the transition rate can be computed.
However, the integral containing the wave functions can be changed into a form that
expresses the salient facts more clearly. Assume that the Hamiltonian Hy describing
the decaying system, but not the electromagnetic interaction, is

p2
HO = % + V(:I:),
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where V(x) does not depend on the momentum and hence commutes with . Hy
satisfies the eigenvalue equations

HO(I)oz - an)ou HO(I)B = E@(I)ﬂ (1070)
With the commutation relation,
TPz — Pal = i, (10.71)

and the corresponding relations for the y and z components, the commutator of @
and Hj becomes

ih h?
aHy — Hox = —p = —V. (10.72)
m m
z With this expression, the gradient operator
+ in Eq. (10.69) can be replaced, and, with
Eq. (10.70), the integral becomes
Bz VD, = — | iz &% (xHy — Hox)®
TPV ea = 1o z®5(xHo — Hox) P,

m *
= ﬁ(Ea - Eﬁ)/d% PP,

- %E,Y/d%(%m(ba.

The integral is the matrix element of the vector
x, and it is written as

/d%cbgmcba = (B|z|a). (10.73)

Figure 10.6: The polarization vector & The transition rate into the solid angle df2 is

of a photon emitted along the z axis lies thus
in the zy plane. The vector (8|z|a), de-
scribing the decaying system, is taken
to lie in the zz plane.

dwge = EB|e- (Blz|a)? d.  (10.74)

2mh4e3

For a moment, we can place e?

(Blex|a). Since ex is the electric dipole moment, the radiation described by
Eq. (10.74) is called electric dipole radiation, as mentioned above. The vector
(B|x|a) characterizes the decaying system; the energy E., and the polarization vector
€ describe the emitted photon. For a free photon, the unit vector € is perpendicular
to the photon momentum p., (Section 5.5). The vectors (8|z|a), p.,, and & are shown
in Fig. 10.6. Without loss of generality the coordinate system can be so chosen that
Pp., points into the z direction and (8|x|«) lies in the zz plane; the polarization vector

into the matrix element, which then becomes
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€ must be in the zy plane. With the angles 6 and ¢ as defined in Fig. 10.6, the com-
ponents of (B|x|a) and € are (B|x|a) = |(B|z|a)|(sin b, 0, cosh), € = (cosp,sinp, 0).
Performing the scalar product in Eq. (10.74) then gives

e2

5 ig 3E‘°’|< Blx|a)|? sin® 0 cos® ¢ dSQ. (10.75)

d’IUga =
If the polarization of the emitted photon is not observed, dwg, must be integrated
over the angle ¢ and summed over the two polarization states. The sum introduces
a factor 2; with

27
dQ =sinfdfdp and / dpcos® p =,
0
the transition rate for an unpolarized photon becomes
dwga = 51 3E§|< Blx|a)|? sin® 0 d6. (10.76)

The total transition rate wg, is obtained by integration over df,

Wse :/ dwgse — 3h4 _E|(Blaa) 2. (10.77)
0

The lifetime (mean life) is the reciprocal of wgq.

The physical content of the expression (10.77) for the total transition rate be-
comes more transparent if appropriate units are introduced. If the decaying system
or particle has a mass m, then the characteristic length associated with it is the
Compton wavelength, X. = h/mc, and Ey = mc? is the characteristic energy. The
time that it takes light to move the distance X. is given by to = h/mc?, and the
inverse of this time, wg = 1/tg = mc?/h, is the characteristic transition rate. With
Xe, Eo = mc?, and wy, the transition rate is rewritten as

wga 4 (2N [ B\’ |(Blz|o))?
o _3(hc> <ch X (10.78)

The transition rate, expressed in terms of the “natural” rate wg, becomes a product
of three dimensionless factors, each of which has a clear physical interpretation.
The last term, |(8|x|a)|?/X2, contains the information about the structure of the
decaying system. If the wave functions ®, and ®g are known, the electric dipole
matrix element (5|x|a) can be computed. Even without calculation, however, some
properties can be deduced. For instance, the states |a) and |5) must have opposite
parities; otherwise (3|x|a) vanishes, and no electric dipole radiation can be emitted.



10.5. Multipole Radiation 299

The term (E.,/mc?)? gives the dependence of the electric dipole radiation on the
energy of the emitted photon. Equation (10.68) shows that two of the three powers
of F, are contributed by the density-of-states factor: With increasing photon energy,
the accessible volume in phase space becomes larger, and the decay consequently
becomes faster. The third factor E, is introduced by the matrix element (5|V|c),
and it is said to be of dynamical origin.

The factor

1
N — 10.
« 37 (10.79)

%

characterizes the strength of the interaction between the charged particle and the
photon, and it is usually called the fine structure constant. A number of remarks
concerning « are in order here. The first one concerns the fact that «, formed from
three natural constants, is a dimensionless number. Since « is a pure number, it
must have the same value everywhere, even on Trantor or Terminus.(”) Moreover,
its value should be calculable in a truly fundamental theory. At the present time, no
such theory exists that is generally accepted and understood. The second remark
concerns the magnitude of «. Fortunately, « is small compared to 1, and this fact
makes the application of perturbation theory successful. The expression (10.78) for
the transition rate has been computed with the first-order expression, Eq. (10.1),
and the result is proportional to «. The second-order term, Eq. (10.21), involves
H.,,, twice, and its contribution will therefore be of order a? and considerably
smaller than the first-order term. An example of this rapid convergence has already
been presented in the discussion of the ¢ factor of the electron, Eq. (6.32). As
the third remark we note that the electric charge e plays two different roles. In
Section 7.2, the charge appeared as an additive quantum number; in the present
section, the strength of the electromagnetic interaction was shown to be proportional
to €2; e is therefore called a coupling constant.

10.5 Multipole Radiation

In the previous section, a simple example of the action of the electromagnetic in-
teraction, namely the emission of electric dipole radiation, has been computed in
some detail. In the present section, the decay of actual subatomic systems will be
discussed, and it will turn out that the previous considerations must be generalized.
Two subatomic electromagnetic decays are shown in Fig. 10.7.

7I. Asimov, Foundation, Avon Books, New York, 1951.
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In the nuclear example, the nuclide '"*Tm decays with a half-life of 129 d to
an excited state of 79Yb, which then decays to its ground state with emission of a
gamma ray of 0.084 MeV. The second example is the decay of the neutral sigma;
in the transition £° -5 A, a 77-MeV gamma ray is emitted.

The lifetime of the neutral sigma is 7 X
10~ 2%sec; the half-life of the 84 keV state in 170Yb,
on the other hand, has been determined as 1.61
nsec. (It is customary to quote mean lives in par-
ticle physics and half-lives in nuclear physics; see
Eq. (5.33) for the relationship.) The basic idea
underlying the half-life measurement is shown in
Fig. 10.8.%®) The radioactive source, in the exam-
ple 19Tm, is placed between two counters. The
beta counter detects the beta ray that populates
the 27 state in "OYb. After some delay, the ex-
cited state decays with the emission of a 0.084

MeV photon. This photon has a certain proba- y <1071 sec
bility of being delayed by a time D, and the coin- zo
cidence rate between the delayed beta pulse and 77 MeV

the gamma pulse is detected with an AND circuit

(Section 4.9). The coincidence count rate N (D) "

is recorded on a semilogarithmic plot against D, g AO

and the slope of the resulting curve gives the de-

sired half-life. The corresponding ideas have al- Figure 10.7: Two examples
. . . of subatomic gamma decays.

ready been discussed in Section 5.7, and the plot Note that the energy scales

shown in Fig. 10.8 is a specific example of an ex- differ by about a factor 100.

ponential decay as sketched in Fig. 5.15.

The method shown here, in which the decay curve is measured point by point, is
only one possible approach. Many other techniques for investigating decay lifetimes
have been evolved® and at present the half-lives of more than 1500 states are
known.

After this brief excursion into the experimental aspects of electromagnetic tran-
sitions of subatomic particles, we return to theory and ask: can the decays shown
as examples in Fig. 10.8 be explained by the treatment given in Section 10.47 It
can be seen immediately that the transition 3° — A° cannot be caused by electric
dipole transitions: The matrix element that appears in the electric dipole transition
rate, Eq. (10.77), has the form

Blx|a) = <A0|w|EO) = /d?’xz/}/*\wwg.

8The measurement of short mean lives is discussed by R. E. Bell, in Alpha-, Beta- and Gamma-
Ray Spectroscopy, Vol. 2 (K. Siegbahn, ed.), North-Holland, Amsterdam, 1965; T.K. Alexander
and J.S. Foster, Adv. Nucl. Phys. 10, 197 (1979); G. Bellini et al., Phys. Rept. 83, 1 (1982).
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A N(D)
Gamma 10?2 b
Beta counter T
counter . Source " v
I"a Y i
10' [~
Variable delay D AND
N(D)
0 ] 1 1 >
10 0 5 10 15

D (nsec)

Figure 10.8: Determination of the half-life of a short-lived nuclear state, decaying by gamma
emission. The block diagram is shown at the left; a typical curve of coincidence counting rate
N(D), taken as a function of the delay time D, is given at the right.

The wave functions ¥, and 1y have the same parity, and their product is even
under the parity operation. The vector &, however, is odd under parity, and the
integrand is therefore also odd; the integral consequently must vanish. Similarly, it
can be shown that dipole radiation cannot explain the 2+ — 07 transition in '"0Yb.
The treatment given in the previous section must therefore be generalized if it is to
explain all electromagnetic radiation emitted by subatomic systems.

The approximation that leads to electric dipole radiation is introduced by keep-
ing only the first term in the expansion (10.61). Removal of this restriction is
straightforward but lengthy, and we shall quote only the final result.() The emit-
ted radiation can be characterized by its parity, np, and by its angular momentum
quantum number, j. For any given value of j, the photon can carry away even or
odd parity. It is customary to call one of these two an electric and the other a
magnetic transition. Parity and angular momentum are related by

electric radiation: np = (—1)7
) o . (10.80)
magnetic radiation: np = —(—1)7.

9ntroductions to the theory of multipole radiation can be found in the following references: G.
Baym, Lectures on Quantum Mechanics, Benjamin, Reading, Mass., 1959, pp. 281, 376; Jackson,
Chapter 9; Blatt and Weisskopf, Chapter 12 and Appendix; S. A. Moszkowski, in Alpha-, Beta-
and Gamma-Ray Spectroscopy, Vol. 2, (K. Siegbahn, ed.), North-Holland, Amsterdam, 1965,
Chapter 15; T. W. Donnely and J. D. Walecka, Ann. Rev. Nucl. Sci. 25, 329 (1975).
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Figure 10.9: A few examples of the possible values of angular momentum and parity emitted in a
given transition. The vector diagrams for the transition 1~ — 17 are shown at the right.

As an example, the electric dipole radiation carries an angular momentum j = 1
and, according to Eq. (10.80), a negative parity; it is written as E1. More
generally, an electric (magnetic) radiation with quantum number j is written as
Ej(Mj). [We remind the reader that the quantum number j is defined by Eq. (5.4):
If J is the photon angular momentum operator, j(j + 1)A? is the eigenvalue
of J2

The values of j and np of the photons emitted in a transition « — 3 are limited
by the conservation of angular momentum and parity

Jo=Jdg+J, np(a) =np(B)np. (10.81)

A few examples of possible values of j and np are given in Fig. 10.9. Note that
initial and final spins are vectors. The various values of the angular momen-
tum of the emitted radiation are obtained by vector addition, as also shown in
Fig. 10.9.

The selection rules equation (10.81) state which transitions are allowed in a given
decay, but they do not give information about the rate with which they occur. To
find the rate, dynamical computations must be performed. In the previous section,
the transition rate for E'1 radiation was found, and Eq. (10.77) expresses this rate
in terms of the matrix element (5|x|a). Expressions similar to Eq. (10.77) can
be found for all multipole orders Ej and Mj. The real problem then begins: The
relevant matrix elements must be evaluated, and this step requires a knowledge of
the wave functions ¢, and 3. Finding the correct wave functions for a particular
subatomic system is usually a long and tedious process, and only in a few cases has
it come to a satisfactory conclusion. For an estimate of the transition rate, a crude
model is therefore a necessity; it will provide at least an approximate value with
which observed half-lives can be compared.
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For nuclei, the single-particle
model is often used to get es-
timates for the half-lives of the
various multipole orders. In
the single-particle model it is
assumed that the transition of
one nucleon gives rise to the ra-
diation.  (We shall treat the
single-particle model in Chap-
ter 17.) Using a simple form
for the single-nucleon wave func-
tion, the transition rates can be
computed;(1®) a result is shown
in Fig. 10.10. The curves in
Fig. 10.10 are calculated for a
single proton in a nucleus with
A = 100. Under these assump-
tions it is seen that the lowest

lO”’ T T T T

multipole allowed by parity and E (keV)
by angular momentum selection !
rules dominates. Care must be
taken in using the single-particle Flginl‘e 10.10: Smgle proton transition rate (in
. . . sec™!) as a function of the gamma-ray energy
transition rates; in actual nuclei, (in keV) for various multipolarities. [After S.
deviations of one or even more or- A. Moszkowski, in Alpha-, Beta- and Gamma-
Ray Spectroscopy, Vol. 2 (K. Siegbahn, ed.),
North-Holland, Amsterdam, 1965, Chapter 15,
p. 882]

ders of magnitude occur.

10.6 Electromagnetic Scattering of Leptons

Electromagnetic processes that involve only leptons and photons have been en-
countered a few times. Photoeffect, Compton scattering, pair production, and
bremsstrahlung were mentioned in Sections 3.3 and 3.4. The g factor of the lep-
tons, discussed in Section 6.5, also involves only the electromagnetic interaction of
leptons. In the present section we shall outline some of the aspects of the electro-
magnetic interaction of leptons without performing computations. The process to
be discussed is the scattering of electrons. The diagrams for the scattering of elec-
trons by electrons (Mgller scattering) or electrons by positrons (Bhabha scattering)
are shown in Fig. 10.11. The two electrons in Mgller scattering are indistinguishable,
and the graphs shown in Fig. 10.11(a) and (b) must both be taken into account.

103, J. Sakurai, Ann. Phys. (New York) 11, 1 (1960); J. J. Sakurai, Currents and Mesons,
University of Chicago Press, Chicago, 1969.



304 The Electromagnetic Interaction

(a) (b) (¢) (d)

Figure 10.11: Diagrams for the scattering e"e™ — e"e™ and eTe™ — ete.

Since it is impossible to tell which process has taken place, the amplitudes for the
two diagrams in Fig. 10.11(a) and (b) must be added, not the intensities. The
particles in Bhabha scattering can be distinguished by their charge. Nevertheless,
two graphs appear, and it is impossible to tell through which one scattering has
occurred. Again the amplitudes for the two processes must be added. The con-
tribution from Fig. 10.11(c) is called the photon-exchange term, and the one from
Fig. 10.11(d) the annihilation term.

The annihilation term, Fig. 10.11(d), deserves closer attention. It appears be-
cause the additive quantum numbers of an electron—positron pair are the same as
those of the photon, namely A=¢=S5=L =L, =L, = L, =0. Once the virtual
photon has been “formed” it no longer remembers where it came from, and it can
give rise to a number of processes:

ete” — 27y

ete, /ﬁu_, T
atn, atn % KtK~,
pp, nn,

cc, bb, tt

+r

Only the first four involve the electromagnetic interaction exclusively, and only the
second one is shown in Fig. 10.11.

The computation of the cross section for Mgller and Bhabha scattering requires
knowledge of quantum electrodynamics and Dirac theory. The cross sections depend
on the total energy of the two electrons and on the scattering angle 6. If E is the
energy of one of the two leptons in the c.m., then the cross section for Mgller
scattering for large energies (E > mec?) is of the form

do a?

i ﬁ(hc)zf(ﬁ). (10.82)



10.6. Electromagnetic Scattering of Leptons 305

where « is the fine structure constant and f(6) is a function of 6 that is given
explicitly in various texts on quantum electrodynamics. We note that o = ¢2/he
occurs squared in Eq. (10.82), in agreement with the fact that two vertices appear
in all graphs in Fig. 10.11. The form of Eq. (10.82) follows unambiguously from
dimensional arguments. At very high energies, the electron mass can no longer
play a role, and the only quantities that can enter the cross section are the coupling
constant, in the dimensionless form «a, and the energy, E. From these two quantities
and the natural constants & and ¢, the only combination with the dimension of a
cross section (area) is as given in Eq. (10.82). Only the dimensionless function f(6)
is dependent on the theory.

Experimentally, Mgller and Bhabha scattering can be studied in two differ-
ent ways. The straightforward approach is to employ a beam of electrons or
positrons and observe the scattering from the electrons in a metal foil, as indi-
cated in Fig. 10.12. One difficulty of this approach turns up when the cross sections
of Mgller and Rutherford scattering are compared. For a material with atomic num-
ber Z, the ratio of cross sections is approximately 1/Z2. For most reasonable target
materials, Rutherford scattering will be much more frequent than Mgller scattering.
How can the two processes be separated? For simplicity we assume the incoming

1} N(E)
Counter N(E) Rutherford
WiE |
Ve
-~
—.I Target & Mgller E
—————— > Z_ kb Coincidences L —
I ~ 01 : Eyl2 Ey
~ lab
C(E)
Electron ~ C(E)
accelerator %Eo
Counter
. —
Eo/2 Eq

Figure 10.12: Detection of Mgller and Bhabha scattering by observing collisions with electrons
in matter. N(E) denotes the number of electrons with energy E observed in one counter. C(E)
denotes the number of coincidences in which both electrons have the energy E.

energy, Ey, to be much larger than the binding energy of the electrons in the atom.
The electrons in the target are thus essentially free. In symmetric scattering, shown
in Fig. 10.12, both outgoing electrons make the same angle 6},;, with the beam axis,
have energies Ey/2, and are simultaneous. If two counters are set at the proper
angles, accepting only electrons with energies Fy/2, and if the signals are required
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to be simultaneous, Mgller and Bhabha scattering can be separated cleanly from
Rutherford scattering. A second disadvantage of the approach just outlined is not
so easily overcome: The energy available in the c.m. to explore the structure of the
electromagnetic interaction is small because of the small electron rest mass. We
have studied this problem in Section 2.7; in Eq. (2.32) we found the total energy
available in the c.m.,

W ~ (2Egmc?)'/2. (10.83)

With Ey = 10 GeV, the total energy available in the c.m. becomes
W ~ 100 MeV.

Even at 10-GeV incident energy there is not enough c.m. energy to even produce a
muon pair. The path around this difficulty has already been shown in Section 2.8;
it is the use of colliding beams. As ete™ collisions have yielded some of the most
beautiful results and promise to continue to do so, we will discuss a few of the
experiments and data in the following sections.

One interesting concept occurs in connection with Bhabha scattering. The vir-
tual photons in the photon-exchange and in the annihilation diagram (Fig. 10.11(c)
and (d)) have very different properties. Both photons are virtual and do not satisfy
the relation E = pc. Consider both reactions in the c.m. In the exchange dia-
gram, the incoming and the outgoing electrons have the same energies but opposite
momenta. Consequently, energy and momentum of the virtual photon are given by

Ey=E.—E,=0, p,=p,—p,=+2p,. (10.84)

If we define a “mass” for the virtual photon through the relation E? = (pc)? +
(mc?)?, we find)
(me?)? = =(2pec)® < 0. (10.85)

The virtual photon in the exchange diagram carries only momentum—no energy.
The square of its mass is negative. Such a photon is called spacelike. In the anni-
hilation diagram, the situation is reversed,

Ey=E, +Es =2E, p,=p, +p. =0. (10.86)

The virtual photon carries only energy—mno momentum. The square of its mass is
given by
(mc?)? = (2E)? > 0; (10.87)

it is positive and the photon is called timelike. In electron-positron scattering, both
spacelike and timelike photons enter. The agreement of experiment with theory
indicates that these concepts are correct, even if they sound strange at first.

"' The “mass” defined here is related to the four-momentum transfer, g, by m2? = (q/c)2. It is
equal to the actual particle mass only for free particles.
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10.7 Vector Mesons as Mediators of the Photon—Hadron Interaction

The changing of bodies into light, and light into bodies, is very con-
formable to the course of nature, which seems delighted with transmu-
tations.

Newton, Opticks

The previous sections and Section 6.5 have dealt with quantum electrodynamics and
the interaction of photons and leptons. Before turning to the electromagnetic inter-
action involving hadrons, we shall review one of the central assumptions of quantum
electrodynamics, namely the form of the interaction Hamiltonian. As pointed out
in Section 10.3, the Hamiltonian is obtained from the principle of minimal electro-
magnetic interaction, Eq. (10.39). The principle introduces only the electric charge
as a fundamental constant, and currents are assumed to be due to the motion of
charges. Leptons are pictured as point particles and the probability current density
of a lepton with velocity v is given by Eq. (10.47).

We already know that the electromagnetic cur-
rent of hadrons is not as simple as the one of leptons.
The g factor and the elastic form factor of nucleons,
both discussed in Section 6.6, indicate that the in-
teraction of nucleons with the electromagnetic field

Hadrons

is not directly given by the minimal electromagnetic

interaction. Consequently, we write the total electro- Hadron-antihadron

magnetic current density of a system as . .
€J em = €J em (leptons) + ej ., (hadrons)  (10.88)
Hadron
and ask: What experiments will tell us about the
hadronic contribution? Since it is assumed that the
electromagnetic interaction is mediated by photons, Vector meson v

the question can be rephrased: What experiments ¥

give information about the interactions of photons o)
with hadrons? How does the photon interact with

hadrons? The interaction of the photon with a hadron

Figure 10.13: Interaction of a
) . photon with a hadron. (a) The
evidenced by the electromagnetic decay of the neutral  photon can produce a hadron—

pion into two photons. One possible way in which a  antihadron pair. (b) The pho-
. . C e 9. ton can produce a vector me-

photon can interact with a hadron current is indicated . . .

: ' son which then interacts with

in Fig. 10.13. the hadron.

does not occur through the electric charge alone, as is

In Fig. 10.13(a) the photon produces a hadron-antihadron pair, and the partners
of the pair interact strongly with the hadron current. As early as 1960, Sakurai
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suggested that the two hadrons of the pair should be strongly coupled and form a
vector meson, as shown in Fig. 10.13(b).(*®) The photon thus would transform into a
vector meson, as already anticipated in Fig. IV.2. Sakurai made his suggestion long
before the vector mesons were discovered experimentally. Theoretical suggestions
can be useful guides for planning experiments, but only the result of experiments can
provide the clues as to the nature of the interaction between the photon and hadrons.
Three types of experiments that can provide information about the photon-hadron
interaction are illustrated by the Feynman diagrams shown in Fig. 10.14. Two of
these involve virtual photons; the third one is performed with real ones. In all three
cases the object of interest is the photon—hadron vertex. In the present section, we
discuss timelike photons in electron—positron scattering; in Section 10.10, real and
spacelike photons will be treated.

Hadrons Hadrons Hadrons

e Hadron
+ Hadron

(a) Time-like photon (b) Real photon (c) Space-like photon

@, 2 _ 2
m, >0 mY—O m, <0

Figure 10.14: Diagrams of three experimental possibilities to study the interaction of photons with
hadrons. Details are discussed in the text.

The virtual photon produced in electron—positron collisions is timelike, as follows
from Eqgs. (10.86) and (10.87); in the e~ — et c.m., it has energy but no momen-
tum. The system of hadrons produced by timelike photons must possess quantum
numbers that are determined by those of the photon. Since the electromagnetic
interaction conserves strangeness, parity, and charge conjugation, only final states
with strangeness 0, negative parity, and negative charge parity can be produced. In
addition, angular momentum conservation requires the final state to have angular
momentum unity. Are there such final states that are produced copiously? The
experiments indicate that hadrons satisfying all conditions are indeed produced.
Consider first Fig. 10.15. It shows the number of pion pairs observed at a given
total energy of the colliding electrons, normalized by division by the number of
electrons observed at the same energy. A pronounced peak appears at about 770
MeV, with a width of about 100 MeV.

The reader with a good memory will say “Aha” and will turn back to Fig. 5.12
where a similar peak is shown at the same energy and with the same width. This
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Figure 10.15: Form factor for the process ete™ — 7tn—.
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at the same energy and converted to a squared pion form factor. Unlike form factors in Chapter 6,
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include such interference effects. [From L. M. Barkov et al., Nucl. Phys. B256, 365 (1985).]
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Figure 10.16: Cross section for the process ete™ — KTK~. [From V. A. Sidorov (NOVOSI-
BIRSK), Proceedings of the 4th International Symposium on Electron and Photon Interactions,
(D. W. Braben, ed.), Daresbury Nuclear Phys. Lab, 1969.]
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Table 10.1: VECTOR MESONS. np is the parity and 7. the charge parity
of the vector mesons.

Rest Dominant
Energy  Width Decay

Meson I J np n. Y (MeV) (MeV) Mode
o 11 -1 -1 0 770 153 T
w0 0 1 -1 -1 0 783 10 nta— 70
o 0 1 -1 -1 0 1020 4 KK

peak was identified with the rho meson. Why does the rho turn up here? Before
answering this question, two more experiments will be discussed to provide addi-
tional information. In Fig. 10.16, the cross section for the process eTe™ — KTK~
is shown as a function of the total energy 2E, at energies near 1 GeV. Again a
resonance peak appears but this time with a peak energy of about 1020 MeV and a
width of about 4 MeV. The ¢ meson has these two properties. Observation of the
reaction ete™ — mtn 70 yields a peak at about 780 MeV (see inset of Fig. 10.15)
with a width of about 10 MeV. These values point to the w®. The virtual photon
in the reaction ete~™ — hadrons produces resonances at the positions of the p°,
the w?, and the ¢°. To see what these three mesons have in common, we list their
properties in Table 10.1.

The three mesons in Ta-
ble 10.1 satisfy the conditions
set out above: They have
spin J = 1, negative parity,
negative charge parity, and
strangeness 0. Since a vec-
tor has negative parity and
the same number of indepen-
dent components as a spin-1
particle, the mesons are called
vector mesons. The rho has
isospin 1 and is an isovector,

Figure 10.17: The transformation of a virtual photon into
whereas the two others are vector meson gives rise to the resonances and their decays
isoscalars. observed in colliding beam experiments.

As pointed out in Section 8.6, after Eq. (8.30), the electric charge operator is
composed of an isoscalar and the third component of an isovector. The photon, as
carrier of the electromagnetic force, should have the same transformation properties,
and it matches the vector mesons in their isospin properties. The diagrams for the
production of the three vector mesons listed in Table 10.1 are given in Fig. 10.17.
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10.8 Colliding Beams

We have already discussed colliding beams in Section 2.8; in Section 7.6 we indi-
cated that eTe™ experiments were important in the discovery of the new quantum
numbers charm and bottom. Actually, the first ete™ experiments were done to
test QED at high momentum transfers, but emphasis soon changed to studies of
hadron production via the photon annihilation channel, Fig. 10.11(d). The virtual
photon has spin 1 and negative parity; the hadrons are consequently produced in
a unique and well defined state of total angular momentum and parity. Despite
this simplicity, electron—positron collisions have been an unexpectedly rich source
of new information and surprises. They are ideally suited to search for new leptons
and quarks; in addition, they allow tests of the standard model. In the following
sections, we describe some of the results.

Two technical
achievements are re-
sponsible for the out-
pouring of results
from collider experi-
ments: well-designed
accelerators and new

detectors. We have
treated these devel-
opments already in
Chapters 2 and 4 and

Stanford Linear Collider

————> electrons (e”)
— — — — = positrons (e*)

positron

add here only some .. Source
specific  information. RN

: e
In Table 10.2, we list e

some of the exist-
ing and planned high-

particle
detector

energy colliders. The
largest ete™ collider arc bending
built, LEP at CERN
in Geneva, is shown in
Fig. 2.12. A different

arrangement of collid- Figure 10.18: Artist’s conception of the SLC. Electrons and
positrons were accelerated to almost 50 GeV in the linear part,
then guided and focused by magnets until they collide head-on.

final focussing
magnets

ing beams, the Stan-

ford Linear Collider [Figure drawn by Walter Zawojski and reproduced courtesy of
(SLC) is sketched in SLAC]
Fig. 10.18.

As discussed in Section 2.2, the event rates in a colliding beam experiment are
several orders of magnitude smaller than in a typical stationary target experiment.
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Table 10.2: SOME EXISTING AND PLANNED COLLIDERS.

Ring Location Start of Particles Max Beam Energy
operations  collided (GeV)
CESR Cornell 1979 ete~ 6/6
VEPP-4M  Novosibirsk = 1994 ete~ 6/6
BEPC Beijing 1989 ete™ 2/2
LEP CERN 1989 ete~ 105/105
DA®NE Frascati 1999 ete~ 1/1
KEKB Tokyo 1999 ete~ 4/8
PEP-II Stanford 1999 ete~ 3/9
ILC Undecided ete 2000/2000
HERA Hamburg 1992 ep 30/920
Tevatron Batavia 1987 op 980,/980
LHC CERN 2007 pp 7000/7000
Consequently, detectors are

==

A ¥

Scintillation

counter

Shower spark chamber
(thick plates)

; %} Thin-plate spark chamber

Vacuum chamber
and beams

Figure 10.19: Basic arrangement for detectors at colliders.

designed to observe essen-
tially all events. The ba-
sic arrangement is given in
Fig. 10.19; the detector that
was crucial for the discov-
ery of the ¢ and thus of
charm at SPEAR is shown
in Fig. 10.20.0? Fig. 10.19
illustrates another interest-
ing feature of eTe™ collisions:
the resonances can decay by
emitting ¢g pairs that sub-
sequently appear mostly as

back-to-back jets.

Table 10.2 shows that the highest energies are achieved in collisions of hadrons.
Thus the Tevatron was built and the LHC is being built to search for new physics
in pp and pp collisions, respectively. However, ete™ colliders produce experiments

that are much easier to interpret and yield cleaner probes of new physics: the

International Linear Collider (ILC) is presently in the planning stage even though
its energy will be a fraction of the energy that LHC will reach.

120ther detectors are described in Chapter 4.
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Figure 10.20: Magnetic detector at SPEAR. The detector included spark chambers, scintillation
counters, and a solenoid. The solenoid was 3 m in diameter, 3 m long, and produced a 4 kG field
parallel to the beam. [Figure courtesy of SLAC.]
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10.9 Electron—Positron Collisions and Quarks

In Section 7.6, we mentioned the “1974 November Revolution” in which a new long-
lived particle, J/v was discovered simultaneously in pp scattering at the Brookhaven
National Laboratory and in ete™ collisions at SLAC.

In 1977, another long-lived
particle, the Y, was found in
p-nucleus collisions at Fermi-
lab. The J/4 is interpreted as
a cc state of a charmed quark
with its antiquark. Similarly,
the upsilon is a bb state and 1000
there is a t(t) state as well.
The detailed investigations of
these particles and of some
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hadrons in ete™ collisions as
a function of the total c.m.
energy W near 3.1 GeV.(3) 3.00 3.05 3.10 3.15
Two features stand out, the W (GeV)

very large cross section and
Figure 10.21: Total hadron production cross section in

the narrowness of the reso- ete™ collisions near 3.1 GeV and the J/1 peak. [From
nance peak. A. M. Boyarski et al., Phys. Rev. Lett. 34, 1357 (1975).]

Muon pair production is described very well by QED. The cross section for
ete™ — putp~ (neglecting the muon mass) is given by an equation similar but not
identical to Eq. 10.82 because here the particles in the final state are distinguishable
from the ones in the initial state:

do

dQ
where s = W2 = (2E,)? is the square of the c.m. energy, Eq. (10.83), and 0 is the
c.m. scattering angle. The total cross section is

2
- %(hc)m + cos?6), (10.89)

dra?

o= — (he)?. (10.90)

13A. M. Boyarski et al., Phys. Rev. Lett. 34, 1357 (1975); R. F. Schwitters and K. Strauch,
Ann. Rev. Nucl. Sci. 26, 89 (1976).
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Figure 10.22: The ratio R of the total cross section for eTe™ annihilation into hadrons to the
muon pair production cross section. [From PDG.]

10

It is therefore convenient to refer all other cross sections to that of muon pair
production by introducing the ratio R, defined by

o(ete™ — hadrons)
R = . 10.91
olete” — ptp~) (1051

This ratio is shown as a function of W in Fig. 10.22. A number of resonances
stand out like beanpoles above a flat landscape. The resonances and the flat back-
ground can be described in terms of simple diagrams, as in Fig. 10.23. The res-
onances (particles) have an energy dependence that is given by a Breit—Wigner
shape, Eq. (5.45), and they have large total cross sections. The photon’s quantum
numbers imply that the resonances have spin and parity J* = 17. As will be
discussed later the resonances are “bound” (confined) quark—antiquark pairs that
appear as vector mesons. The flat “background” between resonances is ascribed to
nonresonant quark—antiquark pair production. Since quarks are confined, the non-
resonant quark—antiquark pair produced by the photon must encounter at least one
other quark—antiquark pair and combine with it before emerging as free particles.
This process is shown in Fig. 10.23(b).

If quarks are indeed spin—% point particles, as postulated in Section 5.11, the
cross section for the production of a ¢g pair should also be given by Eq. 10.89
multiplied by the square of the ratio of the quark-to-electron charge. If we denote
the electric charge of quark ¢ as a multiple of e by ¢;, the assumption of point
charges immediately gives for the ratio R,
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R=> g7 (10.92)

because all other factors cancel. The sum in Eq. (10.92)
extends over all quark species with mass less than
W/(2¢?). For W < 6GeV, three quarks can be pro-
duced, u, d, and s, with charges 2/3, —1/3, and —1/3,
respectively (See Table 5.7), so that Eq. (10.92) gives
R = 2/3. However, Fig. 10.22 shows that Rexp, = 2!
The discrepancy is explained through the introduction
of color, as stated in Section 5.11. If each quark comes in
three colors, R is given by 3¢? = 2 for u, d, and s quarks
in agreement with experiment. Above the threshold for
J/¢ production there is a fourth quark of charge 2/3,
and above the upsilon threshold five known quark flavor
u, d, s, ¢, and b are present; with color, we then expect

R to be
2\° ~1\?| 11
2( = — =—.
(5)(5)]-5
Above the threshold for ¢ production, we have to in-
clude the charge of this quark. The data in Fig. 10.23
agree approximately with this prediction. The ratio R

thus provides strong evidence for two crucial properties
of quarks, their point-like nature and their color.

R=3

(b) Quark Pairs

Figure 10.23: Production of
(a) resonance and (b) of “in-
dividual” quark pair. In (b),
the second ¢gq pair shown is
required to produce observ-
able mesons.

We have discussed primarily experiments in which
lepton pairs annihilate and produce hadrons. The
reverse experiment is also feasible, and is called
a Drell-Yan reaction.(!) In a typical Drell-Yan
process, a high energy pion collides with a proton.
The antiquark in the pion annihilates a quark in
the proton to produce a virtual photon, which cre-

ates a lepton pair, as illustrated in Fig. 10.24. The
Figure 10.24: The Drell-Yan process has proven useful for studies of QCD. 1)

process for utp~ production
in pion—proton scattering.

143.D. Drell and T.M. Yan, Phys. Rev. Lett. 25, 316 (1970); 24, 181 (1970); Ann. Phys. (New

York) 66, 578 (1971).

5P N. Harriman, Z. Phys. C55, 449 (1992); P.D. Morley, Phys. Rev. C 39,708 (1989); G.L. Li,

J.P. Shen, J.J. Yang, H.Q. Shen, Phys. Rept. 242, 505 (1994).
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10.10 The Photon—Hadron Interaction: Real and Spacelike Photons

Are there not other original properties of the rays of light, besides those
already described?
Newton, Opticks

The interaction of real photons with hadrons at low and moderate photon energies
(say below 20 MeV) has formed a considerable part of nuclear physics for at least
40 years. One example, multipole radiation, was sketched in Section 10.5. Another
celebrated case is the photodisintegration of the deuteron,

’Yd — pn,

which was discovered in 1934 by Chadwick and Goldhaber(!®) and used by them
for a measurement of the neutron mass. A third example is the exploration of the
excited states of nuclei with incident gamma rays. The cross section for gamma-ray
absorption shows the existence of individual excited states and the occurrence of
the giant dipole resonance.(!”) The basic features of the resulting cross section have
already been given in Fig. 5.34. Such studies produce a great deal of information
concerning nuclear structure, but they teach us little new about the nature of the
photon—hadron interaction: The photon interacts with the electric charges and
currents in the nucleus. The distributions of the charges and currents are determined
by the strong force. If they are assumed to be given, then the interaction with the
probing photon can be described by the Hamiltonian 10.48. Below, say, 100 MeV
incident photon energy, this behavior can be understood: the (reduced) photon
wavelength is of the order 2 fm or longer, short enough to probe some details of
the nuclear charge and current distributions but not short enough to probe the
photon-nucleon interaction. (%)

The interaction of high-energy photons (E > a few GeV) with hadrons presents
a different picture and new aspects emerge: the photon shows hadron-like proper-
ties.19) The roots of these properties can be understood with concepts that have
been introduced earlier. In Section 3.3, the production of real electron—positron
pairs by real photons was mentioned. In the previous section, it was found that
timelike photons can produce hadrons, as indicated in Figs. 10.21 and 10.22. To
describe the high-energy behavior of real photons, we now consider such processes in

16J. Chadwick and M. Goldhaber, Proc. Roy. Soc. (London) A151, 479 (1935).

ITK.A. Snover, Ann. Rev. Nucl. Part. Sc. 36, 545 (1986); J.J. Gaardhoje, Ann. Rev. Nucl.
Part. Sc. 42, 483 (1992).

181t has been shown by various calculations that the scattering of photons in the limit of zero
photon energy is given entirely by the static particle properties, mass, charge, and higher moments.
The hadron structure dynamics does not enter, and the limit agrees with the classical result. W.
Thirring, Phil. Mag. 41, 1193 (1950); F. E. Low, Phys. Rev. 96, 1428 (1954); M. Gell-Mann and
M.L. Goldberger, Phys. Rev. 96, 1433 (1954).

191, Stodolsky, Phys. Rev. 18, 135 (1967); S.J. Brodsky and J. Pumplin, Phys. Rev. 182, 1794
(1969); V.N. Gribov, Sov. Phys. JETP 30, 709 (1970); D.R. Yennie, Rev. Mod. Phys. 47, 311
(1975); T.H. Bauer et al., Rev. Mod. Phys. 50, 261 (1978).
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more detail. As already stated in Section 3.3 (Problem 3.22), a photon cannot pro-
duce a real pair of massive particles in free space. A nucleus must be present to take
up momentum in order to satisfy energy and momentum conservation. However,
the uncertainty principle permits violation of energy conservation by an amount AFE
during times smaller than i/AE. A photon can therefore produce a virtual pair
or a virtual particle with the same quantum numbers as the photon and with total
energy AFE, but such a state can exist only for a time less than i/AFE. Consider
as a simple example the virtual decay of a photon of energy FE, into a hadron h,
with mass my. Momentum conservation demands that photon and hadron have the
same momentum p = p, = E,/c.Consequently the energy difference between the
photon and the virtual hadron is

AE = Ej, — Ey = (B2 +mjc")'/? - E,. (10.93)

The time during which the hadron can “virtually exist” is (see Problem 10.31)

el E»y < thQ,
T=9 g, , (10.94)
mZcl E’Y > mpce.

The hadron can travel at most with the velocity of light, and the distance traversed
during its virtual existence is limited by

- m’zc = X, E7 < thQ,
LS e, ox, P P ) (10.95)
mZcd T AN eE v > Mpc”,

h

where Xj, is the reduced Compton wavelength of the hadron. The quantum numbers
of the photon do not allow a decay into one pion; the lowest possible hadron state
consists of two pions, and Xj is consequently limited by

h
X, <
hN2mwc

~ 0.7 fm. (10.96)

The lowest-mass physical particle with J”? = 17 is the rho meson, for which X; ~
0.3 fm. Equation (10.95, top) then shows that the path length of virtual hadrons
associated with low-energy photons is much smaller than nuclear and even smaller
than nucleon dimensions. Equation (10.95, bottom) indicates, however, that the
path-length can become much larger than nuclear diameters at photon energies
exceeding a few GeV.

The argument given so far reveals how far a virtual hadron accompanying the
photon can propagate, but it does not predict how often a strong fluctuation arises.
To describe the second property, we write for the normalized state function, |v), of
the real photon:

|7) = colv0) + cnlh). (10.97)
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E << myc? E >> m,c?

Figure 10.25: Low-energy and high-energy photons. The hadronic contribution for low-energy
photons is insignificant. The high-energy photon is accompanied by a hadron cloud that leads to
observable effects.

150 —T" T T T T T T T T T T T T
Photon absorption on protons
- 5 0

Y o A
100 |- =

Photon absorption on neutrons

125

75 ) 1 [ L 1 | 1 L | L 1 | 1
3 6 9 12 15

57 (GeV)

Total Photon Absorption (ub)

Figure 10.26: Total absorption cross section for photons on nucleons. Very different cross sections
are expected if the photon interacts with the electric charge. If the absorption occurs via vector
mesons (hadrons), the absorption should be essentially the same for neutron and proton targets.
[After D. O. Caldwell et al., Phys. Rev. Lett. 25, 613 (1970).]
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Here colvo) is the purely electromagnetic part of the photon (bare photon) and cp,|h)
is the hadronic part (hadron cloud). The absolute square cj;cj, gives the probability
of finding the photon in a hadronic state; as we shall see later, it is proportional to
a. We shall return to a more detailed discussion of |h) below but note here that
we expect, for instance by analogy to the production of real lepton pairs (Fig. 3.7),
that the ratio ¢p,/co increases with increasing energy. Even a small contribution
will become experimentally observable because the hadronic force is much stronger
than the electromagnetic one. To summarize, we picture low-energy and high-energy
photons in Fig. 10.25.

The question as to whether the photon indeed is accompanied by a hadron cloud
must be answered by experiments. We shall discuss two examples that demonstrate
the existence of a hadronic component. The first one is the scattering of photons
from nucleons. The total cross sections for scattering of photons from nucleons
have been measured up to center-of-mass energies, /s, of 209 GeV for protons
and 9 GeV for neutrons. Part of this is shown in Fig. 10.26.(3%) As the energy
increases above a few GeV, the two cross sections begin to coalesce. If the photons
were to interact solely with the electric charge, proton and neutron should have
different total cross sections because their electromagnetic properties are different,
as indicated by their quark flavor content and the behavior of their form factors Gg
and Gar, Egs. (6.41) and (6.43). The electric form factor of the neutron is small,
indicating that the neutron is not only overall neutral but that it contains very little
net electric charge at all. The magnetic form factor of the neutron is smaller than
that of the proton in the ratio |p,/pp| = 0.7. If the photon were to interact only
with the electric charges and currents, scattering from the neutron would be much
smaller than from the proton. The situation is different for the strong component,
cnlh). Proton and neutron form an isospin doublet. According to Eq. (8.15), the
strong Hamiltonian commutes with I and the hadronic structure is independent of
the orientation in isospin space. Proton and neutron consequently have the same
hadronic structure. The forces between hadrons are charge-independent and do
not depend on the orientation of the nucleon isospin vector. The component cp,|h)
therefore should produce equal scattering from protons and neutrons. Indeed, as
Fig. 10.26 shows, at energies where E, > myc?, the cross sections o(7y,p) and
o(v,n) approach each other and indicate that the term cp|h) becomes dominant.

The behavior of the total cross section for photons on nuclei as a function of
the scatterer baryon number, A, provides a second striking demonstration of the
hadronic traits of high-energy photons. Below an energy of a few GeV, the total
cross section is proportional to A,

oot (7) < A, E < GeV. (10.98)

20D. O. Caldwell, et al., Phys. Rev. Lett. 25, 609, 613 (1970); Phys. Rev. D7, 1362 (1973);
Belusov et al., SINP 21, 289 (1975); ZEUS Collaboration (S. Chekanov et al.) Nucl. Phys. B627,
3 (2002).
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Figure 10.27: Energy dependence of oeg /0 for copper and dependence of oeg /0 on atomic number
at 60 GeV photon energy. [After D. O. Caldwell et al., Phys. Rev. Lett. 42, 553 (1979).]

Above a few GeV, however, the total cross section is no longer proportional to
A.?Y) This shadowing effect is displayed in Fig. 10.27 as a plot of o/ against
E.??2) g.g/0 is the ratio of the photo-production cross section of a nucleus of Z
protons and N neutrons to the sum of the individual cross sections of the constituent
nucleons. If the high-energy photons were to see all nucleons in a nucleus equally
well, oef/0 would be unity. Fig. 10.27 shows that the ratio o.g/c at 60 GeV
decreases markedly with increasing A; for a fixed A (Cu, A = 64), it decreases
steadily with increasing energy. To show that this experimental result provides
more evidence for the existence of a hadronic contribution to the photon, we shall
discuss the behavior of the two components, |vo) and |h), separately. Consider first
the bare photon, |yy). The mean free path of photons of about 15 GeV energy in
nuclear matter (an infinitely large nucleus) is about 600 fm. This number follows
with Eq. (2.17) from the values of the photon-nucleon cross section of Fig. 10.26,
o ~ 1072fm?, and the nuclear density given in Eq. (6.28), p, ~ 0.17 nucleon/fm”.
Since the nuclear diameter of even the heaviest nucleus is less than 20 fm, bare
photons “illuminate” nuclei uniformly, and the contribution of the term ¢g|vyo) to
the cross section is proportional to A. The hadronic term, c¢|h), produces two
contributions to the total cross section. As will be shown in Chapter 14, the cross
section for hadrons is of the order of 3 fm?, and the mean free path is about 2 fm.

21E. M. Henley, Comm. Nucl. Part. Phys. 4, 107 (1970); F. V. Murphy and D. E. Yount, Sci.
Amer. 224, 94 (July 1971); D. Schildknecht, hep-ph/0511090, published in Acta Phys. Polon.
B37, 595 (2006).

22D. O. Caldwell, V. B. Elings, W. P. Hesse, G. E. Jahn, R. J. Morrison, F. V. Murphy, D. E.
Yount, Phys. Rev. Lett. 23, 1256 (1969); D. O. Caldwell et al., Phys. Rev. Lett. 42, 553 (1979);
N. Bianchi et al., Phys. Rev. C' 60, 064617 (1999).



322 The Electromagnetic Interaction

If the photon transforms to the hadron state inside the nucleus, the hadron will
interact near the position of production. Since the production can occur anywhere,
the contribution to the total cross section is proportional to A, just like that of bare
photons. On the other hand, virtual hadrons created before striking the nucleus
interact with nucleons in the nuclear surface layer because of their short mean free
path. The corresponding contribution to the total cross section consequently is
proportional to the nuclear area, or to A%/3. At a given photon energy, the total
cross section is the sum of the three contributions, and it should be of the form

o(yA) = aA + bA?/3. (10.99)

As stated above, the second term is due to photons that transform into hadrons
before striking the nucleus. Such hadrons have a chance to interact if they are pro-
duced within a distance L, which at high photon energies is, according to Eq. (10.95,
bottom), large compared to nuclear diameters and proportional to E.. Other things
being equal, the coefficient b should thus be proportional to E,, and the surface
term should become dominant at energies large compared to myc2. The behavior
of the cross section as expressed by Eq. (10.99) and Fig. 10.27 therefore can be
understood in terms of virtual hadrons.

The expression for the hadron cloud of the photon, ¢ |h), can be written in an
informative form by using perturbation theory. We assume the states of the various
hadrons and of the photon, in the absence of the electromagnetic interaction, to be
given by the Schrodinger equations

Hply) =0,  Hpln) = Eyn). (10.100)

Hj, is the strong Hamiltonian, |yo) the state function of the bare photon, and
|n) represents a hadronic state. If the electromagnetic interaction is switched on,
hadronic states are superimposed onto the bare photon state:

) = coho) + S ealnd,  leol? + Y leal? = 1. (10.101)

Since H.,, is weaker than Hj, the expansion coefficients ¢, are small and ¢y ~ 1.
The state of the physical photon is a solution of the complete Schrodinger equation,

(Hy + Hom) 1Y) = B, ). (10.102)

Inserting the expansion (10.101) into Eq. (10.102) gives, with Eq. (10.100) and with
(nlyo) =0,cn < 1,
(n|Hem|0)

= et 10.103

c -E’Y _ En ( )
The energy difference between the photon energy E, and the hadron energy E, is
given by Eq. (10.93); for large photon energies, the expansion coefficient becomes,
with Eq. (10.94, bottom),

2E,

n = Hem —5 1 10.104
6 = (0l ) (10.104)
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The square of the matrix element is of order o = ; if it is constant, the contri-

1
bution from the hadronic state |n) to the photon Sé;te should be proportional to
the photon energy. At values of E. that are small compared to myc?, the photon
behaves like an ordinary light quantum.

To compute actual values of ¢, and thus find the hadron cloud, the wave func-
tions of the states |n) and H.,, must be known. At present it is believed that
H.,, is given by the minimal electromagnetic interaction and that all difficulties in
computing the matrix elements stem from the absence of a detailed understanding
of the structure of the hadron states |n).

Calculations are carried out with simplified models. No one model describes all
experiments at the present time, but in the several GeV region the vector dominance
model (VDM) is reasonably successful in correlating many aspects. This model was
introduced by Sakurai,(1?)
states of importance in the sum in Eq. (10.101) are the lightest vector mesons p,w,
and ¢. Only three matrix elements, of the form (V|Hn|v0), thus appear, and
approximate values of these can be obtained from the experiments on vector meson
production in colliding beam experiments. (23)

and it is based on the assumption that the only hadronic

10.11 Magnetic Monopoles

Finally we come to another unsolved aspect of the electromagnetic interaction, the
possible existence of magnetic monopoles. Classical electrodynamics is based on
the observation that electric, but no magnetic, charges exist. The magnetic field
is always produced by magnetic dipoles, never by magnetic charges (monopoles).
This fact is expressed through the Maxwell equation

V-B=0. (10.105)

Since this relation states an experimental result, the question as to its validity must
be asked. As early as 1931, Dirac proposed a theory with magnetic monopoles.(*4)
In this theory, Eq. (10.104) is replaced by

V - B = 47p,, (10.106)

where p,, is the magnetic charge density. In an extension of his work, Dirac showed
that the rules of quantum mechanics lead to a quantization of the electric charge e
and the magnetic charge ¢(%):

eg = %nhc, (10.107)
23 For a more detailed description of the VDM see D. Schildknecht, hep-ph/0511090, Proceedings
of PHOTON2005 International Conference on the Structure and Interactions of the Photon”,
Warsaw, 2005.
24p. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931).
25p. A. M. Dirac, Phys. Rev, 74, 817 (1948).




324 The Electromagnetic Interaction

The dimensionless constant describing the interaction between two magnetic
monopoles is enormous. Dirac’s suggestion led to many unsuccessful searches for
magnetic monopoles, both in cosmic rays and at accelerators.(26) The hunt received
a new stimulus when it was realized that grand unified theories predict the existence
of very heavy monopoles with a mass of about 10°GeV/ 2,7 approximately the
mass of a bacterium. Obviously such particles cannot be produced with accelerators,
but they could have been created in the early universe.(?¥) No such particles have
been seen.
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Problems

10.1. Draw the transition probability factor Pno (T)/4|(N|Hint|a)|? of Eq. (10.13)
for the following times T':

(a) T =10""sec

(b) T =10"?2sec

10.2. Derive the golden rule No. 1, Eq. (10.21), by developing the approximation
involved in Eq. (10.19) to second order.
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10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

10.9.

10.10.

The Electromagnetic Interaction

Consider the nonrelativistic scattering of a particle with momentum p = mwv
by a fixed potential Hiy = V() [Fig. 10.1(b)]. Assume that the incident and
the scattered particles can be described by plane waves (Born approximation).
L3 is the quantization volume.

(a) Use the golden rule to show that the transition rate into the solid angle
dS2 is given by

2

Y Q.

]

dw

m 3 i(po —Pg) - T
—————— | Hin
972 /d T exp [ 3 ¢

(b) Show that the connection between cross section do and transition rate
is given by
wgo = Fdo,

where F' is the incident flux [Eq. (2.11)].

(¢) Verify the Born approximation expression, Eq. (6.5), for the scattering
amplitude f(q).

Verify Eq. (10.26) by computing the number of states in a three-dimensional
box of volume L3.

Derive the Lorentz force by starting from the Hamiltonian (10.41).

Show that the term ¢2>A?/2mc? in Eq. (10.42) can be neglected in realistic
situations.

Verify that gp(x)v(x) in Eq. (10.47) is the charge that traverses unit area per
unit time.

Show that the continuity equation, Eq. (10.51), is a consequence of Maxwell’s
equations.

Justify that the total energy in a plane electromagnetic wave in a volume V'
is given by
EI2
W= V—‘ | ,
4

where F is the electric field vector.

Equation (10.69) describes the transition rate for the spontaneous emission
of dipole radiation in the transition a — 3.

(a) Compute the corresponding expression for the absorption of a photon
by dipole radiation inducing the transition 8 — «.
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10.11.
10.12.

10.13.

10.14.
10.15.

10.16.

10.17.

10.18.

10.19.

10.20.

10.21.

(b) Compare the transition rates for emission and absorption. Compare the
ratio with the ratio expected from time-reversal invariance.

Prove Egs. (10.71) and (10.72).

Sketch the radiation pattern predicted by Egs. (10.75) and (10.76) for dipole
radiation, assuming that the vector (3|x|a) points along the z direction. Com-
pare to the radiation pattern for classical dipole radiation.

Use Eq. (10.77) to make a crude estimate for the mean life of an electric dipole
transition

(a) In an atom, E, = 10 eV.

(b) In a nucleus, E, =1 MeV.

Find relevant transitions in nuclei and atoms and compare your result with
the actual values.

Discuss an accurate method for determining the fine structure constant.

Why do nuclei and particles not have permanent electric dipole moments?
Why can some molecules have permanent electric dipole moments?

Why does the transition X% — A® occur through an electromagnetic and not
a hadronic decay?

What kind of multipole transition is involved in the decay X — A°? Use
an extrapolation of Fig. 10.10 to estimate the mean life. Compare to the
presently known value.

Discuss time-to-amplitude converters (TACs).

(a) Describe the function of a TAC.
(b) How can a TAC be used to measure lifetimes?

(¢) Sketch the block diagram of a TAC.

Show that a 2+ 2 0% transition, as, for example, shown in Fig. 10.7, cannot
occur through dipole radiation.

Verify that the selection rules of Eq. (10.80) and the conservation laws of
Eq. (10.81) together lead to the multipole assignments shown in Fig. 10.9.

The transition from an excited to a nuclear ground state can usually pro-
ceed by two competing processes, photon emission and emission of conversion
electrons.
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(a) Discuss the process of internal conversion.

(b) Assume that a particular decay has a half-life of 1 sec and a conversion
coefficient of 10. What is the nuclear half-life for bare nuclei, i.e., nuclei
stripped of all their electrons?

(c) The nuclide '1Cd has a first excited state at 247 keV excitation energy.
If the electron spectrum of this nuclide is observed, lines appear. Sketch
the position of the conversion electron lines produced by the 247 keV
transition.

10.22. Consider Mgller scattering as shown in Fig. 10.12 (symmetric case).

(a) Assume that the incident electron has a kinetic energy of 1 MeV. Com-
pute the angle 6,y,.

(b) Repeat the problem for an incident electron energy of 1 GeV.

(¢) Compute the ratio of cross sections for parts (a) and (b) assuming that
the angular function f(#) in Eq. (10.82) has the same value for both
cases.

10.23. Consider Mgller scattering. Assume that the electrons in the target foil are
completely polarized along the direction of the incident electrons. Use the
Pauli principle to get an idea how longitudinally polarized incident electrons
will scatter if their spin is (a) parallel and (b) anti-parallel to the target spins.
Consider only the symmetric scattering shown in Fig. 10.12.

10.24. To study the high-energy behavior of photons, monoenergetic beams are re-
quired. An ingenious way of producing such photons involves an intense laser
pulse that collides head-on with a well-focused electron beam. The photons
that are scattered by 180° acquire considerable energy. Compute the energy
of the photons from a ruby laser that are scattered by 180° from an electron
beam of energy

(a) 1 MeV.
(b) 1 GeV.
(c) 100 GeV.

10.25. Estimate the ratio of probabilities for the emission of a rho to that of a gamma
ray from a high-energy nucleon that passes close to another one.

10.26. Magnetic monopoles (magnetic charges) would have remarkable properties:
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10.27.

10.28.

10.29.

10.30.

10.31.

(a) How would a magnetic monopole interact with matter?
(b) How would the track of a monopole look in a bubble chamber?

)
)

(c) How could a monopole be detected?
)

(d) Compute the energy of a monopole accelerated in a field of 20 kG.

Estimate the mass of a magnetic monopole by using the following, very spec-
ulative, approach: The classical electron radius r. is given by

e2

re = .
 mec?

Assume that a magnetic monopole has a similar radius, with e replaced by g
and m, by the monopole mass.

Prove Eq. (10.103).

Show that a magnetic monopole passing through a superconducting loop of
current induces a permanent change of flux, but that a charge or magnetic
dipole will not do so.

Show that the electromagnetic transition from hadronic states of angular mo-
mentum and parity 07 and 1~ to a state of angular momentum and parity
0T are forbidden if both states have isospin zero.

Consider the virtual decay of a photon of energy FE, into a hadron with
mass my. Show that the energy difference between the photon and the vir-
tual hadron is given by Eq. 10.93 and that the uncertainty principle yields
Eqgs. 10.94 for the time spent as a hadron.
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Chapter 11

The Weak Interaction

This chapter explores the weak interaction part of the electro-weak theory. The
history of the weak interaction is a series of mystery stories. In each story, a puzzle
appears, at first only in a vague form and then more and more clearly. Clues to the
solution are present but are overlooked or discarded, usually for the wrong reason.
Finally, the hero comes up with the right explanation and everything is clear until
the next corpse is unearthed. In the treatment of the electromagnetic interaction,
the well-understood classical theory provided an example which, properly translated
and reformulated, guided the development of quantum electrodynamics. No such
classical analog is present in the weak interaction, and the correct features had to be
taken from experiment and from analogies to the electromagnetic interaction. We
shall describe some of the puzzles and their solutions. In doing so we are hampered
by the self-imposed constraint of not using the Dirac theory. We shall therefore not
be able to write the interaction properly but shall use other means to explain the
crucial concepts.

At low energies and to lowest order in perturbation theory the weak interaction
can be described semi-phenomenologically in a satisfactory way. At high energies,
however, problems appear that have no solution if the weak interaction is treated
alone. The unification of the weak interaction with the electromagnetic one, how-
ever, leads to a deeper understanding and to a solution of these problems. In this
chapter, we review some of the experimental knowledge and the basic phenomenol-
ogy gained from a study of the weak interaction. In the next two chapters we lay
the groundwork for, and sketch, the electroweak theory.

11.1 The Continuous Beta Spectrum

The continuous (-spectrum would then be understandable under the
assumption that during G-decay a light neutral particle is emitted with
every electron such that the sum of energies of neutrino and electron are

constant.
W. Pauli

331



332 The Weak Interaction

Radioactivity was discovered in 1896 by Becquerel, and it became clear within a
few years that the decaying nuclei emitted three types of radiation, called «, 3, and
~ rays. The outstanding puzzle was connected with the beta rays. Careful mea-
surements over more than 20 years indicated that the beta particles were electrons
and that they were not emitted with discrete energies but as a continuum.

An example of such a
beta spectrum is shown in
Fig. 11.1.  We have dis-
cussed nuclear energy levels
in chapter 5. The existence
of quantized levels was well
known in 1920, and the first
puzzle posed by the con-

Distribution curve of
B particles from
radium E

Number of g Particles

tinuous beta spectrum thus =
was: Why is the spectrum
of electrons continuous and h 3 : 5
not discrete? A second puz- Energy (105eV)

zle arose a few years later

Figure 11.1: Example of a beta spectrum. [This figure is
when it was realized that no taken from one of the classic papers: C.D. Ellis and W.A.
Wooster, Proc. R. Soc. (London) A117, 109 (1927).]
. Present experimental techniques yield more accurate en-
nuclei. Where, then’ do the ergy spectra, but all essential aspects are already contained

electrons come from? in the curve reprinted here.

electrons are present inside

The first puzzle was solved by Pauli, who suggested the existence of a new,
very light, uncharged, and penetrating particle, the neutrino.(tY. Today, with so
many particles known, proposing a new particle scarcely raises eyebrows. In 1930,
however, it was a revolutionary step. Only two particles were known, the electron
and the proton. Destroying the simplicity of the subatomic world by addition of a
third citizen was considered to be heresy, and very few people took the idea seriously.
One of the ones who did was Fermi; he used Pauli’s neutrino hypothesis to solve
the second puzzle. Fermi assumed with Pauli that a neutrino is emitted together
with the beta particle in every beta decay. Consequently, the simplest nuclear beta
decay, the one of the neutron, is written as

n — pe U.

Since the neutrino is chargeless, it is not observed in a spectrometer. Electron and
neutrino share the decay energy, and the observed electrons sometimes have very
little of it and sometimes nearly the maximum energy. The spectrum shown in

1Pauli first suggested the neutrino in a letter addressed to some of his friends who were attending
a physics meeting in Tiibingen. He declared that he was unable to be present at the gathering
because he wanted to attend the famous annual ball of the Swiss Federal Institute of Technology.
The letter is reprinted in R. Kronig and V.F. Weisskopf, eds., Collected Scientific Papers by
Wolfgang Pauli, Vol. 1I, Wiley-Interscience, New York 1964, p. 1316. See also L. M. Brown,
Phys. Today 31, 23 (September 1978).



11.1. The Continuous Beta Spectrum 333

Fig. 11.1 is thus qualitatively explained. To avoid the problems posed by electrons
inside nuclei, Fermi postulated that the electron and the neutrino were created in
the decay, just as a photon is created when an atom or a nucleus decays from an
excited to the ground state or two photons are created in the decay of the neutral
pion.

Fermi did not simply speculate how beta decay could occur; he performed the
computations to find the expressions for the electron spectrum and the decay prob-
ability. His original treatment(® is above our level, and it has to be watered down
here. In the present section, we shall show that even a crude approach reproduces
the shape of the beta spectrum. Since the interaction responsible for beta decay
is weak, perturbation theory can be used, and the transition rate is given by the
golden rule, Eq. (10.1),

duse = 2F{|Hale) Po(B).

Here H,, is the Hamiltonian responsible for beta decay, and we have written dwg,
rather than wg, in order to indicate that we are interested in the transition rate
for transitions with electron energies between E, and E. + dE.. We first consider
the density-of-states factor p(E). Three particles are present in the final state, and
p(E) is given by Eq. (10.34) as

V2

- = 2 2 g _
p(E) = (Grh)6 dBmn /pe dpe dQeps, dpp d2s. (11.1)

V' is the quantization volume. Since the final results are independent of this vol-
ume, it is set equal to 1. The differentiation d/dEy.x requires a word of expla-
nation. En.x is constant, and it thus appears at first sight that d/dEp.x should
vanish. However, it has the meaning of a variation; (d/dEmax) [ - indicates how
the integral changes under a variation of the maximum energy.

To evaluate p(E), we must first decide what we are interested in. Figure 11.1
shows the number of electrons emitted with an energy between E. and E. + dE..
To calculate the corresponding transition rate, E, and consequently also p. are kept
constant. The d/dFax in Eq. (11.1) then does not affect the terms relating to the
electron, and Eq. (11.1) becomes

dD.dQ,

p(E)_ (27Th)6 ; dpl_/

v dEmax .

p? dpep (11.2)
The next step is simplified by the fact that the nucleon in the final state is much
heavier than either lepton and therefore receives very little recoil energy. To a good
approximation, electron and neutrino share the total energy:

Ee + Ey = Emax. (11.3)

2E. Fermi, Z. Physik 88, 161 (1934); translated in The Development of Weak Interaction
Theory (P. K. Kabir, ed.), Gordon and Breach, New York, 1963. See also L. M. Brown and H.
Rechenberg, Am. J. Phys. 56, 982 (1988).
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For a massless neutrino, F; = pyc, and for constant F,

dpp _ 1 dEf, 1

dPmax ¢dBmax ¢

so that

= ‘7)6(;29629,; dpe. (11.4)

As written, p(E) is the density-of-states factor for a transition in which the electron
has a momentum between p. and p. + dp. and is emitted into the solid angle df2..
With Eq. (11.3), p2 is replaced by (Emax — Fe)?/c?. Moreover, if the matrix element
(B|Huw|a) is averaged over the angle between the electron and the neutrino, dwga
can be integrated over dQ.dQ; and with Eq. (11.4) the result is

m|<p€_D|Hw|n>|2pg(Emax _E6)2 dpe. (11.5)

This expression gives the transition rate for the decay of a neutron into a proton,

d’LUﬂa =

an electron, and an antineutrino, with the electron having a momentum between p.
and pe + dp.. Does the expression agree with experiment? Since at this point we
know nothing about the matrix element, the simplest approach is to assume that
it is independent of the electron momentum and to see how the other factors in
Eq. (11.5) fit the observed beta spectra. In principle, then, a function

pg (Emax - Ee)dee

could be fitted to the experimental data. There exists an easier way: Equation (11.5)
is rewritten into the form

dwga 1/2 _ \1/2
<p2 dp > = const. (|<pe*I7|Hw|n>|2) (Emax — Ee). (11.6)

If the expression on the left-hand side is determined experimentally and plotted
against the electron energy F., a straight line results if the matrix element is
momentum-independent. Such a plot is called a Fermi or Kurie plot. Figure 11.2
shows the Kurie plot for the neutron decay. It is indeed a straight line over most of
the energy range. The deviation at the low-energy end was caused by experimental
difficulties in this early experiment: The electron counter had a window 5 mg/ cm?
thick, and it absorbed low-energy electrons. (See Fig. 3.8 and Eq. (3.7).) The
number of electrons shown in Fig. 11.2 is not corrected for this loss.

The technique just described can be applied to beta decays other than that
of the neutron with a small modification. If a nucleus decays by beta emission,
the charged lepton experiences the Coulomb force once it has left the nucleus with
charge Ze. This force will decelerate negative and accelerate positive electrons.
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The spectrum will be distorted: There will be more positrons of high energy and
more electrons of low energy than predicted by Eq. (11.5). The Coulomb correction
introduces an additional factor in Eq. (11.5), and for a decay N — N’ev it becomes

1

dwga = m|<N/€V|Hw|N>|2F(:Fa Z, Ee)p?z(Emax - Ee)2dpe- (11.7)

T T T T T T F(¥,Z,E.) is called the

8 |  Fermi function;® the sign in-
- } -  dicates whether it applies to
§ electrons or positrons. The

6 71 Fermi function also corrects

Kurie plots for the Coulomb
distortion, and the momen-
4 —J tum dependence of the matrix
element can be tested in many
decays. It turns out that the
matrix element is essentially

[N(p)/p? "2

momentum-independent in all
cases of interest, for decay en-
A e 4 ergies up to a few MeV. The
0 200 400 600 800 shape of the electron spec-

Energy (keV) trum in beta decay is domi-
nated by phase—space consid-

Figure 11.2: Kurie plot for the neutron decay. [From J.
M. Robson, Phys. Rev. 83, 349 (1951).] Here N(p) corre- .
sponds to dw/dpe in Eq. (11.6). of the matrix element.

erations and not by properties

However, the high-energy end of the beta spectrum can provide information
about the mass of the neutrino. In deriving Eq. (11.7) we have assumed a massless
electron neutrino. If the mass is not zero, the Kurie plot will deviate from a straight
line at the upper limit; the deviation will be most pronounced for decays with small
maximum energy, for instance 3H — e~ 7,>He. Searches with this nucleus indicate
that the electron neutrino rest energy is smaller than approximately 3 eV.(4)

11.2 Beta Decay Lifetimes

Information about the magnitude of the matrix element can be obtained from the
lifetimes of beta emitters. If the matrix element is momentum-independent, the

3H. Behrens and J. Janecke, Numerical Tables for Beta Decay and Electron Capture, Landolt-
Bérnstein, New Series, Vol. I/4, Springer, Berlin, 1969. H. Behrens and W. Biihring, FElectron
Radial Wave Functions and Nuclear Beta-Decay, Clarendon Press, Oxford, 1982.

4]. Bonn et al., Nucl. Phys. Proc. Suppl. 110, 395 (2002); see also http://www-ik.fzk.de/ ka-
trin/index.html for an experiment under preparation.
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total transition rate wg, and the mean life 7 can be obtained from Eq. (11.7) by
integration over the momentum:

w =

1 Prmax
— = ————[(Nev|H,|N)|? dpe F(F, Z, E)p2 (Emax — Fe)?. (11.8
= S VLIV [ o P 2, B 2o
For very large energies, where E.x & CPmax, and for small Z, where F' ~ 1, the
integral becomes

/pmd 2 (B — Bo)? ~ —— B (11.9)

0 pepe max e - 3063 max"* :
While this relation is useful for estimates, accurate values of the integral are

needed for a meaningful treatment of the data. Fortunately the integral has been
tabulated® as

Pmax
/ dpe F(F, Z, E)p? (Emax — Fe)? = m2c” f(Fmax). (11.10)
0

The factor m>c” has been inserted in order to make f dimensionless. With
Egs. (11.10) and (11.8), the matrix element becomes

I N o2 R7

[(N'ev|Hy,|N)|2 = FW (11.11)
If 7 is measured and f computed® then the square of the matrix element can be
obtained from Eq. (11.11). It is customary to use ft;/5 and not f7 in tabulations.
fti/2 is called the comparative half-life. The name stems from the fact that all
beta-decaying states would have the same value of ft, 5 if all matrix elements were
equal. Nature provides an enormous range of values of ft;/5, from about 103 to
1023 sec. If such a variation were caused by the fact that the weak interaction, H.,,,
were not universal but would change from decay to decay, an understanding of the
weak processes would be hopeless. It is assumed that H,, is the same for all decays
and that the nuclear wave functions that enter the calculation of (N'ev|H,|N) are
responsible for the variations. The most fundamental decays have the “best” wave
functions and give rise to the largest matrix elements. A few cases are listed in
Table 11.1.

With fty/3 = (In2)f7 (Eq. (5.34)) and with the numerical values of the con-

stants, Eq. (11.11) becomes

43 x 1076 MeV? fm® sec

ft1/2(insec) '
Now consider the decay of the neutron. With the value of f¢,,, given in Table 11.1,
the magnitude of the matrix element of H,, becomes

(N er[H, N2 = (11.12)

|(pe|Hy|n)| =~ 2 x 107* MeV fm®. (11.13)
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Table 11.1: COMPARATIVE HALF-LIVES OF A FEW BETA

DECAYS.
Spin-parity Emax  fti)2
Decay Sequence t1/2 (MeV)  (sec)
n—p 1* 1% 102 min 0.782 1054
SHe — SLi ot — 1t 0.807 sec 3.50 800
140 - MN 0t -0t  70.6 sec 1.752 3039

The matrix element (11.13) gives an energy times a volume. The volume of the pro-
ton follows from Eq. (6.46) as approximately 2 fm®. The weak energy, distributed
over the volume of the proton, is of the order

H, ~ 10~ MeV. (11.14)

This number demonstrates the weakness of the weak interaction: Presumably the
mass of the proton, about 1 GeV, is given by the hadronic interaction. The weak
interaction is consequently about a factor of 107 smaller.

11.3 The Current—Current Interaction of the Standard Model

Two facts have become clear in the previous two sections: The dominant feature of
the beta spectrum is given by the phase—space factor, and the beta decay interaction
is so weak that perturbation theory can be used. However, we have learned very
little about the Hamiltonian responsible for beta decay. Is it nevertheless possible
to make a stab at the construction of a weak Hamiltonian? We have said above
that the first successful theory of beta decay was formulated by Fermi(® and that
even less was known about beta decay in 1933 than we have described so far. It is
therefore only proper to show how Fermi’s genius led to a profound understanding
of the weak interaction. We shall follow Fermi’s reasoning but use more modern
language.

Fermi assumed that electron and neutrino were created during the process of
beta decay. This act of creation is similar to the process of photon emission. By
1933 the quantum theory of radiation was well understood, and Fermi patterned his
theory after it. The result was incredibly successful and withstood all assaults for
nearly 25 years. When parity fell in 1957, Fermi’s theory finally required modifica-
tion. The most successful extension was put forward by Feynman and Gell-Mann
and, in somewhat different form, by Marshak and Sudarshan.(® Tt can be said that
the weak interaction tries as hard as possible to look like its stronger cousin, the
electromagnetic one.

5R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958); E. C. G. Sudarshan and R.
E. Marshak, Phys. Rev. 109, 1860 (1958).
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Figure 11.3: Neutron decay
and neutrino absorption. It
is assumed that the absolute
values of the matrix elements
for the two processes are the
same. The diagrams apply to
quarks with v and d substi-
tuting for p and n.

The Weak Interaction

Figure 11.3(a) shows a diagram for the decay of the neu-
tron. Such a decay is not the most convenient one for
writing down an interaction, because one particle comes
in and three particles leave. It is easier to see the analogy
to the electromagnetic force in a case where two particles
are destroyed and two are created. We learned in Sec-
tion 5.10 that antiparticles can be looked at as particles
going backward in time. One of the outgoing antipar-
ticles, say the antineutrino, is therefore replaced by an
incoming particle, in this case a neutrino. The process
then appears as in Fig. 11.3(b). It is assumed that the
matrix elements for the two processes in Fig. 11.3(a) and
(b) have the same magnitude. (The transition rates are
different because of unequal phase space factors p(E).)

It is helpful, especially for later developments, to
build the same figures in terms of quarks. To convert
a neutron to a proton requires the change of a down (d)
to an up (u) quark. The diagrams in Fig. 11.3 thus apply
to quarks through the substitution of d and u for n and
p, as shown in parentheses.

In the next step, the electromagnetic and the weak in-
teraction of the standard model are compared (Fig. 11.4).
The electromagnetic interaction has the familiar form
where the force is transmitted by a virtual photon. The
weak interaction has been changed from Fig. 11.3(b),
and the intermediate boson or W (for weak), has been
inserted. This force-carrying gauge particle makes the
analogy to electromagnetism more obvious.

Consider first the electromagnetic case where two currents, each produced by a
particle of charge e, interact via a virtual photon. The interaction energy is given

by Eq. (10.50):

)

1
|z — /|

C
2
-5 [ deiali@) @) fonlr),

e 3. 3.0 .
d’zd’z’ j(z) - j (z')

(11.15)

where r = | — @'|, and fen, gives the dependence of Hepy, on the separation of j(x)
and j'(z’). The long range of the interaction, given by |& — x'|~1, is caused by the
vanishing mass of the photon.
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The weak interac-

tion, as shown in the graph in 5>

Fig. 11.4, is assumed to arise b

from a weak current—current

interaction, and the form of le>

H,, is patterned after Hg,.
Lepton conservation in

the weak case corresponds
to charge conservation in

& L. Figure 11.4: Comparison of the electromagnetic and the
the electromagnetic interac-  weak interactions. The superscripts | and h indicate the

tion, and each weak current weak currents of leptons and hadrons, respectively.

retains its lepton number.

Consequently, the lepton number of the W must be zero. (Had we, in going
from Fig. 11.3(a) to (b), replaced the outgoing proton by an incoming antiproton,
the currents would not satisfy such a conservation law.) The charged weak currents
shown in Fig. 11.4 change the value of the electric charge by one unit at the vertex;
the neutrino, for instance, changes into an electron. Since the electric charge must
be conserved, the W must be charged at each vertex in Fig. 11.4. In analogy to the
electromagnetic interaction, Eq. (11.15), the weak Hamiltonian can now be written
as

2
H, =2 /d%d%’Jﬁu(:c) LT (@) F(), (11.16)

where g,, is a coupling constant and f(r) gives the dependence of the weak inter-
action on distance. The range Ry of f(r) must be very short: The mass of the W
is about 80 GeV/c? (Table 5.9); Eq. (5.52) gives

h

mwec

Rw = ~ 2.5 am. (11.17)

It is customary to describe such short-range forces by a Yukawa shape,

—-r/R
fr) = SR Rw), (11.18)
r
We shall return to this form in chapter 14. Here it is sufficient to note that f(r) is
a function that is appreciably different from zero only for distances of the order of,
or less than, Ry . If we further assume that the weak currents vary very little over
distances of the order of Ryy, then J" (x') ~ J" (), Eq. (11.18) can be inserted

into Eq. (11.16), and the integral over d®z’ can be performed. The result is

9u Ry 3, 7l h
H, = —47r7 d’z J, (x)-J,,(x). (11.19)

Eq. (11.19) is often rewritten as

_ Gr 3 l h
H, = “ha /d xJy,(x) - Iy (x), (11.20)
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with

2
Gr =V?24ng> Ry, = V2 4n (L> g2, (11.21)
mwc
The factor 1/v/2 ¢? in Eq. (11.20) is introduced by convention. G is a new weak
coupling constant called the Fermi coupling constant that no longer has the same
dimension as the electric charge e.

As Eq. (11.20) stands, it is not yet correct for the following reason: H,, is an
operator that must be Hermitian. If the currents J', and J” were Hermitian,
H,, would be Hermitian. In the electromagnetic interaction, Hermiticity of j,,,
is guaranteed because the electromagnetic current can be observed; the photon is
neutral. No such guarantee exists in the weak interaction, and, in fact, as already
indicated, the charged weak current is not Hermitian. H,, must therefore be made
Hermitian. There are two ways of achieving this goal. One is to add the Hermitian
conjugate expression to Eq. (11.20). The second one is again patterned in analogy
to the electromagnetic case. In Eq. (10.88) the electromagnetic current was written
as the sum of two contributions, one from leptons and the other from hadrons.
Similarly, it is assumed that the total weak current is the sum of two contributions,
one from leptons and the other from hadrons,

Jp=JY + T (11.22)
The weak Hamiltonian is then Hermitian if Eq. (11.20) is generalized to

\/C_;FCZ /d%Jw(a;)-JIU(a;). (11.23)
This form is not yet complete. Our starting point, the electromagnetic interaction
in the form of Eq. (11.15), describes only the energy due to two currents but leaves
out the Coulomb interaction. The Coulomb energy between two charges described
by electric charge densities ep(x) and ep’(x’) is given by

/ !
Hc = 62/d3xd3x/m.
|z — 'l

H,=—

If weak charges g, p. exist, then the arguments leading to Eq. (11.23) can be re-
peated, and the complete weak Hamiltonian becomes

— GF
V2 2

It is possible to treat weak interactions due to charged currents by using H,, in this

form. However, relativistic notation makes arguments simpler and more transpar-

ent. The probability density and the probability current together form a four-vector,
as already indicated in Eq. (1.11):

Jw = (cpw, Jw)-

H, B[P py(x)pl, (x) — Ju(x) - I (2)]. (11.24)

w
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Figure 11.5: Leptonic decays of K and Kt and quark analogue; the decay shown for the KV is
forbidden.

For the rest of this chapter we denote four-vectors with ordinary letters. The scalar
product of two four-vectors is defined by Eq. (1.10); the product .J,, - J is

G vdwdl, = puwpl, — T,

and the weak Hamiltonian becomes

G
H, = \/_2—Fc? /d% Ju(@) - JI (). (11.25)

This equation makes it obvious that H,, is a Lorentz invariant. So far, we
have taken the weak current J,, and the intermediate boson W to be charged, as
shown in Fig. 11.4. This assumption was generally held to be true until about
1979 and was based on experimental data. It was known, for instance, that the
decay K° — ptpu~, shown in Fig. 11.5a, was absent or greatly suppressed relative
to the primary decay mode of the K+, K+ — u*v,, shown in Fig. 11.5b. Such
two-body weak decay modes can be understood more readily in terms of quarks,
as illustrated in Fig. 11.5¢c. The composition of the Kt is (us) and that of the
K is (d5). The analogy to Fig. 11.3 now becomes apparent, even more so if the
initial § leg is turned into an s in the final state, as shown in Fig. 11.5c. A neutral
weak current, mediated by a neutral intermediate vector boson Z° would allow
processes such as K° — pp~ and the elastic scattering of neutrinos on leptons and
protons, v,e — vye,v,p — v,p, illustrated in Fig. 11.6. Around 1968, Weinberg(6)
and Salam(”) independently predicted the existence of weak neutral currents in a
theory that unified the weak and electromagnetic interactions. The absence of the
decay KY — utp~ was a major hurdle in the acceptance of the Weinberg-Salam
theory until 1970 when Glashow, Iliopoulos, and Maiani® (GIM) showed that the
absence of the missing K° decay could be understood by postulating the existence
of charmed quarks (Sections 7.6 and 13.2), which permitted a cancelation to occur.

6S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967), 27, 1688 (1977); Phys. Rev. D5, 1962 (1972).

7A. Salam, in Elementary Particle Theory, (N. Swartholm ed.) Almqvist and Wiksells, Stock-
holm, 1969, p. 367.

8S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).
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Figure 11.6: Weak neutral currents mediated by Z°. trons, ve — v e and vue —

= 9

l/He.( )

These reactions are forbidden by muon number conservation if only charged weak
currents exist. Weak neutral currents now have been verified in many other exper-
iments.(10)

The concepts of a weak current and a weak charge require some reassuring
remarks. We are used to electric charges and currents: They can be observed and
measured, and they form part of our everyday surroundings. Weak currents and
weak charges, on the other hand, have no classical analog. The only way to become
familiar with them is to assume their existence and explore the consequences. Since
all experiments agree with the predictions of the standard model based on a weak
current—current interaction, confidence in the existence of weak charges and currents
is justified. In the following sections, we shall inquire into three questions related
to Hy: (1) What phenomena are described by H,,? (2) What is the form of the
weak current J,,? (3) What is the value of the coupling constant G g?

11.4 A Variety of Weak Processes

The discussion so far has been restricted to beta decay, the oldest and best known
example of a weak interaction. If it were the only manifestation of the weak force,
interest would be limited. However, a surprising variety of weak processes is known.
Weak reactions have been a rich source of unexpected new phenomena, such as the
violation of parity and C'P conservation as well as numerous other phenomena as-
sociated with the neutral kaons and other systems. Moreover, the unification of the
weak and electromagnetic interactions (chapter 13) has had a profound influence on
our understanding of fundamental forces. In the present section, we shall categorize
the weak processes, list a few examples, and state why they all are called weak.

A classification of weak processes can be based on the separation of the weak
current into a leptonic and a hadronic part, as in Eq. (11.22). Inserting Eq. (11.22)
in the form J,, = J!, + J” into the weak Hamiltonian (11.25) produces four scalar

products; one involves only leptons and one only hadrons, and two couple lepton
and hadron currents. The classification is performed according to these terms:

9F. J. Hasert et al., Phys. Lett. B46, 121 (1973); H. Faissner et al., Phys. Rev. Lett. 41, 213
(1978); R.C. Allen, Phys. Rev. Lett. 22,2401 (1985).

10V, Nguyen-Khac and A. M. Lutz, eds Neutral Currents: 20 Years Later, World Scientific,
Singapore, 1993.
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leptonic processes :  J!, - JLf
semileptonic processes : J! - JhT 4 Jh . gli (11.26)
hadronic processes : JI - JhT.

Weak processes of each of these three classes are known. In chapter 10, in the
treatment of the electromagnetic interaction, we have learned that life is easy as
long as only leptons are present. The story repeats itself in the weak interaction:
Leptonic processes can be calculated, and theory and experiment agree. Semilep-
tonic processes produce difficulties, and the weak processes involving only hadrons
cannot yet be calculated in detail from first principles. We shall now list processes
in each of the three classes.

Leptonic Processes The leptonic processes that are easiest to study are the
decay of the muon and tau

ut — e+Dﬂue, — VS (11.27)

We will use muons here; muon decay also will be discussed in the following section,
where it will be seen that the maximum energy of the emitted electrons is about
53 MeV, the lifetime is 2.2 psec, and parity is not conserved. Investigations of
the decay of the tau are more difficult because the tau is mainly produced through
electromagnetic processes such as ete™ — 7777, and not through the decay of a
heavier meson as in the case of the muon, where copiously produced pions give rise
to the muons.

The scattering of neutrinos with charged leptons also involves only leptons: The
processes

Ve€ —— V€, Vue —— Vell , Vs€ — VeT (11.28)

are without electromagnetic or hadronic complications, and they, and the corre-
sponding ones involving antineutrinos, are ideal for exploring the weak interaction
at high energies. Indeed, such reactions have been studied both at accelerators(%:10)
and at reactors.(!!)

Semileptonic Processes In semileptonic processes, one current is leptonic and
the other one hadronic. Three semileptonic decays are listed in Table 11.2. The
7% decays are similar to that of '*O, Table 11.1, and the ft1/2 values are closely
related.

Can these decays give sufficient information to study the semi-leptonic weak
interaction thoroughly? The maximum energy listed in Table 11.2 is 81 MeV, but
the electromagnetic interaction taught us that energies of the order of many GeV

11J.M. Conrad, M.H. Shaevitz, and T. Bolton, Reviews of Modern Physics, 70, 1341 (1998).
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Table 11.2: DECAY PROPERTIES OF THREE SEMILEPTONIC DECAYS.

Spin-parity tl/QT Emax ftiy2

Decay Sequence (sec) (MeV) (sec)
7t — mOev 0~ —0" 176 4.1 3.1 x 10°
n0 — pe S N b 0.78  1.1x10°
ST =A% p AT 1T 18x1076 81 6 x 103

TPartial half-life.

are necessary to explore some of the properties. Weak decays with such energies are
very difficult to observe because a state with very high excitation generally decays
hadronically or electromagnetically, so that the weak interaction cannot compete.
An example is the ©/J and its excited states with energies in excess of 3 GeV. Even
though selection rules slow down the decay into hadrons, the contribution from the
weak interaction to the decay is so small that it has not yet been observed. At much
higher energies, the situation is even more unfavorable.

One of the best ways of studying the high energy behavior of the weak interaction
is through semileptonic neutrino-induced reactions such as

v,n — U p, vup — v
g rr wp wp (11.29)
vup — ;ﬁn, vup — VumrJr,
and deep inelastic scattering
vup — v, X,
np " (11.30)

I :LL—X,

where X is any particle or particles.

The reactions in the first column of Eq. (11.29) involve charged weak currents
and the exchange of a W=, the ones in the right column require neutral weak
currents and the exchange of a Z°. The reactions of the types shown in Eqs. (11.29)
and (11.30) have helped to validate the Weinberg—Salam (WS) theory, and have
been used to obtain structure functions. They will be discussed in more detail
below and in Section 11.14.

In the semileptonic processes listed so far, the weak decays have not involved a
change of strangeness. True, the decay X% — A%t v in Table 11.2 involves strange
particles, but the hadrons in the initial and final states have the same strangeness.
We have, however, mentioned in Section 7.5 that strangeness or hypercharge is not
necessarily conserved in the weak interaction. Indeed, strangeness-changing weak
decays exist, and three are listed in Table 11.3. They are all mediated by charged
currents. No strangeness-changing decays or reactions that occur through neutral
weak currents have been observed; for instance, the decay A° — nete™ is absent.



11.4. A Variety of Weak Processes 345

Table 11.3: STRANGENESS-CHANGING SEMILEPTONIC DECAYS.

Spin-parity Sequence tl/QT Emax(e)  fti/2

Decay (of hadron) (sec) (MeV) (sec)
Kt — aletv, 0~ — 0~ 1.8 x 1077 358 1 x 108
A® — pe~ie it 1 22x1077 177 2x10%
S — ne e it 1 1.0x1077 257  1x10°

TPartial half-life.

Hadronic Processes Examples of weak decays in which only hadrons are in-
volved are

Kt — 770
— g (11.31)

— gtp070
and

AV — pr—
(11.32)

—>7’L7TO

Other weak decays involving only hadrons can be found in the tables of PDG. All
of these obey the strangeness selection rule

IAS| =1.

The absence of observed AS = 0 transitions is easily explained: transitions
without change of strangeness can proceed by hadronic or electromagnetic decays,
and the weak branch is hidden.

Why are all the processes listed in the present section called weak, regardless of
whether they involve leptons, hadrons, or both? The justification comes from the
fact that the strength of the interaction responsible for the various processes appears
to be the same. Additional support comes from considerations of selection rules
and from the observation that all processes that are weak according to the strength
classification also show violations of parity and charge conjugation invariance.

The strength of the interaction responsible for a decay expresses itself in the life-
time, other things being equal. The decays in Table 11.2 are of the type A — Beuw.
While the decay energies vary by about a factor of 100 and the density-of-states
factors by a factor of 1010, the ft values are approximately the same. It is therefore
likely that the three very different decays in Table 11.2 are caused by the same force.
A discrepancy appears when the ft values in Table 11.2 and 11.3 are compared.
While the decays appear to be similar, the ft values for hypercharge-changing de-
cays are between one and three orders of magnitude larger than the corresponding
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ones for hypercharge-conserving decays. We shall return to this discrepancy in Sec-
tion 11.9 and show that it has an explanation within the framework of the weak
current—current interaction.

Parity violation has already been treated in Section 9.3; the electromagnetic and
the hadronic force conserve parity, but a violation appears in the weak one. The
example discussed in Section 9.3 was a semileptonic decay. The original evidence
for parity nonconservation came from the decay of the charged kaons into two and
three pions; these weak decays involve hadrons. In the next section we shall show
that the purely leptonic decay of the muon also does not conserve parity. These
examples indicate that the various processes all violate parity conservation. This
fact alone would not justify classing them all into one category. However, it indicates
a similarity in the form of the interaction that causes these decays, and it supports
the conclusion already reached from a consideration of the lifetimes.

Conservation of strangeness or hypercharge in the hadronic and the electro-
magnetic interaction was postulated in Eq. (7.42). The examples of weak decays
discussed in Section 7.5 and in the present section indicate that many cases are
known where the strangeness changes by one unit; no case has been found where a
change of two units occurs. The selection rule for strangeness,

AS =0 in hadronic and electromagnetic interaction
AS =0,%£1 in the weak interaction, (11.33)

thus establishes another characteristic feature of the weak interaction.

11.5 The Muon Decay

In the previous section we have surveyed weak processes, and we have partially an-
swered the first question posed at the end of Section 11.3, namely what phenomena
are described by H,. The form of the weak current and the value of the weak
coupling constant remain to be studied. We can expect that the fundamental fea-
tures of the weak interaction will be easiest to explore in purely leptonic processes
because no serious interference from the hadronic force is present there. In this
section, the salient features of the much studied muon decay will be described. The
decay of the tau is very similar, but it can decay into either muons or electrons.

Muons and taus do not interact strongly, and it is consequently not possible
to produce them directly and copiously through a reaction. However, the decay of
charged pions is a convenient source of muons. Assume, for instance, that positive
pions are produced at an accelerator. The pions are selected in a pion channel and
slowed down in an absorber (Fig. 11.7). If their energy is not too high they usually
come to rest before decaying through the mode

nt — uty,. (11.34)
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Figure 11.7: A positive pion is selected in the pion channel and comes to rest in the pion target.
The pion decay results in a fully polarized muon. The muon escapes from the pion target and
comes to rest in the muon target. Its spin points in the direction from which it came. The decay
electron is then observed.

Conservation laws determine much of what happens: Conservation of the lepton
and muon numbers requires the neutral particle to be a muon neutrino. Momen-
tum conservation demands that the muon and the muon neutrino have equal and
opposite momenta in the c.m. of the decaying pion. The muon neutrino has its
spin opposite to its momentum, as shown in Fig. 7.2. Since the pion has spin 0,
angular momentum conservation insists that the positive muon must be fully po-
larized, with its spin pointing opposite to its momentum. The muons escape from
the pion target; some are stopped in the muon target, and their decay positron can
be detected. With proper choice of the muon target, the decaying muon is still
polarized, and its spin J points into the direction from which it came.

The processes just described and shown in Fig. 11.7 permit a number of measure-
ments that all give information concerning the weak interaction. We shall discuss
three aspects here, parity nonconservation, the lifetime of the muon, and the spec-
trum of the decay electrons.

Parity Nonconservation As Fig. 11.7 is drawn, it shows the breakdown of parity
in two different places. The muon is expected to be polarized because the neutrino
emitted together with it is polarized. A longitudinally polarized muon violates
parity conservation, as was explained in Section 9.3. A measurement of the po-
larization of the muon thus demonstrates that parity is not conserved in the weak
decay of the pion. Such a polarization has been detected.(!?) The second place
where parity nonconservation shows up is in the decay of the muon. As sketched
in Fig. 11.7, the muon spin points into a well-defined direction, and the probability
of positron emission can now be determined with respect to this direction. This
experiment is analogous to the one discussed in Section 9.3 and shown in Fig. 9.6.
Indeed, as in the Wu—Ambler experiment, it was found that the positron is prefer-

12G. Backenstoss, B. D. Hyams, G. Knop, P. C. Marin, and U. Stierlin, Phys. Rev. Lett. 6, 415
(1961); M. Bardon, P. Franzini, and J. Lee, Phys. Rev. Lett. 7, 23 (1961); TWIST collaboration,
Phys. Rev. D 71, 071101 (2005).
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entially emitted parallel to the spin of the incoming muon, indicating that parity is
also violated in the muon decay.(*3)

Muon Lifetime The experimental arrangement for determining the muon life-
time has already been described in chapter 4. In Fig. 4.22, the logic elements are
shown, and it is easy to see how they fit into the setup of Fig. 11.7. Observation
of the number of electrons detected in counter D as a function of the delay time
between counters B and D gives a curve of the form shown in Fig. 5.15, and the
slope of the curve determines the muon lifetime. For most estimates it is sufficient
to remember that the muon mean life is 2.2 psec.

Electron Spectrum To in-

mq. T T T T e vestigate the electron spec-
L { trum, the number of electrons

5 is measured as a function of
< momentum. To determine the
5 momentum, the electron path
ivqk in a magnetic field is observed.
One possibility to detect the

electrons is to use wire spark

chambers the result of which

o

0 0.2 0.4 0.6 0.8 1.0
Momentum, Natural Units (52.83 MeV/c = |) is shown in Flg' 11.8. An-

other detection scheme using
Figure 11.8: Electron spectrum from unpolarized muons.
[B. A. Sherwood, Phys. Rev. 156, 1475 (1967).] The .
momentum is measured in units of the maximum electron ~ 1ed to spectacular precision

momentum. and was shown in chapter 4
(see Fig. 4.16).(1%)

Some similarity to the electron spectrum in nuclear beta decay, Fig. 11.1, exists but

the drop-off at high electron momenta is much steeper. The electron spectrum is

no longer determined by the phase-space factor alone and comparison with theory

drift chambers has recently

provides information on the form of the weak Hamiltonian.

11.6 The Weak Current of Leptons

In the previous section, some of the salient features of the muon decay have been
discussed. The 7 decay is similar, but there are many more open channels. These
data and some additional information will now be used to construct the weak Hamil-
tonian, Eq. (11.25), in more detail. In particular, we shall have to find the form of
the weak current, J!, as far as we can with our limited tools. The first fact to be
used is the uncanny similarity between electron and muon, a fact often stated by

I3R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev. 105, 1415 (1957); J. L. Friedman
and V. L. Telegdi, Phys. Rev. 105, 1681 (1957).
MTWIST Collaboration, Phys. Rev. Lett. 94, 101805 (2005).
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the words muon-electron universality.('>) This universality is expressed by writing
the total weak current of leptons as the sum of an electron and a muon current,
JL=J¢ + Jb (11.35)

and assuming that both behave alike. The leptonic part of the weak Hamiltonian
H,, is found by inserting Eq. (11.35) into Eq. (11.25):

V2 c?

For the explicit construction of the weak current J¢,, we use the analogy to electro-

H, A3 (JE - TG T - T gl et gk e, (11.36)

magnetism. In chapter 10, we systematically went from the classical Hamiltonian,
Eq. (10.48),

Hep = E/dejem A
C

to the matrix element, Eq. (10.60),
.eh 3 ik
(B|Hem|o) = —i— | x5V, - A.
me

Comparison of these two expressions shows that the substitution

pop
m

. h . "
Jem = _lgwﬁvwa = '@bg ( ) Yo = wﬂvopwa (1137)

provides the transition from the classical Hamiltonian to the quantum mechanical
matrix element. The analogous substitution for the probability density is

Pem = V¥ (11.38)

Equations (11.37) and (11.38) are valid for nonrelativistic electrons. To allow for
generalizations, we introduce two operators, V; and V', and write

pem = w;vodjaa jem = Cdjnga

The velocity of light, ¢, has been inserted in order to make V' dimensionless. Charge
density and current density combine to form a four-vector,

jem - (vaj)a

or, with the operators V; and V,

Jem = W5V (11.39)

15Since three charged leptons are known, electron-muon universality should be replaced by
electron-muon-tau universality and Eq. (11.35) should be generalized to read J., = J& + J& + JI.
In order to keep the equations manageable, we retain the form Eq. (11.35); the generalization to
take the 7 into account is straightforward.
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The notation V = (Vp, V) is a reminder that the “sandwich” ¢*V1) transforms
like a four-vector. With Egs. (11.37) and (11.38), the explicit form of V for a
nonrelativistic electron is

V=W V), Vo=1, V=2 (11.40)

me
There are a number of differences between the electromagnetic and weak currents.
Whereas the electromagnetic current is always a neutral one that conserves charge,

the weak current has a charge-changing part, JI([), in addition to the neutral one,
(0) . For electrons, the corresponding weak current densities are written in analogy

to the electromagnetic ones as

Tt ™) = Vi,
<O = i Ve,  JUO = ey Vi, . (11.41)

The weak current is more complicated than the electromagnetic one in other ways.
We have seen in chapter 9 and earlier in this chapter that the weak interaction does
not respect parity. The operator V = (Vp, V') behaves under the parity operation
as

W v=ES v (11.42)

The fact that the vector part changes sign follows from Eq. (9.1). Vo, on the other
hand, is a probability density, and it remains unchanged under the parity operation.
According to the golden rule, the transition rate for a reaction from a polarized or
unpolarized source is proportional to the square of a matrix element, or

2
wy, X '/dSZme Vb, by, Vibu!|

The vector product V-V = VyVy — V-V remains unchanged under P; if wf denotes
the transition rate after the parity operation, it is equal to wy:

wf = Wy
This result disagrees with the electron asymmetry observed in beta and muon de-
cays. How can the expression for the weak current be generalized in such a way
that the analogy to the electromagnetic current is not completely destroyed but that
parity nonconservation is included? A hint to the answer comes from comparing
linear and angular momentum. Under ordinary rotations, both behave in the same
way. We have not demonstrated this fact explicitly, but the proof is straightforward
if the arguments given in Section 8.2 are used. Under the parity operation, the polar
vector p and the axial vector J reveal their difference: p changes sign, whereas J

does not. These properties remain true for general operators V and A: V and A
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behave identically under ordinary rotations but differently under space inversion.
The properties of a general axial four-vector A under P are given by

Ao -4 A A (11.43)

The behavior of the azial probability density cannot be visualized as easily as the
one for the ordinary probability density: The electric charge provides an example
for the properties of Vj, but no classical example for an axial charge exists.(*®) The
suggested generalization of the weak current, Eq. (11.41), is for instance

TS =i (V — Ay, . (11.44)

Let us next use the simplicity of Eq. (11.41) to learn more about the physics that is
hidden in it. To do so, we consider the Hermitian conjugate of the current JS. The
operators V and A are Hermitian; noting that for a one-component wave function
T = 9* then gives

TN = el (v = Ay, I
= ey (V= A = JoH (11.45)
JfU(O)T - qu(o)7 JL’)(O)T _ JE)(O).

and with Fig. 11.4 shows that JS,(_)T = JS)(H describes the
destruction of an electron and the creation of an electron neutrino. The four vector
product J¢

w

Comparison with J¢,
- J¢T in HE is thus responsible in part for the scattering of electron
neutrinos by electrons, v.e~ — v.e”, a process that has already been listed in
Eq. (11.28). Weak neutral currents, however, also contribute to this scattering
through the products Jﬁ,(o) . J;(O)T and J;(O)T . Jﬁ,(o). The various currents and
scattering processes are displayed in Fig. 11.9. The operator JZ}(_) . Z(_)T can also
induce antineutrino scattering on electrons or positrons, e.g.,

+

e 176—>e+

Ve. (11.46)

The other terms in the Hamiltonian (11.36) similarly give rise to weak processes
involving only leptons. One term that is responsible for muon decay is easily seen
to be

Jo - I = ALY — A, (V= Ay (11.47)

In the previous section, the muon decay has been discussed and predictions based
on the scalar product, Eq. (11.47), must now be compared to the experimental facts.
With Egs. (10.1) and (11.25) the transition rate for the muon decay then becomes

16Tf magnetic monopoles exist, they provide an example for an axial charge. The magnetic
charge density pym, introduced in Eq. (10.106), changes sign under the parity operation. This fact
can be proved by considering the energy of a magnetic monopole in a magnetic field and assuming
invariance of the corresponding Hamiltonian under P.
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Figure 11.9: (a) Interpretation of some leptonic currents, and (b) their products.

7TCTYQF 3 * * 2
wp = | [ vz v = Ay, 05,0 | olE),
or
e 9
Wy = A |Meven - Modd| p(E), (1148)
with

Meven - / dgx(wszuc' wzuv¢l‘ + ¢:Aw”‘i ) 1@“«41?#)
Masa == [ 2V, 01, A, + 67 A, 5, Vi),
Under the parity operation, Meye, remains unchanged, M,qq changes sign, and the

transition rate becomes

p_ 7G% 2
wu = A |Meven+Modd| P(E) (].].49)

Comparison of Egs. (11.48) and (11.49) shows that

P
w,, F Wy

The presence of both a vector and an axial vector operator in the weak current
permits the description of the observed violation of parity invariance. The violation
becomes maximal if V and A have equal magnitudes.

The detailed computation of a transition rate or cross section can be performed
only if the explicit form of the operators V and A is known. This form depends on
the type of particles that carry the weak current. For nonrelativistic electrons, the
operators Vp and V are given in Eq. (11.40). The axial vector current is usually
not treated in introductory quantum mechanics. We establish its form by using
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invariance arguments. An electron is described by its energy, its momentum p,
and its spin J. For spin 1/2; it is customary to use instead of the spin J the
dimensionless Pauli spin operator o; it is connected to J by

_2Jd
==
The only axial vector available is J, or . The operator A must therefore be
proportional to o. The axial charge operator, Ag, changes sign under the parity
operation as indicated by Eq. (11.46); since o - p has this property, we set

o (11.50)

A= (A, A), A=T"P A-0. (11.51)

mc

The factor 1/mc in Ag is chosen to make the operator dimensionless.

The nonrelativistic operators, as given in Egs. (11.40) and (11.51), cannot be
used for the evaluation of the muon and tau[on] decays because there all particles in
the final state must be treated relativistically. The generalization of the operators
V and A to relativistic leptons is well known.('”) Calculations with the relativistic
operators are, however, beyond our means here, and we therefore give the transition
rate for the muon decay without proof. The rate dw,(E.) for the emission of an
electron with energy between E. and E. + dE. becomes, for F. > m.c?,

m? 4 F
dw,(Ee) = G —5—FE? (1 - -—= | dE.. 11.52

wulEe) Fom3nic2 e 3myc? ( )
This expression, after replacing the electron energy by the electron momentum,
agrees very well with the spectrum shown in Fig. 11.7.

11.7 Chirality versus Helicity

e In Eq. (9.33) we gave a definition for the helicity of particles. For massive particles
this quantity is not frame independent as can be seen from the fact that the dot
product involves only the space-like components of the momentum so a Lorentz-
transformation can clearly change it. In other words, an observer moving faster
than the particle would see the opposite helicity as one moving slower than the
particle.

In the relativistic treatment of quantum mechanics another observable emerges
which is called chirality. It plays a central role in the proper definition of the
currents. We don’t have the room to properly define it here, but we can make a
connection to limiting cases. In particular, for highly relativistic particles (p > mc)

it can be shown that:(17)

chirality — helicity. (11.53)

17See Halzen and Martin, Quarks and Leptons, John Wiley & Sons (1984); Chapter 5.
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So when the term chirality arises, one can try to visualize its implications by as-
suming particles are massless and use helicity as a synonym of chirality.

For leptons, the fact that the charged current of the weak interaction is purely
YV — A is usually expressed by stating that only the left-handed chirality states
participate in the interaction. As examples, neglecting the mass of neutrinos and
taking into account Eq. (11.53) implies that neutrinos should all have negative
helicity. Massless right-handed neutrinos, if they existed, would not interact via
the weak interaction. On the other hand, for low-energy electrons from beta decay,
where the mass cannot be neglected, the wave function with well-defined chirality
will be a combination of eigen-states of helicity.

Another important result that we can’t prove here is that for anti-particles the
chirality is expected to be opposite to the one for particles and thus anti-neutrinos,
for example, are expected to be right handed. e

11.8 The Weak Coupling Constant G

The electromagnetic coupling constant e can be determined by observing the force
on a charged particle in a known field, by measuring the Rutherford or Mott cross
section (Egs. (6.9) or (6.11)) from a point scatterer, or by determining the lifetime
of a decay with well-known matrix element {f|z|i) [Eq. (10.77)]. What is the best
way of determining the weak coupling constant Gr? Again there are a number
of possibilities, but the total lifetime of the muon is a good choice. The reason
is twofold: the muon decay involves no hadrons so that complications due to the
hadronic interaction do not have to be considered, and the muon lifetime has been
measured very accurately.

The total transition rate for the muon decay is obtained by integrating
Eq. (11.52), with Epax ~ m#c2/2,

Emax
w}i = / dw# (Ee)
0

m2 FEax 4 E G2 m5 C4
= G2 7"/ dE.E?(1—--— ) = £ 11.54
Farsnic? |, © 3 myc? 192m3R7 ( )

With the muon lifetime, 7 = 1/w,,, the (Fermi) coupling constant becomes(!®)

Gr = (1.16637 + 0.00001) x 10~° GeV~2(hc)?
=0.896 x 10~* MeV-fm?
=1.435 x 10™* erg-cm®. (11.55)

BPDG.
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In the electromagnetic case we have expressed the strength of the interaction by
making e? dimensionless as in Eq. (10.79):

" he 137

Comparison of Egs. (11.15) and (11.16) makes it clear that the weak analog to the
electric charge is g,,, not Gp. Like €2, g2 is made dimensionless by division by he.
The connection with G, as given in Eq. (11.21), then permits us to write g2 /hc
in terms of G and the mass m,

92 1 1 /mwe\2
b
he /2 4x hc h

With my ~ 80 GeV/c?, we find

90 1
he  240°

The coupling constants g,, and e are of the same order of magnitude, suggesting

(11.56)

that the weak and electromagnetic interactions are related. The observed weakness
of the weak interactions at low energies is not caused by a small coupling constant,
but rather by a short range [Eq. (11.17)]. Actually, when these arguments were
first made, the mass of the W was not known and the formulation of a unified
electroweak theory led to the prediction of the correct mass of the W.

11.9 Weak Decays of Quarks and the CKM Matrix

In chapter 5 we introduced quarks which can be arranged in pairs:

() () () wan

Here the top row contains the ¢ = 2e/3 members and the bottom row contains the
g = —e/3 ones, grouped by family in order of increasing mass from left to right.
It turns out that all charged weak decays of quarks can be explained by assuming
that all transitions that change row are allowed. Thus, a down quark can change
into an up quark and emit a W~ which may then decay into an electron and an
anti-neutrino. This is what happens in neutron beta decay. A different example
is a decay like: K+ — wtev,, where a strange quark decays to an up quark.
The situation can be better summarized by listing allowed parents and daughters

together:
() () ()
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where now decays can take place only within a column and the primed states are
linear combinations of the mass eigenstates:

d Vud Vus Vub d
s’ = Vea Ves Ve S . (11.59)
v Via Vis Vi b

Here we have used matrix multiplication to simplify our notation. The matrix is
called the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.(!?) A consequence
of this scheme is that nuclear weak decays have an effective coupling constant V4G
and decays involving a u < s quark transitions have a different effective coupling
constant, V,sGpr. Experimental determinations yield(18):

Vaa 2 0.97, Vs ~ 0.22 (11.60)

so the effective coupling constant for nuclear beta decays is much larger than that for
decays involving u < s transitions. The CKM matrix as introduced above should
only produce a rotation from the mass eigenstates to the weak eigenstates and
consequently should be unitary. This implies, for example, |Vaal|” +|Vus|* + [Vis|* =
1. Finding that the sum of the squares of a row or a column don’t add up to unity
could thus be an indication of new physics. For this reason much effort has been
dedicated to checking the unitarity of the matrix.(29)

11.10 Weak Currents in Nuclear Physics

In this section we will discuss a particular example, the decay of *O,
140 LARETIN

as a means of getting a better understanding on how the ideas we have discussed
so far work when applied to real cases.

Figure 8.5 displays the A = 14 isobars '4C,'* N, and *O. The ground states of
14C and O and the first excited state of N form an isospin triplet. The positron
decay of interest leads from the ground state of 'O to the first excited state of
1N. The maximum positron energy is 1.81 MeV, the half-life of 4O is 71 sec,
and the ft value is 3072 sec (Table 11.1). There are two reasons why this decay is
useful: (1) The transition occurs between members of an isospin multiplet. Apart
from electromagnetic corrections, the wave functions of the initial and final states
of the decay consequently describe the same hadronic state and thus are identical in
their spin and space properties. Matrix elements involving them can be computed
accurately. Such transitions are called superallowed. (2) Initial and final states have

19N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor.
Phys. 49, 652 (1973). We will give more details on Eqgs. (11.58) and (11.59) and explain the
historical facts that established this logic in Chapter 13.

20J.C. Hardy and 1.S. Towner, Phys. Rev. Lett. 94, 092502 (2005).
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spin-parity J™ = 07. Parity and angular momentum selection rules then severely
restrict the matrix elements.

Using Eq. (11.59) for writing down the weak current of hadrons, and taking into
consideration that in nuclear beta decay there is is not enough energy available for
transformations involving quarks other than u and d:

ij (nuclear physics) = ViqJw- (11.61)

Denoting the wave functions of the initial and final nuclear states by 1o+, and ¥+ g
and writing the weak current J,, in the same form as J¢, Eq. (11.44), JZ) becomes

JZ(OJF I— 0+) = CVud¢5+ﬁ(V - A)¢O+a'
With Eqgs. (11.25) and (11.44), the matrix element of H,, then becomes

1
V2

The positron and the neutrino are leptons, and they do not interact hadronically
with the nucleus. After emission, they can therefore be described by plane waves,
like free particles:

Vet = Ue €XP <Zpehl ac) , Yy = Uy exp (%) . (11.62)

Here the spin wave functions u, and u; are no longer functions of . (The plane
wave for the electron is slightly distorted by the Coulomb field of the nucleus. This
distortion results in a small correction that has been discussed in Section 11.2 and
is given by the function F' introduced there.) The energies of the leptons are less
than a few MeV, the reduced wavelengths X = h/p are long compared to the nuclear
radius, and the lepton wave functions can be replaced by their values at the origin,
ue and uy. The matrix element then becomes

(Bl Hola) = —=GViua / Bt (V — Ay, - 054 5(V — Aot o

1
V2

Parity and angular momentum conservation simplify this expression. Consider par-
ity first.(?!) Under P, the nuclear wave functions ¥+, and g+ s remain unchanged.
According to Egs. (11.42) and (11.43), V and A, change sign. Consequently, the
corresponding integrands are odd under P and the integrals vanish. The term
involving A also vanishes because the wave functions are scalars under rotation,
whereas A behaves like a vector. The average of a vector over a spherical surface

(Bl Hola) = —=GrVoau! (V — Ay - / Bl sV — Apra.  (1163)

21 At first sight, the parity argument seems inappropriate, because the weak interaction does
not conserve parity. However, the parity of the initial and the final nuclear states is given by the
hadronic interaction, which, due to the non-relativistic nature of the motion of the hadrons, does
conserve parity. The argument is therefore correct.
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vanishes: Scalars transform like Y, vectors like Y7, and the integral f drYyY1Yo
vanishes. The only term left under the integral is Vj, and the matrix element takes
on the form

L
V2

where (1) is the symbol used in nuclear physics for the integral

(BlHy|e) = —=GrViaui (Vo — Ao)us (1), (11.64)

(1) = /d3xw5‘+gvo¢o+a. (11.65)

The recoil energy imparted to the decaying nucleus is very small so that the nuclear
matrix element (1) can be computed nonrelativistically; the result is

(1) = V2, (11.66)

if the states 8 and « have the same isospin and are part of the same multiplet.
e To verify Eq. (11.66), we use the nonrelativistic operator Vj; = 1 from
Eq. (11.40) so that

1) = [ i
A new problem arises here: the wave functions 13 and 1, belong to different isobars
and hence are orthogonal. As written, the integral vanishes. The solution to the
problem is simple if the isospin formalism is introduced. The states in 4O and *N
belong to the same I = 1 isospin multiplet, with I3 values of 1 and 0, respectively.

They have the same spatial wave function so that the total wave functions can be
written

10 Yo = Po(x) P11
N . Vg = o(z)P1 0.

where, ®;; and ®; o denote the normalized isospin functions. The weak current
changes %O into N; it lowers the I3 value by one unit. This lowering is expressed
by the operator I_, given in Eq. (8.26). In the isospin formalism the complete
matrix element (1) thus becomes

1) = [ @ovi@)io()®] ol @1,
The isospin part is evaluated with Eq. (8.27):
B} oI ®11 = V28] B1o = V2

The spatial wave function is normalized to 1 so that the final result, (1) = /2,
verifies Eq. (11.66).
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With Eq. (11.66), the square of the matrix element of H,, becomes
[(BIHu|e)|* = GEVigluz (Vo — Ao)us .

The magnitude of the lepton matrix element can be obtained by assuming spinless
nonrelativistic electrons and by first considering only the vector term, proportional
to V. Equation (11.40) then gives

*

* * * 2 *
uVoup = ujup and |uiVous|* = uiueusus.

If the leptons are normalized to one particle per unit volume, Eq. (11.62) gives
wiue = uluy = 1. The matrix element of Ay vanishes nonrelativistically, as is
evident from Eq. (11.51) with p/m — 0. For highly relativistic electrons, p/mc —
pc/E — 1, and the matrix element of Ay approaches that of Vj. There is no
interference between Ay and V{ in this case so that the square of the lepton matrix
element becomes

lu(Vo — Ao)us|? = [utVous|? = |ul Agus|? = 2. (11.67)
The square of the matrix element for a weak 0™ — 0% transition thus is
[(B1Hu|e)]? = 2GE V. (11.68)
With Eq. (11.11) and ft;/, = f7In2, the final result becomes

1
m3ct fti)s

G3V2 =7n*In2 (11.69)
The ft value of %O is given in Table 11.1. A number of other 0+ — 0T superal-
lowed transitions have been investigated carefully. Taking into account some small

corrections, the value of GV, becomes(?2)

G Y Vyua = (1.400 £ 0.002) x 10~ erg cm?. (11.70)

The superscript V on Gg indicates that the constant has been determined from
decays involving only the vector interaction in the hadronic matrix element. Inves-
tigations of decays to which the axial vector interaction contributes, for instance
that of the neutron, yield a value for the corresponding coupling constant G4. The
ratio |G4/GY| is found to have the value(??)

‘ Gy

v | = 12670003, (11.71)
F

In many mystery stories, the essential clues are hidden in aspects that appear,
at first sight, completely normal, and the obviously guilty party often turns out to

22See PDG for the latest value.
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be innocent. We now have G, Vg, G%Vua, and |G42/GY%|, given in Egs. (11.55),
(11.60), (11.70), and (11.71). Within the given limits of error, the following relations
hold:

Gy =Gr, G&+#Gp. (11.72)

What do these relations tell us about the weak interaction? At first sight it appears
that the equal coupling constants for the vector current (G¥%) and for the purely
leptonic current (Gg) simply express the universality of the weak interaction and
that Gé # G requires an explanation. However, the situation is not so straightfor-
ward. A proton, for instance, is not just a simple point particle. At small distance
it is made up of three quarks confined by gluons, and at distances 21 fm it is aptly
described as clothed by a meson cloud (Fig. 6.8). Why should the physical proton
have the same vector current as a point lepton? There is no a priori reason why G%
and G should be identical. The result G4 # G appears to be more in agreement
with intuitive arguments, and the primary puzzle is the explanation of GY% = Gr.
The solution to the puzzle is the conserved vector current hypothesis (CVC). It was
first proposed in a tentative way by Gershtein and Zeldovich(?3)
powerful form by Feynman and Gell-Mann.(®) To explain CVC, consider first the
electromagnetic case. In Section 7.2, it was pointed out that the electromagnetic
charge is conserved. The positron and proton have the same electric charge despite
the structure of the proton. In other words, the coupling constant e, which char-
acterizes the interaction with the electromagnetic field, is the same for particles of
the same charge regardless of their structural properties. The hadronic force re-
sponsible for the confinement of the quarks does not change the coupling constant
e. The classical expression for this fact is current conservation, Eq. (10.51). The

and put into a

CVC hypothesis postulates that the weak vector current is also conserved:

10V,
cor TViV=0 (11.73)

The equality of the coupling constants G% and G then follows: whenever a hadron
virtually decomposes into another set of hadrons (for instance, a proton into a
neutron and a negative pion), the weak vector current is conserved. The equality of
GY and G is not the only evidence for CVC; many additional experiments support
Eq. (11.73).(24:20)

An example is the comparison of the beta decay rates for 14O and 7. The
systems are quite different; however, they have some common features. Both are
decays from and to states of spin zero and isospin 1. Since the final and initial
hadronic states are within an isospin multiplet, the decays are superallowed with
matrix elements given by Eq. (11.66). The ft,,, for both 140 and 7t should thus
be identical. Tables 11.1 and 11.2 show that they are almost identical; indeed, they

238. S. Gershtein and Y. B. Zeldovich ZRETF 29, 698(1955) [Transl. Sov. Phys. JETP 2, 576
(1957)].
241.. Grenacs, Annu. Rev. Nucl. Part. Sci. 35,455 (1985) and references therein.
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are equal to each other within experimental errors, after radiative corrections have
been made.(20:2%)

The hypothesis of the conservation of the vector current is based on the analogy
to the electromagnetic current, which is also a vector current. No electromagnetic
axial vector current exists, and it is thus not possible to refer to a well-known
theory for guidance. Indeed, G4 # Gr shows that the axial vector current is not
conserved. The fact, however, that G4 does not differ from G by more than about
25% shows that the axial current is almost conserved. The detailed description
of this fact is called the PCAC hypothesis or the partially conserved axial vector
current hypothesis.(?%)

11.11 Inverse Beta Decay: Reines and Cowan’s Detection of Neutrinos

We now turn to neutrinos: they had been hypothesized by Pauli to save the law of
conservation of energy in 1931, but Pauli thought that they were so weakly inter-
acting that they would never be detected, so he considered his hypothesis somewhat
sinful. In order to understand how neutrinos were detected, we consider the “elas-
tic” scattering of neutrinos or antineutrinos due to the charged weak currents, e.g.,

op — Utn, (11.74)

where [T is a positive lepton. The transition rate for this semileptonic process is
given by the golden rule,

2T _
dw = =X |(nl* | Ho [p7) *0( ).

The transition rate gives the number of particles scattered per unit time by one
scattering center. Equation (2.14) then shows that cross section and transition

rates are connected by
_dw

ok
Antineutrinos move close to the velocity of light; with the normalization of one
particle per unit volume, the flux F' is equal to the velocity, F' = ¢. Consequently,
the cross section becomes

do (11.75)

2
do = | (nl" | Hu|p7) P p(E). (11.76)

The density-of-states factor for two particles in the final state, in their c.m., is given
by Eq. (10.31). With V =1, p(E) is given by

EnElpl
E =
E) = Gamc (B T B

25p. DePommier et al., Nucl. Phys. B4, 189 (1968); D. Pocanié et al., Phys. Rev. Lett. 93,
181803 (2004).

th
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where df); is the solid-angle element into which the lepton is scattered. The differ-
ential cross section for antineutrino capture in the c.m. becomes

1 EnElpl
Am2hAcd B, + E)

doem (Tp — In) = |(nl|Hy,|pp)|?dQ;. (11.77)

Considering low-energy electron anti-neutrinos we can relate it to our earlier
development. There we pointed out that the magnitude of the matrix element
(net|Hy,|pv) is the same as that for the neutron decay, (pe™7|H,|n). The neutron
decay matrix element is connected to the neutron fr value by Eq. (11.11). Inte-
grating Eq. (11.77) over df);, inserting Eq. (11.11) into Eq. (11.77), and noting that
for low electron energies E,, ~ m,c?, E, < myc?, we find

22R3 peF.

n) = 507 :
mec (fT)neutron

o(Dep — €

(11.78)

With the numerical values of the constants and the observed fr (Table 11.1) and
with convenient energy and momentum units, the cross section is

4 De Ee

2 4
=23x10 .
o(cm’) MeC MeC2

At the antineutrino energies occurring at a reactor, the recoil energy of the neutron
*n can be neglected, and the total energy of the positron is
connected to the antineutrino energy by E.+ = Ep+(mp—mn)02 = F;—1.293 MeV.
For an antineutrino energy of 2.5 MeV, the cross section becomes 12 x 10744 cm?2.

in the reaction vp — e

Antineutrino capture was first observed by Reines, Cowan, and co-workers at
Los Alamos in 1956.%) They set up a large and well-shielded liquid scintillation
counter near a reactor. A reactor emits an intense stream of antineutrinos, in the
Los Alamos experiment about 1037 /cm?sec. A few of these are captured in the
liquid and give rise to a neutron and a positron. These produce a characteristic
signal, and the Los Alamos group was able to determine the cross section as

Oexp = (11 £4) x 107** em?.

To compare this number to the one expected from Eq. (11.74), the antineutrino
spectrum must be known. It can be deduced from the beta spectrum of the fission
fragments of 233U, (27) and a cross section of about 10 x 10~** ¢cm? is computed, in
good agreement with the actually observed value. The agreement is reassuring; it
indicates that the low-energy features of the weak interaction theory are capable of
describing neutrino reactions.

26F. Reines and C. L. Cowan, Science 124, 103 (1956); Phys. Rev. 113, 273 (1959); F. Reines,
C.L. Cowan, F.B. Harrison, A.D. McGuire, and H-W. Kruse, Phys. Rev. 117, 159 (1960).
27R. E. Carter, F. Reines, J. J. Wagner, and M.E. Wyman, Phys. Rev. 113, 280 (1959).
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11.12 Massive Neutrinos

In our treatment so far we have assumed massless neutrinos. In Section 11.2, we
pointed out that the high energy end of the beta spectrum can be used to search
for a finite electron neutrino mass and yields a limit of m(v.)c? < 2.2 eV. Similarly,
searches for masses of v, and v, give m(v,,)c? < 0.19 MeV and m(v,)c? < 18.2 MeV.
Because the masses of neutrinos are so much smaller than the masses of the other
particles, they were assumed to carry no mass in the Standard Model (Chapter 13.)
Here the mystery story starts with two experiments that were not motivated
by measuring neutrino masses: one was the IMB-collaboration detector that was
mounted to search for proton decay and the other was the Homestake-mine Cl de-
tector set up to detect neutrinos from the Sun and confirm the mechanisms for
production of solar energy (the intensity of light produced by the Sun is directly
related to the intensity of neutrinos, see Problem 11.46.) The IMB-collaboration
detector did not find any evidence for proton decay but proved able to detect and
identify the flavor of neutrinos that are produced in the upper atmosphere (called
atmospheric neutrinos). Both detectors found something unexpected: the IMB de-
tector(®®) determined that the ratio of muon neutrinos to electron neutrinos from
the upper atmosphere was approximately a factor of 2 too small compared to ex-
pectations and the Homestake-mine Cl detector found only ~ 1/3 of the electron
neutrinos expected from the Sun.(*?) For many years it was thought that the solu-
tions to these problems were unrelated.(®”) Many scientists thought, for example,
that the solar neutrino problem was due to lack of proper understanding of the solar
physics. Other detectors were built to confirm the findings and better understand
them and eventually it became clear that neutrinos do have mass and undergo flavor
oscillations. A detector built in Japan, Super-Kamiokande, showed clear evidence
for atmospheric neutrino oscillations®®") and a Canadian-American collaboration,
the SNO detector, showed clear evidence for solar neutrino oscillations. 32
Assuming that there are 3 kinds of neutrinos, vy, v2, and v3 with corresponding
masses m1, mg and mg, and that weak decays produce neutrinos not in a pure mass
eigenstate, but in a general linear combination of all possible states, we have:

Ve Ver Veo Vs 21
vy = Vul Vug VM3 Vg . (1 179)
Vr VTl V‘r? VT3 V3

This should be reminiscent of Eq. 11.59 but here the matrix is called the Pontecorvo-
Maki-Nakagawa-Sakata matrix.(3¥ To simplify our equations we assume only two

28D. Casper et al., Phys. Rev. Lett. 66, 2561 (1991).

29J.N. Bahcall and R. Davis, jr. Science 191, 264 (1976).

30For a very nice description of the history see J.N. Bahcall, posted at the Nobel prize web site:
http://nobelprize.org/physics/articles/bahcall /index.html .

31Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).

32Q.R. Ahmad et al. Phys. Rev. Lett. 89, 011301 (2002).

33V.N. Gribov and B.M. Pontecorvo, Phys. Lett. B28, 493 (1969); Z. Maki, M. Nakagawa, and
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neutrino flavors (this turns out to be a very good approximation in most of the
experimental situations); then the problem is a two-state one, similar to that of the
neutral kaon system. In this case

Ve = €08 0111 + sinf1ov9

v, = —sinbiav1 + cosbi21s (11.80)
and the time evolution of an electron neutrino born in the Sun will be:
V(1)) = e /P cos Oy |1y) + e 2 Pgin Oy |1s) . (11.81)

It is 11 and v, that have well-defined time dependences. So, the probability ampli-
tude of finding a muon neutrino at time ¢ can be obtained by using Egs. (11.80)
and (11.81) (compare also to Eq. (9.73))
1(FEy — Ex)t
P, (t) = [(vu|ve(t))]? = sin® 20,5 sin? {5 %} . (11.82)
Since the masses of the neutrinos are very small, we have m, < p/c, where p is the

neutrino momentum, and
2.3
i

m;c
E; ~ pc+

and t ~ L/c

where L is the propagation length.(®*) With this approximation, Eq. (11.82) can
be written as

3
Py, (t) = sin® 20,5 sin® <Am2 :p;) . (11.83)

In summary, neutrinos change flavors as they move away from the point of produc-
tion. This has been shown to be the explanation of both the atmospheric neutrino
and solar neutrino puzzles.®®) For solar neutrinos, the SNO collaboration was able
to show that, while the number of electron neutrinos from the Sun was significantly
reduced from the number expected (in agreement with the Homestake-mine experi-
ment) the missing neutrinos had changed flavors by the time they arrived on Earth
and had consequently been missed by the Homestake-mine experiment (which could
only see electron neutrinos.) A confirmation of the oscillations using neutrinos from
reactors was performed by the Kamland collaboration.®®) The Kamland collabora-
tion observed a similar phenomenon as had been observed with the solar neutrinos,
but using a shorter distance and looking at lower-energy neutrinos.

S. Sakata, Prog. Theor. Phys. 28, 870 (1962); note that these papers were written before the one
by Kobayashi and Maskawa.

34For an understandable but more sophisticated treatment, see H.J. Lipkin, Phys. Lett. B 642,
366 (2006).

35W.C. Haxton and B.R. Holstein, Am. Jour. Phys. 72, 18 (2004).

36K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003).
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e Because the Sun has a large number of electrons that interact with v.’s but
not with v,,’s or v;’s, there is an additional phase shift between the wave function of
the electron neutrinos with respect to the other neutrinos. The consequence is that
oscillations can get enhaced under the proper conditions. These are called matter-
enhanced or MSW oscillations®”) as opposed to the vacuum oscillations described
by Egs. (11.80) and (11.81). e

11.13 Majorana versus Dirac Neutrinos

A question that remains un-answered is why the neutrino masses are so small com-
pared to those of the other particles. Theorists have come up with a mechanism
called “see-saw” that involves an extremely heavy neutrino with mass Mry pos-
tulated in a grand unified theory. In this theory, the neutrinos of the electron,
muon and tau turn out to have masses of the order of m, ~ m?% /Mgy, where mp,
is the mass of a lepton or that of the W*. The small mass could then be a sig-
nal of grand unification. However, in order for this mechanism to exist neutrinos
should be identical to their anti-particles. In this case they would be called Ma-
jorana particles.(3®) Fermions that are distinguishable from their anti-particles are
called Dirac particles. Clearly all charged fermions are Dirac particles, but neutral
particles can in principle have either identity. The #° is indistinguishable from its
anti-partner, but the K is distinct from the Ky. Fig. 11.10 shows a scheme of the
helicity components of fermions under the two scenarios.?)

How can we determine whether neutrinos are Majorana or Dirac particles? Be-
cause neutrinos are massive, their helicity depends on the frame of reference. If
neutrinos were Majorana particles one could consider electron anti-neutrinos from,
say, nuclear beta decays then take a frame of reference that moves faster than the
anti-neutrinos and see if they behave just like neutrinos. However, performing such
an experiment is impractical. There is one practical way of experimentally finding
out whether neutrinos are Majorana particles: It is the observation of zero-neutrino
double-beta decay. Some nuclei do not have enough energy for an ordinary beta de-
cay, but the energy difference of nuclei with Z and Z + 2 protons may be sufficient
to allow a decay with the emission of two electrons and two anti-neutrinos:

(Z,N) — (Z+2,N —2) +2¢ + 277. (11.84)

In this decay two neutrons from the original nucleus simultaneously undergo beta
decay. This decay is very slow, but it has been observed for many cases.(*?) If neu-
trinos are Majorana particles then the double-beta decay becomes possible without

37L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S.P. Mikheyev and A.Y. Smirnov, Sowviet
Journal Nuclear Physics 42, 913 (1985). The phenomenon is nicely described in H.A. Bethe,
Phys. Rev. Lett. 56, 1305 (1986).

38E. Majorana, Nuovo Cimento 14, 171 (1937).

39B. Kayser et al., World Sci. Lecture Notes in Physics, Vol. 25, (1989).

40The first direct observation of 2v decay came from 82Se with a mean lifetime of about 1020
years, S.R. Elliott, A.A. Hahn, and M.K. Moe, Phys. Rev. Lett. 59, 2020 (1987).
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Figure 11.10: (a) Four states of a Dirac neutrino; (b) two states of a Majorana neutrino.

the emission of neutrinos:
(Z,N) — (Z4+2,N —2) + 2¢". (11.85)

In simple terms, virtual neutrinos from the decays of the two neutrons would ani-
hilate each other in this case. This can only happen if neutrinos are Majorana
particles. However, one more condition has to be met: the helicities of the neutri-
nos have to be opposite each other. This can happen because neutrinos are massive
and consequently not in an eigenstate of helicity (see Section 11.7) and the decay
amplitude ends up being proportional to the neutrino masses. Because presently
there is only an upper limit on the masses of neutrinos (see Table 5.7), it is not pos-
sible to use an upper limit on the rate found in a particular experiment to exclude
the possibility of Majorana neutrinos. Rather, the upper limits for the decaying
rates can be used to put upper limits on the neutrino masses.

Nevertheless, because the two electrons take up almost all the energy, the ex-
perimental signature is very clear: one should observe a spike at the endpoint in the
electron energy spectrum. The observation of such decays would be a clear signal
of Majorana neutrinos and, of course, would require lepton number violation.*?)

11.14 The Weak Current of Hadrons at High Energies

High energies are important for the exploration of two aspects of the weak in-
teraction: (1) Nucleons and nuclei have weak charges and weak currents as well as
electromagnetic ones. To investigate their distributions (weak form factors), weakly
interacting probes with wavelengths smaller than the dimensions of interest are re-
quired. The problem is similar to the study of the electromagnetic structure of
subatomic particles discussed in Chapter 6. If the weak form factors have about

41 There is presently a controversial claim of observation of such neutrino-less double beta decay:
H.V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A16, 2409 (2001); C.E. Aalseth et al.,
tbid. A17, 1475 (2002). Detectors that should significantly improve the sensitivity are under
consideration so there is hope that this issue may be cleared up in the next few years.
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800 GeV protons

Shielding

Sign Selected Quadrupole Train

Wrong sign K

I Right sign 7.K
Protons, K

Figure 11.11: Sketch of the NuTev experiment at Fermilab. The device labelled SSQT allowed
selection of mesons with the approriate sign. The ‘shielding’ acted as a filter that enhanced the
ratio of neutrinos to charged particles.

the same behavior as the electromagnetic ones, then the discussion in Chapter 6
shows that weak probes with energies upward of a few GeV are needed. (2) The
range of the weak interaction is given by Eq. (11.17) as about 2.5 am. To study
characteristics of the weak interaction, energies that approach or exceed myy c? are
required.

In the electromagnetic case, structure investigations use charged leptons (elec-
trons or muons) and photons. In the weak case, both neutrinos and charged leptons
provide information. Since neutrinos interact only through the weak interaction
they are an obvious choice for structure studies. Even though interaction cross sec-
tions are small, existing and planned accelerators provide large neutrino fluxes from
the decays of pions and kaons; huge detectors are required for meaningful studies.
In the following, we shall discuss some theoretical and experimental aspects of neu-
trino scattering. The charged leptons also interact via the weak interaction which
can be separated from the much stronger electromagnetic one because the former
violates parity and charge conjugation invariance. The interference of the electro-
magnetic and weak parity- or charge conjugation-violating amplitudes in the cross
section can be observed, as has been pointed out in Chapter 9 and will be seen
again in Chapter 13.

The feasibility of experiments to detect neutrino reactions at high energies was
pointed out by Pontecorvo and by Schwartz.(*?) The theoretical possibilities were
first explored by Lee and Yang.(*3) As so often in physics, the basic idea is simple,
and it is sketched in Fig. 11.11: protons from a high-energy accelerator strike a
target and produce high-energy pions and kaons. Mesons of one charge and one

42B. Pontecorvo, Sov. Phys. JETP 37, 1751 (1959); M. Schwartz, Phys. Rev. Lett. 4,
306 (1960). For a fascinating personal account, see B. Maglich, ed., Adventures in Ezperimental
Physics, Vol. a, World Science Communications, Princeton, N.J., 1972, p. 82.

43T, D. Lee and C. N. Yang, Phys. Rev. Lett. 4, 307 (1960); Phys. Rev. 126, 2239 (1962).
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variety, for instance, 7T, are selected and focused into the desired direction. If
no material is placed in their path, they decay in flight and create positive muons
and muon neutrinos. In the c.m. of the pion, muon and neutrino are emitted
with opposite momenta. Because of the large momentum of the decaying pion,
in the laboratory, most of the decay products move forward in a small cone.

Further focusing is possible,

T T T T
--------- Perfect Focus

or a “narrow-band” of neu-

8 .
10 Single Horn » (Focus) trinos may be selected by re-

stricting the momenta of the

T .0
Ll

Quad Triplet
""" Bare Target pions selected, as shown in
- @ = — — Single Horn v (Defocus) ] Flg 11.11 A typical ﬁux

107 of “wide-band” neutrinos is
shown in Fig. 11.12. The de-
tector is placed at a fairly
large distance (e.g., >300 m)
from the target and is so well
shielded that mostly neutrinos
can reach it. The small cross
section requires a large detec-
tor so as to have a reason-
able rate of events. The de-
tector should be able to distin-
o | | N\ | guish neutral and charged cur-

0 50 100 150 200 250 300 350 rent events as well as measure

| llJIIll
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T

£y the kinematic variables of pro-

Figure 11.12: The calculated flux of neutrinos from various duced particles. A typlcal de-
broad-band focusing devices used at Fermilab compared  tector is shown in Fig. 11.13.
to that which would result from a perfect focusing device.

The proton beam energy has been taken to be 400 GeV.

[Courtesy H. E. Fisk and F. Sciulli.]

At first sight, neutrino experiments at high-energy accelerators appear to be
hopeless because the neutrino flux is much smaller than at reactors. Fortunately, the
cross section increases rapidly with energy: For energies such that m,c? < E., <
Mmawc?, where E,,, is the center-of-mass energy, there is no other dimension than the
energy F.,, = /5, to set the scale. Thus, we can use dimensional arguments, as for
Eq. (10.82), to obtain the energy dependence of the cross section.

In the present case the coupling constant G has the dimension energy-volume
so that the cross section is given by

o = CG%s/(he)* = 20G%m, Eap/ (he)?, (11.86)

where C' is a dimensionless constant, and Ej,} is the laboratory energy of the neu-
trinos. The linear dependence of the total neutrino and antineutrino cross sections
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Figure 11.13: The NuTev detector in Fermilab. The steel target region is instrumented with
counters and spark chambers to detect the interaction point and to track muons downstream.

The toroids permit measurement of final state muon momenta.

comparison with the individual shown.

The large size is apparent by

on the laboratory energy is shown in Fig. 11.14.
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Figure 11.14: Total charged current neutrino
and antineutrino cross sections plotted against
energy. [From F. Eisele, Rep. Prog. Phys. 49,
233 (1986).]

The factor of 3 difference between o,
and o3 in Fig. 11.14 can be understood
from angular momentum conservation.
Neutrinos are purely left-handed, an-
tineutrinos right-handed. For massless
quarks and leptons, only the left-handed
components of these particles partici-
pate in charged current weak interac-
tions, as we will detail in Chapter 13.
Then, as shown in Fig. 11.15, angular
momentum can be conserved for back-
ward scattering of neutrinos, but not of
antineutrinos. The consequence is that
the angular distribution of neutrinos is
isotropic, but that of antineutrinos is
[(1 + cos®)/2]?. The resulting decrease
in the integral of the differential cross
section accounts for the smaller antineu-
trino total cross section.

For elastic scattering, form factors are important and the effective size of the
target particle provides a scale. Consequently, the cross section as a function of the
laboratory energy flattens out after an initial rise. Lee and Yang used the conserved
vector current hypothesis of Gell-Mann and Feynman to compute the expected cross
sections; their result is shown in Fig. 11.16.
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Figure 11.15: Illustration of angular momentum conservation for backward (180°) neutrino and
antineutrino scattering on quarks. For the sake of clarity, 6 is shown as close to, but not equal to
180°.

The cross section increases
very steeply up to laboratory
neutrino energies of about
1 GeV and then levels off.
The maximum cross section
is of the order of 1073® cm?,
about five orders of magni-
tude larger than the one ob-
served in the Los Alamos neu-
trino experiment. The larger
cross section made it possi-
ble for the Columbia group
to perform the memorable ex-
periment that revealed the ex-

Figure 11.16: Cross section for the reaction vn — I=p, as  istence of two kinds of neutri-
predicted by T. D. Lee and C. N. Yang, Phys. Rev. Lett, nos (Section 7.4).
4, 307 (1960).

We now turn our attention to the behavior of the matrix element of H,, at high
energies. We shall first evaluate the cross section for the reaction v, N — p~N’,
where N and N’ are spinless hypothetical nucleons.

We shall discuss the modifications required to describe
real nucleons later. The cross section for this reaction
is given by Eq. (11.77) with small changes in notation.
At high energies, the lepton mass can be neglected and

E,, can be replaced by p,c. Equation (11.77) then reads Figure 11.17: “Elastic” reac-

tion vy N — p~ N’ in the c.m.

1 E _
mwlﬁ“ﬂ NI|Hw|VN>|2dQ,

where F is the energy of N’ and W the total energy in the c.m. The reaction
vy, N — p~ N’ is shown in Fig. 11.17.

doem.(VuN — p~N') =
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In the c.m. all momenta have the same magnitude so that the square of the
momentum transfer becomes

—q% = (p, — p,)? = 202(1 — cos V), (11.87)

where ¥ is the c.m. scattering angle. With Eq. (11.87), the solid-angle element
dQ) = 27 sindd can be written as

dQ = — = de?,
P2
so that | E
do = ——— —|{u~ N'|Hy,|vN)|2dq>. 11.
o 47T,#CQWIW |Hy|vN)[*dg (11.88)

The central problem is now the matrix element. At low energies, where the struc-
ture of the particles can be neglected, we have already considered weak 0T — 0%
transitions caused by charged weak currents.

The matrix element is given by Eq. (11.68), and the differential cross section in
this case is 5 1
CGEV E o

oz W

The total cross section is obtained by integrating over dg?. The minimum
squared momentum transfer is —4p2, the maximum as given by Eq. (11.87) is 0,
and the integration from 0 to —4p? yields

do =

(11.89)

2G5 Via E 2

11.
A P (11.90)

Otot =

For the case of spin zero considered here, the cross section is modified by a weak
form factor, F,,, and Eq. (11.89) becomes

GhVi B
C2rhAe W
The weak form factor F, is predicted by the CVC hypothesis. Feynman and Gell-
Mann postulated that the vector form factors appearing in the electromagnetic and
in the weak currents must have the same form. For our simplified example CVC
states that for the vector interaction

do = |Fw(¢)?dg?. (11.91)

Fu(q®) = Fem(¢%). (11.92)

No spinless nucleons exist, and the form factor F,, for our specific example cannot
be determined. However, we can assume that F.,, has the same form as the form
factors that appear in the nucleon structure. In particular we can identify F,,, with
Gp as given in Eq. (6.42): The weak cross section then becomes, with Eq. (11.92),
21,2 2
GyVia, B dg

= — — . 11.
o= e W (T 1) (11.93)
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The total cross section is obtained by integration from 0 to —4p?Z,

GLVZEqg 1
= u 1— . 11.94
7= Gl ( 0T 4p3/q8)3> (11.94)

This expression displays the essential features of the theoretical cross sections shown
in Fig. 11.16: At low energies, the term in the large parentheses can be expanded;
the result is identical to Eq. (11.90), and the cross section increases as p2. At higher
energies, the term in the large parentheses becomes unity, and the cross section is
a constant.

The cross section, Eq. (11.94) has been derived for a superallowed 07 — 07
transition, for which only a single vector form factor enters. Nucleons have spin
1/2, and at least three form factors are required to describe the cross section. Two
of these form factors are predicted from the CVC hypothesis to be identical to
those for the electromagnetic scattering of electrons, Gg and G, introduced in
Eq. (6.38). The weak current, however, also contains an axial part, 4, and a single
form factor is sufficient to describe it. It is assumed that it has the same form as
Gp, Eq. (6.42). Thus only one free parameter is left, g3 = M3c?. Figure 11.18
presents data for the elastic scattering v,n — p~p and neutral current elastic
scatterings on protons. The theoretical curves are cross sections computed with
three form factors, Gg, G, and G?. Gg and Gy are given in Eq. (6.43) and
G4 by Eq. (6.42), with g2 = M3c? and M4 as indicated in Fig. 11.18. The data
show that the experimental results are compatible with these form factors and

with an azial mass My = 1.06 GeV/c?, somewhat larger than the vector mass
My = qofc = V0.71 GeV/ c2. This result is expected because axial vector mesons
have higher masses than their vector counterparts; the lowest axial vector meson is
the hy with a mass of 1190 MeV/c%.

So far the discussion has been restricted to the elastic scattering due to charged
currents. The cross section for the true elastic scattering due to neutral currents

Vup — VD

is more difficult to measure, but has been studied*® to test the standard model
[Weinberg—Salam theory] (Chapter 13).
Both charged and neutral current weak interactions of neutrinos induce many
other reactions such as
vup — u_7r+p.

Of particular interest are the inclusive reactions

vp — X,  p — ptX,

vup — v, X, vup — v, X,

44G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002).
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Figure 11.18: (a) The flux-averaged differential cross section for quasielastic events obtained from
two-prong events. The smooth curve is for M4 = 1.032 GeV/c?. (b) The flux-averaged differential
cross sections for neutrino and antineutrino scattering on protons. The solid curves correspond to
M4 = 1.06 GeV/c?. [From L. A. Ahrens et al., Phys. Rev. D35, 785 (1987).]

where X stands for any number of particles. As for inclusive electron scattering,
discussed in Sections 6.9 and 6.10, these reactions have been employed to explore
the quark—parton model and obtain quark distribution functions. We have already
shown the total charged current cross section for neutrinos and antineutrinos as a
function of laboratory energy. The linear dependence of the cross section provides
evidence for the point parton substructure of the proton. As shown by Eq. (11.90)
for scattering from point particles, the cross section is proportional to the square of
the c.m. momentum or energy; this squared energy, in turn, is proportional to the
laboratory energy (see Eq. [11.86]).

The deep inelastic scattering of neutrinos or antineutrinos complements that
of electrons. The charged current inclusive reactions are easier to study, since a
charged lepton is detected in the final state rather than a neutrino. The development
is similar to that of Sections 6.9 and 6.10. For instance, the scattering of the
neutrinos from the quark—partons is elastic and incoherent, as for electrons, and
scaling occurs.

There are also differences between inclusive deep inelastic electron and neutrino
scattering. For v scattering, the interaction is of very short range rather than 1/r.
This difference requires that the electromagnetic «/¢* be replaced by G2 /87 or by
(92,/hc)/(q* + miy, z¢*) at higher energies in Eq. (6.67).
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Also, the charged -current ; — :
weak interaction with up and 15 10 < ? <20 Gev2/c? -

down quarks is not propor-
tional to their electric charges,
and Eq. (6.65) must be modi-
fied to

P(z) = Z”P(xi) (11.95)

; } This experiment

o 2RYNEMO)

2 F5"(SLAC-MIT) N

F(x)

Furthermore, the weak inter- 05
action may also occur with
gluons (neglected below) and
does not conserve parity. The
axial current gives rise to a
third, parity-violating, struc-
ture function, F3, from the in-

where i is a sum over quarks. }/{
B X,

0 0.25 0.50 0.75

Figure 11.19: The structure functions Fa(z) and zF3(z)
for a fixed value of the squared momentum transfer, Q2,
axial vector current matrix el- for neutrino scattering. Also shown is the renormalized
F»(z) obtained from muon and electron scattering. [After
F. Eisele, Rep. Prog. Phys. 49, 233 (1986).]

terference of the vector and

ements in the cross section.

This term changes sign for neutrino and antineutrino scattering from nucleons.
Thus, the structure function F3 can be determined from the difference of the
charged current (cc) (or neutral current) neutrino and antineutrino inclusive cross
sections, (49

Py X 0ce (V) — 0co(D). (11.96)

F3 is shown for protons in Fig. 11.19. The other two structure functions, F; and F5
are identical to the electromagnetic ones to within a constant because of the CVC
relation. In Fig. 11.19, F5 from v and 7 scattering is compared to Fs from charged
lepton scattering. From Egs. (6.65) and (11.95), and the relation Fa(x) = zP(z),
Eq. (6.68), we obtain for an isoscalar target with equal numbers of protons and
neutrons and therefore up and down quarks

Fg(e) 5

o) " I8 (11.97)

Since F3 measures the probability of finding a quark (if the presence of antiquarks
is neglected), it follows that [ Fzdz = 3.

457, V. Allaby et al., Phys. Lett. 213B, 554 (1988).
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Problems

11.1. Verify that the proton recoil energy can be neglected in the discussion of
neutron beta decay.

11.2. Plot the phase-space distribution, Eq. (11.4), and check that a typical beta
spectrum is well represented by it.

11.3.  (a) Discuss how the upper end of the beta spectrum and the Kurie plot are
distorted if the neutrino has a finite rest mass.

(b) Show the deviation of the Kurie plot for the beta decay of 3H if the elec-
tron neutrino has a mass of 50 eV/c2. What are some of the background
problems that can plague a measurement of this deviation?

11.4. Discuss the beta decay of the neutron:

(a) Sketch the measurement of the mean life.
(b) Discuss the measurement of the spectrum.

(¢) Use Egs. (11.9) and (11.10) to compute the value of f for the neutron
decay. Assume that F'(—,1, E) = 1. Compare the resulting value of ft
with the one given in Table 11.1.

(d) In what observables does parity-nonconservation show up in neutron
decay? How can it be observed experimentally? Discuss the results of
such measurements.
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11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

Beta spectra can be measured in a variety of instruments. Two that are often
used are magnetic beta spectrometers and solid-state detectors.

(a) Discuss both methods. Compare momentum resolution and counting
statistics for a given source strength.

(b) What are the advantages and disadvantages of either method?

Assume that the mass difference between the charged and the neutral pions is
caused by the electromagnetic interaction. Compare the corresponding energy
to the weak energy given in Eq. (11.14).

Verify the integration leading to Eq. (11.19).

List three nuclear beta decays, one with a very small, one with an average,
and one with a very large ft value. Consider the spin and parities involved
and discuss why the variation in ft is not an argument against the universal
Fermi interaction.

Compute the ratio of lifetimes for the decays

vt - A%ty and X7 — A% 7.
Compare your value to the experimental ratio.
Verify the f values in Table 11.3.

Consider the branching (intensity) ratio

™ — ev

T — py
(a) How were the two decay modes observed?

(b) Compute the branching ratio expected if the matrix elements for both
decays are assumed to be equal. Compare the result with the experi-
mental ratio.

(c¢) Discuss the helicities of the charged leptons emitted in the pion decay;
assume that neutrinos and antineutrinos are fully polarized, as shown
in Fig. 7.2. Sketch the helicities of the et and e™.

(d) Experiment indicates that the helicity of negative leptons emitted in
beta decay is given by —wv/c, where v is the lepton velocity. Use this
fact, together with the result of part (c), to explain the low branching
ratio that is found experimentally.
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11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.

11.19.

11.20.

11.21.

11.22.

The Weak Interaction

Why do positive muons in matter usually come to rest before they decay?
Describe the processes involved and give approximate values for the charac-
teristic times that enter the considerations. Why do negative muons behave
differently?

* Discuss the experimental determination of the polarization of the muon
emitted in the decay of the pion.

Discuss the experimental determination of the electron spectrum in muon
decay:

(a) Sketch a typical arrangement.

(b) How thin should the target be (in g/cm?) in order not to affect the
spectrum appreciably?

(c) How does one guarantee that the spectrum observed is that of an unpo-
larized muon source?

(d) How can the spectrum at low electron momenta be found?

Use the spectrum of Fig. 11.6 to construct an approximate Kurie plot for
the muon decay. Show that a simple phase-space spectrum does not fit the
observed data.

List reactions and decays that are described by the leptonic Hamiltonian,
Eq. (11.36).

Show that the linear momentum and the angular momentum have the same
transformation properties under ordinary rotations.

Show that neutral currents cannot contribute to beta decay in lowest order of
Gr.

Show that the electron spectrum in Fig. 11.8 can be fitted with Eq. (11.52),
after proper change of the variable.

(a) Determine the value of Enax in Eq. (11.54). Assume that me = 0.
(b) Verify the result of the integration in Eq. (11.54).

(¢) Use the value of the muon mean life listed in PDG to verify the value
of Gr given in Eq. (11.55).

Verify Eq. (11.56).

(a) What are the properties of W as predicted by the arguments in Sec-
tions 11.3 and 11.67
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11.23.

11.24.

11.25.

11.26.

11.27.

11.28.

11.29.

(b) * Discuss experiments that could give information about W.

Find some examples other than the ones given in Table 11.3 to demonstrate
that strangeness-changing weak decays are systematically slower than the cor-
responding strangeness-conserving ones. Use your examples to find a value
for the sine of the Cabibbo angle, V.

Verify that the wave functions of the neutrino and the electrons, given in
Eq. (11.62), are essentially constant over the nuclear volume.

Prove in detail that the integral containing A in Eq. (11.63) vanishes.

The computation of the lepton matrix element in Eq. (11.67) gives
lul (Vo + Ao)us|* =2 (1 + = cos Geu) ;
c

where v is the positron velocity and 6., the angle between positron and neu-
trino momenta.

(a) How can the positron—neutrino correlation be measured? Discuss the
principle of the method and a typical experiment.

(b) Show that the observed positron-neutrino (and electron—antineutrino)
correlations are in agreement with a V — A interaction.

* List some superallowed 0T — 0% transitions and show that their ft values
are all closely identical.

High-energy neutrinos have been observed in bubble chambers (propane and
hydrogen) and in spark chambers.

(a) Compare typical count rates.

(b) What are the advantages and the disadvantages of the various detectors?

Plot a few numerical values of the cross section equation (11.94) as a function
of the neutrino momentum

(a) In the c.m.

(b) In the laboratory.

Compare your curves with the ones shown in Figs. 11.16 and 11.18.
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11.30.

11.31.

11.32.

11.33.

11.34.

11.35.
11.36.

11.37.

11.38.

11.39.

11.40.

The Weak Interaction

* Consider the strangeness-changing weak current of hadrons, for instance,
in the case A° — p in semi-leptonic processes. Such a current satisfies the
selection rule

AS = AQ,
where AS is the change of strangeness and AQ the change in charge.
(a) Give a few additional currents that have been observed and that satisfy
this selection rule.
(b) Have currents with AS = —AQ been observed? (The quantum numbers
S and @ always refer to the hadrons.)

Discuss the isospin selection rules that are satisfied by the weak interaction

(a) In nonstrange decays, and
(b) In decays involving a change of strangeness.

(¢c) What experiments can be used to test these selection rules?

Discuss the evidence for and against the existence of neutral currents.

Show that the maximum cross section for a point interaction is given by the
so-called unitary limit
Omax = 4mh? /p?,

where p is the c.m. momentum.

What experiments can be carried out to test the absence of AS > 2 weak
currents?

Show that the reaction v,e — v,e is forbidden if only charged currents exist.

Determine and briefly discuss one or more tests of the conserved vector current
hypothesis.

Use the lifetime for the beta decay of 14O and Eq. (11.9) to determine the
beta decay lifetime of the positive pion (see Tables 11.1 and 11.2). Compare
with experiment.

0

How can the decay A° — nn® occur despite the absence of strangeness-

changing neutral currents?
Use Eq. 11.80 to show that ma, mq # me, my,.

Find the probability P,, that an electron neutrino is still an electron neutrino
after time ¢, rather than having turned into a muon neutrino, as in Eq. (11.82).
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11.41. For nucleons composed of point quarks,

(a) show that the total cross section for high-energy neutrino scattering
varies linearly with the laboratory energy F.

(b) How is the total cross section modified as the center-of-mass energy
approaches myy c??

(c) What is the laboratory energy of neutrinos for which the center-of-mass
energy is equal to myyc??

11.42. Verify Eq. (11.97).

11.43. Electron neutrinos can interact with electrons via charged and neutral weal
currents.

(a) Draw Feynman diagrams showing these possibilities.

(b) Explain why muon neutrinos can interact with electrons only via neutral
currents and not charged currents.

11.44. Electron neutrinos produced in beta decays are actually a mixture of two mass
eigenstates, v1 and va, | ve) = cosl | v1) + sind | va) .

(a) Deduce the equation that gives the probability of observing the neutrino
as a muon neutrino for vacuum oscillations.

(b) Consider electron neutrinos from the decays of ®B in the sun. Assume
0 = 45deg and m3 —m? = 5 x 107° eV?. Plot the electron neutrino
energy spectrum on earth assuming vacuum oscillations.

11.45. (a) Explain why the total cross section for high energy muon neutrinos to
scatter off hadronic targets is three times larger than for antineutrinos.

(b) Would you expect electron neutrinos to have approximately the same,
larger, or smaller cross sections than those for muon neutrinos?

(¢) Repeat for electron antineutrinos.

11.46. Assume that the Sun obtains its energy from the transformation of 4 protons
into a doubly ionized He atom, liberating ~ 26 MeV: 4p — et 426t + 2v,
and use the solar luminosity on Earth, 1.4 kWatt/m?, to derive the expected
intensity of neutrinos (number per unit time and area) on Earth.

11.47. Estimate V4 using the ft values for the decays Ag — pe~ v, and n — pe~ v,
from Tables 11.2 and 11.3.
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Chapter 12

Introduction to Gauge Theories

12.1 Introduction

In chapter 7 we introduced both global and local gauge transformations. In this
chapter we continue the discussion of gauge invariance and its applications. This
invariance has emerged as the primary underpinning of all fundamental subatomic
interactions. It is now believed that all forces are described by gauge theories,
theories for which local gauge invariance holds. The importance of gauge theories
became obvious with the development of the unified electroweak theory; the Stan-
dard Model is based on gauge theories for the strong, electromagnetic and weak
interactions. In the present chapter we discuss the ideas underlying modern gauge
theories. The material is somewhat more difficult than what we have treated so far,
but is necessary for understanding the Standard Model.

In chapter 7 we saw that additive conservation laws, including charge conserva-
tion, follow from a global gauge transformation, Eq. (7.21). We also showed that
a local gauge transformation, Eq. (7.27), allows us to identify the charge as the
electric one. The development in chapter 7 was for a static charge. However, the
Schrédinger equation (7.1)

oy

with the Hamiltonian of Section 10.3, for a particle of charge ¢ under the influence
of an electromagnetic field,

1 q \?2

is also invariant under the combined local gauge transformation,

v = e TNy, = Ug(e)iy, (12.2)

383
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where @ is the charge operator and

Oe(x, t)
/ — A _ Y
o= A= h—5
A’ = A+ heVe(z,t), (12.3)
or in four-vector notation
Al = A, — heV ye(, t). (12.4)

The local gauge invariance of Maxwell’s equations for classical electricity and
magnetism has been known for many decades. In classical electromagnetism, only
the electromagnetic fields E and B have physical meaning, and gauge invariance
is associated with the partial freedom of choice of the electromagnetic potentials
Ap and A of Egs. (10.37) and (10.38). As we shall show in Section 12.2 the same
is not true in quantum mechanics. With the advent of general relativity, which
employs local gauge invariance, Weyl in 1919 tried to generalize the electromag-
netic local gauge invariance as a geometrical means to unify electromagnetism and
gravity.() His attempts were unsuccessful and the development lay dormant for
over 30 years. However, in the past several decades, local gauge invariance was
successfully extended and applied to the unification of electromagnetic and weak
interactions. The invariance also underlies the basic theory of all interactions of
the Standard Model, grand unified theories, as well as supersymmetric theories
that include gravitation. Indeed, all modern descriptions of basic forces are gauge
theories.

Gauge invariance is a powerful tool. We shall show that it dictates the form of the
interaction, and requires massless vector fields, as for instance the electromagnetic
field with its massless photon; Table 5.9 shows that the quanta of all subatomic
forces have spin 1, and thus correspond to vector fields.

In chapter 7, we demonstrated that the form of Egs. (12.2) and (12.4) leads to
invariance under a local gauge transformation. Here we reverse the argument. If
the Schrodinger equation (7.1) with H that for a free particle, H = p?/2m, is to
remain invariant under the local gauge transformation (12.2), then a compensating
four-vector field, with time and space components which can be called Ay and A,
abbreviated as (Ap, A) or simply A,, must be introduced. Its concommitant trans-
formations must be given by Eq. (12.4). In the following development we sometimes
shall use the shorthand notation for four-vectors. More elaborate manipulations will
be shown in brackets and bullets.

The requirement for a compensating vector field to maintain invariance of the
Schrodinger equation under a local gauge transformation can be seen most easily
by introducing the covariant gauge (sometimes simply called covariant derivatives)
Dy, = (Do, D)

TH. Weyl, Ann. Physik 59, 101 (1919).
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C 8t hc (12'5)
p=v -4
he

If these derivatives replace the normal ones, (1/¢)0/0t and V, it follows with
Egs. (7.1) and (12.2) that

Déﬂ% :DBUQ¢q :UQDowqa
D’z/;,; :D’Uqu = UqgDvy, (12.6)

where D} and D' have A, and A" as dependent variables. It is important to note
that if Ug stands to the left of Dy and D, it is a simple phase factor, since the
derivatives only act on quantities to their right. With the introduction of the gauge
covariant derivatives, Dy and D transform under local gauge transformations just
like %% and V do under a global gauge transformation (¢ = constant). The vec-
tor nature of the compensating field which appears in the covariant derivative is
determined by the vector property of the momentum p for the free Hamiltonian
and the time dependence of Eq. (7.1). When the covariant derivative is introduced
in the Schrodinger equation, including the compensating field, the resulting par-
ticle Hamiltonian has the form Eq. (12.1). Thus, the requirement of local gauge
invariance generates the qAg and j - A interaction of a charged particle with the
electromagnetic field. We note, in addition, that space and time transformations
are tied together.

So far, we have neglected the equation of motion for the vector field (Ap, A). In
the case of the electromagnetic field, it is given by Maxwell’s equations (i = z,y, z)

1 9%A *

S — ViAo =p ="y,

c* ot (12.7)

1 9%A; V24 — Ji _¢*Q’in

c? Ot? e c

if we use the Lorentz condition

10Ag
- <A =0. 12.
P + Vv 0 (12.8)

The equations (12.7) are invariant under the gauge transformations, Eq. (12.4), if
we impose the condition

1 0%e(x,t)
¢z ot?

e In four-vector notation Eq. (12.7) becomes

— VZe(z,t) = 0. (12.9)

OA, = go ,VaViA, = %
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If we do not impose the Lorentz condition, Maxwell’s equations are

10 )
——V'A VA:_
cOt + 0 p

10%2A aAo .
coe tV g T

(12.7a)

or
DAH — GJa uvpvaAu =0Gav (VVVOLA,U, - VILVQAI/) - %
where we follow the convention that the ) sign is omited when indices are repeated.
These equations are invariant under the gauge transformations, Eq. (12.4) for an
arbitrary function e(z,t). o
If the electromagnetic field quantum had a mass m., Eq. (12.7) would be changed
to

10240 _, m2c* Ag
2o VAt =
12A _,, miPA
— — A il == 12.1
c2 ot? viA+ h2 ¢’ (12.10)
m2c? J
or DA+ A= 2

and this additional mass term spoils the invariance under the gauge transformation.
Thus, gauge invariance of the full theory, including the electromagnetic gauge field,
only holds for massless photons or gauge particles.

Alternatively, we can write Maxwell’s equations in terms of the electric and
magnetic field strengths E and B, defined in Eqgs. (10.37) and (10.38). These field
strengths are invariant under the gauge transformation (12.4), as is well known from
classical electricity and magnetism.

12.2 Potentials in Quantum Mechanics—The Aharonov—Bohm Effect

The local gauge transformations clearly contain global ones as a special case. For
the latter, we can say that the phase of a wavefunction is arbitrary and can be
changed at will; however, the phase must be identical at all points in space and
time. That this restriction is not essential was not fully appreciated for many years.
For a local gauge invariance, the phase becomes a degree of freedom that varies
with space and time, but its dependence is connected to the (vector) potentials Ag
and A. The potentials thus acquire a physical meaning that they did not have in
classical electricity and magnetism and that was not realised till several decades
ago.®) Their effect can be determined experimentally, as will now be shown.

2Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
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In the absence of the electromagnetic field, the stationary nonrelativistic wave
equation for a free electron is

K2 9
— = Epg. 12.11
2mV %o o ( )

The solution is a plane wave with a phase given by p - x/h,
ip-x
Yo = exp (T) .

In the presence of a static electromagnetic vector potential A, the stationary
Schrodinger equation becomes, with Eq. (12.5)

. 2
—h—2D2¢:—h—2 (V+leA(w)> y

2m 2m he
= E.

(12.12)

If the field B = 0, i.e. V X A = 0 in the region where 9 is to be obtained, the
solution to this equation can be written as
. Solenoid perpendicular
’QZJ = ’t/)oeup (1213) .I.O paper
with the change of phase ¢ equal to

e

o Adz. (12.14) s,

B he path
Consider then the experimental arrangement

shown in Fig. 12.1, where an electron beam

from a source S is diffracted by two slits behind Source

which there is a solenoid of sufficient length Screen

that V\-ze can neg-lect external fringing mag.netlc Figure 12.1: Two slit arrangement for

fields in the region where the electrons will be  ghserving the Aharonov-Bohm effect.

S,

found.

Thus, for the experimental arrangement shown, the wavefunction at P is expected
to be v, representing the superposition of two free spherical waves emanating from
slits 1 and 2 with phases shifted by p - s1 /A for the wave from slit 1 and by p- s2/h
for that from slit 2. However, even though the magnetic field B is confined to the
solenoid, the vector potential A cannot be zero everywhere outside the solenoid,
since the flux through any loop surrounding the solenoid is given by

o= /B-dS = ¢ A-de, (12.15)
path

where dS is an element of area of the loop. Thus, there are additional phase shifts
given by Eq. (12.14) for the two different paths,
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o1 = %/ A-dx, P2 = %/ A-de. (12.16)

The interference pattern observed on the screen is determined by the phase differ-
ence of the two waves. If |s1| = |s2|, so that P is located at equal distances from
the two slits, the phase difference d¢p is

&ngol—apgzi </ A-dm—/ A-dm)
he \ Js, so

- % ]{A-dm = % . (12.17)
Thus, even though there is no magnetic field along the paths of the electrons, they
show interference effects that depend on, and vary with the vector potential A,
which therefore acquires a physical reality that was absent in classical mechanics.
The effect occurs because the local phase at two space-time points is connected
by the potential. The importance of potentials in quantum theory was stressed by
Aharonov and Bohm® and the phase difference dependence on the vector potential
A has been observed.(®)

It was shown by Berry(®) that the Aharonov-Bohm effect is a special case of a
geometric phase present for any system transported adiabatically (slowly) around
a closed circuit. The phase can be made visible by beating the system that is made
to go around the circuit with the same system made to go straight to the detector;
another way is to examine the superposition of stationary spin states of a system
of particles, such as neutrons, before and after they have completed a closed path,
as in a helical magnetic field. Berry makes a classical analogy to a body moving
around a closed path on a curved surface. Thus, if a matchstick is taken around a
closed path on a plane, without rotating it, it points in the same direction at the
end as at the start. If, however, it is taken around a path on a sphere, such as from
the North pole of the Earth to the equator, then taken to a different longitude and
returned to the North pole, it ends up pointing along a different longitude at the
end than at the start. Like the quantum mechanical effect, the change in direction
only depends on geometrical factors.

12.3 Gauge Invariance for Non-Abelian Fields

The electromagnetic field is a simple example of a gauge field. If we are to include
the weak interactions, then there are two problems that need to be solved. The first
one is that both neutral and charged vector bosons are required. The second one
is that the weak bosons W7 and Z° are massive, whereas we showed that gauge
invariance requires massless fields. We tackle the first problem in this section.

3R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960).
4V. M. Berry, Proc. R. Soc. London A392, 45 (1984); Sci. Amer. 259, 46 (December 1988).
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How can we generalize the gauge invariance of the single vector field (Abelian
case) to theories of several non-commuting (non-Abelian) massless vector fields? An
example would be a vector field with internal degrees of freedom, such as charge;
suppose the photon had isospin unity and came in three charge states. In chapter 8
we saw that this generalization is possible for a global gauge transformation with
the introduction of isospin. However, there we used a constant phase rotation,
U = exp(—iwa-I),