No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Add Trigonometry, Second Algebra Edition

11. Additional Topics in Introduction

© The McGraw-Hill Companies, 2010

1121

Additional Topics in Algebra

CHAPTER OUTLINE

- 11.1 Sequences and Series101811.2 Arithmetic Sequences102711.3 Geometric Sequences1034
- 11.4 Mathematical Induction 1044
- 11.5 Counting Techniques 1053
- 11.6 Introduction to Probability 1065
- 11.7 The Binomial Theorem 1077

CHAPTER CONNECTIONS

For a corporation of any size, decisions made by upper management often depend on a large number of factors, with the desired outcome attainable in many different ways. For instance, consider a legal firm that specializes in family law, with a support staff of 15 employees-6 paralegals and 9 legal assistants. Due to recent changes in the law, the firm wants to send some combination of five support staff to a conference dedicated to the new changes. In Chapter 11, we'll see how counting techniques and probability can be used to determine the various ways such a group can be randomly formed, even if certain constraints are imposed. This application appears as Exercise 34 in Section 11.6.

Check out these other real-world connections:

- Determining the Effects of Inflation (Section 11.1, Exercise 86)
- Counting the Number of Possible Area Codes and Phone Numbers (Section 11.5, Exercise 84)
- Calculating Possible Movements of a Computer Animation (Section 11.2, Exercise 73)
- Tracking and Improving Customer Service Using Probability (Section 11.6, Exercise 53)

1017

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

> Coburn: Algebra and Trigonometry, Second Edition

11. Additional Topics in Algebra

11.1: Sequences and Series

© The McGraw-Hill Companies, 2010

11.1 **Sequences and Series**

Learning Objectives

In Section 11.1 you will learn how to:

- A. Write out the terms of a sequence given the general or nth term
- **B.** Work with recursive sequences and sequences involving a
- factorial C. Find the partial sum of a series
- D. Use summation notation to write and evaluate series
- E. Use sequences to solve applied problems

WORTHY OF NOTE

instance, the sequence $a_n = \frac{2}{n-1}$ must start at

n = 2 to avoid division by

sometimes use a0 to indicate a preliminary or inaugural

element, as in $a_0 = $10,000$

for the amount of money

initially held, prior to

investing it.

zero. In addition, we will

Sequences can actually start

with any natural number. For

A sequence can be thought of as a pattern of numbers listed in a prescribed order. A series is the sum of the numbers in a sequence. Sequences and series come in countless varieties, and we'll introduce some general forms here. In following sections we'll focus on two special types: arithmetic and geometric sequences. These are used in a number of different fields, with a wide variety of significant applications.

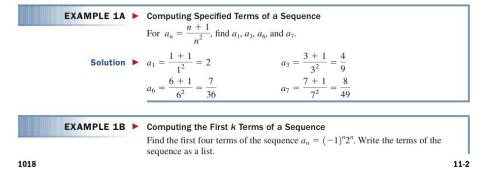
A. Finding the Terms of a Sequence Given the General Term

Suppose a person had \$10,000 to invest, and decided to place the money in government bonds that guarantee an annual return of 7%. From our work in Chapter 4, we know the amount of money in the account after x years can be modeled by the function $f(x) = 10,000(1.07)^x$. If you reinvest your earnings each year, the amount in the account would be (rounded to the nearest dollar):

Year:	f(1)	f(2)	<i>f</i> (3)	f(4)	$f(5) \dots$
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Value:	\$10,700	\$11,449	\$12,250	\$13,108	\$14.026

Note the relationship (year, value) is a function that pairs 1 with \$10,700, 2 with \$11,449, 3 with \$12,250 and so on. This is an example of a sequence. To distinguish sequences from other algebraic functions, we commonly name the functions a instead of f, use the variable n instead of x, and employ a subscript notation. The function $f(x) = 10,000(1.07)^x$ would then be written $a_n = 10,000(1.07)^n$. Using this notation $a_1 = 10,700, a_2 = 11,449$, and so on.

The values $a_1, a_2, a_3, a_4, \ldots$ are called the **terms** of the sequence. If the account were closed after a certain number of years (for example, after the fifth year) we have a finite sequence. If we let the investment grow indefinitely, the result is called an infinite sequence. The expression a_n that defines the sequence is called the general or *n*th term and the terms immediately preceding it are called the (n-1)st term, the (n-2)nd term, and so on.

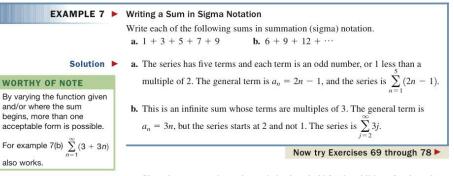

Sequences

A *finite sequence* is a function a_n whose domain is the set of natural numbers from 1 to *n*. The terms of the sequence are labeled

 $a_1, a_2, a_3, \ldots, a_k, a_{k+1}, \ldots, a_{n-1}, a_n$

where a_k represents an arbitrary "interior" term and a_n also represents the last term of the sequence.

An *infinite sequence* is a function a_n whose domain is the set of <u>all</u> natural numbers.


Coburn: Algebra and Trigonometry, Second Edition	11. Addition Algebra	nal Topics in	11.1: Sequences and Serie	s	© The McGraw-Hill Companies, 2010	11
1-3				Section	11.1 Sequences and Series	1019
So	olution 🕨	$a_1 = (-1)^1$	$2^1 = -2$	$a_2 = (-1)^2$		
WORTHY OF NOT	E	$a_3 = (-1)^3$	$2^3 = -8$	$a_4 = (-1)^4$	$2^4 = 16$	
When the terms of a sequence <i>alternate in sign</i> as in Example 1B, we call it an			ce can be written -2 , $1)^n 2^n$, to show ho	w each term wa		
A. You've just lea	rned how s of a		rsive Sequences	and Factoria		
sequence given the general or <i>n</i> th term		erate those useful in w sequences r Perhap Leonardo o commonly	that follow. These as writing computer prog- must give an inaugural s the most famous r f Pisa (A.D. 1180–125	re called recur grams. Because term or seed ele ecursive sequen 0), better known equence in whice	the preceding term or terms sive sequences and are par of how they are defined, r ment, to begin the recursion nee is associated with the to history as <i>Fibonacci</i> . In the ch each successive term is the	ticularly ecursive process work o fact, it i
EXAM	PLE 2 🕨	Computing	the Terms of a Rec	ursive Sequen	ce	
		Write out the first eight terms of the recursive (Fibonacci) sequence defined by $a = 1$ and $a = 2$				
	lutter a	$c_1 = 1, c_2 = 1$, and $c_n = c_{n-1} + c_{n-2}$. The first two terms are given, so we begin with $n = 3$.				
30			$+ c_{3-2} \qquad c_4 = c_4$	1 7 10		
			$c_1 = c_3 = 2$	+ 1		
		= 2	= 3		= 5	
WORTHY OF NOT	-				n successive term is simply t	
One application of the					$5 = 8, c_7 = 5 + 8 = 13, a_7$, 2, 3, 5, 8, 13, and 21.	and
Fibonacci sequence i the Fibonacci spiral, t	involves found				try Exercises 33 through	38 ►
in the growth of many ferns and the spiral shell of many mollusks.		natural nun		at precede it. Th	rial, which is the product of ne expression 5! is read, "fiv 120.	
(mol)		Factorials	5			
Contra the		For any natural number <i>n</i> ,				
		$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$				
			. For example, we d		en makes it easier to simplify = $5 \cdot 4!$ or $5! = 5 \cdot 4 \cdot 3!$.	
EXAM	PLE 3 🕨	Simplifying	Expressions Using	Factorial Notat	ion	
EXAM	PLE 3 🕨		Expressions Using writing the numerator			

24 Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.1: Sequences and Series	© The McGraw–Hill Companies, 2010
1020 CHAPTER 11 Ad	ditional Topics in Algebra		11
Solutio	a. $\frac{9!}{7!} = \frac{9 \cdot 8}{7!}$	b. $\frac{11!}{8!2!} = \frac{11 \cdot 10 \cdot 9 \cdot 8}{8!2!}$! c. $\frac{6!}{3!5!} = \frac{6 \cdot \cancel{3}!}{3!\cancel{3}!}$
WORTHY OF NOTE Most calculators have a factorial option or key. On t TI-84 Plus it is located on a	he = 72	$=\frac{990}{2}$ $= 495$	$=\frac{6}{6}$ $=1$
submenu of the MATH key MATH PRB (option) 4: !	:	Now	try Exercises 39 through 44 ►
EXAMPLE	4 🕨 Computing a S	Specified Term from a Sequence	Defined Using Factorials
	Find the third t	erm of each sequence.	
	a. $a_n = \frac{n!}{2^n}$	b. $c_n = \frac{(-1)^n (2n-1)!}{n!}$	-
Colutio	a. $a_3 = \frac{3!}{2^3}$	b. $c_3 = \frac{(-1)^3 [2(3) - 1]}{3!}$]!
B. You've just learned I to work with recursive	$=\frac{6}{8}=$	$\frac{3}{4} = \frac{(-1)(5)!}{3!} = $	3!
sequences and sequences involving a factorial		= -20	
a lactorial		Now	try Exercises 45 through 50 🕨
Figure 11.1	C. Series a	nd Partial Sums	
	sider the stacki row, then 9 pip a single pipe at the question we	terms of a sequence are dictated by ng of large pipes in a storage yard es, then 8 (see Figure 11.1), how m the top? The sequence generated is would have to <i>compute the sum of</i> e sequence are added, the result is o	. If there are 10 pipes in the bottomany pipes are in the stack if there is $10, 9, 8, \ldots, 3, 2, 1$ and to answ fall terms in the sequence. When t
	Finite Series		
		dence $a_1, a_2, a_3, a_4, \ldots, a_n$, the sum n and is denoted S_n :	
		$S_n = a_1 + a_2 + a_3 + a_4$	$+\cdots+a_n$
EXAMPLE		, find the value of	
Solutio	n ► Since we event	ually need the sum of the first seve	
	a. $S_4 = a_1 + a_1$	se terms: 2, 4, 6, 8, 10, 12, and 14. $a_2 + a_3 + a_4$ 4 + 6 + 8	
	b. $S_7 = a_1 + a_1$	$a_2 + a_3 + a_4 + a_5 + a_6 + a_7$	
C. You've just learned I to find the partial sum of a series		4 + 6 + 8 + 10 + 12 + 14	

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and Trigonometry, Second Edition	11. Additior Algebra	al Topics in	11.1: Sequences and Series		© The McGraw–Hill Companies, 2010	1
1-5				Section 11.1 Seque	ences and Series	1021
		D. Sumi	mation Notation			
			general term of a sequence e related series as a formu			
		four terms	of $a_n = 3n + 2$, we write	$\sum_{i=1}^{4} (3i+2)$. This res	sult is called summ	ation o
			ation and the letter <i>i</i> is call also used as index numbers			
EXAM	PLE 6 🕨	Computin	g a Partial Sum			_
		Compute e a. $\sum_{i=1}^{4} (3i)$	each sum: + 2) b. $\sum_{j=1}^{5} \frac{1}{j}$	c. $\sum_{k=3}^{6} (-1)^k k^2$		
Se	olution 🕨	a. $\sum_{i=1}^{4} (3i)$	$(+2) = (3 \cdot 1 + 2) + (3 \cdot 1 $		$(2) + (3 \cdot 4 + 2)$	
Se	olution 🕨	b. $\sum_{j=1}^{5} \frac{1}{j}$	$= 5 + 8 + 11 + 14$ $= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$	4 = 38	$(2) + (3 \cdot 4 + 2)$	
Se	olution 🕨	b. $\sum_{j=1}^{5} \frac{1}{j}$	= 5 + 8 + 11 + 14	4 = 38	$(2) + (3 \cdot 4 + 2)$	
Si	olution 🕨	b. $\sum_{j=1}^{5} \frac{1}{j} =$	$= 5 + 8 + 11 + 14$ $= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$ $\frac{60}{60} + \frac{30}{60} + \frac{20}{60} + \frac{15}{60} + \frac{1}{60}$	4 = 38 $\frac{2}{60} = \frac{137}{60}$		
Si	olution 🕨	b. $\sum_{j=1}^{5} \frac{1}{j} =$	$= 5 + 8 + 11 + 14$ $= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$	$\frac{2}{50} = \frac{137}{60}$ $\frac{1}{50}^{2} + (-1)^{5} \cdot 5^{2} - \frac{1}{50}$		

If a definite pattern is noted in a given series expansion, this process can be reversed, with the expanded form being expressed in summation notation using the nth term.

Since the commutative and associative laws hold for the addition of real numbers, summations have the following properties:

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

6 Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in 11.1: Sequences and Series Algebra	© The McGraw–Hill Companies, 2010				
022 CHAPTER 11 A	dditional Topics in Algebra	11-6				
	Properties of Summation					
	Given any real number c and natural number n ,					
	(I) $\sum_{i=1}^{n} c = cn$ If you add a constant <i>c</i> " <i>n</i> " times the result is <i>c</i> .	n.				
	(II) $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$					
	A constant can be factored out of a sum. (III) $\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i$					
	A summation can be distributed to two (or mor	e) sequences.				
	(IV) $\sum_{i=1}^{m} a_i + \sum_{i=m+1}^{n} a_i = \sum_{i=1}^{n} a_i$; $1 \le m < n$	6 H				
		A summation is cumulative and can be written as a sum of smaller parts.				
	The verification of property II depends solely on the d n					
	Proof: $\sum_{i=1}^{n} ca_i = ca_1 + ca_2 + ca_3 + \dots + ca_n$ expand	sum				
	$= c(a_1 + a_2 + a_3 + \dots + a_n) \text{factor of}$	ut c				
	$= c \sum_{i=1}^{n} a_i$ write se	eries in summation form				
	The verification of properties III and IV simply u ciative properties. You are asked to prove property III					
EXAMPLE	8 Computing a Sum Using Summation Properties					
	Recompute the sum $\sum_{i=1}^{4} (3i + 2)$ from Example 6(a) u	sing summation properties.				
Solutio	n \blacktriangleright $\sum_{i=1}^{4} (3i+2) = \sum_{i=1}^{4} 3i + \sum_{i=1}^{4} 2$ property III					
	$=3\sum_{i=1}^{4}i+\sum_{i=1}^{4}2$ property II					
D. You've just learned use summation notation		71				
write and evaluate series	50 result	Exercises 79 through 82				

E. Applications of Sequences

To solve applications of sequences, (1) identify where the sequence begins (the initial term) and (2) write out the first few terms to help identify the nth term.

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

onal Topics in 11.1: Sequences and Series	© The McGraw-Hill Companies, 2010	U U
Se	ction 11.1 Sequences and Series	1023
Solving an Application — Accumulation of	of Stock	
employees the opportunity to purchase 175 no purchases other than these discounted sh she have 9 yr later? If this continued for the	discounted shares per year. If she ares each year, how many shares 25 yr she will work for the comp	made will
already had 1420 shares before the company the inaugural element, showing $a_1 = 1595$	y made this offer, we let $a_0 = 142$ (after 1 yr, she owns 1595 shares).	20 be . The
After 9 years	After 25 years	
$a_9 = 1595 + 175(8)$ = 2995	$a_{25} = 1595 + 175(24) = 5795$	
After 9 yr she would have 2995 shares. Upo shares of company stock.	n retirement she would own 5795	
	Selving an Application — Accumulation of Hydra already owned 1420 shares of stock wemployees the opportunity to purchase 175 no purchases other than these discounted sh she have 9 yr later? If this continued for the how many shares will she have at retiremen To begin, it helps to simply write out the first already had 1420 shares before the company the inaugural element, showing $a_1 = 1595$ (first few terms are 1595, 1770, 1945, 2120, of $a_n = 1595 + 175(n - 1)$. After 9 years $a_9 = 1595 + 175(8)$ = 2995 After 9 yr she would have 2995 shares. Upo	Companies, 2010Companies, 2010Section 11.1 Sequences and SeriesSolving an Application — Accumulation of StockHydra already owned 1420 shares of stock when her company began offering employees the opportunity to purchase 175 discounted shares per year. If she no purchases other than these discounted shares each year, how many shares v she have 9 yr later? If this continued for the 25 yr she will work for the company how many shares will she have at retirement?To begin, it helps to simply write out the first few terms of the sequence. Since already had 1420 shares before the company made this offer, we let $a_0 = 142$ the inaugural element, showing $a_1 = 1595$ (after 1 yr, she owns 1595 shares), first few terms are 1595, 1770, 1945, 2120, and so on. This supports a general of $a_n = 1595 + 175(n - 1)$.After 9 years $a_9 = 1595 + 175(8)$ $= 2995$ $a_{25} = 1595 + 175(24)$ $= 5795$ After 9 yr she would have 2995 shares. Upon retirement she would own 5795

	TECHNOLOGY HIGHLIGHT Studying Sequences and Series	
	Studying Sequences and Series	
F		
	To support a study of sequences and series, we can use a graphing calculator to generate the desired terms. This can be done either on the home screen or directly into the LIST feature of the calculator. On the TI-84 Plus this is accomplished using the "seq(" and "sum(" commands, which are accessed using the keystrokes \mathbb{R} STAT (LIST) and the screen shown in Figure 11.2. The "seq(" feature is option 5 under the MATH submenu (press \bullet 5) and the "sum(" feature is option 5 under the MATH submenu (press \bullet 5). To generate the first four terms of the sequence $a_n = n^2 + 1$, and to find the sum, GEAR the home screen and press \mathbb{R} STAT i 5 to place "seq(" on the home screen. This command requires four inputs: a_n (the <i>n</i> th term), variable used (the calculator can work with any letter), initial term and the last term. For this example the screen reads "seq($x^2 + 1, x, 1, 4$)," with the result being the four terms shown in Figure 11.3. To find the sum of these terms, we simply precede the seq($x^2 + 1, x, 1, 4$) command by "sum(," and two methods are shown in Figure 11.4. Each of the following sequences have some interesting properties or mathematical connections. Use your graphing calculator to generate the first 10 terms of each sequence and the sum of these terms. Next, generate the first 20 terms of each sequence and the sum of these terms. What conclusion (if any) can you reach about the sum of each sequence?	Figure 11.2 NHMES USE MATH 1:SortH(2:SortH(3:dim(4:Fill(5:cumSum(7*4List(Figure 11.3 Seq(X2+1,X,1,4) (2:5:10:17) (2:5:10:17) Seq(X2+1,X,1,4) (2:5:10:17) sum(Ans) Sum(seq(X2+1,X,1,4) (3:4) Sum(seq(X2+1,X,1) 3:4) Sum(seq(X2+1,X,1) 3:4) Seq(X2+1,X,1) 3:4)
1	Exercise 1: $a_n = \frac{1}{3^n}$ Exercise 2: $a_n = \frac{2}{n(n+1)}$ Exercise 3:	$a_n = \frac{1}{(2n-1)(2n+1)}$

Page 68 of 101

1024 CHAPTER 11 /	Additional Topics in Algebra	11-8
11.1		
CONCEPTS AND VO Fill in the blank with the	appropriate word or phrase.	
Carefully reread the secti	on if needed.	
 A sequence is a(n) _ specific 	of numbers listed in a	 When each term of a sequence is smaller than the preceding term, the sequence is said to be
2. A series is the given sequence.	of the numbers from a	5. Describe the characteristics of a recursive sequence and give one example.
	a sequence is larger than the sequence is said to be	6. Describe the characteristics of an alternating sequence and give one example.
DEVELOPING YOUR	SKILLS	
Find the first four terms, term for each <i>n</i> th term gi	then find the 8th and 12th ven.	29. $a_n = \left(1 + \frac{1}{n}\right)^n; a_{10}$ 30. $a_n = \left(n + \frac{1}{n}\right)^n; a_9$
7. $a_n = 2n - 1$ 9. $a_n = 3n^2 - 3$		31. $a_n = \frac{1}{n(2n+1)}; a_4$
11. $a_n = (-1)^n n$	12. $a_n = \frac{(-1)}{n}$	32. $a_n = \frac{1}{(2n-1)(2n+1)}; a_5$
13. $a_n = \frac{n}{n+1}$	14. $a_n = \left(1 + \frac{1}{n}\right)^n$	Find the first five terms of each recursive sequence. $(a_1 - a_2)$
15. $a_n = \left(\frac{1}{2}\right)^n$	16. $a_n = \left(\frac{2}{3}\right)^n$	33. $\begin{cases} a_1 = 2 \\ a_n = 5a_{n-1} - 3 \end{cases}$
17. $a_n = \frac{1}{n}$	18. $a_n = \frac{1}{n^2}$	$34. \begin{cases} a_1 = 3 \\ a_n = 2a_{n-1} - 3 \end{cases}$
19. $a_n = \frac{(-1)^n}{n(n+1)}$	20 $a = \frac{(-1)^{n+1}}{(-1)^{n+1}}$	35. $\begin{cases} a_1 = -1 \\ a_n = (a_{n-1})^2 + 3 \end{cases}$
· · · ·		36. $\begin{cases} a_1 = -2 \\ a_n = a_{n-1} - 16 \end{cases}$
21. $a_n = (-1)^n 2^n$		
Find the indicated term for $22 = -2^2 = 2^2 = 2$	-	37. $\begin{cases} c_1 = 64, c_2 = 32\\ c_n = \frac{c_{n-2} - c_{n-1}}{2} \end{cases}$
23. $a_n = n^2 - 2; a_9$ $(-1)^{n+1}$	24. $a_n = (n-2)^2; a_9$ $(-1)^{n+1}$	$c_n = \frac{c_{n-2} - c_{n-1}}{2}$
25. $a_n = \frac{(-1)^{n+1}}{n}; a_5$	26. $a_n = \frac{\sqrt{n}}{2n-1}; a_5$	38. $\begin{cases} c_1 = 1, c_2 = 2\\ c_n = c_{n-1} + (c_{n-2})^2 \end{cases}$
27. $a_n = 2\left(\frac{1}{2}\right)^{n-1}; a_7$	28. $a_n = 3\left(\frac{1}{3}\right)^{n-1}; a_7$	$c_n = c_{n-1} + (c_{n-2})^2$

Coburn: Algebra and

Trigonometry, Second

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

11.1: Sequences and Series

Edition		
11-9		
Simplify each facto	orial expression.	
39. $\frac{8!}{5!}$	40. $\frac{12!}{10!}$	41. $\frac{9!}{7!2!}$
42. $\frac{6!}{3!3!}$	43. $\frac{8!}{2!6!}$	44. $\frac{10!}{3!7!}$
Write out the first	four terms in each se	quence.
45. $a_n = \frac{n!}{(n+1)}$	$\frac{1}{!}$ 46. $a_n = \frac{1}{(n-1)!}$	$\frac{n!}{(n+3)!}$
47. $a_n = \frac{(n+1)}{(3n)!}$	$\frac{!}{}$ 48. $a_n = \frac{(i)}{}$	$\frac{(n+3)!}{(2n)!}$
49. $a_n = \frac{n^n}{n!}$	50. $a_n = \frac{2}{n}$	n
	partial sum for each	
51. $a_n = n; S_5$	52. $a_n = n$	
53. $a_n = 2n - 1;$	S_8 54. $a_n = 3$	$n - 1; S_6$
55. $a_n = \frac{1}{n}; S_5$	56. $a_n = -\frac{1}{n}$	$\frac{n}{1+1}; S_4$
Expand and evalua	te each series.	
57. $\sum_{i=1}^{4} (3i-5)$	58. $\sum_{i=1}^{5} (2i)$	- 3)
59. $\sum_{k=1}^{5} (2k^2 - 3)$	60. $\sum_{k=1}^{5} (k^2)^{k}$	+ 1)
61. $\sum_{k=1}^{7} (-1)^k k$	62. $\sum_{k=1}^{5} (-1)^{k}$	$(1)^{k}2^{k}$
63. $\sum_{i=1}^{4} \frac{i^2}{2}$	64. $\sum_{i=2}^{4} i^2$	

11. Additional Topics in

Algebra

Section 11.1 Sequences and Series

66. $\sum_{j=3}^{7} \frac{j}{2^{j}}$

68. $\sum_{k=2}^{6} \frac{(-1)^{k+1}}{k^2 - 1}$

© The McGraw-Hill

Companies, 2010

1129

1025

65.
$$\sum_{j=3}^{2} 2j$$

67. $\sum_{k=3}^{8} \frac{(-1)^k}{k(k-2)}$

ý.

6

Write each sum using sigma notation. Answers are not necessarily unique.

69. 4 + 8 + 12 + 16 + 20
70. $5 + 10 + 15 + 20 + 25$
71. -1 + 4 - 9 + 16 - 25 + 36
72. 1 - 8 + 27 - 64 + 125 - 216

For the given general term a_n , write the indicated sum using sigma notation.

73.
$$a_n = n + 3; S_5$$

74. $a_n = \frac{n^2 + 1}{n + 1}; S_4$
75. $a_n = \frac{n^2}{3};$ third partial

76.
$$a_n = 2n - 1$$
; sixth partial sum

77.
$$a_n = \frac{n}{2^n}$$
; sum for $n = 3$ to 7

78.
$$a_n = n^2$$
; sum for $n = 2$ to 6

Compute each sum by applying properties of summation.

sum

79.
$$\sum_{i=1}^{5} (4i-5)$$

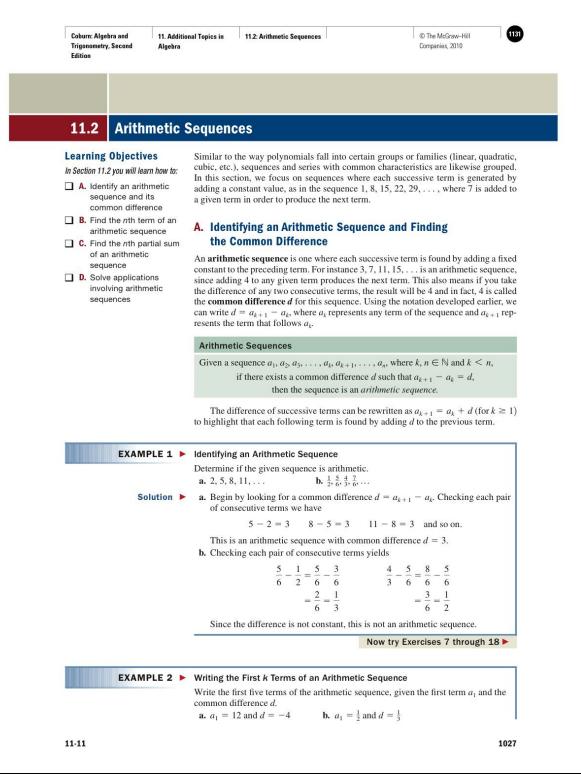
80. $\sum_{i=1}^{6} (3+2i)$
81. $\sum_{k=1}^{4} (3k^2+k)$
82. $\sum_{k=1}^{4} (2k^3+5)$

WORKING WITH FORMULAS

83. Sum of $a_n = 3n - 2$: $S_n = \frac{n(3n - 1)}{2}$

The sum of the first *n* terms of the sequence defined by $a_n = 3n - 2 = 1, 4, 7, 10, ..., (3n - 2), ...$ is given by the formula shown. Find S_5 using the formula, then verify by direct calculation.

84. Sum of
$$a_n = 3n - 1$$
: $S_n = \frac{n(3n + 1)}{2}$


The sum of the first *n* terms of the sequence defined by $a_n = 3n - 1 = 2, 5, 8, 11, \dots, (3n - 1), \dots$ is given by the formula shown. Find S_8 using the formula, then verify by direct calculation. Observing the results of Exercises 83 and 84, can you now state the sum formula for $a_n = 3n - 0$?

Page 70 of 101

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additional Topics in 11.1: Sequences and Series © The McGraw-Hill Trigonometry, Second Companies, 2010 Algebra Edition 1026 11-10 CHAPTER 11 Additional Topics in Algebra APPLICATIONS Use the information given in each exercise to determine 89. Stocking a lake: A local fishery stocks a large the *n*th term a_n for the sequence described. Then use the lake with 1500 bass and then adds an additional nth term to list the specified number of terms. 100 mature bass per month until the lake nears maximum capacity. If the bass population 85. Blue-book value: Steve's car has a blue-book grows at a rate of 5% per month through value of \$6000. Each year it loses 20% of its value natural reproduction, the number of bass in the (its value each year is 80% of the year before). List pond after n months is given by the recursive the value of Steve's car for the next 5 vr. (Hint: For sequence $b_0 = 1500, b_n = 1.05b_{n-1} + 100.$ $a_1 = 6000$, we need the *next* five terms.) How many bass will be in the lake after 86. Effects of inflation: Suppose inflation (an increase 6 months? in value) will average 4% for the next 5 yr. List the 90. Species preservation: The Interior Department growing cost (year by year) of a DVD that costs introduces 50 wolves (male and female) into a \$15 right now. (*Hint:* For $a_1 = 15$, we need the large wildlife area in an effort to preserve the next five terms.) species. Each year about 12 additional adult 87. Wage increases: Latisha gets \$5.20 an hour for wolves are added from capture and relocation filling candy machines for Archtown Vending. programs. If the wolf population grows at a rate Each year she receives a \$0.50 hourly raise. List of 10% per year through natural reproduction, Latisha's wage for the first 5 yr. How much will the number of wolves in the area after nshe make in the fifth year if she works 8 hr per day years is given by the recursive sequence $w_0 = 50$, $w_n = 1.10w_{n-1} + 12$. How many wolves are in the wildlife area after 6 years? for 240 working days? 88. Average birth weight: The average birth weight of a certain animal species is 900 g, with the baby gaining 125 g each day for the first 10 days. List the infant's weight for the first 10 days. How much does the infant weigh on the 10th day? EXTENDING THE CONCEPT 91. Verify that a summation may be distributed to two sums for n = 4, n = 8, and n = 12 for the summations (or more) sequences. That is, verify that the given, and attempt to name the number the summation following statement is true: approximates: $\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i.$ **92.** $\sum_{k=0}^{n} \frac{1}{k!}$ **93.** $\sum_{k=1}^{n} \frac{1}{3^{k}}$ Surprisingly, some of the most celebrated numbers in **94.** $\sum_{k=1}^{n} \frac{1}{2^{k}}$ mathematics can be represented or approximated by a series expansion. Use your calculator to find the partial MAINTAINING YOUR SKILLS **97.** (7.2) Given a triangle where a = 0.4 m, **95.** (6.7) Solve $\csc x \sin\left(\frac{\pi}{2} - x\right) = -1$ b = 0.3 m, and c = 0.5 m, find the three corresponding angles. **96.** (2.5) Set up the difference quotient for $f(x) = \sqrt{x}$, then rationalize the numerator. **98. (6.3)** Solve the system using a matrix equation. $\begin{cases} 25x + y - 2z = -14\\ 2x - y + z = 40\\ -7x + 3y - z = -13 \end{cases}$

Page 71 of 101

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

1028 CHAPTER 11 Additional Topics in Algebra Solution a. $a_1 = 12$ and $d = -4$. Starting at $a_1 = 12$, add -4 generate the sequence: 12, 8, 4, 0, -4	© The McGraw-Hill Companies, 2010
generate the sequence: 12, 8, 4, 0, -4	11-12
b. $a_1 = \frac{1}{2}$ and $d = \frac{1}{3}$. Starting at $a_1 = \frac{1}{2}$ and adding $\frac{1}{3}$ sequence and its common	

B. Finding the nth Term of an Arithmetic Sequence

If the values a_1 and d from an arithmetic sequence are known, we could generate the terms of the sequence by adding *multiples of d to the first term*, instead of adding d to each new term. For example, we can generate the sequence 3, 8, 13, 18, 23 by adding multiples of 5 to the first term $a_1 = 3$:

3 = 3 + (0)5	$a_1 = a_1 + 0d$	
8 = 3 + (1)5	$a_2 = a_1 + 1d$	
13 = 3 + (2)5	$a_3 = a_1 + 2d$	
18 = 3 + (3)5	$a_4 = a_1 + 3d$	
23 = 3 + (4)5	$a_5 = a_1 + 4d$	
current term		 coefficient of common difference

It's helpful to note the coefficient of d is 1 less than the subscript of the current term (as shown): 5 - 1 = 4. This observation leads us to a formula for the *n*th term.

	The <i>n</i> th Term of an Arithmetic Sequence
	The nth term of an arithmetic sequence is given by
	$a_n = a_1 + (n-1)d$
	where d is the common difference.
EXAMPLE 3 🕨	Finding a Specified Term in an Arithmetic Sequence
	Find the 24th term of the sequence 0.1, 0.4, 0.7, 1,
Solution ►	Instead of creating all terms up to the 24th, we determine the constant <i>d</i> and use the <i>n</i> th term formula. By inspection we note $a_1 = 0.1$ and $d = 0.3$.
	$a_n = a_1 + (n-1)d$ <i>nth term formula</i>

	= 0.1 + (n - 1)0.3	substitute 0.1 for a ₁ and 0.3 for d
	= 0.1 + 0.3n - 0.3	eliminate parentheses
	= 0.3n - 0.2	simplify
1	To find the 24th term we substitute 24 for n	:
	$a_{24} = 0.3(24) - 0.2$	substitute 24 for n
	= 7.0	result
		Now try Exercises 31 through 42 >

EXAMPLE 4 Finding the Number of Terms in an Arithmetic Sequence

Find the number of terms in the arithmetic sequence $2, -5, -12, -19, \ldots, -411$.

Coburn: Algebra and 11. Add Trigonometry, Second Algebra Edition	itional Topics in a	11.2: Arithmetic Sequences	© The McGraw–Hill Companies, 2010	
1-13			Section 11.2 Arithmetic Sequences	102
Solution	 By inspect 	ion we see that $a_1 = 2$ and d	= -7. As before,	
		$a_n = a_1 + (n-1)d$		
			substitute 2 for a_1 and -7 for d	
		= -7n + 9	simplify	
		we don't know the number of n th term is -411 . Substituting	terms in the sequence, we do know $g - 411$ for a_n gives	
		-411 = -7n + 9	substitute -411 for a_n	
		60 = n	solve for n	
	There are 6	60 terms in this sequence.		
			Now try Exercises 43 through	50 ►
	If the term	a_i is unknown but a term a_i i	s given, the <i>n</i> th term can be written	
	n the term		d since $n = k + (n - k)$	
			u_k and coefficient of d sum to n).	
		(the subscript of the term a	$_k$ and coefficient of u sum to n).	
				_
EXAMPLE 5	Finding th	e First Term of an Arithmet	ic Sequence	
EXAMPLE 5	Given an a	e First Term of an Arithmet rithmetic sequence where a_6 d and the value of a_1 .	ic Sequence = 0.55 and $a_{13} = 0.9$, find the comm	ion
	 Given an a difference At first it s as the sum 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa	= 0.55 and a_{13} = 0.9, find the comm ation is given, but recall we can expre popopriate multiple of <i>d</i> . Since a_6 is k	ess a_{13}
	 Given an a difference At first it s as the sum 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough information of any earlier term and the approximation $a_{13} = a_6 + 7d$ (note 13 = 6 +	= 0.55 and a_{13} = 0.9, find the comm ation is given, but recall we can expre popopriate multiple of <i>d</i> . Since a_6 is k	ess a_{13}
	 Given an a difference At first it s as the sum 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap	= 0.55 and a_{13} = 0.9, find the commution is given, but recall we can express propriate multiple of <i>d</i> . Since a_6 is k 7 as required).	ess a_{13}
	 Given an a difference At first it s as the sum 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d	= 0.55 and a_{13} = 0.9, find the comm attion is given, but recall we can expre- propriate multiple of <i>d</i> . Since a_6 is k 7 as required). a_1 is unknown	ess a_{13}
	 Given an a difference At first it s as the sum 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d	= 0.55 and a_{13} = 0.9, find the comm ation is given, but recall we can expre- popopriate multiple of <i>d</i> . Since a_6 is k 7 as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6	ess a_{13}
	Given an a differenceAt first it s as the sum we write <i>a</i>	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d	= 0.55 and a_{13} = 0.9, find the comm ation is given, but recall we can expre peropriate multiple of <i>d</i> . Since a_6 is k 7 as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i>	ess a_{13}
	Given an a differenceAt first it s as the sum we write <i>a</i>	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for $a_{13} = a_1 + 12d$	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can expreperportiate multiple of <i>d</i> . Since a_6 is ket 7 as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. <i>n</i> th term formula for $n = 13$	ess a_{13}
Solution	 Given an a difference At first it s as the sum we write a Having four 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12(0.05)$	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can expreperportiate multiple of <i>d</i> . Since a_6 is k of as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. <i>n</i> th term formula for $n = 13$ 5.	ess a_{13}
Solution	 Given an a difference At first it s as the sum we write a Having four 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12(0.05)$ $0.9 = a_1 + 0.6$	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can expreperpriate multiple of <i>d</i> . Since a_6 is k of as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. <i>n</i> th term formula for $n = 13$ 5. Substitute 0.9 for a_{13} and 0.05 for <i>d</i> simplify	ess a_{13}
Solution	 Given an a difference At first it s as the sum we write a Having for 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12(0.05)$ $0.9 = a_1 + 0.6$ $a_1 = 0.3$	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can expreperportiate multiple of <i>d</i> . Since a_6 is k of as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. <i>n</i> th term formula for $n = 13$ 5) substitute 0.9 for a_{13} and 0.05 for <i>d</i> simplify solve for a_1	ess a_{13}
Solution B. You've just learned how o find the <i>n</i> th term of an	 Given an a difference At first it s as the sum we write a Having for 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12(0.05)$ $0.9 = a_1 + 0.6$	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can expreperopriate multiple of <i>d</i> . Since a_6 is k 7 as required). <i>a</i> ₁ is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. <i>n</i> th term formula for $n = 13$ 5) substitute 0.9 for a_{13} and 0.05 for <i>d</i> simplify solve for a_1 on difference is $d = 0.05$.	ess <i>a</i> ₁₃ nown,
Solution B. You've just learned how o find the <i>n</i> th term of an	 Given an a difference At first it s as the sum we write a Having for 	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12(0.05)$ $0.9 = a_1 + 0.6$ $a_1 = 0.3$	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can expreperportiate multiple of <i>d</i> . Since a_6 is k of as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. <i>n</i> th term formula for $n = 13$ 5) substitute 0.9 for a_{13} and 0.05 for <i>d</i> simplify solve for a_1	ess <i>a</i> ₁₃ nown,
Solution B. You've just learned how o find the <i>n</i> th term of an	Given an a difference. At first it s as the sum we write <i>a</i> Having four the first te	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough information of any earlier term and the approximation $a_{13} = a_6 + 7d$ (note $13 = 6 + 7d$ 0.9 = 0.55 + 7d 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for a_1 $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12(0.05)$ $0.9 = a_1 + 12(0.05)$ $0.9 = a_1 + 0.6$ $a_1 = 0.3$ rm is $a_1 = 0.3$ and the comm	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can expreperopriate multiple of <i>d</i> . Since a_6 is k of a since a_6 is k of a subtract 0.5 for a_1 and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. In the term formula for $n = 13$ 5) substitute 0.9 for a_{13} and 0.05 for <i>d</i> simplify solve for a_1 on difference is $d = 0.05$. Now try Exercises 51 through	ess <i>a</i> ₁₃ nown,
Solution B. You've just learned how o find the <i>n</i> th term of an	Given an a difference At first it s as the sum we write <i>a</i> Having four The first te C. Findi	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for a $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12d$ $0.9 = a_1 + 12d$ $0.9 = a_1 + 0.6$ $a_1 = 0.3$ rm is $a_1 = 0.3$ and the comm	= 0.55 and a_{13} = 0.9, find the commutation is given, but recall we can express peropriate multiple of <i>d</i> . Since a_6 is k 7 as required). a_1 is unknown substitute 0.9 for a_{13} and 0.55 for a_6 subtract 0.55 solve for <i>d</i> 1. <i>n</i> th term formula for $n = 13$ 5) substitute 0.9 for a_{13} and 0.05 for <i>d</i> simplify solve for a_1 on difference is $d = 0.05$. Now try Exercises 51 through	ess <i>a</i> ₁₃ nown, 56 ►
Solution B. You've just learned hov o find the <i>n</i> th term of an	Given an a difference of the second s	rithmetic sequence where a_6 d and the value of a_1 . eems that not enough informa of any earlier term and the ap $a_{13} = a_6 + 7d$ (note $13 = 6 + a_{13} = a_6 + 7d$ 0.9 = 0.55 + 7d 0.35 = 7d d = 0.05 and d , we can now solve for a $a_{13} = a_1 + 12d$ $0.9 = a_1 + 12d$ $0.9 = a_1 + 12d$ $0.9 = a_1 + 0.6$ $a_1 = 0.3$ rm is $a_1 = 0.3$ and the comm ng the <i>n</i>th Partial Sum the neces and series to solve appi mber of terms. Consider the su at the series in reverse order un	 = 0.55 and a₁₃ = 0.9, find the commutation is given, but recall we can exprese peropriate multiple of <i>d</i>. Since a₆ is ker 7 as required). a₁ is unknown substitute 0.9 for a₁₃ and 0.55 for a₆ subtract 0.55 solve for <i>d</i> 1. <i>n</i>th term formula for <i>n</i> = 13 5) substitute 0.9 for a₁₃ and 0.05 for <i>d</i> simplify solve for a₁ on difference is <i>d</i> = 0.05. Now try Exercises 51 through the sequence a₁, a₂, a₃, a₄,, a_n with common of the first <i>n</i> terms and write the derneath. Since one row increases at the column remains constant, and for 	555 <i>a</i> ₁₃ nown, 56 ► e sum o origina he sam

24 Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in 11.2: Arithmetic Sequences Algebra	© The McGraw–Hill Companies, 2010
LO30 CHAPTER 11 Add	litional Topics in Algebra	11-14
	To understand why each column adds column: $a_2 + a_{n-1}$. From $a_2 = a_1 + d$ and $(a_1 + d) + (a_n - d)$ by direct substitution there are <i>n</i> columns, we end up with $2S_n$ formula for the first <i>n</i> terms of an arithmet	n, which gives a result of $a_1 + a_n$. Since $n(a_1 + a_n)$, and solving for S_n gives the
	The nth Partial Sum of an Arithmetic	Sequence
	Given an arithmetic sequence with first te	form a_1 , the <i>n</i> th partial sum is given by
	$S_n = n \left(\frac{2}{n} \right)$	$\left(\frac{a_1+a_n}{2}\right)$.
	In words: The sum of an arithmetic sequen of the first and last term.	ce is the number of terms times the average
EXAMPLE 6	Computing the Sum of an Arithmetic Sector	equence
	Find the sum of the first 75 positive, odd in	ntegers: $\sum^{75} (2k - 1)$.
Solution		5, and we note $a_1 = 1$, $d = 2$, and the value of $a_n = a_{75}$. The <i>n</i> th term
	$S_n = \frac{n(a_1 + a_n)}{2}$	sum formula
	$S_{75} = \frac{75(a_1 + a_{75})}{2}$	substitute 75 for n
	2	substitute 1 for a_1 , 149 for a_{75}
C. You've just learned h		result
o find the <i>n</i> th partial sum o an arithmetic sequence	The sum of the first 75 positive, odd intege	ers is 5625.
		Now try Exercises 57 through 62 ►
Figure 11.5	By substituting the <i>n</i> th term formula we're able to find a partial sum without ac	directly into the formula for partial sums tually having to find the <i>n</i> th term:
	$S_n = \frac{n(a_1 + a_n)}{2}$	sum formula
spiral fern	$=\frac{n(a_1 + [a_1 + (n-1)d])}{2}$	substitute $a_1 + (n-1)d$ for a_n
Figure 11.6	$=\frac{n}{2}[2a_1+(n-1)d]$	alternative formula for the nth partial sum
NO	See Exercises 63 through 68 for more on	this alternative formula.
	D. Applications	
13	In the evolution of certain plants and shel have been one of nature's favorite tools (s	

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additin Trigonometry, Second Algebra Edition	onal Topics in 11.2: Arithmetic :	Sequences	© The McGraw–Hill Companies, 2010	
11-15		Section	11.2 Arithmetic Sequences	103
EXAMPLE 7	Cox Auditorium is an any second row, 44 in the thir is the auditorium's seating. The number of seats in ea $a_1 = 40$, $d = 2$, and $n =$ number of seats, which is a_{75} is unknown, we opt for $S_n = \frac{n}{2}[2a_1 + a_2]$	phitheater that has 40 d, and so on. If there are gapacity? Ich row gives the terms 75. To find the seating the sum of this arithm or the alternative formula $(n-1)d$ surplus	seats in the first row, 42 seats re 75 rows in the auditorium, s of an arithmetic sequence w capacity, we need to find the hetic sequence. Since the valu la $S_n = \frac{n}{2}[2a_1 + (n - 1)d]$. m formula	what ith total
D. You've just learned how to solve applications involving arithmetic sequences 11.2	= 8550	28) simplify result or Cox Auditorium is 8550. Now try Exercises 71 through 76 ►		
CONCEPTS AND VOCABL	ILARY priate word or phrase.			
 Consecutive terms in an arby a constant called the 	rithmetic sequence differ ns of an arithmetic	$a_n = $ and <i>d</i> is the	formula for an arithmetic sequence a_1 is the	term
 The sum of the first <i>n</i> term sequence is called the <i>n</i>th The formula for the <i>n</i>th particular for the <i>n</i>th particular	artial sum of an	can be written relationship <i>a</i> , 6. Describe how was derived, a	in various ways using the $a_k = a_k + (n - k)d$. the formula for the <i>n</i> th partial nd illustrate its application us the exercise set.	sum

12. 1, 4, 8, 13, 19, 26, 34, . . .

13. $\frac{1}{24}, \frac{1}{12}, \frac{1}{8}, \frac{1}{6}, \frac{5}{24}, \ldots$ **14.** $\frac{1}{12}, \frac{1}{15}, \frac{1}{20}, \frac{1}{30}, \frac{1}{60}, \ldots$

7. -5, -2, 1, 4, 7, 10, ... **8.** 1, -2, -5, -8, -11, -14, ... **9.** 0.5, 3, 5.5, 8, 10.5, ...

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

> © The McGraw-Hill Coburn: Algebra and 11. Additional Topics in 11.2: Arithmetic Sequences Trigonometry, Second Companies, 2010 Algebra Edition 1032 CHAPTER 11 Additional Topics in Algebra **15.** 1, 4, 9, 16, 25, 36, . . . **45.** $a_1 = 0.4, a_n = 10.9, d = 0.25$ **16.** -125, -64, -27, -8, -1, . . . **46.** $a_1 = -0.3$, $a_n = -36$, d = -2.1**17.** $\pi, \frac{5\pi}{6}, \frac{2\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{6}, \dots$ **18.** $\pi, \frac{7\pi}{8}, \frac{3\pi}{4}, \frac{5\pi}{8}, \frac{\pi}{2}, \dots$ **47.** -3, -0.5, 2, 4.5, 7, ..., 47 **48.** -3.4, -1.1, 1.2, 3.5, ..., 38 **49.** $\frac{1}{12}, \frac{1}{8}, \frac{1}{6}, \frac{5}{24}, \frac{1}{4}, \dots, \frac{9}{8}$ **50.** $\frac{1}{12}, \frac{1}{15}, \frac{1}{20}, \frac{1}{30}, \dots, -\frac{1}{4}$ Write the first four terms of the arithmetic sequence with the given first term and common difference. Find the common difference d and the value of a_1 using **19.** $a_1 = 2, d = 3$ **20.** $a_1 = 8, d = 3$ the information given. **21.** $a_1 = 7, d = -2$ **22.** $a_1 = 60, d = -12$ **23.** $a_1 = 0.3, d = 0.03$ **24.** $a_1 = 0.5, d = 0.25$ **25.** $a_1 = \frac{3}{2}, d = \frac{1}{2}$ **26.** $a_1 = \frac{1}{5}, d = \frac{1}{10}$ **27.** $a_1 = \frac{3}{4}, d = -\frac{1}{8}$ **28.** $a_1 = \frac{1}{6}, d = -\frac{1}{3}$ **29.** $a_1 = -2, d = -3$ **30.** $a_1 = -4, d = -4$ Evaluate each sum. For Exercises 61 and 62, use the summation properties from Section 11.1. Identify the first term and the common difference, then write the expression for the general term a_n and use it to **57.** $\sum_{n=1}^{30} (3n-4)$ **58.** $\sum_{n=1}^{29} (4n-1)$ find the 6th, 10th, and 12th terms of the sequence. **59.** $\sum_{n=1}^{37} \left(\frac{3}{4}n+2\right)$ **60.** $\sum_{n=1}^{n-1} \left(\frac{5}{2}n-3\right)$ **32.** 7, 4, 1, -2, -5, ... **31.** 2, 7, 12, 17, . . . **33.** 5.10, 5.25, 5.40, . . . **34.** 9.75, 9.40, 9.05, . . . **36.** $\frac{5}{7}, \frac{3}{14}, -\frac{2}{7}, -\frac{11}{14}, \ldots$ **35.** $\frac{3}{2}, \frac{9}{4}, 3, \frac{15}{4}, \ldots$ **62.** $\sum_{n=1}^{20} (7-2n)$ **61.** $\sum_{n=1}^{\infty} (3-5n)$ Find the indicated term using the information given. Use the alternative formula for the *n*th partial sum to **37.** $a_1 = 5, d = 4$; find a_{15} compute the sums indicated. **63.** The sum S_{15} for the sequence **38.** $a_1 = 9, d = -2$; find a_{17} $-12 + (-9.5) + (-7) + (-4.5) + \cdots$ **39.** $a_1 = \frac{3}{2}, d = -\frac{1}{12}$; find a_7 **64.** The sum S_{20} for the sequence $\frac{9}{2} + \frac{7}{2} + \frac{5}{2} + \frac{3}{2} + \cdots$ **40.** $a_1 = \frac{12}{25}, d = -\frac{1}{10}$; find a_9 **65.** The sum S_{30} for the sequence **41.** $a_1 = -0.025, d = 0.05;$ find a_{50} $0.003 + 0.173 + 0.343 + 0.513 + \cdots$ **42.** $a_1 = 3.125, d = -0.25$; find a_{20} **66.** The sum S_{50} for the sequence $(-2) + (-7) + (-12) + (-17) + \cdots$ Find the number of terms in each sequence. 67. The sum S_{20} for the sequence $\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + \cdots$ **43.** $a_1 = 2, a_n = -22, d = -3$ **44.** $a_1 = 4, a_n = 42, d = 2$ **68.** The sum S_{10} for the sequence $12\sqrt{3} + 10\sqrt{3} + 8\sqrt{3} + 6\sqrt{3} + \cdots$ WORKING WITH FORMULAS

69. Sum of the first *n* natural numbers: $S_n = \frac{n(n+1)}{2}$

The sum of the first *n* natural numbers can be found using the formula shown, where n represents the number of terms in the sum. Verify the formula by adding the first six natural numbers by hand. and then evaluating S_6 . Then find the sum of the first 75 natural numbers.

11-16

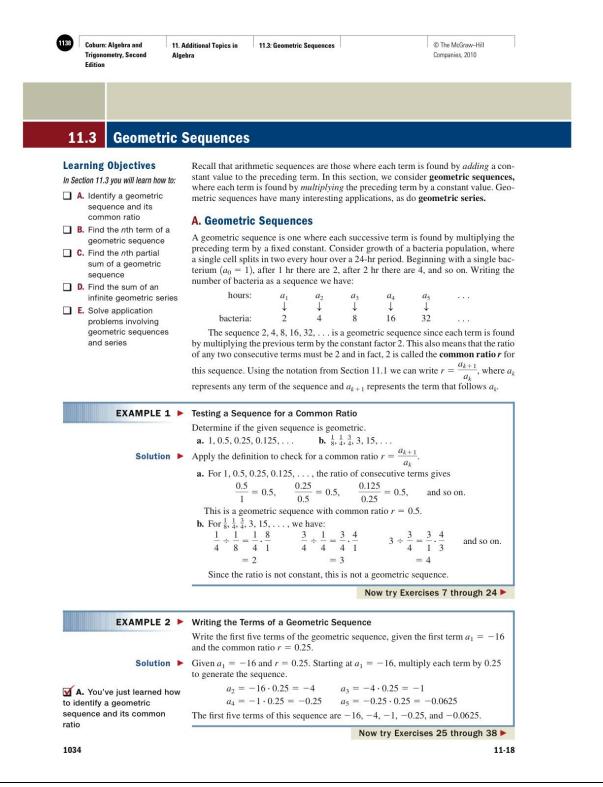
51.
$$a_3 = 7, a_7 = 19$$

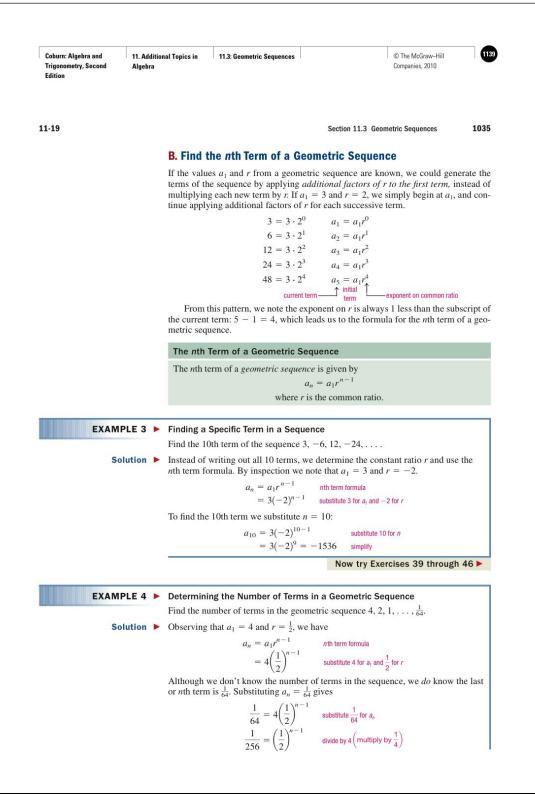
52. $a_5 = -17, a_{11} = -2$
53. $a_2 = 1.025, a_{26} = 10.025$
54. $a_6 = -12.9, a_{30} = 1.5$
55. $a_{10} = \frac{13}{18}, a_{24} = \frac{27}{2}$
56. $a_4 = \frac{5}{4}, a_8 = \frac{9}{4}$

70. Sum of the squares of the first n natural numbers: $S_n = \frac{n(n+1)(2n+1)}{n}$ 6

If the first *n* natural numbers are squared, the sum of these squares can be found using the formula shown, where n represents the number of terms in the sum. Verify the formula by computing the sum of the squares of the first six natural numbers by hand, and then evaluating S_6 . Then find the sum of the squares of the first 20 natural numbers: $(1^2 + 2^2 + 3^2 + \dots + 20^2).$

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.


1137 © The McGraw-Hill Coburn: Algebra and 11. Additional Topics in 11.2: Arithmetic Sequences Trigonometry, Second Algebra Companies, 2010 Edition 11-17 1033 Section 11.2 Arithmetic Sequences APPLICATIONS 71. Temperature fluctuation: At 5 P.M. in Coldwater, has 88, the third row has 96, and so on. How many the temperature was a chilly 36°F. If the temperature seats are in the 10th row? If there is room for decreased by 3°F every half-hour for the next 7 hr, 25 rows, how many chairs will be needed to set at what time did the temperature hit 0°F? up the theater? 72. Arc of a baby swing: When Mackenzie's baby 75. Sales goals: At the time that I was newly hired, swing is started, the first swing (one way) is a 30-in. 100 sales per month was what I required. Each arc. As the swing slows down, each successive arc is following month-the last plus 20 more, as I work $\frac{3}{2}$ in. less than the previous one. Find (a) the length for the goal of top sales award. When 2500 sales are of the tenth swing and (b) how far Mackenzie has thusly made, it's Tahiti, Hawaii, and pina coladas in traveled during the 10 swings. the shade. How many sales were made by this person in the seventh month? What were the total 73. Computer animations: The animation on a new sales after the 12th month? Was the goal of 2500 computer game initially allows the hero of the total sales met after the 12th month? game to jump a (screen) distance of 10 in. over booby traps and obstacles. Each successive jump 76. Bequests to charity: At the time our mother left is limited to $\frac{3}{4}$ in. less than the previous one. Find this Earth, she gave \$9000 to her children of birth. This we kept and each year added \$3000 more, as (a) the length of the seventh jump and (b) the total distance covered after seven jumps a lasting memorial from the children she bore. When \$42,000 is thusly attained, all goes to charity 74. Seating capacity: that her memory be maintained. What was the The Fox Theater balance in the sixth year? In what year was the goal creates a "theater in of \$42,000 met? the round" when it shows any of Shakespeare's plays. The first row has 80 seats, the second row EXTENDING THE THOUGHT 77. From a study of numerical analysis, a function is 78. From elementary geometry it is known that known to be linear if its "first differences' the interior angles of a triangle sum to 180°, the (differences between each output) are constant. interior angles of a quadrilateral sum to 360°, Likewise, a function is known to be quadratic if its the interior angles of a pentagon sum to 540°, and "first differences" form an arithmetic sequence. Use so on. Use the pattern created by the relationship this information to determine if the following sets between the number of sides to the number of of output come from a linear or quadratic function: angles to develop a formula for the sum of the interior angles of an n-sided polygon. The interior **a.** 19, 11.8, 4.6, -2.6, -9.8, -17, -24.2, ... angles of a decagon (10 sides) sum to how many **b.** -10.31, -10.94, -11.99, -13.46, -15.35, ... degrees? MAINTAINING YOUR SKILLS


79. (5.7) Identify the amplitude (*A*), period (*P*), horizontal shift (HS), vertical shift (VS) and endpoints of the primary interval (PI) for

$$f(t) = 7 \sin\left(\frac{3}{3}t - \frac{1}{6}\right) + 10.$$

- **80.** (3.1) Graph by completing the square. Label all important features: $y = x^2 2x 3$.
- 81. (2.3) In 2000, the deer population was 972. By 2005 it had grown to 1217. Assuming the growth is linear, find the function that models this data and use it to estimate the deer population in 2008.

82. (6.1) Verify
$$\frac{\tan x}{\csc x} - \frac{\sin x}{\cos x} = \frac{\sin x - 1}{\cot x}$$
 is an identity.

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

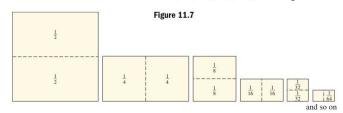
	11. Additional Topics in Algebra	11.3: Geometric Sequences	© The M Companie	cGraw–Hill 28, 2010
1036 CHAPTER 11 Addi	tional Topics in Algebra			11-
		in Chapter 4, we attempt ply logarithms. Since 256	to write both sides as expone $5 = 2^8$, we equate bases.	ntials with a
		$\left(\frac{1}{2}\right)^8 = \left(\frac{1}{2}\right)^{n-1} \text{wri}$	te $\frac{1}{256}$ as $\left(\frac{1}{2}\right)^8$	
			bases imply exponents must be equal ve for <i>n</i>	
	This shows the	re are nine terms in the se	equence.	
			Now try Exercises 47 th	rough 58
	If the term a_1 is		s given, the <i>n</i> th term can be w ace $n = k + (n - k)$	ritten
	(the	e subscript on the term a_k	and the exponent on r sum to	<i>n</i>).
EXAMPLE 5	Finding the Fi	rst Term of a Geometric	Sequence	
		tric sequence where $a_4 = r$ and the value of a_1 .	0.075 and $a_7 = 0.009375$, fin	nd the
Solution	 Since a₁ is not appropriate num 	known, we express a_7 as mber of common ratios: a_7	the product of a known term a $a_7 = a_4 r^3 (7 - 4 = 3)$, as requ	ind the ired).
			sunknown	
	0		stitute 0.009375 for a_7 and 0.075 for a_4	
			de by 0.075 e for <i>r</i>	
	Harden from d			
	Having found /	, we can now solve for a_1		
	0	$a_7 = a_1 r^6$.009375 = $a_1 (0.5)^6$	<i>n</i> th term formula substitute 0.009375 for <i>a</i> ₇ and 0.5 for	
		$a_1(0.09375 = a_1(0.015625))$		
🗹 B. You've just learned	č.	$a_1 = 0.6$	solve for a ₁	

C. Find the nth Partial Sum of a Geometric Sequence

As with arithmetic series, applications of geometric series often involve computing a sum of consecutive terms. We can adapt the method for finding the sum of an arithmetic sequence to develop a formula for adding the first *n* terms of a geometric sequence. For the *n*th term $a_n = a_1 r^{n-1}$, we have $S_n = a_1 + a_1 r + a_1 r^2 + a_1 r^3 + \cdots + a_1 r^{n-1}$. If we multiply S_n by -r then add the original series, the "interior terms" sum to zero.

to zero.

$$\frac{-rS_n = -a_1r + (-a_1r^2) + (-a_1r^3) + \dots + (-a_1r^{n-1}) + (-a_1r^n)}{S_n - rS_n} = \underbrace{a_1 + a_1r + a_1r^2 + \dots + a_1r^{n-2}}_{a_1r^{n-2} + a_1r^{n-1}} + \underbrace{a_1r^{n-1}}_{a_1r^{n-1}} + \underbrace{a_$$


$$S_n(1-r) = a_1 - a_1 r^n \quad \text{factor out } S_n$$
$$S_n = \frac{a_1 - a_1 r^n}{1-r} \quad \text{solve for } S_n$$

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additi Trigonometry, Second Algebra Edition	onal Topics in 11.3: Geometric Sequences	© The McGraw-Hill 1 Companies, 2010
11-21		Section 11.3 Geometric Sequences 103
	The result is a formula for the <i>n</i> t	h partial sum of a geometric sequence.
	The nth Partial Sum of a Geome	etric Sequence
	Given a geometric sequence with fi sum (the sum of the first n terms) is	rst term a_1 and common ratio r , the <i>n</i> th partial
	$S_n = \frac{a_1 - a}{1 - a}$	$\frac{1}{r}r^n = \frac{a_1(1-r^n)}{1-r}, r \neq 1$
	In words: The sum of a geometric sec term, divided by 1 minus	quence is the difference of the first and $(n + 1)$ st the common ratio.
EXAMPLE 6	Computing a Partial Sum	
	computing a Partial Sum	
	Find the sum: $\sum_{i=1}^{9} 3^i$ (the first nine power of the sum is the sum	wers of 3).
Solution >	Find the sum: $\sum_{i=1}^{9} 3^{i}$ (the first nine portion of the initial terms of this series are 3	wers of 3). + 9 + 27 +, and we note $a_1 = 3, r = 3$, he terms and add, but using the partial sum
	Find the sum: $\sum_{i=1}^{9} 3^{i}$ (the first nine por The initial terms of this series are 3 and $n = 9$. We could find the first nin	$+9 + 27 + \cdots$, and we note $a_1 = 3, r = 3$, he terms and add, but using the partial sum
	Find the sum: $\sum_{i=1}^{9} 3^{i}$ (the first nine poor The initial terms of this series are 3 - and $n = 9$. We could find the first nin formula gives $S_n = \frac{a_1(1 - r^n)}{1 - r}$	$+9 + 27 + \cdots$, and we note $a_1 = 3, r = 3$, he terms and add, but using the partial sum
	Find the sum: $\sum_{i=1}^{9} 3^{i}$ (the first nine poor The initial terms of this series are 3 - and $n = 9$. We could find the first nin formula gives $S_n = \frac{a_1(1 - r^n)}{1 - r}$	+ 9 + 27 +, and we note $a_1 = 3, r = 3$, ne terms and add, but using the partial sum sum formula substitute 3 for a_1 , 9 for n , and 3 for r

D. The Sum of an Infinite Geometric Series

To this point we've considered only partial sums of a geometric series. While it is impossible to add an infinite number of these terms, some of these "infinite sums" appear to have a limiting value. The sum appears to get ever closer to this value but never exceeds it—much like the asymptotic behavior of some graphs. We will define the sum of this **infinite geometric series** to be this limiting value, if it exists. Consider the illustration in Figure 11.7, where a standard sheet of typing paper is cut in half. One of the halves is again cut in half and the process is continued indefinitely, as shown. Notice the "halves" create an infinite sequence $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, \cdots with $a_1 = \frac{1}{2}$ and $r = \frac{1}{2}$. The corresponding infinite series is $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots + \frac{1}{2^n} + \cdots$.

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

> Coburn: Algebra and Trigonometry, Second Edition

11. Additional Topics in 11.3: Geometric Sequences © The McGraw-Hill Companies, 2010

11-22

1038 CHAPTER 11 Additional Topics in Algebra

Algebra

If we arrange one of the halves from each stage as shown in Figure 11.8, we would be rebuilding the original sheet of paper. As we add more and more of these halves together, we get closer and closer to the size of the original sheet. We gain an intuitive sense that this series must add to 1, because the pieces of the original sheet of paper must add to 1 whole sheet. To explore this idea further, consider what happens to $\left(\frac{1}{2}\right)^n$ as n becomes large.

$$n = 4: \left(\frac{1}{2}\right)^4 = 0.0625$$
 $n = 8: \left(\frac{1}{2}\right)^8 \approx 0.004$ $n = 12: \left(\frac{1}{2}\right)^{12} \approx 0.0002$

Further exploration with a calculator seems to support the idea that as $n \to \infty, (\frac{1}{2})^n \to 0$, although a definitive proof is left for a future course. In fact, it can

 $n \to \infty, (\overline{z}) \to 0$, although a definitive proof is left for a future course, in fact, it can be shown that for any |r| < 1, r^n becomes very close to zero as n becomes large. In symbols: as $n \to \infty, r^n \to 0$. For $S_n = \frac{a_1 - a_1 r^n}{1 - r} = \frac{a_1}{1 - r} - \frac{a_1 r^n}{1 - r}$, note that if |r| < 1 and "we sum an infinite number of terms," the second term becomes zero, leaving only the first term. In other words, the limiting value (represented by S_{∞}) is

WORTHY OF NOTE The formula for the sum of an infinite geometric series can also be derived by noting that $S_{\infty} = a_1 + a_1r + a_1r^2 + a_1r^3 + \cdots$ can be rewritten as $S_{\infty} = a_1 + r(a_1 + a_1r + a_1r^2 + a_1r^3 + \cdots) = a_1 + rS_{\infty}$ $S_{\infty} - rS_{\infty} = a_1$ $S_{\infty}(1-r) = a_1$ a₁ $S_{\infty} = \frac{a_1}{1-1}$

Infinite Geometric Series

 $S_{\infty} = \frac{a_1}{1 - r}$

Given a geometric sequence with first term a_1 and |r| < 1, the sum of the related infinite series is given by

$$S_{\infty} = \frac{a_1}{1-r}; r \neq$$

If |r| > 1, no finite sum exists

EXAMPLE 7 > Computing an Infinite Sum Find the limiting value of each infinite geometric series (if it exists). **a.** $1 + 2 + 4 + 8 + \cdots$ **b.** $3 + 2 + \frac{4}{3} + \frac{8}{9} + \cdots$ **c.** $0.185 + 0.000185 + 0.000000185 + \cdots$ **Solution >** Begin by determining if the infinite series is geometric. If so, use $S_{\infty} = \frac{a_1}{1-r}$. **a.** Since r = 2 (by inspection), a finite sum does not exist. **b.** Using the ratio of consecutive terms we find $r = \frac{2}{3}$ and the infinite sum exists. With $a_1 = 3$, we have $S_{\infty} = \frac{3}{1 - \frac{2}{3}} = \frac{3}{\frac{1}{3}} = 9$ c. This series is equivalent to the repeating decimal $0.185185185... = 0.\overline{185}$. The common ratio is $r = \frac{0.000185}{0.185} = 0.001$ and the infinite sum exists: $S_{\infty} = \frac{0.185}{1 - 0.001} = \frac{5}{27}$ D. You've just learned how to find the sum of an infinite geometric series Now try Exercises 89 through 104 >

Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.3: Geometric Sequences	© The McGraw-Hill Companies, 2010
11-23			Section 11.3 Geometric Sequences 103
	E. Appli	cations Involving Geo	metric Sequences and Series
		few of the ways these ideas	
EXAM	PLE 8 Solving an	Application of Geometric	Sequences: Pendulums
	A pendulur under the ir one. Gradu pendulum v a. How fa 2 m? b. What is	n is any object attached to a ifluence of gravity. Suppose ally the swings become shor will appear to have stopped (ar does the pendulum travel s the total distance traveled l	fixed point and allowed to swing freely each swing is 0.9 the length of the previous ter and shorter and at some point the although <i>theoretically</i> it never does). on its eighth swing, if the first swing was by the pendulum for these eight swings? of each swing falls below 0.5 m?
		1021 97 97 98 98 90 999	lum travel before coming to rest?
S		= 0.9. The first few terms are e have:	terms of a geometric sequence with $a_1 = 2$ e 2, 1.8, 1.62, 1.458, and so on. For the 8th
		$a_n = a_1 r^{n-1}$ $a_8 = 2(0.9)^{8-1}$ ≈ 0.956	<i>n</i> th term formula substitute 8 for <i>n</i> , 2 for $a_{\rm b}$, and 0.9 for <i>r</i>
	The pe	ndulum travels about 0.956	m on its 8th swing.
	b. For the		eight swings, we compute the value of S_8 .
		$S_n = \frac{a_1(1-r^n)}{1-r}$ $2(1-0.9^8)$	nth partial sum formula
		$S_8 = \frac{2(1 - 0.9^8)}{1 - 0.9} \\\approx 11.4$	substitute 2 for a_1 , 0.9 for r , and 8 for n
	The pe	ndulum has traveled about 1	1.4 m by the end of the 8th swing.
	c. To find		the length of each swing is less than 0.5 m,
		$0.25 = (0.9)^{n-1}$	divide by 2
		$\ln 0.25 = (n - 1)\ln 0$ $\frac{\ln 0.25}{\ln 0.9} + 1 = n$.9 take the natural log, apply power property solve for <i>n</i> (exact form)
		$1n \ 0.9$ $14.16 \approx n$	solve for <i>n</i> (approximate form)
	A ftor t		ive swing will be less than 0.5 m.
	d. For the		re coming to rest, we consider the related
		$S_{\infty} = \frac{a_1}{1-r}$	infinite sum formula
		$S_{\infty} = \frac{2}{1 - 0.9}$	substitute 2 for a_1 and 0.9 for r
E. You've just lea to solve application p		= 20	result
involving geometric sequences and series		ndulum would travel 20 m b	efore coming to rest.

Trigonometry, Second Algebra Edition		Companies, 2010
1040 CHAPTER 11 Additional Topics in Algebra		11-24
11.3 EXERCISES		
11.0 EXERCISES		
CONCEPTS AND VOCABULARY		
Fill in the blank with the appropriate word or phrase. Carefully reread the section if needed.		
1. In a geometric sequence, each successive term is found by the preceding term by a fixed		nce $a_1, a_2, a_3,, a_k,,$ the ven by $S_5 = $
 value <i>r</i>. 2. In a geometric sequence, the common ratio <i>r</i> can be found by computing the of any two consecutive terms. 	an infinite geometric	to the formula for the sum of series.
3. The <i>n</i> th term of a geometric sequence is given by $a_n =$, for any $n \ge 1$.		ce(s) between an arithmetic ence. How can a student ween the formulas?
DEVELOPING YOUR SKILLS		
Determine if the sequence given is geometric. If yes,	23. 240, 120, 40, 10, 2,	
name the common ratio. If not, try to determine the pattern that forms the sequence.	24. -120, -60, -20, -5	i, -1,
7. 4, 8, 16, 32,	Weite des Cont Company	·
8. 2, 6, 18, 54, 162,		26. $a_1 = 2, r = -4$
9. 3, -6, 12, -24, 48,	27. $a_1 = -6, r = -\frac{1}{2}$	
10. 128, -32, 8, -2,		30. $a_1 = \sqrt{5}, r = \sqrt{5}$
11. 2, 5, 10, 17, 26,	31. $a_1 = 0.1, r = 0.1$	32. $a_1 = 0.024, r = 0.01$
12. -13, -9, -5, -1, 3,		
13. 3, 0.3, 0.03, 0.003,	Find the indicated term for	•
14. 12, 0.12, 0.0012, 0.000012,	33. $a_1 = -24, r = \frac{1}{2}$; find	
15. -1, 3, -12, 60, -360,	34. $a_1 = 48, r = -\frac{1}{3}$; find	0
16. $-\frac{2}{3}$, 2, -8, 40, -240,	35. $a_1 = -\frac{1}{20}, r = -5;$ fi	nd a_4
17. 25, 10, 4, $\frac{8}{5}$,	36. $a_1 = \frac{3}{20}, r = 4$; find a	5
18. $-36, 24, -16, \frac{32}{3}, \dots$	37. $a_1 = 2, r = \sqrt{2}$; find	<i>a</i> ₇
19. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$	38. $a_1 = \sqrt{3}, r = \sqrt{3};$ fi	nd a ₈
20. $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	Identify a_1 and r , then writt term $a_n = a_1 r^{n-1}$ and use it	e the expression for the <i>n</i> th t to find <i>a</i> , <i>a</i> , and <i>a</i> ,
21. 3, $\frac{12}{x}$, $\frac{48}{x^2}$, $\frac{192}{x^3}$,		40. $-\frac{7}{8}, \frac{7}{4}, -\frac{7}{2}, 7, -14, \dots$
··		40. $-\frac{1}{8}, \frac{1}{4}, -\frac{1}{2}, \frac{1}{7}, -\frac{1}{14}, \dots$ 42. 625, 125, 25, 5, 1,
22. 5, $\frac{10}{a}$, $\frac{20}{a^2}$, $\frac{40}{a^3}$,	41. 729, 243, 81, 27, 9, 43. $\frac{1}{2}, \frac{\sqrt{2}}{2}, 1, \sqrt{2}, 2,$	· • • • • • • • • • • • • • • • • • • •

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

```
1145
                                                                                                                               © The McGraw-Hill
 Coburn: Algebra and
                                11. Additional Topics in
                                                               11.3: Geometric Sequences
  Trigonometry, Second
                                                                                                                                Companies, 2010
                                  Algebra
  Edition
11-25
                                                                                                                                                             1041
                                                                                                        Section 11.3 Geometric Sequences
  44. 36\sqrt{3}, 36, 12\sqrt{3}, 12, 4\sqrt{3}, ...
                                                                                      76. \frac{1}{18} - \frac{1}{6} + \frac{1}{2} - \cdots; find S_7
                                                                                      77. \sum_{j=1}^{5} 4^{j} 78. \sum_{k=1}^{10} 2^{k}
  45. 0.2, 0.08, 0.032, 0.0128,...
  46. 0.5, -0.35, 0.245, -0.1715, ...
                                                                                     79. \sum_{k=1}^{8} 5\left(\frac{2}{3}\right)^{k-1} 80. \sum_{i=1}^{7} 3\left(\frac{1}{5}\right)^{i-1}
Find the number of terms in each sequence.
  47. a_1 = 9, a_n = 729, r = 3
                                                                                      81. \sum_{i=4}^{10} 9\left(-\frac{1}{2}\right)^{i-1} 82. \sum_{i=3}^{8} 5\left(-\frac{1}{4}\right)^{i-1}
  48. a_1 = 1, a_n = -128, r = -2
  49. a_1 = 16, a_n = \frac{1}{64}, r = \frac{1}{2}
  50. a_1 = 4, a_n = \frac{1}{512}, r = \frac{1}{2}
                                                                                    Find the indicated partial sum using the information
  51. a_1 = -1, a_n = -1296, r = \sqrt{6}
                                                                                     given. Write all results in simplest form.
  52. a_1 = 2, a_n = 1458, r = -\sqrt{3}
                                                                                      83. a_2 = -5, a_5 = \frac{1}{25}; find S_5
                                                                                      84. a_3 = 1, a_6 = -27; find S_6
  53. 2, -6, 18, -54, ..., -4374
                                                                                      85. a_3 = \frac{4}{9}, a_7 = \frac{9}{64}; find S_6
  54. 3, -6, 12, -24, ..., -6144
  55. 64, 32\sqrt{2}, 32, 16\sqrt{2}, ..., 1
                                                                                      86. a_2 = \frac{16}{81}, a_5 = \frac{2}{3}; find S_8
  56. 243, 81\sqrt{3}, 81, 27\sqrt{3}, ..., 1
                                                                                      87. a_3 = 2\sqrt{2}, a_6 = 8; find S_7
  57. \frac{3}{8}, -\frac{3}{4}, \frac{3}{2}, -3, \dots, 96
                                                                                      88. a_2 = 3, a_5 = 9\sqrt{3}; find S_7
  58. -\frac{5}{27}, \frac{5}{9}, -\frac{5}{3}, -5, \ldots, -135
                                                                                    Determine whether the infinite geometric series has a
                                                                                    finite sum. If so, find the limiting value.
Find the common ratio r and the value of a_1 using the
                                                                                      89. 3 + 6 + 12 + 24 + ···
information given (assume r > 0).
                                                                                      90. 4 + 8 + 16 + 32 + ···
  59. a_3 = 324, a_7 = 64 60. a_5 = 6, a_9 = 486
                                                                                      91. 9 + 3 + 1 + ···
  61. a_4 = \frac{4}{9}, a_8 = \frac{9}{4} 62. a_2 = \frac{16}{81}, a_5 = \frac{2}{3}
  63. a_4 = \frac{32}{3}, a_8 = 54 64. a_3 = \frac{16}{25}, a_7 = 25
                                                                                      92. 36 + 24 + 16 + ···
                                                                                      93. 25 + 10 + 4 + \frac{8}{5} + \cdots
Find the indicated sum. For Exercises 81 and 82, use the
                                                                                       94. 10 + 2 + \frac{2}{5} + \frac{2}{25} + \cdots
summation properties from Section 11.1.
                                                                                      95. 6 + 3 + \frac{3}{2} + \frac{3}{4} + \cdots
  65. a_1 = 8, r = -2; find S_{12}
                                                                                      96. -49 + (-7) + (-\frac{1}{7}) + \cdots
  66. a_1 = 2, r = -3; find S_8
                                                                                       97. 6 - 3 + \frac{3}{2} - \frac{3}{4} + \cdots
  67. a_1 = 96, r = \frac{1}{3}; find S_5
                                                                                      98. 10 - 5 + \frac{5}{2} - \frac{5}{4} + \cdots
  68. a_1 = 12, r = \frac{1}{2}; find S_8
                                                                                      99. 0.3 + 0.03 + 0.003 + ···
  69. a_1 = 8, r = \frac{3}{2}; find S_7
                                                                                     100. 0.63 + 0.0063 + 0.000063 + \cdots
  70. a_1 = -1, r = -\frac{3}{2}; find S_{10}
                                                                                    101. \sum_{k=1}^{\infty} \frac{3}{4} \left( \frac{2}{3} \right)^k

102. \sum_{i=1}^{\infty} 5 \left( \frac{1}{2} \right)^i

103. \sum_{j=1}^{\infty} 9 \left( -\frac{2}{3} \right)^j

104. \sum_{k=1}^{\infty} 12 \left( \frac{4}{3} \right)^k
  71. 2 + 6 + 18 + \cdots; find S_6
  72. 2 + 8 + 32 + \cdots; find S_7
  73. 16 - 8 + 4 - \cdots; find S<sub>e</sub>
  74. 4 - 12 + 36 - \cdots; find S_8
  75. \frac{4}{3} + \frac{2}{9} + \frac{1}{27} + \cdots; find S_9
```

Page 86 of 101

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additional Topics in 11.3: Geometric Sequences © The McGraw-Hill Trigonometry, Second Companies, 2010 Algebra Edition 1042 11-26 CHAPTER 11 Additional Topics in Algebra WORKING WITH FORMULAS 105. Sum of the cubes of the first *n* natural numbers: 106. Student loan payment: $A_n = P(1 + r)^n$ $S_n = \frac{n^2(n+1)^2}{n^2}$ If P dollars is borrowed at an annual interest rate r 4 with interest compounded annually, the amount of money to be paid back after n years is given by the Compute $1^3 + 2^3 + 3^3 + \dots + 8^3$ using the indicated formula. Find the total amount of money formula given. Then confirm the result by direct calculation. that the student must repay to clear the loan, if \$8000 is borrowed at 4.5% interest and the loan is paid back in 10 yr. APPLICATIONS 107. Pendulum movement: On each swing, a 111. Equipment aging: Tests have shown that the pendulum travels only 80% as far as it did on the pumping power of a heavy-duty oil pump previous swing. If the first swing is 24 ft, how far decreases by 3% per month. If the pump can move 160 gallons per minute (gpm) new, how many gpm does the pendulum travel on the 7th swing? What can the pump move 8 months later? If the pumping total distance is traveled before the pendulum comes to rest? rate falls below 118 gpm, the pump must be replaced. How many months until this pump is 108. Pendulum movement: Ernesto is swinging to replaced? and fro on his backyard tire swing. Using his legs and body, he pumps each swing until 112. Equipment aging: At the local mill, a certain type reaching a maximum height, then suddenly of saw blade can saw approximately 2 log-feet/sec when it is new. As time goes on, the blade becomes relaxes until the swing comes to a stop. With each swing, Ernesto travels 75% as far as he did worn, and loses 6% of its cutting speed each week. on the previous swing. If the first arc (or swing) How many log-feet/sec can the saw blade cut after is 30 ft, find the distance Ernesto travels on the 6 weeks? If the cutting speed falls below 1.2 logfeet/sec, the blade must be replaced. During what 5th arc. What total distance will he travel before week of operation will this blade be replaced? coming to rest? 113. Population growth: At the beginning of the year 2000, the population of the United States was approximately 277 million. If the population is growing at a rate of 2.3% per year, what will the population be in 2010, 10 yr later? 114. Population growth: The population of the Zeta Colony on Mars is 1000 people. Determine the population of the Colony 20 yr from now, if the population is growing at a constant rate of 5% 109. Depreciation: A certain new SUV depreciates in per year. value about 20% per year (meaning it holds 80% 115. Population growth: A biologist finds that the of its value each year). If the SUV is purchased population of a certain type of bacteria doubles for \$46,000, how much is it worth 4 yr later? each half-hour. If an initial culture has 50 bacteria, How many years until its value is less than what is the population after 5 hr? How long will it \$5000? take for the number of bacteria to reach 204,800? 110. Depreciation: A new photocopier under heavy use 116. Population growth: Suppose the population of a will depreciate about 25% per year (meaning it "boom town" in the old west doubled every 2 months holds 75% of its value each year). If the copier is after gold was discovered. If the initial population purchased for \$7000, how much is it worth 4 yr was 219, what was the population 8 months later? later? How many years until its value is less than How many months until the population exceeds \$1246? 28,000?

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Edit	onometry, Second on	Algebra				
11-2	,			Secti	ion 11.3 Geometric Sequences	1043
118.	dropped from a l the distance it ha it rebound on the travel before cor Elastic rebound is programmed t down the middle 95% of the dista always begins at	The screen saver on n o send a colored ball ve of the screen so that it nee it last traversed. If the the top and the screen i	four-fifths of v high does loes the ball ny computer rtically rebounds he ball	How far does (and a new so 9. Creating a v pump is used cube with a v the pump, tw cube is remo the 5th stroko	es the ball bounce after its 8th is s the ball travel before coming creen saver starts)? vacuum: To create a vacuum, a 1 to remove the air from an air- volume of 462 in ³ . With each st vo-fifths of the air that remains wed. How much air remains in: e? How many strokes are requi ut 12.9 in ³ of the air?	to rest hand tight roke of in the side after
► E	(TENDING THE	CONCEPT				
	balls are droppe surfaces: slate, c on slate, the ball which it last fell on asphalt the fi from 130 m on t 200 m on the as shortest total dis bounce? Which coming to rest? Consider the fol at a salary of \$4 raise of \$1750 p is running about	nce experiment, identic d from a certain height ement, and asphalt. WI rebounds 80% of the I . On cement the figure gure is 70%. The ball is he slate, 175 m on the <i>i</i> phalt. Which ball has tr itance at the time of the ball will travel farthest lowing situation. A per 0,000 per year, with a g er year. At the same tin 4% per year. How man 's salary is overtaken an st of living?	on these hen dropped leight from is 75% and s dropped cement, and aveled the fourth before 12 son is hired yuaranteed he, inflation hy years	result be? (a) (c) as tall as a over 1 mi hig the 27th term you find. 3. Find an alter $S_n = \sum_{k=1}^{n} \log a$. 4. Verify the fo a. If a_1, a_2 , with <i>r</i> an $\log a_2$, la sequence b. If a_1, a_2 ,	a_3, \ldots, a_n is an arithmetic seq	a hen, or (e) omputing cuss what notation. ence og a_1 , ic uence,
122.	A standard piece	of typing paper is appr Suppose you were able t		sequence	$a_{1}^{a_{1}}, 10^{a_{2}}, \dots, 10^{a_{n}}$, is a geometrice.	
M		OUR SKILLS				
125.	(1.5) Find the zero formula: $f(x) =$	eroes of f using the quadratic $x^2 + 5x + 9$.	dratic 12		rs on the Millenium Ferris Wh the center axle. If the top speec	
126.	(7.3) Find a unit 3i - 7j.	vector in the same dire	ection as	velocity of a	revolutions per minute, find th passenger in a car. Round you t whole number. Also, give the	r answer
127.	(4.6) Graph the $h(x) = \frac{x^2}{x-1}$	rational function:		in miles per		velocity

Page 88 of 101

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

> Coburn: Algebra and Trigonometry, Second Edition

11. Additional Topics in Algebra

11.4: Mathematical Induction

© The McGraw-Hill Companies, 2010

11.4 **Mathematical Induction**

Learning Objectives

In Section 11.4 you will learn how to:

A. Use subscript notation to evaluate and compose functions **B.** Apply the principle of mathematical induction to sum formulas involving natural numbers

C. Apply the principle of mathematical induction to general statements involving natural numbers

Since middle school (or even before) we have accepted that, "The product of two negative numbers is a positive number." But have you ever been asked to prove it? It's not as easy as it seems. We may think of several patterns that yield the result, analogies that indicate its truth, or even number line illustrations that lead us to believe the statement. But most of us have never seen a proof (see www.mhhe.com/coburn). In this section, we introduce one of mathematics' most powerful tools for proving a statement, called proof by induction.

A. Subscript Notation and Composition of Functions

One of the challenges in understanding a proof by induction is working with the notation. Earlier in the chapter, we introduced subscript notation as an alternative to function notation, since it is more commonly used when the functions are defined by a sequence. But regardless of the notation used, the functions can still be simplified, evaluated, composed, and even graphed. Consider the function $f(x) = 3x^2 - 1$ and the sequence defined by $a_n = 3n^2 - 1$. Both can be evaluated and graphed, with the only difference being that f(x) is continuous with domain $x \in \mathbb{R}$, while a_n is discrete (made up of distinct points) with domain $n \in \mathbb{N}$.

EXAMPLE 1		Using Subscript Notation for a Composition				
		For $f(x) = 3x^2 - 1$ and $a_n = 3n^2 - 3n^$	-1 , find $f(k+1)$ and a_{k+1} .			
Solution	1 🕨	$f(k+1) = 3(k+1)^2 - 1$	$a_{k+1} = 3(k+1)^2 - 1$			
		$= 3(k^2 + 2k + 1) - 1$	$= 3(k^2 + 2k + 1) - 1$			
		$= 3k^2 + 6k + 2$	$= 3k^2 + 6k + 2$			
			Now try Exercises 7 through 18			

A. You've just learned how to use subscript notation to evaluate and compose functions

No matter which notation is used, every occurrence of the input variable is replaced by the new value or expression indicated by the composition.

B. Mathematical Induction Applied to Sums

Consider the sum of odd numbers $1 + 3 + 5 + 7 + 9 + 11 + 13 + \cdots$. The sum of the first four terms is 1 + 3 + 5 + 7 = 16, or $S_4 = 16$. If we now add a_5 (the next term in line), would we get the same answer as if we had simply computed S_5 ? Common sense would say, "Yes!" since $S_5 = 1 + 3 + 5 + 7 + 9 = 25$ and $S_4 + a_5 = 16 + 9 = 25\checkmark$. In diagram form, we have

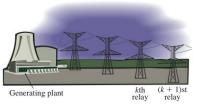
add next term $a_5 = 9$ to S_4 $1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + \cdots$ sum of 4 terms sum of 5 terms

Our goal is to develop this same degree of clarity in the notational scheme of things. For a given series, if we find the kth partial sum S_k (shown next) and then add the next term a_{k+1} , would we get the same answer if we had simply computed S_{k+1} ? In other words, is $S_k + a_{k+1} = S_{k+1}$ true?

1044

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.4: Mathematical Induction		© The McGraw–Hill Companies, 2010	1149
11-29			Section 11.4 Mat	hematical Induction	1045
			add next term a_{k+1}		
	$a_1 + S_k - S_{k+1} - S_{k+1}$	$a_2 + a_3 + \cdots + sum \text{ of } k \text{ terms}$ sum of $k + 1$	$a_{k-1} + a_k + a_{k+1}$ terms	$a_1 + \cdots + a_{n-1} + a_{n-1}$	- a _n
	series with	$a_1 = 1, d = 2, \text{ and } n$	$+3+5+7+\cdots+$ th term $a_n = 2n - 1$. we formula for <i>this sum</i>	Using the sum formu	


 $S_n = \frac{n(a_1 + a_n)}{2}$ summation formula for an arithmetic sequence 2 $=\frac{n(1+2n-1)}{2}$ substitute 1 for a_1 and 2n-1 for a_n $\frac{n(2n)}{2}$ simplify $= n^2$ result

This shows that the sum of the first *n* positive odd integers is given by $S_n = n^2$. As a the kinetic state of the first point of the point of the state of the For more on this relationship, see Exercises 19 through 24.

While it may seem simplistic now, showing $S_5 + a_6 = S_6$ and $S_k + a_{k+1} = S_{k+1}$ (in general) is a critical component of a proof by induction. Unfortunately, general summation formulas for many sequences cannot be established from known formulas. In addition, just because a formula works for the first few values of n, we cannot assume that it will hold true for *all* values of *n* (there are infinitely many). As an illustration, the formula $a_n = n^2 - n + 41$ yields a prime number for *every natural* number n from 1 to 40, but fails to yield a prime for n = 41. This helps demonstrate the need for a more conclusive proof, particularly when a relationship appears to be true, and can be "verified" in a

finite number of cases, but whether it is true in all cases remains in question.

Proof by induction is based on a relatively simple idea. To help understand how it works, consider n relay stations that are used to transport electricity from a generating plant to a distant city. If we know the generating

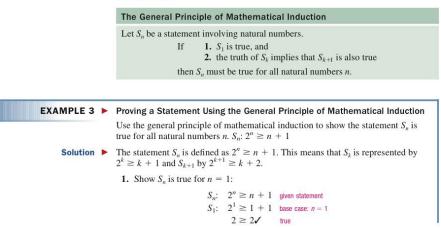
plant is operating, and if we assume that the kth relay station (any station in the series) is making the transfer to the (k + 1)st station (the next station in the series), then we're sure the city will have electricity.

This idea can be applied mathematically as follows. Consider the statement, "The sum of the first n positive, even integers is $n^2 + n$." In other words, $2 + 4 + 6 + 8 + \dots + 2n = n^2 + n$. We can certainly verify the statement for the first few even numbers:

The first even number is 2 and	$(1)^2 + 1 = 2$
The sum of the first <i>two</i> even numbers is $2 + 4 = 6$ and	$(2)^2 + 2 = 6$
The sum of the first <i>three</i> even numbers is $2 + 4 + 6 = 12$ and	$(3)^2 + 3 = 12$
The sum of the first <i>four</i> even numbers is $2 + 4 + 6 + 8 = 20$ and	$(4)^2 + 4 = 20$

WORTHY OF NOTE

No matter how distant the city or how many relay stations are involved, if the generating plant is working and the kth station relays to the (k + 1)st station, the city will get its power.


Trigonometry, Second Edition	11. Additional Topics in 11.4: Mathematical © The McGraw-Hill Algebra Induction Companies, 2010
.046 CHAPTER 11	Additional Topics in Algebra 11-30
	While we could continue this process for a very long time (or even use a com- puter), no finite number of checks can prove a statement is universally true. To prove the statement true for all positive integers, we use a reasoning similar to that applied in the relay stations example. If we are sure the formula works for $n = 1$ (the gener- ating station is operating), and assume that if the formula is true for $n = k$, it must also be true for $n = k + 1$ [the kth relay station is transferring electricity to the $(k + 1)$ st station], then the statement is true for all n (the city will get its electricity). The case where $n = 1$ is called the base case of an inductive proof, and the assumption that the formula is true for $n = k$ is called the induction hypothesis . When the induction hypothesis is applied to a sum formula, we attempt to show that $S_k + a_{k+1} = S_{k+1}$. Since k and $k + 1$ are arbitrary, the statement must be true for all n .
	Mathematical Induction Applied to Sums
	Let S_n be a sum formula involving positive integers.
WORTHY OF NOTE	If 1. S_1 is true, and 2. the truth of S_k implies that S_{k+1} is true,
To satisfy our finite minds might help to show that \$	-,
true for the first few case prior to extending the ide to the infinite case.	
EXAMPLE 2 > Provi	ing a Statement Using Mathematical Induction
Use i	induction to prove that the sum of the first n perfect squares is given by
Use i	induction to prove that the sum of the first n perfect squares is given by
Use i 1 + 4	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$
Use i 1 + 4	induction to prove that the sum of the first n perfect squares is given by
Use i 1 + 4 Solution ► Given	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$
Use i 1 + 4 Solution ► Given F	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$. en $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are
Use i 1 + 4 Solution ► Given F F	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$. en $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are For $a_n = n^2$: $a_k = k^2$ and $a_{k+1} = (k+1)^2$
Use i 1 + 4 Solution ► Given F F	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$. en $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are For $a_n = n^2$: $a_k = k^2$ and $a_{k+1} = (k+1)^2$ For $S_n = \frac{n(n+1)(2n+1)}{6}$; $S_k = \frac{k(k+1)(2k+1)}{6}$ and $S_{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$
Use i 1 + 4 Solution ► Given F F	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$ In $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are For $a_n = n^2$: $a_k = k^2$ and $a_{k+1} = (k+1)^2$ For $S_n = \frac{n(n+1)(2n+1)}{6}$: $S_k = \frac{k(k+1)(2k+1)}{6}$ and $S_{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$ Show S_n is true for $n = 1$. $S_n = \frac{n(n+1)(2n+1)}{6}$ sum formula
Use i 1 + 4 Solution ► Given F F	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$ In $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are For $a_n = n^2$: $a_k = k^2$ and $a_{k+1} = (k+1)^2$ For $S_n = \frac{n(n+1)(2n+1)}{6}$: $S_k = \frac{k(k+1)(2k+1)}{6}$ and $S_{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$ Show S_n is true for $n = 1$. $S_n = \frac{n(n+1)(2n+1)}{6}$ sum formula $S_1 = \frac{1(2)(3)}{6}$ base case: $n = 1$
Use i 1 + 4 Solution > Given F F 1. S	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$ on $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are For $a_n = n^2$: $a_k = k^2$ and $a_{k+1} = (k+1)^2$ For $S_n = \frac{n(n+1)(2n+1)}{6}$: $S_k = \frac{k(k+1)(2k+1)}{6}$ and $S_{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$ Show S_n is true for $n = 1$. $S_n = \frac{n(n+1)(2n+1)}{6} \text{sum formula}$ $S_1 = \frac{1(2)(3)}{6} \qquad \text{base case: } n = 1$ $= 1\checkmark$ result checks, the first term is 1
Use i 1 + 4 Solution > Given F F 1. S	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$ In $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are For $a_n = n^2$: $a_k = k^2$ and $a_{k+1} = (k+1)^2$ For $S_n = \frac{n(n+1)(2n+1)}{6}$: $S_k = \frac{k(k+1)(2k+1)}{6}$ and $S_{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$ Show S_n is true for $n = 1$. $S_n = \frac{n(n+1)(2n+1)}{6}$ sum formula $S_1 = \frac{1(2)(3)}{6}$ base case: $n = 1$
Use i 1 + 4 Solution > Given F F 1. S 2. 4	induction to prove that the sum of the first n perfect squares is given by $4 + 9 + 16 + 25 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$ on $a_n = n^2$ and $S_n = \frac{n(n+1)(2n+1)}{6}$, the needed components are For $a_n = n^2$: $a_k = k^2$ and $a_{k+1} = (k+1)^2$ For $S_n = \frac{n(n+1)(2n+1)}{6}$: $S_k = \frac{k(k+1)(2k+1)}{6}$ and $S_{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$ Show S_n is true for $n = 1$. $S_n = \frac{n(n+1)(2n+1)}{6} \qquad \text{sum formula}$ $S_1 = \frac{1(2)(3)}{6} \qquad \text{base case: } n = 1$ $= 1\checkmark \qquad \text{result checks, the first term is 1}$ Assume S_k is true,

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

	11. Additional Topics in Algebra	11.4: Mathematical Induction	© The McGraw-Hill Companies, 2010	
11-31			Section 11.4 Mathematical Induction	104
2	Working with the left	t-hand side, we have		
	1 + 4	$+9+16+\dots+k^{2}+(k+$	$(1)^{2}$	
	$=$ $\frac{k(k)}{k}$	$\frac{(k+1)(2k+1)}{6} + (k+1)^2$	use the induction hypothesis: substitute $\frac{k(k+1)(2k+1)}{6} \text{ for } 1 + 4 + 9 + 16 + 25$	+ ··· + <i>k</i> ²
	$=\frac{k(k)}{k}$	$(k+1)(2k+1) + 6(k+1)^2$ 6	common denominator	
	$=\frac{(k + k)}{k}$	$\frac{(k+1)[k(2k+1)+6(k+1)]}{6}$	factor out $k + 1$	
B. You've just learne to apply the principle of		$\frac{(k+1)[2k^2+7k+6]}{6}$	multiply and combine terms	
ematical induction to su formulas involving natur numbers		$\frac{(k+1)(k+2)(2k+3)}{6}$	factor the trinomial, result is $S_{k+1,r}$	
	Since the truth of S_{k+1}	follows from S_k , the formu	la is true for all <i>n</i> .	

C. The General Principle of Mathematical Induction

Proof by induction can be used to verify many other kinds of relationships involving a natural number n. In this regard, the basic principles remain the same but are stated more broadly. Rather than having S_n represent a sum, we take it to represent *any statement or relationship* we might wish to verify. This broadens the scope of the proof and makes it more widely applicable, while maintaining its value to the sum formulas verified earlier.

	1. Additional Topics in Algebra	11.4: Mathematic Induction	al				© The McG Companies	
48 CHAPTER 11 Addit	ional Topics in Algebra							11-3
		ot a part of the ship we're tryi						
		n	1	2	3	4	5	
		2 ⁿ	2	4	8	16	32	
		<i>n</i> +1	2	3	4	5	6	
	2. Assume that	It S_k is true,						
	S_k : 2	$2^k \ge k+1$ in	duction h	ypothesis				
	and use it to	o show that the	truth	of S_{k+1}	. That	is,		
	$S_{k+1}: 2^{k+1}$	$k^{1} \geq k+2.$						
		orking with the	e left-l	hand si	de of th	ne inequ	ality, 2^{k+1} .	
	2^{k+}	$^{1} = 2(2^{k})$		ties of ex				
		$\geq 2(k+1)$				stitute k + + 1 is less		
	-	$\geq 2k + 2$	distrib					
ORTHY OF NOTE	Since k is a	positive intege	er, 2k	+ 2 ≥	k + 2,			
ote there is no reference a_n, a_k , or a_{k+1} in the	showing 2 ^k	showing $2^{k+1} \ge k + 2$.						
atement of the general rinciple of mathematical	Since the truth	Since the truth of S_{k+1} follows from S_k , the formula is true for all n .						
duction.		Now try Exercises 39 through 42 ►						
EXAMPLE 4	Proving Divisib	ility Using Ma	them	atical I	nducti	on		
	Let S_n be the sta	- T					sitive integer.	s n." Use
	mathematical ir	iduction to pro	ve tha	S_n is t	rue.			
Solution	 If a number is e some positive in 	10 million 1 mil		ree, it c	an be v	vritten	as the product	of 3 and
	1. Show S_n is		an p.					
		$4^n - 1 = 3p$	4 ⁿ -	- 1 = 3p	$p \in \mathbb{Z}$			
	S_1 :	$4^{(1)} - 1 = 3p$	sub	stitute 1 fo	or n			
		$3 = 3p \checkmark$	stat	ement is t	rue for n	= 1		
	2. Assume that	100						
		$4^{k} - 1 - 3n$			hypotheci	s		
	S_k :	$4^k - 1 = 3p$ $4^k = 3p$		induction	nypotriesi			
	and use it to	$4^k = 3p$	+ 1 1 of <i>S</i> ,	₍₊₁ . Th	at is,			
	and use it to S_{k+1} : 4 ^t	$4^{k} = 3p$ to show the truth $4^{k+1} - 1 = 3q$	+ 1 n of <i>S₁</i> [°] or <i>q</i> €	$_{r+1}$. The \mathbb{Z} is a	at is, Ilso tru			
	and use it to S_{k+1} : 4 th Beginning	$4^{k} = 3p$ o show the truth $4^{k+1} - 1 = 3q$ with the left-ha	+ 1 n of <i>S</i> , for <i>q</i> € nd sic	$_{r+1}$. The \mathbb{Z} is a	at is, Ilso tru ave:	e.		
	and use it to S_{k+1} : 4 th Beginning	$4^{k} = 3p$ to show the truth $4^{k+1} - 1 = 3q$ for the second	+ 1 n of S_i for $q \in$ nd sid $k^k - 1$	\mathbb{Z}^{r+1} . The \mathbb{Z} is a le we h	at is, Ilso tru ave: prope	e. rties of ex	ponents nesis: substitute 3 <i>p</i>	1 1 for Ak

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

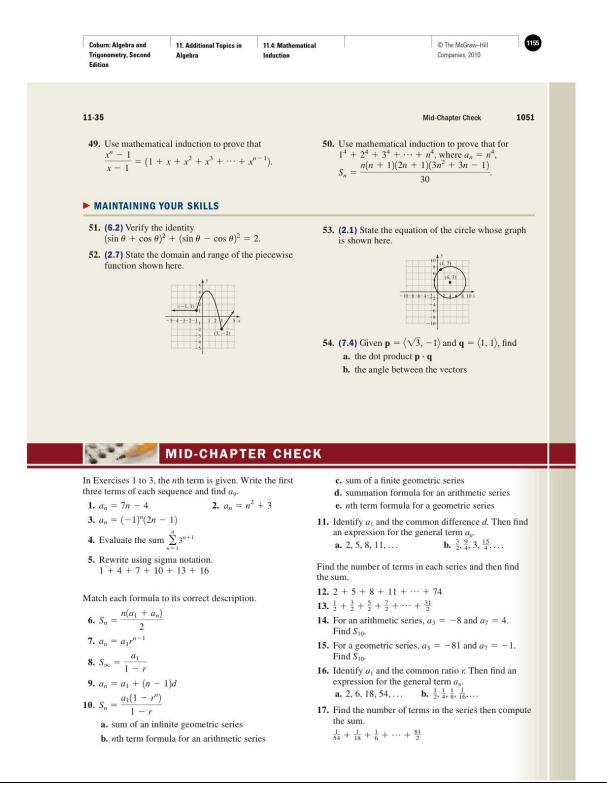
Trigonometry, Second Edition	11. Additional Topics in Algebra	11.4: Mathematical Induction	© The McGraw-Hill Companies, 2010
11-33			Section 11.4 Mathematical Induction 104
	true for	n = 1, and the tru	- 1 is divisible by 3. Since the original statement is th of S_k implies the truth of S_{k+1} , the statement, is true for all positive integers <i>n</i> .
			Now try Exercises 43 through 47 ►
C. You've just lea to apply the principle ematical induction to	of math- all other pos	sitive integers. Fin	e, the statement $\frac{1}{3^n} < \frac{1}{3n}$ is false for $n = 1$, but true for ally, for a fixed natural number p , some statements at
statements involving numbers	natural we can use the	he induction hypo	r all <i>n</i> ≥ <i>p</i> . By modifying the base case to begin at <i>p</i> thesis to prove the statement is true for all <i>n</i> greater that lse for <i>n</i> < 4, but true for all <i>n</i> ≥ 4.
statements involving numbers	natural we can use the	he induction hypople, $n < \frac{1}{3}n^2$ is fa	thesis to prove the statement is true for all n greater that
statements involving numbers	natural we can use th <i>p</i> . For examp 11.4 EXERC	he induction hypople, $n < \frac{1}{3}n^2$ is fa	thesis to prove the statement is true for all n greater that
statements involving numbers CONCEPTS AND Fill in the blank with Carefully reread the s	natural we can use the p. For example, For example	the induction hypople, $n < \frac{1}{3}n^2$ is fa	thesis to prove the statement is true for all <i>n</i> greater that lse for $n < 4$, but true for all $n \ge 4$.
statements involving numbers CONCEPTS AND Fill in the blank with Carefully reread the s	natural we can use the p. For example, For example	the induction hypople, $n < \frac{1}{3}n^2$ is fa	thesis to prove the statement is true for all n greater that
statements involving numbers CONCEPTS AND Fill in the blank with Carefully reread the s 1. No nur statement 2. Showing a state	natural we can use the p. For example, For example	he induction hypople, $n < \frac{1}{3}n^2$ is fa	 thesis to prove the statement is true for all n greater that lse for n < 4, but true for all n ≥ 4. 4. The graph of a sequence is, meaning it is

For the given *n*th term a_n , find a_4 , a_5 , a_k , and a_{k+1} .

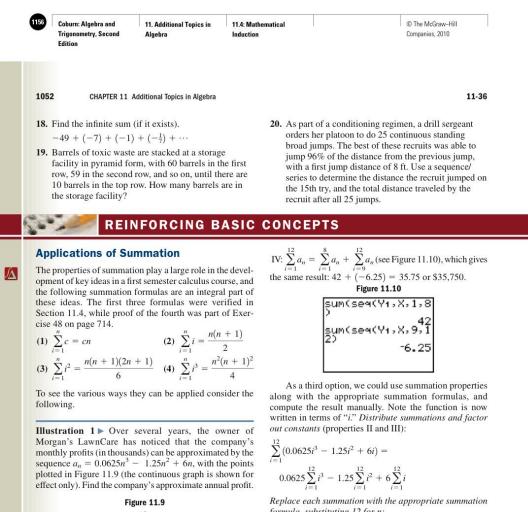
7. $a_n = 10n - 6$	8. $a_n = 6n - 4$
9. $a_n = n$	10. $a_n = 7n$
11. $a_n = 2^{n-1}$	12. $a_n = 2(3^{n-1})$

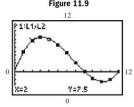
For the given sum formula S_n , find S_4 , S_5 , S_k , and S_{k+1} .

13. $S_n = n(5n - 1)$	14. $S_n = n(3n - 1)$
15. $S_n = \frac{n(n+1)}{2}$	16. $S_n = \frac{7n(n+1)}{2}$
17. $S_n = 2^n - 1$	18. $S_n = 3^n - 1$


Verify that $S_4 + a_5 = S_5$ for each exercise. These are identical to Exercises 13 through 18.

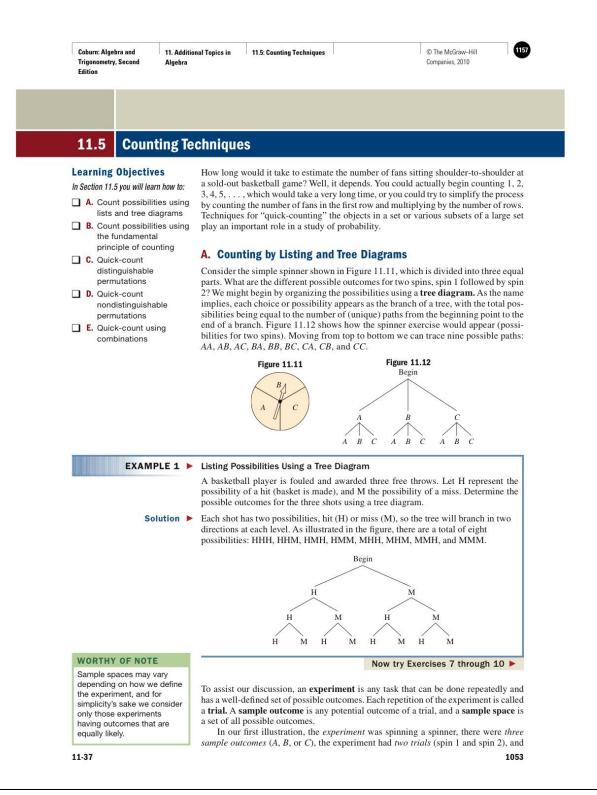
19.
$$a_n = 10n - 6$$
; $S_n = n(5n - 1)$
20. $a_n = 6n - 4$; $S_n = n(3n - 1)$
21. $a_n = n$; $S_n = \frac{n(n + 1)}{2}$
22. $a_n = 7n$; $S_n = \frac{7n(n + 1)}{2}$
23. $a_n = 2^{n-1}$; $S_n = 2^n - 1$
24. $a_n = 2(3^{n-1})$; $S_n = 3^n - 1$


No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.


1050 CHAPTER 11 Additional Topics in Algebra	11-34
WORKING WITH FORMULAS	
25. Sum of the first <i>n</i> cubes (alternative form): $(1+2+3+4+\cdots+n)^2$	26. Powers of the imaginary unit: $i^{n+4} = i^n$, where $i = \sqrt{-1}$
Earlier we noted the formula for the sum of the $\frac{2}{10}$	Use a proof by induction to prove that powers of
first <i>n</i> cubes was $\frac{n^2(n+1)^2}{4}$. An alternative is given	the imaginary unit are cyclic. That is, that they cycle through the numbers $i, -1, -i$, and 1 for consecutive powers.
by the formula shown. a. Verify the formula for $n = 1, 5$, and 9.	consecutive powers.
b. Verify the formula using	
$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$	
APPLICATIONS	
Use mathematical induction to prove the indicated sum formula is true for all natural numbers <i>n</i> .	36. 1 + 8 + 27 + 64 + 125 + 216 + + n^3 ; $a_n = n^3, S_n = \frac{n^2(n+1)^2}{4}$
27. $2 + 4 + 6 + 8 + 10 + \dots + 2n;$ $a_n = 2n, S_n = n(n + 1)$	$a_n + b_n = 4$
$a_n - 2n, s_n - n(n + 1)$ 28. 3 + 7 + 11 + 15 + 19 + + (4n - 1);	37. $\frac{1}{1(3)} + \frac{1}{3(5)} + \frac{1}{5(7)} + \dots + \frac{1}{(2n-1)(2n+1)};$
$a_n = 4n - 1, S_n = n(2n + 1)$	
29. $5 + 10 + 15 + 20 + 25 + \dots + 5n$;	$a_n = \frac{1}{(2n-1)(2n+1)}, S_n = \frac{n}{2n+1}$
$a_n = 5n, S_n = \frac{5n(n+1)}{2}$	38. $\frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \dots + \frac{1}{n(n+1)}$
30. $1 + 4 + 7 + 10 + 13 + \dots + (3n - 2);$ $a_n = 3n - 2, S_n = \frac{n(3n - 1)}{2}$	$a_n = \frac{1}{n(n+1)}, S_n = \frac{n}{n+1}$
$a_n = 3n - 2, S_n = \frac{n(3n - 1)}{2}$	n(n + 1) $n + 1$
31. $5 + 9 + 13 + 17 + \dots + (4n + 1);$	Use the principle of mathematical induction to prove that each statement is true for all natural numbers <i>n</i> .
$a_n = 4n + 1, S_n = n(2n + 3)$	39. $3^n \ge 2n+1$ 40. $2^n \ge n+1$
32. $4 + 12 + 20 + 28 + 36 + \dots + (8n - 4);$ $a_n = 8n - 4, S_n = 4n^2$	41. $3 \cdot 4^{n-1} \le 4^n - 1$ 42. $4 \cdot 5^{n-1} \le 5^n - 1$
33. $3 + 9 + 27 + 81 + 243 + \dots + 3^n$;	43. $n^2 - 7n$ is divisible by 2
$a_n = 3^n, S_n = \frac{3(3^n - 1)}{2}$	44. $n^3 - n + 3$ is divisible by 3
-	45. $n^3 + 3n^2 + 2n$ is divisible by 3
34. $5 + 25 + 125 + 625 + \dots + 5^n$; $a_n = 5^n, S_n = \frac{5(5^n - 1)}{4}$	46. $5^n - 1$ is divisible by 4
$a_n = 5^n$, $S_n = \frac{1}{4}$	47. $6^n - 1$ is divisible by 5
35. $2 + 4 + 8 + 16 + 32 + 64 + \dots + 2^n$; $a_n = 2^n, S_n = 2^{n+1} - 2$	

regression on the first five perfect cubes (enter 1

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

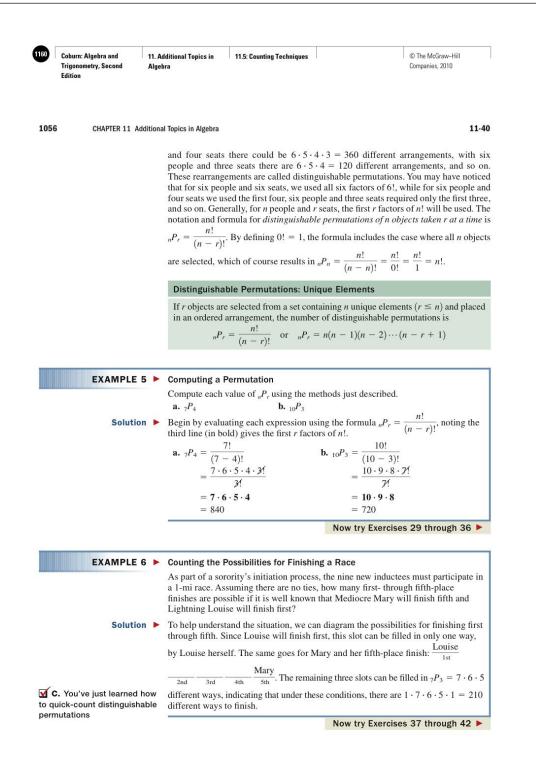

Solution The most obvious approach would be to simply compute terms a_1 through a_{12} (January through December) and find their sum: **sum(seq(Y1, X, 1, 12)** (see Section 11.1 Technology Highlight), which gives a result of 35.75 or \$35,750.

As an alternative, we could add the amount of profit earned by the company in the first 8 months, then add the amount the company lost (or broke even) during the last 4 months. In other words, we could apply summation property *Replace each summation with the appropriate summation formula, substituting 12 for n:* $= 0.0625 \left[n^2(n+1)^2 \right] = 1.25 \left[n(n+1)(2n+1) \right]$

$$= 0.0625 \left[\frac{1}{4} \right] - 1.25 \left[\frac{1}{6} \right] + 6 \left[\frac{n(n+1)}{2} \right]$$
$$= 0.0625 \left[\frac{(12)^2(13)^2}{4} \right] - 1.25 \left[\frac{(12)(13)(25)}{6} \right] + 6 \left[\frac{(12)(13)}{2} \right]$$
$$= 0.0625(6084) - 1.25(650) + 6(78) \text{ or } 35.75$$

As we expected, the result shows profit was \$35,750. While some approaches seem "easier" than others, all have great value, are applied in different ways at different times, and are necessary to adequately develop key concepts in future classes.

Exercise 1: Repeat Illustration 1 if the profit sequence is $a_n = 0.125x^3 - 2.5x^2 + 12x$.


Coburn: Algebra and 11. An Trigonometry, Second Algeb Edition	dditional Topics in ora	11.5: Counting Techniques	© The McGraw–Hill Companies, 2010
054 CHAPTER 11 Additiona	I Topics in Algebra		11-3
	three sample o we have $3^2 =$	utcomes will again have three	Note that after the first trial, each of the possibilities $(A, B, \text{ and } C)$. For two trial rials would yield a sample space wit
	A "Quick-Co	unting" Formula for a Sam	ble Space
	If an experim		at are equally likely and the experiment
EXAMPLE 2 🕨	Counting the	Outcomes in a Sample Space	ce
	along a circula sequence of th counterclockw	tion locks have the digits 0 th r dial. Opening the lock requi ree numbers within this range. ise to the first number, clockw ise to the third. How many the are possible?	res stopping at a going rise to the second, and
Solution ► A. You've just learned how o count possibilities using sts and tree diagrams	three trials ($t =$ identical to the	ample outcomes $(N = 40)$ in t = 3). The number of possible of e number of elements in the sa $40^3 = 64,000$ possible combin	combinations is mple space. The quick-counting
			Now try Exercises 11 and 12 >
	B. Fundam	ental Principle of Coun	ting
	The number of For example, s certain number are reserved for	f possible outcomes may diffe some security systems, license rs. For example, phone numbe	r depending on how the event is defined plates, and telephone numbers exclud rs cannot begin with 0 or 1 because thes tance, and international calls. Construc
	choices for the		number between 2 and 9, there are eigh hoices for the second digit and 10 choice
EXAMPLE 3 🕨	Counting Pos	sibilities for a Four-Digit Sec	urity Code
			nter a four-digit PIN (personal identifi- gh 9. How many codes are possible if
		of digits is allowed?	git 9. How many codes are possible if
		is not allowed?	
	c. The first d	igit must be even and repetition	ons are not allowed?
Solution ►			$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ with the number of
	ways the c to that of l	ligit can be chosen. If repetition Example 2 and there are $N^{t} =$	In is allowed, the experiment is similar $9^4 = 6561$ possible PINs.
	digit of the		y eight possible choices for the second and six for the fourth. The number of $\cdot 7 \cdot 6 = 3024$.
	c. There are	four choices for the first digit	(2, 4, 6, 8). Once this choice has been

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

	11. Additional Topics in Algebra	11.5: Counting Techniques	T	© The McGraw–Hill Companies, 2010	1159
1-39			Section 11.5 Cc	ounting Techniques	1055
WORTHY OF NOTE In Example 4, we could a reason that since there ar 6! = 720 random seating arrangements and 240 of them consist of Bob and Carol sitting together	re pleted in p j sibilities, a for task ₁ -ta have varied	any experiment involvi possible ways, the secon tree diagram will show sk_2 -task ₃ is $p \cdot q \cdot r$. Eve d a great deal, this idea ce and is, in fact, known	that the number of posen though the examples a was fundamental to of	es, and the third task h ssibilities in the samp we've considered to t counting all possibili	has <i>r</i> pos- ple space this point ities in a
[Example 4(a)], the remain	ning Fundame	ental Principle of Cou	inting (Applied to Th	ree Tasks)	
720 - 240 = 480 must consist of Bob and Carol sitting together. More will said about this type of	l be of ways th	experiment with three ssibilities for the secon- the experiment can be co	d, and <i>r</i> possibilities fo		
reasoning in Section 11.6		indamental principle ca	n be extended to inclu	de any number of ta	sks.
Soluti Figure 11.13 Bob Carol - 1 2 3 4 5 -1 2 Bob Carol - - 1 -2 Bob Carol - - -1 -2 -3 Bob Carol - -1 -2 -3 4 - 5 -1 -2 -3 4 Bob 5 -1 -2 -3 -4 -5 -1 -2 -3 4 Bob -1 -2 -3 -4 -5 -1 -2 -3 -4 -5 -1 -2 -3 -4 -5 -1 -2 -3 -4 -5	Marriage a different se a. Bob ar b. Bob ar ion ► a. Since a divide either I seated.	Bob, Carol, Dax, Earlei <i>of Figaro</i> . Assuming the eating arrangements are dd Carol are sweetheart dd Carol are enemies ar a restriction has been pi the experiment into a s Bob is on the left or Bo . Bob and Carol can sit 11.13, so there are five side-by-side: Bob on the rig nly, so task 3 has $4! =$ ted $5 \cdot 2 \cdot 4! = 240$ way . similar to Part (a), but separated by <i>at least o</i> <i>task 2</i> : either Bob is on our are seated. For task ed, just a simple counting If Bob sits in seat 2, the 14 + 3 + 2 + 1 = 10 pu and task 3 have the sat 4! = 480 possible seat	ey sat together in a row possible if s and must sit together d must not sit together laced on the seating an equence of tasks: <i>task</i> b is on the right; and <i>t</i> together in five differe possibilities for task he left and Carol on the ht. The remaining four 24 possibilities. Under /s. now we have to count <i>ne seat: task 1:</i> Bob ar the left or Bob is on th 1, be careful to note ti g. If Bob sits in seat 1, re are three nonadjace ossibilities for Bob and ne number of possibili	v of six seats, how m ? r? rangement, it will he <i>I</i> : they sit together; <i>ask 3</i> : the other four nt ways, as shown in I. There are two way e right, as shown, or people can be seate- t these conditions the the number of ways ad Carol are in nonact here is no multiplica there are four nonad nt seats, and so on. T d Carol not sitting to	elp to task 2: are n 's's they Carol d ey can they tjacent the tion jacent This gether.
o count possibilities usin he fundamental principle	-		Now try Exe	ercises 21 through	28 ►
counting	C. Disti	nguishable Permu	tations		

In the game of Scrabble[®] (Milton Bradley), players attempt to form words by rearranging letters. Suppose a player has the letters P, S, T, and O at the end of the game. These letters could be rearranged or *permuted* to form the words POTS, SPOT, TOPS, OPTS, POST, or STOP. These arrangements are called permutations of the four letters. A permutation is any new arrangement, listing, or sequence of objects obtained by changing an existing order. A **distinguishable permutation** is a permutation that produces a result different from the original. For example, a distinguishable permutation of the digits in the number 1989 is 8199.

Example 4 considered six people, six seats, and the various ways they could be seated. But what if there were fewer seats than people? By the FPC, with six people

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Addition Trigonometry, Second Algebra Edition	al Topics in	11.5: Counting Tec	chniques			© The Mo Companie	cGraw–Hill es, 2010	116
11-41				S	ection 11.5 (Counting Tech	niques	1057
	D. Nondi	istinguishat	le Pe	rmutatio	ns			
	tell one apa or sample o Morgan, M Michael and can they be	e implies, certai rt from anothe utcomes that a lichael, and Mi d Mitchell are i lined up for the from a group o	r. Such re ident itchell, dentica e pictur	is the case ical. Consi who are a l twins and e? Since th	when the der a famil t the photo cannot be is is an ord	original se by with fou studio fo told apart. ered arrang	t contains ir children or a family In how m gement of	elements , Lyddell, y picture. any ways four chil-
	Lyddell	l Morgan M l Michael M el Lyddell M	lorgan	Mitchell	Lyddell	C	Mitchell Morgan Morgan	
	difference b total permut be nondistin total permut permuted:	these six arrange between Micha tations, every pinguishable. To itations (4P4) of $\frac{4P_4}{(2)!} = \frac{24}{2} = 12$ deas can be get	el and icture w find the <i>und div</i> 2 distin	Mitchell ca here Micha e distinguis <i>ide by</i> 2!, guishable p	annot be di nel and Mit shable perr <i>the numb</i> pictures.	stinguished chell have s nutations, v er of ways	d. In fact, switched p we need to s the twin	of the 24 laces will take the
WORTHY OF NOTE	Nondistin	nguishable Pe	rmutat	ions: Non	unique Ele	ements		
In Example 7, if a Scrabble player is able to play all seven letters in one turn, he or she "bingos" and is awarded 50 extra points. The player in Example 7 did just that. Can you determine what	repeated q	ontaining <i>n</i> ele <i>q</i> times, and and guishable permu	other is	repeated r	times (p +			
word was played?	The ide	ea can be extend	ded to i	nclude any	number of	repeated e	elements.	
EXAMPLE 7 🕨	A Scrabble	Distinguishable player has the aguishable arrai	seven l	etters S, A,				
Solution ► ① D. You've just learned how to quick-count	seven letter	the exercise as s, given T is rep distinguishabl	peated	hree times				
nondistinguishable permutations				٦	low try Ex	ercises 43	3 through	54 🕨

E. Combinations

Similar to nondistinguishable permutations, there are other times the total number of permutations must be reduced to quick-count the elements of a desired subset. Consider a vending machine that offers a variety of 40¢ candies. If you have a quarter (Q), dime (D), and nickel (N), the machine wouldn't care about the order the coins were deposited. Even though QDN, QND, DQN, DNQ, NQD, and NDQ give the $_{3}P_{3} = 6$ possible permutations, the machine considers them as equal and will vend your snack. Using sets, this is similar to saying the set $A = \{X, Y, Z\}$ has only one subset with three elements, since $\{X, Z, Y\}$, $\{Y, X, Z\}$, $\{Y, Z, X\}$, and so on, all represent the same set. Similarly, there are six, two-letter permutations of X, Y, and $Z(_{3}P_{2} = 6)$: XY, XZ, YX,

	n: Algebra and nometry, Second n	11. Additional Topics in Algebra	11.5: Counting Techniques	© The McGraw–Hill Companies, 2010
58	CHAPTER 11 Ad	ditional Topics in Algebra		11-42
		permutations h of possible con ways, we divi- which can be $\frac{n!}{(n-r)!}$ for $_{n}l$ $\frac{n!}{r!(n-r)!}$. Ta elements and ti	aving the same elements are consid mbinations and is denoted $_{n}C_{r}$. Sin de $_{n}P_{r}$ by $r!$ to "quick-count" the thought of as <i>the first r factors of</i> P_{r} in this formula, we find an alter ke special note that when r objective	s: {X, Y}, {X, Z} and {Y, Z}. When ered identical, the result is the number nee the r objects can be selected in r' number of possibilities: ${}_{n}C_{r} = \frac{nP_{r}}{r!!}$ of n!, divided by r!. By substituting matrixe method for computing ${}_{n}C_{r}$ is excts are selected from a set with n nt (because you end up with the same reliance of the selected from the set of the selected from the set of the selected from the set of the set of the selected from the set of the selected from the set of the selected from the set of
			•	ation.
		Combination The number of	of combinations of <i>n</i> objects taken ${}_{n}C_{r} = \frac{nP_{r}}{r!}$ or ${}_{n}C_{r}$	
			5 8 80 100 1000 00 100 100	
	EXAMPLE 8	Compute each a. $_7C_4$	by binations Using a Formula value of ${}_{n}C_{r}$ given. b. ${}_{8}C_{3}$ c. $\frac{6 \cdot 5 \cdot 4}{4!}$ b. ${}_{8}C_{3} = \frac{8 \cdot 7 \cdot 6}{3!}$ = 56	c. ${}_{5}C_{2}$ c. ${}_{5}C_{2} = \frac{5 \cdot 4}{2!}$ = 10
			Now	try Exercises 55 through 64 🕨
	EXAMPLE	Applications (of Combinations-Lottery Results	
	Solution	numbered 1 th holder has the numbers be dr Since the winr combination o	getting ready to draw five Ping-Pi rough 9 to determine the winner(s same five numbers, they win. In h awn? ing numbers can be drawn in any f 9 things taken 5 at a time. The fit $= \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{5!} = 126$ ways.) for its annual raffle. If a ticket ow many ways can the winning order, we have a
		-		Now try Exercises 65 and 66 🕨
		is not important The forma Card game Playing B When the tant, the numb Another w	nt. Such situations include ation of committees, since the orde es with a standard deck, since the or INGO, since the order the number order in which people or objects a er of possibilities is a <i>combination</i> yay to tell the difference between p	rder cards are dealt is unimportant s are called is unimportant re selected from a group is unimpor-

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Add Trigonometry, Second Algebra Edition	itional Topics in a	11.5: Counting Techniques	© The McGraw-Hill Companies, 2010	1
11-43			Section 11.5 Counting Techniques	1059
	Committee	of Colleagues or Collection	natters. By contrast, a Combination of Commoners; all members have eq m b- a - c . For combinations, a - b - c is t	ual rank
EXAMPLE 10	Applicatio	ns of Quick-Counting—Cor	nmittees and Government	
		ogy Department of Lakeside mbers. (a) In how many ways	Community College has 12 dedicate	
		be formed? (b) If the departs	ir, in how many ways can the position	r,

The Exercise Set contains a wide variety of additional applications. See Exercises 81 through 107.

ŧ	TECHNOLOGY HIGHLIGHT
	Calculating Permutations and Combinations
	Both the $_{n}P_{r}$ and $_{n}C_{r}$ functions are accessed using the mann key and the PRB submenu (see Figure 11.14). To compute the permutations of 12 objects taken 9 at a time ($_{12}P_{9}$), clear the home screen and enter a 12, then press mann \bigcirc 2: $_{n}P_{r}$ to access the $_{n}P_{r}$ operation, which is automatically pasted on the home screen after the 12. Now enter a 9, press EME and a result of 79833600 is displayed (Figure 11.15). Repeat the sequence to compute the value of $_{12}C_{9}$ (mann \bigcirc 3: $_{n}C_{1}$). Note that the value of $_{12}P_{9}$ is much larger than $_{12}C_{9}$ and that they differ by a factor of 9! since $_{n}C_{r} = \frac{nP_{r}}{r!}$. Exercise 1: The Department of Humanities has nine faculty members who must serve on at least one committee per semester. How many different committees can be formed that have (a) two members, (b) three members, (c) four members, and (d) five members? Exercise 2: A certain state places 45 Ping-Pong balls numbered 1 through 45 in a container, then draws out five to form the winning lottery numbers. How many different ways can the five numbers be picked? Exercise 3: Dairy King maintains six different toppings at a self-service counter, so that customers can top their ice cream sundaes with as many as they like. How many different sundaes can be created if a customer were to select any three ingredients?

Coburn: Algebra and 11. Additional Topics in 11.5: Cour Trigonometry, Second Algebra Edition	ting Techniques © The McGraw-Hill Companies, 2010
060 CHAPTER 11 Additional Topics in Algebra 11.5 EXERCISES	11-44
CONCEPTS AND VOCABULARY	
 iiii in the blank with the appropriate word or phrase. Carefully reread the section if needed. 1. A(n) is any task that can be repeated and has a(n) set of possible outcomes. 2. If an experiment has <i>N</i> equally likely outcomes and is repeated <i>t</i> times, the number of elements in the sample space is given by 3. When unique elements of a set are rearranged, the mentioned helpents. 	 If some elements of a group are identical, certain rearrangements are identical and the result is a(n) permutation. A three-digit number is formed from digits 1 to 9. Explain how forming the number with repetition differs from forming it without repetition. Discuss/Explain the difference between a permutation and a combination. Try to think of the formed form
result is called a(n) permutation. DEVELOPING YOUR SKILLS	new ways to help remember the distinction.
 7. For the spinner shown here, (a) draw a tree diagram illustrating all possible outcomes for two spins and (b) create an ordered list showing all possible outcomes for two spins. 	14. Repetition is not allowed?15. A remote access door opener requires a five-digit (1–9) sequence. How many sequences are possible if (a) repetition is allowed? (b) repetition is not allowed?
8. For the fair coin shown here, (a) draw a tree diagram illustrating all possible outcomes for Tails	16. An instructor is qualified to teach Math 020, 030, 140, and 160. How many different four-course schedules are possible if (a) repetition is allowed?(b) repetition is not allowed?
four flips and (b) create an ordered list showing the possible outcomes for four flips.	Use the fundamental principle of counting and other quick-counting techniques to respond.
9. A fair coin is flipped five times. If you extend the tree diagram from Exercise 8, how many elements are in the sample space?	17. Menu items: At Joe's Diner, the manager is offering a dinner special that consists of one choice of entree (chicken, beef, soy meat, or pork), two vegetable servings (corn, carrots, green beans, peas, broccoli, or okra), and one choice of pasta,
10. A spinner has the two equally likely outcomes <i>A</i> or <i>B</i> and is spun four times. How is this experiment related to the one in Exercise 8? How many	rice, or potatoes. How many different meals are possible?
elements are in the sample space?11. An inexpensive lock uses the numbers 0 to 24 for a three-number combination. How many different combinations are possible?	18. Getting dressed: A frugal businessman has five shirts, seven ties, four pairs of dress pants, and three pairs of dress shoes. Assuming that all possible arrangements are appealing, how many different shirt-tie-pants-shoes outfits are possible?
12. Grades at a local college consist of A, B, C, D, F, and W. If four classes are taken, how many different report cards are possible?	19. Number combinations: How many four-digit numbers can be formed using the even digits 0, 2, 4, 6, 8, if (a) no repetitions are allowed;
License plates. In a certain (English-speaking) country, icense plates for automobiles consist of two letters ollowed by one of four symbols $(\mathbf{n}, \bullet, \circ, \mathbf{or}, \mathbf{o})$, followed	(b) repetitions are allowed; (c) repetitions are not allowed and the number must be less than 6000 and divisible by 10.
by three digits. How many license plates are possible if 13. Repetition is allowed?	 Number combinations: If I was born in March, April, or May, after the 19th but before the 30th,

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

1165 Coburn: Algebra and 11. Additional Topics in 11.5: Counting Techniques © The McGraw-Hill Trigonometry, Second Companies, 2010 Algebra Edition 11-45 Section 11.5 Counting Techniques 1061 and after 1949 but before 1981, how many 40. From a pool of 32 applicants, a board of directors different MM-DD-YYYY dates are possible for must select a president, vice-president, labor my birthday? relations liaison, and a director of personnel for the company's day-to-day operations. Assuming all Seating arrangements: William, Xayden, York, and Zelda applicants are qualified and willing to take on any of decide to sit together at the movies. How many ways can these positions, how many ways can this be done? they be seated if 41. A hugely popular chess tournament now has six 21. They sit in random order? finalists. Assuming there are no ties, (a) in how many ways can the finalists place in the final 22. York must sit next to Zelda? round? (b) In how many ways can they finish first, 23. York and Zelda must be on the outside? second, and third? (c) In how many ways can they finish if it's sure that Roberta Fischer is going to 24. William must have the aisle seat? win the tournament and that Geraldine Kasparov will come in sixth? Course schedule: A college student is trying to set her schedule for the next semester and is planning to take five 42. A field of 10 horses has just left the paddock area classes: English, art, math, fitness, and science. How many and is heading for the gate. Assuming there are no different schedules are possible if ties in the big race, (a) in how many ways can the horses place in the race? (b) In how many ways can 25. The classes can be taken in any order. they finish in the win, place, or show positions? (c) 26. She wants her science class to immediately follow In how many ways can they finish if it's sure that her math class. John Henry III is going to win, Seattle Slew III will come in second (place), and either Dumb Luck II 27. She wants her English class to be first and her or Calamity Jane I will come in tenth? fitness class to be last. 28. She can't decide on the best order and simply takes Assuming all multiple births are identical and the the classes in alphabetical order. children cannot be told apart, how many distinguishable photographs can be taken of a family of six, if they stand in a single row and there is Find the value of $_{n}P_{r}$ in two ways: (a) compute r factors of *n*! and (b) use the formula $_{n}P_{r} = \frac{n!}{(n-r)!}$ 43. one set of twins 44. one set of triplets **29.** ${}_{10}P_3$ **30.** ${}_{12}P_2$ 31. ₉P₄ 45. one set of twins and one set of triplets 32. ₅P₃ 33. ₈P₇ 34. sP1 46. one set of quadruplets Determine the number of three-letter permutations of 47. How many distinguishable numbers can be made the letters given, then use an organized list to write them by rearranging the digits of 105,001? all out. How many of them are actually words or 48. How many distinguishable numbers can be made by common names? rearranging the digits in the palindrome 1,234,321? 35. T. R. and A 36. P, M, and A How many distinguishable permutations can be formed 37. The regional manager for an office supply store from the letters of the given word? needs to replace the manager and assistant manager at the downtown store. In how many ways can this 49. logic 50. leave be done if she selects the personnel from a group 51. lotto 52. levee of 10 qualified applicants?

- **38.** The local chapter of Mu Alpha Theta will soon be electing a president, vice-president, and treasurer. In how many ways can the positions be filled if the chapter has 15 members?
- 39. The local school board is going to select a principal, vice-principal, and assistant viceprincipal from a pool of eight qualified candidates. In how many ways can this be done?

A Scrabble player (see Example 7) has the six letters shown remaining in her rack. How many distinguishable, six-letter permutations can be formed? (If all six letters are played, what was the word?)

53. A, A, A, N, N, B **54.** D, D, D, N, A, E

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additional Topics in 11.5: Counting Techniques © The McGraw-Hill Trigonometry, Second Companies, 2010 Algebra Edition 1062 CHAPTER 11 Additional Topics in Algebra 11-46 winner getting some guaranteed gigs at the city's Find the value of ${}_{n}C_{r}$: (a) using ${}_{n}C_{r} = \frac{{}_{n}P_{r}}{r!}$ (r factors of n! most popular hot spots. In how many ways can the band select 5 of their 10 songs to play at the contest? over r!) and (b) using ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$ 70. Pierre de Guirré is an award-winning chef and has **56.** 10C₃ 57. ₈C₅ 55. ₉C₄ just developed 12 delectable, new main-course recipes for his restaurant. In how many ways can 58. 6C3 **59.** ₆C₆ **60.** ${}_{6}C_{0}$ he select three of the recipes to be entered in an international culinary competition? Use a calculator to verify that each pair of combinations is equal. For each exercise, determine whether a permutation, a **61.** ₉C₄, ₉C₅ **62.** ${}_{10}C_3, {}_{10}C_7$ combination, counting principles, or a determination of the number of subsets is the most appropriate tool for 63. ${}_{8}C_{5}, {}_{8}C_{3}$ **64.** ₇C₂, ₇C₅ obtaining a solution, then solve. Some exercises can be 65. A platoon leader needs to send four soldiers to do completed using more than one method. some reconnaissance work. There are 12 soldiers in 71. In how many ways can eight second-grade children the platoon and each soldier is assigned a number between 1 and 12. The numbers 1 through 12 are line up for lunch? placed in a helmet and drawn randomly. If a 72. If you flip a fair coin five times, how many soldier's number is drawn, then that soldier goes on different outcomes are possible? the mission. In how many ways can the 73. Eight sprinters are competing for the gold, silver, reconnaissance team be chosen? and bronze medals. In how many ways can the 66. Seven colored balls (red, indigo, violet, yellow, medals be awarded? green, blue, and orange) are placed in a bag and 74. Motorcycle license plates are made using two letters three are then withdrawn. In how many ways can followed by three numbers. How many plates can be the three colored balls be drawn? made if repetition of letters (only) is allowed? 67. When the company's switchboard operators went on strike, the company president asked for three 75. A committee of five students is chosen from a class of 20 to attend a seminar. How many different volunteers from among the managerial ranks to ways can this be done? temporarily take their place. In how many ways can the three volunteers "step forward," if there are 76. If onions, cheese, pickles, and tomatoes are 14 managers and assistant managers in all? available to dress a hamburger, how many different hamburgers can be made? 68. Becky has identified 12 books she wants to read this year and decides to take four with her to read while 77. A caterer offers eight kinds of fruit to make various on vacation. She chooses Pastwatch by Orson Scott fruit trays. How many different trays can be made Card for sure, then decides to randomly choose any using four different fruits? three of the remaining books. In how many ways 78. Eighteen females try out for the basketball team, can she select the four books she'll end up taking? but the coach can only place 15 on her roster. How 69. A new garage band has built up their repertoire to 10 many different teams can be formed? excellent songs that really rock. Next month they'll be playing in a Battle of the Bands contest, with the WORKING WITH FORMULAS 79. Stirling's Formula: $n! \approx \sqrt{2\pi} \cdot (n^{n+0.5}) \cdot e^{-n}$ what percent does the approximate value differ Values of n! grow very quickly as n gets larger from the true value? (13! is already in the billions). For some applications, 80. Factorial formulas: For $n, k \in \mathbb{W}$, where n > k, scientists find it useful to use the approximation for $\frac{n!}{(n-k)!} = n(n-1)(n-2)\cdots(n-k+1)$ n! shown, called Stirling's Formula. a. Compute the value of 7! on your calculator, then use Stirling's Formula with n = 7. By **a.** Verify the formula for n = 7 and k = 5. what percent does the approximate value differ **b.** Verify the formula for n = 9 and k = 6. from the true value? b. Compute the value of 10! on your calculator, then use Stirling's Formula with n = 10. By

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

> Coburn: Algebra and Trigonometry, Second Edition

11. Additional Topics in 11.5: Counting Techniques © The McGraw-Hill Companies, 2010

Section 11.5 Counting Techniques

1063

APPLICATIONS

11-47

81. Yahtzee: In the game of "Yahtzee"® (Milton Bradley) five dice are rolled simultaneously on

the first turn in an

attempt to obtain various arrangements (worth various point values). How many different arrangements are possible?

Algebra

- 82. Twister: In the game of "Twister"® (Milton Bradley) a simple spinner is divided into four quadrants designated Left Foot (LF), Right Hand (RH), Right Foot (RF), and Left Hand (LH), with four different color possibilities in each quadrant (red, green, yellow, blue). Determine the number of possible outcomes for three spins.
- 83. Clue: In the game of "Clue"® (Parker Brothers) a crime is committed in one of nine rooms, with one of six implements, by one of six people. In how many different ways can the crime be committed?

Phone numbers in North America have 10 digits: a threedigit area code, a three-digit exchange number, and the four final digits that make each phone number unique. Neither area codes nor exchange numbers can start with 0 or 1. Prior to 1994 the second digit of the area code had to be a 0 or 1. Sixteen area codes are reserved for special services (such as 911 and 411). In 1994, the last area code was used up and the rules were changed to allow the digits 2 through 9 as the middle digit in area codes.

- 84. How many different area codes were possible prior to 1994?
- 85. How many different exchange numbers were possible prior to 1994?
- 86. How many different phone numbers were possible prior to 1994?
- 87. How many different phone numbers were possible after 1994?

Aircraft N-numbers: In the United States, private aircraft are identified by an "N-Number," which is generally the letter "N" followed by five characters and includes these restrictions: (1) the N-Number can consist of five digits, four digits followed by one letter, or three digits followed by two letters; (2) the first digit cannot be a zero; (3) to avoid confusion with the numbers zero and one, the letters O and I cannot be used; and (4) repetition of digits and letters is allowed. How many unique N-Numbers can be formed

88. that have four digits and one letter?

89. that have three digits and two letters?

90. that have five digits?

91. that have three digits, two letters with no repetitions of any kind allowed?

Seating arrangements: Eight people would like to be seated. Assuming some will have to stand, in how many ways can the seats be filled if the number of seats available is

92. eight	93. five
94. three	95. one

Seating arrangements: In how many different ways can eight people (six students and two teachers) sit in a row of eight seats if

- 96. the teachers must sit on the ends
- 97. the teachers must sit together

Television station programming: A television station needs to fill eight half-hour slots for its Tuesday evening schedule with eight programs. In how many ways can this be done if

- 98. there are no constraints
- 99. Seinfeld must have the 8:00 P.M. slot
- 100. Seinfeld must have the 8:00 P.M. slot and The Drew Carev Show must be shown at 6:00 P.M.
- 101. Friends can be aired at 7:00 or 9:00 P.M. and Everybody Loves Raymond can be aired at 6:00 or 8:00 P.M.

Scholarship awards: Fifteen students at Roosevelt Community College have applied for six available scholarship awards. How many ways can the awards be given if

- 102. there are six different awards given to six different students
- 103. there are six identical awards given to six different students

Committee composition: The local city council has 10 members and is trying to decide if they want to be governed by a committee of three people or by a president, vicepresident, and secretary

- 104. If they are to be governed by committee, how many unique committees can be formed?
- 105. How many different president, vice-president, and secretary possibilities are there?

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

© The McGraw-Hill Coburn: Algebra and 11. Additional Topics in 11.5: Counting Techniques Trigonometry, Second Companies, 2010 Algebra Edition 1064 CHAPTER 11 Additional Topics in Algebra 11-48 106. Team rosters: A soccer team has three goalies, employees. To make them easier to remember and use, they consist of two letters and two digits eight defensive players, and eight forwards on its roster. How many different starting line-ups can be (followed by @esmtb.com), with zero being formed (one goalie, three defensive players, and excluded from use as the first digit and no three forwards)? repetition of letters or digits allowed. Will this provide enough unique addresses for their 53,000 107. e-mail addresses: A business wants to employees worldwide? standardize the e-mail addresses of its EXTENDING THE CONCEPT 108. In Exercise 79, we learned that an approximation **c.** $_{11}C_4 \cdot _7C_5 = _{11}C_5 \cdot _6C_4$ for *n*! can be found using Stirling's Formula: **d.** $_{8}C_{3} \cdot _{5}C_{2} = _{8}C_{2} \cdot _{6}C_{3}$ $n! \approx \sqrt{2\pi} (n^{n+0.5}) e^{-n}$. As with other 110. Tic-Tac-Toe: In the game Tic-Tac-Toe, players approximations, mathematicians are very interested alternately write an "X" or an "O" in one of nine in whether the approximation gets better or worse squares on a 3×3 grid. If either player gets three for larger values of n (does their ratio get closer to in a row horizontally, vertically, or diagonally, that 1 or farther from 1). Use your calculator to player wins. If all nine squares are played with investigate and answer the question. neither person winning, the game is a draw. 109. Verify that the following equations are true, then Assuming "X" always goes first, generalize the patterns and relationships noted to a. How many different "boards" are possible if create your own equation. Afterward, write each of the game ends after five plays? the four factors from Part (a) (the two b. How many different "boards" are possible if combinations on each side) in expanded form and the game ends after six plays? discuss/explain why the two sides are equal. **a.** ${}_{10}C_3 \cdot {}_7C_2 = {}_{10}C_2 \cdot {}_8C_5$ **b.** ${}_{9}C_{3} \cdot {}_{6}C_{2} = {}_{9}C_{2} \cdot {}_{7}C_{4}$ MAINTAINING YOUR SKILLS **113.** (6.3) Rewrite $\cos(2\alpha)\cos(3\alpha) - \sin(2\alpha)\sin(3\alpha)$ as 111. (5.4) Solve the given system of linear inequalities by graphing. Shade the feasible region. a single expression. $\begin{cases} 2x + y < 6\\ x + 2y < 6\\ x \ge 0 \end{cases}$ **114.** (7.3) Graph the hyperbola that is defined by $\frac{(x-2)^2}{4} - \frac{(y+3)^2}{9} = 1.$ $y \ge 0$ **112.** (5.2) Given $\sin \theta = \frac{12}{13}$, determine the other five trig functions of the acute angle θ .

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

1169 © The McGraw-Hill Coburn: Algebra and 11. Additional Topics in 11.6: Introduction to Trigonometry, Second Algebra Probability Companies, 2010 Edition 11.6 Introduction to Probability Learning Objectives There are few areas of mathematics that give us a better view of the world than probability and statistics. Unlike statistics, which seeks to analyze and interpret data, In Section 11.6 you will learn how to: probability (for our purposes) attempts to use observations and data to make statements A. Define an event on a concerning the likelihood of future events. Such predictions of what might happen have sample space found widespread application in such diverse fields as politics, manufacturing, gam-**B.** Compute elementary bling, opinion polls, product life, and many others. In this section, we develop the basic probabilities elements of probability. C. Use certain properties of probability A. Defining an Event D. Compute probabilities In Section 11.5 we defined the following terms: experiment and sample outcome. Flipusing quick-counting ping a coin twice in succession is an experiment, and two sample outcomes are HH techniques and HT. An event E is any designated set of sample outcomes, and is a subset of the E. Compute probabilities sample space. One event might be E_1 : (two heads occur), another possibility is E_2 : (at involving nonexclusive least one tail occurs). events EXAMPLE 1 > Stating a Sample Space and Defining an Event Consider the experiment of rolling one standard, six-sided die (plural is dice). State the sample space S and define any two events relative to S. Solution > S is the set of all possible outcomes, so $S = \{1, 2, 3, 4, 5, 6\}$. Two possible events are E_1 : (a 5 is rolled) and E_2 : (an even number is rolled). A. You've just learned how to define an event on a Now try Exercises 7 through 10 ► sample space **B.** Elementary Probability WORTHY OF NOTE Our study of probability will When rolling the die, we know the result can be any of the six equally likely outcomes involve only those sample in the sample space, so the chance of E_1 :(a five is rolled) is $\frac{1}{6}$. Since three of the spaces with events that are elements in S are even numbers, the chance of E_2 :(an even number is rolled) is $\frac{3}{6} = \frac{1}{2}$. equally likely. This suggests the following definition. The Probability of an Event E

Given S is a sample space of equally likely events and E is an event relative to S, the probability of E, written P(E), is computed as

$$P(E) = \frac{n(E)}{n(S)}$$

where n(E) represents the number of elements in E, and n(S) represents the number of elements in S.

A standard deck of playing cards consists of 52 cards divided in four groups or *suits*. There are 13 hearts (Ψ), 13 diamonds (\blacklozenge), 13 spades (\blacklozenge), and 13 clubs (\clubsuit). As you can see in the illustration, each of the 13 cards in a suit is labeled 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, and A. Also notice that 26 of the cards are red (hearts and diamonds), 26 are black (spades and clubs) and 12 of the cards are "face cards" (J, Q, K of each suit).

1065

11-49

Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.5: Introduction to Probability	© The McGraw-Hill Companies, 2010
066 CHAPTER 11 Add	itional Topics in Algebra		11-5
EXAMPLE 2		ple Space and the Probability	
		s drawn from a well-shuffled de utcome. Then define <i>E</i> as <i>a Kin</i>	ck. Define S and state the probability g is drawn and find $P(E)$.
Solution	so the probabi	$S = \{\text{the 52 cards}\}.$ There are 5 lity of any one outcome is $\frac{1}{52}$. So	
	$P(E) = \frac{n(E)}{n(S)} =$	$=\frac{4}{52}$ or about 0.077.	
			w try Exercises 11 through 14 🕨
EXAMPLE 3	Stating a Sam	ple Space and the Probability	y of a Single Outcome
	A family of fiv and Pythagora	e has two girls and three boys n	amed Sophie, Maria, Albert, Isaac, and 9, respectively. One is to be
Solution		ace is $S = \{9, 13, 15, 19, 21\}$. T	hree of the five are teenagers,
B. You've just learned h compute elementary	ow	robability is $\frac{3}{5}$, 0.6, or 60%.	Now try Exercises 15 and 16
robabilities			
	C. Properti	es of Probability	
WORTHY OF NOTE	properties. For 2, 3, 4, 5, or 6 are the only po simply $P(S) =$ What perce has only the size	example, when a fair die is rol is rolled? The event E will occur sssibilities. In symbols we write 1 (100%). ent of the time will a result <i>not</i> in c sides numbered 1 through 6, th	cognizing some basic and fundamenta led, what is $P(E)$ if E is defined as a I : 100% of the time, since 1, 2, 3, 4, 5, : $P(\text{outcome is in the sample space)}$ on the sample space occur? Since the di the probability of rolling something els e space) = 0 or simply $P(\sim S) = 0$.
tilde "~" acts as a negation	Properties o	f Probability	
symbol. For any event E defined on the sample space	e, Given sample	space S and any event E defined	d relative to S.
~E means the event does no occur.		$P(S) = 1$ 2. $P(\sim S) = 0$	3. $0 \le P(E) \le 1$
EXAMPLE 4	0	he Probability of an Event ed using a spinner like the one	shown
		probability of the following eve	
	E_1 : A nine is sp	bun. E_2 : An integer greater t than 9 is spun.	than 0 and less $\frac{8}{7}$ $\frac{5}{6}$
	The sample space	ace consists of eight equally like	ely outcomes.
Solution			8
Solution		$P(E_1) = \frac{0}{8} = 0 \qquad P($	$E_2) = \frac{1}{8} = 1.$
Solution		0	t," since it is not in the sample space

Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.6: Introduction to Probability	© The McGraw-Hill Companies, 2010				
1-51		Sec	tion 11.6 Introduction to Probability	1067			
	ities of all rolling a f	single events defined on the samp air die, the sample space has six	the public outcomes are equally likely, the p le space must sum to 1. For the experi- contromes that are equally likely. N (6) = $\frac{1}{6}$, and $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$	ment of ote that			
	Probabi	lity and Sample Outcomes					
	Given a	sample space S with n equally lib	kely sample outcomes $s_1, s_2, s_3, \ldots,$	s _n .			
		$\sum_{i=1}^{n} P(s_i) = P(s_1) + P(s_2) +$	$P(s_3) + \cdots + P(s_n) = 1$				
		omplement of an event E is the bolically, $\sim E$ is the complement	set of sample outcomes in <i>S</i> not co of <i>E</i> .	ntained			
	Probabi	lity and Complementary Ever	nts				
		imple space S and any event E d F , is the set of all outcomes not	efined relative to S , the complemen in E and:	t of <i>E</i> ,			
		1. $P(E) = 1 - P(\sim E)$	2. $P(E) + P(\sim E) = 1$				
EXAMP	PLE 5 🕨 Stating a	Probability Using Complemer	its				
		lementary events to answer the					
		gle card is drawn from a well-sh ot a diamond?	uffled deck. What is the probability	that			
		gle letter is picked at random fro is the probability it is not an "i"	om the letters in the word "divisibili"?	ty."			
The second s	20	a. Since there are 13 diamonds in a standard 52-card deck, there are					
WORTHY OF NOTE	h Of the	39 nondiamonds: $P(\sim D) = 1 - P(D) = 1 - \frac{13}{52} = \frac{39}{52} = 0.75$. b. Of the 12 letters in d-i-v-i-s-i-b-i-l-i-t-y, 5 are "i's." This means					
Probabilities can be w fraction form, decimal or as a percent. For P(form, $P(\sim i)$	$P(\sim i) = 1 - P(i)$, or $1 - \frac{5}{12} = \frac{7}{12}$. The probability of choosing a lette than i is $0.58\overline{3}$.					
Example 1, the probab $\frac{3}{4}$, 0.75, or 75%.			Now try Exercises 19 through 2	22 🕨			
EXAMP	LE 6 🕨 Stating a	Probability Using Complemer	its	_			
	Inter-Islar The hydro if either o company the probab the probab	d Waterways has just opened hy foil is powered by two engines, of its two engines is functioning. I knows the probability of the aft e bility of the forward engine failin	vdrofoil service between several isla one forward and one aft, and will ope Due to testing and past experience, th ngine failing is $P(\text{aft engine fails}) =$ g is $P(\text{forward engine fails}) = 0.03$, nes simultaneously fail) = 0.012. W	erate e 0.05, and			
Sol		the answer may <i>seem</i> complicat gines simultaneously fail) are co	red, note that $P(\text{trip is completed})$ are complements.	ıd			
		$P(\text{trip is completed}) = 1 - P(\mathbf{I})$	ooth engines simultaneously fail)				
		= 1 - 0.0	12				
		= 0.988					
		lose to a 99% probability the tri					

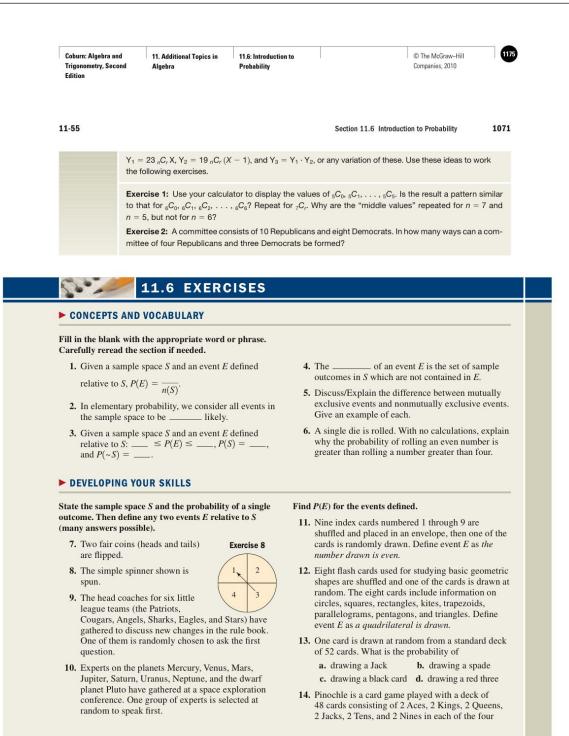
No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

22 Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.6: Introduction to Probability		© The McGraw–Hill Companies, 2010
LO68 CHAPTER 1	1 Additional Topics in Algebra	i i		11-52
		t in Figure 11.16 shows all 36 nt of rolling two fair dice.	possible outcomes (th	ne sample space) from
		Figure	e 11.16	
EXAMP	Two fair dice	obability Using Complemen are rolled. What is the proba $P(\text{sum} \ge 5)$?		dice is greater than
C. You've just learn to use certain properti	ution ► See Figure 11 far fewer pos	1.16. For $P(\text{sum} \ge 5)$ it may sibilities: $P(\text{sum} \ge 5) = 1 - \frac{1}{6} = \frac{5}{6} = 0.8\overline{3}.$		
probability			Now try Exerc	ises 25 and 26 🕨
	D. Probab	ility and Quick-Counti	ng	
		ng techniques were introduc rge or more complex sample		
EXAMPL	E 8A 🕨 Stating a Pro	obability Using Combinatio	ns	
		e drawn from a shuffled 52-c ards are face cards) or E_2 :(all		
Sol	formed from	pace for both events consists the 52 cards or ${}_{52}C_5$. For E_1 v	we are to select five fa	ce cards from the
WORTHY OF NOTE		vailable (three from each suit) ${}_{12}C_5$		
It seems reasonable th probability of 5 hearts slightly higher, as 13 o 52 cards are hearts, w only 12 are face cards	is f the hearts from t hile 1	$= \frac{{}_{12}C_5}{{}_{52}C_5}$, which gives $\frac{792}{2,598,5}$ the 13 available, or ${}_{13}C_5$. The $\frac{287}{98,960} \approx 0.0005$.		r(F) = C
EXAMPL	Principle of			
	Of the 42 sen	iors at Jacoby High School,	23 are female and 19	are male. A group

Of the 42 seniors at Jacoby High School, 23 are female and 19 are male. A group of five students is to be selected at random to attend a conference in Reno, Nevada. What is the probability the group will have exactly three females?

Coburn: Algebra and Trigonometry, Second Edition	11. Addition Algebra	nal Topics in	11.6: Introduction to Probability	l		© The McGraw–Hill Companies, 2010	
11-53				Se	ection 11.6 Introdu	ction to Probability	1069
So D. You've just lear to compute probabilit using quick-counting techniques		42 seniors $\binom{23}{23}C_3$ and counting <i>n</i> $\frac{n(E)}{n(S)} = \frac{23}{23}C_3$	or ${}_{42}C_5$. The event co 2 males from the 19 $(E) = {}_{23}C_3 \cdot {}_{19}C_2$ an	$\frac{302,84}{850,668}$	selecting 3 fem ($_{19}C_2$). Using the bability the ground $\frac{1}{3} \approx 0.356$. Then the trace of the second secon	re is approximately a	lable iple of
		E. Proba	ability and None	xclusiv	e Events		
WORTHY OF NOT	-		the way events are de			Figure 11.17	
This can be verified by counting the elements $n(E_1) = 13$ and $n(E_2)$ so $n(E_1) + n(E_2) = 25$ However, there are or possibilities—the J ± .	WORTHY OF NOTE This can be verified by simply counting the elements involved: $n(E_1) = 13$ and $n(E_2) = 12$ so $n(E_1) + n(E_2) = 25$. However, there are only 22 possibilities—the Ja, Qa, and K \pm got counted twice.		es where the events correct count by su $u = n(E_1) + n(E_2) -$ bability of nonexclus	ek of lefine) and share \clubsuit as erlap- of the before, t are none : btracting $n(E_1 \cap$ ive event	2 + 3 + 4 5 + 4 8 + 7 9 + 10 + 10 his intersecting xclusive (not m one of the tr E_2). This leads s:	* Q* V K* Q* K* region gets counted utually exclusive), w wo intersections, o to the following cal	ve main btainin
		I	$P(E_1 \cup E_2) = \frac{n(E_1)}{n(E_1)}$	$+ n(E_2)$ $n(S_1)$	$\frac{-n(E_1 \cap E_2)}{5}$	definition of probability	
			$=\frac{n(E_1)}{n(S)}$	$+\frac{n(E_1)}{n(S)}$	$-\frac{n(E_1 \cap E_2)}{n(S)}$	property of rational expres	sions
			$= P(E_1)$	$+ P(E_2)$	$-P(E_1\cap E_2)$	definition of probability	
		Probabil	ity and Nonexclusi	ve Event	s		
			mple space S and not ty of E_1 or E_2 is given		e events E_1 and	E_2 defined relative to	S, the
			$P(E_1 \cup E_2)$	$= P(E_1)$	$+ P(E_2) - P(E_2)$	$E_1 \cap E_2$)	
EXAMP	LE 9A 🕨	Stating the	e Probability of Nor	nexclusiv	e Events		
			e probability that a cl uffled cards?	ub or a f	ace card is draw	n from a standard de	ck of
So	lution 🕨	Since there	define the events E_1 : e are 13 clubs and 12 rds are clubs, so $P(E_1)$	face card	$Is, P(E_1) = \frac{13}{52}a$	(a face card is drawn nd $P(E_2) = \frac{12}{52}$. But t to	ı). hree of
		I	$P(E_1 \cup E_2) = P(E_1)$ = $\frac{13}{52}$ +	$\frac{12}{52} - \frac{3}{52}$		nonexclusive events substitute	
			$=\frac{22}{52}\approx$	0.423		combine terms	
					lub or face card		

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.


	m: Algebra and nometry, Second n	11. Additional Topics in Algebra	11.6: Introduction to Probability			The McGraw npanies, 201	
070	CHAPTER 11	Additional Topics in Algebra					11-
	EXAMPLE		robability of Nonexclusive	e Events			
			tion on critical issues		Women	Men	Totals
			raphic information	Republican	17	20	37
			own in the table. One voters is to be drawn	Democrat	22	17	39
			e interviewed on the	Independent	8	7	15
		5 O'Clock New		Green Party	4	1	5
			person is a woman (W)	Tax Reform	2	2	4
		or a Republica	n (<i>R</i>)?	Totals	53	47	100
	Soluti		53 women and 37 Repub people are both female ar				
		P	$(W \cup R) = P(W) + P(R)$	$-P(W \cap R)$	nonexclusiv	e events	
			= 0.53 + 0.37 -	- 0.17	substitute		
E. You	i've just learned	how	= 0.73		combine		
and the providence of the	te probabilities		probability the person is	a woman or a l	Republicar	1.	
	nonexclusive ev	N					

Two events that have no common outcomes are called **mutually exclusive** events (one excludes the other and vice versa). For example, in rolling one die, $E_1:(a \ 2 \ is rolled)$ and $E_2:(an \ odd number \ is \ rolled)$ are mutually exclusive, since 2 is not an odd number. For the probability of $E_3:(a \ 2 \ is \ rolled)$ or $an \ odd \ number \ is \ rolled$), we note that $n(E_1 \cap E_2) = 0$ and the previous formula simply reduces to $P(E_1) + P(E_2)$. See **Exercises 49 and 50**.

There is a large variety of additional applications in the Exercise Set. See Exercises 53 through 68.

TECHNOLOGY HIGHLIGHT Principles of Quick-Counting, Combinations, and Probability At this point you are likely using the Y= screen and tables (TBLSET, 2nd GRAPH TABLE, and so on) with relative ease. When probability calculations require a repeated use of permutations and combinations, these features can make the work more efficient and help to explore the patterns they generate. For choosing r children from a group of six children (n = 6), set the **TBLSET** to **AUTO**, then press Y = and enter 6 _nC_r X as Y₁ (Figure 11.18). Access the TABLE (2nd GRAPH) and note that the calculator has automatically computed the value of ${}_{6}C_{0}$, ${}_{6}C_{1}$, ${}_{6}C_{2}$, ..., ${}_{6}C_{6}$ (Figure 11.19) and the pattern of outputs is symmetric. For calculations similar to those required in Example 8B ($_{23}C_3 \cdot _{19}C_2$), enter Figure 11.18 Figure 11.19 Ploti Plot2 Plot3 | Y1 Y1∎6 nCr X Yz= Y3= 161505 4= /5= /6= X=0

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Page 19 of 101

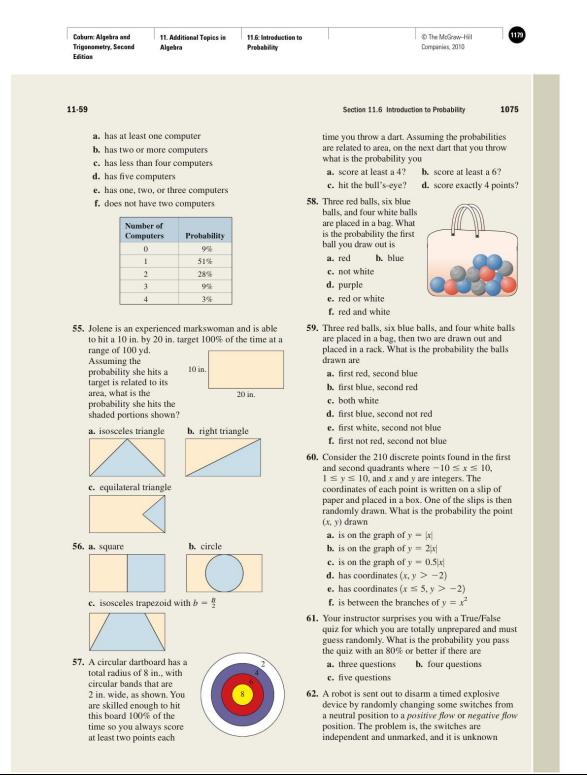
	Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.6: Introduction to Probability		© The McGraw-Hill Companies, 2010
072	CHAPTER 11	Additional Topics in Algebra			11-56
15. 16. 17.	 (A), and clubs (4)] from this deck, what a. drawing an Acc c. drawing a red c. d. drawing a red c. d. drawing a face A group of finalists three males and five 520 points, with H4 475 points, respective with Mackenzie, M having 495, 480, 47 One of the contesta the final round. Deel a female is chosen, than 500 points is ceach event. Soccer coach Madd his starting roster for and has to choose bidefenders. The forwand 17, while the de 10, 11, 14, and 18. If E₂ as a defender is ceptrobability of each of the probability of each of the spin is less that of the probability of each of the spin is less that of the probability of each of the probability of each of the spin is less that of the probability of each of the spin is less that of the probability of the probability of each of the spin is greater of the spin is	card card (Jack, Queen, King c on a game show consist e females. Hank has a sc arry and Hester having 4' ively. Madeline has 532 lorgan, Maggie, and Mel 72, and 470 points, respe ints is randomly selected fine E_1 as <i>Hester is chose</i> and E_3 as a contestant w chosen. Find the probabil ox needs to fill the last sp or the opening day of the s etween three forwards and rards have jersey numbers effenders have jersey numbers effenders have jersey numbers of the opening day of the s etween three forward is of chosen, and E_3 as a player eater than 10 is chosen. F event. Ising a spinner like the on in, obability the a shaded obability your a 5? obability the arrow lands sing a spinner like the one obability the arrow lands of the stream of the stream of the sec obability the arrow lands of the stream of the sec obability the arrow lands	random 21. (a) 22. (b) 22. (c) so of (c) ore of (c) 90 and (c) 90 and	probability the A single digit digits of 10!. V a 2? A corporation Angeles, Miar site is random Dallas is not c A large manufi production as functioning. D difference betv estimates the p failing is 0.05, generator faili both failing is plant remains A fire station g shopping malt of traffic patted probability the traffic is 0.07, secondary rou probability the traffic is 0.07, secondary rou traffic is 0.07, secondary rou probability the traffic is 0.07, secondary rou probability the traffic is 0.07, secondary rou traffic is 0.07, secondary rou traffic is 0.07, secondary rou traffic is 0.07, secondary rou traffic is 0.07, seconda	The second secon
	<pre>gh 22.</pre> One card is drawn t	events to complete Exerc	cises 19	c. does not h	nave a blank half louble" (both sides the same)

Coburn: Algebra and

11. Additional Topics in

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

11.6: Introduction to


© The McGraw-Hill

1177

11-57		Section 11.6 Intro	oduction to F	Probabili	ty	1073
 Find P(E) given the values for n(E) and n(S) shown. 27. n(E) = ₆C₃ · ₄C₂; n(S) = ₁₀C₅ 28. n(E) = ₁₂C₉ · ₈C₇; n(S) = ₂₀C₁₆ 29. n(E) = ₉C₆ · ₅C₃; n(S) = ₁₄C₉ 30. n(E) = ₇C₆ · ₃C₂; n(S) = ₁₀C₈ 31. Five cards are drawn from a well-shuffled, standard deck of 52 cards. Which has the greater probability: (a) all five cards are red or (b) all five cards are numbered cards? How much greater? 32. Five cards are drawn from a well-shuffled pinochle deck of 48 cards (see Exercise 14). Which has the greater probability (a) all five cards are face cards (King, Queen, or Jack) or (b) all five cards are black? How much greater? 33. A dietetics class has 24 students. Of these, 9 are vegetarians and 15 are not. The instructor receives enough funding to send six students to a conference. If the students are selected randomly, what is the probability the group will have a. exactly four nonvegetarians b. exactly four nonvegetarians c. at least three vegetarians 34. A large law firm has a support staff of 15 employees: six paralegals and nine legal assistants. Due to recent changes in the law, the firm wants to send five of them to a forum on the new changes. If the selection is done randomly, what is the probability 	 b. c. d. 42. Eight 15 b is so solic and The place draw a. b. c. d. e. f. g. 43. A su infor like surv will biog 	a multiple of 3 a a sum greater th an even number an odd number a t Ball is a game alls numbered 1 lid white. Of the (nonwhite) col seven are striped fifteen numbere ed in a large boy m out. What is t the eight ball a number greate an even number a solid color and a striped ball an an even number three an odd number three an odd number three three is shown is be selected at ra raphical sketch.	an 5 and a and a nun and a nun played o through e 15 num or and nu d balls nu d balls nu d balls nu d balls nu d balls nu d pool ba wil and mi the probab er than fift ree d an even d an even d an oun rans was t service c ury. A brea andom for	a 3 on o mber g her les n a poor 15 and bered b mbered mbrecc lls (no xed, th iility of een number mbre div aken ta areer a akdowr x. One e	one die reater tha s than 10 of table w a cue bal alls, 8 ard 1 throug (19 throug cueball) en one is f drawing r r visible by y gather nd what la of those out of those out of the) ith II that e a gh 8, gh 15. are g y y y 4 4 life is e 50 nd a
the group will have			Women	Men	Totals	
a. exactly three paralegals		Private	6	9	15	
h avactly two legal assistants		Corporal	10	8	13	
b. exactly two legal assistants			4	5	9	
b. exactly two legal assistantsc. at least two paralegals		Sergeant			3	
		Sergeant Lieutenant	2	1	5	
c. at least two paralegals				3	5	
 c. at least two paralegals Find the probability indicated using the information given. 		Lieutenant	2		1000	
 c. at least two paralegals Find the probability indicated using the information given. 35. Given P(E₁) = 0.7, P(E₂) = 0.5, and P(E₁ ∩ E₂) = 0.3, compute P(E₁ ∪ E₂). 36. Given P(E₁) = 0.6, P(E₂) = 0.3, and P(E₁ ∩ E₂) = 0.2, compute P(E₁ ∪ E₂). 		Lieutenant Captain	2 2 24 sergeant	3	5	
 c. at least two paralegals Find the probability indicated using the information given. 35. Given P(E₁) = 0.7, P(E₂) = 0.5, and P(E₁ ∩ E₂) = 0.3, compute P(E₁ ∪ E₂). 36. Given P(E₁) = 0.6, P(E₂) = 0.3, and P(E₁ ∩ E₂) = 0.2, compute P(E₁ ∪ E₂). 37. Given P(E₁) = ³/₈, P(E₂) = ³/₄, and P(E₁ ∪ E₂) = ¹⁵/₁₈; compute P(E₁ ∩ E₂). 	b. c.	Lieutenant Captain Totals a woman and a	2 2 24 sergeant vate sergeant	3	5	
 c. at least two paralegals Find the probability indicated using the information given. 35. Given P(E₁) = 0.7, P(E₂) = 0.5, and P(E₁ ∩ E₂) = 0.3, compute P(E₁ ∪ E₂). 36. Given P(E₁) = 0.6, P(E₂) = 0.3, and P(E₁ ∩ E₂) = 0.2, compute P(E₁ ∪ E₂). 37. Given P(E₁) = ³/₈, P(E₂) = ³/₄, and P(E₁ ∪ E₂) = ¹⁵/₁₈; 	b. c. d. e.	Lieutenant Captain Totals a woman and a a a man and a priv a private and a s a woman and ar a person in the p	2 24 sergeant vate sergeant n officer military	3 26	5 50	lity
 c. at least two paralegals Find the probability indicated using the information given. 35. Given P(E₁) = 0.7, P(E₂) = 0.5, and P(E₁ ∩ E₂) = 0.3, compute P(E₁ ∪ E₂). 36. Given P(E₁) = 0.6, P(E₂) = 0.3, and P(E₁ ∩ E₂) = 0.2, compute P(E₁ ∪ E₂). 37. Given P(E₁) = ³/₈, P(E₂) = ³/₄, and P(E₁ ∪ E₂) = ¹⁵/₁₈; compute P(E₁ ∩ E₂). 38. Given P(E₁) = ¹/₂, P(E₂) = ³/₅, and P(E₁ ∪ E₂) = ¹⁷/₂₀; 	b. c. d. e. 44. Refe	Lieutenant Captain Totals a woman and a a man and a priv a private and a s a woman and ar	2 24 sergeant vate sergeant n officer military se 43, what	3 26	5 50	lity
 c. at least two paralegals Find the probability indicated using the information given. 35. Given P(E₁) = 0.7, P(E₂) = 0.5, and P(E₁ ∩ E₂) = 0.3, compute P(E₁ ∪ E₂). 36. Given P(E₁) = 0.6, P(E₂) = 0.3, and P(E₁ ∩ E₂) = 0.2, compute P(E₁ ∪ E₂). 37. Given P(E₁) = ³/₈, P(E₂) = ³/₄, and P(E₁ ∪ E₂) = ¹⁵/₁₈; compute P(E₁ ∩ E₂). 38. Given P(E₁) = ¹/₂, P(E₂) = ³/₅, and P(E₁ ∪ E₂) = ¹⁷/₂₀; compute P(E₁ ∩ E₂). 39. Given P(E₁ ∪ E₂) = 0.72, P(E₂) = 0.56, and 	b. c. d. e. 44. Refe the p a. b.	Lieutenant Captain Totals a woman and a a a man and a priv a private and a s a woman and ar a person in the r rrring to Exercis serson chosen is	2 24 sergeant officer military se 43, what prgeant tte	3 26	5 50	lity

Ve Coburn: Algebra and 11. Additional Topics in 11.6: Intro Trigonometry, Second Algebra Probabilit Edition	oduction to © The McGraw-Hill ity Companies, 2010
1074 CHAPTER 11 Additional Topics in Algebra	11-58
A computer is asked to randomly generate a three-digit number. What is the probability the	d. an odd-numbered sum or a sum that is a multiple of 4
45. ten's digit is odd or the one's digit is even	e. a sum of 15 or a multiple of 12
46. first digit is prime and the number is a multiple	f. a sum that is a prime number
of 10	50. Suppose all 16 balls from a game of pool (see
A computer is asked to randomly generate a four-digit number. What is the probability the number is	Exercise 42) are placed in a large leather bag and mixed, then one is drawn out. Consider the cue ball as "0." What is the probability of drawing
47. at least 4000 or a multiple of 5	a. a striped ball
48. less than 7000 and an odd number	b. a solid-colored ball
49. Two fair dice are rolled. What is the probability of	c. a polka-dotted ball
rolling	d. the cue ball
a. boxcars (a sum of 12) or snake eyes (a sum	e. the cue ball or the eight ball
of 2)	f. a striped ball or a number less than fiveg. a solid color or a number greater than 12
b. a sum of 7 or a sum of 11c. an even-numbered sum or a prime sum	h. an odd number or a number divisible by 4
WORKING WITH FORMULAS	
51. Games involving a fair spinner (with numbers 1 through 4): $P(n) = (\frac{1}{4})^n$	52. Games involving a fair coin (heads and tails): $P(n) = (\frac{1}{2})^n$
Games that involve moving pieces around a board using a fair spinner are fairly common. If a fair spinner has the numbers 1 through 4, the probability that any one number is spun <i>n</i> times in succession is given by the formula shown, where <i>n</i> represents the number of spins. What is the probability (a) the first player spins a two? (b) all four players spin a two? (c) Discuss the graph of P(n) and explain the connection between the graph and the probability of consistently spinning a two.	When a fair coin is flipped, the probability that heads (or tails) is flipped <i>n</i> times in a row is given by the formula shown, where <i>n</i> represents the number of flips. What is the probability (a) the first flip is heads? (b) the first four flips are heads? (c) Discuss the graph of $P(n)$ and explain the connection between the graph and the probability of consistently flipping heads.
► APPLICATIONS	
53. To improve customer service, a company tracks the number of minutes a caller is "on hold" and	Wait Time (minutes m) Probability
waiting for a customer service representative. The table shows the probability that a caller will wait <i>m</i>	0 0.07
minutes. Based on the table, what is the probability	$0 < m < 1 \qquad 0.28$
a caller waits	$1 \le m < 2$ 0.32
a. at least 2 minutes	$2 \le m < 3 \qquad 0.25$ $3 \le m < 4 \qquad 0.08$
b. less than 2 minutes	$J = m \times \tau$ 0.00
c. 4 minutes or lessd. over 4 minutes	54. To study the impact of technology on American
e. less than 2 or more than 4 minutes	families, a researcher first determines the
c. ress that 2 of more than 1 minutes	probability that a family has <i>n</i> computers at home.
f. 3 or more minutes	Based on the table, what is the probability a home

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

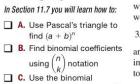
Page 23 of 101

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additional Topics in 11.6: Introduction to © The McGraw-Hill Trigonometry, Second Companies, 2010 Algebra Probability Edition 1076 11-60 **CHAPTER 11** Additional Topics in Algebra which direction is positive and which direction is 65. The Board of Directors for a large hospital has negative. The bomb is harmless if a majority of the 15 members. There are six doctors of nephrology switches yield a positive flow. All switches must be (kidneys), five doctors of gastroenterology (stomach thrown. What is the probability the device is and intestines), and four doctors of endocrinology disarmed if there are (hormones and glands). Eight of them will be selected to visit the nation's premier hospitals on a a. three switches **b.** four switches 3-week, expenses-paid tour. What is the probability c. five switches the group of eight selected consists of exactly 63. A survey of 100 retirees was taken to gather a. four nephrologists and four gastroenterologists information concerning how they viewed the b. three endocrinologists and five nephrologists Vietnam War back in the early 1970s. A breakdown 66. A support group for hodophobics (an irrational fear of those surveyed is shown in the table. One out of the hundred will be selected at random for a of travel) has 32 members. There are 15 personal, taped interview. What is the probability aviophobics (fear of air travel), eight siderodrophobics (fear of train travel), and nine the person chosen had a thalassophobics (fear of ocean travel) in the group. a. career of any kind and opposed the war Twelve of them will be randomly selected to b. medical career and supported the war participate in a new therapy. What is the c. military career and opposed the war probability the group of 12 selected consists of d. legal or business career and opposed the war exactly e. academic or medical career and supported the a. two aviophobics, six siderodrophobics, and war four thalassophobics b. five thalassophobics, four aviophobics, and three siderodrophobics Career Support Opposed Т 12 Military 9 3 67. A trained chimpanzee is given a box containing 24 eight wooden cubes with the letters p, a, r, a, l, l, e, l Medical 8 16 15 12 27 printed on them (one letter per block). Assuming Legal the chimp can't read or spell, what is the Business 18 6 24 probability he draws the eight blocks in order and Academics 10 13 3 actually forms the word "parallel"? Totals 53 47 100 68. A number is called a "perfect number" if the sum of its proper factors is equal to the number itself. Six is 64. Referring to Exercise 63, what is the probability the first perfect number since the sum of its proper the person chosen factors is six: 1 + 2 + 3 = 6. Twenty-eight is the second since: 1 + 2 + 4 + 7 + 14 = 28. A young a. had a career of any kind or opposed the war b. had a medical career or supported the war child is given a box containing eight wooden blocks with the following numbers (one per block) printed c. supported the war or had a military career on them: four 3's, two 5's, one 0, and one 6. What is d. had a medical or a legal career the probability she draws the eight blocks in order e. supported or opposed the war and forms the fifth perfect number: 33,550,336? EXTENDING THE CONCEPT **69.** The function $f(x) = (\frac{1}{2})^x$ gives the probability that investigate, plot the points generated by x number of flips will all result in heads (or tails). $C(x) = {}_{6}C_{x}$ for x = 0 to x = 6 and answer the Compute the probability that 20 flips results in 20 following questions: heads in a row, then use the Internet or some other a. Is the resulting graph continuous or discrete resource to find the probability of winning a state (made up of distinct points)? lottery. Which is more likely to happen (which has b. Does the resulting graph pass the vertical line the greater probability)? Were you surprised? test? c. Discuss the features of the relation and its 70. Recall that a function is a relation in which each graph, including the domain, range, maximum element of the domain is paired with only one or minimum values, and symmetries observed. element from the range. Is the relation defined by $C(x) = {}_{n}C_{x}$ (*n* is a constant) a function? To

Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.6: Introduction to Probability	© The McGraw–Hill Companies, 2010
11-61 MAINTAINING Y	OUR SKILLS		Section 11.7 The Binomial Theorem 107
values of the re-	$\theta = 3$ and $\cos \theta < 0$, maining five trig function the following logarithm $\log_b 1 = _$	ons of θ .	 73. (6.4) Find exact values for sin(2θ), cos(2θ), and tan(2θ) given cos θ = -21/29 and θ is in Quadrant II 74. (8.3) A rubber ball is dropped from a height of 25 ft onto a hard surface. With each bounce, it

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

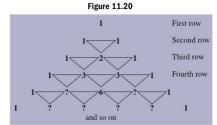

6	Т	82		
		Ť	,	
	-	-		

Edition

Coburn: Algebra and 11. Additional Topics in Trigonometry, Second Algebra 11.7: The Binomial Theorem © The McGraw–Hill Companies, 2010

11.7 The Binomial Theorem

Learning Objectives


theorem to find $(a + b)^n$ **D.** Find a specific term of a

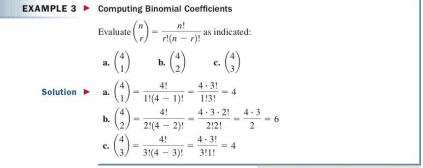
binomial expansion

Strictly speaking, a binomial is a polynomial with two terms. This limits us to terms with real number coefficients and whole number powers on variables. In this section, we will loosely regard a binomial as the sum or difference of *any* two terms. Hence $3x^2 - y^4$, $\sqrt{x} + 4$, $x + \frac{1}{x}$, and $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ are all "binomials." Our goal is to develop an ability to raise a binomial to any natural number power, with the results having important applications in genetics, probability, polynomial theory, and other areas. The tool used for this purpose is called the *binomial theorem*.

A. Binomial Powers and Pascal's Triangle

Much of our mathematical understanding comes from a study of patterns. One area where the study of patterns has been particularly fruitful is Pascal's triangle

patterns has been particularly fruitful is **Pascal's triangle** (Figure 11.20), named after the French scientist Blaise Pascal (although the triangle was well known before his time). It begins with a "1" at the vertex of the triangle, with 1's extending diagonally downward to the left and right as shown. The entries on the interior of the triangle are found by adding the two entries directly above and to the left and right of each new position.


There are a variety of patterns hidden within the triangle. In this section, we'll use the *horizontal rows* of the triangle to help us raise a binomial to various powers. To begin, recall that $(a + b)^0 = 1$ and $(a + b)^1 = 1a + 1b$ (unit coefficients are included for emphasis). In our earlier work, we saw that a binomial square (a binomial raised to the second power) always

	ırn: Algebra and onometry, Second on	11. Additional Topics in Algebra	11.7: The Binomial Theorem	© The McGraw–Hill Companies, 2010
78	CHAPTER 11 A	dditional Topics in Algebra		11-62
		followed the pa developing as	attern $(a + b)^2 = 1a^2 + 2a^2$ we include $(a + b)^3$:	$ab + 1b^2$. Observe the overall pattern that is
			$(a + b)^{0}$	1 row 1
			$(a + b)^{1}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			$(a+b)^2$ $1a^2$	$+ 2ab + 1b^2$ row 3
		Also observe decreases by 1	that in each term of the e as the exponent on the seco onstant (recall the degree of	"will occur in row $n + 1$ of Pascal's triangle. xpansion, the exponent of the first term <i>a</i> nd term <i>b</i> increases by <i>I</i> , keeping the degree of a term with more than one variable is the
			$1a^3b^0 + 3a^2b^1$	$+ 3a^{1}b^{2} + 1a^{0}b^{3}$
			3 + 0 2 + 1 degree 3 degree 3	1 + 2 0 + 3 degree 3 degree 3
		These obse	ervations help us to quickly	expand a binomial power.
	EXAMPLE	1 🕨 Expanding a E	Binomial Using Pascal's Ti	riangle
		Use Pascal's tr	iangle and the patterns note	ed to expand $(x + \frac{1}{2})^4$.
	Solutio	■ Norking step-l		and the state
		1. The coeffic	cients will be in the fifth ro	-
		2 The expon		4 1 <i>crease</i> , while the exponents on $\frac{1}{2}$ begin at
		0 and incre		crease, while the exponents on 2 begin at
		1.	$x^4 \left(\frac{1}{2}\right)^0 + 4x^3 \left(\frac{1}{2}\right)^1 + 6x^2 \left(\frac{1}{2}\right)^1$	$\left(\frac{1}{2}\right)^2 + 4x^1 \left(\frac{1}{2}\right)^3 + 1x^0 \left(\frac{1}{2}\right)^4$
		3. Simplify e	ach term.	
		The result	is $x^4 + 2x^3 + \frac{3}{2}x^2 + \frac{1}{2}x + \frac{1}{2}x$	$-\frac{1}{16}$.
				Now try Exercises 7 through 10 ►
			cise involves a difference ng algebraic addition and p	rather than a sum, we simply rewrite the roceed as before.
	EXAMPLE		nplex Number to a Power	
			iangle and the patterns note	
		see all a second second second second second second		2i) ² .
	Solutio	■ Begin by rewri		the second
	Solutio	1. The coeffic	cients will be in the sixth ro	ow of Pascal's triangle.
	Solutio	1. The coefficient 1	cients will be in the sixth ro 5 10	ow of Pascal's triangle. 10 5 1
	Solutio	 The coefficient The exponent begin at 0 	cients will be in the sixth ro 5 10 ents on 3 begin at 5 and <i>de</i> and <i>increase</i> .	by of Pascal's triangle. 10 5 1 <i>crease</i> , while the exponents on $(-2i)$
	Solutio	1. The coefficient 1 2. The expon- begin at 0 $1(3^5)(-2i)^0 + 5(3^4)(-2i)^0 + 5(3^4)(-2$	cients will be in the sixth ro 5 10 ents on 3 begin at 5 and de and <i>increase</i> . $-2i)^1 + 10(3^3)(-2i)^2 + 10(3^3)(-2i$	ow of Pascal's triangle. 10 5 1
	Solutio u've just learned uscal's triangle to	 The coefficient of 1 The exponent of 0 The exponent of	cients will be in the sixth ro 5 10 ents on 3 begin at 5 and de and <i>increase</i> . $-2i)^1 + 10(3^3)(-2i)^2 + 16^{-3}$ ach term.	by of Pascal's triangle. 10 5 1 <i>crease</i> , while the exponents on $(-2i)$

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	11.7: The Binomial Theorem	© The McGraw-Hill Companies, 2010	
11-63			Section 11.7 The Binomial Theorem	107
	Expandir	ng Binomial Powers ($(a + b)^n$	
	 The e on the For a algeb 	exponents on <i>the first te</i> <i>e second term</i> begin at ny binomial difference	$(a - b)^n$, rewrite the base as $[a + (-b)]^n$ us ceed as before, then simplify each term.	
	Pascal's tri exponent is 26 rows of	angle can easily be use s relatively small. If w the triangle would be r nula for the binomial c	and Factorials d to find the coefficients of $(a + b)^n$, as long e needed to expand $(a + b)^{25}$, writing out th ather tedious. To overcome this limitation, we coefficients that enables us to find the coefficients	intr
	The Bino	mial Coefficients		
		al numbers <i>n</i> and <i>r</i> wh he binomial coefficien	ere $n \ge r$, the expression $\binom{n}{r}$, read " <i>n</i> choose t and evaluated as:	se <i>r</i> ,
			$\binom{n}{r} = \frac{n!}{r!(n-r)!}$	

In Example 1, we found the coefficients of $(a + b)^4$ using the fifth or (n + 1)st row of Pascal's triangle. In Example 3, these coefficients are found using the formula for binomial coefficients.

Now try Exercises 13 through 20 ►

Note $\binom{4}{1} = 4$, $\binom{4}{2} = 6$, and $\binom{4}{3} = 4$ give the *interior entries* in the fifth row of Pascal's triangle: 1 4 6 4 1. For consistency and symmetry, we define 0! = 1, which enables the formula to generate all entries of the triangle, including the "1's."

$$\begin{pmatrix} 4\\0 \end{pmatrix} = \frac{4!}{0!(4-0)!} \quad \text{apply formula} \quad \begin{pmatrix} 4\\4 \end{pmatrix} = \frac{4!}{4!(4-4)!} = \frac{4!}{4! \cdot 0!} \quad \text{apply formula} \\ = \frac{4!}{1 \cdot 4!} = 1 \quad 0! = 1 \quad = \frac{4!}{4! \cdot 1} = 1 \quad 0! = 1$$

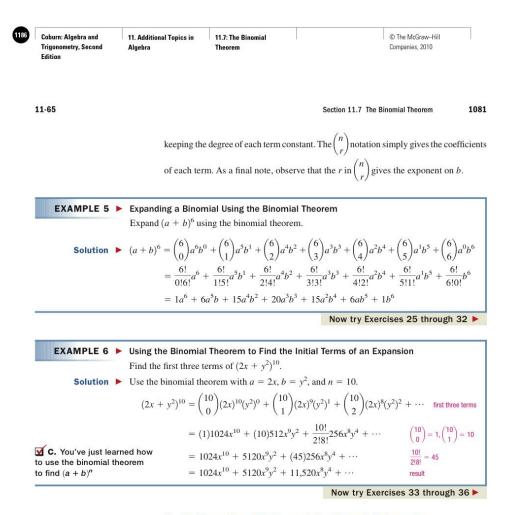
No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

	ırn: Algebra and onometry, Second on	11. Additional Topics in Algebra	11.7: The I Theorem	3inomial				© The McGraw–Hill Companies, 2010	
80	CHAPTER 11 Ad	ditional Topics in Algebra							11-64
		The formu	la for $\binom{n}{r}$	with 0	$\leq r \leq n$	now giv	es all coe	fficients in the (n	+ 1)st
		row. For $n = 5$.	, we have						
			$\binom{5}{0}$	$\binom{5}{1}$	$\binom{5}{2}$	$\binom{5}{3}$	$\binom{5}{4}$	$\binom{5}{5}$	
			1	5	10	10	5	1	
	EXAMPLE 4								
		Compute the bi				(6)			
		a. $\begin{pmatrix} 9\\ 0 \end{pmatrix}$ t	$\binom{3}{1}$	c. (5) d	$\binom{0}{6}$			
	Solution	$\mathbf{n} \triangleright \mathbf{a} \cdot \begin{pmatrix} 9\\0 \end{pmatrix} = \frac{0!(9)}{0!(9)}$ $= \frac{9!}{9!}$	$\frac{9!}{9-0)!}$		b. $\begin{pmatrix} 9 \\ 1 \end{pmatrix}$	$= \frac{1!}{9}$	9! - 1)!		
		$=\frac{9!}{9!}$	= 1			$=\frac{9!}{8!}=$	= 9		
		$\mathbf{c.} \begin{pmatrix} 6\\5 \end{pmatrix} = \frac{1}{5!(6)}$	$\frac{6!}{(6-5)!}$		d. $\begin{pmatrix} 6 \\ 6 \end{pmatrix}$	$= \frac{1}{6!(6)}$	6! - 6)!		
		$=\frac{6!}{5!}$	= 6			$=\frac{6!}{6!}=$	= 1		
		-			_	Now to		ses 21 through	24

B. You've just learned how to find binomial coefficients using $\binom{n}{k}$ notation $\binom{n}{n} =$

You may have noticed that the formula for $\binom{n}{r}$ is identical to that of ${}_{n}C_{r}$, and both yield like results for given values of *n* and *r*. For future use, it will help to commit the general results from Example 4 to memory: $\binom{n}{0} = 1, \binom{n}{1} = n, \binom{n}{n-1} = n$, and $\binom{n}{n} = 1$.

C. The Binomial Theorem


100

Using $\binom{n}{r}$ notation and the observations made regarding binomial powers, we can now state the **binomial theorem**.

Binomial Theorem
For any binomial $(a + b)$ and natural number <i>n</i> ,
$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \cdots$
$+\binom{n}{n-1}a^{1}b^{n-1}+\binom{n}{n}a^{0}b^{n}$
The theorem can also be stated in summation form as
$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$

The expansion actually looks overly impressive in this form, and it helps to summarize the process in words, as we did earlier. The exponents on the first term a begin at n and decrease, while the exponents on the second term b begin at 0 and increase,

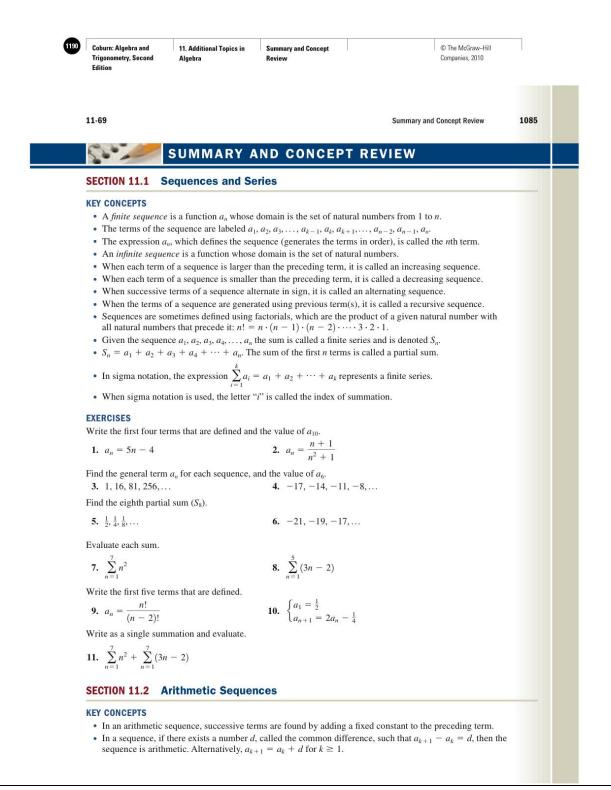
No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

D. Finding a Specific Term of the Binomial Expansion

In some applications of the binomial theorem, our main interest is a *specific term* of the expansion, rather than the expansion as a whole. To find a specified term, it helps to consider that the expansion of $(a + b)^n$ has n + 1 terms: $(a + b)^0$ has one term,

 $(a + b)^1$ has two terms, $(a + b)^2$ has three terms, and so on. Because the notation $\binom{n}{r}$ always begins at r = 0 for the first term, the value of r will be 1 less than the term we are seeking. In other words, for the seventh term of $(a + b)^9$, we use r = 6.

The kth Term of a Binomial Expansion


For the binomial expansion $(a + b)^n$, the *k*th term is given by

 $\binom{n}{r}a^{n-r}b^r$, where r = k - 1.

Trigonometry, Second Edition	11. Additional Topics in Algebra	11.7: The Binomial Theorem	© The McGraw-Hill Companies, 2010
2 CHAPTER 11 Add	itional Topics in Algebra		11-66
EXAMPLE 7		ecific Term of a Binomial Exp	
		th term in the expansion of $(x - x)$	9801500
Solution	 By comparing want the eight 	$(x + 2y)^{12}$ to $(a + b)^n$ we have the term, $k = 8 \rightarrow r = 7$. The effective for	a = x, b = 2y, and $n = 12$. Since we ighth term of the expansion is
		$\binom{12}{7}x^5(2y)^7 = \frac{12!}{7!5!}128x$	x^5y^7 $2^7 = 128$
		= (792)(12	$8x^5y^7$) $\binom{12}{7} = 792$
		= 101,376x	⁵ y ⁷ result
			Now try Exercises 37 through 42 >
	experiment m and (2) if the all <i>n</i> trials. If t	ust have only two possible outco experiment has <i>n</i> trials, the pro-	lities, the following must be true: (1) The somes, typically called success and failure, obability of success must be constant for the trial is p, the formula $\binom{n}{k}(1-p)^{n-k}p^k$ be successful.
	Binomial P	robability	
		point of the probability that exactly k trial $\binom{n}{k}(1-p)$	
		S. 7	
EXAMPLE 8	Applying the	Binomial Theorem-Binomia	l Probability
	game, with he and is awarde coach (a total	er team behind by three points, ed two additional free throws vi	verage of 85%. On the last play of the she is fouled at the three-point line, a technical fouls on the opposing he probability she makes <i>at least three</i>
Solution			$n = 5$. The key idea is to recognize the $P(\text{at least } 3) = P(3 \cup 4 \cup 5)$.
			lies a union
		= P(3) + P(4) + P(5) sum of p	
		$=\binom{5}{3}(0.15)^2(0.85)^3 + \binom{5}{4}(0.15)^2(0.85)^3$	$(15)^{1}(0.85)^{4} + {5 \choose 5}(0.15)^{0}(0.85)^{5}$
		$\approx 0.1382 + 0.3915 + 0.4437$	
D. You've just learned here a specific term of a		= 0.9734	97.3%) of at least tying the game.

11-67			Section 11.7 The Binomial Theorem		
5.2	11.7 EXE	RCISES			
CONCEPTS A	ND VOCABULARY				
	with the appropriate we the section if needed.	ord or phrase.			
1. In any bino more term t	mial expansion, there is han the power applied.		4. In a binomial experiment with <i>n</i> trials, the probability there are exactly <i>k</i> successes is give		
exponents of	in the expanded form of a and b must sum to		by the formula 5. Discuss why the expansion of $(a + b)^n$ has $n + b^n$		
	a binomial <i>difference</i> su the binomial as		 terms. 6. For any defined binomial experiment, discuss the relationships between the phrases, "exactly k success," and "at least k successes." 		
	YOUR SKILLS				
each expansion.	gle and the patterns ex $(a+b)^6$	~	Use the <i>binomial theorem</i> to expand each expression Write the general form first, then simplify. 25. $(c + d)^5$ 26. $(v + w)^4$ 27. $(a - b)^6$		
	11. $(1-2i)^5$ 1		28. $(x - y)^7$ 29. $(2x - 3)^4$ 30. $(a - 2b)^3$ 31. $(1 - 2i)^3$ 32. $(2 + \sqrt{3}i)^5$		
Evaluate each of 13. $\begin{pmatrix} 7 \\ 1 \end{pmatrix}$	(-)	$5. \begin{pmatrix} 5\\ 3 \end{pmatrix}$	31. $(1 - 2i)^{-1}$ 32. $(2 + \sqrt{3}i)^{-1}$ Use the <i>binomial theorem</i> to write the first three terr		
(4)	(2)	(3)	33. $(x + 2y)^9$ 34. $(3p + q)^8$ 35. $(v^2 - \frac{1}{2}w$ 36. $(\frac{1}{2}a - b^2)^{10}$		
19. $\binom{40}{3}$	$20. \binom{45}{3} \qquad 2$	$21. \begin{pmatrix} 6\\ 0 \end{pmatrix}$	Find the indicated term for each binomial expansion 37. $(x + y)^7$; 4th term 38. $(m + n)^6$; 5th ter		
22. $\binom{5}{0}$	23. $\binom{15}{15}$ 2	24. $\binom{10}{10}$	39. $(p-2)^8$; 7th term 40. $(a-3)^{14}$; 10th to 41. $(2x+y)^{12}$; 11th term 42. $(3n+m)^9$; 6th te		
► WORKING W	ITH FORMULAS				
The theoret heads in <i>n</i> f formula abo	robability: $P(k) = \binom{n}{k}$ ical probability of getti lips of a fair coin is give we. What is the probabilithe heads in 10 flips of the	ng exactly <i>k</i> en by the ility that you	44. Binomial probability: $P(k) = \binom{n}{k} \binom{1}{5}^k \binom{4}{5}^n$ A multiple choice test has five options per question. The probability of guessing correctly times out of <i>n</i> questions is found using the form shown. What is the probability a person scores 70% by guessing randomly (7 out of 10 question correct)?		

CHAPTER 11 Additional Topics in Algebra	11-68
APPLICATIONS	
 45. Batting averages: Tony Gwynn (San Diego Padres) had a lifetime batting average of 0.347, ranking him as one of the greatest hitters of all time. Suppose he came to bat five times in any given game. a. What is the probability that he will get exactly three hits? 	 47. Late rental returns: The manager of Victor's DVD Rentals knows that 6% of all DVDs rented are returned <i>late</i>. Of the eight videos rented in the last hour, what is the probability that a. exactly five are returned on time b. exactly six are returned on time
b. What is the probability that he will get at least	c. at least six are returned on timed. none of them will be returned late
 three hits? 46. Pollution testing: Erin suspects that a nearby iron smelter is contaminating the drinking water over a large area. A statistical study reveals that 83% of the wells in this area are likely contaminated. If the figure is accurate, find the probability that if another 10 wells are tested 	 48. Opinion polls: From past experience, a research firm knows that 20% of telephone respondents will agree to answer an opinion poll. If 20 people are contacted by phone, what is the probability that a. exactly 18 refuse to be polled b. exactly 19 refuse to be polled
a. exactly 8 are contaminated	c. at least 18 refuse to be polled
b. at least 8 are contaminated	d. none of them agree to be polled
49. Prior to calculators and computers, the binomial theorem was frequently used to approximate the value of compound interest given by the expression $(r, r)^{nt}$	50. If you sum the entries in each row of Pascal's triangle, a pattern emerges. Find a formula that generalizes the result for any row of the triangle, and use it to find the sum of the entries in the 12th
$\left(1 + \frac{r}{n}\right)^n$ by expanding the first three terms. For example, if the interest rate were 8% ($r = 0.08$) and the interest was compounded quarterly ($n = 4$) for 5 yr ($t = 5$), we have $(1 + \frac{0.08}{2})^{(4)(5)} =$ $(1 + 0.02)^{20}$. The first three terms of the expansion give a value of: $1 + 20(0.02) + 190(0.0004) =$ 1.476. a. Calculate the percent error: $%$ error $= \frac{\text{approximate value}}{\text{actual value}}$ b. What is the percent error if only two terms are used.	row of the triangle. 51. Show that $\binom{n}{k} = \binom{n}{n-k}$ for $n = 6$ and $k \le 6$. 52. The <i>derived polynomial</i> of $f(x)$ is $f(x + h)$ or the original polynomial evaluated at $x + h$. Use Pascal's triangle or the binomial theorem to find the derived polynomial for $f(x) = x^3 + 3x^2 + 5x - 11$. Simplify the result completely.
example, if the interest rate were $8\% (r = 0.08)$ and the interest was compounded quarterly $(n = 4)$ for 5 yr $(t = 5)$, we have $(1 + \frac{0.08}{4})^{(4)(5)} =$ $(1 + 0.02)^{20}$. The first three terms of the expansion give a value of: $1 + 20(0.02) + 190(0.0004) =$ 1.476. a. Calculate the percent error: $\%$ error $= \frac{\text{approximate value}}{\text{actual value}}$ b. What is the percent error if only two terms are used.	 row of the triangle. 51. Show that \$\begin{pmatrix} n \\ k \end{pmatrix} = \$\begin{pmatrix} n \\ n - k \end{pmatrix}\$ for \$n = 6\$ and \$k ≤ 6\$. 52. The <i>derived polynomial</i> of \$f(x)\$ is \$f(x + h)\$ or the original polynomial evaluated at \$x + h\$. Use Pascal's triangle or the binomial theorem to find the derived polynomial for \$f(x) = x^3 + 3x^2 + x^3 + 3x^3 + x^3 + x^3
example, if the interest rate were $8\% (r = 0.08)$ and the interest was compounded quarterly $(n = 4)$ for 5 yr $(t = 5)$, we have $(1 + \frac{0.08}{4})^{(4)(5)} =$ $(1 + 0.02)^{20}$. The first three terms of the expansion give a value of: $1 + 20(0.02) + 190(0.0004) =$ 1.476. a. Calculate the percent error: $\%$ error $= \frac{\text{approximate value}}{\text{actual value}}$ b. What is the percent error if only two terms are	 row of the triangle. 51. Show that \$\begin{pmatrix} n \\ k \end{pmatrix} = \$\begin{pmatrix} n \\ n - k \end{pmatrix}\$ for \$n = 6\$ and \$k ≤ 6\$. 52. The <i>derived polynomial</i> of \$f(x)\$ is \$f(x + h)\$ or the original polynomial evaluated at \$x + h\$. Use Pascal's triangle or the binomial theorem to find the derived polynomial for \$f(x) = x^3 + 3x^2 + x^3 + 3x^3 + x^3 + x^3

E	oburn: Algebra and rigonometry, Second dition	11. Additional Topics in Algebra	Summary and Concept Review		© The McGraw–Hill Companies, 2010
1086	CHAPTER 11	Additional Topics in Algebra			11-70
 If t the Fo: 	mmon difference. the initial term is us term a_k and the co	nknown or is not a_1 the befficient of d sum to n .	given by $a_n = a_1 + (n - nth term can be written a, the nth partial sum (the$	$a_n = a_k + (n-k)d,$	where the subscript of
	2				
EXERC Find th) for each arithmetic sec	uence. Then find the indi	cated term	
	5, 8, 11, \ldots ; find a		13. $3, 1, -1, -3, \dots;$		
	e sum of each seri				
	1 + 3 + 7 + 11 -		15. $1 + 4 + 7 + 10$	+ · · · + 88	
16. 3	+ 6 + 9 + 12 +	···; S ₂₀	17. $1 + \frac{3}{4} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4}$	$\cdots; S_{15}$	
10 ²	$\sum_{n=1}^{5} (3n-4)$		19. $\sum_{n=1}^{40} (4n-1)$		
18. 2					
18. $\sum_{n=1}^{n}$	1		n = 1		
<i>n</i> =	-1	matric Saguanca	<i>n</i> -1		
<i>n</i> =	-1	metric Sequence	n-1 S		
SECTI KEY CO	ON 11.3 Geo				
SECTI KEY CO • In	ON 11.3 Geo DNCEPTS a geometric sequer	nce, successive terms ar	e found by multiplying th		
SECTI KEY CO • In • In	ON 11.3 Geo ONCEPTS a geometric sequer other words, if the	nce, successive terms ar re exists a number <i>r</i> , ca	e found by multiplying the lled the common ratio, su		
SECTI KEY CC • In • In geo	ON 11.3 Geo DNCEPTS a geometric sequer other words, if the pometric. Alternativ	nce, successive terms ar re exists a number r , ca ely, we can write a_{k+1}	e found by multiplying the lled the common ratio, su	ch that $\frac{a_{k+1}}{a_k} = r$, the	n the sequence is
SECTI KEY CC In In geo Th geo	DN 11.3 Geo DNCEPTS a geometric sequent other words, if the pometric. Alternative e <i>n</i> th term a_n of a a_n heral term of a fini	nce, successive terms ar re exists a number r , ca ely, we can write a_{k+1} geometric sequence is g te sequence.	the found by multiplying the found by multiplying the last of the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where $a_n r^{n-1}$, where $a_n r^{n-1}$ is the fourth of the common ratio.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term	n the sequence is and a_n represents the
SECTI KEY CC • In • In geo • Th gei • If t	ON 11.3 Geo DNCEPTS a geometric sequer other words, if the pometric. Alternativ $e n$ th term a_n of a g neral term of a fini he initial term is u and the exponent of	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the n r sum to n.	The found by multiplying the found by multiplying the found is $a_{k}r$ for $k \ge 1$. The iven by $a_{n} = a_{1}r^{n-1}$, where r is the term can be written as $a_{n}r^{n-1}$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term	n the sequence is and a_n represents the
SECTI KEY CC • In • In geo • Th gei • If t	ON 11.3 Geo DNCEPTS a geometric sequer other words, if the pometric. Alternativ $e n$ th term a_n of a g neral term of a fini he initial term is u and the exponent of	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the	The found by multiplying the found by multiplying the found is $a_{k}r$ for $k \ge 1$. The iven by $a_{n} = a_{1}r^{n-1}$, where r is the term can be written as $a_{n}r^{n-1}$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term	n the sequence is and a_n represents the
SECTION SECTION In geo Th geo If t a_k	ON 11.3 Geo DNCEPTS a geometric sequer other words, if the pometric. Alternativ e <i>n</i> th term a_n of a g neral term of a fini the initial term is u and the exponent of e <i>n</i> th partial sum of	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the on r sum to n. of a geometric sequence	the found by multiplying the found by multiplying the led the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where <i>n</i> the term can be written a_n is $S_n = \frac{a_1(1 - r^n)}{1 - r}$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term	n the sequence is and a_n represents the
SECTION SECTION In geo Th geo If t a_k	ON 11.3 Geo DNCEPTS a geometric sequer other words, if the pometric. Alternativ e <i>n</i> th term a_n of a g neral term of a fini the initial term is u and the exponent of e <i>n</i> th partial sum of	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the n r sum to n.	the found by multiplying the found by multiplying the led the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where <i>n</i> the term can be written a_n is $S_n = \frac{a_1(1 - r^n)}{1 - r}$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term	n the sequence is and a_n represents the
SECTION SECTION In geo Th geo If t a_k	ON 11.3 Geo DNCEPTS a geometric sequer other words, if the pometric. Alternativ e <i>n</i> th term a_n of a <i>y</i> neral term of a fini- he initial term is a und the exponent of e <i>n</i> th partial sum of r < 1, the sum of	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the on r sum to n. of a geometric sequence	the found by multiplying the found by multiplying the led the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where <i>n</i> the term can be written <i>a</i> is $S_n = \frac{a_1(1 - r^n)}{1 - r}$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term	n the sequence is and a_n represents the
SECTION KEY CC • In • In • geo • Th geo • Th geo • Th geo • Th geo • If t a_k : • Th • If •	ON 11.3 Geo DNCEPTS a geometric sequel other words, if the ometric. Alternative <i>e n</i> th term a_n of a <i>g</i> neral term of a fini he initial term is u and the exponent of <i>e n</i> th partial sum of r < 1, the sum of ISES <i>e</i> indicated term for	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the on r sum to n. of a geometric sequence an infinite geometric secure or each geometric seque	the found by multiplying the led the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where <i>n</i> the term can be written as is $S_n = \frac{a_1(1 - r^n)}{1 - r}$, eries is $S_{\infty} = \frac{a_1}{1 - r}$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term $a_n = a_k r^{n-k}$, where the	n the sequence is and a_n represents the ne subscript of the term
SECTION KEY CC • In • In • geo • Th geo • Th geo • Th geo • Th geo • If t a_k : • Th • If •	ON 11.3 Geo DNCEPTS a geometric sequence other words, if the pometric. Alternative <i>e n</i> th term a_n of a <i>y</i> neral term of a fini- he initial term is u and the exponent of <i>e n</i> th partial sum of r < 1, the sum of ISES	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the on r sum to n. of a geometric sequence an infinite geometric secure or each geometric seque	The found by multiplying the found by multiplying the formula is $a_{n}r$ for $k \ge 1$. The iven by $a_{n} = a_{1}r^{n-1}$, where r is $S_{n} = \frac{a_{1}(1-r^{n})}{1-r}$, where r is $S_{\infty} = \frac{a_{1}(1-r^{n})}{1-r}$, where s is $S_{\infty} = \frac{a_{1}(1-r^{n})}{1-r}$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term $a_n = a_k r^{n-k}$, where the	n the sequence is and a_n represents the ne subscript of the term
$ \begin{array}{c} n = \\ \textbf{SECTI} \\ \textbf{KEY CC} \\ \textbf{in} \\ \textbf{in} \\ \textbf{gee} \\ \textbf{in} \\ \textbf{gee} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{gee} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{gee} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{in} \\ \textbf{in} \\ \textbf{gee} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{in} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{in} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{in} \\ \textbf{rh} \\ \textbf{rh} \\ \textbf{in} \\ \textbf{rh} \\ rh$	ON 11.3 Geo DNCEPTS a geometric sequer other words, if the pometric. Alternative <i>e n</i> th term a_n of a <i>y</i> neral term of a fini- he initial term is u and the exponent of <i>e n</i> th partial sum of <i>r</i> < 1, the sum of ISES <i>e</i> indicated term for <i>a y i i i i j i i i i i i i i i i</i>	nce, successive terms are re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the of a geometric sequence an infinite geometric sequence or each geometric sequence a_7 21. $a_1 = 4$ it exists.	The found by multiplying the found by multiplying the formula is $a_{n} = a_{k}r$ for $k \ge 1$. The iven by $a_{n} = a_{1}r^{n-1}$, where n the term can be written as $S_{n} = \frac{a_{1}(1 - r^{n})}{1 - r}$, where $S_{\infty} = \frac{a_{1}}{1 - r}$. Therefore, $a_{1} = \sqrt{2}$; find a_{7}	that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term $a_n = a_k r^{n-k}$, where the 22. $a_1 = \sqrt{7}, r$	n the sequence is and a_n represents the ne subscript of the term
	ON 11.3 Geo DNCEPTS a geometric sequence other words, if the pometric. Alternative e <i>n</i> th term a_n of a y_1 meral term of a fini- he initial term is unand the exponent of e <i>n</i> th partial sum of $r_1 < 1$, the sum of ISES e indicated term for = 5, $r = 3$; find ae indicated sum, iff $b = 8 + 4 - \cdots$ fini-	nce, successive terms are re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the of a geometric sequence an infinite geometric sequence or each geometric sequence a_7 21. $a_1 = 4$ it exists. and S_7	The found by multiplying the found by multiplying the left due common ratio, such as $a_k r$ for $k \ge 1$. For even by $a_n = a_1 r^{n-1}$, where a is $S_n = \frac{a_1(1-r^n)}{1-r}$, where a is $S_\infty = \frac{a_1(1-r^n)}{1-r}$. Here is is $S_\infty = \frac{a_1}{1-r}$. Here, $a_1 r = \sqrt{2}$; find a_7 . 24. $2 + 6 + 18 + \cdots$.	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term $a_n = a_k r^{n-k}$, where th 22. $a_1 = \sqrt{7}$, r ; find S_8	n the sequence is and a_n represents the ne subscript of the term
$n = \frac{1}{2} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j$	ON 11.3 Geo DNCEPTS a geometric sequence other words, if the pometric. Alternative <i>e n</i> th term a_n of a <i>y</i> neral term of a fini- he initial term is u and the exponent of <i>e n</i> th partial sum of <i>r</i> < 1, the sum of ISES <i>e</i> indicated term for <i>a y</i> = <i>y</i> , <i>r</i> = <i>3</i> ; find <i>a</i> <i>b y</i> = <i>y</i> + <i>4</i> - \cdots fini- <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i>	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the nr sum to n. of a geometric sequence an infinite geometric sequence to reach geometric sequence a_7 21. $a_1 = 4$ it exists. ad S_7 ; find S_{12}	the found by multiplying the left the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where a_1 is $S_n = \frac{a_1 (1 - r^n)}{1 - r}$, where a_1 is $S_\infty = \frac{a_1 (1 - r^n)}{1 - r}$, errices is $S_\infty = \frac{a_1}{1 - r}$. there, $a_1 r = \sqrt{2}$; find a_7 24. $2 + 6 + 18 + \cdots$ 26. $4 + 8 + 12 + 24$	that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term $a_n = a_k r^{n-k}$, where the 22. $a_1 = \sqrt{7}, r$ \cdot ; find S_8 $4 + \cdots$	n the sequence is and a_n represents the ne subscript of the term
$a = \frac{1}{2}$ SECTI KEY CC I In get Th get arrow and arrow	ON 11.3 Geo DNCEPTS a geometric sequence other words, if the pometric. Alternative <i>e</i> nth term a_n of a general term of a fini- he initial term is u and the exponent of <i>e</i> nth partial sum of <i>r</i> < 1, the sum of ISES <i>e</i> indicated term for a = 5, r = 3; find <i>a</i> <i>e</i> indicated sum, if $b = 8 + 4 - \cdots$ for $+ \frac{2}{5} + \frac{1}{5} + \frac{1}{10} + \cdots$ + 0.5 + 0.05 + 0	nce, successive terms are re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the of a geometric sequence an infinite geometric sequence reach geometric sequence a_7 21. $a_1 = 4$ it exists. and S_7 ; find S_{12} .005 +	the found by multiplying the led the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where a_1 is $S_n = \frac{a_1(1-r^n)}{1-r}$, erises is $S_\infty = \frac{a_1}{1-r}$. Hence, $a_1, r = \sqrt{2}$; find a_7 24. $2 + 6 + 18 + \cdots$ 26. $4 + 8 + 12 + 24$ 28. $6 - 3 + \frac{3}{2} - \frac{3}{4} + \frac{3}{4}$	ch that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term $a_n = a_k r^{n-k}$, where th 22. $a_1 = \sqrt{7}$, r \cdot ; find S_8 $4 + \cdots$	n the sequence is and a_n represents the ne subscript of the term
$a = \frac{1}{2}$ SECTI KEY CC I In get Th get arrow and arrow	ON 11.3 Geo DNCEPTS a geometric sequence other words, if the pometric. Alternative <i>e n</i> th term a_n of a <i>y</i> neral term of a fini- he initial term is u and the exponent of <i>e n</i> th partial sum of <i>r</i> < 1, the sum of ISES <i>e</i> indicated term for <i>a y</i> = <i>y</i> , <i>r</i> = <i>3</i> ; find <i>a</i> <i>b y</i> = <i>y</i> + <i>4</i> - \cdots fini- <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i> = <i>y</i> + <i>y</i> = <i>y</i>	nce, successive terms ar re exists a number r, ca ely, we can write a_{k+1} geometric sequence is g te sequence. nknown or is not a_1 , the nr sum to n. of a geometric sequence an infinite geometric sequence to reach geometric sequence a_7 21. $a_1 = 4$ it exists. ad S_7 ; find S_{12}	the found by multiplying the led the common ratio, such as $a_k r$ for $k \ge 1$. iven by $a_n = a_1 r^{n-1}$, where a_1 is $S_n = \frac{a_1(1-r^n)}{1-r}$, erises is $S_\infty = \frac{a_1}{1-r}$. Hence, $a_1, r = \sqrt{2}$; find a_7 24. $2 + 6 + 18 + \cdots$ 26. $4 + 8 + 12 + 24$ 28. $6 - 3 + \frac{3}{2} - \frac{3}{4} + \frac{3}{4}$	that $\frac{a_{k+1}}{a_k} = r$, the ere a_1 is the first term $a_n = a_k r^{n-k}$, where the 22. $a_1 = \sqrt{7}, r$ \cdot ; find S_8 $4 + \cdots$	n the sequence is and a_n represents the ne subscript of the term

	Algebra	Review	Companies, 2010
11-71			Summary and Concept Review 1
			n the following way. Each day one-third bute how much water <i>remains in the pone</i>
taught 1225 c taught in 200	credit-hours. For the new f	faculty, the college needs to pre o compute the credit-hours for	; at 7% per year since it opened in 2000 a dict the number of credit-hours that will 2009 and to find the total number of crec
SECTION 11.4	Mathematical Ind	luction	
 A sum formul that S_n represe must be true f Proof by indu principle. Let 	a involving only natural n ents a sum formula involvi or all natural numbers. ction can also be used to v S_n be a statement involvin	numbers <i>n</i> as inputs can be proving natural numbers, if (1) S_1 is validate other relationships, using the second sec	composed with other functions. en valid using a proof by induction. Give true and (2) $S_k + a_{k+1} = S_{k+1}$, then S_n by a more general statement of the S_1 is true (S_n for $n = 1$) and (2) the truth numbers n
EXERCISES	na shekara n		
	of mathematical induction $4 + 5 + \dots + n;$	36.1+4+	mula is true for all natural numbers <i>n</i> . $9 + 16 + 25 + 36 + \dots + n^2$;
$a_n = n$ and S	$n = \frac{n(n+1)}{2}.$	$a_n = n^2 a_n$	and $S_n = \frac{n(n+1)(2n+1)}{6}$.
u _n n und b	2		0
Use the principle of 37. $4^n \ge 3n + 1$	of mathematical induction 38. 6	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$	
Use the principle of $37. 4^n \ge 3n + 1$ SECTION 11.5	of mathematical induction	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$	true for all natural numbers n.
Use the principle of $37. 4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experimen	of mathematical induction 38. 6 Counting Techniquent at is any task that can be re	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$ ues	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2
Use the principle of $37. 4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experimen • Each repetitio	of mathematical induction 38. 6 Counting Techniquent at is any task that can be re- on of an experiment is called	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$ ues	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2
Use the principle of $4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experimen • Each repetitio • Any potential • The set of all	of mathematical induction 38. 6 Counting Techniquent at is any task that can be re- on of an experiment is called outcome of an experimen sample outcomes is called	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$ ues epeated and has a well-defined set ed a trial. It is called a sample outcome. I the sample space.	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2 set of possible outcomes.
Use the principle of a state of the principle of a state of the principle	of mathematical induction 38. 6 Counting Techniqu at is any task that can be re on of an experiment is called outcome of an experimen sample outcomes is called at with <i>N</i> (equally likely) sa	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$ ues epeated and has a well-defined so ed a trial. It is called a sample outcome. I the sample space. ample outcomes that is repeated	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2 set of possible outcomes. d <i>t</i> times, has a sample space with <i>N'</i>
Use the principle of 37 . $4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experimen • Each repetitio • Any potential • The set of all • An experimen elements. • If a sample ou	of mathematical induction 38. 6 Counting Techniqu at is any task that can be re on of an experiment is called outcome of an experiment sample outcomes is called at with N (equally likely) sa attorne can be used more t	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$ ues epeated and has a well-defined so ed a trial. It is called a sample outcome. I the sample space. ample outcomes that is repeated	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2 set of possible outcomes.
Use the principle of 37 . $4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experimer • Each repetitio • Any potential • The set of all • An experiment • elements. • If a sample ou can be used on • The fundament second, and r	of mathematical induction 38. 6 Counting Techniqu It is any task that can be re on of an experiment is called outcome of an experimen sample outcomes is called at with N (equally likely) so attorne can be used more t nly once the counting is sa ntal principle of counting s possibilities for the third,	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$ ues epeated and has a well-defined s ed a trial. It is called a sample outcome. I the sample space. ample outcomes that is repeated than once, the counting is said t aid to be without repetition. states: If there are <i>p</i> possibilitie	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2 set of possible outcomes. d <i>t</i> times, has a sample space with N^t o be with repetition. If a sample outcome s for a first task, <i>q</i> possibilities for the experiment can be completed is <i>pqr</i> . This
Use the principle of 37 . $4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experiment • Each repetitio • Any potential • The set of all • An experiment • elements. • If a sample out can be used of • The fundament • second, and <i>r</i> fundamental p • If the element	of mathematical induction 38. 6 Counting Techniqu at is any task that can be re- on of an experiment is called outcome of an experiment sample outcomes is called at with N (equally likely) sa- the sample outcomes is called at with N (equally likely) sa- the sample outcomes is called at with N (equally likely) sa- the sample of counting is sa- ntal principle of counting is sa- ntal principle of the third, orinciple can be extended to s of a sample space have pri-	to prove that each statement is $\cdot 7^{n-1} \le 7^n - 1$ ues epeated and has a well-defined se ed a trial. It is called a sample outcome. I the sample space. ample outcomes that is repeated han once, the counting is said t aid to be without repetition. states: If there are <i>p</i> possibilitie the total number of ways the ex- to include any number of tasks. recedence or priority (order or r	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2 set of possible outcomes. d <i>t</i> times, has a sample space with N^t o be with repetition. If a sample outcome s for a first task, <i>q</i> possibilities for the experiment can be completed is <i>pqr</i> . This
Use the principle of 37 . $4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experimern • Each repetition • Any potential • The set of all • An experimernel elements. • If a sample our can be used on • The fundamental principle of the element counted using	of mathematical induction 38. 6 Counting Techniqu at is any task that can be re- on of an experiment is called outcome of an experimen sample outcomes is called at with N (equally likely) so the counting is saa- tal principle of counting is possibilities for the third, principle can be extended to s of a sample space have pri a permutation, denoted $_nP_n$	to prove that each statement is $\gamma^{n-1} \leq 7^n - 1$ ues epeated and has a well-defined se ed a trial. It is called a sample outcome. I the sample space. ample outcomes that is repeated than once, the counting is said to aid to be without repetition. states: If there are <i>p</i> possibilitie the total number of ways the es to include any number of tasks. recedence or priority (order or ra- <i>y</i> and read, "the distinguishable"	true for all natural numbers <i>n</i> . 39. $3^n - 1$ is divisible by 2 set of possible outcomes. d <i>t</i> times, has a sample space with <i>N'</i> o be with repetition. If a sample outcome s for a first task, <i>q</i> possibilities for the cperiment can be completed is <i>pqr</i> . This ank is important), the number of elements permutations of <i>n</i> objects taken <i>r</i> at a time
Use the principle of 37 . $4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experiment • Each repetition • Any potential • The set of all • An experiment • elements. • If a sample our can be used out • The fundamental principle out refundamental principle out • If the element principle out • To expand "P", • If any of the <i>n</i> elements when the principle output to the pri	of mathematical induction 38. 6 Counting Technique at is any task that can be re- on of an experiment is called outcome of an experiment sample outcomes is called at with N (equally likely) sub- attore can be used more to nal principle of counting so possibilities for the third, principle can be extended to s of a sample space have principle can be extended to a permutation, denoted "P, , we can write out the first sample outcomes are iden- tere one element is repeated	to prove that each statement is $7^{n-1} \le 7^n - 1$ ues epeated and has a well-defined se ed a trial. It is called a sample outcome. I the sample space. ample outcomes that is repeated han once, the counting is said t aid to be without repetition. states: If there are <i>p</i> possibilitie the total number of ways the ex- to include any number of tasks. recedence or priority (order or re- <i>i</i> , and read, "the distinguishable t <i>r</i> factors of <i>n</i> ! or use the forma- natical, certain permutations will d <i>p</i> times, another is repeated <i>q</i>	true for all natural numbers <i>n</i> . 39. $3'' - 1$ is divisible by 2 set of possible outcomes. d <i>t</i> times, has a sample space with N' to be with repetition. If a sample outcome is for a first task, <i>q</i> possibilities for the experiment can be completed is <i>pqr</i> . This ank is important), the number of elements permutations of <i>n</i> objects taken <i>r</i> at a time ula $_nP_r = \frac{n!}{(n-r)!}$. I be nondistinguishable. In a set contain times, and another <i>r</i> times $(p + q + r \leq r)$
Use the principle of 37 . $4^n \ge 3n + 1$ SECTION 11.5 KEY CONCEPTS • An experiment • Each repetition • Any potential • The set of all • An experiment • elements. • If a sample ou can be used on • The fundamental p • If the element p • If the element and p • To expand $_nP_n$ • If any of the <i>n</i> elements wh	of mathematical induction 38. 6 Counting Technique at is any task that can be re- on of an experiment is called outcome of an experiment sample outcomes is called at with N (equally likely) sub- attore can be used more to nal principle of counting so possibilities for the third, principle can be extended to s of a sample space have principle can be extended to a permutation, denoted "P, , we can write out the first sample outcomes are iden- tere one element is repeated	to prove that each statement is $7^{n-1} \le 7^n - 1$ ues epeated and has a well-defined se ed a trial. It is called a sample outcome. I the sample space. ample outcomes that is repeated han once, the counting is said to aid to be without repetition. states: If there are <i>p</i> possibilities the total number of ways the es to include any number of tasks. recedence or priority (order or re- <i>i</i> , and read, "the distinguishable to <i>r</i> factors of <i>n</i> ! or use the formu- natical, certain permutations will	true for all natural numbers <i>n</i> . 39. $3'' - 1$ is divisible by 2 set of possible outcomes. d <i>t</i> times, has a sample space with N' to be with repetition. If a sample outcome is for a first task, <i>q</i> possibilities for the experiment can be completed is <i>pqr</i> . This ank is important), the number of elements permutations of <i>n</i> objects taken <i>r</i> at a time ula $_nP_r = \frac{n!}{(n-r)!}$. I be nondistinguishable. In a set contain times, and another <i>r</i> times $(p + q + r \leq r)$

	Coburn: Algebra and 11. Additional Topics in Summary and Concept © The McGraw-Hill Trigonometry, Second Algebra Review Companies, 2010 Edition Edition Companies, 2010 Companies, 2010					
108	CHAPTER 11 Additional Topics in Algebra 11-	72				
	If the elements of a set have no rank, order, or precedence (as in a committee of colleagues) permutations with the	ne				
	same elements are considered identical. The result is the number of combinations, ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$.					
EXE	RCISES					
40.	Three slips of paper with the letters A, B, and C are placed in a box and randomly drawn one at a time. Show all ossible ways they can be drawn using a tree diagram.					
41.	The combination for a certain bicycle lock consists of three digits. How many combinations are possible if (a) repetition of digits is not allowed and (b) repetition of digits is allowed.					
42.	Jethro has three work shirts, four pairs of work pants, and two pairs of work shoes. How many different ways ca he dress himself (shirt, pants, shoes) for a day's work?	ın				
43.	From a field of 12 contestants in a pet show, three cats are chosen at random to be photographed for a publicity poster. In how many different ways can the cats be chosen?					
44.	How many subsets can be formed from the elements of this set: $\{\blacksquare, \boxdot, \square, \blacksquare, \boxdot\}$?					
45.	Compute the following values by hand, showing all work:					
	a. 7! b. $_{7}P_{4}$ c. $_{7}C_{4}$					
46.	Six horses are competing in a race at the McClintock Ranch. Assuming there are no ties, (a) how many different ways can the horses finish the race? (b) How many different ways can the horses finish first, second, and third place? (c) How many finishes are possible if it is well known that Nellie-the-Nag will finish last and Sea Biscuit will finish first?					
47.	How many distinguishable permutations can be formed from the letters in the word "tomorrow"?					
48.	Quality Construction Company has 12 equally talented employees. (a) How many ways can a three-member crew be formed to complete a small job? (b) If the company is in need of a Foreman, Assistant Foreman, and Crew Chief, in how many ways can the positions be filled?					
SE	TION 11.6 Introduction to Probability	_				
	CONCEPTS					
•	An event E is any designated set of sample outcomes.					
•	Given S is a sample space of equally likely sample outcomes and E is an event relative to S, the probability of E					
•						
•	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$					
•	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$ represents the number of elements in <i>S</i> . The complement of an event <i>E</i> is the set of sample outcomes in <i>S</i> , but not in <i>E</i> and is denoted $\sim E$. Given sample space <i>S</i> and any event <i>E</i> defined relative to <i>S</i> : (1) $P(\sim S) = 0$, (2) $0 \le P(E) \le 1$, (3) $P(S) = 1$, (4) $P(E) = 1 - P(\sim E)$, and					
••••••	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$ represents the number of elements in <i>S</i> . The complement of an event <i>E</i> is the set of sample outcomes in <i>S</i> , but not in <i>E</i> and is denoted $\sim E$. Given sample space <i>S</i> and any event <i>E</i> defined relative to <i>S</i> :					
•••••••	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$ represents the number of elements in <i>S</i> . The complement of an event <i>E</i> is the set of sample outcomes in <i>S</i> , but not in <i>E</i> and is denoted $\sim E$. Given sample space <i>S</i> and any event <i>E</i> defined relative to <i>S</i> : (1) $P(\sim S) = 0$, (2) $0 \le P(E) \le 1$, (3) $P(S) = 1$, (4) $P(E) = 1 - P(\sim E)$, and (5) $P(E) + P(\sim E) = 1$.					
	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$ represents the number of elements in <i>S</i> . The complement of an event <i>E</i> is the set of sample outcomes in <i>S</i> , but not in <i>E</i> and is denoted $\sim E$. Given sample space <i>S</i> and any event <i>E</i> defined relative to <i>S</i> : (1) $P(\sim S) = 0$, (2) $0 \leq P(E) \leq 1$, (3) $P(S) = 1$, (4) $P(E) = 1 - P(\sim E)$, and (5) $P(E) + P(\sim E) = 1$. Two events that have no outcomes in common are said to be mutually exclusive. If two events are not mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$. If two events are mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2)$. Recises					
• • • • • • • • • • • • • • •	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$ represents the number of an event <i>E</i> is the set of sample outcomes in <i>S</i> , but not in <i>E</i> and is denoted $\sim E$. Given sample space <i>S</i> and any event <i>E</i> defined relative to <i>S</i> : (1) $P(\sim S) = 0$, (2) $0 \leq P(E) \leq 1$, (3) $P(S) = 1$, (4) $P(E) = 1 - P(\sim E)$, and (5) $P(E) + P(\sim E) = 1$. Two events that have no outcomes in common are said to be mutually exclusive. If two events are not mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$. If two events are mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2)$. RCISES One card is drawn from a standard deck. What is the probability the card is a ten or a face card?					
• • • • • • • • • • • • • • • • • • •	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$ represents the number of elements in <i>S</i> . The complement of an event <i>E</i> is the set of sample outcomes in <i>S</i> , but not in <i>E</i> and is denoted $\sim E$. Given sample space <i>S</i> and any event <i>E</i> defined relative to <i>S</i> : (1) $P(\sim S) = 0$, (2) $0 \leq P(E) \leq 1$, (3) $P(S) = 1$, (4) $P(E) = 1 - P(\sim E)$, and (5) $P(E) + P(\sim E) = 1$. Two events that have no outcomes in common are said to be mutually exclusive. If two events are not mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$. If two events are mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2)$. RCISES One card is drawn from a standard deck. What is the probability the card is a ten or a face card? One card is drawn from a standard deck. What is the probability the card is a Queen or a face card?					
• • • • • • • • • • • • • • • • • • •	Given <i>S</i> is a sample space of equally likely sample outcomes and <i>E</i> is an event relative to <i>S</i> , the probability of <i>E</i> , written $P(E)$, is computed as $P(E) = \frac{n(E)}{n(S)}$, where $n(E)$ represents the number of elements in <i>E</i> , and $n(S)$ represents the number of an event <i>E</i> is the set of sample outcomes in <i>S</i> , but not in <i>E</i> and is denoted $\sim E$. Given sample space <i>S</i> and any event <i>E</i> defined relative to <i>S</i> : (1) $P(\sim S) = 0$, (2) $0 \leq P(E) \leq 1$, (3) $P(S) = 1$, (4) $P(E) = 1 - P(\sim E)$, and (5) $P(E) + P(\sim E) = 1$. Two events that have no outcomes in common are said to be mutually exclusive. If two events are not mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$. If two events are mutually exclusive, $P(E_1 \text{ or } E_2) \rightarrow P(E_1 \cup E_2) = P(E_1) + P(E_2)$. RCISES One card is drawn from a standard deck. What is the probability the card is a ten or a face card?					

119

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Tri		11. Additional Topics in Algebra	Summary and Concept Review	© The McGraw–H Companies, 2010	in
11-7	/3			Mixed Review	1089
54.			be hired, a medical clinic tracks the est for an appointment and the actual	Wait (days d)	Probability
			the probability that a patient must wait "d"	0	0.002
	days. Based on the	table, what is the prob	pability a patient must wait	0 < d < 10	0.07
	a. at least 20 days		b. less than 20 days	$10 \le d \le 20$	0.32
	c. 40 days or less		d. over 40 days	$20 \le d < 30$	0.43
	c. 40 days of less		a over to days		

SECTION 11.7 The Binomial Theorem

KEY CONCEPTS

- To expand $(a + b)^n$ for n of "moderate size," we can use Pascal's triangle and observed patterns.
- For any natural numbers n and r, where $n \ge r$, the expression $\binom{n}{r}$ (read "n choose r") is called the *binomial*

coefficient and evaluated as $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

• If *n* is large, it is more efficient to expand using the binomial coefficients and binomial theorem.

The following binomial coefficients are useful/common and should be committed to memory:

$$\begin{pmatrix} r \\ r \end{pmatrix}$$

$$\binom{n}{0} = 1 \qquad \binom{n}{1} = n \qquad \binom{n}{n-1} = n \qquad \binom{n}{n} = 1$$

• We define $0! = 1$; for example $\binom{n}{n} = \frac{n!}{n!(n-n)!} = \frac{1}{0!} = \frac{1}{1} = 1.$

• The binomial theorem:
$$(a + b)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a^1 b^{n-1} + \binom{n}{n} a^0 b^n.$$

• The binomial theorem: $(a + b)^n = (0)^{a b + 1} (1)^{a - b + 1} (2)^{a - b + 1} (n)^n$ • The *k*th term of $(a + b)^n$ can be found using the formula $\binom{n}{r} a^{n-r} b^r$, where r = k - 1.

EXERCISES

55. Evaluate each of the following:

$$\mathbf{a.} \begin{pmatrix} 7\\5 \end{pmatrix}$$
 $\mathbf{b.} \begin{pmatrix} 8\\3 \end{pmatrix}$

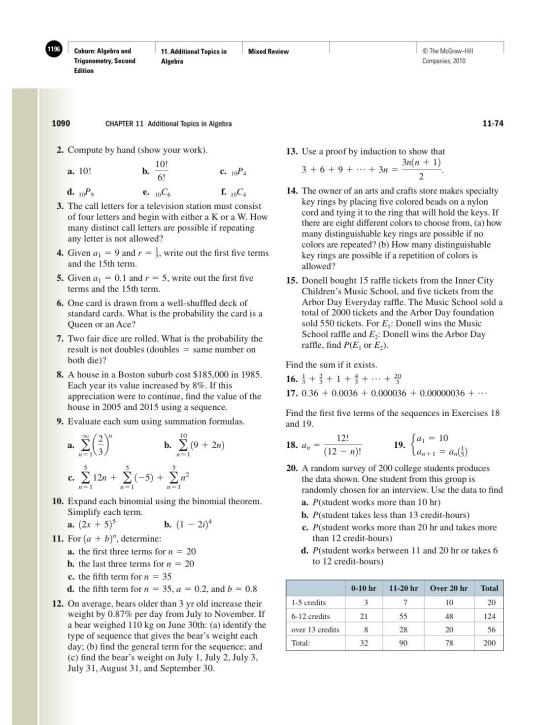
Use the binomial theorem to:

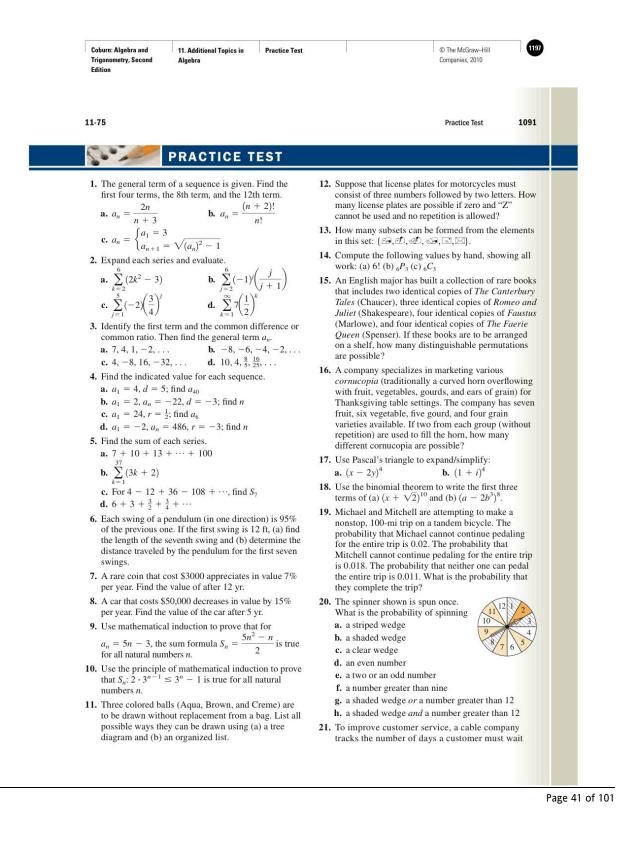
- 57. Write the first four terms of
 - **a.** $(a + \sqrt{3})^8$ **b.** $(5a + 2b)^7$

56. Use Pascal's triangle to expand the binomials:

a.
$$(x - y)^4$$
 b. $(1 + 2i)^5$

58. Find the indicated term of each expansion. **a.** $(x + 2y)^7$; fourth **b.** $(2a - b)^{14}$; 10th


Coburn: Algebra and	11. Additional Topics in	Mixed Review	© The McGraw–Hill 1195
Trigonometry, Second	Algebra		Companies, 2010
Edition			



- 1. Identify each sequence as arithmetic, geometric, or neither. If neither, try to identify the pattern that forms the sequence. **a.** 120, 163, 206, 249, ...

 - **b.** 4, 4, 4, 4, 4, 4, . . .
 - **c.** 1, 2, 6, 24, 120, 720, 5040, . . .

- **d.** 2.00, 1.95, 1.90, 1.85, ...
- **e.** $\frac{5}{8}, \frac{5}{64}, \frac{5}{512}, \frac{5}{4096}, \dots$ **f.** -5.5, 6.05, -6.655, 7.3205, ...
- **g.** $0.\overline{1}, 0.\overline{2}, 0.\overline{3}, 0.\overline{4}, \ldots$
- **h.** 525, 551.25, 578.8125, . . .
- **i.** $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots$

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

> 1198 Coburn: Algebra and Trigonometry, Second Edition

11. Additional Topics in Practice Test © The McGraw-Hill Companies, 2010

1092 CHAPTER 11 Additional Topics in Algebra

Algebra

until their cable service is installed. The table	Wait (days d)	Probability
shows the probability	0	0.02
that a customer must	0 < d < 1	0.30
wait d days. Based on	$1 \le d < 2$	0.60
the table, what is the	$2 \le d < 3$	0.05
probability a customer waits	$3 \le d \le 4$	0.03
a. at least 2 days	b. less than	2 days
c. 4 days or less	d. over 4 da	ays
2. An experienced archer cc the rectangular target sho 100% of the time at a ran 75 m. Assuming the probability the target is h related to its area, what is probability the archer hit within the	it is 64 cm	48 cm
the rectangular target sho 100% of the time at a ran 75 m. Assuming the probability the target is h related to its area, what is probability the archer hit	it is 64 cm	48 cm
the rectangular target sho 100% of the time at a ran 75 m. Assuming the probability the target is h related to its area, what is probability the archer hit within the	wn ge of it is 64 cm s the s b. circle	48 cm
the rectangular target sho 100% of the time at a ran 75 m. Assuming the probability the target is h related to its area, what is probability the archer hit within the a. triangle	wn ge of it is 64 cm s the s b. circle	48 cm
the rectangular target sho 100% of the time at a ran 75 m. Assuming the probability the target is h related to its area, what is probability the archer hit within the a. triangle c. circle but outside the t	wn ge of it is 64 cm s the s b. circle riangle	48 cm

- f. lower half-rectangle, outside the circle
- 23. A survey of 100 union workers was taken to register concerns to be raised at the next bargaining session. A breakdown of those surveyed is shown in the table in the right column. One out of the hundred will be

Expertise Level	Women	Men	Total
Apprentice	16	18	34
Technician	15	13	28
Craftsman	9	9	18
Journeyman	7	6	13
Contractor	3	4	7
Totals	50	50	100

selected at random for a personal interview. What is the probability the person chosen is a

- a. woman or a craftsman
- b. man or a contractor
- c. man and a technician
- d. journeyman or an apprentice
- 24. Cheddar is a 12-year-old male box turtle. Provolone is an 8-year-old female box turtle. The probability that Cheddar will live another 8 yr is 0.85. The probability that Provolone will live another 8 yr is 0.95. Find the probability that
 - a. both turtles live for another 8 yr
 - b. neither turtle lives for another 8 yr c. at least one of them will live another 8 yr
- 25. Use a proof by induction to show that the sum of the first *n* natural numbers is $\frac{n(n+1)}{2}$. That is, prove

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

11-76

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additional Topics in Trigonometry, Second Algebra Edition Calculator Exploration and Discovery: Infinite Series, Finite Results © The McGraw-Hill Companies, 2010

Infinite Series, Finite Results

Although there were many earlier flirtations with infinite processes, it may have been the paradoxes of Zeno of Elea (~450 B.C.) that crystallized certain questions that simultaneously frustrated and fascinated early mathematicians. The first paradox, called the dichotomy paradox, can be summarized by the following question: How can one ever finish a race, seeing that one-half the distance must first be traversed, then one-half the remaining distance, then one-half the remaining distance, then one-half the subtleties involved in this question stymied mathematicians for centuries and were not satisfactorily resolved until the eighteenth century. In modern notation, Zeno's first paradox says $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots < 1$. This is a geometric series with $a_1 = \frac{1}{2}$ and $r = \frac{1}{2}$.

Illustration 1 \triangleright For the geometric sequence with $a_1 = \frac{1}{2}$ and $r = \frac{1}{2}$, the *n*th term is $a_n = \frac{1}{2^n}$. Use the "**sum**(" and

"**seq**(" features of your calculator to compute S_5 , S_{10} , and S_{15} (see *Technology Highlight* from Section 11.1). Does the sum appear to be approaching some "limiting value"? If so, what is this value? Now compute S_{20} , S_{25} , and S_{30} . Does there still appear to be a limit to the sum? What happens when you have the calculator compute S_{35} ?

Solution \triangleright **CLEAR** the calculator and enter sum(seq $(0.5^{A}X, X, 1, 5)$) on the home screen. Pressing **ENTER** gives

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Edition

Coburn: Algebra and 11. Additional Topics in Trigonometry, Second Algebra

Calculator Exploration and Discovery: Infinite Series, **Finite Results**

© The McGraw–Hill Companies, 2010

11-77

 $S_5 = 0.96875$ (Figure 11.21). Figure 11.21 Press 2nd ENTER to recall seq(0.5^X,X; sum 1,5 the expression and overwrite the 5, changing it to a 10. Pressing ENTER shows 4(0. $S_{10} = 0.9990234375.$ 9990 Repeating these steps gives ۹(0. sum $S_{15} = 0.9999694824$, and 1,155 it seems that "1" may be a

limiting value. Our conjecture receives further support as S_{20} , S_{25} , and S_{30} are closer and closer to 1, but do not exceed it.

Note that the sum of additional terms will create a longer string of 9's. That the sum of an infinite number of these terms is 1 can be understood by converting the repeating decimal 0.9 to its fractional form (as shown). For $x = 0.\overline{9}, 10x = 9.\overline{9}$ and it follows that

10x =	9.9
-x =	$-0.\bar{9}$
9x =	9
x =	1

1093 Strengthening Core Skills

For a geometric sequence, the result of an infinite sum can be verified using $S_{\infty} = \frac{a_1}{1-r}$. However, there are many nongeometric, infinite series that also have a limiting value. In some cases these require many, many more terms before the limiting value can be observed.

Use a calculator to write the first five terms and to find S_5 , S_{10} , and S_{15} . Decide if the sum appears to be approaching some limiting value, then compute S_{20} and S_{25} . Do these sums support your conjecture?

Exercise 1:
$$a_1 = \frac{1}{3}$$
 and $r = \frac{1}{3}$
Exercise 2: $a_1 = 0.2$ and $r = 0.2$

Exercise 3:
$$a_n = \frac{1}{(n-1)!}$$

Additional Insight: Zeno's first paradox can also be "resolved" by observing that the "half-steps" needed to complete the race require increasingly shorter (infinitesimally short) amounts of time. Eventually the race is complete.

200%

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

Coburn: Algebra and 11. Additional Topics in Trigonometry, Second Algebra Edition Strengthening Core Skills: Probability, Quick Counting, and Card Games © The McGraw-Hill Companies, 2010

STRENGTHENING CORE SKILLS

Probability, Quick-Counting, and Card Games

The card game known as *Five Card Stud* is often played for fun and relaxation, using toothpicks, beans, or pocket change as players attempt to develop a winning "hand" from the five cards dealt. The various "hands" are given here with the higher value hands listed first (e.g., a full house is a better/higher hand than a flush).

Five Card Hand	Description	Probability of Being Dealt
royal flush	five cards of the same suit in sequence from Ace to 10	0.000 001 540
straight flush	any five cards of the same suit in sequence (exclude royal)	0.000 013 900
four of a kind	four cards of the same rank, any fifth card	
full house	three cards of the same rank, with one pair	
flush	five cards of the same suit, no sequence required	0.001 970
straight	five cards in sequence, regardless of suit	
three of a kind	three cards of the same rank, any two other cards	
two pairs	two cards of the one rank, two of another rank, one other card	0.047 500
one pair	two cards of the same rank, any three others	0.422 600

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

> Coburn: Algebra and Edition

11. Additional Topics in Trigonometry, Second

Strengthening Core Skills: Probability, Quick **Counting, and Card Games**

© The McGraw-Hill Companies, 2010

1094 CHAPTER 11 Additional Topics in Algebra

For this study, we will consider the hands that are based on suit (the flushes) and the sample space to be five cards dealt from a deck of 52, or ${}_{52}C_5$.

Algebra

A flush consists of five cards in the same suit, a straight consists of five cards in sequence. Let's consider that an Ace can be used as either a high card (as in 10, J, Q, K, A) or a low card (as in A, 2, 3, 4, 5). Since the dominant characteristic of a flush is its suit, we first consider choosing one suit of the four, then the number of ways that the straight can be formed (if needed).

Illustration 1 ► What is the probability of being dealt a royal flush?

Solution ► For a royal flush, all cards must be of one suit. Since there are four suits, it can be chosen in ${}_{4}C_{1}$ ways. A royal flush must have the cards A, K, Q, J, and 10 and once the suit has been decided, it can happen in only this (one) way or $_1C_1$. This means

P (royal flush) = $\frac{{}_{4}C_{1} \cdot {}_{1}C_{1}}{c} \approx 0.000\ 001\ 540.$ 52C5

Illustration 2 What is the probability of being dealt a straight flush?

Solution > Once again all cards must be of one suit, which can be chosen in $_4C_1$ ways. A straight flush is any five cards in sequence and once the suit has been decided, this can happen in 10 ways (Ace on down, King on down, Queen on down, and so on). By the FCP, there are ${}_{4}C_{1} \cdot {}_{10}C_{1} = 40$ ways this can happen, but four of these will be royal flushes that are of a higher value and must be subtracted from this total. So in the intended context we have $_{4}C_{1} \cdot _{10}C_{1} - 4$

$$P(\text{straight flush}) = \frac{1}{52C_5} \approx 0.000\ 013\ 900$$

Using these examples, determine the probability of being dealt

Exercise 1: a simple flush (no royal or straight flushes)

Exercise 2: three cards of the same suit and any two other (nonsuit) cards

Exercise 3: four cards of the same suit and any one other (nonsuit) card

Exercise 4: a flush having no face cards

11-78

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

ſ	Coburn: Algebra and	11. Additional Topics in	Cumulat
	Trigonometry, Second	Algebra	Chapters
	Edition		

tive Review: s 1-11

© The McGraw-Hill Companies, 2010

CUMULATIVE REVIEW CHAPTERS 1-11

у

 $\frac{\pi}{6}$

π

4

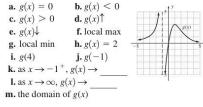
π

3

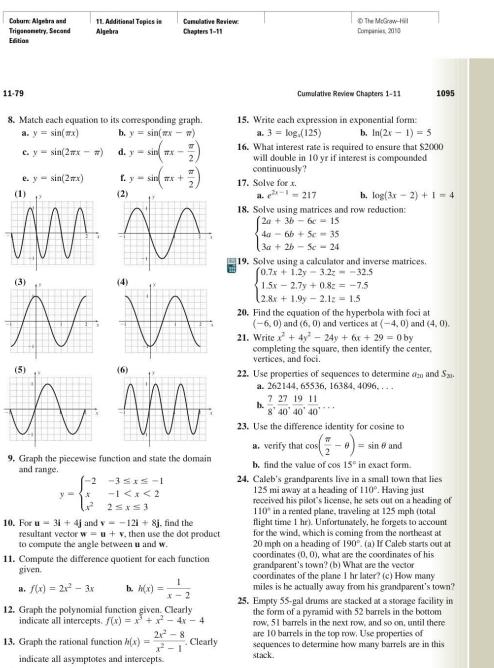
 $\frac{\pi}{2}$

 2π

3


 5π 6 π

- 1. Robot Moe is assembling memory cards for computers. At 9:00 A.M., 52 cards had been assembled. At 11:00 A.M., a total of 98 had been made. Assuming the production rate is linear
 - a. Find the slope of this line and explain what it means in this context.
 - b. Determine how many boards Moe **Table for** can assemble in an eight-hour day. Exercise 3
 - c. Find a linear equation model for x this data. 0
 - d. Determine the approximate time that Moe began work this morning.
- 2. When using a calculator to find sin 120°, you get $\frac{\sqrt{3}}{\sqrt{3}}$ yet


$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \neq 120^\circ$$
. Explain why.

3. Complete this table of special values for $y = \cos x$ without using a calculator.

- 4. Sketch the graph of $y = \sqrt{x+4} 3$ using transformations of a parent function. Label the x- and y-intercepts and state what transformations were used.
- 5. Solve using the quadratic formula: $3x^2 + 5x 7 = 0$. State your answer in exact and approximate form.
- 6. The orbit of Venus around the Sun is nearly circular, with a radius of 67 million miles. The planet completes one revolution in about 225 days. Calculate the planet's (a) angular velocity in radians per hour and (b) the planet's orbital velocity in miles per hour.
- 7. For the graph of g(x) shown, state where

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

14. Write each expression in logarithmic form:

$$x = 10^y$$
 b. $\frac{1}{81} = 3^{-4}$

a.

Coburn: Algebra and Trigonometry, Second Edition	11. Additional Topics in Algebra	Cumulative Review: Chapters 1–11		© The McGraw–Hill Companies, 2010	1
1096 CHAPTER 11	Additional Topics in Algebra			1	1-80
 two bills are drawn or account. What is the pa. first \$20, second \$ b. first \$50, second \$ c. both \$100 d. first \$100, second \$ c. first \$100, second \$ f. first \$100, second \$ f. first \$100, second \$ f. first not \$20, second \$ f. first not \$ f. first not \$ f. first not \$ f. first not \$ f. f.	and mixed thoroughly, at and placed in a savin probability the bills dra \$50 20 not \$20 not \$20 s Tool and Equipment tools rented are returned in the last hour, what e returned on time Il be returned on time	then 3 gs f wn are 29. S 30. 4 30. 4 (Rentals (d late. (is the v d r r r v v	For all natural number of the second	$5 + \dots + (4n - 1) = n(2n + 1)$	If ta ic ints the be