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Preface

Almost every field of study is generating an unprecedented amount of data. Retail

companies collect data on every sales transaction, organizations log each click made

on their web sites, and biologists generate millions of pieces of information related

to genes daily. The volume of data being generated is leading to information

overload and the ability to make sense of all this data is becoming increasingly

important. It requires an understanding of exploratory data analysis and data mining

as well as an appreciation of the subject matter, business processes, software

deployment, project management methods, change management issues, and so on.

The purpose of this book is to describe a practical approach for making sense

out of data. A step-by-step process is introduced that is designed to help you avoid

some of the common pitfalls associated with complex data analysis or data mining

projects. It covers some of the more common tasks relating to the analysis of data

including (1) how to summarize and interpret the data, (2) how to identify nontrivial

facts, patterns, and relationships in the data, and (3) how to make predictions from

the data.

The process starts by understanding what business problems you are trying to

solve, what data will be used and how, who will use the information generated and

how will it be delivered to them. A plan should be developed that includes this

problem definition and outlines how the project is to be implemented. Specific and

measurable success criteria should be defined and the project evaluated against

them.

The relevance and the quality of the data will directly impact the accuracy of the

results. In an ideal situation, the data has been carefully collected to answer the

specific questions defined at the start of the project. Practically, you are often dealing

with data generated for an entirely different purpose. In this situation, it will be

necessary to prepare the data to answer the new questions. This is often one of the

most time-consuming parts of the data mining process, and numerous issues need to

be thought through.

Once the data has been collected and prepared, it is now ready for analysis.

What methods you use to analyze the data are dependent on many factors including

the problem definition and the type of data that has been collected. There may be

many methods that could potentially solve your problem and you may not know

which one works best until you have experimented with the different alternatives.

Throughout the technical sections, issues relating to when you would apply the

different methods along with how you could optimize the results are discussed.

Once you have performed an analysis, it now needs to be delivered to your

target audience. This could be as simple as issuing a report. Alternatively, the

delivery may involve implementing and deploying new software. In addition to any

technical challenges, the solution could change the way its intended audience
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operates on a daily basis, which may need to be managed. It will be important to

understand how well the solution implemented in the field actually solves the

original business problem.

Any project is ideally implemented by an interdisciplinary team, involving

subject matter experts, business analysts, statisticians, IT professionals, project

managers, and data mining experts. This book is aimed at the entire interdisciplinary

team and addresses issues and technical solutions relating to data analysis or data

mining projects. The book could also serve as an introductory textbook for students

of any discipline, both undergraduate and graduate, who wish to understand

exploratory data analysis and data mining processes and methods.

The book covers a series of topics relating to the process of making sense of

data, including

� Problem definitions

� Data preparation

� Data visualization

� Statistics

� Grouping methods

� Predictive modeling

� Deployment issues

� Applications

The book is focused on practical approaches and contains information on how

the techniques operate as well as suggestions for when and how to use the different

methods. Each chapter includes a further reading section that highlights additional

books and online resources that provide background and other information. At the

end of selected chapters are a set of exercises designed to help in understanding the

respective chapter’s materials.

Accompanying this book is a web site (http://www.makingsenseofdata.com/)

containing additional resources including software, data sets, and tutorials to help in

understanding how to implement the topics covered in this book.

In putting this book together, I would like to thank the following individuals for

their considerable help: Paul Blower, Vinod Chandnani, Wayne Johnson, and Jon

Spokes. I would also like to thank all those involved in the review process for the

book. Finally, I would like to thank the staff at John Wiley & Sons, particularly

Susanne Steitz, for all their help and support throughout the entire project.
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Chapter 1

Introduction

1.1 OVERVIEW

Disciplines as diverse as biology, economics, engineering, and marketing measure,

gather and store data primarily in electronic databases. For example, retail

companies store information on sales transactions, insurance companies keep track

of insurance claims, and meteorological organizations measure and collect data

concerning weather conditions. Timely and well-founded decisions need to be

made using the information collected. These decisions will be used to maximize

sales, improve research and development projects and trim costs. Retail companies

must be able to understand what products in which stores are performing well,

insurance companies need to identify activities that lead to fraudulent claims,

and meteorological organizations attempt to predict future weather conditions. The

process of taking the raw data and converting it into meaningful information

necessary to make decisions is the focus of this book.

It is practically impossible to make sense out of data sets containing more than a

handful of data points without the help of computer programs. Many free and

commercial software programs exist to sift through data, such as spreadsheets, data

visualization software, statistical packages, OLAP (On-Line Analytical Processing)

applications, and data mining tools. Deciding what software to use is just one of the

questions that must be answered. In fact, there are many issues that should be thought

through in any exploratory data analysis/data mining project. Following a predefined

process will ensure that issues are addressed and appropriate steps are taken.

Any exploratory data analysis/data mining project should include the following

steps:

1. Problem definition: The problem to be solved along with the projected

deliverables should be clearly defined, an appropriate team should be put

together, and a plan generated for executing the analysis.

2. Data preparation: Prior to starting any data analysis or data mining

project, the data should be collected, characterized, cleaned, transformed,

and partitioned into an appropriate form for processing further.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.
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3. Implementation of the analysis: On the basis of the information from steps

1 and 2, appropriate analysis techniques should be selected, and often these

methods need to be optimized.

4. Deployment of results: The results from step 3 should be communicated

and/or deployed into a preexisting process.

Although it is usual to follow the order described, there will be some inter-

actions between the different steps. For example, it may be necessary to return to

the data preparation step while implementing the data analysis in order to make

modifications based on what is being learnt. The remainder of this chapter

summarizes these steps and the rest of the book outlines how to execute each of

these steps.

1.2 PROBLEM DEFINITION

The first step is to define the business or scientific problem to be solved and to

understand how it will be addressed by the data analysis/data mining project. This

step is essential because it will create a focused plan to execute, it will ensure that

issues important to the final solution are taken into account, and it will set correct

expectations for those both working on the project and having a stake in the project’s

results. A project will often need the input of many individuals including a specialist

in data analysis/data mining, an expert with knowledge of the business problems or

subject matter, information technology (IT) support as well as users of the results.

The plan should define a timetable for the project as well as providing a comparison

of the cost of the project against the potential benefits of a successful deployment.

1.3 DATA PREPARATION

In many projects, getting the data ready for analysis is the most time-consuming step

in the process. Pulling the data together from potentially many different sources can

introduce difficulties. In situations where the data has been collected for a different

purpose, the data will need to be transformed into an appropriate form for analysis.

During this part of the project, a thorough familiarity with the data should be

established.

1.4 IMPLEMENTATION OF THE ANALYSIS

Any task that involves making decisions from data almost always falls into one of

the following categories:

� Summarizing the data: Summarization is a process in which the data is

reduced for interpretation without sacrificing any important information.

Summaries can be developed for the data as a whole or any portion of the

data. For example, a retail company that collected data on its transactions

2 Chapter 1 Introduction



could develop summaries of the total sales transactions. In addition, the

company could also generate summaries of transactions by products or

stores.

� Finding hidden relationships: This refers to the identification of important

facts, relationships, anomalies or trends in the data, which are not obvious

from a summary alone. To discover this information will involve looking at

the data from many angles. For example, a retail company may want to

understand customer profiles and other facts that lead to the purchase of

certain product lines.

� Making predictions: Prediction is the process where an estimate is

calculated for something that is unknown. For example, a retail company

may want to predict, using historical data, the sort of products that specific

consumers may be interested in.

There is a great deal of interplay between these three tasks. For example, it is

important to summarize the data before making predictions or finding hidden

relationships. Understanding any hidden relationships between different items in the

data can help in generating predictions. Summaries of the data can also be useful in

presenting prediction results or understanding hidden relationships identified. This

overlap between the different tasks is highlighted in the Venn diagram in Figure 1.1.

Exploratory data analysis and data mining covers a broad set of techniques for

summarizing the data, finding hidden relationships, and making predictions. Some

of the methods commonly used include

� Summary tables: The raw information can be summarized in multiple ways

and presented in tables.

� Graphs: Presenting the data graphically allows the eye to visually identify

trends and relationships.

Summarizing
the data

Finding hidden 
relationships

Making
predictions

Figure 1.1. Data analysis tasks
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� Descriptive statistics: These are descriptions that summarize information

about a particular data column, such as the average value or the extreme

values.

� Inferential statistics: Methods that allow claims to be made concerning the

data with confidence.

� Correlation statistics: Statistics that quantify relationships within the data.

� Searching: Asking specific questions concerning the data can be useful if

you understand the conclusion you are trying to reach or if you wish to

quantify any conclusion with more information.

� Grouping: Methods for organizing a data set into smaller groups that

potentially answer questions.

� Mathematical models: A mathematical equation or process that can make

predictions.

The three tasks outlined at the start of this section (summarizing the data, finding

hidden relationships, and making predictions) are shown in Figure 1.2 with a circle

for each task. The different methods for accomplishing these tasks are also

positioned on the Venn diagram. The diagram illustrates the overlap between the

various tasks and the methods that can be used to accomplish them. The position of

the methods is related to how they are often used to address the various tasks.

Graphs, summary tables, descriptive statistics, and inferential statistics are

the main methods used to summarize data. They offer multiple ways of describing

the data and help us to understand the relative importance of different portions of the

data. These methods are also useful for characterizing the data prior to developing

predictive models or finding hidden relationships. Grouping observations can be

useful in teasing out hidden trends or anomalies in the data. It is also useful for

characterizing the data prior to building predictive models. Statistics are used

Descriptive
Statistics

Mathematical
Models

Grouping

Inferential
Statistics

Correlation 
Statistics

Graphs

Searching

Summary 
Tables

Summarizing 
the data

Finding hidden 
relationships

Making 
predictions

Figure 1.2. Data analysis tasks and methods
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throughout, for example, correlation statistics can be used to prioritize what data to

use in building a mathematical model and inferential statistics can be useful when

validating trends identified from grouping the data. Creating mathematical models

underpins the task of prediction; however, other techniques such as grouping can

help in preparing the data set for modeling as well as helping to explain why certain

predictions were made.

All methods outlined in this section have multiple uses in any data analysis or

data mining project, and they all have strengths and weaknesses. On the basis of

issues important to the project as well as other practical considerations, it is

necessary to select a set of methods to apply to the problem under consideration.

Once selected, these methods should be appropriately optimized to improve the

quality of the results generated.

1.5 DEPLOYMENT OF THE RESULTS

There are many ways to deploy the results of a data analysis or data mining project.

Having analyzed the data, a static report to management or to the customer of the

analysis is one option. Where the project resulted in the generation of predictive

models to use on an ongoing basis, these models could be deployed as standalone

applications or integrated with other softwares such as spreadsheets or web pages. It

is in the deployment step that the analysis is translated into a benefit to the business,

and hence this step should be carefully planned.

1.6 BOOK OUTLINE

This book follows the four steps outlined in this chapter:

1. Problem definition: A discussion of the definition step is provided in

Chapter 2 along with a case study outlining a hypothetical project plan. The

chapter outlines the following steps: (1) define the objectives, (2) define the

deliverables, (3) define roles and responsibilities, (4) assess the current

situation, (5) define the timetable, and (6) perform a cost/benefit analysis.

2. Data preparation: Chapter 3 outlines many issues and methods for

preparing the data prior to analysis. It describes the different sources of

data. The chapter outlines the following steps: (1) create the data tables, (2)

characterize the data, (3) clean the data, (4) remove unnecessary data, (5)

transform the data, and (6) divide the data into portions when needed.

3. Implementation of the analysis: Chapter 4 provides a discussion of how

summary tables and graphs can be used for communicating information about

the data. Chapter 5 reviews a series of useful statistical approaches to

summarizing the data and relationships within the data as well as making

statements about the data with confidence. It covers the following topics:

descriptive statistics, confidence intervals, hypothesis tests, the chi-square test,

one-way analysis of variance, and correlation analysis. Chapter 6 describes a
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series of methods for grouping data including clustering, associative rules, and

decision trees. Chapter 7 outlines the process and methods to be used in

building predictive models. In addition, the chapter covers a series of methods

including simple regression, k-nearest neighbors, classification and regression

trees, and neural networks.

4. Deployment of results: Chapter 8 reviews some of the issues around

deploying any results from data analysis and data mining projects including

planning and executing deployment, measuring and monitoring the solu-

tion’s performance, and reviewing the entire project. A series of common

deployment scenarios are presented. Chapter 9 concludes the book with a

review of the whole process, a case study, and a discussion of data analysis

Table 1.1. Summary of project steps

Steps Description

1. Problem definition Define

. Objectives

. Deliverables

. Roles and responsibilities

. Current situation

. Timeline

. Costs and benefits

2. Data preparation Prepare and become familiar with the data:

. Pull together data table

. Categorize the data

. Clean the data

. Remove unnecessary data

. Transform the data

. Partition the data

3. Implementation Three major tasks are

of the analysis . Summarizing the data

. Finding hidden relationships

. Making prediction

Select appropriate methods and design multiple experiments

to optimize the results. Methods include

. Summary tables

. Graphs

. Descriptive statistics

. Inferential statistics

. Correlation statistics

. Searching

. Grouping

. Mathematical models

4. Deployment . Plan and execute deployment based on the definition in step 1

. Measure and monitor performance

. Review the project

6 Chapter 1 Introduction



and data mining issues associated with common applications. Exercises are

included at the end of selected chapters to assist in understanding the

material.

This book uses a series of data sets to illustrate the concepts from Newman

(1998). The Auto-Mpg Database is used throughout to compare how the different

approaches view the same data set. In addition, the following data sets are used in the

book: Abalone Database, Adult Database, and the Pima Indians Diabetes Database.

1.7 SUMMARY

The four steps in any data analysis or data mining project are summarized in Table 1.1.

1.8 FURTHER READING

The CRISP-DM project (CRoss Industry Standard Process for Data Mining) has published a

data mining process and describes details concerning data mining stages and relationships

between the stages. It is available on the web at: http://www.crisp-dm.org/

SEMMA (Sample, Explore, Modify, Model, Assess) describes a series of core tasks for

model development in the SAS1 Enterprise Miner
TM

software and a description can be found

at: http://www.sas.com/technologies/analytics/datamining/miner/semma.html

Further Reading 7



Chapter 2

Definition

2.1 OVERVIEW

This chapter describes a series of issues that should be considered at the start of any

data analysis or data mining project. It is important to define the problem in

sufficient detail, in terms of both how the questions are to be answered and how the

solutions will be delivered. On the basis of this information, a cross-disciplinary

team should be put together to implement these objectives. A plan should outline the

objectives and deliverables along with a timeline and budget to accomplish the

project. This budget can form the basis for a cost/benefit analysis, linking the total

cost of the project to potential savings or increased revenues. The following sections

explore issues concerning the problem definition step.

2.2 OBJECTIVES

It is critical to spend time defining how the project will impact specific business

objectives. This assessment is one of the key factors to achieving a successful data

analysis/data mining project. Any technical implementation details are secondary to

the definition of the business objective. Success criteria for the project should be

defined. These criteria should be specific and measurable as well as related to the

business objective. For example, the project should increase revenue or reduce costs

by a specific amount.

A broad description of the project is useful as a headline. However, this

description should be divided into smaller problems that ultimately solve the broader

issue. For example, a general problem may be defined as: ‘‘Make recommendations

to improve sales on the web site.’’ This question may be further broken down into

questions that can be answered using the data such as:

1. Identify categories of web site users (on the basis of demographic informa-

tion) that are more likely to purchase from the web site.

2. Categorize users of the web site on the basis of usage information.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
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3. Determine if there are any relationships between buying patterns and web

site usage patterns.

All those working on the project as well as other interested parties should have a

clear understanding of what problems are to be addressed. It should also be

possible to answer each problem using the data. To make this assessment, it is

important to understand what the collection of all possible observations that would

answer the question would look like or population. For example, when the question

is how America will vote in the upcoming presidential election, then the entire

population is all eligible American voters. Any data to be used in the project

should be representative of the population. If the problems cannot be answered with

the available data, a plan describing how this data will be acquired should be

developed.

2.3 DELIVERABLES

It is also important to identify the deliverables of the project. Will the solution be a

report, a computer program to be used for making predictions, a new workflow or a

set of business rules? Defining all deliverables will provide the correct expectations

for all those working on the project as well as any project stakeholders, such as the

management who is sponsoring the project.

When developing predictive models, it is useful to understand any required level

of accuracy. This will help prioritize the types of approaches to consider during

implementation as well as focus the project on aspects that are critical to its success.

For example, it is not worthwhile spending months developing a predictive model

that is 95% accurate when an 85% accurate model that could have been developed in

days would have solved the business problem. This time may be better devoted to

other aspects that influence the ultimate success of the project. The accuracy of the

model can often relate directly to the business objective. For example, a credit card

company may be suffering due to customers moving their accounts to other

companies. The company may have a business objective of reducing this turnover

rate by 10%. They know that if they are able to identify a customer that is likely to

abandon their services, they have an opportunity of targeting and retaining this

customer. The company decides to build a prediction model to identify these

customers. The level of accuracy of the prediction, therefore, has to be such that the

company can reduce the turnover by the desired amount.

It is also important to understand the consequences of answering questions

incorrectly. For example, when predicting tornadoes, there are two possible

scenarios: (1) incorrectly predicting a tornado and (2) incorrectly predicting no

tornado. The consequence of scenario (2) is that a tornado hits with no warning.

Affected neighborhoods and emergency crews would not be prepared for potentially

catastrophic consequences. The consequence of scenario (1) is less dramatic with

only a minor inconvenience to neighborhoods and emergency services since they

prepared for a tornado that did not hit. It is usual to relate business consequences to

the quality of prediction according to these two scenarios.

Deliverables 9



One possible deliverable is a software application, such as a web-based

data mining application that suggests alternative products to customers while they

are browsing an online store. The time to generate an answer is dependent, to a

large degree, on the data mining approach adopted. If the speed of the compu-

tation is a factor, it must be singled out as a requirement for the final solution.

In the online shopping example, the solution must generate these items rapidly

(within a few seconds) or the customer will become frustrated and shop

elsewhere.

In many situations, the time to create a model can have an impact on the success

of the project. For example, a company developing a new product may wish to use a

predictive model to prioritize potential products for testing. The new product is

being developed as a result of competitive intelligence indicating that another

company is developing a similar product. The company that is first to the market will

have a significant advantage. Therefore, the time to generate the model may be an

important factor since there is only a window of opportunity to influence the project.

If the model takes too long to develop, the company may decide to spend

considerable resources actually testing the alternatives as opposed to making use of

any models generated.

There are a number of deployment issues that may need to be considered during

the implementation phase. A solution may involve changing business processes. For

example, a solution that requires the development of predictive models to be used by

associates in the field may change the work practices of these individuals. These

associates may even resist this change. Involving the end-users in the project may

facilitate acceptance. In addition, the users may require that all results are

appropriately explained and linked to the data from which the results were

generated, in order to trust the results.

Any plan should define these and other issues important to the project as these

issues have implications as to the sorts of methods that can be adopted in the

implementation step.

2.4 ROLES AND RESPONSIBILITIES

It is helpful to consider the following roles that are important in any project.

� Project leader: Someone who is responsible for putting together a plan and

ensuring the plan is executed.

� Subject matter experts and/or business analysts: Individuals who have

specific knowledge of the subject matter or business problems including

(1) how the data was collected, (2) what the data values mean, (3) the level

of accuracy of the data, (4) how to interpret the results of the analysis, and

(5) the business issues being addressed by the project.

� Data analysis/data mining expert: Someone who is familiar with statistics,

data analysis methods and data mining approaches as well as issues of data

preparation.

10 Chapter 2 Definition



� IT expert: A person or persons with expertise in pulling data sets together

(e.g., accessing databases, joining tables, pivoting tables, etc.) as well as

knowledge of software and hardware issues important for the implementa-

tion and deployment steps.

� Consumer: Someone who will ultimately use the information derived from

the data in making decisions, either as a one-off analysis or on a routine

basis.

A single member of the team may take on multiple roles such as an individual

may take on the role of project leader and data analysis/data mining expert. Another

scenario is where multiple persons are responsible for a single role, for example, a

team may include multiple subject matter experts, where one individual has

knowledge of how the data was measured and another individual has knowledge of

how the data can be interpreted. Other individuals, such as the project sponsor, who

have an interest in the project should be brought in as interested parties. For

example, representatives from the finance group may be involved in a project where

the solution is a change to a business process with important financial implications.

Cross-disciplinary teams solve complex problems by looking at the data from

different perspectives and should ideally work on these types of projects. Different

individuals will play active roles at different times. It is desirable to involve all

parties in the definition step. The IT expert has an important role in the data

preparation step to pull the data together in a form that can be processed. The data

analysis/data mining expert and the subject matter expert/business analyst should

also be working closely in the preparation step to clean and categorize the data. The

data analysis/data mining expert should be primarily responsible for transforming

the data into an appropriate form for analysis. The third implementation step is

primarily the responsibility of the data analysis/data mining expert with input from

the subject matter expert/business analyst. Also, the IT expert can provide a valuable

hardware and software support role throughout the project.

With cross-disciplinary teams, communication challenges may arise from time-

to-time. A useful way of facilitating communication is to define and share glossaries

defining terms familiar to the subject matter experts or to the data analysis/data

mining experts. Team meetings to share information are also essential for

communication purposes.

2.5 PROJECT PLAN

The extent of any project plan depends on the size and scope of the project.

However, it is always a good idea to put together a plan. It should define the problem,

the proposed deliverables along with the team who will execute the analysis, as

described above. In addition, the current situation should be assessed. For example,

are there constraints on the personnel that can work on the project or are there

hardware and software limitations that need to be taken into account? The sources

and locations of the data to be used should be identified. Any issues, such as privacy

or legal issues, related to using the data should be listed. For example, a data set
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containing personal information on customers’ shopping habits could be used in a

data mining project. However, information that relates directly to any individual

cannot be presented as results.

A timetable of events should be put together that includes the preparation,

implementation, and deployment steps. It is very important to spend the appropriate

amount of time getting the data ready for analysis, since the quality of the data

ultimately determines the quality of the analysis results. Often this step is the most

time-consuming, with many unexpected problems with the data coming to the

surface. On the basis of an initial evaluation of the problem, a preliminary

implementation plan should be put together. Time should be set aside for iteration of

activities as the solution is optimized. The resources needed in the deployment step

are dependent on how the deliverables were previously defined. In the case where the

solution is a report, the whole team should be involved in writing the report. Where

the solution is new software to be deployed, then a software development and

deployment plan should be put together, involving a managed roll-out of the solution.

Time should be built into the timetable for reviews after each step. At the end of

the project, a valuable exercise is to spend time evaluating what worked and what did

not work during the project, providing insights for future projects. It is also likely

that the progress will not always follow the predefined sequence of events, moving

between stages of the process from time-to-time. There may be a number of high-

risk steps in the process, and these should be identified and contingencies built into

the plan. Generating a budget based on the plan could be used, alongside the

business success criteria, to understanding the cost/benefits for the project. To

measure the success of the project, time should be set aside to evaluate if the

solutions meets the business goals during deployment. It may also be important to

monitor the solution over a period of time.

2.6 CASE STUDY

2.6.1 Overview

The following is a hypothetical case study involving a financial company’s credit

card division that wishes to reduce the number of customers switching services. To

achieve this, marketing management decides to initiate a data mining project to help

predict which customers are likely to switch services. These customers will be

targeted with an aggressive direct marketing campaign. The following is a

summarized plan for accomplishing this objective.

2.6.2 Problem

The credit card division would like to increase revenues by $2,000,000 per year by

retaining more customers. This goal could be achieved if the division could predict

with a 70% accuracy rate which customers are going to change services. The 70%

accuracy number is based on a financial model described in a separate report. In
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addition, factors that are likely to lead to customers changing service will be useful

in formulating future marketing plans.

To accomplish this business objective, a data mining project is established to

solve the following problems:

1. Create a prediction model to forecast which customers are likely to change

credit cards.

2. Find hidden facts, relationships, and patterns that customers exhibit prior to

switching credit cards.

The target population is all credit card customers.

2.6.3 Deliverables

There will be two deliverables:

1. Software to predict customers likely to change credit cards.

2. A report describing factors that contribute to customers changing credit

cards.

The prediction is to be used within the sales department by associates

who market to at risk customers. No explanation of the results is required. The

consequence of missing a customer that changes service is significantly greater than

mistakenly identifying a customer that is not considering changing services. It should

be possible to rank customers based on most-to-least likely to switch credit cards.

2.6.4 Roles and Responsibilities

The following individuals will work directly on the project:

� Pam (Project leader and business analyst)

� Lee (IT expert)

� Tony (Data mining consultant)

The following will serve on the team as interested parties, as they represent the

customers of the solution:

� Jeff (Marketing manager and project sponsor)

� Kim (Sales associate)

2.6.5 Current Situation

A number of databases are available for use with this project: (1) a credit card

transaction database and (2) a customer profile database containing information on

demographics, credit ratings, as well as wealth indicators. These databases are

located in the IT department.
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2.6.6 Timetable and Budget

Prior to starting the project, a kick-off meeting will take place where the goals will

be fine-tuned and any cross-team education will take place.

The following outlines the steps required for this project:

1. Preparation: Access, characterize and prepare the data sets for analysis and

develop an appreciation of the data content.

2. Implementation: A variety of data analysis/data mining methods will be

explored and the most promising optimized. The analysis will focus on

creating a model to predict customers likely to switch credit cards with an

accuracy greater than 70% and the discovery of factors contributing to

customers changing cards.

3. Deployment: A two phase roll-out of the solution is planned. Phase one will

assess whether the solution translates into the business objectives. In this

phase, the sales department responsible for targeting at risk customers will

be divided into two random groups. The first group will use the prediction

models to prioritize customers. The second group will be assigned a random

ranking of customers. The sales associates will not know whether they are

using the prediction model or not. Differences in terms of retention of

customers will be compared between the two groups. This study will

determine whether the accuracy of the model translates into meeting the

business objectives. When phase one has been successfully completed, a

roll-out of the solution will take place and changes will be made to the

business processes.

A meeting will be held after each stage of the process with the entire group to

review what has been accomplished and agree on a plan for the next stage.

There are a number of risks and contingencies that need to be built into the plan.

If the model does not have a required accuracy of 70%, any deployment will not result

in the desired revenue goals. In this situation, the project should be reevaluated. In the

deployment phase, if the projected revenue estimates from the double blind test does

not meet the revenue goals then the project should be reevaluated at this point.

Figure 2.1 shows a timetable of events and a summarized budget for the project.

2.6.7 Cost/Benefit Analysis

The cost of the project of $35,500 is substantially less than the projected saving of

$2,000,000. A successfully delivered project would have a substantial return on

investment.

2.7 SUMMARY

Table 2.1 summarizes the problem definition step.
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2.8 FURTHER READING

This chapter has focused on issues relating to large and potentially complex data analysis and

data mining projects. There are a number of publications that provide a more detailed

treatment of general project management issues including Berkun (2005), Kerzner (2006), and

the Project Management Institute’s ‘‘A Guide to the Project Management Body of

Knowledge.’’

Table 2.1. Project definitions summary

Steps Details

Define objectives � Define the business objectives

� Define specific and measurable success criteria

� Broadly describe the problem

� Divide the problem into sub-problems that are unambiguous and

that can be solved using the available data

� Define the target population

� If the available data does not reflect a sample of the target

population, generate a plan to acquire additional data

Define deliverables � Define the deliverables, e.g., a report, new software, business

processes, etc.

� Understand any accuracy requirements

� Define any time-to-compute issues

� Define any window-of-opportunity considerations

� Detail if and how explanations should be presented

� Understand any deployment issues

Define roles and � Project leader

responsibilities � Subject matter expert/business analyst

� Data analysis/data mining expert

� IT expert

� Consumer

Assess current � Define data sources and locations

situation � List assumptions about the data

� Understand project constraints (e.g., hardware, software,

personnel, etc.)

� Assess any legal, privacy or other issues relating to the

presentation of the results

Define timetable � Set aside time for education upfront

� Estimate time for the data preparation, implementation, and

deployment steps

� Set aside time for reviews

� Understand risks in the timeline and develop contingency plans

Analyze cost/benefit � Generate a budget for the project

� List the benefits to the business of a successful project

� Compare costs and benefits
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Chapter 3

Preparation

3.1 OVERVIEW

Preparing the data is one of the most time-consuming parts of any data analysis/data

mining project. This chapter outlines concepts and steps necessary to prepare a data

set prior to any data analysis or data mining exercise. How the data is collected and

prepared is critical to the confidence with which decisions can be made. The data

needs to be pulled together into a table. This may involve integration of the data from

multiple sources. Once the data is in a tabular format it should be fully characterized.

The data should also be cleaned by resolving any ambiguities, errors, and removing

redundant and problematic data. Certain columns of data can be removed if it is

obvious that they would not be useful in any analysis. For a number of reasons, new

columns of data may need to be calculated. Finally, the table should be divided,

where appropriate, into subsets that either simplify the analysis or allow specific

questions to be answered more easily.

Details concerning the steps taken to prepare the data for analysis should be

recorded. This not only provides documentation of the activities performed so far,

but also provides a methodology to apply to a similar data set in the future. In

addition, the steps will be important when validating the results since these records

will show any assumptions made about the data.

The following chapter outlines the process of preparing data for analysis. It

includes information on the sources of data along with methods for characterizing,

cleaning, transforming, and partitioning the data.

3.2 DATA SOURCES

The quality of the data is the single most important factor to influence the quality of

the results from any analysis. The data should be reliable and represent the defined

target population. Data is often collected to answer specific questions using the

following types of studies:

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.
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� Surveys or polls: A survey or poll can be useful for gathering data to answer

specific questions. An interview using a set of predefined questions is usually

conducted either over the phone, in person or over the Internet. They are

often used to elicit information on people’s opinions, preferences and

behavior. For example, a poll may be used to understand how a population

of eligible voters will cast their vote in an upcoming election. The specific

questions to be answered along with the target population should be clearly

defined prior to any survey. Any bias in the survey should be eliminated. To

achieve this, a true random sample of the target population should be taken.

Bias can be introduced in situations where only those responding to the

questionnaire are included in the survey since this group may not represent

an unbiased random sample. The questionnaire should contain no leading

questions, that is, questions that favor a particular response. It is also

important that no bias relating to the time the survey was conducted, is

introduced. The sample of the population used in the survey should be large

enough to answer the questions with confidence. This will be described in

more detail within the chapter on statistics.

� Experiments: Experiments measure and collect data to answer a specific

question in a highly controlled manner. The data collected should be reliably

measured, that is, repeating the measurement should not result in different

values. Experiments attempt to understand cause and affect phenomena by

controlling other factors that may be important. For example, when studying

the effects of a new drug, a double blind study is usually used. The sample of

patients selected to take part in the study is divided into two groups. The new

drug will be delivered to one group, whereas a placebo (a sugar pill) is given

to the other group. Neither the patient nor the doctor administering the

treatment knows which group the patient is in to avoid any bias in the study

on the part of the patient or the doctor.

� Observational and other studies: In certain situations it is impossible on

either logistical or ethical grounds to conduct a controlled experiment. In

these situations, a large number of observations are measured and care taken

when interpreting the results.

As part of the daily operations of an organization, data is collected for a variety

of reasons. Examples include

� Operational databases: These databases contain ongoing business transac-

tions. They are accessed constantly and updated regularly. Examples include

supply chain management systems, customer relationship management

(CRM) databases and manufacturing production databases.

� Data warehouses: A data warehouse is a copy of data gathered from other

sources within an organization that has been cleaned, normalized, and

optimized for making decisions. It is not updated as frequently as operational

databases.
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� Historical databases: Databases are often used to house historical polls,

surveys and experiments.

� Purchased data: In many cases data from in-house sources may not be

sufficient to answer the questions now being asked of it. One approach is to

combine this internal data with data from other sources.

Pulling data from multiple sources is a common situation in many data mining

projects. Often the data has been collected for a totally different purpose than the

objective of the data mining exercise it is currently being used for. This introduces a

number of problems for the data mining team. The data should be carefully prepared

prior to any analysis to ensure that it is in a form to answer the questions now being

asked. The data should be prepared to mirror as closely as possible the target

population about which the questions will be asked. Since multiple sources of data

may now have been used, care must be taken bringing these sources together since

errors are often introduced at this time. Retaining information on the source of the

data can also be useful in interpreting the results.

3.3 DATA UNDERSTANDING

3.3.1 Data Tables

All disciplines collect data about things or objects. Medical researchers collect data

on patients, the automotive industry collects data on cars, retail companies collect

data on transactions. Patients, cars and transactions are all objects. In a data set there

may be many observations for a particular object. For example, a data set about cars

may contain many observations on different cars. These observations can be

described in a number of ways. For example, a car can be described by listing

the vehicle identification number (VIN), the manufacturer’s name, the weight, the

number of cylinders, and the fuel efficiency. Each of these features describing a car

is a variable. Each observation has a specific value for each variable. For example, a

car may have:

VIN¼ IM8GD9A_KP042788

Manufacturer¼ Ford

Weight¼ 2984 pounds

Number of cylinders¼ 6

Fuel efficiency¼ 20 miles per gallon

Data sets used for data analysis/data mining are almost always described in

tables. An example of a table describing cars is shown in Table 3.1. Each row of the

table describes an observation (a specific car). Each column describes a variable (a

specific attribute of a car). In this example, there are two observations and these

observations are described using five variables: VIN, Manufacturer, Weight,
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Number of cylinders and Fuel efficiency. Variables will be highlighted throughout

the book in bold.

A generalized version of the table is shown in Table 3.2. This table describes a

series of observations (from O1 to On). Each observation is described using a series

of variables (X1 to Xk). A value is provided for each variable of each observation.

For example, the value of the first observation for the first variable is x11.

Getting to the data tables in order to analyze the data may require generating the

data from scratch, downloading data from a measuring device or querying a database

(as well as joining tables together or pivoting tables), or running a computer software

program to generate further variables for analysis. It may involve merging the data

from multiple sources. This step is often not trivial. There are many resources

describing how to do this, and some are described in the further reading section of

this chapter.

Prior to performing any data analysis or data mining, it is essential to thoroughly

understand the data table, particularly the variables. Many data analysis techniques

have restrictions on the types of variables that they are able to process. As a result, these

techniques may be eliminated from consideration or the data must be transformed into

an appropriate form for analysis. In addition, certain characteristics of the variables

have implications in terms of how the results of the analysis will be interpreted. The

following four sections detail a number of ways of characterizing variables.

3.3.2 Continuous and Discrete Variables

A useful initial categorization is to define each variable in terms of the type of values

that the variable can take. For example, does the variable contain a fixed number of

Table 3.1. Example of a table describing cars

Number of

VIN Manufacturer Weight cylinders Fuel efficiency

IM8GD9A_KP042788 Ford 2984 6 20

IC4GE9A_DQ1572481 Toyota 1795 4 34

Table 3.2. General format for a table of observations

Variables

Observations x1 x2 x3 . . . xk

O1 x11 x12 x13 . . . x1k
O2 x21 x22 x23 . . . x2k
O3 x31 x32 x33 . . . x3k
. . . . . . . . . . . . . . . . . .
On xn1 xn2 xn3 . . . xnk
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distinct values or could it take any numeric value? The following is a list of

descriptive terms for categorizing variables:

� Constant: A variable where every data value is the same. In many defini-

tions, a variable must have at least two different values; however, it is a

useful categorization for our purposes. For example, a variable Calibration

may indicate the value a machine was set to in order to generate a particular

measurement and this value may be the same for all observations.

� Dichotomous: A variable where there are only two values, for example,

Gender whose values can be male or female. A special case is a binary

variable whose values are 0 and 1. For example, a variable Purchase may

indicate whether a customer bought a particular product and the convention

that was used to represent the two cases is 0 (did not buy) and 1 (did buy).

� Discrete: Avariable that can only take a certain number of values (either text

or numbers). For example, the variable Color where values could be black,

blue, red, yellow, and so on, or the variable Score where the variable can

only take values 1, 2, 3, 4, or 5.

� Continuous: A variable where an infinite number of numeric values are

possible within a specific range. An example of a continuous value is

temperature where between the minimum and maximum temperature, the

variable could take any value.

It can be useful to describe a variable with additional information. For example,

is the variable a count or fraction, a time or date, a financial term, a value derived

from a mathematical operation on other variables, and so on? The units are also

useful information to capture in order to present the result. When two tables are

merged, units should also be aligned or appropriate transformations applied to

ensure all values have the same unit.

3.3.3 Scales of Measurement

The variable’s scale indicates the accuracy at which the data has been measured.

This classification has implications as to the type of analysis that can be performed

on the variable. The following terms categorize scales:

� Nominal: Scale describing a variable with a limited number of different

values. This scale is made up of the list of possible values that the variable

may take. It is not possible to determine whether one value is larger than

another. For example, a variable Industry would be nominal where it takes

values such as financial, engineering, retail, and so on. The order of these

values has no meaning.

� Ordinal: This scale describes a variable whose values are ordered; however,

the difference between the values does not describe the magnitude of the

actual difference. For example, a scale where the only values are low,

medium, and high tells us that high is larger than medium, and medium is
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larger than low. However, it is impossible to determine the magnitude of the

difference between the three values.

� Interval: Scales that describe values where the interval between the values

has meaning. For example, when looking at three data points measured on the

Fahrenheit scale, 5 �F, 10 �F, 15 �F, the differences between the values from 5

to 10 and from 10 to 15 are both 5 and a difference of 5 �F in both cases has

the same meaning. Since the Fahrenheit scale does not have a lowest value at

zero, a doubling of a value does not imply a doubling of the actual

measurement. For example, 10 �F is not twice as hot as 5 �F. Interval scales
do not have a natural zero.

� Ratio: Scales that describe variables where the same difference between

values has the same meaning (as in interval) but where a double, tripling, etc.

of the values implies a double, tripling, etc. of the measurement. An example

of a ratio scale is a bank account balance whose possible values are $5, $10,

and $15. The difference between each pair is $5 and $10 is twice as much as

$5. Since ratios of values are possible, they are defined as having a natural

zero.

Table 3.3 provides a summary of the different types of scales.

3.3.4 Roles in Analysis

It is also useful to think about how the variables will be used in any subsequent

analysis. Example roles in data analysis and data mining include

� Labels: Variables that describe individual observations in the data.

� Descriptors: These variables are almost always collected to describe an

observation. Since they are often present, these variables are used as the

input or descriptors to be used in both creating a predictive model and

generating predictions from these models. They are also described as

predictors or X variables.

� Response: These variables (usually one variable) are predicted from

a predictive model (using the descriptor variables as input). These variables

will be used to guide the creation of the predictive model. They will also be

Table 3.3. Scales of measurement summary

Meaningful order Meaningful difference Natural zero

Nominal No No No

Ordinal Yes No No

Interval Yes Yes No

Ratio Yes Yes Yes
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predicted, based on the input descriptor variables that are presented to the

model. They are also referred to as Y variables.

The car example previously described had the following variables: vehicle
identification number (VIN), Manufacturer, Weight, Number of cylinders, and

Fuel efficiency. One way of using this data is to build a model to predict Fuel

efficiency. TheVIN variable describes the individual observations and is assigned as

a label. The variables Manufacturer, Weight, and Number of cylinders will be

used to create a model to predict Fuel efficiency. Once a model is created, the

variables Manufacturer, Weight, and Number of cylinders will be used as inputs

to the model and the model will predict Fuel efficiency. The variables

Manufacturer, Weight, and Number of cylinders are descriptors, and the variable

Fuel efficiency is the response variable.

3.3.5 Frequency Distribution

For variables with an ordered scale (ordinal, interval, or ratio), it is useful to look at

the frequency distribution. The frequency distribution is based on counts of values or

ranges of values (in the case of interval or ratio scales). The following histogram

shows a frequency distribution for a variable X. The variable has been classified into

a series of ranges from �6 to �5, �5 to �4, �4 to �3, and so on, and the graph in

Figure 3.1 shows the number of observations for each range. It indicates that the

majority of the observations are grouped in the middle of the distribution between

�2 and þ1, and there are relatively fewer observations at the extreme values. The

frequency distribution has an approximate bell-shaped curve as shown in Figure 3.2.

A symmetrical bell-shaped distribution is described as a normal (or Gaussian)

distribution. It is very common for variables to have a normal distribution. In

addition, many data analysis techniques assume an approximate normal distribution.

These techniques are referred to as parametric procedures (nonparametric

procedures do not require a normal distribution).

Figure 3.1. Frequency distribution for variable X
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3.4 DATA PREPARATION

3.4.1 Overview

Having performed a preliminary data characterization, it is now time to analyze

further and transform the data set prior to starting any analysis. The data must be

cleaned and translated into a form suitable for data analysis and data mining. This

process will enable us to become familiar with the data and this familiarity will be

beneficial to the analysis performed in step 3 (the implementation of the analysis).

The following sections review some of the criteria and analysis that can be

performed.

3.4.2 Cleaning the Data

Since the data available for analysis may not have been originally collected with this

project’s goal in mind, it is important to spend time cleaning the data. It is also

beneficial to understand the accuracy with which the data was collected as well as

correcting any errors.

For variables measured on a nominal or ordinal scale (where there are a fixed

number of possible values), it is useful to inspect all possible values to uncover

mistakes and/or inconsistencies. Any assumptions made concerning possible values

that the variable can take should be tested. For example, a variable Company may

include a number of different spellings for the same company such as:

General Electric Company

General Elec. Co

GE

Gen. Electric Company

General electric company

G.E. Company

Figure 3.2. Frequency distribution for variable X with the normal distribution superimposed
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These different terms, where they refer to the same company, should be con-

solidated into one for analysis. In addition, subject matter expertise may be needed

in cleaning these variables. For example, a company name may include one of the

divisions of the General Electric Company and for the purpose of this specific

project it should be included as the ‘‘General Electric Company.’’

It can be more challenging to clean variables measured on an interval or ratio

scale since they can take any possible value within a range. However, it is useful to

consider outliers in the data. Outliers are a single or a small number of data values

that are not similar to the rest of the data set. There are many reasons for outliers. An

outlier may be an error in the measurement. A series of outlier data points could be a

result of measurements made using a different calibration. An outlier may also be a

genuine data point. Histograms, scatterplots, box plots and z-scores can be useful in

identifying outliers and are discussed in more detail within the next two chapters.

The histogram in Figure 3.3 displays a variable Height where one value is eight

times higher than the average of all data points.

There are additional methods such as clustering and regression that could also

be used to identify outliers. These methods are discussed later in the book.

Diagnosing an outlier will require subject matter expertise to determine whether it is

an error (and should be removed) or a genuine observation. If the value or values are

correct, then the variable may need some mathematical transformation to be applied

for use with data analysis and data mining techniques. This will be discussed later in

the chapter.

Another common problem with continuous variables is where they include

nonnumeric terms. Any term described using text may appear in the variable, such as

‘‘above 50’’ or ‘‘out of range.’’ Any numeric analysis would not be able to interpret a

value that is not an explicit number, and hence, these terms should be converted to a

number, based on subject matter expertise, or should be removed.

In many situations, an individual observation may have data missing for a

particular variable. Where there is a specific meaning for a missing data value, the

value may be replaced on the basis of the knowledge of how the data was collected.

Error?

Figure 3.3. Potential error in the data
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Alternatively, the observation should be removed from the table. There are methods

that attempt to estimate a value for missing data; however, these methods should be

used with care. Literature describing these methods has been listed in the further

reading section of this chapter.

A particular variable may have been measured over different units. For

example, a variable Weight may have been measured using both pounds and

kilograms for different observations and should be standardized to a single scale.

Another example would be where a variable Price is shown in different currencies

and should be standardized to one for the purposes of analysis. In situations where

data has been collected over time, there may be changes related to the passing of

time that is not relevant for the analysis. For example, when looking at a variable

Cost of production where the data has been collected over many years, the rise

in costs attributable to inflation may need to be factored out for this specific

analysis.

By combining data from multiple sources, an observation may have been

recorded more than once and any duplicate entries should be removed.

3.4.3 Removing Variables

On the basis of an initial categorization of the variables, it may be possible to remove

variables from consideration at this point. For example, constants and variables with

too many missing data points should be considered for removal. Further analysis of

the correlations between multiple variables may identify variables that provide no

additional information to the analysis and hence could be removed. This type of

analysis is described in the chapter on statistics.

3.4.4 Data Transformations

Overview

It is important to consider applying certain mathematical transformations to the data

since many data analysis/data mining programs will have difficulty making sense of

the data in its raw form. Some common transformations that should be considered

include normalization, value mapping, discretization, and aggregation. When a new

variable is generated, the transformation procedure used should be retained. The

inverse transformation should then be applied to the variable prior to presenting any

analysis results that include this variable. The following section describes a series of

data transformations to apply to data sets prior to analysis.

Normalization

Normalization is a process where numeric columns are transformed using a

mathematical function to a new range. It is important for two reasons. First, any
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analysis of the data should treat all variables equally so that one column does

not have more influence over another because the ranges are different. For example,

when analyzing customer credit card data, the Credit limit value is not given

more weightage in the analysis than the Customer’s age. Second, certain

data analysis and data mining methods require the data to be normalized prior to

analysis, such as neural networks or k-nearest neighbors, described in Sections 7.3

and 7.5. The following outlines some common normalization methods:

� Min-max: Transforms the variable to a new range, such as from 0 to 1. The

following formula is used:

Value0 ¼ Value� OriginalMin

OriginalMax� OriginalMin
ðNewMax� NewMinÞ þ NewMin

where Value0 is the new normalized value, Value is the original variable

value, OriginalMin is the minimum possible value of the original variable,

OriginalMax is the maximum original possible value, NewMin is the

minimum value for the normalized range, and NewMax is the maximum

value for the normalized range. This is a useful formula that is widely used.

The minimum and maximum values for the original variable are needed. If

the original data does not contain the full range, either a best guess at the

range is needed or the formula should be restricted for future use to the range

specified.

� z-score: It normalizes the values around the mean (or average) of the set,

with differences from the mean being recorded as standardized units on the

basis of the frequency distribution of the variable. The following formula is

used:

Value0 ¼ Value� �x

s

where �x is the mean or average value for the variable and s is the standard

deviation for the variable. Calculations and descriptions for mean and

standard deviation calculations are provided in the chapter on statistics.

� Decimal scaling: This transformation moves the decimal to ensure the range

is between 1 and �1. The following formula is used:

Value0 ¼ Value

10n

Where n is the number of digits of the maximum absolute value. For

example, if the largest number is 9948 then n would be 4. 9948 would

normalize to 9948/104, 9948/10,000, or 0.9948.

The normalization process is illustrated using the data in Table 3.4. To

calculate the normalized values using the min-max equation, first the minimum

and maximum values should be identified: OriginalMin¼ 7 and OriginalMax¼ 53.
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The new normalized values will be between 0 and 1: NewMin¼ 0 and

NewMax¼ 1. To calculate the new normalized value (value0) using the formula

for the value 33:

Value0 ¼ Value� OriginalMin

OriginalMax� OriginalMin
ðNewMax � NewMinÞ þ NewMin

Value0 ¼ 33� 7

53� 7
ð1� 0Þ þ 0

Value0 ¼ 0:565

Table 3.5 shows the calculated normalized values for all data points.

A variable may not conform to a normal distribution. Certain data analysis

methods require the data to follow a normal distribution. Methods for visualizing

and describing a normal frequency distribution are described in the following two

chapters. To transform the data into a more appropriate normal distribution, it may

be necessary to take the log (or negative log), exponential or perform a Box-Cox

Table 3.4. Single column to be normalized

Variable

33

21

7

53

29

42

12

19

22

36

Table 3.5. Variable normalized to the range 0–1

Variable Normalized (0 to 1)

33 0.565

21 0.304

7 0

53 1

29 0.478

42 0.761

12 0.109

19 0.261

22 0.326

36 0.630
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transformation. The formula for a Box-Cox transformation is:

Value0 ¼ Valuel � 1

l

where l is a value greater than 1.

In Table 3.6 the original variable is transformed using an exponential function

and the distribution is now more normal (see Figure 3.4). The table shows a sample

of the original (Value) and the newly calculated column: Exp (Value).

Value Mapping

To use variables that have been assigned as ordinal and described using text values

within certain numerical analysis methods, it will be necessary to convert the

variable’s values into numbers. For example, a variable with low, medium, and high

values may have low values replaced by 0, medium values replaced by 1, and high

values replaced by 2. However, this conversion should be approached with care and

with as much subject matter expertise as possible to assign the appropriate score to

each value.

Another approach to handling nominal data is to convert each value into a

separate column with values 1 (indicating the presence of the category) and 0

(indicating the absence of the category). These new variables are often referred to as

Table 3.6. Example of transformation to

generate a normal distribution

Value Exp (Value)

5.192957 180

5.799093 330

6.063785 430

6.068426 432

Normal distribution after 

exponential transformation

Original variable

Figure 3.4. Frequency distribution before and after the transformation
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dummy variables. For example, the variable Color has now been divided into 5

separate columns, one for each value, as shown in Table 3.7.

Discretization

By converting continuous data into discrete values, it would appear that we are

loosing information. However, this conversion is desirable in a number of situations.

Firstly, where a value is defined on an interval or ratio scale but when knowledge

about how the data was collected suggests the accuracy of the data does not warrant

these scales, a variable may be a candidate for discretization. This is often referred to

as data smoothing. It may be more desirable to convert the data into more broadly

defined categories that reflect the true variation in the data. Secondly, certain

techniques can only process categorical data and hence converting continuous data

into discrete values makes the variable accessible to these methods. For example, a

continuous variable Credit scoremay be divided into four categories: poor, average,

good and excellent.

This type of conversion or binning can be illustrated with an example. A

variable Weight that has a range from 0 to 350 lbs may be divided into five

categories: less than 100 lb, 100–150 lb, 150–200 lb, 200–250 lb and above 250 lb.

All values for the variableWeight must now be assigned to a category and assigned

an appropriate value such as the mean of the assigned category. It is often useful to

use the frequency distribution to understand appropriate binning cut-offs.

Discretization can also be applied to nominal variables. This is often useful in

situations where there is a large number of values for a given nominal variable. If the

data set were to be summarized using each of the values, the number of observations

for each value may be too small to meaningfully reach any conclusions. However, a

new column could be generated that generalizes the values using a mapping of

terms. For example, a data set concerning customer transactions may contain a

variable Company that details the individual customer’s company. There may only

be a handful of observations for each company. However, this variable could be

Table 3.7. Mapping nominal data onto a series of dummy variables

Original column New variables (value-mapping)

Color ¼ Color ¼ Color ¼ Color ¼ Color ¼
Color Red Green Blue Orange Yellow

red 1 0 0 0 0

green 0 1 0 0 0

blue 0 0 1 0 0

red 1 0 0 0 0

blue 0 0 1 0 0

orange 0 0 0 1 0

yellow 0 0 0 0 1

red 1 0 0 0 0
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mapped onto a new variable, Industries. The mapping of specific companies onto

generalized industries must be defined using a concept mapping (i.e., which

company maps onto which industry). Now, when the data set is summarized using

the values for the Industries variable, meaningful trends may be seen.

Aggregation

The variable that you are trying to use may not be present in the data set, but it may

be derived from other variables present. Any mathematical operation, such as

average or sum, could be applied to one or more variables in order to create an

additional variable. For example, a project may be trying to understand issues

around a particular car’s fuel efficiency (Fuel Efficiency) using a data set of different
journeys where the fuel level at the start (Fuel Start) and the end (Fuel End) of a

trip is measured along with the distance covered (Distance). An additional column

may be calculated using the following formula:

Fuel Efficiency ¼ ðFuel End� Fuel StartÞ=Distance

3.4.5 Segmentation

Generally, larger data sets take more computational time to analyze. Segmenting

(creating subsets) the data can speed up any analysis. One approach is to take a

random subset. This approach is effective where the data set closely matches the

target population. Another approach is to use the problem definition to guide how the

subset is constructed. For example, a problem may have been defined as: analyze an

insurance dataset of 1 million records to identify factors leading to fraudulent

claims. The data set may only contain 20,000 fraudulent claims. Since it will be

essential to compare fraudulent and nonfraudulent claims in the analysis, it will be

important to create a data set of examples of both. The 20,000 fraudulent claims

could be combined with a random sample of 20,000 nonfraudulent claims. This

process will result in a smaller subset for analysis.

A data set may have been built up over time and collected to answer a series of

questions. Now, this data set may be used for a different purpose. It may be necessary

to select a diverse set of observations that more closely matches the new target

population. For example, a car safety organization has been measuring the safety of

individual cars on the basis of specific requests from the government. Over time, the

government may have requested car safety studies for certain types of vehicles. Now,

if this historical data set is to be used to answer questions on the safety of all cars, this

data set does not reflect the new target population. However, a subset of the car

studies could be selected to represent the more general questions now being asked of

the data. The chapter on grouping will discuss how to create diverse data sets when

the data does not represent the target population.

When building predictive models from a data set, it is important to keep the

models as simple as possible. Breaking the data set down into subsets based on
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your knowledge of the data may allow you to create multiple but simpler models.

For example, a project to model factors that contribute to the price of real estate

may use a data set of nationwide house prices and associated factors. However,

your knowledge of the real estate market suggests that factors contributing to

house prices are contingent on the area. Factors that contribute to house prices in

coastal locations are different from factors that contribute to house prices in the

mountains. It may make sense, in this situation, to divide the data into smaller sets

based on location and to model these locales separately. When doing this type of

subsetting, it is important to note the criteria you are using to subset the data. These

criteria will be needed when data to be predicted is presented for modeling by

assigning the data to one or more models. In situations where multiple predictions

are generated for the same unknown observation, a method for consolidating these

predictions will be required. This topic will be discussed further in the chapter on

prediction.

Table 3.8. Summary of the steps when preparing data

Steps Details

1. Create data table � Query databases to access data

� Integrate multiple data sets and format as a data table

2. Characterize variables Characterize the variables based on:

� Continuous/discrete

� Scales of measurement

� Roles in analysis

� Frequency distribution

3. Clean data Clean the data:

� Consolidate observations by merging appropriate terms

� Identify potential errors (outliers, non-numeric characters,

etc.)

� Appropriately set nonnumeric values (or remove)

� Ensure measurements are taken over the same scale

� Remove duplicate observations

4. Remove variables Remove variables that will not contribute to any analysis

(e.g., constants or variables with too few values)

5. Transform variables Transform the variable, if necessary, retaining how the variable

was transformed using the following operations:

� Normalize

� Value mapping

� Discretization

� Aggregation

6. Segment table Create subsets of the data to:

� Facilitate more rapid analysis

� Simplify the data set to create simpler models

� Answer specific questions
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3.5 SUMMARY

Table 3.8 details the steps and issues from this stage of the project. The steps performed on the

data should be documented. The deliverables from this stage in the project are a prepared data

set for analysis as well as a thorough understanding of the data.

3.6 EXERCISES

A set of 10 hypothetical patient records from a large database is presented in Table 3.9.

Patients with a diabetes value of 1 have type II diabetes and patients with a diabetes value of

0 do not have type II diabetes. It is anticipated that this data set will be used to predict

diabetes based on measurements of age, systolic blood pressure, diastolic blood pressure, and

weight.

1. For the following variables from Table 3.9, assign them to one of the following

categories: constant, dichotomous, binary, discrete, and continuous.

a. Name

b. Age

c. Gender

d. Blood group

e. Weight (kg)

f. Height (m)

g. Systolic blood pressure

h. Diastolic blood pressure

i. Temperature

j. Diabetes

2. For each of the following variables, assign them to one of the following scales:

nominal, ordinal, interval, ratio.

a. Name

b. Age

c Gender

d. Blood group

e. Weight (kg)

f. Height (m)

g. Systolic blood pressure

h. Diastolic blood pressure

i. Temperature

j. Diabetes

3. On the basis of the anticipated use of the data to build a predictive model, identify:

a. A label for the observations

b. The descriptor variables

c. The response variable

4. Create a new column by normalizing the Weight (kg) variable into the range 0 to 1

using the min-max normalization.

5. Create a new column by binning the Weight variable into three categories: low (less

than 60 kg), medium (60–100 kg), and high (greater than 100 kg).
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6. Create an aggregated column, body mass index (BMI), which is defined by the

formula:

BMI ¼ Weight ðkgÞ
Height ðmÞ2

7. Segment the data into data sets based on values for the variable Gender.

3.7 FURTHER READING

This chapter has reviewed some of the sources of data used in exploratory data analysis and

data mining. The following books provide more information on surveys and polls: Fowler

(2002), Rea (2005), and Alreck (2004). There are many additional resources describing

experimental design including Montgomery (2005), Cochran (1957), Barrentine (1999), and

Antony (2003). Operational databases and data warehouses are summarized in the following

books: Oppel (2004) and Kimball (2002). Oppel (2004) also summarizes access and

manipulation of information in databases. Principal component analysis provides the

opportunity to reduce the number of variables into a smaller set of principal components and is

often used as a data reduction method. It is outlined in Jolliffe (2002) and Jackson (2003). For

additional data preparation approaches including the handling of missing data see Pearson

(2005), Pyle (1999), and Dasu (2003).
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Chapter 4

Tables and Graphs

4.1 INTRODUCTION

The following chapter describes a series of techniques for summarizing data using

tables and graphs. Tables can be used to present both detailed and summary level

information about a data set. Graphs visually communicate information about

variables in data sets and the relationship between them. The following chapter

describes a series of tables and graphs useful for exploratory data analysis and data

mining.

4.2 TABLES

4.2.1 Data Tables

The most common way of looking at data is through a table, where the raw data is

displayed in familiar rows of observations and columns of variables. It is essential

for reviewing the raw data; however, the table can be overwhelming with more than

a handful of observations or variables. Sorting the table based on one or more

variables is useful for organizing the data. It is virtually impossible to identify any

trends or relationships looking at the raw data alone. An example of a table

describing different cars is shown in Table 4.1.

4.2.2 Contingency Tables

Contingency tables (also referred to as two-way cross-classification tables) provide

insight into the relationship between two variables. The variables must be

categorical (dichotomous or discrete), or transformed to a categorical variable. A

variable is often dichotomous; however, a contingency table can represent variables

with more than two values. Table 4.2 describes the format for a contingency table

where two variables are compared: Variable x and Variable y.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.
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� Countþ1: the number of observations where Variable x has ‘‘Value 1’’,

irrespective of the value of Variable y.

� Countþ2: the number of observations where Variable x has ‘‘Value 2’’,

irrespective of the value of Variable y.

� Count1þ: the number of observations where Variable y has ‘‘Value 1’’,

irrespective of the value of Variable x.

� Count2þ: the number of observations where Variable y has ‘‘Value 2’’,

irrespective of the value of Variable x.

The total number of observations in the data set is shown as Total count. The

number of observations where the value of Variable x equals ‘‘Value 1’’ and the

value ofVariable y equals ‘‘Value 1’’ is shown in the cell Count11. Count21, Count12,

and Count22 show counts for the overlaps between all other values. The counts can

also be annotated and/or replaced with percentages.

In Table 4.3, the data set is summarized using two variables: sex and age. The

variable sex is dichotomous and the two values (male and female) are shown as a

header on the x-axis. The other selected variable is age and has been broken down

into nine categories: 10–20, 20–30, 30–40, and so on. For each value of each variable

a total is displayed. For example, there are 21,790 observations where sex is equal to

Table 4.1. Table of car records

Displace- Horse- Acce- Model

Names Cylinders ment power Weight leration Year Origin MPG

Chevrolet Chevelle 8 307 130 3504 12 1970 1 18

Malibu

Buick Skylark 320 8 350 165 3693 11.5 1970 1 15

Plymouth Satellite 8 318 150 3436 11 1970 1 18

Amc Rebel SST 8 304 150 3433 12 1970 1 16

Ford Torino 8 302 140 3449 10.5 1970 1 17

Ford Galaxie 500 8 429 198 4341 10 1970 1 15

Chevrolet Impala 8 454 220 4354 9 1970 1 14

Plymouth Fury III 8 440 215 4312 8.5 1970 1 14

Pontiac Catalina 8 455 225 4425 10 1970 1 14

Amc Ambassador 8 390 190 3850 8.5 1970 1 15

Dpl

Table 4.2. Contingency table format

Variable x Totals

Value 1 Value 2

Variable y
Value 1 Count11 Count21 Count1þ
Value 2 Count12 Count22 Count2þ

Countþ1 Countþ2 Total count
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male and there are 1657 observations where age is between 10 and 20. The total

number of observations summarized in the table is shown in the bottom right hand

corner (32,561). The cells in the center of the table show the number of observations

with different combinations of values. For example, there are 847 males between the

ages of 10 and 20 years.

Where one of the variables is a response, it is common to place this variable

on the y-axis. In Table 4.4, 392 observations about cars are summarized according to

two variables: number of cylinders (Cylinders) and miles per gallon (MPG). This

table describes the relationship between the number of cylinders in a car and the

car’s fuel efficiency. This relationship can be seen by looking at the relative

distribution of observations throughout the grid. In the column whereCylinders is 4,

the majority of the data lies between 20 and 40 MPG. Whereas the column where

Cylinders is 8, the majority of observations lies between 10 and 20MPG, indicating

that 8-cylinder vehicles appear to be less fuel efficient than 4-cylinder vehicles.

Table 4.3. Contingency table summarizing the number of males and females within age

ranges

Sex¼Male Sex¼ Female Totals

Age (10.0 to 20.0) 847 810 1,657

Age (20.0 to 30.0) 4,878 3,176 8,054

Age (30.0 to 40.0) 6,037 2,576 8,613

Age (40.0 to 50.0) 5,014 2,161 7,175

Age (50.0 to 60.0) 3,191 1,227 4,418

Age (60.0 to 70.0) 1,403 612 2,015

Age (70.0 to 80.0) 337 171 508

Age (80.0 to 90.0) 54 24 78

Age (90.0 to 100.0) 29 14 43

Totals 21,790 10,771 32,561

Table 4.4. Contingency table summarizing counts of cars based on the number of

cylinders and ranges of fuel efficiency (MPG)

Cylinders Cylinders Cylinders Cylinders Cylinders

¼ 3 ¼ 4 ¼ 5 ¼ 6 ¼ 8 Totals

MPG (5.0 to 10.0) 0 0 0 0 1 1

MPG (10.0 to 15.0) 0 0 0 0 52 52

MPG (15.0 to 20.0) 2 4 0 47 45 98

MPG (20.0 to 25.0) 2 39 1 29 4 75

MPG (25.0 to 30.0) 0 70 1 4 1 76

MPG (30.0 to 35.0) 0 53 0 2 0 55

MPG (35.0 to 40.0) 0 25 1 1 0 27

MPG (40.0 to 45.0) 0 7 0 0 0 7

MPG (45.0 to 50.0) 0 1 0 0 0 1

Totals 4 199 3 83 103 392
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Contingency tables have many uses including understanding the relationship

between two categorical variables. In the chapter on statistics, this relationship will

be further quantified using the chi-square test. They are also useful for looking at

the quality of predictions and this will be discussed further in the chapter on

prediction.

4.2.3 Summary Tables

A summary table (or aggregate table) is a common way of understanding data. For

example, a retail company may generate a summary table to communicate the

average sales per product or per store. A single categorical variable (or a continuous

variable converted into categories) is used to group the observations. Each row of the

table represents a single group. Summary tables will often show a count of the

number of observations (or percentage) that have that particular value (or range).

Any number of other variables can be shown alongside. Since each row now refers to

a set of observations, any other columns of variables must now contain summary

information. Descriptive statistics that summarize a set of observations can be used.

The calculations for these statistics are described in the next chapter. The following

statistics are commonly used:

� Mean: The average value.

� Median: The value at the mid-point.

� Sum: The sum over all observations in the group.

� Minimum: The minimum value.

� Maximum: The maximum value.

� Standard deviation: A standardized measure of the deviation of a variable

from the mean.

A common format for a summary table is shown in Table 4.5. The first column is

the variable used to group the table (Variable a). Each value (either a specific value

or a range) is listed in the first column alongside a count (or percentage) of

observations belonging to the group. Each row now represents a collection of

observations. Other columns present summaries for other variables. Variable x and

Variable y are examples of those additional summarized columns.

Table 4.5. Format for a summary table

Variable a Count Variable x summary Variable y summary . . .

a1 Count (a1) Statistic(x) for group a1 Statistic(y) for group a1 . . .
a2 Count (a2) Statistic(x) for group a2 Statistic(y) for group a2 . . .
a3 Count (a3) Statistic(x) for group a3 Statistic(y) for group a3 . . .
. . . . . . . . . . . . . . .
an Count (an) Statistic(x) for group an Statistic(y) for group an . . .
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In Table 4.6, the automobile data set is broken down into groups based on the

number of Cylinders (3, 4, 5, 6 and 8). A count of the number of observations in

each group is shown in the next column. The third column is based on another

variable, miles per gallon (MPG), and the statistic selected is mean. The table

succinctly summarizes how the average fuel efficiency of the set of automobiles

differs based on the number of cylinders in the car.

Summary tables summarize the contents of a data table without showing all the

details. It is possible to identify trends and these tables are easy to understand.

4.3 GRAPHS

4.3.1 Overview

Tables allow us to look at individual observations or summaries, whereas graphs

present the data visually replacing numbers with graphical elements. Tables are

important when the actual data values are important to show. Graphs enable us to

visually identify trends, ranges, frequency distributions, relationships, outliers and

make comparisons. There are many ways of visualizing information in the form of a

graph. This section will describe some of the common graphs used in exploratory

data analysis and data mining: frequency polygrams, histograms, scatterplots, and

box plots. In addition, looking at multiple graphs simultaneously and viewing

common subsets can offer new insights into the whole data set.

4.3.2 Frequency Polygrams and Histograms

Frequency polygrams plot information according to the number of observations

reported for each value (or ranges of values) for a particular variable. An example of

a frequency polygram is shown in Figure 4.1. In this example, a variable (Model

Year) is plotted. The number of observations for each year is counted and plotted.

The shape of the plot reveals trends, that is, the number of observations each year

fluctuates within a narrow range of around 25–40.

In Figure 4.2, a continuous variable (Displacement) is divided into ranges from

50 to 100, from 100 to 150, and so on. The number of values for each range is plotted

Table 4.6. Summary table showing average MPG for

different cylinder vehicles

Cylinders Count Mean (MPG)

3.0 4 20.55

4.0 199 29.28

5.0 3 27.37

6.0 83 19.97

8.0 103 14.96

40 Chapter 4 Tables and Graphs



and the shape indicates that most of the observations are for low displacement

values.

Histograms present very similar information to frequency polygrams, that is, the

frequency distribution of a particular variable. The length of the bar is proportional

to the size of the group. Variables that are not continuous can be shown as a

histogram, as shown in Figure 4.3. This graph shows the dichotomous variable

Diabetes, which has two values: yes and no. The length of the bars represents the

number of observations for the two values. This type of chart for categorical

variables is also referred to as a bar chart.

For continuous variables, a histogram can be very useful in displaying the

frequencydistribution. InFigure4.4, the continuousvariableLength is divided into10

groups and the frequencyof the individual group is proportional to the lengthof thebar.

Histograms provide a clear way of viewing the frequency distribution for a

single variable. The central values, the shape, the range of values as well as any

outliers can be identified. For example, the histogram in Figure 4.5 illustrates an
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Figure 4.2. Frequency polygram showing counts for ranges of Displacement
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Figure 4.1. Frequency polygram displaying a count for cars per year
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Figure 4.4. Histogram representing counts for ranges in the variable Length

440

330

220

110

0
no yes

Diabetes

Fr
eq

ue
nc

y

Figure 4.3. Histogram showing categorical variable Diabetes

Figure 4.5. Histogram showing an outlier
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outlier (in the range 1–1.2) that is considerably larger than the majority of other

observations. It is also possible to deduce visually if the variable approximates a

normal distribution.

4.3.3 Scatterplots

Scatterplots can be used to identify whether any relationship exists between two

continuous variables based on the ratio or interval scales. The two variables are

plotted on the x- and y-axes. Each point displayed on the scatterplot is a single

observation. The position of the point is determined by the value of the two

variables. The scatterplot in Figure 4.6 presents many thousands of observations on a

single chart.

Scatterplots allow you to see the type of relationship that may exist between

the two variables. For example, the scatterplot in Figure 4.7 shows that the
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Figure 4.6. Scatterplot showing the relationship between the Length and Diameter variables
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relationship between Length and Diameter is primarily linear, that is, as

Length increases Diameter increases proportionally. The graph also shows that

there are points (e.g., X) that do not follow this linear relationship. These are

referred to as outliers based on the dimensions plotted. Where the points follow

a straight line or a curve, a simple relationship exists between the two variables.

In Figure 4.8, the points follow a curve indicating that there is a nonlinear

relationship between the two variables, that is, as Length increases Viscera

weight increases, but the rate of increase is not proportional. Scatterplots can

also show the lack of any relationship. In Figure 4.9, the points are scattered

throughout the whole graph indicating that there is no immediately obvious

relationship between Plasma–Glucose and BMI in this data set. Scatterplots can

also indicate where there is a negative relationship. For example, it can be seen

in Figure 4.10 that as values for Horsepower increase, values for MPG

decrease.
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Figure 4.9. Scatterplot showing no discernable relationship
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4.3.4 Box Plots

Box plots (also called box-and-whisker plots) provide a succinct summary of the

overall distribution for a variable. Five points are displayed: the lower extreme value,

the lower quartile, the median, the upper quartile, the upper extreme and the mean,

as shown in Figure 4.11. The values on the box plot are defined as follows:

� Lower extreme: The lowest value for the variable.

� Lower quartile: The point below which 25% of all observations fall.

� Median: The point below which 50% of all observations fall.

� Upper quartile: The point below which 75% of all observations fall.

� Upper extreme: The highest value for the variable.

� Mean: The average value for the variable.

Figure 4.12 provides an example of a box plot for one variable (MPG). The plot

visually displays the lower (around 9) and upper (around 47) bounds of the variable.
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Figure 4.11. Box plot format
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Fifty percent of observations begin at the lower quartile (around 17) and end at the

upper quartile (around 29). The median and the mean values are close, with the mean

slightly higher (around 23.5) than the median (around 23). Figure 4.13 shows a box

plot and a histogram side-by-side to illustrate how the distribution of a variable is

summarized using the box plot.

In certain version of the box plot, outliers are not included in the plot. These

extreme values are replaced with the highest and lowest values not considered as an

outlier. Instead these outliers are explicitly drawn (using small circles) outside the

main plot.

4.3.5 Multiple Graphs

It is often informative to display multiple graphs at the same time in a table format,

often referred to as a matrix. This gives an overview of the data frommultiple angles.

In Figure 4.14, a series of variables have been plotted profiling the frequency

distribution for variables in the data set.

Figure 4.12. Example of box plot for the variable MPG

Figure 4.13. Box plot and histogram side-by-side
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In Figure 4.15, a series of variables are plotted: Displacement, Horsepower,

Weight, Acceleration, and MPG. This scatterplot matrix shows a series of

scatterplots for all pairs of the five variables displayed. The first row shows the

relationships between Displacement and the four other variables: Horsepower,

Weight, Acceleration, and MPG. The Displacement variable is plotted on the

y-axis for these four graphs. The second row shows the relationship between

Horsepower and the four other variables. Similarly, the first column shows the

relationship betweenDisplacement and the four other variables, withDisplacement

plotted on the x-axis. Scatterplot matrices are useful to understand key relationships

when a data set has many variables.

In Figure 4.16, a set of observations concerning cars have been broken

down by year, from 1970 to 1982. Each box plot summarizes the frequency

distribution for the variable MPG (miles per gallon), for each year. The graph

shows how the distribution of car fuel efficiency (MPG) has changed over the

years.

Displacement

Horsepower

Weight

Acceleration

MPG

Figure 4.15. Scatterplot matrix showing relationship between five variables
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Highlighting common subsets of the data can further identify trends in the data

set and is illustrated using the automobile example. In Figure 4.17, the shaded area

of the graphs are observations where the number of cylinders is 8 (as shown in the

top left graph). The other graphs highlight where cars with 8 cylinders can be found

on the other frequency distributions. For example, these cars are associated with

poor fuel efficiency as shown in the graph in the bottom right (MPG). In Figure 4.18,

4-cylinder vehicles are highlighted and it can be seen that the fuel efficiency is

generally higher.

4.4 SUMMARY

Table 4.7 summarizes the use of tables and graphs described in this chapter and their use in

exploratory data analysis and data mining.

Figure 4.16. Series of box plots showing the frequency distributions over time
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4.5 EXERCISES

Table 4.8 shows a series of retail transactions monitored by the main office of a computer

store.

1. Generate a contingency table summarizing the variables Store and Product category.

2. Generate the following summary tables:

a. Grouping by Customer and the showing a count of the number of observations

and the sum of Sale price ($) for each row.

b. Grouping by Store and showing a count of the number of observations and the

mean Sale price ($) for each row.

c. Grouping by Product category and showing a count of the number of observa-

tions and the sum of the Profit ($) for each row.

Table 4.7. Table summarizing different tables and graphs and their use in analyzing

data

Summary Data Uses

Tables Raw data Any variables Showing details

table of the data

Contingency Two categorical Understanding

table variables relationships between

categorical variables

Summary Single variable to Summarizing groups of data

table group observations,

other variables to

be summarized

Graphs Frequency Single variable, Viewing trends, ranges,

polygram any type frequency distribution,

and outliers

Histogram Single variable, Viewing trends, ranges,

any type frequency distribution,

and outliers

Scatterplot Two ratio or interval Viewing relationships

variables between continuous

variables and outliers

Box plot Single ratio, or Viewing ranges,

interval variable frequency distributions,

and outliers

Multiple Data dependent on Viewing multi-

graphs individual graph dimensional

relationships, multi-

dimensional

summaries, and

comparisons
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3. Create a histogram of Sales Price ($) using the following intervals: 0 to less than

250, 250 to less than 500, 500 to less than 750, 750 to less than 1000.

4. Create a scatterplot showing Sales price ($) against Profit ($).

4.6 FURTHER READING

For further reading on communicating information, see Tufte (1990), Tufte (1997), and Tufte

(2001). The books also outline good and bad practices in the design of graphs.

The graphs outlined here are essential for exploratory data analysis. There are many

alternative charts in addition to the ones described in this chapter. The following web sites

describe numerous ways of displaying information graphically: http://www.itl.nist.gov/

div898/handbook/eda/eda.htm, http://www.statcan.ca/english/edu/power/toc/contents.htm.

Table 4.8. Retail transaction data set

Product Product Sale price

Customer Store category description ($) Profit ($)

B.March New York, NY Laptop DR2984 950 190

B.March New York, NY Printer FW288 350 105

B.March New York, NY Scanner BW9338 400 100

J.Bain New York, NY Scanner BW9443 500 125

T.Goss Washington, DC Printer FW199 200 60

T.Goss Washington, DC Scanner BW39339 550 140

L.Nye New York, NY Desktop LR21 600 60

L.Nye New York, NY Printer FW299 300 90

S.Cann Washington, DC Desktop LR21 600 60

E.Sims Washington, DC Laptop DR2983 700 140

P.Judd New York, NY Desktop LR22 700 70

P.Judd New York, NY Scanner FJ3999 200 50

G.Hinton Washington, DC Laptop DR2983 700 140

G.Hinton Washington, DC Desktop LR21 600 60

G.Hinton Washington, DC Printer FW288 350 105

G.Hinton Washington, DC Scanner BW9443 500 125

H.Fu New York, NY Desktop ZX88 450 45

H.Taylor New York, NY Scanner BW9338 400 100
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Chapter 5

Statistics

5.1 OVERVIEW

The ability to generate summaries and make general statements about the data, and

relationships within the data, is at the heart of exploratory data analysis and data

mining methods. In almost every situation we will be making general statements

about entire populations, yet we will be using a subset or sample of observations.

The distinction between a population and a sample is important:

� Population: A precise definition of all possible outcomes, measurements or

values for which inferences will be made about.

� Sample: A portion of the population that is representative of the entire

population.

Parameters are numbers that characterize a population, whereas statistics are

numbers that summarize the data collected from a sample of the population. For

example, a market researcher asks a portion or a sample of consumers of a particular

product, about their preferences, and uses this information to make general

statements about all consumers. The entire population, which is of interest, must be

defined (i.e. all consumers of the product). Care must be taken in selecting the

sample since it must be an unbiased, random sample from the entire population.

Using this carefully selected sample, it is possible to make confident statements

about the population in any exploratory data analysis or data mining project.

The use of statistical methods can play an important role including:

� Summarizing the data: Statistics, not only provide us with methods for

summarizing sample data sets, they also allow us to make confident

statements about entire populations.

� Characterizing the data: Prior to building a predictive model or looking for

hidden trends in the data, it is important to characterize the variables and the

relationships between them and statistics gives us many tools to accomplish

this.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.
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� Making statements about ‘‘hidden’’ facts: Once a group of observations,

within the data has been defined as interesting through the use of data mining

techniques, statistics give us the ability to make confident statements about

these groups.

The following chapter describes a number of statistical approaches for making

confident decisions. The chapter describes a series of descriptive statistics that

summarize various attributes of a variable such as the average value or the range of

values. Inferential statistics cover ways of making confident statements about

populations using sample data. Finally, the use of comparative statistics allows us to

understand relationships between variables.

5.2 DESCRIPTIVE STATISTICS

5.2.1 Overview

Descriptive statistics describe variables in a number of ways. The histogram in

Figure 5.1 for the variable Length displays the frequency distribution. It can be seen

that most of the values are centered around 0.55, with a highest value around 0.85,

and a lowest value around 0.05. Most of the values are between 0.3 and 0.7 and the

distribution is approximately normal; however, it is slightly skewed.

Descriptive statistics allow us to quantify precisely these descriptions of the

data. They calculate different metrics for defining the center of the variable (central

tendency), they define metrics to understand the range of values (variation), and they

quantify the shape of the distribution.
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Figure 5.1. Histogram of variable Length
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5.2.2 Central Tendency

Mode

The mode is the most commonly reported value for a particular variable. It is

illustrated using the following variable whose values are:

3; 4; 5; 6; 7; 7; 7; 8; 8; 9

The mode would be the value 7 since there are three occurrences of 7 (more than

any other value). It is a useful indication of the central tendency of a variable,

since the most frequently occurring value is often towards the center of the variable

range.

When there is more than one value with the same (and highest) number of

occurrences, either all values are reported or a mid-point is selected. For example,

for the following values, both 7 and 8 are reported three times:

3; 4; 5; 6; 7; 7; 7; 8; 8; 8; 9

The mode may be reported as {7, 8} or 7.5.

Mode provides the only measure of central tendency for variables measured on

a nominal scale. The mode can also be calculated for variables measured on the

ordinal, interval, and ratio scales.

Median

The median is the middle value of a variable once it has been sorted from low to

high. For variables with an even number of values, the mean of the two values closest

to the middle is selected (sum the two values and divide by 2).

The following set of values will be used to illustrate:

3; 4; 7; 2; 3; 7; 4; 2; 4; 7; 4

Before identifying the median, the values must be sorted:

2; 2; 3; 3; 4; 4; 4; 4; 7; 7; 7

There are 11 values and therefore the sixth value (five values above and five values

below) is selected, which is 4:

2; 2; 3; 3; 4; 4; 4; 4; 7; 7; 7

The median can be calculated for variables measured on the ordinal, interval, and

ratio scales. It is often the best indication of central tendency for variables measured

on the ordinal scale. It is also a good indication of the central value for a variable

measured on the interval or ratio scales since, unlike the average, it will not be

distorted by any extreme values.
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Mean

The mean (also referred to as average) is the most commonly used indication of

central tendency for variables measured on the interval or ratio scales. It is defined as

the sum of all the values divided by the number of values. For example, for the

following set of values:

3; 4; 5; 7; 7; 8; 9; 9; 9

The sum of all nine values is ð3þ 4þ 5þ 7þ 7þ 8þ 9þ 9þ 9Þ or 61. The sum
divided by the number of values is 61� 9 or 6.78.

For a variable representing a sample population (such as x) the mean is

commonly referred to as �x. The formula for calculating a mean, where n is the

number of observations and xi is the individual values, is usually written:

�x ¼
Pn
i¼1

xi

n

Computing the mode, median and mean for a single variable measured on the

interval or ratio scale is useful. It is possible to gain an understanding of the shape of

the distribution using these values since, if both the mean and median are

approximatly the same, the distribution should be fairly symmetrical.

Throughout the book �x will be used to describe the mean of a sample and m will

be used to describe the population mean.

5.2.3 Variation

Range

The range is a simple measure of the variation for a particular variable. It is

calculated as the difference between the highest and lowest values. The following

variable will be used to illustrate:

2; 3; 4; 6; 7; 7; 8; 9

The range is 7 calculated from the highest value (9) minus the lowest value (2).

Range can be used with variables measured on an ordinal, interval or ratio scale.

Quartiles

Quartiles divide a variable into four even segments based on the number of

observations. The first quartile (Q1) is at the 25%mark, the second quartile (Q2) is at

the 50% mark, and the third quartile (Q3) is at the 75% mark. The calculations for

Q1 and Q3 are similar to the calculation of the median. Q2 is the same as the median

value. For example, using the following set of values:

3; 4; 7; 2; 3; 7; 4; 2; 4; 7; 4
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The values are sorted:

2; 2; 3; 3; 4; 4; 4; 4;7; 7; 7

Next, the median or Q2 is located in the center:

2; 2; 3; 3; 4; 4; 4; 4; 7; 7; 7

If we now look for the center of the first half (shown underlined) or Q1:

2; 2; 3; 3; 4; 4; 4; 4; 7; 7; 7

Q1 is recorded as 3. If we now look for the center of the second half (shown

underlined) or Q3:

2; 2; 3; 3; 4; 4; 4; 4; 7; 7; 7

Q3 is 7.

Where the boundaries of the quartiles do not fall on a specific value, then

the quartile value is calculated based on the two numbers adjacent to the boundary.

The interquartile range is defined as the range from Q1 to Q3. In this example it

would be 7� 3 or 4.

Variance

The variance describes the spread of the data. It is a measure of the deviation of a

variable from the mean. For variables that do not represent the entire population, the

sample variance formula is:

s2 ¼
Pn
i¼1

ðxi � �xÞ2

n� 1

The sample variance is referred to as s2. The actual value (xi) minus the mean value

(�x) is squared and summed for all values of a variable. This value is divided by the

number of observations minus 1 (n� 1).

The following example illustrates the calculation of a variance for a particular

variable:

3; 4; 4; 5; 5; 5; 6; 6; 6; 7; 7; 8; 9

Where the mean is:

�x ¼ 3þ 4þ 4þ 5þ 5þ 5þ 6þ 6þ 6þ 7þ 7þ 8þ 9

13

�x ¼ 5:8

Table 5.1 is used to calculate the sum, using the mean value of 5.8. To calculate s2,

we substitute the values from Table 5.1 into the variance formula:
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s2 ¼
Pn
i¼1

ðxi � �xÞ2

n� 1

s2 ¼ 176:88

13� 1

s2 ¼ 14:74

The variance reflects the average squared deviation. It can be calculated from

variables measured on the interval or ratio scale.

The population variance is defined as s2 and is calculated using the formula:

s2 ¼
Pn
i¼1

ðxi � �xÞ2

n

Standard Deviation

The standard deviation (also described as root mean square) is the square root of the

variance. For a sample population, the formula is:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � �xÞ2

n� 1

vuuut
Where s is the sample standard deviation, xi is the actual data value, �x is the mean for

the variable and n is the number of observations. For a calculated variance, for

example 14.74, the standard deviation is calculated as
ffiffiffiffiffiffiffiffiffiffiffi
14:74

p
or 3.84.

Table 5.1. Variance intermediate steps

x �x ðxi � �xÞ ðxi � �xÞ2

3 5.8 �2:8 7.84

4 5.8 �1:8 3.24

4 5.8 �1:8 3.24

5 5.8 �0:8 0.64

5 5.8 �0:8 0.64

5 5.8 �0:8 0.64

6 5.8 0.2 0.04

6 5.8 0.2 0.04

6 5.8 0.2 0.04

7 5.8 1.2 1.44

7 5.8 1.2 1.44

8 5.8 2.2 4.84

9 5.8 3.2 10.24

Sum¼ 176.88

Descriptive Statistics 59



The standard deviation is the most widely used expression of the deviation in

the range of a variable. The higher the value, the more widely distributed the variable

data values are around the mean. Assuming the frequency distribution is

approximately normal, about 68% of all observations will fall within one standard

deviation of the mean (34% less than and 34% greater than). For example, a variable

has a mean value of 45 with a standard deviation value of 6. Approximately 68% of

the observations should be in the range 39 to 51 (45þ /� one standard deviation).

Figure 5.2 shows that for a normally distributed variable, about 68% of observations

fall between �1 and þ1 standard deviation. Approximately 95% of all observations

fall within two standard deviations of the mean, as shown in Figure 5.3.

Standard deviations can be calculated for variables measured on the interval or

ratio scales.

The standard deviation of an entire population will be referred to as s, which is

the square root of the population variance (s2).

z-score

A z-score represents how far from the mean a particular value is, based on the

number of standard deviations. If a z-score is calculated for a particular variable,

then the z-scoremean will be zero and each value will reflect the number of standard

deviations above or below the mean. Approximately 68% of all observation would

be assigned a number between �1 and þ1 and approximately 95% of all

observations would be assigned a z-score between �2 and þ2. The following

equation is used to calculate a z-score:

z ¼ xi � �x

s

–∞ +∞
μ

16% 16%

–1 +1

Number of standard deviations

68%

Figure 5.2. Area under normal distribution from �1 to þ1 standard deviations from the mean
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where xi is the data value, �x is the sample mean and s is the standard deviation of the

sample. For example, a variable Age has values that range from 22 to 97, with a

mean of 63.55 and a standard deviation of 13.95. Table 5.2 illustrates a few example

calculations for the z-score.

5.2.4 Shape

Skewness

There are methods for quantifying the lack of symmetry or skewness in the

distribution of a variable. The formula to calculate skewness, for a variable x, with

individual values xi, with n data points, and a standard deviation of s is:

skewness ¼
Pn
i¼1

ðxi � �xÞ3

ðn� 1Þs3

–∞ +∞
μ

95%
2.5% 2.5%

–2 +2

Number of standard deviations

Figure 5.3. Area under the normal distribution from �2 to þ2 standard deviations from the mean

Table 5.2. Examples of z-score calculation

Age (xi) �x xi � �x z ¼ xi��x
s

35 63.55 �28:55 �2:05
57 63.55 �6:55 �0:47
63 63.55 �0:55 �0:04
69 63.55 5.45 0.39

81 63.55 17.45 1.25
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s3 is the standard deviation cubed or s� s� s. A skewness value of zero indicates that

the distribution is symmetrical. If the right tail is longer than the left tail then the value

is positive and if the left tail is longer than the right tail then the skewness score is

negative. Figure 5.4 shows example skewness values for three variables.

Kurtosis

In addition to the symmetry of the distribution, the type of peak that the distribution

has, is important to consider. This measurement is defined as kurtosis. The following

formula can be used for calculating kurtosis for a variable x, with xi representing the

individual values, with n data points and a standard deviation of s:

kurtosis ¼
Pn
i¼1

ðxi � �xÞ4

ðn� 1Þs4
Variables with a pronounced peak toward the mean have a high kurtosis score and

variables with a flat peak have a low kurtosis score. Figure 5.5 illustrates kurtosis

scores for two variables.

5.2.5 Example

Figure 5.6 presents a series of descriptive statistics for a variable Age. In this

example, there are four values forAge that occur the most (mode): 69, 76, 64 and 63.

Figure 5.4. Examples illustrating skewness

Figure 5.5. Examples illustrating kurtosis
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The median age is 64 with the mean slightly lower at 63.55. The minimum value

is 22 and the maximum value is 97. Half of all observations fall within the range

54–75. The variance is 194.65 and the standard deviation is calculated at 13.95. The

distribution is slightly skewed with a longer tail to the left, indicated by the skewness

score of �0:22 and the peak is fairly flat indicated by the kurtosis score of �0:47.

5.3 INFERENTIAL STATISTICS

5.3.1 Overview

In almost all situations, we are making statements about populations using data

collected from samples. For example, a factory producing packets of sweets believes

that there are more than 200 sweets in each packet. To determine a reasonably

accurate assessment, it is not necessary to examine every packet produced. Instead

an unbiased random sample from this total population could be used.

If this process of selecting a random sample was repeated a number of times, the

means from each sample would be different. Different samples will contain different

observations and so it is not surprising that the results will change. This is referred to

as sampling error. If wewere to generate many random samples, we might expect that

most of the samples would have an average close to the actual mean. We might also

expect that there would be a few samples with averages further away from the mean.

In fact, the distribution of the mean values follows a normal distribution for sample

sizes greater than 30. We will refer to this distribution as the sampling distribution, as

shown in Figure 5.7.

The sampling distribution is normally distributed because of the central limit

theorem, which is discussed in the further readings section of the chapter. In fact, the

Number of observations: 759

Central tendency

Mode: 69, 76, 64, 63

Median: 64

Mean: 63.55

Variation

Minimum: 22

Maximum: 97

Range: 75

Quartiles: 54 (Q1), 64 (Q2), 75 (Q3)

Variance: 194.65

Standard deviation: 13.95

Shape

Skewness: – 0.22

Kurtosis: – 0.47

F
re

q
u
en

cy

240

180

120

60

0
20 30 40 50 60 70 80 90 100

Age

Figure 5.6. Descriptive statistics for variable Age

Inferential Statistics 63



variation of this sampling distribution is dependent on the variation of the variable

from which we are now measuring sample means.

We might also expect that increasing the number in each sample would result in

more of the sample means being closer to the actual mean. As the sample size

increases, the distribution of the means will in fact become narrower, as illustrated in

Figure 5.8.

The relationship between the variation of the original variable and the number

of observations in the sample to the sampling distribution is summarized in the

following formula:

s�x ¼ sffiffiffi
n

p

Sampling distribution of x

Figure 5.7. Sampling distribution for mean values of x

As the number of samples increases, the sampling distribution becomes more narrow

Figure 5.8. Illustration showing that when the number of samples increases, the sampling

distribution becomes more narrow
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The standard deviation for the distribution of the sample means (s�x) is based on the

standard deviation of the population (s) and the number of observations in

the sample (n). As the number of sample observations increases, the standard

deviation of the sample means decreases. The standard deviation of the sample

means is also called the standard error of the mean. Since we rarely have the

population standard deviation (s), the sample standard deviation (s) can be used as

an estimate.

We can use this sampling distribution to assess the chance or probability that

we will see a particular range of average values, which is central to inferential

statistics. For example, a sweet manufacturer wishes to make the claim that the

average sweets per packet is greater than 200. The manufacturer collects a sample

of 500 packets and counts the number of sweets in each of these packets. The

average number of sweets per pack is calculated to be 201 with a standard deviation

(s) of 12.

We now need to assess the probability that this value is greater than 200 or

whether the difference is simply attributable to the sampling error. We can use the

sampling distribution to make this assessment. The area under this curve can be used

for assessing probabilities. A probability of 1 indicates a certain event and a

probability of 0 indicates an event will never happen. Values between these two

extremes reflect the relative likelihood of an event happening. The total area under

the normal distribution curve is equal to 1. The area between specific z-score ranges

represents the probability that a value would lie within this range. Therefore, we

need to understand where on the normal distribution curve the recorded value lies

(see Figure 5.9).

First we calculate the standard error using the sample standard deviation of 12

and the sample size of 500:

s�x ¼ 12ffiffiffiffiffiffiffiffi
500

p ¼ 0:54

200(μ)

Sample means

?

Figure 5.9. Determining where the recorded value lies on the sampling distribution
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To understand how many standard deviations the value 201 is away from the mean,

we must convert the value into a z-score:

z ¼ �x� m
s�x

where �x is the mean recorded (201), m is the population mean in the statement

(200) and s�x is the standard error (0.54). Substituting these values into the

formula:

z ¼ 201� 200

0:54
¼ 1:85

We can now plot the recorded value (converted to a z-score) on to the sampling

distribution to understand where on this curve the value lies (Figure 5.10). The z-score

of 1.85 indicates that the 201 value recorded from the sample is higher than the

200 claimed value. The area under the curve to the right of 1.85 can be used to assess

the claim. A formal procedure for making these claims will be introduced in this

section.

If data is recorded for a categorical variable, instead of examining the average

value, we can calculate the proportion of observations with a specific value. For

example, a factory producing clothes wishes to understand the number of garments it

produces with defects. They use a representative sample of the entire population and

record which garments did and did not have defects. To get an overall assessment of

the number of defects, a proportion (p) is calculated taking the number of defects and

dividing it by the number of observations in the sample. If it is determined that there

were 20 defects and the sample size was 200, then the proportion of defects will be

20� 200 or 0.1 (i.e 10%).

0(μ) 1.85

Number of standard deviations

Figure 5.10. Sampling distribution with the observed value plotted using the z-score
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In most situations, if we took many different samples and determined the

proportions for these samples, the distribution of these proportions would again

follow a normal distribution. This normal distribution has a standard deviation (sp)
which is calculated using the formula:

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r

In this equation n is the sample size and p is the proportion calculated (substituted

for the population proportion since it is not usually available). The standard

deviation of the proportions is also referred to as the standard error of proportion.

The sampling distribution of the proportions can be used to estimate a probability

that a specific range of proportions would be seen.

In the following sections, we will make use of these standard error calculations

and present a number of methods for making statements about data with confidence.

The following methods will be discussed:

� Confidence intervals: A confidence interval allows us to make statements

concerning the likely range that a population parameter (such as the mean)

lies within. For example, we may describe the average value falling between

201 and 203 sweets per packet to reflect our level of confidence in the

estimate.

� Hypothesis tests: A hypothesis test determines whether the data collected

supports a specific claim. A hypothesis test can refer to a single group, for

example, a hypothesis test may be used to evaluate the claim that the

number of sweets per packet is greater than 200. In this example, we are only

looking at a single population of packets of sweets. A hypothesis claim can also

refer to two groups, for example, to understand if there is a difference in the

number of sweets per packet produced by two different machines.

� Chi-square: The chi-square test is a statistical test procedure to understand

whether a relationship exists between pairs of categorical variables. For

example, whether there is a difference in the number of defective garments

between three similar factories.

� One-way analysis of variance: This test determines whether a relationship

exists between three or more group means. For example, if there were more

than two machines generating packets of sweets, it would test whether there

is a difference between them.

Table 5.3 summarizes the tests discussed in this section.

5.3.2 Confidence Intervals

Overview

A single statistic could be used as an estimate for a population (commonly referred

to as a point estimate). A single value, however, would not reflect any amount of
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confidence in the value. For example, in making an assessment of the average

number of sweets per packet we may, based on the number of samples recorded,

have a reasonable confidence that this number is between 198 and 202. This range of

values is referred to as the confidence interval. If a smaller number of samples were

collected, we may need to increase the range so that we have confidence that the

value lies between, for example, 190 and 210.

The confidence interval is not only dependent on the number of samples

collected but is also dependent on the required degree of confidence in the range. If

we wish to make a more confident statement, we would have to make the range

larger. This required degree of confidence is based on the confidence level at which

the estimate is to be calculated. The following sections will describe the methods for

calculating confidence intervals for continuous and categorical data based on the

confidence levels.

Confidence Ranges for Continuous Variables

For continuous variables, the mean is the most common population estimate. For

example, using the sweet packet example, the mean would be the sum of all counts

divided by the number of packets in the sample. To calculate the confidence interval,

we must calculate the mean first. The confidence interval (the range above and below

the mean) is dependent on (1) the standard error of the mean and (2) the confidence

with which we wish to state the range. The formula for calculating a confidence

interval for a large sample (greater than or equal to 30 observations) takes these two

factors into consideration:

�x� zC
sffiffiffi
n

p

where �x is the mean for the sample and sffiffi
n

p is the standard error of the mean (where s

is the standard deviation of the sample and n is the number of observations). The

critical z-score (zC) is the number of standard deviations for a given confidence level.

To obtain this value, a confidence level needs to be defined. Commonly used,

confidence levels include 90%, 95%, and 99%. The critical z-score value is

calculated by looking at the area under the normal distribution curve at the specified

confidence level. As an example, we will use a 95% confidence level, as shown in

Table 5.3. Summary of inferential statistical tests

Number of Number of

Continuous Categorical groups variables

Confidence intervals Yes Yes 1 1

Hypothesis test Yes Yes 1 or 2 1

Chi-square No Yes 2þ 2

One-way analysis of Yes No 3þ 1

variance
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Figure 5.11. We need to find the critical z-score value where the area in the two

shaded extremes totals 5% (2.5% at each shaded region). To look up this z-score, we

will use the normal distribution table from Appendix A.1. A sample of this table is

shown in Figure 5.12. Looking up an area of 2.5% or 0.0250, we see that the

corresponding z-score is 1.96.

This z-score will be used to calculate a confidence interval for a set of 54

observations with a mean value of 33.25 and a standard deviation of 12.26:

�x� zC
sffiffiffi
n

p

33:25� 1:96
12:26ffiffiffiffiffi

54
p

33:25� 3:27

Hence, at a 95% confidence level, the confidence interval is from 29.98 to 36.52.

The normal distribution can be used for large sample sizes where the number of

observations is greater than or equal to 30. However, for a sample size of less than

30, an alternative distribution is needed: Student’s t-distribution. This is because the

number of observations falls below 30 where we can no longer rely on the normal

distribution and instead we must rely on a distribution that has fatter tails. This

distribution will result in larger confidence intervals for smaller sample sizes. For

sample sizes greater than 30, the t-distribution is similar to the normal distribution

and is often used in all situations where the population standard deviation is

unknown. The formula for calculating the confidence interval is:

�x� tC
sffiffiffi
n

p

where �x is the mean of the sample, tC is the critical t-value, s is the standard

deviation of the sample, and n is the number of sample observations. This formula

–∞ ∞
–zc +zcμ

95%
2.5% 2.5%

Figure 5.11. Display of the critical z-score at a 95% confidence level
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can only be applied in situations where the target population approximates a normal

distribution.

The value of tC is calculated using the student’s t-distribution table from

Appendix A.2. To look-up a t-value requires the number of degrees of freedom (df)

to be specified. The number of degrees of freedom equals the number of observations

minus 1. For example, if there were 11 observations, then the number of degrees

of freedom will be 10. To look up a critical t-value at a confidence level of 95%,

the area under the curve right of the critical t-value will be 2.5% (0.025). Using the

number of degrees of freedom and the area under the curve, it can be seen that the

critical t-value is 2.228, as shown in Figure 5.13.

In the following example, a set of 11 (n) observations was recorded and the

mean value was calculated at 23.22 (�x), with a standard deviation of 11.98 (s).

At a 95% confidence level, the value of tC is 2.228 and hence the confidence

interval is:

�x� tC
sffiffiffi
n

p

23:22� 2:228
11:98ffiffiffiffiffi

11
p

23:22� 8:05

Adapted from Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural 
and Medical Research,  Sixth Edition, Pearson Education Limited, © 1963 R. A. Fisher and F. Yates

An area of 0.025 with 10 degrees of 

freedom (df ) has a t-value of 2.228

Upper tail area
df 0.1 0.05 0.025 0.01 0.005 
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

Figure 5.13. Determining the critical value of t using the t-distribution
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Hence at a 95% confidence level, the confidence interval is from 15.17 to 31.27.

Confidence Ranges for Categorical Variables

When handling categorical variables, the proportion with a given outcome is

often used to summarize the variable. This equals the outcome’s size divided by the

sample size. For example, a factory may be interested in the proportion of units

produced with errors. To make this assessment, a sample of 300 units are tested

for errors, and it is determined that 45 contain a problem. The proportion of units in

the sample with errors is 45/300 or 0.15. To make a statement about the population

as a whole, it is important to indicate the confidence interval. Again, this is based

on (1) the standard error of the proportion and (2) the confidence level with which

we wish to state the range. In this example, we will use a confidence level of

95%. Based on this information, the following equation can be used to determine

the range:

p� zC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r

where p is the proportion with a given outcome, n is the sample size and zC is

the critical z-score.

ffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

q
is the standard error of proportion. For this example,

p is 45 divided by 300 or 0.15 (15%) and n is 300. The critical z-score is computed

based on the confidence level and is determined using the area under a normally

distributed curve as described earlier. Given a 95% confidence level, the area

under the upper and lower tails marked in gray should be 5% or 0.05 (see Figure

5.11). Hence the area under the lower tail should be 0.025 and the area under the

upper tail should be 0.025. The z-score can be calculated from the tables in

Appendix A.1. The critical z-score for a 95% confidence level is 1.96. Substituting

these values into the equation:

p� zC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
or 0:15� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:15� ð1� 0:15Þ

300

r

0:15� 0:04

It can be inferred that between 11% and 19% of units will have faults with 95%

confidence.

5.3.3 Hypothesis Tests

Overview

In this example, a clothing manufacturer wishes to make a claim concerning the

number of garments it creates with no defects. It believes that less than 5% contain

a defect. To examine every garment produced would be too costly and so they

decided to collect 500 garments, selected randomly. Each garment is examined and
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it is recorded whether the garment has a defect or not. After the data was collected,

it was calculated that 4.7% of garments had defects. Since the data was collected from

a sample, this number alone is not sufficient to make any claim because of the

potential for sampling errors. Knowing that they would not be able to make a

claim with 100% confidence, they would be satisfied with a 95% confidence rate, that

is, 95 times out of 100 they would be correct. The sampling distribution, described

earlier, can be used to understand the minimum number of defective garments to

make the claim with a 95% confidence. This point should be plotted on the sampling

distribution. If the 4.7% value is now plotted on the sampling distribution (by

converting it to a z-score), it should now be possible to understand whether it is

sufficiently low to make the statement at a 95% confidence. If it is not, then the

manufacturer would not be able to make any claims about the number of defective

garments. The following describes a formal procedure for making claims or

hypothesis using data.

A hypothesis is a statement or claim made about an entire population. For

example:

� The average time to process a passport is 12 days

� More than eight out of ten dog owners prefer a certain brand (brand X) of

dog food.

A hypothesis test determines whether you have enough data to reject the claim (and

accept the alternative) or whether you do not have enough data to reject the claim. To

define a hypothesis, two statements are made:

� Null hypothesis (H0): This is a claim that a particular population parameter

(e.g. mean) equals a specific value. For example, the average time to process

a passport equals 12 days or the proportion of dog owners that prefer brand X

is 0.8 (or 80%). A hypothesis test will either reject or not reject the null

hypothesis using the collected data.

� Alternative hypothesis (Ha): This is the conclusion that we would be

interested in reaching if the null hypothesis is rejected. Another name that

is used to describe the alternative hypothesis is the research hypothesis as it

is often the conclusion that the researcher is interested in reaching. There are

three options: not equal to, greater than or less than. For example, dog

owners’ preference for brand X dog food is more than 0.8 (or 80%) or the

passport processing time is either greater than or less than 12 days so that the

alternative hypothesis is defined as not equal to 12 days.

To illustrate the null and alternative hypothesis, we will use the two cases described

above:

� Claim: The average time to process a passport is 12 days

H0 : m ¼ 12

Ha : m 6¼ 12

where m is the claimed average number of days to process a passport.
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� Claim: More than eight out of ten dog owners prefer a certain brand (brand

X) of dog food

H0 : p ¼ 0:8

Ha : p > 0:8

where p is the claimed proportion of dog owners preferring brand X dog food. The

alternative hypothesis is that the proportion of dog owner who prefer brand X is

greater than 0.8 and we would be interested in reaching this conclusion if the null

hypothesis was rejected.

Hypothesis Assessment

Before a hypothesis test is performed it is necessary to set a value at which H0 should

be rejected. Since we are dealing with a sample of the population, the hypothesis test

may be wrong. We can, however, minimize the chance of an error by specifying a

confidence level that reflects the chance of an error. For example, setting a

confidence level at 90% means that we would expect 1 in 10 results to be incorrect,

whereas setting a confidence level at 99%wewould expect 1 in 100 incorrect results.

A typical value is 95% confidence; however, values between 90%–99% are often

used. This is the point at which H0 will be rejected. This confidence level is usually

described by the term a, which is 100 minus the confidence percentage level, divided

by 100. For example, a 95% confidence level has a ¼ 0:05 and a 99% confidence

level has a ¼ 0:01.
Once the null hypothesis and the alternative hypothesis have been described, it is

now possible to assess the hypotheses using the data collected. First, the statistic of

interest from the sample is calculated. Next, a hypothesis test will look at the

difference between the value claimed in the hypothesis statement and the calculated

sample statistic. For large sample sets (greater than or equal to 30 observations),

identifying where the hypothesis test result is located on the normal distribution

curve of the sampling distribution, will determine whether the null hypothesis is

rejected.

For example, the following graph (Figure 5.14) shows a two-tail test used in

situations where the alternative hypothesis is expressed as not equal. In this example,

we use a confidence level where a ¼ 0:05. The graph shows the standard normal

distribution with the null hypothesis parameter shown in the center of the graph

(mH0
). If the hypothesis test score is within the ‘‘do not reject H0’’ region, then there

is not enough evidence to reject the null hypothesis. If the hypothesis test score is in

the ‘‘reject H0’’ region, then the null hypothesis is rejected. The value of zc is

determined from the normal distribution table in Appendix A.1. Since this is a

two-tail test, the sum of the area in the two tails should equal 5%, as shown in

Figure 5.14.

If the alternative hypothesis is smaller than, then you reject the null hypothesis

only if it falls in the left ‘‘reject H0’’ region. If the alternative hypothesis is greater

than, then you reject the null hypothesis if it falls in the right ‘‘reject H0’’ region. For
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example, if the alternative hypothesis is Ha: m < mH0
and a ¼ 0:05, then we would

reject the null hypothesis if the hypothesis test results has a z-score to the left of the

critical value of z (zc). The value of zc is determined from the normal distribu-

tion table in Appendix A.1. Since this is a one-tail test (when smaller than or greater

than is in the alternative hypothesis) the single area should equal 5%, as shown in

Figure 5.15.

Calculating p-Values

A hypothesis test is usually converted into a p-value. A p-value is the probability of

getting the recorded value or a more extreme value. It is a measure of the likelihood

–∞ ∞
-zc μHO

95%
5%

Reject Ho

Do not reject Ho

Figure 5.15. Illustration of the one-tail reject/do not reject region when a ¼ 0:05

–∞ ∞
–zc +zcμHO

95%
2.5% 2.5%

Reject Ho Reject Ho

Do not reject Ho

Figure 5.14. Illustration of the two-tail reject/do not reject region when a ¼ 0:05
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of the result given the null hypothesis is true or the statistical significance of the

claim. To calculate a p-value, use the score calculated using the hypothesis test

(described in the next sections) and look up the score on the standardized normal

distribution. For example, a hypothesis score of 2.21 corresponds to a value of

0.0136 (see Figure 5.16). Where the alternative hypothesis is not equal, then this

value is doubled.

p-values range from 0 to 1. Where the p-value is less than a, the null hypothesis
is rejected. When the p-value is greater than a, the null hypothesis is not rejected. For
example, if a was set to 0.05, then a p-value of 0.0136 would mean we would reject

the null hypothesis.

Where a sample size is small (less than 30), a student’s t-distribution should be

used instead of the standard normal distribution in calculating a p-value (see

appendix A.2).

Hypothesis Test: Single Group, Continuous Data

To test the claim that the average time to process a passport is 12 days, the following

null and alternative hypothesis were defined:

H0 : m ¼ 12

Ha : m 6¼ 12

where m is the claimed average number of days to process a passport.

To test the hypothesis that the number of days to process a passport is 12 (m), 45
passport applications were randomly selected and timed (n ¼ 45). The average time

to process the passport application was 12.1 (�x) and the standard deviation was 0.23

(s) and a was set to 0.05. To calculate the hypothesis test, the following formula will

be used:

z ¼ �x� m
sffiffi
n

p

This formula uses the difference between the actual mean and the null hypothesis

mean, divided by the standard error of the mean. In this example:

z ¼ 12:1� 12:0
0:23ffiffiffiffi
45

p

z ¼ 2:9

for a value of a ¼ 0:05, the critical value of z (zc) would be 1.96. This is where the

area under each extreme would equal 2.5%. Since the z-score of 2.9 is greater than

1.96, we reject the null hypothesis and make a statement that the average number of

days to process a passport is not 12 days. To calculate a p-value, we look-up the

calculated hypothesis score of 2.9 in the normal distribution table and this value is

0.0019. Since this hypothesis is two-sided, we double this value to obtain a p-value

of 0.0038.
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Hypothesis Test: Single Group, Categorical Data

To test the claim that more than eight out of ten dog owners prefer a certain brand

(brand X) of dog food, the following null and alternative hypothesis were defined:

H0 : p ¼ 0:8

Ha : p > 0:8

where p is the claimed proportion of dog owners preferring brand X dog food.

To test this hypothesis, 40 random dog owners (n ¼ 40) were questioned and the

proportion that responded that they preferred brand X was 33 out of 40 or 0.825 (p).

The proportion in the null hypothesis was 0.8 (p0) and a was set to 0.05. To calculate
the hypothesis test (z), the following formula is used:

z ¼ r� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1�p0Þ

n

q
This is the difference between the value stated in the null hypothesis and the

recorded sample divided by the standard error of proportions. In this example,

z ¼ 0:825� 0:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8ð1�0:8Þ

40

q
z ¼ 0:395

The critical z-score when a ¼ 0:05 is 1.65, which is greater than the hypothesis test

score. Looking up 0.395 on the standardized normal distribution, we get a p-value

of 0.3446. Since the p-value is greater than a, we do not reject the null hypothesis.

In this case, we cannot make the claim that more than 80% of dog owners prefer

brand X.

Hypothesis Test: Two Groups, Continuous Data

In this example, the following claim is to be tested:

Claim: The average fuel efficiency for 4-cylinder vehicles is greater than the

average fuel efficiency for 6-cylinder vehicles.

To test this claim the null and alternative hypothesis are defined:

H0 : m1 ¼ m2
Ha : m1 > m2

where m1 is the average fuel efficiency for a population of 4-cylinder vehicles and m2
is the average fuel efficiency for a population of 6-cylinder vehicles.

Two groups of cars were randomly selected, one group with four cylinders and

one group with six cylinders. The fuel efficiency of each car is collected. The first

group is a set of 24 4-cylinder cars (n1) with an average fuel efficiency (in miles per

gallon) of 25.85 (�x1), and a variance of 50.43 (s21). The second group is a collection
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of 27 6-cylinder cars (n2) with an average fuel efficiency (in miles per gallon) of

23.15 (�x2), and a variance of 48.71 (s22). a is set to 0.05 in this example.

The null hypothesis states that there is no difference between the mean of

4-cylinder cars (m1) compared to the mean of 6-cylinder cars (m2). The alternative

hypothesis states that 4-cylinder vehicles have greater fuel efficiency than 6-cylinder

vehicles.

Since the group sizes are less than 30, the following formula will be used:

t ¼ ð�x1 � �x2Þ � ðm1 � m2Þ
sP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q
where sP is the pooled standard deviation and can be calculated from s2P (the pooled

variance):

s2P ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
ðn1 � 1Þ þ ðn2 � 1Þ

In the further readings section of this chapter, a number of references describe how

these formulas were obtained.

In this example:

s2P ¼ ð24� 1Þ50:43þ ð27� 1Þ48:71
ð24� 1Þ þ ð27� 1Þ

s2P ¼ 49:52

Since the null hypothesis states that m1 ¼ m2, m1 � m2 ¼ 0

t ¼ ð25:85� 23:15Þ � ð0Þffiffiffiffiffiffiffiffiffiffiffi
49:52

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
24
þ 1

27

q
t ¼ 1:37

In this example, the number of degrees of freedom is 49 (n1 þ n2 � 2), and the

critical value for t is approximately 1.68 (from Appendix A.2). Since the p-value is

just less than 0.1, we do not reject the null hypothesis. The formulas used in this

example can be applied when there are less than 30 observations in either group and

when the population is normally distributed. In situations where the number of

observations in both groups is greater than 30, the following equation can be

used:

z ¼ ð�x1 � �x2Þ � ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

q
where s21 is the variance of the first group and s22 is the variance of the second

group.
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Hypothesis Test: Two Groups, Categorical Data

In the following example, a claim is made concerning the efficacy of a new drug used

to treat strokes:

Claim: A new drug reduces the number of strokes.

To test this claim the following null and alternative hypothesis are defined:

H0 : p1 ¼ p2
Ha : p1 < p2

where p1 is the proportion of the population with strokes taking the new medicine

and p2 is the proportion of the population with strokes taking the placebo.

Two groups of patients were randomly selected and studied. One of the groups

takes a placebo (a sugar pill) and the other group takes the new medicine. The

number of strokes for each patient group is recorded. In this situation, the hypothesis

test is based on the difference in the proportion of strokes between the two

populations. There were 10,004 patients in the first group who took the medicine (n1)

and of these 213 had strokes (X1). There were 10,013 patients in group 2 that did not

take the medicine and took a placebo instead (n2) and in this group 342 patients had a

stroke (X2). The results of the study are shown in Table 5.4.

Overall, the two groups are examined together to understand the total proportion

of patients that had strokes:

p ¼ X1 þ X2

n1 þ n2

p ¼ 213þ 342

10004þ 10013

p ¼ 0:0277

The proportion of the first group (that takes the medicine) that has strokes is:

p1 ¼ X1

n1

p1 ¼ 213

10004

p1 ¼ 0:0213

Table 5.4. Contingency table indicating the results of a medical test

Takes medicine Takes placebo Total

Has strokes 213 342 555

No strokes 9,791 9,671 19,462

Totals 10,004 10,013 20,017
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The proportion of the second group (that takes the placebo) that has strokes is:

p2 ¼ X2

n2

p2 ¼ 342

10013

p2 ¼ 0:0342

The null hypothesis states that there is no difference in the proportion of strokes

between the group taking the medicine (p1) compared to the group not taking

the medicine (p2). To calculate a hypothesis test, the following equation will

be used:

z ¼ ðp1 � p2Þ � ðp1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞð 1

n1
þ 1

n2
Þ

q
For more information on how this formula was obtained, see the further reading

section of this chapter.

In this hypothesis test, ðp1 � p2Þ is equal to 0 since there should be no

difference according to the null hypothesis.

z ¼ ð0:0213� 0:0342Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0278ð1� 0:0278Þð 1

10004
þ 1

10013
Þ

q

z ¼ �0:0129

0:00232

z ¼ �5:54

To calculate a p-value based on this hypothesis test, we look up this score in the

normal distribution table (Appendix A.1) and it is virtually 0, hence we reject the

null hypothesis and conclude the number of strokes for the group taking the

medicine is lower than the group that does not take the medicine.

Paired Test

In this widely quoted example, the following claim is made:

Claim: There is no difference in the wear of shoes made from material X

compared to shoes made from material Y.

To test this claim, the null and alternative hypothesis are set up:

H0 : mD ¼ 0

Ha : mD 6¼ 0

where mD is the difference between the wear of shoes made with material X and the

wear of shoes made with material Y.
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To test the hypothesis, 10 boys wore a shoe made with material X on one

foot and a shoe made with material Y on the other and the feet were randomized.

The amount of wear for each material was recorded. A 90% confidence level

is required.

The average difference is 0.41 (�D), and the number of standard deviations is

0.386 (sD) for this difference. Since the number of observations is small, we will use

the t-distribution to assess the hypothesis. The following formula is used:

t ¼
�D� mD

sDffiffi
n

p

t ¼ 0:41� 0
0:386ffiffiffiffi

10
p

t ¼ 3:36

To calculate a p-value based on this hypothesis test, we look up this score in the

t-distribution table (Appendix A.2), where the number of degrees of freedom is

9 (n� 1). It is just less than 0.01, hence we reject the null hypothesis and conclude

that there is a difference.

Errors

Since a hypothesis test is based on a sample and samples vary, there exists the

possibility for errors. There are two potential errors and these are described as:

� Type I Error: In this situation the null hypothesis is rejected when it really

should not be. These errors are minimized by setting the value of a low.

� Type II Error: In this situation the null hypothesis is not rejected when it

should have been. These errors are minimized by increasing the number of

observations in the sample.

5.3.4 Chi-Square

The chi-square test is a hypothesis test to use with variables measured on a nominal

or ordinal scale. It allows an analysis of whether there is a relationship between two

categorical variables. As with other hypothesis tests, it is necessary to state a null and

alternative hypothesis. Generally, these hypothesis statements look like:

H0: There is no relationship

Ha: There is a relationship

Using Table 5.5, we will look at whether a relationship exists between where a

consumer lives (represented by a zip code) and the brand of washing powder they

buy (brand X, brand Y, and brand Z).
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The chi-square test compares the observed frequencies with the expected

frequencies. The expected frequencies are calculated using the following formula:

Er;c ¼ r � c

n

where Er,c is the expected frequency for a particular cell in the table, r is the row

count, c is the column count and n is the total observations in the sample.

For example, to calculate the expected frequency for the cell where the washing

powder is brand X and the zip code is 43221 would be:

EBrand X;43221 ¼ 14; 760� 14; 467

43; 377

EBrand X;43221 ¼ 4; 923

Table 5.6 shows the entire table with the expected frequency count (replacing the

observed count).

The chi-square test (w2) is computed with the following equation:

w2 ¼
Xk
i¼1

ðOi � EiÞ2
Ei

where k is the number of all categories,Oi is the observed cell frequency and Ei is the

expected cell frequency. Table 5.7 shows the computed w2 for this example.

There is a critical value at which the null hypothesis is rejected (w2c). This value
is found using the chi-square table in Appendix A.3. The value is dependent on the

Table 5.6. Contingency table of expected purchases

Washing powder brand

Brand X Brand Y Brand Z

43221 4,923 4,913 4,925 14,760

Zip code 43026 4,764 4,754 4,766 14,285

43212 4,780 4,770 4,782 14,332

14,467 14,437 14,473 43,377

Table 5.5. Contingency table of observed purchases

Washing powder brand

Brand X Brand Y Brand Z

43221 5,521 4,597 4,642 14,760

Zip code 43029 4,522 4,716 5,047 14,285

43212 4,424 5,124 4,784 14,332

14,467 14,437 14,473 43,377
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degrees of freedom (df), which is calculated:

df ¼ ðr � 1Þ � ðc� 1Þ
For example, the number of degrees of freedom for this example is ð3� 1Þ � ð3� 1Þ
which is 4. Looking up the critical value, for df ¼ 4 and a ¼ 0:05, the critical value is
9.488 as shown in Figure 5.17. Since 9.488 is less than the calculated chi-square value

of 191.2, we reject the null hypothesis and state that there is a relationship between

zip codes and brands of washing powder. The chi-square test will tell you if a

relationship exists; however, it does not tell you what sort of relationship it is.

5.3.5 One-Way Analysis of Variance

Overview

The following section reviews a technique called one-way analysis of variance that

compares the means from three or more different groups. The test determines

whether there is a difference between the groups. This method can be applied to

cases where the groups are independent and random, the distributions are normal,

and the populations have similar variances. For example, an on-line computer retail

company has call centers in four different locations. These call centers are

approximately the same size and handle a certain number of calls each day. An

analysis of the different call centers based on the average number of calls processed

each day is required. Table 5.8 illustrates the daily calls serviced.

As with other hypothesis tests, it is necessary to state a null and alternative

hypothesis. Generally, the hypothesis statement will look like:

H0: The sample means are equal

Ha: The sample means are not equal

To determine whether there is a difference or not between the means or whether the

difference is due to random variation, we must perform a hypothesis test. This test

Table 5.7. Calculation of chi-square

k Category Observed (O) Expected (E) ðO� EÞ2=E
1 r ¼ Brand X, c ¼ 43221 5,521 4,923 72.6

2 r ¼ Brand Y, c ¼ 43221 4,597 4,913 20.3

3 r ¼ Brand Z, c ¼ 43221 4,642 4,925 16.3

4 r ¼ Brand X, c ¼ 43026 4,522 4,764 12.3

5 r ¼ Brand Y, c ¼ 43026 4,716 4,754 0.3

6 r ¼ Brand Z, c ¼ 43026 5,047 4,766 16.6

7 r ¼ Brand X, c ¼ 43212 4,424 4,780 26.5

8 r ¼ Brand Y, c ¼ 43212 5,124 4,770 26.3

9 r ¼ Brand Z, c ¼ 43212 4,784 4,782 0.0008

Sum¼ 191.2
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will look at both the variation within the groups and the variation between the

groups. The test has the following steps:

1. Calculate group means and standard deviations

2. Determine the within group variation

3. Determine the between group variation

4. Determine the F-statistic, using the within and between group variation

5. Test the significance of the F-statistic

The following sections describe these steps in detail:

Calculate Group Means and Variances

In Table 5.9, for each call center a count along with the mean and variance has been

calculated. In addition, the total number of groups is listed (k ¼ 4) and the total

number of observations (N ¼ 29). In addition, an average of the means (x ¼ 140:8)
is calculated by taking each mean value for each call center and dividing it by the

number of groups:

x ¼ 139:1þ 129:9þ 142:4þ 153:7

4
¼ 141:3

Determine the Within Group Variation

The variation within groups is defined as the within group variance or mean

square within (MSW). To calculate this value we use a weighted sum of the variance

for the individual groups. The weights are based on the number of observations in

each group. This sum is divided by the number of degrees of freedom calculated by

taking the total number of observations (N) and subtracting the number of groups (k).

MSW ¼
Pk
i¼1

ðni � 1Þs2i
N � k

Table 5.8. Calls processed by different call centers

Call center A Call center B Call center C Call center D

136 124 142 149

145 131 145 157

139 128 139 154

132 130 145 155

141 129 143 151

143 135 141 156

138 132 138

139 146
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In this example:

MSW ¼ ð8� 1Þ � 16:4þ ð7� 1Þ � 11:8þ ð8� 1Þ � 8:6þ ð6� 1Þ � 9:5

ð29� 4Þ
MSW ¼ 11:73

Determine the Between Group Variation

Next, the between group variation or mean square between (MSB) is calculated. The

mean square between is the variance between the group means. It is calculated using

a weighted sum of the squared difference between the group mean (�xi) and the

average of the means (x). This sum is divided by the number of degrees of freedom.

This is calculated by subtracting one from the number of groups (k). The following

formula is used to calculate the mean square between (MSB):

MSB ¼
Pk
i¼1

nið�xi � xÞ2

k � 1

Where ni is the size of each group and �xi is the average for each group.

In this example,

MSB

¼ ð8� ð139:1� 141:3Þ2Þ þ ð7� ð129:9� 141:3Þ2Þ þ ð8� ð142:4� 141:3Þ2Þ þ ð6� ð153:7� 141:3Þ2Þ
4� 1

MSB ¼ 626:89

Table 5.9. Calculating means and variances

Call center Call center Call center Call center 4 Groups

A B C D (k)

136 124 142 149

145 131 145 157

139 128 139 154

132 130 145 155

141 129 143 151

143 135 141 156

138 132 138

139 146

Count (n) 8 7 8 6 Total count

N¼ 29

Mean (�xi) 139.1 129.9 142.4 153.7 Average of

means x

¼ 141:3
Variance (s2i ) 16.4 11.8 8.6 9.5
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Determine the F-Statistic

The F-statistic is the ratio of the mean square between (MSB) and the mean square

within (MSW):

F ¼ MSB

MSW

In this example:

F ¼ 626:89

11:73

F ¼ 53:44

Test the Significance of the F-Statistic

Before we can test the significance of this value, we must determine the degrees of

freedom (df) for the two mean squares (within and between).

The degrees of freedom for the mean square within (dfwithin) is calculated using

the following formula:

dfwithin ¼ N � k

where N is the total number of observations in all groups and k is the number of

groups.

The degrees of freedom for the mean square between (dfbetween) is calculated

using the following formula:

dfbetween ¼ k � 1

where k is the number of groups.
In this example:

dfbetween ¼ 4� 1 ¼ 3

dfwithin ¼ 29� 4 ¼ 25

We already calculated the F-statistic to be 53.44. This number indicates that the

mean variation between groups is much greater than the mean variation within

groups due to errors. To test this, we look up the critical F-statistic from Appendix

A.4. To find this critical value we need a (confidence level), v1 (dfbetween), and v2
(dfwithin). The critical value for the F-statistic is 3.01, as shown in Figure 5.18. Since

the calculated F-statistic is greater than the critical value, we reject the null

hypothesis. The means for the different call centers are not equal.

5.4 COMPARATIVE STATISTICS

5.4.1 Overview

Correlation analysis looks at associations between variables. For example, is there a

relationship between interest rates and inflation or education level and income? The
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existence of an association between variables does not imply that one variable causes

another. Yet, understanding these relationships is useful for a number of reasons. For

example, when building a predictive model, comparative statistics can help identify

important variables to use.

The relationship between variables can be complex; however, a number of

characteristics of the relationship can be measured:

� Direction: In comparing two variables, a positive relationship results when

higher values in the first variable coincide with higher values in the second

variable. In addition, lower values in the first variable coincide with lower

values in the second variable. Negative relationships result when higher

values in the first variable coincide with lower values in the second variable

as well as lower values in the first variable coincide with higher values in the

second variable. There are also situations where the relationship between the

variables is more complex, having a combination of positive and negative

relationships at various points. Figure 5.19 illustrates various scenarios for

the relationship between variables.

� Shape: A relationship is linear when it is drawn as a straight line. As values

for one variable change, the second variable changes proportionally. A non

linear relationship is drawn as a curve indicating that as the first variable

changes, the change in the second variable is not proportional. Figure 5.20

illustrates linear and non-linear relationships.

5.4.2 Visualizing Relationships

Where the data is categorical, the relationship between different values can be seen

using a contingency table. For example, Table 5.10 illustrates the relationship

Positive Negative Both positive and negative 
at various points

Figure 5.19. Relationships between two variables

Linear Nonlinear

Figure 5.20. Linear and nonlinear relationships
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between whether a patient took a specific medicine and whether the patient had a

stroke. Evaluating how these counts differ from the expected can be used to

determine whether a relationship exists. The chi-square test, as previously described,

can be used for this purpose.

A contingency table can also be used to crudely define the relationship between

continuous variables. A table could be formed by converting the continuous

variables into dichotomous variables through the setting of a cut off at the mean

value. Values above the mean are assigned to one category and values below the

mean are assigned to the other category.

It is usually more informative to explore the relationship between different

continuous variables using a scatterplot. Figure 5.21 illustrates three scatterplots. In

a, the relationship between the two variables is positive and from inspection appears

to be linear. In b, there is a negative relationship between the variables and it also

appears to be non linear. In c, it is difficult to see any relationship between the two

variables.

Table 5.10. Contingency table indicating results of a medical trial

Takes medicine Takes placebo Total

Has strokes 213 342 555

No strokes 9,791 9,671 19,462

Totals 10,004 10,013 20,017
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Figure 5.21. Illustrating different relationships using scatterplots
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5.4.3 Correlation Coefficient (r)

For pairs of variables measured on an interval or ratio scale, a correlation coefficient

(r) can be calculated. This value quantifies the linear relationship between the

variables. It generates values ranging from �1:0 to þ1:0. If an optimal straight line

is drawn through the points on a scatterplot, then the value of r reflects how close to

this line the points lie. Positive numbers indicate a positive correlation and negative

numbers indicate a negative correlation. If r is around 0 then there appears to be little

or no relationship between the variables.

For example, three scatterplots illustrate different values for r as shown in

Figure 5.22. The first graph illustrates a good positive correlation, the second graph

shows a negative correlation and the third graph illustrates a poor correlation.

The formula used to calculate r is shown here:

r ¼
Pn
i¼1

ðxi � �xÞðyi � �yÞ
ðn� 1Þsxsy

Two variables are considered in this formula: x and y. The individual values for x are

xi and the individual values for y are yi. �x is the mean of the x variable and �y is the
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Figure 5.22. Correlation coefficients for three relationships
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mean of the y variable. The number of observations is n. sx is the standard deviations

for x and sy is the standard deviations for y.

To illustrate the calculation, two variables (x and y) are used and shown in

Table 5.11. Plotting the two variables on a scatterplot indicates there is a positive

correlation between these two variables, as shown in Figure 5.23. The specific value

Table 5.11. Table of data with values for x and y variable

x y

92 6.3

145 7.8

30 3

70 5.5

75 6.5

105 5.5

110 6.5

108 8

45 4

50 5

160 7.5

155 9

180 8.6

190 10

63 4.2

85 4.9

130 6

132 7

12

9

6

3

0
0 20 40 60 80 100 120 140 160 180 200 220

y

x

Figure 5.23. Scatterplot showing relationship between x and y variables
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of r is calculated using Table 5.12:

r ¼
Pn
i¼1

ðxi � �xÞðyi � �yÞ
ðn� 1Þsxsy

r ¼ 1357:01

ð18� 1Þð47:28Þð1:86Þ

r ¼ 0:91

5.4.4 Correlation Analysis for More Than Two
Variables

When exploring data, it is useful to visualize the relationships between all variables

in a data set. A matrix representation can be a useful presentation of this information.

In this example, five variables relating to a data set of cars are presented:

Displacement, Horsepower, Weight, Acceleration, MPG. The relationship (r)

between each pair of variables is shown in Table 5.13. The correlation analysis for

these variables can also be plotted using a matrix of scatterplots, as shown in

Figure 5.24.

Table 5.12. Table showing the calculation of the correlation coefficient

xi yi ðxi � �xÞ ðyi � �yÞ ðxi � �xÞðyi � �yÞ
92 6.3 �14:94 �0:11 1.58

145 7.8 38.06 1.39 53.07

30 3 �76:94 �3:41 262.04

70 5.5 �36:94 �0:91 33.46

75 6.5 �31:94 0.09 �3:02
105 5.5 �1:94 �0:91 1.76

110 6.5 3.06 0.094 0.29

108 8 1.06 1.59 1.68

45 4 �61:94 �2:41 149.01

50 5 �56:94 �1:41 80.04

160 7.5 53.06 1.09 58.07

155 9 48.06 2.59 124.68

180 8.6 73.06 2.19 160.32

190 10 83.06 3.59 298.54

63 4.2 �43:94 �2:21 96.92

85 4.9 �21:94 �1:51 33.04

130 6 23.06 �0:41 �9:35
132 7 25.06 0.59 14.89

�x ¼ 106:94 �y ¼ 6:41 Sum¼ 1357.01

sx ¼ 47:28 sy ¼ 1:86
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The correlation coefficient is often squared (r2) to represent the percentage of

the variation that is explained by the regression line. For example, Table 5.14

illustrates the calculation for r2 for the five variables illustrated in the scatterplot

matrix (Figure 5.24).

Table 5.13. Table displaying values for the correlation coefficient for five variables

Displacement Horsepower Weight Acceleration MPG

Displacement 1 0.9 0.93 �0:54 �0:81
Horsepower 0.9 1 0.86 �0:69 �0:78
Weight 0.93 0.86 1 �0:42 �0:83
Acceleration �0:54 �0:69 �0:42 1 0.42

MPG �0:81 �0:78 �0:83 0.42 1

Displacement

Horsepower

Weight

Acceleration

MPG

Figure 5.24. Scatterplot matrix showing the relationship between five variables
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5.5 SUMMARY

Central Tendency

Mode: Most common value

Median: Middle value

Mean : �x ¼
Pn
i¼1

xi

n

Variation

Range: high–low

Quartiles: Q1 (25%), Q2 (50%), Q3 (75%)

Variance : s2 ¼
Pn
i¼1

ðxi � �xÞ2

n� 1

Standard deviation : s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � �xÞ2

n� 1

vuuut

z--score : z ¼ xi � �x

s

Confidence Levels

Mean ð> 30 observationsÞ : �x� zC
sffiffiffi
n

p

Mean ð< 30 observationsÞ : �x� tC
sffiffiffi
n

p

Proportion : p� zC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r

Table 5.14. Table displaying the value for r2 for five variables

Displacement Horsepower Weight Acceleration MPG

Displacement 1 0.81 0.87 0.29 0.66

Horsepower 0.81 1 0.74 0.48 0.61

Weight 0.87 0.74 1 0.18 0.69

Acceleration 0.29 0.48 0.18 1 0.18

MPG 0.66 0.61 0.69 0.18 1
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Hypothesis Test

Specify null (e.g. H0: m ¼ m0) and alternative hypothesis (e.g. Ha: m > m0)

Select significance level (e.g. a ¼ 0:05)

Compute test statistics (t– or z–)

Determine critical value for t or z using a/2 for two sided tests

Reject the null hypothesis if test statistic fall in the ‘‘reject H0’’ region

Comparing Groups

When comparing more than two groups, use:

Chi-square test for categorical data

One-way analysis of variance test for continuous.

Comparing Variables

Correlation coefficient ðrÞ : r ¼
Pn
i¼1

ðxi � �xÞðyi � �yÞ
ðn� 1Þsxsy

5.6 EXERCISES

Table 5.15 presents the ages for a number of individuals.

1. Calculate the following statistics for the variable Age:

a. Mode

b. Median

c. Mean

Table 5.15. Table with variables Name and Age

Name Age

P.Lee 35

R.Jones 52

J.Smith 45

A.Patel 70

M.Owen 24

S.Green 43

N.Cook 68

W.Hands 77

P.Rice 45

F.Marsh 28
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d. Range

e. Variance

f. Standard deviation

g. z-score

h. Skewness

i. Kurtosis

2. An insurance company wanted to understand the time to process an insurance

claim. They timed a random sample of 47 claims and determined that it took on

average 25 minutes per claim and the standard deviation was calculated to be 3.

With a confidence level of 95%, what is the confidence interval?

3. An electronics company wishes to understand, for all customers that purchased a

computer, how many will buy a printer at the same time. To test this, the

company interviews a random sample of 300 customers and it was determined

that 138 bought a printer. With a confidence level of 99%, what is the confidence

interval for the proportion of customers buying a printer at the same time as a

computer?

4. A phone company wishes to make a claim that the average connection time in the

US is less than two seconds (i.e. the time after you dial a number before the call

starts to ring). To test this, the company measures 50 randomly selected calls and

the average time was 1.9 seconds with a standard deviation of 0.26. Using this

information and a 95% confidence level:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the phone company can make the claim

5. A bank wishes to make a claim that more than 90% of their customers are pleased

with the level of service they receive. To test this claim, a random sample of 100

customers were questioned and 91 answered that they were pleased with the

service. The bank wishes to make the claim at a 95% confidence level. Using this

information:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the bank can make the claim

6. A company that produces tomato plant fertilizer wishes to make a claim that their

fertilizer (X) results in taller tomato plants than a competitor product (Y). Under

highly controlled conditions, 50 plants were grown using X and 50 plants grown

using Y and the height of the plants were measured. The average height of the

plants grown with fertilizer X is 0.36 meters with a standard deviation of 0.035. The

average height of the plants grown with fertilizer Y was 0.34 with a standard

deviation of 0.036. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the company can make the claim
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7. A producer of kettles wishes to assess whether a new supplier of steel (B) results in

kettles with fewer defects than the existing supplier (A). To test this, the company

collects a number of kettles generated from both suppliers to examine the kettles

for defects. Table 5.16 summarizes the counts. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the company can make the claim

8. A construction company wants to understand whether there is a difference in wear

for different types of gloves (P and Q). 40 employees wear P gloves on one hand

and Q gloves on the other. The hands are randomized. The wear of the gloves were

recorded and the average difference calculated. The average difference was 0.34

with a standard deviation of 0.14. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis

b. Calculate the hypothesis score

c. Calculate a p-value

d. Determine whether the company can make the claim

9. A producer of magnets wishes to understand whether there is a difference between

four suppliers (A, B, C, and D) of alloys used in the production of the magnets.

Magnets from the four suppliers are randomly selected and the magnets are

recorded as either satisfactory or not satisfactory as shown in Table 5.17. With a

95% confidence limit and using this information:

a. Specify the null and alternative hypothesis

b. Calculate chi-square

c. Determine whether the company can make the claim

Table 5.16. Contingency table showing defective products produced using material from

two manufacturers

Defective Not defective

Manufacturer A 7 98 105

Manufacturer B 5 97 102

Totals 12 195 207

Table 5.17. Contingency table showing product satisfaction using materials from four

suppliers

Satisfactory Not satisfactory Total

Supplier A 28 2 30

Supplier B 27 3 30

Supplier C 29 1 30

Supplier D 26 4 30

Total 110 10 120
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10. A food producer creates packets of snacks using four machines (1, 2, 3, 4). The

number of snacks per packet is recorded for a random collection of samples from

the four machines, as shown in Table 5.18. The company wishes to know if there

is a difference between the four machines. Using a 95% confidence limit:

a. Specify the null and alternative hypothesis

b. Calculate the F-statistic

c. Determine whether the company can make the claim

11. In a highly controlled experiment, a biologist was investigating whether there exists

a relationship between the height of a tree and their exposure to the sun. The

biologist recorded the results in Table 5.19. Calculate the correlation coefficient

between these two columns.

5.7 FURTHER READING

This chapter has focused on techniques for summarizing, making statements about population

from samples, and quantifying relationships in the data. There are a number of introductory

statistical books that provide an overview of the theory behind these techniques including the

Table 5.19. Table showing observations for

variables Amount of Sun and Tree Height

Amount of Sun Tree Height

2.4 3

2.6 3.1

2.9 3.1

3.4 3.5

3.8 3.7

4.2 3.8

4.5 4.1

5.1 4.3

5.8 5.1

Table 5.18. Table of snacks per packet produced by four machines

Machine 1 Machine 2 Machine 3 Machine 4

50 51 49 52

51 52 51 50

50 50 50 53

52 51 51 51

50 53 49 50

49 50 51 50

52 51 49 49

49 50 49 51
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central limits theorem: Donnelly (2004), Freedman (1997), Rumsey (2003), Kachigan (1991),

and Levine (2005).

The following web sites contain information on statistics and other data analysis

methods:

http://www.statsoft.com/textbook/stathome.html

http://www.itl.nist.gov/div898/handbook/index.htm

The following web site contains information on the R-Project on statistical computing:

http://www.r-project.org/
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Chapter 6

Grouping

6.1 INTRODUCTION

6.1.1 Overview

Dividing a data set into smaller subsets of related observations or groups is important

for exploratory data analysis and data mining for a number of reasons:

� Finding hidden relationships: Grouping methods organize observations in

different ways. Looking at the data from these different angles will allow us

to find relationships that are not obvious from a summary alone. For

example, a data set of retail transactions is grouped and these groups are

used to find nontrivial associations, such as customers who purchase

doormats often purchase umbrellas at the same time.

� Becoming familiar with the data: Before using a data set to create a

predictive model, it is beneficial to become highly familiar with the contents

of the set. Grouping methods allows us to discover which types of

observations are present in the data. In the following example, a database

of medical records will be used to create a general model for predicting a

number of medical conditions. Before creating the model, the data set is

characterized by grouping the observations. This reveals that a significant

portion of the data consists of young female patients having flu. It would

appear that the data set is not evenly stratified across the model target

population, that is, both male and female patients with a variety of

conditions. Therefore, it may be necessary to create from these observations

a diverse subset that matches more closely the target population.

� Segmentation: Techniques for grouping data may lead to divisions that

simplify the data for analysis. For example, when building a model that

predicts car fuel efficiency, it may be possible to group the data to reflect the

underlying technology platforms the cars were built on. Generating a model

for each of these ‘platform-based’ subsets will result in simpler models.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.
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6.1.2 Grouping by Values or Ranges

One way of creating a group is to search or query the data set. Each query would

bring back a subset of observations. This set could then be examined to determine

whether some interesting relationship exists. For example, in looking for hidden

relationships that influence car fuel efficiency, we may query the data set in a variety

of ways. The query could be by a single value, such as where the number of cylinders

is four. Alternatively, a range of values could be used, such as all cars with Weight

less than 4000. Boolean combinations of query terms could also be used to create

more complex queries, for example cars where Cylinders is equal to six andWeight

is greater than 5000. The following illustrates two queries:

Query 1: All cars where Horsepower is greater than or equal to 160 AND

Weight is greater than or equal to 4000.

This query will bring back all observations where Horsepower is greater than

or equal to 160 andWeight is greater than or equal to 4000. A sample extracted from

the 31 observations returned is shown in Table 6.1. The relationship of the 31

observations to car fuel efficiency can be seen in Figure 6.1, with the 31 observations

highlighted. Cars containing the values in the query (i.e. heavy vehicles with high

horsepower) seem to be associated with low fuel-efficient vehicles.

Query 2: All cars where Horsepower is less than 80 ANDWeight is less than

2500.

Table 6.1. Cars where Horsepower � 160 and Weight � 4000

Displace- Horse- Accele- Model/

Names Cylinders ment power Weight ration Year Origin MPG

Ford Galaxie 8 429 198 4,341 10 1970 1 15

500

Chevrolet 8 454 220 4,354 9 1970 1 14

Impala

Plymouth 8 440 215 4,312 8.5 1970 1 14

Fury III

Pontiac 8 455 225 4,425 10 1970 1 14

Catalina

Ford F250 8 360 215 4,615 14 1970 1 10

Chevy C20 8 307 200 4,376 15 1970 1 10

Dodge D200 8 318 210 4,382 13.5 1970 1 11

Hi 1200d 8 304 193 4,732 18.5 1970 1 9

Pontiac 8 400 175 4,464 11.5 1971 1 14

Catalina

Brougham

Dodge 8 383 180 4,955 11.5 1971 1 12

Monaco

(SW)
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A sample extracted from the 97 observations returned is shown in Table 6.2.

The relationship of the 97 observations to car fuel efficiency can be seen in

Figure 6.2, with the 97 observations highlighted. Cars containing the combinations

of values in the query (i.e. light vehicles with low horsepower) seem to be associated

with good fuel efficiency.

By grouping the data in different ways and looking to see how the groups influence

car fuel efficiency (MPG) we can start to uncover hidden relationships. In addition,

we could assess these claims using hypothesis tests described in Section 5.2.3.

Unfortunately, an exhaustive exercise of this nature would not be feasible. Fortunately,

many computational methods will group observations efficiently by values or ranges

without resorting to an exhaustive search for all combinations of values.

6.1.3 Similarity Measures

Any method of grouping needs to have an understanding for how similar observa-

tions are to each other. One method, as described in the previous section, is to define

groups sharing the same values or ranges of values. An alternative method is to

Figure 6.1. Highlighted observations where Horsepower � 160 and Weight � 4000

Figure 6.2. Highlighted observations where Horsepower < 80 and Weight < 2500
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determine whether observations are more generally similar. To determine how

similar two observations are to each other we need to compute the distance between

them. To illustrate the concept of distance we will use a simple example with two

observations and two variables (Table 6.3). The physical distance between the two

observations can be seen by plotting them on a scatterplot (Figure 6.3). In this

example, the distance between the two observations is calculated using simple

trigonometry:

x ¼ 7� 2 ¼ 5

y ¼ 8� 3 ¼ 5

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25þ 25
p ¼ 7:07

We can extend this concept of distance between observations with more than two

variables. This calculation is called the Euclidean distance (d) and the formula is shown:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðpi � qiÞ2
s

Table 6.3. Table showing two observations (A and B)

Variable 1 Variable 2

A 2 3

B 7 8

Table 6.2. Table of cars where Horsepower < 80 and Weight < 2500

Displace Horse- Accele- Model/

Names Cylinders ment power Weight ration Year Origin MPG

Volkswagen

1131

Deluxe Sedan 4 97 46 1,835 20.5 1970 2 26

Chevrolet 4 140 72 2,408 19 1971 1 22

Vega (SW)

Peugeot 304 4 79 70 2,074 19.5 1971 2 30

Fiat 124B 4 88 76 2,065 14.5 1971 2 30

Toyota 4 71 65 1,773 19 1971 3 31

Corolla 1200

Datsun 1200 4 72 69 1,613 18 1971 3 35

Volkswagen 4 97 60 1,834 19 1971 2 27

model 111

Plymouth 4 91 70 1,955 20.5 1971 1 26

Cricket

Volkswagen 4 97 54 2,254 23.5 1972 2 23

type 3

Renault 12 4 96 69 2,189 18 1972 2 26

(SW)
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It calculates the distance between two observations p and q, where each observation

has n variables. To illustrate the Euclidean distance calculation for observations with

more than two variables, we will use Table 6.4.

The Euclidean distance between A and B is

dA�B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:7� 0:6Þ2 þ ð0:8� 0:8Þ2 þ ð0:4� 0:5Þ2 þ ð0:5� 0:4Þ2 þ ð0:2� 0:2Þ2

q
dA�B ¼ 0:17

The Euclidean distance between A and C is

dA�C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:7� 0:8Þ2 þ ð0:8� 0:9Þ2 þ ð0:4� 0:7Þ2 þ ð0:5� 0:8Þ2 þ ð0:2� 0:9Þ2

q
dA�C ¼ 0:83

The Euclidean distance between B and C is

dB�C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:6� 0:8Þ2 þ ð0:8� 0:9Þ2 þ ð0:5� 0:7Þ2 þ ð0:4� 0:8Þ2 þ ð0:2� 0:9Þ2

q
dB�C ¼ 0:86

The distance between A and B is 0.17, indicating that there is more similarity

between these observations than A and C (0.83). C is not so closely related to either

A or B. This can be seen in Figure 6.4 where the values for each variable are plotted.

Table 6.4. Three observations with values for five variables

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 0.7 0.8 0.4 0.5 0.2

B 0.6 0.8 0.5 0.4 0.2

C 0.8 0.9 0.7 0.8 0.9

A

B

x

y
d

Figure 6.3. Distance between two observations (A and B)
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The shape of histograms A and B are similar, whereas the shape of histogram C is

not similar to A or B.

The Euclidean distance handles continuous variables. Another method that

handles only binary variables is the Jaccard distance. The contingency table shown

in Table 6.5 is used to calculate the Jaccard distance between two observations that

have been measured over a series of binary variables.

The table shows the following counts:

� Count11: Count of all variables that are 1 in ‘‘Observation 1’’ and 1 in

‘‘Observation 2’’.

� Count10: Count of all variables that are 1 in ‘‘Observation 1’’ and 0 in

‘‘Observation 2’’.

A

B

C

0.17

0.86

0.83

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

0.6

0.8
1.0

0.2
0.4

0.6

0.8
1.0

0.2
0.4

0.6

1.0

0.2

0.8

0.4

Figure 6.4. Distances between observations with five variables

Table 6.5. Table showing the relationship between two

observations measured using a series of binary variables

Observation 2

1 0

Observation 1 1 Count11 Count10
0 Count01 Count00
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� Count01: Count of all variables that are 0 in ‘‘Observation 1’’ and 1 in

‘‘Observation 2’’.

� Count00: Count of all variables that are 0 in ‘‘Observation 1’’ and 0 in

‘‘Observation 2’’.

The following formula is used to calculate the Jaccard distance:

d ¼ Count10 þ Count01

Count11 þ Count10 þ Count01

The Jaccard distance is illustrated using Table 6.6.

The Jaccard distance between A and B is:

dA�B ¼ ð1þ 0Þ=ð2þ 1þ 0Þ ¼ 0:33

The Jaccard distance between A and C is:

dA�C ¼ ð2þ 2Þ=ð1þ 2þ 2Þ ¼ 0:8

The Jaccard distance between B and C is:

dB�C ¼ ð2þ 3Þ=ð0þ 2þ 3Þ ¼ 1:0

The Euclidean and Jaccard distance measures are two examples for determining the

distance between observations. Other techniques include Mahalanobis, City Block,

Minkowski, Cosine, Spearman, Hamming and Chebuchev (see the further reading

section for references on these methods).

6.1.4 Grouping Approaches

There exist numerous automatic methods for grouping observations. These

techniques are commonly used in a variety of exploratory data analysis and data

mining situations. When selecting a grouping method, there are a number of issues

(in addition to defining how similar two or more observations are to each other) to

consider:

� Supervised versus unsupervised: One distinction between the different

methods is whether they use the response variable to guide how the groups

are generated. Methods that do not use any data to guide how the groups are

Table 6.6. Table of observations with values for five binary variables

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 1 1 0 0 1

B 1 1 0 0 0

C 0 0 1 1 1
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generated are called unsupervised methods, whereas methods that make use

of the response variable to guide group generation are called supervised

methods. For example, a data set of cars could be grouped using an

unsupervised method. The groups generated would be based on general

classes of cars. Alternatively, we could group the cars using car fuel

efficiency to direct the grouping. This would generate groups directed

towards finding hidden relationships between groups of cars and car fuel

efficiency. Now, if we were to repeat the exercise using a different goal, for

example, car acceleration, the data would be grouped differently. In this

situation the groups are directed towards finding hidden relationships

associated with car acceleration.

� Type of variables: Certain grouping methods will only accept categorical

data, whereas others only accept continuous data. Other techniques handle

all types of data. Understanding these limitations will allow you to select the

appropriate method. Alternatively, you could decide to restrict the variables

used in the method or perform a transformation on the data.

� Data set size limit: There are methods that only work with data sets less than

a certain size. Others work best with data sets over a certain size. Under-

standing the limitations placed on the number of observations and/or number

of variables helps in the selection of particular methods. In situations where

the data set is too large to process, one solution would be to segment the data

prior to grouping.

� Interpretable and actionable: Certain grouping methods generate results

that are easy to interpret, whereas other methods require additional analysis

to interpret the results. How the grouping results will be used influences

which grouping methods should be selected.

� Overlapping groups: In certain grouping methods, observations can only

fall in one group. There are other grouping methods where the same

observation may be a member of multiple groups.

A related topic to grouping is the identification of outliers, that is, observations

that do not look like anything else. Single or small numbers of observations that fall

into groups on their own are considered outliers. A data set where most of the

observations fall into separate groups would be described as diverse. To create a

diverse subset, representative observations from each group may be selected. Other

methods for assessing outliers are discussed at the end of the chapter.

This chapter describes three popular methods for grouping data sets: clustering,

associative rules, and decision trees. They cover different criteria for generating

groups as well as supervised and unsupervised approaches. All approaches have

advantages and disadvantages, and all provide different insights into the data. It is

often informative to combine these grouping methods with other data analysis/data

mining techniques, such as hypothesis tests to evaluate any claims made concerning

the groups. The different methods have parameters that can be modified to optimize

the results and these are described.
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6.2 CLUSTERING

6.2.1 Overview

Clustering will group the data into sets of related observations or clusters.

Observations within each group are more similar to other observations within the

group than to observations within any other group. Clustering is an unsupervised

method for grouping. To illustrate the process of clustering, a set of observations are

shown on the scatterplot in Figure 6.5. These observations are plotted using two

hypothetical dimensions and the similarity between the observations is proportional

to the physical distance between the observations. There are two clear regions that

could be considered as clusters: Cluster A and Cluster B. Clustering is a flexible

approach to grouping. For example, based on the criteria for clustering the

observations, observation X was not judged to be a member of Cluster A. However,

if a different criterion was used, X may have been included in Cluster A. Clustering

not only assists in identifying groups of related observations, it also locates

observations that are not similar to others, that is outliers, since they fall into groups

of their own.

Clustering has the following advantages:

� Flexible: There are many ways of adjusting how clustering is implemented,

including options for determining the similarity between two observations

and options for selecting the size of the clusters.

� Hierarchical and nonhierarchical approaches: Certain clustering techni-

ques organize the data sets hierarchically, which may provide additional

insight into the problem under investigation. For example, when clustering a

genomic data set, hierarchical clustering may provide insight into evolu-

tionary processes that have taken place since genes mutate over time. Other

methods only generate lists of clusters based on a pre-defined number.
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Figure 6.5. Illustration of clusters and outliers
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Clustering has the following limitations:

� Subjective: Different problems will require different clustering options and

specifying these options requires repeatedly examining the results and

adjusting the clustering options accordingly.

� Interpretation: Observations are grouped together based on some measure

of similarity. Making sense of a particular cluster may require additional

analysis in order to take some action based on the results of a grouping.

� Speed: There are many techniques for clustering data and it can be time-

consuming to generate the clusters, especially for large data sets.

� Size limitations: Certain techniques for clustering have limitations on the

number of observations that they can process.

Two clustering techniques will be described: hierarchical agglomerative

clustering and k-means clustering. Additional clustering methods will be described

in the further readings section of this chapter.

6.2.2 Hierarchical Agglomerative Clustering

Overview

Hierarchical agglomerative clustering is an example of a hierarchical method for

grouping observations. It uses a ‘‘bottom-up’’ approach to clustering as it starts

with each observation as a member of a separate cluster and progressively

merges clusters together until all observations are a member of a final single

cluster. The major limitation of hierarchical agglomerative clustering is that it is

normally limited to small data sets (often less than 10,000 observations) and the

speed to generate the hierarchical tree can be slow for higher numbers of

observations.

To illustrate the process of hierarchical agglomerative clustering, we will use

the data set shown in Table 6.7 containing 14 observations, each measured over five

variables. In this case the variables are all measured on the same scale; however,

where variables are measured on different scales they should be normalized to a

comparable range (e.g. 0 to 1). This is to avoid any one or more variables having a

disproportionate weight and creating a bias in the analysis.

First, the distance between all combinations of observations is calculated. The

method for assessing the distance along with which variables to include in the

calculation should be set prior to clustering. The two closest observations are

identified and are merged into a single cluster. These two observations from now on

will be considered a single group. Next, all observations (minus the two that have

been merged into a cluster) along with the newly created cluster are compared to

see which observation or cluster should be joined into the next cluster. We are

now analyzing both individual observations and clusters. The distance between a

single observation and a cluster is determined based on a pre-defined linkage rule.

The different types of linkage rules will be described in the next section. All
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distances between all combinations of groups and observations are considered and

the smallest distance is selected. The process continues until there are no more

clusters to join.

Figure 6.6 illustrates the process. In step 1, it is determined that observations M

and N are the closest and they are linked into a cluster, as shown. The horizontal
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Figure 6.6. Joining process used to generate clusters

Table 6.7. Table of observations to cluster

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 7 8 4 5 2

B 6 8 5 4 2

C 8 9 7 8 9

D 6 7 7 7 8

E 1 2 5 3 4

F 3 4 5 3 5

G 7 8 8 6 6

H 8 9 6 5 5

I 2 3 5 6 5

J 1 2 4 4 2

K 3 2 6 5 7

L 2 5 6 8 9

M 3 5 4 6 3

N 3 5 5 6 3
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length of the lines joining M and N reflects the distance at which the cluster was

formed. From now on M and N will not be considered individually, but only as a

cluster. In step 2, distances between all observations (except M and N), as well as the

cluster containing M and N, are calculated. To determine the distance between

the individual observations and the cluster containing M and N, the average linkage

rule was used (described in the next section). It is now determined that A and B

should be joined as shown. Once again, all distances between the remaining

ungrouped observations and the newly created clusters are calculated, and the

smallest distance selected. In step 4, the shortest distance is between observation I

and the cluster containing M and N. This process continues until only one cluster

remains which contains all the observations. Figure 6.7 shows the complete

hierarchical clustering for all 14 observations.

Linkage Rules

A linkage rule is used to determine a distance between an observation (or a group)

and an already identified group. In Figure 6.8, two clusters have already been

identified: Cluster A and Cluster B. We now wish to determine whether observation

X is a member of cluster A.

There are many ways for determining the distance between an observation and

an already established cluster and include average linkage, single linkage, and

complete linkage. These alternatives are illustrated in Figure 6.9.

Figure 6.7. Complete hierarchical clustering of 14 observations
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� Average linkage: the distance between all members of the cluster (e.g. a, b,

and c) and the observation under consideration (e.g. X) are determined and

the average is calculated.

� Single linkage: the distance between all members of the cluster (e.g. a, b,

and c) and the observation under consideration (e.g. X) are determined and

the smallest is selected.

� Complete linkage: the distance between all members of the cluster (e.g. a, b,

and c) and the observation under consideration (e.g. X) are determined and

the highest is selected.

These different linkage rules change how the final hierarchical clustering is

presented. Figure 6.10 shows the hierarchical clustering of the same set of

observations using the average linkage, single linkage, and complete linkage rules.

Creating Clusters

Up to this point, a tree has been generated showing the similarity between

observations and clusters. To divide a data set into a series of clusters from this tree,

we must determine a distance at which the clusters are to be created. Where this

distance intersects with a line on the tree, a cluster is formed. Figure 6.11 illustrates

this point. A distance is selected, as shown by the vertical line. Where this vertical

Cluster B

Cluster A

X

Figure 6.8. Determining whether an observation X belongs to Cluster A

ab

c X

ab

c X

ab

c X

Average Single Complete

Figure 6.9. Different linkage rules
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line intersects with the tree (shown by the circles), four clusters are selected.

Cluster 1 contains a single observation (L) and at this distance, it would be

considered an outlier. Cluster 2 (G, C, D) and Cluster 3 (H, A, B) each contain three

observations and the largest group is Cluster 4 (K, I, M, N, J, E, F) with seven

observations. Observations will only be present in a single cluster.

Figure 6.10. Clustering using different linkage rules
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Figure 6.11. Generating four clusters by specifying a distance
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Adjusting the cut-off distance will change the number of clusters created. Figure

6.12 shows the selection of a single cluster when the distance cutoff is at the left.

When the distance cutoff is placed to the far right, each observation will be in its own

cluster. A cutoff placed between these two extremes will result in groups of various

sizes. Cutoffs towards the left will result in fewer clusters with more diverse

observations within each cluster. Cutoffs towards the right will result in more

clusters with more similar observations within each cluster.

Example

The following example uses a data set of 392 cars that will be explored using

hierarchical agglomerative clustering. A portion of the data table is shown in Table 6.8.

Figure 6.12. Adjusting the distance to generate different numbers of clusters

Table 6.8. Table of car observations

Displace- Horse Accele- Model/

Names Cylinders ment power Weight ration Year Origin MPG

Chevrolet 8 307 130 3,504 12 1970 1 18

Chevelle

Malibu

Buick Skylark 8 350 165 3,693 11.5 1970 1 15

320

Plymouth 8 318 150 3,436 11 1970 1 18

Satellite

Amc Rebel 8 304 150 3,433 12 1970 1 16

SST

Ford Torino 8 302 140 3,449 10.5 1970 1 17

Ford Galaxie 8 429 198 4,341 10 1970 1 15

500

Chevrolet 8 454 220 4,354 9 1970 1 14

Impala

Plymouth 8 440 215 4,312 8.5 1970 1 14

Fury III
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The data set was clustered using the Euclidean distance and the average linkage

joining rule. The following variables were used in the clustering: Cylinders,

Displacement, Horsepower, Weight, Acceleration, Model Year and Origin.

MPG (miles per gallon) was not used in the clustering but will be considered later.

Figure 6.13 shows the hierarchical tree generated.

The process of generating the tree is typically the most time consuming part of

the process. Once the tree has been generated, it is usually possible to interactively

explore the clusters. For example, in Figure 6.14 a distance cutoff has been set; such

that, the data is divided into three clusters.

� Cluster 1: A cluster containing 103 observations is selected and shown in

Figure 6.15. In addition to showing the tree, a table of charts illustrates the

composition of the cluster. The highlighted histogram region corresponds to

the distribution of Cluster 1 observations. The darker MPG box plot

corresponds to the 103 selected observations with the lower and lighter

box plot corresponding to all the observations. The cluster comprises of

vehicles with eight cylinders, high displacement, horsepower, and weight,

Figure 6.13. Complete hierarchical clustering of 392 cars
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but with low acceleration. The majority was made in the 1970s and all were

made in the US (origin 1 is the US). MPG was not used in the clustering

process; however, it can be seen from the histogram and box plot that these

vehicles have some of the lowest fuel efficiency.

� Cluster 2: A cluster of 142 observations is shown in Figure 6.16. The group

comprises of vehicles with four or six cylinders, moderate-to-low displace-

ment and horsepower with low weight and acceleration. They were all

made in the US (origin 1 is the US) throughout the 1970s and 1980s. It can

be seen that the fuel efficiency is similar to the average fuel efficiency for all

cars.

� Cluster 3: A cluster of 147 observations is shown in Figure 6.17. The group

is primarily made of vehicles with four cylinders, with low displacement,

horsepower, weight, and average acceleration. They were all made outside

the US (origin 2 is Europe and origin 3 is Japan) throughout the 1970s and

1980s. It can be seen that the fuel efficiency is higher for these vehicles than

the average fuel efficiency for all cars reported.

To explore the data set further, we can adjust the distance cutoff to generate

different numbers of clusters. In this case, the distance was set to create 16 clusters,

as shown in Figure 6.18.

Figure 6.14. Generating three clusters by setting the distance

118 Chapter 6 Grouping

Cluster 1: 103 observations

Cluster 2: 142 observations

Cluster 3: 147 observations



� Cluster 4: This set of 56 observations is a subset of Cluster 1 and shown in

Figure 6.19. This is a set of cars with high displacement, horsepower, and

weight as well as some of the lowest acceleration values. They were all

made prior to 1976 in the US (origin 1). The fuel efficiency (MPG) of these

cars is among the lowest in the data set. The range of fuel efficiency for these

vehicles is 9–20 with an average of 15.34.

� Cluster 5: This set of 40 observations is a subset of Cluster 3 and shown in

Figure 6.20. This is a set of cars with three and four cylinders with low

displacement, horsepower, and weight and with acceleration values

Figure 6.15. Summary of content of Cluster 1
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similar to the average of the set. They were made in the late 1970s and early

1980s in Japan (origin 3). The range of fuel efficiency for these vehicles is

25.8–40.8 with an average of 32.46. These cars have good fuel efficiency,

compared to the others in the data set.

6.2.3 K-means Clustering

Overview

K-means clustering is an example of a nonhierarchical method for grouping a data

set. It groups data using a ‘‘top-down’’ approach since it starts with a predefined

Figure 6.16. Summary of content of Cluster 2
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number of clusters and assigns observations to them. There are no overlaps in

the groups, that is, all observations are assigned to a single group. This approach

is computationally faster and can handle greater numbers of observations

than agglomerative hierarchical clustering. However, there are a number of

disadvantages:

� Predefined number of clusters: You must define the number of groups

before creating the clusters.

� Distorted by outliers: When a data set contains many outliers, k-means

clustering may not create an optimal grouping. This is because the outliers

Figure 6.17. Summary of content of Cluster 3
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will be assigned to many of the allocated groups. The remaining data will

then be divided across a smaller number of groups, compromising the quality

of the clustering for these remaining observations.

� No hierarchical organization: No hierarchical organization is generated

using k-means clustering.

Grouping Process

The process of generating clusters starts by defining the number of groups to create

(k). The method then allocates an observation to each of these groups, usually

randomly. Next, all other observations are compared to each of these allocated

observations and placed in the group they are most similar to. The center point for

each of these groups is then calculated. The grouping process continues by

Figure 6.18. Adjusting the distance to generate 16 clusters
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determining the distance from all observations to these new group centers. If an

observation is closer to the center of another group, it is moved to the group it is

closest to. The centers of its old and new groups are now recalculated. The process of

comparing and moving observations where appropriate is repeated until there is no

further need to move any observations.

To illustrate the process of clustering using k-means, a set of 11 hypothetical

observations are used: a, b, c, d, e, f, g, h, i, j. These observations are shown as

colored circles in Figure 6.21. It had been determined from the start that three groups

should be generated. Initially, an observation is randomly assigned to each of the

Figure 6.19. Summary of content of Cluster 4
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three clusters as shown in step 1: c to Cluster 1, f to Cluster 2 and k to Cluster 3.

Next, all remaining observations are assigned to the cluster, which they are closest

to. For example, observation a is assigned to Cluster 1 since it is closer to c than f or

k. Once all observations have been assigned to an initial cluster, the center of each

cluster (calculation described below) is determined. Next, distances from each

observation to the center of each cluster are calculated. It is determined in step 3 that

observation f is closer to the center of cluster 1 than the other two clusters. Now f is

moved to Cluster 1 and the centers for Cluster 1 and Cluster 2 are recalculated. This

process continues until no more observations are moved between clusters, as shown

in step n on the diagram.

Figure 6.20. Summary of content of Cluster 5
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Calculating the Center of the Group

The following example will illustrate the process of calculating the center of a

cluster. Table 6.9 will be grouped into three clusters using the Euclidean distance to

determine similarity between observations. A single observation is randomly

Step 1

Step 2

Step 3

Step n

c

e

f

g

h j

k

a

b

c

d

f

i

k

e g

h j
a

b

c

d

f

i

k

e g

h j
a

b

c

d

f

i

k

Cluster 1 Cluster 2 Cluster 3

Figure 6.21. K-means clustering process

Table 6.9. Table of observations to illustrate k-means clustering

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 7 8 4 5 2

B 6 8 5 4 2

C 8 9 7 8 9

D 6 7 7 7 8

E 1 2 5 3 4

F 3 4 5 3 5

G 7 8 8 6 6

H 8 9 6 5 5

I 2 3 5 6 5

J 1 2 4 4 2

K 3 2 6 5 7

L 2 5 6 8 9

M 3 5 4 6 3

N 3 5 5 6 3
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assigned to the three clusters as shown in Figure 6.22. All other observations are

compared to the three clusters by calculating the Euclidean distance between the

observations and D, K, and M. Table 6.10 shows the Euclidean distance to D, K, and

M from every other observation, along with the cluster it is initially assigned to. The

observations are now assigned to one of the three clusters (Figure 6.23).

Next, the center of each cluster is now calculated by taking the average value for

each variable in the group as shown in Table 6.11. For example, the center of Cluster

1 is now:

fVariable 1 ¼ 6:2;Variable 2 ¼ 7:6;Variable 3 ¼ 6:8;Variable 4 ¼ 6:8;

Variable 5 ¼ 7:4g
Each observation is now compared to the centers of each cluster. For example, A

is compared to the center of Cluster 1, Cluster 2, and Cluster 3 using the Euclidean

distance. We have the following Euclidean distance:

From A to the center of cluster 1: 6.4

From A to the center of cluster 2: 7.9

From A to the center of cluster 3: 3.9

Since A is still closest to Cluster 3 it remains in Cluster 3. If an observation is

moved, then the centers for the two clusters affected are recalculated. The process of

Step 1

Cluster 1 Cluster 2 Cluster 3

D K M

Figure 6.22. Initial random assignment of three clusters

Table 6.10. Observation distance to each cluster and cluster assignment

Cluster 1 Cluster 2 Cluster 3 Cluster

Name distance distance distance assigned

A 7.1 9 5.2 3

B 7.1 8.5 4.9 3

C 3.2 9.4 9.5 1

E 9.3 4.2 4.9 2

F 6.9 3.6 3.9 2

G 2.8 7.6 7.1 1

H 4.7 8.8 7.1 1

I 6.8 2.8 3.2 2

J 10.2 5.8 4.2 3

L 4.8 4.8 6.7 1

N 6.6 5.2 1 3

126 Chapter 6 Grouping



examining the observations and moving them as appropriate is repeated until no

further moves are needed.

Example

A data set of 392 cars is grouped using k-means clustering. This is the same data set

used in the agglomerative hierarchical clustering example. The Euclidean distance

Step 2 D K M

C G

HL

E F

I

A B

JN

Cluster 1 Cluster 2 Cluster 3

Figure 6.23. Initial assignment of all observations

Table 6.11. Calculation of cluster center

Cluster 1

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

C 8 9 7 8 9

D 6 7 7 7 8

G 7 8 8 6 6

H 8 9 6 5 5

L 2 5 6 8 9

Center 6.2 7.6 6.8 6.8 7.4

(average)

Cluster 2

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

E 1 2 5 3 4

F 3 4 5 3 5

I 2 3 5 6 5

K 3 2 6 5 7

Center 2.25 2.75 5.25 4.25 5.25

(average)

Cluster 3

Name Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

A 7 8 4 5 2

B 6 8 5 4 2

J 1 2 4 4 2

M 3 5 4 6 3

N 3 5 5 6 3

Center 4 5.6 4.4 5 2.4

(average)
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was used and the number of clusters was set to 16. The same set of descriptors

was used as the agglomerative hierarchical clustering example. The results are

not identical; however, they produce similar clusters of observations. For

example, the cluster shown in Figure 6.24 containing 35 observations is a set of

similar observations to cluster 4 in the agglomerative hierarchical clustering

example.

The cluster of 46 observations shown in Figure 6.25 represents a cluster with

similar characteristics to Cluster 5 in the agglomerative hierarchical clustering

example.

Cluster 1 (11 observations)

Cluster 2 (28 observations)

Cluster 3 (14 observations)
Cluster 4 (43 observations)

Cluster 5 (30 observations)

Cluster 6 (6 observations)

Cluster 7 (27 observations)
Cluster 8 (35 observations)

Cluster 9 (27 observations)

Cluster 10 (26 observations)

Cluster 11 (6 observations)
Cluster 12 (35 observations)
Cluster 13 (46 observations)

Cluster 14 (18 observations)

Cluster 15 (31 observations)
Cluster 16 (9 observations)

Figure 6.24. Summary of contents of Cluster 12
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6.3 ASSOCIATIVE RULES

6.3.1 Overview

The associative rules method is an example of an unsupervised grouping method,

that is, the goal is not used to direct how the grouping is generated. This method

groups observations and attempts to understand links or associations between

different attributes of the group. Associative rules have been applied in many

situations, such as data mining retail transactions. This method generates rules from

the groups, as the following example:

Cluster 1 (11 observations)

Cluster 2 (28 observations)
Cluster 3 (14 observations)

Cluster 4 (43 observations)

Cluster 5 (30 observations)

Cluster 6 (6 observations)
Cluster 7 (27 observations)

Cluster 8 (35 observations)

Cluster 9 (27 observations)

Cluster 10 (26 observations)
Cluster 11 (6 observations)

Cluster 12 (35 observations)

Cluster 13 (46 observations)
Cluster 14 (18 observations)
Cluster 15 (31 observations)

Cluster 16 (9 observations)

Figure 6.25. Summary of contents of Cluster 13
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IF the customer’s age is 18 AND

the customer buys paper AND

the customer buys a hole punch

THEN the customer buys a binder

The rule states that 18-year-old customers who purchase paper and a hole punch

will often buy a binder at the same time. This rule would have been generated

directly from a data set. Using this information the retailer may decide, for example,

to create a package of products for college students.

Associative rules have a number of advantages:

� Easy to interpret: The results are presented in the form of a rule that is

easily understood.

� Actionable: It is possible to perform some sort of action based on the rule.

For example, the rule in the previous example allowed the retailer to market

this combination of items differently.

� Large data sets: It is possible to use this technique with large numbers of

observations.

There are three primary limitations to this method:

� Only categorical variables: The method forces you to either restrict your

analysis to variables that are categorical or to convert continuous variable to

categorical variables.

� Time-consuming: Generating the rules can be time-consuming for the

computer; especially where a data set has many variables and/or many

possible values per variable. There are ways to make the analysis run faster

but they often compromise the final results.

� Rule prioritization: The method can generate many rules that must be

prioritized and interpreted.

In this method, creating useful rules from the data is done by grouping the data,

extracting rules from the groups, and then prioritizing the rules. The following

sections describe the process of generating associative rules.

6.3.2 Grouping by Value Combinations

Let us first consider a simple situation concerning a shop that only sells cameras

and televisions. A data set of 31,612 sales transactions is used, which contains

three variables: Customer ID, Gender and Purchase. The variable Gender

identifies whether the buyer is male or female. The variable Purchase refers to

the item purchased and can only have two values, camera and television.

Table 6.12 shows three rows from this table. By grouping this set of 31,612

observations, based on specific values for the variables Gender and Purchase, the

groups in Table 6.13 are generated. There are eight ways of grouping this trivial
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example based on the values for the different categories. For example, there are

7,889 observations where Gender is male and Purchase is camera.

If an additional variable is added to this data set, the number of possible groups

will increase. For example, if another variable Income which has two values, above

$50K and below $50K, is added to the table (Table 6.14), the number of groups

would increase to 26 as shown in Table 6.15.

Increasing the number of variables and/or the number of possible values for

each variable increases the number of groups. The number of groups may become so

large that it would be impossible to generate all combinations. However, most data

sets contain many possible combinations of values with zero or only a handful of

observations. Techniques for generating the groups can take advantage of this fact.

By increasing the minimum size of a group, fewer groups are generated and the

analysis is completed faster. However, care should be taken in setting this cutoff value

since no rules will be generated from any groups where the number of observations is

below this cutoff. For example, if this number is set to ten, then no rules will be

generated from groups containing less than ten examples. Subject matter knowledge

and information generated from the data characterization phasewill help in setting this

value. It is a trade-off between how fast youwish the rule generation to take versus how

subtle the rules need to be (i.e. rules based on a few observations).

6.3.3 Extracting Rules from Groups

Overview

So far a data set has been grouped according to specific values for each of the

variables. In Figure 6.26, 26 observations (A to Z) are characterized by three

Table 6.12. Table of three example observations with

three variables

Customer ID Gender Purchase

932085 Male Television

596720 Female Camera

267375 Female Television

Table 6.13. Grouping by different value combinations

Group Number Count Gender Purchase

Group 1 16,099 Male -

Group 2 15,513 Female -

Group 3 16,106 - Camera

Group 4 15,506 - Television

Group 5 7,889 Male Camera

Group 6 8,210 Male Television

Group 7 8,217 Female Camera

Group 8 7,296 Female Television
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variables, Shape, Color, and Border. Observation A has Shape¼ square,

Color¼white, and Border¼ thick and observation W has Shape¼ circle,

Color¼ gray, and Border¼ thin.

As described in the previous section, the observations are grouped. An example

grouping is shown below where:

Shape¼ circle,

Color¼ gray

Border¼ thick

Table 6.14. Table of three observations with four variables

Customer ID Gender Purchase Income

932085 Male Television Below $50K

596720 Female Camera Above $50K

267375 Female Television Below $50K

Table 6.15. Table showing groups by different value combinations

Group Number Count Gender Purchase Income

Group 1 16,099 Male - -

Group 2 15,513 Female - -

Group 3 16,106 - Camera -

Group 4 15,506 - Television -

Group 5 15,854 - - Below $50K

Group 6 15,758 - - Above $50K

Group 7 7,889 Male Camera -

Group 8 8,210 Male Television -

Group 9 8,549 Male - Below $50K

Group 10 7,550 Male - Above $50K

Group 11 8,217 Female Camera -

Group 12 7,296 Female Television -

Group 13 7,305 Female - Below $50K

Group 14 8,208 Female - Above $50K

Group 15 8,534 - Camera Below $50K

Group 16 7,572 - Camera Above $50K

Group 17 7,320 - Television Below $50K

Group 18 8,186 - Television Above $50K

Group 19 4,371 Male Camera Below $50K

Group 20 3,518 Male Camera Above $50K

Group 21 4,178 Male Television Below $50K

Group 22 4,032 Male Television Above $50K

Group 23 4,163 Female Camera Below $50K

Group 24 4,054 Female Camera Above $50K

Group 25 3,142 Female Television Below $50K

Group 26 4,154 Female Television Above $50K
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This group is shown in Figure 6.27.

The next step is to extract a rule from the group. There are three possible rules

that could be pulled out from this group:

Rule 1:

IF Color¼ gray AND

Shape¼ circle

THEN Border¼ thick

Rule 2:

IF Border¼ thick AND

Color¼ gray

THEN Shape¼ circle
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Observation W: 
Gray circle with thin border.

Observation A: 

White square with thick border.

Figure 6.26. Twenty-six observations characterized by shape, color, and border
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Group of six observations: 
Gray circles with thick 
borders.

Figure 6.27. Group of six observations (gray circles with thick borders)
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Rule 3:

IF Border¼ thick AND

Shape¼ circle

THEN Color¼ gray

We now compare each rule to the whole data set in order to prioritize the rules

and three values are calculated: support, confidence and lift.

Support

The support value is another way of describing the number of observations that the

rule (created from the group) maps onto, that is, the size of the group. The support is

often defined as a proportion or percentage. In this example, the data set has 26

observations and the group of gray circles with a thick border is six, then the group

has a support value of six out of 26 or 0.23 (23%).

Confidence

Each rule is divided into two parts. The IF-part or antecedent refers to the list of

statements linked with AND in the first part of the rule. For example,

IF Color¼ gray AND

Shape¼ circle

THEN Border¼ thick

The IF-part is the list of statements Color¼ gray AND Shape¼ circle. The

THEN-part of the rule or consequence refers to any statements after the THEN

(Border¼ thick in this example).

The confidence score is a measure for how predictable a rule is. The confidence

(or predictability) value is calculated using the support for the entire group divided

by the support for all observations satisfied by the IF-part of the rule:

Confidence ¼ group support=IF-part support

For example, the confidence value for Rule 1

Rule 1:

IF Color¼ gray AND

Shape¼ circle

THEN Border¼ thick

is calculated using the support value for the group and the support value for the

IF-part of the rule (see Figure 6.28).

The support value for the group (gray circles with a thick border) is 0.23 and the

support value for the IF-part of the rule (gray circles) is seven out of 26 or 0.27. To

calculate the confidence, divide the support for the group by the support for the IF-part:
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Confidence ¼ 0:23=0:27 ¼ 0:85

Confidence values range from no confidence (0) to high confidence (1). Since a value

of 0.85 is close to 1, we have a high degree of confidence in this rule. Most likely,

gray circles will have thick border.

Lift

The confidence value does not indicate the strength of the association between gray

circles (IF-part) and thick borders (THEN-part). The lift score takes this into

account. The lift is often described as the importance of the rule. It describes the

association between the IF-part of the rule and the THEN-part of the rule. It is

calculated by dividing the confidence value by the support value across all

observation of the THEN-part:

Lift ¼ confidence=THEN-part support

For example, the lift for Rule 1

Rule 1:

IF Color¼ gray AND

Shape¼ circle

THEN Border¼ thick

is calculated using the confidence and the support for the THEN-part of the

rule (see Figure 6.29). The confidence for rule 1 is calculated as 0.85 and the support

for the THEN-part of the rule (thick borders) is 13 out of 26 or 0.5. To calculate the

J

Q

E

V

F

S

L

U

P

Z

B

R

K

A
M

G

X
Y

C

N

D

I

H

W

O

T

Observations in the 
IF-part of the rule:
Gray circles

Figure 6.28. Seven observations for gray circles
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lift value, the confidence is divided by the support value for the THEN-part of the

rule:

Lift ¼ 0:85=0:5 ¼ 1:7

Lift values greater than 1 indicate a positive association and lift values less than 1

indicate a negative association.

Figure 6.30 is used to determine the confidence and support for all three

potential rules.

The following shows the calculations for support, confidence and lift for the

three rules:

Rule 1:

Support¼ 6=26¼ 0.23

Confidence¼ 0.23=(7=26)¼ 0.85

Lift¼ 0.85=(13=26)¼ 1.7

Rule 2:

Support¼ 6=26¼ 0.23

Confidence¼ 0.23=(6=26)¼ 1

Lift¼ 1=(9=26)¼ 2.9

Rule 3:

Support¼ 6=26¼ 0.23

Confidence¼ 0.23=(7=26)¼ 0.85

Lift¼ 0.85 / (10 / 26)¼ 2.2
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Shapes with thick borders

Figure 6.29. Thirteen observations for thick border objects
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The values are summarized in Table 6.16.

Rule 2 would be considered the most interesting because of the confidence score

of 1 and the high positive lift score indicating that shapes that are gray with a thick

border are likely to be circles.

6.3.4 Example

In this example, we will compare two rules generated from the Adult data available

from Newman (1998). This is a set of income data with the following variables along

with all possible values shown in parenthesis:

� Class of work (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-

gov, State-gov, Without-pay, Never-worked)

Figure 6.30. Separating objects for each rule calculation

Table 6.16. Summary of support, confidence, and lift for

the three rules

Rule 1 Rule 2 Rule 3

Support 0.23 0.23 0.23

Confidence 0.85 1.0 0.85

Lift 1.7 2.9 2.2
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� Education (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-

acdm, Assoc-voc, 9th, 7th–8th, 12th, Masters, 1st–4th, 10th, Doctorate, 5th–6th,

Preschool)

� Income (> 50K, 	 50K)

There are 32,561 observations and using the associative rule method, many rules

were identified. For example,

Rule 1

IF Class of work is Private and

Education is Doctorate

THEN Income is 	 50K

Rule 2

IF Class of work is Private and

Education is Doctorate

THEN Income is > 50K

Here is a summary of the counts:

Class of work is private: 22,696 observations.

Education is Doctorate: 413 observations.

Class of work is private and Education is Doctorate: 181 observations.

Income is less than or equal to 50K: 24,720 observations.

Income is greater than 50K: 7,841 observations.

Table 6.17 shows the information calculated for the rules. Of the 181

observations where Class of work is private and Education is Doctorate, 132 (73%)

of those observations also had Income greater than 50K. This is reflected in the

much higher confidence score for rule 2 (0.73) compared to rule 1 (0.27). Over the

entire data set of 32,561 observations there are about three times the number of

observations where income is less than or equal to 50K as compared to observations

where the income is greater than 50K. The lift term takes into consideration the

relative frequency of the THEN-part of the rule. Hence, the lift value for rule 2 is

considerably higher (3.03) than the lift value for rule 1. Rule 2 has both a good

confidence and lift value, making it an interesting rule. Rule 1 has both a poor

confidence and lift value. The following examples illustrate some other rules

generated:

Table 6.17. Summary of scores for two rules

Rule 1 Rule 2

Count 49 132

Support 0.0015 0.0041

Confidence 0.27 0.73

Lift 0.36 3.03
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Rule 3

IF Class of work is State-gov and

Education is 9th

THEN Income is	 50K

(Count: 6; Support: 0.00018; Confidence: 1; Lift: 1.32)

Rule 4

IF Class of work is Self-emp-inc and

Education is Prof-school

THEN Income is >50 K

(Count: 78; Support: 0.0024 Confidence: 0.96; Lift: 4)

Rule 5

IF Class of work is Local-gov and

Education is 12th

THEN Income is 	50 K

(Count: 17; Support: 0.00052; Confidence: 0.89; Lift: 1.18)

6.4 DECISION TREES

6.4.1 Overview

It is often necessary to ask a series of questions before coming to a decision. The

answers to one question may lead to another question or may lead to a decision being

reached. For example, you may visit a doctor and your doctor may ask you to

describe your symptoms. You respond by saying you have a stuffy nose. In trying to

diagnose your condition the doctor may ask you further questions such as whether

you are suffering from extreme exhaustion. Answering yes would suggest you have

the flu, whereas answering no would suggest you have a cold. This line of

questioning is common to many decision making processes and can be shown

visually as a decision tree, as shown in Figure 6.31.

Decision trees are often generated by hand to precisely and consistently define a

decision making process. However, they can also be generated automatically from the

data. They consist of a series of decision points based on certain variables. Figure 6.32

Stuffy nose?

Extreme exhaustion?

Diagnosis -Flu Diagnosis -Cold

….

yes

yes no

no

Figure 6.31. Decision tree for the diagnosis of colds and flu
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illustrates a simple decision tree. This decision tree was generated based on a data set

of cars which included a variable number of cylinders (Cylinders) along with the

car fuel efficiency (MPG). The decision tree attempts to group cars based on the

number of cylinders (Cylinders) in order to classify the observations according to

their fuel efficiency. At the top of the tree is a node representing the entire data set of

392 observations (Size¼ 392). The data set is initially divided into two subsets, on

the left of the Figure is a set of 203 cars (i.e. Size¼ 203) where the number of

cylinders is less than five. How this division was determined will be described later

in this section. Cars with less than five cylinders are grouped together as they

generally have good fuel efficiency with an average MPG value of 29.11. The

remaining 189 cars are further grouped into a set of 86 cars where the number of

cylinders is less than seven. This set does not include any cars with less than five

cylinders since they were separated earlier. These cars are grouped as they generally

have reasonable fuel efficiency with an averageMPG value of 20.23. The remaining

group is a set of cars where the number of cylinders is greater than seven and these

have poor fuel efficiency with an average MPG value of 14.96.

In contrast with clustering or association rules, decision trees are an example of

a supervised method. In this example, the data set was classified into groups using

the variableMPG to guide how the tree was constructed. Figure 6.33 illustrates how

the tree was put together, guided by the data. A histogram of theMPG response data

is shown alongside the nodes used to classify the vehicles. The overall shape of the

histogram displays the frequency distribution for theMPG variable. The highlighted

frequency distribution is the subset within the node. The frequency distribution for

the node containing 203 observations shows a set biased toward good fuel efficiency,

whereas the 103 observations highlighted illustrate a set biased towards poor fuel

Size = 392

Av. = 23.45

Size = 189

Av. = 17.36

Size = 203

Av. = 29.11

Size = 86

Av. = 20.23

Size = 103

Av. = 14.96

Cylinders < 5 Cylinders ≥ 5

Cylinders < 7 Cylinders ≥ 7

Figure 6.32. Decision tree generated from a data set of cars
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efficiency. The MPG variable has not been used in any of the decision points, only

the number of cylinders. This is a trivial example, but it shows how a data set can be

divided into regions using decision trees.

There are many reasons to use decision trees:

� Easy to understand: Decision trees are widely used to explain how

decisions are reached based on multiple criteria.

� Categorical and continuous variables: Decision trees can be generated

using either categorical data or continuous data.

� Complex relationships: A decision tree can partition a data set into distinct

regions based on ranges or specific values.

The disadvantages of decision trees are:

� Computationally expensive: Building decision trees can be computation-

ally expensive, particularly when analyzing a large data set with many

continuous variables.

� Difficult to optimize: Generating a useful decision tree automatically can be

challenging, since large and complex trees can be easily generated. Trees

that are too small may not capture enough information. Generating the ‘best’

tree through optimization is difficult. At the end of this chapter, a series of

references to methods of decision tree optimization can be found.

Size = 392

Av. = 23.45

Size = 189

Av. = 17.36

Size = 203

Av. = 29.11

Size = 86

Av. = 20.23

Size = 103

Av. = 14.96

Cylinders < 5 Cylinders ≥ 5

Cylinders < 7 Cylinders ≥ 7

Figure 6.33. Decision tree illustrating the use of a response variable (MPG) to guide tree generation
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6.4.2 Tree Generation

A tree is made up of a series of decision points, where the entire set of observations

or a subset of the observations is split based on some criteria. Each point in the tree

represents a set of observations and is called a node. The relationship between two

nodes that are joined is defined as a parent-child relationship. The larger set which

will be divided into two or more smaller sets is called the parent node. The nodes

resulting from the division of the parent are called child nodes as shown in

Figure 6.34. A child node with no more children (no further division) is called a leaf

node and shown in Figure 6.35.

Size = 392

Av. = 23.45

Size = 189

Av. = 17.36

Size = 203

Av. = 29.11

Cylinders < 5 Cylinders ≥ 5

Parent node

Child node Child node

Figure 6.34. Relationship between parent and child node

Size = 392

Av. = 23.45

Size = 189

Av. = 17.36

Size = 203

Av. = 29.11

Size = 86

Av. = 20.23

Size = 103

Av. = 14.96

Cylinders < 5 Cylinders ≥ 5

Cylinders < 7 Cylinders ≥ 7

Further dividedNo further division: leaf

Figure 6.35. Leaf and nonleaf nodes
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A table of data is used to generate a decision tree where certain variables are

assigned as descriptors and one variable is assigned to be the response. The

descriptors will be used to build the tree, that is, these variables will divide the data

set. The response will be used to guide which descriptors are selected and at what

value the split is made. A decision tree splits the data set into smaller and smaller

sets. The head (or top) of the tree is a node containing all observations. Based on

some criteria, the observations are split resulting in usually two new nodes, each

node representing a smaller set of observations, as shown in Figure 6.36. Node N1

represents all observations. By analyzing all descriptor variables and examining

many splitting points for each variable, an initial split is made based on some criteria

(C1). The data set represented at node N1 is now divided into a set N2 that meets

criteria C1 and a set N3 that does not satisfy the criteria.

The process of examining the variables to determine a criterion for splitting is

repeated for all subsequent nodes. However, a condition should be specified for

ending this repetitive process. For example, the process can stop when the size of the

subset is less than a predetermined value. In Figure 6.37, each of the two newly

created subset (N2 and N3) are examined in turn to determine if they should be

further split or if the splitting should stop.

In Figure 6.38, the subset at node N2 is examined to determine if the splitting

should stop. Here, the condition for stopping splitting is not met and hence the subset

is to be split further. Again, all the variables assigned as descriptors are considered

along with many alternatives values to split on. The best criterion is selected and the

data set is again divided into two sets, represented by N4 and N5. Set N4 represents a

set of observations that satisfy the splitting criteria (C2) and node N5 is the

remaining set of observations. Next, node N3 is examined and in this case, the

condition to stop splitting is met and the subset represented by node N3 is not

divided further.

Splitting criteria C1

N1

N2 N3

Figure 6.36. Splitting a set of observations into two groups

N1

N2 N3
Split again?

Stop splitting?

Split again?

Stop splitting?

Figure 6.37. Evaluating whether to continue to grow the tree
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6.4.3 Splitting Criteria

Dividing Observations

It is common for the split at each level to be a two-way split. There are methods that

split more than two ways. However, care should be taken using these methods since

splitting the set in many ways early in the construction of the tree may result in

missing interesting relationships that become exposed as the tree growing process

continues. Figure 6.39 illustrates the two alternatives.

Any variable type can be split using a two-way split:

� Dichotomous: Variables with two values are the most straightforward to

split since each branch represents a specific value. For example, a variable

Temperature may have only two values, hot and cold. Observations will be

split based on those with hot and those with cold temperature values.

� Nominal: Since nominal values are discrete values with no order, a two-way

split is accomplished with one subset being comprised of a set of observa-

tions that equal a certain value and the other subset being those observations

that do not equal that value. For example, a variable Color that can take the

values red, green, blue, and black may be split two-ways. Observations, for

N1

N2 N3

N4 N5

Splitting criteria C2

Figure 6.38. Tree further divided

N1

N2 N3

N1

N2 N4N3

Two-way split Multi-way split

Figure 6.39. Alternative splitting of nodes
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example, which have Color equaling red generate one subset and those not

equaling red creating the other subset, that is, green, blue and black.

� Ordinal: In the casewhere a variable’s discretevalues are ordered, the resulting
subsets may be made up of more than one value, as long as the ordering is

retained. For example, a variable Quality with possible values low, medium,

high, and excellent may be split in four possible ways. For example, observa-

tions equaling low or medium in one subset and observations equaling high and

excellent in another subset. Another example is where low values are in one set

and medium, high, and excellent values are in the other set.

� Continuous: For variables with continuous values to be split two-ways, a

specific cutoff value needs to be determined, where on one side of the split

are values less than the cutoff and on the other side of the split are values

greater than or equal to the cutoff. For example, a variableWeight which can

take any value between 0 and 1,000 with a selected cutoff of 200. The first

subset would be those observations where the Weight is below 200 and the

other subset would be those observations where theWeight is greater than or

equal to 200.

Figure 6.40 illustrates how the different variable types can be used as splitting

criteria in a two-way split.

A splitting criterion has two components: (1) the variable to split on and (2)

values of the variable to split on. To determine the best split, all possible splits of all

variables must be considered. Since it is necessary to rank the splits, a score should

be calculated for each split. There are many ways to rank the split. The following

describes two approaches for prioritizing splits, based on whether the response is

categorical or continuous.

N1

N2 N3

Dichotomous

N1

N2 N3

Nominal

Ordinal Continuous

Temperature is hot Temperature is cold Color is red Color is not red

Quality is low 

or medium

Quality is high 

or excellent Weight < 200 Weight ≥ 200

N1

N2 N3

N1

N2 N3

Figure 6.40. Splitting examples based on variable type

Decision Trees 145



Scoring Splits for Categorical Response Variables

To illustrate how to score splits when the response is a categorical variable, three

splits (split a, split b, split c) for a set of observations are shown in Figure 6.41. The

objective for an optimal split is to create subsets which results in observations with a

single response value. In this example, there are 20 observations prior to splitting.

The response variable (Temperature) has two possible values, hot and cold. Prior to
the split, the response has an even distribution with the number of observations

where the Temperature equals hot is ten and with the number of observations where

the Temperature equals cold is also ten.

Different criteria are considered for splitting these observations which results in

different distributions of the response variables for each subset (N2 and N3):

� Split a: Each subset contains ten observations. All ten observations in N2 have

hot temperature values, whereas the ten observations in node N3 are all cold.

� Split b: Again each subset (N2 and N3) contains ten observations. However, in

this example there is an even distribution of hot and cold values in each subset.

� Split c: In this case the splitting criterion results in two subsets where node

N2 has nine observations (one hot and eight cold) and node N3 has 11

observations (nine hot and two cold).

Split a is the best split since each node contains observations where the

response is one or the other category. Split b results in the same even split of hot and

cold values (50% hot, 50% cold) in each of the resulting nodes (N2 and N3) and

would not be considered a good split. Split c is a good split; however, this split is not

so clean as split a since there are values of both hot and cold in both subsets. The

proportion of hot and cold values is biased, in node N2 towards cold values and in

N3 towards hot values. When determining the best splitting criteria, it is therefore

important to determine how clean each split is, based on the proportion of the

different categories of the response variable (or impurity). As the tree is being

generated, it is desirable to decrease the level of impurity until, in an ideal situation,

there is only one response value at a terminal node.

N1

N2 N3

Temperature:

Hot (10 observations)
Cold (0 observation)

Temperature:

Hot (10 observations)

Cold (10 observations)

Split a

Temperature:

Hot (0 observation)

Cold (10 observations)

N1

N2 N3

Temperature:

Hot (5 observations)
Cold (5 observations)

Temperature:

Hot (10 observations)

Cold (10 observations)

Split b

Temperature:

Hot (5 observations)

Cold (5 observations)

N1

N2 N3

Temperature:

Hot (1 observation)
Cold (8 observations)

Temperature:

Hot (10 observations)

Cold (10 observations)

Split c

Temperature:

Hot (9 observations)

Cold (2 observations)

Figure 6.41. Evaluating splits based on categorical response data
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There are three primary methods for calculating impurity: misclassification,

Gini, and entropy. In the following examples the entropy calculation will be used;

however, the other methods give similar results. To illustrate the use of the entropy

calculation, a set of ten observations with two possible response values (hot and

cold) are used (Table 6.18). All possible scenarios for splitting this set of ten

observations are shown: Scenario 1 through 11. In scenario 1, all ten observations

have value cold whereas in scenario 2, one observation has value hot and nine

observations have value cold. For each scenario, an entropy score is calculated.

Cleaner splits result in lower scores. In scenario 1 and scenario 11, the split cleanly

breaks the set into observations with only one value. The score for these scenarios

is 0. In scenario 6, the observations are split evenly across the two values and this is

reflected in a score of 1. In other cases, the score reflects how well the two values are

split.

The formula for entropy is:

EntropyðSÞ ¼ �
Xc

i¼1

pi log2 pi

The entropy calculation is performed on a set of observations S: pi refers to the

fraction of the observations that belong to a particular values. For example, for a set

of 100 observations where the response variable is Temperature and 60

observations had hot values while 40 observations had cold values, then the phot
would be 0.6 and the pcold would be 0.4. The value c is the number of different values

that the response variable can take. When pi ¼ 0, then the value for 0 log2ð0Þ ¼ 0.

The example shown in Figure 6.41 will be used to illustrate our point. Values for

entropy are calculated for the three splits:

Table 6.18. Entropy scores according to different splitting

criteria

Response

values

Scenario hot cold Entropy

Scenario 1 0 10 0

Scenario 2 1 9 0.469

Scenario 3 2 8 0.722

Scenario 4 3 7 0.881

Scenario 5 4 6 0.971

Scenario 6 5 5 1

Scenario 7 6 4 0.971

Scenario 8 7 3 0.881

Scenario 9 8 2 0.722

Scenario 10 9 1 0.469

Scenario 11 10 0 0
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split a

Entropy (N1)¼�(10/20) log2 (10/20)� (10/20) log2 (10/20)¼ 1

Entropy (N2)¼�(10/10) log2 (10/10)� (0/10) log2 (0/10)¼ 0

Entropy( N3)¼�(0/10) log2 (0/10)� (10/10) log2 (10/10)¼ 0

split b

Entropy (N1)¼�(10/20) log2 (10/20)� (10/20) log2 (10/20)¼ 1

Entropy (N2)¼�(5/10) log2 (5/10)� (5/10) log2 (5/10)¼ 1

Entropy (N3)¼�(5/10) log2 (5/10)� (5/10) log2 (5/10)¼ 1

split c

Entropy (N1)¼�(10/20) log2 (10/20)� (10/20) log2 (10/20)¼ 1

Entropy (N2)¼�(1/9) log2 (1/9)� (8/9) log2 (8/9)¼ 0.503

Entropy (N3)¼�(9/11) log2 (9/11)� (2/11) log2 (2/11)¼ 0.684

In order to determine the best split, we now need to calculate a ranking based on

how cleanly each split separates the response data. This is calculated on the basis of

the impurity before and after the split. The formula for this calculation, Gain, is

shown below:

Gain ¼ EntropyðparentÞ �
Xk
j¼1

NðvjÞ
N

EntropyðvjÞ

N is the number of observations in the parent node, k is the number of possible

resulting nodes and N(vj) is the number of observations for each of the j child nodes.

vj is the set of observations for the j
th node. It should be noted that the Gain formula

can be used with other impurity methods by replacing the entropy calculation.

In the example described throughout this section, the gain values are calculated

and shown in Figure 6.42.

N1

N2 N3

Temperature:

Hot (10 observations)
Cold (0 observation)

Temperature:

Hot (10 observations)

Cold (10 observations)

Temperature:

Hot (0 observation)

Cold (10 observations)

N1

N2 N3

Temperature:

Hot (5 observations)
Cold (5 observations)

Temperature:

Hot (10 observations)

Cold (10 observations)

Temperature:

Hot (5 observations)

Cold (5 observations)

N1

N2 N3

Temperature:

Hot (1 observation)
Cold (8 observations)

Temperature:

Hot (10 observations)

Cold (10 observations)

Temperature:

Hot (9 observations)

Cold (2 observations)

Gain = 1 Gain = 0 Gain = 0.398 

Split a Split b Split c

Figure 6.42. Calculation of gain for each split

148 Chapter 6 Grouping



Gainðsplit aÞ ¼ 1� f½ð10=20Þ0
 þ ½ð10=20Þ0
g ¼ 1

Gainðsplit bÞ ¼ 1� f½ð10=20Þ1
 þ ½ð10=20Þ1
g ¼ 0

Gainðsplit cÞ ¼ 1� f½ð9=20Þ0:503
 þ ½ð11=20Þ0:684
g ¼ 0:397

The criterion used in split a is selected as the best splitting criteria.

During the tree generation process all possible splitting values for all descriptor

variables are calculated and the best splitting criterion is selected.

Scoring Splits for Continuous Response Variables

When the response variable is continuous, one popular method for ranking the splits

is to use the sum of the squares of error (SSE). The resulting split should ideally

result in sets where the response values are close to the mean of the group. The lower

the SSE value for the group, the closer the group values are to the mean of the set. For

each potential split, a SSE value is calculated for each resulting node. A score for the

split is calculated by summing the SSE values of each resulting node. Once all splits

for all variables are computed, then the split with the lowest score is selected.

The formula for SSE is:

SSE ¼
Xn
i¼1

ðyi � �yÞ2

For a subset of n observations, the SSE value is computed where yi is the individual

value for the response, and�y is the averagevalue for the subset. To illustrate, Table 6.19
is processed to identify the best split. The variableWeight is assigned as a descriptor

andMPG will be used as the response variable. A series of splitting point values for

the variable Weight will be used: 1693, 1805, 1835, 3225, 4674, 4737, and 4955.

These points are the midpoints between each pair of values and were selected

because they divided the data set into all possible two-ways splits, as shown in

Figure 6.43. In this example, we will only calculate a score for splits which result in

three or more observations, that is Split 3, Split 4, and Split 5. The MPG response

variable is used to calculate the score.

Table 6.19. Table of eight observations with

values for two variables

Weight MPG

A 1,835 26

B 1,773 31

C 1,613 35

D 1,834 27

E 4,615 10

F 4,732 9

G 4,955 12

H 4,741 13
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Split 3:

For subset where Weight is less than 1835 (C, B, D):

Average ¼ ð35þ 31þ 27Þ=3 ¼ 31

SSE ¼ ð35� 31Þ2 þ ð31� 31Þ2 þ ð27� 31Þ2 ¼ 32

For subset where Weight is greater than or equal to 1835 (A, E, F, H, G):

Average ¼ ð26þ 10þ 9þ 13þ 12Þ=5 ¼ 14

SSE ¼ ð26�14Þ2 þ ð10�14Þ2 þ ð9�14Þ2 þ ð13�14Þ2 þ ð12�14Þ2 ¼ 190

Split score ¼ 32þ 190 ¼ 222

Split 4:

For subset where Weight is less than 3225 (C, B, D, A):

Average ¼ ð35þ 31þ 27þ 26Þ=4 ¼ 29:75

C
(1613)

B
(1773)

D
(1834)

A
(1835)

E
(4615)

F
(4732)

H
(4741)

G
(4955)

Splitting Value: 1693

C
(1613)

B
(1773)

D
(1834)

A
(1835)

E
(4615)

F
(4732)

H
(4741)

G
(4955)

Splitting Value: 1805

C
(1613)

B
(1773)

D
(1834)

A
(1835)

E
(4615)

F
(4732)

H
(4741)

G
(4955)

Splitting Value: 1835

C
(1613)

B
(1773)

D
(1834)

A
(1835)

E
(4615)

F
(4732)

H
(4741)

G
(4955)

Splitting Value: 3225

C
(1613)

B
(1773)

D
(1834)

A
(1835)

E
(4615)

F
(4732)

H
(4741)

G
(4955)

Splitting Value: 4674

C
(1613)

B
(1773)

D
(1834)

A
(1835)

E
(4615)

F
(4732)

H
(4741)

G
(4955)

Splitting Value: 4737

C
(1613)

B
(1773)

D
(1834)

A
(1835)

E
(4615)

F
(4732)

H
(4741)

G
(4955)

Splitting Value: 4955

Split 1

Split 2

Split 3

Split 4

Split 5

Split 6

Split 7

Figure 6.43. Illustration of splitting points
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SSE ¼ ð35�29:75Þ2 þ ð31�29:75Þ2 þ ð27�29:75Þ2 þ ð26�29:75Þ2 ¼ 50:75

For subset where Weight is greater than or equal to 3225 (E, F, H, G):

Average ¼ ð10þ 9þ 13þ 12Þ=4 ¼ 11

SSE ¼ ð10� 11Þ2 þ ð9� 11Þ2 þ ð13� 11Þ2 þ ð12� 11Þ2 ¼ 10

Split score ¼ 50:75þ 10 ¼ 60:75

Split 5:

For subset where Weight is less than 4674 (C, B, D, A, E):

Average ¼ ð35þ 31þ 27þ 26þ 10Þ=5 ¼ 25:8

SSE ¼ ð35� 25:8Þ2 þ ð31� 25:8Þ2 þ ð27� 25:8Þ2 þ ð26� 25:8Þ2

þ ð10� 25:8Þ2 ¼ 362:8

For subset where Weight is greater than or equal to 4674 (F, H, G):

Average ¼ ð9þ 13þ 12Þ=3 ¼ 11:33

SSE ¼ ð9� 11:33Þ2 þ ð13� 11:33Þ2 þ ð12� 11:33Þ2 ¼ 8:67

Split score ¼ 362:8þ 8:67 ¼ 371:47

In this example, Split 4 has the lowest score and would be selected as the best

split.

6.4.4 Example

In the following example, a set of 392 cars is analyzed using a decision tree. Two

variables were used as descriptors: Horsepower and Weight; MPG (miles per

gallon) was used as the response. A decision tree (Figure 6.44) was automatically

generated using a 40 nodes minimum as a terminating criterion.

The leaf nodes of the tree can be interpreted using a series of rules. The decision

points that are crossed in getting to the node are the rule conditions. The average

MPG value for the leaf nodes will be interpreted here as low (less than 22), medium

(22–26), and high (greater than 26). The following two example rules can be

extracted from the tree:

Node A:

IF Horsepower < 106 AND Weight < 2067.5

THEN MPG is high

Node B:

IF Horsepower < 106 AND Weight 2067.5–2221.5

THEN MPG is high
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In addition to grouping data sets, decision trees can also be used in making

predictions and this will be seen again in Section 7.4.

6.5 SUMMARY

Table 6.20 summarizes the different grouping methods described in this chapter.

6.6 EXERCISES

Patient data was collected concerning the diagnosis of cold or flu (Table 6.21).

1. Calculate the Euclidean distance (replacing None with 0, Mild with 1 and Severe with

2) using the variables: Fever, Headaches, General aches, Weakness, Exhaustion,

Stuffy nose, Sneezing, Sore throat, Chest discomfort, for the following pairs of

patient observations from Table 6.21:

a. 1326 and 398

b. 1326 and 1234

c. 6377 and 2662

2. The patient observations described in Table 6.21 are being clustered using agglom-

erative hierarchical clustering. The Euclidean distance is used to calculate the distance

between observations using the following variables: Fever, Headaches, General

aches,Weakness, Exhaustion, Stuffy nose, Sneezing, Sore throat, Chest discomfort

(replacing None with 0, Mild with 1 and Severe with 2). The average linkage joining

rule is being used to create the hierarchical clusters. During the clustering process

observations 6377 and 2662 are already grouped together. Calculate the distance from

observation 398 to this group.

3. A candidate rule has been extracted using the associative rule method from Table 6.1:

If Exhaustion¼None AND

Stuffy node¼ Severe

THEN Diagnosis¼ cold

Calculate the support, confidence, and lift for this rule.

4. Table 6.21 is to be used to build a decision tree to classify whether a patient has a cold

or flu. As part of this process the Fever column is being considered as a splitting point.

Two potential splitting values are being considered:

a. Where the data is divided into two sets where (1) Fever is none and (2) Fever is mild

and severe.

b. Where the data is divided into two sets where (1) Fever is severe and (2) Fever is

none and mild.

Calculate, using the entropy impurity calculation, the gain for each of these splits.
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6.7 FURTHER READING

For additional information on general data mining grouping approaches and outlier detection,

see Witten (2000), Han (2005), and Hand (2001). Everitt (2001) provides further details

concerning similarity methods and clustering approaches, and Quilan (1993) gives a

comprehensive analysis of decision trees. In addition, Hastie (2003) covers in detail additional

grouping approaches.

Table 6.21. Table of patient records

Chest

Patient Fever Head- General Weak- Exha- Stuffy Sore disco- Diagn-

id aches aches ness ustion nose Sneezing throat mfort osis

1326 None Mild None None None Mild Severe Severe Mild Cold

398 Severe Severe Severe Severe Severe None None Severe Severe Flu

6377 Severe Severe Mild Severe Severe Severe None Severe Severe Flu

1234 None None None Mild None Severe None Mild Mild Cold

2662 Severe Severe Mild Severe Severe Severe None Severe Severe Flu

9477 None None None Mild None Severe Severe Severe None Cold

7286 Severe Severe Severe Severe Severe None None None Severe Flu

1732 None None None None None Severe Severe None Mild Cold

1082 None Mild Mild None None Severe Severe Severe Severe Cold

1429 Severe Severe Severe Mild Mild None Severe None Severe Flu

14455 None None None Mild None Severe Mild Severe None Cold

524 Severe Mild Severe Mild Severe None Severe None Mild Flu

1542 None None Mild Mild None Severe Severe Severe None Cold

8775 Severe Severe Severe Severe Mild None Severe Severe Severe Flu

1615 Mild None None Mild None Severe None Severe Mild Cold

1132 None None None None None Severe Severe Severe Severe Cold

4522 Severe Mild Severe Mild Mild None None None Severe Flu
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Chapter 7

Prediction

7.1 INTRODUCTION

7.1.1 Overview

Predictive models are used in many situations where an estimate or forecast is

required, for example, to project sales or forecast the weather. A predictive model will

calculate an estimate for one or more variables (responses), based on other variables

(descriptors). For example, a data set of cars is used to build a predictive model to

estimate car fuel efficiency (MPG). A portion of the observations are shown in Table

7.1. A model to predict car fuel efficiency was built using the MPG variable as the

response and the variables Cylinders, Displacement, Horsepower, Weight, and

Acceleration as descriptors. Once the model has been built, it can be used to make

predictions for car fuel efficiency. For example, the observations in Table 7.2 could be

presented to the model and the model would predict the MPG column.

A predictive model is some sort of mathematical equation or process that takes

the descriptor variables and calculates an estimate for the response or responses. The

model attempts to understand the relationship between the input descriptor variables

and the output response variables; however, it is just a representation of the

relationship. Rather than thinking any model generated as correct or not correct, it

may be more useful to think of these models as useful or not useful to what you are

trying to accomplish.

Predictive models have a number of uses including:

� Prioritization: Predictive models can be used to swiftly profile a data set

that needs to be prioritized. For example, a credit card company may build a

predictive model to estimate which individuals would be the best candidates

for a direct mailing campaign. This model could be run over a database of

millions of potential customers to identify a subset of the most promising

customers. Alternatively, a team of scientists may be about to conduct a

costly experiment and they wish to prioritize which alternative experiments

have the greatest chance of success. To this end, a prediction model is built to

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.
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test the various experimental scenarios. The experiments predicted to have

the highest chance of success will be tested first.

� Decision support: Prediction models can also be used to estimate future

events so that appropriate actions can be taken. For example, prediction

models are used to forecast adverse weather conditions and that information

is used to trigger events such as alerting emergency services to prepare any

affected neighborhoods.

� Understanding: Since predictive models attempt to understand the relation-

ship between the input descriptor variables and the output response variables,

Table 7.1. Table of cars with known MPG values

Names Cylinders Displacement Horsepower Weight Acceleration MPG

Chevrolet Chevelle 8 307 130 3,504 12 18

Malibu

Buick Skylark 320 8 350 165 3,693 11.5 15

Plymouth Satellite 8 318 150 3,436 11 18

AMC Rebel SST 8 304 150 3,433 12 16

Ford Torino 8 302 140 3,449 10.5 17

Ford Galaxie 500 8 429 198 4,341 10 15

Chevrolet Impala 8 454 220 4,354 9 14

Plymouth Fury III 8 440 215 4,312 8.5 14

Pontiac Catalina 8 455 225 4,425 10 14

AMC Ambassador 8 390 190 3,850 8.5 15

DPL

Table 7.2. Table of cars where MPG is to be predicted

Names Cylinders Displacement Horsepower Weight Acceleration MPG

Dodge Challenger 8 383 170 3,563 10

SE

Plymouth Cuda 340 8 340 160 3,609 8

Chevrolet 8 400 150 3,761 9.5

Monte Carlo

Buick Estate 8 455 225 3,086 10

Wagon (SW)

Toyota Corona 4 113 95 2,372 15

Mark II

Plymouth 6 198 95 2,833 15.5

Duster

AMC Hornet 6 199 97 2,774 15.5

Ford Maverick 6 200 85 2,587 16

Datsun Pl510 4 97 88 2,130 14.5

Volkswagen 1131 4 97 46 1,835 20.5

Deluxe Sedan
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they can be helpful beyond just calculating estimates. For example, if a

prediction model was built based on a set of scientific experiments, the

model will be able to suggest what variables are most important and how

they contribute to the problem under investigation.

There are many methods for building prediction models and they are often

characterized based on the response variable. When the response is a categorical

variable, the model is called a classification model. When the response is a

continuous variable, then the model is a regression model. Table 7.3 summarizes

some of the methods available.

There are two distinct phases, each with a unique set of processes and issues to

consider:

� Building: The prediction model is built using existing data called the

training set. This training set contains examples with values for the

descriptor and response variables. The training set is used to determine

and quantify the relationships between the input descriptors and the output

response variables. This set will be divided into observations used to build

the model and assess the quality of any model built.

� Applying: Once a model has been built, a data set with no output response

variables can be fed into this model and the model will produce an estimate

for this response. A measure that reflects the confidence in this prediction

is often calculated along with an explanation of how the value was generated.

7.1.2 Classification

A classification model is built to assign observations into two or more distinct

categories. For example, a classification model may be built to estimate whether a

customer will buy or will not buy a particular product. In another example, a

classification model may be built to predict whether drilling in a particular area will

result in finding oil or not.

In Figure 7.1, a set of observations are plotted using two variables. The points in

light gray represent observations in one class (Class A) and the darker gray points

represent observations in another class (Class B). The objective is to build a model

Table 7.3. Different classification and regression methods

Classification Regression

Classification trees Regression trees

k-Nearest Neighbors k-Nearest Neighbors

Logistic regression Linear regressions

Naı̈ve Bayes classifiers Neural networks

Neural networks Nonlinear regression

Rule-based classifiers Partial least squares

Support vector machines Support vector machines
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that is able to classify observations into these two categories. In scatterplot a, a

straight line can be drawn where observations above the line are placed in Class B

and below the line observations are placed in Class A. In diagram b, observations in

Class B (shown in dark gray) are grouped in the center of the scatterplot and

observations in Class A are shown outside this central group. A model represented as

an oval can be used to distinguish between these two groups. In many practical

situations, the separation of observations between the different classes is not so

simple. For example, Figure 7.2 illustrates how it is difficult to separate two classes.

The quality of a classification model can be assessed by counting the number of

correctly and incorrectly assigned observations. For example, in the following

contingency table the actual response is compared against the predicted response for

a binary variable. The number of observations for each possible outcome are

reported in Table 7.4.

This contingency table represents all possible outcomes for two binary

variables:

� Count:11 The number of observations that were true and predicted to be true

(true positives).

� Count:10 The number of observations that were false yet predicted to be true

(false negatives).

a b

Class A

Class B

Figure 7.1. Classification of a categorical variable

Class A

Class B

Figure 7.2. Categorical variables that would be difficult to classify based on the dimensions shown
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� Count:01 The number of observations that were true and predicted to be false

(false positives).

� Count:00 The number of observations that were false and predicted to be

false (true negatives).

In an ideal model there would be zero observation for Count10 and Count01. This is

practically never the case, however, and the goal of any modeling exercise is to

minimize the numbers for b and c according to criteria established in the definition

step of the project. There are four calculations that are commonly used to assess the

quality of a classification model:

� Concordance: This is an overall measure of the accuracy of the model and is

calculated with the formula:

Concordance ¼ ðCount11 þ Count00Þ
ðCount11 þ Count10 þ Count01 þ Count00Þ

� Error rate: This is an overall measure of the number of prediction errors

and the formula is:

Error rate ¼ ðCount10 þ Count01Þ
ðCount11 þ Count10 þ Count01 þ Count00Þ

� Sensitivity: This is an assessment of how well the model is able to predict

‘true’ values and the formula is:

Sensitivity ¼ Count11

ðCount11 þ Count01Þ
� Specificity: This is an assessment of how well the model is able to predict

‘false’ values and the formula is:

Specificity ¼ Count00

ðCount10 þ Count00Þ

For example, Table 7.5 shows the actual response values alongside the predicted

response values for 18 observations. The contingency table is calculated from the

actual and the predicted response values (Table 7.6). Based on this table, the

Table 7.4. Contingency table showing a count of predicted vs actual

values

Predicted Response

True (1) False (0)

Actual Response True (1) Count11 Count01
False (0) Count10 Count00
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following assessments can be made of the accuracy of the model:

Concordance ¼ ðCount11 þ Count00Þ
ðCount11 þ Count10 þ Count01 þ Count00Þ

¼ ð8þ 7Þ
ð8þ 1þ 2þ 7Þ ¼ 0:83

Error rate ¼ ðCount10 þ Count01Þ
ðCount11 þ Count10 þ Count01 þ Count00Þ

¼ ð1þ 2Þ
ð8þ 1þ 2þ 7Þ ¼ 0:17

Sensitivity ¼ Count11

ðCount11 þ Count01Þ ¼
8

ð8þ 2Þ ¼ 0:8

Specificity ¼ Count00

ðCount10 þ Count00Þ ¼
7

ð1þ 7Þ ¼ 0:88

Table 7.5. Table showing an example of actual

and predicted values

Actual response Predicted response

True (1) True (1)

False (0) False (0)

False (0) False (0)

True (1) True (1)

True (1) False (0)

False (0) True (1)

True (1) True (1)

False (0) False (0)

True (1) True (1)

False (0) False (0)

False (0) False (0)

True (1) True (1)

True (1) False (0)

True (1) True (1)

False (0) False (0)

False (0) False (0)

True (1) True (1)

True (1) True (1)

Table 7.6. Contingency table summarizing correct and incorrect

predictions

Predicted Response

True (1) False (0)

Actual Response True (1) 8 (Count11) 2 (Count01)

False (0) 1 (Count10) 7 (Count00)
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In this example, the overall concordance is good with a 83% accuracy rate. The

model is slightly better at predicting negatives than predicting positives and this is

reflected in the higher specificity score.

The concordance gives an overall assessment of the accuracy of the model;

however, based on the objectives of the modeling exercise it may be necessary to

optimize on sensitivity or specificity if these are more important.

7.1.3 Regression

A regression model is a mathematical model that predicts a continuous response

variable. For example, a regression model could be developed to predict actual sales

volume or the temperature resulting from an experiment. Figure 7.3 shows two

scatterplots. These illustrate the relationship between two variables. The variable

on the y-axis is the response variable that is to be predicted. The variable on the x-

axis is the descriptor variable that will be used in the predictive model. It is possible

to see the relationship between the variables. In scatterplot a, as variable B increases,

variable A increases proportionally. This relationship closely follows a straight line,

as shown, and is called a linear relationship. In scatterplot b, as variable D increases,

variable C also increases. In this case, the increase in C is not proportional to the

increase in D and hence this type of relationship is called nonlinear. In Figure 7.4, it

is not possible to see any relationship between the variables F and E.

Response
variable A

Descriptor 
variable B

Response
variable C

Descriptor 
variable D

a b

Figure 7.3. Linear and nonlinear relationships between continuous variables

Response
variable E

Descriptor 
variable F

Figure 7.4. Scatterplot showing a difficult to discern relationship
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When the response value is continuous, one of the most informative ways of

looking at the relationship between the actual values and the predicted values is a

scatterplot, as shown in Figure 7.5. In the example in Figure 7.5, a line is drawn to

indicate where the points would lie if the predicted values exactly matched the actual

values, that is, the model was perfect. Good models have points lying close to this

line. In Figure 7.6, the relationship between the actual response variable and the

predicted value is shown. A line is drawn showing where the points should be placed

if the prediction was perfect. In this situation, the model generated is poor since the

actual predictions are scattered far from the line.

It is typical to use r2 (described in Section 5.4.3) to describe the quality of the

relationship between the actual response variable and the predicted response

variable. Values for r2 range between 0 and 1, with values closer to 1 indicating a

better fit. Figure 7.7 shows two scatterplots displaying the relationship between

predicted and actual response variables. The first scatterplot has an r2 of 0.97, as the

predicted values are close to the actual values, whereas the second scatterplot has an

r2 value of 0.07 since the model is poor.

The residual value is the difference between the actual value (y) and the

predicted value (ŷ). Although the r2 value provides a useful indication of the

accuracy of the model, it is also important to look closely at the residual values.

residual ¼ y� ŷ

Actual

Predicted

Figure 7.5. Scatterplot showing the results of a good prediction model

Predicted

Actual

Figure 7.6. Scatterplot showing the results of a poor prediction model
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In Table 7.7, a residual value has been calculated using the actual (y) and the

predicted (ŷ) values. It is important to analyze residuals based on a number of

factors, including the following:

� Response variable: There should be no trends in residual values over

the range of the response variable, that is, the distribution should be

random.

� Frequency distribution: The frequency distribution of the residual values

should follow a normal distribution.

� Observation order: There should be no discernable trends based on when

the observations were measured.

Figure 7.8 illustrates an analysis of residuals for a simple model. The model is

excellent as indicated by an r2 value of 0.98. The scatterplot showing the residuals

plotted against the response variable shows a reasonably even distribution of the

residuals. The frequency distribution of the residual values follows a normal

distribution. No trend can be seen in the residual values based on the order of the

observations.

Actual

r2 = 0.97

P
re

di
ct

ed

r2 = 0.07

Pr
ed

ic
te

d

Actual

Figure 7.7. Calculated r2 values for two prediction results

Table 7.7. Table showing example actual, predicted, and residual values

Actual response (y) Predicted response (ŷ) Residual

15.8 13.4 2.4

12.4 11.2 1.2

13.9 15.1 �1.2

8.4 8.3 0.1

6.6 5.2 1.4

16.4 16.9 �0.5
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7.1.4 Building a Prediction Model

Preparing the Data Set

It is important to prepare a data set prior to modeling as described in Chapter 3. This

preparation should include the operations outlined such as characterizing, cleaning,

and transforming the data. Particular care should be taken to determine whether

subsetting the data is needed to simplify the resulting models.

Designing a Modeling Experiment

Building a prediction model is an experiment. It will be necessary to build many

models for which you do not necessarily know which model will be the ‘best’. This

experiment should be appropriately designed to ensure an optimal result. There are

three major dimensions that should be explored:

� Different models: There are many different approaches to building predic-

tion models. A series of alternative models should be explored since all

models work well in different situations. The initial list of modeling

techniques to be explored can be based on the criteria previously defined

as important to the project.

� Different descriptor combinations: Models that are based on a single

descriptor are called simple models, whereas those built using a number of

descriptors are called multiple (or multivariate) models. Correlation analysis

as well as other statistical approaches can be used to identify which

descriptor variables appear to be influential. A subject matter expert or

business analyst may also provide insight into which descriptors would work

best within a model. Care should be taken, however, not to remove variables

too prematurely since interaction between variables can be significant within

a model. Systematically trying different descriptor combinations to see

which gives the best results can also be useful. In general, it is better to

have fewer descriptors than observations.

� Model parameters: Most predictive models can be optimized by fine tuning

different model parameters. Building a series of models with different

parameter settings and comparing the quality of each model will allow

you to optimize the model. For example, when building a neural network

model there are a number of settings, which will influence the quality of the

models built such as the number of cycles or the number of hidden layers.

These parameters will be described in detail in Section 7.5.7.

Evaluating the ‘best’ model depends on the objective of the modeling process

defined at the start of the project. Other issues, for example, the ability to explain

how a prediction was made, may also be important and should be taken into

account when assessing the models generated. Wherever possible, when two or

more models give comparable results, the simpler model should be selected.
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This concept of selecting the simplest model is often referred to as Occam’s

Razor.

Separating Test and Training Sets

The goal of building a predictive model is to generalize the relationship between

the input descriptors and the output responses. The quality of the model depends

on how well the model is able to predict correctly for a given set of input

descriptors. If the model generalizes the input/output relationships too much, the

accuracy of the model will be low. If the model does not generalize the

relationships enough, then the model will have difficulties making predictions for

observations not included in the data set used to build the model. Hence, when

assessing the quality of the model, it is important to use a data set to build the

model, which is different from the data set used to test the accuracy of the model.

There are a number of ways for achieving this separation of test and training set,

including the following:

� Holdout: At the start, the data set is divided up into a test and a training set.

For example, a random 25% of the data set is assigned to the test set and the

remaining 75% is assigned to the training set. The training set will be used to

build the model and the test set will be used to assess the accuracy of the

model.

� Cross validation: With cross validation methods, all observations in the

data set will be used for testing and training, but not at the same time. Every

observation will be assigned a predicted value and the difference between

the predicted and the actual responses for all observations will be used to

assess the model quality. To achieve this, it is necessary to assign a cross

validation percentage. This number is the percentage of the data set that

should be set aside for the test set at any one time. This percentage

determines the number of models that are built. For example, a 5% cross

validation will mean that, for each model, 5% of the data set will be set

aside for testing and the remaining 95% will be used to build the model. To

ensure that every example in the data set has a predicted value, 20 models

will need to be built. There will also be 20 test sets (the complement of each

training set), with no overlapping example between the different test sets. A

cross validation where every observation is a separate test set, with the

remaining observations used to build the models, is called a leave-one-out

cross-validation.

7.1.5 Applying a Prediction Model

Once a model has been built and verified, it can be used to make predictions. Along

with the presentation of the prediction, there should be some indications of the

confidence in this value. It may be important to also provide an explanation of how

the result was derived. Where the model is based on a simple and understandable
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formula, then this information may suffice. However, in many modeling techniques,

a rather complex and nonintuitive mathematical formula may have been used and

hence it is important to think about how to explain results in this situation. One

option is to present portions of the training data with similar observations. Another

alternative approach is to identify patterns or trends of observations that relate to the

applied data.

During the data preparation step of the process, the descriptors and/or the

response variables may have been translated to facilitate analysis. Once a

prediction has been made, the variables should be translated back into their

original format prior to presenting the information to the end user. For example,

the log of the variable Weight was taken in order to create a new variable

log(Weight) since the original variable was not normally distributed. This variable

was used as a response variable in a model. Before any results are presented to

the end user, the log(Weight) response should be translated back to Weight by

taking the inverse of the log and presenting the value using the original weight

scale.

A data set may have been divided or segmented into a series of simpler data sets

in the data preparation step. Different models were developed from each. When

applying these models to new data, some criteria will need to be established as to

which model the observation will be presented to. For example, a series of models

predicting house prices in different locations such as coastal, downtown, and

suburbs were built. When applying these models to a new data set, the observa-

tions should be applied only to the appropriate model. Where a new observation

can be applied to more than one model, some method for consolidating these

potentially conflicting results will need to be established. A popular choice is often

a voting scheme where the majority wins or the mean response for continuous

variables.

In addition to building different models based on different criteria, multiple

models may be built using different methods. Each model will provide a prediction

and from these individual model predictions a final prediction may be calculated that

is some function of these individual values. Techniques referred to as Bagging and

Boosting can be used to accomplish this and further information on these methods is

described in the further reading section of this chapter.

Once a model has been built, a useful exercise is to look at the observations that

were not correctly predicted. Attempting to understand any relationship within these

observations can be important in understanding whether there is a problem with

these observations. For example, if all incorrectly assigned observations were

measured using a particular device, then perhaps there was a problem with the

calibration of this measuring device. The observations may also share additional

common characteristics. Understanding the grouping of these observations using

techniques such as clustering may help to suggest why the model is unable to

correctly predict these examples. It may suggest that additional descriptors are

required in order to adequately predict this type of observation. It may also

suggest that these types of observations should not be presented to the model in the

future.
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7.2 SIMPLE REGRESSION MODELS

7.2.1 Overview

A simple regression model is a formula describing the relationship between one

descriptor variable and one response variable. These formulas are easy to explain;

however, the analysis is sensitive to any outliers in the data. The following section

presents methods for generating simple linear regression models as well as simple

nonlinear regression models.

7.2.2 Simple Linear Regression

Overview

Where there appears to be a linear relationship between two variables, a simple

linear regression model can be generated. For example, Figure 7.9 shows the

relationship between a descriptor variable B and a response variable A. The diagram

shows a high degree of correlation between the two variables. As descriptor variable

B increases, response variable A increases at the same rate. A straight line

representing a model can be drawn through the center of the points. A model that

would predict values along this line would provide a good model.

A straight line can be described using the formula:

y ¼ aþ bx

where a is the point of intersection with the y-axis and b is the slope of the line. This

is shown graphically in Figure 7.10.

In Table 7.8, a data set of observations from a grocery store contains

variables Income and Monthly sales. The variable Income refers to the yearly

income for a customer and the Monthly sales represent the amount that

particular customer purchases per month. This data can be plotted on a scatterplot

Response
variable A

Descriptor
variable B

Figure 7.9. Scatterplot illustrating a simple linear model
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y-axis

x-axis

y-intercept (a)

Slope (b = y/x)

y

x

Figure 7.10. Calculation of the slope of a straight line

Table 7.8. Table of the customer’s Income and

Monthly Sales

Income (x) Monthly Sales (y)

$15,000.00 $54.00

$16,000.00 $61.00

$17,000.00 $70.00

$18,000.00 $65.00

$19,000.00 $68.00

$20,000.00 $84.00

$23,000.00 $85.00

$26,000.00 $90.00

$29,000.00 $87.00

$33,000.00 $112.00

$35,000.00 $115.00

$36,000.00 $118.00

$38,000.00 $120.00

$39,000.00 $118.00

$41,000.00 $131.00

$43,000.00 $150.00

$44,000.00 $148.00

$46,000.00 $151.00

$49,000.00 $157.00

$52,000.00 $168.00

$54,000.00 $156.00

$52,000.00 $158.00

$55,000.00 $161.00

$59,000.00 $183.00

$62,000.00 $167.00

$65,000.00 $186.00

$66,000.00 $191.00
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and a linear relationship between Income and Monthly sales can be seen in

Figure 7.11.

To manually generate a linear regression formula, a straight line is drawn

through the points as shown in Figure 7.12. The point at which the line intercepts

with the y-axis is noted (approximately 20) and the slope of the line is calculated

(approximately 50/20,000 or 0.0025). For this data set an approximate formula for

the relationship between Income and Monthly sales is:

Monthly sales ¼ 20þ 0:0025� Income

Once a formula for the straight line has been established, predicting values for the y

response variable based on the x descriptor variable can be easily calculated. The

formula should only be used, however, for values of the x variable within the range

from which the formula was derived. In this example, Monthly sales should only
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Figure 7.11. Scatterplot of the customer’s Income vs Monthly Sales
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Figure 7.12. Calculating the slope of the line
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be predicted based on Income between $15,000 and $66,000. A prediction for a

customer’s Monthly sales based on their Income can be calculated. For a customer

with an Income of $31,000, the Monthly sales would be predicted as:

Monthly sales ðpredictedÞ ¼ 20þ 0:0025� $ 31; 000

Monthly sales ðpredictedÞ ¼ $ 97:50

Least Squares Method

Parameters a and b can be derived manually by drawing a best guess line

through the points in the scatterplot and then visually inspecting where the line

crosses the y-axis (a) and measuring the slope (b) as previously described.

The least squares method is able to calculate these parameters automatically.

The formula for calculating a slope is:

b ¼
Pn
i¼1

ðxi � �xÞðyi � �yÞ
Pn
i¼1

ðxi � �xÞ2

where xi and yi are the individual values for the descriptor variable (xi) and the

response (yi). �x is the mean of the descriptor variable x and �y is the mean of the

response variable y.

The formula for calculating the intercept with the y-axis is:

a ¼ �y� b�x

Using the data from Table 7.8, the slope and intercept are calculated using Table 7.9.

The average Income is $38,963 and the average Monthly sales is $124.22.

Slope ðbÞ ¼ 17; 435; 222=6; 724; 962; 963

Slope ðbÞ ¼ 0:00259

Intercept ðaÞ ¼ 124:22� ð0:00259� 38; 963Þ
Intercept ðaÞ ¼ 23:31

Hence the formula is:

Monthly sales ¼ 23:31þ 0:00259� Income

These values are close to the values calculated using the manual approach.

Most statistical packages will calculate a simple linear regression formula

automatically.

7.2.3 Simple Nonlinear Regression

In situations where the relationship between two variables is nonlinear, a simple way

of generating a regression equation is to transform the nonlinear relationship to a
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linear relationship using a mathematical transformation. A linear model

(as described above) can then be generated. Once a prediction has been made, the

predicted value is transformed back to the original scale. For example, in Table 7.10

two columns show a nonlinear relationship. Plotting these values results in the

scatterplot in Figure 7.13.

There is no linear relationship between these two variables and hence we cannot

calculate a linear model directly from the two variables. To generate a model, we

transform x or y or both to create a linear relationship. In this example, we transform

the y variable using the following formula:

y0 ¼ �1

y

Table 7.9. Calculation of linear regression with least squares method

Monthly ðxi � �xÞ
Income (x) Sales (y) ðxi � �xÞ ðyi � �yÞ ðyi � �yÞ ðxi � �xÞ2

$15,000.00 $54.00 �23,963 �70.22 1,682,733 574,223,594

$16,000.00 $61.00 �22,963 �63.22 1,451,770 527,297,668

$17,000.00 $70.00 �21,963 �54.22 11,908,801 482,371,742

$18,000.00 $65.00 �20,963 �59.22 1,241,473 439,445,816

$19,000.00 $68.00 �19,963 �56.22 1,122,362 398,519,890

$20,000.00 $84.00 �18,963 �40.22 762,733 359,593,964

$23,000.00 $85.00 �15,963 �39.22 626,103 254,816,187

$26,000.00 $90.00 �12,963 �34.22 443,621 168,038,409

$29,000.00 $87.00 �9,963 �37.22 370,844 99,260,631

$33,000.00 $112.00 �5,963 �12.22 72,881 35,556,927

$35,000.00 $115.00 �3,963 �9.22 36,547 15,705,075

$36,000.00 $118.00 �2,963 �6.22 18,436 8,779,150

$38,000.00 $120.00 �963 �4.22 4,066 927,298

$39,000.00 $118.00 37 �6.22 �230 1,372

$41,000.00 $131.00 2,037 6.78 13,807 4,149,520

$43,000.00 $150.00 4,037 25.78 104,066 16,297,668

$44,000.00 $148.00 5,037 23.78 119,770 25,371,742

$46,000.00 $151.00 7,037 26.78 188,436 49,519,890

$49,000.00 $157.00 10,037 32.78 328,992 100,742,112

$52,000.00 $168.00 13,037 43.78 570,733 169,964,335

$54,000.00 $156.00 15,037 31.78 477,844 226,112,483

$52,000.00 $158.00 13,037 33.78 440,362 169,964,335

$55,000.00 $161.00 16,037 36.78 589,807 257,186,557

$59,000.00 $183.00 20,037 58.78 1,177,733 401,482,853

$62,000.00 $167.00 23,037 42.78 985,473 530,705,075

$65,000.00 $186.00 26,037 61.78 1,608,510 677,927,298

$66,000.00 $191.00 27,037 66.78 1,805,473 731,001,372

Totals 17,435,222 6,724,962,963
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We now generate a new column, y0 (Table 7.11). If we now plot x against y0, we can
see that we now have an approximate linear relationship (see Figure 7.14).
Using the least squares method described previously, an equation for the linear
relationship between x and y0 can be calculated. The equation is:

y0 ¼ �0:307þ 0:018� x

Using x we can now calculate a predicted value for the transformed value of y (y0).
Tomap this newprediction of y0 wemust nowperform an inverse transformation,
that is, �1=y0. In Table 7.12, we have calculated the predicted value for y0 and

Table 7.10. Table of observations

for variables x and y

x y

3 4

6 5

9 7

8 6

10 8

11 10

12 12

13 14

13.5 16

14 18

14.5 22

15 28

15.2 35

15.3 42

42

23

4

32.5

13.5

3 6.1 9.2 12.2 15.3
x

y

Figure 7.13. Scatterplot showing the nonlinear relationship between x and y
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transformed the number to Predicted y. The Predicted y values are close to the
actual y values.

Some common nonlinear relationships are shown in Figure 7.15. The following

transformation may create a linear relationship for the charts shown:

� Situation a: Transformations on the x, y or both x and y variables such as log

or square root.

� Situation b: Transformation on the x variable such as square root, log or

�1=x.

Table 7.11. Transformation of y to create

a linear relationship

X y y0 ¼ �1=y

3 4 �0.25

6 5 �0.2

9 7 �0.14286

8 6 �0.16667

10 8 �0.125

11 10 �0.1

12 12 �0.08333

13 14 �0.07143

13.5 16 �0.0625

14 18 �0.05556

14.5 22 �0.04545

15 28 �0.03571

15.2 35 �0.02857

15.3 42 �0.02381

–0

–0.1

–0.1

–0.2

–0.2
3 6.1 9.2 12.2 15.3

x

y′

Figure 7.14. Scatterplot illustrating the new linear relationship
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� Situation c: Transformation on the y variable such as square root, log or

�1=y.

This approach to creating simple nonlinear models can only be used when there is a

clear transformation of the data to a linear relationship. Other methods described

later in this chapter can be used where this is not the case.

7.3 K-NEAREST NEIGHBORS

7.3.1 Overview

The k-Nearest Neighbors (kNN) method provides a simple approach to calculating

predictions for unknown observations. It calculates a prediction by looking at similar

observations and uses some function of their response values to make the prediction,

such as an average. Like all prediction methods, it starts with a training set but

instead of producing a mathematical model it determines the optimal number of

similar observations to use in making the prediction.

Table 7.12. Prediction of y using a nonlinear model

x y y0 ¼ �1=y Predicted y0 Predicted y

3 4 �0.25 �0.252 3.96

6 5 �0.2 �0.198 5.06

9 7 �0.143 �0.143 6.99

8 6 �0.167 �0.161 6.20

10 8 �0.125 �0.125 8.02

11 10 �0.1 �0.107 9.39

12 12 �0.083 �0.088 11.33

13 14 �0.071 �0.070 14.28

13.5 16 �0.062 �0.061 16.42

14 18 �0.056 �0.052 19.31

14.5 22 �0.045 �0.043 23.44

15 28 �0.036 �0.033 29.81

15.2 35 �0.029 �0.023 33.45

15.3 42 �0.024 �0.028 35.63

a b c

y

x

y

x

y

x

Figure 7.15. Nonlinear scenarios
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The scatterplot in Figure 7.16 is based on a data set of cars and will be used to

illustrate how kNN operates. Two variables that will be used as descriptors are

plotted on the x- and y-axis (Weight and Acceleration). The response variable is a

dichotomous variable (Fuel Efficiency) that has two values: good and poor fuel

efficiency. The darker shaded observations have good fuel efficiency and the lighter

shaded observations have poor fuel efficiency.

During the learning phase, the best number of similar observations is chosen (k).

The selection of k is described in the next section. Once a value for k has been

determined, it is now possible to make a prediction for a car with unknown fuel

efficiency. To illustrate, two cars with unknown fuel efficiency are presented to the

kNN model in Figure 7.17: A and B. The Acceleration and Weight of these

observations are known and the two observations are plotted alongside the training

set. Based on the optimal value for k, the k most similar observations to A and B are

identified in Figure 7.18. For example, if k was calculated to be 10, then the 10 most

similar observations from the training set would be selected. A prediction is made
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Figure 7.16. Scatterplot showing fuel efficiency classifications
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Figure 7.17. Two new observations (A and B) plotted alongside existing data
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for A and B based on the response of the nearest neighbors. In this case, observation

Awould be predicted to have good fuel efficiency since its neighbors all have good

fuel efficiency. Observation B would be predicted to have poor fuel efficiency since

its neighbors all have poor fuel efficiency.

kNN has a number of advantages:

� Noise: kNN is relatively insensitive to errors or outliers in the data.

� Large sets: kNN can be used with large training sets.

kNN has the following disadvantage:

� Speed: kNN can be computationally slow when it is applied to a new data set

since a similar score must be generated between the observations presented

to the model and every member of the training set.

7.3.2 Learning

A kNN model uses the k most similar neighbors to the observation to calculate a

prediction. Where a response variable is continuous, the prediction is the mean of the

nearest neighbors. Where a response variable is categorical, the prediction could be

presented as a mean or a voting scheme could be used, that is, select the most

common classification term.

In the learning phase, three items should be determined:

� Best similarity method: As described in Chapter 6, there are many methods

for determining whether two observations are similar. For example, the

Euclidean or the Jaccard distance. Prior to calculating the similarity, it is

important to normalize the variables to a common range so that no variables

are considered to be more important.

� k: This is the number of similar observations that produces the best

predictions. If this value is too high, then the kNN model will overgeneralize.

If the value is too small, it will lead to a large variation in the prediction.

Good fuel efficiency

Poor fuel efficiency
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Figure 7.18. Looking at similar observations to predict values for A and B
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� Combination of descriptors: It is important to understand which combina-

tion of descriptors results in the best predictions.

The selection of k is performed by adjusting the values of k within a range and

selecting the value that gives the best prediction. To ensure that models generated

using different values of k are not overfitting, a separate training and test set should

be used.

To assess the different values for k, the sum of squares of error (SSE) evaluation

criteria will be used:

SSE ¼
Xk
i¼1

ðŷi � �yÞ2

Smaller SSE values indicate that the predictions are closer to the actual values. To

illustrate, a data set of cars will be used and a model built to test the car fuel

efficiency (MPG). The following variables will be used as descriptors within the

model: Cylinders, Displacement, Horsepower, Weight, Acceleration, Model

Year and Origin. The Euclidean distance calculation was selected to represent the

distance between observations. To calculate an optimal value for k, different values

of k were selected between 2 and 20. To test the models built with the different

values of k, a 10% cross-validation split was made to ensure that the models were

built and tested with different observations. The SSE evaluation criterion was used to

assess the quality of each model. In this example, the value of k with the lowest SSE

value is 6 and this value is selected for use with the kNN model (see Table 7.13).

Table 7.13. Table for detecting the best values for k

K SSE

2 3,533

3 3,414

4 3,465

5 3,297

6 3,218

7 3,355

8 3,383

9 3,445

10 3,577

11 3,653

12 3,772

13 3,827

14 3,906

15 3,940

16 3,976

17 4,058

18 4,175

19 4,239

20 4,280
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7.3.3 Predicting

Once a value for k has been set in the training phase, the model can now be used

to make predictions. For example, an observation x has values for the descriptor

variables but not for the response. Using the same technique for determining

similarity as used in the model building phase, observation x is compared

against all observations in the training set. A distance is computed between x

and each training set observation. The closest k observations are selected and a

prediction is made, for example, using the average value.

The observation (Dodge Aspen) in Table 7.14 was presented to the kNN model

built to predict car fuel efficiency (MPG). The Dodge Aspen observation was

compared to all observations in the training set and an Euclidean distance was

computed. The six observations with the smallest distance scores are selected, as

shown in Table 7.15. The prediction is the average of these top six observations, that is,

19.5. In Table 7.16, the cross validated prediction is shown alongside the actual

value.

Table 7.14. Observation to be predicted

Displace- Horse- Accele- Model

Names Cyclinders ment power Weight ration Year Origin

Dodge Aspen 6 225 90 3,381 18.7 1980 1

Table 7.15. Table of similar observations

Displace- Horse- Accele- Model

Names Cyclinders ment power Weight ration Year Origin MPG

Chrysler

Lebaron 6 225 85 3,465 16.6 1981 1 17.6

Salon

Mercury

Zephyr 6 6 200 85 2,990 18.2 1979 1 19.8

Ford Granada

GL 6 200 88 3,060 17.1 1981 1 20.2

Pontiac

Phoenix LJ 6 231 105 3,535 19.2 1978 1 19.2

AMC 6 232 90 3,210 17.2 1978 1 19.4

Concord

Plymouth

Volare 6 225 100 3,430 17.2 1978 1 20.5

Average 19.5
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The training set of observations can be used to explain how the prediction was

reached in addition to assessing the confidence in the prediction. For example, if the

response values for these observations were all close this would increase the

confidence in the prediction.

7.4 CLASSIFICATION AND REGRESSION TREES

7.4.1 Overview

In Chapter 6, decision trees were described as a way of grouping observations

based on specific values or ranges of descriptor variables. For example, the tree in

Figure 7.19 organizes a set of observations based on the number of cylinders

(Cylinders) of the car. The tree was constructed using the variable MPG

(miles per gallon) as the response variable. This variable was used to guide how the

Table 7.16. Actual vs predicted values

Displace- Horse- Accele- Model Actual Predicted

Names Cyclinders ment power Weight ration Year Origin MPG MPG

Dodge 6 225 90 3,381 18.7 1980 1 19.1 19.5

Aspen

Size = 392

Size = 189
Av. = 17.36

Size = 203
Good

Size = 86
Moderate

Size = 103
Poor

Cylinders < 5 Cylinders ≥ 5

Cylinders < 7 Cylinders ≥ 7

A

B C

Figure 7.19. Decision tree classifying cars
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tree was constructed, resulting in groupings that characterize car fuel effi-

ciency. The terminal nodes of the tree (A, B, and C) show a partitioning of cars

into sets with good (node A), moderate (node B), and poor (node C) fuel

efficiencies.

Each terminal node is a mutually exclusive set of observations, that is, there is

no overlap between nodes A, B, or C. The criteria for inclusion in each of these

nodes are defined by the set of branch points used to partition the data. For example,

terminal node B is defined as observations where Cylinders are greater or equal to

five and Cylinders are less than seven.

Decision trees can be used as both classification and regression prediction

models. Decision trees that are built to predict a continuous response variable are

called regression trees and decision trees built to predict a categorical response are

called classification trees. During the learning phase, a decision tree is constructed

as before using the training set. Predictions in decision trees are made using the

criteria associated with the terminal nodes. A new observation is assigned to a

terminal node in the tree using these splitting criteria. The prediction for the new

observation is either the node classification (in the case of a classification tree) or the

average value (in the case of a regression tree). In the same way as other prediction

modeling approaches, the quality of the prediction can be assessed using a separate

training set.

7.4.2 Predicting Using Decision Trees

In Figure 7.20, a set of cars is shown on a scatterplot. The cars are defined as having

good fuel efficiency or poor fuel efficiency. Those with good fuel efficiency are

shaded darker than those with poor fuel efficiency. Values for the Acceleration and

Weight variables are shown on the two axes.

A decision tree is generated using the car fuel efficiency as a response variable.

This results in a decision tree where the terminal nodes partition the set of
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Figure 7.20. Distribution of cars classified by fuel efficiency
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observations according to ranges in the descriptor variables. One potential partition

of the data is shown in Figure 7.21. The prediction is then made based on

the observations used to train the model that are within the specific region, such as

the most popular class or the average value (see Figure 7.22).

When an observation with unknown fuel efficiency is presented to the

decision tree model, it is placed within one of the regions. The placement is

based on the observation’s descriptor values. Two observations (A and B) with

values for Acceleration and Weight, but no value for whether the cars have

good or poor fuel efficiency, are presented to the model. These observations are

shown on the scatterplot in Figure 7.23. Observation A will be predicted to have

good fuel efficiency whereas observation B will be predicted to have poor fuel

efficiency.
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Figure 7.21. Dividing cars into regions based on classifications
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Figure 7.22. Assigning prediction categories to regions
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Decision trees are useful for prediction since the results are easy to explain.

Unfortunately, these types of models can be quite sensitive to any noise in the

training set.

The same parameters used to build the tree (described in Section 6.4) can be set

to build a decision tree model, that is, different input descriptor combinations and

different stopping criteria for the tree.

7.4.3 Example

The decision tree in Figure 7.24 was built from a data set of 352 cars, using the

continuous variable MPG to split the observations. The average value shown in the

diagram is the MPG value for the set of observations. The nodes were not split

further if there were less than 30 observations in the terminal node.

In Table 7.17, a set of 36 observations not used in building the tree are shown

with both an actual and a predicted value. The final column indicates the node in the

tree that was used to calculate the prediction. For example, the AMC Gremlin with a

Horsepower of 90 andWeight of 2648 will fit into a region defined by node D in the

tree. Node D has an average MPG value of 23.96 and hence this is the predicted

MPG value. The table also indicates the actual MPG values for the cars tested.

The examples used in this section were simple in order to describe how

predictions can be made using decision trees. It is usual to use larger numbers of

descriptor variables. Also, building a series of models based on changing the

terminating criteria can also be useful in optimizing the decision tree models. The

further reading section of chapter 6 provides references to additional methods for

optimizing decision trees.

The terminal nodes in the decision trees can be described as rules, (as shown in

Section 6.3) which can be useful in explaining how a prediction was obtained. In

addition, looking at the data that each rule is based on allows us to understand the

degree of confidence with which each prediction was made. For example, the
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Figure 7.23. Prediction of two unknown observations
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Table 7.17. Predictions based on terminal node averages

MPG MPG

Names Horsepower Weight (Actual) (Predicted) Rule ID

AMC Gremlin 90 2,648 21 23.96 D

AMC Matador 120 3,962 15.5 18.94 H

AMC Rebel SST 150 3,433 16 14.88 F

AMC Spirit DL 80 2,670 27.4 23.96 D

BMW 2002 113 2,234 26 19.96 G

Buick Century Limited 110 2,945 25 19.96 G

Buick Skylark 84 2,635 26.6 23.96 D

Chevrolet Chevette 63 2,051 30.5 34.34 A

Chevrolet Impala 165 4,274 13 13.45 I

Chevrolet Monza 2þ 2 110 3,221 20 19.96 G

Chevrolet Nova 100 3,336 15 22.14 E

Chrysler Lebaron 92 2,585 26 22.14 E

Medallion

Datsun 310 GX 67 1,995 38 30.59 C

Datsun b210 67 1,950 31 30.59 C

Dodge Aries 92 2,620 25.8 22.14 E

Wagon (SW)

Dodge Aspen 110 3,620 18.6 19.96 G

Dodge Colt Hatchback

Custom 80 1,915 35.7 28.38 B

Fiat 124 TC 75 2,246 26 30.59 C

Ford Fairmont (man) 88 2,720 25.1 23.96 D

Ford Fiesta 66 1,800 36.1 30.59 C

Ford Gran Torino 152 4,215 14.5 13.45 I

Ford Mustang II 2þ 2 89 2,755 25.5 23.96 D

Ford Pinto 80 2,451 26 28.38 B

Ford Pinto Runabout 86 2,226 21 28.38 B

Honda Accord LX 68 2,135 29.5 30.59 C

Maxda GLC Deluxe 65 1,975 34.1 34.34 A

Mercury Marquis

Brougham 198 4,952 12 13.45 I

Nissan Stanza XE 88 2,160 36 28.38 B

Plymouth Reliant 84 2,490 27.2 28.38 B

Plymouth Valiant 100 3,233 22 22.14 E

Plymouth Volare 100 3,430 20.5 22.14 E

Pontiac Catalina 175 4,385 14 13.45 I

Pontiac Safari (SW) 175 5,140 13 13.45 I

Toyota Corona 95 2,372 24 22.14 E

Mark II

Toyota Tercel 62 2,050 37.7 34.34 A

Volvo 245 102 3,150 20 19.96 G
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number of observations and the distribution of the response variable can help to

understand how much confidence we should have in the prediction.

7.5 NEURAL NETWORKS

7.5.1 Overview

A neural network is a mathematical model that makes predictions based on a series

of input descriptor variables. Like all prediction models, it uses a training set of

examples to generate the model. This training set is used to generalize the

relationships between the input descriptor variables and the output response

variables. Once a neural network has been created, it can then be used to

make predictions. The following sections describe what neural networks look like,

how they learn and how they make predictions. An example is presented illustrating

how neural networks can be optimized.

7.5.2 Neural Network Layers

A neural network comprises of a series of independent processors or nodes. These

nodes are connected to other nodes and are organized into a series of layers as shown

in Figure 7.25. In this example, each node is assigned a letter from A to L and

organized into three layers. The input layer contains a set of nodes (A, B, C, D, E, F).

Each node in the input layer corresponds to a numeric input descriptor variable. In

this case, there are six input descriptor variables. The layer shown in black is the

output layer containing nodes K and L. Each output node corresponds to an output

response variable (two in this example). Between the input layer and the output layer

is a hidden layer of nodes (G, H, I, J). In this example, there is just a single hidden

layer comprised of four nodes. The number of hidden layers normally range from 0

Input layer Hidden layer Output layer

Input node

Hidden node

Output node

A

B

C

D

E

F

G

H

I

K

L

J

Figure 7.25. Topology of a neural network
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to 5. Each node in the network is often connected to all nodes in the layers adjacent

to the node. For example, node G is connected to A, B, C, D, E, F in the input layer

and nodes K and L in the output layer.

Every connection, such as between A and G, has a number or weight associated

with it. Prior to learning, the weights are assigned random values usually in the range

�1 to þ1. These weights will be adjusted during the learning process. In

Figure 7.26, a portion of the neural network is displayed, showing node G along with

the nodes connected to it. Random numbers between�1 andþ1 are assigned to each

connection. For example, the connection between A and G is randomly assigned a

weight of 0.8.

7.5.3 Node Calculations

Each node in the neural network calculates a single output value based on a set of

input values (I1 to In), as shown in Figure 7.27. For nodes in the first hidden layer, the

input values correspond to the input descriptor values.

Each input connection has a weight and is assigned a value. The total input of

the node is calculated using these weights and values. For example, the following

formula for calculating the combined input is often used:

Input ¼
Xn
j¼1

Ijwj

where Ij are the individual input values and wj are the individual weights.

In this example, the observation in Table 7.18 is presented to the network

with values normalized between 0 and 1. The observation has six descriptor

variables and two response variables. The six descriptor variables are labeled V1

to V6 and the two response variables are labeled V7 and V8. The input descriptor

variables are presented to the neural network, as shown in Figure 7.28. V1 is

presented to node A, V2 to node B, etc. These inputs all feed into node G. The

0.8

–0.2
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–0.1

–0.4
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B

C

D

E

F

G

Figure 7.26. Weights associated with each connection
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combined input value for node G is calculated using the input values and the

weights:

InputG ¼
Xn
j¼1

Ijwj

InputG ¼ ð1� 0:8Þ þ ð0��0:2Þ þ ð1� 0:7Þ þ ð1� 0:5Þ
þ ð0:5��0:1Þ þ ð0:8��0:4Þ

InputG ¼ 1:63

For a number of reasons, this combined input value is now processed further using

an activation function. This function will generate the output for the node. Common

activation functions include:

Sigmoid : Output ¼ 1

1þ e�Input

Tanh : Output ¼ eInput � e�Input

eInput þ e�Input

Table 7.18. Example observation with six inputs (descriptors) and two outputs (responses)

Descriptor variables Response variables

V1 V2 V3 V4 V5 V6 V7 V8

1 0 1 1 0.5 0.8 0.4 1

Input Activation

I1

I2

In

….

Output

w1

w2

wn

A

B

C

D

E

F

G

H

I

K

L

J

Figure 7.27. Calculation of node output
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These types of activation functions allow the neural network to develop nonlinear

models. The sigmoid function will produce an output between 0 andþ1 and the tanh

function will produce an output between �1 and þ1.

Using the above example with the sigmoid activation function, the following

output from the neural network node G would be generated:

OutputG ¼ 1

1þ e�InputG

OutputG ¼ 1

1þ e�1:63

OutputG ¼ 0:84

7.5.4 Neural Network Predictions

A neural network makes a prediction based on the input descriptor variables

presented to the network and the weights associated with connections in the

network. For example, Figure 7.29 shows an observation presented to the network.

The first hidden layer uses these input values along with the weights associated

with the connections between the input nodes and the hidden layer nodes to calculate

an output (as described previously). Each of these outputs is then presented to the

nodes in the next layer. These values are now inputs to the next layer. In this neural

network, there is only one hidden layer and so the outputs from nodes G, H, I, J are

now the inputs to nodes K and L. These input values are combined with the weights

of the connections. Nodes K and L each produce a single output corresponding to the

two response variables. These values are the predictions. The process of taking a set
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Figure 7.28. Presenting input values to the neural network
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of input descriptors and calculating one or more output responses is called feed

forward.

Initially, all the weights in the neural network are randomly assigned and hence

these initial predictions will be meaningless. These weights will be adjusted during

the learning process resulting in predictions with greater predictive accuracy.

7.5.5 Learning Process

All input/output values in the training set should be normalized prior to training the

network. This is to avoid introducing unnecessary bias resulting from variables

being measured on different scales. The learning process proceeds by taking random

examples from the training set, which are then presented to the neural network. The

neural network then makes a prediction. The neural network will learn by adjusting

the weights according to how well the predictions match the actual response values.

The observation from Table 7.18 is presented to the neural network and the network

calculates predictions for the two response variables. Node K generates a prediction

for response variable V7 and node L generates a prediction for response variable V8,

as shown in Figure 7.30.

In this example, the neural network has not started to learn and hence the

predictions are not close to the actual response values. The error or difference

between the actual responses and the predicted responses is calculated. The neural

network then attempts to learn by adjusting the weights of the network using this

error. Once the weights have been adjusted, the network is presented with another

random example from the training set and the weights are again adjusted based on

this new example. As more and more examples are presented to the network, the

error between the predicted responses and the actual responses gets smaller. At a

certain point, the learning process stops and the network is ready to be used for

prediction. Figure 7.31 illustrates the learning process.
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Figure 7.29. Input variables presented to network
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7.5.6 Backpropagation

One of the most commonly used techniques for learning in neural networks is called

backpropagation. In order for the weights of the neural network connections to be

adjusted, an error first needs to be calculated between the predicted response and the

actual response. The following formula is commonly used for the output layer:

Errori ¼ Outputið1� OutputiÞðActuali � OutputiÞ
where Errori is the error resulting from node i, Outputi is the predicted response

value and Actuali is the actual response value.

0.4 (V7)

1 (V8)

0.8

0.3

Predictions Actual
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1

0.5
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Figure 7.30. Comparing predicted against actual values

1. Select a 
random
observation

2. Feed forward using 
input descriptors

3. Compare prediction 
with actual response

4. Adjust the 
weights based on 
the error

Figure 7.31. Learning process in neural networks
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For example, the errors calculated for nodes K and L are:

Node K:

ErrorK ¼ OutputKð1� OutputKÞðActualK � OutputKÞ
ErrorK ¼ 0:8� ð1� 0:8Þ � ð0:4� 0:8Þ
ErrorK ¼ �0:064

Node L:

ErrorL ¼ OutputLð1� OutputLÞðActualL � OutputLÞ
ErrorL ¼ 0:3� ð1� 0:3Þ � ð1� 0:3Þ
ErrorL ¼ 0:147

Once the error has been calculated for the output layer, it can now be

backpropagated, that is, the error can be passed back through the neural network.

To calculate an error value for the hidden layers, the following calculation is

commonly used:

Errori ¼ Outputið1� OutputiÞ
Xn
j¼1

Errorjwij

where Errori is the error resulting from the hidden node, Outputi is the value of the

output from the hidden node, Errorj is the error already calculated for the jth node

connected to the output and wij is the weight on this connection.

Figure 7.32 illustrates how the errors are calculated for nodes other than the

output layer. After calculating the error for nodes K and L, the error of the hidden

layer can be calculated. Node G is used as an example for a hidden layer error

calculation as shown below.

Node G:

ErrorG ¼ OutputGð1� OutputGÞððErrorK � wGKÞ þ ðErrorL � wGLÞÞ
ErrorG ¼ 0:84� ð1� 0:84Þ � ðð�0:064� 0:3Þ þ ð0:147��0:7ÞÞ
ErrorG ¼ 0:0112

An error should be calculated for all output and hidden layer nodes. Errors for

hidden layer nodes use errors from the nodes their output is attached to, which have

G

K

L

0.4 (V7)

1 (V8)

0.8

0.3

Predictions Actual
0.3

–0.7

Error = –0.064

Error = 0.147

Output = 0.84

Figure 7.32. Comparing errors in the output layer
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already been calculated. Once the error has been propagated throughout the neural

network, the error values can be used to adjust the weights of the connections using

the formula:

wij ¼ wij þ l� Errorj � Outputi

where wij is the weight of the connection between nodes i and j, Errorj is the

calculated error for node j, Outputi is the computed output from node i, and l is the

predefined learning rate. This takes a value between 0 and 1. The smaller

the learning rate value, the slower the learning process. Often a learning rate is set

high initially and then reduced as the network fine-tunes the weights.

To calculate the new weight for the connection between G and K where the

learning rate (l) has been set to 0.2, the following formula is used:

wGK ¼ wGK þ l� ErrorK � OutputG

wGK ¼ 0:3þ 0:2��0:064� 0:84

wGK ¼ 0:276

In this example, the weight has been adjusted lower. The remaining weights in the

network are adjusted and the process continues with another example presented to

the neural network causing the weights of all connections in the network to be

adjusted based on the calculated error values.

The following example works through the entire process of how a neural

network learns from a single training example. Figure 7.33 shows the first eight steps

of the learning process. A normalized training set of observations will be used in the

learning process. This training set has three input descriptor variables (I1, I2, and I3)

and one output response variable (O). Five observations are shown (i, ii, iii, iv, and

v). In step 1, a neural network is set up, which has three input nodes (A, B, and C)

corresponding to each of the three input variables and one output node (F), since

there is only one output response variable. The neural network has a single hidden

layer consisting of two nodes (D and E). All nodes from the input layer are

connected to the two hidden layer nodes. These two nodes are in turn connected to

the output layer, which is the single node F in this example. In addition to setting up

the structure or topology of the network, random numbers between �1 and þ1 are

assigned as weights to each of the connections. For example, the weight from node A

to node D (wAD) is 0.4 and the weight from node E to F (wEF) is 0.1.

In step 2, a random observation is selected (v) and is presented to the network as

shown. The value of I1 (0) is presented to A, the value of I2 (1) is presented to B, and

the value of I3 (1) is presented to C. In step 3, these inputs in combination with the

connection weights are used to calculate the output from the hidden nodes D and E.

To calculate these outputs, nodes D and E first combine the inputs and then use an

activation function to derive the outputs. The combined inputs to nodes D and E are

the weighted sum of the input values:

InputD ¼ I1 � wAD þ I2 � wBD þ I3 � wCD

InputD ¼ ð0� 0:4Þ þ ð1��0:6Þ þ ð1� 0:9Þ ¼ 0:3
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InputE ¼ I1 � wAE þ I2 � wBE þ I3 � wCE

InputE ¼ ð0� 0:8Þ þ ð1� 0:2Þ þ ð1��0:4Þ ¼ �0:2

The outputs from D and E use these combined input values within an activation

function to generate the output values. In this case, we will use a sigmoid activation

function:

OutputD ¼ 1

1þ e�InputD
¼ 1

1þ e�0:3
¼ 0:57

OutputE ¼ 1

1þ e�InputE
¼ 1

1þ e0:2
¼ 0:45

In step 4, the outputs from D and E are used as inputs to F. The total input is

calculated by combining these values with the weights of the connections:

InputF ¼ OutputD � wDF þ OutputE � wEF

InputF ¼ ð0:57��0:5Þ þ ð0:45� 0:1Þ ¼ �0:24
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Figure 7.33. Process of learning by adjusting weights
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Next, this input is converted to an output value using the activation function:

OutputF ¼ 1

1þ e�InputF
¼ 1

1þ e0:24
¼ 0:44

In step 5, the value calculated as the output from node F is now compared to the

actual output value. An error value is computed:

ErrorF ¼ OutputFð1� OutputFÞðActualF � OutputFÞ
ErrorF ¼ 0:44ð1� 0:44Þð0� 0:44Þ ¼ �0:108

In step 6, using the error calculated for node F, an error is calculated for nodes D and E:

ErrorD ¼ OutputDð1� OutputDÞðErrorF � wDFÞ
ErrorD ¼ 0:57ð1� 0:57Þð�0:108��0:5Þ ¼ 0:013

ErrorE ¼ OutputEð1� OutputEÞðErrorF � wEFÞ
ErrorE ¼ 0:45ð1� 0:45Þð�0:108� 0:1Þ ¼ �0:003

In step 7, these error calculations for nodes D, E, and F can now be used to calculate

the new weights for the network. A constant learning rate (l) of 0.5 will be used in

the following equations:

wij ¼ wij þ l� Errorj � Outputi

wAD ¼ 0:4þ 0:5� 0:013� 0 ¼ 0:4

wAE ¼ 0:8þ 0:5��0:003� 0 ¼ 0:8

wBD ¼ �0:6þ 0:5� 0:013� 1 ¼ �0:594

wBE ¼ 0:2þ 0:5��0:003� 1 ¼ 0:199

wCD ¼ 0:9þ 0:5� 0:013� 1 ¼ 0:907

wCE ¼ �0:4þ 0:5��0:003� 1 ¼ �0:402

wDF ¼ �0:5þ 0:5��0:108� 0:57 ¼ �0:531

wEF ¼ 0:1þ 0:5��0:108� 0:45 ¼ 0:076

The weights in the network have been adjusted and a new random example is

presented to the network in step 8 (observation iii) and the process of learning

continues.

7.5.7 Using Neural Networks

When learning from a training set, there are a number of parameters to adjust that

influence the quality of the prediction, including the following:

� Hidden layers: Both the number of hidden layers and the number of nodes

in each hidden layer can influence the quality of the results. For example, too

few layers and/or nodes may not be adequate to sufficiently learn and too

many may result in overtraining the network.
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� Number of cycles: A cycle is where a training example is presented and the

weights are adjusted. The number of examples that get presented to the

neural network during the learning process can be set. The number of cycles

should be set to ensure that the neural network does not overtrain. The

number of cycles is often referred to as the number of epochs.

� Learning rate: Prior to building a neural network, the learning rate should

be set and this influences how fast the neural network learns.

Neural networks have a number of advantages:

� Linear and nonlinear models: Complex linear and nonlinear relationships

can be derived using neural networks.

� Flexible input/output: Neural networks can operate using one or more

descriptors and/or response variables. They can also be used with categorical

and continuous data.

� Noise: Neural networks are less sensitive to noise than statistical regression

models.

The major drawbacks with neural networks are:

� Black box: It is not possible to explain how the results were calculated in

any meaningful way.

� Optimizing parameters: There are many parameters to be set in a neural

network and optimizing the network can be challenging, especially to avoid

overtraining.

7.5.8 Example

When building a neural network, it is important to optimize the network to generate

a good prediction at the same time as ensuring the network is not overtrained. The

following example illustrates the use of neural networks in prediction using the

automobile example. A 10% cross validation method was used to assess the models

built.

Neural networks were built using the following parameters:

Inputs: Horsepower, Weight, Model Year, and Origin

Output: MPG

Hidden layers: 2

Learning rate: 0.2

Figure 7.34 illustrates the learning process. The neural network was run for 5,000,

10,000, and 20,000 cycles. The scatterplot shows the relationship between the actual

values and the predictions along with the r2 values for these relationships. It can be

seen from the three scatterplots that as the number of cycles increases, the accuracy

of the model increases. This can also be seen in Figure 7.35. The chart has plotted a

series of models generated using different numbers of cycles. The x-axis shows the
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number of cycles used for each model and the y-axis shows the cross-validated r2

value for each model. It illustrates how the neural network rapidly learns initially. As

the network approaches the optimal accuracy, it learns more slowly. Eventually the

network will start to overlearn and will not be able to generalize as well for examples

outside the training set. This can be tested using a separate test set. If the predictive

accuracy of the neural network starts to decline, the network is overtraining.

To identify an optimal neural network for prediction, an experiment is designed

to test three parameters:

� The inputs: All combinations of descriptors were tested from two to seven.

The descriptors used were Cylinders (C), Displacement (D), Weight (W),

Acceleration (A), Model Year (MY), and Origin (O). For example, where

the inputs were Weight, Model Year, and Origin these were designated as

W, MY, O.

� The number of hidden layers: One and two hidden layers were tested to

observe the impact on the predictive accuracy of the model. A more

extensive experiment may test additional neural network topologies.
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Figure 7.34. Prediction results using different numbers of cycles
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� The number of cycles: For each combination of inputs and number of

hidden layers, a series of models were built using 1,000, 5,000, 10,000, and

25,000 cycles. These values were selected in order to understand the curve as

shown in Figure 7.35. As the number of cycles increases, the predictive

accuracy of the model increases towards an optimal accuracy.

Table 7.19 shows the r2 values for different combinations of the three parameters.

The objective when selecting the parameters is to keep the model as simple as

possible with the fewest number of inputs and the smallest number of hidden layers

at the same time as ensuring the model has not overtrained. The following model

parameters were chosen to build the final model. The model built using these

parameters has one of the highest r2 values:

Inputs: Horsepower, Weight, Model Year, and Origin

Cycles: 10,000

Hidden layers: 1

Learning rate: 0.2

The multilayer backpropagation neural network, as presented here, is one type of

network. Other approaches are referenced in the further reading section of this chapter.

7.6 OTHER METHODS

There are many methods for building both classification and regression models.

The following section briefly describes a number of alternative approaches. More

details on these approaches are referenced in the further reading section of this

chapter.

� Multiple linear regressions: The method described for simple linear regres-

sion can be extended to handle multiple descriptor variables. A similar least

squares method is used to generate the equation. The form of the equation is
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Figure 7.35. Neural network learning as cycles increase

Other Methods 199



T
ab

le
7.
19

.
O
p
ti
m
iz
at
io
n
o
f
n
eu
ra
l
n
et
w
o
rk

cy
cl
es

cy
cl
es

cy
cl
es

In
p
u
ts

L
ay
er
s

1
k

5
k

1
0
k

2
5
k

In
p
u
ts

L
ay
er
s
1
k

5
k

1
0
k

2
5
k

In
p
u
ts

L
ay
er
s

1
k

5
k

1
0
k

2
5
k

C
,
D
,
H
,
W
,
A
,
M
Y
,
O

1
0
.6
5

0
.8
0
9

0
.8
2
7

0
.8
5
5

C
,
A
,
M
Y
,
O

1
0
.4
2

0
.7
2
5

0
.7
3
5

0
.7
4
2

D
,
M
Y
,
O

1
0
.2
5
6

0
.5
8
8

0
.7
1
4

0
.7
8
8

2
0
.3
1
6

0
.7
6
8

0
.8
2
2

0
.8
5
3

2
0
.0
0
9
0
.4
4
1

0
.7
2
9

0
.7
3
8

2
0
.0
1

0
.3
0
1

0
.5
3
9

0
.7
2
9

D
,
H
,
W
,
A
,
M
Y
,
O

1
0
.6
2
7

0
.8
1
5

0
.8
4
7

0
.8
5
7

C
,
W
,
M
Y
,
O

1
0
.4
8

0
.7
7
2

0
.8
1
7

0
.8
4
1

H
,
W
,
A

1
0
.1
5
1

0
.4
7
5

0
.6
6
1

0
.7
3
8

2
0
.0
9
6

0
.6
8
6

0
.8
3
9

0
.8
5
5

2
0
.1
1
2
0
.4
1
3

0
.7
2
4

0
.8
3

2
0
.0

0
.0
2
1

0
.2
6
4

0
.5
6
6

C
,
H
,
W
,
A
,
M
Y
,
O

1
0
.6
7

0
.8
0
2

0
.8
3
4

0
.8
5
3

C
,
W
,
A
,
O

1
0
.2
0
2
0
.6
2
4

0
.6
9
3

0
.7
1
5

H
,
W
,
O

1
0
.2
2
1

0
.5
8
1

0
.6
8
4

0
.7
3
3

2
0
.2
1
2

0
.7
1
9

0
.8
1
9

0
.8
5
3

2
0
.0
1
7
0
.3
8

0
.5
1
4

0
.6
9
1

2
0
.0
0
1

0
.0
7
4

0
.3
7
9

0
.6
6
7

C
,
D
,
W
,
A
,
M
Y
,
O

1
0
.5
4
7

0
.7
9
3

0
.8
1
1

0
.8
4
3

C
,
W
,
A
,
M
Y

1
0
.5
4
1
0
.8
0
3

0
.8
1
2

0
.8
4
8

H
,
A
,
M
Y

1
0
.0
3
4

0
.5
1
9

0
.7
0
4

0
.7
4
3

2
0
.0
8
4

0
.7
0
9

0
.7
9
2

0
.8
3
7

2
0
.1
3
4
0
.3
7
8

0
.7
7

0
.8
3
4

2
0
.0

0
.1
2
8

0
.2
8
2

0
.6
2
8

C
,
D
,
H
,
A
,
M
Y
,
O

1
0
.5
9
8

0
.7
9
2

0
.7
9

0
.8
2
6

C
,
H
,
M
Y
,
O

1
0
.5
3

0
.7
5
9

0
.7
9
7

0
.8
1

H
,
M
Y
,
O

1
0
.5
7
8

0
.6
0
2

0
.7
3

0
.7
6
8

2
0
.1
4
6

0
.6
4
2

0
.7
8
4

0
.8
1
3

2
0
.0
0
9
0
.3
4
2

0
.6
9
1

0
.7
9
7

2
0
.0
0
4

0
.1
8
1

0
.4
7
2

0
.7
2
5

C
,
D
,
H
,
W
,
M
Y
,
O

1
0
.6
1
5

0
.8
1
9

0
.8
4
4

0
.8
6

C
,
H
,
A
,
O

1
0
.4
3
4
0
.6
2
9

0
.6
6
2

0
.7
0
8

W
,
A
,
M
Y

1
0
.2
4

0
.7
3
7

0
.7
8
8

0
.8
4
6

2
0
.0
7
2

0
.7
6
8

0
.8
1
3

0
.8
5
2

2
0
.0
0
2
0
.3
5
7

0
.5
4
1

0
.7

2
0
.0
0
2

0
.2
4
5

0
.3
9
2

0
.7
6

C
,
D
,
H
,
W
,
A
,
O

1
0
.5
0
6

0
.6
9
3

0
.7
0
9

0
.7
2
5

C
,
H
,
A
,
M
Y

1
0
.4
8
2
0
.7
4
8

0
.7
6
3

0
.7
8
7

W
,
M
Y
,
O

1
0
.3
5

0
.7
1
5

0
.7
9
9

0
.8
3
9

2
0
.1
1
4

0
.6
1
5

0
.6
9
3

0
.7
2
2

2
0
.0
2
7
0
.3
0
2

0
.5
3
9

0
.7
8
5

2
0
.0
0
4

0
.1
7
1

0
.5
9
4

0
.8
2
1

C
,
D
,
H
,
W
,
A
,
M
Y

1
0
.5
8
5

0
.8
1
1

0
.8
3
8

0
.8
5
3

C
,
H
,
W
,
O

1
0
.4
8
5
0
.6
5
1

0
.6
9

0
.7
5

A
,
M
Y
,
O

1
0
.1
4
5

0
.5
1
4

0
.5
3
1

0
.5
4
5

2
0
.0
9
6

0
.7
6
4

0
.8
2
6

0
.8
5
2

2
0
.0
4
7
0
.3
0
7

0
.6
4
4

0
.7
3
2

2
0
.0
1
1

0
.2
3
5

0
.3
5
6

0
.5
0
8

H
,
W
,
A
,
M
Y
,
O

1
0
.6
2
5

0
.7
9
2

0
.8
4
8

0
.8
6
4

C
,
H
,
W
,
M
Y

1
0
.5
9
7
0
.7
8
2

0
.8
2
8

0
.8
5
3

C
,
D

1
0
.1
3
6

0
.5
5
7

0
.5
8
3

0
.5
4
5

2
0
.0
9
8

0
.6
3

0
.7
8
3

0
.8
6
5

2
0
.0
0
6
0
.7
7
8

0
.7
7
4

0
.8
4
8

2
0
.0
2
1

0
.0
4
8

0
.3
0
3

0
.2
6
8

D
,
W
,
A
,
M
Y
,
O

1
0
.5
7
8

0
.8
0
1

0
.8
3
1

0
.8
4
5

C
,
H
,
W
,
A

1
0
.4
5
8
0
.6
7
1

0
.6
9
8

0
.7
3
1

C
,
H

1
0
.0
1
6

0
.4
2
9

0
.5
4
9

0
.5
8
9

2
0
.0
9
7

0
.5
8

0
.8
1
1

0
.8
4
8

2
0
.0
7
2
0
.3
3
9

0
.6
5
8

0
.7
0
8

2
0
.0
0
8

0
.0
1
6

0
.2
5
9

0
.3
8
3

D
,
H
,
A
,
M
Y
,
O

1
0
.3
9
3

0
.7
8

0
.8
1
2

0
.8
2
6

C
,
D
,
M
Y
,
O

1
0
.5
5
3
0
.7
5
4

0
.7
6
5

0
.7
7
2

C
,
W

1
0
.2
3
3

0
.5
1
6

0
.5
9
3

0
.5
9
6

2
0
.0
1
1

0
.5
5

0
.7
6
5

0
.8
3
3

2
0
.1
3

0
.5
4
4

0
.7
5
2

0
.7
6
5

2
0
.0
2
1

0
.0
0
4

0
.1
5
8

0
.4
2
3

200



D
,
H
,
W
,
M
Y
,
O

1
0
.5
3
6

0
.8
2
5

0
.8
4
4

0
.8
6
3

C
,
D
,
A
,
O

1
0
.1
8
2
0
.6
2
1

0
.6
5
5

0
.6
4
8

C
,
A

1
0
.0
9
5

0
.5
2
4

0
.5
3
1

0
.5
3
2

2
0
.0
8
1

0
.6
8
4

0
.8
3
5

0
.8
5
1

2
0
.0
9

0
.3
8
7

0
.5
4
6

0
.6
3
1

2
0
.0

0
.0
1
7

0
.0
9
6

0
.2
7
4

D
,
H
,
W
,
A
,
O

1
0
.5
6
1

0
.6
8
8

0
.7
1
2

0
.7
4
1

C
,
D
,
A
,
M
Y

1
0
.5
3
6
0
.7
1
5

0
.7
5
9

0
.7
6
6

C
,
M
Y

1
0
.0
1
3

0
.6
2
9

0
.6
5
8

0
.6
5
6

2
0
.0
9
6

0
.6
0
1

0
.6
8
3

0
.7
3
6

2
0
.0
0
4
0
.3
4
4

0
.7
2
6

0
.7
7
8

2
0
.0
0
4

0
.1
1
7

0
.2

0
.4
4
6

D
,
H
,
W
,
A
,
M
Y

1
0
.5
9
4

0
.8
3
3

0
.8
4
6

0
.8
5
7

C
,
D
,
W
,
O

1
0
.3
2
5
0
.6
5
3

0
.6
7
4

0
.7
0
7

C
,
O

1
0
.1
8
8

0
.4
9
2

0
.4
9
8

0
.4
8
1

2
0
.0
7
7

0
.5
4
1

0
.7
3
3

0
.8
5
6

2
0
.0
2
9
0
.2
8
6

0
.5
4
9

0
.6
9
5

2
0
.0

0
.1
8
5

0
.2
2
5

0
.2
9
6

C
,
W
,
A
,
M
Y
,
O

1
0
.5
7
8

0
.7
9
2

0
.8
1
1

0
.8
4
4

C
,
D
,
W
,
M
Y

1
0
.4
7
1
0
.8
0
1

0
.8
2
3

0
.8
4
4

D
,
H

1
0
.0
3
3

0
.5
5
4

0
.5
8
9

0
.6
4
3

2
0
.1
2
6

0
.6
6
6

0
.7
9
2

0
.8
4
2

2
0
.0
0
8
0
.4
8
9

0
.7
1
8

0
.8
2
4

2
0
.0

0
.0
5
4

0
.0
4
8

0
.2
9
5

C
,
H
,
A
,
M
Y
,
O

1
0
.5
3
9

0
.7
7
8

0
.7
8
8

0
.8
0
2

C
,
D
,
W
,
A

1
0
.5
1
6
0
.6
8
2

0
.6
9
6

0
.7
1
8

D
,
W

1
0
.3
4
2

0
.6
0
5

0
.6
2
2

0
.6
4
1

2
0
.0
6
6

0
.6
6
4

0
.7
4
2

0
.7
9
9

2
0
.0
3
3
0
.2
3
2

0
.5
7
2

0
.7
1

2
0
.0

0
.0
9
2

0
.2
5
1

0
.2
4
7

C
,
H
,
W
,
M
Y
,
O

1
0
.6
1
4

0
.8
0
1

0
.8
2
9

0
.8
6

C
,
D
,
H
,
O

1
0
.4
1
9
0
.6
1
2

0
.6
8
9

0
.7
3
2

D
,
A

1
0
.0
4
4

0
.5
4
9

0
.5
5
9

0
.5
6
4

2
0
.0
1
8

0
.5
8
1

0
.7
9
2

0
.8
5
3

2
0
.0
3
2
0
.3
9
7

0
.6
2
2

0
.7
2

2
0
.0
1

0
.0
4
8

0
.1
6
7

0
.3
2
2

C
,
H
,
W
,
A
,
O

1
0
.5
2
4

0
.6
7
4

0
.7
0
2

0
.7
3
6

C
,
D
,
H
,
A

1
0
.4
0
7
0
.6
6
5

0
.6
8
3

0
.7
2
1

D
,
M
Y

1
0
.1
4
4

0
.5
9
4

0
.6
4
7

0
.6
7
9

2
0
.0
7

0
.5
4
8

0
.6
5
8

0
.7
2
8

2
0
.0
0
5
0
.3
2

0
.5
5
3

0
.7
1
8

2
0
.0
0
1

0
.0
4
1

0
.3
1

0
.2
9
5

C
,
H
,
W
,
A
,
M
Y

1
0
.6
6

0
.8
0
3

0
.8
3
3

0
.8
4
9

C
,
D
,
H
,
W

1
0
.5
8
1
0
.7
0
2

0
.7
1
8

0
.7
4
4

D
,
O

1
0
.0
3
2

0
.4
8
2

0
.4
9
3

0
.4
9

2
0
.1
0
7

0
.6
5
9

0
.8
0
2

0
.8
5

2
0
.0
0
9
0
.3
9
5

0
.5
1
5

0
.7
0
4

2
0
.0
0
7

0
.1
1
1

0
.2
0
6

0
.3
2
4

C
,
D
,
A
,
M
Y
,
O

1
0
.5
4
2

0
.7
4
1

0
.7
6
7

0
.7
7
3

C
,
D
,
H

1
0
.3
3

0
.6
2
4

0
.6
2
1

0
.7
1
7

H
,
W

1
0
.0
1
5

0
.6
4
9

0
.6
8
2

0
.6
4
2

2
0
.1
1
4

0
.6
8
3

0
.7
3
9

0
.7
6
9

2
0

0
.0
7
8

0
.4
5
6

0
.6

2
0
.0

0
.0
1
9

0
.1
8
6

0
.2
3
2

C
,
D
,
W
,
M
Y
,
O

1
0
.5
8
5

0
.8
0
2

0
.8
1

0
.8
4
4

C
,
D
,
W

1
0
.2
3
7
0
.6
2
4

0
.6
3
4

0
.7
1
2

H
,
A

1
0
.0
0
4

0
.3
8
1

0
.4
3
9

0
.4
6
2

2
0
.0
6
9

0
.6
6
6

0
.7
9

0
.8
3
6

2
0
.0
4
7
0
.2
5
9

0
.4
7
7

0
.6
2
8

2
0
.0
0
2

0
.0
0
6

0
.0
9
8

0
.1
3
3

C
,
D
,
W
,
A
,
O

1
0
.5
6
7

0
.6
5
5

0
.6
9

0
.7
0
9

C
,
D
,
A

1
0
.2
5
9
0
.4
6
4

0
.6
4
2

0
.6
5
9

H
,
M
Y

1
0
.0
5
9

0
.5
1
7

0
.5
4
8

0
.5
8
7

2
0
.0
7
7

0
.6
3
9

0
.6
4
4

0
.7
0
6

2
0
.0
1

0
.1
1
5

0
.3
9
5

0
.6
2
9

2
0
.0
0
4

0
.0
0
7

0
.0
7
8

0
.3
4
1

C
,
D
,
W
,
A
,
M
Y

1
0
.4
7
5

0
.7
9
5

0
.8
2
5

0
.8
4
9

C
,
D
,
M
Y

1
0
.2
5
6
0
.7
3
7

0
.7
5
1

0
.7
8
3

H
,
O

1
0
.0
3
7

0
.4
2
2

0
.4
7
5

0
.4
7
8

2
0
.1
0
8

0
.5
9
2

0
.8
0
8

0
.8
4
1

2
0
.0
0
5
0
.2
8
2

0
.4
9
1

0
.7

2
0
.0
0
3

0
.0
4
5

0
.1
5
5

0
.3
5
3

C
,
D
,
H
,
M
Y
,
O

1
0
.4
8
4

0
.7
7
8

0
.8
0
1

0
.8
2
1

C
,
D
,
O

1
0
.4
6
1
0
.5
5
7

0
.6
2
9

0
.6
6
3

W
,
A

1
0
.1
4
4

0
.5
5
3

0
.5
9
7

0
.5
9

2
0
.1
7
5

0
.6
4
7

0
.7
8
7

0
.8
1
1

2
0
.0
0
2
0
.1
0
9

0
.5
0
4

0
.6
1
1

2
0
.0

0
.0

0
.0
8
4

0
.3
1
3

201



T
ab

le
7.
19

.
(C

o
n
ti
n
u
ed
)

cy
cl
es

cy
cl
es

cy
cl
es

In
p
u
ts

L
ay
er
s

1
k

5
k

1
0
k

2
5
k

In
p
u
ts

L
ay
er
s
1
k

5
k

1
0
k

2
5
k

In
p
u
ts

L
ay
er
s

1
k

5
k

1
0
k

2
5
k

C
,
D
,
H
,
A
,
O

1
0
.5
8
8

0
.6
6
7

0
.6
8
5

0
.7
0
4

C
,
H
,
W

1
0
.4
6
8
0
.5
9
5

0
.7
0
3

0
.7
4
4

W
,
M
Y

1
0
.0
2
1

0
.6
1
6

0
.6
6
5

0
.6
9
3

2
0
.0
8
6

0
.5
2
2

0
.6
4

0
.6
7
9

2
0
.0
1
9
0
.2
6
2

0
.4
1
3

0
.6
6
9

2
0
.0
0
4

0
.0
1
9

0
.0
4
2

0
.4
8
5

C
,
D
,
H
,
A
,
M
Y

1
0
.4
3

0
.6
4
9

0
.6
8
2

0
.7
1
6

C
,
H
,
A

1
0
.2
2
2
0
.5
2
1

0
.6
3
2

0
.6
9
3

W
,
O

1
0
.0
5
4

0
.4
8
9

0
.4
9
3

0
.4
6
9

2
0
.1
2
4

0
.5
2
4

0
.6
5
2

0
.7
1

2
0
.0
1

0
.2
4
6

0
.3
0
2

0
.6
2
7

2
0
.0
0
5

0
.0
4
4

0
.1
3
5

0
.2
8
8

C
,
D
,
H
,
W
,
O

1
0
.5
7
1

0
.6
7
1

0
.7
2
1

0
.7
4
7

C
,
H
,
M
Y

1
0
.4
2
3
0
.5
9

0
.7
5
8

0
.7
8
8

A
,
M
Y

1
0
.0
0
1

0
.3
3
4

0
.3
3
6

0
.3
4
3

2
0
.1
9
2

0
.5
9
6

0
.6
7
8

0
.7
2
3

2
0
.0

0
.1
6
3

0
.5
8
3

0
.7
3
9

2
0
.0
2

0
.0
2
8

0
.0
7

0
.2
3
7

C
,
D
,
H
,
W
,
M
Y

1
0
.6

0
.8
1
2

0
.8
3

0
.8
5
3

C
,
H
,
O

1
0
.3
2
1
0
.5
7
3

0
.6
4
6

0
.7
1
9

A
,
O

1
0
.0
0
1

0
.3
0
9

0
.3
8
6

0
.3
9
4

2
0
.2
0
4

0
.7
7

0
.8
2
6

0
.8
4
8

2
0
.0
0
1
0
.2
0
4

0
.3
5
9

0
.5
3
2

2
0
.0
0
9

0
.0
1
5

0
.0
3
9

0
.2
4
9

C
,
D
,
H
,
W
,
A
,

1
0
.5
4
3

0
.6
8
6

0
.7
1
6

0
.7
2
8

C
,
W
,
A

1
0
.1
8
2
0
.5
1

0
.6
7
6

0
.6
9
5

M
Y
,
O

1
0
.1
7
7

0
.5
2
2

0
.5
3

0
.5
1
4

2
0
.1
6
1

0
.5
4
4

0
.5
8
2

0
.7
2
4

2
0
.0
2
5
0
.2
2
6

0
.4
5
3

0
.6
5
6

2
0
.0
0
2

0
.0
2
1

0
.1
2
3

0
.3
3
1

W
,
A
,
M
Y
,
O

1
0
.2
5
4

0
.7
7
6

0
.8
2
7

0
.8
5
8

C
,
W
,
M
Y

1
0
.3
8
6
0
.7
8
4

0
.8
1
4

0
.8
2
3

2
0
.0
8
1

0
.4
6
7

0
.7
6
5

0
.8
4
8

2
0
.0
0
5
0
.2
7
3

0
.6
4
7

0
.8
1
1

H
,
A
,
M
Y
,
O

1
0
.3
7
7

0
.7
0
3

0
.7
6
6

0
.8
1
4

C
,
W
,
O

1
0
.3
0
5
0
.5
3
8

0
.6
6
4

0
.6
9
1

2
0
.0
2
7

0
.2
6
6

0
.3
7
8

0
.8
1
3

2
0
.0
0
5
0
.1
6
6

0
.4
1
1

0
.6
4
9

H
,
W
,
M
Y
,
O

1
0
.4
1
2

0
.7
8
6

0
.8
5

0
.8
6
5

C
,
A
,
M
Y

1
0
.2
5
2
0
.6
5
6

0
.7
0
1

0
.7
1
1

2
0
.0
4
2

0
.5
5

0
.6
7
5

0
.8
5
9

2
0
.0
3
2
0
.1
9
9

0
.5

0
.6
9
8

H
,
W
,
A
,
O

1
0
.3
5
9

0
.6
6
9

0
.7
0
8

0
.7
2
8

C
,
A
,
O

1
0
.4
0
1
0
.5
3
1

0
.5
8
4

0
.6
2
3

2
0
.0
5
2

0
.3
0
5

0
.6
4
1

0
.7
3
3

2
0
.0
0
2
0
.1
6
6

0
.2
5
7

0
.6
1
2

H
,
W
,
A
,
M
Y

1
0
.5
4

0
.8
0
6

0
.8
3
9

0
.8
6
4

C
,
M
Y
,
O

1
0
.3
5
4
0
.6
9

0
.7
3
5

0
.7
4
2

2
0
.0
2
4

0
.3
8
2

0
.8
1
7

0
.8
6
1

2
0
.0
2
1
0
.2
1
7

0
.3
4
2

0
.6
7

D
,
A
,
M
Y
,
O

1
0
.4
4
8

0
.7
1
5

0
.7
5
4

0
.7
8
9

D
,
H
,
W

1
0
.4
0
2
0
.5
4
9

0
.7

0
.7
4
4

2
0
.0
0
8

0
.5
4
1

0
.4
6
6

0
.7
9
6

2
0
.0
6
4
0
.0
9
6

0
.4
6
4

0
.6
5
2

202



D
,
W
,
M
Y
,
O

1
0
.4
2
4

0
.6
5
1

0
.6
9
6

0
.7
1
2

D
,
H
,
A

1
0
.3
5
3
0
.5
9
3

0
.6
0
8

0
.7
2
6

2
0
.0
2
8

0
.3
0
8

0
.5
8
1

0
.6
9
6

2
0
.0

0
.2
7
8

0
.3
6
9

0
.6
6
6

D
,
W
,
A
,
O

1
0
.4
2

0
.6
2
7

0
.7
0
3

0
.7
1
8

D
,
H
,
M
Y

1
0
.3
1
1
0
.7
1
4

0
.7
9
9

0
.8
2

2
0
.0
0
4

0
.3
2

0
.4
2
1

0
.7
0
8

2
0
.0
0
2
0
.0
2
8

0
.3
4
5

0
.7
3
9

D
,
W
,
A
,
M
Y

1
0
.4
6
4

0
.8
2
1

0
.8
3
2

0
.8
4
8

D
,
H
,
O

1
0
.2
4
9
0
.5
6
7

0
.6
6
9

0
.7
2
8

2
0
.0
6
1

0
.2
7
5

0
.7
8
2

0
.8
4
4

2
0
.0
0
4
0
.1
8
6

0
.3
4
8

0
.6
5
2

D
,
H
,
M
Y
,
O

1
0
.4
8
4

0
.7
6

0
.7
9
7

0
.8
3
3

D
,
W
,
A

1
0
.0
8
7
0
.5
6
8

0
.7
0
8

0
.7
2

2
0
.0
4
8

0
.3
7
9

0
.5
6
4

0
.8
3

2
0
.0
0
9
0
.1
7
5

0
.2
6
4

0
.6
3
1

D
,
H
,
A
,
O

1
0
.3
6
2

0
.6
3
6

0
.6
8
3

0
.7
2
6

D
,
W
,
M
Y

1
0
.1
0
8
0
.8
1
4

0
.8
4
1

0
.8
4
3

2
0
.0
8
4

0
.3
4
5

0
.6
1
1

0
.7
1
9

2
0
.0
1
5
0
.2
8
8

0
.4
9
8

0
.7
9
3

D
,
H
,
W
,
M
Y

1
0
.5
2
8

0
.8
3
2

0
.8
5
5

0
.8
6

D
,
W
,
O

1
0
.3
8
2
0
.5
5
5

0
.6
7
1

0
.7
1
4

2
0
.0
2
7

0
.3
9
9

0
.7
8
9

0
.8
4
7

2
0
.0
1
1
0
.2
0
7

0
.4
1
6

0
.7

D
,
H
,
W
,
A

1
0
.3
2
5

0
.7
1
1

0
.7
2
8

0
.7
4
3

D
,
A
,
M
Y

1
0
.1
7
5
0
.6
0
4

0
.7
7
8

0
.7
9

2
0
.0
1
5

0
.3
9
1

0
.5
8
8

0
.7
1
4

2
0
.0
0
5
0
.0
6
6

0
.3
4
1

0
.7
6

203



y ¼ aþ b1x1 þ b2x2 þ � � � þ bnxk where y is the response, x1 to xn are the

descriptor variables, a is a constant, and b1 to bn are also constants. For example,

when attempting to predict a potential customer’s credit score (CS) a multiple

linear regression equation could be generated. The equation could be based on

the number of missed payments to other credit cards (MP), the number of years

with no missed payments (NMP), and the number of good standing loans

(GSL), as for example in the following equation:

CS ¼ 15� 18�MPþ 12� NMPþ 10�GSL

� Logistic regression: Logistic regression is a regression method that can be

applied in situations where the response variable is dichotomous and usually

translated to a binary variable.

� Random forests: A random forest is a collection of decision trees used to

make predictions. Each tree is built using a subset of all observations. In

addition, each tree is built with a subset of all possible descriptors to use in

splitting the observations. When using a random forest to make predictions, the

observation is presented to each tree. Each individual tree makes a prediction

and the results from all the trees are combined to create a final prediction using

either an average or a voting scheme in the case of categorical responses.

� Rule-based classifiers: In Chapter 6, a number of methods were described

that generate rules from the data, for example, associative rules. When the

THEN-part of the rule is a response variable, these rules can be used to build

classification models. When a new observation is presented to the model,

rules are identified that match the IF-part of the rule to the observation. The

predicted classification corresponds to the THEN-part of the rule. If multiple

rules match a single observation, then either the rule with the highest

confidence is selected or a voting scheme is used. Rule-based classifiers

provide a quick method of classification that is easy to interpret.

� Naı̈ve Bayes classifiers: This is a method of classification that makes use of

Bayes theorem. It assumes that the descriptor variables used are independent.

The method is capable of handling noise and missing values.

� Partial least squares regression: Partial least squares regression combines

multiple linear regressions and principal component analysis. It can be used

to handle nonlinear multiple-regression problems.

� Support vector machines: Support vector machines can be used for both

classification and regression problems. For classification problems, they

attempt to identify a hyperplane that separates the classes. Despite their

general usefulness, they can be difficult to interpret.

7.7 SUMMARY

Types of models:

� Classification: Models where the response variable is categorical. These are assessed

using: concordance, error rate, specificity, and sensitivity analysis.
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� Regression: Models where the response variable is continuous. These are assessed

using r2 and residual analysis.

Building a prediction model involves the following steps:

1. Select methods based on problem

2. Separate out training and test sets

3. Optimize the models

4. Assess models generated

Applying a prediction model follows these steps:

1. Evaluate whether an observation can be used with the model

2. Present observations to model

3. Combine results from multiple models (if appropriate)

4. Understand confidence and/or explain how results were computed

Table 7.20 summarizes the different methods described in this chapter.

7.8 EXERCISES

1. A classification prediction model was built using a training set of examples. A

separate test set of 20 examples is used to test the model. Table 7.21 shows the

results of applying this test set. Calculate the model’s:

a. Concordance

b. Error rate

c. Sensitivity

d. Specificity

Table 7.20. Summary of predictive modeling approaches in this chapter

Response Descriptor Time Time Expla-

type type Problem to build to apply nation

Simple linear Single Single Linear Fast Fast Formula

regression continuous continuous

kNN Single any Any Based on Fast Slow Similar

similar observ-

observations ations

Regression Single Any Based on Slow Fast Tree

trees continuous property

ranges

Classification Single Any Based on Slow Fast Tree

trees categorical property

ranges

Neural nets Any Any Nonlinear Slow Fast No

explan-

ation
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2. A regression prediction model was built using a training set of examples. A separate

test set was applied to the model and the results are shown in Table 7.22.

a. Determine the quality of the model using r2

b. Calculate the residual for each observation

3. Table 7.23 shows the relationship between the amount of fertilizer used and the

height of a plant.

a. Calculate a simple linear regression equation using Fertilizer as the descriptor and

Height as the response.

b. Predict the height when fertilizer is 12.3

4. A kNN model is being used to predict house prices. A training set was used to

generate a kNN model and k is determined to be 5. The unseen observation in

Table 7.24 is presented to the model. The kNN model determines the five observa-

tions in Table 7.25 from the training set to be the most similar. What would be the

predicted house price value?

5. A classification tree model is being used to predict which brand of printer a customer

would purchase with a computer. The tree in Figure 7.36 was built from a training set

of examples. For a customer whose Age is 32 and Income is $35,000, which brand

of printer would the tree predict he/she would buy?

6. Figure 7.37 shows a simple neural network. An observation with two variables (0.8,

0.2) is presented to the network as shown. What is the predicted output from the

neural network using a sigmoid activation function?

Table 7.21. Table of actual vs predicted values

(categorical response)

Observation Actual Predicted

1 0 0

2 1 1

3 1 1

4 0 0

5 0 0

6 1 0

7 0 0

8 0 0

9 1 1

10 1 1

11 1 1

12 0 1

13 0 0

14 1 1

15 0 0

16 1 1

17 0 0

18 1 1

19 0 1

20 0 0
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Table 7.22. Table of actual vs predicted values

(continuous response)

Observation Actual Predicted

1 13.7 12.4

2 17.5 16.1

3 8.4 6.7

4 16.2 15.7

5 5.6 8.4

6 20.4 15.6

7 12.7 13.5

8 5.9 6.4

9 18.5 15.4

10 17.2 14.5

11 5.9 5.1

12 9.4 10.2

13 14.8 12.5

14 5.8 5.4

15 12.5 13.6

16 10.4 11.8

17 8.9 7.2

18 12.5 11.2

19 18.5 17.4

20 11.7 12.5

Table 7.23. Table of plant experiment

Fertilizer Height

10 0.7

5 0.4

12 0.8

18 1.4

14 1.1

7 0.6

15 1.3

13 1.1

6 0.6

8 0.7

9 0.7

11 0.9

16 1.3

20 1.5

17 1.3
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Table 7.24. House with unknown price

Bedroom Number of bathrooms Square feet Garage House price

2 2 1,810 0

Table 7.25. Table of similar observations

Bedroom Number of bathrooms Square feet Garage House price

2 2 1,504 0 355,000

2 2 1,690 0 352,000

2 3 1,945 0 349,000

3 2 2,146 0 356,000

3 2 1,942 0 351,000

Purchase = Brand A

Age < 25

Income ≥ $40,000

Age ≥ 25

Income < $40,000

Purchase = Brand B Purchase = Brand C

Figure 7.36. Classification tree for customer’s brand purchase based on Age and Income

0.2

– 0.9

0.5

0.8

0.2

Figure 7.37. Simple neural network
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7.9 FURTHER READING

For more information on methods for combining models, such as bagging and boosting, see

Witten (2000), and for confidence metrics for simple linear regression see Kachigan (1991),

Donnelly (2004), and Levine (2005). Fausett (1994) provides additional details on Neural

Networks. The following indicates sources of additional information on the following topics:

multiple linear regression (Kleinbaum 1998), logistic regression (Agresti 2002), random

forests (Kwok 1990), rule-based classifiers (Tang 2005), Naı̈ve Bayes (Tang 2005), partial

least squares regressions (Wold 1975), and support vector machines (Cristianini 2000).
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Chapter 8

Deployment

8.1 OVERVIEW

To realize the benefits of a data analysis or data mining project, the solution must be

deployed, that is, applied to the business or scientific problem. It is important to plan

this part of the project to ensure that the analysis performed to date positively

influences the business. The following sections briefly outline deliverables and

activities necessary during any deployment step.

8.2 DELIVERABLES

There are many options for delivering data analysis or data mining solutions. Some

of the more popular include:

� Report: A report describing the business intelligence derived from the

project is a common deliverable. The report should be directed to the persons

responsible for making decision. It should focus on significant and actionable

items, that is, it should be possible to translate any conclusions into a

decision that can be used and that makes a difference. It is increasingly

common for the report to be delivered through the corporate intranet to

enable additional interested parties to benefit from the report.

� Integration into existing systems: The integration of the results into

existing operational systems or databases is often one of the most cost

effective approaches to delivering a solution. For example, when a sales team

requires the results of a predictive model, that ranks potential customers on

the basis of the likeliness that they will buy a particular product, the model

may be integrated with the CRM system (Customer Relationship Manage-

ment) that they currently use on a daily basis. This minimizes the need for

training and makes the deployment of the results easier. Prediction models or

data mining results can also be integrated into system accessible to a

customers such as e-commerce web sites. In this situation, customers may

be presented with additional products or services that they may be interested

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.
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in, identified using an embedded prediction model. Models may need to be

integrated into existing operational processes where a model needs to be

constantly applied to operational data. For example, a solution may be the

detection of events leading to errors in a manufacturing system. Catching

these issues early enough may allow a technician to rectify the problem

without stopping the production system. The model needs to be integrated

with the data generated from the system. Any identified anomalies should be

rapidly communicated to those who might be able to prevent the potential

problem. A data mining solution may also require continual access to new

training data since the data from which a model is built is only relevant for a

short period of time. In this situation, it will be essential to tightly integrate

the model building with the data. Core technologies involved in the

deployment include tools used to perform the analysis (statistics, OLAP,

visualizations and data mining), methods for sharing the models generated,

integration with databases and workflow management systems. The further

reading section of this chapter provides links to resources on deploying data

analysis and data mining solutions.

� Standalone software: Another option is the development of a standalone

system. The advantage of this approach is that, since it is not necessary to

integrate with operational systems, the solution may be deployed more

rapidly. However, there is a cost in terms of developing, maintaining and

training.

8.3 ACTIVITIES

The following activities need to be accomplished during the deployment phase:

� Plan and execute the deployment: A plan should be generated describing

the deployment of the solutions. It should include information on how the

solution is to be deployed and to whom. Issues relating to the management of

change, as the solution may introduce changes to some individual’s daily

activities, should be addressed. Also, a deployment may require a training

program that outlines both how to use the new technology and how to

interpret the results. In many situations the value of the data, and hence the

models generated from the data, diminishes over time. In this situation,

updated models may be required and a strategy should be put in place to

ensure the currency of the models. This could be accomplished through an

automated approach or through manually updating of the models and needs

to be planned.

� Measure and monitor performance: It is important to understand if the

models or analysis generated translate into meeting the business objectives

outlined at the start of the project. For example, the models may be

functioning as expected; however, the individuals that were expected to

use the solution are not for some reasons and hence there is no business
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benefit. A controlled experiment (ideally double blind) in the field should be

considered to assess the quality of the results and their business impact. For

example, the intended users of a predictive model could be divided into two

groups. One group, made up of half (randomly selected) of the users, uses the

model results and the other group does not. The business impact resulting

from the two groups could then be measured. When models are continually

updated, the consistency of the results generated should be also monitored

over time.

� Review project: At the end of a project, it is always a useful exercise to look

back at what worked and what did not work. This will provide insights to

improve future projects.

8.4 DEPLOYMENT SCENARIOS

Exploratory data analysis and data mining has been deployed to a variety of

problems. The following illustrates some of the areas where this technology has

been deployed:

� Personalized e-commerce: Customers characteristics, based on profiles and

historical purchasing information, can be used to personalize e-commerce

web sites. Customers can be directed to products and services matching their

anticipated needs.

� Churn analysis: Profiles of customers discontinuing a particular product or

service can be analyzed and prediction models generated for customers who

are likely to switch. These models can be used to identify at risk customers

providing an opportunity to target them with a focused marketing campaign

in order to retain their business.

� Quality control: Quality is critical to all production systems and exploratory

data analysis and data mining approaches are important tools in creating and

maintaining a high quality production system. For example, the 6-sigma

quality control methodology uses many of the statistical methods described

in Chapter 5.

� Experimental design and analysis: Experiments are widely used in all

areas of research and development to design, test and assess new products.

Exploratory data analysis and data mining are key tools in both the design of

these experiments and the analysis of the results. For example, every day

biologists are experimentally generating millions of data points concerning

genes and it is critical to make use of exploratory data analysis and data

mining in order to make sense out of this data.

� Targeted marketing campaigns: Organizations can use data analysis and

data mining methods to understand profiles of customers who are more likely

to purchase specific products and use this information for more targeted

marketing campaigns with higher response rates.
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� Analyzing the results of surveys: Surveys are a widely used way of

determining opinions and trends in the market place, and the application

of exploratory data analysis and data mining to the process of collecting and

analyzing the result will help to get the answers faster.

� Anomaly detection: In many situations it is the detection of outliers in the

data that is most interesting. For example, the detection of fraudulent

insurance claim applications can be based on the analysis of unusual activity.

8.5 SUMMARY

Table 8.1 summarizes issues to consider when deploying any solution.

8.6 FURTHER READING

The following web sites provide a list of some of the tools for deploying data analysis and/or

data mining solutions:

http://www.angoss.com/

http://www.fairisaac.com/

http://www-306.ibm.com/software/data/iminer/

http://www.insightful.com/

http://www.jmp.com/

http://www.kxen.com/

http://www.microsoft.com/sql/solutions/bi/default.mspx

Table 8.1. Deployment issues

Deliverables Report Describes significant and actionable items

Integration into existing Cost effective solution, minimal training

systems cost, minimal deployment cost, access

to up-to-date information

Standalone software May provide rapid deployment

Activities Plan and execute Describes how and to whom the solution

deployment will be deployed, identify whether there is a

need for change management, describes

any required training, discusses how the

models will be kept up-to-date

Measure and monitor Determines to what degree the project

performance has met the success criteria, ensures that

the model results are consistent over time

Review project To understand what worked and what did

not work
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http://www.oracle.com/technology/products/bi/odm/index.html

http://www.sas.com/index.html

http://www.spss.com/

http://www.statsoft.com/

http://www.systat.com/

The following resources provide support for integrating data mining solutions:

http://www.dmg.org/

http://www.jcp.org/en/jsr/detail?id¼73

The following references provide additional case studies: Guidici (2005), Rudd (2001) and

Berry (2004).
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Chapter 9

Conclusions

9.1 SUMMARY OF PROCESS

Exploratory data analysis and data mining is a process involving defining the

problem, collecting and preparing the data, and implementing the analysis. Once

completed and evaluated, the project should be delivered to the consumer concerned

by the information. Following a process has many advantages including avoiding

common pitfalls in analyzing data and ensuring that the project meets expectations.

This book has described the process in four steps:

1. Problem definition: Prior to any analysis, the problem to be solved

should be clearly defined and related to one or more business objectives.

Describing the deliverables will focus the team on delivering the solution

and provides correct expectations to other parties interested in the outcome

of the project. A multidisciplinary team is best suited to solve these

problems driven by a project leader. A plan for the project should be

developed, covering the objectives and deliverables along with a timeline

and a budget. An analysis of the relationship between the cost of the project

and the benefit derived for the business can form a basis for a go/no-go

decision for the project.

2. Data preparation: The quality of the data is the most important aspect

that influences the quality of the results from the analysis. The data

should be carefully collected, integrated, characterized, and prepared for

analysis. Data preparation includes cleaning the variables to ensure

consistent naming and removing potential errors. Eliminating variables

that provide little benefit to any analysis can be done at this stage. The

variables should be characterized and potentially transformed to ensure

that the variables are considered with equal weight, that they match as

closely as possible a normal distribution, and also to enable the use of

the data with multiple analysis methods. Where appropriate, the data set

should be partitioned into smaller sets to simplify the analysis. At the

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
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end of the data preparation phase, one should be very familiar with the

data and should already start identifying aspects of the data relating to

the problem being solved. The steps performed in preparing the data

should be documented. A data set ready for analysis should have been

prepared.

3. Implementation of the analysis: There are three primary tasks that relate

to any data analysis or data mining project: summarizing the data, finding

hidden relationships, and making predictions. When implementing the

analysis one should select appropriate methods that match the task, the

data, and the objectives of the project. Available methods include graphing

the data, summarizing the data in tables, descriptive statistics, inferential

statistics, correlation analysis, grouping methods, and mathematical mod-

els. Graphs, summary tables, and descriptive statistics are essential for

summarizing data. Where general statements about populations are

needed, inferential statistics should be used to understand the statistical

significance of the summaries. Where a method is being used for grouping

or prediction, appropriate methods should be selected that match the

objectives of the projects and the available data. These methods should

be fined-tuned, adjusting the parameters within a controlled experiment.

When assessing the quality of a prediction model, a separate test and

training set should be used. When presenting the results of the analysis,

any transformed data should be presented in its original form. Appro-

priate methods for explaining and qualifying the results should be

developed when needed. Where an analysis is based on multiple models,

specific model selection criteria and/or composite models should be

developed.

4. Deployment: A plan should be set up to deliver the results of the analysis to

the already identified consumer. This plan will need to take into account

nontechnical issues of introducing a solution that potentially changes the

user’s daily routine. The plan may need to address the need for continual

updates to the predictive models over time. The plan should be executed as

well as the performance measured. This performance should directly relate

to the business objectives of the project. This performance may change over

time and should be monitored.

Although the process is described as a linear four-step approach, most projects will

invariably need to go between the different stages from time-to-time. Like any

complex technical project, this process needs to be managed by a project leader to

ensure that the project is planned and delivered on time. Communication between

the cross-disciplinary teams and other stakeholders about progress is essential.

Regular status meeting, especially between steps in the process, are critical. Table 9.1

summarizes the process.

Three issues for delivering a successful project should be highlighted. Firstly,

a clear and measurable objective will help to focus the project on issues that
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Table 9.1. Table summarizing process and deliverables

Steps Description Deliverables

1. Problem Define: � Project plan

definition � Objectives

� Deliverables

� Roles and responsibilities

� Current situation

� Timeline

� Costs and benefits

2. Data Prepare and become familiar � High degree of

preparation with the data: familiarity with the data

� Pull together data table � Characterization of data

� Categorize the data � Documentation of the

preparation steps� Clean the data

� Data set(s) prepared for

analysis

� Remove unnecessary data

� Transform the data

� Segment the data

3. Implementation Summarizing the data � Results of the data

of the analysis � Use of summary tables, graphs, analysis/data mining

and descriptive statistics to

describe the data

� Use of inferential statistics to make

general statements with confidence

Finding hidden relationships

� Identify grouping methods

based on the problem

� Optimize the grouping results

in a controlled manner

Making predictions

� Select modeling approaches

that match the problem and

data constraints

� Use separate test and

training sets

� Optimize model in a controlled

manner

4. Deployment � Plan and execute deployment � Deployment plan

based on the definition in step 1 � Solution deployed

� Measure and monitor performance � Project review

� Review the project
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make a difference. Secondly, the quality of the data is the most important factor

influencing the quality of the results. The methods used to analyze the data are

not as important. Particular attention should be paid to collecting and preparing

a quality data set for analysis. Thirdly, deployment is where any results

obtained so far are translated into benefits to the business and this step should

be carefully executed and presented to the customer in a form that they can use

directly.

9.2 EXAMPLE

9.2.1 Problem Overview

To illustrate the process described in this book, we will use an example data set from

Newman (1998): The Pima Indian Diabetic Database. This set is extracted from a

database generated by The National Institute of Diabetes and Digestive and Kidney

Diseases of the NIH. The data set contains observations on 768 female patients

between age 21 and 81, and specifies whether they have contracted diabetes in five

years. The following describes a hypothetical analysis scenario to illustrate the

process of making sense of data.

9.2.2 Problem Definition

Objectives

Diabetes is a major cause of morbidity (for example, blindness or kidney failure)

among female Pima Indians of Arizona. It is also one of the leading causes of

death. The objective of the analysis is to understand any general relationships

between different patient characteristics and the propensity to develop diabetes,

specifically:

� Objective 1: Understand differences in the measurements recorded bet-

ween the group that develop diabetes and the group that does not develop

diabetes.

� Objective 2: Identify associations between the different factors and the

development of diabetes that could be used for education and intervention

purposes. Any associations need to make use of general categories, such as

high blood pressure, to be useful.

� Objective 3: Develop a predictive model to estimate whether a patient will

develop diabetes.

The success criterion is whether the work results in a decrease in patients developing

diabetes and this result should be measured over time.

The population of this study consists of female Pima Indians between the age of

21 and 81.
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Deliverables

The deliverables of this project include:

� Report: A report summarizing the data and outlining general associations

that influence diabetes.

� Prediction model software: Software to predict patients likely to become

diabetic. To be useful the models must have sensitivity and specificity values

greater than 60%. The model is to be deployed over an internal network to

health care professions. No explanation of the result is required; however, a

degree of training would be needed for the user to help him/her understand

how to interpret the results. The time to compute any prediction should be

less than five minutes.

Roles and Responsibilities

A team of experts should be put together including individuals with knowledge of

how the data was collected, individuals with knowledge of diabetes, along with data

analysis/data mining experts and IT resources. The team should also include health

care professional representatives who will eventually use the information generated.

Their inclusion would both ensure their opinions are taken into account as well as to

facilitate the acceptance of this new technology.

Current Situation

The team will use an available database of patient records that records whether a

patient develops diabetes in five years. It is assumed that the data represents a

random and unbiased sample from the population defined. The data set is available

from Newman (1998).

Timeline

A timeline should be put together showing the following activities:

� Preparation: Assembling, characterizing, cleaning, transforming, and seg-

menting the data prior to analysis is essential and adequate time should be

allocated for these tasks. The analysis specifically calls for an understanding

of general categories and the preparation should set aside time for this

preparation.

� Implementation of the analysis: The implementation of the analysis will

involve the following data analysis/data mining tasks:

1. Summarizing the data: Understanding differences in the data between

the two groups will require the use of tables and graphs to summarize the

data, descriptive statistics to quantify the differences, and inferential

statistics to make general statements.

2. Finding hidden relationships: The ability to group the data in various

ways will assist in discovering unusual patterns and trends. This project
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requires associations to be foundwithin the data and the results are presented

to facilitate education and prevention, that is, they need to be easy to

understand. Grouping methods that satisfy these criteria should be used.

3. Making predictions: The project calls for the development of a predic-

tion model. Different classification modeling approaches should be

considered and optimized.

� Deployment: A plan for delivering the predictive model to the health care

professionals over the internal network should be developed. In addition to

planning the technical rollout, the appropriate training should be supplied to

the health care professionals. A double blind test to monitor the deployment

is not possible in this case. The monitoring of the deployment should be

periodically tested against new records in the database to ensure that an

appropriate level of accuracy is maintained. In addition, as the database

expands, additional modeling of the data should be investigated to evaluate if

results can be improved.

Costs and Benefits

A cost-benefit analysis would be useful to compare the cost of the project with the

anticipated benefits of the analysis.

9.2.3 Data Preparation

Pull Together Data Table

A data set containing 768 observations has been made available. It contains patient

records describing a number of attributes in addition to whether the patient went on

to develop diabetes in the following five years. The data set contains the following

variables:

� Pregnant: A record of the number of times the patient has been pregnant

� Plasma–Glucose: Plasma–glucose concentration measured using a two-hour

oral glucose tolerance test

� DiastolicBP: Diastolic blood pressure

� TricepsSFT: Triceps skin fold thickness

� Serum–Insulin: Two-hour serum insulin

� BMI: Body mass index

� DPF: Diabetes pedigree function

� Age: Age of the patient

� Class: Diabetes onset within five years

Categorize Variables

Table 9.2 summarizes the variables in the data set along with their anticipated role in

the analysis using the categories described in Section 3.3.
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Clean Variables

At this point, it is important to include those involved in collecting the data to

understand how best to clean the data. A preliminary analysis of the data indicates the

use of zero for missing data. Any assumptions should be validated with those

involved in collection. Table 9.3 shows the number of zero values in each variable.

Removing all observations with missing data would significantly decrease the

size of the data set to analyze. The variables TricepsSFT and Serum–insulin are

candidates for removal and will be discussed in the next section. At this point all

observations with zero values in the following variables will be removed: Pregnant,

Plasma–Glucose, DiastolicBP, and BMI.

When cleaning a data set, it is useful to look for outliers in the data. For

example, there is an observation with a TricepsSFT value of 99. This is over 6.5

standard deviations away from the mean of the data (see Figure 9.1). This

Table 9.2. Categorization of the variables in the data set

Continuous/ Scale of Anticipated

Variable discrete measurement role Comments

Pregnant Continuous Ratio Descriptor Number of times pregnant

Plasma– Continuous Ratio Descriptor Plasma–glucose concentration

Glucose in the blood in a two-hour

oral glucose tolerance test

DiastolicBP Continuous Ratio Descriptor Units: mm Hg

TricepsSFT Continuous Ratio Descriptor Units: mm

Serum–Insulin Continuous Ratio Descriptor Units: mm U/ml

BMI Continuous Ratio Descriptor Body mass index

DPF Continuous Ratio Descriptor Diabetes pedigree function

Age Continuous Ratio Descriptor Units: years

Class Discrete Ordinal Response 0 – does not contract

diabetes in five years

1 – contracts diabetes

in five years

Table 9.3. Number of zeros in each variable

Variable Number of zero values

Pregnant 111

Plasma–Glucose 5

DiastolicBP 35

TricepsSFT 227

Serum–Insulin 374

BMI 11

DPF 0

Age 0

Class 0
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observation should be discussed with those who collected the data to determine

whether it is an error. For this analysis, the observation will be removed.

Remove Variables

An analysis of the relationship between all assigned descriptor variables was

performed. There is a relationship between BMI and TricepsSFT with a value of

r ¼ 0:67 (see Figure 9.2). This indicates that one of these variables could be a

surrogate for the other. Additionally, TricepsSFT has 227 missing data points. For

this analysis, it will be removed based on the number of missing values and its

relationship to BMI. The variable Serum–Insulin is also to be removed from the

data set because of the number of missing values.

Figure 9.1. Potential error in the data
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Figure 9.2. Relationship between TricepsSFT and BMI
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Transform Variables

The data is further examined to determine whether any transformations of the data

are required. The following transformations are considered within this analysis:

normalization, discretization, and aggregation.

To ensure that all variables are considered with equal weight in any further

analysis, the min-max normalization, described in Section 3.4.4, was applied to each

variable where the new range is between 0 and 1.

Value0 ¼ Value -- OriginalMin

OriginalMax -- OriginalMin
ðNewMax -- NewMinÞ þ NewMin

Table 9.4 illustrates a portion of the new table with the newly transformed variables

added to the data set.

The frequency distributions for all variables are examined to see whether the

variables follow a normal distribution and therefore can be used with parametric

modeling approaches without transformation. For example, the DiastolicBP

variable follows a normal distribution and can be used without transformation

(Figure 9.3).

If we wish to use the variable Serum–insulin within modeling approaches that

require a normal distribution, the variable would require a transformation, such as a

log transformation to satisfy this criterion. In Figure 9.4, the Serum–insulin variable

has been applied as a log transformation and now reflects more closely a normal

distribution.

One of the requirements of this analysis is to classify general associations

between classes of variables, such as high blood pressure, and diabetes. To this end,

each variable is binned into a small number of categories. This process should be

performed in consultation with both any subject matter experts and/or the healthcare

professionals who will use the results. This is to ensure that any subject matter or

practical considerations are taken into account prior to the analysis, since the results

will be presented in terms of these categories.

The following summarizes the cut-off values (shown in parentheses) along with

the names of the bins for the variables:

� Pregnant: low (1,2), medium (3,4,5), high (> 6)

� Plasma–Glucose: low (< 90), medium (90–150), high (> 150)

� DiastolicBP: normal (< 80), normal-to-high (80–90), high (> 90)

� BMI: low (< 25), normal (25–30), obese (30–35), severely obese (> 35)

� DPF: low (< 0.4), medium (0.4–0.8), high (> 0.8)

� Age: 20–39, 40–59, 60 plus

� Class: yes (1), no (0)

Table 9.5 summarizes a sample of observations with binned values.

Aggregated variables have already been generated: BMI from the patient’s

weight and height as well as the DPF (diabetes pedigree function).
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Deliverable

The results from this stage of the project are a cleaned and transformed data set

ready for analysis along with a description of the steps that were taken to create the

data set. This description is useful for a number of reasons including validating the

results as well as repeating the exercise later with different data. The following is a

list of variables in the cleaned data table.

� Pregnant

� Pregnant (grouped)

� Pregnant (normalized)

� Plasma–Glucose

� Plasma–Glucose (grouped)

� Plasma–Glucose (normalized)

� DiastolicBP

Figure 9.4. Log transformation of Serum–insulin

Figure 9.3. Frequency distribution of variable DiastolicBP
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� DiastolicBP (grouped)

� DiastolicBP (normalized)

� BMI

� BMI (grouped)

� BMI (normalized)

� DPF

� DPF (grouped)

� DPF (normalized)

� Age

� Age (grouped)

� Age (normalized)

� Class

� Diabetes

In Figure 9.5, the frequency distribution of the variable class is shown. Figure 9.6

characterizes the variables assigned as descriptors. For each variable, a frequency

distribution is generated and presented alongside a series of descriptive statistics in

order to characterize the variables.

9.2.4 Implementation of the Analysis

Summarizing the Data

The use of graphs, summary tables, descriptive statistics, and inferential statistics

will be used here to understand the differences between the two groups and the

measured data. Figure 9.7 shows the distribution of the Plasma–Glucose variable

Figure 9.5. Frequency distribution of class variables
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(light gray). Observations belonging to the two groups are highlighted in dark gray.

In the histogram on the left, the dark gray highlighted observations belong to the

group that went on to develop diabetes. The observations highlighted on the right

histogram are patients that did not develop diabetes. These graphs indicate that the

distribution of Plasma–Glucose data between the groups is significantly different.

Almost all patients with the highest Plasma–Glucose values went on to develop

diabetes. Almost all the patients with the lowest Plasma–Glucose values did not go

on to develop diabetes within five years. In Figure 9.8, the two groups are plotted

Figure 9.7. Plasma–Glucose distributions for the two groups

Develops diabetes

Does not develop diabetes

Plasma–Glucose

200180160140120100806040

Figure 9.8. Box plots showing Plasma–Glucose variation between the two groups

Figure 9.9. Distribution of DiastolicBP between the two groups

Example 229



alongside each other using box plots. There is a significant shift in the central

tendency of the Plasma–Glucose values between the two groups.

Figure 9.9 shows the distribution for the variable DiastolicBP. The light gray

color is the overall frequency distribution and the highlighted observations on the

left are the group that went on to develop diabetes. The highlighted group on the

right did not develop diabetes. From these graphs it is difficult to see any discernable

trends that differentiate the two groups, since the shape of the distributions is similar,

even though the number of observations is higher in the group without diabetes. If

we plot the two groups using a box plot, we see that the group that went on to

develop diabetes is generally higher than the group that did not (Figure 9.10).

Table 9.6 summarizes the means for all variables between the group that went

on to develop diabetes and the group that did not. Figure 9.11 displays the frequency

distribution for all variables to understand differences between the two groups

(diabetes and not diabetes). It can be seen from the graphs, that the values for

Pregnant, Plasma–Glucose, BMI and Age are significantly different between the

two groups. It is more difficult to see the differences between the variables

DiastolicBP and DPF.

Up to this point, we have used graphs, summary tables, and descriptive statistics

to visualize and characterize the differences between the two groups. We will now

use inferential statistics to understand if these differences are significant enough to

make claims about the general population concerning their differences. Wewill use a

hypothesis tests to make this assessment, described in Section 5.3.3.

As an example, we will use the DiastolicBP variable. The observations are

divided into two groups, those patients that went on to develop diabetes (group 1)

and those patients that did not go on to develop diabetes (group 2). We will specify a

null and alternative hypothesis:

Figure 9.10. Box plots showing DiastolicBP variation between the two groups

Table 9.6. Summary table for mean of descriptor variable for each group

Mean

Patient Mean (Plasma– Mean Mean Mean Mean

Diabetes count (Pregnant) Glucose) (DiastolicBP) (BMI) (DPF) (Age)

no 408 3.87 110.7 70.51 30.58 0.43 31.93

yes 216 5.65 142 75.3 34.72 0.54 38.5

230 Chapter 9 Conclusions



Figure 9.11. Frequency distribution for all descriptor variables across the two groups
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H0: m1 ¼ m2
Ha: m1 > m2

where m1 is the population mean of group 1 and m2 is the population mean of group 2.

It is calculated that the sample means are �x1 ¼ 75:3 and �x2 ¼ 70:51. The
number of observations in group 1 is 216 (n1) and the number of observations in

group 2 is 408 (n2). The standard deviation of group 1 is 11.95 (s1) with a variance of

142.8 (s21) and the standard deviation of group 2 is 12.27 (s2) with a variance of 150.6

(s22). We wish to make any claims with a 99% confidence level (i.e. a ¼ 0:01).
The following formulas will be used to calculate the hypothesis score:

z ¼ ð�x1 � �x2Þ � ðm1 � m2Þ
sP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q
where

s2P ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
ðn1 � 1Þ þ ðn2 � 1Þ

We use these formulas to calculate a hypothesis score:

s2P ¼ ð216� 1Þ142:8þ ð408� 1Þ150:6
ð216� 1Þ þ ð408� 1Þ ¼ 147:9

z ¼ ð75:3� 70:51Þ � ð0Þffiffiffiffiffiffiffiffiffiffiffi
147:9

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

216
þ 1

408

q ¼ 4:68

A p-value is determined, as described in Section 5.3.3, and identified using

Appendix A.1. The p-value for this score is 0.0000014 and hence the null hypothesis

is rejected and we state that there is a difference. A hypothesis score for all the

variables is presented in Table 9.7.

Finding Hidden Relationships

The second objective was to identify general associations in the data to understand

the relationship between the measured fields and whether the patient goes on to

develop diabetes. Since the analysis will make use of categorical data, requires the

identification of associations, and must be easy to interpret, the associative rule

grouping approach was selected (described in Section 6.3). Using the following

variables, the observations were grouped and rules extracted:

Pregnant (grouped)

Plasma–Glucose (grouped)

DiastolicBP (grouped)
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BMI (grouped)

DPF (grouped)

Age (grouped)

Diabetes

A restriction to generate groups with more than 30 observations was specified.

Table 9.8 illustrates the top rules extracted from the data where the THEN-part of the

rule is ‘‘Diabetes ¼ yes’’. Here, all the rules describe combinations of risk factors

that lead to diabetes. The rules all have high confidence values (indicating the

strength of the rule) in addition to a strong positive association as indicated by the

high lift scores. Table 9.9 illustrates associations where the THEN-part of the rule is

‘‘Diabetes ¼ no’’. These are the highest ranking rules based on the confidence

values. These rules should be discussed with the subject matter expert to determine

how they should be interpreted by the health care professionals.

Table 9.7. Hypothesis score for each variable

Standard Hypothesis

count mean deviation test (z) p-value

Pregnant Diabetes 216 5.65 3.42 5.685519 < 0.000001

Not Diabetes 408 3.87 3.87

Plasma–Glucose Diabetes 216 142 29.91 13.80435 < 0.000001

Not Diabetes 408 110.7 25.24

DiastolicBP Diabetes 216 75.3 11.95 4.68117 0.0000014

Not Diabetes 408 70.51 12.27

BMI Diabetes 216 34.72 6.04 8.032158 < 0.000001

Not Diabetes 408 30.58 6.17

DPF Diabetes 216 0.54 0.34 4.157876 0.000017

Not Diabetes 408 0.43 0.3

Age Diabetes 216 38.5 10.74 6.899296 < 0.000001

Not Diabetes 408 31.93 11.61

Table 9.8. Associative rules in the diabetes group with highest confidence

If Then Support Confidence Lift

Plasma–Glucose (grouped)¼ high Diabetes¼ yes 6% 0.84 2.44

and Age (grouped)¼ 40–59

Plasma–Glucose (grouped)¼ high Diabetes¼ yes 6.6% 0.82 2.37

and BMI (grouped)¼ severely obese

Plasma–Glucose (grouped)¼ high Diabetes¼ yes 5.6% 0.78 2.25

and BMI (grouped)¼ obese

Pregnant (grouped)¼ high and Diabetes¼ yes 7.5% 0.77 2.23

Plasma–Glucose (grouped)¼ high
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Table 9.9. Associative rules in the not diabetes group with highest confidence

If Then Support Confidence Lift

BMI (grouped)¼ low and Diabetes¼ no 6% 1 1.53

DPF (grouped)¼ low and

Age (grouped)¼ 20–39

Pregnant (grouped)¼ low and Plasma– Diabetes¼ no 5% 1 1.53

Glucose (grouped)¼medium and

BMI (grouped)¼ low

DiastolicBP (grouped)¼ normal and Diabetes¼ no 5% 1 1.53

BMI (grouped)¼ low and DPF

(grouped)¼ low and

Age (grouped)¼ 20–39

Pregnant (grouped)¼ low and Plasma– Diabetes¼ no 8.7% 0.98 1.5

Glucose(grouped)¼medium and

DiastolicBP (grouped)¼ normal and

DPF (grouped)¼ low

and Age (grouped)¼ 20–39

Plasma–Glucose (grouped)¼ Diabetes¼ no 7.9% 0.98 1.5

medium and BMI (grouped)¼ low

and Age (grouped)¼ 20–39

Pregnant (grouped)¼ low and Diabetes¼ no 6.6% 0.98 1.49

Plasma–Glucose (grouped)¼ low

Pregnant (grouped)¼ low and Diabetes¼ no 6.4% 0.98 1.49

BMI (grouped)¼ low

Pregnant (grouped)¼ low and Diabetes¼ no 6.4% 0.98 1.49

Plasma–Glucose(grouped)¼
low and Age (grouped)¼ 20–39

Plasma–Glucose (grouped)¼medium Diabetes¼ no 6.4% 0.98 1.49

and DiastolicBP (grouped)¼ normal

and BMI(grouped)¼ low and

Age (grouped)¼ 20–39

Pregnant (grouped)¼ low and Diabetes¼ no 6.3% 0.98 1.49

Plasma–Glucose (grouped)¼ low and

DiastolicBP (grouped)¼ normal

Pregnant (grouped)¼ low and Diabetes¼ no 6.3% 0.98 1.49

Plasma–Glucose (grouped)¼
low and DiastolicBP (grouped)¼
normal and Age (grouped)¼ 20–39

Pregnant (grouped)¼ low and Diabetes¼ no 6.3% 0.98 1.49

BMI (grouped)¼ low and

Age (grouped)¼ 20–39

Plasma–Glucose (grouped)¼ low Diabetes¼ no 6.3% 0.98 1.49

and DPF (grouped)¼ low and

Age (grouped)¼ 20–39
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Making Predictions

The third objective of this exercise was to develop a predictive model to classify

patients into two categories: (1) patients that will develop diabetes in the next five

years and (2) patients that will not develop diabetes in the next five years. Since the

response variable (Class) is categorical, we must develop a classification model.

There are many alternative classification modeling approaches that we could

consider. Since there is no need to explain how these results were calculated,

selecting a method that generates explanations or confidence values is not necessary.

We decided to select k-Nearest Neighbors (described in Section 7.3) and neural

networks (described in Section 7.5) approaches to build the models. For both types

of models, an experiment was designed to optimize the parameters used in

generating the models. Since we are interested in both specificity and sensitivity of

the results, the experiments will measure both scores. The models will be tested

using a 10% cross validation (described in Section 7.1.5).

The analysis performed so far is critical to the process of developing prediction

models. It helps us understand which variables are most influential, as well as

helping us to interpret the results. Table 9.10 illustrates the optimization of the kNN

(k-Nearest Neighbors) model using different descriptor variables with an optimal

value for k, and using the Euclidean distance. The resulting model accuracy is

displayed using the format ‘‘sensitivity/specificity’’ along with the best value of k.

Table 9.11 shows a section of the optimization of the neural network models, using

different input variables, different numbers of iterations, and different numbers of

hidden layers. Again, the resulting model accuracy is displayed using the format

‘‘sensitivity/specificity’’.

The following model gave the best overall performance (both sensitivity and

specificity) and was selected: neural network with two hidden layers, 50,000 cycles,

and a learning rate of 0.5 using all six descriptors as inputs. The overall concordance

for this model was 0.79 (or 79%) with a specificity of 0.66 (66%) and a sensitivity of

0.86 (86%).

Once the final model has been built, it is often a valuable exercise to look at

observations that were not correctly predicted. Figure 9.12 presents a series of box

plots for observations predicted to be in the not diabetes group, but who were

diabetic (false positives). The upper box plot represents the set of false positives, the

lower presents all observations. Based on our understanding of the data, diabetes is

often associated with increased levels of Plasma–Glucose. In these examples, the

patients had a lower than expected level of Plasma–Glucose. Other characteristics

are similar to the average for the data set. This indicates that we may be missing

important attributes to classify these observations correctly, such as other risk factors

(e.g. level of physical activity, cholesterol level, etc.).

We can also look at examples where we predicted the patients to become

diabetic when in fact they did not (false negatives). A series of box plots for

the descriptor variables are presented in Figure 9.13. The upper box plots are the

false negatives and the lower box plots are all observations. These patients have

characteristics, based on our understanding of the data, of individuals that would go
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Table 9.10. Optimization of the kNN model

k Sensitivity/Specifivity

PRE PG DBP BMI DPF AGE 21 0.54/0.87

- PG DBP BMI DPF AGE 29 0.6/0.88

PRE - DBP BMI DPF AGE 29 0.41/0.85

PRE PG - BMI DPF AGE 21 0.56/0.88

PRE PG DBP - DPF AGE 22 0.53/0.89

PRE PG DBP BMI - AGE 18 0.56/0.88

PRE PG DBP BMI DPF - 29 0.51/0.9

- - DBP BMI DPF AGE 28 0.41/0.86

- PG - BMI DPF AGE 27 0.62/0.87

- PG DBP - DPF AGE 29 0.58/0.88

- PG DBP BMI - AGE 23 0.6/0.86

- PG DBP BMI DPF - 29 0.5/0.88

PRE - - BMI DPF AGE 16 0.38/0.88

PRE - DBP - DPF AGE 28 0.28/0.91

PRE - DBP BMI - AGE 27 0.41/0.84

PRE - DBP BMI DPF - 25 0.33/0.87

PRE PG - - DPF AGE 28 0.51/0.89

PRE PG - BMI - AGE 29 0.53/0.87

PRE PG - BMI DPF - 29 0.51/0.89

PRE PG DBP - - AGE 29 0.54/0.84

PRE PG DBP - DPF - 28 0.49/0.9

PRE PG DBP BMI - - 29 0.52/0.87

- - - BMI DPF AGE 23 0.5/0.86

- - DBP - DPF AGE 23 0.39/0.85

- - DBP BMI - AGE 27 0.46/0.81

- - DBP BMI DPF - 29 0.35/0.89

- PG - - DPF AGE 23 0.58/0.86

- PG - BMI - AGE 28 0.6/0.87

- PG - BMI DPF - 26 0.49/0.9

- PG DBP - - AGE 25 0.56/0.88

- PG DBP - DPF - 29 0.51/0.88

- PG DBP BMI - - 28 0.46/0.89

PRE - - - DPF AGE 29 0.37/0.85

PRE - - BMI - AGE 24 0.42/0.86

PRE - - BMI DPF - 27 0.36/0.88

PRE - DBP - - AGE 28 0.34/0.85

PRE - DBP - DPF - 29 0.29/0.88

PRE - DBP BMI - - 29 0.31/0.88

PRE PG - - - AGE 22 0.53/0.86

PRE PG - BMI - - 28 0.54/0.89

PRE PG DBP - - - 29 0.48/0.87

PRE PG - - - - 29 0.48/0.88

PRE - DBP - - - 29 0.2/0.88

PRE - - BMI - - 20 0.31/0.87

PRE - - - DPF - 28 0.24/0.91
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on to develop diabetes, that is elevated Plasma–Glucose levels and increased BMI.

Again, this would suggest that the data is missing important fields for the

classification of this group of individuals.

9.2.5 Deployment of the Results

The deployment of the results should be carefully planned since this is how the work,

put in so far, will be translated into any anticipated benefits. A report should be

written by the team outlining the analysis and the results. A plan should be

developed describing how the prediction model will be made available to the health

care professionals including the development of any new software, as well as

training the professionals to use and interpret the results. A plan for ongoing

monitoring of the results and for updating the model should also be developed.

As with all projects, certain approaches worked well, whereas others did not

work so well. For example, looking at the false negatives and false positives was an

informative exercise. Understanding and documenting the successes and failures

will allow you to share your experiences as well as improve future projects.

9.3 ADVANCED DATA MINING

9.3.1 Overview

Some common applications of exploratory data analysis and data mining require

special treatment. They all can make use of the techniques described in the book;

however, there are a number of factors that should be considered and the data may

need to be pre-analyzed prior to using it within the framework described in the book.

The further reading section of this chapter contains links to additional resources on

these subjects.

Table 9.10. (Continued)

k Sensitivity/Specifivity

PRE - - - - AGE 29 0.39/0.81

- PG DBP - - - 29 0.43/0.9

- PG - BMI - - 29 0.47/0.88

- PG - - DPF - 26 0.45/0.9

- PG - - - AGE 28 0.52/0.87

- - DBP BMI - - 29 0.22/0.88

- - DBP - DPF - 29 0.19/0.91

- - DBP - - AGE 29 0.41/0.81

- - - BMI DPF - 29 0.36/0.87

- - - BMI - AGE 22 0.48/0.84

- - - - DPF AGE 28 0.39/0.85
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9.3.2 Text Data Mining

A common application is data mining information contained in books, journals, web

content, intranet content, and content on your desktop. One of the first barriers to

using the data analysis and data mining techniques described in this book is the

nontabular and textual format of documents. However, if the information can be

translated into a tabular form then we can start to use the methods described on text

documents. For example, a series of documents could be transformed into a data

table as shown in Table 9.12. In this situation each row represents a different

document. The columns represent all words contained in all documents. For each

document, the presence of a word is indicated by ‘‘1’’ and the absence of a word is

Figure 9.12. Summary of contents of false positives

Figure 9.13. Summary of contents of false negatives
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indicated by ‘‘0’’. For example, Document A has the word ‘‘Data’’ somewhere in the

document but no mention of the word ‘‘Mining’’ anywhere in the document. Once

the table is in this format, the data mining approaches described can be used to group

and classify documents as well as looking for word combination patterns. This is a

simple view of data mining text-based unstructured documents. Additional resources

are presented in the further reading section of this chapter describing methods for

data mining unstructured textual documents.

9.3.3 Time Series Data Mining

In many disciplines such as financial, meteorological, and medical areas, data is

collected at specific points in time. Methods for analyzing this type of data are

similar to those outlined in this book. However, when looking at time series data,

there are often underlying trends that need to be factored out. For example,

measuring rain over the course of the year in many locations will change due to the

changing of the seasons. These underlying trends need to be factored out in order to

detect trends not related to seasonal variables.

9.3.4 Sequence Data Mining

In other areas events or phenomena happen in a particular sequence order, with time

not being one of the dimensions to analyze. For example, web log data is comprised

of sequences of pages explored. In addition to the methods described, other

techniques such as hidden Markov models that make use of the state change

information can be used to analyze this data.

9.4 FURTHER READING

Further information on text data mining can be found in Weiss (2004) and Berry (2003) and

information on time series data mining in Last (2004).

Table 9.12. Table generated from documents

Document name ‘‘Data’ ‘‘Mining’’ ‘‘Textual’’ ‘‘Analysis’’

Document A 1 0 1 0

Document B 0 1 0 0

Document C 1 1 0 1

. . .
Document D 0 0 0 1
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AppendixA

Statistical Tables

A.1 NORMAL DISTRIBUTION

Table A.1 represents the area or probability (a) to the right of specific z-scores for

a normal distribution (see Figure A.1). For example, the area to the right of 1.66

z-score is 0.0485.

A.2 STUDENT’S T -DISTRIBUTION

Critical values of t are shown in Table A.2 for various degrees of freedom (df). The

area or probability values (a) to the right of the t-values (see Figure A.2) are shown

in the table. For example, with 13 degrees of freedom and 0.025 probability (a) the
t-value would be 2.160.

Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining,
By Glenn J. Myatt
Copyright # 2007 John Wiley & Sons, Inc.

−∞ ∞
z0

area

Figure A.1. Area to the right of the z-score
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Table A.2. Student’s t-distribution

Upper tail area

df 0.1 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

‘ 1.282 1.645 1.960 2.326 2.576

Adapted from Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and

Medical Research, Sixth Edition, Pearson Education Limited, � 1963 R. A. Fisher and F. Yates.
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A.3 CHI-SQUARE DISTRIBUTION

Critical values of w2 are shown in Table A.3 for various degrees of freedom (df) and

illustrated in Figure A.3. The area or probability values (a) to the right of the w2

values are shown in the table. For example, with 9 degrees of freedom and 0.05

probability (a), the w2 value would be 16.919.

−∞ ∞
t0

area

Figure A.2. Area to the right of the t-value

α

χ2

Figure A.3. Chi-square distribution
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A.4 F-DISTRIBUTION

Tables A.4, A.5, A.6 and A.7 show the F-statistics for four different values of a: 0.1,
0.05, 0.01 and 0.005. v1 is the number of degrees of freedom for the numerator and

v2 is the number of degrees of freedom for the denominator. Figure A.4 illustrates the

F-distribution. For example, to look up a critical value for the F-statistics where the

numerator degrees of freedom (v1) are 6 and the denominator degrees of freedom

(v2) are 15 and a is 0.05, using Table A.5, is 3.94.

F

Figure A.4. F-distribution

F-distribution 249
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AppendixB

Answers to Exercises

Chapter 3

1a. Discrete

1b. Continuous

1c. Dichotomous

1d. Discrete

1e. Continuous

1f. Continuous

1g. Continuous

1h. Continuous

1i. Continuous

1j. Binary

2a. Nominal

2b. Ratio

2c. Nominal

2d. Nominal

2e. Ratio

2f. Ratio

2g. Ratio

2h. Ratio

2i. Ratio

2j. Nominal

3a. Name

3b. Age, Weight, Systolic blood pressure, Diastolic blood pressure

3c. Diabetes

4. See Table B.1
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5. See Table B.2

6. See Table B.3

7. See Table B.4 and Table B.5

Table B.1. Chapter 3, question 4 answer

Weight (kg)

Name Weight (kg) normalized to 0–1

P. Lee 50 0.095

R. Jones 115 0.779

J. Smith 96 0.579

A. Patel 41 0

M. Owen 79 0.4

S. Green 109 0.716

N. Cook 73 0.337

W. Hands 104 0.663

P. Rice 64 0.242

F. Marsh 136 1

Table B.2. Chapter 3, question 5 answer

Weight (kg) categorized

Name Weight (kg) [low, medium, high]

P. Lee 50 low

R. Jones 115 high

J. Smith 96 medium

A. Patel 41 low

M. Owen 79 medium

S. Green 109 high

N. Cook 73 medium

W. Hands 104 high

P. Rice 64 medium

F. Marsh 136 high

Table B.3. Chapter 3, question 6 answer

Name Weight (kg) Height (m) BMI

P. Lee 50 1.52 21.6

R. Jones 115 1.77 36.7

J. Smith 96 1.83 28.7

A. Patel 41 1.55 17.1

M. Owen 79 1.82 23.8

S. Green 109 1.89 30.5

N. Cook 73 1.76 23.6

W. Hands 104 1.71 35.6

P. Rice 64 1.74 21.1

F. Marsh 136 1.78 42.9
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Chapter 4

1. See Table B.6

2a. See Table B.7

2b. See Table B.8

2c. See Table B.9

3. See Figure B.1

4. See Figure B.2

Table B.4. Chapter 3, question 7 answer (female patients)

Systolic Diastolic

Blood Weight Height blood blood Tempe-

Name Age Gender group (kg) (m) pressure pressure rature (�F) Diabetes

P. Lee 35 Female A Rhþ 50 1.52 68 112 98.7 0

A. Patel 70 Female O Rh� 41 1.55 76 125 98.6 0

W. Hands 77 Female O Rh� 104 1.71 107 145 98.3 1

P. Rice 45 Female O Rhþ 64 1.74 101 132 98.6 0

Table B.5. Chapter 3, question 7 answer (male patients)

Systolic Diastolic

Blood Weight Height blood blood Temperature

Name Age Gender group (kg) (m) pressure pressure (�F) Diabetes

R. Jones 52 Male O Rh� 115 1.77 110 154 98.5 1

J. Smith 45 Male O Rhþ 96 1.83 88 136 98.8 0

M. Owen 24 Male A Rh� 79 1.82 65 105 98.7 0

S. Green 43 Male O Rh� 109 1.89 114 159 98.9 1

N. Cook 68 Male A Rhþ 73 1.76 108 136 99.0 0

F. Marsh 28 Male O Rhþ 136 1.78 121 165 98.7 1

Table B.6. Chapter 4, question 1 answer

Store

New York, NY Washington, DC Totals

Laptop 1 2 3

Product Printer 2 2 4

category Scanner 4 2 6

Desktop 3 2 5

Totals 10 8 18
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Table B.7. Chapter 4, question 2a answer

Number of Sum of sales

Customer observations price ($)

B. March 3 1700

J. Bain 1 500

T. Goss 2 750

L. Nye 2 900

S. Cann 1 600

E. Sims 1 700

P. Judd 2 900

G. Hinton 4 2150

H. Fu 1 450

H. Taylor 1 400

Table B.8. Chapter 4, question 2b answer

Store Number of Mean sale

observations price ($)

New York, NY 10 485

Washington, DC 8 525

Table B.9. Chapter 4, question 2c answer

Number of Sum of

Product category observations profit ($)

Laptop 3 470

Printer 4 360

Scanner 6 640

Desktop 5 295

Figure B.1. Frequency distribution
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Chapter 5

1a. 45

1b. 45

1c. 48.7

1d. 53

1e. 324.9

1f. 18.02

1g. See Table B.10

1h. 0.22

1i. –1.5

2. 24.14 – 25.86

3. 0.386 – 0.534

100                    325                     550                    775                    1000

190

145

100

55

10

P
ro

fi
t 

($
)

Sale price ($)

Figure B.2. Scatterplot

Table B.10. Chapter 5, question 1g answer

Name Age z-score Age

P. Lee 35 –0.76

R. Jones 52 0.18

J. Smith 45 –0.21

A. Patel 70 1.18

M. Owen 24 –1.37

S. Green 43 –0.32

N. Cook 68 1.07

W. Hands 77 1.57

P. Rice 45 –0.21

F. Marsh 28 –1.15
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4a. Ho: m ¼ 2

4b. Ha: m < 2 where m is the average call connection time.

4c. –2.72

4d. 0.0033

4e. The phone company can make the claim.

5a. Ho: p ¼ 0:9, Ha: p > 0:9 where p is the proportion of customers pleased

with the service of the bank.

5b. 0.33

5c. 0.3707

5d. The bank cannot make the claim.

6a. HO: m1 ¼ m2, Ha: m1 > m2 where m1 is the average tomato plant height

grown with fertilizer X and m2 is the average tomato plant height grown

with fertilizer Y.

6b. 2.82

6c. 0.0024

6d. The company can make the claim.

7a. H0: p1 ¼ p2, Ha: p1 < p2 where p1 is the proportion of defects, using

manufacturer A, and p2 is the proportion of defects, using manufacturer B.

7b. 0.54

7c. 0.2946

7d. The company cannot make the claim.

8a. HO:mD ¼ 0, Ha:mD 6¼ 0 where mD is the difference between the wear of the

gloves.

8b. 15.36

8c. Practically zero.

8d. Yes.

9a. H0: There is no relationship, Ha: There is a relationship.

9b. 2.18

9c. Cannot make the claim.

10a. H0: There is no difference, Ha: There is a difference.

10b. 1.48

10c. Cannot make the claim.

11. 0.98

Chapter 6

1a. 4.8

1b. 2.8

1c. 0
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2. 2.24

3. Support¼ 0.47, Confidence¼ 1, Lift¼ 1.89

4a. 0.73

4b. 1.0

Chapter 7

1a. 0.85

1b. 0.15

1c. 0.89

1d. 0.82

2a. 0.87

2b. See Table B.11

3a. Height¼�0.071þ 0.074 Fertilizer

3b. 0.98

4. $352,600

5. Brand B

6. 0.56

Table B.11. Chapter 7, question 2b answer

Observation Actual Predicted Residual

1 13.7 12.4 1.3

2 17.5 16.1 1.4

3 8.4 6.7 1.7

4 16.2 15.7 0.5

5 5.6 8.4 –2.8

6 20.4 15.6 4.8

7 12.7 13.5 –0.8

8 5.9 6.4 –0.5

9 18.5 15.4 3.1

10 17.2 14.5 2.7

11 5.9 5.1 0.8

12 9.4 10.2 –0.8

13 14.8 12.5 2.3

14 5.8 5.4 0.4

15 12.5 13.6 –1.1

16 10.4 11.8 –1.4

17 8.9 7.2 1.7

18 12.5 11.2 1.3

19 18.5 17.4 1.1

20 11.7 12.5 –0.8
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Glossary

Accuracy. The accuracy reflects the number of times the model is correct.

Activation function. This is used within a neural network to transform the input level into an

output signal.

Aggregation. A process where the data is presented in a summary form, such as average.

Alternative hypothesis. Within a hypothesis test, the alternative hypothesis (or research

hypothesis) states specific values of the population that are possible when the null

hypothesis is rejected.

Antecedent. An antecedent is the statement or statements in the IF-part of a rule.

Applying predictive models. Once a predictive model has been built, the model can be used

or applied to a data set to predict a response variable.

Artificial neural network. See neural network.

Associative rules. Associative rules (or association rules) result from data mining and present

information in the form ‘‘if X then Y’’.

Average. See mean.

Average linkage. Average linkage is the average distance between two clusters.

Backpropagation. A method for training a neural network by adjusting the weights using

errors between the current prediction and the training set.

Bin. Usually created at the data preparation step, a variable is often broken up into a series of

ranges or bins.

Binary variable. A variable with two possible outcomes: true (1) or false (0).

Binning. Process of breaking up a variable into a series of ranges.

Box plot. Also called a box-and-whisker plot, it is a way of graphically showing the median,

quartiles and extreme values, along with the mean.

Box-Cox transformation. Often used to convert a variable to a normal distribution.

Building predictive models. This is the process of using a training set of examples and

creating a model that can be used for prediction.

Business analyst. A business analyst specializes in understanding business needs and

required solutions.

Categorical data. Data whose values fall into a finite number of categories.

Central limit theorem. States that the distribution of mean values will increasingly follow a

normal distribution as the number of observations increases.

Chi-square. The chi-square statistic is often used for analyzing categorical data.

Churn. Reflects the tendency of subscribers to switch services.

Classification and Regression Trees (CART). Decision trees used to generate

predictions.
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Classification model. A model where the response variable is categorical.

Classification tree. A decision tree that is used for prediction of categorical data.

Cleaning (data). Data cleaning refers to the detecting and correcting of errors in the data

preparation step.

Cleansing. See cleaning.

Clustering. Clustering attempts to identify groups of observations with similar characteristics.

Complete linkage. Maximum distance between an observation in one cluster and an

observation in another one.

Concordance. Reflects the agreement between the predicted and the actual response.

Confidence interval. An interval used to estimate a population parameter.

Confidence level. A probability value that a confidence interval contains the population

parameter.

Constant. A column of data where all values are the same.

Consumer. A consumer is defined in this context as one or more individuals who will make

use of the analysis results.

Contingency table. A table of counts for two categorical variables.

Continuous variable. A continuous variable can take any real number within a range.

Correlation coefficient (r). A measure to determine how closely a scatterplot of two

continuous variables falls on a straight line.

Cross validation.Amethod for assessing the accuracy of a regression or classification model.

A data set is divided up into a series of test and training sets, and a model is built with each

of the training set and is tested with the separate test set.

Customer Relationship Management (CRM). A database system containing information on

interactions with customers.

Data. Numeric information or facts collected through surveys or polls, measurements or

observations that need to be effectively organized for decision making.

Data analysis. Refers to the process of organizing, summarizing and visualizing data in order

to draw conclusions and make decisions.

Data matrix. See data table.

Data mining. Refers to the process of identifying nontrivial facts, patterns and relationships

from large databases. The databases have often been put together for a different purpose

from the data mining exercise.

Data preparation. Refers to the process of characterizing, cleaning, transforming, and

subsetting data prior to any analysis.

Data table. A table of data where the rows represent observations and the columns represent

variables.

Data visualization. Refers to the presentation of information graphically in order to quickly

identify key facts, trends, and relationships in the data.

Data warehouse. Central repository holding cleaned and transformed information needed by

an organization to make decisions, usually extracted from an operational database.

Decimal scaling.Normalization process where the data is transformed by moving the decimal

place.

Decision tree. A representation of a hierarchical set of rules that lead to sets of observations

based on the class or value of the response variable.
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Deployment. The process whereby the results of the data analysis or data mining are provided

to the user of the information.

Descriptive statistics. Statistics that characterize the central tendency, variability, and shape

of a variable.

Dichotomous variable. A variable that can have only two values.

Discrete variable. A variable that can take only a finite number of values.

Discretization. A process for transforming continuous values into a finite set of discrete

values.

Dummy variable. Encodes a particular group of observations where 1 represents its presence

and 0 its absence.

Embedded data mining. An implementation of data mining into an existing database system

for delivery of information.

Entropy. A measurement of the disorder of a data set.

Error rate. Reflects the number of times the model is incorrect.

Euclidean distance. A measure of the distance between two points in n-dimensional space.

Experiment. A test performed under controlled conditions to test a specific hypothesis.

Exploratory data analysis. Processes and methods for exploring patterns and trends in the

data that are not known prior to the analysis. It makes heavy use of graphs, tables, and

statistics.

Feed-forward. In neural networks, feed-forward describes the process where information is

fed through the network from the input to the output layer.

Frequency distribution. Description of the number of observations for items or consecutive

ranges within a variable.

Frequency polygram. A figure consisting of lines reflecting the frequency distribution.

Gain. Measures how well a particular splitting of a decision tree separates the observations

into specific classes.

Gaussian distribution. See normal distribution.

Gini. A measure of disorder reduction.

Graphs. An illustration showing the relationship between certain quantities.

Grouping. Methods for bringing together observations that share common characteristics.

Hidden layer. Used in neural networks, hidden layers are layers of nodes that are placed

between the input and output layers.

Hierarchical agglomerative clustering. A bottom-up method of grouping observations

creating a hierarchical classification.

Histogram. A graph showing a variable’s discrete values or ranges of values on the x-axis and

counts or percentages on the y-axis. The number of observations for each value or range is

presented as a vertical rectangle whose length is proportionate to the number of

observations.

Holdout. A series of observations that are set aside and not used in generating any predictive

model but that are used to test the accuracy of the models generated.

Hypothesis test. Statistical process for rejecting or not rejecting a claim using a data set.

Inferential statistics. Methods that draw conclusions from data.

Information overload. Phenomena related to the inability to absorb and manage effectively

large amounts of information, creating inefficiencies, stress, and frustration. It has been
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exacerbated by advances in the generation, storage, and electronic communication of

information.

Input layer. In a neural network, an input layer is a layer of nodes, each one corresponding to

a set of input descriptor variables.

Intercept. Within a regression equation, the point on the y-axis where x is 0.

Interquartile range. The difference between the first and third quartile of a variable.

Interval scale. A scale where the order of the values has meaning and where the difference

between pairs of values can be meaningfully compared. The zero point is arbitrary.

Jaccard distance. Measures the distance between two binary variables.

K-means clustering. A top-down grouping method where the number of clusters is defined

prior to grouping.

K-nearest neighbors (kNN). A prediction method, which uses a function of the k

most similar observations from the training set to generate a prediction, such as the

mean.

Kurtosis.Measure that indicates whether a variable’s frequency distribution is peaked or flat

compared to a normal distribution.

Leaf. A node in a tree or network with no children.

Learning. A process whereby a training set of examples is used to generate a model that

understands and generalizes the relationship between the descriptor variables and one or

more response variables.

Least squares. A common method of estimating weights in a regression equation that

minimizes the sum of the squared deviation of the predicted response values from the

observed response values.

Linear relationship. A relationship between variables that can be expressed as a straight line

if the points are plotted in a scatterplot.

Linear regression. A regression model that uses the equation for a straight line.

Linkage rules. Alternative approaches for determining the distance between two clusters.

Logistic regression. A regression equation used to predict a binary variable.

Mathematical models. The identification and selection of important descriptor variables to

be used within an equation or process that can generate useful predictions.

Mean. The sum of all values in a variable divided by the number of values.

Medium. The value in the middle of a collection of observations.

Min–max normalization. Normalizing a variable value to a predetermine range.

Missing data. Observations where one or more variables contain no value.

Mode. The most commonly occurring value in a variable.

Models. See mathematical model.

Nominal scale. A scale defining a variable where the individual values are categories and no

inference can be made concerning the order of the values.

Multilinear regression. A linear regression equation comprising of more than one descriptor

variable.

Multiple regression. A regression involving multiple descriptor variables.

Negative relationship. A relationship between variables where one variable increases while

the other variable decreases.
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Neural network. A nonlinear modeling technique comprising of a series of interconnected

nodes with weights, which are adjusted as the network learns.

Node. A decision point within a decision tree and a point at which connections join within a

neural network.

Nominal scale. A variable is defined as being measured on a nominal scale if the values

cannot be ordered.

Nonhierarchical clustering.A grouping method that generates a fixed set of clusters, with no

hierarchical relationship quantified between the groups.

Nonlinear relationship. A relationship where while one or more variables increase the

change in the response is not proportional to the change in the descriptor(s).

Nonparametric. A statistical procedure that does not require a normal distribution of the

data.

Normal distribution. A frequency distribution for a continuous variable, which exhibits a

bell-shaped curve.

Normalizations (standardization). Mathematical transformations to generate a new set of

values that map onto a different range.

Null hypothesis. A statement that we wish to clarify by using the data.

Observation. Individual record in a data table.

Observational study. A study where the data collected was not randomly obtained.

Occam’s Razor. A general rule to favor the simplest theory to explain an event.

On-Line Analytical Processing (OLAP). Tools that provide different ways of summarizing

multidimensional data.

Operational database. A database containing a company’s up-to-date and modifiable

information.

Ordinal scale. A scale measuring a variable that is made of items where the order of the items

has meaning.

Outlier. A value that lies outside the boundaries of the majority of the data.

Output layer. A series of nodes in a neural network that interface with the output response

variables.

Overfitting. This is when a predictive model is trained to a point where it is unable to

generalize outside the training set of examples it was built from.

Paired test. A statistical hypothesis test used when the items match and the difference is

important.

Parameter. A numeric property concerning an entire population.

Parametric. A statistical procedure that makes assumptions concerning the frequency

distributions.

Placebo. A treatment that has no effect, such as a sugar pill.

Point estimate. A specific numeric estimate of a population parameter.

Poll. A survey of the public.

Population. The entire collection of items under consideration.

Positive relationship. A relationship between variables where as one variable increases the

other also increases.

Prediction. The assignment using a prediction model of a value to an unknown field.

Glossary 269



Predictive model (or prediction model). See mathematical model.

Predictor. A descriptor variable that is used to build a prediction model.

p-value. A p-value is the probability of obtaining a result at least as extreme as the null

hypothesis.

Range. The difference between the highest and the lowest value.

Ratio scale. A scale where the order of the values and the differences between values has

meaning and the zero point is nonarbitrary.

Regression trees. A decision tree used to predict a continuous variable.

Residual. The difference between the actual data point and the predicted data point.

Response variable. A variable that will be predicted using a model.

r-squared. A measure that indicates how well a model predicts.

Sample. A set of data selected from the population.

Sampling error. Error resulting from the collection of different random samples.

Sampling distribution. Distribution of sample means.

Scatterplot. A graph showing two variables where the points on the graph correspond to the

values.

Segmentation. The process where a data set is divided into separate data tables, each sharing

some common characteristic.

Sensitivity. Reflects the number of correctly assigned positive values.

Similarity. Refers to the degree two observations share common or close characteristics.

Simple linear regression. A regression equation with a single descriptor variable mapping to

a single response variable.

Simple nonlinear regression. A regression equation with a single descriptor variable

mapping to a single response variable where whenever the descriptor variable increases, the

change in the response variable is not proportionate.

Simple regression. A regression model involving a single descriptor variable.

Single linkage. Minimum distance between an observation in one cluster and an observation

in another.

Skewness. For a particular variable, skewness is a measure of the lack of symmetry.

Slope.Within a simple linear regression equation, the slope reflects the gradient of the straight

line.

Specificity. Reflects the number of correctly assigned negative values.

Splitting criteria. Splitting criteria are used within decision trees and describe the variable

and condition in which the split occurred.

Spreadsheet. A software program to display and manipulate tabular data.

Standard deviation. A commonly used measure that defines the variation in a data set.

Standard error of the mean. Standard deviation of the means from a set of samples.

Standard error of the proportion. Standard deviation of proportions from a set of

samples.

Statistics. Numeric information calculated on sample data.

Subject matter expert. An expert on the subject of the area on which the data analysis or

mining exercise is focused.

Subset. A portion of the data.
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Sum of squares of error (SSE). This statistic measures the total deviation of the response

from the predicted value.

Summary table. A summary table presents a grouping of the data where each row represent a

group and each column details summary information, such as counts or averages.

Supervised learning. Methods, which use a response variable to guide the analysis.

Support. Represents a count or proportion of observations within a particular group included

in a data set.

Survey. A collection of questions directed at an unbiased random section of the population,

using nonleading questions.

Temporal data mining. See time-series data mining.

Test set. A set of observations that are not used in building a prediction model, but are used in

testing the accuracy of a prediction model.

Textual data mining. The process of extracting nontrivial facts, patterns, and relationships

from unstructured textual documents.

Time-series data mining. A prediction model or other method that uses historical

information to predict future events.

Training set. A set of observations that are used in creating a prediction model.

Transforming (data).A process involving mathematical operations to generate new variables

to be used in the analysis.

Two-sided hypothesis test. A hypothesis test where the alternative hypothesis population

parameter may lie on either side of the null hypothesis value.

Type I error.Within a hypothesis test, a type I error is the error of incorrectly rejecting a null

hypothesis when it is true.

Type II error.Within a hypothesis test, a type II error is the error of incorrectly not rejecting a

null hypothesis when it should be rejected.

Unsupervised learning. Analysis methods that do not use any data to guide the technique

operations.

Value mapping. The process of converting into numbers variables that have been assigned as

ordinal and described using text values.

Variable. A defined quantity that varies.

Variance. The variance reflects the amount of variation in a set of observations.

Venn Diagram. An illustration of the relationship among and between sets.

z-score. The measure of the distance in standard deviations of an observation from the mean.
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