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[1] RNA Extraction for Arrays

By LAKSHMI V. MADABUSI, GARY J. LATHAM, and
BERNARD F. ANDRUSS
Abstract

DNA microarrays enable insights into global gene expression by
capturing a snapshot of cellular expression levels at the time of sample
collection. Careful RNA handling and extraction are required to preserve
this information properly, ensure sample‐to‐sample reproducibility, and
limit unwanted technical variation in experimental data. This chapter dis-
cusses important considerations for ‘‘array‐friendly’’ sample handling and
processing from biosamples such as blood, formalin‐fixed, paraffin‐
embedded samples, and fresh or flash‐frozen tissues and cells. It also
provides guidelines on RNA quality assessments, which can be used to
validate sample preparation and maximize recovery of relevant biological
information.
Introduction

DNA microarrays have enabled biologists to move from the realm of
studying one gene at a time to understanding genome‐wide changes in gene
expression. The value of microarray studies has been vetted through nu-
merous studies that have linked abnormal transcript levels with many
different diseases (Archacki and Wang, 2004; Blalock et al., 2004;
Borovecki et al., 2005; Dhanasekaran et al., 2001; Glatt et al., 2005; West
et al., 2001). Because these types of studies will be used increasingly to
create and validate diagnostic and prognostic expression signatures and
to support toxicological and functional studies that underlie the regulatory
filings for new drug submissions, it will become increasingly important to
create standardized and robust methods for sample procurement, sample
processing, and data analysis. The goal of any RNA isolation procedure is
to recover an RNA population that faithfully mirrors the biology of the
sample at the time of collection. Problems associated with the extraction
of biologically representative RNA primarily arise from the susceptibility
of RNA to degradation by ubiquitous and catalytically potent RNases. For
tissues and cells, protection of RNA has traditionally been accomplished
by immediate lysis using high concentrations of detergents and/or chao-
tropic agents and organic solvents (such as TRI reagent). These methods,
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11001-0



2 DNA microarrays, part B [1]
while effective, are complex to use at point of care and suffer from low
sample throughput and poor stabilization of cellular RNA for long periods.
Flash freezing of the sample in liquid nitrogen and subsequent transporta-
tion on dry ice, although effective, are impractical in most clinical settings.
Finally, disease specimens can present biohazard risks to the operator and
constrain sample collection, thus limiting the use of best sample handling
and processing practices and compromising RNA quality.

The practicality and efficacy of RNA stabilization agents such as RNA-
later to preserve the RNA in tissues, cells, and blood are gaining broad
acceptance. Procedures used for collection of samples with RNAlater are
simple and can be carried out in a hospital setting with minimal training.
This reagent is aqueous and nontoxic and allows convenient transportation
of samples at ambient temperature. However, RNAlater does not remove
the biohazard risks associated with biosamples, and, as a result, all proper
safety precautions should be observed. It is beyond the scope of this
chapter to provide details on the risks associated and preventive measures
to be taken when dealing with samples considered to be a biohazard.
Several regulatory agencies offer guidelines on the safety issues and
precautions that need to be addressed with such samples.

In addition to the handling of biological material, limitations can be
imposed by the large amounts of RNA necessary for microarray experi-
ments. As a result, samples such as tumor biopsies, formalin‐fixed, paraffin‐
embedded (FFPE) sections, or laser microdissected samples require RNA
amplification to generate adequate amounts of labeled material for micro-
array hybridization. The most popular and best validated approaches for
amplifying RNA are based on the linear RNA amplification method de-
veloped by Eberwine (Van Gelder, 1990). This technique has been widely
accepted for microarray applications and is known to preserve the original
transcript ratios in the sample (Feldman et al., 2002; Polacek et al., 2003). In
terms of RNA quality, parameters such as A260:280 measurements and
Agilent RNA integrity number (RIN) are often used to gauge the quality
of samples and predict their suitability for microarray studies. The mini-
mum A260:280 or RIN number suitable for analysis varies by the array
platform, number of replicates, and the experimental questions to be
answered in the study.
Blood as a Biological Specimen

Blood is a highly desirable biosample for research and clinical studies
for several reasons. First, blood is highly accessible and can be collected
using relatively simple methods. Second, limited infrastructure is required
to draw blood from a large number of patients. Finally, blood circulates
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throughout the entire body and thus is a vast reservoir of host biological
information and an ideal specimen for experiments that aim to understand
human physiology and disease. As a source of RNA, however, blood poses
a number of unique challenges. The ratio of total protein to RNA in blood
is roughly 100‐fold greater than the ratio for most solid tissues, complicat-
ing the isolation of pure, high quality RNA. The presence of multiple
cellular components in blood, each at different maturation stages in their
life cycle, can lead to variation between patients. Among these various
cellular components, only white blood cells (WBC) or leukocytes are
nucleated and thus transcriptionally active (Fan and Hegde, 2005). How-
ever, WBC constitute only about 0.1% of the total blood cellular composi-
tion. In contrast, red blood cells (RBC) comprise �95% of the total cell
count but do not contribute to the blood gene expression program in their
mature form. Immature red blood cells, known as reticulocytes, comprise
only about 1% of the RBC population, yet contain significant levels of
nucleic acids, particularly globin mRNA, that can contribute to the back-
ground noise in a microarray experiment. This noise can be substantial and
can reduce the number of genes that are called present on microarrays.
Collection and Preservation of Blood Samples

Whole blood samples can be collected in the presence of anticoagulants
such as sodium citrate, EDTA, or heparin. However, these chemicals are
not effective RNA preservatives because they do not readily inhibit the
RNases in blood that are the primary threat to RNA intactness and do not
maintain cellular homeostasis in the sample. Indeed, the gene expression
levels of many transcripts in blood stored in EDTA can change by an order of
magnitude or more within a few hours (Rainen et al., 2002). Rapid changes in
gene expression of cytokines and transcription factors have been observed
during storage for 1 to 4 hwith interleukin‐8 expression increasing 100‐fold by
4 h (Tanner et al., 2002). Additional genes such as transcription factors and
pro‐ and anti‐inflammatory genes show large changes in gene expression
within a few hours to 1 day after collection (Pahl and Brune, 2002; Tanner
et al., 2002). The stresses caused by handling and centrifugation can alter gene
expression rapidly (Haskill et al., 1988). It is important to note that the
purity of the RNA as measured by A260/280 is very consistent even after
the extended storage of whole blood at ambient temperature, and often the
intactness of ribosomal RNA bands is also well maintained although the
underlying representation of many genes may have changed dramatically.

Other commonly used methods of blood collection and preservation
include use of commercial products such as PAXgene tubes (PreAnalytiX
GmbH, Switzerland) and the CPT tube (Becton Dickinson, NJ) for
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peripheral blood mononuclear cell (PBMC) collection. A brief summary of
the advantages and impact of such sample collection methods on gene
expression profiling has been reviewed by Fan and Hegde (2005). We find
that use of RNAlater as a preservative in conjunction with an optimized
RNA isolation protocol produces excellent RNA yields and stable and
reproducible expression profiles of human whole blood (Fig. 1). A concom-
itant increase in RNA yield and a more consistent level of percentage
present calls were observed with the use of RNAlater.

Methodologies for Globin Transcript Removal from Whole Blood

The presence of high levels of globin transcripts in RNA isolated from
whole blood can affect the quality of data generated by reducing the
number of present calls, decreasing call concordance, and increasing
the variation in signal between samples. To circumvent the problems
associated with the presence of globin transcripts, protocols have been
described that reduce globin mRNA levels by either depleting these tran-
scripts in purified RNA or fractionating blood cells to reduce the red blood
FIG. 1. RNAlater provides room temperature stabilization of the global expression profile

in human whole blood. Biological replicates of samples processed with RiboPure‐Blood
(Ambion) immediately after blood collection or after 3 days of storage at room temperature.

The global expression level was assessed using Affymetrix human focus arrays with 10 �g

aRNA input without globin reduction. Plots were constructed from signal‐normalized data.
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cell population, particularly reticulocytes, which are the primary reservoir
of globin transcripts.

Depletion of Globin Transcripts from Whole Blood

To selectively deplete the globin transcripts from whole blood, com-
mercial protocols were initially developed using enzymatic procedures to
selectively degrade the globin transcripts. One of the first protocols was
suggested by Affymetrix, Inc. This procedure described the hybridization
of complementary DNA oligonucleotides to the various globin transcripts
in blood followed by digestion of the RNA:DNA hybrid with RNase H.
More recently, Affymetrix has launched the GeneChip Blood RNA Con-
centration Kit, which utilizes globin‐specific peptide nucleic acid (PNA)
oligomers as blocking molecules to prevent the amplification of these
transcripts during T7 RNA polymerase‐based linear amplification. An
alternative strategy provide by Ambion is the GLOBINclear kit, which
relies on the binding of biotinylated capture oligonucleotides to the RNA
and uses biotin–streptavidin binding to deplete the globin transcript com-
plex from the mixture. This method results in a dramatic reduction of the
globin gene transcripts from whole blood RNA while substantially increas-
ing the percentage present calls on Affymetrix Genechip arrays with
human blood samples (Fig. 2). Thus, globin transcript reduction prevents
FIG. 2. GLOBINclear processing increases the sensitivity of microarrays. Quadruplicate

GLOBINclear reactions were performed with pooled total RNA samples from human whole

blood (from healthy donors under an IRB‐approved protocol). The processed RNA was then

amplified with MessageAmp II‐96 to synthesize biotinylated aRNA for Affymetrix GeneChip

array analysis. Quadruplicate untreated whole blood RNA samples were also amplified in

parallel. Biotinylated aRNA was hybridized to Affymetrix human focus arrays. Present calls

were determined using Affymetrix GCOS software with default settings. GLOBINclear

processing resulted in an increase in genes called present.
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the loss of significant information caused by the distorted transcript com-
position in human whole blood.
Fractionation of Blood

Cell fractionation methods can provide isolated total leukocyte popula-
tions or individual subsets that are substantially depleted of red cells.
Historically, gradient centrifugation techniques were employed to collect
subcellular fractions in blood to enrich for cells that could be used as
sources of nucleic acids (Bach and Brashler, 1970; Greenberg, 1973;
Phatak, 1978; Pretlow, 1971). These methods also ensured that carryover of
mRNA from reticulocytes was prevented and that the associated problems
with the presence of globin transcripts were avoided. Use of Ficoll–Hypaque
density gradient centrifugation has been the method of choice to achieve
this enrichment. Commercial products that use this technology such as the
CPT vacutainer tubes reduce the processing time and difficulty of working
with the gradient; however, these products do not offer RNA stabilization
and thus require immediate processing to collect the RNA.

Fractionation has also been accomplished by the use of immunoselec-
tion methods that utilize antibodies to select and immobilize specific
subsets of leukocytes based on unique cell surface markers. However, the
cell surface antigens that distinguish and define leukocyte subsets
are typically functional recognition molecules of the immune system that
mediate the complex cellular interactions that make up humoral and
cellular immunity. Engaging these cell surface antigens during positive
immunoselection may trigger changes in mRNA levels in the selected
cells. Although negative selection strategies have been used to avoid
engaging leukocyte cell surface antigens in the desired population, they
do not permit multiple WBC subsets to be obtained from each sample, and
the negatively selected cells may be more heterogeneous compared to
positively selected cells.

As an alternative to these methods, a novel filter‐based leukocyte
capture method marketed commercially under the name LeukoLOCK has
been introduced by Ambion, Inc. This system uses leukocyte depletion
filters that have been used in blood transfusion therapy to remove donor
leukocytes and prevent graft‐versus‐host rejection in the recipient. The
LeukoLOCK technology can be used in conjunction with RNAlater to
stabilize RNA in the filtered population of leukocytes for months and has
proven beneficial for transportation and for recovery of RNA for use in
microarray and quantitative reverse transcription polymerase chain reac-
tion (qRT‐PCR) applications. The LeukoLock procedure is outlined next;
for details, please consult the manufacturer’s protocol (Table I).



TABLE I

MICROARRAY DATA FOR RNA ISOLATED USING THE LEUKOLOCK PROCEDURE
a

Sample

aRNA yield

(�g) aRNA length

GAPDH

30/50
�‐Actin

30/50 % Present

LeukoLOCK 81.01 1470 bases 1.14 1.02 43.70

LeukoLOCK 73.73 1440 bases 1.26 0.99 43.90

aRNA was isolated from duplicates of whole blood samples fractionated using the

LeukoLOCK kit. One microgram of samples was amplified using the Ebwerine technique and

analyzed on Affymetrix human focus arrays. Average yields of 73 to 81 �g were obtained, and

longer size amplified products around 1400 bases were observed. An 8% increase in the

percentage present calls was observed using this procedure as compared to other conventional

RNA isolation methods.
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Overview of the LeukoLOCK Procedure for Isolation of RNA from Whole
Blood Samples

Sample Collection and Capture of Leukocytes
1. Collect 9–10 ml of whole blood samples in EDTA‐containing
evacuated blood collection tubes.

2. Assemble the sample tube/LeukoLOCK filter apparatus.
3. Pass blood through the LeukoLOCK filter using an evacuated

tube as the vacuum source. The LeukoLOCK filter captures the
total leukocyte population, while plasma, platelets, and RBCs are
eliminated.

4. Flush filter with phosphate‐buffered saline (PBS) and RNAlater.
Flush the filter with PBS to remove residual RBCs and then with
RNAlater to stabilize leukocyte RNA.

5. Seal the LeukoLOCK filter ports with the sheath and screw cap
from the transfer spike.
LeukoLOCK Filter Processing and Cell Lysis
1. Remove residual RNAlater from the LeukoLOCK filter.
2. Flush with pH‐adjusted lysis/binding solution; collect lysate in a

15‐ml tube. In this step, the leukocytes that are trapped on the
LeukoLOCK filter are lysed, and the lysate is flushed off the filter
and collected in a 15‐ml conical tube.

3. Add nuclease‐free water and proteinase K, and shake for 5 min. This
brief proteinase K treatment degrades cellular proteins.
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RNA Isolation and Elution
1. Add RNA‐binding beads and 100% isopropanol, and incubate at
room temperature for 5 min.

2. Recover the RNA‐binding beads by gentle centrifugation and
discard the supernatant.

3. Wash with wash solution 1 and transfer the RNA‐binding beads to a
1.5‐ml processing tube.

4. Recover the RNA‐binding beads and discard the supernatant.
5. Wash RNA‐binding beads with wash solution 2/3.
6. Elute the RNA with �150 �l elution solution.
7. Transfer the RNA‐containing supernatant to a new processing tube

or other nuclease‐free container appropriate for the application.
8. Store the purified RNA at �20�.
Use of Solid Tissues for Gene Expression Analysis

In addition to blood samples, solid tissues are used routinely for gene
expression analysis. Tissues collected for clinical analyses are typically biopsy
specimens, which are used for histopathological testing or molecular testing
using RT‐PCR. Pathological analysis of clinical tissues usually requires that
the samples be fixed and embedded in paraffin to conserve the cellular
architecture. As a result, specialized methods have emerged for isolating
and profiling RNA from FFPE samples to more accurately illuminate the
gene expression inventory of these invaluable samples.

Other options for preserving RNA profiles in freshly procured tissue
include flash freezing in liquid nitrogen and RNAlater. RNAlater offers
convenient, room temperature stabilization without compromise, even in
very high resolution microarray experiments. For example, Mutter et al.
(2004) reported that tissue could be stored in RNAlater at room tempera-
ture for up to 3 days without introducing any systematic changes in gene
expression measurements from microarray experiments. In this respect,
RNAlater was determined to be comparable to array analyses of either
fresh or flash‐frozen tissue.

Use of Formalin‐Fixed, Paraffin‐Embedded Sections for Gene
Expression Analysis

A key driver for use of FFPE samples for gene expression analysis is the
availability of clinical outcome data that can build retrospective relation-
ships between gene expression patterns and disease (Lewis et al., 2001).
While there is a great potential for use of such samples for microarray
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analysis, RNA isolated from such samples is usually modified extensively
by chemical adducts and degraded significantly. As a result, RNA from
such fixed samples is not readily amenable to downstream enzymatic
manipulations that are required for target preparation. Other problems
that can introduce variability include heterogeneity in sample handling
prior to formalin fixation, the age and exposure of the paraffin blocks used
for sectioning, and the procedures used for RNA isolation. While it is
generally believed that RNA is vulnerable to degradation during fixation,
we and others find that relatively intact RNA can be isolated from samples
that have been fixed in formalin for several months (Masuda et al., 1999).
The elevated temperatures required for paraffin embedding, however, are
known to reduce the quality and yields of RNA. Other factors that can
alter the integrity of RNA are the age of the paraffin block and the length
of time that the samples have been stored. Indeed, RNA extracted from
archived FFPE blocks that are older than 10 years is typically only about
100 nucleotides in length. While such RNA targets can be assayed with
some success by a real‐time RT‐PCR or branch DNA assay, array analyses
require nonstandard amplification and/or labeling strategies, which can
further distort representation in such compromised samples. Nevertheless,
such protocols have been informative in identifying gene signatures. Newer
microarray designs for genome‐wide profiling of FFPE samples from com-
mercial vendors such as Affymetrix allow the interrogation of smaller
windows of target sequence (e.g., the X3P arrays query only the 300 most
30 nucleotides of each transcript) compared to the standard GeneChip
arrays, which can improve the array metrics for FFPE tissues.

Typical protocols for isolation of RNA from FFPE samples consist of
threemain steps: deparaffinization using anorganic compound such as xylene,
proteinase K digestion to remove the protein–RNA cross‐links and release
of the RNA, phenol extraction, or a column‐based purification to recover
the nucleic acids. Variations to such protocols involve navigating various
proteinase K digestion time points and optimization of the column‐based
purification of the RNA. An overview of one such protocol from the Reco-
verAll Total Nucleic Acid Isolation Kit is presented. This product enables
the recovery of total RNA, including micro‐RNA and genomic DNA, pro-
viding microarray analysis options for several classes of nucleic acids.

RecoverAll Total Nucleic Acid Isolation Procedure

DEPARAFFINIZATION

1. Assemble FFPE sections equivalent to a 80‐�m or 35‐mg
unsectioned core.

2. Add 1 ml 100% xylene, mix, and incubate for 3 min at 50�.
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3. Centrifuge for 2 min at maximum speed, and discard the xylene.
4. Wash the pellet twice with 1 ml 100% ethanol and air dry.

PROTEASE DIGESTION STEP

1. Add digestion buffer and protease.
2. Incubate at 50� for 3 h for RNA isolation and 48 h for DNA

isolation.

FILTER CARTRIDGE BINDING STEP

1. Add 480 �l isolation additive and vortex.
2. Add 1.1 ml 100% ethanol and mix.
3. Pass the mixture through a filter cartridge.
4. Wash with 700 �l of wash 1.
5. Wash with 500 �l of wash 2/3, and then centrifuge to remove residual

fluid.
6. Add DNase I mix to each filter cartridge and incubate for 30 min.
7. Wash with 700 �l of wash 1.
8. Wash twice with 500 �l of wash 2/3, and then centrifuge to remove

residual fluid.
9. Elute nucleic acid with 2 � 30 �l elution solution or nuclease‐free

water.
Use of Solid Tissue Clinical Specimens for Gene Expression Analysis

Expression profiling of biopsied tissues offers a direct and privileged
view of how gene expression changes are correlated with disease. Intact
RNA, however, is often difficult to recover from fresh or flash‐frozen
biopsy samples. RNase activities are particularly acute in many human
tissues, especially pancreas and other secretory organs. These RNases must
be inactivated quantitatively and rapidly during the sometimes laborious
process of releasing and deproteinizing RNA from the complex cellular
architecture. The most common approach is to disrupt tissue samples using
a polytron, mill, or Dounce in a chaotropic solution that breaches cellular
substructures, rapidly inactivates RNases, and strips proteins from nucleic
acid. A popular product is TRI reagent (MRC, Inc.), also known as TRIzol,
a monophasic solution of phenol and guanidine thiocyanate. Tissue samples
are disrupted in the TRI reagent, followed by recovery of the aqueous phase
and alcohol precipitation of total RNA. Another common method is to
grind the tissue in molar concentrations of guanidine isothiocyanate, fol-
lowed by RNA purification using a glass filter column (e.g., RNeasy, Qiagen
Inc.). Perhaps the most stringent method is to combine both approaches;
indeed, the Affymetrix GeneChip expression analysis technical manual



[1] RNA EXTRACTION FOR ARRAYS 11
recommends TRI reagent RNA extraction, followed by a glass filter column
cleanup step. No one method is universally preferred, and sample prepara-
tion studies with clinical tissues have concluded that both TRI reagent
(Roos‐van Groningen et al., 2004) and RNeasy (Egyhazi et al., 2004) can
provide suitable RNA yields and/or quality.

A novel and user‐friendly alternative method that can be used with
many animal tissues is the multienzymatic liquefaction of tissue (MELT)
RNA isolation system (Ambion). This technology is a hands‐free method-
ology for the rapid digestion of fresh or frozen tissue in a closed tube. Up to
10 mg of tissue can be digested at room temperature using a unique
formulation that includes a potent RNase inhibitor and a cocktail of
powerful catabolic enzymes. Following digestion, the RNA is purified using
a magnetic bead procedure. Extensive array and qRT‐PCR studies have
been performed comparing MELT with ‘‘gold standard’’ methods such as
TRI reagent and RNeasy with favorable results (Latham and Peltier, 2005)
In addition, both animal and human tissue biopsies have been evaluated
successfully in expression profiling experiments using the MELT system
(data not shown).
RNA Quality Measurements for Microarray Analysis

Analysis of nucleic acid quality by absorbance spectrophotometry has
been used since the inception of nucleic acid purification methodologies.
Such measurements at 260 and 280 nm have been used to deduce the
amount of nucleic acid and the accompanying levels of protein carryover
in a sample. Absorbance ratios of 260 to 280 nm of 1.7–2.0 for RNA are
often required for downstream analysis, including microarray experiments,
and samples with ratios as low as 1.4 have been used successfully for gene
expression analysis. The absorbance ratio measurement, however, suffers
from several limitations. This ratio does not provide information about
RNA intactness, which is critical to the success of any microarray experi-
ment, nor does it definitively report the purity of the RNA and the absence
of potential enzyme inhibitors.

Another measure of RNA integrity involves analysis of the ribosomal
18s and 28s species by denaturing agarose electrophoresis to determine the
extent of degradation of the sample. A modification of this methodology,
which involves capillary electrophoresis of the RNA on an Agilent 2100
bioanalyzer and the concurrent measurement of the RNA concentrations
along various positions (RNA sizes) of the electropherogram to obtain
RIN scores, is now widely used (Schroeder et al., 2006). Many times, RIN
scores of 7 or higher predict satisfactory results in microarray studies,
although the precise correlation between the RIN and the quality of array
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data is likely dependent on many factors, including the sample type and
RNA isolation procedure. Fortunately, these factors can be controlled in
many microarray experiments, meaning that the RIN can be an effective
tool to ‘‘gate’’ RNA quality and suitability prior to RNA amplification and
labeling. Once a satisfactory set of procedures has been identified for micro-
array work, we strongly recommend that standard operating procedures be
written and carefully followed to minimize sources of variability that can
ultimately undermine the value of the array data set. This requirement is
particularly critical for interinstitutional studies that rely on multiple sites
for tissue procurement and processing.

Conclusion

Gene expression profiling of clinical samples has become a paradigm
for understanding disease etiology, pharmacogenomics and toxicological
evaluations. Sample handling and the subsequent steps taken to preserve
and isolate RNA can influence the quality and interpretation of microarray
data dramatically. Because microarray analysis requires the use of multiple
replicates to obtain statistically significant information, diligent assess-
ments of sample procurement and preservation, RNA isolation, and pre-
liminary microarray pilot studies can enable informed standard operating
procedures. Vigilance with these procedures will result in more convincing
expression profiling results, more enlightened conclusions, and a reduction
in the resource costs associated with failed samples.
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Abstract

The discovery of micro‐RNAs (miRNAs) and the growing appreciation
of the importance of micro‐RNAs in the regulation of gene expression are
driving increasing interest in miRNA expression profiling. Early studies
have suggested prominent roles for these genetically encoded regulatory
molecules in a variety of normal biological processes and diseases, particu-
larly cancer. However, the field of miRNA expression profiling is in its
infancy. Several factors, including the small size, the unknown but limited
number of miRNAs, and the tissue‐to‐tissue and tissue‐to‐disease state
variability in miRNA expression, make the adaptation of microarray tech-
nology to the evaluation of miRNA expression nontrivial. This chapter
describes the unique features of miRNA microarray experiments and
analysis and provides a case study demonstrating our approach to miRNA
expression analysis.

Introduction

Micro‐RNAs (miRNAs) are small (typically �21 nucleotides), nonpro-
tein coding RNAs transcribed from the genomes of plants and animals.
These highly conserved molecules regulate gene expression by binding and
modulating the translation of mRNAs that contain regions of at least
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larly cancer. However, the field of miRNA expression profiling is in its
infancy. Several factors, including the small size, the unknown but limited
number of miRNAs, and the tissue‐to‐tissue and tissue‐to‐disease state
variability in miRNA expression, make the adaptation of microarray tech-
nology to the evaluation of miRNA expression nontrivial. This chapter
describes the unique features of miRNA microarray experiments and
analysis and provides a case study demonstrating our approach to miRNA
expression analysis.
Introduction

Micro‐RNAs (miRNAs) are small (typically �21 nucleotides), nonpro-
tein coding RNAs transcribed from the genomes of plants and animals.
These highly conserved molecules regulate gene expression by binding and
modulating the translation of mRNAs that contain regions of at least
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partial complementary to the miRNAs (for reviews, see Bartel, 2004;
Pasquinelli et al., 2005; Zamore and Haley, 2005). Since the discovery of
the first miRNA in 1993 (Lee et al., 1993; Wightman et al., 1993), the list of
validated miRNAs has been expanding rapidly. Over 330 human miRNA
have been identified and more than 1000 sequences have been predicted to
have miRNA activity (Berezikov et al., 2005), with each miRNA potential-
ly capable of regulating multiple genes (Lim et al., 2003). Micro‐RNAs are
sequentially numbered and entered into the miRBase database (http://
microrna .sanger. ac.uk; Ambros et al., 2003; Griffith s‐ Jon es et al. , 2006 ),
which provides up‐to‐date sequence data (for both precursor and mature
forms) and a variety of other information.

Although the presence and importance of miRNAs have only become
apparent over the past several years, there is growing evidence that
miRNAs play key roles in a variety of processes, including early develop-
ment (Hornstein et al., 2005; Lu et al., 2005b; Reinhart et al., 2000;
Schulman et al., 2005), cell proliferation and cell death (Brennecke et al.,
2003; Cheng et al., 2005; Cimmino et al., 2005), fat metabolism (Xu et al.,
2003), cell differentiation (Chang et al., 2004; Dostie et al., 2003; Yi et al.,
2006), and neuronal development (Krichevsky et al., 2003; Smirnova et al.,
2005). A number of reviews give a comprehensive overview of the involve-
ment of miRNAs in these processes (Alvarez‐Garcia and Miska, 2005;
Harfe, 2005; Klein et al., 2005; Pasquinelli et al., 2005; Rogaev, 2005;
Wienholds and Plasterk, 2005).
Micro‐RNAs Are Important Factors in Human Cancer

The apparent importance of miRNAs in regulating development
and differentiation supports the idea that changes in miRNA expression
and activity may contribute to oncogenesis. Indeed, several early reports
correlated aberrant miRNA expression and miRNA gene sites with cancer.
For example, Calin et al. (2002) found that more than half of the miRNAs
(98 out of 186 known at the time) are in common break‐point regions,
fragile sites, minimal regions of loss of heterozygosity, and minimal regions
of amplification known to be associated with cancer. Additionally, Michael
et al. (2003) found that 2 of 28 miRNAs in the colorectal mucosa were
downregulated significantly in 12 adenocarcinoma samples and 2 precan-
cerous adenomatous polyps compared to matched, normal tissues. Since
these early associations, a number of reports have strengthened the corre-
lation between altered miRNA expression and various cancers (Calin et al.,
2004; Chan et al., 2005; Ciafre et al., 2005; Johnson et al., 2005; Karube et al.,
2005; Metzler et al., 2004; Takamizawa et al., 2004). Further support
for the importance of miRNAs in cancer comes from the identification or

http://microrna.sanger.ac.uk
http://microrna.sanger.ac.uk
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prediction of the genes regulated by miRNAs. For example, members of
the let‐7 family show reduced expression in lung cancer and are capable of
repressing the translation of the oncogenic RAS protein in a cell culture
model (Johnson et al., 2005). This study also reported that RAS protein is
present at higher levels in lung tumors. In addition, Cimmino et al. (2005)
showed that the expression of miR‐15a and miR‐16‐1 was inversely corre-
lated with Bcl2 (an antiapoptotic gene) expression in chronic lymphocytic
leukemia (CLL). The repression of BCL2 by miR‐15‐a and miR16‐1 was
shown to induce apoptosis in a leukemia cell line model. Additionally,
Volinia et al. (2006) reported that for miRNAs with altered expression in
tumor samples the predicted and validated targets of these miRNAs are
composed of a disproportionate number of oncogenes and tumor suppres-
sors. These data and others suggest that miRNAs may be central factors in
tumorigenesis and cancer progression.

Particularly promising for cancer diagnosis is evidence suggesting that
miRNA expression profiles can be used to classify human cancers with
more accuracy than mRNA expression profiles (Lu et al., 2005a). Further-
more, Calin et al. (2005) reported a panel of nine miRNAs whose high
expression in CLL was strongly associated with a short interval from time
of diagnosis to therapy, and low expression of those nine miRNAs was
associated with a long interval from time of diagnosis to initial therapy.
Thus, miRNAs may help improve the diagnosis and clinical management
of cancers. A more comprehensive treatment of the roles of miRNAs in
cancer and their potential as diagnostic and therapeutic markers can be
found in a number of excellent review articles (e.g., Alvarez‐Garcia and
Miska, 2005; Croce and Calin, 2005; Esquela‐Kerscher and Slack, 2006;
Gregory and Shiekhattar, 2005; Hammond, 2006).
Focus of This Chapter

Reliable and accurate techniques for analyzing the global expression
pattern of miRNA are critical for understanding their role in regulating
gene expression and controlling both normal and disease processes. Several
approaches are available for simultaneously profiling large numbers of
miRNAs, including multiplex reverse transcription polymerase chain
reaction (RT‐PCR)‐based analysis, bead‐based flow cytometry assay, and
microarrays.

Although microarrays have been in widespread use for some time,
adapting this technology to study only a few hundred miRNA sequences
is not trivial. The small size of miRNAs, averaging 21 nucleotides, provides
very little sequence for labeling or designing probes. New methods have
been developed for miRNA isolation, labeling, oligonucleotide probe



[2] micro‐RNA PROFILING USING MICROARRAYS 17
design, data analysis, and array production. Many companies offer a wide
range of miRNA services and products, including preprinted miRNA
microarrays, full miRNA microarray services, miRNA probe sets, and kits
for miRNA purification and labeling. Ambion, Inc. has an active program
to develop innovative tools for the analysis of miRNA expression and
function and offers a complete suite of miRNA‐related products. To capi-
talize on the expertise acquired during the invention and development of
these products, Ambion, Inc. began offering miRNA profiling services
through its Ambion Services division (Asuragen. Inc., including Asuragen
Discovery Services, was recently spun out of Ambion). This chapter pro-
vides an overview of microarray‐based miRNA profiling with insights
gained from our experience. This chapter focuses on expression analysis
of miRNA using microarrays and describes the methods found to be
optimal for performing and analyzing microarrays.
Microarray Platforms

One‐Color vs Two‐Color Arrays

The process of constructing an array has a major impact on the type of
experimental design and analysis that can be performed. Practically, the
various array formats can be classified based on whether they support one‐
color or two‐color analysis. Most arrays for two‐color analysis are produced
by robotic spotting of oligonucleotide probes onto the array. Since this
typically involves transferring the probes by liquid adherence to either
single or arrayed pins, there is typically substantial variability between
individual arrays in the amount of material spotted. As a result, individual
arrays are not directly comparable without the use of a common reference
sample. To perform two‐color experiments with these custom‐spotted mi-
croarrays, test and reference samples are each labeled with a specific
fluorescent dye and cohybridized on the same array. The primary advan-
tage of spotted arrays is that they can be custom produced in small batches
for a moderate cost, facilitating changes to the probe set as new miRNAs
are discovered.

As an alternative to spotted arrays, printing and fabrication technologies
can be used to produce highly reproducible probe representation across
many arrays and in replicate spots on each single array. These arrays permit
single‐color experiments and eliminate some of the analysis problems
associated with the relative measurement of gene expression required by
two‐color cohybridization. Several companies provide custom and pre-
printed miRNA arrays for use with the most commonmicroarray platforms.
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miRNA Preparation for Analysis on Microarrays

Purification of miRNA

Because the quality of microarray gene expression analysis depends
largely on the quality of the RNA used, robust and reproducible methods
for the quantitative isolation of miRNA are essential. Many RNA isolation
methods were originally designed to capture longer mRNA, whereas short
RNA species were thought to contain only unimportant RNAs such as
tRNA and degraded RNA fragments. However, isolation methods are now
available that retain the small RNAs during total RNA isolation or enrich
the small RNA population. Several companies market convenient kit
formats that either enrich or retain miRNAs allowing downstream analysis.

We have found that further purification of the small RNA fraction
improves the analysis of miRNA expression by reducing nonspecific
hybridization to longer miRNA precursors, the homologous regions of
target mRNAs, and other unrelated RNA species. A number of different
methods exist for separating the small and large RNA fractions, including
solid‐phase extraction, microfiltration, and reverse‐phase or ion‐exchange
chromatography. It has been our experience that these methods did not
provide the levels of recovery, purity, and reproducibility necessary for
high‐quality analyses, so we routinely employ size fractionation using
polyacrylamide gel electrophoresis (PAGE). Denaturing PAGE is being
used routinely by laboratories that are isolating miRNAs from total RNA
(Cummins et al., 2006; Elbashir et al., 2001; Johnson et al., 2005; Lu et al.,
2005a); however, the procedure is time‐consuming and the yield of miRNA
is variable and rarely exceeds 50% (data not shown). Ambion, Inc. has
developed a device (flashPAGE fractionator system) that can rapidly and
reproducibly fractionate total RNA samples with an 80% yield of purified
miRNA (Shingara et al., 2005).

Our preferred method for miRNA enrichment involves isolation of total
RNA with the mirVana miRNA isolation kit (Ambion, Inc.) alone or com-
bined with the flashPAGE fractionator system (Ambion, Inc.). Gel fraction-
ation enriches the RNA population ranging between�15 and 40 nucleotides
in length (small RNA) approximately 10,000‐fold. The relative abundance of
flashPAGE‐isolatedmiRNAs analyzed on amicroarray has been shown to be
representative when compared to miRNA expression in a total RNA sample
analyzed by Northern blot (Shingara et al., 2005). The yield of small RNAs is
typically less than 1 ng per 10 �g of total RNA from mammalian tissue,
whereas immortalized cell lines typically display much lower general miRNA
expression than tissues. Approximately 5 million cells can yield up to 10 �g of
total RNA, a sufficient amount for miRNA array analysis.
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Labeling of miRNA

After isolation of the small RNAs, they must be labeled for detection
on arrays. A number of strategies have been employed for labeling
miRNAs, including direct labeling, random priming, and PCR‐based am-
plification (Babak et al., 2004; Barad et al., 2004; Baskerville and Bartel,
2005; Liu et al., 2004; Miska et al., 2004; Sun et al., 2004; Tang et al., 2006;
Thomson et al., 2004). PCR‐based global amplification can increase sensi-
tivity, but requires a number of enzymatic steps and may introduce amplifi-
cation bias in the miRNA representation in a sample. Random priming is
problematic because the small sequence space of miRNAs can result in
nonrandom labeling using a randompriming strategy. Thus, we prefer direct
labeling as the simplest andmost representative labelingmethod. A number
of commercial kits are available that utilize a variety of direct labeling
methods.

The most popular direct labeling methods use a tailing approach in
which short, labeled sequences are enzymatically attached to the ends of
the miRNAs. We use a direct labeling procedure (based on Ambion’s
mirVana miRNA labeling kit) in which poly(A) polymerase (PAP) is used
to append a mixture of unmodified and amine‐modified nucleotides to the
30 end of the miRNA (Shingara et al., 2005). The tailed miRNA population
is subsequently labeled with amine‐reactive reagents, including fluorescent
dyes, for example, Cy or Alexa dyes for direct detection, or NHS‐biotin for
detection with streptavidin coupled to fluorescent moieties. This method
for homogeneous labeling of the miRNA fraction provides the highest
specific activity without introducing bias. Labeling the mature miRNA
population using this method conserves miRNA representation and allows
accurate profiling at lower sample input. Experiments in which known
amounts of miRNA were spiked into RNA samples indicate that this
procedure permits detection of 10 pg (�3 fmol) of miRNA in 10 �g of
total RNA (Shingara et al., 2005). This represents as little as 0.1% of the
overall miRNA population in a 10‐�g total RNA sample.
Analysis of miRNA Microarray Results

Differences between miRNA and mRNA Expression Profiling

This section discusses some of the pitfalls associated with global nor-
malization and array scaling specifically in the context of miRNA micro-
array studies and highlights the normalization approaches that have been
prominent in the miRNA microarray literature. There are currently no
published studies that address the impact of normalization methods on
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analysis of miRNA microarray expression profiling experiments. As a
result, researchers utilizing miRNA microarray technologies have relied
on normalization and scaling methods developed specifically for mRNA
microarray technologies. We conclude with a case study comparing the
miRNA expression profiles in human lung and placental tissues, focusing
on signal quantification, normalization, power analysis, and differential
expression. For convenience, we use the term ‘‘normalization’’ to refer to
any scaling, translation, or other numerical transformation (excluding
thresholding and filtering) as it pertains to expression data from a single
array or set of arrays.

The primary downside to miRNA analysis is that the fundamental
assumption that the same amount of miRNA is extracted from a given
amount of total RNA may not be valid. There is presently no way to
quantify the total amount of miRNA in a sample given that miRNA
typically constitutes 0.01% of the total RNA. The development of spike‐
in controls to measure the capture or loss of signal during each step of the
sample preparation process (including total RNA isolation, tailing, column
cleaning, and fractionation of miRNA) can address process‐related losses
of miRNA abundance, but does not account for different proportions of
miRNA within the pool of total RNA. This may have substantial conse-
quences in the validity of the analysis if, for instance, different tissues or
different disease states have variable proportions of miRNA content in a
tissue‐ and disease‐state dependent manner.

The consequences of having an unknown relative quantity of miRNA
loaded onto an array are confounded by the fact that present technologies
and platforms do not measure every miRNA in a sample (as only a fraction
of all miRNA are known). Thus, even if it were possible to measure the
overall amount of total miRNA in a sample before loading it onto the
array, we know that we are not observing every miRNA, and consequently
the fraction of observed miRNA relative to the total loaded miRNA is also
unknown. Analytically, these issues cast doubt on forms of normalization
that are based on total, mean, and median signal intensities. In addition,
the use of high‐density normalization approaches such as quantile normal-
ization (Bolstad et al., 2003; Irizarry et al., 2003) are rendered ineffective
when there are relatively few probes on the array.

Prior to normalization, various levels of data preprocessing are typically
implemented, including averaging of replicate spots on the same array and
background subtraction. These steps can have an impact on both normali-
zation and statistical tests performed on data. Background subtraction
often yields signals with negative values that are subsequently eliminated
or set to a common positive threshold to allow for logarithmic transforma-
tion. Depending on the overlap between the distributions of miRNA in the
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sample and miRNA targets on the array platform, thresholding can result
in a significant proportion (>50%) of signals being altered prior to normal-
ization. This can have a profound effect on subsequent statistical tests, as
an excess of threshold values will reduce (and potentially eliminate) varia-
tion artificially, thus potentially resulting in artificially high significance in
comparative tests such as ANOVA and t tests. Furthermore, excessive
thresholding signals at low values can introduce a bias that imparts an
artificially inflated measure of sensitivity of the array platform.

Thresholding and data elimination impact normalizations that depend
on calculating measures of central tendency such as mean, median, and
mode, further confounding the lack of knowledge about relative propor-
tions of the miRNA signal in the original sample. A hyperthresholded data
set will inflate the mean and invariably have a mode (and potentially a
median if >50% of the values are threshold) equal to the threshold value.
Normalizing to an erroneous median jeopardizes the validity of calibrating
array‐to‐array signal intensities. Variation in quantities of eliminated data
between arrays also imparts a disparity in the definition of median with
similar consequences. For example, the median of expression value derived
from arrays with 20 and 40% eliminated data are equivalent to the 60 and
70th percentile of the original data set, respectively.

Finally, one of the fundamental assumptions of most normalization ap-
proaches developed for mRNA microarray technologies is that either very
few genes are changing significantly between sample conditions or that there
are approximately an equal number of genes with increased and decreased
relative expression between sample conditions. InmRNAmicroarray experi-
ments, the presence of a large number of genes with unchanging expression
acts to stabilize the normalization algorithms (either explicitly or implicitly).
For miRNA, this assumption breaks down on two fronts. First, we have no
reason to believe that the diverse biological systems studied will have few
or balanced numbers of miRNA changing in relative expression. In fact,
miRNA studies of cancer (Ca li n et al., 2005; Lu et al., 2 00 5a ; Volinia et al.,
2006; Yanaihara et al., 2006) and tissue differentiation (Babak et al., 2004;
Barad et al., 2004; Garzon et al., 2006) suggest that a significant proportion of
miRNAare significantly differentially expressed (up to 40%)between sample
conditions. Second, with the small number of miRNA observed on present
microarray platforms, there is no means for normalization techniques to be
stabilized by large numbers of miRNA with unchanging expression profiles.

In order to determine the best methods for addressing these problems,
we have tested over 400 permutations of background subtraction, scaling,
and global normalization algorithms on designed experiments in which we
know the ‘‘truth’’ about which miRNA are at different quantities. These
experiments include a 10 � 10 Latin‐square spike‐in study on multiple
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tissue backgrounds, a dilution spike‐in study, and a mixture model study
(manuscript in preparation). With this combination of algorithms and
experiments we have been able to quantify which method performs the
best in the context of identifying differentially expressed miRNA with a
lesser focus on absolute expression and fold‐change differences (i.e., focus-
ing on precision instead of accuracy). We made this decision because
the confounding issues of absolute amount of initial miRNA, incomplete
miRNA array coverage, and variable sample loss make accuracy a poor
measure of performance for comparative analysis. To complement
this approach, we are in the process of implementing alternative statistical
tests to identify differentially expressed miRNA that are based on robust
nonparametric approaches. These could be used alone or in addition to
present methods to validate analytical processes further.
Methods of Normalization for miRNA Microarray Experiments

It should be emphasized that normalization is the process of removing
nonbiological sources of variation between array experiments. In general,
the choice of normalization methodologies for microarray experiments is
known to have a profound impact on accuracy, precision, and overfitting
(Argyropoulos et al., 2006). Consequently, downstream tests for differen-
tial expression, the development of classifiers, and data mining are highly
dependent on the choice of data processing. Even in the well‐developed
field of mRNA microarray analysis, the appropriate choice of normaliza-
tion methods is still a matter of debate (for reviews, see Allison et al.,
2006; Quackenbush, 2002). This issue is further compounded in the field
of miRNA microarray analysis by the fact that the amount of miRNA
derived from biological samples is neither quantitative nor known
relative to the original abundance of total RNA, as discussed in the
previous section. To circumvent these issues, researchers have adopted
‘‘tried‐and‐true’’ methodologies from mRNAmicroarray expression analy-
sis in hopes that the assumptions and approximations are not violated. These
approaches included median scaling (both global and/or chip specific),
scaling to spiked‐in controls, and logarithmic or other variance‐stabilizing
normalizations.

The most popular miRNA microarray normalization approach involves
the preprocessing of data by averaging of technical replicates and back-
ground subtraction followed by median normalization and logarithmic
transformation. This is the approach taken by Garzon et al. (2006), Volinia
et al. (2006), Yanaihara et al. (2006), and Calin et al. (2005). In their study
profiling miRNA expression in human tissues, Barad et al. (2004) took a
similar approach except that postnormalization thresholding based on
negative controls was imposed.
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A different approach was taken by Lu et al. (2005a) in thei r compre-
hensive assessme nt of miRNA express ion profi les in human cancers a cross
both array ‐ and be ad‐ based plat forms. They incor porated a two ‐stage
scaling strategy based on spiked ‐ in co ntrols that was inte nded to normal ize
between plat forms and then accou nt for differenc es in labeling efficiency.
Data wer e subsequen tly thres holded an d log2 trans formed in ord er to both
stabilize varian ce and place express ion data in the familiar log spa ce wher e
absolute differences in expression correspond to fold changes.

Babak et al. (2004) took a novel approach to normalization of miRNA
microarray data by first spatially detrending correlations between spot
intensity and position via high‐pass filtering (Shai et al., 2003). This was
followed by global transformation using variance stabilizing normalization
(VSN) (Huber et al., 2002). The VSN transformation is derived from the
appropriate assumption of a quadratic relationship between mean expres-
sion and variance of microarray data. The resulting intensity transformation
is a hyperbolic‐arcsine (arcsinh) (denoted by h) that replaces the more
traditional logarithmic transformation. This has a number of advantages:
because the arsinh function is continuous across zero, there is no need to
either establish (often arbitrary) thresholds or instigate data elimination for
low‐intensity signals. Furthermore, the VSN algorithm includes a calibra-
tion step to bring multiple array intensities into register for comparative
analysis. h‐transformed data have the property that at large intensity, differ-
ences in h (�h) coincide with log‐ratio values. However, at lower intensity,
�h values are contracted toward zero, departing from the log‐ratio value.
This imparts a minor shrinkage of values in comparison to log2‐transformed
values, thus effectively sacrificing accuracy for precision, which may be
considered beneficial given the lack of knowledge in quantification of the
total miRNA content in a sample. This trade‐off is used commonly in
mRNA array normalization approaches (Bolstad et al., 2003). When using
the VSN transformation on anymicroarray data set, one must relinquish the
natural definition of fold change across the entire range of expression values
and focus on statistical significance for determining differential expression.

Finally, in light of the variable effects of normalization on miRNA
microarray data, we would like to emphasize the need to corroborate
conclusions derived from miRNA microarray experiments with follow‐up
quantitative assays such as qRT‐PCR and/or Northern blot experiments.
Case Study: miRNA Microarray Expression Analysis of Human Lung
and Placental Tissues

A typical miRNA microarray experiment performed at Asuragen Dis-
covery Services is described. Five samples from human lung and placenta
were selected for comparison. Both lung and placenta have been shown to
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be highly enriched for miRNA (Barad et al., 2004; Slack and Weidhaas,
2006). Ambion’s mirVana miRNA bioarrays (Ambion, Inc., Austin, TX)
were used exclusively throughout this study. These bioarrays contain
probes targeting a comprehensive selection of human, mouse, and rat
miRNA from miRBase (Griffiths‐Jones et al., 2006) and a set of novel,
proprietary putative miRNAs.

Sample preparation included quality assessment of the tissue‐specific
total RNA with subsequent miRNA enrichment using the Ambion, Inc.
flashPAGE Fractionator and Reaction Clean‐up Kit (Ambion, Inc). The
miRNA targets were labeled using the mirVana miRNA Labeling Kit
(Ambion, Inc.). Bioarrays were processed using the hybridization and wash
components supplied in the mirVana miRNA Bioarray Essentials Kit.
Scanning and Data Extraction

All bioarrays were scanned with a Molecular Devices GenePix auto-
loader 4200AL microarray scanner. All scans were performed at 5 �m
resolution in order to achieve high‐quality data. Scanner settings are opti-
mized to achieve an appropriate balance of sensitivity and dynamic range
for each array.
Sample Size Calculation

miRNA array analysis involves the generation and recovery of data
from hundreds of features (miRNA probes) from multiple samples. Glean-
ing meaningful and robust statistical information from such experiments
requires the use of multiple biological replicates. Calculation of the correct
number of biological replicates for miRNA array studies is very complicat-
ed; each gene has its own associated measurement, noise, and subsequent
standard deviation. Thus sample size decision is a balancing act between
the power of the statistical test, differences you are looking for, and
economics of experimental size. Using a custom‐developed MATLAB
script (The Mathworks, Inc.) based on the R library‐ssize (http://www.
bioconductor.org/repository/devel/vignette/ssize.pdf), we computed the re-
quired number of samples and estimated the power of the experiment
given a fixed sample size and expected fold change. The key component
of this method is the generation of cumulative plots of the percentage of
miRNA achieving a desired power as a function of sample size or fold
change. Figure 1A and B show the predicted levels of detection for these
tissues and the number of biological replicates that are necessary.

http://www.bioconductor.org/repository/devel/vignette/ssize.pdf
http://www.bioconductor.org/repository/devel/vignette/ssize.pdf


FIG. 1. Power analysis. Two types of plots are generated for power analysis. (A) The fold

difference can be determined statistically at a given power and replication level. (B) The

effect of varying the number of replicates and the resulting number of miRNA that can be

expected to find dissimilar by twofold and at a power of 0.8.
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Calculation of Array‐Specific Thresholds

For each array, the minimum observable threshold is determined by
examining the foreground minus background median intensities for ‘‘EMP-
TY’’ spots. We define this minimum threshold as the 5% symmetric
trimmed mean plus 2 standard deviations across all ‘‘EMPTY’’ spots on
the array. Spots with an averaged foreground minus median background
intensity less than this threshold are considered ‘‘absent.’’
Global Normalization

Asuragen Discovery Services has validated that a global VSN proce-
dure is best for most experimental designs. Figure 2A and B illustrate the
before and after consequences of VSN normalization.
Statistical Differential Analysis

Once the miRNA are quantified and the signal values are normalized, a
hypothesis test was applied to the tissue groups. Using a two‐sample t test it
was determined whether there are differentially expressed miRNA across
groups. A two‐sample t test is carried out for every gene and multiplicity
correction is followed to control the false discovery rate (FDR) at 0.05.
Given the nature of data and the statistical test selected, it is important to
adjust for multiple testing errors. Reporting uncorrected p values for each
gene over a certain threshold can be deceptive. These problems arise, for
example, when 500 t tests are performed during the course of a typical two‐
condition array study. Using the traditional p ¼ 0.05 without multiple
testing correction could potentially lead to 25 miRNA being classified as
significantly different when, in fact, they are not. To account for this, a
FDR p value adjustment is used (Benjamini and Hochberg, 1995). The
FDR is defined to be the expected value of the ratio of the number of
erroneously rejected true hypotheses over the number of rejected hypoth-
eses. The Benjamini and Hochberg step‐up procedure rejects H (1). . .H(k)
with k being the largest i for which P(i) <¼ q*i/m, and this procedure
controls the FDR at level q when P(i) are independent. FDR corrections
FIG. 2. Box‐whisker plots: The distribution of expression values for lung (replicates

A1–A5) and placenta (replicates B1–B5) samples. The ends of the box represent the 25 and

75th percentiles, and the red line bisecting each box is the median signal for each array. (A)

After thresholding and log2 transformation. (B) After VSN transformation.



FIG. 3. Volcano plots. This plot represents both the magnitude of differences between

groups and the statistical significant of those differences. To delineate the degree of change

between groups there are two vertical red lines at �h (A‐B) ¼ �1. There is a single horizontal

red line at a negative log10 ( p value) ¼ 1.3, which corresponds to an unadjusted p value of

0.05. miRNA above this line can be considered statistically significant at a p value of 0.05 in

the absence of correction for multiple testing. miRNA found statistically significant after 5%

FDR correction are color coded red instead of blue.
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allow for the creation of statistically reliable gene lists with a reliable
(and controllable) estimate of the number of false positives. After FDR
correction, 192 miRNA were shown to be expressed differentially between
human lung and placenta tissues. The differences between tissues can best
be represented using a volcano plot (Fig. 3).
Hierarchical Clustering

In addition to statistical tests, unsupervised clustering is often used to
discern patterns within the results. This analysis calculates a measure of
similarity between each point in a cluster and all the points in a neighboring



FIG. 4. Hierarchical clustering. Data are represented as a dendrogramor tree graphwith the

closest branches of the tree representing genes with similar gene expression patterns. The most

common implementation is the agglomerative hierarchical clustering, which starts with a family

of clusters with one sample each and merges the clusters iteratively, based on some distance

measure, until there is only one cluster left. In this example, Euclidean distance is used as the

distance metric. Array and/or sample qualities can be approximated using hierarchical

clustering. Ideally, common samples should cluster into similar classes.
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cluster. The two clusters that are closest to each other (i.e., are most alike)
are connected to form the higher order cluster. Data are represented as a
dendrogram or tree graph with the closest branches of the tree representing
genes with similar gene expression patterns. Ideally, common samples
should cluster into similar classes. Figure 4 shows the cluster gram for lung
vs placenta tissues; both tissues clustered together as expected, with red
and green representing high and low signal intensities, respectively.
Conclusion

The field of miRNA analysis in many ways is still in its infancy as are the
types of biological questions that are being addressed with this technology.
Nevertheless, there is a great deal of interest in conducting miRNA tissue
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profiling. The levels ofmiRNAshave been shown to be altered significantly in
various cancers and disease states, necessitating the use of miRNA profiling
to discover signatures or biomarkers. Such discovery has great potential to
identify candidates that can be used in developing therapeutics and diagnos-
tics. There is also considerable interest from a mechanistic perspective in
gaining a greater understanding of how miRNAs impact diverse biological
processes in both normal and disease conditions. Heretofore, systems biology
only focused on DNA, large RNA, proteins, and metabolites, but apprecia-
tion of the impact of miRNAs is adding a new dimension to the field. At the
forefront of such discovery is the need for new statistical tools and methodol-
ogies to identify differentially expressed miRNAs and to identify miRNA
signatures, which, together with the appropriate algorithms, will facilitate the
diagnosis of disease, patient stratification, and the development of improved
cancer therapies.
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[3] Troubleshooting Microarray Hybridizations

By BRIAN EADS, AMY CASH, KEVIN BOGART,
JAMES COSTELLO, and JUSTEN ANDREWS

Abstract

Microarray experiments are being performed more widely than ever
before, but even seasoned investigators can experience technical problems
with hybridizations. This chapter provides guidelines for recognizing, rectify-
ing, and avoiding common trouble areas. Specifically, it addresses frequent
complications related to artifacts of printing, RNA sample preparation and
quality, fluorophore labeling, hybridization conditions, and posthybridization
washes. Emphasis is placed on investigating problems though a combination
of appropriate controls and image analysis, where diagnostic plots of data
quality are used to illustrate characteristics of acceptable and unsatisfactory
hybridizations. This chapter also discusses resources available to microarray
users hoping to improve the sensitivity and specificity of their experiments.

Introduction

The experimental power of a microarray assay stems from a miniatur-
ized format that allows for massively parallel analyses on a transcriptome
or g enome ‐ wide scal e ( Schena et al., 1995 ). This mi niaturiz ation, howeve r,
is a double‐edged sword, as it also gives rise to a unique set of technical
challenges. Hybridization to nucleic acids immobilized on a solid substrate
has been used widely for severa l de cades ( Grunstei n and Hogn ess, 1 975;
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Abstract

Microarray experiments are being performed more widely than ever
before, but even seasoned investigators can experience technical problems
with hybridizations. This chapter provides guidelines for recognizing, rectify-
ing, and avoiding common trouble areas. Specifically, it addresses frequent
complications related to artifacts of printing, RNA sample preparation and
quality, fluorophore labeling, hybridization conditions, and posthybridization
washes. Emphasis is placed on investigating problems though a combination
of appropriate controls and image analysis, where diagnostic plots of data
quality are used to illustrate characteristics of acceptable and unsatisfactory
hybridizations. This chapter also discusses resources available to microarray
users hoping to improve the sensitivity and specificity of their experiments.

Introduction

The experimental power of a microarray assay stems from a miniatur-
ized format that allows for massively parallel analyses on a transcriptome
or genome‐wide scale (Schena et al., 1995). This miniaturization, however,
is a double‐edged sword, as it also gives rise to a unique set of technical
challenges. Hybridization to nucleic acids immobilized on a solid substrate
has been used widely for several decades (Grunstein and Hogness, 1975;
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Southern, 1975), and membrane hybridization is robust and routine in most
molecular biology laboratories (Sambrook and Russell, 2001). Regardless
of the particulars of scale or substrate, the principles governing hybridiza-
tion between labeled nucleic acid in solution and immobilized nucleic acid
remain the same (Anderson and Young, 1985). The chief operational
differences between standard membrane hybridizations and microarray
hybridizations are (i) the nucleic acid is immobilized on glass rather than
a membrane (termed the probe in the case of microarrays); (ii) the labeled
nucleic acid is generated from RNA via reverse transcription rather than a
DNA template (termed the target in the case of microarrays); (iii) the label
is a fluorescent dye rather than a radioisotope; and (iv) the scale is reduced
by two to three orders of magnitude. The cumulative effect of these
differences renders microarray hybridizations significantly less robust than
membrane hybridizations.

Novice and seasoned investigators alike encounter episodic technical
problems during microarray hybridization. Because microarray experiments
are commonly performed using limited samples and involve numerous proce-
dural steps, it is often impractical or more likely impossible tomonitor quality
control at each component step. Consequently, when problems arise, investi-
gators are faced with the challenge of inferring cause from limited data; in the
worst case, working off the resultant image from a completed experiment.
There are numerous modes of failure, ranging from catastrophic failure (e.g.,
giving no signal) to subtle defects that may go undetected (Fig. 1). This
chapter provides a guide to common problems that may be encountered with
dual‐channel cDNAplatforms resulting from these complications inherent to
microarray experimentation.

This chapter is arranged into three general themes: printing, sample
labeling, and hybridization. We touch on microarray fabrication and sample
preparation only where they impinge upon hybridization quality control and
analysis. Instead of providing an exhaustive or inclusive set of guidelines for
all possible problems that investigators may encounter, we outline common
problems in routinemicroarray hybridization, how todiagnose them, and how
to mitigate or avoid them. By necessity, this guide is a biased and incomplete
subset of possible pitfalls; however, it is hoped that including a general
discussion of the most common problems, and how to prevent them, will
result in investigators avoiding them altogether.
General Considerations

There are many factors requiring careful attention during the course of
an array experiment in order to avoid common problems and ensure high‐
quality data. Protocols for the variety of available platforms are readily



FIG. 1. (A) Slide substrate peeling can be caused by tip contact during printing. High

hybridization temperatures used with SDS buffers contribute to the peeling; using a 50%

formamide buffer and lowering the temperature to 42� may help with this problem. Uneven
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accessible in the literature and on the internet (see later). It is advisable
that investigators be familiar with standard molecular biology practices
and techniques before undertaking microarray experiments (Sambrook
and Russell, 2001). As with any molecular technique, good results begin
with scrupulous cleanliness and attention to detail. Particular consideration
should be given to ensuring the integrity of critical reagents, such as
reverse transcriptase, nucleotides, dyes, and arrays. Keeping track of re-
agent batch numbers will help in tracing problems back to specific reagents.
Special care must be taken to avoid RNase contamination when handling
RNA. In the event that problems do arise, carefully controlled tests of each
step should pinpoint the problem. In the case of subtle or persistent
problems, advice may be sought from helpful online discussion groups
(see later).
slide thickness or improper pin alignments can cause this problem by physically contacting

the surface of the slide during deposition. Note the obvious scratch marks as well, caused

by physical damage posthybridization. (B) Comet tailing of particular spots (especially highly

expressed spots) can be caused by evaporation from print plates or by excessively stringent

posthybridization washes. In addition, the even and low‐intensity fluorescence of the majority

of spots may be a cause for concern regarding background or contamination issues. Printing in

a humidity‐controlled environment and monitoring wash stringency carefully can help prevent

comet tails. (C) Nonspecific, high background may have a number of causes. In this case,

sample labeling or cleanup is a possible culprit. If this is demonstrably not the case, wash steps

should be considered a possible source. (D) Background most likely caused during the final

washing steps. Some types of background fluorescence are unlikely to cause serious problems

for data quality, such as that seen here. (E) A high‐quality microarray hybridization

demonstrating low background, good dynamic range, excellent spot morphology, and strong

signal. (F) Edge effects are typically seen when the target at array margins is not available for

hybridization; make sure sufficient buffer is present to cover the entire array surface. This

effect can also occur if the array is allowed to dry even partially before being fully washed. (G)

Speckling is a nuisance because background variation in this region will be high; the pattern

appears to be a splash or spill on the array, most likely at or after the final wash. (H) A low

overall signal can be caused by poor RNA quality, poor labeling, or hybridization and washing

stringency. The bright spot on this array represents an external control and can be used to

verify that externally produced RNAs were reverse transcribed and labeled with high

efficiency in the same reaction with the experimental sample. In this case, suspect areas

include RNA/cDNA quality and dye incorporation (amino‐allyl dye coupling) of the sample.

(I) Black holes, or spots where intensity of the spot is lower than surrounding background, can

be caused by problems with incomplete blocking during prehybridization, followed by

incomplete washes, or by poor sample quality. (J) Bubbles or restricted flow of hybridization

buffer over the array can cause areas of very low fluorescence. Increasing gain to the laser or

photomultiplier tubes does not solve this problem, as it is related to a paucity of sample

binding on the spots. Careful measurement of hybridization volumes and placement of

coverslip are important; be sure array is kept level as it is loaded and hybridized and that

temperature is constant during hybridization. (K) A trail of fluorescence indicates that the

final wash was incomplete and dried on the slide before it could be removed.
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Printing

The quality of microarray data is directly dependent on the quality of
the microarrays used. Because the subject of microarray production has
been reviewed extensively in this volume and elsewhere (Bowtell and
Sambrook, 2002; Holloway et al., 2002), comments are restricted to
problems during array production, which become apparent after an
experimental hybridization.

Spot morphology, the availability of the spotted probe to hybridize,
and background fluorescence are largely determined by a matrix of
interdependent printing parameters, including slide surface chemistry,
spotting buffer composition, DNA concentration, and postprocessing
protocols (Hedge et al., 2000; Wrobel et al., 2003). Slides prepared in‐
house with a poly‐L‐lysine coating are subject to between‐ and within‐
batch variation and, in some cases, peeling of the surface substrate at
higher hybridization temperatures (Fig. 1A). To an extent, this may be
overcome by using a formamide‐based hybridization buffer, which permits
lower temperature incubations at equivalent hybridization stringency.
Commercial sources of slides typically have less variability, although
occasionally problems attributable to poor slide coating are seen. A more
common issue is that slides with different surface chemistries, or even
slides from different manufacturers with the same surface chemistry,
display varying amounts of autofluorescence. Scanning a new slide batch
prior to and after printing can be useful if high background is observed
(Hardiman, 2003).

The concentration of DNA in a spot is an important determinant of the
amount subsequently available for hybridization. More DNA is not neces-
sarily better, as both the amount of DNA and the extent of cross‐linking
determine how much is available for hybridization. Thus DNA concentra-
tion and cross‐linking amounts need to be determined empirically for a
given slide chemistry. Excess DNA at a spot often results in ‘‘comet
tailing’’ (Fig. 1B), a problem that can also occur for other reasons, including
poor slide chemistry, inadequate cross‐linking, or inadequate postproces-
sing washes. Spot morphology is also strongly influenced by the combination
of spotting buffer and slide surface chemistry (Diehl et al., 2001).

Postprocessing steps after array fabrication can also directly affect array
hybridization quality (Bowtell and Sambrook, 2002). Performing washing
steps quickly and with sufficient agitation is critical for efficient removal of
excess printed DNA. If not removed, this excess DNA can subsequently be
washed off during stringent posthybridization washes, thereby contributing
to background problems. Also, appropriate postprocessing conditions are
important in maintaining spot morphology by preventing spot smearing or
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comet tails. It is crucial for all washing agents, especially sodium dodecyl
sulfate (SDS), to be removed from the arrays at the end of postprocessing,
as any residual wash buffer may contribute to background.

Carryover of DNA from one spot to another during printing is a
problem that also needs to be addressed at the fabrication step (Bowtell
and Sambrook, 2002). A simple way to detect carryover is to print spotting
buffer, a positive control, and then spotting buffer sequentially side by side.
Carryover would be detected as a higher fluorescence of the spotting buffer
following the positive control as compared to the spotting buffer printed
before the positive control. Pin cleaning methods, number of slides and
spots printed, and buffer used in washing can all be varied to decrease or
remove carryover between printed samples. Print runs showing evidence of
carryover must be discarded or interpreted with great care.
Sample Preparation and Labeling

In our experience, the single most important factor in the success of an
array experiment is the quality of input material. RNA integrity proves the
adage ‘‘garbage in, garbage out’’ as far as data quality is concerned. Partial
RNA degradation can be a pernicious problem if it goes undetected, as
differences in transcript stability result in false positives when partially
degraded and undegraded samples are compared on a microarray (Auer
et al., 2003). The main issue in isolating intact RNA is to keep nuclease
contamination to a minimum and to purify RNA away from chaotropic
salts and organics used during extraction, which can interfere with
subsequent reverse transcription (Sambrook and Russel, 2001). The Trizol
reagent (Invitrogen) is widely used and very effective in maintaining the
integrity of RNA. It has been reported that RNA isolated from snap‐frozen
tissue using Trizol may be refractory to reverse transcription, and
subsequent purification of the same RNA samples using glass fiber filter
columns (RNeasy, Qiagen) restores its ability to be reverse transcribed
(Dumur et al., 2004). We therefore prefer initial extraction with Trizol and
subsequent purification on RNeasy columns. Treatment with DNase
and subsequent removal of the activity of the enzyme are also essential
for quantitative gene expression analysis.

The quality and yield of RNA preparations should be assayed routinely.
Spectrophotometry can be used to assess the purity of samples, with a 260/
280 measurement indicating protein contamination if less than 1.8 and a
260/230 measurement indicating phenolic compound contamination if less
than 0.6 (Zhang et al., 2004). However, spectrophotometry is not an indi-
cator of whether the RNA is intact (full length) and should be used in
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concert with electrophoresis. The size distribution of RNA samples is an
indicator of integrity and should be assayed routinely by electrophoresis
using either denaturing agarose gels or a specialized capillary electropho-
resis apparatus (Bioanalyzer, Agilent). Denaturing agarose gels can be run
without formaldehyde by simply using 20 mM guanidinium isothiocyanate
and 1� TBE in the gel and denaturing the RNA in 3 volumes of deionized
formamide and 1� TBE (Goda and Minton, 1995). In either case, the
relative quantities of the large and small ribosomal bands (28S/18S
ratio, calculated as the relative fluorescence of each band) gives an indica-
tion of RNA integrity. In undegraded samples the larger 28S band should
be about twice as fluorescent as the smaller 18S band. For samples from
invertebrate tissues, we typically see two closely migrating bands. Signifi-
cantly degraded samples display ratios of 1.2–1.4 or lower and noticeable
smears at lower molecular weight. It must be noted, however, that RNA
samples degraded to the point where they will give misleading microarray
results can still have a passing 28S/18S ratio of 1.8 (Auer et al., 2003). Two
methods for a more discriminating interpretation of electropherograms
are to (i) calculate the ratio of the average degradation peak and the 18S
peak (Auer et al., 2003), or (ii) calculate the ribosomal peaks as a percent-
age of total RNA (should be >30%) (Dumur et al., 2004). Should RNA
degradation be suspected, a more time‐consuming but definitive test is
Northern blotting. For storage up to several months, samples suspended
in RNase‐free water at �80� are stable, provided they are not subjected
to freeze‐thaw cycles, whereas ethanol precipitation is preferable for
long‐term storage.

Once the integrity and concentration of RNA have been confirmed, it is
useful to add ‘‘spike‐in’’ controls. These are exogenous RNAs with
corresponding probes on the array, which will not cross‐hybridize to the
sample of interest. Several commercial kits of this sort are available (e.g.,
Stratagene, Ambion). An alternative for some investigators may be to
obtain cloned DNA inserts of known sequence from an unrelated organism
and use these vectors to produce synthetic RNA by in vitro transcription
and DNA for spotting by PCR. Spiking controls are a useful way to assay
parameters of an array experiment that are otherwise difficult to deter-
mine. For example, RNAs spiked at a 1:1 ratio in each channel should show
this pattern after array normalization. Spikes added at varying concentra-
tions and alternative ratios (e.g., 1:5, 5:1) may also be used to assess
detection limits and the degree of ratio compression after normalization
in an experiment.

Because reverse transcription of RNA can be an important source of
variability from assay to assay, it is important to establish consistent
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conditions. To assess the efficiency and yield of the reaction, electrophore-
sis of labeled, purified cDNA is a highly useful control. This step requires
access to a fluorescence imager, such as a Typhoon (Molecular Dynamics)
or an AlphaImager (Alpha Innotech). This serves several purposes: first, it
provides a visual assessment of how much unincorporated dye (which can
be correlated with higher background) remains after cleanup. Second, it
gives a clear estimate of the length distribution of each sample, as well as a
quantification of fluorescence intensity in each sample. These numbers
should correlate well with spectrophotometric numbers for dye incorpora-
tion. For example, failure of the reverse transcription reaction would show
a high‐intensity, low molecular weight product with little or no cDNA
longer than a few hundred base pairs in length. Other labeling techniques,
such as dendrimers (Genisphere), are less amenable to gel electrophoresis.
Two successive hybridizations are used in this technique to first hybridize
the reverse‐transcribed cDNA and then label these samples on the array.
Although this increases the number of steps involved, in our experience
this labeling technology is robust. Should a quality control check be de-
sired, unlabeled cDNA may be run on a Bioanalyzer RNA chip to verify a
successful reaction. An alternative indirect control for both RNA integrity
and reverse transcription is to include probes designed to mach the 50 and 30
ends of transcripts for a handful of genes that are both ubiquitously
expressed and uniformly spliced. When primed with oligo(dT), full‐length
cDNAs will hybridize to both the 50 and the 30 probes, whereas incom-
plete cDNA will largely hybridize only to the 30 probe. The ratios of the
fluorescence intensities of the 50 and 30 probes therefore provide an indirect
measure of the size distribution of the cDNA, and also the integrity of the
RNA (Dumur et al., 2004).

For two‐channel hybridizations, balancing the amount of DNA or dye
added in each channel is important. Opinions differ about whether adding
an equal amount of DNA or dye is preferable. Whichever method is
chosen, it is important to maintain consistency throughout an experiment
so that arrays are more comparable to one another. Downstream normali-
zation is important to remove systematic dye bias prior to data analysis
(Holloway et al., 2002). In addition, it is advisable to monitor how much is
added to the arrays, especially in terms of picomoles of dye, as high
background can result from adding excessive amounts of dye, and low
signal from a paucity of sample. A safe range in our system is 40–200 pmol
of dye per channel. Another useful measure to track in labeled samples is
frequency of incorporation (FOI), which is defined as the number of
labeled nucleotides incorporated per 1000 nucleotides of cDNA. The
equation for calculating FOI is as follows: (pmol of dye incorporated
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� 324.5)/ng of cDNA. 1 Typicall y, FOI measu rements of 20–50 indi cate
samples suit able for a rray hy bridizat ion. We routin ely use the microar ray
assay on the NanoD rop sp ectroph otometer (Na noDrop) , whi ch requir es
only 1 �l of sample an d pro vides informat ion on DNA concen tration and
dye incor poration .
Background Fluorescence

A commo n pro blem is that off‐ spot ba ckground limits the ability to
reliabl y detect and quanti fy low ab undance transcri pts. Increa sing the gain
to the photomul tiplier tube (PMT) does not help, as background incr eases
in parallel with signa l. Only enh ancing speci ficity and sensi tivity or reduc-
ing ba ckground will improve data qua lity. Hi gh ba ckground can have many
possi ble sources . For example, the problem cou ld be due to a probe that is
not suffici ently purified away from unincor porated dye, or simply too much
probe ; close mon itoring of input sample sho uld prevent these problem s.
With poor sample qua lity the detect ion of low ‐inte nsity trans crip ts wi ll
often be trunca ted; when spiki ng control s report the expect ed inten sity
values , thu s ruling out dye coup ling as a prob lem, reverse trans criptio n or
RNA quali ty rema in as suspect areas ( Fig. 1H ). Anothe r fairly common
problem is a ‘‘black hole’ ’ of fluor escence ( Fig. 1I ). In this case, off ‐ spot
pixels are much bright er than on ‐ spot pixel s, most likely due to impro per
blocki ng of the slide dur ing preh ybridizat ion (see later) or to poor targe t
quality as opposed to slide quality.

Other possib le causes for high and unifor m backgrou nd include im-
prope r hybridizat ion buffer compos ition, or low stringenc y of hybridizat ion
or was hes ( Kamberova an d Shah , 2003 ). During preh ybridizat ion, slides
should be treated with blockin g agents such a s bovine serum album in to
prevent nonspeci fic bindi ng ( Bowtell an d Sambroo k, 2 002 ). Hybrid ization
buffer s should also include blocking ag ents su ch as denature d nons pecific
DNA, for example, from human Cot ‐ 1, salmo n sperm, or calf test es
(100 � g/ml), as well as a protei n componen t, su ch as I ‐Blo ck (Tropix ) at
1 mg/ml. Choi ce of blocking agen ts should be ba sed on the experiment al
system. If spots contain extensive oligo(A/T) tracts (as is common with
many cDNA‐derived libraries), it is advisable to block with oligo(T/A) as
well. All buffers should be freshly made using molecular biology‐grade
water, filtered with 0.22‐�m filters, and should not be reused. Any particu-
late matter coming into contact with the array between hybridization and
scanning will likely be visible in the scan.
1 http://www.corning.com/Lifesciences/technical_information/techDocs/troubleshootingUltra

GAPS_ProntoReagents.asp.

http://www.corning.com/Lifesciences/technical_information/techDocs/troubleshootingUltraGAPS_ProntoReagents.asp
http://www.corning.com/Lifesciences/technical_information/techDocs/troubleshootingUltraGAPS_ProntoReagents.asp
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At lower hybridization temperatures on cDNA arrays, such as below
42�, the sample may become irreversibly bound to the array. To prevent
this, increase hybridization temperatures to 55� with nonformamide buf-
fers, and 45–50� or below using a 50% formamide buffer. Figure 1C shows
a nonspecific, high background, which could be caused by poor sample
quality, inadequate blocking or washing, or poor labeling. Optimal wash
parameters are best determined empirically, as stringency seems to be
somewhat platform and sample dependent. Washing slides individually in
50‐ml plastic screw‐cap conical tubes is convenient and has given good
results. If following published protocols closely does not provide satisfac-
tory results, extend time, increase temperature (although not dramatically,
perhaps 5�), or decrease salt concentration of the washes. A standard
protocol is two washes at 50� for 15 min each in 2� SSC/0.1% SDS, two
washes in 0.2� SSC/0.1% SDS at room temperature for 10 min, and
two washes in 0.1� SSC at room temperature for 5 min. Below 0.1� SSC
the target can easily be stripped from the slide if washed for over 3 min.
This can result in a background smear similar to comet tailing. For this
reason, rather than lowering the salt concentration in the final wash, it is
preferable to increase temperature or time. Final wash and dry procedures
can have dramatic effects on background levels; some prefer to isopropanol
dip their slides immediately before centrifuging. It is fairly common to
see patterns of fluorescent background that appear to be wash related
(Fig. 1D, G, K). In any case it is important to dry the slide completely
before the final wash buffer has a chance to collect on part of the slide; once
drying is complete, any fluorescence on the slide is essentially irreversibly
bound. Repeated washing of the slide once it has dried will reduce signal
with the same efficacy that background is reduced. It should also be noted
that exposing the fluorescent dyes to light will result in photobleaching,
so keeping the samples in the dark while performing washes is prefer-
able. This can be done by simply wrapping the 50‐ml conical tubes in
aluminum foil.

It has also been noted in our laboratory and by others (Wit and
McClure, 2004) that subtracting local background from the intensity of a
spot (when data quality is good and nonuniform background is negligible)
is often not advisable, for both theoretical and empirical reasons. In part
this is because better correlations are often seen between microarray ratio
data and vetted external data (such as RT‐PCR) and replicate correlations
tend to increase as well. While the possibility remains of a confounding
spatial effect inflating correlations artificially, this seems unlikely, and the
association between foreground and background intensity may well be
evidence that some fluorescence called as background by the software is
actually signal.
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Often background is not uniform, but appears instead only in a few
subarrays. This is due to problems either during hybridization or during
washing. Uneven mixing of sample across the surface of the slide, stationary
bubbles forming under the coverslip (Fig. 1J), partial drying of sample, and
condensation around coverslip edges (Fig. 1F) can all cause nonuniform
background. To avoid these problems, it is important to mix samples well
prior to pipetting them onto themicroarray and to ensure sufficient buffer to
fill the area between the coverslip and the array. Keeping the slide and
buffer warmed to hybridization temperature as sample is applied also helps
reduce bubble formation.Oil or residue on coverslips can bewashed off with
100% ethanol, followed by rinsing well in nuclease‐free water. For hybridi-
zation, the atmosphere in the chamber should be kept humid by applying
dilute SSC buffer or water to a reservoir in the chamber (be careful that
liquid does not wick onto the slide surface). Hybridization chambers should
be fully submerged in a water bath during incubation; incubation in an air
oven can lead to drying of the sample. It is also good practice to gently
agitate solutions during washing to keep liquid moving over the surface of
the array. Other types of background can be caused by particulate contami-
nants that strongly fluoresce; these should be removed by making sure all
solutions are filtered and kept scrupulously clean and that the arrays are well
washed during prehybridization. Important precautions include wearing
only powder‐free nitrile gloves and touching arrays and coverslips only by
the edges; any contact on the surface of the slide by forceps or fingers is
typically apparent upon scanning. Standard coverslips are not used because
they inhibit movement of fluid across the slide surface; LifterSlips (Erie
Scientific) are preferred because they have small ridges on one face to
provide separation between the coverslip and the microarray surface.
Hybridization Quality Assessment

Most users confronted with their first microarray image have a common
question: is this hybridization of good quality? There is no simple answer
because multiple criteria are typically important in order to extract reliable
data. However, there are several important guidelines for assessing hybri-
dization quality. Many scanner softwares have built‐in quality control tests
that allow the user to flexibly set criteria or use preset filters (Kamberova
and Shah, 2003). For example, the GenePix software of Axon scanners can
perform a number of quality‐control tests and then filter out spots not
meeting certain criteria, such as saturation, percent above background, or
standard deviation of background. These ‘‘flagged’’ spots can be omitted
from further analysis or normalization. GenePix also has an array quality
control test that measures a number of array‐wide parameters, such as
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signal‐to‐noise ratio, percent present spots, median background, and so on.
In our laboratory, we use a custom script written in R (downloadable at:
http://dgrc.cgb.indiana.edu/microarrays/analysis.html), which performs a
normalization and reports a variety of statistics on both pre‐ and postnor-
malized data. It should be noted that this script is designed for DGRC
microarrays and will not be directly applicable to other platforms; however,
the source code is made available at the above URL and can be modified to
suit any two‐channel microarray platform data.

Regardless of particulars used to filter spots of low quality, an assess-
ment of array quality should include several types of data. First, what are
the average foreground and background of all spots, and of positive and
negative controls? Rather than using false‐color images from scanning
software to judge quality by eye, it is preferable to use graphical summaries
of data distributions, such as foreground and background in each channel.
We find the Bioconductor packages Marray and Olin (available at http://
www.bioconductor.org) and other functions in the basic R package to be
highly useful for this purpose. A good hybridization will have a narrow,
high peak of background at low‐intensity values, well separated from a
broader peak of signal at higher intensity (Fig. 2A and B). By comparison,
low‐quality hybridizations show poor differentiation of signal and back-
ground peaks (Fig. 2C and D). Spiking control spots should have ratios
in the appropriate ranges and should demonstrate good reproducibility
(r2 > 0.8). Scatterplots and boxplots (Fig. 2I) are useful to show print‐tip
and subarray effects. Classical ‘‘MA’’ plots of log ratio vs intensity (Fig. 2J)
can reveal dye, print‐tip, or subarray effects. Data with more pronounced
bias will generally require more aggressive normalization due to dye effects
that do not reflect underlying transcript levels.

Graphical representations of array foreground and background levels,
often called heat maps, are another useful way to visualize the common
effect of location‐dependent background. First, spatial (x–y) plots of fore-
ground and background across the slide may highlight spatial trends.
Spatial plots of ratios (Fig. 2E–G) depict values of all pixels on the array,
and in Fig. 2E, a clear bias to the red channel is apparent. This difference
is due to a fairly low (twofold) difference in overall background levels.
A good scan (Fig. 2F) does not show such a pattern. After normalization, the
mix of ratios across the slide no longer shows a location‐dependent effect
(Fig. 2G). These often appear to be artifacts of an incompletewash, as shown
in Fig. 2H. With both location‐ and intensity‐dependent dye biases, a nor-
malization approach that can deal with these problems is required; we find
theRpackageOlin (Futschik andCrompton, 2004) to be highly useful in this
respect. Generally, arrays with background intensities of 200 or lower (on a
scale from zero to 65,535 units) and exhibiting a ‘‘long tail’’ distribution of

http://dgrc.cgb.indiana.edu/microarrays/analysis.html
http://www.bioconductor.org
http://www.bioconductor.org


4
6

D
N
A

m
ic
r
o
a
r
r
a
y
s,

pa
r
t
B

[3
]



FIG. 2. Histogram of frequency of log2 (intensity) values in a hybridization of higher quality (A and B) and of lower quality (C and

D). Note the distinct separation of the low‐intensity and higher intensity counts for the higher quality array, and the normal distribution

of signal. In the lower quality array, signal (lighter color) and background (darker color) are spread across much of the same range,

which makes spot finding difficult or impossible. For each channel, noise should be near a log2 (intensity) of 6 or 7, corresponding to

about 130 counts of background in a 216‐bit scanning system. (E, F, and G) Spatial plots of log2 ratio values for all pixels on the array.

Ratios for each pixel are plotted according to x–y coordinates of pixel location (note scale bar). (E) The array displays high red

background to the left and top of the array and is red on the right side as well. This array will require aggressive normalization to

remove the spatial artifact. (F) An array with lower overall background and with much less spatial bias. (G) The same array as E after

normalization using Olin (Futschik and Crompton, 2004). (H) False‐color image of foreground and background in red and green

channels plotted across the x–y dimensions of the array. This displays log2 intensity values in foreground, background, and

log2(foreground�background) and can reveal otherwise invisible trends. (I) Box plot of spot ratios within each print‐tip group. Such

plots are helpful for revealing artifacts related to printing and how well normalization copes with their removal. (J) M‐A (ratio‐
intensity) plot of all spots on the array, with regression lines colored according to the subarray. In this case, intensity is centered around

a mean of zero, which is reasonable, and there is relatively little intensity‐dependent bias in average ratio values.
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spots with high intensity are of good quality. Coefficients of variation in
background around spots should generally be 10% or less at intensities
above 8 (log scale), and signal‐to‐noise ratios should be greater than 10.
A good array (Fig. 1E) looks by eye to have low, even background; good spot
morphology and intensity range; and a strong signal.

Concluding Remarks

Problems with microarray hybridizations range from catastrophic fail-
ure (no signal) to data of apparently high quality that nevertheless exhibits
unacceptable technical variation. The ability to detect meaningful
biological variation is limited by the extent to which this technical variation
can be controlled and minimized. Such control can only be achieved by
vigilant attention to detail and consistent monitoring of quality metrics.
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Internet Resources

Protocols
DGRC: http://dgrc.cgb.indiana.edu/microarrays/protocols.html
UMinn: http://www.agac.umn.edu/microarray/protocols/protocols.htm
TIGR: http://www.tigr.org/tdb/microarray/protocolsTIGR.shtml
NHGRI: http://research.nhgri.nih.gov/microarray/protocols.shtml
Pat Brown: http://cmgm.stanford.edu/pbrown/protocols/
Rockefeller: http://www.rockefeller.edu/genearray/protocols.php
Discussion Groups
Yahoo: http://groups.yahoo.com/group/microarray
Stanford Microarray forum: http://cmgm.stanford.edu/cgi‐bin/cgiwrap/

taebshin/dcforum/dcboard.cgi
Email Listserve: sendmessage toGENE‐ARRAYS@ITSSRV1.UCSF.

EDU
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http://www.tigr.org/tdb/microarray/protocolsTIGR.shtml
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[4] Use of External Controls in
Microarray Experiments

By IVANA V. YANG
Abstract

DNA microarray analysis has become the most widely used technique
for the study of gene expression patterns on a genomic scale. Microarray
analysis is a complex technique involving many steps, and a number of
commercial and in‐house developed arrays and protocols for data collec-
tion and analysis are used in different laboratories. Inclusion of external
or spike‐in RNA controls allows one to evaluate the variability in gene
expression measurements and to facilitate the comparison of data col-
lected using different platforms and protocols. This chapter describes
what external controls are, which collections of spike‐in controls are avail-
able to researchers, and how they are implemented in the laboratory.
Applications of external controls in the assessment of microarray perfor-
mance, normalization strategies, the evaluation of algorithms for gene
expression analysis, and the potential to quantify absolute mRNA levels
are discussed.
Introduction

The ability to study genome‐wide transcription using microarrays has
become the most widely used technique for the study of gene expression
patterns on a genomic scale and has revolutionized both basic and clinical
science fields (Ramaswamy and Golub, 2002; Staudt and Brown, 2000).
Microarray analysis is a complex, multistep technique involving not only
array manufacture, but also sample isolation, labeling, and hybridization as
well as subsequent data analysis. Systematic variation can occur at any step
of the process and affect gene expression measurements. Furthermore,
different investigators use different commercial or in‐house developed ar-
rays and protocols for data collection and analysis. One way to evaluate the
variability in gene expression measurements and to facilitate the compari-
son of data collected in laboratories throughout the world is to utilize
external or spike‐in controls in each experiment. Such controls can be used
to assess sensitivity and accuracy of relative gene expression changes, linear
range of the particular microarray platform, hybridization specificity, and
consistency within and across arrays. External controls were introduced in
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11004-6
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early genome‐wide gene expression profiling studies (Lockhart et al., 1996)
but their full potential in evaluating and standardizing microarray experi-
ments is just starting to be recognized. At present, microarrays are used to
monitor relative gene expression changes but inclusion of spike‐in controls
could potentially allow one to measure absolute mRNA levels. Microarray
data sets containing sufficient numbers of measurements on spike‐in con-
trols can additionally be used for comparison of existing methods and
development of new algorithms for image processing, data normalization,
and detection of differential expression. This chapter describes what exter-
nal controls are, how they are implemented in the laboratory, and how they
are utilized for the assessment of microarray performance and evaluation of
data analysis methodologies.
Description and Availability of External Controls

External controls are in vitro‐synthesized RNA molecules that are
added in defined amounts and ratios to the RNA samples to be assayed.
Each control is designed to hybridize with high specificity to the control
probes included on the array but not to probes complementary to the
genome being studied. For mammalian arrays, these control genes are
typically selected from bacterial or plant biochemical pathways that are
not present in metazoan organisms. Alternatively, they are artificial genes
(or ‘‘alien’’ sequences) based on sequences from nontranscribed genomic
regions (intronic or intergenic). In addition to avoiding cross‐hybridization
with endogenous probes, the basic requirement for spike‐in cRNA is to
resemble the sample RNA in sequence properties, such as length, GC
content, and the presence of the poly(A) tail (van Bakel and Holstege,
2004). Similarly, DNA probes for exogenous controls must be comparable
to endogenous probes regarding design, length, method of fabrication, and
cross ‐ hybridi zation potential (see Chapt er 4 in volum e 410 by Kriel et al.,
2006).

Control genes are typically cloned into a vector containing an RNA
polymerase promoter (e.g., SP6) and a stretch of d(A):d(T) in the multiple
cloning site. This allows the cRNA to be prepared by in vitro transcription
from the SP6 promoter and contain a synthetic poly(A) tail at the 30 end of
the inserted sequence. The poly(A) tail is necessary for oligo d(T) priming
of the reverse transcription (RT) of RNA into complementary DNA
(cDNA), the first step in target labeling. These vectors can also be used
to prepare DNA for spotting on cDNA arrays. For oligonucleotide arrays,
probes are designed and synthesized in the same manner as all of the other
probes present on the array.
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Several different collections of external controls have been developed
by commercial and nonprofit entities (Table I). Affymetrix control re-
agents for eukaryotic GeneChip arrays consist of poly(A)‐tailed RNA
encoding five Baeillus subtilis genes (dap, lys, phe, thr, and trp) to be spiked
in the sample RNA prior to reverse transcription (see Chapter 1 in volume
410 by Dalma‐Weiszhausz et al., 2006). Bacteria containing recombinant
plasmids with the B. subtilis genes are available from the American Type
Culture Collection (ATCC) to researchers who would like to include this
control set on their own spotted microarrays. GE Healthcare/Amersham
Biosciences also offers a set of poly(A)‐tailed bacterial RNA samples to be
used for monitoring the performance of their CodeLink whole genome
bioarrays (http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/
Content/WD%3AExternalþRNAþco%28274354027‐B500%29?Open
Document&hometitle¼WebDocs). This set includes synthetic mRNAs
encoding six bacterial genes: araB, entF, fixB, gnd, hisB, and leuB. Agilent
Technologies control set for their inkjet‐synthesized 60‐mer oligonucleo-
tide arrays consists of 10 semisynthetic mRNAs that are made up of a
portion of the adenovirus E1a gene and tagged at the end with a unique 60‐
mer, followed by a poly(A) tail (Hughes et al., 2001; see Chapter 2 in
volume 410 by Wolber et al., 2006).

Researchers who fabricate their own microarrays have access to several
other collections of external controls. TIGR Arabidopsis cRNA Spiking
Control Resource (The Institute for Genomic Research) consists of 10
Arabidopsis thaliana genes (CAB, LTP4, LTP6, NAC, PRKase, rbcL,
RCA, RCP, TIM, and XCP2) that have been subcloned into the
pSP64poly(A) vector. The vector set is available at no charge to researchers
at nonprofit institutions. cRNA and oligonucleotides for spotting represent-
ing the same 10 genes are also available commercially as the SpotReport
Oligo Array Validation System (Stratagene). National Institutes of Aging
(NIA) and Agilent Technologies have collaboratively assembled a set of
controls based on intergenic and intronic Saccharomyces cerevisiae
sequences (Carter et al., 2005). The 60‐mer oligonucleotide probes for these
controls have been added to Agilent’s mouse whole genome microarrays,
and vectors for generating spike‐in cRNAs have been made available
through theATCC. This collection can be used with endogenous RNA from
almost any organism because the controls are artificial genes composed
of DNA sequences from yeast intergenic and intronic regions. Lucidea
Universal ScoreCard (GE Healthcare/Amersham Biosciences) is a set of
23 controls also compatible with samples frommost organisms because they
are, similarly to the NIA/Agilent controls, based on yeast intergenic regions.
They have been shown by the manufacturer to perform independently, i.e.,
with no cross‐reactivity, on human, mouse, rat, yeast, A. thaliana, and

http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs


TABLE I

SPIKE ‐ IN RNA CONTROL COLLECTIONS FOR EUKARYOTIC MICROARRAYS

Spike‐in collection Control type Provider Microarray type Web site

GeneChip eukaryotic

poly(A) RNA control kit

Bacterial gene

sequences

Affymetrix Affymetrix

GeneChip arrays

http://www.affymetrix.com/

support/technical/manual/

expression_manual.affx

External RNA controls for

monitoring performance

of CodeLink Whole

Genome bioarrays

Bacterial gene

sequences

GE Healthcare/

Amersham Bioscience

CodeLink Bioarrays http://www4.

amershambiosciences.com/

APTRIX/upp00919.nsf/

Content/WD%3AExternal þ
RNAþco%28274354027‐
B500%29?OpenDocument&

hometitle¼WebDocs

Agilent Technologies

spike‐in set (Hughes

et al., 2001)

Adenovirus E1 gene

sequence tagged

with unique 60 ‐mers

Agilent Technologies Inkjet synthesized

60 ‐mer microarrays

http://www.chem.

agilent.com/

scripts/pds.asp?/

page¼38553

TIGR Arabidopsis cRNA

spiking control resource

(Wang et al., 2003)

Plant gene sequences The Institute for

Genomic Research

Spotted oligo and

cDNA arrays

http://pga.tigr.org/

Arab_ctrl.shtml

SpotReport Oligo array

validation system

Plant gene sequences Stratagene Spotted oligo arrays http://www.stratagene.com/

products/showProduct.aspx?

pid¼528

(continued)

[4
]

u
se

o
f
e
x
te
r
n
a
l
R
N
A

C
O
N
T
R
O
L
S

T
O

A
S
S
E
S
S

M
IC

R
O
A
R
R
A
Y

P
E
R
F
O
R
M
A
N
C
E

5
3

http://www.affymetrix.com/support/technical/manual/expression_manual.affx
http://www.affymetrix.com/support/technical/manual/expression_manual.affx
http://www.affymetrix.com/support/technical/manual/expression_manual.affx
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://pga.tigr.org/Arab_ctrl.shtml
http://pga.tigr.org/Arab_ctrl.shtml
http://www.stratagene.com/products/showProduct.aspx?pid=528
http://www.stratagene.com/products/showProduct.aspx?pid=528
http://www.stratagene.com/products/showProduct.aspx?pid=528
http://www.chem.agilent.com/scripts/pds.asp?/page=38553
http://www.chem.agilent.com/scripts/pds.asp?/page=38553
http://www.chem.agilent.com/scripts/pds.asp?/page=38553
http://www.chem.agilent.com/scripts/pds.asp?/page=38553
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs
http://www4.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AExternal+RNA+co%28274354027-B500%29?OpenDocument&hometitle=WebDocs


TABLE I (continued)

Spike‐in collection Control type Provider Microarray type Web site

NIA/Agilent yeast spike‐in
controlsa (Carter

et al., 2005)

Artificial genes

(yeast intergenic

and intronic

sequences)

National Institute of

Aging/Agilent

Technologies

Inkjet synthesized

oligonucleotide

and spotted cDNA/

oligonucleotide arrays

Lucidea Universal

ScoreCarda
Artificial genes

(yeast intergenic

sequences)

GE Healthcare/

Amersham Bioscience

Spotted oligonucleotide

arrays

http://www1.amersham

biosciences.com/APTRIX/

upp00919.nsf/Content/

WD:Lucidea%20Univers

(202385379‐B500)?Open

Document&hometitle¼
DrugScr

SpotReport Alien Oligo

array validation system

Artificial genes Stratagene Spotted oligonucleotide

arrays

http://www.stratagene.com/

products/display

Product.aspx?pid¼527

a Species‐independent set that can be used for prokaryotic and eukaryotic arrays.
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Escherichia coli arrays. Finally, the SpotReport Alien Oligo Array Valida-
tion System (Stratagene) is a comparable group of 10 artificial genes that is
also useful in assessing the performance of oligonucleotide‐based plant,
animal, or microbial microarrays.

However, the full potential of external RNA controls in the evaluation
of microarray platforms and standardization of array data can only be
achieved if the same controls are present on all commercial and custom
microarrays. Efforts to create a common collection of spike‐in controls are
underway; a good example is the activity of the External RNA Controls
Consortium (ERCC) (http://www.affymetrix.com/community/standards/
ercc.affx). ERCC is composed of scientists from private, academic, and
government sectors whose goal is the creation of ‘‘well‐characterized and
tested RNA spike‐in controls useful for evaluating sample and system
performance, to facilitate standardized data comparisons among commer-
cial and custom microarray platforms.’’ ERCC is planning on putting
together a set of 100 platform‐independent controls that will be useful
for the evaluation of reproducibility, sensitivity, and robustness in gene
expression analysis (Salit, 2006).
Assesment of Array Performance Using External RNA Controls

Although external controls can be spiked in at different stages of the
experiment, adding them directly to the RNA sample at the beginning of
the experiment is most useful because it allows one to monitor all of the
downstream steps. From a quality control standpoint, it is beneficial to have
additional controls added at a later stage, such as hybridization, to be able to
pinpoint where problems might have occurred in unsuccessful experiments.

External cRNA controls are added to endogenous RNA at predeter-
mined amounts and ratios. The amount of exogenous RNA is generally
expressed as picograms of the control per microgram of total endogenous
RNA, which is often derived from the desired number of copies of the
transcript per cell. For example, assuming that there are 360,000 mRNA
transcripts per cell, 20 pg of total RNA per cell, and that 1 pg of total
RNA is mRNA, Kane et al. (2000) derived that 0.15 pg of the external
control per microgram of total RNA should be added to achieve one copy
per cell spiking. Several assumptions are made in this calculation and one
must keep in mind that these numbers are only estimates and different
cell types under different conditions will express lower or higher amounts
of RNA. Furthermore, intensities of signals obtained on microarrays do
not correlate directly with transcript abundances due to differences in
hybridization efficiencies.

http://www.affymetrix.com/community/standards/ercc.affx
http://www.affymetrix.com/community/standards/ercc.affx
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The amounts of different control targets in the spike‐in set are usually
chosen to cover the entire range of endogenous mRNA abundance. Several
genes are added in low copy numbers (5–50) to mimic rare transcripts
(0.001–0.01% mRNA), others are added at higher copy per cell numbers
(100–400) to representmoderately abundantmRNAs (0.025–0.1%mRNA),
and a few may be added at very high (>500) copy numbers for highly
expressed transcripts (>0.15%), although hybridization of a large amount
of RNA may result in signal saturation. Similarly, different control cRNAs
can be added in varying Cy5/Cy3 ratios in two‐color array experiments.
Figure 1 shows an example in which four controls are added in equal
amounts in the two channels (yellow), three are spiked in at 3:1 Cy5:Cy3
ratios (red), and three are added in at 1:3 Cy5:C3 ratios (green). The controls
added in at 1:1 ratios are designed for normalization purposes in instances
where global normalization approaches may not be appropriate, that is,
microarrays containing small numbers of genes or comparisons in which
most genes on the array are expressed differentially (Hill et al., 2001; Wang
et al., 2003). Alternatively, these spike‐ins may be used to ensure that global
normalization approaches have been successful in removing dye bias (Qin
and Kerr, 2004).

Controls that are added in different amounts in Cy3 and Cy5 channels
are typically used to assess sensitivity of themicroarray to detect differential
expression of endogenous transcripts expressed at a range of abundances.
For example, nearly all endogenous transcripts in the self vs self‐
hybridization of a mouse lung sample shown in Fig. 1A have Cy5:Cy3 ratios
between 3:1 and 1:3, suggesting that transcripts that are over‐ or under-
expressed in the mouse lung vs the Universal Mouse Reference sample
(Fig. 1B) at greater than threefold (blue) can be detected as expressed
differentially on this particular array platform. Including additional controls
spiked in at different ratios (e.g., 2.5:1, 2:1, 1.5:1) would be useful in further
defining sensitivity limits for detecting differential expression of transcripts
present at different abundance levels. Analogous to using external controls
to assess sensitivity for detecting differential expression in two‐color hybri-
dization assays, B. subtilis transcripts have been used to assess the linear
range of the Affymetrix GeneChip platform in the absence and presence of
endogenous eukaryotic RNA (Chudin et al., 2002).

External RNA controls can also be used for quality control/assurance
purposes. In the case of in‐house spotted oligonucleotide or cDNA arrays,
printing controls at multiple positions on each slide allows for detection of
any spatial gradients and artifacts. In general, any deviations from expected
input ratios are indicative of problems in array printing, target labeling, or
hybridization conditions. For example, a quality control metric could be
designed to capture information such as the mean Cy5/Cy3 ratio and the



FIG. 1. Ratio–intensity (RI) plots of hybridizations of a mouse lung RNA sample to itself

(A) or to the Universal Mouse Reference RNA (Stratagene) (B). Ten A. thaliana cRNA

controls were spiked into mouse lung and reference RNA samples at 1:1 (yellow; 50:50,

100:100, 200:200, and 300:300 in terms of copies per cell), 3:1 (red; 30:10, 120:40, and 450:150),

and 1:3 (green; 40:120, 80:240, and 100:300) Cy5:Cy3 ratios. Genes that are identified as

differentially expressed in B are shown in blue. RNA was labeled by incorporation of the

aminoallyl linker during reverse transcription followed by a coupling of Cy3‐ or Cy5‐NHS

esters, and labeled targets were hybridized to a spotted oligonucleotide microarray containing

the mouse Operon set (probes for �17,000 mouse genes) printed once and probes for the 10

A. thaliana genes printed multiple times on the array.
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coefficient of variation (CV) for repeated measurements of each control.
Mean ratios differing from input ratios or exhibiting large CV would
suggest that problems may have occurred in the experiment. External
controls are also valuable in the evaluation of existing and validation of
new microarray laboratory protocols. For instance, two published studies
validated printing of oligonucleotides instead of polymerase chain reaction
(PCR) products using this strategy (Kane et al., 2000; Wang et al., 2003),
and another study used spike‐ins to compare available cDNA labeling
methods (Badiee et al., 2003). Finally, studies attempting to estimate abso-
lute transcript copy numbers on microarrays using external RNA are
beginning to appear in the literature (Carter et al., 2005). In this study,
investigators estimated absolute mRNA levels in endogenous mouse RNA
based on the standard curve they constructed using the yeast exogenous
RNA. They compared copy numbers estimated on microarrays to those
obtained by quantitative RT‐PCR and found a good correlation for a large
number of transcripts but not all of them. Further improvements in probe
designs and other parameters associated with microarray hybridization
assays, particularly to account for alternative transcript splicing, will be
needed to obtain accurate mRNA levels for all genes.
Methods for Synthesis and Utilization of External RNA Controls

Laboratories that wish to make their own external control sets will
need to subclone sequences of interest into a vector containing a promoter
for an RNA polymerase (SP6, T3, or T7) and a poly(A) tail, such as
pSP64poly(A) (Promega, Madison, WI). Methodology for subcloning is
described in some detail in Wang et al. (2003), but can also be found in
any standard molecular biology manual. Alternatively, investigators can
obtain control sets that have already been assembled and are available for
public use (described earlier). To generate cRNAs containing a 30 poly(A)
tail, constructs must be linearized with a restriction enzyme and in vitro
transcribed from the RNA polymerase promoter. MEGAscript kits for
SP6, T3, and T7 RNA polymerases (Ambion, Austin, TX) yield large
amounts of pure cRNA if the protocols included in the kit are followed.
In vitro‐synthesized cRNA should be quantified using a spectrophotometer
and run on a gel or the Bioanalyzer (Agilent Technologies) to ensure
proper size distribution.

To make pools for spiking into endogenous RNA samples, one needs to
calculate how much of each cRNA transcript is needed to achieve desired
copy numbers and fold changes between channels or arrays, add the
appropriate amount of each cRNA, and bring them up to the final volume
in diethylpyrocarbonate‐treated water. It is crucial to have very accurate
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dispensing in this step, so serial dilutions should be used if quantities of
stock solutions that need to be added are too small to dispense accurately.
The simplest way to avoid pipetting small volumes is to make a large pool
of cRNAs, divide the solution into small aliquots, and store the aliquots at
�80�. Two separate pools of cRNAs are typically made for Cy3 and Cy5
channels in two‐color hybridization assays. Control cRNA pools are added
to total RNA prior to mRNA extraction in protocols that use mRNA for
reverse transcription; if total RNA is used for labeling, one can add control
cRNA directly to the RT reaction. Commercial control sets generally
contain spike‐in RNA samples in solution and DNA for spotting in lyo-
philized form. cRNA needs to be diluted and pools made as outlined
earlier and following instructions provided by the manufacturer.
Evaluation of Data Analysis Methodology Using Spike‐In Data Sets

For a control data set to be useful in evaluating data analysis methods,
the data set must contain a sufficient number of external controls and
experiments. Four such data sets (Table II) have been used in published
studies focusing on either comparisons of existing or the development of
new algorithms for gene expression analysis. Two data sets that have been
used extensively in the development of methodology for Affymetrix
GeneChips are the cRNA spike‐in sets from Affymetrix and GeneLogic.
The Affymetrix Latin Square data set consists of three technical replicates
of 14 different complex human background RNAs with 42 controls added
at a range of concentrations and at twofold changes between arrays.
The GeneLogic data set is similar but it has 11 cRNAs added at varying
fold changes between arrays in a total of 98 hybridizations. Another
more recently collected data set on Affymetrix arrays contains 3860
synthetic RNA molecules; 1309 are spiked in at different concentrations
and fold changes between the two samples and the rest are present at
identical relative concentrations. Finally, a data set of 10 A. thaliana
controls spiked into mouse liver RNA and hybridized to spotted oligonu-
cleotide arrays has been collected by six different laboratories within the
Toxicogenomics Research Consortium (www.niehs.nih.gov/dert/trc) (Qin
and Kerr, 2004).

Analogous to the comparison of the existing and validation of new
laboratory protocols using data collected on external controls, these four
data sets have been used to evaluate both available algorithms and new
methods for the analysis of microarray data. Data sets collected on Affyme-
trix GeneChips have been particularly valuable in developing tools to sum-
marize expression levels from multiple probes for each gene, scale and
normalize summarized expressionmeasurements, and identify differentially

http://www.niehs.nih.gov/dert/trc


TABLE II

SPIKE‐IN DATA SETS USED IN EVALUATING MICROARRAY DATA ANALYSIS METHODS

Data set Platform Web site

Affymetrix Latin

square experiment

HG‐U133A

Affymetrix

GeneChip

http://www.affymetrix.com/

support/technical/

sample_data/datasets.affx

GeneLogic spike‐in
experiment

HG‐U95Av1

Affymetrix

GeneChip

http://www.genelogic.com/

media/studies/index.cfm

The golden spike‐in
experiment

(Choe et al., 2005)

DrosGenome1

Affymetrix

GeneChip

http://www.elwood9.net/spike

Toxicogenomics Consortium

(TRC) (Qin and Kerr, 2004)

Spotted

oligonucleotide

arrays

http://dir.niehs.nih.gov/

microarray/trc/
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expressed genes on this platform (Bolstad et al., 2003; Choe et al., 2005;
Irizarry et al., 2003a,b). For example, Irizarry and co‐workers (2003a)
compared Microarray Analysis Suite (MAS) 5.0, dChip, and Robust Multi-
array Analysis (RMA) algorithms for summarizing probe level data based
on three criteria: the precision of the measures of expression, the consis-
tency of fold change estimates, and the specificity and sensitivity of the
ability to detect differential expression and concluded that the RMA
algorithm outperformed the other two methods. More recently, Choe
et al. (2005) conducted an extensive investigation of different options for
background correction, probe level summaries, normalization, and statisti-
cal tests for differential expression and identified a combination of analysis
methods that allows detection of 70% of true positives at <10% false
discovery rate. Similarly, methods for background correction, normaliza-
tion, and identification of differential expression on two‐color microarray
data have been evaluated using the A. thaliana spike‐in data set (Qin and
Kerr, 2004). The findings of this study support the use of intensity‐based
normalization methods such as Lowess but question the practice of local
background subtraction. These investigators also compared a number of
statistical tests for differential expression and concluded that algorithms
such as significance analysis of microarrays outperform traditional Student’s
t test when there are few replicates. Finally, these data sets have been
valuable in implementing novel approaches for the assessment of differen-
tial expression, including a method that uses information from within‐slide
replicates to improve the precision of estimating genewise variances (Smyth

http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.genelogic.com/media/studies/index.cfm
http://www.genelogic.com/media/studies/index.cfm
http://www.elwood9.net/spike
http://dir.niehs.nih.gov/microarray/trc/
http://dir.niehs.nih.gov/microarray/trc/
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et al., 2005), a Bayesian hierarchical mixture model (Newton et al., 2004), a
multivariate analysis based on a T2 statistic (Lu et al., 2005), and a distance
synthesis method that integrates different statistics for gene ranking and
selection (Yang et al., 2005).

Concluding Remarks

Microarrays have evolved from a specialized and expensive tool used
in small numbers in a few laboratories to a standard technique available
and affordable to many researchers. Although external controls were in-
troduced in early microarray experiments and are now present on most
commercial and custom microarrays, their potential has not been fully
realized. Further advances in standardization of microarray data (Bammler
et al., 2005) will require inclusion of common external standards and
controls in every microarray experiment. Integration of common RNA
standards and external controls into all gene expression profiling studies
will facilitate analysis of data sets collected on different platforms using
different laboratory protocols and analytical approaches. In addition,
the use of external controls may enable reporting of absolute mRNA levels
rather than relative gene expression changes in microarray experiments.
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[5] Standards in Gene Expression
Microarray Experiments

By MARC SALIT

Abstract

The use of standards in gene expression measurements with DNA
microarrays is ubiquitous—they just are not yet the kind of standards that
have yielded microarray gene expression profiles that can be readily com-
pared across different studies and different laboratories. They also are not
yet enabling microarray measurements of the known, verifiable quality
needed so they can be used with confidence in genomic medicine in
regulated environments.

Introduction

This chapter highlights current applications and roles of standards in
enabling successful microarray studies and describes emerging standards
activities intended to bridge the gap to permit microarrays to realize their
potential as a key technology in genomic medicine.

As described throughout this volume and others, DNA microarrays
are powerful tools to perform genome‐wide gene expression screening
and contrast experiments. DNA microarray experiments are expensive
investments in terms of supplies (arrays and associated reagents) and
time in the laboratory and in subsequent analysis of the copious data
measured.

Also as described in numerous publications, comparing results from dif-
ferent DNAmicroarray gene expression profiling experiments is challenging
and inconsistent. Even interpreting the variety of comparisons is challenging
and currently fraught with subjective assertion (Bammler et al., 2005; Barczak
et al., 2003; Hughes et al., 2001; Irizarry et al., 2005; Kothapalli et al., 2002; Kuo
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et al., 2002; Larkin et al., 2005; Mah et al., 2004; Mecham et al., 2004; Petersen
et al., 2005; Rogojina et al., 2003; Shi et al., 2005a; Sh ippy et al., 2004; Tan et al.,
2003; Yauk et al., 2004; Yuen et al., 2002). If it is difficult to comparemeaning-
fully results fromdifferent experiments, what can be asserted about the ability
to reproduce results of a study from laboratory to laboratory? As the field is
maturing, performance and understanding are improving, but expectations
are also rising.

It has been speculated that ‘‘standards’’ for microarray experiments will
solve these challenges.

While it is clear that standards have a role to play in the gene expression
profiling with DNAmicroarray enterprise, they are unlikely to be a complete
anodyne. This chapter describes how standards might be used to provide an
improved understanding of DNA microarray results and their quality and it
also discusses requirements for being able to compare microarray results
across and between studies.
Variability

Aside from the biological complexity of gene expression, some of the
challenges in interpreting and using DNA microarray gene expression
profiles arise from the measurement process itself. Biological questions
can best be addressed when the measurement process is well understood
and controlled and results can be compared and understood more mean-
ingfully. Figure 1 contains a model for the measurement process, useful to
identify sources of variability (each process step is subject to variability),
and a useful framework for the discussion of standards. The major seg-
ments of the process are annotated with a description of standards ap-
proaches that are in place or in development, the details of which are
discussed in the body of this chapter.

A generic microarray gene expression measurement process model
includes RNA isolation, an optional mRNA amplification step, microarray
target preparation, selection of microarray probe content, hybridization to
a microarray, detection of hybridized targets, calculation of an expression
measure from the detection data, and biostatistical analysis of the expres-
sion measures. Each process element introduces measurement variability.
Some elements are as fundamental as the bioinformatics of identifying
probe sequences that bind to an mRNA corresponding to a gene, whereas
others are as seemingly trivial as the time‐dependent oxidative degrada-
tion of the fluorescent label reagent attached to the sample RNA being
characterized in the experiment.

Standards are often used to manage variability. An appropriate stan-
dard inserted into a process element can help bring that element into



FIG. 1. An annotated process model for microarray gene expression measurements.
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control, assuring consistent performance from study to study, and even
from laboratory to laboratory. Quantitative assessment of variability
becomes more tractable once a standard is used in a process element.

In experienced microarray laboratories, variability is managed with the
adoption of carefully designed protocols and methods. In practice, these
protocols an d meth ods act as standar ds— standa rd method s. The chap ters
of Section II in the companion volume (vol. 410) present a variety of
approaches that can be considered as practical standard methods and
protocols. Successful microarray experiments demonstrate that these
standards can be sufficient to manage parameters within the course of a
single study. While standard methods can be effective, it can be difficult to
demonstrate objectively that they have been without having a standard
material to compare against.

Control of parameters solely with standard methods can be difficult
across different laboratories and across different reagent lots, especially
when some of the parameters/settings relate to the activity of enzymes. It is
also nearly impossible to establish post hoc the parameter settings of an
experiment. Even if the settings could be determined post hoc, knowing
how the results depend on the settings, and adjusting the data accurately,
would be impractical. Thus arise some of the challenge of using results
across studies.
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Some approaches taken to address similar problems in other mea-
surement areas are measurement traceability, method validation, and
measurement uncertainty.
A Digression: Traceability, Validation, and Uncertainty

Advances in the practice of chemical measurement science over the last
several decades have established a system by which measurements can be
brought into control, results can be compared, and the quality of results
understood. Lessons learned from this system can be applied directly to
microarray measurements.

There are three technical elements of the system: measurement trace-
ability (Eurchem/CITAC, 2003; Salit, 2005), method validation (Green,
1996; Holcombe, 1998), and uncertainty quantification (Ellison, 2000).
The widespread implementation of quality systems based in principle on
ISO 9000, and now in compliance with ISO 17025, is a fourth, procedural
element contributing to contemporary practice in chemical measurement.

Traceability is the property of a measurement result, whereby that
result can be compared with some reference, usually a recognized standard
of some sort. Method validation is the provision of objective evidence
that a measurement is fit for its intended purpose—for a microarray
measurement, that would be demonstration that an expression measure
reflects a relative measure of the transcript concentration. Quantitative
uncertainty estimates are statistical measures that characterize the range
of values within which a true value is asserted to lie; these estimates are
usually associated with a confidence interval, often 95%, by convention.
Standards play a variety of roles in traceability, validation, and uncertainty
estimation.

In practice, traceability is often how a measurement result ‘‘gets its
units.’’ Results that are traceable to a common reference can be compared.
For example, the mass of a sample determined on a calibrated laboratory
balance will be traceable, usually through a chain of measurements, all the
way to the artifact kilogram in a vault at the International Bureau of
Weights and Measures (BIPM) in Sèvres, France. The mass of that sample
can be expressed in kilograms and can be compared to the mass of other
samples, also expressed in kilograms. Results measured in different places,
on other balances, at other times, can be compared meaningfully and
quantitatively.

Method validation in chemistry typically establishes the specificity,
linearity, accuracy, precision, dynamic range, detection limit, quantitation
limit, and robustness of a measurement. In addition to these measurements
of technical performance, good validation also provides evidence that the
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measurement process is stable over some period of time. This information,
taken together, provides the scientist with reasonable expectations about
the quality and reliability of the result. Armed with reasonable expecta-
tions, a result can be interpreted meaningfully and reasonable judgment
can be applied regarding the suitability for intended use.

Quantitative uncertainty estimates are an essential element of a result,
allowing meaningful comparison with other results and providing a quanti-
tative measure of quality. Even when two results are different numerically,
are they truly different? With a numerical estimate of the most likely value
of a result (often the mean of several measurements), accompanied by an
estimate of the range of likely values (often estimated from the standard
deviation of observed values in combination with factors), meaningful
assertion can be made regarding agreement or disagreement of results.

The role that standards play in traceability is obvious: they are used as
the common references to link the quantitative value of measurement
results. A reference might be of grand scope, such as the artifact kilogram
at the BIPM, affectionately called ‘‘Le Gran K,’’ or might be of minor
scope, such as a particular monoclonal antibody used in a home‐brew assay
for a clinically relevant protein in a clinical laboratory. The scope of the
reference dictates the scope of comparison supported by the traceability.
Results can be compared to other results that are traceable to a common
reference. In our example of the monoclonal antibody assay, results
can only be compared to other results determined with that particular
antibody.

If method validation is intended to provide the scientist with reasonable
expectations about the result quality to be expected from the method, then
it is essential that the samples introduced to probe the method be well
trusted, well characterized, and reliable. Standards are usually ideal to use
as the well‐trusted samples, with known values, in method validation.
These standards are often ‘‘Certified Reference Materials,’’ whose proper-
ties of interest have been ‘‘certified’’—having at least one relevant property
whose value in the material has been established as homogeneous, which
has been determined by a procedure that establishes traceability to some
stated reference, with a reported uncertainty at a stated level of confidence.

The uncertainty of a result is typically quantified in pieces. The list of
pieces, usually called an ‘‘uncertainty budget,’’ would include components
arising from the assortment of elements that give rise to variability in the
measurement. There might be elements for uncertainty in volume from
pipetting, uncertainty in quantity of nucleic acid from spectrophotometry,
from variability in RNA integrity, from efficiency of labeling and amplifi-
cation, from performance of the microarray, and from performance of the
microarray scanner. Many of these elements would be quantified during
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method validation, where procedure performance was characterized with
standard samples.
Standards in Traceability, Validation, and Uncertainty for DNA
Microarray Gene Expression Profiles

There were hints in our digression as to how traceability, validation,
and uncertainty might be relevant in DNA microarray measurements.
Certainly, these concepts are already in place, even if not self‐consciously.

Standards and Traceability

For example, traceability is the foundation of a common approach of
microarray analysis, the ‘‘reference design’’ two‐color microarray experi-
ment. In this experiment, the reference RNA used in all arrays is the
‘‘standard’’ to which all results are traceable. By design, the sample RNA
is compared to the reference, which is used in common to permit sample‐
to‐sample comparison. Some laboratories have developed large, multistudy
batches of reference RNA for the organisms/tissues under study, increasing
the scope of traceability beyond a single study to permit comparisons over
time and studies. Similar considerations have led to commercially prepared
reference RNA, which has been developed and widely adopted for com-
monly studied species (human, rat, mouse) (Novoradovskaya et al., 2004).
At the time of this writing, there is as yet no effort to establish such a
multigene reference material as a certified reference material.

Another aspect of traceability (as noted earlier) relates to the practice of
using common units to express quantities. There is a conversation about
establishing a unit for gene expression, hosted by the ‘‘Gene Expression
Units Working Group’’ of the UKMeasurements for Biotechnology (MfB)
program, a programof theUKDepartment of Trade and Industry, hosted by
LGC, Ltd. This working group is exploring the requirements and opportu-
nities to establish a unit to express magnitude of gene expression, tied to the
International System of Units (SI). Expressing quantities in common units
enables comparisons of absolute (as opposed to relative) magnitudes, and
tying the units to the SI relates the quantities to a stable, coherent, and
maintained system. This effort would enablemeasurement comparability by
providing a common means of reporting gene expression magnitude.

Standards and Validation

A series of workshops hosted by the U.S. National Institute of
Standards and Technology (NIST) spawned an ad hoc consortium,
the External RNA Control Consortium (ERCC). This industry‐led,
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NIST‐hosted consortium is dedicated to supporting method validation by
making available a reference set of RNA controls, protocols for their use,
and a statistical analysis tool for data interpretation that can be used across
microarray platforms and quantitative reverse transcriptase polymerase chain
reaction (RT‐PCR) (Baker et al., 2005; Cronin et al., 2004). Ch apt er 4 in this
volume discusses the application of external RNA controls in more depth.
These materials can be used to establish the technical performance of a gene
expressionexperiment, inparticular tohelp respond toa call byFDAscientists
for the demonstration of ‘‘. . .sufficient sensitivity, specificity, reproducibility,
robustness, reliability, accuracy, precision and clinical relevance of the chosen
microarrayplatformapplication’’ to support regulation (Petricoin et al., 2002).

The ERCC standards are intended to be added, or ‘‘spiked‐in’’ to a
sample, and tracked through the measurement process. To distinguish
these RNA molecules from endogenous mRNA from mammalian species
and common model organisms, they are derived from plant, bacterial, and
random antigenomic sequences. The reference set is intended to contain
approximately 100 sequences, to be selected from a larger library of candi-
date sequences, based on their performance in a thorough cross‐platform
testing experiment (ERCC, 2005).

At the time of this writing, these spike‐in control standards will be
unique in that the microarray probe content for the reference sequences
will be widely commercially available upon their introduction. NIST in-
tends to make clones of the sequences for the standards available as a
Standard Reference Material (a certified reference material from NIST).

The stated intent of the ERCC is for these spike‐in controls to be added
to samples immediately after RNA isolation, at the stage of total RNA. For
an array application, the controls would typically be added in a mixed pool,
with different RNAs at different concentrations, permitting a ‘‘dose–
response’’ curve to be measured from the spike‐ins, in each sample. This
application provides method validation and quality measures, focused on
technical performance, by tracking the spike‐ins through the process and
assuring that the measured signals for the spike‐ins are consistent with
expectations. This information does not validate the biological or clinical
inference of the measurement, but can give a ‘‘red light’’ or a ‘‘yellow
light’’ (but not a ‘‘green light’’). The protocols and statistical analysis tool
will be limited to supporting this use.

However, even before their availability, there are a variety of proposals
to use these reference sequences (and standards created from them) to do
finer‐grained validation of the process. Such approaches might use subsets
of the reference set to monitor RNA isolation, mRNA amplification,
monitor microarray target preparation distinctly from target labeling, and
for use in ‘‘normalization’’ of array signals. This finer‐grained validation
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would likely employ reagents specific to particular microarray platforms,
for example, relying on spike‐in transcripts prelabeled with a particular
labeling moiety to validate separately the labeling/target preparation step
from the hybridization step. The scope of the direct ERCC work has been
limited to areas of common interests among the �60 member organiza-
tions, focused on three gene expression platforms: quantitative RT‐PCR
and both one‐ and two‐color microarrays. Thus, ‘‘off‐label’’ validation
applications will likely await release of the reference sequences and inno-
vative development in the marketplace.

Method validation is at the core of a project being led by the U.S.
Food and Drug Administration, the ‘‘microarray quality control’’ (MAQC)
project (Shi, 2005). This public–private–academic project is conducting a
large‐scale array experiment on multiple microarray platforms, at multiple
sites, with two complex RNA samples. The study will be composed of
approximately 1000 microarray hybridizations, as well as several other
gene expression measures, including quantitative RT‐PCR of �1000 genes.
This study may serve to describe a variety of measures of the mRNA
populations of these samples, to present a ‘‘snapshot’’ of gene expression
measurement technology, and to establish a pair of materials useful for
method validation.

One criterion for the selection of the complex RNAs in the MAQC
study was availability of sufficient supply material to establish them as
references over a period of several years. Additional selection criteria
included the goal of having a pair of materials that showed a range of
differential gene expression at a range of concentration. Samples selected
from results of a pilot experiment are both commercially available materi-
als: one manufactured from a composite of human cell lines and the other
extracted from a human brain composite.

These materials are being measured in a titration of ratios of 1:0,
0.75:0.25, 0.25:0.75, and 0:1. A common experiment design is being used
at every participating measurement site, with five technical replicates of
each of the four samples. Measuring mixtures of materials offer an oppor-
tunity to assess linearity of expression measures, one important component
of accuracy.

More important perhaps than the characterization of the materials with
the diverse set of measurement tools in the study may be the availability of
large quantities (anticipated to last for several years) of homogeneous
preparations of the complex RNAs. With sufficient quantities available,
these may be useful reference materials for performance demon-
stration and method validation. An example use of such materials might
be to demonstrate performance equivalence of alternate protocols for
microarray target preparation, permitting a laboratory to modify, refine,
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or optimize their procedures with confidence. This is exactly the sort
of circumstance where method validation can play a role in assuring
measurement quality and integrity.

Standards and Uncertainty

In the analysis of microarray results, a precision‐only estimate of un-
certainty is typically used to select differentially expressed genes—a t test is
used to identify genes that differ between control and test groups with
statistical significance (of course the t test compares the precision with the
difference between the means, but the effect of measurement uncertainty
is based only on the observed precision). This precision‐only estimate is
reasonably appropriate for identifying differential expression between
groups in a study, as it can be reasonably assumed that other elements of
uncertainty are the same among samples and between classes.

In fact, using the observed precision as a measure of uncertainty may
sometimes be a reasonable approximation. An important rule of thumb
when quantifying uncertainty is that components with magnitude smaller
than about one‐third of the largest can safely be ignored. If variability is
dominated strongly by biological variation of the mRNA concentration for
the gene under study, other elements of uncertainty can be neglected.

As microarray gene expression measurement matures, a more com-
plete uncertainty budget will emerge, with elements assessed quantitatively
in the method validation process. The role of standards in quantifying
measurement uncertainty will be determined by their role in method
validation.
Data Exchange Standards

The initial impacts of standards in microarray measurements arose
through the pioneering efforts of the Microarray Gene Expression Data
(MGED) society (Ball et al., 2002, 2004a,b,c). This group has developed a
standard to describe a microarray experiment, the ‘‘minimum amount of
information about a microarray experiment’’ (MIAME). MGED describes
MIAME as the information ‘‘. . .needed to enable the interpretation of the
results of the experiment unambiguously and potentially to reproduce
the experiment.’’ MGED has successfully encouraged adoption of the
MIAME standard through its outreach to the community of scientific jour-
nals, many of which require publication of microarray data along with
meeting MIAME requirements.

The stated focus ofMGEDis ‘‘. . . onestablishing standards formicroarray
data annotation and exchange, facilitating the creation of microarray
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databases and related software implementing these standards, and pro-
moting the sharing of high quality, well annotated data within the life
sciences community.’’ In addition to the development and maintenance of
the MIAME standard, there is significant work ongoing on the ‘‘microarray
and gene expression’’ (MAGE) standard for representation of microarray
expression data itself. Taken together, these standards will broadly facilitate
the exchange of microarray information. Examples of public gene expression
data repositories that exploit the MIAME and MAGE standards are the
Gene Expression Omnibus and ArrayExpress, described in Ch ap te rs 1 9 and
20 of this vo lume, respec tively.

Data exchange is the initial predicate to the ability to mine data from
different microarray studies in meta studies. Ultimately, common units for
gene expression, standards to act as common references for mRNA con-
centration, standards and protocols for method validation, and quantitative
uncertainty estimates will all be needed as infrastructure, in addition to
data exchange, to enable the meta‐study enterprise.
Standards in the Gene Expression Process Model

Examining the generic process model in Fig. 1, one observes that, to a
lesser or greater degree, traceability, method validation, and quantification
of uncertainty are deployed in each process segment.

The Molecular Biology Segment: RNA Isolation, mRNA Amplification,
Target Preparation, and Hybridization

Standards to establish traceability of RNA concentration are not used
in contemporary microarray gene expression measurements. However,
other standards used to establish traceability are ‘‘hidden in plain sight’’
throughout the experiment—used to control the various parameters that
influence results, such as temperature, time, pH, and concentration of
reagents throughout the molecular biology elements of the experiment,
from RNA isolation through hybridization. In particular, for sensitive gene
expression experiments it is vital that conditions be reproduced throughout
a microarray study. This is accomplished by setting parameters on equip-
ment calibrated using traceable standards, whether that calibration is obvi-
ous or not. Calibration of a pHmeter used to adjust buffer pH is an obvious
step, whereas calibration of a spectrophotometer, laboratory timer, or wall
clock is often transparent, although essential. Traceability of the values of
all quantities that influence the measurement assures that those values and
settings can be reported and reproduced.
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These molecular biology steps are routinely validated in microarray
experiments, either directly in a study, when being commissioned in a
laboratory, or through the use of ‘‘kits’’ or procedures validated elsewhere.
The degree of rigor applied to validation varies with the practices and
experience of the laboratory and with the requirements of the study. The
reader is referred to the Eurachem/CITAC guide on validation for a thor-
ough discussion of a variety of concepts and practices used in validation
(Holcombe, 1998).

Only ‘‘intuitive’’ uncertainty estimation is typically practiced for these
molecular biology elements. The development and validation of the pro-
cess have established that, when performed under controlled conditions (as
described earlier), the uncertainty of the overall process is not dominated
by these operations.
Array Content

No standards exist yet for describing microarray probe content. Public
and private genome sequences are well established for model organisms,
and these genomes are the de facto standards against which the oligonucle-
otide probes in common commercial application are designed. These
genomes are also used to assemble a stable reference for gene identifica-
tion and characterization, ‘‘RefSeq,’’ which is the current definitive
reference for gene sequences (Pruitt et al., 2005). When designed in this
manner, one can assert that the probe content is ‘‘traceable’’ to the genome
database.

The quality of the public human genome database meets the target
uncertainty of < 0.01%, fewer than one single base error per 10,000 bases
(Schmutz et al., 2004). This work may serve as validation evidence for the
carefully assembled human genome, but does not serve to validate all
genomes; significant errors can remain in genome assembly and in less
well‐characterized genomes (Salzberg and Yorke, 2005). Sequence poly-
morphism in the organisms under study may vary considerably, although
laboratory studies of model organisms often employ carefully bred strains
with controlled diversity, and human polymorphism is estimated to be
about 1 base in 1000 (Kwok et al., 1996). Additionally, open questions
exist about mapping observed mRNAs to the genome and should be
considered as an as‐yet uncharacterized source of potential confusion
(Furey et al., 2004).

Along with the sequence content, predictive models for the thermody-
namics of hybridization and secondary structure can be considered as
standards for array content. The ‘‘nearest‐neighbor’’ predictive models
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act as de facto standards for estimating microarray probe‐target affinity
and selection of hybridization conditions (Markham and Zuker, 2005;
SantaLucia, 1998). Model‐based predictors of secondary structure are used
to avoid selection of probe sequences that are subject to nonlinear con-
formations (Zuker, 2003). More comprehensive approaches more specific
to microarray probe design have been described that embody elements of
prediction for both hybridization thermodynamics and secondary structure,
as well as estimates of selectivity (Markham and Zuker, 2005; Rouillard
et al., 2003). To the degree that models are consistent and accurate, array
design standardized against them should exhibit smaller variability and
better comparability.

Detection

Detection of hybridized targets is typically done with an optical fluores-
cence measurement. The ‘‘standards’’ used in this process element are
typically of very limited scope—the fluorophor and labeling reagent batches
and the microarray scanner used in a study. Variability in reagents and
fluorophors, and scanner‐to‐scanner variability, pose limitations on the
ability to compare results across studies through traceability. These factors
need not be barriers to validation and uncertainty estimation within a study,
but they present a challenge to more global validation and uncertainty
estimates.

Variability in microarray scanner performance has been reported, most
notably with the setting of detection parameters (photomultiplier tube and
laser exci tation power ) ( Lyng et al ., 2004 ; Shi et al., 2005b). A commerc ially
available artifact with typically used microarray fluorophors spotted in a
concentration gradient has been used to characterize scanners (Zong et al.,
2003). While this artifact has been used in the aforementioned references,
there has been no report of using this artifact for traceable calibration, for
formal validation, or for uncertainty estimation.

Expression Measure Estimation and Biostatistical Analysis

Standards have played an important role in validation of these ultimate
gene expression profile analysis stages. These standards have been of two
sorts: common analysis software/analysis pipelines and reference data sets.

A prominent software/analysis pipeline for microarray data biostatisti-
cal analysis is BioConductor (Gentleman et al., 2004), described in depth in
Chapt er 8 of this volum e. Biocon ductor is an ope n source an d open
development software project for the analysis and comprehension of geno-
mic data based on the open source statistical analysis package, R.
The Bioconductor analysis pipeline has become a de facto standard for
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microarray data analysis and has an active community that provides a lively
and collaborative peer‐review environment for biostatistical algorithm
development and application. A lively email discussion group provides
expert technical and scientific support.

Reference data sets have had a particularly strong impact for the
Affymetrix GeneChip platform, where numerous approaches have been
developed to summarize results from multiple short (25 base oligonucleo-
tide) probes into expression measures for a gene. Affymetrix has made
publicly available several multiarray data sets containing sets of genes
externally added, or ‘‘spiked‐in,’’ to a complex background in a Latin
square experimental design (Liu et al., 2002). These ‘‘Latin square’’ experi-
ments permit performance evaluation and validation through the assess-
ment of observed versus expected gene spike‐in levels. For example, these
data, used as a reference, have spawned an effort to objectively compare
summary expression measure algorithm performance (Cope et al., 2004).
The Future

As microarray technology matures, the role of standards will become
better defined, and standard methods, reference materials, reference
data, and models will take on more explicit roles in traceability, method
validation, and uncertainty estimation. With this maturity and standards
infrastructure, microarray result quality will be more confidently quan-
titatively assessed, and it will be possible to compare meaningfully
results measured in different laboratories, at different times, with different
equipment.
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[6] Scanning Microarrays: Current Methods and
Future Directions

By JERILYN A. TIMLIN
Abstract

The microarray platform is a powerful tool for conducting large‐scale,
high‐throughput gene expression experiments. However, careful attention
to detail throughout the five major steps in the microarray process—design,
printing, hybridization, scanning, and analysis—must be used to ensure
that reliable and accurate conclusions are obtained from data. The act of
scanning the array has received the least attention of all parts of the
microarray process, despite it being a critical quality‐limiting component.
This chapter specifically addresses the effects of scan parameters and
limitations of the scanning technology divided into two categories: instru-
mentation effects (those that arise from the scanning instrumentation
itself) and user‐controller parameters (those that an operator chooses)
for the most common microarray platform—the two‐color cDNA micro-
array printed on a glass substrate. Significant research efforts have gone
into developing microarray analysis techniques, but the field is ripe for
research to characterize the variability and errors introduced by the scan-
ning process itself, the scanner instrumentation, and the user. Implications
of these errors for large‐scale, multiple slide and multiple laboratory ex-
periments are discussed. Wise choices for scanning parameters and consid-
eration of instrument specifics will ultimately increase data reliability and
reduce the need for complex preprocessing mechanisms prior to the ex-
traction of expression information. In addition, emerging technologies such
as surface plasmon imaging, resonance light scattering, and hyperspectral
imaging are presented briefly as promising, complementary techniques to
traditional scanning methods.
Introduction

The microarray platform is a powerful tool for conducting large‐scale,
high‐throughput gene expression experiments. However, careful attention
to detail throughout the five major steps in the microarray process—design,
printing, hybridization, scanning, and analysis—must be used to ensure that
reliable and accurate conclusions are obtained from data. Several excellent
reference books are available that provide thorough coverage of the entire
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
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microar ray process ( Schen a, 1999, 2000, 2003 ). Ideally, the de sign pha se
should begin with a robust statis tical desig n of the experiment and print
layout inclu ding repeat gen es and replicat e arrays with and without dy e
swap ping to permit asses sment of the degree of con fidence in the results
( Hegde et al ., 200 0; Ker r and Churc hill, 2001 ). The pr inting process ha s been
shown to introd uce significan t variabilit y in da ta such as pin ‐ dependen t
artifac ts an d correlat ions, spatial location effe cts, a nd nonuni form sub strate
backgrou nd, as well as contam inating fluoresce nce ( Balazs i et al., 2003;
Brown et al ., 2001; Martinez et al., 20 03; Tseng et al., 2001 ). High ‐ den sity
oligomer arrays (such as Affym etrix GeneC hips) are generally free from
printing arti facts due to their in situ synthes is with photolithog rap hic met h-
ods, but do have uniq ue consi derations surroundi ng cross ‐ hybridizat ion and
probe selection. With all microarrays, the laboratory protocols for RNA
extra ction and DNA hybridizat ion (Neal an d Westwood, 2006; Browst ein,
2006) should be scrut inized thoroughl y to unde rstand and min imize sources
of variation (such as operator, time, and probe availability) and thus
produce the highest quality microarrays. The act of scanning the array has
received the least attention of all parts of the microarray process, despite it
being a critical quality‐limiting component. In contrast, the data analysis
step of the microarray process has been the subject of much research. Many
normalization and analysis methods have been developed, and a variety of
reviews and articles are available to assist the microarray user (Hegde et al.,
2000; Quackenbush, 2001, 2002; Schena, 2003; Schuchhardt et al., 2000; Wu
et al., 2001; Yang et al., 2000). Often the advanced analysis methods reported
in the literature seek to improve array results by compensating for problems
that arise as a result of the scanning process or as a limitation of the scanner
being used. A better understanding of the effects of the sources of variation
within a microarray experiment will ultimately lead to improvements in the
quality of array data and subsequent biological inference. This chapter
specifically addresses the effects of scan parameters and limitations of the
scanning technology. Figure 1 presents the steps in the microarray process
and accents the focus of this chapter.

Scanning a microarray is a fairly simple task to execute, but it involves
selection of a variety of parameters that can have profound effects on
the resulting data. These effects can be divided into two categories: instru-
mentation effects (those that arise from the scanning instrumentation
itself) and user‐controller parameters (those that an operator chooses).
This chapter presents scanning methods for the most common microarray
platform: the two‐color cDNA microarray printed on a glass substrate,
although many of the considerations discussed within are generally appli-
cable to other varieties of microarrays, including high‐density oligomer
arrays and protein arrays.



FIG. 1. Illustration of the microarray process. Experimental design is meant to include

both design of the array and the hybridization experiments.
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Overview of the Scanning Process

For the purposes of this chapter the process of scanning a microarray
begins with a glass substrate that has been prepared with printed or
synthesized DNA probes in known spatial locations. These probes have
previously undergone a hybridization process whereby two different vari-
eties of target DNA, typically labeled with a red and a green fluorescent
dye, have had an opportunity to bind with their complementary probe. The
overall goal of microarray scanning is to produce images that accurately
locate and quantitate the amount of red and green fluorescent molecules on
the microarray as these should correspond closely to the relative amounts
of gene expression in the test and control samples. These images will serve
as inputs into analysis methods for extracting the differences in the patterns
of gene expression between the two varieties of target DNA.

Scanner instrumentation is detailed elsewhere (Schena, 1999, 2003).
There are many commercially available microarray scanners, each differ-
ing slightly in configuration and capabilities, and although only the most
common—the two‐color microarray scanner utilizing photomultiplier tube
(PMT) detection technology—is considered here, many of the points dis-
cussed within this chapter are applicable to other scanner varieties. In the
two‐color microarray scanner with PMTs, the red and green fluorescent
molecules at each spatial pixel of the microarray are excited with indepen-
dent lasers (simultaneously on some instruments and in subsequent scans
on others), and discrete bands of the emitted red and green photons
are passed through optical filters to independent PMTs for detection.
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The detectors and computer transform the photons received into a digital
value and typically a 16‐bit tiff image corresponding to the intensity and
location of each color of fluorescent molecule is created. Table I lists some
of the commercially available microarray scanners and outlines their major
features. It is important to consider that even if all the steps that create a
microarray work without flaw (a rare occurrence, indeed), the process of
scanning an array introduces its own uncertainty onto resulting data. Most
microarray scanner manufacturers and array facilities have scanning pro-
tocols available on the web or in print. While these discuss the details and
nuances of the scanner they are written for and are therefore very useful,
they should not be considered as a substitute for careful considerations of
your particular experiment and desired data. It is critical to make appro-
priate choices based on the experiment at hand to ensure that a minimal
amount of variability is imparted to microarray data from scanning as well
as throughout the entire multistep microarray process.
User‐Controlled Parameters

Array Handling

Microarrays should be handling with gloves at all times throughout the
manufacture and scanning process to minimize the potential for fingerprint
contamination. The oils deposited by fingerprints fluoresce very strongly,
especially in the red channel, and the resulting image will contain small
bright flecks from the tiny pools of oil that severely complicate analysis and
can compromise the resulting spot intensity values. Arrays should be stored
in a sealed, dark environment to minimize collection of dust and potential
dye degradation. It has been shown that ozone may be detrimental to the
Cy5 label used in many microarray hybridizations (AgilentTechnologies,
2004; Fare et al., 2003). In general, microarray slides are not considered
robust over the long term and should be scanned as soon as possible after
hybridization to ensure minimal degradation from ozone, photobleaching,
and chemical interactions. A more detailed discussion of photobleaching
follows in the next section.

When scanning a microarray be sure to consult the microarray scan-
ner’s documentation regarding positioning of the slide and focus control.
Some commercial microarray scanners place the slides in the slide holding
tray hybridization side up, some hybridization side down. Confocal scan-
ners are useful because they reject undesired emissions originating from
above and below the printed spots, creating an image with a less out‐of‐
focus signal (10‐�m depth of field) (Schermer, 1999). However, the confo-
cal nature makes these instruments extremely sensitive to focus position,



TABLE I

COMMERCIALLY AVAILABLE MICROARRAY SCANNERS FOR SCANNING GLASS SLIDE MICROARRAYS
a

Company/scanner Lasers Detector Confocal?

Pixel size

(�m) Scan type: Time

Focus

control?

Autoloader

available?

(# of slides)

Additional filters

available?

Agilent

Technologies

DNA

Microarray

Scanner G2565B

Two‐color format;

532 nm, 633 nm

Two 16‐bit PMTs

(adjustable

1–100%)

Yes 5 or 10 Two‐color simultaneous

data acquisition:

8 min/slide at 10 �m

resolution

Yes (dynamic

adjustment)

Yes (48) No

Applied Precision,

LLC

ArrayWoRx

White light, four‐
color UV to

NIR (filter

selectable)

One 14‐bit
cooled CCD

camera

No 3.25–26 One‐color sequential data
acquisition: 5–7 min for

a two‐color slide at

10 �m resolution

Yes Yes (25) Yes (up to 8)

Biomedical

Photometrics,

Inc. DNAscope

LM

Two‐color format;

532 and 635 nm

(488 nm also

available)

One 16‐bit PMT

(adjustable)

Yes 2, 5, 10,

20, 30

One‐color sequential
data acquisition:

�7 min/slide/channel

at 10 �m resolution

Yes No Yes (up to 10)

Biomedical

Photometrics,

Inc. DNAscopeV

Two‐color format;

532 and 635 nm

(three

additional

available)

Two 16‐bit PMTs

(adjustable)

Yes 2, 5, 10,

20, 30

Two‐color simultaneous

data acquisition:

4 min/slide/channel

at 10 �m resolution

Yes (dynamic

adjustment)

No Yes (up to 10)

Genomic Solutions

Gene TAC UC4

Two‐color format;

532 and 635 nm

One 16‐bit PMT

(adjustable)

Partial (dark

field)

1–100

(5 for

entire

slide)

One‐color sequential
data acquisition:

�5 min/slide/channel

at 10 �m resolution

No Yes (4) Yes (up to 3)

Genetix aQuire Two‐color format;

532 and 639 nm

(488 nm also

available)

Two 16‐bit PMTs

(adjustable)

Yes 5, 10, 20, 30 Two‐color simultaneous

data acquisition:

6.5 min/slide at

10 �m resolution

Yes (1‐�m
steps)

No Yes (up to 6)

(continued)



TABLE I (continued)

Company/scanner Lasers Detector Confocal?

Pixel size

(�m) Scan type: Time

Focus

control?

Autoloader

available?

(# of slides)

Additional filters

available?

Molecular Devices

GenePix 4000B

Two‐color format;

532 and 635 nm

Two 16‐bit PMTs

(adjustable)

No 5, 10, 20,

40, 60,

80, 100

Two‐color simultaneous

data acquisition:

6.5 min/slide at

10 �m resolution

Yes (1‐�m
steps)

No No

Molecular Devices

GenePix

Professional

4200 and 4200 A

Up to four; 488,

532, 594, and

635 nm

One 16‐bit PMT

(adjustable)

No 5, 10, 20,

40, 60,

80, 100

One‐color sequential data
acquisition: 4 min/slide/

channel at 10 �m

resolution

Yes (1‐�m
steps)

Yes (36) Yes (up to 16)

Perkin Elmer

ProScan Array

and ProScan

Array HT

Up to four; 488,

543, 594, and

633 nm

One 16‐bit PMT

(adjustable)

No 5, 10, 20,

30, 50

One‐color sequential data
acquisition: 5 min/slide/

channel at 10 �m

resolution

Yes Yes (20) Yes (up to 11)

Perkin Elmer Scan

Array Gx

Two‐color format;

543 and 633 nm

One 16‐bit PMT

(adjustable)

No 5, 10, 20,

30, 50

One‐color sequential data
acquisition: 5 min/slide/

channel at 10 �m

resolution

Yes No No

Tecan Group, Ltd.

LSReloaded

Up to four; 488,

532, 594, and

633 nm

One or two

16‐bit PMT

(adjustable)

No (depth of

focus is

selectable)

4, 6, 10,

20, 40

Two‐color simultaneous

data acquisition: 4 min/

slide at 10 �m

resolution

Yes Yes (4) Yes (up to 28)

aAll the scanners included report sensitivities for Cy3 and Cy5 at or better than 0.1 chormophores/�m2. This table is believed to be an accurate

representation of the most common microarray scanners at the time of this writing and is not necessarily all inclusive. Because scanner

instrumentation and features are changed frequently to keep up with progressions in the field, the reader is urged to contact the companies directly

for up‐to‐date information and available models. Many of the manufacturers are willing to provide custom solutions, such as filters or scanning

resolutions, to meet specific application needs.
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and if a slide is not placed in the appropriate focal plane of a confocal scanner
or if the software is not configured correctly to find the best focus, most of the
true signal can be rejected, leading to very weak signal and poor scanner
performance. Variations in slide thickness can significantly affect results in
experiments involving multiple slides, but even slight variations in substrate
thickness over the length of a single slide can have a large effect on the
resulting image intensities with a confocal microarray scanner. Nonconfocal
scanners, also known as wide‐fieldmicroarray scanners, do not have the same
sensitivity to focus position (�60‐�m depth of field), but often have higher
degrees of signal contamination from glass substrate fluorescence and dust.
Spatial Resolution, Signal Averaging, and Pixel Dwell Time

The spatial resolution or pixel size of a scanner, the degree of signal
averaging via multiple scans, and pixel dwell time all work in concert with
the laser power and PMT voltage setting to determine the amplitude of the
signal collected in each pixel. The term ‘‘signal averaging’’ has been used in
the microarray literature to refer to more than one type of signal averaging,
such as results from averaging replicate spots printed multiple times within
an array and/or over multiple arrays and from using bootstrapping methods
to increase the reliability of expression values. The signal averaging of
interest to the scanning of microarrays arises from performing multiple
scans of an area on the array and averaging the results (also referred to as
line averaging). Increasing the pixel size or dwelling longer on each pixel
can increase the number of number of photons collected and averaging
over multiple scans can decrease the uncertainty in the measurement, but
these come at the expense of increased time to scan a slide and potential
for damage via photobleaching. Dye photobleaching is reported in the
literature from many laboratories, has been observed to range from 1 to
20%, and varies depending on the incident laser flux and exposure levels
with the Cy5 molecules photobleaching easier than the Cy3 molecules
(Malicka et al., 2002; Nguyen et al., 2002). A complete discussion of the
photobleaching process can be found in Schena (2003). The photobleach-
ing effect appears to be extremely variable on microarrays; while many
laboratories report high levels of photobleaching, in some of our own
studies we have scanned slides multiple times with only small amounts of
sample damage. It is advisable for any microarray user to minimize the
number of scans performed on a microarray; if an experimental study will
require multiple scans the array stability issues should be assessed before
the experiment is underway.

Spatial resolution is a critical setting for many microarray experiments.
Microarray scanners for glass substrate microarrays are typically available
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with spatial resolutions ranging from 5 to 50 �m, with most scanners offering
selectable resolutions within that range. Some instruments even offer 1 or
2 �m, such as theDNAScope scanner (GeneFocus/Biomedical Photometrics,
Inc.). In principle, the 10‐�m spatial resolution of most scanners should be
more than sufficient to resolve the typical microarray features (�80–150 �m
in diameter), but in practice higher spatial resolutions are often deemed
necessary in order to facilitate feature location, background subtraction and
normalization, and remove effects of dust, spot abnormalities, and array
imperfections. In addition, as array printing and synthesis technology ad-
vances,microarray features sizes are getting smaller and smaller, approaching
the limits of scanner resolutions. Highly developed imaging technology offer-
ing spatial resolutions at the diffraction limit already exists for optical mi-
croscopy and related fields, but to accommodate higher spatial resolution
configurations in microarray scanners, additional developments would be
necessary to avoid sacrificing speed of acquisition, handle the much larger
file sizes, and analyze the higher fidelity images.
PMT and Laser Settings

In modern scanners, often both the PMT voltage and the laser power
are adjustable via software menus. Each manufacturer differs in implemen-
tation and adjustments may scale linearly or nonlinearly with the software
controls. Thus, instrument documentation should be read thoroughly be-
fore adjusting the settings. Both of these settings have the same effect—an
increase or decrease in the fluorescence emission intensity observed—but
the trade‐offs are very different. A laser power that is too high can affect
sample integrity (see earlier discussion of photobleaching), whereas a PMT
setting that is too high can introduce nonlinearities and additional noise.
Ultimately the real information provided by a scanner is limited by the bit
depth of the scanner’s detector. Saturated image pixels occur if settings for
laser power or PMT voltage are set such that the real signal is greater than
the bit depth (4096 counts for a 12‐bit scanner; 65,535 counts for a 16‐bit
scanner). These saturated pixels are unusable and should be excluded from
any subsequent analysis. While an occasional saturated pixel may occur
from the presence of dust or impurity and most likely does not skew the
analysis, routine inclusion of data that are not within the dynamic range of
the scanner will lead to erroneous data and should be avoided. The dynam-
ic range of the scanner should be considered thoroughly when choosing an
instrument.

There are many schools of thought when it comes to PMT settings and
the right answer is often experiment dependent. The most common scan-
ning practice is to perform a preview scan (using lower spatial resolution
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and laser power) and use that image to select PMT voltages for the red and
green channels that balance the intensities in the two channels while mini-
mizing the number of saturated pixels. This practice developed from the
assumption that the preponderance of the genes on a typical microarray is
not expressed differentially and therefore the majority of the pixel signals
should be about equal in the two channels. While this can be appropriate in
some instances, there are many microarray experiments that will not follow
this assumption, such as microarrays that are measuring yeast genes exiting
the quiescent state. Arrays from an experiment of this type often have high
numbers of genes that are expressed differentially.

In addition, one often performs large microarray studies involving more
than one microarray slide and each slide can have a dynamic range of six
orders of magnitude or more. Therefore, it can be helpful to scan each array
twice to capture both the high‐ and the low‐intensity information. Dudley
and co‐workers (2002) have reported success using this strategy to extend
the dynamic range of the array experiment. Lyng and co‐workers (2004)
have also proposed a dual‐scan strategy as a way to improve data reliability
by ensuring that the spot values acquired are contained within the usable
range of the scanning system (the range in which the expression ratios
were independent of PMT voltages). In their work this range was between
200 and 50,000 counts for two different scanner manufacturers. Arrays are
scanned once, ensuring that no pixels are saturated, and then again at a
higher PMT voltage to permit the lower intensity values to be recorded
accurately. A calibration factor is calculated from a subset of the middle
intensity spot values on the two images and the saturated pixel values are
corrected.

We have noted that it is typical protocol (suggested in most scanner
manufacturer documentation) to adjust the PMT voltage settings for each
channel for every slide in a study involving multiple slides for comparison.
This serves to maximize the usable dynamic range of each slide, but it also
introduces the requirement for normalization techniques that operate
without flaw to ‘‘rescale’’ data on each slide to a common basis set. In an
example study from our group, yeast microarrays were prepared to assess
the effect within and across cultures. Results of this study determined
that by using the same PMT voltage settings to scan every slide, the need
for normalization of data was virtually eliminated as shown by the much
lower standard deviations of the parameter estimates from our measure-
ment model shown in Fig. 2. Given the complexities and problems often
associated with data normalization, it is almost always beneficial to main-
tain PMT settings throughout the course of a multiple slide experiment,
unless extremely large variations in dynamic range are anticipated, forcing
one to adjust PMT settings to minimize the degree of pixel saturation.



FIG. 2. Description of microarray experiment measurement model and results for array

scanned with PMT settings optimized for each array and with the PMT setting held constant

for all arrays.
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Avoiding on‐the‐fly balancing of PMT channels may very well reduce the
need for many of the complex and risky normalization procedures com-
monly applied to microarray data, providing more accurate and reliable
results.

Image Display Characteristics

It is important to understand the particulars of your scanner software
display and how they affect what a user sees on the computer monitor.
Typical microarray images are 16‐bit data (see discussion in previous sub-
section regarding data depth and dynamic range limitations), but they are
represented in the software as 8‐bit images through the use of either
compression or reduction techniques. The process whereby these 8‐bit
images are generated can alter the image dramatically and a user should
be aware of this effect, especially because the displayed image is often used
to select subsequent scan parameters, such as PMT or laser settings. In
some scanner software this setting is user configurable. Sixteen‐bit images
can be compressed to 8‐bit images, which retain the range of pixel values,
but all of the data are scaled accordingly. This compression can produce
poor results with the high dynamic range of microarray data, depending on
the nature of the scaling. Image reduction techniques offer an alternative to
compression, but do not display the full range of intensities. The three
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common practices of image reduction employed in microarray scanning
software are to preserve the brightest intensities, dropping the lowest 8‐bits
of data for display purposes; preserve the weakest intensities, dropping the
highest 8 bits of data; and preserve the middle intensities by dropping
the top 4 and bottom 4 bits of data. Real 16‐bit data are used in microarray
data analysis calculations so image compression or reduction does not
affect the final resulting expression values. They only affect the image as
viewed on the computer monitor, which can lead to erroneous conclusions
by the user if the user is unaware of the effect.
Instrumentation/Hardware Effects

Several key components of microarray scanning instrumentation and
software have the potential to introduce additional variability to microarray
data. Two most notable errors are signal contamination and scanner bias.
Additional errors can be imparted to data via image misalignment and
scanner geometry effects, but these are generally small with modern instru-
ments and are not presented in detail here. Most commercial software can
maintain adequate alignment tolerances of � 1 pixel between images, and
scanning and random geometry errors are observed at level far below� 2%.
Several scanners have calibration slides for calibrating spatial resolution and
red/green channel output characteristics. In addition, third party slides are
available commercially for calibrating sensitivity to red and green dyes.
Calibration slides should be run at regular intervals as per manufacturers’
instructions to calibrate the instrument and monitor instrument functionali-
ty as alignment and geometry errors can compromise data significantly if
the tolerances stated earlier are not met. In addition, calibration slides can
be used to PMT settings for experimental runs if the calibration slide covers
a dynamic range similar to the experiment planned. This is particularly
attractive because it eliminates the need for risky adjustment of PMT
voltages during the experiment (see earlier discussion).
Signal Contamination

Signal contamination can be broadly defined as the inclusion of intensity
in an image pixel that does not arise from fluorescence of the analyte of
interest. The signal recorded in amicroarray image pixel using commercially
available filter‐based scanning technology is generally superposition of the
signal from the fluorescent dye of interest, signal from other fluorescent
species emitting in the same spectral band pass, and noise (electronic and
statistical). A thorough discussion of noise can be found in many analytical
instrumentation textbooks, as well as in Schena (2003), and is not repeated
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here. With microarrays the extraneous signal due to electronic or statistical
noise is often small compared to the signal from other fluorescent species.
Common sources of spectral signal contamination are the glass substrate,
dust particles, and spectral cross talk from the other fluorescent labels in
multicolor experiments. The glass substrate contributes a uniform spatial
signal across the surface of the slide and therefore can be compensated for
by local or global background subtraction methods. Typically, dust particles
affect a small area (one to two pixels), but their effects on the resulting
microarray spot ratios cannot be ignored (Minor, 2006). Options for remov-
ing the effect of dust from data include thresholding methods and outlier
detection methods or the use of median values rather than mean values.
(Median values are generally more robust to multiple effects seen in micro-
arrays, including errors in representing the spot shape or diameter.) Dust on
the backside of the slide can be burdensome when using a nonconfocal
scanner and it is recommended that the slide be handled appropriately to
minimize these artifacts. Gentle cleaning of the backside of the slide can be
done if needed.

Spectral cross talk can also occur from unknown interferents or from
additional labels used in multicolor experiments. Unlike the glass back-
ground and dust, spectral cross talk is often a spot‐specific effect and thus is
more difficult to isolate. In most experiments, dyes with well‐separated
excitation and emission spectra are used, and microarray scanners utilize
filters that ensure that the spectral cross talk from other dyes used in the
microarray experiment is small, but never absent. Figure 3 shows emission
spectra of commonly used microarray dyes Cy3 and Cy5 with typical filter
transmission spectra overlaid. Although these filters are representative of
the filters in common microarray instruments and can give an idea of the
degree of cross talk expected between these two dyes, it should be noted
that some popular scanners employ long‐pass filters instead of band‐pass
filters. While a long‐pass filter potentially collects more photons because it
passes all the photons of a longer wavelength than the cut‐on wavelength,
this type of filter inherently increases the degree of spectral cross talk and
may not be worth the trade‐off. Even with the highest quality filter, spectral
cross talk will be observed at some level in multicolor experiments from the
dyes used, and the degree of cross talk inherently increases with the
number of colors used. An excellent (and relevant) description of spectral
cross talk in confocal microscopy can be found at http://www.olympusfluo-
view.com /theo ry/bleedt hrough.h tml. Correct ion for spect ral cross tal k is
not performed regularly; however, the effect could be modeled easily at a
basic level, as spectra of the dyes used are known and the instrument
response per channel can be determined. Wang and co‐workers (2004)
have described the effect in detail for two‐color microarrays and presented

http://www.olympusfluoview.com/theory/bleedthrough.html
http://www.olympusfluoview.com/theory/bleedthrough.html


FIG. 3. Emission spectra of Cy3 and Cy5 labels overlaid with typical filter transmission

spectra for these dyes to illustrate spectral overlap and cross talk. Filter spectra shown are for

the Cy3 emission filter HQ610_75 (Chroma Technology Corp) and for the Cy5 emission filter

HQ700_75 (Chroma Technology Corp.) and are representative of the filters employed

commonly in some commercial microarray scanners.
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a correction strategy. Their microarray scanner exhibited cross talk ratios
of 1.25 and 1.51 % for the green and red channels, respectfully, when Cy3
and Cy5 were used. The consequence of cross talk at these levels is a
limited range of ratios (100 to 0.01) if no correction is performed.

In recent literature spot‐specific signal contamination has also been
reported in the green channel that was neither the dye of interest nor an
additional dye (Martinez et al., 2003; Timlin et al., 2005). The presence of this
contaminant, most likely from the buffer solutions used during printing, was
particularly detrimental because it was spot specific, variable, and persisted
to varying degrees posthybridization. Prescanning the arraywill identify, but
not correct, the problem. Resulting green intensity values were extremely
skewed, and there is evidence in that report as well as in archived data sets
that this is a widespread problem with microarrays. The presence of this or
any other spot‐specific, variable contaminantmay be responsible for the lack
of reproducibility of dye‐flip experiments at low intensities and for the need
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for inte nsity ‐ depen dent nor malizatio n pro cedures . Hyper spect ral scan-
ning is the only way current ly to identif y and co rrect for contam inants
of this kind. Hyperspect ral scanni ng technol ogy is discussed in more
detail later.

Additio nally, signal contamina tion can occur from the analyte of interest
when it binds nons pecifically to either a pro be that is not a pe rfect mat ch or
outsid e the printed DNA spot. The us e of negative con trols can somet imes
indicate the relati ve levels of nonspeci fic bindi ng of the targe t sequen ces to
printe d prob e, but this doe s not provide qua ntitative infor mation. High or
variab le background levels are gen erally good indicator s of a serious pr ob-
lem with nonspeci fic bindi ng to the glass substr ate. If this is present it is
impo rtant (1) that the resulti ng microar ray spot data not be background
subtra cted, as the backgroun d levels are not ne cessarily a meas ure of the
backgrou nd signa l unde r the printed spot and will only serve to ad d addi-
tiona l variance to data ( Scharpf et al ., 2004 ), an d (2) that the hybridizat ion
protocol be optim ized to minimiz e the nonsp ecific bindi ng.

Scann er Bias

It has been prop osed that many parts of the entire microar ray process
could intro duce bias in one chann el or the other of a two ‐ color scanner .
The relative rates of dy e incorp oration are known to be different ( t Hoen
et al., 2003 ), and the red label typi cally degrad es faster than the green label
( Malicka et al ., 2002 ). The presenc e of signa l contam ination in one channel ,
such as the sp ot‐ speci fic green contamina nt noted earl ier, is ano ther exam-
ple leading to bias in the resultin g values. Bias in one of the cha nnels (from
any source contaminant, instrumentation, etc.) could be responsible for the
nonlinearities or intensity‐dependent effect in the log ratios of gene expres-
sion data. It has been shown that the scanning instrumentation itself and
image analysis software could contribute bias to a microarray experiment
( Bengtsson et al., 2004 ). Bengs ston et al . (2004) used mul tiple PMT gain
settings to confirm the presence of a small but noteworthy bias that varies
slightly between arrays and between scanners that appears to be originat-
ing from the detector hardware. They proposed a scanning protocol con-
sisting of multiple scans at varying PMT settings and subsequent data
calibration with a method based on a constrained affine model to minimize
the effect on the expression ratios. At first glance, bias may appear to affect
the weakest intensity spots most severely and thus one may be tempted to
simply set a higher minimum threshold for the analysis. However, bias can
propagate much further, as many normalization protocols rely on ratios
skewed by the bias to compute normalization factors.
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Alternative Scanning Technologies Provide Advantages

Research has presented alternative technologies that possess unique
advantages to the traditional laser excitation, filter‐based microarray scan-
ner platform. Two of these, resonance light scattering (RLS) and surface
plasmon resonance (SPR), are nonfluorescence‐based, optical imaging tech-
niques. Because they do not monitor fluorescence, the disadvantages of
organic fluorophores, such as lack of photostability, spectral cross talk, and
differential incorporation, are eliminated. However, each of these techni-
ques does require its own microarray manufacturing and processing tech-
nologies and its own dedicated imaging system. SPR is an optical imaging
technique in which the signal derived from monitoring changes in the local
refractive index when a biomolecule is adsorbed onto a metallic surface,
typically gold. Research has shown SPR to be sensitive and applicable to
probing in situ and ex situ interactions between biomolecules (DNA�DNA,
DNA�RNA, DNA�protein, and protein�protein) in real time. In addi-
tion, the surface analytical technique SPR has the potential for revealing the
kinetics of biomolecular interactions, although nonspecific binding may be
problematic. SPR has been covered in detail (Nelson et al., 2001), and the
applications of SPR to protein arrays have been reviewed elsewhere (Cutler,
2003; Gloekler and Angenendt, 2003).

RLS is also an optical imaging technique capitalizing on the ability of
small metallic particles such as gold and silver to generate intense mono-
chromatic light when illuminated with white light. The wavelength of the
resulting monochromatic light can be controlled by controlling the diame-
ter and composition of the metallic particles, thus permitting the manufac-
ture of a series of metallic tags that can be used to identify different targets
similar to their organic fluorophores counterparts. Commercial RLS‐based
scanning systems are available from Genicon Sciences (San Diego, CA)
and it has been shown to be a very sensitive detection platform for bacterial
pathogen detection (Francois et al., 2003). It is clear that RLS can provide
ultrasensitive detection for a variety of analytical‐sensing applications.

Unlike RLS and SPR, hyperspectral scanning (HSS) is based on fluores-
cence emission. HSS has several advantages over traditional microarray
scanning methods, which are univariate, filter‐based techniques employing
optical filters that pass a discrete band of photons to a single‐point detector.
A hyperspectral scanner collects an entire fluorescence emission spectrum
for each image pixel. When coupled with multivariate data extraction tech-
niques (Kotula et al., 2003), HSS allows fluorescent species to be identified
and quantified on the basis of spectral shape. This feature permits isola-
tion of the fluorescent signal from the analyte of interest and fluorescent
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contaminants and background emissions and can potentially increase the
number of microarray experimental conditions that can be compared on a
single substrate with the use ofmultiple, spectrally overlapped fluorophores.
A complete description of hyperspectral imaging and its benefits can be
found elsewhere (Kotula et al., 2003;Michalet et al., 2003; Schultz et al., 2001;
Zimmerman et al., 2003). HSS for microarrays was first published in 2001
(Schultz et al., 2001), and recent literature has presented the characteriza-
tion of a HSS system optimized for scanning glass substrate microarrays
(Sinclair et al., 2004) and the application of that system to extract the
underlying emission spectra of extraneous fluorescent species from glass
microarrays (Timlin et al., 2005). The HSS method leads to more accurate
data because the signal monitored is solely from the analyte of interest and
does not include contributions from extraneous fluorescent species, making
HSS an indispensable tool for diagnosing problems with microarrays and
improving microarray quality control. The multivariate analysis employed
FIG. 4. Results of hyperspectral scanning and multivariate analysis of a microarray slide

with a spot‐specific green channel contaminant. (A) Four pure component spectra (Cy3, Cy5,

glass, green channel contaminant) extracted from the multivariate analysis. (B) Independent

component concentration maps (images) corresponding to each extracted spectral species

shown in A. (C) Calculated percentage error in Cy5/Cy3 ratio of commercial scanner data

resulting from the presence of the green channel contaminant that is confounded in the green

channel of the commercial scanner. (Percentage error is calculated by dividing the R/G ratio

from the commercial scan by the Cy5/Cy3 ratio calculated from hyperspectral imaging data.)

Spots are �200 �m in diameter.
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can operate with little or no a priori knowledge, a necessity for extracting
contaminating fluorescent species and improving the accuracy and reliabili-
ty of microarrays for bioresearch. As demonstrated in Fig. 4, HSS has been
utilized to identify and correct for the presence of a contaminant in the green
channel of commercial scanners, which skewed themicroarray ratios of 75%
of the spots scanned by more than a factor of 2 for this array (Martinez et al.,
2003). This result was confirmed with slides from multiple manufacturers
and preparation protocols, and the levels of contaminant detected varied
from less than 1% of the total spot intensity to 40% or greater in some spots.

Developments of new dyes that span the visible spectrum (Shaner et al.,
2004) and bio‐conjugated quantum dots (Jovin, 2003) have fueled interest
in hyperspectral imaging for cells and tissue and also have potential appli-
cation for hyperspectral microarray scanning, as these new labels have
emission and excitation properties that are extremely well suited to hyper-
spectral imaging. In theory the number of dyes that can be identified and
imaged quantitatively with HSS is limited by spectral resolution and the
spectral and spatial variation of the sample. In practice this is typically
between 10 and 20 labels for the HSS system presented by Sinclair et al.
(2004), depending on the sample. Ultimately for microarray experiments
the upper limitation is mostly likely lower (3–6) and set by the biology and
chemistry used to hybridize this many labeled strands efficiently. This area
has not been explored adequately.
Specific Considerations for Multiple Slide, Multiple Scanner,
and/or Multiple Laboratory Experiments

As microarray technology gains popularity there are increasing needs
for large‐scale projects that span multiple slides and multiple laboratories.
Unfortunately, slide‐to‐slide variation and nonbiological variance often
make even interlaboratory microarray results difficult to reproduce and
assert statistical confidence. This lack of reproducibility can hamper the
utility of microarrays and mask the true biological relationships sought
from the experiment. In our own research we have conducted a study to
understand the measurement capability of a two‐color microarray scanner.
This experiment allowed us to understand the levels of signals that we can
measure accurately given our equipment and protocols at hand and pro-
vides information on operator effects, drift of the instrument, the stability
of the hybridized chips (with respect to laser excitation), and, to some
extent, reproducibility of the hybridization process. A statistical study of
this type would be encouraged before any large‐scale experiment was
undertaken so that sources of variation can be identified and minimized.
Large‐scale, cross platform validation studies have begun to address these
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issues of laboratory‐to‐laboratory variation and platform‐specific differ-
ences (Irizarry et al., 2005; Larkin et al., 2005). It is anticipated that this
will be an area of active research in the coming years as data accumulate in
public databases (Barrett and Edgar, 2006; Brazma et al., 2006).
Conclusions

Although the act of scanning a microarray slide is often an overlooked
part of the microarray process, incorrect or inappropriate scan settings can
have profound effects on resulting data. Care should be taken to fully
understand the effect of each of the critical parameters (both instrumental
and user‐selectable) on microarray data rather than simply following a
protocol developed for a previous experiment. Significant research efforts
have gone into developing analysis techniques, but the field is ripe for
research to characterize the variability and errors introduced by the scan-
ning process itself, the scanner instrumentation, and the user, especially for
large multiple slide experiments. Improvements in this area will ultimately
increase data reliability and reduce the need for complex preprocessing
mechanisms prior to the extraction of expression information. Emerging
technologies such as surface plasmon imaging and hyperspectral imaging
offer unique capabilities and have promise as complementary techniques to
traditional scanning.
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Software Environment

By CARL TROEIN, JOHAN VALLON‐CHRISTERSSON, and LAO H. SAAL
Abstract

BioArray Software Environment (BASE) is a web‐based software pac-
kage for storing, searching, and analyzing locally generated microarray data
and information surrounding microarray production. The workflow begins
in samplemanagement and, optionally, microtiter plate tracking and ends in
visualization and analysis of entire experiments. The relative ease with
which new analysis plug‐ins can be added has given rise to a plethora of
third‐party tools, and the licensing terms (GNU GPL) encourage local
modifications of the software. This introduction to BASE describes the
basics of working with the software, both in general and in more detail for
the various parts. It also provides some hints about more advanced usage
and a section on what is needed to set up your own BASE server. The
information is current as of BASE version 1.2.17b, which was released on
November 6, 2005.

Introduction

With the advent of the microarray technique in the late 20th century,
‘‘high throughput’’ and gene expression profiling became buzzwords of the
day. For microarrays to realize their potential, it is not only necessary to
hybridize samples of interest to these small chips, but also to handle resul-
ting data in a scientifically sound way. The first step in that process is
tracking the actions taken in the laboratory, a mundane task for small
experiments but markedly less so when hundreds of samples and tens of
thousands of genes are involved. With that step taken, data derived from
the actual microarray can be analyzed in a meaningful context. Dedicated
software is needed for these tasks, and over the years a number of different
software packages have appeared, created for tackling different aspects or
flavors of microarray data management and analysis. As the motivation of
the developers varies, so does the focus of the software and (maybe even
more so) the licensing terms.

Some commercial, proprietary programs are produced by manufacturers
of hardware, such as print robots and scanners, as their customers naturally
need software to interact with these machines. Considering the cost of
performingmicroarray experiments and the crucial role of datamanagement,
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
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it is quite reasonable to spend money on getting good software so it is not
surprising that other commercial software also exists. However, many of the
people involved in microarray analysis come from backgrounds in statistics,
computer science, or physics, where making your own computer programs is
common. Because of this, a range of free/open source software is also avail-
able, and three of the more popular systems, including BioArray Software
Environment (BASE), have been reviewed elsewhere (Dudoit et al., 2003).

BASE ( Saal et al. , 2002 ) is a system aim ed at trac king an d analyz ing
informat ion all the way from the pro duction of mi croarrays and ha ndling of
biolo gical sampl es through hy bridizat ion, spot finding, and normal ization,
down to the v isualization of ana lysis resul ts. The so ftware arose from
a collaborat ion be tween experiment alists who manufactur e their own
spott ed cDN A arrays and theoret icians who write custom analys is pro-
gram s. Becau se of this , particul ar focus is given to microar ray pr oduction ,
with track ing of mi crotiter plat es and indi vidual microar ray slides, and to
data analysis , with a plug ‐ in interface wher eby new analys is tools can be
added readi ly. The user inte rface of BASE is enti rely web based, not tyin g
the users to a ny particul ar ope rating syst em. Ther e are some req uirement s
on the server side, as disc ussed lat er.

Since its release in 2002, BASE has attracted a large number of users, and
through the project’s mailing list many of these users are now providing new
users with support when needed. The software is released under the GNU
General Public License (FSF, 1991), which has encouraged some users to
make modifications and share these with the community. In addition, there
are many user‐contributed analysis plug‐ins, including frameworks for apply-
ing functions in the statistical language R (R Development Core Team,
2005), including the vast Bioconductor project (see Chapter 8 in volume
410 by La us te d et al., 2006) to data stored in BASE. These efforts have made
B A S E u s e f u l t o m a n y r es e a rc h e rs , a s d em on st ra te d b y t he u s e o f t he s y s te m
in many published reports, such as Andersson et al. (2005), Bjö rkbacka
et al. (2004), Carmel et al. (2004), Eckhardt et al. (2005), Jönsson et al.
(2005), Lyng et al. (2004), Rhee et al. (2005), Sollier et al. (2004), Sturme
et al. (2005), and Wang et al. (2004).
Getting Started

Demonstration of BASE

Before committing to downloading and installing BASE, let alone ac-
tually using it, you may want to try it out. For this purpose, a demo server
exists where anyone can get an account. The BASE project web site can be
found at http:// base.the p.lu.se /. There, in the menu to the left, yo u will
find a link to ‘‘Demo BASE.’’ At the main welcome page of the demo

http://base.thep.lu.se/
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installation you should find instructions regarding whom to contact to
obtain an account.

Requirements

BASE can be used from virtually any computer running a web browser
of your choice, be it Mozilla Firefox, MS Internet Explorer, or something
else, but on the server side it requires a Unix‐like operating system. The
most common choice is without doubt some flavor of Linux, but systems
such as Solaris and Mac OS X are also known to work.

Effort has gone into making installation and administration of BASE as
easy as possible, but both tasks can still be fairly complex. Setting up a
BASE server without any ‘‘advanced’’ configuration changes, however, is
something that most laboratories seem to accomplish with little or no help.
The basic requirement is to have someone who can manage the server, that
is, a person with the skills to set up a Linux box and keep it running. As a
way of avoiding duplication of costs and labor and to facilitate the
exchange of data, multiple groups (comprising hundreds of users) may well
share a single instance of BASE.

Hardware‐wise, BASE is not particularly demanding, but the amount of
data associated with microarray experimentation should not be underesti-
mated. A data file from a single array slide can weigh in at tens ofmegabytes,
and in the course of data analysis this may be increased manifold. Having a
dedicated server for BASE is convenient, although not strictly necessary.
The question of what type of computer to use has no definite answer, but
depends on how the system will be used. It is quite feasible for a small
laboratory with a handful of users to set up BASE on a single run‐of‐the‐mill
PC. Data analysis tasks can be distributed to additional machines, should
the need arise.

As an example of what a larger facility may need, the setup at Lund
University currently consists of seven computers, serving some 150 users,
10–15 of whom are typically logged in at any given moment. The database
contains over 6000 microarray slides, with an average of roughly 50,000
spots each. Two of the computers are dual‐CPU servers with one or two
gigabytes of RAM and about a terabyte of hard drive space, and the other
five are inexpensive PCs used for running various analysis plug‐ins. The
hardware is of varying age, but a comparable new system would carry a
price tag of approximately $15,000 to $20,000.

Installing BASE

The first step in installing BASE is to visit the project’s web site, http://
base.thep.lu.se/, where in addition to a tar/gzip archive with the current
version of BASE you will find the installation documentation. This is a

http://base.thep.lu.se/
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fairly lengthy piece of text, which pro vides a detai led descri ption of what
softwar e packa ges are requir ed (all are free/ open source), how to confi gure
them , how to install and configure BASE itself , and so fort h. We highl y
recom mend that before installi ng you read through the whole document , as
it covers most sources of install ‐ time problems as well as so me issues that
might not surface until later.

The single most important piece of infor mation on the BA SE web site
concerns how to join the BA SE mailing list. Subs cribers to this mailing list
includ e the develope rs an d a larg e number of users who betwee n them
have buil t a sub stantial pool of knowl edge, particul arly concerni ng instal-
lation problem s and the like. Al l question s rela ted to BASE are welcom e
on the mai ling list, and it is also wher e new releases an d other events are
usually ann ounced first.

The Basics of BASE

Once BASE has been successfully installed on a server, pointing your
web browser to http://your.base.server/ should bring up a page with a
purple logo, much lik e the one sho wn in Fig. 1. In add ition, there sho uld
be input boxes for login and password. If you have just installed BASE, you
should log in as ‘‘root’’ with no password. Otherwise we assume that you
have been given this information by the administrator, and that you are
able to log in.

BASE has a simplistic user interface, where most things are done in a
single window. This window is split into two frames, where the left frame
houses a menu and some general information. Much of the web interface
FIG. 1. The BASE login screen.

http://your.base.server/
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consists of list pages wher e ite ms of some kind are present ed in a searchab le
and sorta ble table. From the list pages you can reach the view page of
individual items. Items can, in most cases, be edit ed, and then the view page
has a link to an edit page , which is very simil ar to the corres ponding add page ,
which (if it exists) can usually be reached from the list page.

For a concrete example, open the ‘‘Users’’ menu and click on ‘‘List users.’’
This should bring you to a page where users are listed, although depending on
your access level you may see more or less information. Clicking on a user
name in the list brings up a ‘‘View user’’ page, and in the case that it is your
own account you will be able to change your password. Most users will, of
course, not have the right to create or modify user accounts, but if you head
over to the ‘‘Biomaterials’’ menu, you can experiment with adding, removing,
and listing things.

You will find that stre wn abou t the web pa ges of BA SE are que stion
marks on a green backg round, and clicki ng on of these will bring up a more
or less context ‐ speci fic help text. Sometim es these text s are even the be st
available docu mentati on for a particul ar funct ion.

List pages, such as the one called ‘‘Sampl es,’’ consi st of a filter pa rt at
the top, a set of resul ts from the filte ring present ed in a table, and some
additional con trols. For the most part, the way these list pages work should
be intui tive, althoug h they do hav e some quirks .

Filtering

On a list pa ge, only those ite ms that match all of the filtering cri teria are
shown, but the In operator all ows for some OR‐ like filte ring, in that you can
give it a comm a‐ separated list of possib le values . The vari ous fields you
can filter on all have a type, such as text string, date, or inte ger, and as
conversion from a plain string of text can be nontrivial (in particular for
dates), the resulting value is listed under ‘‘Translated value.’’ When search-
ing on text strings (by far the most common type), you can use the wild
cards * (any string of characters) and _ (any one character) together with
the ope rators ¼ , In and Not in . Figure 2 illustrat es some of these features.
FIG. 2. Filtering samples using wildcards, dates and various operators.
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For some reason, there is no Not equal to operator, but the Not in
operator does the same thing, although just as with In you can give a whole
list of values. Similarly, theBetween andNot between operators take exactly
two comma‐separated arguments. What certainly qualifies as a quirk, but
can be ignored by the novice, is that the empty string is translated to
‘‘undefined value’’ (null) when used with In and Not in. In these cases
In and ¼ give different results, and one has to use > instead of Not in to
filter out strings that are defined but empty.

Filters can be saved as ‘‘presets’’ to avoid having to enter the same
filter over and over. When you have a filter you wish to save, enter a name
for the preset and click ‘‘OK.’’ Later, you can then recall the preset,
discarding the current filter, with a single click. You may want to save an
empty filter as a preset, as there is no other way of removing all filtering
criteria at once.

The number of matches shown per page is configurable from the ‘‘GUI
settings’’ page that you can find in the menu. On that page you can also set
various font sizes, which can be helpful if some pages get too wide or long.

As it is often possible not only to delete items, but also to undelete them
again, most list pages contain the three links ‘‘Undeleted/Deleted/All’’ to
specify what is shown. The one marked in bold indicates whether the page
currently lists items that are not deleted, items that are deleted, or both.
This is mostly useful if you want to locate something that you have deleted
accidentally.

Ownership and Access Rights

Each user’s access to different parts of BASE can be controlled by an
administrator. More specifically, a number of access rights exist that often
come in pairs, where one grants the right to view items of a certain kind and
the other grants the right to also add or edit such items. Most items stored in
BASE have an owner who controls who, if anyone, can view or edit the item.
Thus, if a user is granted the rights to view and edit biomaterials, that user can
still only view or edit those biomaterials whose owners have agreed to this.

The system for granting other users rights to manipulate things that you
own is rather limited. Users can be arranged into groups by an administra-
tor, with no limit on how many groups an individual user can be part of. As
the owner of, say, a sample, you can grant access to the sample to the
members of—at most—one group that you are also a member of. This
sharing is performed from the list page for, in this case, samples, by ticking
the check boxes of the samples to share and then choosing a group and
either ‘‘read’’ or ‘‘read/write’’ access at the bottom of the page. It may also
be possible to grant read access to all users (‘‘world’’) if the administrator
has given you the right to do so.
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Hint: on the ‘‘My account’’ page in the ‘‘Users’’ menu it is possible to
specify defaults for sharing so that all new items that you create are shared
with a specific group.

User Administration

Aswith other functions inBASE, to administer user accounts and groups
you need to be logged in as a user with the right to do so. By default, the
‘‘root’’ account has the superuser right, which implies not only a full set of
access rights, but also the ability to do some things that are otherwise
impossible, such as changing the owner of items or seeing who is currently
logged in.When you are logged in as a superuser, a reminder of this is shown
near the top of the left frame.

From the ‘‘List users’’ page in the ‘‘Users’’ menu you can create new
users (see Fig. 3). The usernam e is case insens itive, but the passw ord is not. It
is possible to create password‐less accounts, but be advised that if two or
more persons are logged in using the same account they can interfere with
each other in harmless but annoying and confusing ways. It is therefore good
practice to create one account per person.

As mentioned earlier, most of the access rights have to do with using
specific parts of BASE, and many of these come in pairs. Of the ones with
more special functions, ‘‘superuser’’ and ‘‘share with world’’ have already
been touched upon. With ‘‘complete read access’’ a user is given permission
to view such items that their respective owners have not shared.
FIG. 3. The ‘‘Add user’’ page, displaying rights that can be granted users.
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Groups of users can be created in much the same way as users, with a
set of access rights that are inherited by all members. Consequently, a user
has all the rights that he/she is granted personally or through any group
membership. To add users to a newly created group you have to go back to
the user list, mark the users to add, and choose the group in the pull‐down
menu at the bottom of the page. Unfortunately, because each item can only
be shared with a single group, it may be necessary to create a number of
groups that are simply aggregations of the users of other groups, and these
groups will have to be modified separately when new users appear.

The disk quota that can be set for each user and group refers to the
estimated amount of disk space used by uploaded files, raw data, and
experiments. These are the things that by far tend to dominate the disk
consumption. The quota system provides a way to keep track of what users
or groups are hogging resources, possibly so that, for example, in an
institutional setting, they can be billed for it. It can also be used to provide
the strong incentive needed for users to clean up old, stale files and data
once in a while.

Working with BASE

By necessity, the workflow in BASE resembles that of microarray ex-
perimentation. Production of microarrays and preparation of samples are
parallel tracks that converge at the time of hybridization, wherein data can
be extracted and analyzed. The production of microarrays is represented in
the ‘‘Array LIMS’’ part of BASE, where the central players are reporters,
plates, and array designs. Samples and their precursors and derivatives are
collectively known as biomaterials and can, as expected, be found in the
‘‘Biomaterials’’ menu. The part of the workflow that deals with hybridizing,
scanning, and extracting a set of measurements on the spots is available
under ‘‘Hybridizations.’’ Finally, in the ‘‘Analyze data’’ menu are the tools
for collecting raw data into experiments and manipulating and analyzing
these data in a hierarchical fashion.

Protocols, Uploads, and File Formats

Some concepts and functions are used in several places in the workflow.
One example is protocols, which hold descriptions about experimental
protocols. These come in different flavors for use in different parts of
BASE and can be attached to items of some specific type. A protocol can
have an associated file, which would have been uploaded by a user and at
least temporarily existed as an upload. There are many different uses for
uploaded files, usually as a medium for getting a large amount of data into
BASE in one step. Files can be uploaded from those pages in the user



FIG. 4. Files can be uploaded for later use or sharing.
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interface wher e they are ne eded, but there is also a de dicated page for
uploadin g, listing, and remov ing files, as shown in Fig. 4. Or rather, there
are tw o very similar pages wher e one deals with uploads owned by other
users. Note that the file names are req uired to be unique withi n each user’s
uploads, and repla cing an upload with one beari ng the same name requir es a
visit to the uploads page to remov e the existin g file.

Where fi les a re uploaded to provide d ata in bulk, there is g enerally not a
single universally accepted file form at. Luckily, most formats used in the
microarray fi eld share enough featur es that it is possible to handle t he m with
a single, configurable par ser. File formats for a half‐doze n dif fer ent tas ks c an b e
configur ed from the ir re spec tive file form at p ag es . A s an e xa mple, cons ide r the
‘‘Reporter file formats’’ found in the ‘‘Reporters’’ menu (read abo ut reporters
later). As with all these file form ats, each record is req uired to be on a single
line, with the same tab ‐ or comma ‐ delimi ted format for each li ne of data.

On the page for adding a file format, below the usual fields for name etc.,
are two distinct sets of input fields. First comes the information used to
identify files as being of this particular format, to find where the actual data
content begins, and possibly where it ends. This is followed by a number of
fields that describe what columns of the files to use for all the different pieces
of information that a file of this format may contain (with some ‘‘advanced’’
options for concatenating columns). When defining a file format, the task is
made much easier by having an uploaded file of that format to work with,
especially if BASE then manages to correctly guess part of the file format.
This means choosing that file in the file list near the bottom of the page or
entering the new file format page from elsewhere in the user interface after
already having selected anuploadedfile.Doing sowill bring up a tablewith an
excerpt from the beginning of the file, shown near the end of the web page.

As a practical example, consider a file that looks like this:
reporter
 gene

rep123
 geneA

rep127
 geneB
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In this case, the first line would be useful both to identify the file format
(‘‘Line number 1 must match . . .’’) and as a data header (‘‘Data header
regexp . . .’’). So long as the file contents are shown, it is be possible to specify
these things using the drop downs in the ‘‘Use as’’ column of the file content
table. In some special cases it is possible that users familiar with regular
expressions could find it useful to specify these strings manually. With the
file format and data start identified, it remains to specify what is where
within each column. This can be done by mouse, picking a file column for
the available fields, or manually as described in detail in the online help text.

Reporters

The term reporter refers to a reporter for a gene, as spotted or printed on a
microarray, be it an oligonucleotide, a cDNA clone, an antibody, or some-
thing else. Operations in BASE that refer to genetic material generally do
so at the level of reporters. All higher level categorizations, such as gene
name, UniGene cluster, or Gene Ontology (GO) category, are simply
handled as properties of the individual reporters. Each reporter has a unique,
case‐insensitive identifier called its reporter ID. By default it also has a fairly
large number of different fields, such as gene symbol and gene name,
LocusLink identifier, and accession number. This list of fields can, if need
be, be customized.

Existing reporters can be viewed and manipulated via the ‘‘Reporters’’
menu, but new reporters can only be created by uploading something that
refers to a previously unseen reporter ID. This could be a result file (raw
microarray data), a microtiter plate, or a file describing the reporters on
a microarray design. As this creation of new reporters happens by default,
and unwanted reporters cannot be removed through the BASE web inter-
face, you should probably not normally work as a user with the right to
create new reporters.

Array LIMS

LIMS features are accessed from submenu options under main menu
option ‘‘Array LIMS.’’ Using this part of the database is entirely optional.
Only laboatories that wish to track probe information, locations on micro-
titer plates, microtiter plate identities, their transformations from plate to
plate, and well annotations (quality control information) need to use this
portion of BASE. If you do not want to use the array production LIMS
features, all other parts of BASE can still be used. It is also possible to
forgo the plate part and only store information directly describing the
arrays. However, integration of array production information with bioma-
terial information and analysis enables very powerful and efficient analysis
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of your microarray data and may, in some circumstances, be needed for
minimal information about a microarray experiment (MIAME) (Brazma
et al., 2001) compliance.
Plates

If your laboratory wishes to trackmicroarray production information, you
must begin by first defining the plate types that you wish to track. For instance,
a laboratory that prints IMAGE clones may have several types of plates
to manage and track: bacterial stock plate, bacterial duplicate plate, bacterial
growth plate, plasmid isolation plate, polymerase chain reaction (PCR)
plate, PCRpurification plate, and array print plate. For eachplate type, events
(protocols) andwell annotations (such as quality control steps that are done to
a plate type; i.e., gel electrophoresis of PCR products, or check for bac-
terial growth, or sequence verification) can be stored. Currently only plate
sizes of 96 or 384 wells can be managed. If you spot proteins, antibodies, or
oligonucleotides you may still want to use the Array LIMS features to store
reporter annotations locally.

Once you have created plate types you can upload plates to BASE from
a file. Note that doing so is one of the ways to create new reporters, which
can thereafter be found in the ‘‘Reporters’’ menu. After having uploaded
your first set of plates, you can, from the plate list page, list available plates
by plate type, edit well annotations, and create daughter plates (a copy of
all the probe locations into another plate of the same or another plate
type). It is also possible to merge 96‐well plates into 384‐well plates accord-
ing to a fixed pattern and to create plates with well contents hand picked
from an arbitrary set of plates. Plates are used to track your probe library
and ultimately to create array designs, array prints, and arrays. In this way
subsequent microarray results loaded into BASE can be connected to
arrays and thus to information on the probes in the LIMS.
Arrays

An array design in just that—a description of what goes where on a set
of microarrays. From an array design it is possible to define one or more
array batches (or prints) that describe individual production batches. These
can in turn consist of many array slides, each carrying a unique name or bar
code that can be used to track the slide when it is used.

The spots on an array design are called features. These link a block–
column–row position on the array design with the corresponding well on a
plate and the reporter found in that well. Creating the features of an array
design involves uploading a print map file, which specifies what plate well is
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used on what position. Currently, the only supported file formats are the
BioRobotics TAM/MoleculareWare MWBR format and the format used by
theMolecularDynamicsGeneration III array spotter. Creating features from
a file in either of these formats is done by first adding the plates to the array
design (from the array design’s edit page) and then choosing to ‘‘Add print
map.’’ If your TAM/MWBR print map identifies the plates by name or bar
code, this information is used to verify your selection of plates (and their
order). Alternatively, it can be used to automatically pick the right plates, but
then you lose the extra verification.

Laboratories that acquire microarrays without plate information can
also add features to their array designs. This is done through what BASE
calls a reporter map—a file that maps block–column–row coordinates on an
array to reporter IDs. Unlike print maps, the formats of these files are user
defined, created through the usual file format web interface. An example of
a format that can be used is GAL (GenePix Array List), which is otherwise
used as input to the GenePix spot‐finding software. (Incidentally, GAL files
can be generated by BASE when features have been created.) The raw data
files produced bymost image analysis software hold sufficient information to
be used as reporter maps.
Biomaterials

Biomaterials comprise samples, extracts, and labeled extracts in BASE.
The workflow allows users to enter sample information in BASE; samples
can then be extracted and the extracts can be labeled and used in hybridi-
zations. All along, information such as quantities processed and protocols
used can be recorded. Sample annotations (such as clinical data, series time
point, and protein value) can be added to samples and this information is
connected to the data analysis part of BASE and can be retrieved by
analysis and data visualization tools.

‘‘Sample origins’’ are used to create definitions of sample sources. This
includes specifying the organism a sample can be derived from, different
tissue types, and tissue subtypes, as well as specific cell lines. The definitions
created under sample origins will be available to choose from for all users
when new samples are added. Unlike sample annotations (see later), the
sample origins cannot, unfortunately, be used by analysis and visualization
tools, but rather serve as a personal record.

Sample annotation types, simply called ‘‘Sample annotations’’ in the
menu, are used to create properties or types that subsequently can be used
by users to annotate their entered samples. Give your new annotation type
a name, type, size of the input field box, and default value. The four types
possible are floating point number (e.g., tumor size), integer (e.g., patient
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age), text (fre e text ann otation), or an enu meratio n of possi ble values (e.g.
protein status posit ive/negat ive, treatme nt a, b, or c). Sampl e an notations
given to a sample (as in Fig. 5) will be inherite d in the ana lysis en d by the
raw data sets associat ed with the hybridi zations of that sample. In this
way data a nalysis and visua lization tools wi ll be able to use sample ann ota-
tion da ta to analyz e and display data in an inte grate d and power ful fashi on.

Sampl es are the true starting point of all data analys is in BASE. By
entering a sample you can star t extra cting from it and label its extra cts,
recording qua ntity/q uality infor mation and method s for these steps. Then,
labeled extra cts can be associat ed toget her in hyb ridizations , to which
image scans and raw da ta sets can be adde d.

Hybridi zing and Scanning

The workflow from biomaterials, specifically from labeled extracts, con-
tinues with hy br id iz at io ns . This is also the point where data from the bio-
materials part meet data from the array LIMS part of BASE. A hybridization
should be associated with one labeled extract for each channel (dye) of the
experimental setup. When working with two channels and a sample vs refer-
ence design, the labeled extract in channel 1 represents your biological sample,
whereas channel 2 holds the reference. The reason for this is that only the
sample annotations for channel 1 will be available for use in the analysis end.

A single slide is sometimes scanned multiple times. To account for this,
a hybridization can have one or more scans, each holding information
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abou t the scanner a nd its settings . It is also possib le to attach images to a
scan and mark what channel (s) they represe nt.

Uploading Raw Data. To fina lly get you r mi croarray data into BASE,
choose to ‘‘Upl oad result file’’ from a scan’s view pag e. This req uires a file
forma t to be defi ned for the data file prod uced by your im age analysis
softwar e. Most of the common ly used softwar e creat es tab ‐ delimi ted files
that can be handled by the generic file form at creato r. Only the out put
from ImaGen e is handled as a sp ecial case, as it consi sts of two files that
first need to be merg ed. Note that BASE uses the words resul t file, raw data
set, an d (int ernally) RawBioA ssay more or less syn onymousl y.

If you are doing dye ‐ swap expe riments, it is conveni ent to define one file
forma t with, for exampl e, Cy3 in channel 1 and Cy5 in chan nel 2, and
another format with the oppos ite relati on. Then, by using the right file
forma t when adding raw data, yo u can get the raw data to always be stored
in BASE with the sample in channel 1 and the refer ence in channel 2. This, of
course, only applies if your experiment has a sampl e–reference desig n. As
discu ssed later in the sect ion on data analysis , BASE presently lacks facil-
ities for handlin g more complex experiment al designs, alt hough there are
possi ble pa rtial worka round s.

Selecting a raw data file after you have defined a file format will bring up a
page with some further options. Some of these have to do with connecting the
spots to the features of an array design, whereas others affect reporter
identification and creation. The purpose of knowing the array design at the
time of adding raw data is threefold: the block coordinates and reporters in the
result file can be verified, the raw data spots can be connected to plate wells,
and the assignment of position numbers to the spots can be made independent
of how the file is sorted. This requires the array design to have features,
created from either a print map or a reporter map.

If an array slide has been selected for the hybridization, the corresponding
array design will already be selected. If you are not tracking individual array
slides it is still possible to choose an array design to use.

Each spo t will be assign ed a pos ition number withi n the raw data set. It is
highly desirab le in the an alysis end to have the same pos ition numb er for
analogous spots in different data sets , an d this is ensured to be the case if you
use an array design and choose to assign the position number from features.
Otherwise, because the image analysis software could have missed some
spots, there is no way to know for sure what block coordinates may be legal,
and the position numbers are assigned from the order the spots appear in the
file. Thus, you should make sure to have connected your hybridization to an
array slide before you create a raw data set from it.

When a raw data set has been created, it is possible to view its spots in
a table (see Fig. 6) and to plot it in some different ways. The html plot tool,
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which also appears in a few different places, can mainly plot one measured
quantityagainst another, possibly coloring thepointsbasedona thirdquantity.
A small set of derived quantities are also available, so you could, for example,
plot the channel 1 background corrected mean intensity against its channel
2 equivalent. There is also a Java plot tool, which is not supported by the core
developers and thus may or may not work with various BASE updates.

If raw 16‐bit TIFF images have been added to the scan the raw data set
belongs to, it is possible to generate small images of the individual spots,
which will be displayed in the raw data table and elsewhere. Generating
these spot images requires raw data to include physical spot coordinates.
Additionally, information about offset and scaling of those coordinates as
compared to the TIFF images may be needed.

Data Analysis: Experiments

When data about and from your microarray experimentation have been
entered into BASE, the time has come to compile, examine, analyze, and
present those data. As you may have noticed, at the level of individual
samples and hybridizations, it is not possible to assign objects to belong to
specific ‘‘projects’’ (or whatever onewould call such groups). Instead, BASE
does this aggregation at the level of raw data set by collecting them into what
we term ‘‘experiments.’’ An experiment per se is littlemore than a collection
of raw data sets, a hierarchy of analysis steps, and a description of the
purpose of the experiment. Its power lies in the flexibility of the analysis
part, the availability of analysis plug‐ins formany different purposes, and the
possibility of creating new plug‐ins.

Everything related to experiments and analysis can be found in the
‘‘Analyze data’’ menu.When creating a new experiment, you need to specify
FIG. 6. Raw data from a single array displayed in a searchable table.
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the number of channel s it will contai n. This is normall y the number of
different dy es used to label the samples. While the case of two channel s is
not given much special treat ment by BASE, it is what most exis ting analysis
plug ‐ ins requ ire.

Adding raw data sets to an experiment is done from the list of raw data
sets. To see what raw data sets an experiment already has, find the ‘‘Raw
data sets’’ tab on the experiment’s page. There is nothing to prevent a raw
data set from being used in several experiments. Internally, BASE stores each
experiment in a separate set of database tables (using the MyISAM engine of
MySQL), with the implication that activities in one experiment cannot inter-
fere with activities in another experiment, whereas if several people work on
the same experiment simultaneously, they might experience the occasional
br ie f s ta ll.

More often than not, the words ‘‘microar ray data’’ refer not to the wid e
variety of quantiti es produ ced by the image analys is so ftware, but to one
inten sity value per chan nel, or eve n to a single log ratio. Analysi s withi n an
experi ment has the structure of a tree, wi th many different possibil ities at
each step, but it alw ays starts with the extraction of inte nsity values from
raw data. Thus, each raw da ta set gives rise to one Bio Assay . BioAssays are
always group ed togeth er into BioAs saySets , an d BioAs saySets are the basic
build ing blocks of the analys is tree.

Creating a Root BioAs saySet. Cre ation of a Bio AssaySet from raw data
is carried out from the exp eriment ’s ‘‘Raw data sets’’ page. First you must
select the raw da ta sets to use (typi cally all of them, by clicki ng the ‘‘A’’ in
the tabl e head er). At the bottom of the page you then enter a na me for the
BioAs saySet and choose what kind of intensit ies to use . In many cases this
could be background‐corrected mean or median values, but other choices
are also available, and it is possible for an administrator to modify the list
of options (see the installation documentation). In any case, a BioAssaySet
will be created and then appear on the ‘‘Analysis steps’’ page.

The lower part of the ‘‘Analysis steps’’ page displays the analysis tree
(see Fig. 7), while the uppe r part can show informat ion abo ut a sele cted node
in the tree. Initially, there will only be your newly created BioAssaySet. If
you select it by clicking on its name in the tree, you will be presented with,
among other things, the list of its BioAssays and several ways of browsing
and visualizing the data it contains. For instance, the overview plot consists
of a small plot of log ratio versus intensity for the spots of each BioAssay.

A possible desired series of analysis steps could be removal of flagged
spots, normalization of the remaining values to zero median log ratio,
finding a set of highly expressed genes, and doing a hierarchical clustering
of those genes. These steps illustrate some of the different things that can
be done in BASE, and it is illustrative to examine some of them a bit closer.



FIG. 7. A small analysis tree with filtered and normaized data.
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Filtering Data. Removing flagged spots is an example of a filter applied
to the spots of a BioAssaySet. Filtering, like some other functions, can be
reached from one of the icons in the analysis tree. To understand how the
filtering works, one needs to know how BASE stores a BioAssaySet. Every
BioAssay in the set has a number of spots, and each spot in a BioAssay has
a (unique) position number and an associated reporter. Most often the
array slides used in an experiment have identical layouts so that all spots
with a given position number also have the same reporter. With this design,
a BioAssaySet can be said to have those positions and/or reporters that any
one of its BioAssays has. In other words, when all spots at a certain position
have been filtered away, that position is gone, and until then there could be
missing values for some of the BioAssays.

Returning our attention to the filtering page, we note that the ‘‘Spot filter’’
part has a long list of fields that can be filtered on. Many have prefixes that
indicate what aspect of the spot they refer to, such as raw data or its array
LIMS annotations, and others refer to the intensity channel(s) of the spot.
Under the ‘‘Gene filter’’ heading you have the possibility to filter on reporters.
This is equivalent to including criteria for reporters in the spot filter, except
that you also have access to something called ‘‘In # of Assays.’’ This refers to
the number of BioAssays that the reporter appears on after the spot filter has
been applied, regardless of whether it appears in the same position in the
different BioAssays (plug‐ins exist for filtering on the presence of unique
reporter positions).

Once you have chosen a set of filtering criteria, and possibly saved the
filters as presets, you can click the accept button and watch as the spots
are filtered into a new BioAssaySet. As you can then see in the analysis
tree, the filter is stored as a Transformation, between the old BioAssaySet
and the new one.

Note that, as elsewhere in BASE, it is only possible to combine multiple
criteria with AND. All spots that pass the spot and gene filters will be used,
and there is no simple way to, for example, keep all spots for those reporters
that are differentially expressed on at least three different BioAssays. Such
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complex filtering can be carried out within BASE, either by some plug‐in
written for this purpose or by the clever use of reporter lists.

A reporter list can only exist as part of an experiment, but can be copied
between experiments via the global reporter list page (the ‘‘Reporters’’
menu). Creating a reporter list can be done in several different ways: from
the results of a search, from an uploaded file, or by an analysis plug‐in.
Regardless of how it was created, a reporter list consists of a set of reporters,
each one associated with a number that may represent a score or rank.
Filtering on a reporter list, where applicable, can be based on absence or
presence in the list (‘‘Reporter list’’) or on the score (‘‘Reporter list score’’).

Normalizing and Analyzing Data. Data normalization is a tricky subject
outside the scope of this text. However, what is well within that scope is how
to carry out a normalization in BASE using a plug‐in such as the LOWESS
(LOESS) (Cleveland and Devlin, 1988) normalizer. This is one of the
handful of plug‐ins that are shipped with BASE.More plug‐ins are available
from plug‐in pages of the BASE web site and from their respective devel-
opers, and the mailing list may be a good starting point if you are looking for
something specific.

Just as with filtering, the first step in transforming data with a normalizer
is to click the right icon in the analysis tree (the right one, with a running
man) or in some other way come to the ‘‘Transformation: job’’ page. There
you simply choose the plug‐in to run—in this case the one called ‘‘Normali-
zation: Lowess.’’ Doing so will bring up a page with the help text of the plug‐
in and a set of plug‐in‐dependent options. Here, you can change the stiffness
parameter for the LOWESS algorithm or leave it at its reasonable default
value. Disregarding the other options, you can now start the normalizer and
then follow the ‘‘Check the status of the job’’ link.When the job has finished,
a newBioAssaySet will have been created as a child of the one that was to be
normalized.

A similar procedure would be followed to perform, say, a hierarchical
clustering. In that case a new BioAssaySet will not be created, but instead the
plug‐inwill create someplots and other files. These can thenbe viewedusing a
special hierarchical clustering viewer that is part of BASE. In addition to
producing a BioAssaySet and/or a set of files that can somehow be viewed,
a plug‐in may create reporter lists that can be used for filtering data.

The ‘‘Jobs’’ menu item leads to a page where all jobs are listed. There is a
queue system that is meant to ensure that the jobs are processed in a reason-
able order. As running a plug‐in could potentially take a long time and use a
lot ofmemory, there are limitations onwhich jobs can be executed in parallel.
From the ‘‘Computation servers’’ page it is possible for an administrator to
add and configure additional computation servers and set the maximum
number of concurrent jobs and the amount of RAM allotted to them.
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Analysis Plug‐Ins. How to create an analysis plug‐in for BASE is
described in detail in a document available on the web site, but that text
is somewhat minimalistic. If you are going to create a plug‐in you have little
choice but to read it; the design of the system is described here briefly.

An analysis plug‐in consists of two parts: a plug‐in definition, which is
stored in the database and contains all information that BASE or the users
may need, and the plug‐in itself as an executable file on the BASE server.
Creating your own plug‐ins is meant to be easily doable in a wide range of
programming languages, so the communication between BASE and the
plug‐in is intentionally kept very limited.

When making a plug‐in, the first step is to define it through the web
interface. Most importantly, BASE must know what data to export to the
plug‐in and what parameters (if any) it expects from the user. When a job is
started, data are exported in the BASEfile format (which is described in the
BASE documentation), producing a file similar to what can be created by
exporting data from a BioAssaySet. The plug‐in is then executed with this
BASEfile as its input. Thus a parser for the BASEfile format is needed
regardless of what language one uses for the plug‐in. Code that deals
with this problem is currently available in Cþþ, Java, and Perl. In addition,
R/Bioconductorcanbeused throughwrappers inPerl (seehttp://www.lcb.uu.se/
baseplugins.php) or Java (see http://www.maths.lth.se/help/R/aroma.Base/).
The output of the plug‐in can be an arbitrary set of files that will be
presented to the user, but to have transformed data imported back into
BASE, it must again be in the BASEfile format.

MAGE‐ML Export

To ensure reproducibility, many journals today require you to submit
your raw microarray data upon publication of the results of your experi-
ment. Commonly, data should be submitted to either GEO (Barrett et al.,
2005; see Chapter 19 in volume 410 by Lutfalla and Uze, 2006) or Array-
Express (Parkinson et al., 2005; see Chapter 20 in volume 410 by Hewitt,
2006). In the latter case, data must be in the MAGE‐ML format (Spellman
et al., 2002), and in the former case MAGE‐ML is one of several options.
Regardless of how data are submitted, it is necessary to fulfill the require-
ments of MIAME (Brazma et al., 2001).

Exporting data in the MAGE‐ML format from BASE can be done from
the ‘‘Info’’ tab of an experiment. The raw data sets currently associated with
the experiment will be exported into the MAGE‐ML file, as will everything
upstream of them (such as samples and array designs), but not normalized or
otherwise processed data. The exporting program is rather picky. Exporting
will only work if you have used the array LIMS part of BASE; every

http://www.lcb.uu.se/baseplugins.php
http://www.lcb.uu.se/baseplugins.php
http://www.maths.lth.se/help/R/aroma.Base/
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hybridization in your experiment must be associated with an array slide
whose array design has features. There may also be problems if you have
customized the columns for reporters or raw data in your BASE installation.
Improvements to the MAGE‐ML export functionality are currently in
development.
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Introduction: Bioconductor in Brief

Bioconductor is a project devoted to the development of software and
methods for statistical analysis and visualization of data from high‐
throughput experimental platforms in biology. The project is fully open
source, with most software released under the Lesser GNU Public License
(see http://www.gnu.org/licenses/licenses.html#LGPL). Most software avail-
able through the Bioconductor project is written in R, an open source data
analysis environment that has become a major tool for quantitative scien-
tists throughout the world.

Bioconductor may be viewed as a collection of specifications of contain-
ers and workflows for preprocessing and analyzing high‐throughput data.

� Containers are defined for management and analysis of expression data
at various levels of technical processing, for management of experiment‐level
metadata in the Minimum Information about a Microarray Experiment
(MIAME) data model (see later; Brazma et al., 2006), for management and
analysis of sample‐level data and custommetadata about samples, and for the
organization and manipulation of large quantities of biological annotation,
such as mappings between proprietary probe identifiers and public database
or ontology identifiers.

� Workflows are defined through high‐level graphical user interfaces for
specific forms of preprocessing and downstream analysis and through the
interaction of software packages that are driven in a command‐line interface.
Documentation of workflows and workflow components is provided in the
form of manual pages for specific modules and functions, vignettes that
document multistep processes, and fully worked use case descriptions
that are distributed with the software.

� Motivations and approaches of Bioconductor have been described
comprehensively by Gentleman et al. (2004). This chapter provides details
of philosophy, use, and future prospects of Bioconductor as a source of
software and software design and distribution methods for critical methods
of bioinformatics and computational biology.
Technical Details

Software Distribution

Bioconductor is rooted in the R language (Ihaka and Gentleman, 1996).
Software resources are organized into packages, which are structured
folders of code, documentation, and illustrative data. The distribution
of packages for Bioconductor can proceed in various ways. At present,
Windows and Macintosh graphical user interfaces for R include buttons

http://www.gnu.org/licenses/licenses.html#LGPL
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for package installation over the web. These buttons allow selection of the
Bioconductor software repository and selection of specific packages. Alter-
natively, a user may load a publicly available script (http://www.bioconduc-
tor.org/biocLite.R) into an R session, issue the command biocLite( ),
and software will travel over the internet into this R distribution, where it is
installed automatically and will persist until removed manually. Software
modules can also be downloaded manually using a web browser pointed at
http://www.bioconductor.org or can be obtained using functions provided
in a Bioconductor package called reposTools.

Containers

There are four basic container types at present. Containers are avail-
able for preprocessed microarray data (e.g., data imported from scanner
outputs or Affymetrix CEL files), for postprocessed microarray data (in-
cluding detailed information on sample characteristics and treatments),
for metadata about microarray experiments (principally satisfying the
MIAME protocol), and for general biological metadata, such as the Gene
Ontology.

The use of containers depends on the internal structures of the contain-
ers, defined in Bioconductor infrastructure packages such as Biobase, and
on the accessor methods that are provided in these infrastructure packages.
An accessor F for a container C is used with the syntax F(C).

Preprocessed Microarray Data. Affymetrix distributes a collection of
CEL files from a Latin square design spike‐in experiment. A subset of
these data is distributed in the SpikeInSubset package of Bioconductor.
The following code loads this package, loads the U133A‐TAG subset
provided there, and requests a report on this subset.
> library(SpikeInSubset)
> data(spikein133)
> spikein133

AffyBatch object

size of arrays¼712x712 features (23781 kb)

cdf¼HG‐U133A_tag (22300 affyids)
number of samples¼6
number of genes¼22300
annotation¼hgu133atag
This structure includes metadata about the samples. These metadata,
often referred to as ‘‘phenotype data,’’ even though they can involve informa-
tion not typically regarded as phenotypic, can be accessed in the form of an R
data.frameusing the pData accessor.Herewe inquire about the dimensions of

http://www.bioconductor.org/biocLite.R
http://www.bioconductor.org/biocLite.R
http://www.bioconductor.org
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the pData component and select, using the matrix [row, column] selection
idiom, a small fraction of the metadata available for the spike‐in study. This
is organized as samples in rows and attributes in columns. The attributes
are probe set identifiers, and the values of attributes are the picomolar
concentrations of the spike‐in material.
> dim(pData(spikein133))
[1] 6 42

> pData(spikein133)[1:3, c(1, 5, 10)]

203508_at
 204959_at
 207777_s_at
Expt6_R1
 2
 4
 16

Expt6_R2
 2
 4
 16

Expt6_R3
 2
 4
 16
The preprocessed expression intensities can be accessed using the pm()
function. This submatrix is organized with probes in rows, and samples in
columns:
> pm(spikein133)[c(1, 5, 10), 1:3]
Expt6_R1
 Expt6_R2
 Expt6_R3

[1,]
 245.0
 238
 238.0

[2,]
 2325.0
 2238
 2591.0

[3,]
 541.8
 445
 564.8
For cDNA platforms, containers named marrayRaw or RGList are
used frequently. See the documentation of marray and limma packages
for details.

Processed Microarray Data. Container design for corrected and normal-
ized expression data emphasizes tight binding of experimental data and
sample‐level metadata, including probe identifiers and rich sample‐level
data. These containers have been implemented through preservation of
manipulation idioms that are familiar through the use of simple data objects
in pure R.

While it is possible to work with pure R matrices to represent gene
expression experiments, Bioconductor enriches the data structure consider-
ably. In the context of microarray data, let G denote the number of genes
measured in a microarray experiment, let N denote the number of samples
on which measurements were made, and let p denote a number of variables,
such as treatment type, sample identifier, and sample characteristics, that
identify important aspects of the experiment that should be known in any
downstream analysis. Bioconductor defines a class of objects called exprSets
that can represent all the relevant experimental data and metadata in a
unified way. Specifically, if E is an instance of the exprSet class, then exprs
(E) returns the GxN matrix of expression measures. pData(E) returns the
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Nxp table of sample‐level attributes, and description(E) returns a list of
MIAME‐defined experiment metadata attributes.

To illustrate this container concept, we interact with the golubMerge
exprSet, which is supplied in the golubEsets package of Bioconductor. First
we attach the data package and then we mention the ‘golubMerge’ exprSet,
which combines the training and test data used in Golub et al. (1999).
> library(golubEsets)
> golubMerge
Expression Set (exprSet) with

7129 genes
72 samples

phenoData object with 11 variables and 72 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral

blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample
Note that this report about golubMerge data tells the number of genes
and samples and provides details on the sample‐level variables that are
available. The exprSet can be treated as a ‘‘two‐dimensional’’ object:
> sm <‐ golubMerge[1:3, 1:2]
This computes a new exprSet with three genes and two samples. All the
appropriate sample level data are carried along.

Of particular interest are the numerical values of gene expression. This
is obtained using the exprs() accessor function:
> exprs(sm)

[,1]
 [,2]
AFFX‐BioB‐5_at
 ‐342
 ‐87

AFFX‐BioB‐M_at
 ‐200
 ‐248

AFFX‐BioB‐3_at
 41
 262
Sample‐level data can be accessed very conveniently using a list accessor
idiom:
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> table(pData(golubMerge)$ALL.AML
ALL AML

47 25
This gives the clinical leukemia classifications of the 72 patients.
Metadata about Microarray Experiments. The MIAME data model

(Brazma et al., 2001) provides an informal protocol for documenting mi-
croarray data sets in a uniform manner. The ‘‘MIAME’’ class has slots
corresponding to the MIAME fields:

> getClass(‘‘MIAME’’)
Slots:
Name:
 name
 lab
 contact
 title

Class:
 character
 character
 character
 character
Name:
 abstract
 url
 samples
 hybridizations

Class:
 character
 character
 list
 list
Name:
 norm-Controls
 preprocessing
 other

Class:
 list
 list
 list
Extends: ‘‘characterORMIAME’’

A graphical user interface (GUI) for eliciting MIAME metadata can be
run from R.

The phenoData class is used to manage sample‐level metadata.
> getClass(‘‘phenoData’’)

Slots:
Name:
 pData
 varLabels
 varMetadata

Class:
 data.frame
 list
 data.frame
General Biological Metadata. The Bioconductor approach to biological
annotation is somewhat complex, reflecting a variety of objectives that are
difficult to harmonize simply. Some of the most prominent aims are as
follow.

� To support substantive filtering of high‐throughput data structures,
allowing, for example, restriction of differential expression analysis to
thoseprobes thathavebeenassociatedwith specificmolecular functions.

� To meld statistical analysis workflows with biological interpretation
so that, for example, estimated contrast coefficients can be labeled
with genome or pathway annotations as desired.

� To support visualization of assay data in meaningful genomic
contexts, such as chromosomal location or pathway topology.
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� To support stability of underlying annotation resources for statistical
analyses that may take months to complete.

The data infrastructure meeting these objectives consists of collections
of R environments. An example is the GO (Gene Ontology) package.
Upon loading this package, executing the GO( ) function produces a listing
of environments and information on their contents.
> GO()

Quality control information for GO
Date built: Created: Tue May 17 10:04:27 2005

Mappings found for non‐probe based rda files:
GOALLLOCUSID found 9287
GOBPANCESTOR found 9529
GOBPCHILDREN found 4765
GOBPOFFSPRING found 4765
GOBPPARENTS found 9529
GOCCANCESTOR found 1536
GOCCCHILDREN found 561
GOCCOFFSPRING found 561
GOCCPARENTS found 1536
GOLOCUSID2GO found 62424
GOLOCUSID found 7770
GOMFANCESTOR found 7220
GOMFCHILDREN found 1366
GOMFOFFSPRING found 1366
GOMFPARENTS found 7220
GOOBSOLETE found 1020
GOTERM found 18285
Data package environments are all named according to a convention.
The environment name begins with the data package name and has a suffix
indicating the specific contents. For example, GOBPANCESTOR is the
environment that maps from GO identifiers to ancestors (generalizations)
of the associated term in the Biological Process subontology.

In conjunction with the annotate package, high‐level reports on envi-
ronment contents can be extracted. The lookUp function takes an identi-
fier token, the name of the data package of interest, and the suffix of the
name of the environment to be searched.
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> lookUp(‘‘GO:0000001’’, ‘‘GO’’, ‘‘TERM’’)

GOID ¼ GO:0000001
Term ¼ mitochondrion inheritance
Definition ¼ The distribution of mitochondria, in-

cluding the mitochondrial genome, into daughter
cells after mitosis or meiosis, mediated by interac-
tions between mitochondria and the cytoskeleton.

Ontology ¼ BP
> lookUp(‘‘GO:0000001’’, ‘‘GO’’, ‘‘BPPARENTS’’)
isa
 isa
‘‘GO:0048308’’
 ’’GO:0048311’’
Accessing a description of the path(s) to the root of GO employs the
environment GOBPANCESTOR.

The GO metadata package is a very general metadata resource, with
information only about the gene ontology structure and content and, on
some mappings, between gene catalogs and GO categories. Other meta-
data packages include

� KEGG—a series of environments providing information on the
KEGG (Kyoto Encylopedia of Genes and Genomes) pathway catalog

� cMAP—environments that address the NCI Cancer Molecular
Analysis Project unification of KEGG and BioCarta pathway and
molecule catalogs

� humanLLMappings—environments that encode the mapping be-
tween Entrez Gene identifiers of human genes and other systems,
such as UniGene clusters and GO categories

� YEAST—a collection of environments that map ORF identifiers to
alias gene names, enzyme codes, PubMed entries, GO, and KEGG
pathway catalog entries

Workflows

A hallmark of Bioconductor’s approach to software design and dissem-
ination is the support of user‐constructed custom workflows. Because the
software is provided in a loosely coupled system of packages, analysts can
select and sequence tasks with great freedom.

Some developers have taken advantage of the component‐based de-
sign to build unified graphical user interfaces. Prominent examples are
limmaGUI and affylmGUI, which allow users to step from raw scanner
outputs, through quality control and gene filtering, through linear modeling
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for differential expression, to the development of hyperlinked lists of
genes and associated annotations. Active discussion of further development
occurs on the Bioconductor mailing list (https://stat.ethz.ch/mailman/listinfo/
bioconductor).

Documentation Strategies

The Bioconductor project recognized early on that broad utility would
require a commitment to outstanding documentation resources. All Bio-
conductor software must be linked to manual pages that include executable
examples. The project also developed a concept of ‘‘vignette,’’ which is a
document that combines code, narrative, and graphics to illustrate an
analysis process that may involve multiple packages. Vignettes can be
processed by various software components to (1) export all code illustrated
in the vignette computations, (2) transform code into an interactive graph-
ical user interface so that the user can step through sequences of computa-
tions by pushing buttons and can evaluate effects of code execution in the
current R environment, and (3) transform narrative, code, and graphics
into PDF format documents. Bioconductor packages annotate, DynDoc,
and tkWidgets coordinate the implementation of these functionalities.

Array Preprocessing

Spotted Array Quality Control and Preprocessing

Bioconductor includes a number of packages designed primarily for
spotted array data. These include marray, limma, vsn, arrayMagic, which
builds on vsn, and arrayQuality, which builds on marray. The primary raw
data structures are the marrayRaw class of marray and the RGList class of
limma; the convert package allows users to convert between them. Several
functions read in raw data from each of several types of image quantitation
programs. For example, for GenePix files, read.marrayInfo reads in
target information; read.Galfile reads in the GAL files, and read.
GenePix reads in the .GPR files.

Quality control (QC) is a first step. Microarray specialists can now
recognize several kinds of common defects affecting individual spots, and
also problems affecting whole regions of microarrays (Minor, 2006). Spot
defects are often caused by printing problems; regional variations in ratios
often reflect nonuniform hybridization or washing. We think the ability to
examine microarray data using statistical QC measures provides an impor-
tant safety net to uncover biases or artifacts in these data. The R statistical
environment provides a number of general‐purpose graphical tools for
statistical QC, such as box plots for visualizing distributions at various time

https://stat.ethz.ch/mailman/listinfo/bioconductor
https://stat.ethz.ch/mailman/listinfo/bioconductor
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points or for different batches of chips. The Bioconductor packages offer
several special purpose QC tools adapted to dense microarray data. The
marrayRaw class and the function image() conveniently allow the user to
display the spatial distribution of signals on spotted microarrays. This is
illustrated by the following command, which produces an image of the green
spot intensities for the third array of the data stored in the marrayRaw
instance raw.data:
> image(raw.data[, 3], xvar ¼ ‘‘maGf’’, bar ¼ TRUE)
The arrayMagic package can display many different types of quality
control plots. The package arrayQuality displays a number of common QC
graphics in one web page. One of the pages produced by the command
maQualityPlots (raw.data) is shown in Fig. 1.
FIG. 1. Quality control plots from arrayQuality.
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The plot shown in Fig. 1 shows the ratio‐intensity (M‐A) plot in the upper
left, with separately colored loess traces for each print‐tip group. The center
shows two images of the ratios across the chip: before and after normalization.

The next step in analyzing spotted arrays is normalization. The marray
classes offer options for both two‐channel (with each array separately), and
single‐channel (between array) normalization. The command
> norm.data <‐ maNorm(raw.data, norm ¼ ‘‘l’’)
produces the now widely used loess normalization of red‐green ratios
by compensating for an estimated intensity‐dependent bias. Other options
include location‐scale normalizations, print‐tip loess, and two‐dimensional
loess smoothing of ratios. A further step that adjusts ratios between arrays
may improve replicability between arrays.

Further analysis of spotted microarray data can be done with functions in
the limma package (andmany of the preprocessing steps can be done entirely
within limma or using the convert utilities to transfer data between formats).
The limma package has especially good facilities for specifying design matri-
ces for spotted array experiments (i.e., which samples are in which dye on
which slides). The function lmFit uses design matrix information together
with the ratios on all slides, to give the best consensus estimate of relative
mRNA abundance in each sample. The function eBayes gives estimates of
probability of differential expression for each gene.

Preprocessing of Affymetrix Data

The Affymetrix GeneChip poses inviting challenges for the biostatisti-
cian, and Biconductor incorporates a wealth of statistical thinking about
Affymetrix outputs. The basis for all analysis is the affy package, particu-
larly the methods for reading in and organizing information from Affyme-
trix raw data (CEL) files.

The Affymetrix GeneChip provides a number of probes for each target
mRNA; these probes are distributed over the chip surface (see Dalma‐
Weiszhausz et al., 2006). Affymetrix provides indexing information for
probes on the array via the chip definition file (CDF) for each chip type.
This information is made available to the affy package by R environments,
which are a way of storing key value pairs.

To read in a set of CEL files in the current directory the user types
> cel.data <‐ ReadAffy()
Then to obtain the default expression measures (the RMA estimates),
the user types
> expr.set <‐ rma(cel.data)
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As for spotted arrays, quality control is vital for Affymetrix chips. Thus
function is served by the nuse function in the affyPLM package and by new
packages harshlight and bias.display. These packages produce false‐color
images displaying the discrepancies between individual probes on a chip,
and the expected values of those probes, based on averaging across chips.

The affy package divides up the process of obtaining expression esti-
mates into four steps: background correction, normalization, adjustment
for nonspecific binding, and combining ratios from different probes. The
basic affy package provides a number of options for each of these steps via
the expresso function, and users may mix and match their favorite
methods. Other more specialized packages offer some different variants
on the multichip method.

The expresso function offers two methods for estimating and compen-
sating background. The user specifies bg.correct.method¼‘‘mas’’ to
compute a regional estimate of the lowest 2% of the probe intensities and
to subtract them from the original values; this procedure follows the practice
of Affymetrix’ own MAS5.0 software. The ‘‘rma’’ method estimates em-
pirically the density of nonspecific hybridization over the whole chip. Then it
computes a Bayesian estimate of the specific hybridization for any individual
probe by averaging over the distribution of possible nonspecific signals.

The issue of normalization is contentious. The affy package offers
several options: setting normalize.method ¼ ‘‘constant’’ invokes
a scaling transformation to bring the mean of all chips into agreement, as is
done by Affymetrix’ MAS5.0. The ‘‘quantiles’’ method computes an
estimate of the distribution of all background‐corrected signals and then
shoehorns all individual distributions into that shape. There is active infor-
mal discussion of this normalization; some researchers feel that it is too
strong, and they note that replicates for the most abundant genes are less
consistent than by a simpler normalization. However, replicates for the
majority of genes are more concordant, especially for the least abundant
genes.

Much probe signal comes from nonspecific hybridization. The intent
of Affymetrix was that the ‘‘mismatch’’ probes would provide a specific
estimate of hybridization of similar but not identical cRNAs to the cor-
responding ‘‘perfect match’’ probes. It has been the experience of many
statisticians that computations based on PM only give more consistent
results (T. Speed, personal communication). However, the user may speci-
fy either option. The current thinking is that the relevant background signal
for probe intensities is the nonspecific signal, and so steps 1 and 3 should be
combined. This more sophisticated approach is implemented by the sepa-
rate package gcRMA, which estimates nonspecific signals using the model
developed in Zhang et al. (2004).
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The final step in the expresso paradigm is synthesis of a single gene
abundance estimate from the evidence of multiple probe signals. MAS5.0
constructs a measure by computing an average of corrected PM signals
independently for each chip. The user may construct the MAS5.0 measure
by specifyingsummary.method¼‘‘mas5’’ inexpresso. However, there
is much information to be found by comparing across chips. A simple linear
model for how the probe signal depends on gene abundance is that S¼afþe,
where s represents signal, a is gene abundance, and f represents the affinity of
a specific probe for its target gene; e is noise. Raw data contain many outliers,
and hence a robust fit is necessary. An adaptation of Tukey’s median polish
procedure provides a robust fit specified via the summary.method ¼
‘‘medianpolish’’ option. A more sophisticated (and time‐consuming)
fit may be obtained by the function fitPLM in the affyPLM package.
Addressing Multiple Comparisons

When searching among thousands of genes for evidence of differential
expression, there are bound to bemany genes that exceed even fairly rigorous
p value thresholds. Statisticians have developed several approaches to esti-
mating and limiting the number of false positives. Two approaches that are
implemented in Bioconductor are developing (1) more powerful genome‐
wide test statistics (limma and siggenes) and (2) methods for estimating the
number of false positives (multtest) in a genome‐wide test.

The basic idea behind moderated t test statistics is that the t statistic
depends on an estimate of within‐group variability. For small sample sizes
(the usual case with microarray data), this variability estimate is itself
highly variable; mistaken underestimates of within‐group variability give
rise to many false positives. However, by adjusting individual estimates of
variation closer to a common value (such as their common mean), one can
improve the majority of single estimates of variability, at the cost of
introducing errors for a small number of genes.

The siggenes package implements ideas similar to those of the Statistics
Applied to Microarrays program, whose approach was first described in
Tusher and colleagues (2001).

The limma package implements an ‘‘empirical Bayes’’ method to es-
timating both variability and the probabilities that specific genes are
expressed differentially. The user may choose a prior expectation of the
number of changed genes (the conservative default is 1% of all genes on
the array). Then the program returns a set of probabilities of differential
expression for all genes.

The multtest package allows the user to compute several different
estimates of the probability (or fraction) of false positives selected by a
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statistical procedure. The most useful estimates are the family‐wide error
rate, the false discovery rate (FDR), and the tail probability of proportion
of false positives (TPPFP). The family‐wide error rate is the probability
of any false positive being selected by the test procedure. Researchers
commonly care about the typical confidence in a large list of genes. The
FDR is an estimate of the expected proportion of false positives in a list
(Benjamini and Hochberg, 1995). The TPPFP provides a probability bound
for the fraction of false positives.
Conclusions: Data Analysis for High‐Throughput Biology
and Bioconductor

In the coming decade, statistical methods will play a central role in dealing
with the volume of data coming from high‐throughput measurements such as
microarrays. Through a collaborative process that is primarily informal, the
Bioconductor project has engendered widely used software tools that address
data translation and quality control, gene filtering, inference on differential
expression, and phenotype prediction. The project has led to innovations in
the production and dissemination of process‐level documentation (vignettes
and related dynamic documents) and in the important activity of reporting on
statistical findings in biologically interpretable fashion, by allowing conve-
nient binding of genomic, pathway, or functional ontology annotation to lists
of features found to be statistically interesting, and by supporting straightfor-
ward creation and export of hypertext documents encoding these associa-
tions. The project has also spearheaded the use of a new object‐oriented
programming paradigm in R, the S4 system detailed in Chambers (1998).

Many open source software development and distribution projects have
emerged in response to the challenges of the human genome project and to
the excitement of postgenomic research agendas. These include projects
focused on laboratory information management (BASE, Troein et al.
(2006), base.thep.lu.se), scripting and programming language appli-
cation (bioperl, biopython, biojava, bioruby, coordinated at open‐bio.org),
and data model and ontology development (open biological ontologies at
obo.sourceforge.net, biopax at www.biopax.org).

The fundamental objectives of the Bioconductor project have been
(a) promotion of advanced statistical technique in high‐throughput biology
and (b) reduction of barriers to interdisciplinary research. Through Biocon-
ductor, statisticians have been given ready access to data examples and
analysis practices in high‐throughput biology. Biologists have been given
access to the classic statistical analysis workflow components latent in
Rand also to emerging analysis strategies targeteddirectly at high‐throughput

http://www.biopax.org
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biology. This objective has been pursued under appropriate constraints of
transparency (all software and data provided by the project are ‘‘open
source’’). An extensive community of developers and users has emerged,
united by an active mailing list and the software/documentation portal at
www.bioconductor.org. We believe that the current situation of Bioconduc-
tor represents a partial achievement of the fundamental objectives. More
work needs to be done to reduce the complexity of workflows, to help users
match scientific needs to software capabilities, and to help developers
integrate new techniques with existing structures. We are grateful to the
Bioconductor Developers Core and to the many users and contributors
who made this project possible.
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Abstract

Powerful specialized software is essential for managing, quantifying, and
ultimately deriving scientific insight from results of a microarray experiment.
We have developed a suite of software applications, known as TM4, to support
such gene expression studies. The suite consists of open‐source tools for data
management and reporting, image analysis, normalization andpipeline control,
and data mining and visualization. An integrated MIAME‐compliant MySQL
database is included. This chapter describes each component of the suite and
includes a sample analysis walk‐through.

Introduction

The Human Genome Project was envisioned as a grand endeavor that
would change biology by providing a catalog of genes in humans and other
model organisms. Although a large number of genome sequencing pro-
jects, including that of the human genome, have been declared finished, the
collection of the sequence itself has not fundamentally altered our ap-
proach to understanding biological systems. Rather, it has been the devel-
opment of techniques and technologies that allow us to analyze patterns of
expression for sets of genes, proteins, or metabolites approaching the total
number that are active in an organism at any given point in time.

Since thei r intro duction in 1995 ( Lipshu tz, 1995 ; Schena, 1995), DNA
microarrays have matured significantly to become the most widely used
technique for the analysis of global patterns of expression and represent a
technology that is now used routinely as a means of generating testable
hypotheses prior to other studies. DNA microarrays consist of an arrayed

METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11009-5



Troein, C., Vallon‐Christersson, J., and Saal, L. H. (2006). An introduction to BioArray

Software Environment. Methods Enzymol. 411, 99–119.
Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied

to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121.

Zhang, L., Miles, M. F., and Aldape, K. D. (2004). A model of molecular interactions on short

oligonucleotide microarrays: Implications for probe design and data analysis. Nature

Biotechnol. 21(7), 818–821.

134 DNA microarrays, part B [9]
[9] TM4 Microarray Software Suite

By ALEXANDER I. SAEED, NIRMAL K. BHAGABATI, JOHN C. BRAISTED,
WEI LIANG, VASILY SHAROV, ELEANOR A. HOWE, JIANWEI LI,

MATHANGI THIAGARAJAN, JOSEPH A. WHITE, and JOHN QUACKENBUSH
Abstract

Powerful specialized software is essential for managing, quantifying, and
ultimately deriving scientific insight from results of a microarray experiment.
We have developed a suite of software applications, known as TM4, to support
such gene expression studies. The suite consists of open‐source tools for data
management and reporting, image analysis, normalization andpipeline control,
and data mining and visualization. An integrated MIAME‐compliant MySQL
database is included. This chapter describes each component of the suite and
includes a sample analysis walk‐through.
Introduction

The Human Genome Project was envisioned as a grand endeavor that
would change biology by providing a catalog of genes in humans and other
model organisms. Although a large number of genome sequencing pro-
jects, including that of the human genome, have been declared finished, the
collection of the sequence itself has not fundamentally altered our ap-
proach to understanding biological systems. Rather, it has been the devel-
opment of techniques and technologies that allow us to analyze patterns of
expression for sets of genes, proteins, or metabolites approaching the total
number that are active in an organism at any given point in time.

Since thei r intro duction in 1995 ( Lipshu tz, 1995 ; Schena, 1995), DNA
microarrays have matured significantly to become the most widely used
technique for the analysis of global patterns of expression and represent a
technology that is now used routinely as a means of generating testable
hypotheses prior to other studies. DNA microarrays consist of an arrayed
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11009-5



[9] TM4 MICROARRAY SOFTWARE SUITE 135
collection of probes bound to a solid substrate that are used to interrogate
the levels of gene expression using hybridization to labeled nucleic acids
and detection of those hybridization events. Although microarray technol-
ogy is still evolving, the development of robust and reliable commercial
platforms, combined with a significant decrease in the cost of an assay, has
resulted in an explosion of gene expression data. The challenge of doing an
expression profiling experiment is no longer in the generation of data, but
rather in effectively capturing the information and using it to explore the
biology of the systems under study.

In that regard, the role of software in a study involving microarrays
cannot be overstated. Specialized tools are available to complement the
experimental procedure and subsequent data analysis. Data management
software is used to capture vital information describing the laboratory
portion of a microarray experiment. Scanned microarray slides are pro-
cessed and quantified using image analysis software. Normalization utilities
ready data for comparisons and further analysis. Data mining and visuali-
zation tools can then help explore data from many perspectives. When used
together, such software becomes a system to maximize the utility of the
microarray experiment and gain better insight into the biology of interest.

We have developed a suite of software applications to support gene
expression studies. This suite, called TM4, consists of a comprehensive set
of tools that allow users to collect, manage, and effectively analyze data
from microarray experiments. This chapter describes the TM4 suite and
each of its components. The chapter concludes with an example analysis
using a real data set and several analysis techniques.

The four major applications of TM4 are Madam, Spotfinder, Midas, and
MeV. Each application in the suite is publicly and freely available. This
includes the source code, which is OSI certified as open source under the
artistic license (http://www.opensource.org/licenses/artistic‐license.php).

Madam is the primary data entry, tracking, and reporting system of TM4.
A series of data entry forms provide users with an organized method of
recording their experimental parameters and data. Query and reporting tools
present important data on a variety of entities, such as a single hybridization
or an entire study. This application also serves as a repository for other tools
in the data management and reporting realm. These include a polymerase
chain reaction (PCR) scoring and microtiter plate loading utility, a study
design tool, and a free‐form SQL query window. Madam works closely in
conjunction with a MIAME‐compliant relational database to carry out
its functions. The role of such a database is described elsewhere (Troein
et al., 2006).

Spotfinder is amultichannel image analysis tool. This application provides
the means to load the output of a microarray scanning operation—typically a

http://www.opensource.org/licenses/artistic-license.php
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pa ir of 1 6‐bit tagged image format file (TIFF) images (Timlin, 2006). Semi-
automatic grid construction and several methods to adjust the placement of
each grid cell manually allow for accurate spot detection. The intensity of each
spot can then be quantified and written to an output file along with related
s pot pa ra me te rs a nd fl ag s ( Minor, 2006). A number of quality control displays
are available, helping users detect systemic issues in slide production.

Midas is a normalization and filtering tool used to process raw data output
from Spotfinder and prepare it for further analysis and data mining. Users
create a project file, chaining together multiple normalization, filtering, and
quality control (QC) modules, using an intuitive graphical workflow builder.
The input options provide ways to consistently process single, paired, or whole
studies worth of raw expression data. An intuitive graphing system illustrates
the effects of normalization with a variety of detailed plots. These graphs can
be embedded in a Midas summary report, a pdf‐formatted file that also
contains a description of the data processing procedure used.

MeV is the mai n da ta analys is and visua lization tool of TM4. Users can
load raw or normali zed data from a vari ety of input file types. A broad
range of algor ithms is availabl e, including those for clus tering, classi fica-
tion, and statistical tests. The intuiti ve graphi cal inte rface simplifies navi-
gation between algor ithm results. An inte grated scriptin g interfac e and
XML ‐ based format pro vides a means to a nalyze data sets in a regi mented
and reprod ucible fashion.

Although these applicat ions were desig ned with interconn ectivity in
mind , each piece can be us ed indepen dently of the others . Asid e from the
.mev form at of TM4 (tab‐ de limited text with standar dized colum n he aders
and comm ent rows), severa l other popular input a nd output formats are
suppo rted. While origin ally de signed for two ‐ dye fluoresce nt microar ray
systems , TM4 has been expand ed to sup port other technol ogies, such as the
Affym etrix Genec hip platform (Dalma ‐Weis zhauz et al. , 2006).

A Sour ceForge web site ( http:// sourcef orge.net /project s/tm4 ) serves as
the central code repository for TM4. This site also hosts the application
downloads, user mailing lists, and discussion forums. The TM4 develop-
ment team actively provides technical support via email. System require-
ments for each application are detailed in the documentation included with
the download. The entire TM4 suite, including software, documentation,
and sample data, can be downloaded from http://www.tm4.org.

The TM4 suite was originally developed at The Institute for Genomic
Research, under the direction of principal investigator Dr. JohnQuackenbush.
Grants to Dr. Quackenbush for TM4 development were provided by The
National Cancer Institute, The National Science Foundation, The National
Heart, Lung and Blood Institute, and the NHLBI’s Programs for Genomics
Applications (PGA). Details regarding the ongoing development of TM4

http://sourceforge.net/projects/tm4
http://www.tm4.org
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and the teams responsible are available at the aforementioned SourceForge
site. Beyond the main TM4 development team, many organizations and
individuals have contributed to this open source project. Their contributions
and affiliations are listed in the documentation for each application. The
development of TM4 continues through collaborative efforts of groupsworld-
wide, but with work now concentrated at three primary sites: John Quacken-
bush and his group at the Dana‐Farber Cancer Institute and Harvard School
of Public Health; members of the Pathogen Functional Genomics Resource
Center’s microarray software group at The Institute for Genomic Research;
and Roger Bumgarner and his group at the University of Washington.
MADAM

Madam (also referred to as MADAM) is the data manager of TM4. It
handles the tasks of data entry, tracking, and reporting while serving as an
interface to a relational microarray database. Madam offers a series of data
entry pages, which provide the user an easy method to load the database
with information about their microarray experiments. Several report types
display vital information about various stages of the experiment and let the
user track the progress. Madam also houses several distinct tools with data
management functions.

In addition to these roles, Madam is also capable of generating output in
the MicroArray Gene Expression Markup Language (MAGE‐ML) format.
The submission of microarray data to public repositories is often required
when publishing the results of amicroarray study.MAGE‐ML is the standard
format formicroarray data exchange and submission. If the user populates the
database via the data entry pages correctly,Madam can generateMAGE‐ML
files that describe the entire microarray experiment. Two popular microarray
data repositories are ArrayExpress (Brazma et al., 2003, 2006) and Gene
Expression Omnibus (GEO; Barrett and Edgar, 2006; Edgar  et al., 2002).

Madam is distributed with a MIAME‐compliant relational database and
the MySQL database platform. The database is a critical component for the
operation of this software and nearly all of the functions of Madam involve
interactions with the database in some manner. Madam cannot function
without the database. Accordingly, Madam has features that assist the user
with MySQL database installation and administration, including the creation
of user accounts and Java Database Connectivity (JDBC) configuration.

Madam was designed with two‐channel spotted arrays in mind, but
efforts are currently underway to expand the interface and underlying
database to accommodate other platforms as well, including Affymetrix
GeneChips. Detailed operating instructions for this application can be
found in the program manual included with the software distribution.
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MAD: The Microarray Database

The database includes over 60 tables that store information about
nearly every aspect of the microarray experiment. Some tables track the
identities of the genes, clones, and oligonucleotides that compose spotted
arrays and the microtiter plates in which they are located. The slide
geometry is similarly important, including the number of spotted elements
and printing pens, spacing between blocks, and the identities of the plates
used. Each hybridization and the two probes used in each hybridization,
including their origins, are also tracked. Data from outside the microarray
laboratory are also stored, such as postimage analysis expression results in
raw and normalized forms. The database schema (Fig. 1) illustrates each of
the tables and the fields they contain, as well as the links between them.
FIG. 1. Schema of the microarray database, MAD. These tables are used extensively for

every function of Madam.
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Many of these fields store data required by the MIAME (Minimal
Information About a Microarray Experiment) specification (http://www.
mged.org/Workgroups/MIAME/miame.html). The MIAME specification
(Brazma et al., 2001) describes data that are needed to enable the interpre-
tation of the results of a microarray experiment in an unambiguous manner
and to possibly reproduce the experiment. It follows that Madam users
should try to enter information as completely and correctly as possible to
ensure that the MIAME requirements are met. More information about
MIAME can be found elsewhere in this volume.

Although the included database is built for the MySQL DBMS, other
relational databases can be used. Madam has been connected to both
Sybase and Oracle DBMS.

Madam Interface

The main Madam interface (Fig. 2) consists of four parts that are
contained within an application window. A menu bar runs across the top
of the window and provides access to the File, Entry, Tools, and Help
menus. The Help menu contains the Help Manual menu item, a detailed
and interlinked guide to the Madam interface, and all of the functions of
the application. The File, Entry, and Tools menus contain items relevant
to specific aspects of Madam and are described in subsequent sections.

The Navigation Panel is located on the left side of the interface. It
consists of a set of tabs: Entry, Edit, Report, Application, and MAGE‐ML.
These correspond to each of Madam’s major functions. Selecting a tab will
display relevant controls for that function in the area immediately below
the tabs.

The working panel is found on the right side of the interface. This is the
area where most of the activity is based; the content will change depend-
ing on the task the user is working on. It can display forms for data entry
and MAGE‐ML writing, HTML‐based reports, and some interfaces for
supplementary tools.

At the bottom of the interface is the event log. This area reports
important system messages, errors, and significant user activities and is
persistent through all the aspects of the software.

Data Entry and Editing Pages

The task of loading data into the microarray database is facilitated
through the use of data entry pages of Madam. Each page corresponds to
a specific entity, such as a labeled probe or a glass slide. The data entry
pages are active by default when Madam is started. To navigate here at any
time, the user can click on the Entry tab in the Navigation Panel. When the

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html
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Panel on the left side. The Working Panel, on the right, is currently displaying the

Hybridization entry form. The Event Log at the bottom records recent activity and displays

system messages.
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Entry tab is selected, the Navigation Panel will display a flowchart of sorts,
consisting of ordered buttons. Each of these buttons corresponds to one of
the data entry pages and the layout of the buttons mimics the typical order
in which each page will be used. Clicking on one of these buttons will bring
up the appropriate data entry page form in the Working Panel. Another
method to navigate to a data entry page is by selecting the desired page
from the list contained in the Entry menu of the main menu bar.

Every data entry page shares several common features designed to
simplify the process of filling out the form. All fields have a descriptive
label alongside them to indicate the role of the field. Each entry field
corresponds to a table and field combination in the database and this
information is sometimes valuable to the user. By holding the mouse
pointer over the field label for a moment and reading the tooltip, the user
can learn both the table and the field name used in the database to store
data entered in that part of the form.
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Real‐time validation is in effect and fields whose contents are not valid are
noted by a red color, either within the text field itself or by a red element next
to the input area of the fields. The user can view the reason by holding the
mouse pointer over the field for amoment and reading the tooltip. Somefields
are colored when the form is first displayed. This is because those fields are
required; because they do not have values by default, they fail the validation
for this reason.

Many of the drop‐down lists in Madam accept input from the user
either by clicking one of the entries of the list or by typing text into the
field. Typically these lists are populated with data directly from the data-
base and as such they can become quite long. The user can type a few
characters into the field and hit the enter key, thus removing all items from
the list that do not start with the characters already in the field.

At the bottom of every form is a text area for comments and Clear and
Enter buttons. The Enter button indicates that the user is finished entering
data in the form and wants to proceed to the next step. It is important to note
that theEnter buttonwill be disabled if any fields on the formare not currently
valid. Clicking the Enter button brings up a confirmation dialog. This dialog
displays a table with each field and the corresponding value noted. The user is
given the opportunity to review the contents before beginning the upload of
these data. If there are any errors, clicking the Cancel button will return the
user to the entry page. If everything is as desired, clicking the Submit button
will start the process of uploading data into thedatabase. Theprogress bar and
descriptive text messages in the dialog will indicate the status of this process.

The Study entry page captures information about a series of related
microarray hybridizations (experiments) and the variables and experimen-
tal parameters involved. The Probe Source page is used to upload details
about the biological source of a labeled probe used in hybridization. With
this data, the Probe page can be used to enter information describing the
probe itself, including the fluorescent dye used.

Describing the design of a microarray, from the geometry of the spots
to the identities of each array element, is perhaps the most complex data
entry task in Madam. This information is loaded using a page called Slide.
To simplify the task, there are three different methods that can be used to
create a new slide entry in the database. The user is free to choose the most
appropriate method.

Two probes and one slide can be selected to form hybridization. These
selections and details about the protocol and chemistry of the hybridization
can be entered using the Hybridization page. The next page, Scan, is ready
to record the settings used when the aforementioned slide is scanned. This
page also records information about the TIFF image files that are produced
by the scanner as output.
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The Expression page is useful for uploading the raw intensities and flags
calculated for each spot during the image analysis phase. This page requires a
.mev format expression file as input. Information about normalization and
data processing can be entered using the Analysis page, but the focus of this
page is changing as the storage requirements for normalized and analyzed
data evolve. Future releases of the software will reflect the current standards.

The New Organism button is set apart from the rest of the data entry
buttons, as it is not used commonly. TheNew Organism entry page appears
in a separate window when invoked and can be used to insert a new
organism into the database. Selecting the appropriate organism is impor-
tant when defining the source of a labeled probe or uploading plates using
the PCR Score tool, described later.

Once data are uploaded, it cannot be altered using these data entry
pages. Madam instead offers a set of data‐editing pages. These can be
accessed by clicking on the Edit tab of the Navigation Panel. Doing so will
bring up a set of list boxes where the user can select the name of the entity
to edit. Five options are available: Study, Probe Source, Probe, Slide, and
Experiment. Selecting a name and clicking the arrow next to it will display a
data‐editing form in the Working Panel. These forms function in the same
manner as the data entry forms, including real‐time validation. The main
difference is the replacement of the Enter button with the Edit button.
Clicking Edit will bring up a confirmation dialog nearly identical to the data
edit confirmation. Only the fields that have changed will be displayed and
both the current and original values will be shown alongside the field
names. Clicking the Submit button in this dialog will begin the process of
updating the database with these edited data.
Report Generation

Through the reporting interface of Madam, a user can view and export
HTML‐based reports that encapsulate vital details about entities that were
uploaded using the data entry pages. The user can click on the Report tab
of the Navigation Panel at any time to bring up the report selection
interface. The Navigation Panel will display five sets of controls for select-
ing study, experiment, slide, slide type, or probe reports. For each type
there is a drop‐down list and a View button. To generate a report of a given
type, the user should select the appropriate entity identifier from the drop‐
down list and click the View button. The selected report is shown in the
Working Panel.

Each time a report is generated its name will be added to a list near the
bottom of the Navigation Panel. This list can be used to track the history of
viewed reports and quickly recall one by clicking on the name. At the bottom
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of the panel there are four buttons. The Save button can be used to output the
currently visible report as an HTML file for later viewing in a web browser.
The Print and Print Preview buttons both send the visible report to a printer;
the latter also shows an image approximating the report’s printed appearance.
Finally, the Clear button resets the entire report interface.
MAGE‐ML Writing

MAGE‐ML is a standardized XML format for microarray data that has
gained wide acceptance in the community. It can be used to distribute
microarray descriptions and results to colleagues or for submissions to
public microarray databases. Submitting microarray data to public data-
bases such as ArrayExpress or GEO is important when publishing the
results of microarray experiments, thus giving others the ability to view
your data sets and potentially reproduce the results.

Madam provides a means of writing MAGE‐ML files. To do this
successfully, the user must first make sure all their data have been entered
accurately and as completely as possible using the data entry pages. Miss-
ing data can cause problems in the MAGE‐ML files that are produced. The
MIAME‐compliant database that is associated with Madam is capable of
storing the necessary information to produce complete MAGE‐ML files.

The MAGE‐ML interface is invoked by clicking on theMAGE‐ML tab
in the Navigation Panel. The panel will then display a tree containing the
various objects that can be encoded into the MAGE‐ML format. Selecting
an object from the tree will bring up a form in the Working Panel that is
specific for each object type. The user can fill in this form in the same
manner as the data entry pages. Once all the fields pass the validation test,
the MAGE‐ML button at the bottom of the form can be clicked, thus
starting the file writing process.

Each object that can be written requires the user to describe the people
involved with the project, from the experiment itself to the file generation
and submission. These people can be selected from a list and labeled with a
role. The list is populated by using the Preference menu item located in the
File menu. Names, organizations, and contact information for all the req-
uisite people can be stored through this interface and retrieved from within
the MAGE‐ML writing forms.

Two chapters in this volume describe in more detail the importance of
MAGE‐ML and how it is used in the context of submissions to public
microarray databases. Further information about the MAGE‐ML object
model and file format can be found at http://www.mged.org/Workgroups/
MAGE/mage.html.

http://www.mged.org/Workgroups/MAGE/mage.html
http://www.mged.org/Workgroups/MAGE/mage.html
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Related Tools

Madam serves as a home for several distinct tools that are involved for
some data entry, retrieval, and management tasks. Although each part can
operate outside the context of Madam, there are several advantages when
they are bundled together. Perhaps the most important is the utility of
having Madam regulate the database administration tasks. As such, it is not
necessary for any of these smaller tools to try to establish a new database
connection or to start and stop the database software. Having all the tools
accessible from one location is also convenient for users and facilitates
interactivity between each piece.

These six tools are accessible from the Application tab of the main navi-
gation pane. The user can click the button that corresponds to the desired tool
to launch it. An alternative is to use the Toolsmenu from the main menu bar
and select the appropriate tool from the list. Each of these tools included with
Madam is described.

ExpressConverter handles file conversion operations for the TM4 suite.
It accepts a variety of common scanner input formats, including GenePix
and Agilent, and converts them to the .mev format. For other file types,
ExpressConverter offers a customizable file converter that allows the user to
describe their tabular text format and then convert files of that type to .mev.
Annotation files can also be created using this customized converter to
complement the expression files.

ExptDesigner is a tool that can help plan a series of microarray hybri-
dizations (Ayroles and Gibson, 2006; Neal and Westwood, 2006). Loop and
reference experiment designs are supported. The user begins by selecting
the probes from the database that are involved in these hybridizations.
These probes will be available for selection in the design view panel, an
interface that consists of two visual tools. Users can create hybridization by
drawing a directional arrow from one probe to the other in the network
view or by clicking a square corresponding to the two desired probes in the
matrix view. Each hybridization is then added to a list that can be exported.

PCR Score is an application designed to create and manage data asso-
ciated with the microtiter plates used for microarrays (Eads et al., 2006).
Users can upload information describing the contents of 96‐well plates,
including those containing oligonucleotides and PCR products. In the latter
case, a scoring interface allows the user to indicate the success of the PCR
reactions. The 96‐well plates can then be combined into the 384‐well plates
often used for array printing.

Mabcos is a microarray bar‐coding system. This application prints bar
codes for several types of laboratory objects, including freezers and micro-
titer plates. Series of bar codes can be scanned, tracking the probes, plates,
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or slides involved in an experiment. Bar‐code scanning helps ensure that
the microarray printing is performed correctly. Data can be transferred
from a traditional scanner or a PalmOS‐based device.

Miner is a tool that writes .mev format expression files from data in the
database. The user can specify an Experiment Name that corresponds to
the hybridization for which to retrieve data. A filter based on PCR results
and a buffering option for partial files are available.

TheQueryWindow is an interface for submitting free‐form SQL queries
directly to the database. This supplements the data entry, editing, and
reporting functions ofMadam by providing a finer level of control over data.
Users who are familiar with the schema of the database and the SQL syntax
can perform a wide range of operations, including insertions and deletions.
Query results and the corresponding SQL can be saved to text files.

Administration Tools

The administration aspects of Madam are handled by a related applica-
tion called the Madam Administrator. This program can be launched from
the same directory as the main Madam executable. Some common admin-
istrative tasks that can be performed include the creation or removal of
local array databases, changing the JDBC connection settings used by
Madam to communicate with the database, and changing the values that
appear in some parts of Madam’s data entry pages and MAGE‐ML forms.
Details of these operations are found in the program manual included with
the Madam distribution.
Spotfinder

Image processing is a key component of the microarray experiment
(Minor, 2006; Timlin, 2006). Each two‐color spotted microarray slide will
typically produce two gray‐scale 16‐bit images in TIFF format. Each image
corresponds to a single labeling dye such that the two images complement
each other spatially and need to be processed in parallel. The microarray
TIFF image is the end product of the portions of the microarray experiment
conducted in the laboratory.

Despite being digital media, in essence, and storing all necessary infor-
mation about the conducted experiment, the image file is not a data set ready
for data analysis (Minor, 2006). The goal of image analysis is to digitize
microarray image files and produce output data sets for each slide. These
data sets can then be normalized and used as input for clustering, visualiza-
tion, and statistical analysis tools. The image processing software itself is a
specialized tool that provides parallel analysis of microarray TIFF images.
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Critical steps include the definition and digitization of spots, calculation of
local background, and reporting intensities into output data files.
Image Analysis Goals

The challenge is spot detection and digitization or extraction of intensities.
The spots on an array correspond to the genes printed on the slide during the
printing step. The hybridization procedure attaches two fluorescent markers
on the same target for every spot. After slide scanning at two different
excitation wavelengths, two separate images are generated, one for each
fluorescent marker. It is commonly accepted to refer to these two images
and data extracted from them as the two channels of the microarray experi-
ment. The fluorescent dye signal is expected to be proportional to the overall
efficiency of the hybridization as well as the gene expression level. By mea-
suring the integrated signals from both dyes on every spot, we are able to
approximate the level of gene expression for both conditions of hybridization.

Two main problems must be addressed before spot intensities can be
measured: spots have to be localized spatially on the image and a local
background value has to be estimated for every spot. The problem of individ-
ual spot locations cannot be solved globally for the entire image. Rather, a
good approach is to proceed locally by splitting the image area into subarrays,
each of which consists of a group of spots or even individual spots.

Background correction of the measured microarray spot intensities is a
procedure used to derive true values from raw experimental data. This
correction aims to remove the additive components from multiple sources:
substrate background, cross‐talk from the other channel dye, nonspecific
hybridization response, and so on. Because a spotted microarray image has
a nonuniform background distribution over the whole image area, local
background correction becomes highly desirable. It is commonly accepted
that the background estimated locally for every spot is the best method, if
correction is desired. Background correction normally results in expansion
of the dynamic range of data for both intensities and ratios; the outcome is
more prominent for low‐intensity spots and almost invisible for highly
expressed genes. It should be viewed as favorable data transformation, as
it increases resolution on the expression ratio scale and makes it easier to
distinguish the differences between genes with close expression ratios.

Background correction may result in some negative intensity values.
This can occur when the local background estimate is larger than the spot
intensity, as it is for some weak spots (‘‘black holes’’). These spots can be
filtered out automatically by applying the signal‐to‐noise ratio criteria.
Realistically, such filtering will not result in data loss, as the weak spots
cannot be considered as reliable data points in downstream analysis.
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Approaches

There are a few approaches to solving the spot location problem. All of
them utilize a known geometrical pattern of printed arrays; arrays typically
consist of subgrids arranged in meta‐rows and meta‐columns. The subgrids
themselves consist of the spots that form rows and columns in a rectan-
gular pattern, allowing simple description by a few parameters. A less
common geometry of a hexagonal or ‘‘orange packing’’ layout of spots is
also possible and can be described by a small number of parameters. Using
this, one method of determining spot locations is to apply a predefined grid
to the image that can be aligned manually or automatically in subsequent
steps. A user‐assisted semiautomatic grid alignment is also an option.
Another solution is not to use a grid explicitly, but apply an automatic or
semiautomatic procedure for spot positioning based on the geometric
pattern of the printed spots. Two examples of this include the spot‐finding
procedure based on seeded region growing algorithm (Yang et al., 2002b)
or Fourier transform based procedure (Gaidukevitch et al., 2000).

There are notmanyways to estimate the local background around a spot.
The most popular method is based on the assumption that the background
surrounding a spot is the same as the background in the spot itself. Using the
rectangular area around the spot for local background estimation by this
method is possible if a grid has been defined. The only caveat of this method
is the possible overestimation of the background when the pixels closest to
the spot are considered part of the background. This systematic bias can be
avoided by not involving pixels from the area immediately surrounding the
spot in the background calculation. While this method, with some modifica-
tions, is widely used bymany image analysis tools, one can argue that the real
background in the spot area may stem from the nonspecific hybridization or
nonlabel fluorescence signal from the target area. Measurement of nonhy-
bridized or nondye hybridized sites has been suggested as an experimental
method for the background estimate (Yang et al., 2001) and, on occasion, has
been used effectively in practice (Johnston et al., 2004).

Spotfinder 3

Since its first release in 1999, Spotfinder has passed through many up-
grades and version changes. Spotfinder 3.0, released in 2004, was a signifi-
cant redesign of the traditional architecture: a multiplatform application
allowing the analysis of arrays containing more than two dyes. Currently,
Spotfinder executables are available for three major desktop platforms:
Windows, Linux, and Mac OSX. Due to the large size of the TIFF images
that are usually analyzed (often 20 MB or more), it is recommended that
Spotfinder be run on computers with at least 256 MB of RAM and a CPU



148 DNA microarrays, part B [9]
clock speed of at least at 800 MHz. A 16‐MB video card (32þ is better) is
strongly desirable for Windows desktops. The latest release, Spotfinder
3.1.0, accepts both 8‐ and 16‐bit TIFF images, stored in separate files or
one multi‐TIFF image file. Data output is generated as tab‐delimited text
files (.mev) and platform‐independent binary files for grids (.sfg) and whole
raw data sets (.sfd).

Spotfinder has an intuitive graphical user interface (GUI)with amenu bar
on top, dialog tool box on the lower left side, and a number of tab pages in the
center of the main program window (Fig. 3). The menu bar contains Image,
Grid, Data, and Settings menus. The collection of tabs gives the user access
to the pages: General, Overlay, Analysis, RI plot, Data, and QC view. The
Analysis page is the most functionally rich element of the Spotfinder GUI; all
user activities in Spotfinder related to grid design and alignment are focused
on theAnalysis page. The dialog tool box is a control for alternative selection
of several dialogs. Gridding and Processing has the controls for setting the
parameters for automatic grid adjustment and choosing a segmentationmeth-
od. The Post‐Processing dialog can be used for QC filter settings and for
turning on/off the background correction algorithm. The Cell Editor dialog
controls can be used to activate theCell Editor for interactive cell selection on
FIG. 3. Spotfinder graphical user interface.
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the Analysis page, RI plot page, or Data page. When active, the Cell Editor
displays the selected spot with its cell shown. TheCell Editor also can be used
to resize and move cells, and to reprocess the selected spot.

General Steps

The following sequence is typical for a grid‐based spot finding procedure
using a local background calculationmethod over the area surrounding each
spot.

Grid Composition

Designing and constructing a new grid requires the entry of several slide‐
specific parameters that are usually determined when the slide is printed.
The user can get this information from the settings log file of the printing
robot or by making measurements directly on the image file using Spot-
finder. Normally the spots on the array are printed in blocks (sometimes
referred to as grids or subgrids). This discussion deals with rectangular
packed grids. The blocks are organized into meta‐rows, which are rows of
grids, andmeta‐columns, or columns of grids. The number of meta‐rows and
meta‐columns on the array is defined by the number of the printing pins in
the X and Y dimensions. Note that all spots in a single block are printed by
an individual pin. The set of parameters needed for grid construction include
the number of pins in X dimension (pinX), the number of pins in Y dimen-
sion (pinY), spot spacing (distance between spots, measured in pixels) in
both X and Y dimensions, and the number of rows and columns in every
block. To measure these parameters on screen, the user can switch to the
Analysis Page and use the mouse pointer to navigate it to any spot on array,
making a reading of the mouse cursor coordinates at the bottom of the
program window. The initial spot spacing parameter, which defines the
whole grid size, can be set with significant tolerance. As a result, blocks
may be smaller or larger than the array of spots that they cover; this can be
ignored for the moment.

Grid Expansion and Shrinking

The first step in grid alignment is to move the whole grid set to a desired
position. Thebestway to place the entire grid is to keep track of the upper left‐
most grid at first and use it as an alignment indicator.After the upper left point
of this grid is positioned in place, the spot spacing can be adjusted to fit the
correct grid size. It can be done by applying grid expand, sequentially increas-
ing or decreasing the spot size until each rectangle of the grid has a spot
centered within. The suggested method is to watch only the upper left‐most
grid when applying this procedure to all subgrids on the array.
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Ideally, all pins in the print head are evenly spaced; hence, all printed
blocks should have a consistent offset (George, 2006). However, it is often
found the pins are slightly bent; as a result, the blocks of spots are mis-
aligned relative to each other. After positioning and sizing the upper left‐
most subgrid we can proceed with adjusting the position of the other
subgrids. The automatic grid adjustment procedure can be used to itera-
tively place the remaining subgrids. This procedure uses a mask, of a size
no less than the typical spot size, to calculate the target function for every
block. This mask is assigned to every spot cell and centered. The target
function is defined as the integral of all the pixels in the spot cells under all
the masks in the grid. Every block is moved in small steps to a maximum of
one cell size up, down, left, and right. At every step the integral is calculat-
ed and stored as an element of a two‐dimensional (2D) matrix. After this
has been completed, the 2D matrix is searched for the maximum calculated
integral value. The subgrid is then moved to the position corresponding to
that maximum value. This automatic procedure requires that three condi-
tions are met. First, every subgrid has to be set correctly in size and with the
correct row and column numbers. Second, each subgrid has to be aligned
roughly, within a tolerance of one cell size. Finally, at least half of the spots
in the block should have significant signal (i.e., strong spots) to provide
reliable landmarks to position the subgrid correctly. It is important to note
that this procedure may give unsatisfactory results for subgrids with empty
rows or columns on the edges, that is, the first and last columns or rows.
The automatic grid adjustment can be applied repeatedly, as sometimes it
is necessary to use the procedure a few times to reach sufficient grid
alignment. If repeated applications do not produce satisfactory results,
the only solution is to align the grid manually. The user, in this case, can
use the mouse or keyboard arrow keys to position each subgrid accurately.

Spot Detection

Spot detection, also referred as spot finding or segmentation, is the next
key step of image analysis. The goal of spot detection is to separate spot
pixels from background ones. The image has to be segmented or divided in
two subsets: one including the signal or spot pixels and the other consisting
of the background pixels. A number of methods are widely used for the
segmentation of microarray image spots. It has been shown (Yang et al.,
2001) that the choice of segmentation method applied has no significant
effect on the ultimate results of image analysis. All segmentation methods
used in microarray image processing can be categorized as being either
histogram or shape based. The histogram‐based methods do not take into
account the spatial information about the analyzed spot, such as spot
shape. Instead, they apply a sorting algorithm to the whole set of pixels
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in the cell and set a threshold that separates signal and background pixels
based only on the values of the pixels. Auxiliary input parameters, such as
spot size and spot pixel dynamic range, can be used to facilitate the
histogram segmentation. In contrast, the shape analysis‐based methods
mainly rely on spatial information of the image; they look primarily on
how pixels with high values are grouped together spatially. A few software
tools use a met hod based on a seeded grow ing algor ithm ( Yang et al. , 2001 ,
2002); this is rela ted to the shape ‐ based meth ods.

The original segmentation method implemented in Spotfinder is a
histogram‐based algorithm that expects only a single parameter from the user:
estimated spot size. This method provides good results for images with a low
variation in spot size. However, images can have significant spot size variation
in certain conditions. One cause could be the variation in temperature and
humidity during the slide printing. Spotfinder introduced a segmentationmeth-
od based on the Otsu algorithm (Liao et al., 2001; Otsu, 1979) to address this
problem.Thismethod requires the user to input two parameters:minimumand
maximum spot size on the array. The Otsu method runs through the original
histogram of pixel values and places a threshold dividing the area into two
groups—background and signal. The threshold returned by this method max-
imizes between‐group variance. A third segmentation option in Spotfinder is a
manual method in which the user interactively applies a predefined circle as
mask for spot segmentation.

Spot Digitizing

Following the detection of spot boundaries by the segmentation meth-
od, the next step in image analysis is spot quantitation or digitizing. During
this stage the pixels inside the spot are counted and added together to
calculate the integrated intensity of each spot. The spot mean and median
can also be determined.

The important issue of pixel saturation is addressed at this step.Due to the
natural limitation of the dynamic range, the value of each pixel cannot exceed
the 16‐bit maximum, which is 65,536. If the input fluorescence signal is too
high and exceeds the linear range, the corresponding pixel is assigned the
maximum possible value of 65,536. In principle, the problem can be solved by
rescanning the slide with different settings for sensitivity or scanner detector
power. Doing so can bring all pixel values to a lower range but also may set
low‐intensity spots at the background level. Alternatively, if the percentage of
saturated pixels is not too high, they can just be ignored and a rescan of the
slide can be avoided. The check for saturated pixels is conducted when pixels
inside a spot are analyzed. If any pixel in the spot is saturated at least in one
channel it will be excluded, that is, removed from the spot data set in all
channels. All reported values for the spots—mean, medians, integrated
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intensities, and their standard deviations—are computed after the saturated
pixels are removed. As a measure of this correction the resulting saturation
factor is reported. The saturation factor is defined as the ratio of the non‐
saturated pixels over the original number of pixels in the spot.

Local Background Correction

Because the direct measurement of spot background is not feasible, the
local background estimate is based on some assumption. The simplest way is
to assume that the background in the area surrounding a spot is the same as
inside the spot itself. The local background can then be measured by analyz-
ing the pixels just outside the spot boundary. Normally the local background
is estimated by the median of these exterior pixels. To apply background
correction to integrated intensities, this value must be multiplied by the spot
area and subtracted from the raw integral intensity.

Reported Parameters

Spotfinder reports a number of parameters for each spot that is detected:
integrated intensity, mean, median, total background (integral), back-
ground median, background standard deviation, integrated intensity stan-
dard deviation, mean standard deviation, median standard deviation, flag,
QC score, and p value. These parameters are reported for each channel in
the spot; if it is a two‐dye array there will be two integrated intensities,
etc. Some parameters are reported only once for the spot, independent of
the number of channels. These include spot area, saturation factor, and total
QC score.

Quality Control Parameters

The QC procedure, which analyzes and reports QC parameters, is an
important part of any image processing software. Spotfinder provides a num-
ber of QC parameters: total and individual channel spot QC scores, flags
assigned by theQCfilter, and p values from a two sample t test. Flags assigned
to each spot by the QC filter may change based on the QC filter settings. QC
scores and p values, however, are independent from the QC filter settings.

The QC filter is enabled by default and performs spot shape and signal‐
to‐noise ratio analysis based on the user‐set parameters. The spot shape is
analyzed under the assumption that the ideal spot has to be similar in shape
to a circle. Real spots may have a less circular shape that can become even
more distorted if the detected spot has originated from background fluc-
tuations rather than a true target. The ratio of spot area to spot perimeter is
calculated to check if it is significantly different from the ratio for a perfect
circle of equal size. If the spot ratio deviates from that of the circle by more
than 20% it can be considered a badly shaped spot. The signal‐to‐noise
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ratio check is based on the selected pixel value threshold. The threshold
can be written as

T ¼ aMþ bSD; ð1Þ
where M is local background median, SD is background standard deviation,
and parameters � and � are coefficients and can have values in the range of
[0, 4]. The default settings are �¼ 1, �¼ 1. The spot is considered strong and
will pass this test if more than 50% of the pixels in the spot are higher than
the selected threshold. Any spot that fails on at least one of the criteria will
be flagged as a ‘‘bad’’ spot. Spots that pass these tests are subject to further
scrutiny. The number of pixels in these spots is counted (spot area) and
different warning flags are assigned to spots smaller than 50 and 30 pixels.
The user may choose to disable QC filtering, ending up with an output data
set that has every detected spot flagged as ‘‘good.’’

QC scores will be calculated and reported by Spotfinder, even if the QC
filter is disabled by the user. The QC score has a value between 0 and 1;
higher scores indicate better spot quality. The total QC score for each spot
is the mean of QC scores for that spot from all channels. The QC score for
each channel is calculated as the geometric mean of the shape and the
signal‐to‐noise QC scores for the spot. The shape QC score is calculated in
the same way as it was described earlier, but also including normalization
to the spot size and scaling into the range [0, 1]. The signal‐to‐noise QC
score is defined as the portion of pixels in spot above T, where T is defined
by Eq. (1) with M ¼ 2 and SD ¼ 0.

Visualization of Quality Controls in Spotfinder Views

Spotfinder provides a set of visual displays for graphical presentation of
QC results. The user can navigate to them using the GUI tabs Analysis,
RI plot, Data, and QC view.

As a major hub of the Spotfinder interface, the Analysis page also
graphically displays the immediate results of image processing—the con-
tours of each detected spot are painted in one of two colors depending on
the flag assigned by the QC filter: magenta for good flags (A, B, C, and S)
or green for bad flags (X, Y). The shape and the location of the contour
inside every cell give the user immediate visual information about the
alignment of the cell and the success of spot detection (Fig. 4).

The Spotfinder RI plot page (Fig. 5) with ‘‘diamond plot’’ lines (Sharov
et al., 2004) can be used for quick visual examination of the slide’s ratio and
signal level dynamic range, correctness of background detection, and satu-
ration correction. A ratio‐intensity plot (RI plot), widely used for presen-
tation of microarray data, is the log2(MA/MB) plotted as function of
log2(MA*MB), where MA and MB are spot means in channel A and B,
respectively. Diamond lines indicate the theoretical limits for spots with



FIG. 4. Analysis page shown after whole slide processing is complete. Contour lines are

colored red for good spots and green for bad ones.
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extreme intensities: completely saturated spots at least in one channel are
limited by the right side of the RI plot diamond and spots with zero
intensity in at least one channel are limited by the left side of the RI plot
diamond. Correspondingly, the left‐most tip of the diamond is the location
of spots in which both channels produce zero intensities, and the right‐most
tip of the RI plot is the location of spots with complete saturation in both
channels. None of the spots on the array should be expected outside of the
RI plot diamond. In essence, the RI plot diamond lines are the physical
limits for bit‐depth limitations in one channel on the right side of diamond
and zero measured signal on the left side of the diamond.

TheQCview page allows the user to view the subgrids with individual cell
rectangles colored according to a four‐color scheme. Three colors—yellow,
blue, and gray—are used to indicate spots with measured differential expres-
sion levels above, below, and between two chosen preset levels, respectively.
These two levels of log2(ratio) are preset to 1 and –1, by default, to display
those genes that are up‐ or downregulated by a factor of two or more in blue
and yellow colors, and coloring genes that fall within that range as gray.
They can be changed by the user to visualize the interesting expression ratio



FIG. 5. RI plot view in Spotfinder showing the ratio‐intensity log graph for thewhole analyzed
slide. The four lines forming a diamond are the limits of the log‐ratio plot. Red and blue lines are

the full saturation limits lines in one channel, whereas the other channel has a valid number.

Yellow and green lines are the zero values limit lines at least in one channel.
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profile on the slide. For instance, if the user is looking for fourfold up and
downregulated genes, the values of 2 and –2 should be entered on theQCview
page. The color green is used for bad or undetected spots. Colored cells can be
displayed on QC view in their true positions in the subgrid or combined
together in blocks. In the latter method the area of rectangular blocks is
proportional to the number of cells of a certain color on the subgrid. Relative
amounts of bad/undetected color cells in subgrids are expected to be approxi-
mately the same; therefore, any noticeable increase of green color areas may
indicate poor alignment of that particular subgrid.

Spotfinder Protocol Description

Program Settings

Check the program settings and change them based on the actual slide
type; if the number of channels is changed, it is necessary to close and restart
the program. The user also may change the visualization scale factor
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depending on the image size and available video card memory; it is recom-
mended to keep default settings for the initial use. Use themenu bar to go to
Settings!General Settings. Make sure that the Channel Number is set to 2
for a two‐dye experiment and that the Scale Factor also equals 2.

Image Loading

To load two TIFF images stored in distinct files, select both TIFF files at
once by holding the keyboard Ctrl key, clicking on one file and then on the
other one. For loading TIFF images stored in the same file, select only that
one file to load. Spotfinder automatically detects if the selected file is
encoded in 8‐ or 16‐bit format. The file names are sorted in alphabetic
order for placement in channels A and B for a two‐color array, and A, B, C,
and D for a four‐color array. The output data file columns will follow the
same order. The user may swap the images in channels A and B to change
the order if necessary.

Loading Existing Grid from File

A previously saved grid can be retrieved from the SFG file by clicking
on the Load grid from file option from the Grid menu. The Spotfinder
focus should be switched to the Analysis page by clicking the Analysis tab.
This page is where the user will interact with Spotfinder for grid construc-
tion, alignment, movement, and processing tasks. If any arrays of this same
type have been analyzed previously, load the grid file used previously for
this slide type. The grid would likely involve only a position alignment, as it
has the correct grid size but not necessarily the correct location.

Grid Construction

New array types require the construction of a new grid. The Spotfinder
grid design assumes that the slide was printed by using rectangular pin
(pen) settings. Every distinctive subgrid or block on the slide is printed by
one dedicated pin. The pins are arranged in rectangular pattern such that
the subgrids form meta‐rows and meta‐columns. To design a new grid, go
to the menu Grid!Compose Grid. This will bring up the Grid Design
dialog. In this dialog the user is asked to input eight parameters describing
the geometry of the grid. These parameters are the numbers of meta‐rows
and meta‐columns, the distance between neighboring pins in horizontal
(PinX) and vertical (PinY) dimensions, the number of rows and columns in
each subgrid, and the spot spacing in the horizontal and vertical dimen-
sions. These parameters can often be retrieved from the slide print specifi-
cation used by the robot that printed this slide. If this specification is not
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available, all parameters can be evaluated interactively on the Spotfinder
Analysis Page by measuring relative distances with the mouse pointer.
All distances are expressed in image pixels. Each of the subgrids can be
moved, rotated, expanded, or shrunk interactively to fit the spots arrange-
ments on an image. These operations can also be applied to all the subgrids
simultaneously.

1. Grid movement.Move the whole grid set to align the upper left‐most
spot with the top left cell of the first (upper left) subgrid. To do this, click the
right mouse button while the mouse pointer is not inside any grid. The All
Gridsmenuwill be activated. ChooseMoveAll from theAllGridsmenu and
move the mouse slowly or use keyboard arrows keys to move all subgrids
simultaneously into the appropriate position.When the placement is correct,
terminate the Move mode by pressing the End key on the keyboard or by
clicking the left mouse button. The user can repeat this action as many times
as is necessary. Undo/redo grid commands are available for convenience.

2. Grid expansion. If the number of rows and columns is set correctly
but the subgrids do not fit the image, it may be necessary to expand or
shrink the subgrids. Bring up the All Grids menu (as described earlier) and
choose the Expand All command. By using the keyboard arrow keys, the
user can expand or shrink all subgrids together, either horizontally or
vertically. Both the expansion and the shrinking operations are performed
while keeping the left and top edges of each grid fixed. Only the right and
bottom edges of each subgrid are moved when these operations are
performed.

3. Changing cell size in grid. If it is necessary, the cell size can be adjusted
by selecting Cell Size All from the All Grids menu. Use the keyboard arrow
keys to increase or decrease cell size in the vertical and horizontal dimensions.
One arrow key press corresponds to a cell size increase or decrease by one
pixel. Terminate theCell SizeAllmodewhenfinished by pressing theEndkey
on the keyboardorby clicking the leftmousebutton.When increasing cell size
try to avoid touching the spots by growing neighboring cells. As long as this
touching can be avoided, overlapping of the adjacent cells is actually safe and
desirable because it increases the area around each spot for local background
calculation.

4. Grid rotation. Spotfinder provides the ability to rotate subgrids
for better alignment of images that have an angular offset. Activate this
command mode by choosing Rotate All from All Grids Menu and use the
up and down arrow keys on the keyboard to rotate all grids synchronously.
The rotation of each subgrid is performed around its top left corner. It is
better to use only the upper left‐most subgrid as an indicator of alignment.
The rest of the subgrids are expected to have the same angular offset
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due to the nature of the parallel arrangement of the pins during slide
printing.

The user can repeat steps 1–4 in any sequence any number of times for all
subgrids or any single selected subgrid to improve grid adjustment. Make
sure at this point to use only the first subgrid (top left) as an indicator of
proper grid size settings when the ALL Grid command is used.

Grid Adjustment

After setting the correct grid size the top left subgrid should be aligned and
positioned correctly while the others likely have some positional offset due to
the natural bending of the printing pins. These subgrids can be adjusted
manually or by using the automatic procedure. The automatic procedure
requires the user to provide an estimated spot size. Spot size is used to detect
the location of the brightest spots that serve as landmark targets in each
subgrid. The automatic grid adjustment procedure can be applied as many
times as needed; in many situations it comes to satisfactory grid alignment
after a few applications. However, if it fails to provide a good grid adjustment
the user must adjust the grid manually by using the mouse and keyboard
arrow keys.Manual subgrid position adjustment is performed bymoving each
grid individually with themouse or keyboard arrow keyswhile inMovemode,
which is activated from theMove command of theGridmenu.

Grid Processing

Select the segmentation method and input all required parameters.
When setting minimum and maximum spot sizes for the Otsu method the
rule of thumb is to set the range of spot sizes as close as possible to the
visible range on the slide. However, range minimization can be potentially
dangerous, as it may cause instability in the Otsu method iteration proce-
dure. The actual spot size range on the slide can be measured interactively
with the help of the mouse pointer on theAnalysis Page. For theHistogram
method, set the spot size slightly higher than what is expected. To start grid
processing press the Process All button on the Gridding and Processing
pane. Spot detection, segmentation, and local background correction steps
are all performed during processing.

Grid Alignment Examination

Checking theContour check box on theAnalysis Pagewill show the spot
boundaries. After the processing is completed, the user is able to see the
contours of the spots colored in green for bad spots or magenta for good
spots. If green contours appear in cells with spots that otherwise look good,
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this may indicate misalignment or wrong settings for the segmentation
method used. Go to the QC View Page for subgrid alignment checking.
Visually compare the relative size of the green area on different subgrids in
the array. They should be approximately the same unless the array was
designed intentionally with some special subgrids (e.g., all replicates are
printed in one subgrid). Any subgrid with a disproportionately large green
area should be checked for misalignment. If the alignment is shown to be
correct, the higher number of bad spots in this subgrid can be considered
indicative of the low expression of genes printed in this subgrid.
Postprocess Data Tuning

The default QC filter operation is the last step of processing. The user
can change QC filter settings in the Post‐processing dialog without having
to reprocess the slide. Switch to the Post‐processing dialog to enter new QC
filter settings. Background correction can be disabled or enabled by using
the check box of this dialog. The QC filter can be set more or less stringent
by changing the cutoff threshold defined by the signal‐to‐noise ratio (see
earlier discussion). By varying parameters � and � of Eq. (1) the user can
set threshold T at the level where a reasonable distinction between weak
spots and strong spots, produced by noise, is visible on the Analysis page.
After making the desired changes, press the button Update Changes. The
result can be observed in the Analysis Page, on the spreadsheet data table
of the Data page and on the RI plot page.
Annotation Import

A variety of annotation file formats (.ann, .dat, .gal) can be loaded
by Spotfinder for the purposes of displaying annotation alongside expres-
sion data and to map to an output data file. At first the user needs to
construct or load the grid in Spotfinder to ensure correct mapping. To load
an annotation file, go to the main menu bar and select Data ! Load
Annotation File; the selected file will be loaded and checked for the correct
total number of rows (spots). Once loaded, the annotation can be viewed
on the Data page or on the status bar at the bottom of the Spotfinder GUI
for spots selected on the Analysis page. To map annotation to the data set
in Spotfinder and in any future .mev files, go to the main menu and select
Data ! Set UID from annotation or Data ! Set DBID from annotation.
This will change default UIDs in the MEV data tab of the Data page and
create an additional DBID column with DBIDs from the annotation file.
The new mapping will be stored in any .mev files generated by Spotfinder
in the next step.
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Report Output Data

To save expression data in a .mev file, go to the menu Data! Save Data
to MEV file and enter a file name in the Save File dialog. This creates a tab‐
delimited data file that is used by all software tools in the TM4 suite. To save
grid information in a binary, platform‐independent SFG file (Spotfinder Grid
file), go to the menuGrid! Save Grid in File and input the grid file name in
the dialog. The grid and all raw data can also be saved in a platform‐
independent, binary data SFD file (Spotfinder Data file). To create an SFD
file, go to the menuData! Save Data to SFD file; the file save dialog will ask
for a file name to save as. The SFD file stores all processed raw data and spot
contour vectors needed for graphical representation of the contours on the
Spotfinder Analysis page in a later session. The SFD file can be used later by
any user who needs to view the results with the RI plot and spot contours; the
postprocessing operations can be applied to SFD data to generate a new .mev
file for the same data set but with different QC filter settings.

MIDAS

Microarray analysis is a comparative analysis. In a two‐color experi-
ment, cDNA or mRNA abundances are compared between two samples.
During a microarray experiment, the different samples are dyed with Cy3
(green) and Cy5 (red) fluorophores and are cohybridized to a glass slide.
After scanning the slide and performing an image‐processing procedure,
the intensities for each spot, for both green and red channels, are recorded.

An underlying assumption in microarray analysis is that differences
between the two intensities for each spot faithfully reflect the cDNA or
mRNAabundance differences between the two samples. This is the basis for
investigating cDNA or mRNA abundance differences in tens of thousands
of spots in a microarray slide simultaneously by clustering using pattern
recognition or other data mining techniques. This assumption, however, is
compromised by all kinds of errors or biases introduced during the experi-
ment and image processing. Predicting the bias, adjusting the raw intensities
for each spot accordingly so that they better reflect the true picture about the
cDNA/mRNAabundances is a crucial data preprocessing step before down-
stream analysis can be carried out. It is also important to remove those spots
within an array with ‘‘unacceptable’’ intensities, as defined by varying cri-
teria. These data preprocessing steps are calledNormalization and Filtering.
Other normalization and filtering methods are found elsewhere (Ayroles
and Gi bson, 2006 ; Gol lub an d Sherloc k, 2006; Reime rs a nd Carey, 2006 ).

Midas (also calledMIDAS) is the data normalization and filtering tool in
the TM4 microarray data analysis software suite. It contains a number of
normalization and filteringmodules, as well as significant gene identification
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modules. The software provides a user‐friendly graphical scripting feature,
which allows these modules to be pipelined together to form an analysis
workflow. Midas has a strong graphing feature for users to investigate the
analysis results. A graphical PDF analysis report can also be generated by
user’s request.
Building a Pipeline

A typical Midas data analysis pipeline is composed of three steps:
(1) reading raw data input files, (2) defining the analysis workflow by
queuing one or more analysis modules, and (3) writing processed data
output files.

After an analysis pipeline is defined in the Midas Workflow window,
parameters should be set in the parameter sheets associated with each
module defined in the pipeline (Fig. 6). The analysis pipeline and the
parameters can then be saved into a Midas project file (.prj) under a Midas
project folder. The Midas project folder will be the location for all analysis
results, output data files, analysis plots, reports, and error messages, if
there are any. The analysis example at the end of this chapter describes
FIG. 6. Midas graphical user interface.
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the steps involved in building an analysis pipeline using several popular
modules.

Normalization Modules

Midas includes a number of normalization algorithms. These can be used
in sequence with each other or with other modules. Choosing appropriate
normalization and filtering methods can be one of the more challenging
aspects of using microarrays. Applying inappropriate methods to experi-
mental data might lead to information loss or information distortion. An
example is that removing raw data by some filtering methods might have
negative consequences for some downstream gradient correction methods.

A common approach to normalization is global normalization. In this
approach, averages of the overall expression levels for all genes within an
array across different arrays are set to be equal. This follows from the
assumption that while genes can be expressed differentially, the amount of
transcription is essentially similar across samples. Furthermore, it is also
common to set the averaged overall expression levels for each array to be
zero. This follows from the assumption that within each array, overex-
pressed genes and underexpressed genes are roughly balanced. Global
normalization methods are mostly useful for normalizing hybridiza-
tion arrays for gene profiling or similar samples comparison purposes.
They might not be valid normalization approaches when the compared
samples are too different across arrays or when using comparative genomic
hybridization arrays.

Table I provides some general guidance for applying the right normali-
zation and filtering methods. Keep in mind that the correction of a bias or
error assumes that the experimental design and array samples do not
undermine the assumptions of the applied algorithm.

Total Intensity Normalization

Total intensity normalization (Quackenbush, 2002) assumes the summed
intensities for each of the two channels, channel A and channel B, for all
spots within an array should be equal. If there is any observed difference, it is
caused by some dye‐specific systematic bias and thus should be adjusted. The
algorithm calculates the factor between the two summed intensities SIA and
SIB and scales intensity A (IA) or intensity B (IB) of each spot so that the
goal of equal summed intensities in the two channels is achieved.

Lowess Normalization

Lowess normalization (Quackenbush, 2002; Yang et al., 2002a,c) assumes
that spots having different overall intensities [measured by log10ðIA � IBÞ]
should have different systematic bias added to their expression levels



TABLE I

GUIDELINES FOR SELECTING NORMALIZATION AND FILTERING METHODS

Issues to be addressed Applicable methods

Averaged overall expression

within an array not zero

observed unexpectedly

Total intensity; iterative log‐mean centering;

ratio statistics; Lowess

Print tip‐dependent
bias observed

Standard deviation regularization

Intensity‐dependent
bias observed

Lowess

Nonlinear correlations

observed unexpectedly

between the two channel

intensities (logarithm transformed)

Iterative linear regression

Inconsistent expressions between

dye‐swapped experiments observed

Flip‐dye consistency normalization

and filtering

Selecting significantly expressed

genes from a single array

Slice analysis

Selecting significantly expressed

genes when replicated arrays

are available

Statistical methods such as ‘‘t test’’

and ‘‘SAM’’

Noisy raw expressions Background filtering; low‐intensity filtering
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(measured by log2
IB=IA). Thus the goal of this normalization method is to

extract the intensity‐dependent systematic bias for each spot and use it to
adjust the raw IA or IB for each spot. The Lowess algorithm estimates the
adjustment factor for the log2

IB=IA value of a spot by finding those spots in the
neighborhood of this spot, based on their intensities, and computing their
commonly shared bias by a maximum likelihood technique, which applies a
locally weighted model to spots’ expression data in each neighborhood. A
related algorithm, Loess, differs from Lowess because of the model used in
the regression: Lowess uses a linear polynomial, whereas Loess uses a qua-
dratic polynomial. The ‘‘neighborhood’’ is defined by a parameter called the
smoothing parameter, which defines the percentage of all spots within a
physical scope. The physical scope can be either block, meaning all spots
printed by the same print tip, or global, meaning all spots on the array.

Iterative Log‐Mean Centering Normalization

Iterative log‐mean centering normalization (Quackenbush, 2002) as-
sumes that the majority of the spots within an array show a balanced
distribution of expression levels (measured by log2

IB=IA). For these spots,
their log2

IB=IA values should have a mean value of 0. Aside from this
majority, a few outlier spots, those with very high or very low log2

IB=IA
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values, contribute significantly to the calculation of the overall log2
IB=IA

mean. This algorithm uses an iterative procedure to remove the outliers
and calculate the log2

IB=IA means for the outlier‐removed spots until the
means converge. The algorithm then scales the intensities of each spot by
this converged mean value.

Iterative Linear Regression Normalization

Iterative linear regression normalization (Finkelstein et al., 2000) as-
sumes the correlation between log10IB values and log10IA values for all
spots within a physical scope on the array displays a y ¼ x linear relation-
ship. The physical scope can be either block, meaning all spots printed by
the same print tip, or global, meaning all spots within the array. The
algorithm calculates the slope and intercept between the log10IB values
and log10IA values for spots within the specified physical scope, iteratively.
During each iteration, the outlier spots, which are defined as those having
log10IB or log10IA residuals greater than a user‐defined threshold range,
are removed. The final slope and intercept are achieved when the calculat-
ed correlation coefficients converge. The final slope and intercept are then
used to adjust the IA and IB of each spot so that the log10IA and log10IB
distribution displays such a linear relationship.

Standard Deviation Regularization

Standard deviation regularization (Yang et al., 2002c) assumes that
variances of the expression levels of the spots (measured by log2

IB=IA)
within different physical scopes should be the same. The physical scope
can be either block, meaning all spots printed by the same print tip, or
global, meaning all spots within the array. Based on this assumption, the
IA and IB values of each spot are adjusted so that the same standard
deviation, and thus the variance, of the log2

IB=IA values of the spots prevails
among the specified physical scope. For example, the variances for all blocks
on an array could be set equal to each other by this method.

Ratio Statistics Normalization

Ratio statistics normalization (Chen et al., 1997) assumes that there
exists a sample‐independent single‐mode IB=IA distribution function with
mean � and standard deviation �. The mean can be estimated through an
iterative process described in the reference paper. The algorithm
also assumes that the population of IB=IA values for all spots in an array
should approximately demonstrate a mean value of 1. The calculated mean
� can then be used to normalize the IA and IB of each spot so that the IB=IA
population mean becomes 1.
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Flip‐Dye Consistency Normalization and Filtering (Quackenbush, 2002)

In a pair of flip‐dye arrays s1 and s2, the log2
IB=IA for any spot in s1 is

expected to have an expression value of�log2IB=IA for the corresponding spot
in s2 due to the fact that the two spots are dye‐swapped replicates of each
other. Therefore, if the log2

IB=IA values for all spots in s1 versus log2
IB=IA

values for all spots in s2 are studied for their correlation, a linear relationship
is expected. The flip‐dye consistency normalization algorithm checks
the consistencies for each spot’s expression values between s1 and s2 by
calculating the c ¼ log2

IB1=IA1
� log2

IA2=IB2
histogram, where IA1 and IB1

denote the two‐channel intensities for a spot in s1 and IA2 and IB2 denote
the two‐channel intensities of the corresponding spot in s2. By assuming this
histogram follows a normal distribution with a mean of 0, those spots with c
values that fall beyond a user‐defined consistency range are removed. These
are considered to be inconsistent data between the flip‐dye replicates. The rest
of the spots are output as consistent spots. For each of these consistent spots,
the log2

IB=IA value is presented as the geometric mean of log2
IB1=IA1

value
and log2

IB2=IA2
value.

Filtering Modules

Filtering modules reduce the size of the data set by removing elements
that do not meet certain user‐defined criteria. Thesemodules can be added to
the workflow before or after normalization modules. Filtering modules ap-
plied before normalization remove the ‘‘bad’’ or unreliable elements defined
by certain quality control criteria to allow only ‘‘cleaner’’ data to be used as
input for normalization procedures. Suchmodules include flag filtering, back-
ground filtering, and low‐intensity filtering. In contrast, filtering modules
applied after normalization remove elements that may not be important or
interesting, given the research goals. These ‘‘postnormalization’’ filtering
methods include in‐slide replicate analysis and cross file trim, as well as the
significant gene identification modules described in the following sections.

Flag Filtering

During the image processing stage, some spots might be flagged as
‘‘bad’’ due to a variety of reasons, such as saturation. The flag‐filtering
feature allows these flags be read before data are processed. Flagged spots
will be excluded from any downstream processes.

Background Filtering

During the image processing stage, the user may request that back-
ground intensities be calculated along with the signal intensities IA and IB.
These background intensities can be used to calculate the signal‐to‐noise
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ratios for each spot. The background filtering feature excludes those
spots with signal‐to‐noise ratios below a user‐defined threshold from the
downstream processes.

Low‐Intensity Filtering

The low‐intensity filtering feature excludes those spots with channel A
intensity IA or channel B intensity IB lower than user‐defined thresholds
from the downstream processes.

In‐Slide Replicate Analysis

In‐slide replicates are technically replicated spots printed within an array.
These replicated spots are theoretically expected to demonstrate the same
log2

IB=IA expression values. Observed variances among the replicates are
caused by random errors. In‐slide replicate analysis combines the replicated
spots, which are defined as those spots in an array sharing the same annotation
identifier, for example, feature name, into a single output data spot. The
expression value log2

IB=IA of this combined spot is equal to the geometric
mean of the log2

IB=IA values of the replicates that were combined.

Cross File Trim (Percentage Cutoff Trim)

When multiple data files with the same number of spots are analyzed
together, it is often desirable to check the consistency of the expression
value of a spot across all the files. This occurs after each file is normalized
and filtered, but before processed data are written to output files. The
consistency of a spot is calculated as a percentage of the number of
files showing the spot as being ‘‘unfiltered’’ divided by the total number
of files used.

Cross file trim allows the consistency percentage of each spot to be
compared with a preset consistency threshold percentage. Spots that do not
pass the threshold comparison are filtered in the output files by setting their
IA and IB intensities to 0. This filtering method is also referred to as
‘‘percentage cutoff’’ trimming in MeV.

Significant Gene Identification Modules

Slice Analysis

It is well known that variances of expression levels of spots (measured
by log2

IB=IA) vary as the intensities change. This fact makes a simple ‘‘fold
change’’ criteria for identifying differentially expressed gene within an
array less than ideal.
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Amodified approach is to study how the expression levels of the spots are
distributed across the array as the overall intensity of the spots [measured by
log10ðIA � IBÞ] varies. In this approach, each spot is associated with a group of
spots, called a ‘‘slice.’’ A slice consists of those spots that have similar overall
intensities as the query spot. The mean and standard deviation of the expres-
sion values in each slice are calculated. A differential expression z score for a
spot can then be defined as the difference between the expression level of the
spot and the mean expression value for the slice that the spot belongs to,
dividedby the standard deviation of the slice that the spot belongs to.A spot is
identified as ‘‘significantly expressed’’ if its differential expression z score is
greater than a user‐defined threshold.

Slice analysis (Yang et al., 2002a), a method to identify signifi-
cantly expressed genes, classifies genes within a single array by their
intensity‐dependent differential expression z scores as described earlier.

One‐Class t Test and One‐Class SAM

When multiple arrays representing technical or biological replicates of
the same genes are available, significantly expressed genes can be identified
by applying scientific statistical analysis. Two such methods are implemen-
ted in Midas: one‐class t test and one‐class SAM (Chu et al., 2002; Tusher
et al., 2001). These methods can also be found in MeV. Users who are
interested in applying the one‐class t test and one‐class SAM are encour-
aged to read the corresponding sections in the MeV description and the
sample analysis walk‐through that follow.

Graphs and Reports

A variety of analysis graphs are plotted and saved during the execution
of a Midas analysis pipeline. These graphs, such as the R‐I plot (Fig. 7, left)
and flip‐dye diagnostic plot (Fig. 7, right), are saved within the Midas
project folder and can be studied under the ‘‘Investigation’’ tabbed panel.
Graphs of interest can be exported to the graphical PDF reports (Fig. 8) by
the user’s request.

MeV

After spot scanning and normalization comes the data analysis step that is
usually of most interest to microarray practitioners, namely mining data to
look for biologically significant patterns of gene expression (Ayroles and
Gi bs on , 2 00 6; D own ey , 2 00 6; Neal and Westwood, 2006; Reimers and Carey,
2006; Royce et al., 2006). The MeV (MultiExperiment Viewer) software
incorporates an extensive array of clustering, statistical, and visualization



FIG. 7. (Left) An R‐I plot showing significantly expressed genes classification results after slice analysis is applied. The outlier

genes, which have their intensity‐dependent, differential expression z score greater than twofold of standard deviation, are colored

red; genes z scores below onefold of standard deviation are colored blue; the remainder are colored green. (Right) A flip‐dye
diagnostic plot showing consistencies about expression values between a flip‐dye pair. The solid diagonal line represents the theoretical

perfect consistency relationship. Genes in blue are considered to be consistent between the flip dye using twofolds of standard

deviation cut as the consistency criteria. The other genes are colored red.

1
6
8

D
N
A

m
ic
r
o
a
r
r
a
y
s,

pa
r
t
B

[9
]



FIG. 8. Midas PDF analysis report.
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tools that can be used to analyze preprocessed microarray data. An intuitive
and feature‐rich interface makes it easy to use the software, eliminating
the need for a programming or scripting language. In addition to the .mev
file format used by the TM4 suite, MeV (also known as TMeV) works
with file formats generated by a number of other platforms or analysis
programs (Affymetrix MAS 5.0 output, RMA output, Agilent or Genepix
scanner files, and a more generic tab‐delimited text file format containing log
ratios frommultiple samples). Thus,MeV is a versatile end‐stage analysis tool
that can be used at the last stage of a TM4 pipeline or as a stand‐alone
program to analyze data that have been processed with other analysis tools.

Data Representations and Distance Metrics

In MeV, the expression level corresponding to each spot on a slide is
represented as an expression element (Fig. 9). An expression element is
typically a log2 transformation of an expression ratio in the case of two‐
color arrays, where a ratio is calculated by dividing the fluorescence intensity
from one channel by the fluorescence intensity from the other channel for a
given spot on a slide. In the case of single‐channel arrays (such asAffymetrix
chips), an expression element is the normalized single intensity value for a
probe set. Hereafter, for convenience we use the term gene to refer a spot or



FIG. 9. Data representations in MeV. (A) Numerical and (B) false‐color representations
of an expression element, (C) a gene expression vector, (D) an experiment expression vector,

and (E) an expression matrix.
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a probe set, even though the DNA sequence corresponding to that spot
or probe set may not span the entire length of a gene in a biological sense.
Because an experiment corresponds to a slide on which a given hybridization
was carried out, these three terms are often used interchangeably.

An expression vector (Fig. 9C and D) is a set of expression elements for a
given gene or experiment. For a gene expression vector, each element comes
from a separate experiment in which the intensity of that spot wasmeasured.
An experiment expression vector contains the expression elements of a set
of genes in a given experiment.

An expression matrix (Fig. 9E) in MeV is a two‐dimensional array of
expression elements from a set of genes over multiple experiments. By
convention, each row is an expression vector from a given gene, and each
column corresponds to an expression vector from a given experiment. The
expressionmatrix inMeV (and generally in microarray data representations)
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is shown in a false‐color view on a red–green scale by default, with green
representing low expression and red representing high expression. These
colors can be customized.

Another important concept is that of distance. A distance metric is a
numerical estimate of how similar the expression patterns of two expression
vectors are. The smaller themagnitude of distance, the greater the similarity
of the two patterns. Many algorithms in MeV use distance metrics to put
expression vectors in clusters that contain vectors of similar expression.
There are many types of distance metrics, some of which use very different
criteria from one another to estimate similarity. Thus, two vectors might be
judged very similar by one distance metric and quite unlike one another by
another metric. It is important to select a distance metric that is appropriate
to the underlying question being asked. For instance, the Pearson correla-
tion distance is appropriate when one is interested in finding genes showing
similar patterns of expression over a set of experiments, such as a time
course, regardless of the magnitude of expression. However, if the primary
interest is in grouping together genes that have similar levels of expression
(over‐ vs. underexpressed), then the Euclidean distance might be a better
choice. MeV offers 11 distance metrics, any of which can be applied to the
distance‐based algorithms in the package.
Data Mining in MeV: A Brief Algorithm Overview

One should be aware that there is often not one ‘‘correct’’ analysis
approach to any particular data set. What is important is to know what an
algorithm is doing, how it makes decisions during cluster creation, how
input parameters affect results, and what features of data may be revealed
by an analysis. A powerful feature of MeV is the ability to overlay results
obtained from multiple methods to reach a consensus or to reveal different
aspects of data. At times finding an approach requires some level of trial
and error to find methods and suitable parameters.

The mechanics of executing an analysis algorithm in MeV are quite
simple. Once data are loaded, the analysis is initiated by selecting the
corresponding button in the toolbar or the menu item from the ‘‘algo-
rithms’’ menu. All algorithms initially open one or more dialog boxes that
are used to collect input parameters. The lower left corner of each dialog
contains an information button (Fig. 10), which opens a help window with
information about the input parameters.

Some algorithms require rather large amounts of computer memory
space and it is generally recommended to have 512 MB to 1 GB of RAM.
In addition to memory requirements, several algorithms are computationally
intensive and can take several minutes or, in some cases, hours to complete.



FIG. 10. HCL algorithm parameter selection dialog. The lower left of each algorithm

dialog contains the parameter information button.
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All algorithmspresent progress logs or progress bars to provide a status report
during algorithm execution.

MeV currently provides 24 analysis techniques. In terms of the objec-
tives they attempt to accomplish, these algorithms can be classified into
three broad categories: exploratory techniques, hypothesis testing techni-
ques, and classification techniques. Exploratory techniques look for broad
patterns in the data set; examples of algorithms in this category include
hierarchical clustering (HCL) and principal components analysis (PCA).
Hypothesis testing techniques use information about the experimental de-
sign to identify a subset of genes that show statistically significant differ-
ences in patterns of expression across groups of samples; examples of
such techniques include TTEST, SAM, and ANOVA. Classification tech-
niques use information about the known class membership of some genes
or samples to assign the remaining genes or samples into these classes;
algorithms such as SVM and KNNC fall into this category.
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Alternatively, these analysis techniques can be categorized based on the
nature of their underlying algorithms. These broad categories are agglomera-
tive methods, divisive methods, methods to assess confidence in clustering
results, neural network approaches, statistical tools, classification algorithms,
data visualizations and component analysis, and biological theme discovery.
We use these categories based on algorithm heuristic in describing some of
the following algorithms. The cited references, manual, and training slides
available at the TM4 web site provide greater detail about these algorithms.
Agglomerative Methods

Agglomerative methods start by considering each expression vector as a
distinct and independent object. Vectors are fused into clusters based on
similarity, which is determined based on the selected distance metric. A
cluster so formed from two elements is then considered as a single object, a
cluster of size two, rather than as two distinct elements. In subsequent rounds,
objects are fused to form bigger clusters based on intercluster similarity using
the same distance metric as described earlier to define intercluster distance.
The method continues joining the most similar objects at each stage until all
objects are assigned to one large cluster.

HIERARCHICAL CLUSTERING (HCL). Hierarchical clustering (Eisen et al.,
1998; Weinstein et al., 1997) is likely the most widely used agglomerative
method for preliminary data exploration. HCL constructs a binary tree by
successively grouping the genes or samples based on similarity. A set of
vectors falling under a node in the tree tend to be more similar to each other
than to vectors in other sections of the tree. By observing how gene or sample
expression patterns are arranged in the tree, one can select and focus on
subtrees that contain consistent patterns of interest.

TheHCL tree viewer inMeVpermits one to dynamically select a subtree
to assign to a cluster or to slice the tree into any number of distinct clusters
based on a similarity value cutoff (Fig. 11). Hierarchical clustering is a
popular analysis option for getting an overview of patterns in the data set.
Divisive Clustering Methods

Divisive clustering methods begin with all vectors in one cluster, which is
then partitioned into distinct clusters. The objective is to create clusters such
that all elements within a cluster are similar to one another, and each cluster
is dissimilar to the others. No relationship is specified among the clusters.

K‐MEANS/K‐MEDIANS CLUSTERING (KMC). K‐means clustering (Soukas
et al., 2000) is a divisive technique that divides the genes or samples into a set
of k clusters. Initially, the vectors are assigned randomly to a predefined



FIG. 11. Hierarchical cluster of time course data using the Pearson correlation distance

metric. Prominent patterns of expression have been selected as clusters.
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number of clusters. The assignment is iteratively refined by shuffling vectors
among clusters and updating themean ormedian profile of each cluster until
each vector is assigned to the cluster whose mean or median it is closest to.
This method is useful when one has a reason to assume that data should
partition into a specified number of clusters. During clustering analysis,
vectors are sometimes divided into too many clusters, such that there are
two or more clusters that have mean patterns that are similar. This suggests
that those clusters should be merged. In other cases where too few clusters

have been created, the clusters will tend to be large and contain quite diverse
and variable patterns in each cluster. The number of clusters can be chosen
by trial and error to hone in on a partitioning that appears to appropriately
split data into distinct clusters.



[9] TM4 MICROARRAY SOFTWARE SUITE 175
CLUSTER AFFINITY SEARCH TECHNIQUE (CAST). The cluster affinity
search technique (Ben‐Dor et al., 1999) partitions data into clusters that
contain members guaranteed to have aminimum specified ‘‘affinity’’ to other
members of the cluster. The affinity of a particular gene is related to the total
similarity of that gene to all other genes in the cluster being created. A nice
feature of this algorithm and some others like it is that the number of clusters
to create is not predefined. Clusters are created until all items are assigned to
clusters of the largest size possible while ensuring that all genes within a
cluster have some minimal affinity for the cluster.

GENE SHAVING. Gene shaving (Hastie et al., 2000) is a divisive cluster-
ing technique that partitions the genes into clusters such that genes within a
cluster have low gene‐to‐gene variability, while having high variance across
samples. Thus, a cluster of genes created by this algorithm will tend to have
similar expression profiles that tend to vary substantially across samples.
One important difference from many other divisive clustering techniques is
that clusters from gene shaving are not always mutually exclusive so that a
given gene may appear in more than one cluster. The procedure attempts
to make successive clusters almost uncorrelated with previously created
clusters so that if a gene appears in more than one cluster, each such cluster
might highlight different aspects of the variability of that gene.

QTCLUST. QTClust (Heyer et al., 1999), like CAST, is a clustering
technique in which the number of clusters is not specified by the user, but
is determined by two inputs: the maximum possible distance between two
genes in a cluster (called the cluster diameter) and the minimum number of
genes that a cluster must contain (the cluster size). For calculating cluster
diameter, gene‐to‐gene distance is computed using a jackknifing procedure
in which each sample is left out in turn. This reduces bias that might be
introduced by individual outlier samples. Clusters are created in sequence,
and the genes that are unassigned after the creation of a cluster are subjected
to successive rounds of clustering until no more clusters can be created that
satisfy both the cluster diameter and the cluster size thresholds. At the start
of each round of clustering, all unassigned genes serve as potential seeds for
a new cluster. The largest cluster created from all seeds in a given round is
retained, and the procedure is repeated on the remaining unassigned genes.
Allowing each eligible gene to serve as a potential seed for further clustering
prevents the algorithm from being biased by the order in which data are
presented to it.
Assessing Confidence in Clustering Results: Support Trees, Figures of
Merit, and K‐Means Support

Clustering algorithms are guaranteed to organize data into clusters,
even when no clear patterns exist. It is therefore helpful to assign measures
of confidence on the clustering results to assess whether the clustering is
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meaningful. This is done by repeating the clustering analysis many times
with the same parameters on the same data set or a resampled data set or
by gradually changing the magnitude of an input parameter and then
comparing the results across all runs. MeV offers three methods to assess
confidence in clustering results.

HCL SUPPORT TREES (ST). The STmodule inMeV builds a hierarchical
tree by the same algorithm employed by the HCL module of MeV. The
difference here is that after finding the initial tree, the expression matrix is
resampled with replacement many times to produce bootstrapped expres-
sion matrices. An HCL tree is built on each of these bootstrapped matrices
and compared to the original tree. Each node in the original tree is assigned
a value between 0 and 100, indicating the percentage of times over all
resampling trials that a node containing those elements occurred in a tree
obtained from a resampled matrix. These bootstrap confidence values are
displayed on the tree as colors or as numerical values. Higher node values
indicate that the vectors under that node clustered together frequently
regardless of resampling, which indicates that the cluster represented by
that node was not unduly influenced by a small subset of data.

Other algorithms in this category are figures of merit (Yeung et al.,
2001), which iteratively step through different values of k searching for an
optimal value based on a comparison of within‐cluster and between‐cluster
distances, and K‐means support, which iterates K‐means at a fixed value of
k searching for stable clusters.

Machine Learning Methods

Machine learning‐based clustering approaches are suitable for parti-
tioning large data sets that contain a lot of random noise in addition to
distinct expression patterns of interest. This means that these approaches
are very applicable to microarray data. These approaches represent the
clusters being created as a set of nodes connected as a network, where each
node has a representative expression profile that is trained by data to better
conform to a subset of data. As each vector is presented to the network, the
node or nodes most similar to that vector adapt to become even more
similar to the presented vector. By presenting the vectors to the system
many times, the nodes conform to represent clusters that are inherent in
data. Once the adaptation is complete, each vector is placed into a cluster
related to the node with the most similar representative expression profile.

SELF‐ORGANIZING MAPS. Self‐organizing maps (Kohonen, 1982;
Tamayo et al., 1999) in MeV are a very efficient neural network implemen-
tation that permits millions of training/adaptation cycles to be run in a
relatively short time. The algorithm requires an initial topology of the
network, which means that an estimate of the number of expected clusters
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must be provided. Similar to KMC, the suitability of this estimate can be
assessed based on the results of multiple runs.

SELF‐ORGANIZING TREE ALGORITHM (SOTA). The self‐organizing tree
algorith m ( Dopazo and Carazo, 1997 ; Herrero et al., 2001 ) is a hybrid
approach that bridges divisive and neural network approaches to produce
a binary tree structure where each terminal node or leaf in the tree is a
cluster. Starting with all genes in a single node or cell, the cell then divides
and partitions the vectors optimally between the two offspring cells. On
each division the most variable cell is split until a predetermined number of
divisions or a cluster variability threshold is met. In addition to the de-
scribed benefits of the machine learning methods, SOTA does not require a
predetermined cluster count.

Statistical Tools for Extracting Significant Gene Lists

The basic clustering methods described previously focus on finding
correlated patterns of gene expression within the data set. This is often
useful for time course data or for general data mining for prevalent patterns.
In the case where the experimental design contains biological or technical
replicates and the samples are partitioned into discrete sets that represent
experimental conditions, statistical tests can be applied to find genes that
show differential expression under the conditions being studied. In addition
to extracting genes of interest, each gene will have a corresponding p value
describing the likelihood that the observed finding was due to chance.
Microarray experiments are being designed increasingly to take advantage
of statistical tools.

TTEST (TTEST). MeV provides three t test (Dudoit et al., 2000; Korn,
et al., 2001, 2004; Pan, 2002; Welch, 1947; Zar, 1999) designs: one sample,
between subjects, and paired. The one‐sample t test is useful for identifying
genes that show consistent over‐ or underexpression across a series of
biological or technical replicates. The between‐subjects t test is useful for
finding genes that are significantly differentially expressed between two inde-
pendent groups of samples (e.g., two strains of mice). The paired t test can be
used to find genes showing differential expression between two conditions
assayed on the same samples (such as before and after administering a drug to
a group of individuals).

ONE‐WAY AND TWO‐FACTOR ANOVA. Two types of ANOVA designs
are offered: One‐way (Zar, 1999), for comparison of three or more indepen-
dent groups, and a completely randomized two‐factor design (Keppel and
Zedeck, 1989; Manly, 1997; Zar, 1999) for analyzing variation across two
conditions (such as sex and strain). See Ayroles and Gibson (2006) for more
about ANOVA. The t test andANOVAmodules offer error rate correction
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options (such as Bonferroni corrections) for multiple testing (Dudoit et al.,
2003), as well as false discovery rate (FDR) computations (see later).

SIGNIFICANCE ANALYSIS OF MICROARRAYS. A false discovery rate can
also be computed using the popular SAM module (Tusher et al., 2001;
implemented as in Chu et al., 2002), which includes options for five experi-
mental designs, four of which are analogous to the t test and one‐way
ANOVA designs, while the fifth is suitable for survival data. FDR compu-
tations are often a desirable alternative to conventional statistical tests
(such as t tests and ANOVA) in microarray data analysis. The simulta-
neous analysis of thousands of genes leads to highly inflated error rates for
individual genes when doing conventional statistical tests. FDR analysis
can help circumvent this problem by allowing the identification of a list of
potentially significant genes while still keeping overall error rates low.

TEMPLATE MATCHING. Template matching (Pavlidis and Noble, 2001) is
useful for finding patterns of expression that are similar to a user‐specified
pattern (as judged by the magnitude and sign of the correlation coefficient
between the patterns of interest or the p value of this coefficient).

Classification Algorithms/Supervised Clustering Approaches

Supervised methods use existing biological information about specific
genes or samples (the ‘‘training set’’) that are functionally related to
‘‘guide’’ the clustering algorithm. The existing information is the presumed
class membership of each vector in the training set. This information is
used to classify other vectors (the unknowns) based on how similar their
expression patterns are to members of the training set.

SUPPORT VECTOR MACHINE (SVM). A support vector machine (Brown
et al., 2000) is a supervised classification method that bisects data into two
distinct groups: in class and out of class. SVM uses a subset of data that is
known to fall into the class of interest as examples of the class.

K‐NEAREST NEIGHBOR CLASSIFIER (KNNC). KNNC (Theilhaber et al.,
2002) partitions data into k distinct classes, where k is a supplied number
of partitions. Like SVM, KNNC uses a subset of data to use as examples of
each class being partitioned.

Data Visualizations and Component Analysis

This broad category includes algorithms that attempt to simplify the
interpretation of the main features of data by presenting a view of data that
provides a means to consider high level structure of data.

PRINCIPAL COMPONENTS ANALYSIS. PCA (Raychaudhuri et al., 2000;
Downey, 2006) extracts the features in the data set that are most represen-
tative and best ‘‘explain’’ the nature of the variation in data. These fea-
tures, known as principal components, are used to map data into 2D and



[9] TM4 MICROARRAY SOFTWARE SUITE 179
3D visualizations that can sometimes provide an intuitive view of the main
aspects of variation in the data set. A related method, correspondence
analysis (Fellenberg et al., 2001; Culhane et al., 2002), maps both genes
and samples onto the same set of axes, revealing associations between
genes and experiments.

GENE EXPRESSION TERRAIN MAPS (TRN). Gene expression terrain maps
(Kim et al., 2001) build a 3D topological terrain view where gene or sample
clusters appear as peaks in the terrain. The algorithm first maps data into a
two‐dimensional grid such that elements that are similar are close together.
The third dimension giving rise to the peaks is related to the density of the
elements under the peak. Thismeans that ifmany elements are similar to each
other, they will appear as a tall sharp peak over a small region of the map. By
using appropriate metrics, one can use TRN to get an overview of the data set
and can estimate a rough idea about the number of major clusters in data.

GENE DISTANCE MATRIX. The gene distance matrix displays a 2D heat
map representation of the similarity matrix. This matrix displays the distance
(inverse of similarity) between any two elements (genes or samples) in the
data set. When the matrix is sorted by cluster membership based on a prior
clustering result, thematrix canqualitatively indicate howdistinct two clusters
are in terms of the expression patterns of the member. When used to assess
sample distances, where the matrix is relatively small, one can interrogate the
actual similarity between any pair of expression profiles.

Biological Theme Discovery

After obtaining a list of genes, an important task is to determine
whether the genes have a common or connected biological role within
the system being studied (Whetzel et al., 2006).

EXPRESSION ANALYSIS SYSTEMATIC EXPLORER (EASE). To assist in the
discovery of prevalent biological roles, MeV has an implementation of
the EASE algorithm (Hosack et al., 2003) for finding overrepresented
biological themes in gene lists. This module compares the prevalence of a
biological theme within the cluster to the prevalence of the biological theme
in the population of genes from which the cluster was extracted. One
must first have all of the array probes assigned various classes based on a
categorical classification system, such as assignment of gene ontology terms
(Ashburner, 2000). After selecting a set of genes that are ‘‘significant’’ in an
analysis based on a statistical or other objective test, EASE compares
representation of the various classes within the significant set to the re-
presentation on the entire array using Fisher’s exact test to identify overrep-
resented categories and assign a likelihood score (p value) to each group.
For example, if only 10% of the genes on the array represent energy
metabolism, but 60% of the genes deemed significant are involved in
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energymetabolism, it is likely that this selection did not occur by chance and
that energy metabolism may be mechanistically involved in the process
being studied.
Interface Orientation and Selected Features

The interface of MeV is organized into four main sections (Fig. 12). The
main menu bar (A) contains the main menus for file loading and output,
data transformations and analysis, display options and utility functions, as
well as other key tasks. The algorithm tool bar (B) organizes the algorithm
module buttons into the rough algorithm categories described earlier. An
abbreviated module name and graphic on each analysis button clearly
indicates the analysis. The result navigation tree (C) is used to organize
and navigate analysis results. Clicking on a node in the tree will open a
viewer associated with the labeled node in the viewer display panel (D) to
the right of the tree. The navigation tree also contains the cluster manager,
script manager, and the analysis history log.

MeV has many features to help researchers extract significant informa-
tion from data and clustering results. This section describes some of the
most basic functions and capabilities in the order that they would be
encountered during analysis.
FIG. 12. Graphical interface of MeV: (A) main menu bar, (B) algorithm toolbar, (C) result

navigation tree, and (D) viewer panel. A hierarchical tree viewer is shown in the viewer panel.
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File Loading/Data Filtering/Data Transformations

MeV supports the loading of six expression file formats, including
Affymetrix, GenePix (.gpr), Agilent, and the TM4 suite’s .mev format. A
variety of Data filters can be applied to the loaded data to remove data of
low quality, genes (rows) with few valid data measurements, or genes that
show little change over the loaded experiments.

Data transformations can also be performed from the Adjust Data
menu. These transformations include log transformations of expression
values and mean centering, where each gene expression vector is shifted
such that the mean of the values in each vector is zero.

Cluster Viewers

Nodes that represent clustering results are appended to the result tree as
they are created. Clusters can be viewed in the viewer display panel by clicking
on these nodes in the result tree. In addition tomanyalgorithm‐specific viewers,
MeV provides four basic cluster viewers (Fig. 13) to view the expression and
FIG. 13. Cluster viewer examples, (A) Expression image, (B) cluster table viewer, (C)

expression graph, and (D) centroid graph.
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membership of each cluster.Expression Images display an expressionmatrix
that corresponds to the subset of geneswithin the viewed cluster inwhich the
expression level of each gene (row) across several experiments (columns) is
displayed as a color that reflects the level of expression. The Cluster Table
Viewer displays all gene annotation relating to the genes in the cluster and
supports sorting on annotation, searches, and many other useful features.
Expression Graphs display a graph showing the expression of each gene in
the cluster over the set of loaded samples, whereas Centroid Graphs only
show the cluster’s mean expression pattern with error bars (� 1 SD).

Cluster File Output/Cluster Storage/Cluster Operations

Once formed, clusters can be output to file in a tab‐delimited text format
that contains all expression and annotation data for the genes in the cluster.
This format can be viewed as a spreadsheet and can be loaded easily into
MeV to further visualize and mine that subset of data. Clusters can also be
stored in MeV’s Cluster Manager, which is a repository of selected clusters
that can be viewed via the Cluster Manager node in the result tree. User‐
defined attributes such as a cluster label and description can be storedwith the
cluster as well as an assigned color that can be used to track the location of the
cluster members during analysis. The assigned color propagates through all
viewers to provide a qualitative measure of cluster overlap between analysis
methods or runs. The clustermanager table providesmany useful options, but
the most useful are cluster set operations, such as cluster unions, intersections,
and exclusiveOR . These operations allow one to combine clusters of interest
or to find genes common to two or more clusters.

Analysis Branching

A common task during analysis is to use an algorithm to reduce data to a
set of interesting genes and then to extract this data subset for further
analysis. We term this basic function where data are split off and analyzed
as analysis branching. MeV provides three ways to perform analysis branch-
ing: (1) save the cluster as a file and then load it into a new MeV session as
described, (2) use a feature of cluster viewers to automatically launch a new
session that contains only the genes (or samples) in the cluster, and (3) right
click on the cluster node in the result tree and select a check box to set that
cluster as the primary data source for further analysis.

Analysis Scripting

The graphical nature of MeV lends itself to direct interaction, and it is
often required that algorithms be applied several times to hone in on
appropriate parameter values. An alternative to the interactive mode of
MeV is the scripting mode. MeV provides graphical tools for script build-
ing, representation, and execution (Fig. 14). Once constructed, the XML



FIG. 14. Script viewers of MeV. (A) Graphical script tree viewer and (B) corresponding script XML viewer (script section).
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analysis script can be saved and shared with collaborators to define analysis
pipelines that reveal features of interest.
History Log

All analysis operations, from file loading, data filtering, algorithm runs,
cluster storage, and file output, are recorded in a history log that describes
the operation and attaches a time stamp. This serves as a detailed account
of the analysis.
Sample Analysis Walk‐Through

This section presents a sample Midas and MeV analysis that takes data
through filtering and normalization, clustering and statistical analysis, and
on to biological role analysis. To take full advantage of this walk‐through it
is best to download the applications and the sample data set so that one can
follow along. Data for this analysis walk‐through can be downloaded from
this ftp site: ftp://ftp.tigr.org/pub/software/Microarray/MeV/MIE_data/.
Each section indicates the proper files to use to illustrate the example.
Midas and MeV can be downloaded from http://www.tm4.org/midas.html
and http://www.tm4.org/mev.html.

Study Overview

This study investigates gene expression differences during ovalbumin
induction of asthmatic responses. The study compared expression differ-
ences in mouse strains that are high or low responders to the stimuli in
order to find genes that correlate to susceptibility or resistance. This
example considers a low responder strain (CASTEi denoted as ‘C’ in the
sample description) and a moderate responder strain (BALB\C denoted as
‘B’ in the sample description). For each strain there are biological dupli-
cates for three time points: 24, 48, and 72 h. Each exposure time point had a
corresponding vehicle control. The emphasis of this exercise is on the
process of analysis rather than making specific claims about the nature of
the findings.
Normalization Using Midas

This step filters low‐quality spots using Spotfinder‐generated flags, nor-
malizes using block level Lowess and standard deviation regularization, and
finally applies a flip‐dye consistency filter. Because the same normalization
process is repeated for each flip‐dye pair (24 pairs), we will demonstrate the
process on only one pair of raw files from the study as an example. The two
files are contained in the sample data zip file and are labeled File_A_Sample
Cy5_RefCy3.mev (file ‘A’) and File_B_SampleCy3_RefCy5.mev (file ‘B’).

ftp://ftp.tigr.org/pub/software/Microarray/MeV/MIE_data/
http://www.tm4.org/midas.html
http://www.tm4.org/mev.html
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These files contain the same sample and reference material but with the dye
labels swapped.

Define the Analysis Pipeline

Open Midas by double clicking midas.bat in the midas directory. The
analysis will proceed as follows.

a. Read two sample .mev format files as a flip‐dye pair.
b. Execute Lowess (LocFit) normalization.
c. Execute standard deviation regularization (SD).
d. Perform the flip‐dye consistency filter and file merge.
e. Write result files.

Select the analysis buttons in theMidas interface to construct the pipeline by
referring to Fig. 15 as a guide to help identify the buttons for each step of the
process. If a button is hit in error, one can clear the graphical pipeline and
start again by clicking the left‐most button in the tool bar (Fig. 15).

Modify the Parameters

Once the analysis pipeline matches the one in Fig. 15, you are ready to
enter and modify the analysis parameters. Click on the first icon in the
FIG. 15. The graphical scripting interface in Midas with the sample analysis pipeline

indicates the order of processing operations.
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pipeline that controls file loading. The parameter panel in the upper right
will reflect available parameters. Select the input files by clicking on the
empty field (first table cell) in the parameter panel. Use the file selection
dialog to navigate to the analysis files and click on file ‘A’ and then ctrl‐
click on file ‘B’ to select the pair. Select the down arrow button to place the
pair of files in the selection area and hit the OK button. Note that multiple
file pairs can be analyzed by adding multiple pairs to the selection area.
Select the check boxes to use the flags to filter low‐quality data. Each of
these selections will prompt a request for a flag column identifier. Just
accept the default flag column header names. Review the parameters for
the other parts of the pipeline by clicking on each of the remaining icons.
Accept the default parameters for the other sections of the pipeline.

Select Output Reports

Select the Reports menu from the main menu bar and check the Create
PDF Reports option. NowMidas is set to output a text‐based result summary
as well as a customizable pdf format analysis summary. The summary will
contain input parameters, diagnostic plots, and numerical data related to the
output such as the number of retained spots after filtering. Just before the
analysis starts a dialogwill be presented to customize the PDF report. For this
example keep all graphs. When processing many files it is best to limit the file
output to the key plots for each analysis stage, as the PDF creation requires a
large amount of memory.

Execute the Analysis Pipeline

Select the Execute button to trigger execution. The final step is to select a
project folder for output and to specify the project file name to store the
pipeline and parameters. The progress of the analysis will be indicated in the
analysis log at the bottom of the interface. Once the analysis is complete the
diagnostic plots can be reviewed to assess the impact of the procedures.

Assessing the Results: The Investigation Panel

Open the Investigation panel by clicking on the tab just below the button
panel to useMidas to view diagnostic plots. Use the file tree on the left side to
navigate to the folders that contain the results. A right click on any plot will
open a menu to allow you to view or plot the output file. The folder labeled
raw contains the plots of data in its initial state. Plots of the same type can be
overlaid to view the effect of normalization by first plotting raw data and then
plotting normalized data. Some plots to try are histograms (.his) andR‐I plots
(.prc) in raw and post Lowess, box plots (.box) before and after standard
deviation regularization, and in the flip dye folder you can view the flip dye
diagnostic plots (.rrc) before and after filtering (Fig. 16).



FIG. 16. Box plots of raw data (left) and data after Lowess normalization and standard

deviation regularization (right). Note the centering effect of Lowess on block level mean log

ratios. The nearly equal span of the middle quartiles of each block reflects the variance

regularization following the SD regularization step.
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Statistical Analysis and Clustering Using MeV

Now that data have been normalized to remove systematic bias and
filtered to remove spots that are not expressed consistently we can use
MeV to perform statistical analysis, clustering, and functional analysis. Data
for this section started as raw mev files and were normalized and filtered as
described earlier. The processed files for both strains were loaded into MeV
in an order according to strain, exposure (control or experimental), and time
point. The resulting expression matrix was saved to a single file to help
streamline data loading for this example. The data file is in the sample data
zip file and is labeled CastEi_Balbc_combined_TDMS.txt.

Launching MeV, File Loading, and Adjusting the Display

Double click on tmev.bat to launch MeV. The multiple array viewer
can be resized to full screen by clicking on the maximize button in the
upper right corner of the window. Select Load Data from the File menu of
the multiple array viewer. The top part of the file loader interface will
have a drop‐down menu that is used to select the input file format. Select
the second menu option labeled Tab Delimited, Multiple Sample Files
(TDMS). Use the file navigation tree on the left to navigate to sample data
and select CastEi_Balbc_combined_TDMS.txt from the available files win-
dow. Selecting the file will present a portion of the file in the expression
table preview panel on the right. Click on the first expression value in the
upper‐left position of the expression values. For this file the value happens
to be NaN, as this value is missing or was filtered out. Selection of this table
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cell informs the loader that rows above and to the left are sample and gene
annotation. Click Load to load the data file.

The initial main view of the expression matrix will include sample names
that correspond to the original mev files. From the Display menu select
Sample/Column Labels and then Select Sample Label to Label by Sample
Description. The sample annotation now contains strain ID (C or B), condi-
tion (control or experimental), time, and replicate ID. To improve the
appearance of the expression matrix, modify the gradient scale limits by
using the Set Color Scale Limits option from theDisplaymenu. Set the lower
limit to –2.0 and the upper limit to 2.0.

Filtering out Missing Data

It is common tohave geneswithin loadeddata that have fewvalid intensity
measurements over the loaded samples. These rows with a lot of missing data
appear mostly gray in the expression matrix image. To filter these genes out,
open the Adjust Data menu and open the Data Filters menu and select the
Percentage Cutoff Filter option. Enter 85.0 in the input dialog to keep only
genes for which greater than 85% of the samples have values. A data filter
result nodewill be placed on the result tree to report the number of genes that
remain and to provide a view of the conserved rows. The log of the history
node will also report the filtering result. Note that 27,648 rows were loaded
and after applying the filter 20,048 rows remain for further analysis.

Statistical Analysis

Because there are two strains and two conditions, a 2 � 2 design two‐
factor ANOVA can be applied if we treat all time points as being in one
group.Hit the two‐factor ANOVAanalysis button to open the dialog. In the
first dialog label factor A as strain and factor B as condition and enter two
levels for each factor, as there are two strains and two conditions, control
and experimental. Advance to the next dialog to make group assignments.
Designate strain membership in the upper left panel by selecting group 1 for
all ‘C’ strain samples and group 2 for all ‘B’ strain samples. Designate
condition by placing all controls in group 1 and all experimental samples
in group 2 in the group selection panel on the right. Set the critical value of
p to 0.001. Near the bottom of the dialog select the check box to build HCL
trees on significant genes and hit the OK button.

AnHCL initialization dialog will come up to select parameters for HCL.
Deselect the option to make sample trees so that samples are not reordered.
Select the Pearson Correlation as the distance metric and hit OK.

Interaction significant genes from two‐factor ANOVA in the result
tree are those that show differences in response to exposure that are
dependent on strain. In this example this mostly consists of genes that
changed in the moderate responder strain B but not in the low responder
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strain C. One can view the various results by clicking on the viewer nodes
in the result tree.

Dissecting Significant Genes

To further explore the interaction significant genes, click on the HCL
viewer in theANOVA result for the interaction significant cluster. Right click
in theHCL cluster viewer and selectGene Tree Properties. Slide the slider bar
to the right until the number of terminal nodes is about twoor three. Select the
check box labeledCreate Cluster Viewers and hit OK. This will create clusters
that correspond to subtrees with the full HCL viewer. The viewer nodes
will be appended under the HCL viewer node on the result tree. Figure 17
shows the cluster centroid viewers that correspond to the two dominant
patterns in the interaction significant cluster where genes were upregulated
or downregulated in only the moderate responder strain B (Fig. 17).

Storing Clusters and Cluster Operations

A right click‐activated menu provides a Store Cluster option in most
cluster viewers that allows one to store clusters of interest to the cluster
manager. Open a viewer other than the HCL viewer that displays all signifi-
cant interaction genes, right click, and select Store Cluster. The cluster can be
assigned attributes such as a label and a description. Selection of a cluster
FIG. 17. Centroid graphs showing genes with a significant interaction effect. (Left) Mean

profile for 38 genes that were overexpressed in the high responder strain. (Right) Mean profile

for the 62 genes that were underexpressed in the responder strain. Error bars are �1 SD.

(Two‐factor ANOVA results, interaction significant genes, p < 0.001.)
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color is required and can be used to track the genes during analysis. Stored
clusters can be viewed in the cluster manager node’s gene cluster table above
themain analysis node in the result tree. Ifmultiple clusters exist fromvarious
results, one can use the cluster operations in the cluster manager to perform
cluster operations such as cluster unions, intersections, or exclusive OR.

Exploring Biological Themes

The EASEmodule can be used to investigate the biological roles within
a cluster of interest. All clusters stored in the cluster manager are candi-
dates for EASE analysis. The data directory of MeV has an EASE file
system to support the analysis of this data set. Select the EASE button
from the right end of the analysis tool bar or from the analysis menu. The
center portion of the dialog has three tabbed panels. The first panel is used
is to designate a population of genes and a cluster for analysis. Select the
Population from Current Viewer option to define the population. Select
the cluster to analyze by selecting a row in the cluster table. On the second
tab check that tc# is selected as the gene identifier. In the bottom portion of
the panel select the button to add annotation/ontology linking files and use
ctrl‐click to select the three GO files and the KEGG pathways file. Accept
the defaults for the statistical parameters panel by hitting OK. The result-
ing table will list all biological roles that were identified for the cluster, and
the roles will be ordered by the provided p value for each role. The GO
hierarchical viewer will show themes in a hierarchy of specificity. MeV’s
manual, slide presentation in the documentation/presentations folder, and
the EASE reference (Hosack et al., 2003) will describe the parameter
selections, theory basics, and the statistical details behind EASE analysis.

Further Analysis

The purpose of this section was to provide a basic sample analysis.
Various other tests can be run on this data set to extract other genes
of interest. The power of any analysis tool comes with the understanding
of the available analysis modules and features and how they can be used to
extract a variety of findings relevant to the study.
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[10] Clustering Microarray Data

By JEREMY GOLLUB and GAVIN SHERLOCK
Abstract

Even a simple, small‐scale, microarray experiment generates thousands
to millions of data points. Clearly, spreadsheets or plotting programs do not
suffice for analysis of such large volumes of data, and comprehensive
analysis requires systematic methods for selection and organization of
data. This chapter focuses on the concepts and algorithms of hierarchical
clustering and the most commonly employed methods of partitioning or
organizing microarray data, and freely available software that implements
these algorithms.
Introduction

There are a multitude of different methods for analyzing microarray
data, but in general, they separate into unsupervised and supervised ap-
proaches. Supervised approaches typically select genes from a data set,
based on answering some directed question, using additional information
such as class labels and survival times, for example, ‘‘which genes best
distinguish two groups of patients?’’ as might be asked using the Significance
Analysis of Microarrays software (SAM; Tusher et al., 2001). Unsupervised
approaches generally organize data based on the properties of data them-
selves, without reference to additional information.

Clustering algorithms, of which there are many different types, are used
for unsupervised analysis. They require a method for determining the simi-
larity of two vectors of data and rules for organizing data based on those
similarities. It is useful to consider the values that make up a microarray
data set as a matrix, with each row being data for a single gene and each
column being data for a single array/experiment. Data for a gene in the
matrix define a gene expression vector, which has as many dimensions as
there are data points within the vector (of course, ‘‘expression’’ may be an
inappropriate term for some experiments, but data may always be cast
as a vector). Using standard mathematical metrics, the similarity (or dissim-
ilarity) between different vectors can be then measured, and in conjunction
with certain rules (an algorithm), these metrics can then be used to organize
data.
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
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Distance Metrics

There are many different metrics that can be used to determine the
similarity between two expression vectors, and which metric is chosen will
affect the outcome of a clustering analysis to a greater or lesser degree.
Vendors of microarray analysis software have tended to include as many
metrics as possible for the user to choose from, with perhaps inadequate
guidance as to under which circumstances each is most appropriate. This
trend has been followed to a lesser extent in freely available software (some
of which are discussed later). This chapter describes the calculation of the
more common metrics and attempts to indicate under what circumstances
they might be appropriate.
Correlation Metrics

There are several different correlation metrics that can be used when
clustering microarray data when a user is typically trying to determine
whether genes are similarly expressed under some set of conditions. These
correlation metrics can be separated into two types, parametric, and non-
parametric, and their values lie between �1 and þ1, with þ1 indicating
perfect correlation, �1 indicating perfect anticorrelation, and 0 indicat-
ing no correlation. Parametric metrics make an underlying assumption
about the distribution of data (in the case of the Pearson correlation,
normality is assumed), whereas nonparametric measures of correlation
do not make such assumptions, typically using ranks within data. A metric
that makes assumptions is more powerful than one that does not, if those
assumptions are correct (or nearly so), whereas a nonparametric measure of
similarity is likely to be more appropriate when such assumptions cannot
be made safely. In the case of gene expression microarray data, the log
ratio measurements do form a roughly normal distribution, and using the
Pearson correlation is reasonable. However, if clustering ChIP‐chip data
for instance, where there may be strong signals for a small subset of
elements and simply noise for the rest of the elements, the rank of a data
value is most important, and thus a nonparametric measure, such as the
Spearman rank correlation, or Kendall’s � (see later) is likely more appro-
priate. There are several statistical tests to determine the goodness of fit
for data distribution to normal distribution, such as the Shapiro–Wilk test
or the D’Agostino–Pearson omnibus test, which provides a p value for the
hypothesis that data were drawn from a normal distribution. Such tests are
implemented in various statistical packages. In addition, visual inspection
of a frequency histogram of data can also be used to determine whether the
distribution deviates grossly from a normal distribution.
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Pearson Correlation

The Pearson correlation is probably the most frequently used metric for
calculating similarity between vectors of microarray data. The Pearson
correlation is insensitive to the magnitude of the compared vectors. For
instance, if data for one gene describe a sine wave with an amplitude of 3
and data for another gene also describe a sine wave of identical phase, but
with an amplitude of 10, they would still have a perfect correlation of 1.
That is, the Pearson correlation is a measure of the similarity in shape of
the two expression patterns. The Pearson correlation is calculated as

r ¼
Pn

i¼1ðxi � �xÞðyi � �yÞ
ðn� 1ÞSxSy

where Sx is the standard deviation of x and Sy is the standard deviation of y.
Thus, if for a given i, x and y vary in the same direction, the product of
those deviations will be positive, whereas when they vary from their means
in the opposite direction, that product will be negative.
Variations on the Pearson Correlation

When using the standard Pearson correlation, expression vectors that
are identical in shape but are offset from each other by a constant amount
will have a correlation of 1. In some cases, this may be desirable (e.g., if you
are only interested in the shape of the expression response to a treatment),
but in cases where it is not appropriate (e.g., in a time series, derepression
of transcription for some genes, compared to activation of other genes,
might mean very different things and should thus be treated as different), a
variation on the Pearson correlation, usually referred to as the uncentered
Pearson correlation, can be used (the standard Pearson correlation is often
referred to as the centered Pearson correlation in clustering software).
The formula for the uncentered Pearson correlation is identical to that of
the centered Pearson correlation, except that the calculation of standard
deviations in the denominator assumes that the mean is zero, rather
than using the real mean. In situations in which the actual ratio is as or
more important than the trend, the uncentered Pearson correlation will
be more informative.

Another option when employing the Pearson correlation is to use the
absolute value of the correlation as the measure of similarity. This assigns
vectors of opposite direction a high degree of similarity, for example, two
genes describing sine waves of opposite phase will cocluster, which may be
desirable if one is, for instance, interested in all genes varying in phasewith the
cell cycle or genes regulated positively or negatively by a transcription factor.
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Spearman Rank Correlation

Spearman rank correlation is a nonparametric measure of association
of two variables, based on ranks. In general terms, it answers the same
question as the Pearson correlation, but is less specifically interpretable. As
a nonparametric test, it makes fewer assumptions about the distribution of
data in the two vectors to be compared and is thus a safer test when the
Pearson correlation’s assumption of normality is violated significantly.
Spearman rank correlation is calculated by converting the actual values
in each vector to their rank in a sorted list of those values and then
comparing the ranks of the ith element of each vector for all i. Values
range from �1 to 1, and in general, terms are interpreted similarly to the
Pearson correlation: 1 is a perfect positive association, 0 implies no associ-
ation, and �1 is a perfect negative association. The formula for calculating
the Spearman rank correlation is

rs ¼
P

iðRi � �RÞðSi � �SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðRi � �RÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðSi � �SÞ2

q
where Ri is the rank of xi among the other x values and Si is the rank of
yi among the other y values, with ties being assigned the appropriate
midrank.

Kendall’s t

Kendall’s � is an even more nonparametric measure of association than
Spearman’s rs. The statistic is calculated from the relative ordering of the
ranks rather than using the numerical difference between the ranks. Thus,
Kendall’s � is somewhat less sensitive to actual data values than Spearman
rank correlation. The statistic ranges from �1 to 1 and is interpreted
similarly to Pearson correlation or Spearman rank correlation.
Distance Metrics

Euclidean Distance

The Euclidean distance between two vectors is simply the distance in
space between the two end points defined by those vectors. Thus, it is sensitive
to the direction of the vectors, like the Pearson correlation, and also to their
magnitude. Returning to our example of two sinusoidal vectors, unlike the
Pearson correlation, the Euclidean distance is sensitive to a change in magni-
tude, but relatively less sensitive to a small change in phase. Euclidean
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distance may be a more useful metric than the Pearson correlation when the
magnitude of change is an important element of the analysis. The Euclidean
distance is calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � yiÞ2
s

Manhattan or City‐Block Distance

TheManhattan distance between two points can be thought of in terms of
the path one would have to follow between two addresses in an urban
downtown, making only right‐angle turns. The distance is calculated as the
sum of absolute values of these orthogonal legs of the journey rather than as
the familiar sum of squares of Euclidean distance. This makes theManhattan
distance less sensitive to outlier values, as each element of the vector
is weighted linearly rather than quadratically. The Manhattan distance is
calculated as

d ¼
Xn
i¼1

jxi � yij

If one imagines two points in space (defined by two vectors being com-
pared), then a straight line defines their Euclidean distance, and if that line is
thought of as the hypotenuse of a right‐angled triangle, the Manhattan
distance is the sum of the other two sides.
Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering (here just ‘‘clustering’’) is a simple
and effectivemethod for exploratory analysis of gene expressionmicroarray
data. An exploratory method does not specifically test any particular hy-
potheses, such as which genes distinguish two groups of samples and what
p value is associated with that distinction, but instead simply allow the user
to explore data in a straightforward fashion. In the case of clustering, genes
with similar patterns are grouped so exploring data is much easier than if
they were disorganized. Gene expression vectors are organized in a tree
structure, with the goal that each vector is closest in the tree to the vectors
most similar to it according to the distancemetric and linkage rule (see later)
chosen. Each node in the tree represents a group of similar genes, and the
height of the node in the tree indicates the degree of similarity. The data
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matrix is then reordered according to the tree structure so that again each
vector is next to similar vectors (Fig. 1). The columns of the matrix, repre-
senting individual microarrays or experimental conditions, may be clustered
in the same way. For example, if the columns represent different tumor
samples, clustering will tend to group tumors of the same type together,
distinguish between different types by separating them, and possibly help
identify subtypes of a given type (e.g., Liang et al., 2005; Schaner et al., 2003;
Sorlie et al., 2001). Clustering in both the gene and experiment dimensions
may be carried out sequentially on the same matrix.

In this agglomerative (bottom up) approach, pioneered for expression
data by Eisen et al. (1998) and Wen et al. (1998), the gene expression vectors
are compared to each other in all pairwise combinations, generating a matrix
of correlations or similarities. The largest correlation/smallest distance in the
matrix defines the two most similar vectors, which are then joined to form a
node. This node is then compared to each other expression vector or node
(using some linkage rule; see later), and these results are added to the
correlation matrix. Again, the most similar vectors/nodes are joined, and the
process is repeated. Thus, single expression profiles are joined successively to
form nodes, which in turn are joined further. The process continues until all
individual profiles and nodes have been joined to form a single hierarchical
tree. The utility of this approach is that it is simple, both to understand and to
implement, and the end result can be visualized easily. Often, coordinately
regulated patterns can be relatively easily discerned by eye (Fig. 1).
Rules for Comparing Nodes

As indicated earlier, a clustering algorithm needs a rule to determine how
to compare a node to either a single expression vector or another node.
Among the various ways in which this might be done, four are commonly
implemented.
Single Linkage (aka Nearest Neighbor)

The similarity of two nodes (either of which may be a single vector) is
taken as the best (highest correlation, or shortest distance) of all pairwise
comparisons of the members of one node to the other. Single linkage tends to
produce loose clusters with a chaining effect, as vectors may be joined to a
node that are very similar to only one vector in that node. It is very computa-
tionally efficient, as after the initial similarity matrix is calculated, no further
correlations or distances need be computed, butmemory requirements can be
large (see later).



FIG. 1. Clustered gene expression data (heavily filtered data from Liang et al., 2005). Blue

and yellow indicate a negative and a positive log ratio, respectively. Clustering was carried out

on both genes and samples (arrays) using a centered Pearson correlation metric and centroid

linkage. The dendrograms or ‘‘trees’’ group similar vectors into nodes; the height of each node

in the tree indicates the overall similarity of its members. Genes and samples both divide into

two, relatively internally consistent groups.
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Complete Linkage (aka Furthest Neighbor)

The similarity between two nodes is recorded as the lowest similarity of
all pairwise comparisons between the members of one node to the other.
Complete linkage tends to produce tight clusters. It is as computationally
efficient as single linkage.

Average Linkage

The similarity between two nodes is recorded as the average correlation
from all pairwise comparisons between themembers of one node to the other.
Average linkage tends to produce clusters intermediate between single and
complete linkage in terms of internal consistency. It suffers from a less
efficient computation than single or complete linkage, as the average of all
similarities must be calculated at each step.

Centroid Linkage

The similarity between two nodes is the similarity between the centroids
of those nodes. The centroid of a node is simply calculated by averaging its
constituent expression vectors. Centroid linkage can be more memory effi-
cient than the other linkage methods (see later), but it does require addi-
tional correlations to be calculated during the tree‐building stage (as many
as were calculated during the creation of the initial correlation matrix).
Finally, the meaning of a centroid as a summary of its node is not perfectly
clear, and certainly when using the absolute correlation (either centered or
uncentered), it does not make sense to use centroid linkage, as the centroid
of two vectors that are anticorrelated will have the effect of creating a vector
that is not like either of its constituents.

Drawbacks of Clustering

Agglomerative hierarchical clustering can lead to artifacts. For instance,
when using centroid linkage, the vector that represents a node, which is
calculated as the average of all vectors that belong to the node, may not
reflect accurately any of the contained vectors, especially as nodes become
larger. Also, irrespective of the linkage method, vectors within a node will
become less similar to each other as you approach the root of the tree; that is,
nodes become more heterogeneous. In addition, any suboptimal joins made
early on during the running of the algorithm cannot be corrected later.
A further drawback is that when clustering by experiment (columns in the
matrix), the similarity between each vector is calculated over the total
number of genes within the data set. Thus, even if sample A is most similar
to sample B in the expression of an important set of genes, that (potentially
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important) fact will be obscured if sample C is most similar to sample A
overall. Such a relationship could be of biological significance, and it would
be preferable not to discard it. Finally, it may be the case that a hierarchical
structure does not apply to data. As an alternative, there are clustering
methods that partition data into more or less homogeneous groups instead
of organizing data into a hierarchy. Several such partitioning methods exist;
self‐organizing maps (SOM) and K‐means clustering are discussed next.
Data Partitioning

Self‐Organizing Maps

Self‐organizing maps (Kohonen, 1995) are used for partitioning data
into a two‐dimensional matrix of cells or partitions. Each gene and/or array
is assigned to a single partition. The vectors in each partition are most
similar to each other; each partition, overall, is more similar to adjacent
partitions than to partitions farther away in the matrix. SOMs have been
applied to gene expression data in a number of studies (e.g., Tamayo et al.,
1999).

To initialize a SOM the number of partitions to use must be defined,
as must their geometry with respect to each other, that is, a 4 � 4 two‐
dimensional grid of 16 partitions. Each partition in the grid is more related
to its neighbors than to distant partitions, and thus the geometry, as well as
the number of partitions, will influence the outcome, that is, a 1 � 16 grid
will give a somewhat different result than a 4 � 4 grid. Each partition is
then assigned a seed vector by the algorithm, which has the same di-
mensionality as the vectors being partitioned. These seed vectors are usually
initialized with random data, although as an alternative they can be
seeded with the first two principal components, which capture the greatest
amount of variation within the data set, and enough vectors spaced equally
between them to have one seed vector per partition. Genes are then
assigned to these partitions by an iterative method that manipulates these
seed vectors. During each iteration, seed vectors are recalculated to repre-
sent expression data more closely, as follows. A gene is picked at random,
and its vector is compared to each of the seed vectors. The seed vector to
which it is most similar is then modified so that it more closely resembles
the expression associated with that gene. Vectors of nearby partitions are
modified similarly, but to a lesser degree. With each iteration, the amount
by which the seed vectors are altered decreases, and fewer of the proximal
partitions are modified each time: at the start perhaps the vectors of all
partitions are affected; toward the middle of the process perhaps only the
partitions immediately adjacent to the one that best matches the chosen
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gene vector are affected; and at the end only the best match partition vector
itself is affected. Hence each iteration results in fewer vectors being mod-
ified by smaller amounts so that the map eventually converges to a solution.
Finally, each gene vector is assigned to the partition with an associated
vector to which it is most similar.

K‐Means Clustering

K‐means clustering (Everitt, 1974) partitions data in a manner similar
to self‐organizing maps, with the key difference being that one partition
does not influence another directly. Seed vectors may be assigned in the
same way as in SOMs, but then all gene/array vectors are immediately
assigned to the most similar partition. The representative vector of
each partition is then recalculated as the centroid of the vectors assigned
to the partition, and gene/array vectors are then reassigned, possibly
moving from one partition to another. This process continues until conver-
gence is reached, with no gene or array vectors changing partitions between
iterations. Because the solution may be influenced strongly by the initial
seed vectors, the entire process is typically repeated many times in order to
determine the stability of the solution and, ideally, find a global rather than
local optimum. K‐means clustering has been used successfully to analyze
microarray data generated from studies of the yeast cell cycle (Tavazoie
et al., 1999).

How Many Partitions to Make?

One of the main drawbacks of partitioning methods is the uncertainty
in choosing an optimal number and arrangement of partitions. Several
methods for determining the correct number of partitions to make have
been suggested (for discussion, see Milligan and Cooper, 1985), including
the Gap statistic (Tibshirani et al., 2000), which was designed with gene
expression data in mind. The main goal when partitioning expression data
is to reduce the within‐cluster dispersion, such that each cluster is reason-
ably homogeneous, while at the same time the between‐cluster dispersion
is large (i.e., a partition is not split inappropriately into two or more similar
partitions). Simply plotting the within‐cluster dispersion (which for the
purposes of the Gap statistic is defined as the sum of the squared Euclidean
distances between all members of a cluster, divided by twice the number of
members within the cluster, and then summed over all clusters) results in a
line that decreases as the number of clusters increases. This makes intuitive
sense—the more clusters, the less variation within each cluster, as they will
have fewer and fewer members. However, looking at such a plot, there
is often an elbow, or a point where the plot flattens markedly. The Gap
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statistic attempts to formalize detection of this point in the plot by making
the plot for real data, and also for a reference distribution of data, which is
created by drawing random data from the same distribution as original
data. The difference between these two curves is then plotted, and the
point at which their difference is maximal (the details are somewhat
simplified for discussion here) is the number of clusters, k, into which data
should be partitioned. The Gap statistic has not been widely implemented
in common software packages, but there is a Perl library available for
calculating the Gap statistic (the Statistics::Gap module), and the Gap
statistic is also available in the Acuity software from Molecular Devices.
In the absence of using the Gap statistic, a user can partition their data
iteratively into more and more partitions to determine roughly when
clusters of like patterns are being broken up and use a number of partitions
just less that the number where coherent partitions are partitioned further,
although of course this is a subjective process.
Computational Considerations

The run time for hierarchical clustering is proportional to the square of
the number of entities being clustered (genes or experiments, depending on
in which dimension the matrix is being clustered) and is, in general, related
linearly to the dimensionality of the entities being clustered, for example,
clustering 2000 genes will take four times as long as clustering 1000 genes,
whereas doubling the number of experiments for those genes should only
double the run time. In computational terms, the efficiency of hierarchical
clustering is O(n2m), where n is the number of entities being clustered and
m is their dimensionality. Typically, clustering a matrix of 1000 or so genes
by 100 experiments should only take a few seconds, whereas clustering tens
of thousands of genes by 1000 experiments can take several hours. The
amount of memory required by hierarchical clustering can vary based on
the linkage method. Typically, single, complete and average linkage keeps
the entire matrix of correlations in memory, the size of which is propor-
tional to the square of the number of genes. Clustering 10,000 genes results
in a matrix of correlations occupying almost 400 MB of RAM, whereas
20,000 genes require 1.5 GB of RAM. Centroid linkage clustering does not
need to keep all correlations in memory, and the implementation of cen-
troid linkage clustering in XCluster (see later) only requires 2 Mb to store
the correlations it calculates for our hypothetical 20,000 genes. Cluster 3.0
(de Hoon et al., 2004; see later) uses an alternative algorithm for single
linkage clustering, SLINK (Sibson, 1973), whose memory requirements are
related linearly to the number of entities being clustered and is significantly
faster than the usual single linkage algorithm.
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The run time for partitioning vectors using K‐means clustering and SOM
does not increase significantly based on the number of genes being parti-
tioned, and the largest determinant is the number of iterations required.
Typically, SOMs and K‐means clustering only take a few minutes at most
and have fairly trivial memory requirements.
Is There a Best Method and/or Best Metric?

When confronted with so many options, it would be useful if there were
a simple way to determine which algorithm with which metric produces the
best results. At least two approaches have been used. First, Yeung et al.
(2001) introduced the concept of a figure of merit (FOM). This is a ‘‘leave‐
one‐out’’ approach, where data from all but one array are clustered and
then assessed to see how well clustered data predict data in the excluded
array. This is repeated for all arrays. The more robust the clustering
method is, the more predictive the clustering should be of data in the
left‐out experiment. Yeung et al. (2001) compared single, complete, and
average linkage hierarchical clustering, CAST (Ben‐Dor et al., 1999), and
K‐means clustering. For real data, they found that single linkage clustering
frequently performed almost identically to random assignment of genes to
clusters, while the other linkage methods and CAST and K‐means cluster-
ing did significantly better, performing similarly to each other. A second
study (Gibbons and Roth, 2002) took a different approach and determined
how coherent the biological annotation for genes within subclusters was,
using different metrics and different algorithms. Again, they found that
single linkage performed poorly, but they also found that average linkage
performed worse than random as a cluster was cut into more subclusters.
They found that as a measure of dissimilarity between gene vectors, no
method outperformed Euclidean distance for ratio‐based measurements or
Pearson distance for nonratio‐based measurements at the optimal choice of
cluster number. They also showed that SOMs were the best approach for
both measurement types at higher numbers of clusters. Clearly, unless
there is a compelling reason to do so, single linkage should not be used
for clustering microarray data, despite being an available option in many
software packages.
Freely Available Clustering/Analysis and Visualization Software

A quick internet search turns up dozens of software applications for
clustering. Offerings include both free and commercial software, from
single‐purpose applications to full‐fledged statistical analysis suites, many
with a range of other microarray‐oriented functions from image analysis to
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gene annotation. To survey the territory completely would take a much
larger space, and a much broader focus, than is available here.

Instead, this chapter focuses on the practical use of a family of applications
narrowly tailored to hierarchical clustering of microarray data, starting with
the original Cluster software from Mike Eisen at Stanford University (Eisen
et al., 1998), which runs on theWindows platform (Table I). One descendent,
XCluster (http://genetics.stanford.edu/�sherlock/cluster.html), provides effi-
cient computation in the context of integrated analysis pipelines; another,
Cluster 3.0 (de Hoon et al., 2004), provides somewhat more functionality
than Cluster and can be deployed on a wide variety of computer platforms.
Each of these applications relies on another program, such as TreeView
(http://rana.lbl.gov/EisenSoftware.htm) or JavaTreeView (Saldanha,
2004), for graphical display of the results. After outlining the functions
and options available in these programs, we will very briefly discuss two
alternate approaches for microarray analysis, the MeV application of
TIGR (Saeed et al., 2003, 2006) and the R statistical programming language
(http://www.r‐project.org/; Reimers and Carey, 2006).
Cluster

Cluster (Eisen et al., 1998) is a Windows application for unsupervised
analysis of microarray data. It is free for academic and nonprofit use and
may be downloaded from http://rana.lbl.gov/EisenSoftware.htm. The input
and output of Cluster are both text files; the input file format (known as the
pcl format, for preclustering) has become a de facto standard and is con-
structed easily in a spreadsheet program with genes and microarrays (indi-
vidual hybridizations or conditions) represented as rows and as columns of
data, respectively; the output is in the clustered data table (cdt) format,
which is the pcl file with its rows and/or columns reordered, with some
additional meta data used to indicated information pertaining to the hier-
archical cluster. The cdt file may be accompanied by a gene tree (gtr) file
and an array tree(atr) file, indicating the order and the correlation with
which nodes were joined in the clustering. These files are easily parsed and
displayed by TreeView. The various operations described here are
organized into discrete tabs or pages in the software interface, making
their use very straightforward.

Cluster provides a few simple options for filtering data prior to analysis.
The object of filtering is usually to pick out genes that have responded to the
experimental conditions on the basis of their pattern of expression (mea-
surements). Genes may be filtered on the basis of the standard deviation of
theirmeasurements, on the range ofmeasurements (greatestminus least), or
on the number of microarrays in which the measurement exceeded some

http://genetics.stanford.edu/~sherlock/cluster.html
http://rana.lbl.gov/EisenSoftware.htm
http://rana.lbl.gov/EisenSoftware.htm
http://www.r-project.org/


TABLE I

SOME AVAILABLE CLUSTERING SOFTWARE PACKAGES

Name Source/author Web site Reference

Acuity Molecular Devices http://www.moleculardevices.com/pages/

software/gn_acuity.html

Cluster Michael Eisen http://rana.lbl.gov/EisenSoftware.htm Eisen et al. (1988)

Cluster 3.0 Michiel de Hoon http://bonsai.ims.u‐tokyo.ac.jp/�mdehoon/

software/cluster/

de Hoon et al. (2004)

GeneSpring Agilent http://www.genespring.com

Hierarchical

Clustering Explorer

Jinwook Seo http://www.cs.umd.edu/hcil/hce/ Seo and Shneiderman (2002)

J‐Express Molmine http://www.molmine.com/

MeV TIGR http://www.tm4.org/ Saeed et al. (2003, 2006)

XCluster Gavin Sherlock http://genetics.stanford.edu/�sherlock/

cluster.html
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threshold. This tab also includes an option to eliminate genes that are
missing toomuch data, whichmay be due to poor measurements or previous
filtering of individual spots in some other software. While researchers will
usually filter their data, with the goal of filtering out uninteresting genes,
with a goal of clustering data for interesting ones, some caution should be
exercised in interpreting the results. After ‘‘clearing out’’ the expression
space of uninteresting genes, well‐separated clusters of genes remain, pre-
cisely because the space between those clusters was emptied by filtering
rather than data having clearly defined clusters (see Bryan, 2004).

Cluster also provides a handful of options for transforming and regulariz-
ing data prior to analysis, although if these steps have been carried out
previously, they can be skipped. These options are intended to facilitate
comparison of measurements from microarray to microarray, as between‐
array, systematic biases can frequently overwhelm the biological component
of the measurements. The first option is to log transform data. Log transfor-
mation of ratios causes symmetric changes to be reflected in symmetric
numbers. For example, a twofold increase in expression gives a ratio of 2,
whereas an equivalent decrease gives a ratio of 0.5, while no change gives
a ratio of 1. In these ‘‘linear’’ ratios, the difference between no change and a
twofold increase is 2 – 1 ¼ 1, whereas the difference between no change and
a twofold decrease is 0.5 � 1 ¼ �0.5. If we instead log transform the
ratios, typically using base 2, no change is log2(1) ¼ 0; a two‐fold increase
is log2(2) ¼ 1; and a two‐fold decrease is log2(1/2) ¼ �1. This symmetry is
required for proper functioning ofmost of the distancemetrics, and clustering
of ratiometric data should always be done after data have been log trans-
formed.Even in the case of single‐channelmicroarray data, inwhich ratios are
generally not involved, the measurements are generally log normal, meaning
that upon log transformation they assume a more or less symmetric distribu-
tion similar to the ‘‘normal’’ or ‘‘Gaussian’’ distribution, which causes the
most common ‘‘parametric’’ distance metrics to function better.

The other transformation options are intended to deal with common,
between‐microarray, systematic biases. The most common of these is ‘‘dye
bias,’’ in which one channel of a two‐color microarray is more intense than
the other for technical, rather than biological, reasons (Brownstein, 2006).
In addition to skewing the absolute measurement of the expression of a
gene on a single microarray, if this bias differs between arrays it can distort
clustering analysis greatly. If it is valid to assume that the geometric mean
ratio should be 1 (or an arithmetic mean of zero, in terms of log ratios), this
problem can frequently be addressed by simply adjusting the average log
ratio on each array to zero, or ‘‘centering’’; the software supports adjusting
either the mean or the median value in this way. A similar problem afflicts
the comparison of genes within each array if one sample is a biologically
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meaningless reference: the actual ratio measured for each gene in a given
array is then meaningless or even deceptive in that only the relative change
from array to array (experimental condition to experimental condition) is
relevant. Because most distance metrics are nonetheless sensitive to the
actual ratios, a common approach is to center the gene measurements,
setting the average value for each gene, across all conditions, to zero. This
operationmay also be performed considering either themean or themedian
of the measurements of each gene.

The final transformation option is to ‘‘normalize’’ genes and/or arrays.
The term ‘‘normalization’’ is used to mean several different things in the
context of microarray analysis; in this case, it means that the magnitude of
the vector of measurements is set to 1 via a multiplicative adjustment of the
measurements. Most of the distance metrics work with normalized vectors,
behind the scenes as it were, but this option allows the normalized values to
be output to the final data files.

The Cluster program supports agglomerative hierarchical clustering of
genes, arrays, or both. In this tab, the user may select from a list of distance
metrics: Pearson correlation (centered or uncentered), absolute value of
Pearson correlation (centered or uncentered), Spearman rank correlation,
or Kendall’s � . Clustering may be performed using average, complete, or
single linkage. A final option is to algorithmically assign weights to genes
or arrays: weighting genes unequally will affect the clustering of arrays, and
vice versa. Weights are assigned by the local density of vectors, as measured
by the chosen metric, so that vectors that are very similar to others are
downweighted. Weights may also be assigned by the user, in the input file,
for example, if there are multiple replicates of the same gene, then they
should be downweighted accordingly so that they do not unduly influence
the clustering of arrays. The ordering of the final tree is random in that nodes
may be ‘‘flipped’’ arbitrarily unless the user specifies a preferred order in the
input file.

K‐means and K‐medians clustering are available in Cluster for both
genes and arrays. The user may select the number of nodes and the number
of iterations to compute. No choice of distance metric is available.

Cluster supports one‐dimensional SOMs along both gene and array
axes. The organization of nodes is always 1 � N, where N is chosen by
the user, and the results are used to set the preferred order of genes and/or
arrays. Thus, if data are subsequently hierarchically clustered, the nodes
are flipped in such a way as to approximate the order determined by the
SOM as nearly as possible. In this implementation, results of the self‐
organizing map are very similar to those of K‐means or K‐medians cluster-
ing, except that the interaction between neighboring nodes produces a
smoother transition from one to another.
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XCluster

XCluster (http://genetics.stanford.edu/�sherlock/cluster.html) imple-
ments some of the same algorithms as the Cluster application. It is written
in C and can be compiled and executed on Windows, MacOS, Linux, and
Unix. XCluster has no graphical user interface (GUI); it is intended to be
executed ‘‘on the command line’’ by other programs as part of an
integrated analysis process. The advantage of XCluster, beyond its suitabil-
ity for such integration, is that it is optimized for performance and a small
memory footprint. Within its available options, it is generally faster than
the other applications described here. The input and output file formats are
similar to Cluster, except that the user may not specify a preferred order of
genes or arrays in the input file.

The various command‐line options passed to XCluster determine which
operations will be performed. Data may be log transformed, but no other
transformations and no filters are offered. Genes and arrays may be clus-
tered hierarchically by centroid linkage using either Pearson correlation
(centered or uncentered) or Euclidean distance as the distance metric.
K‐means clustering is offered as in Cluster, for partitioning genes only.

The self‐organizing map option in XCluster differs somewhat from that
of Cluster or Cluster 3.0 (described later). Two‐dimensional SOMs are
supported, but only genes, and not arrays, may be organized in this way.
Each node will contain a subset of genes, but all arrays. Hierarchical
clustering is then carried out separately within each node so the organiza-
tion determined by the SOM is preserved through clustering. Each node
may be clustered by both genes and arrays.

Cluster 3.0

Cluster 3.0 (de Hoon et al., 2004) is a reimplementation of the original
Cluster program and is very similar to it in most ways. Some additional
options are available, as outlined later. The most significant advance in
Cluster 3.0 is that it provides a GUI that may be run on MacOS, Linux, and
Unix in addition to Windows, with the GUI part of the application being
implemented natively for each different platform. Input and output file
formats are identical to those for Cluster. For graphical display of results,
the Java TreeView application (Saldanha, 2004) functions on all platforms
on which Cluster 3.0 runs.

Cluster 3.0 has a GUI very similar to that of Cluster. In addition, it may
be used as a command‐line program on Unix‐based operating systems
(including MacOSX), which are very similar to XCluster but with some
expanded options as described later. The authors also make available Perl
and Python programming language interfaces to the C software library that

http://genetics.stanford.edu/~sherlock/cluster.html


[10] clustering microarray data 211
underlies the Cluster 3.0 software for the efficient and flexible integration
of the functions of Cluster 3.0 into other software.

The filtering and transformation options in Cluster 3.0 are identical to
those in Cluster, with the exception that the effect of filtering may be
examined before it is applied to data. This allows the user to determine
whether the filters are too lax or too strict before actually altering data.

The hierarchical clustering options in Cluster 3.0 are very similar to those
in Cluster, with some additions. Centroid linkage is available, in addition to
average, complete, and single linkage; as mentioned earlier, the single
linkage option in Cluster 3.0 is more computationally efficient than the
standard algorithm. Available distance metrics are Pearson correlation
and absolute Pearson correlation, centered or uncentered; Euclidean dis-
tance and harmonically summed Euclidean distance (technically not a met-
ric, as the distance fromA toC is not necessarily less than or equal to the sum
of the distance fromA to B andB to C); city block or ‘‘Manhattan’’ distance;
Spearman rank correlation; and Kendall’s � .

Cluster 3.0 supports two‐dimensional SOMs of both genes and arrays.
Unlike the implementation in Cluster, any of the available distance metrics
may be used for SOMs. This choice of metrics is also available for K‐means/
K‐medians clustering, which is otherwise similar to the implementation in
Cluster.
Other Analysis Packages

As mentioned earlier, there is a wide variety of microarray analysis
packages available, many of which implement some forms of clustering. Of
particular note, as free, open‐source exemplars of two different approaches
to analysis software are the TIGRMultiexperiment Viewer (MeV) and the
R statistical programming language.

MeV may be downloaded, as part of the TIGR TM4 microarray analysis
suite (Saeed et al., 2003, 2006), fromhttp://www.tm4.org/index.html. MeV is a
very full‐featured analysis package, providing an integrated, graphical
overview of the analyses carried out and a plethora of algorithms, mostly
for unsupervised analyses but with a good selection of supervised methods.
For the various unsupervised analysis options, MeV provides a variety
of distance metrics: Euclidean distance; Manhattan or city block distance;
Pearson correlation (centered or uncentered); squared Pearson correlation
(uncentered); cosine correlation; covariance; average dot product; Spearman
rank correlation; and Kendall’s � . Hierarchical clustering may be carried out
by single linkage, complete linkage, or weighted average linkage (weights
determined by relative depth in the tree). A wide variety of other clustering
methods, including SOMs and K‐means/K‐medians, is also offered.

http://www.tm4.org/index.html
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The R programming language (http://www.r‐project.org/) is a full‐
fledged programming language designed in part for, and accompanied by
many functions for, statistical analysis. As such, it is a powerful tool for those
with some comfort with computer programming (and a number of generally
available analysis tools have been written in R as well). The BioConductor
project (Gentleman et al., 2004; Reimers and Carey, 2006) (http://www.
bioconductor.org/) provides a large number of add‐on packages for R
specifically intended for microarray research. Of particular pertinence here,
various functions in R support hierarchical clustering and other unsuper-
vised analysis techniques, as well as supervised analyses. While even a brief
description of R and BioConductor is beyond the scope of this chapter, they
deserve mention as a powerful tool for the computational biologist.
Conclusions

There is much more to microarray data analysis than just clustering.
Many experimental designs are better served by a supervised analysis or by
a combination of supervised and unsupervised approaches. Nevertheless,
the various forms of clustering are powerful tools for unsupervised,
discovery‐oriented microarray analysis. Considered, thoughtful application
of these methods can lead to novel insights and important advances and has
done so in many cases referenced earlier.
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[11] Analysis of Variance of Microarray Data

By JULIEN F. AYROLES and GREG GIBSON
Abstract

Analysis of variance (ANOVA) is an approach used to identify differ-
entially expressed genes in complex experimental designs. It is based on
testing for the significance of the magnitude of effect of two or more
treatments taking into account the variance within and between treatment
classes. ANOVA is a highly flexible analytical approach that allows inves-
tigators to simultaneously assess the contributions of multiple factors to
gene expression variation, including technical (dye, batch) effects and
biological (sex, genotype, drug, time) ones, as well as interactions between
factors. This chapter provides an overview of the theory of linear mixture
modeling and the sequence of steps involved in fitting gene‐specific models
and discusses essential features of experimental design. Commercial and
open‐source software for performing ANOVA is widely available.

Introduction

Since the mid‐1990s, application of classical statistical methods has
dramatically improved the analysis of differential gene expression across
biological conditions. In the early days of microarray analysis, researchers
typically adopted fold change criteria to identify genes of interest, using a
convenient arbitrary cutoff value (usually a twofold difference) as a thresh-
old. Recognizing that there is no statistical basis for such cutoffs, this
approach was soon replaced by t tests for comparison of means of two
samples in relation to the observed technical or biological variation. Tusher
et al. (2001) introduced a popular method called significance analysis of
microarrays that employs a modified t test associated with a permutation
test to assess significance. For comparisons involving just two classes of
treatment, this remains appropriate, but many experiments employ multi-
ple levels of each factor (e.g., three drugs, four time points) and multiple
factors (e.g., sex, drug, and genotype). In these cases involving complex
designs, more power and flexibility are required (Cui and Churchill, 2003),
and it is often desirable to contrast the contributions of each source of
variation directly. Analysis of variance (ANOVA) is a suitable framework
widely employed in all aspects of quantitative biology and has been quickly
adapted to microarray analysis. Kerr et al. (2000) were the first to suggest
using ANOVA to identify genes differentially expressed in the context of
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
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two‐dye arrays, but the approach now employed most commonly uses the
gene‐specific modeling first proposed by Wolfinger et al. (2001) and, for
high‐ de nsity oligon ucleotide arrays , Chu et al. (2002). This chapter pre sents
guidelines for using ANOVAs to analyze microarray data, discussing issues
associated with formulating a mixed model, the levels of replication neces-
sary to use ANOVAs, and adjustments for multiple testing. A flow diagram
in Fig. 1 illustrates themajor steps involved in design and execution of a gene
expression profiling experiment involving multiple classes of treatment.
Linear Modeling and Analysis of Variance

Analysis of variance refers to a particular class of statistical model that
is used to estimate the magnitude of parameters that account for the effects
of multiple independent variables and evaluate their significance based on
partitioning of sources of variation. In its simplest form, a general linear
model (GLM) formulates a linear relationship between a single dependent
variable, Y, and a single independent variable, X. That is, Y is assumed to
be a linear function of X with slope � and intercept �, while the unexplain-
ed ‘‘residual variance’’ is represented by e in the equation Y ¼ � þ �X þ e.
This approach can be extended to account for multiple independent
variables:

Y ¼ mþ b1x1 þ b2x2 . . . . . . bLxL þ e:

ANOVAs are designed to tease apart the different sources of variation
that may contribute to the total experimental variance, including technical
and biological factors, in such a way that all of the factors are assessed jointly
rather than in a pair‐wise manner. Statistical tests of a null hypothesis are
formulated using f ratios of the variance due to the treatment of interest to an
appropriate measure of the residual variance. The null hypothesis generally
stipulates that there is no difference between the means of the populations
from which samples are drawn (Ott and Longnecker, 2001). Sokal and
Rohlf (1995) provide a comprehensive introduction to the theory, which
quickly gets more sophisticated than most nonexperts are comfortable with.
Consequently, while it is now possible to implement standard ANOVA
algorithms, we recommend close collaboration between biologists and
statisticians at all phases of the analysis, starting with experimental design.
Fixed versus Random Effects

There are two general types of effects in a linear model corresponding to
fixed and random factors. Operationally, an effect is considered fixed
if replication of the experiment would result in resampling of the same
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population because each of the levels of the factor are represented in the
experiment. Examples includeCy3 andCy5 dyes, themale and female sexes,
or high and low lines deliberately chosen to represent the extremes of a trait.
In contrast, random factors are consideredwhen the samples are drawn in an
unbiased manner from a large population. For example, ‘‘array’’ effects are
FIG. 1. (continued)



FIG. 1. Flow diagram of steps in design and analysis using ANOVA.
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random, as each array used in a given experiment is a unique sample from all
of the arrays that could have been used: there is no expected correlation
between the measures due to sampling. Some biological factors may be
random, for example, individual humans or subpopulations picked by
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chance to represent a species. If the experiment was to be repeated using a
different set of arrays, people or subpopulations, the variance among them
should be the same and the parameter estimates should yield the similar
results.

A fixed effect model such as one would encounter in Microsoft Excel or
by default with PROC GLM in SAS is a model with only fixed terms,
except for the residual error, e, which is always assumed to be distributed
randomly with a mean of zero and standard deviation �. The p values may
be inflated artificially (Littell et al., 1996) for several reasons, especially if
there is hidden correlation between the errors associated with the measure-
ment of two or more factors as might occur if the experimental design is
unbalanced. For example, if two‐thirds of the males are labeled with Cy3
and two‐thirds of the females with Cy5, these two factors (sex and dye) may
be confounded. Wherever a factor is assumed to be random, we recom-
mend the use of mixed model ANOVAs that contain both random and
fixed terms. Biological replicates and arrays should be estimated as random
effects so that their associated error variance provides the correct error
term for the denominator of the f ratio that is tested (Cui and Churchill,
2003). The difference between fixed and random effects is not trivial and
serious consideration needs to be paid when designating each effect in the
model (for a recent review of fixed and random effects in microarray
experiments, see Rosa et al., 2005).
Types of Microarrays

There are several types of microarray technology available, and slightly
different analytical approaches are required to deal with the properties
of these. The most fundamental distinction is between two‐color arrays
and single‐channel arrays. Two color arrays include spotted cDNA arrays
on glass slides or nylon filters (Uhde‐Stone et al., 2003), as well as some
commercial long oligonucleotide arrays (e.g., Agilent arrays) (Wolber et al.,
2006). Microarrays on nylon filters can be probed repeatedly with radioac-
tively labeled samples, in which case the ‘‘dye’’ effect can have multiple
levels instead of just two. Short oligonucleotide arrays are typically single
channel, notably those produced by Affymetrix (Dalma‐Weiszhausz et al.,
2006) and Nimblegen (Scacheri et al., 2006), but include multiple probes per
gene that can be averaged or treated as individualmeasurements. Averaging
of probe level data can be used to decrease data complexity, assuming high
levels of technical replicates; however, probe level variation carries impor-
tant information useful for outlier removal and subsequent ANOVA. Some
long oligonucleotide platforms are only employed with a single dye, notably
Illumina bead arrays (Fan et al., 2006), in which transcript abundance is
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represented as the average (after outlier removal) of the 20 to 30 identical
beads per sample.

Two main approaches have been employed with two‐color arrays. One
is to reserve one dye for a reference sample while the other dye is used to
label the treatments. In this case, the ratio of Cy3/Cy5 provides the raw
measurement of expression. This approach is intuitive and straightforward
and is particularly suitable in cases where there is a large number of
treatments of the same factor with low replication, such as a time series
or exposure to a compendium of chemicals. Ideally, the reference sample
should be chosen to be an approximate average of all of the treatments for
each gene. This may be achieved by making a pool of each of the treat-
ments, but doing so compromises the comparability of different experi-
ments. The alternative is to use a common control sample, such as ‘‘mouse
liver,’’ but this will bias the analysis for genes that have abnormally low or
high expression in the reference. Reference sample designs are also waste-
ful of resources in the sense that there is no biological information of
interest in the control. Nevertheless, they remain popular and there is no
reason why ANOVA approaches cannot be adopted to analyze ratio data.

The second two‐color approach is to use both dyes for samples of
interest. This type of design requires considerable forethought in the
experimental layout to avoid confounding of factors by unbalanced de-
signs. Because dye effects are prevalent in two‐color experiments (Kerr
et al., 2000), it is essential to ensure that each sample is represented by
technical replicates of both dyes, as far as possible in equal proportions.
Loop designs are popular in which sample n is competitively hybridized to
sample n�1 with one dye, and to nþ1 with the other dye. With multiple
factors in the analysis, it can be difficult to ensure that the factors remain
distributed randomly with respect to one another. For example, you do not
want all of the liver samples to be labeled with Cy3 and the heart samples
with Cy5, as then you cannot tease apart whether the effect is due to the
dye or to the tissue. It is not essential that two factors be directly contrasted
on an array in order to draw an inference about the effect, but failure to do
so will generally reduce the statistical power of the comparison.

An alternative to the loop design is a split‐plot design in which factors
are deliberately separated (Jin et al., 2001). This has been common practice
in agricultural experiments for which mixed model ANOVA has long been
used. For example, in an experiment evaluating the joint effects of sex and
drug on gene expression in some tissue, if all of the arrays contrast indivi-
duals with and without the drug, but none of them contrast males against
females (all of the arrays are samples from one sex or the other), the design
is a split plot. In this case, there is more statistical power for the factor that
is contrasted directly, namely drug, but the sex effect can still be estimated.
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If the aim of an experiment is to contrast the contributions of each factor, it
is best to employ a loop design as far as possible; if it is to maximize the
analysis of one effect across samples that include another effect of lesser
interest, then a split‐plot is warranted. Many other types of design, includ-
ing random assignment of treatments to arrays, can be handled with
ANOVA, but it must be recognized that the layout of a two‐color experi-
ment affects the statistical power and can introduce biases that may go
undetected.

Whichever design involving two or more channels (dyes) is employed, it
is essential to fit an array term in the model as a random effect. Failure to
do so can overestimate effects dramatically because it fails to account for
the fact that the two measurements for each spot are correlated. Correla-
tion between measurements from the same spot occurs because spot size
and shape, and DNA concentration in each spot, varies from array to array
(Minor, 2006). Fitting array as a random effect essentially takes care of the
‘‘spot effect’’ problem that was initially recognized by those who employed
ratios and reference sample designs. Note that it is easy to fit ANOVA
models without fitting the spot effect, which may lead to the detection of
many more significant genes, but it is not valid.

In the case of single‐channel arrays, experimental design is much
simplified. There is no need to worry about spot and dye effects or con-
founding of factors because each sample is hybridized onto a different
array and is measured independently. Care should be taken to balance
the number of replicates of each factor to prevent biases due to overrepre-
sentation of one or more classes. It is also important to avoid hybridizing
different types of samples at different times, as batch effects that may be
caused by enzyme lots, ozone levels, or other uncontrolled parameters may
cause observed differences in fluorescence intensity. The analysis of short
oligonucleotide platforms where each gene is represented by multiple
probes, each of which has a perfect and a mismatch probe, presents some
unique challenges. Affymetrix MAS 5.0 software provides an ‘‘average
difference’’ measure that can be taken directly into an ANOVA, but it is
also possible, and sometimes more powerful, to perform the analysis at the
probe level. Because it turns out that perfect and mismatch hybridization
intensity is usually highly correlated (Chu et al., 2002), an assumption of the
ANOVA is violated, and it is generally better simply to work with perfect
match data only.
Biological versus Technical Replication

Just as the experimental design guides the formulation of the proper
linear model (for review, see Rosa et al., 2005), interpretation is also a
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function of the number of replicates of each level of each factor. Analysis
of variance relies on the assumption that the sample size used for each
population provides an accurate representation of the variation in the
population. Reduction of experimental error requires that a sufficient level
of biological replication is employed (Lee et al., 2000), and failure to
replicate sufficiently reduces the statistical power to detect differential
expression.

An important distinction must be made between technical and
biological replicates. Technical replication refers to replicate hybridiza-
tions of the same RNA samples (whether from the same or different
extractions) that originate from a common biological source. Technical
replicates are not truly independent from one another and are designed
to validate the accuracy of the transcript‐level measurements. They do not
provide information about variation in the population. Similarly, replicate
probes within an array are designed to limit the need for technical repli-
cates by increasing the confidence of abundance measures for a given
target gene. However, each probe cannot be regarded as an independent
measurement, and failure to account for the correlation between duplicate
probes on an array also inflates the estimate of biological differences. With
high‐quality commercial arrays, technical error is usually much less than
biological variance so there is little point in replicating any sample more
than once.

In contrast, biological replication refers to the hybridization of RNA
samples originating from independent biological sources under the same
conditions, such as samples extracted from different individuals that
received the same treatment dosage or two vials or pots of the same fly
or plant genotype. These replicates are designed to provide information
about variation among individuals. Financial limits will usually affect ex-
perimental design, making it infeasible to employ multiple biological
replicates, but even if these are not directly of interest, it is a good idea
to include biological replication in the study. Simply pooling the replicates
to ensure that the individual variation is sampled, even if it is not measured,
can do this. It is also good practice wherever possible to duplicate and pool
RNA extractions and labeling reactions so as to minimize error due to
sampling in each of these steps.

A common question is as follows: how many replicates are required?
Unfortunately, it is not possible to precisely answer this question in advance
of an experiment because variance components due to different factors are
unknown. Computation of the number of samples required to reject a
defined percentage of null hypotheses at a particular significance level
(i.e., the statistical power) can be performed with a number of online
calculators (Table I). These require estimation of the mean difference
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TABLE I

ONLINE TOOLS FOR POWER ANALYSIS

From Web site By

UCLA Department of

Statistics

http://calculators.stat.ucla.edu/powercalc/ Barry Brown et al.

U of Iowa Department

of Statistics

http://www.stat.uiowa.edu/�rlenth/Power/ Russ Lenth

York U. Department of

Math

http://www.math.yorku.ca/SCS/

Online/power/

Michael Friendly
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between samples, and the variance of each sample. Because these value
vary greatly among genes on the array, estimates of required sample size
are by nature approximate only. Furthermore, the experimental desig
strongly affects power, and as the number of levels of a factor increase
the number of biological replicates required will tend to drop. Powe
analyses reported by Wolfinger et al. (2001) and Tempelman (2005) gener
ally recommend use of at least four technical replicates per biologica
replicate for spotted microarrays in order to detect 80% of the differentia
ly expressed genes at experiment‐wide thresholds. The higher quality o
commercial oligonucleotide arrays allows for just two to three technica
replicates, but power is still affected greatly by the mean and variance o
the biological samples.
Data Extraction and Normalization
Several programs are currently available to extract spot intensity for
two‐dye arrays after the slides have been scanned (e.g., Table II). For most
applications, raw intensity data from each dye are first converted to a
logarithmic scale, usually base 2. This is essentially equivalent, after appro-
priate adjustment for array effects, to taking the logarithm of the ratio of
two dyes, as mathematically the logarithm of a ratio is equal to the differ-
ence between the logarithms. Log transformation has two advantages:
it makes data more normally distributed and more symmetrical. Although
ANOVA assumes that data are normally distributed, it is generally quite
robust to departures from normality, but it is always best to work with
approximately normal distributions. Because the distribution of raw
intensity measurements is always highly skewed with most transcripts
showing low expression and maybe 10% of transcripts with high expression,
log transformation reduces this bias. It alsomakes increases and decreases in
expression symmetrical: ratios of 2:1 and 0.5:1 becomeþ1 and�1 on the log

http://calculators.stat.ucla.edu/powercalc/
http://www.stat.uiowa.edu/~rlenth/Power/
http://www.math.yorku.ca/SCS/Online/power/
http://www.math.yorku.ca/SCS/Online/power/


TABLE II

LIST OF S OME POPULAR SOFTWARE AVAILABLE TO SCAN SPOTTED ARRAY 
a

Program name Company/group Reference Method

Gene PIX Pro Axon Instruments Inc. www.molecular

devices.com

Fixed and

adaptive circle

ScanAlyze Lawrence Berkeley

Nat Lab

Eisen (1999) Fixed circle

QuantArray GSI Lumonics GSI Lumonics (1999) Histogram

segmentation

Spotfinder Tigr Saeed et al. (2006) Histogram

segmentation

Spot R/Bioconductor Beare and Buckley (2004) Adaptive shape

SpotSegmentation R/Bioconductor Li et al. (2005) Adaptive shape

aA more complete list can be found at http://www.statsci.org/micrarra/image.html.
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base 2 scal e. Bas e 2 is chosen because incr ements of one corres pond to
twofold chan ges, a conven ient scale for gen e exp ression compar isons, as
most different ial exp ression is of this order of magni tude.

Some data trimm ing may be in order. Low ‐ intensity spots shou ld be
removed from the da ta set as they may result in unr eliable meas uremen ts
(Wern isch et al., 2003 ). Nonexp ressed ge nes should also be remov ed; they
can be de tected using the presenc e/absen ce call provide d by MAS 5.0 for
oligonucl eotide array or by using a nonpa rame tric Wilco xon sign rank test.
Removi ng these gene s is ad vantage ous regarding adjust ment for multip le
comparis ons, but can lead to discardi ng of diff erential express ion at the low
end of trans cript abundan ce. After data quality ha s been asses sed (i.e.,
checking for artifac ts and quality of internal control s on the array) , data
need to be nor malized to remov e global effects of arrays and /or channel s.

Normal ization is a fundam ental step in data analysis and sh ould be
considered thoroughl y. Seve ral met hods ha ve been develope d an d are
commonly revi ewed in the primary litera ture. The purp ose of nor maliza-
tion is to remove an y systemat ic biase s that do not reflect true biol ogica l
variation withi n a slid e or betw een slides.

Such biases can be due to the unequ al incor poratio n of dye be tween
samples, variation in the amount of DNA printed on the array, the washing
process, or to variatio n in the ability of the scann er to de tect each dye.
Several ap proaches can be used to achie ve within ‐ array normal ization.
Regression to spiked ‐in control s uses sampl es of mRNA intro duced at
known concen trations . Loess normali zation is desig ned to reduce dye and
pin effe cts using a series of local regres sions to remov e any overal l correla-
tion between inte nsity an d rati o, as different ial ex pression should not be a

http://www.moleculardevices.com
http://www.moleculardevices.com
http://www.statsci.org/micrarra/image.html
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funct ion of trans crip t abund ance ( Quacke nbus h, 2002 ). All normal ization
procedu res inevitabl y chan ge da ta and can introdu ce artifac ts, wher eas
overfitt ing can remov e true biolo gical signa ls. There is no one correc t
appro ach to normal ization an d it may be appro priate to compar e the results
of different approaches .

Between ‐ array normal ization adjust s for diff erences in the intensit y
level of each slide average d a cross all spo ts. Figure 2 shows how this can
affect an analys is. Arr ay inte nsities vary due to biolo gical and technical
factors (espec ially lase r sett ings during scanni ng) so it is always important
to en sure that the mean transcrip t abund ance for each array and channel is
appro ximately the same . With ratio data, ensuri ng that the average ratio is
unity doe s this; for log ‐ transform ed inten sity meas ureme nts the simp lest
adjust ment is to subtra ct the sample mean of the approp riate cha nnel from
each measu re so as to achieve a channel mean of zero. Consid ering a gen e
at the 10th percent ile of each express ion profi le, larg e differenc es in the
raw data (arrows in Fig. 2A ) are largely removed by such a center ing
process ( Fig. 2B). However, because the distri butions of variance still ha ve
uneq ual va riance, genes at the same percent ile may have different relati ve
inten sity measurem ents (compare blue hues and red hues). Several techni -
ques have been de veloped to ensu re that arrays have equ al varian ce and
comm on means ( Quacke nbush , 2002 ). The simple st is simply to divid e
through by the standar d deviation of the chann el, which reduces the
varian ce to unity , a true nor malizatio n procedure . If the dist ributions are
skew ed, this may still leave genes a t the same percentil e with different
inten sity values so furt her trans formatio ns may be empl oyed to remov e
such biase s. Quant ile normali zation (Irizar ry, 2 003) perfor ms a nonli near
trans formatio n that gives each array an eq ual medi an, mean, and vari ance
by averaging the intensity of each quantile across arrays (Fig. 2C). Note
that there may be good biological reasons for skews in the distributions,
with the consequence that such global normalization could artificially
remove true biological differences under some circumstances.

Alternatively, variation introduced by arrays and dyes can be removed
by modeling these effects in the first of two ANOVA steps (Wolfinger,
2001). In this case, the linear model

Log2Y ¼ mþArrayþDyeþArray�DyeþResidual

is fit across all genes on all arrays. The Residual is an estimate of the
relative fluorescence intensity after accounting for overall array and dye
effects, and this value is the input measurement of gene expression used in
the gene‐specific models described later. It basically expresses the magni-
tude of fluorescence intensity relative to the sample mean, and the
subsequent ANOVA evaluates whether expression relative to the mean



FIG. 2. Effect of normalization on inference of differential expression. (A) Frequency

distributions of two arrays with two channels (dyes) each have different means and variance

so that a gene at the 10th percentile (arrows) has a different apparent level of transcript

abundance on each array. (B) Centralization by subtracting the mean of each channel reduces

these effects, but remaining differences in variance still result in apparent differential

expression between the red and yellow samples and the blue and green samples. (C) Further

normalization to equalize the variance and remove skew may result in similar relative

fluorescence intensity for equally ranked genes on each array.
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increases or decreases between factors. This approach gives very similar
results to centering by subtraction of the channel mean from each value.
More complex models may include the factors of interest at this step,
allowing inference of whether there are global effects of each factor on
expression.

Another approach is to perform the normalization simultaneously with
the assessment of individual gene effects, as proposed by Kerr et al. (2000).
These authors fit a global model to two‐color arrays, of the following form:

Yijkg ¼ mþAi þDj þ ðADÞij þGg þ ðAGÞig þ ðDGÞjg þVk þ ðVGÞkg þ eijkg

Transcript abundance, Yijk, on the log2 scale is expressed as a function
of the ith microarray, jth dye, kth variety (or treatment class), and gth gene.
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The interaction term of interest is (VG)kg , which expresses the effect that
condition k has on the expression level of gene g. Arrays and genes, and
hence interactions involving these terms, should be regarded as random
effects. More complex models involving multiple sources of biological
variation can also be employed. Significance of each gene is evaluated by
a permutation testing procedure, which effectively assumes that the resid-
ual error is the same for each gene. As data sets get larger, though, it is
possible to estimate the error variance separately for each gene, which may
be biologically appropriate, as there is likely to be considerable variation in
the tightness of the regulation of gene expression. This has given rise to the
adoption of gene specific‐ANOVA models, a few examples of which are
described in the next section.
Gene‐Specific ANOVA

The generic form of gene‐specific ANOVA deals with two‐color arrays
involving a single class of treatment factor with two or more levels. The
treatment may be fixed, such as sex or a comparison of different drug
regimens, or random, such as three genotypes picked by chance from a
population. A linear model is fit separately for each of the genes on the
array:

RFIijk ¼ mþAi þDj þADij þ Tk þ eijk

RFI stands for relative fluorescence intensity, which is the estimated ex-
pression level of a transcript following whatever normalization procedure
was used to remove global array and dye effects, as discussed earlier. The
overall mean is �, and the residual unexplained error, eijk, is different for
each gene. The first three terms control for correlations between the two
measurements of each spot (Ai), dye effects (Dj), and spot‐by‐dye interac-
tions (AD)ij. Tk is the term of interest, the treatment effect. Most software
estimates the least‐square mean transcript abundance for each level of the
treatment and provides a test statistic by which the significance of differ-
ences between these means can be assessed. This does not tell which one of
three or more treatments is different from the others, but further test
statements can be employed to evaluate the significance of each pair‐wise
comparison or even of subsets of treatments relative to others.

More complex models can be fit to data by adding terms and interac-
tions representing different treatments. This is particularly useful for
simultaneously estimating the relative contributions of two treatments
(e.g., sex and age) to expression and for determining whether the effect
of one treatment affects the other (do males respond differently than
females to aging?). It should be recognized, though, that it is possible to
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overparameterize models if the number of replicates of each treatment
level is small, as there will be insufficient degrees of freedom to evaluate
main and/or interaction effects. Furthermore, because little is known about
the false‐positive rates associated with multiple f tests carried out for
thousands of genes, caution must be exercised in interpretation.

Nested designs are used in cases where all the levels of one factor are
not represented in the levels of another factor. For example, the five people
receiving two different drugs may be different people, so individuals should
be nested within drug treatment. More generally, in a randomized block
design, if a treatment is applied to different blocks, the treatment effect
should be nested within blocks. This type of model effectively stratifies the
variance to account for biases that arise because the variance in the block
may be confounded with the variance associated with treatment. For very
large experiments where different treatments are hybridized at different
times, it may be appropriate to nest treatment within the block of hybridi-
zations to account for potentially correlated errors among variance com-
ponents in the model. A typical model nesting the kth treatment within the
lth block is of the form:

RFIijk ¼ mþAi þDj þADij þ Bl þ TkðBlÞ þ eijk

ANOVA models can also be applied to the analysis of short oligonu-
cleotide arrays at the probe level (Chu et al, 2002; Dalma‐Weiszhausz et al.,
2006). In this case, there is no dye effect, but each probe belonging to a
probe set is fit as a random factor. Because mismatched data tend to
increase the noise and have been shown to be poor indicators of cross
hybridization (Chu et al., 2002), use of perfect match probes‐only data is
recommended (these can be extracted from the .CEL files, which contain
the raw intensity reading for all probes, outputted by MAS 5). In the model

yijk ¼ mþAi þ Pj þ Tk þ ðPTÞjk þ eijk

yijk is some measure of probe intensity, such as a log2 mean‐centered
intensity value for the jth probe on the ith array. Tk is again the main effect
of the treatment, and the probe by treatment effects (PT)jk can be used to
determine if there are probes within the probe set for the particular gene
that are performing differently according to the treatment. For example, in
comparison of expression between two species, polymorphism may cause
one species to hybridize less intensely to a particular oligonucleotide
(Gilad et al., 2005), which would appear as a probe‐by‐species interaction
(Hsieh et al. , 2003 ). The array should be fit as a random effe ct, but
considering the low level of variance between technical replicates, it may
not be necessary to fit array in the model at all. Note that probe effects are
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often highly significant, which is not surprising considering the variability in
annealing temperature and specificity of individual probes.
Significance Thresholds

A convenient tool for visualizing the magnitude and significance of
effects is a volcano plot, as shown in Fig. 3 (Wolfinger et al., 2001). Signifi-
cance on the y axis is plotted as the negative logarithm of the p value,
against the magnitude of expression difference on the x axis. Factors that
have no effect on gene expression result in plots with small fold‐change and
significance values (Fig. 3A). If a common error model is employed, all
genes with the same expression difference will have the same significance
so the significance threshold corresponds to a fold‐change cutoff that is
determined statistically. With gene‐specific error models, significance is
only correlated with fold change, as it is a function of the variance in the
abundance of each transcript, so a horizontal line defines the significance
threshold (Fig. 3B). Some authors have pointed out that error variances are
themselves an estimate (e.g., Cui et al., 2005) and will sometimes be
unrealistically small, which will tend to reduce p values. Consequently,
methods have been developed that attempt to balance gene‐specific and
common error models, giving rise to the suggestion that significant genes
should be chosen from a sector indicated in gray in Fig. 3C.

The raw p value generated by an ANOVA needs to be adjusted for
multiple comparison testing because thousands of tests are performed
simultaneously. In classical hypothesis testing, the investigator sets an �
value defining their willingness to commit a type I error, namely to reject
the null hypothesis when it is actually true. Thus, if � is set at 0.05, the
probability of detecting a false positive (committing a type I error) is
5%, so for an array of 10,000 genes, 500 are expected to be significant by
chance, whether or not they are significant. If only 520 genes are called
significant, the majority of them are likely to be false positives, so more
stringent approaches are needed.

The most stringent correction is to multiply the observed p value by the
number of comparisons to obtain a Bonferroni‐corrected p value. This
ensures that no genes in the selected sample are false positives at the
specified � level. If the most significant gene has a p value of 10�5 and there
are 10,000 genes on the array, the corrected p value is still 0.1, which is
greater than 0.05: it is likely that there is a gene with this significance level
by chance in such a large set of comparisons. If the purpose of the experi-
ment is to identify one or two genes with very high confidence, Bonferroni
adjustment is appropriate, but for most purposes it is too stringent.



FIG. 3. Volcano plots of significance against magnitude of effect. Significance is

represented as the negative logarithm of the p value on the y axis, and magnitude of

differential expression on the log base 2 scale on the x axis. Upregulation is to the right,

downregulation to the left. (A) A factor that has no effect results in a characteristic plot

shown here. (B) A significant factor results in many genes with small p values (toward the top)

that tend to have large differential expression. A horizontal cutoff, chosen here at p ¼ 0.01

(i.e., negative log p ¼ 2), highlights genes (indicated in gray) that are chosen to be significant

in the analysis. (C) A more sophisticated selection criterion implemented in R‐MANOVA

(Wu et al., 2002) reaches a compromise between significance and fold change.
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Rather, there is a tradeoff between committing type I and type II
errors, the latter being false negatives or cases where the null hypothesis
is accepted even though it is false. Several adjustments have been devel-
oped to control for multiple testing. Not making any adjustment ensures a
high false positive and low false negative rate, whereas Bonferroni adjust-
ment has the opposite effect. A now common compromise is to choose
genes based on the false discovery rate (FDR).

Benjamini and Hochberg (1995) developed an intuitive implementation
of FDR, which is to adjust the p value such that a specified proportion of



230 DNA microarrays, part B [11]
the chosen genes is expected to be false positives. In the example given
earlier, where 500 genes are expected to be false positives, if 750 genes are
called significant at p < �¼0.05, then the FDR is 500/750 ¼ 67%. In
contrast, if 50 genes are significant at p < ¼ 0.0001 and because only 1
gene in a sample of 10,000 is expected to be that significant by chance, then
the FDR is just 5%. Selection of all 50 genes would be warranted, as all but
a handful are likely to be true positives.

Amore sophisticated, and in practice slightly more liberal, FDRmethod
from Storey et al. (2003) employs q value cutoffs and is commonly imple-
mented with the qvalue program in R/Bioconductor (Reimers and Carey,
2006). Rather than assuming that all genes are true negatives to begin with,
an estimate of the actual fraction of true negatives is made based on the
observed distribution of p values. If evidence shows that 30% of genes may
be differentially expressed, then only 70% are true negatives, and the
expected false‐positive rate is adjusted accordingly. A final comment on
the adoption of FDR procedures is that the choice of cutoff is arbitrary, but
should be specified by the user in advance. For some applications, a 10%
FDR may be admissible, for example, where gene ontology class compar-
isons are made, because a small number of incorrectly identified genes will
not affect the conclusions.
Software

The two most popular programs available to perform microarray analy-
sis using linear models are SAS (SAS Institute, Cary, NC) and various
implementations in the open‐source language R, most of which are avail-
able in Bioconductor (Gentleman et al., 2004). SAS offers a high‐end
Scientific Discovery Solution for handling extremely large data sets and
has released a JMP‐based version for use by smaller laboratories. Their
statistical software has wide application in quantitative genetics and is
under license to most academic research institutions. It runs on multiple
platforms (Windows, Unix, MacOS), but requires the writing of scripts that
nevertheless provide great flexibility, particularly when coupled with the
more user‐friendly JMP application (Gibson and Wolfinger, 2004). The
major procedure use to implement mixed linear models is PROC MIXED,
and a detailed manual providing sample code is available on our MMAn-
MaDa (mixed model analysis of microarray data) web page (http://statgen.
ncsu.edu/ggibson/Manual.html).

R is a freely available mathematical programming language. A large
number of statistical packages are available in R that also provide graphical
options. Bioconductor is a consortium of statisticians dedicated to pro-
viding comprehensive R packages for microarray and other genomic
analyses (Reimers and Carey, 2006). Most packages are accompanied with

http://statgen.ncsu.edu/ggibson/Manual.html
http://statgen.ncsu.edu/ggibson/Manual.html
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a vignette available on the Bioconductor web site at www.bioconductor.org to
help the user. Some of the most popular packages for microarray data analysis
are MARRAY (Y. H. Yang), AFFY (R. A. Irizarry), LIMMA (G. Smyth),
A F F Y P L M ( B . B o l s ta d) , a nd R ‐MAANOVA (H. Wu and G. Churchill).
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Abstract

Physically separated groups of specific sequences (probes) provide use-
ful high through put (HTP) measurements for the amount of selected DNA/
RNA sequences in a biological target sample. Unfortunately, these mea-
surements are impacted by various technical sources, such as platform
production factors, target preparation processes, hybridization method/con-
ditions, and signal‐extraction devices andmethods. Given the typically huge
population of signals, statistical methods are especially effective at estima-
tion and removal of such technical distortions (Churchill, 2002; Kerr et al.,
2000; Yue et al., 2001), as well as providing metrics for computer‐based
quality control (QC), for example, autoQC (Minor et al., 2002a). This
chapter reviews statistical procedures that have been validated by successful
applications in both large‐scale commercial ventures (Ganter et al., 2005)
and individual research studies (Parisi et al., 2003, 2004) involving HTP
projects. This chapter focuses on methods for spatially distributed probes
on a flat medium surface such as glass, collectively known as a microarray.

Introduction

Interest in sequence‐expression data is escalating as new applications
such as location analysis and comparative genomics hybridization (CGH)
are leading to new insights into the biological processes of complex dis-
eases such as cancer. The drug‐discovery industry is beginning to develop
methods that leverage this new information to find combinatorial com-
pounds that block critical routes of disease pathways. For example, one
such method applies design of experiment concepts to a collection of
phenotypic and gene expression profiles to effectively identify such combi-
nations for lung cancer (Minor et al., 2003a). The research focus is no
longer on the magic bullet ‘‘one drug one disease’’ concept; put another
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way, the pharmaceutical industry is no longer searching for a disease that can
be treated with one drug. Hence, proteomics and metabolomics are growing
rapidly and are connected closely to genomics and expression patterns.
Furthermore, this information could potentially revolutionize clinical medi-
cine supporting concepts of personalized medicine and accurate prognostics.
Methods to enable this potential are being developed (Comanor and
Minor, 1996; Comanor et al., 2000, 2001; Lau, 1998; Martinot‐Peignoux
et al., 2006; Minor  et al., 2002b). Consequently, the processing and validation
of microarray measurements are escalating rapidly in scale and importance.

The microarray procedure begins in manufacturing with a substrate
medium such as glass and ends with the processed signals for all probes,
ready for the customer’s biological applications. Multiple arrays are pro-
duced on a block unit of media, for example, a rectangular slide of glass.
This procedure is a complex highly integrated sequential process that
requires careful monitoring and quality control (QC) at frequent junctures.
For example, creating high‐quality probes requires both high‐quality
uniform glass having the right chemical/physical properties and ‘‘pens’’
that create the intended sequences with high probability/reliability with
minimal edge effects. Note in this general context that ‘‘pen’’ refers to any
device specific to the synthesis of each probe. Examples include clone
deposition pens, in situ ink jet nozzles, and lithographic masking, electro-
magnetic, or optical widows. Each probe or feature is actually a collection
of many millions of sequences with typically up to 90% overall being
exactly correct, depending on the coupling efficiency of each specific pen.
This percentage is typically lower at the edge and middle regions of the
probe due to synthesis and hybridization/wash factors.

Although the statistical procedures apply to all phases of the array
process, this chapter focuses on the customer experience. Hence, produc-
tion variations in the glass, slide‐substrate batches, slide surface gradients,
label kits, and synthesis batches are beyond the scope of this chapter. The
focus is on statistical methods and QC metrics useful to the microarray
customer to analyze probe signals, surface/sequence gradients, array nor-
malization, and ‘‘pen’’ properties that affect the signal‐to‐noise performance
of expression measurements and expression comparisons from hybridized
arrays.

Even with our focus on the customer process, signal noise requires an
expanded chapter by itself. Generally, signal noise is a combination from
several different sources along the assay process from sample preparation
through array scanning. The scanner noise is monotonic to total signal
counts, and assay noise is monotonic to the expression component of the
signal. These complications typically require advanced statistical methods
such as variance components and GLMmethods (Nelder and Wedderburn,
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1972) to analyze data. However, given the huge and increasing scale of
array data, viable simplifying assumptions are necessary to enable the
high through put (HTP) process even with fast computers using traditional
statistical methods as covered in this chapter.

Despite simplifications, innovative combinations of these methods have
proven to be very useful. For example, a profile composed of statistically
derived QC metrics relates directly to the performance quality of each
array. Through integration of regression analysis with signal networks
(Comanor and Minor, 1996), a comput atio nal syst em ( Minor et al. ,
2002a) based on such profiles correctly classifies 95% of arrays as verified
by costly manual QC evaluations. The program automatically flags the
other 5% for manual inspection only.

The discussion begins with the scanned image, which is stored as a se-
quence of millions of intensity readings, called pixels. Pixels are grouped into
probe regions, and a probe signal is calculated, classified as no expression
signal, expression signal, or not reliable.

General statisticalmodels for technical corrections of these probe signals
are then derived as well as models for noise. Such models are applied to
background evaluations based on probes classed as no expression signal.

The consequent background‐corrected signals are then corrected fur-
ther for technical perturbations due to array gradients. For certain types of
arrays the signal can be improved further by a combination of statistics and
bioinformatics based on a general stochastic cross‐hybridization matrix.

We then look at methods that apply to multiple channel comparisons,
for example, dye/labeling corrections and error propagation differences.
Given a specific class of sample types, the concept of a perfect array, for
example, reference array, is described.

Finally, quality metrics derived at every step of this process become a
quality profile (signature) that predicts its quality rating accurately.
Pixel Statistics

The millions of sequence strings created at each probe location produce
individual hybridization signals that become partitioned into neighbor-
hoods, called pixels, by a scanner according to its resolution. A typical
scanner resolution scale is at most 10 �m per pixel length. Each square
micrometer contains many tens of thousands of oligonucleotide strings.
Typically, a probe is composed of up to 300 pixels. Each observed pixel
signal is the ensemble consequence of its mixed population of correct and
defective sequences. This mixed population is a natural consequence of the
practical levels of coupling efficiency, which tends to be weaker near the
probe edges. Note that we are ignoring the small effects of optical or
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spectral cross talk among adjacent pixels. As a consequence of nonspecific
and/or somewhat specific levels of hybridization (cross‐hybridization be-
tween nonperfectly base‐paired sequences), defective sequences in the pixel
population are likely to partially bond to an assortment of target sequences
creating a weak signal. The highest expression signals are produced primar-
ily by those pixels with the largest population of the intended sequence as
defined for each probe. The complex dynamics of chemistry used in the
probe synthesis and wash procedures in conjunction with pen efficiency
tend to create either an ellipsoidal or an annulus‐like region of best expres-
sion pixels that is geometrically complicated and variable (Fig. 1). This
implies that a statistical approach is necessary to efficiently combine pixel
signals into the optimal composite signal for each probe (Minor, 2003b).

The common procedure involves matching a signal pattern within the
identified probe region to an assumed template shape. One then assigns a
signal value based on this selection, for example, a mean or median robust
against outlier signal levels. However, this selection procedure cannot ex-
clude noisy pixels that impact signal assignment. The method is not robust
against nonideal signal patterns, variations in signal coverage (i.e., probe
FIG. 1. Pixel signal patterns. (A) Signal contours. (B) Three‐dimensional perspective plot.
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size), or errors in centering the signal pattern. Information that leverages the
separation of true signal from true background is lost. Hence, one achieves
adequate quantitation only for perfect probes. Clearly, a better more robust
efficient tool is desirable that inherently works better for practical probes
and scales well for ever larger numbers of even smaller probes.

Similar to the cumulative distribution function (CDF) of probability
densities, such a tool is the profile of sorted pixel signals of the region
capturing each probe. Note that this profile is not a proper statistical CDF,
as data are driven by systematic effects, but the concept is extremely useful
for pixel quantitation. The perfect noise‐free signal profile of an expressed
sequence is a simple step function (Fig. 2) with high levels at the synthesized
location of the probe. Given the ubiquitous imperfections of reality, this
becomes a smooth sigmoid shape. The shape becomes the simple curve of a
uniform random distribution if the sequence is not expressed, that is, is
void. Best performing probes driven by optimal binding between perfectly
base‐paired sequences tend to have a CDF signature near the perfect profile.
Hence, the shape of the CDF becomes a useful tool for signal evaluation of
each probe (e.g., for testing array designs prior to production and for end
users looking to identify poor performing probes that might yield spurious
results). The key advantage is robust quantitation without direct reference
to the geometry or contour patterns of pixel signals. For each pixel in the
CDF profile one may examine its coordinate location for diagnostic pur-
poses. Note that some perspective contained in the native two‐dimensional
(2D) geometrical image will be lost, but this lost information has little or no
importance for signal evaluation. This is the same assumption that applies
to our binocular vision system trying to interpret a 3D world.

There must be a sufficient number of pixels to produce at least the
upper profile shape of the CDF in order to distinguish good pixels from
edge and aberrant pixels. Note that highly dense arrays may have only a
few pixels per probe that cannot produce a viable CDF profile. Are these
few pixels good or not? In this case all pixels are effectively ‘‘edge’’ pixels.
Assuming that one could adequately correct for technical effects such as
array location and sequence‐based affinity gradients of all oligonucleotides
on an array, one could then combine all pixels of probes that measure the
same gene to form an ensemble CDF profile to enable a realistic statistical
evaluation of expression of that gene. Otherwise, to achieve any sort of
quantitation here, one must resort to methods that are designed to use
multiple probes that measure the same gene and its noise factors. This is
discussed in a later section.

Using pixel profile shapes, one can effectively distinguish between
probes measuring primarily signals from random weakly bonded labels,
reflecting cross‐hybridization between nonperfectly base‐paired sequences,
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and probes dominated by expression signal from labels on perfectly base‐
paired sequences. The identified set of void probes, including negative
controls, is useful for processing background noise. The set of best ex-
pressed pixel signals is located on the high asymptote of the sigmoid prior
to any aberrant signals. The optimal signal in this set tends to be the highest
rank signal free of any aberrant impact. Signals in this best set and their
ratios between channels tend to be robust with good precision and accuracy
across multiple arrays. Precision refers to replicate reproducibility of a
measurement, whereas accuracy refers to the truth of a measurement.

Occasionally, aberrantly high signals of localized defects caused by
scratches or chemical effects add a distinctive flare at the high end of an
expression profile or else they dominate most of the CDF curve, as shown
in Fig. 2. The extent of this flare along the CDF measures posthybridization
wash residue impact and/or array defect patterns. A connected sequence of
aberrant signals across an array implies defects such as scratches, stray
deposits, or finger smudges. Cluster analysis on aberrant signals can auto-
detect and characterize such connected patterns for QC purposes. Such
probes do not provide reliable quantitation.
Pixel Statistics Methods

Assigning correct annotation row and column locations to probes in an
image file of an array is the ultimate result of image processing known as
the grid‐finding problem. This is solved in general by population statistics,
time seri es concept s, and reliabl e clustering met hods (Mi nor, 2001). For
example, one can apply statistical procedures that leverage both global and
local information in an image file. The dynamic clustering method (Minor,
2003b) is a very fast effective tool for locating individual signal clusters in
an image file. Next, rotation grid‐spacing regression models can be applied
to a representative sample of such signal clusters to estimate general global
grid properties of the scanned image. One can then apply fast predictor‐
corrector statistical filters to accurately find all individual probes. These
methods are robust for all scanners. When applied to high‐density arrays,
such methods, combined with pixel quantitation/diagnostics, require about
a minute of Pentium 4 computation time and provide superior results when
compared to other extraction systems. This chapter is not scoped to cover
this subject in detail.

Assume that probe locations are reliable. For each probe, select a
closed region with geometrical shape and size that captures all probe
pixels. Sort the pixels by intensity and remove active pixels from the
CDF profile that are at the region edges and likely overlap adjacent probes
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by coordinate filters. Also, check that the majority of best signals are near
the probe center. Otherwise, the region is too big or captures the occasion-
al ‘‘black hole’’ pattern, caused perhaps by noise suppression of a random
probe, high surrounding background, and/or high affinity for unlabeled
string segments.

If the profile fits a quadratic curve as shown in Fig. 2, then target expres-
sion is null. In this case, flag the probe as dominated by background signal. If
the profile is dominated by aberrant pixels, flag the probe as aberrant. Other-
wise, select pixels adjacent to but avoiding the flare section at the end of the
profile. Optionally, this selection can be refined further based on pixel co-
ordinates, that is, pick pixels closer to the probe center. Use these best‐pixel
expression signals to construct an optimal summary. For example, use mean
or median or fit a simple line to these signals and predict the signal at the
highest rank index in the profile, which equals the number of pixels in
the probe region. Any flare pixels as marked by aberrant signal could also
be reported for diagnostic purposes. The relative steepness of the slope
section in an expressed signal indicates quality of probe performance. It
depends on both the distribution and the cross‐hybridization tendency of its
realized sequences. Synthesis efficiency and probe design determine such
properties.

In summary through image‐level statistics, all probes are divided into
three signal groups based on the dominating signal source: background,
aberrant, or expressed possibly with some aberrant pixels, as depicted in
Fig. 2. One can create a ‘‘shape’’ metric for the CDF and then set optimal
thresholds that best distinguish these categories. Such groups are important
for the next stages of signal processing and metrics.
Smooth Patterns and Block Effects

If probes are located on the array randomly and not organized accord-
ing to some biological property, then biological information will tend to be
stacked in the high spectral domain of a Fourier power spectrum of the
signal location pattern. Signal location gradients induced by the technical
aspects of assay protocols and conditions, for example, the hybridization
process, will tend to be in the low‐frequency domain. This spectral separa-
tion of information facilitates model‐based identification of the biological
content in array signals. Block shifts such as ‘‘pen’’ differences are an
exception, as they have significant high‐frequency content. Therefore,
block effects need to be explicitly represented along with smooth gradient
effects in any model of technical patterns on an array. Statistically, block
effects are analysis of variance terms (ANOVA) and smooth effects are
covariates.
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Typically, it is difficult to directly see the low‐frequency and shift
technical patterns because they are hidden within the high‐frequency
biological measurements and because pen shifts are distributed over the
array. However, Fig. 3 portrays an unusual array where these effects are
clearly visible (Minor, 1999). Observe the column gradient caused by
asymmetry in the hybridization device. The four quadrants each printed
by a separate pen are shifted relative to each other. These technical
patterns were removed by the statistical models described herein. Better
yet, the hybridization chamber was later redesigned to reduce the asym-
metry problem. Pen shifts could not be fixed by device redesign. Note that
gradients of this magnitude indicate serious quality problems, which should
be addressed immediately before continuing with any study.

Other embedded smooth gradient types are also possible. For example,
replication of probes measuring the same target sequence can lead to
target depletion effects, commonly seen in specialized custom arrays, for
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exampl e, QC arrays . This reduced signa l is caused by the distrib ution or
sharin g of a target sequence in a sample over multiple matched prob es. The
sequen ce pro perties of probes can also have smoot h technical pattern s
induced by dye chemist ry and physical vari ables. For exampl e, the signa l
tends to be propo rtional to the ‘‘G’’ an d ‘‘C’ ’ content of a prob e sequ ence
because of higher mel t temperat ures. Also, the pr obe signa l tend s to
increa se with its nuclei c complem ent of modi fied nucleotide s in the sampl e.
Hence , sequence ‐ compos ition gradi ents are useful for both techni cal cor-
rections and diagno stics. Thes e gradie nts are reduced but can still ha ve
significant imp act on seq uence ‐ express ion comparis ons or ratios; he nce,
they are important to array appli cations using intr aprobe compar isons such
as CGH studi es. As stated previ ously, unus ually severe grad ients indicate
quality problem s, in this case with the labeling pro cess or materi als.
Models of Array Patter ns

One of the earliest commercial applications used to provide the complete
model of both ANOVA and covariate terms to ensure better separation of
technical from biological patterns was developed by Strategy of Research
Company and was marketed by Novation Biosciences, Inc. as Qualifier soft-
ware (Minor et al., 2002a). Location gradients can be somewhat curvilinear,
requiring high‐or de r s ur fa ce m ode ls . T he re a re s ev er al op ti ons .

1. High‐order polynomials (not recommended due to inherent model
stability issues, especially near data edges or other data‐sparse
areas).

2. ANOVA blocks with covariate low‐order polynomials and localized
Gaussian kernels using Qualifier regression models with SLS terms
(Comanor et al., 2001).

3. Locally weighted regression (LWR or Loess methods) (Cleveland,
1979).

LWR is a computation‐intensive transform that scales badly. It is prone
to overfitting as it tries to model block shifts in data. This reduces intra-
array noise at the expense of interarray noise and, typical of transforms,
statistical diagnostics are poor. Overfitting occurs when a highly flexible
smooth model (LWR) tries to fit nonsmooth shifts in a data set. Hence,
some of the intraarray technical variability is removed, improving intra‐
array noise/signal (CV). However, the high‐frequency part of the shift
remains mixed in the biological information. Because this shift varies from
array to array, the model correction produces higher values of interarray
CV. One avoids this problem by including appropriate ‘‘ANOVA’’ shift
factors in the smooth model process.
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Hence, one could combine Loess patterns as a covariate with ANOVA
blocks in a three‐step process.

1. Fit data with ANOVA block terms by regression analysis.
2. Fit regression residuals with a Loess transform process.
3. Refit the model with ANOVA block terms and the calculated Loess

transform as a term by regression analysis.

This procedure does not resolve the Loess scaling issue. To improve
scaling, partition methods are applied such as windowed averages at stra-
tegic locations on the array surface. However, Loess cannot inherently
interpolate very well nor adapt its effective bandwidth to variations in
surface tempo. Consequently, it becomes unstable when actual gradients
are small. One can resolve these deficiencies by simply replacing the strate-
gic averages with a set of values optimized to fit the surface better, but this is
essentially the SLS process as implemented in the Qualifier system.

The Qualifier model is unique in that it represents all important surface
effects with traditional regression diagnostics while scaling much better
than transforms. The Qualifier model includes ANOVA block shifts and
second‐order polynomial terms, known collectively in statistics as a ‘‘re-
sponse surface.’’ Also, the model uses SLS Gaussian kernels to capture
localized high‐order effects near corners and edges. SLS is a validated
method for optimizing Gaussian‐kernel designs in general statistical mod-
els, including logistic, ordinal, nonlinear, and standard regression models.
Related methods are support vector regression and K‐nearest‐neighbor
classifiers (Drucker, 1997; Ripley, 1996).

Conceptual Models for Probe Signals

In general, each expressed probe signal S is proportional to the amount
of its specific expressed perfectly base‐paired sequence in a fixed volume of
target sample, for example, concentration Cj plus background B. The two
primary sources of background and signal error are the scanner, index s,
and the assay, index a. Hence, error effects are assay proportional to S‐B
and scanner proportional to S. A statistical model becomes

Sj ¼ AjC
wj

j edj þ Baje
gj þ eaj

� �
e�j þ Bsje

�j þ esj ð1Þ

Sj ¼ AjC
wj

j edjþ�j

� �
þ Bsje

�j þ Baje
gjþ�

j
� �þ esj þ eaje�j

� � ð2Þ

where scanner error is a combination of photomultiplier tube multiplica-
tive error � and its optical additive error e. Note that the assay error is also
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a combi nation of ch emical errors � and � with its ad ditive background e .
The terms are group ed into express ion, backgroun d B , and ad ditive effects .

The equation is typical ly simplified by a ssuming that the background
and add itive effe cts are repres ented in form by scanner error.

Sj ¼ A j C 
w j
j e Dj

� �
þ Bj e 

�  j
� �þ ej

� � ð 3Þ

For low expression, an app roximat ion beco mes

Sj ’ B j e 
�  j þ e j ð 4Þ

or, because backgroun d is somewhat constan t,

Sj ’ B j þ e j ð 5Þ
For high exp ression, ignoring the small add itive error,

Sj � Bj ’ A j C 
w j
j e Dj ð 6Þ

Population Models for Probe Signals

The populat ion su mmary propert ies of all probe signa ls of a channel or
color can be used to correc t or normali ze the array to improve compar isons
with other signa l cha nnels. Suc h procedu res rely on plat form protocols and
sample assum ptions that impact signa l propert ies and their rela tion to targe t
concent ration s. For exampl e, consi der the total signa l of express ion arrays
typical ly used in drug resear ch. Most genes are inert to drug impact. The few
that react are im portant to he lp identify drug targe ts. Ther efore, the signals
of inert genes domi nate summary statis tics of the signa l popul ation.

The molecular basis of summary metrics is interesting. In general, each
expressed probe signal S minus background signal B is proportional to the
amount of its specific expressed perfectly base‐paired sequence in a fixed
volum e (from Eq. [6]) of target sampl e, that is, concent ration C. A stat istical
model becomes
Sj � Bj ¼ AjC
wj

j eDj ; ð7Þ
where Aj is determined by sequence affinity and hybridization protocol.

For an ideal first‐order reaction wj ¼ 1, but given reaction diffusion/
mass transport complications, it becomes effectively less than 1.

Summary total of log signals gives

XN
1

Ln Sj � Bj

� � ¼ XN
1

LnAj þ
XN
1

wjLnCj þ
XN
1

Dj: ð8Þ
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Hence , the log transform provide s tw o ad vantage s:

1. The error model is sim plified to be normall y dist ributed unifor mly
across all probes that are truncated at low signa ls.

2. The react ion compon ents form a linear mode l,

Ln Sj � Bj

� � ¼ LnAj þ w j LnC j þ D j ; ð 9Þ
wher e hy b fact ors are separated from concen tration fact ors.

The summ ary total be comes

XN
1

Ln Sj � Bj

� � ¼ XN
1

LnAj þ
XN
1

wj LnC j þ
XN
1

Dj : ð 10 Þ

Bec ause N is large the standard error of the summ ary average is very
tight; hence, one has a goo d metric for normal ization. For optimal ly de-
signed plat forms, all wj are rand omly close to one value w 0 near unity , and
hyb factors are well controll ed so that the total is essent ially

XN
1

Ln Sj � B j
� � ¼ m þ w 0

XN
1

LnCj þ
XN
1

Dj ; ð 11 Þ

where � is a consta nt of regres sion.
A signi ficant techni cal variation in label ing efficien cies a nd/or chann el

loading produces a sensitive shift in this total making it an effective metric
for array normalization.

Signal Processing Including Control Probes

From Eqs. (3)–( 5), if the express ion signal is near zero,

Sj ’ Bje
�j þ ej

or
Sj ’ Bj þ ej

The background of active expressions may tend to be lower, as probe
sequence populations used by expressed target will not be available to
ubiquitous noise species in active pixels, a form of noise suppression.

One could use the background portion of the CDF to predict the
background signal specific to each probe. Alternatively, one could use the
background class of probes determined from CDF metrics to predict back-
ground for all other probes using smooth gradients as described previously
in the section for array patterns. But if the row–column coverage of the
background probes is poor, as indicated by the principles of statistical
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design of experiments, then add low‐signal expressed probes as needed.
Subtract the matrix of the estimated background from all viable probes to
form the background corrected signals, BC signals.

The logs of all positive BC signals are similarly corrected with smooth
gradients to produce the final detrended BC signals, DBC signals. For
platforms that exhibit persistent signal correlation between different gene
probes, further enhancement of signal to noise is possible through a probe
matrix model based on such correlations and bioinformatics.

Matrix Model of Cross‐Hybridization Noise (SIAM)

There are a huge variety of sequences in the string population present
in a hybridization solution. Each sequence will have a preference profile
across all probes on an array determined by complementary sequence
similarity or homology, that is, one probe’s target is another probe’s bias,
a form of probe interaction. Likewise, similar probes will have similar noise
properties. Furthermore, a probe designed for a specific gene may be
correlated to other probes by sequence fragments in the target from that
gene. A catalogue platform is designed to minimize such interactions. This
improves both precision and accuracy of array results. Other platforms
either take advantage of cross‐hyb, (e.g., match–mismatch platforms) or
accept it (e.g., custom arrays). Statistical methods are available to correct
this problem based on multiarray processing (Li and Wong, 2001; Wu and
Irizarry, 2004). A unique method that applies to one or more arrays is
SIAM (Minor, 2002c).

SIAM: General Method and Simplified Equations

An observed expression signal on probe j is the sum of multiple con-
tributions

Tj ¼
X
k

ajkck þ ej; ð12Þ

where Tj is the signal of probe j, ajk is the bioinformatics parameter for
binding of sequence j to probe k including noise factors, ck is the expression
level of sequence k, and ej is all other sources of error, for example, optical
noise and probe synthesis factors.

Note that summation covers a range of binding properties from specific
through degrees of partially specific to nonspecific affinities as determined
by sequence similarities and correlations of sequences.

Consider a platform with specially designed pairs of probes,

Tj ¼ ajjcj þ
X
k 6¼j

ajkck þ ej; ð13Þ
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Tjþ 1 ¼
X
k 6¼ j þ 1

ajþ 1 ;k c k þ e jþ 1 ; ð 14 Þ

where j ¼ 1, 3, 5, . . ., for exampl e, each paire d perfect match ‘‘PM’’ probe j
and misma tch ‘‘MM’’ probe jþ 1 of well ‐ known plat forms.

Tran sformi ng to inte nsity notation gives

Pj ¼ S j þ
X
k 6¼ j

fjk Sk þ ej ; ð 15 Þ

Mj þ 1 ¼ fj þ 1 ;j S j þ
X
k 6¼ j

fj þ 1 ;k Sk þ e jþ 1 ; ð 16 Þ

where P den otes perfect ‐ match T an d M de notes its paire d mi smatch
intensity.

Denot ing cross ‐ hyb summati ons
P

k 6¼ j f jþ 1 ;k Sk and 
P

k 6¼ j f jk Sk by factors
Nj þ 1 and f 

0
j Nj þ 1 ; respec tively, gives

Pj ¼ Sj þ f 
0
j Nj þ 1 þ e j ; ð 17 Þ

Mj þ 1 ¼ f jþ 1 Sj þ N jþ 1 þ ej þ 1 ; ð 18 Þ
Relabel these functional forms as bioinformatics factors fn and fs,

assume all other errors to be small, and reindex to get

Pj ¼ Sj þ fnNj; ð19Þ

Mj ¼ fsSj þNj: ð20Þ
This version of Eq. (12) creat es pro be‐ independen t bioin formatics fac-

tors depending only on the pairing types, mismatched ‘‘MM’’ and perfect
matched ‘‘PM,’’ and presents a term for ubiquitous cross‐hyb bindings as
driven by both their large ensemble concentration and a typically mediocre
ensemble affinity.

Typical values are fs � 0.5 and fn � 0.95.
Multichannel Methods

Differential expression information is derived from the comparison of
at least two channels of DBC signals produced from two biological sam-
ples. Hence, the ratio or log ratio of each probe is evaluated. Variations in
incorporation dynamics among samples can bias these ratios. These varia-
tions can be abundance (signal intensity) related; as a result, abundance‐
driven normalization is applied to reduce sample ratio bias. Population
statistics is the primary tool for this normalization. It is important that
all sources of technical gradients are removed, that is, row–column and
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sequence based, prior to any abundance‐driven normalization, as such
gradients create technical bifurcations in the two‐channel plots. Because
of the density of points in these plots, such bifurcations may not be obvious.
When they are, the consequential patterns are sometimes ‘‘affectionately’’
called ‘‘guppies’’ (Minor, 1999). After all gradients are removed, ‘‘guppies’’
may still be evident as shown in Fig. 4. In the case of unique biological
research, such ‘‘guppies’’ are real biological clusters of differential gene
expression. In this case the normalization procedure must be especially
designed to focus on the primary nondifferential expression cluster of
points near the diagonal of the two‐channel plot.

In studies where the majority of gene expressions are expected to be
invariant among samples, a two‐sample plot of the log DBC signal on each
axis of every probe should produce an oblong pattern of points with an
internal highest density trace on the diagonal (Fig. 5). The pattern in fact
may be rotated and curvilinear. This is more likely for multidye systems
where chemical differences can impact incoporation dynamics and conse-
quently scanner settings. This density histogram can be calculated rapidly
by a new algorithm described in the Appendix.

To correct for this bias, methods are designed to map this pattern
onto the diagonal. But which methods effectively reduce such technical
shifts?

Because comparable errors impact signals on each axis, one must use
statistical methods designed to handle both errors. This section begins with



FIG. 5. Two‐dimensional histogram of two‐channel log signal patterns.
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principal component analysis on the log DBC signals, PCA. PCA captures
the oblong two‐axis pattern as a two‐dimensional ellipse with its long axis
approximate to the expression amount of the probes and its short axis
approximate to the differential expression direction. The important errors
are now aligned along the short axis. Random error is reduced on the long
axis by signal ‘‘averaging’’ in effect and amplified on the short axis by signal
differencing. One can now apply model‐fitting procedures to align the
pattern correctly onto the long axis, as shown in the next section. The
corrected pattern may then be rotated to the plot diagonal.



250 DNA microarrays, part B [12]
Model Fitting of Curvilinear Patterns

First calculate the two‐dimensional point density (histogram) of all
points in the plot pattern. This can be done in a few seconds as described
in the Appendix. Locate loci of highest density points within a moving
window along the long axis. This trace will tend to have high‐frequency
jitter by nature. Apply an interpolative low‐pass filter to remove this jitter
with no phase shift. Subtract this smooth loci from all points to correctly
project the pattern onto the long axis.

Another method creates a moving window CDF and finds its inflection
point, which is the highest density of the population captured by the
window. Other dye‐normalization methods rely on sorted signals and per-
centiles to match the two channels, but they require more assumptions and
are less robust to random errors and expressed proportion of signals. In
general, for all methods the point densities at high abundance are rather
sparse and require inertial trace projections to complete the loci.
Reference Pattern Corrections

For a given expression environment a reference is constructed as the
summary log intensity profile over many arrays for a given dye, where
expression‐variant factors are randomized out. For two‐color platforms
the two reference profiles can then be normalized against each other to
produce a dye‐independent reference. All arrays measuring expression
target from the same environment can now be compared to the reference
channels for QC and dye normalization purposes.

Reference patterns are assumed to be very precise. Hence, PCA is not
appropriate. Model projections of any channel directly to the diagonal
are applied based on the reference log signals. The statistics from such
reference corrections become useful metrics.

Two‐Channel Error Propagation

Given a reliable estimate of noise for each probe in two channels, one
can easily propagate error to the comparison of their signals. A reliable
noise estimate can be calculated from replicate arrays corrected for techni-
cal variations. Propagation of log ratio error:

Varðlog S1=S2Þ ¼ Varðlog S1Þ þVarðlog S2Þ � 2Covðlog S1, log S2Þ;
ð21Þ

where Var and Cov are abbreviations for variance and covariance. The
standard deviation is the square root of variance.
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For one‐color arrays the Cov tends to be small; hence, the Var error of
each channel must be small.

For two‐color arrays the Cov is inherently significant and positive,
thereby effectively canceling much of the single‐channel noise. Note that
one could gain similar canceling advantage for one‐color platforms by
matching production and assay conditions as much as possible for all arrays
used in a study.

Another technique to identify and reduce two‐color error is to run a
pair of arrays where each target sample is labeled with both colors, that is,
dye ‐ flip arrays ( Minor, 1999 ; Yue et al., 2001). Combini ng data from the
array pair by correctly matching the target samples (known as sense cor-
rection) reduces bias error and random error of each probe. But this cannot
reduce shifts inherent in the incorporation kinetics specific to each sample.
Metrics from Array Patterns and Reference Channel

Many metrics are possible from all the statistical procedures described.
For example, standard dose–response models (four‐parameter sigmoid
function) can be applied to target ‘‘spike‐ins’’ to evaluate the bandwidth,
accuracy, and precision performance of each array. The metrics become a
profile of quality information for each array. Qualifier was one of the first
commercial products to summarize this useful information in a customer
QC report, which became very popular.

Furthermore, Qualifier applies an established methodology, SLS, to
effectively predict array quality from this profile with high accuracy. The
FIG. 6. Example of AutoQC report with heat map of metrics profile.
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meth od also ident ifies the im portant met rics in the profile that de termine
quality as well as the critical profiles that define the boundaries between good
and bad arrays. A quality heat map helps visualize critical profiles (Fi g. 6).
More information on SLS technology is available at www.SLSguy.com.
Appendix: A General Fast Method of Structure Analysis for
High‐Dimensional Data

Introduction

Structure–analysis problems are defined by

1. A set of profiles encapsulating related information such as DNA
sequence strings.

2. A measure of similarity between profiles, for example, a metric.

Biological problems are characterized by large databases of high‐
dimensional profiles. The similarity metric can be quite complex. To find
patterns in data, one typically applies cluster analyses or functional meth-
ods such as feature least squares, SLS. To reduce computational burden,
one combines and partitions profiles into groups of binned profiles that
enable branch‐and‐bound/divide‐and‐conquer types of procedures (Bishop,
1998). This in effect is a sorting process on grouped profiles. Another
method assigns binary numbers to each profile to facilitate computation
(Arya and Mount, 1993). An algorithm is derived that generalizes these
techniques via dynamic sorting, for example, adaptive binning, to reduce the
N2 native computational timescale of such problems with N profiles to an
improved scale NlogN. The key concept is an efficiency parameter that
enables the NlogN scaling.

Method

Consider a metric space X with metric D and a finite subset U of X
composed of N elements, indexed by set I ¼ [1, 2, . . ., N].

Define task ‘‘C’’ to be finding for each element j in U the set Hj of all
members k of U such that D( j, k) < h. This metric associates with a
similarity measure between profiles. Note that generalized similarity may
not be strictly monotonic but must be bounded by a monotonic bounded
envelope, for example, damped oscillations. In this case, metric D associ-
ates with the bounding envelope.

The native task C is inherently of minimal complexity N2, as each
profile in turn must be tested against all other profiles to map structural
patterns.

http://www.SLSguy.com
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A recurrent strategy based on adaptive sorting of profiles in terms of
D enables simple efficient processing of required comparisons and reduces
the complexity to less than NlogN in computational scale.

For example, consider sorting all profiles by their D values, calculated
relative to a specified profile. This sorted list partitions the space of profiles
and reduces the search for nearest profiles to a limited set. Strategically
repeating this sorting process to assure this efficiency creates a scale for
computation time better than NlogN.

Basically start with any profile j and sort all other profiles from nearest
to farthest neighbors. The problem is solved most efficiently for j, but less
efficiently for j’s nearest neighbor jþ1. Efficiency is monotonic nonincreas-
ing with increasing positive integer i form neighbors’ index jþi. At some
threshold of inefficiency occurring at profile jþI, it is better to resort to
reset efficiency and then continue with the structuring computations. Note
that complete sorting of all profiles is not necessary, but only those not yet
processed and adequately near profile jþI.
Algorithm
1. Set ‘‘b’’ to a positive number <1 and ‘‘a’’ to a positive number.
Select an initial element from U, indexed j.

2. For selected j, sort all values of D( j, k) that are less than H þ a in
increasing order and identified by sorting index I ¼ 1, 2, . . ., n. Note
each sorted index value of I specifies a specific element k of U.
Denote this function as k[I].

3. Set I ¼ 1.
4. If D( j, k[I])>a, then go to step 2. After resetting j ¼ k[I] (remaining

sorted elements cannot solve the problem for profile j).
5. Set r ¼ k[I].
6. Hr is the subset of all k[L] such thatD(r, k[L]) <H for L ¼ 1, 2, . . . ,

n of sorted indices. Also, update each such Hk[L] with profile r.
7. Profile r is no longer required. Remove r from U.
8. Efficiency test: if the number of elements in Hr is less than b*n, then

set j ¼ k[Iþ1] and go to step 2.
9. Otherwise, update to next sorted index (i.e., set I ¼ Iþ1) and go to

step 4.
Enhancement

Note that the efficiency of the algorithm is reduced as the dimension of the
profiles increase, that is, more variables. To offset this, one could implement



254 DNA microarrays, part B [12]
this method recursively to apply to each subproblem as defined within each
iteration of the basic algorithm. This would require a simple label be assigned
to each profile to dynamically indicate permission to update its neighborhood
c ount o r no t.
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[13] Analysis of a Multifactor Microarray Study Using
Partek Genomics Solution

By TOM DOWNEY
Abstract

Partek Genomics Suite (Partek GS) is a powerful statistical analysis and
interactive visualization software solution designed to analyze single chan-
nel oligonucleotide (Affymetrix) and two‐color cDNA microarrays, as well
as data from other emerging genomic and proteomic technologies. This
chapter takes a simple study on obesity and susceptibility to type 2 diabetes
and uses it as an example that demonstrates how Partek GS can be used to
analyze data arising from a microarray experiment.
Statistical Analysis of Microarray Data

Experimental design and statistical analysis are powerful scientific tools
used to make conclusions about a phenomenon based on empirically
measured data. Genomics researchers commonly conduct experiments in
which specimens (e.g., animals or cell lines) of different phenotypes are
compared or in which specimens are exposed to different treatments whose
effects are to be studied. On each sample, the expression level of thousands of
genes is measured and then analyzed to identify genes that are correlated to
the phenotype or treatment of interest. Because there are so many genes
measured by today’smicroarray technologies, the opportunity tomake ‘‘false
discoveries’’ is very easy, and properly applied statistical methods provide a
means to differentiate random patterns from true signals the biology is
sending us. There are many types of statistical methods, and we will cover
several, but not all, of them in this chapter. First, wewill use ‘‘exploratory data
analysis’’ and visualization to see the ‘‘big picture’’ from an experiment. Next
we will use ‘‘statistical inference’’ to answer the question ‘‘what genes are
correlated to the treatment.’’ Finally, we will use explanatory visualization to
present the findings from the statistical methods used.
Description of the Experiment

In this experiment, two strains of mice, BTBR and C57BL/6J(B6), are
compared in four tissues (adipose tissue, liver, skeletal muscle, and pancreatic
islets) to identify genes that are differentially expressed between the strains
within each tissue type (Lan et al., 2003). Thus there are two (strains) � four
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
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(tissues)¼ eight treatment combinations. Four B6‐ob/ob and 4 BTBR‐ob/ob
male mice at 14 weeks of age are used. Because the amount of RNA from a
single mouse is too small, tissue samples from two mice of each strain are
pooled together, producing two pooled RNA samples for each of the eight
treatment combinations. In statistical terminology this is a ‘‘2� 4 experiment,
replicated 2 times,’’ and the 16 total RNA samples are hybridized to Affyme-
trixMGU74AmouseGeneChips (Dalma‐Weiszhausz et al., 2006).Data from
this experiment are available on the NCBI’s Gene Expression Omnibus
(GEO; Barrett and Edgar, 2006) as experiment GSE2899 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc¼GSE2899).

Importing and Normalizing GeneChip Data

Both .CEL files (containing raw expression measurements) and .EXP
files (containing sample treatment information) are available on GEO, and
Partek GS can directly import both of these formats. For this example, we
used the popular RMAalgorithm (Irizarry et al., 2003) for data normalization
upon import of raw expression data from the .CEL files. The sample treat-
ment information (strain, tissue type, and animal pool) was imported from
the .EXP files and then merged with summarized expression data (Fig. 1).

Exploratory Data Analysis

Exploratory data analysis is used to identify major effects influencing
data, unexpected trends, outliers, and batch effects. We will start by using
principal components analysis (PCA) to identify major effects influencing
the expression values in this experiment (Hotelling, 1933). The PCA in
Partek GS is unique in two important ways.

1. Data do not have to be prefiltered. Partek GS can compute PCA
very quickly and with very little memory, even if data contain millions of
variables (such as the new Affymetrix Exon arrays containing �1.4 million
exons per array). In this study, each sample contains �12,500 variables (the
number of genes on the Affymetrix MGU74A GeneChip).

2. The graphics used by PCA are true three‐dimensional graphic
representations, complete with light shading, fogging, and the ability to
color, size, and so on by multiple factors simultaneously.

Interpreting the PCA Plot from Fig. 2

1. This is a global analysis of the genome and not an analysis of any
gene in particular. Samples that are close together are similar across the
whole genome, whereas samples that are far apart are dissimilar across
the whole genome.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2899
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2899


FIG. 1. Importing Affymetrix data into Partek GS. Note that each sample appears in one

row and that each gene appears in a single column. The first three columns show thumbnail

images for raw chip data, data after RMA normalization, and residuals of the RMA

correction, respectively. Double clicking on the thumbnail images will display the full‐size
image for inspection.

258 DNA microarrays, part B [13]
2. The total variation explained by PCs 1, 2, and 3 is 66.3% (24.9% by
PC #1, 22.5% by PC #2, and 19% by PC #3).

3. Tissue is the largest effect in data. As with almost any multitissue
experiment, the largest effect in data is due to the different tissue types.
This is evidenced by the clustering of samples primarily by tissue.

4. Within each tissue, the small points (B6 strain) are distinct from the
large points (BTBR strain). Thus there appears to be a significant overall
difference between the two strains, although this effect is much smaller
than the tissue effect.

5. To the extent that the connecting lines run relatively parallel to each
other, it indicates that samples from each animal pool are more similar to
each other than samples from different animals. The lines do not seem to
be very parallel, indicating that the difference from one animal pool to the
other is relatively small compared to tissue and strain effects.

6. There are no apparent outliers in the PCA plot, thus there is no
reason to suspect that any of the samples should be removed for quality
reasons. If there was an outlier, it could be inspected easily in Partek by



FIG. 2. PCA mapping of the samples from 12,488‐dimensional ‘‘gene space’’ to three

dimensions for interactive visualization. Samples are colored by tissue type and sized by

strain. Lines connect samples from the same animal pool, and ellipsoids are drawn around

each tissue group.
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clicking on the corresponding point in the scatterplot and invoking the full
size image extracted from the .CEL file.
Multidimensional Scaling (MDS)

Multidimensional scaling is a nonlinear ‘‘cousin’’ of PCA (Torgerson,
1952). Briefly,MDS refers to a family ofmethods thatmap high‐dimensional
data down to a lower dimensionality usually for the purpose of visualization.
The important criterion that is optimized by this technique is that objects
that are ‘‘similar’’ in high‐dimensional space are mapped in such a way that
they are ‘‘close together’’ in low‐dimensional space. Conversely, objects that
are ‘‘dissimilar’’ in high‐dimensional space are mapped in such a way
that they are ‘‘far apart’’ in low‐dimensional space. The user has several
choices in defining the meaning of ‘‘similarity’’ in Partek software—most
commonly it is a distance measure such as Euclidean distance or other
similarity measure such as linear or nonlinear correlation. Figure 3 shows
how MDS sees these same data.



FIG. 3. Multidimensional scaling shows similar patterns as PCA—samples are grouped by

tissue type and within each tissue type (except liver), the samples are differentiated by strain.
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Identifying Outliers Using PCA and MDS

Neither PCA nor MDS indicated that any of the samples were extreme
outliers, which could be indicative of poor‐quality RNA or a flawed hybri-
dization of one or more of the samples. If there were any outliers, the user
simply selects the outlier in a graph or on the spreadsheet and invokes an
image of the chip (Fig. 4).
Hierarchical Clustering

Hierarchical clustering was one of the first analysis tools used to analyze
microarray experiments, and Partek’s hierarchical clustering is full featured,
allowing dual clustering of genes and samples, interactive branch flipping,
and many options for clustering and coloring the resulting dendrograms and
heat maps. Figure 5 shows hierarchical clustering of the samples and also
shows patterns consistent with PCA and MDS.



FIG. 4. Individual GeneChips or arrays can be inspected visually for flaws. While this chip

shows slight imperfections, the quality is acceptable.
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Finding Differentially Expressed Genes Using Analysis of
Variance (ANOVA)

Analysis of variance is a very powerful technique for identifying differ-
entially expressed genes in a multifactor experiment such as this one
(Fisher, 1925). ANOVA partitions the variability due to treatments from
technical and biological noise and then uses signal‐to‐noise ratios (F ratios)
to identify differences that are statistically significant (small p values). In
order to identify genes differentially expressed between strains in each of



FIG. 5. Hierarchical clustering of samples using Euclidean distance and average linkage.

Each branch is annotated with tissue type and strain. Note that samples cluster primarily by

tissue and secondarily by strain (with the exception of liver tissues).
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the different tissues, the following mixed model ANOVA was used to
analyze these data.

ygijkl ¼ mg þ Si þ Tj þ STij þ PðSÞik þ egijk

where ygijk is the expression of the gth gene for ith strain, jth tissue, and
kth animal pool. The symbols S, T, ST, and P(S) represent effects due to
strain, tissue, strain‐by‐tissue interaction, and pool‐nested‐within‐strain,
respectively. The error for the gth gene for sample ijk is designated as egijk.

The aforementioned ANOVA model is dictated by the experiment
design and partitions the variability due to strain, tissue, strain by tissue,
and animal pool from biological and technical noise. Some of you may be
wondering why the animal pool is required in the ANOVA model. Of the
three assumptions of ANOVA (normal distribution, equal variance, and
independence), the assumption of independence is the most impor-
tant assumption (for any statistical test) and should not be violated. The
assumption of independence requires that all samples within a treatment
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group be ‘‘independent.’’ This means that no two samples are any more like
each other than they are like any other within that group. However, four
samples from the B6 group come from one pool, and the remaining four
samples come from another pool. The same is true for the BTBR strain.
Leaving the animal pool out of the ANOVA model would cause us to
underestimate the variability within each strain (noise) and thus lead
to overoptimistic p values (increased ‘‘false discoveries’’ or type I errors).

Random vs Fixed Effects: Mixed Model ANOVA

There is one more important note about the animal pool—it is referred
to as a ‘‘random effect.’’ When an ANOVA model contains both random
and fixed effects, it is referred to as ‘‘mixed model ANOVA.’’

� Strain is a fixed effect. There are two strains, B6 and BTBR. Because
these are the only two strains that we care about for this experiment,
it is a fixed effect.

� Tissue is a fixed effect. We care about changes at adipose, islet, liver,
and muscle only. We are not trying to make any inferences about any
other tissues, thus tissue type is a fixed effect.

� Animal pool, however, is not a fixed effect, as the two animal pools in
this experiment represent only a random sample of all the animal
pools we wish to make an inference about.

Here is another way to tell if a factor is random or fixed: Imagine
repeating the experiment. Would the same levels of each factor be used
again?

� Strain. The same strains would be used again—a fixed effect.
� Tissue. The same tissues would be used again—a fixed effect.
� Animal pool. No, we would use new animals—a random effect.

Hierarchical Designs and Nested/Nesting Relationships

In the ANOVA model, we said that ‘‘pool is nested in strain.’’ This is a
special relationship that results from hierarchical experiment designs such as
this one. The multiple samples from the same animal pool are always in the
same group for the factor ‘‘strain.’’ Thus, knowing the animal poolmeans that
we know the strain, and we say ‘‘pool is nested in strain’’ or ‘‘pool (strain).’’
Pool is the ‘‘nested’’ variable, and strain is the ‘‘nesting’’ variable. The
relationship between animal pool and strain is hierarchical, thus this common
type of experiment is known as a ‘‘hierarchical’’ or ‘‘nested’’ design. Because
Partek detects the nested/nesting relationship automatically, the scientist
performing this analysis does not have to be an expert on ANOVA.
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Creating Gene Lists of Interest Using ANOVA and Linear Contrasts

The ANOVAmodel is dictated by the experiment design. The gene lists,
however, are dictated by the interests of the researcher. In order to construct
the gene lists of interest, we use a technique called ‘‘linear contrasts’’ within
theANOVAmodel. These linear contrasts are constructed to compare theB6
and BTBR samples within each tissue. Too frequently, researchers who are
unfamiliar with mixed model ANOVA and linear contrasts will analyze each
tissue separately and use a t test (or similar test) to compare the two strains
within each tissue. The problem is that this overly simple analysis reduces
the sample size from 16 to 4 for each test, which is too small to produce
statistically significant results. Sixteen is a small enough sample size to begin
with, and we would like to use all 16 samples in our estimates of variance for
each gene—linear contrasts and multifactor ANOVA allow us to do so.

Examining the Results

The ANOVA is run on all 12,488 genes, and a table is created allowing
the scientist to browse and create gene lists from the results. For each gene,
the table includes the following values.

� p value for each factor in the experiment
� p value for each contrast (e.g., strain x vs y in each tissue)
� fold change for each contrast.
� gene identification and user‐specified annotations
� links to internet databases, genome browsers, etc.

Figure 6 shows one way to summarize results of the ANOVA. It dis-
plays the effect sizes for all the factors in the ANOVA model. Consistent
with the exploratory analysis (PCA, MDS, and clustering), the tissue effect
is by far the largest source of variation in these data. The difference
between the strains is also significant with an average signal‐to‐noise ratio
(S/N), or F ratio, of 2.84. There also appears to be a significant strain‐by‐
tissue interaction (average S/N of 1.81), which indicates that the difference
between the strains depends on the tissue. The difference between animal
pools is not that large, although it is significant (average S/N ¼ 1.15).

Multiple Test Correction

A step‐up false discovery rate (FDR) was applied to p values from the
linear contrasts to determine a cutoff for significantly differentially ex-
pressed genes within each tissue (Benjamini and Hochberg, 1995). Table I
shows the number of genes that pass an FDR of 10%, meaning that we
expected 10% of the genes on each list to be false positives.



FIG. 6. ‘‘Sources of variation’’ plot. Each bar indicates the average signal for all 12,488

genes. More specifically, the height of the bar is the average ‘‘mean square’’ (ANOVA’s name

for ‘‘variance’’). Bars are labeled with the ratio to ‘‘error’’ (noise), thus bars represent an

average F ratio (signal‐to‐noise ratio) for each factor in the model.

TABLE I

NUMBER OF GENES PASSING STATISTICAL SIGNIFICANCE (FDR ¼ 10%)a

Factors Genes passing 10% FDR

Strain 0

Tissue type 9530

Animal pool (strain) 0

Strain � tissue type 45

Linear contrasts Genes passing 10% FDR

B6/adipose vs BTBR/adipose 29

B6/islet vs BTBR/islet 590

B6/liver vs BTBR/liver 43

B6/muscle vs BTBR/muscle 18

aThe top of the table lists the number of genes significant for each factor in

the ANOVA model, and the bottom of the table lists the number of genes

significant for each of the four linear contrasts (one for each tissue).
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Examining Results for a Single Gene

Because most people can interpret pictures better than p values, it is
important to have effective ways to visualize the patterns detected using
ANOVA. Because visualization is a manual and subjective process, it can-
not realistically be applied to all of the 12,488 genes on the chip. Thus, we use
statistical tests such as ANOVA to identify the interesting genes and then
explain those results using appropriate visualizations. Figure 7 shows one
such visualization of an interesting gene. This gene is upregulated in the B6
strain in the liver only. The genewas statistically significant in the contrast of
B6 to BTBR within the liver tissue. Note that all 16 samples were used to
estimate the variance due to noise, which is clearly very small.

Poststatistical Analysis

Genes can be annotated, and gene lists created and compared. Figure 8
shows a Venn diagram created by the Partek list manager. It shows the
FIG. 7. A ‘‘dot plot’’ is a very effective visualization tool when the sample size is relatively

small, such as in this experiment. There are 16 ‘‘dots,’’ one for each sample. The x axis

represents the log2 of the expression for this gene. The points are colored (and shaped) by

strain and separated on the y axis by tissue. For clarity, dots are also labeled with the strain.

Note that there is very little noise in these data and that the 16 samples provide a very good

estimate of the noise variance.



FIG. 8. Often researchers are interested in creating gene lists that are a combination of

other lists. The list manager of Partek allows the researcher to combine these lists in several

ways. This shows the Venn diagram tool of Partek, which allows the scientist to interactively

create gene lists from the intersection or union of two or more lists.
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significant genes for three tissues, and the researcher can look at intersections
and unions of genes in each region.
Visualizing Locations of Significant Genes on the Genome

Another useful analysis for many studies is to examine where the differ-
entially expressed genes (or exons, chromosomal copy number) are located
on the genome. Figure 9 shows the Partek genome browser, which allows the
researcher to find and display interesting patterns based on statistical signif-
icance ( p value), fold change, etc. Individual chromosomes, regions within
chromosomes, cytobands, or individual genes (or SNPs and exons) can be
explored easily and interactively. Because the location of the genes on the
chromosome for the example experiment used in this chapter is not compel-
ling, the visualizations shown in Fig. 9 are examples from other data sets that
show more interesting patterns.



FIG. 9. (continued)
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FIG. 9. (A) Genes are displayed in the Partek genome browser. Genes are colored by

p value, and the heights of the lines indicate fold change. In this screen shot, one line is drawn

for each chromosome. (B) In this view, chromosomal copy number amplifications and

deletions from a tumor sample can be visualized. Regions of statistically significant alterations

are indicated with red (amplification) and blue (deletion) rectangles. In this screen shot, only

chromosome 8 is displayed. (C) This view examines individual exons on a single gene. This

gene exhibits alternative splicing (detected using analysis of variance). Overall, all genes on

the exon are upregulated in the tumor relative to the normal; however, there is a single exon

near the center of the gene that is expressed higher in the normal group than the tumor group.

This is an indication of alternative splicing.
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Summary

This chapter described the statistical analysis of a microarray experi-
ment using Partek Genomics Solution software. Data were first normalized
using RMA. Next exploratory analysis was used for quality assurance and
to identify major effects and trends in data, revealing tissue as the largest
source of variation, followed by a strain effect. ANOVA was used to
partition the variance due to the multiple factors in this experiment, and
linear contrasts were used to find the genes of interest to the researcher.
Finally, graphical methods were used to display the effects of the experi-
mental treatment(s) on the genes of interest. If you are interested in
exploring more example experiments, data and tutorials that accompany
them can be found at http:/ /www.par tek.com /.

http://www.partek.com/
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Abstract

Data obtained fromhigh‐density oligonucleotide tiling arrays present new
computational challenges for users. This chapter presentsACME (Algorithm
for Capturing Microarray Enrichment), a computer program developed for
the analysis of data obtained using NimbleGen‐tiled microarrays. ACME
identifies signals or ‘‘peaks’’ in tiled array data using a simple sliding window
and threshold strategy and assigns a probability value (p value) to each and
every probe on the array.Wepresent data indicating that this approach can be
applied successfully to at least two different genomic applications involving
tiled arrays: ChIP‐chip andDNase‐chip. In addition to highlighting previously
described methods for analyzing tiled array data, we provide recommenda-
tions for assessing the quality of ChIP‐chip and DNase‐chip data, suggestions
for optimizing the use of ACME, and descriptions of several of ACME
features designed to facilitate interpretation of processed tiled array data.
ACME is written in R language and is freely available upon request or
through Bioconductor.
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every probe on the array.Wepresent data indicating that this approach can be
applied successfully to at least two different genomic applications involving
tiled arrays: ChIP‐chip andDNase‐chip. In addition to highlighting previously
described methods for analyzing tiled array data, we provide recommenda-
tions for assessing the quality of ChIP‐chip and DNase‐chip data, suggestions
for optimizing the use of ACME, and descriptions of several of ACME
features designed to facilitate interpretation of processed tiled array data.
ACME is written in R language and is freely available upon request or
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Introduction

Advances in microarray technologies have led to unprecedented per-
formance and ultimate flexibility in microarray design. In the production of
high‐density oligonucleotide microarrays, DNA fragments or ‘‘probes’’
(25–70 nucleotides in length) are designed to span or ‘‘tile’’ across genomic
regions of interest with overlapping or nonoverlapping probes. These
microarrays, hereafter referred to as ‘‘tiled arrays,’’ are technically easier
to manufacture than polymerase chain reaction (PCR) amplicon‐based
probe arrays and allow for higher resolution of analysis due to the large
number of measurement points along the region of interest. Given these
advantages, it is not surprising that tiled arrays are gaining popularity
for applications including array‐CGH, chromatin‐immunoprecipitation
coupled with microarray analysis (ChIP‐chip), and genomic expression
analysis.

Companies can currently manufacture arrays containing hundreds of
thousands to over a million probes on a single slide, and resolution is
expected to increase even further. Prior to the development of tiled arrays,
virtually all methods for analysis of microarrays were designed to measure
the abundance of a given RNA or DNA molecule at a single probe.
In contrast, with tiled arrays, increased DNA or RNA abundance often
spans several probes, resulting in multiple probes representing a single
signal. Due to these fundamental differences, methods for analysis of
PCR‐amplicon arrays are not well suited for analysis of tiled arrays. New
computational methods for tiled arrays are clearly required to maximize
detection of true signal from background noise.

This chapter describes ACME (Algorithm for Capturing Microarray
Enrichment), a software tool developed for analysis of data obtained from
tiled arrays. ACME exploits the ‘‘single‐tail’’ and ‘‘neighbor effect’’ charac-
teristics of ChIP‐chip and DNase‐chip data and is therefore not suitable for
analyzing array‐CGH or expression data. Briefly, ACME uses a sliding win-
dow approach to identify potential sites of enrichment above a user defined
threshold and then assigns probability scores (p values) to each probe on the
array. ACME is written in R, a free software environment for statistical
computing and graphics designed to run on a variety of UNIX platforms,
Windows, and MacOS (http://www.r‐project.org/). An advantage of R over
more commonly used software packages such asMicrosoft Excel is that there
is virtually no limit to the size of the data file that can be analyzed. This no‐
limit feature is essential given the massive number of probes on tiled arrays
and will also enable ACME to accommodate expected increases in probe
quantities.

http://www.r-project.org/
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ChIP‐chip: An Overview

Chromatin immunoprecipitation coupled with microarray analysis has
become a popular technique for determining the genomic binding sites of
transcription factors (Kim et al., 2005; Odom et al., 2004) or the location
of histone modifications on chromatin (Bernstein et al., 2005). An overview
of the strategy is summarized in Fig. 1A.Cells in culture or tissue samples are
treated with a cross‐linking agent to covalently link proteins to their cognate
DNA sites. The cells are then harvested and chromatin is sheared by sonica-
tion. The protein–DNA complexes are then enriched by chromatin immu-
noprecipitation with antibodies to histone modifications, transcription
factors, or other DNA‐binding complex members. The resulting ChIP‐en-
riched DNA is purified and the cross‐links are heat reversed. Because the
yield of factor‐bound DNA tends to be low, enriched fragments are usually
amplified before labeling and hybridizing to arrays. As a control for hybri-
dization, total genomic DNA that has been cross‐linked and sheared is also
amplified. For two‐color ChIP‐chip, the amplified ChIP and total genomic
DNA preparations are labeled with distinct fluorophores and cohybridized
to arrays. Genomic segments bound by the protein of interest will show
enrichment of chromatin‐immunoprecipitated DNA over the total genomic
reference DNA.
FIG. 1. Overview of ChIP‐chip (A) and DNase‐chip (B) (see text for details). (See color

insert.)
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NimbleGen offers completely customizable array designs for ChIP‐chip.
While tiling across the entire genome is usually most desirable, this option is
currently cost prohibitive formost laboratories. Therefore,many users opt for
tiling across selected genomic regions, individual chromosomes, or promoter
regions (if the protein in question is known to localize to promoters).
DNase‐chip: An Overview

Mapping DNase I hypersensitive (HS) sites is an accurate method of
identifying the location of active gene regulatory elements, including pro-
moters, enhancers, silencers, and locus control regions (Gross and Garrard,
1988; Wu et al., 1979). While Southern blots have historically been used to
identify DNase HS sites one gene at a time, newer strategies have been
developed to rapidly identify larger numbers of these regulatory regions
(Crawford et al., 2004, 2006; Sabo et al., 2004). One of these high‐throughput
strategies, called DNase‐chip, uses tiled microarrays to accurately identify
the location of DNase HS sit es (Crawford et al ., 2006). This met hod en tails
digesting intact chromatin with small amounts of DNase I to preferentially
digest open regions of chromatin (Fig. 1B). The DNase‐digested ends are
blunted, ligated to biotinylated linkers, and sonicated. DNase‐digested
ends are then captured on a streptavidin column, amplified, labeled, and
hybridized to tiled microarrays. As a reference, randomly sheared DNA is
cohybridized with DNase‐digested DNA.
Properties of ChIP‐chip and DNase‐chip Data

In a typical two‐color ChIP‐chip or DNase‐chip experiment, two different
populations of DNA are labeled with distinct fluorophores and cohybridized
to arrays. One population corresponds to enriched genomic fragments cap-
tured by either ChIP or treatment with DNase. The other population corre-
sponds to total genomic DNA and serves as a reference for hybridization.
Ahistogram that displays log2measurement ratios (ChIP‐ orDNase‐enriched
DNA/total genomic DNA) can be used to determine if an experiment was
successful. If enrichment is low or completely absent, the distribution of ratio
measurements will appear symmetrically bell shaped (Fig. 2A). For ChIP‐
chip or DNase‐chip experiments in which multiple DNA fragments were
enriched, the expected distribution will appear asymmetrically bell shaped,
with a distinct skew or tail at the positive or right‐hand side (Fig. 2B and C).
The shape and size of the tail often vary depending on the degree of enrich-
ment. Furthermore, hybridization artifacts such as streaks will often distort
the shape of the distribution (Fig. 2D).



FIG. 2. Examples of ‘‘one‐tailed’’ data and ‘‘neighbor effect.’’ (A–D) Histograms showing

various degrees of enrichment from ChIP‐chip experiments using no antibody (no

enrichment) (A), antibodies to the MLL1 transcription factor (moderate enrichment) (B),

and antibodies to a histone modification (H3K4me3) (high enrichment) (C). (D) Background

noise caused by streaks on the array can affect the distribution dramatically, making it difficult

to estimate the degree of enrichment. Red lines in A–D denote the mean center of the

distribution. Note that this line is shifted to the right in instances where obvious enrichment

occurred. Frequency is plotted on the vertical axis; log2 ratio measurements (ChIP DNA/total

genomic DNA) are plotted on the horizontal axis. (E) Theoretical (top) and actual (bottom)

examples of the ‘‘neighbor effect’’ principle. (Bottom) Log2 ratio measurements (red) and

ACME processed (green) data from a ChIP‐chip experiment using antibodies to H3K4me3.

Data represent the average of three biological replicates. Probes on the array were spaced at a

density of 1 probe per 180 bp.
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The shearing of chromatin by sonication results in multiple fragments
of various lengths. Given the length of these fragments (200–1000 bp), we
expect true signal to span multiple probes that are genomically located
close to one another. The signal from multiple closely spaced probes will
often form a peak at or near the binding site or DNase HS site (Fig. 2E), an
effect referred to as ‘‘neighbor effect.’’ Thus, densely spaces probes that
have only single probes yielding spuriously high ratio measurements most
likely represent experimental noise.
Previously Developed Methods for Analysis of ChIP‐chip Data

Previously described techniques used for analyzing ChIP‐chip include
the single array error model (SAEM) (Hughes et al., 2000), percentile rank
analysis (Lieb et al., 2001), PeakFinder (Glynn et al., 2004), chromatin
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immunoprecipitation on tiled arrays (ChiPOTle) (Buck et al., 2005), double
regression analysis (Kim et al., 2005), and hidden Markov model analysis
(HMM) (Li et al., 2005). Algorithms for the SAEM and percentile rank
methods were written for analysis of PCR‐amplicon arrays, prior to use of
high‐density tiled arrays. Briefly, SAEM uses control arrays to determine
the boundaries outside of which a probe should be considered significantly
enriched. SAEM requires multiple control arrays and assumes that the
control and experimental arrays are of similar quality. In the percentile rank
method, each arrayed probe is assigned a percentile rank based on the
degree of ChIP enrichment. This process is repeated for multiple experi-
mental replicates, and the median percentile ranks for each probe are
calculated and plotted as a histogram. Provided experimental replicates
yield consistent enrichment, the distribution of median rank values will be
bimodal. Probes that rank higher than the trough of the bimodal distribution
are considered significant. Neither SAEM nor percentile rank utilizes ratio
measurements from neighboring probes when determining signal. PeakFin-
der sorts probes by their genomic location and then smooths data. The
derivative of the smoothed line is then used to identify peaks. PeakFinder
does not assign a measure of statistical significance to enriched regions.
ChIPOTle detects ChIP‐enriched regions using amoving‐window approach.
ChiPOTle assumes that the log2 ratios are independent and Gaussian
distributed (unless the ‘‘permutation’’ option is used, which relaxes the
Gaussian distribution assumption). ChiPOTle is available as anExcel macro
and is restricted to analyzing data derived from arrays containing less than
65,536 probes due to the limitations of Excel worksheets. Li et al. (2005)
provided amethod for using a two‐state hiddenMarkovmodel to determine
regions of significance in a tiling array experiment. The ‘‘double regression’’
method uses a peak‐finding algorithm that predicts binding sites based on
hybridization intensity and the triangular‐shaped nature of consecutive
probes with significant signals. PeakFinder, ChiPOTle, HMM, and double
regression utilize information from multiple neighboring probes, and thus
take advantage of the neighbor effect.
ACME

ACME can analyze data obtained from any NimbleGen tiled array
design. Experimental replicates can be processed separately or, alterna-
tively, the user can average ratio measurements from experimental repli-
cates prior to processing. ACMEmakes only two assumptions: (1) that data
are enriched for signal in the positive direction (‘‘one‐tailed’’) and (2) that
the real signal will be represented by multiple probes that are genomically
located close to one another (neighbor effect). Unlike other programs



FIG. 3. Analysis of data from tiled arrays using ACME. In this example, promoter‐specific
arrays (NimbleGen) containing 385,0000 probes tiled at a resolution of 1 probe per 100–180 bp

were used to identify genomic‐binding sites for the tumor suppressor protein menin. (A and C)

Scatter plots of single‐array intensities of oligonucleotide probes obtained from chromatin

immunoprecipitation with antibodies to menin (C) and a control experiment with no antibody

(A). Successful experiments are identified as those that show enrichment of multiple probes in
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(Buck et al., 2005; Kim et al., 2005), ACME does not assume that log2 ratio
data are Gaussian distributed or that the signal ratios of consecutive probes
form a triangular shape. Despite its simplicity, we have found that ACME
is quite robust at detect ing true signal from noise (Scache ri et al., 2006).

ACME is designed to process normalizedmicroarray data fromNimbleGen
arrays that are in standard GFF format (http://genome.ucsc.edu/FAQ/
FAQformat), but can be modified easily to analyze data in any format,
provided the chromosome coordinates and corresponding signal measure-
ments for each probe are supplied. After loading data into R, ACME
automatically sorts probes by their genomic location. The user must then
set a threshold within the distribution of the ratio measurements above
which true positive signals are expected to be enriched (e.g., 0.9 or 90th
percentile). To identify potential sites of enrichment, a window of user‐
defined size moves stepwise along the tiled region, centering at every probe.
Hybridization signals of probes within each window are tested by �2analysis
to determine if the window contains a higher than expected number of
probes above the defined threshold. ACME then estimates the significance
of each probe by assigning probability values to each and every probe on the
array. The resulting output contains p values with corresponding chromo-
some coordinates, which can be plotted easily by genomic location in R or
imported into the UCSC Genome Browser or the Integrated Genome
Browser for visualization. An example of actual ChIP‐chip data processed
by ACME is depicted in Fig. 3.
the Cy5 channel (chromatin immunoprecipitated DNA) over the Cy3 channel (total genomic

DNA). (B and D) Histograms of normalized intensity ratios from A and C. Compared to the

no antibody control (B), the histogram plotted from the menin ChIP (D) shows a distinct tail

at the right‐hand end, or positive direction. ACME slides a window of user‐defined size along

tiled regions and tests statistically whether each window contains a higher than expected

number of probes above a user‐defined threshold (indicated by the red bar). In this example,

the window size is set at 1000 bp and the threshold at 90%. (E) Plots showing data before and

after processing with ACME. Normalized log2 ratio measurements from three experimental

replicates were averaged and plotted in black, with corresponding chromosome coordinates

on the horizontal axis and the mean intensity ratio on the right vertical axis. Points in red

indicate corresponding significance values for each data point following processing by ACME

(left vertical axis). The dashed line denotes the 90% threshold level. (F) Number of promoters

ACME reported to be bound by menin at various p value cutoffs. Compared to the negative

control experiment (blue), significant enrichment of multiple promoters was detected for the

menin ChIP‐chip experiment. Also note that the false‐positive rate increases as the p values

decrease in significance. (G) Real‐time PCR validation of promoters determined by ACME to

be bound menin. Mean values are indicated by red bars. Compared to randomly selected

regions of the genome, promoter regions identified by ACME to be enriched for menin

binding at p < 0.0001 were enriched more than sevenfold. These data indicate that sites

ACME reported to be enriched at p <0.0001 reliably represent sites of menin occupancy.

Users should empirically determine the optimal p value cutoff for their studies using similar

methods.

http://genome.ucsc.edu/FAQ/FAQformat
http://genome.ucsc.edu/FAQ/FAQformat
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Due to multiple testing problems, p values reported by ACME should be
interpreted with caution. p values can be corrected for multiple comparisons
usingBonferroni correction, but even adjustedp valueswill remain imprecise,
as independence between individual data points was violated to an unknown
degree. p values reported byACMEmust therefore be validated by indepen-
dent means, such as standard ChIP followed by real‐time PCR, to determine
true biological significance. In addition, one can estimate empirical p values
by permutation testing.
Optimizing Window Size and Threshold

Two parameters require optimization when using ACME: window size
and threshold level. The user must choose a window size that is large enough
to capture signal from multiple probes located close to one another, but
small enough to resolve individual signals or peaks that are close together.
Optimal window size is dependent on at least two factors: (1) the distance
(bp) between tiled probes on the array and (2) the size of the DNA frag-
ments hybridized. Arrays tiled with little or no space between probes can be
analyzed with a shorter window size than arrays containing more sparsely
spaced probes. With respect to the size of the DNA fragments hybridized,
short fragments will require more closely tiled probes than longer fragments
so that signal is not missed. As with window size, the optimal threshold level
for a given experimentmust also be determined empirically. The user should
aim to choose a threshold above background noise, where true signals are
likely to be enriched. As a general suggestion, we recommend analyzing
most data sets at a threshold level between 0.85 and 0.95 and a window size
between 500 and 1500 bp (for arrays tiled at a resolution of 1 probe per 180
bp or less). We have shown that ChIP‐chip and DNase‐chip data analyzed
within these ranges reliably detect significantly enriched genomic regions
(Scache ri et al., 2006; Cra wford et a l., 2006). p values tend to decrease in
significance as thresholds are lowered closer to background levels (<0.85)
(Fig. 4).
Optimizing Probe Resolution

When designing tiled arrays, the goal is to tile probes that are sufficient-
ly close to one another to maximize sensitivity. Arrays designed with little
or no space between probes are usually most desirable, but such resolution
is often prohibitive due in part to cost and space limitations on the array.
In addition, some regions of the genome are too repetitive to yield useful



FIG. 4. Examples of data sets processed by ACME at various window sizes and thresholds.

(A) Histograms of log2 ratio measurements. The 80, 90, and 95% thresholds levels at which

data were processed are indicated by colored bars. (B) Data at each threshold level indicated

in A were processed at window sizes of 500, 1000, and 1500 bp (tiling density ¼ 1 probe per

180 bp). Data analyzed at lower thresholds (80%) yield less significant p values than data

processed at higher thresholds (90–95%). Also note that significant p value peak widths

increase as window size increases. As discussed in the text, optimal window size and threshold

should be determined empirically.
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probes for tiling array analysis. To assess the relationship between probe
density and sensitivity, we quantified the number of DNase HS sites detect-
able with variably spaced probes. Data indicate that overlapping probes can
detect DNase HS sites with near‐perfect accuracy (Fig. 5). Sensitivity de-
creases as the genomic distance between tiled probes is increased. These data
suggest that careful attention should be paid to probe spacing when designing
tiled arrays.
Recommendations for Assessing Data Quality

The success of chromatin immunoprecipitation relies heavily on the
quality of the antibody. The antibody must be specific for and capable of
immunoprecipitating the protein of interest in the context of cross‐linked
chromatin. When one is performing ChIP‐chip for the first time with a new
antibody, if is often difficult to assess whether the ChIP was successful,
especially when the genomic‐binding sites of the protein are not known.
Furthermore, the yield of factor‐bound DNA in a ChIP experiment is
usually low. We recommend assessing the overall degree of enrichment
by graphing raw signal intensities as a scatter plot and plotting normalized



FIG. 5. Sensitivity diminishes as probe resolution decreases. The sensitivity of DNase‐chip
to detect valid DNase HS sites was calculated for different probe‐spacing patterns. Valid

DNase HS sites were identified from a previous study (Crawford et al., 2006). DNase‐chip was

performed on tiled arrays that contained 50‐mer probes that overlapped by 12 bases. A

significant signal (p <0.001) was detected using ACME for data that included data from all

probes, every second probe, every third probe, every fourth probe, and every fifth probe.

User‐defined window sizes were modified so that different spacing patterns had at least 13

probes per window on average.
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ratio measurements as a histogram (Figs. 2 and 3A–D). If the data points in
the scatter plot are distributed along a tight diagonal or if histograms reveal
bell‐shaped curves that are not single tailed, the degree of enrichment is
likely to be low. However, regardless of the distribution, we recommend
processing all data with ACME, as even experiments with undetectable
amounts of enrichment on scatter plots and histograms can reveal significant
regions that are detectable only after processing. Finally, it is often only with
repeated experiments on multiple biological replicates that true signal, or
lack thereof, becomes evident.

Additional Features of ACME

In addition to providing a measure of significance ( p value) for each
probe on the array, ACME has several features designed to assist the user
view and interpret processed data. A plotting function (‘‘plot’’) allows the
user to view ACME‐processed data on the same graph as unprocessed data
(Figs. 3E and 4). This plotting feature is particularly useful for optimizing
window and threshold parameters, as data analyzed at different win-
dow sizes and threshold levels can be compared easily. A function called
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‘‘FindRegions’’ will scan processed data for regions that show significance
below a user‐defined p value threshold. The chromosome coordinates of
significant regions are then returned to the user. ‘‘FindClosestGene,’’ an
extension of the FindRegions feature, will map significant regions to the
nearest transcriptional start site of genes. These features are particularly
useful for determining the locations of binding sites or DNase HS sites in
relation to known genes. Finally, when analyzing promoter‐specific tiled
arrays for ChIP‐chip, ACME can export the minimum p value associated
with each promoter, thereby allowing the user to assemble candidate lists of
genes whose promoters are targeted by the protein in question.

Summary

The ACME program presented here provides scientists with a simple
but effective set of tools for analyzing the massive data sets generated
from ChIP‐chip and DNase‐chip assays on tiled arrays. Its implementation
should facilitate our understanding of chromatin structure and mechanisms
underlying gene regulation. The entire ACME software package is avail-
able from the authors upon request or through Bioconductor (http://www.
bioconductor.org/). Detailed instructions for installation and use of ACME
are included.
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Abstract

A credit to microarray technology is its broad application. Two experi-
ments—the tiling microarray experiment and the protein microarray ex-
periment—are exemplars of the versatility of the microarrays. With the
technology’s expanding list of uses, the corresponding bioinformatics must
evolve in step. There currently exists a rich literature developing statistical
techniques for analyzing traditional gene‐centric DNA microarrays, so the
first challenge in analyzing the advanced technologies is to identify which of
the existing statistical protocols are relevant and where and when revised
methods are needed. A second challenge is making these often very tech-
nical ideas accessible to the broader microarray community. The aim of
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ments—the tiling microarray experiment and the protein microarray ex-
periment—are exemplars of the versatility of the microarrays. With the
technology’s expanding list of uses, the corresponding bioinformatics must
evolve in step. There currently exists a rich literature developing statistical
techniques for analyzing traditional gene‐centric DNA microarrays, so the
first challenge in analyzing the advanced technologies is to identify which of
the existing statistical protocols are relevant and where and when revised
methods are needed. A second challenge is making these often very tech-
nical ideas accessible to the broader microarray community. The aim of
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this chapter is to present some of the most widely used statistical techni-
ques for normalizing and scoring traditional microarray data and indicate
their potential utility for analyzing the newer protein and tiling microarray
experiments. In so doing, we will assume little or no prior training in statis-
tics of the reader. Areas covered include background correction, intensity
normalization, spatial normalization, and the testing of statistical significance.
Introduction

Microarray technology (Fodor et al., 1991; Schena et al., 1995) allows
for the parallel quantitative assessment of biochemical reactions. On the
order of 106 measurements can be taken simultaneously with current
technology (Cheng et al., 2005). The initial challenge following a micro-
array experiment is to determine which of these potentially millions of
observations are significant and should be studied in more depth. This
challenge has been met by hundreds of practitioners in both biomedical
and mathematical sciences and literally hundreds of papers have been
published on the topic. This chapter aims to illustrate some prevailing ideas
and techniques found in the microarray analysis literature. In addition to
covering statistics used for traditional microarray experiments, we include
those techniques exploited in protein and tiling microarray analyses as
well. These latter experiments share some mechanistic aspects with the
traditional DNA microarrays, but in several respects, are quite different.
Therefore, some of the bioinformatics research done for traditional micro-
arrays is relevant, whereas some of it is not. We will guide our discussion
with this as our theme, and focus on two main areas of study: microarray
normalization and the assessment of statistical significance.

Prior to delving into the heart of our discussion, we will first introduce
some naming conventions, followed by statistical preliminaries. Following
these prerequisites, a brief discourse on how microarray data are obtained
is given. The first major area of study reviewed ismicroarray normalization
or, more concisely, normalization. Normalization deals with the technical
aspects of the microarray technology that can potentially confound and/or
bias the results of the experiment. It does so by correcting measured values
so as to remove these effects. Normalization is discussed later. The second
area focused on is the assessment of statistical significance. Statistical sig-
nificance can mean different things for different microarray experiments,
depending on their respective goals, and is discussed. In a majority of
traditional DNA microarray experiments, significance indicates the pres-
ence of differential mRNA expression between two or more biological
classes for some gene. An experiment might, for example, assess mRNA
concentrations for thousands of genes as cells progress through the cell cycle
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(Cho et al., 1998). In such a scenario, wewould like to knowwithin each stage
those genes that exhibit differential expression (higher or lower concentra-
tions) relative to the other stages. For tiling microarrays, as shown later,
significance pertains more loosely to genomic regions. In these experiments,
we seek chromosomal regions (consisting of multiple probes) that exhibit
higher than expected fluorescent intensities on themicroarray. Proteinmicro-
arrays have two main classes of use: analogous to the DNA microarray,
antibody microarrays can be used to determine protein abundances, whereas
functional protein microarrays can be used to detect protein–protein interac-
tion partners in vitro. For each of these experiments, significance clearly takes
on a different meaning.

Definitions

Some common points of confusion within the microarray literature
are how various entities are defined. This section explicitly defines some
of these entities so as to minimize the potential for confusion. Herein,
we define molecules on the microarray at time of its construction as
probes and those molecules that are subsequently introduced to the micro-
array as targets. We use the words spot and feature interchangeably to
indicate a collection of probes that have the same sequence and are con-
centrated at a known position in the microarray design. A collection of
targets from a single biological source is called a sample. A single event
consisting of introducing one or more samples to a microarray is termed
probing. Finally, a set of probings designed to test certain hypotheses is
simply an experiment.

Statistical Preliminaries

It is impossible to have a discussion on microarray statistics without any
prior knowledge of statistics in general. This section provides some basic
concepts that will aid our presentation of microarray analysis. Anyone who
has taken an introductory statistics course has seen this material already
and can safely skip this section.

Summary Statistics

Assume for the moment that a microarray experiment measures the
expression level of just a single gene and that the experiment consists of
several technically replicate probings from which a measurement is ob-
served. To generalize the measurements for discussion, let each measure-
ment be denoted by the symbol Xi. Here, the subscript i indicates the ith
measurement of the gene. For example, X4 ¼ 162 would indicate that the
measurement coming from the fourth microarray is 162.
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A first natural question to ask of the experiment is ‘‘What is the central
tendency of my measurements or, equivalently, how can I best describe my
measurements with a single number?’’ The most commonly used response
to this question is to calculate the arithmetic mean, or average, of the
measurements. To calculate the arithmetic mean, we first sum all the
measurements and then divide by the total number of measurements
observed. If N is the number of measurements taken, then the mean �X is
calculated as

�X ¼ 1

N

XN
i¼1

Xi ¼ X1 þX2 þ . . .þXN

N
: ð1Þ

We often would like to measure the spread of our measurements in
addition to their central tendency. The most commonly used measure of
spread is the variance �2:

s2 ¼
PN

i¼1ðXi � �X Þ2
ðN � 1Þ : ð2Þ

Note that the numerator consists ofN terms, added together. Each term in
the summation corresponds to the ith measurement and is the difference
between that measurement (Xi) and the mean of all N measurements, �X .
Also note that each term is squared. Doing so ensures that the numerator is
positive and that measurements less than the mean contribute positively
to the variance just as much as those measurements greater than the mean.
This measure of spread is roughly the average squared difference
from the mean. We say ‘‘roughly’’ here because the denominator in Eq. (2)
is (N � 1) rather than the N that we might expect from the definition of
arithmeticmean [Eq. (1)].Why this is so is beyond our scope, but with largeN
this detail makes little difference. Related to the variance is a quantity called
the standard deviation. A standard deviation, symbolized as �, of a group of
measurements is simply the square root of those measurements’ variance.

We often read or hear the phrase ‘‘microarray data are noisy,’’ or some
similar (potentially less polite) variant. This can be taken to mean several
things, but quite often it is the presence of outliers that is being referred
to. An outlier is a measurement in large disagreement with other measure-
ments of the same phenomenon. In a microarray experiment, the difference
could be due to a biological effect, but more likely the outlier is due to some
kind of technical malfunction of the instrument and/or its associated proto-
col(s). Outliers can have large effects on the aforementioned summary
statistics. For an example, consider an experiment where five measurements
are taken for the same gene. If these measurements are X1 ¼ 12, X2 ¼ 9,
X3 ¼ 11, X4 ¼ 507, and X5 ¼ 12, then



286 DNA microarrays, part B [15]
�X ¼ X1 þX2 þX3 þX4 þX5

N
¼ 12þ 9þ 11þ 507þ 12

5
¼ 110:2: ð3Þ

Clearly the quantity 110.2 does not represent the central tendency of
data very well. It is not particularly close to any of the measurements.
Luckily, there are ways around such pitfalls. One technique is called the
trimmed mean. With this approach, some percentage of the most extreme
measurements is thrown away prior to calculating the mean. An extreme
(and quite common) version of this approach is to calculate the measure-
ments’ median as a measure of their central tendency. The median is
defined as the middle quantity occurring in a sorted list of observations.
That is, if N is odd and you first sort your measurements X1, X2, . . ., XN in
either increasing or decreasing order, then the median is the quantity XNþ1

2
.

(If N is even, the middle two measurements, XN
2
and XN

2þ1, are averaged.)
In our noisy example of five measurements where the mean of 110.2 was
obtained, the calculated median is 12. This value intuitively summarizes
these data much better.

An analogous calculation can be performed in place of the variance.
Recall that the variance is essentially an average squared difference of
meas ureme nts from the mean [Eq . (2)] . This comput ation can be made
more robust to outliers by first substituting the median for the mean and
then computing the median of absolute differences between the measure-
ments and the previously calculated median. This quantity is sometimes
referred to as the median absolute difference (MAD).

Statistical Significance

The term p value comes up frequently in texts about microarray experi-
ments and their analyses. A p value is simply the probability of some
null hypothesis being true given a set of assumptions and observations.
A typical experiment utilizing DNA microarrays might have thousands of
such null hypotheses, one for each gene being studied. These null hypoth-
eses would typically claim that the expression level of some gene is not
different between two biological samples. As a result, we declare that any
gene for which we can compute a low p value is significant and potentially
worthy of further study. To call the gene significant, a p value threshold for
significance must, of course, be in place. A common interpretation for this
threshold is the false‐positive rate of the study: the percentage of time
replications of the experiment would reject the null hypothesis when it is
actually true.

Now, we do not typically know the actual probability of observing
something under a given null hypothesis. However, if we know that the
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numbers being studied follow some known form (e.g., we might know or
assume that the gene expression levels are distributed like a bell curve, or a
normal distribution), then we can use this knowledge to either simulate or
directly calculate how likely an average difference between two such
groups of measurements would be if there were in fact no difference, for
example.

A final note on significance worth noting is that, generally speaking, the
more observations we are able to make of some phenomenon, the better is
our ability to compute a low p value. To illustrate this point, consider an
experiment where we ask, ‘‘Is gene A expressed at a higher level in tumors
than in healthy tissue?’’ Let us assume that the answer to this question is,
‘‘Yes.’’ If we have one measurement of A from a tumor and one measure-
ment of A from a healthy tissue and the measurement from the tumor is
twice as high as its healthy counterpart, we have some limited confidence
that the gene is more highly expressed in tumors. This occurrence could be
an anomaly, so we still would assign some fairly high probability to the null
hypothesis of no difference being. If instead we measure the abundance of
gene A in 20 tumors and they are all higher than 20 measurements taken
from healthy tissues, we would assign a much lower probability to the null
hypothesis because the chance of 20 anomalies is very small.
Multiple Testing

Another issue that comes up frequently in the microarray literature is
that ofmultiple testing. Multiple testing simply indicates that more than one
statistical test (which generates a p value) is part of the study. For micro-
array experiments there are thousands and potentially millions of statistical
tests being conducted, so clearly we are dealing with multiple testing, but
what is our concern when we engage in multiple testing?

In biology, the threshold for considering a p value significant is typically
p < 0.05 or p < 0.01. These criteria arise from a balance between our
willingness to accept a 5% or even a 1% false‐positive rate and the number
of replicate measurements we are able to take. Multiple testing becomes a
problem, for example, if we conduct 100 statistical tests and identify that one
of them yields a significant p value (p¼ 0.04< 0.05). It would be tempting to
report this seemingly significant finding. The problem here is that within a set
of 100 tests, we expect to find 4 of these to yield p¼ 0.04 simply due to random
chance (100 tests multiplied by the false‐positive rate 0.04 yields 4 tests). This
toy example becomes a staggering problem ifwe are testing, say, 20,000 genes.
In this case, at a significance threshold of p < 0.05, we will identify roughly
1000 false positives. This number of false positives is potentiallymore than the
actual number of differentially expressed genes that we seek to identify.



288 DNA microarrays, part B [15]
The most simple method for dealing with multiple comparisons is to
require sufficiently low p values such that the total number of expected
false positives is small. The Bonferroni correction (Bonferroni, 1935) does
this by controlling the so‐called family‐wise error rate (FWER). The
FWER is defined as the probability of detecting a false positive anywhere
among the multiple tests. As a result if we want the probability of detecting
a false positive among our tests to be less than a, we require that any
individual test achieve p < a

N where N is the number of tests. Such correc-
tions pose a problem for microarrays where thousands of genes are being
tested for significance and the number of available replicate experiments
is small. The problem is more acute for high‐density tiling microarrays
where the number of tests performed can reach into the millions (see later)
and the number of experimental replications is often fewer than five.

Microarray Data

This section reviews briefly how microarray data are obtained.

Data for Traditional, Gene‐Centric DNA Microarrays

Each spot on a gene‐centric DNA microarray corresponds to a DNA
sequence derived from a known or putative gene. That sequence could
be the whole spliced form of a gene (such as a cDNA clone) or a tethered
25‐bp oligonucleotide sequence, as is the case for Affymetrix GeneChip
brand microarrays. Such a microarray typically probes a sample that is
derived from a mRNA source.

Subsequent to probing a labeled sample with a microarray, an image
representing its surface is generated by subjecting the microarray to a
digital‐scanning device. Depending on the type of labels used, different
scanning technologies are employed. Typically, the samples have been
labeled with a fluorescent dye or, alternatively, with radioactive isotopes.
For fluorescently labeled samples, the probed microarray is scanned with a
laser scanner. There is a wide selection of laser scanners available, includ-
ing but not limited to ScanArray GX from Perkin‐Elmer, GenePix 4200
from Molecular Devices, and DNA microarray scanner from Agilent
Technologies. A laser wave length near the absorption maximum of the
fluorophor dye used (that was attached to the hybridizing sample) is
scanned across the microarray surface from top to bottom and from left
to right so that all areas of the microarray are accessed by the laser. The
light emitted at each location when laser‐excited fluorophors transition to
their unexcited state is captured by a detector and translated into a pixel
intensity at that location. Microarrays that probe multiple‐labeled samples
simultaneously must be scanned with a scanner having at least as many
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unique laser wavelengths as labeled samples. Current scanning resolutions
are as high as 1 �m2 per pixel.

The result of scanning a single probed sample is a monochromatic
digital image (usually stored as a TIFF file) of the microarray surface.
Bright regions in the image correspond to regions of the microarray with
high levels of fluorescence and dim regions likewise correspond to regions
devoid of fluorescence. Presumably, the bright regions correspond to spots
to which labeled nucleic acid hybridized. If two different samples were
labeled with two different dyes and were probed with the same microarray,
then the result of scanning is two digital images. There would be one image
for each wavelength used.

The microarray images generated by the laser scanner must be further
processed with image analysis software. First, the spots of the microarray
have to be identified within the image. To do this, rules have to be obtained
or assumed that can distinguish between pixels that constitute spots and
pixels that belong to background regions. Separating spots from the back-
ground is called segmentation. Following segmentation, grid alignment
must be performed. Grid alignment is the process of identifying which spots
correspond towhich annotation. Basic versions of grid alignment software are
usually included with the purchase of a scanner, but there are alternatives,
such as TIGR Spotfinder (Saeed et al., 2003), which is freely available under
an open‐source license, or ScanAlyze (http://rana.lbl.gov/EisenSoftware.
htm), which is free for academic and noncommercial use. For most spotted
arrays, the grid has to be defined by the user, either manually or semima-
nually, whereas for many higher density microarrays, such as Affymetrix
GeneChip brand microarrays and NimbleGen System’s NimbleChips, the
alignment of the microarray image to the grid is done automatically by
software. This automation is made possible by reserving some spots on the
microarray exclusively for grid alignment. Certain labeled cDNA/cRNA
molecules that are complementary to the grid alignment probes are spiked
into the sample(s), ensuring that the grid alignment probes will appear as
bright regions in the scanned image, enabling automatic grid alignment.

After aligning the grid the image analysis software reports back a
certain number of key statistics for each of the identified spots. These
statistics may include the mean and median pixel intensities within each
spot, the standard deviation of those pixels, and sometimes also other
information, such as mean intensity ratios in the case of a two‐channel
experiment. The area of each spot (number of pixels) is also frequently
reported. Importantly, if the software considers a particular spot aberrant,
for example, irregular in its shape, or if its measured intensity is lower than
the surrounding background intensity, the spot may be flagged as irregular.
Such flagged spots are often excluded from further statistical analyses.

http://rana.lbl.gov/EisenSoftware.htm
http://rana.lbl.gov/EisenSoftware.htm
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The end result is a tab‐delimited plain text file containing all raw data for
each microarray feature within a single row. The tab‐delimited, text‐based
format is easily amenable to further analysis by importing it into a micro-
array analysis software package such as ExpressYourself (Luscombe et al.,
2003) orMIDAS (Saeed et al., 2003) or, of course, into your ownmicroarray
analysis pipeline. For simple calculations, a spreadsheet program (e.g.,
Gnumeric, OpenOffice or Microsoft Excel) could also be used.

For spottedDNAmicroarrays, it is common that each gene under study is
represented by a single spot. An important difference exists for Affymetrix
GeneChip brand microarrays. For this technology, each gene is represented
by a probe set, typically consisting of 10–20 features on the microarray.
Within the probe set, each feature contains probes of different sequence. To
assess the differential expression of a single gene, multiple spots from each
microarray need to be considered.
Data for Tiling Microarrays

The two most widely utilized high‐density oligonucleotide platforms are
those produced by Affymetrix, using masks to synthesize the oligonucleo-
tides on the microarray (Lipshutz et al., 1999), and those manufactured by
NimbleGen Systems, which use a system of mirrors controlled by a digital
light processor for synthesis (Nuwaysir et al., 2002). Affymetrix microar-
rays currently utilize 25‐bp oligonucleotide probes for each spot. For every
spot corresponding to some 25‐bp stretch of genomic DNA (perfect
match), there is a corresponding spot (mismatch) where the middle nucle-
otide of the probe has been substituted with its reverse complement. This
perfect match/mismatch setup is also the standard for the Affymetrix
GeneChip system as well. The purpose of the mismatch probe in both
traditional and tiling applications is to measure the nonspecific binding
of the probes within a spot [there is some debate about the usefulness of
mismatch probes, however (Irizarry et al., 2003)]. Currently, Affymetrix
microarrays are capable of including on the order of 106 spots.

Maskless microarrays manufactured by NimbleGen Systems are synthe-
sized such that each microarray can be completely customized with unique
probe sequences. These microarrays allow for oligonucleotide lengths of up
to 70–80 nucleotides (in fact, isothermal arrays exist where each feature
corresponds to a oligonucleotide probe of a different length). Current
maskless microarray designs have approximately 390,000 spots per micro-
array. One important difference between these two high spot density plat-
forms is that Affymetrix brand microarrays can only be hybridized with a
single target nucleic acid population, whereas maskless arrays allow the
hybridization of two samples simultaneously using different labels, typically
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Cy5 (red) and Cy3 (green). This is potentially beneficial when looking
for differential expression between samples or for ChIP‐chip (Horak and
Snyder, 2002; Iyer et al., 2001), where chromatin‐immunoprecipitated DNA
is labeled differently from some reference DNA.

Tiling microarrays (Bertone et al., 2004; Cawley et al., 2004; Cheng et al.,
2005; Kapranov et al., 2002) use high‐density capabilities to tile the nonrepe-
titive sequence of a genome. The word tile indicates that probes are selected
for inclusion on the microarray at some roughly uniform interval over a
potentially large genomic space. In the context ofmRNA transcript mapping,
this high resolution enables the unbiased detection of individual exons of a
spliced transcript. This experiment is not practical on a whole‐genome scale
in a mammalian species with lower resolution polymerase chain reaction
amplicon microarrays due to cost (Bertone et al., 2005).

Tiling microarrays are an evolving medium, and data format standards
have not yet materialized. However, several summary statistics about each
spot are typically included in a tab‐delimited text file. These statistics
usually include the mean and/or median pixel intensity of each spot, the
number of pixels within each spot, and a standard deviation of the pixel
intensities of the spot. It is worth including a cautionary note about tiling
microarray data here. Tiling microarrays generate very large data sets. As
such, they are difficult or impossible to import into desktop spreadsheets
such as Microsoft Excel. Therefore, more robust tools are often needed.

There is one more major difference between traditional DNA micro-
arrays and tiling microarrays to consider. The signal intensity measured at a
spot containing short oligonucleotide probes is arguably too unpredictable
to score each probe separately. This variability is due to a number of
factors, including cross‐hybridization and differential binding affinity due
to probe sequence and other sequence‐based artifacts. In addition, higher
standards of statistical significance are typically required for tiling arrays
because of the much larger number of spots being queried and therefore
require more evidence than that given by a single spot. Thus the methodol-
ogies that have been adopted for the analysis of tiling microarrays is to
incorporate the intensities of a number of spots that lie within a contiguous
genomic region. This methodology is often referred to as a genomic sliding
window approach.
Data for Protein Microarrays

There are two types of protein, microarrays as defined by their goals
(Zhu and Snyder, 2003). One type is protein detection microarrays, or
antibody microarrays (Lueking et al., 1999), which use antibodies for its
probes and are used to detect and quantify proteins in solution. This design



292 DNA microarrays, part B [15]
is very similar to its DNA‐based counterparts, which quantify mRNA con-
centrations. The other major class of protein microarrays is functional
protein microarrays (Zhu et al., 2001), which aim to identify protein binding
or modification capabilities. In such a design, each spot consists of some
known protein or protein domain. The target that is introduced will typically
consist of a single macromolecule. This target may be labeled so as to detect
molecular interaction partners or, as is the case for kinase activity assays,
may be probed in the presence of hotATP to detect phosphorylation events.

An aspect of protein microarrays of note is that the spots therein will
usually not contain equal amounts of protein from spot to spot. This discord
can cause differences in measured intensity between spots that are not due
to molecular activity, but rather to an aspect of the microarray construction.

Regarding software and generated data, protein microarrays utilize the
same scanners and scanning software as their DNA‐based counterparts and
therefore the raw data files they produce are technically very similar. This
is an advantage, as some existing computational protocols and interfaces
developed for DNA microarrays may be integrated easily with protein
microarray analysis.
Microarray Normalization

Once data have been obtained, a usual next step is to performmicroarray
normalization.

Motivation

Technical aspects of the microarray experiment can cause systematic
biases and artifacts to be present in their data. In a two‐sample DNA
microarray experiment, the probed biological samplesmay contain different
concentrations of RNA, leading to an overall bias in favor of greater mea-
surements in one channel. In addition, the fluorescent dye molecules Cy3
and Cy5 are known to have slightly different properties, leading to a similar
problem. Complicating these troubles is that they may be more or less
present depending on the intensity of the spot being measured and/or its
physical location on the microarray. The following section illustrates an
example of how such biases can affect biological conclusions made from
microarray data when proper data normalizations are not carried out. We
include this example as a cautionary tale and as a motivation for microarray
normalization, in general.

Most spotted microarrays are built by depositing solutions of cDNA
clones at known locations on a microarray surface. This deposition process
is controlled robotically with little human intervention and is therefore
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completely regular and predictable. Furthermore, the printing process is
such that spots close to each other on the microarray surface are printed
closely in time as well. Given that a microarray hybridization can be
uneven across the surface of the microarray, this leads one to speculate
that neighboring spots on the microarray surface might be coordinately
affected. An example situation would be if labeled sample were more
abundant in one region of the microarray than in others. Spots in that region
would have systematically higher observed intensities than those spotted
elsewhere.

Indeed, it does appear that such a spatial effect exists. For printed
cDNA microarrays, the effect was first reported by examining the relation-
ships between observed spot intensities and the locations of spots in the
design of a microarray (Kluger et al., 2003; Qian et al., 2003). Similarities
were examined between gene expression profiles (across a large number of
probings) for genes that are printed on the microarrays at varying dis-
tances. It was found that genes that are close in the microarray design
(on average) have higher similarities between their expression profiles than
those further away. That is, it might appear that genes that are close on the
microarray surface seem more likely to be coexpressed. Note that without
knowledge of the microarray design, the genes would be identified as
exhibiting coordinated mRNA expression.

It turns out that for the microarray design used in the aforementioned
study, genes were printed in an order related to their chromosomal arrange-
ment for organizational convenience. This printing strategy yielded a micro-
array such that genes located 22 open reading frames (ORFs) away in
genomic space are printed as immediate neighbors on the constructed micro-
arrays more often than would occur if they were printed in a random order.
Interestingly, by examining the relationships between gene expression and
chromosomal localization, a striking similar frequency was found: genes that
are approximately 22ORFs away on the same chromosome aremore likely to
be coexpressed, whereas genes that are about 11 ORFs away are less likely
to be coexpressed (Qian et al., 2003). Furthermore, it was determined that
genes on microarrays with a different layout have a different frequency. This
last piece of evidence suggests the existence of an artifactual effect related
to microarray architecture. One of the aims of microarray normalization is to
reduce the effect of such artifactual components of observed data.

Most microarray studies examine the relationship between two biological
samples by comparing their relative mRNA expression levels. The idea
behind such two‐channel experiments is straightforward: labeled (typically
red with Cy5 and green with Cy3) nucleic acids in the samples are probed
simultaneously with a microarray slide, and relative abundances are derived
from comparative fluorescence of the nucleic acid molecules hybridized at
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each microarray feature. For a given spot i, the relative concentration
between the two samples is commonly represented as the log ratio, li, of the
measured fluorescence intensities between the two dyes. We summarize the
log ratio as

li ¼ log
Ri

Gi

� �
ð4Þ

where Ri and Gi denote the observed intensities (mean or median of spot
pixels’ intensities) for probe i when scanned with red and green lasers,
respectively. Note that a log ratio of zero indicates that Ri and Gi are equal.
Further, a set of observed log ratios (with measurement error) should center
about zero for probes representing genes of equal expression in the two
samples. Measurements deviate from this situation proportionately to their
degree of up‐ or downregulation relative to the two samples.

The log ratio measured between a gene in two samples is in itself a
normalization technique.Microarraymanufacture is not errorfree.Any given
spot may be printed poorly on one microarray and printed perfectly on the
next. If these two microarrays were used to measure the concentration of
the gene corresponding to that spot, the poorly printed spot would likely lead
to an artificially low measurement for one sample relative to the sample
hybridized to the higher quality spot. If instead both samples were hybridized
to both microarrays, then the hybridization of one sample to the poor spot
is directly comparable to the hybridization of the other sample to the poor
spot and likewise for the higher quality spot. This self‐normalization is partic-
ularly useful when the two samples hybridized to the microarray are paired in
other respects beyond the fact that they were measured with the same instru-
ment. A good example of paired samples is an mRNA sample taken from
a tumor biopsy before treatment and an mRNA sample taken after treat-
ment. Regarding log ratios, it should be noted that the Affymetrix GeneChip
system only allows hybridization of a single sample to a microarray. There-
fore, log ratios are not meaningful as a spot quality normalization. It is
believed, however, that Affymetrix microarray construction is much more
uniform in terms of quality control than its spottedmicroarray counterpart so
such self‐consistency concerns are relatively minor. Log ratios can still be
relevant for Affymetrix microarrays in the case of paired samples, such as in
the cancer experiment mentioned earlier. Most tiling and protein micro-
arrays yield just a single intensity measurement as well so the log ratio is not
always a natural measurement for these experiments either.

Although the log ratio provides an intuitive measure of relative gene
expression, it must often be corrected for inconsistencies resulting from
the experiment (see earlier discussion). Such corrections are collectively
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termed normali zation. Normal ization a djusts the meas ured intensitie s for
each sample and for each spot as correcti ve meas ures. The aim is to com-
pensate for artifac tual effects by ap plying trans formatio ns so that equally
expressed genes ha ve log ratios approachi ng zero. (For single ‐ chann el ex-
periment s, no such baseline generally exis ts.) Measur ements for all sp ots on
the microar ray are scaled relati ve to this basel ine. In pract ice, implem enting
good normal ization has proved chall enging; researchers have de veloped
many competing met hods, whi ch can lead to diver gent results ( Hoffma nn
et al., 2002 ). The follow ing sect ions descri be some of the more widely
implemente d stra tegies.

Backgroun d Corr ection

For many types of microar rays, a measu rement of the local backgro und
of each spot is recorde d in ad dition to the foregr ound inte nsity of the spot.
This meas ureme nt is, in comm on practice , the mean or media n of all pixels
residing in the su rroundi ng regio ns of the sp ots (see earl ier discu ssion). It is
believed that a ny measured inte nsity from this background region is also
measured in the foregro und pixel inte nsities of the spot as well. This back-
ground fluor escenc e is attribut able, in gen eral, to glass fluor escenc e and
unincor porated label mol ecules. The backgrou nd inte nsities ha ve no
biologic al interpret atio n so we would ideal ly like to remov e their contribu-
tion from spot inte nsities before proceedi ng. The easi est way to make this
correction is to subtract the mean (median) of all local background pixels
measured in the red channel (denoted �i) from the red intensity of each spot,
do likewise for the green channel (�i), and then compute the background
adjusted log ratio as

l̂i ¼ log
Ri � ri
Gi � gi

� �
: ð5Þ

Equat ion (5) assumes that �i < Ri and that �i < Gi. Any spot not in
agreement with these assumptions should be flagged as a bad spot and
subsequently ignored, as it does not make sense for a background region to
have a higher intensity than the spot.

We need not rely upon just the background values provided with each
spot in a microarray results file. The values of �i and �i could actually be
computed as the mean or median of all spot background measurements in
a localized region before applying Eq. (5). An example of this would be to
utilize a spot’s eight nearest‐neighboring spots’ backgrounds to calculate its
local background intensity. Such an approach is advisable so as to avoid
aberrantly high local background values due to scratches or other artifacts
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present in a microarray scan. This is of particular importance when dealing
with protein microarrays, as these devices can yield spots that smear to
bigger sizes due to phosphorylation activity, for example. These smears
will often be measured as part of a spot’s background, causing it to be
erroneously high.

Unfortunately, tiling microarrays will usually seek to maximize feature
density in an effort to reduce cost and as such, features are packed imme-
diately next to one another and background calculations may not be
possible. In these cases, we can only hope that background intensities are
minimal, or at least, constant throughout the microarray.
Normalization via Total Intensity

Following background subtraction, we would like to normalize sample
intensities so that their intensity distributions have desirable properties.
One commonly desired property within two‐sample probings is to have a
distribution of log ratios representing nondifferentially expressed genes to
center about zero. This is usually reasonable, as in most experiments we
do not expect a centering around any other value.

In a differential expression experiment, microarrays should hybridize
similar numbers of labeled molecules from each sample, so the total
hybridization signals summed over all probes should be the same for
both channels. Using these assumptions, we can calculate a scaling factor
Ctotal that can be used to correct any observed deviance from this as-
sumption. If M is the total number of features on the microarray, then we
have

Ctotal ¼ log

PM
i¼1 RiPM
i¼1 Gi

 !
: ð6Þ

We can then compute the normalized log ratios as

l̂i ¼ li � Ctotal: ð7Þ
The result is a distribution of log ratios that are centered some-

where near zero. This method performs well in most standard microarray
experiments with sufficiently large numbers of spots (>20,000), as in these
scenarios, outlier signals make negligible contributions to the total
intensities.

A similar approach to Eq. (6) can be used to normalize intensities from
one single channel microarray to others. In this application, every intensity
in one channel is divided by the summed intensity (e.g.,

PM
i¼1 Ri) of

spots from the same microarray. Then, these normalized intensities can be
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used to compare and contrast different samples hybridized to different
microarrays. This latter calculation may be useful in experiments where just
a single probing is carried out on eachmicroarray. This is always the case for
Affymetrix GeneChip technology and is almost always the situation for
protein microarrays and for tiling microarrays.

Normalization via Gene Set

The previous method performs fairly well in standard microarray experi-
ments where the number of genes studied is large and overall gene expression
differences between the two samples are not excessive. However, the ap-
proach must be applied cautiously, as it may mislead researchers into believ-
ing that similar numbers of genes are always up‐ and downregulated. This
clearly is not true in some circumstances.

In the following method, sometimes called the gene set method, some set
of genes is assumed not to be expressed differentially between the samples
being studied. This set of genes is typically made up of housekeeping genes.
The procedure is analogous to that in Eq. (7), with the only difference being
the numbers that are summed are those from the gene set, not all spots. We
call this value Cgeneset. Captured in this statistic is the overall deviation that
you would expect given no differential expression. Ideally,Cgeneset is equal to
zero, but effects such as unequal RNA concentrations and differences be-
tween the fluorescent dyes can causeCgeneset to be nonzero. OnceCgeneset has
been calculated, all log ratios (not just those in the gene set) are normalized
by Cgeneset using the relationship

l̂i ¼ li � Cgeneset ð8Þ
where l̂i denotes the normalized log ratio for probe i. Using control spots
in this way has an added benefit for sets of microarrays where the spots
present on each microarray are not the same. In such a scenario, a common
set of control spots can be used to normalize the intensity distributions of
themicroarrays so that they are similar frommicroarray tomicroarray. This is
a typical situation for tiling microarrays that require several microarrays
having different designs to probe for large fractions of the sequence of a
genome.

Normalization via Spiked Controls

A way to guide normalization further is to spike known quantities of
external controls into the biological samples prior to fluorescence labeling.
Normalization is then based on balancing the signal intensities for those
probes corresponding to the control RNA molecules as in Eq. (8).
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There are two advantages of this technique. First, the spike‐ins are
completely controlled—we are sure that they should show no differential
expression between two or more samples. Second, different scale factors
can be calculated for genes having different expression levels if several
different spike‐in concentrations are used. A disadvantage, though, is that
control probes must be built into the array at the onset. Further, the scaling
factor is calculated using a comparatively small number of probes that may
be sparsely distributed on the array depending on the design and the
correction techniques for spatial microarray biases (discussed later) cur-
rently cannot be incorporated easily. A final point of concern is that spiked
controls may interact with unintended spots on the microarray in addition
to the control spots. For traditional DNA microarrays and tiling micro-
arrays this is manifest as cross‐hybridization. For protein microarrays,
spiked proteins may interfere with desired protein‐binding interactions.

Normalization via Quantiles

Another popular alternative for intensity normalization is so‐called
quantile normalization (Bolstad et al., 2003). In this approach, the first step
is to construct a synthetic microarray such that the ‘‘measurement of each
spot,’’ Si, is the mean or median of its measurements across all P probings
in the experiment. Mathematically, if we use the mean in constructing this
synthetic microarray and Xi,j is the measurement from the jth probing for
spot i, then we have

Si ¼
PP

j¼1 Xi;j

P

The Si values are then sorted in increasing order, as are the intensities within
each probing. The final step in this normalization is to replace each ob-
served intensity by that intensity Si that occupies the same position within its
sorted list. If X1043,2 ¼ 87 is the third largest observation within probing
number two, it is replaced by the third largest value of S. Amajor advantage
of this approach is that it requires no extra probes or spike‐ins and yet
still can correct for biases that may be present more or less at different
intensity levels. This advantage makes this method broadly applicable to
any microarray experiment with little concern over experimental nuances.

Correcting Signal Intensity Bias

Numerous reports have indicated that log ratios resulting from a two‐
sample probing can have a systematic dependency on signal intensity
because of differences in the fluorescent properties of the red and green
dyes (Quackenbush, 2002; Yang et al., 2002a,b).
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Lowess regression (Cleveland, 1981) analysis allows its users to fit a
nonlinear curve to a ratio vs intensity distribution. We call the logged
product of themeasuredRi andGi intensities �i and plot each li as a function
of its respective �i. The basic idea of Lowess is then to first find a curve that
passes through the ‘‘middle’’ of this ratio versus intensity distribution. The
output of Lowess is a value Li paired with each �i. Once Li is calculated, it
can be used to correct for intensity biases. The corrected log ratio is

l̂i ¼ li � Li: ð9Þ
The question remains as to how Li is calculated. This is somewhat

beyond the scope of this chapter, but we will sketch the calculation here.
For every �i, a neighborhood of � values is found. The size of this neigh-
borhood is a variable that can be adjusted but is typically set to be 10% of
all spots. Once the neighborhood of spots is found, a line is plotted through
the values corresponding to the � values in the window. This line is used as
a function to compute Li from �i. The method can be generalized. In fact, a
commonly used variant of this method called Loess (no ‘‘w’’) performs the
same functionality but replaces the locally fitted line with a locally fitted
quadratic curve.

This technique has no analog for single‐channel experiments as in most
tiling and protein microarray experiments. The technique can be forced if
one microarray is considered a baseline and then all other microarrays are
normalized relative to the baseline. This is potentially problematic for
tiling microarrays where each microarray may contain different probes
and therefore have different expected intensity distributions.

Correcting Array Location Bias

It has become increasingly clear that there are often substantial spatial
biases caused by uneven hybridization conditions across a microarray slide.
Uncorrected, this can have an effect on results. An example of this is
the apparent coexpression of groups of genes, which is actually caused by
the proximity of their corresponding spots on the microarray surface (see
earlier discussion).

For spotted microarrays, the effect is frequently corrected using subgrid
normalization in which local subsets of spots are grouped by their deposit-
ing print tip. These groups are then normalized separately using, for
example, the method outlined earlier. This approach should be used with
caution, as we have observed that most spatial variations do not follow the
boundaries of print‐tip groups (sometimes referred to as blocks).

As an alternative, a variation of the Lowess analysis introduced earlier
can be used to correct spatial biases. In this alternative, a surface is fit to the
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log ratios as a funct ion of their spati al co ordinates a s opposed to fittin g
curve to log rati os as a funct ion of total intensit y. The correc ted intensity is
obtai ned analogous ly. This pr ocedure can be applied to singl e ‐ch annel
inten sities as wel l.

It should be noted here that during the desig n of a microar ray, no
regio ns shou ld be overp opulated with spo ts that mi ght display coordin ated
express ion level chan ges. In this unfort unate scenar io, the correcti ve met h-
ods wi ll eliminate biol ogically meaningful vari ations in the meas ureme nts.
This limitat ion can be overcom e easily by rando mizing sp ot locat ions
during microar ray manu facture.

This procedure may prove difficu lt for mi croarrays wher e a small frac -
tion of spots show meas urable signa l because there are too few inte nsities to
fit the surface to. Tiling microar rays will usually fal l into this categ ory as
much of the geno mic sequence is inactiv e at any given time. Functi onal
protei n microar rays may fal l into this categ ory as wel l, as a given protei n is
likely to have just a hand ful of bindin g partner s.

Normal ization by Spot Conce ntratio n

Concen trations of probes withi n each spot will affe ct meas ured inte n-
sities. For most traditio nal and tiling microar rays, this is not an issue.
Howe ver, for pro tein microar rays, it is difficu lt to control the amount of
protei n present at each spot an d therefore it is advis able to divid e an y
meas ureme nt by the concent ration of the spot. The concent ration meas ure-
ment s can be obtai ned by hybridizi ng a protei n microar ray with a labeled
universal protein marker.

This section briefly described the most common techniques for normal-
izing microarray data. Many of these methods have been implemented in
published software tools that facilitate microarray normalization; examples
include Express Yourself (http://bioinfo.mbb.yale.edu/expressyourself/)
( Luscombe et al., 2003 ) an d SNOMA D (pevsner lab.kennedy kr ieger.org/
snomadi nput.htm l) ( Colantuoni et al., 2002 ).

Future improvements in microarray technology may eliminate the need
to correct for intensity and spatial bias, or even for normalization all
together. However, current technologies still produce substantial artifacts,
even if they are not evident from visual inspection of a scanned image.

Scoring for Significance

Following microarray normalization, the intensities are in a more suit-
able form for statistical testing. This section begins by exploring some of
the more common approaches for testing the significance of differences

http://bioinfo.mbb.yale.edu/expressyourself/
http://pevsnerlab.kennedykrieger.org/snomadinput.html
http://pevsnerlab.kennedykrieger.org/snomadinput.html
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between measured intensities generated from two biological conditions.
The discussion is then generalized to the multiple condition case and to
tiling and protein microarrays.
Fold Change

Assume for simplicity that we are interested in assessing differential
expression for just a single gene between two biological conditions. Call these
conditionsA andB. Further, assume that we havemultiple measurements for
the gene within each condition. Let M > 0 be the number of measurements
obtained for condition A and N > 0 be the number of measurements for
condition B. Note that M need not be equal to N but ideally they would
be equal. To designate the ith measurement from condition A, we will use
the notation Ai. We adopt the same convention for measurements of B.

Perhaps the simplest technique for comparing A and B is to compute an
average fold change between the two. Call this fold change statistic Sfold
and define it as

Sfold ¼ max

PM
i¼1 AiPN
i¼1 Bi

;

PN
i¼1 BiPM
i¼1 Ai

( )
: ð10Þ

In addition to calculating Sfold, we also choose cutoff values to deem the
statistic potentially interesting. A good way to choose this cutoff is to have
control features present on the microarray that are not expected to display
differential expression. With enough unique controls, the 95th percentile of
their Sfold statistics could be a useful cutoff. By the quantity 95th percentile,
we mean that 95% of all Sfold values are below this quantity. Such a cutoff
would suggest that values above this threshold would occur just 5% of the
time for genes not showing differential expression. More commonly, such
controls do not exist and an arbitrary cutoff is selected. Often, this cutoff is
set at two.
t Test

The fold‐change method utilizes just a single summary statistic (the
sum) for each condition. No information about how widely the measure-
ments vary is considered. In addition, there must be negative control spots
in the microarray design to assess how likely an observed fold change
would be if the gene was not expressed differentially. Application of the
t test addresses both of these issues.
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The first step in carrying out a t test is to calculate the mean of
measurements from A and the mean of measurements from B. We will
symbolize these quantities �A and �B, respectively. We will also need to
calculate the conditions’ variances, �A

2 and �B
2. The next value calculated is

the standard error, SE

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2AðM � 1Þ þ s2BðN � 1Þ

ðM þN � 2Þ �M þN

MN

s
: ð11Þ

The details of what this quantity represents are beyond our scope. For
our purposes, it is worthwhile to note, however, that as �A and/or �B get
larger, so does the standard error. SE is large when data are highly variable.

The next calculation we must make is the t statistic. This value is simply
the difference between the two cell type means, divided by the standard
error calculated in Eq. (11):

St ¼
�A � �B

SE
: ð12Þ

We note that as the difference between �A and �B becomes large, so too
does the absolute value of St. In addition, as the uncertainty of these means
grows (manifest as the variances, �A

2 and �B
2), the statistic gets smaller.

Another way to view this statistic is that it expresses the differences
between two means in units of (roughly) standard deviations. This is an
advantage over the simpler Sfold statistic where variances are not consid-
ered. Another nice property about the t statistic is that it is very well
studied by statisticians. In fact, we know how likely a given value of St is
givenM, N, and the null hypothesis that there is no real difference between
the two means. Therefore, we can assign a p value for any value of St
without the requirement of negative control spots.

The corresponding p values of the t statistic should be interpreted
carefully, however. The knowledge we have about these probabilities
assumes that the observations from each cell type are distributed normally
(bell curve shaped). Unfortunately, replicate measurements coming from a
microarray experiment do not always behave this way (Thomas et al., 2001)
and should be considered when utilizing the t test.

Another potentially troublesome aspect of the t test is that two quan-
tities can lead to large values of St. The first is the value we are chiefly
interested in, the difference between two conditions. The second quan-
tity that can lead to large St is a small SE term. A problem with most
microarray experiments is that there are few replicates available from
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which to calculate the standard error. This leads to the situation where SE
can be quite small just by chance, resulting in high St values regardless of
differences between the two groups of measurements. This is a situation we
may not want to deem significant and worthy of further study. A useful
guard against this situation is to require low p values computed with the
t test and some fold‐change criterion to consider genes for further study
(Rinn et al., 2004).

Significance Analysis of Microarrays (SAM)

The statistic used in SAM (Tusher et al., 2001) is a slight variant of the
one given in Eq. (12). The only difference is the so‐called ‘‘fudge factor’’ f:

Ssam ¼
�A � �B

SEþ f
: ð13Þ

The purpose of f is to disallow inflated test statistics solely due to
standard errors close to zero. Effectively, it sets a lower bound on the
denominator of Eq. (13). This factor gives an advantage over the
t statistic but it is arguably not the greatest contribution of SAM.

In SAM, the concept of permutation testing was introduced as a means
to calculate a false discovery rate (FDR). To perform this technique, we
first fix a p value threshold T. Next, we identify those genes that have
p values less than T. These are our positives. Then, for each gene, the class
associations are randomized, that is, we randomly assign measurements for
that gene to one of the two classes being compared. Using Eq. (13), Ssam
is computed for each of these randomized genes. Once the Ssam statistics
are computed along with their associated p values, the number of these
p values less than T is counted. The randomization procedure is repeated a
number (100 or 1000) of times and a count is made for each repetition. The
median of these counts divided by the total number of genes in the study is
then the reported FDR. The intuition of this is that the randomized genes
represent genes that do not experience differential expression; therefore,
any time one of their p values falls below T, this event can be considered a
false discovery.

The notion of a FDR is an important one for microarray experiments
having thousands of genes that need to be tested. It helps interpret results
of an experiment in light of the multiple testing problem.

Cyber T

Equat ion (13) introdu ced the fudge factor f. The pur pose of adding this
factor was to guard against selecting genes that have a low mean difference
and unusually low variances. Another way to protect against such situations
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is to apply another variation of the t test, called Cyber T (Baldi and Long,
2001). In this test, standard error is replaced by an expression that is a
function of both the standard error of the gene and the standard error
computed over all genes. The assumption here is that most genes should
have similar standard errors; by utilizing this assumption, we can lessen the
degree to which unexpectedly low or high gene‐specific standard errors
affect the t statistic. This method has been demonstrated to be quite power-
ful for detecting differences between two samples in experiments using
Affymetrix GeneChip brand microarrays (Choe et al., 2005).
Wilcoxon Rank Sum Test

An alternative method for computing significance levels when t test
assumptions do not hold is the Wilcoxon rank sum test. This test, like many
other so‐called nonparametric tests, transforms measurements to their
magnitude ranks and calculates probabilities based on rank‐based statistics.
This test was introduced in the microarray literature in Troyanskaya et al.
(2002). (As an aside, it should be noted that when the assumptions of the
t test hold, that test should be used, as it is more likely to detect a difference
if it exists.)

The basic idea of the Wilcoxon rank sum test is to count the number of
times a measurement from one group is greater than a measurement from a
second group. The properties of how this value behaves under the null
hypothesis of no difference between the groups’ medians are well known so
we can directly calculate a p value from this number. The actual computa-
tions of the procedure are not straightforward and lie beyond the scope of
this chapter.
Wilcoxon Signed Rank Test

The previously described Wilcoxon rank sum test is generally applica-
ble for comparing two sets of numbers. When the two sets of numbers are
paired in some way (such as gene expression levels before and after a
treatment), a more powerful nonparametric test is available. This test is
called the Wilcoxon signed rank test. To begin, the differenceDi for the ith
spot is calculated for each pair in a set of N measurements:

Di ¼ Xi � Yi ð14Þ
where Xi and Yi are the paired measurements. Next, each Di is assigned a
rank value Ri of its absolute value
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Ri ¼
X

Rank of jDij ð15Þ

Next, we sum the ranks of those Di values that are positive

Rþ ¼
X

Ri with Di > 0 ð16Þ
and do the same summation for ranks that have negative Di values

R� ¼
X

Ri with Di < 0: ð17Þ
Now if we sum all ranks regardless of whetherDi is negative or positive, we
will obtain the quantity 1þ 2þ . . .þN ¼ NðNþ1Þ

2 . If there is no difference
between the paired values being compared, then both Rþ and R� should
be roughly half of this previous quantity: NðNþ1Þ

4 Therefore, if we take one of
the R values as in

S ¼ min ðRþ, R�Þ; ð18Þ
we known that under the null hypothesis of zero difference between the two
groups, S is expected to be NðNþ1Þ

4 . We then determine how far away S is
from this expected value. Again, the statistic is well studied, and given S and
the number of measurements N, we can compute a corresponding p value.

The Wilcoxon signed rank test has utility in experimental designs
having perfect match and mismatch probes. In fact, this a commonly used
statistic for Affymetrix tiling microarray analysis.

Analysis of Variance (ANOVA)

Previous sections showed how to test for the differential spot intensities
measured between two conditions. Frequently, however, a study consists of
three or more conditions and the researcher would still like to deduce
which genes differ in expression levels between the conditions under study.
The standard statistical tool for solving such problems is the ANOVA.

To begin, we need a null hypothesis. For ANOVA, our null hypothesis
will be that for all conditions, the gene under study has the same expression
level. It may seem strange that a model for assessing equality of means is
called analysis of variance. However, the basic idea of ANOVA is to
compare the variance of within‐condition means to the variance calculated
within each condition. (The variance of within‐condition means will here-
after be called the between condition variance, and the variance within the
samples as the within condition variance.)

Consider measurements Xi,j for a single gene where subscript i indicates
that the measurement is from the ith biological condition being studied and
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j denotes the jth measurement from this condition. If we symbolize the
average intensitywithin condition i as �Xi and the average of all measurements
as �X , we can compute the between condition variance as

s2between ¼
PK

i¼1 Nið �Xi � �X Þ2
K � 1

ð19Þ

where K is the number of conditions being studied, N is the total number of
measurements, and Ni is the number of measurements taken for condition i.
Note that if there are no differences among the conditions, then the variance
of their means is small. Likewise, if there are differences the terms ( �Xi � �X )2

become larger. We would like to compare this number to the amount of
variation we expect if there are no differences. We can estimate this level
of variation by calculating the within condition variance:

s2within ¼
P

i;jðXi;j � �XiÞ2
N �K

: ð20Þ

We can then compare these two variances [Eqs. (19) and (20)] via a
ratio:

Sanova ¼ s2between
s2within

: ð21Þ

Like previous statistics, we know how this statistic behaves under the
null hypothesis of no differential expression and we use this information to
calculate its corresponding p value.

The aforementioned discussion on ANOVA is intended to provide a
basic feel of the technique and is useful in the case where just one factor
(such as biological condition) is expected to affect the measured intensities.
Clearly, it can easily be the case that several factors affect microarray
measurements. As an example, let us assume that our microarray measure-
ments are expected to vary due to two independent factors in a cancer study.
First, we might expect to see differences based on which of several tissue
types the measured mRNA came from. Example tissues might include
‘‘healthy tissue,’’ ‘‘localized cancer,’’ and ‘‘metastatic cancer.’’ Second, we
could also expect that expression measurements are affected by the race of
the individual from which the tissue was obtained. The goal of the study is to
identify whether the expression level of some gene changes among the
healthy, localized, and metastatic samples.

Given the stated goal of the study, it is tempting to simply apply
Eqs. (19), (20), and (21) to elucidate an answer. The problem with doing
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so is that �2within is large when there are unaccounted sources of variation.
This translates into lower values of Sanova and higher p values.

Why would this higher �2within be the case? Recall that the two factors
are independent. Therefore, when we bin data by a single factor (e.g.,
tissue), each bin contains a number of measurements from each class of
the other factor (race). Now if there are differences among the classes of
the second factor, this will lead to some spread within each tissue bin. This
spread leads to higher values of �2within. To give us the best chance of
detecting a difference among the factor we care about, we need to do some
additional work.

First, accounting for two sources of variation requires a little more
notation. Previously, we used Xi,j to indicate the jth measurement of the
ith condition. Now because we have an additional source of variation
we wish to model, we must extend this to the term Xi,j,k, which symbolizes
the kth measurement of those belonging to both the ith class of one factor
and the jth class of the second. For example, X3,1,7 could symbolize the
seventh measurement taken of those of the third tissue type (e.g., meta-
static tissue) and the first race (e.g., African). In addition, we previously
used the variable K to indicate the number of classes we were testing
between. Now in addition to K, we also need a variable that denotes the
number of classes of the other factor we are studying. Let this variable
be B. In our example we might have K ¼ 3 (‘‘healthy,’’ ‘‘localized,’’
and ‘‘metastatic’’) and B ¼ 4 (‘‘African,’’ ‘‘Asian,’’ ‘‘Caucasian,’’ and
‘‘Latino’’).

In studying the differences between the different stages of cancer, we
calculate �2between as before using Eq. (19), where we use tissue labels as the
different classes. The main difference in our analysis lies in how �2within
is calculated. If we let �Xi;j be the mean of all measurements where factor 1
(e.g., tissue type) is i and factor 2 (e.g., race) is j, then �2within is calculated as

s2within ¼
Pi;j;kðXi;j;k � �Xi;jÞ2

N � BK
: ð22Þ

We can then use Eq. (21) as before and use knowledge of its distribution
under the null hypothesis to obtain a corresponding p value. Intuitively, all
we have done in moving from one factor to two is to adjust the within
condition variance so that it does not include potential variation fromknown
sources such as age, race, or gender. Accounting for these sources of varia-
tion gives us an enhanced ability to detect differences between some condi-
tions of interest. This increase in sensitivity comes at a cost, however. To
calculate �2within accurately, there must be a number of measurements
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available for each combination of the factors we wish to model. As the
number of factors in our model increases, so too does the number of
replicate experiments needed to estimate �2within.

Given that ANOVA can account for different sources of variability, it is
also capable of merging microarray normalization with differential expres-
sion detection. To do this, sources of variation within the model are not
only those of biological interest (such as cancerous vs healthy tissue), but
also those of technical concern (such as microarray used and dye used for
labeling) (Kerr et al., 2000). The application of ANOVA to microarray
data in this context is reviewed nicely in Kerr (2003).

Extensions to Tiling Microarrays

The tests described earlier can be applied to tiling microarrays as well.
Recall that in a tiling microarray, we are looking for regions of consecutive
probes (in genomic space) that exhibit intensities higher than some back-
ground level. To assess this, a windowing approach is often taken where we
do not simply assess a single feature by itself, but rather we assess that feature
along with a window of neighboring features. To apply the t statistic, for
example, we may test the intensities of each window to a random sampling
of intensities from any genomic region, to intensities from within putative
promoters (which are not expected to be transcribed), or to a control set of
features. For Affymetrix tiling microarrays that contain a mismatch probe
for every perfect match probe on the microarray, the mismatch probes can
serve as this control set to which the comparison can be made. The extension
of this approach to fold change, SAM, etc. is straightforward.

Following scoring each window in this manner, the resulting statistics
are thresholded by some criteria (set by negative and positive control
probes or theoretical considerations). The result is a set of putatively
‘‘on’’ and ‘‘off’’ probes. Spots that meet the threshold criterion and that
are within a short distance of each other in genomic space are combined
(the spacing between probes above threshold must be less than maxgap bp
apart) to form larger continuous regions. These combined fragments are
then filtered to remove short fragments (require a length longer than
minrun bp) that are likely to be spurious results.

Extensions to Protein Microarrays

For antibody microarrays that assess concentrations of proteins in
solution, the methods described in this section can be applied directly to
testing abundance differences between two or more biological conditions.
For functional protein microarrays, however, the question is usually one of
event detection. In these cases, control experiments must be designed so
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that they represent the activities of proteins in some baseline state. Once a
suitable control is identified, then the methods described here are suitable
as well.
Summary

The microarray platform is emerging as a standard tool in biological
and biomedical research. This is partly because of its ever‐expanding
utility, as evidenced by both tiling and protein microarray applications.
As is true for any standard tool, it is important that the microarray tech-
nology be well understood by its practitioners. For microarrays, part of this
technological understanding is resident in the understanding of microarray
statistics. Here, in this chapter, widely used methods for microarray nor-
malization and significance testing are presented with the aim of providing
this understanding in at least a broad sense. We have indicated where and
when gene‐based microarray statistics can be useful for tiling and protein
microarrays in our discussion. The information conveyed was intended to
provide at least a motivation and intuition for what happens to microarray
data after it leaves the bench.
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[16] Random Data Set Generation to Support
Microarray Analysis

By DANIEL Q. NAIMAN
Abstract

As microarray analyses become increasingly routine, involving the si-
multaneous investigation of huge numbers of genes, researchers can easily
search for and uncover what appear to be promising patterns in their data. In
such circumstances tools are needed to help decide the extent to which these
patterns aremeaningful or can be explained by chance alone. The purpose of
this chapter is to describe examples of the use of microarray analysis for
inferential purposes and how validation of inference is addressed byMonte‐
Carlo techniques, which essentially amounts to investigation of statistical
methods on synthetic or random data sets.
Introduction

The organization of this chapter is as follows. After a discussion of
random permutations, three different scenarios in which microarray data
lead to inferential questions are described: tests of gene/phenotype associ-
ation, significance of gene clusters, and classification using gene expression.
This purpose of this chapter is not to present every instance of the use of
the Monte‐Carlo method to microarray analysis, but rather to demonstrate
how it is useful in a small sample of instances and to give the reader some
feeling for directions in which the field is evolving.
Random Permutations

Random permutations form a basic building block for creating random
data sets. A permutation of a finite set of objects is a vector in which the
objects all appear in some particular order. For example, the set {1, 2, 3},
has six permutations:
METH
Copyrig
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
More generally, a set consisting ofN objects {O1, . . .,ON} hasN!¼ N(N� 1)
. . . 1 permutations.

Permuting the objects does not necessarily involve moving them around,
but can be accomplished by permuting their identifiers. This comment is
ODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
ht 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11016-2
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quite a practical one, as for our purposes each object might occupy a large
portion of computer memory (think of the case in which each object con-
stitutes data from a single microarray experiment), and rather than moving
them around in memory, we need only manipulate an array consisting
of locations or pointers (Fig. 1): When we consider permutations of N
objects, there is no loss of generality if we focus on permuting the set of
indices {1, . . ., N}.

We will need a procedure for generating a random permutation P ¼
(P1, . . ., PN) of {1, . . ., N} with all N! being equally likely. While many
computing platforms already provide this capability, one may encounter
situations in which it becomes necessary to write one’s own code for the task.
Such a procedure is easily built using the more primitive random number
generator, which produces a sequence of random numbersU1,U2, . . . that are
independent and distributed uniformly in the interval (0, 1). The following is
pseudo code for making use of this generator to give a random permutation
P1, . . ., PN of 1, . . ., N.
FI

an arr

p¼ (p
¼ (O
Step (1) Set Pi ¼ i for i ¼ 1, . . ., N
Step (2) For i from 1 to N � 1 do

Step (a) Generate U uniformly distributed in (0, 1)
Step (b) Set J ¼ b(N þ 1 � i)Uc þ i
Step (c) Set t ¼ Pi

Step (d) Set Pi ¼ PJ

Step (e) Set PJ ¼ t
Step (3) Return P ¼ (P1, . . ., PN)
G. 1. Permuting a list of objects stored in memory. The objects O1, . . ., O8 are stored in

ay. Permuting the objects is accomplished bypermuting the indices 1, 2, . . ., 8 giving an array

1, p2, . . ., p8)¼ (5, 6, 1, 4, 8, 3, 7, 2). The list of permuted objects becomes (Op1,Op2, . . .,Op8 )

5,O6,O1,O4,O8,O3,O7,O2).
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Here the notation bxc in Step (b) means remove the fractional part of x,
for example, b2.71828 . . . xc ¼ 2. In the ith interation of Step (2), the index
J is selected at random from {i, . . .,N}, and the valuePi is swapped with the
value PJ. A simple induction argument can be used to verify that all
permutations are equally likely to be generated by this algorithm.

Random permutations can be used to accomplish many of the kinds of
tasks required for the statistical validation methods described later. In
particular, n‐fold cross‐validation requires random partitioning of a set of
N data points into n groups of sizes q1, . . ., qn, where q1 þ . . . þ qn ¼ N.
This can be accomplished by generating a random permutation P1, . . ., PN

of {1, . . ., N} and extracting the groups in order so that the first group is the
first q1 indices in the permutation, the second group is the next q2, and so
on. As a special case, a random permutation can be used to draw a random
subset of size q1 from a data set of size N, as this is equivalent to breaking
the set into groups of sizes q1 and q2 ¼ N � q1.
Tests of Genetic Association

In a genome‐wide association study (Cardon and Bell, 2001), cases and
controls are genotyped at a number of markers with the goal of determin-
ing a marker or markers giving a high degree of association between
genotype and disease. Pools of cases and controls can be analyzed as well,
with various benefits (Sham et al., 2002), including that of reducing the
number of microarray chips required and providing a degree of privacy
that would presumably increase study participation. Gene chips are now
available for genotyping at 100,000 SNPs (Kreiner and Buck, 2005). Once a
marker is found to have significant association, a search can be carried out
for genes causing the disease near such a putative marker.

Consider an experiment in which n sampled cases and ñ sampled controls
are genotyped at each of Nmarker loci. Data from such an experiment can
be arranged in the form of a matrix

X
ð1Þ
1 . . . X

ðnÞ
1

~X
ð1Þ
1 . . . ~X

ð~nÞ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
X

ð1Þ
N . . . X

ðnÞ
N

~X
ð1Þ
N . . . ~X

ð~nÞ
N

2
64

3
75 ð1Þ

where each row corresponds to a marker, each column represents a
microarray chip, and each entry could be a genotype.

For each marker i, a statistic Ti can be calculated to measure disease
association, and we can usually arrange it so that these statistics have a
common cumulative distribution function (cdf) FT under the assumption of
no association between the marker and the disease. For example, if each
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matrix entry Xj
(i) or ~X

ðiÞ
j is one of three possible genotypes aa, aA, or AA,

genotype counts could be entered in the form of a table
cases
 controls
aa
 naa
 ñaa

aA
 naA
 ñaA

AA

tistic fo
nAA
 ñAA
then Ti could be the �2 sta r testing for association (Ott, 1991) and
FT would be the cdf for the �2 distribution with two degrees of freedom.

We need a threshold for deciding that a particular Ti is large enough to
conclude an apparent association to be actually significant. Typically, one
introduces a null hypothesis, which says that the microarray columns, both
cases and controls, constitute a random sample from some multivariate
distribution FX so that none of the genes are associated with disease. Then,
one chooses a threshold so that the probability of no false marker associa-
tions takes some nominal value � (usually � ¼ 0.05).

If a single marker were selected for analysis a priori, the desired false
detection probability would be obtained by using the upper � critical point
of F, i.e., FT

�1(1 � �). However, when N markers are scanned, it is more
likely to find some marker i with Ti > FT

�1(1 � �), and in fact we would
obtain an average of Na markers with this property, even under the
assumption that no markers are associated with disease.

The threshold needs to be adjusted for multiple testing, which means
determining the cdf FM of M ¼ maxi¼1, . . ., N Ti under the null hypothesis.
Using information about the multivariate distribution FM various tools
would become available for setting a threshold for M. For example, under
the assumption of linkage equilibrium, the rows of the matrix and hence
the Ti could be taken to be independent. Then FM(x) ¼ FT(x)

N so the
desired threshold takes the form FT

�1({1 � �}1/N). As marker sets become
increasingly dense, linkage disequilibrium between nearby markers cannot
be ignored, and modeling the dependence realistically becomes essential,
as the appropriate threshold will be very sensitive to degree of dependence
assumed.

Were it the case that plausible choices for FM describing the nature of
gene–gene dependence were available, one could use ordinaryMonte‐Carlo
simulation (Fishman, 1996) or some variant (see, e.g., Naiman and Priebe,
2001). In ordinary Monte‐Carlo simulation, we would sample FM to pro-
duce a large number m of realizations of random data sets as in (1), which
requires (n þ ñ) � N � m sample columns. For each of these data sets, the
maximum statistic M could be calculated to yield a sample M(1), . . ., M(m)
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from FM. From this sample, the threshold F�1(1 � �) can be estimated by
the 1 � � sample quantile.

The problem with this approach is that specifications of FM tend to be
speculative as the sample sizes are too small to measure the complex
dependencies reliably. What is needed is a model‐free or nonparametric
approach to setting a threshold. One commonly employed technique is to
use a Bonferroni (Naiman and Priebe, 2001) threshold ofFT

�1(1� �/N). This
choice guarantees that the probability of at least one false detection is no
greater than�, nomatterwhat the nature of the dependencebetweenmarkers
is, but one pays a price for using such a procedure in that it can be overly
conservative: the probability of at least one false detection will typically be
much smaller than � and the power of the test is unacceptably low.

A standard nonparametric technique to use in this situation is the
permutation test. The idea is the same as in ordinaryMonte‐Carlo simulation
in that we createm random data sets, calculate a sampleM(1), . . .,M(m), and
use the 1 � � quantile to estimate a threshold forM. The difference here is
that the data sets are created by permuting the columns in the original data
set so that effectively n random columns are taken as controls and the
remaining ñ columns are taken as cases. The resulting test has the desirable
property that the probability of false detection takes the nominal value of �
no matter what null distribution is being sampled. The discussion here has
been focused on what is referred to as the population model, where two
different populations are sampled (cases/controls), but the method also
applies in the randomization model in which subjects are assigned randomly
to treatment and control groups. This distinction and its ramifications are
discussed in Ernst (2004), which provides a comprehensive overview of
permutation tests.
Gene Clustering

Statistical analyses are required frequently to determine whether ap-
parent spatial clustering of disease occurrences is real or due to chance
(Kulldorff and Nagarwalla, 1995). Similarly, one might classify a collection
of genes as ‘‘interesting’’ by some criterion, and observe that the interesting
genes tend to appear in clusters on the genome. Generally, criteria for
establishing which genes are interesting can be developed using microarray
experiments. For example, a gene could be declared interesting if it is
expressed differentially when samples are analyzed under a pair of distinct
experimental conditions. An example of such an analysis appears in Parisi
et al. (2003).

Significance of apparent clustering can be assessed using spatial scan
statistics (Naiman and Priebe, 2001). To keep the discussion simple, consider
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genes i¼ 1, . . .,m linearly ordered along a chromosomal segment. LetXi¼ 0
or 1,whereXi¼ 1 is interpreted as saying that gene i is classified as interesting.
A cluster can be thought of as a sequence ofL contiguous genes j, jþ 1, . . ., jþ
L� 1 (a window) in which the numberN j;L ¼ PjþL

i¼j Xi of interesting ones is
unusually high, say N j;L � cL; where cL is a constant chosen so that the
probability of exceeding a threshold is roughly the same for all window sizes,
assuming the interesting genes are distributed randomly about the genome.

Here the search for clusters can be carried out over a predetermined
collection W ¼ fL1, . . . , Lqg of window sizes, and as a special case, one
can take W ¼ fLg a single window size decided upon a priori. It is impor-
tant to keep in mind that the specific search procedure used for finding
clusters is a critical factor in determining the significance level of a discov-
ered cluster. The significance level of a cluster is a function of the size m
of the chromosomal segment in which the search is carried out, as well as of
the collection of window sizes W. The larger the search space is, the more
likely we are to find large clusters by chance alone. By ignoring this very
fundamental fact (and reporting a finding without properly accounting
for the method used), it is quite easy to produce results that cannot be
validated upon further investigation.

Permutation tests provide both a formal way to compute the signifi-
cance level of a cluster and an informal way to contemplate the discovery
process (see Fig. 2). At the formal level, having found that N j, L � cL
for some choice of j and L 2 W; we can calculate a significance level
as the proportion of random permutations P ¼ (P1, . . ., Pm), out of
a large number, say N ¼ 100,000 of them, for which the permuted data
XP1

, . . ., XPm
give some window of some size L 2 W; with N j, L � cL: On

an informal level, one can generate random permutations of data, display
them graphically, and obtain a sense for the kind of clustering to be expected
even when the interesting genes are distributed randomly throughout the
chromosomal segment.
FIG. 2. An apparent cluster of 3 interesting genes in a window consisting of 5 genes. The

entire genomic segment consists of 312 equispaced genes of which 17 are interesting.

Interesting genes are shown as solid lines, and noninteresting genes appear dashed (when

shown). When the interesting genes are permuted randomly, there is about a one in five

chance of such a cluster appearing somewhere.
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Supervised Classification

A variety of methods have been developed for supervised classifica-
tion of biological samples using gene expression. Supervised classification
provides a framework in which many different problems are solved rou-
tinely using a variety of random data set approaches. The framework for
this can be described as follows. Several samples are collected from some
population to be used as training data. Each sample is assumed to possess
one of various possible phenotypes so there is a finite set of p categories
{C1, . . ., Cp} into which each sample can be classified, and we use Y to
denote the category of a particular sample. It is assumed throughout this
discussion that all classification of training samples is done without error. In
addition, gene expression levels for a large collection of genes are obtained
using a microarray so that we have a column vector X ¼ X1 . . .XG �½ of
gene expression levels for each sample, where G denotes the number
of genes.

Assuming there are N samples, a training data set T will then consist of
expression profile/class label pairs (X(i), Y(i)) for i ¼ 1, . . ., N and these data
are conveniently combined into a matrix having G rows and N columns

½Xð1Þ; . . . ,XðNÞ� ¼
X

ð1Þ
1 . . . X

ðNÞ
1

⋮ ⋮ ⋮
X

ð1Þ
G . . . X

ðNÞ
G

2
4

3
5;

where the columns are assigned labels Y(1), . . ., Y(N). Each row of this
matrix corresponds to a specific gene, and each column, together with its
label, corresponds to a sample microarray profile.

The goal is to find a way to use only gene expression values of samples
to classify them, that is, to build a classifier or class predictor (Fig. 3), a
function f that takes as input an observed microarray profile and outputs a
class label.

Training data are used to build such a function, and the process of going
from training data to a classifier is referred to as a learning algorithm.
A learning algorithm L is a function whose input is a training data set T
with column labels as defined earlier and whose output is a classifier f ¼ LT
(Fig. 4).

For a concrete example, as in Singh et al. (2002), the population consists
of patients with a high level of prostate‐specific antigen in their blood, and
the samples are prostate tissue samples. The pathologist’s examination of
the tissue sample reveals whether it is cancerous or not, making the set
of categories {N, C}, or the pathologist assigns a Gleason’s score to the
sample, in which case the set of categories is {2, . . ., 10}.



FIG. 3. A classifier is a function that assigns a class Y to each input profile X.

FIG. 4. A learning algorithm L is a function whose input is expression profiles

[X(1), . . ., X(N)] with class labels Y(1), . . ., Y(N) and whose output is a classifier f.
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There are several available methods for classification, including k‐nearest
neighbors (Cover and Hart, 1967), prediction analysis for microarrays
(PAM) (Tibshirani et al., 2002), variants of Fisher’s discriminant analysis,
including diagonal quadratic discriminant analysis and diagonal linear dis-
criminant analysis (Dudoit et al., 2002), and support vector machines
(Furey et al., 2000; Statnikov et al., 2005), many of which are described in
Dudoit and Fridlyand (2003). A recent new approach to classification is the
TSP classifier described in Geman et al. (2004).

For concreteness, we describe the k‐nearest neighbors classification. To
simplify the discussion, we assume there are only two classes (the dichoto-
mous classification problem). The k‐nearest neighbors classifier f ¼ fd,k is
built from a training set (so it is inherently a learning algorithm) and is based
on a distance measure d between pairs of profiles, for example, d(X,X0) ¼P

i¼1
N |Xi � Xi

0
|2, and on a choice of an odd integer k. Once the choice of

d and k are made, a new profile X is classified by determining the k sample
profilesX(i1), . . .,X(ik) closest in distance fromX and picking the class Y that
appears most often among Y(i1),. . .,Y(ik). In other words, the closest samples
vote for a class and the class decision is based on majority rule.

For the classifier just described, even assuming the distance function d is
fixed, the integer kmay be fixed a priori or can be viewed as a parameter to
be learned from the training set. Parameter selection is a feature common
to many learning algorithms.
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Estimating Classification Error

Usually the researcher not only wants to construct a good classifier f
but also wants an estimate ê of its misclassification rate, for example, the
probability of misclassification for a newly sampled profile. The following
discussion uses the abbreviated notation Z for a sampled gene expression/
class pair (X, Y) and assumes these are sampled from a distribution
denoted by FZ.

The assumption that a single population is sampled can be relaxed to
allow for the situation when each stratum (defined by the class variable Y)
is sampled, and most of the methods discussed here can be modified
easily to address that situation, provided that the probabilities of the strata
pj ¼ P[Y ¼ j], j ¼ 1, . . ., p are assumed to be known.

We define the misclassification error for a newly sampled profile Z ¼
(X, Y) (not part of the training set) as e(f) ¼ P[f(X) 6¼ Y] ¼ E[d(f(X), Y)],
where

d Y
0
;Y

� � ¼ 0 if Y ¼ Y
0

1 if Y 6¼ Y
0
:

�

The process of arriving at the classifier and an estimate of its misclassi-
fication rate are usually intertwined, and it is appropriate to view a learning
algorithm as a procedure that not only produces a classifier from training
data, but also an estimate of its misclassification rate. It is important to
recognize that without exercising care, use of the same data to build a
classifier, as well as estimate the error rate, can lead to misleading results.
In particular, the so‐called apparent error rate, defined as the proportion of
misclassified training samples êapp ¼ 1

N

PN
i¼1 d LT XðiÞð Þ;YðiÞð Þ; tends to un-

derestimate the actual error rate. For example, when a k‐nearest neighbors
classifier is used to classify a training sample Z(i), this same sample will
always get to vote being the nearest one, which results in a tendency for the
class Y(i) itself to be favored in the voting process.

Far better methods for estimating the misclassification are readily avail-
able that avoid the pitfalls of over fitting. The following is a brief description
of some of the available methods for estimating the misclassification rate for
a classifier.
Separating Training from Testing

One of the simplest ideas for estimating the misclassification rate is to
set aside a random subset {Z(i), i 2 I}, use the remaining data as a training
set, so that T ¼ fXðiÞ; i =2 Ig; to learn a classifier f ¼ LT ; and once this is
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done, the misclassification rate is estimated to be the proportion of errors
made on the left‐out samples ê ¼ 1

jIj
P

i2I d f XðiÞð Þ;YðiÞð Þ: While this method
leads to unbiased estimates of misclassification error with a variance that
can be controlled by manipulating the size of I, the samples in I are not
available at the training stage when they would be more useful.
n‐fold Cross‐Validation (n‐fold CV)

In n‐fold cross‐validation, the available data set T ¼ fZðiÞ; i ¼ 1; . . .;Ng
is broken up randomly into n roughly equal‐sized pieces T i; i ¼ 1; . . .; n;
where n is an integer, for example, n ¼ 10. For convenience, let us assume
that the size of the training sampleN is evenly divisible by n and let q¼N/n
so that each piece T i is of size q. Random partitioning was described earlier.

To estimate the classification error, we proceed as follows. For each
i ¼ 1, . . ., n set aside T i; and combine the remaining n � 1 data sets T j, j 6¼ i
into a single data set ~T i of size (n � 1)q ¼N � q. Train a classifier using the
learning algorithm L on ~T i to give a classification rule ~f i ¼ L~T i

: Estimate
the classification error rate for ~f i on each labeled profile Z ¼ X;Yð Þ 2 T i

in the data set aside as the proportion of misclassified profiles
êi ¼ 1

q

P
ðX;YÞ2T i

d ~f i Xð Þ;Y
� �

: Finally, estimate the classification error to
be êCV ¼ 1

n

P
i¼1
n êi. Multiple estimates obtained in this way using different

random partitions can be averaged.
Conveniently, we can use the same data set T to arrive at a classifier, as

well as to calculate an estimate of the misclassification rate. Because
samples used to train the classifier are separated from those used to
estimate the misclassification rate, the estimated rate is unbiased for the
misclassification rate based on the use of training sets of size N � q rather
than N. Because a larger sample size gives rise to improved performance,
these estimates tend to overestimate the misclassification rate.

From the point of view of bias minimization, one should use as large
a value of n as possible. In the most extreme case, we can take n ¼ N
to minimize the bias. Here, in each of the N iterations we leave out a single
observation, use the remaining N � 1 training samples to build a classifier,
and use the classifiers on the left‐out samples to estimate the classification
rate. This procedure, known as leave‐one‐out cross‐validation, does not
involve randomization, as every one of the N profiles is left out in the
analysis.

However, bias is not the only source of statistical error in estimating the
misclassification rate. There is also variance, and the optimal choice of n
involves a bias/variance tradeoff that is so common in modern statistical
inference (Friedman, 1996; Geman et al., 1992; Kohavi and Wolpert, 1996).
The larger we take n to be, the more the profiles the training sets will tend
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to share in common. The resulting dependence between classifiers leads to
a greater variance in the estimator ê.

Bootstrap Error Estimates

It is important to keep in mind that the classification error e(f ) is actually
a random variable, as f ¼ LT depends on the training data
T ¼ fZðiÞ ¼ XðiÞ;YðiÞÞ; i ¼ 1; . . . , Ng:ð It is helpful to recast the problem of
estimating classification error as that of estimating the expected classification
error E½eðf Þ� ¼ E½dðLT ðXðNþ1Þ;YðNþ1ÞÞ�: Clearly, this quantity takes the
form of the expected value of a known function of a sample Z(i), i ¼ 1, . . .,
N þ 1 of size N þ 1 from FZ, the function being determined by the learning
algorithm.

The bootstrap (Efron, 1979) is a general nonparametric technique for
estimating such an expectation when we only get to observe a random
sample Z(i), i ¼ 1, . . ., N of size N from F. The idea of the bootstrap is to
approximate this quantity by the expected value of the same function
applied to a bootstrap sample Z(i)*, i ¼ 1,. . ., N þ 1, defined as a random
data set formed by sampling with replacement N times from the set of
observed data {Z(i), i ¼ 1, . . ., N}. A large body of articles and books have
been written about the bootstrap. It is recommended that the interested
reader consult Hall (1992), LePage and Billard (1992), Shao and Tu (1995),
Efron and Tibshirani (1993), and Davison and Hinkly (1997).

The bootstrap idea is implemented using Monte‐Carlo simulation: in-
dependent samples of random variables having the target expectation
value are averaged. In fact, one can take the view that the bootstrap is, in
essence, model‐free Monte‐Carlo simulation where the fact that the under-
lying cdf FZ is unknown is addressed by replacing it by the empirical cdf.
A simple approach to bootstrapping this quantity proceeds as follows. In
the ith of m iterations, a bootstrap sample Z( j)*, j ¼ 1, . . ., N þ 1 is drawn.
The training set T ðiÞ is taken to be {Z( j*), j ¼ 1, . . ., N}, and the learning
algorithm is used to produce a classifier f ðiÞ ¼ fT ðiÞ: Then we determine
the performance of this classifier on the left‐out bootstrap sample Z(Nþ1)*

by taking di ¼ d(f (i)(X (Nþ1)*), Y (Nþ1)*). These values are averaged over
the m iterations to give êboot1 ¼ 1

m

PN
i¼1 di:

A simple improvement on this approximation is obtained by observing
that in any given iteration, once the classifier f (i) is trained on the bootstrap
sample T i the random variable ê

ðiÞ
boot ¼ 1

N

PN
j¼1 d f ðiÞ Xð jÞð Þ;Yð jÞð Þ; which re-

presents the average classification error over all of the original samples is
typically relatively easy to calculate, has the same expectation as di but has a
variance that is smaller by a factor of 1/N. Thus, the bootstrap expectation
can be approximated more effectively by taking êboot2 ¼ 1

m

Pm
i¼1 ê

ðiÞ
boot:
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It turns out that this way of using the bootstrap idea is somewhat naive.
Efron (1983) described an alternative bootstrap approach that leads
to improved performance. The idea is to use the bootstrap to estimate
expected ‘‘optimism’’ of the apparent error rate w ¼ E½e fð Þ � êapp� ¼
E½d LT Xð Þ;Yð Þ � 1

N

PN
i¼1 d LT XðiÞð Þ;YðiÞð � calling this estimate ŵboot, and

correct the apparent error rate by taking as an estimated classification error
êboot3 ¼ êapp þ ŵboot:

As in the naive bootstrap approximation, the quantity w to be approxi-
mated is the expectation of a known function D ¼ d LT XðNþ1ÞÞ;ðð
YðNþ1ÞÞ � 1

N

PN
i¼1 dðLT XðiÞÞ;YðiÞð Þ of a sample Z(i), i¼ 1, . . .,Nþ 1 from FZ.

A Monte‐Carlo algorithm for approximating ŵboot can be described as
follows.As before, in the ith ofm iterations a bootstrap sampleZ(j)*, j¼ 1, . . .,
N þ 1 is drawn, we can take as the training set T ðiÞ ¼ fZð jÞ�; j ¼ 1; . . . ;Ng;
which can be used to produce a classifier f ðiÞ ¼ fT ðiÞ : Then we take
Di ¼ dð f ðiÞðXðNþ1ÞÞ; YðNþ1ÞÞ � 1

N

PN
j¼1 dð f ðiÞ Xð jÞÞ;Yð jÞð Þ and average these

to give ŵboot1 ¼ 1
m

Pm
i¼1 Di:

As was the case for the naive bootstrap, it is easy to find a random
variable with the same expectation as Di but with smaller variance. We
can take as an alternative D

0
i ¼ 1

N

PN
j¼1 d fT � Xj

� �
;Yj

� �� 1
N

PN
j¼1 d f ðiÞ Xð jÞð Þ;ð

Yð jÞÞ ¼ 1
N

PN
j¼1 1� rj

� �
d fT � Xj

� �
;Yj

� �
; where ri is the number of times Zi

appears in T �; and take ŵboot2 ¼ 1
m

Pm
i¼1 D

0
i:
Permutation Tests

Having chosen an algorithm L for learning a classifier and estimating its
misclassification rate ê (hopefully low), it is natural to wonder how likely
it is that one would obtain such a rate, even using data for which the gene
expression profiles do not contain useful information about class labels.

In standard statistical parlance, we would like to estimate a p‐value

PH0
ê � êobs�½

This is the probability of achieving such a low misclassification rate as the
one just observed êobs from real data, when we use the same learning
algorithm L on data collected under a null hypothesis of profile noninfor-
mativeness. Here noninformativeness means that the distribution of a
profile X is independent of its class label, that is, all labeled profiles can
be seen as sampled from a common distribution.

One can use the permutation test approach to compute a p‐value:
repeatedly modify the training set by permuting the row of class labels
(making the class labels noninformative), and estimate a p‐value by the
proportion of cases in which the error rate is no greater than êobs.
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Conclusions

The Monte‐Carlo approach to statistical validation, namely repeatedly
performing statistical analyses on synthetic data sets, has been with us for
a long time. A key goal of this chapter was to describe some common
situations in which the Monte‐Carlo approach to statistical validation is
useful in microarray analysis and to give the reader a sense for how new
methodology in this area is still being developed. Some relevant work has
not been described here at all. In particular, Bayesian techniques (Chen
et al., 2001), which in the past have been viewed as computationally intrac-
table, are now becoming more routine. Also, various improvements on
standard Monte‐Carlo via the technique of importance sampling (Naiman
and Priebe, 2001) are being discovered somewhat regularly. As computa-
tional power increases, more varieties of analyses requiring these techniques
are likely to appear and become standard tools in every microarray analysts
tool box.
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About a Microarray Experiment standard and is tied to the Microarray Gene
Expressionobjectmodel. TheMOis freely available andhas been incorporated
into the annotation systems of several public microarray database systems.

Introduction

The use of high‐throughput technologies, such as microarrays, has
increased rapidly in the last few years as improvements in the technol-
ogy have made their use accessible and affordable to many laboratories.
Consequently, bench biologists have faced the problem of data management.
Due to the complexity and enormity of data, the microarray community has
developed standards regarding the type of information to collect and the
format of data. The Minimum Information about a Microarray Experiment
(MIAME) describes theminimum information needed in order for the experi-
ment to be repeated, and the Microarray Gene Expression Markup Language
(MAGE‐ML) provides a standard format for reporting data to facilitate data
exchange (Brazma et al., 2001; Spellman et al., 2002). The community has
accepted these standards, and many journals now require that MIAME‐
compliant data be deposited in a public microarray repository as a prerequisite
for publication. However, text annotation and deposition of ill‐defined data
do not allow us to manage it well. Therefore, in addition to the content
standard MIAME and the data exchange format MAGE‐ML, well‐defined
terms are required to unambiguously annotate the experiment. These terms
can exist as an ontology, terminology, or controlled vocabulary. TheMGED
Ontology (MO) provides terms or descriptors required to unambiguously
annotate a microarray experiment as described in the MIAME document.

This chapter

� explains what an ontology is
� explores the Gene Ontology (GO)
� outlines the scope and purpose of the MGED Ontology
� describes the ‘‘use cases’’ for the MGED Ontology
� explains where a biologist might see and use terms from the MO
� gives examples of software applications that use the MO and briefly
explain their use

� outlines the future development of the MGED Ontology.
What Is an Ontology?

The word ontology is Greek in origin and dates back to the time of
Aristotle meaning the science of being. In more recent years, this word has
been used in research on artificial intelligence and knowledge representa-
tion with the definition of ‘‘An ontology is an explicit specification of a
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conceptualization’’ (Gruber, 1993). This rather cryptic definition can be sim-
plified to ‘‘an ontology is a set of concepts and the relationships between these
concepts in a domain(s).’’ The usage of the term ontology in the biological
world is less stringent, and often controlled vocabularies such as Swissprot
(Boeckmann et al., 2003) key word and terminologies such as SNOMED
(http://www.snomed.org/) are grouped under the ontology umbrella. An
ontology is not just an annotation aid, as ontologies are used in many fields
as a method to model information about a domain. By modeling the domain
using an ontology, various types of relationships between the concepts can be
represented explicitly. An example would be the use of the relationship types
‘‘is‐a’’ and ‘‘part‐of,’’ which can be found in many ontologies. Such complex
relationship types are rarely found in controlled vocabularies. Representing
ontologies is a science in itself and therefore ontologies can be available in
multiple formats and can be constructed in various tools. The usual starting
places for an ontology is a piece of paper, but tools exist to manage and
develop ontologies as they becomemore complex. Biologists may be familiar
with the GO (Ashburner et al., 2000), which is created using the DAG‐
Edit editor (http://www.godatabase.org/dev/java/dagedit/docs/index.html);
Protégé (http://protege.stanford.edu/; Noy et al., 2003) is also widely used
by projects such as PharmGKB (Hewett et al., 2002). Both DAG‐Edit and
Protégé have their own ontology representation format (DAG‐Edit OBO
andCLIPS, respectively). Efforts to develop a standard representation for the
semantic web have produced OWL—the Web Ontology Language (http://
www.w3.org/TR/owl‐ref/), which is supported by Protégé, replacing DAML
as the standard (Horrocks, 2002). Both Protégé and DAG‐Edit also support
the construction ofmachine‐readable ontologies. This is explored in detail in
Stevens et al. (2002) . Ontol ogies in OWL can be develope d us ing Proté gé
with the OWL plug‐in and can be reasoned over using Racer (Haarslev and
Moller, 2001, http://www.racer‐systems.com). One advantage of developing
an ontology in a language such as OWL is that concepts can be asserted or
defined by specifying restrictions as either necessary or necessary and suffi-
cient. This is useful in ontology development, as concepts can be placed as
subclasses of new parent classes after classification of the ontology when
using a reasoner, such as Racer or FaCT, therefore avoiding the use of
multiple parents (Horrocks, 1999). In constructing an ontology in this way,
different views of the ontology can be developed and used for different
purposes, as discussed in the next section.
Gene Ontology
The GO is worth exploring in some detail, as it is now considered a
paradigm for using and building biological ontologies and is extremely
successful; over 50 tools using the GO are now available (http://www.

http://www.snomed.org/
http://www.godatabase.org/dev/java/dagedit/docs/index.html
http://protege.stanford.edu/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.racer-systems.com
http://www.geneontology.org/GO.tools.shtml
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geneontology.org/GO.tools.shtml). The GO was developed to provide
terms for the annotation of gene products, initially by the model organism
databases, and exists as a directed acyclic graph (DAG), which means that
one term can havemultiple parents, each link is directional, and there are no
cyclic relationships. The GO consists of three branches—biological process,
function, and cellular compartment—and is used to annotate gene products
based on what they do (function), what processes they are part of, for
example, metabolism, and where they are found (cellular compartment).
The GO uses the relationship types ‘‘is‐a’’ and ‘‘part‐of’’; for example,
the nucleolus is ‘‘part‐of’’ the nucleus and DNA binding ‘‘is‐a’’ nucleic acid
binding. The GO terms and definitions are essentially based on natural
language, and the DAG structure means that is it an attractive tool for
biologists. However, the GO is not fully machine readable and there-
fore efforts are underway to develop a workflow to convert GO into a more
expressive ontology language (Wroe et al., 2003). The GO developers are
also developing their own formalism OBOL, which is more expressive than
the standard OBO format. A critical factor in the success and evolution of
the GO has been the community authoring methodology, which was also
adopted by the developers of the MO. The advantages of community
authoring are that a solution can be developed that addresses the needs of
multiple users, and although compromises are made in the development
of the ontology, it is usable by a wider community.

What Is the MO Used For?

The MO was developed in concert with the MIAME standard and the
MAGE‐OM, which are standards for describing and modeling a micro-
array experiment, respectively. The MO therefore describes the process of
performing a microarray experiment and some of the components used in
such an experiment. TheMOcontains terms for the annotation of experiment
designs, sampleprocessing, andprotocols. TheMOdoes not provide terms for
the annotation of samples from a specific species, as these terms are typically
provided in other ontologies. For example, the Jackson Laboratory provides
several ontologies formouse strains, developmental stages, and anatomy, and
the MO references these resources as sources of appropriate terms but does
not contain these terms directly. It does, however,model the concepts about a
sample that could be annotated. For example, the age, developmental stage,
and strain attributes of a sample are all concepts present in the MO.

How Was the MO Built?

The MO was designed to facilitate queries such as ‘‘show me all expres-
sion values for gene x in experiments using organism y of strain z’’ and
‘‘show me all human samples in tissue comparison experiments that are

http://www.geneontology.org/GO.tools.shtml
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from nondiseased samples.’’ Execution of such queries requires that gene x
is annotated, that the samples are annotated consistently with species,
strain, and disease state, and that experiment types are consistent. The
rules adopted in construction of the MO can be summarized as follow.
Concepts must be orthogonal (nonoverlapping)
Concepts must not be species specific
Where terms exist in other ontologies, the MO will refer to that

ontology rather than reinvent the terms locally
The MO supports the MAGE‐OM and is organized in the same way
Terms are not deleted from the MO but made obsolete, with a reason
The MO addresses only microarray experiments
The MO core is stable and the underlying structure cannot be

changed.
Where Can I Get the MO?

Documents describing the MO and versions of the MO exist in various
formats (DAMLþOIL, OWL etc.) and can be found on the sourceforge
site at http://mged.sourceforge.net/ontologies/index.php. It is possible to
obtain terms from the MGED Ontology for use in annotating experiments
directly from on‐line resources such as the NCI DTS browser (http://
nciterms.nci.nih.gov/NCIBrowser/Dictionary.do).

The ontology itself is located at http://mged.sourceforge.net/ontologies/
MGEDontology.php. The web site provides easy access to descriptions for
each termand enables browsing. Terms for theMOare organized into classes,
properties, and individuals. Information on the ontology and links to notes,
files, and sites for submitting terms (sourceforge tracker) are also provided on
the web site. Classes are listed alphabetically, and there are hypertext links to
definitions, superclasses and subclasses, constraints (i.e., properties of the
class), and individuals (i.e., instances of the class). Listed classes, properties,
and individuals are all hypertext linked to their own definitions. Properties
and individuals are similarly listed alphabetically. Classes, properties and
individuals can be accessed directly on the web as http://mged.sourceforge.
net/ontologies/MGEDontology.php#[term]. For example, to access the class
‘‘Action,’’ add ‘‘#Action’’ to the end of the URL for the MGED Ontology
(i.e., http://mged.sourceforge.net/ontologies/MGEDontology.php#Action).
Figure 1 illustrates the html page that is returned with a description of the
class Action. Also shown are examples for a MO property (hasID) and
individual (Adult_Mouse_Anatomy). In order to see the class hierarchy or
search the MO the ontology is best downloaded and viewed in the ontology
editor Protégé or viewed in the NCI DTS browser.

http://mged.sourceforge.net/ontologies/index.php
http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do
http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do
http://mged.sourceforge.net/ontologies/MGEDontology.php
http://mged.sourceforge.net/ontologies/MGEDontology.php
http://mged.sourceforge.net/ontologies/MGEDontology.php#
http://mged.sourceforge.net/ontologies/MGEDontology.php#
http://mged.sourceforge.net/ontologies/MGEDontology.php#Action


FIG. 1. Examples of a class, property, and individual in the MGED ontology. Shown are

screen shots from the MGED ontology web site obtained by adding ‘‘Action,’’ ‘‘has_ID,’’ or

‘‘Adult_Mouse_Anatomy’’ to the end of the URL: http://mged.sourceforge.net/ontologies/

MGEDontology.php#.
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MO in Detail

The various parts of a microarray experiment are divided into ‘‘packages’’
by MIAME and the MAGE‐OM. For example, there are packages that
describe the samples, the experimental design, and the annotation of the
genes on the array. As the ontology supports the MAGE‐OM, it uses the
same organizing principles. The MO is intended primarily as an annotation
resource that is used in other applications; consequently, the user will rarely
see the entire structure, only the parts of relevance to the task at hand. The
GO is used in a similar fashion; expert curators have an overview of the whole
structure, while the biologist will likely see only the GO terms associated with
a gene product(s) of interest. Detailed knowledge of the MO structure is
useful for those building applications that deal with microarray data for
biologists and here we provide an overview of the MO structure and design
principles. The MO contains two parts: MGEDCoreOntology (MCO), which
contains the stable core, and the MGEDExtendedOntology (MEO), which is

http://mged.sourceforge.net/ontologies/MGEDontology.php#
http://mged.sourceforge.net/ontologies/MGEDontology.php#
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used for terms outside the MAGE object model. The class hierarchy of the
MCO is directly parallel with the MAGE‐OM structure (Fig. 2). In other
words, for each package in theMAGEobjectmodel, a similar named package
exits in the MCO.Within each high‐level package grouping of the MCO, the
ontology classes mimic the structure of the MAGE object model. The MCO
does not contain all the classes that exist in the MAGE object model, only
those that provide a path to the various references to the MAGE‐OM
OntologyEntry class. In addition to following the structure of the MAGE
object model, the MCO class names are also similar to the MAGE object
model association name that is used to point to the OntologyEntry class in
order to facilitate mapping from the object model to the MO. Annotations in
MAGE‐OM are provided using two mechanisms: inclusion of terms within
theMAGEobjectmodel and by using a reference to theOntologyEntry class.
Terms that exist within the model are provided as an enumerated list in the
MO, and the definition of the term is included in the MAGE object model
documentation. Terms that are referenced via the OntologyEntry class exist
within the MO. In some cases the MCO uses specialized property names
where the MAGE object model used a generic association name such as
types. For example, the association from ExperimentDesign to Ontology
Entry in the MAGE object model is named types; in the MO the property
that represents this association is named has_experiment_design_type. In
cases where associations in the MAGE object model are to existing ontolo-
gies, for example, NCBI taxonomy, the MO provides references to these
external semantic resources. This is done in a similar way within the MCO
by providing these resources as a subclass of the MCO class OntologyEntry.
In this way, terms from these external semantic resources can be used to
annotate the experiment and be referenced within the MCO. The MEO
contains classes from previous versions of the MO that represent concepts
tomaintain, but did notmirror concepts in theMAGE‐OMand therefore did
not fit in theMO after it was restructured to support MAGE‐OM. This is the
result of early parallel development of the MO and MAGE‐OM and the
subsequent restructuring of the MO to support the MAGE‐OM. All classes,
properties, and individuals in the MO are defined, and exact or nonexact
synonyms are included in the definition of an individual. This is a consequence
of the original ontology editor tool used; OilEd (Bechhofer et al., 2001) had
limited synonym handling.
Who Uses the MO?

Several institutions have developed databases and applications to man-
age, annotate, and analyze microarray data that use the MO, including
the European Bioinformatics Institute, the University of Pennsylvania,



FIG. 2. NCI view of the class hierarchy of MGED ontology. The top class,

MGEDOntology, is the top‐level container of descriptors for microarray experiments. The

subclass, MGEDCoreOntology, is the container class for descriptors of microarray

experiments that are tied to the MAGE object model. The ExperimentPackage is a class of

descriptors for microarray experiments tied to the experiment package of the MAGE object

model. ExperimentDesignType is a class of descriptors for microarray experiments that

provide terms for the MAGE object model association from ExperimentDesign to

OntologyEntry in order to describe the types of experimental designs. The figure is from

an image generated by the NCI DTS browser.
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TABLE I

DATABASES AND APPLICATIONS THAT USE THE MO

Application URL Institution

Data

annotation

Data

query

Ontology

server

ArrayExpress www.ebi.ac.uk/arrayexpress EBIa Yes Yes No

caArray caarraydb.nci.nih.gov/ NCICB b Yes Yes No

Enterprise

Vocabulary Service

http://nciterms.nci.nih.gov/ NCICB No No Yes

NCIBrowser/Dictionary.do

maxD Bioinf.man.ac.uk/microarray/maxd/ University of

Manchester

Yes Yes No

MIAMExpress www.ebi.ac.uk/MIAMExpress EBI Yes Yes No

MiMiR microarray.csc.mrc.ac.uk/ CSC/ICc Yes Yes Yes

RAD Study Annotator www.cbil.upenn.edu/RAD/ University of

Pennsylvania

Yes Yes No

SMD genome‐www5.stanford.edu/ Stanford University Yes Yes No

aEuropean Bioinformatics Institute.
bNational Cancer Institute Center for Bioinformatics.
cClinical Sciences Centre/Imperial College.
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Stanford, the University of Manchester, the National Center for Biotech-
nology Information, and the National Center for Toxicogenomics. Al-
though the tools developed by these institutions provide microarray data
annotated with the MO, these institutions have developed different imple-
mentations of the MO, as discussed later, in the same way that there are
many tools that use the GO. Table I summarizes some of these tools and
describes their functions.

How Is the MO Presented to Users?

This section examines two applications in detail: (1) The RAD Study
Annotator (RADSA) and (2) the Enterprise Vocabulary Service.

The RAD Study Annotator

TheRADSAwas developed at theUniversity of Pennsylvania (Manduchi
et al., 2004) for biologists to annotate their microarray experiments. The
RADSA is a suite of web annotation forms that provide MO terms in select
menus. These terms are stored in a cache table and therefore only necessary
terms from theMO are presented to the user (Fig. 3). This cache table points
to the entire set ofMO terms in case new terms need to be added (Fig. 4). This
system also has a query interface that allows the user to retrieve data based
on MO terms for the ExperimentDesignType, Organism, OrganismPart,
ExperimentFactorType, and PlatformType.

The Enterprise Vocabulary Service

The Enterprise Vocabulary Service at the National Cancer Institute Cen-
ter for Bioinformatics (NCICB) is a set of services and resources that address
the National Cancer Institutes needs for controlled vocabulary (Covitz et al.,
2003). The Enterprise Vocabulary Service project provides the cancer centric
MetaThesaurus, which includes terms from the Unified Medical Language
System and other vocabularies used in NCICB applications. The NCI has
FIG. 3. (A) RAD Study Annotator–BioMaterialCharacteristics form. This form shows the

various concepts within the MGED ontology that are applicable to describe human or mouse

samples. Terms for the developmental stage were obtained from external resources listed in

the MGED ontology and are stored in a cache table within the schema, which allows for terms

to be displayed in a project‐specific manner. Note that this form displays terms for the MGED

ontology concept DevelopmentalStage that are relevant to human or mouse samples. (B)

RAD Study Annotator–BioMaterialCharacteristics form. This form shows the BioMater-

ialCharacteristics form for plasmodium samples. This form displays fewer concepts as they are

not applicable to plasmodium, such as cell type. Also, note that terms for the concept

DevelopmentalStage display only those that are relevant to plasmodium.



FIG. 4. RAD Study Annotator–Ontology Term Search Form. This form is accessed by

clicking on the ‘‘GO’’ link in forms that allow the user to add new terms for concepts. This

form shows how the user can add new terms to be displayed in the BioMaterialCharacteristics

form for the concept DevelopmentalStage. The top of the form displays all terms stored in the

cache table for the selected concept. The bottom of the form displays the external resources

that the MGED ontology lists as resources for DevelopmentalStage terms. The user can

browse these resources and then add the information into the text boxes.

336 DNA microarrays, part B [17]
provided a terminology browser, which can be used to view theMOand other
ontologies as a tree structure. TheMO can be searched for a term via the user
interface and the user can choose to view the details of the term and its
position in the hierarchy as a collapsible tree or presented on the screen with
clickable links to super‐ and subclasses (Fig. 2). An example of aMO concept
displayed in the NCI browser is shown in Fig. 5.
Releases and Management of the MO

The MO is an evolving ontology and new terms can be suggested by
anyone via a tracker (http://sourceforge.net/tracker/?atid¼603031&group_
id¼16076&func¼browse). New terms are gleaned from submissions to the
participating databases, submitted via the tracker, and discussed during
conference calls where the definition of term and the placement of the term
in the ontology are determined. The changes in the MO are reflected in the
version number; the current version is 1.2.0, and a complete set of release

http://sourceforge.net/tracker/?atid=603031&group_id=16076&func=browse
http://sourceforge.net/tracker/?atid=603031&group_id=16076&func=browse


FIG. 5. NCI DTS browser view of a MO class. This view shows the class ExperimentDe-

signType, the definition of the class, properties of this class, and the superclass and subclasses

of this term.
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notes is provided with each successive release. Typically changes between
releases are due to the addition of new terms, for example, terms des-
cribing comparative genomic hybridization experiments have been added
recently, or obsoletion of existing terms, most frequently as they are split
into finer grained terms. The MO underwent a major change between
versions 1.1.9 and 1.2.0 as it was migrated from DAMLþOIL format to
OWL. Version 1.1.9 is the most recent DAMLþOIL version, and all future
development will be done in OWL. This change was made as OWL is now
aW3C standard and DAMLþOIL has become a legacy format. There have
also been considerable improvements in the editing tools and the MO will
be developed exclusively in Protégé in the future.
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Future of the MO

The MO in its existing form will continue to be maintained and new
terms will be added on request. However, the world has changed since the
MAGE‐OM and the MO were conceived. The proteomics, environmental
biology, and metabol/nomics communities have a need for an ontology to
describe their experiments. As all these disciplines require the annotation
of biological samples, the MO developers have joined forces with these
communities to develop a new ontology that meets the requirements of the
wider community. A new model called FuGE (http://fuge.sourceforge.net/)
is being developed to represent these new domains. The MO is being used
as the foundation to develop the Functional Genomics Investigation On-
tology (FuGO), which is designed to model functional genomics domains
such as proteomics and metabol/nomics, as well as transcriptomics, and will
be extended to additional communities working together under Reporting
Structure for Biological Investigations (RSBI).
Conclusion

In summary, the MO provides descriptors to unambiguously annotate
microarray data. The MO was originally developed in DAMLþOIL; how-
ever, future versions will be developed in OWL. Annotation applications
and databases that implement the MO provide high‐quality, well‐annotated
data that are available publicly.

The MO will serve as the foundation to develop an ontology to describe
functional genomics, transcriptomics, proteomics, toxicogenomics, environ-
mental genomics, and metabol/nomics, which will allow comparison across
these technologies and biological domains using a common terminology.
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[18] Interpreting Experimental Results
Using Gene Ontologies

By TIM BEISSBARTH
Abstract

High‐throughput experimental techniques, such as microarrays, pro-
duce large amounts of data and knowledge about gene expression levels.
However, interpretation of these data and turning it into biologically
meaningful knowledge can be challenging. Frequently the output of such
an analysis is a list of significant genes or a ranked list of genes. In the case
of DNA microarray studies, data analysis often leads to lists of hundreds of
differentially expressed genes. Also, clustering of gene expression data may
lead to clusters of tens to hundreds of genes. These data are of little use if
one is not able to interpret the results in a biological context. The Gene
Ontology Consortium provides a controlled vocabulary to annotate the
biological knowledge we have or that is predicted for a given gene. The
Gene Ontologies (GOs) are organized as a hierarchy of annotation terms
that facilitate an analysis and interpretation at different levels. The top‐
level ontologies are molecular function, biological process, and cellular
component. Several annotation databases for genes of different organisms
exist. This chapter describes how to use GO in order to help biologically
interpret the lists of genes resulting from high‐throughput experiments.
It describes some statistical methods to find significantly over‐ or under-
represented GO terms within a list of genes and describes some tools and
how to use them in order to do such an analysis. This chapter focuses
primarily on the tool GOstat (http://gostat.wehi.edu.au). Other tools exist
that enable similar analyses, but are not described in detail here.
Introduction

DNA microarrays are a high‐throughput experimental technique used
for gene expression analysis (Lockhart et al., 1996; Schena et al., 1995).
Such high‐throughput techniques have greatly facilitated the discovery of
new biological knowledge. However, this kind of knowledge is often diffi-
cult to grasp, and turning raw microarray data into biological understand-
ing is by no means a simple task. Classical analysis of microarray data is
based critically on comparing gene expression at the level of single genes
and determining the significantly differentially expressed genes (Ayroles
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11018-6
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and Gibson, 2006; Beissbarth et al., 2000; Downey, 2006; Saeed et al., 2006;
Smyth, 2004) or on clustering techniques used to determine genes with a
similar expression pattern in a series of experiments (Eisen et al., 2000;
Gollub and Sherlock, 2006; Saeed et al., 2006). In other popular techniques,
such as serial analysis of gene expression (SAGE), the focus is often just to
find the transcripts expressed in a given tissue (Beissbarth et al., 2004). In
each case, results can be expressed as a list of genes or as a sorted list of all
genes on the array ranked by a score (see Fig. 1).

In the more recent literature, many groups came up with methods that
use prior biological knowledge in order to help interpret these lists of genes
(e.g., Al‐Shahrour et al., 2004; Beissbarth and Speed, 2004; Dennis et al.,
2003; Doniger et al., 2003; Yue and Reisdorf, 2005). Together with the
application of clustering techniques to microarray data the term ‘‘guilt by
association’’ has been used, indicating that by using prior biological knowl-
edge it may be possible to infer the function of coexpressed genes (Clare,
2002; Quackenbush, 2003). Furthermore, with a single experiment produc-
ing a list of hundreds of differentially expressed genes, automatic annota-
tion and grouping of genes are necessary merely to make interpretation of
the results possible (Beissbarth et al., 2003; Boon et al., 2004). In addition,
FIG. 1. Overview of the process of performing and analyzing microarray experiments.

Frequently the output of such an analysis is a list of significantly differentially expressed genes

or a list of genes ranked by a score or p value.
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the grouping of genes and subsequent testing for the differential expression
of these groups of genes may help find significant biological processes even
in cases where single gene analysis fails to produce significant results.

The main problem is how to incorporate prior biological knowledge and
where to get it from. The type of knowledge that comes to mind first that
would be useful to incorporate is that of biological pathways. However, the
information on this as stored in pathway databases such as the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2000; Mao et al.,
2005) is quite sparse. Other sources of information could be SWISS‐Prot key
words, presence of transcription factor‐binding sites, protein domains, etc.
Further, it is important to organize this information in a structured way.
Ontologies are a commonly used concept in computer science (Draghici
et al., 2003). They are used to define terms in a controlled vocabulary as
well as relations between those terms. They can also be viewed as a directed
acyclic graph, which defines a hierarchy of terms. The Gene Ontology Con-
sortium (http://www.geneontology.org) is a worldwide consortium that de-
fines an ontology that can be used to annotate genes (Ashburner et al., 2000).
Furthermore, there are a number of Gene Ontology (GO) databases, where
annotation for genes of a certain organism or several organisms are stored
(e.g., Blake et al., 2003; Camon et al., 2004). The hierarchical structure of GO
annotations is illustrated in Fig. 2.

A biological annotation can be expressed as a gene set. Gene ontology
annotations can be cut at different levels, allowing the definition of gene
sets for each GO term, leading to a hierarchy of gene sets. The subsequent
statistical test for whether a certain biological function (or gene set) is
FIG. 2. Structure of a GO annotation. Gene ontologies can be represented as a hierarchy or

as a directed acyclicgraph. There are two types of relationships: ‘‘is a’’ and ‘‘part of.’’ Top‐level
ontologies are ‘‘molecular function,’’ ‘‘biological process,’’ and ‘‘cellular localization.’’EachGO

term can be reached by a path, and theGO terms that lead to a certainGOannotation are called

‘‘splits.’’

http://www.geneontology.org
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associated with the experimental outcome of a microarray is often referred
to as gene set enrichment analysis (Lamb et al., 2003;Mootha et al., 2003), and
analysis with GO groups has become widely used for the analysis of micro-
array data (also see Gollub and Sherlock, 2006; Hennetin and Bellis, 2006;
Whetzel et al., 2006). This analysis allows testing for gene sets (or functional
groups) that are represented significantly more frequently in a list of genes
that appears interesting in a microarray experiment than in a comparable list
of genes that would be selected randomly from all genes on the microarray.
This then allows the association of functions to a list of genes.
Find Statistically Overrepresented GO Terms within a
Group of Genes

Themost commonly usedmethods to test for enrichment of a gene set in a
list of genes selected from an experiment are based on hypergeometric
distribution and use either Fisher’s exact test or the �2 test. These methods
work in a similar way: a list of genes is selected from a microarray first, for
example, by choosing all significantly differentially expressed genes using a
cutoff value. The test for enrichment involves counting howmany genes in the
gene set occur in the list of selected genes and how many occur on the
microarray, and then estimating what proportion of genes from the gene
set would be expected to appear in randomly selected lists. The Fisher’s exact
test gives optimal results for small counts; with larger counts (e.g., counts> 5)
the �2 test is accurate and much faster to compute (for introduction into
statistical testing, see Dalgaard, 2002; Freedman et al., 1997).

A commonly used argument against these methods is that the initial
selection of the list of interesting genes from the microarray is arbitrary.
The test could possibly be much more sensitive by including genes just
below the selection cutoff or by taking all of the genes on the microarray
into account. There are several different approaches to do this, a few of
which are outlined.

Scores or statistics computed from microarray data for each gene can be
accumulated in the gene set. These scores could be, for example, p values,
t statistics, or ranks. It is then possible to create a summary score and carry
out tests, for example, for differential expression of the whole gene set
rather then for the individual genes. Permutation testing can be used to
compute the significance.

Furthermore, the Kolmogorov–Smirnov (KS) test has been used in
order to test for significant deviations of the ranks that are collected in a
gene set. In the KS test it is assumed that the ranks of genes that are
collected under a certain gene set should be drawn from a uniform distri-
bution 1 to N (N being the number of genes on the microarray).
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For example, if the ranks 1 through 10 are collected in a certain gene
set with 10 genes and the microarray has 10,000 genes, this would be
significant. See Fig. 3 for an illustration.

It is worth noting that the KS test checks for any deviation from
uniformity, for example, a gene set collecting ranks 5001 through to 5010
would also be significant. Because this is usually not desirable, we recom-
mend using Wilcoxon’s signed rank test. The Wilcoxon test checks whether
the ranks collected in a gene set are consistently high or consistently low.
A significant result indicates that the gene set is enriched in genes with low
or high ranks from the experiment.

In most cases there are a multitude of gene sets that one wants to
test enrichment for. For example, when defining gene sets from GO anno-
tation, it is common to test all GO terms annotated in the list of interesting
genes as well as all GO terms that are higher in the hierarchy than GO
terms annotated directly. This means there are usually a few hundred to a
thousand gene sets that are tested independently. This leads, however, to
a multiple testing problem, as with this many tests it becomes very likely
that some tests will show a significant result by chance. Therefore, multiple
testing correction is necessary. Many methods for multiple testing correc-
tion exist (Dud oit, 2 002 ; Shaffe r, 1995). The most simple and most con-
servative method is to multiply the p values by the number of tests carried
out (Bonferroni, 1936). We recommend using a less stringent method
controlling the false discovery rate (FDR). The FDR gives the expected
rate of false discoveries when selecting below a certain cutoff (Benjamini
and Hochberg, 1995), for example, when selecting 100 GO terms with a
FDR cutoff of 0.05 we expect that 5 of these resulted due to random
chance. This is a less stringent criteria than a usual p value, which controls
the family wise error rate, that is, the probability of any error.
FIG. 3. Scores, p values, or ranks are collected within a gene set. Gene sets can be defined

from GO terms. Genes of interest from a microarray analysis may link to different GO terms

in the GO hierarchy (A). This leads to a collection of p values, scores, or ranks for each GO

term (B). The Kolmogorov–Smirnov (KS) test can be used to test whether the distribution of

ranks is significantly different from uniform. It uses the KS distance, which is defined as the

maximum distance between two cumulative distributions (C).
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It is important to keep in mind, however, that the p values and FDRs
computed here are merely indications for significance and give a ranking of
themost significant gene sets.Many of themethods describedmake assump-
tions, some of which (e.g., independence of tests, normal distribution) are
clearly violated. The same is true for the p values or FDRs computed for
differential gene expression from microarray data. A common assumption
that is clearly violated is that of independence. For multiple testing correc-
tions, there are a few methods that allow arbitrary dependence structures in
data. However, these methods are often too conservative.

Another important consideration is the power of the tests, that is, that if
the list of genes of interest is small or does not have many annotations or if
the gene set that is tested has only a few genes, the p values that can be
reached are not infinitely small, and with thousands of tests performed it is
quite likely that a p value smaller than 1 can never be reached. Therefore,
when testing for hundreds of GO terms, the list of interesting genes studied
needs to be sufficiently large (>50). Even when choosing not to use a cutoff
and using the KS or Wilcoxon test this is not necessarily a more powerful
method. If there are clear factors that determine whether a gene is inter-
esting or not as opposed to a smooth ranking over all the genes, then
methods that rank the complete list will be less powerful. It might be better
in these cases to choose a higher cutoff to get to a larger list of genes
allowing for some false positives and to perform the Fisher’s exact test. An
apparent idea to incorporate a smooth score for each gene rather than just
a rank or than choosing a fixed cutoff would be to use the p values indicat-
ing the differential expression of a gene. These p values should ideally
follow a uniform distribution between 0 and 1 and KS tests could be
performed, similarly as on the ranks, to find gene sets where the distribu-
tion of p values differs from uniformity. However, as the p values that
result out of significance testing for differential gene expression in micro-
array experiments are usually strongly skewed (e.g., biased toward 0 or 1)
and far from uniformly distributed, it is not usually advisable to do this.
Currently these issues are not fully resolved and there is no clear answer on
which method to use. Therefore, it is best to try several methods.
GOstat: A Tool to Find Statistically Overrepresented
Gene Ontologies

Description

The program GOstat helps in the analysis of lists of genes and will
compute statistics about the GO terms contained in data and sort the GO
annotations giving the most representative GO terms first. The program
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also allows the computation of statistics for GO terms based on ranked
gene lists from microarrays. It is available via the web site http://gostat.
wehi.edu.au. Figure 4 shows a view of the GOstat input form and an
example of a GOstat output.
FIG. 4. Input form ofGOstat (A) andGOstat output (B). ForGOstat input the list of genes

of interest, as well as complete list of genes on the microarray, has to be provided. The output

is a sorted list of significant GO terms as well as the GO annotation of the genes specified.

http://gostat.wehi.edu.au.
http://gostat.wehi.edu.au.
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Using GOstat

The program requires as input a list of gene identifiers, which specify the
group of genes of interest. As the different GO databases for different
organisms use different standard IDs, the type of gene identifiers that have
to be put in are different based on the used GO gene associations database
(e.g., MGI numbers for mouse, Swissprot accession numbers for human).
Details about the different GO databases, as well as complete annotation
files, can be downloaded from http://www.geneontology.org. For some of
the supplied GO databases, for example, human, mouse, and rat, GOstat
searches several synonyms. The links for GenBank and EST accession
numbers are provided based on the EST clusters of Unigene (Boguski
and Schuler, 1995; Haas et al., 2000). Many of the Affymetrix array IDs
(Dalma‐Weiszhausz et al., 2006) can be used. Another useful tool that can
be used for ID conversion and to preprocess the IDs put into GOstat is
SOURCE (http://source.stanford.edu).

The default version of GOstat requires two lists of genes as input: the
list of genes of interest and the complete list of genes from the microarray
that these genes were selected from. If the second list does not contain all
genes in the first list, GOstat merges them. All duplicates as well as non-
annotated genes are removed automatically. The lists of genes can be
either uploaded as plain text files or pasted into the text fields. An alterna-
tive to specifying the second list of genes is to select gene lists of predefined
commonly used microarrays as the second input. If the second list is left
blank and no microarray is selected, then all of the annotated genes in the
GO gene associations database are used as a reference list.

A second version of GOstat does rank‐based statistics. Here the input is
the complete list of genes on the microarray with each gene ID followed by a
number. The numbers are converted automatically into ranks by first ran-
domly scrambling and then sorting the gene list. Duplicates as well as non-
annotated genes are removed automatically. RankGOstat has an option that
the numbers specified can be treated as p values rather than converted into
ranks; this is, however, not recommended as most p values from microarray
studies are biased.

At this stage themethod ofmultiple testing correction has to be selected.
Multiple testing correction has to be applied in order to get a more realistic
idea of the p value. GOstat offers several different options to adjust for
multiple testing: Benjamini and Hochberg (1995) correction controls the
‘‘false discovery rate’’ but assumes independence; Benjamini and Yekutieli
(2001) drop the assumption of independence but are more conservative; and
theHolm (1979) method controls the ‘‘family wise error rate,’’ which is even
more conservative. The default option FDR should be adequate in most

http://www.geneontology.org
http://source.stanford.edu


348 DNA microarrays, part B [18]
cases. Further, a cutoff for the very top levels of ontologies such as
‘‘biological process’’ is recommended, as these levels contain little informa-
tion. Also the testing can be restricted to GO terms containing a particular
annotation by specifying a search term. All other options can be changed
later.

GOstat Algorithm

The program will determine all annotated GO terms and all GO terms
that are associated (i.e., lower in the hierarchy) with these for all the genes
analyzed. The default version of GOstat will then count the number of
appearances of each GO term for the genes in the list of interesting genes
and for genes in the reference list. Fisher’s exact tests are performed to
judge whether the observed differences are significant or not; in cases
where abundances are high, �2 tests are performed instead. This will result
in a p value for each GO term, estimating the probability that the observed
counts could have occurred by chance. RankGOstat uses Wilcoxon tests or
KS tests, which test if the ranks for the genes of a particular GO term are
distributed randomly within the complete list of genes on the microarray or
if they are biased toward low or high ranks. The KS test checks whether the
ranks of all genes associated with a GO follow the uniform distribution.
The primary difference from using Wilcoxon tests is that KS will test for
any deviations from uniformity (i.e., also those GO terms with ranks in the
middle) while the Wilcoxon test only considers high or low ranks.

GOstat Output

The program will result in a list of p values (or FDRs) that state how
specific the GO terms associated with the provided list of genes are, either
through direct annotation or through the GO hierarchy. The resulting list of
GO terms is sorted by the p value and can be limited by the number of terms,
as well as by a p value cutoff. p values of GO terms that are overrepresented
in the data set are typeset in green, while p values of underrepresented GO
terms are colored red. The counts of genes associated to aGO term in the list
of genes of interest are given as well as the total count for all the genes on the
microarray. The output of RankGOstat is similar, except that the column
‘‘Total’’ represents the mean rank for the genes in the gene set. It is possible
to display only the over‐ or underrepresented terms (or high or low ranks).
Frequently, the most significant GO terms all represent similar functions
or the same subset of genes due to the hierarchical structure of GO and
because the genes may each have several GO annotations that are similar.
To make the resulting list of GO terms easier to read, GO terms
corresponding to similar subsets of genes can be grouped together. The path
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structure of the GO terms can be displayed with AmiGO (http://www.
godatabase.org), a visualization tool for the GO hierarchy. Also, a list of
all the annotated associations of genes in the input list to GO terms is
provided. It is also possible to download the output as a tab‐delimited text
file or to save the complete output of the program as a gzipped text file.
Visualization and Further Analysis

GOstat does not as yet provide any tools for visualization of the results.
This is due to the fact that creating a good visualization requires interpre-
tation of the results. Determining the significant GO terms in a list of genes
is only a first step. The p values provide an indication of what processes or
functions might be relevant. However, these results must be scrutinized
further to determine whether they are reasonable or not. Careful evalua-
tion of the results is necessary in order to produce a good graphical
representation. There are several ways to display the output from a GO
analysis and a few tools that have options for visualization. Most common-
ly, a pie chart display of the distribution of GO terms at a certain level of
the GO hierarchy is used. However, this display does not give an indication
of which GO terms are significant and it is often hard to decide which level
of the hierarchy should be used. Another option is to select some of the
significant GO terms from the GOstat output and display the log‐odds
ratios in a bar chart. The GOstat output can be exported and loaded into
a spreadsheet, such as Excel.
Discussion

There are many other tools besides GOstat that can help scrutinize the
gene ontology structure and annotation to get more out of your microarray
data. A more or less complete list of these is provided at http://www.
geneontology.org/GO.tools.shtml. Tools that allow more options to display
and analyze the graph structure of the annotations, as well as a more
automated usage of such analyses, are the Bioconductor (Reimers and
Carey, 2006) package gostats (http://www.bioconductor.org) and the pack-
age OntologyTraverser (Young, 2005), which are available as part of the
statistical computing environment of the R software. R is a software
package and scripting language for statistical data analysis (http://www.
r‐project.org). Another easy‐to‐use tool that is similar to GOstat, which
has more graphical display options, is FatiGO (http://fatigo.bioinfo.cnio.es).
We also plan to add some graphical features into GOstat.

One should keep in mind that the value of such an analysis is highly
dependent on the quality of the GO structure and annotation. Also the size

http://www.godatabase.org
http://www.godatabase.org
http://www.geneontology.org/GO.tools.shtml
http://www.geneontology.org/GO.tools.shtml
http://www.bioconductor.org
http://www.r-project.org
http://www.r-project.org
http://fatigo.bioinfo.cnio.es
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of the input list of genes plays an important role; with very small lists of
interesting genes and many possible GO categories or pathways to test,
there is likely to be no significant result. Here it might make sense to use
prior biological knowledge or hypotheses and test only for the most rele-
vant GO categories or pathways. However, very large input lists almost
certainly yield some significant GO terms, as in these, very small over‐ or
underrepresentation leads to significant results. It is important to use
multiple testing correction to get realistic p values and to carefully consider
the biological relevance of the results. After all, the analysis of gene lists
using GO terms and pathways is an explorative way to interpret data,
which can lead to easier to comprehend sets of results than the analysis
focused on single differentially expressed genes. However, the hypotheses
generated should still be tested by different means.
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flexible design that can handle diverse styles of both unprocessed and
processed data in a Minimum Information About a Microarray Experi-
ment‐supportive infrastructure that promotes fully annotated submissions.
GEO currently stores about a billion individual gene expression measure-
ments, derived from over 100 organisms, submitted by over 1500 labora-
tories, addressing a wide range of biological phenomena. To maximize the
utility of these data, several user‐friendly web‐based interfaces and appli-
cations have been implemented that enable effective exploration, query,
and visualization of these data at the level of individual genes or entire
studies. This chapter describes how data are stored, submission procedures,
and mechanisms for data retrieval and query. GEO is publicly accessible at
http://www .ncbi.nl m.nih.gov /projects/ geo/ .

Purpose and Scope of the Gene Expression Omnibus (GEO)

The postgenomic era has led to a multitude of high‐throughput meth-
odologies that generate massive volumes of gene expression data. The
GEO repository was established by National Center for Biotechnology
Information (NCBI) in 2000 to house and distribute these data to the
public with no restrictions or login requirements (for more information,
please read the GEO data disclaimer1). The primary role of GEO is data
archiving, functioning as a hub for data deposit, and retrieval (Barrett et al.,
2005; Edgar et al., 2002). ArrayExpress (Brazma et al., 2006) serves a
similar function.

GEO is currently the largest, fully public gene expression resource. At the
time of writing, the database holds over 80,000 samples, comprising approxi-
mately a billion individual expression measurements, 13 million gene expres-
sion profiles, for over 100 organisms, submitted by almost 1500 laboratories.
These data address a very broad diversity of biological themes, including
disease, development, evolution, metabolics, toxicology, immunity, ecology,
and transgenesis. Most data are provided by the research community in
compliance with grant or journal provisos that require microarray data to be
made available in a public repository, with the objective being to facilitate
independent evaluation of results, reanalysis, and full access to all parts of the
study (Ball et al., 2004).

Data types currently stored include, but are not limited to, cDNA and
oligonucleotide microarrays that examine gene expression, serial analysis
of gene expression (SAGE), massively parallel signature sequencing, array
comparative genomic hybridization, chromatin–immunoprecipitation on
arrays studies, and peptide profiling techniques such as tandem mass
1 http://www.ncbi.nlm.nih.gov/projects/geo/info/disclaimer.html.

http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.ncbi.nlm.nih.gov/projects/geo/info/disclaimer.html
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spectrometry (MS/MS). In keeping with the theme of the book, this chapter
focuses on gene expression data generated by DNA microarrays.

Although primarily a data storage and retrieval facility, it was clear
early on that the resource must also enable effective searching and data
mining as means to identify entries of interest. Consequently, several user‐
friendly web‐based query tools have been developed to assist even those
unfamiliar with microarray technology to effectively explore and analyze
GEO data. However, it is important to realize that GEO is not intended to
be used as a laboratory information management system or a pre‐/first‐
analysis environment, as data submitted to GEO are generally processed
data that form the basis for discussion in accompanying manuscripts.

This chapter explains the database design for storage of microarray
information, how to submit data, and how to effectively retrieve and
examine information in the GEO database.
Structure

The GEO database architecture is designed for the efficient capture,
storage, and retrieval of heterogeneous sets of high‐throughput molecular
abundance data. The structure is sufficiently flexible to accommodate evol-
ving state‐of‐the‐art technologies. There are many different varieties of
microarray technology, and researchers use a wide assortment of hardware
and software packages to generate and process data. Consequently, data
have many different styles and comprise varying content. For example, the
sequences on an array may be described by multiple attributes, including
gene symbols, GenBank accession numbers, clone identifiers, ontology
categories, and feature coordinates, to name a few. Similarly, hybridization
data may contain many types of supporting measurements and calculations
that supplement final expression values. Importantly, expression data are
worthless unless complemented with comprehensive contextual biological
details and data analysis methodologies under which they were generated.
GEO was built with all these considerations in mind and has an open,
adaptable design that can handle variety and a Minimum Information
About a Microarray Experiment (MIAME)‐supportive (Brazma et al.,
2001) infrastructure that promotes fully annotated submissions. Extensive
technical details regarding database design and data flow are beyond the
scope of this chapter, but it helps to understand that data and metadata are
stored separately within the database. The versatility of GEO is largely
attributed to the fact that tabular data are not fully granulated in the core
database but instead are treated as ‘‘blobs,’’ that is, compressed text tab‐
delimited tables that may contain any number of rows or columns. Data in
selected columns are extracted to a secondary database and used in
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subsequent indexing and query applications. Descriptive or informative
metadata are fully normalized in the schema as needed.

Submitter‐Supplied Data

Data supplied by submitters are stored as three main entities in a
MSSQL server relational database.
Platform: Includes a summary description of the array and a data table
defining the array template. Each row in the table corresponds to a
single element and includes sequence annotation and tracking
information as provided by the submitter.

Sample: Includes a description of the biological source and the ex-
perimental protocols to which it was subjected and a data table
containing hybridization measurements for each element on the
corresponding platform.

Series: Defines a set of related samples considered to be part of a
study and describes the overall study aim and design.
Each of these three objects is assigned an accession number that may be
used to cite and retrieve the records. In addition to sample data tables and
descriptive information, accompanying supplementary files such as original
microarray scan images or preprocessed quantification data are accepted
and stored on an FTP site with database links.

GEO‐Constructed Data Sets

Despite the variability in the style and content of incoming data, a
common set of salient information is submitted:

� sequence identity tracking information for each feature on the array
� normalized hybridization measurements
� a description of the biological source used in each hybridization.

Using a combination of automated data extraction and manual cura-
tion, this information is rendered into an upper‐level unit called a GEO
DataSet (Fig. 1). A DataSet represents a collection of similarly processed,
experimentally related sample hybridizations and provides a coherent
synopsis for a study. Samples within a DataSet are further categorized
according to experimental variables, for example, they are organized by
gender and disease state.

A DataSet provides two separate perspectives of data.

1. An experiment‐centered rendering that encapsulates the whole study.
This information is presented as a ‘‘DataSet record.’’ DataSet records
comprise a synopsis of the experiment, a breakdown of the experimental



FIG. 1. Schematic diagram of relationships among GEO platform, sample, DataSet, and

profiles. For each gene on a platform, multiple sample measurement values are generated.

Related samples constitute a DataSet from which multiple gene expression profile entities are

generated.
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variables, access to auxiliary objects, several data display and analysis tools,
and download options (Fig. 2).

2. A gene‐centered rendering that presents quantitative gene expres-
sion measurements for one gene across a DataSet. This information is
presented as a ‘‘GEO Profile.’’ A GEO Profile comprises gene identity
annotation, the DataSet title, links to auxiliary information, and a chart
depicting the expression level of that gene across each sample in the
DataSet (Fig. 3). The following section describes more information on
interpreting GEO profile charts.

DataSets enable transformation of diverse styles of submitted data such
that they are readily accessible in a uniform format upon which to base
downstream data analysis tools.
Interpreting GEO Profiles Charts

GEO profile charts track the expression behavior of one gene across all
samples in a DataSet. Several categories of information are presented in
GEO profile charts: expression measurement values, expression measure-
ment rankings, and an outline of the experimental design and variables
(Fig. 3).

The value data (red bars, scale at the left side of the chart shown in
Fig. 3) are extracted from the ‘‘VALUE’’ column of corresponding sample
records from which the DataSet is composed. All sample data tables
include this column, which contains the final normalized expression level
measurements as supplied by the submitter. Other than to log transform
single‐channel expression counts for graphic visualization, no additional
processing is applied by GEO to value data.



FIG. 2. Screen shot of a typical DataSet record GDS877 (Gonzalez et al., 2005). The record

includes a summary of the experiment, links to related records and publications, subset

designations and classifications, download options, and access to mining features such as

cluster heat maps and ‘‘Query group A vs B’’ tool.
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An important point to consider is that there is no standard unit for gene
expression; because a very wide variety of technologies, software packages,
and algorithms generate these data, the values should be considered arbi-
trary units. Consequently, it is inadvisable to attempt to draw direct com-
parisons between expression values in unrelated DataSets. However, it can
be assumed that the value measurements of each sample within a DataSet



FIG. 3. Screen shot of Entrez GEO profile retrieval results; each entity includes sequence

identifier and DataSet information and a thumbnail profile image. Links to other Entrez

databases or related profiles are provided above the thumbnail image. The expanded profile

chart depicts values (bars) and rank (squares) information for the crystallin gene across each

sample in GEO DataSet GDS877 (Gonzalez et al., 2005). Experimental subset groupings are

reflected in labels at the foot of the chart.
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are comparable and have been calculated in an equivalent manner, that is,
considerations such as background processing and normalization/scaling
are consistent across the DataSet. The ‘‘Value distribution’’ box and whis-
ker plots available on DataSet records allow users to easily evaluate how
well distributed, and thus comparable, the sample values within a DataSet
are.

In addition to the value profile display for individual genes, most
DataSets also provide a rank percentile view (blue squares, scale on the
right side of the chart shown in Fig. 3). Ranks provide an indication of
the expression level of that gene compared to all other genes on that array.
Ranks are calculated as follows: (i) the total number of genes in the sample
is divided to 100 bins such that there are n genes per bin; (ii) genes
are sorted by value, and (iii) the lowest n genes are assigned to the first
bin, subsequent n genes to the next bin, and so on. Binning is rather
sensitive to local (sample) distribution and global (DataSet) normalization.
It is therefore useful to note if a gene displays the same pattern of behavior
in both value and rank space, as a disparity in trends can indicate that data
are not normalized or the existence of other effects, such as nonspecific
hybridization.

Currently, faded data points are specific to Affymetrix technology (this
mode of display will likely be applied to other technology types in the
future). They indicate where the Affymetrix algorithms have assigned a
‘‘Detection call ¼ absent’’ to an expression signal. An absent call can be
assigned for two reasons: either the detected signal was so low that the
transcript was deemed not to be present or stray cross‐hybridization was
detected, in which case the signal is deemed unreliable for that transcript.

Bars at the horizontal foot of the chart provide experiment annotation
and contextual information about the gene expression profile under review.
The ‘‘sort’’ button allows users to resort the samples in the DataSet accord-
ing to a particular experimental parameter, thus assisting visualization of
expression trends in experiments with complex design.
Submission

TheGEO database is aMIAME‐supportive infrastructure; theMIAME
guidelines outline the minimal information that should be provided to allow
unambiguous interpretation of microarray experiment data (Brazma et al.,
2001). While the submission procedures promote MIAME compliance,
ultimately it is the submitters’ responsibility to ensure that their data are
sufficiently well annotated. Large volumes of contextual informationmay be
provided, including the cell or tissue type, characteristics of the organism
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(e.g., species, age, sex, disease state) from which the sample was isolated,
comprehensive explanations of the perturbations that the cells or organisms
were subjected to, sample isolation and preparation protocols, data proces-
sing and normalization strategies, and more.

There are several ways in which data may be deposited with GEO.
Deciding which method to use depends on the amount of data to be
submitted, what format data are in already, and the level of computational
expertise of the submitter. Regardless of the submission method, the final
GEO records look the same and contain equivalent information.
Web deposit: The web submission process is designed for the quick
and easy deposit of individual records by occasional submitters.
This route comprises a set of interactive web forms that provide a
simple step‐by‐step procedure for deposit of data tables and
accompanying descriptive information.

Batch direct deposit using Simple Omnibus Format in Text (SOFT)
format: SOFT is a simple line‐based format designed for rapid batch
submission (and retrieval) of data. A single SOFT file can hold both
data tables and accompanying descriptive information for multiple
platforms, samples, and/or series records. SOFT files may be produced
readily from common database and spreadsheet applications and can
be uploaded directly to the database.

FTP deposit: If data are already in matrix format (e.g., Affymetrix
pivot file), submission via a SOFT‐formatted spreadsheet is
recommended. Valid MAGE‐ML‐formatted (Spellman et al., 2002)
reports are also acceptable. These file types are transferred to GEO
via FTP.
Full instructions and examples of these various submission routes and
formats are provided on the GEO web site. All submissions are reviewed
and checked by a GEO curator, ensuring that records contain meaningful
information and are organized correctly. If no structural or content pro-
blems are identified the submissions are approved and assigned GEO
accession numbers. If problems are identified, the curator will work with
the submitter to make any modifications necessary to achieve successful
deposit. The GEO accession numbers are unique and stable and may be
quoted in corresponding manuscripts. The records may remain private for
several months, typically pending manuscript publication. Submitters may
generate a secondary account that enables collaborators or reviewers read‐
only, confidential access to prepublication data. Submitters retain full
editorial control over their records and may perform updates and edits at
any time.
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Navigating GEO and Finding What You Need

Browsing

Original submitter‐supplied platform, sample, and series records may
be browsed using the repository browser at http://www.ncbi.nlm.nih.gov/
geo/query/browse.cgi. These browser pages allow data to be sorted by
various categories, such as submitter, organism, platform and sample type,
titles, release dates, and supplementary file type. DataSet records may be
browsed at http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi
and may be sorted by title, organism, type, creation date, and platform.
Within records, reciprocal links are provided to all related records for easy,
uninterrupted browsing.
Downloading

Several download options are available.

� Each platform, sample and series record has a mechanism at the head
of the page that enables download (SOFT format) or viewing
(HTML) of that record and/or related records, with the option to
restrict to only descriptive data or tabular data.

� DataSet records include a link for download of a text tab‐delimited
value matrix and associated platform element gene annotation.

� All platform, sample, series, DataSet, and supplementary data are
available for bulk download via FTP at ftp://ftp.ncbi.nih.gov/pub/geo/.
Query and Analysis

GEO provides a variety of strategies for locating and visualizing informa-
tion of interest. Query approaches include standard and Boolean text‐based
searches, sequence‐based searches, mining based on expression behavior
characteristics, or combinations of these parameters. Figure 4 depicts a sche-
matic overview of the query workflow and how the various features and tools
are interlinked.A summary ofwhere these features are located, their purpose,
and methodology is provided.

Deciding where to begin a search generally depends on what type of
information one needs to retrieve. Often, there is more than one way to
identify relevant data. Users should always keep in mind that the features
provided on the GEO site are not intended for robust systematic analyses.
The heterogeneous nature of GEOdata, coupled with the limitations of web
browsing, limits to some extent the statistical tools that can be developed.
Diverse data are treated similarly; criteria such as sample size, number of

http://www.ncbi.nlm.nih.gov/geo/query/browse.cgi
http://www.ncbi.nlm.nih.gov/geo/query/browse.cgi
http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi
ftp://ftp.ncbi.nih.gov/pub/geo/


FIG. 4. Schematic overview of the query workflow and how the various features and tools

are interlinked.

362 DNA microarrays, part B [19]
repeats, prior filtering, and normalization factors are not considered. That
said, these tools are extremely useful for the quick and easy identification of
relevant and noteworthy data.

Entrez GEO DataSets

Where: From the GEO home page or at http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db¼gds.

Purpose: A query interface that facilitates identification of DataSets
relevant to a particular area of study.

Method: Effective query and mining is achieved using keywords or
Boolean phrases restricted to supported attribute fields (Table I).
Retrievals display the DataSet titles, a brief experiment description,
and a link to the complete DataSet record (Fig. 2), as well as links to
publications and other databases.
Entrez GEO Profiles

Where: From the GEO home page or at http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db¼geo.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gds
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gds
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=geo
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=geo


TABLE I

ENTREZ QUALIFIER FIELDS
a

Field name Field description

GEO DataSets

Author Authors associated with the experiment

Experiment type Experiment type, e.g., cDNA, genomic,

protein, SAGE

GDS text DataSet description text

GEO accession GEO accession number

GEO description/title text Text provided in the description/title of original records

Number of samples Number of samples in the DataSetb

Number of platform probes Number of platform reporters in the DataSetb

Organism Organism from which the reporters on the array were

derived/designed

Reporter identifier Identifier for the array reporter (GenBank accession,

gene name, etc.).

Sample source Source biological material of the sample

Sample title Sample title

Submitter institute Submitter institute

Subset description Description of the experimental variable

Subset variable type Type of experimental variable, e.g., age, strain, gender

GEO profiles

Experiment type Experiment type, e.g., cDNA, genomic, protein, SAGE

Flag information Specific experimental variable flags, e.g., age,

strain, gender

Flag type Flag types, e.g., rank and value subset effects

GDS text DataSet description text

GEO accession GEO accession number

GEO description/title text Text provided in the description/title of

original records

GI Mapped GenBank identifier

Gene description Gene description, symbol, alias

ID_REF Unique identifier for a reporter as given on the array

Max value rank Maximum value rankb

Max value in profile Maximum value in profileb

Median value in GDS Median value in DataSetb

Median value in profile Median value in profileb

Min value rank Minimum value rankb

Min value in profile Minimum value in profileb

Number of samples Number of samples in the DataSetb

Organism Organism from which the samples were derived

Ranked standard deviation Ranked standard deviation

Reporter identifier Identifier for a reporter

Sample source Source biological material of the sample

aUseful qualifier fields for performing restricted GEO DataSets and GEO profile queries.
bPossible range operation, e.g., 20:50[number of samples] will find DataSets containing 20

to 50 samples.
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Purpose:Aquery interface that facilitates identificationof gene expression
profiles of interest.

Method: Effective query and mining is achieved using keywords or
Boolean phrases restricted to supported attribute fields (Table I).
Retrievals display the mapped gene name, the DataSet title, a
thumbnail image of the gene expression profile, as well as links to
publications and other databases. Clicking on the thumbnail image
will enlarge the chart to display the full profile details and Sample
subset partitions that reflect experimental design (Fig. 3).
Advanced Entrez Features
Where: The tool bar at the head of all NCBI Entrez query and
retrieval pages.

Purpose: Facilitates powerful mining and linking across many NBCI
databases (Schuler et al., 1996; Wheeler et al., 2005).

Method: The ‘‘Preview/Limits’’ link assists greatly in the construction
of complex queries. Users employ indices to browse and/or select
the terms by which data are described and build multipart queries.
The ‘‘History’’ tab stores previous queries, which can be combined
to form a new search query, enabling sophisticated mining that
traverses DataSets and platforms. The ‘‘Display’’ pull‐down menu
enables users to find related data in other Entrez resources in batch
mode.
DataSet Clusters
Where: On the DataSet record under the ‘‘analysis’’ button.
Purpose: Clustering is a popular method used to visualize and examine

high‐dimensional DataSets. Typically, the goal of a microarray
cluster analysis is to organize genes so that those with similar
expression patterns are grouped together. It can be hypothesized that
genes that behave similarly might have a coordinated transcriptional
response, possibly inferring a common function or regulatory
elements.

Method: Many different clustering algorithms exist (see Gollub and
Sherlock, 2006); all employ various combinations of mathematical
distance metrics and linkages (Eisen et al., 1998). Nine varieties of
precomputed hierarchical clusters are available on GEO DataSet
records, as well as user‐defined K‐means or K‐median clustering.
Results are depicted as a color‐coded ‘‘heat map’’ image, where
rows represent individual elements on the array (genes) and columns
represent individual samples (hybridizations), and color A (high
expression level) transitions into colorB (lowexpression level).Users
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can scan these images visually for cluster ‘‘hot spots’’ that represent a
group of genes with similar expression. The heatmaps are interactive;
after selecting a region, or regions, of interest using a movable box,
corresponding data may be downloaded as a text file or linked to
genes in Entrez GEO profiles. Care must be taken not to over-
interpret cluster output. Different clustering algorithms may yield
different clustering solutions using the samedata. Clustering provides
suggestions for possible relationships between data, but does not
prove them.
Profile Neighbors
Where: The ‘‘Profile Neighbors’’ link on the top right side of Entrez
GEO profile retrievals.

Purpose: Connects groups of genes that show a similar or reversed
profile shape within a DataSet. It can be hypothesized that genes that
behave similarly might be coregulated or have related functionality.

Method: Profile neighbors are precalculated using an adjusted Pearson
linear correlation. The user need only click the ‘‘Profile Neighbors’’
link to retrieve related genes. Currently, Profile neighbors are subject
to a GEO‐defined arbitrary cutoff limit imposed in order to restrict
the number of links that can be managed effectively.
Sequence Neighbors
Where: The ‘‘Sequence Neighbors’’ link on the top right side of
Entrez GEO profile retrievals.

Purpose: Connects groups of genes related by nucleotide sequence
similarity across all DataSets. Genes related by sequence similarity
can provide insights into the possible function of the original
sequence if it has not yet been characterized or can identify related
gene family members.

Method: Sequence neighbors are precalculated using standard BLAST
(Altschul et al., 1990). The user need only click the ‘‘Sequence
Neighbors’’ link to retrieve related genes. Currently, Sequence
neighbors are subject to a GEO‐defined arbitrary cutoff limit imposed
in order to restrict the number of links that can bemanaged effectively.
Links
Where: The ‘‘Links’’ link on the top right side of Entrez GEO profiles
and Entrez GEO DataSets retrievals.

Purpose: Connects GEO data to related data in other NCBI
resources, facilitating seamless navigation and cross‐referencing
between multiple data domains.



366 DNA microarrays, part B [19]
Method: Where possible, reciprocal links are provided to and from
GenBank, PubMed, Gene, UniGene, OMIM, Homologene, Taxon-
omy, SAGEMap, and MapViewer databases. The user need only
click the ‘‘Links’’ link and select the relevant resource from the
pull‐down menu to link to retrieve related data.
Geo Blast
Where: The GEO BLAST link on the GEO home page.
Purpose: Retrieves gene profiles that are related to a user‐defined

nucleotide sequence of interest.
Method: This tool performs a BLAST (Altschul et al., 1990) search

of a user‐provided nucleotide sequence against all GenBank
identifiers represented on microarray platforms or SAGE libraries
in GEO. Retrievals resemble conventional BLAST output with
each alignment receiving a score and expected value and a link to
corresponding GEO profiles. This interface is helpful in locating
expression data for specified nucleotide sequences, for identifying
sequence homologs, for example, related gene family members or
for cross‐species comparisons, or for providing insight into potential
roles of the original sequence if it has not yet been characterized
functionally.
Sorting and Limit Options Using Subset Effects Flags
Where: Intrinsic to standard Entrez GEO profiles retrievals, which are
default ordered according to subset effect flags and specifiable using
[Flag Type] and [Flag information] qualifiers (Table I) in Entrez
GEO profiles.

Purpose: Attempts to identify genes that display marked differences
in expression level according to experimental variables.

Method: Genes whose values or ranks pass a threshold of statistical
difference between any nonsingle experimental variable subset and
another are flagged in the database. This allows users to search across
all GEO for genes that show an interesting effect with respect to
particular experimental variable types, such as ‘‘age.’’ The fact that
standardEntrezGEOprofile retrievals are default ordered according
to these flags makes potentially interesting results more visible
(alternative sorting options include profile deviation and mean
value). It is important to realize that subset effects are calculated with
arbitrarily defined thresholds with no consideration of data type and
processing and merely provide suggestions of what could be
interesting profiles.
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Query Group A vs B Tool
Where:On theDataSet record on the right side of the subset assignment
section.

Purpose: Assists filtering and identification of gene profiles that
display marked differences in the expression level between two
specified sets of samples within a DataSet.

Method: Using checkboxes, the user assigns one or more samples to
group A and other samples to group B. Samples are selected/
deselected on the basis of their experimental subset designations. The
user then chooses from several varieties of filtering procedures and
stringency parameters by which to compare the two groups, including
one‐tailed or two‐tailed t tests or a mean log values or ranks fold
difference. Genes that meet the user‐defined criteria are presented in
Entrez GEO profiles. Note that this tool uses rudimentary means of
filtering data, as retrievals may have no statistical significance; the
compared subsets may be too small to provide any statistic value.
Conclusion

DNA microarray technology has led to a rapid accumulation of gene
expression data. GEO serves as a unifying resource for these data,
operating primarily as a public archive, but also providing flexible data
mining strategies and tools that allow users to query, filter, select, and
inspect data in the context of their specific interests. Many of these features
use traditional data reduction techniques designed to filter inherently noisy
data and concise displays that allow human scanning. The integration of
GEO data with extensive sequence, mapping, and bibliographic resources
via the Entrez system of linked databases offers additional ancillary infor-
mation that can assist in the interpretation of biological data and evaluate
the relevance of microarray results.

Examination of published gene expression data can help researchers
prioritize candidates for further study and direct the design of new experi-
ments. The literature reveals that researchers are using GEO data to
complement and support their own studies (e.g., Brockington et al., 2005;
Nakai et al., 2005; Ozyildirim et al., 2005; Rico‐Bautista et al., 2005; Yant
et al., 2005).

Compiling large volumes of diverse gene expression data into one
location and making them accessible through common integrated inter-
faces impart a powerful investigative factor not attainable when consider-
ing solitary experiments. This large compendium of data affords more
opportunity to gather corroboratory evidence for global metabolic and
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regulatory networks, to investigate what the majority of evidence implies
about the behavior and function of a gene or group of genes, and to
generate hypotheses on functional models and themes (e.g., Jordan et al.,
2004; Ott et al., 2005; Zhou et al., 2005). This macro approach to discovery
will only strengthen as the database continues to grow.

Because the GEO database and tools continue to undergo intensive
development and modification, the features and data presentation strate-
gies discussed in this chapter will evolve over time. To receive announce-
ments of site developments, subscribe to the GEO‐announce list at
geo@ncbi.nlm.nih.gov.
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[20] Data Storage and Analysis
in ArrayExpress

By ALVIS BRAZMA, MISHA KAPUSHESKY, HELEN PARKINSON,
UGIS SARKANS, and MOHAMMAD SHOJATALAB
Abstract

ArrayExpress is a public resource for microarray data that has two
major goals: to serve as an archive providing access to microarray data
supporting publications and to build a knowledge base of gene expression
profiles. ArrayExpress consists of two tightly integrated databases:
ArrayExpress repository, which is an archive, and ArrayExpress data
warehouse, which contains reannotated data and is optimized for queries.
As of December 2005, ArrayExpress contains gene expression and other
microarray data from almost 35,000 hybridizations, comprising over 1200
studies, covering 70 different species. Most data are related to peer‐
reviewed publications. Password‐protected access to prepublication data
is provided for reviewers and authors. Data in the repository can be
queried by various parameters such as species, authors, or words used in
the experiment description. The data warehouse provides a wide range of
queries, including ones based on gene and sample properties, and provides
capabilities to retrieve data combined from different studies. The ArrayEx-
press resource also includes Expression Profiler (EP)—a microarray data
mining, analysis, and visualization tool—and MIAMExpress—an online
data submission tool. This chapter describes all major ArrayExpress com-
ponents from the user perspective: how to submit to, retrieve from, and
analyze data in ArrayExpress.
Introduction

Since the first genome‐wide microarray gene expression studies were
published in 1997 (e.g., De Risi et al., 1997), microarrays have become a
standard technology in life sciences research. The amounts of data gener-
ated in a single microarray experiment considerably exceed that generated
by any traditional technology, or by DNA sequencing. Not only do micro-
arrays produce large amounts of data, but these data are complex. A series
of non‐trivial data processing steps have to be applied to rawmicroarray data
to obtain biologically meaningful results. It has been widely acknowledged
that to interpret microarray experiment results both raw and processed data
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
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are needed, as well as metadata describing the biological samples and
experimental and data transformation procedures. These requirements are
summarized in the MIA ME guidel ines (Ball et al. , 2004a), which have been
adopted by a growing number of scientific journals. However, publishing,
maintaining, and providing access toMIAME‐compliantmicroarray data on
an author’s or a journal’s web site is not a trivial task—professionally
developed and maintained public repositories are more appropriate for it
(Brazma et al., 2000). Stori ng these da ta centr ally also allows for access to all
data on the same web site using a standard interface. The European Bio-
informatics Institute (EBI) established a MIAME supportive public reposi-
tory for microarray data ArrayExpress in 2002 (Brazma et al., 2003;
Parkinso n et al. , 2005; Sarkans et al., 2005).

As the numbers of laboratories using microarrays are increasing, data
submission tools are improving, and journals are becoming more forceful in
requiring submission to public repositories, the volume of data in Array-
Express is growing rapidly. Its size has tripled during the last 12 months,
and as of December 2005, the repository contains almost 35,000 hybridiza-
tions comprising over 800 studies related to 70 species (Fig. 1). The avail-
able studies cover a wide variety of experiment types, such as gene
FIG. 1. Data in ArrayExpress by organism (December 2005).
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expression related to compound treatments, disease states, organism part
comparisons, or developmental studies (Fig. 2). For instance, the experi-
ment with accession number E‐TOXM‐16 investigates whether genotoxic
carcinogens at doses known to induce liver tumours in rat bioassay deregu-
late a common set of genes in a short‐term in vivo study. Raw and normal-
ized data are provided. The experiment uses 137 hybridizations on 126
different samples on Affymetrix array RG_U34A. It combines experimental
factors compound, dose, and time. The experiment E‐UMCU‐12 studies
9‐day glucose starvation stationary phase culture in yeast Saccharomyces
cerevisiae exit and entry from quiescence. It provides time series data for 34
time points and provides raw, normalized, and normalized smoothed
data. Among other gene expression data sets in the database are
human and mouse tissue expression data (e.g., E‐AFMX‐4, E‐AFMX‐5)
and Arabidopsis thaliana development and differentiation expression data
(e.g., E‐AFMX‐8). Slightly over 20% of the gene expression experiments
provide time course data. Roughly a third of the experiments have been
performed on the Affymetrix platform.

Although most data relate to gene expression, number of experiments
used array comparative genomic hybridization (Erickson and Spana, 2006)
or DNA‐binding site identification (so‐called ChIP‐on‐chip experiments)
FIG. 2. Data in ArrayExpress by experiment type (MGED ontology terms, December

2005).
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(Negre et al.., 2006; Scacheri et al.. 2006). An example of nongene ex-
pression data sets is ChIP‐chip data for most yeast transcription factors
(E‐WMIT‐1,2,10).

ArrayExpress is one of the three international repositories recom-
mended by the Microarray Gene Expression Data (MGED) society (Ball
et al., 2004b) for storing microarray data related to publications [the other
two being GEO (Barrett and Edgar, 2006; Edgar et al., 2002) and CIBEX
(Ikeo et al., 2003)]. This defines the role of ArrayExpress as a primary
archive and obliges it to accept all microarray data related to peer‐
reviewed publications without any changes unless approved by the sub-
mitter. The second goal of ArrayExpress is to build a knowledge base of
gene expression providing easy access to high‐quality, well‐annotated data
characterizing expression profiles of all genes in different organisms under
different conditions. To meet these two goals, a separate database from the
ArrayExpress repository, namely the ArrayExpress data warehouse, has
been developed. It contains a subset of MIAME‐compliant reannotated
data and provides more powerful queries—ones based on gene names and
properties. It also allows retrieval of data combined from different studies.
As of December 2005 the ArrayExpress warehouse contained about 5%
of data from the repository, but this percentage is expected to grow
substantially in 2006.

Two additional tools are available to the user as a part of ArrayExpress:
Expression Profiler is an online microarray data analysis tool linked to the
database and MIAMExpress is a web‐based microarray data annotation
and submission tool (Fig. 3).

The target user community for ArrayExpress includes three major
groups.

� Microarrayexperimentalistswhoare interested inexperimentaldesigns,
array designs and protocols, and data from published experiments.
This group will primarily use the repository, as well as data submission
tools for submitting their own data.

� Biologists who are interested in expression patterns of particular
genes. This group is primarily served by the data warehouse through
gene attribute‐based queries.

� Biologists and bioinformaticians who are interested in genome‐wide
studies. They can use the repository to upload published data sets in
their own analysis tools or analyze them online using Expression
Profiler, as well as use the data warehouse to retrieve gene expression
data matrices combined from different experiments.

The next two sections describe (1) how data can be queried and
retrieved from the ArrayExpress repository and warehouse, respectively,



FIG. 3. ArrayExpress components.
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(2) how data can be analyzed in Expression Profiler, and (3) how data can
be submitted to ArrayExpress.
How to Query and Retrieve Data from the ArrayExpress Repository

Reflecting its archival role, the ArrayExpress repository organizes data
by experiments, that is, a collection of hybridizations related to a particular
study, often related to a publication. Each experiment can be retrieved by
its accession number. Additionally, array designs and protocols have their
own accession numbers, which enable the experimentalists to reuse the
arrays and protocols submitted earlier (possibly by a different submitter),
thus facilitating standardization.

The repository query interface provides queries for experiments, pro-
tocols, and array designs by a variety of attributes, such as species, experi-
ment types, words, or phrases used in experiment descriptions or array
platforms used in the experiment (see http://www.ebi.ac.uk/arrayexpress/
query/entry). For instance, one can query for all experiments performed on
Affymetrix arrays, the description of which contains the word ‘‘leukae-
mia.’’ To access proprietary data (e.g., data related to a publication that is
under review), the user needs to log in and provide the user name and
password.

The result of a query for each experiment is a summary page containing
a short description and links to data matrices and more detailed metadata,
such as experimental or data processing protocols or sample properties.
The experiment structure can be visualized as a block diagram (see Fig. 4)
or as a set of spreadsheets, depicting how samples, labeled RNA extracts,
different arrays, and data files relate. Users can examine the description of

http://www.ebi.ac.uk/arrayexpress/query/entry
http://www.ebi.ac.uk/arrayexpress/query/entry


FIG. 4. Microarray experiment structure visualization in ArrayExpress repository and

MIAMExpress submission tool.
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the samples and protocols by navigating through the hyperlinks provided
and download data for analysis locally or in Expression Profiler (see later).

In the data retrieval page the user can choose experimental conditions
(effectively the columns in the data matrix; default option is all) and which
measurements they want to retrieve (e.g., raw Cy3 or Cy5 signal, or normal-
ized log ratios), as well as which annotation to export in the matrix (e.g.,
RefSeq IDs and various database accession numbers; note that in the repos-
itory the choice of array annotation is limited to that provided by the original
submitter). The exported data matrix can be analyzed in Expression Profiler
or downloaded for analysis in the user’s own tools.

Array designs are provided in a generic format known as array descrip-
tion format (ADF)—a spreadsheet with each array feature (spot) on a
separate row; the set of columns in ADF reflects the annotation provided
by the data submitters.
How to Query Data in the ArrayExpress Data Warehouse

TheArrayExpressData warehouse is a separate database that contains a
subset of reannotated data from the ArrayExpress repository. Experiments
in the repository are reviewed carefully by the ArrayExpress curators and
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selected for the warehouse on the basis of the quality of annotation, pres-
ence of raw and normalized data, and MIAME compliance. The array
annotation is improved and updated using the Ensembl genome database
if the respective array features have been mapped in Ensembl. For genomes
or arrays not present in Ensembl, the UniProt database is used. Annotation,
such as Gene Ontology (GO) (Harris et al., 2004) terms, gene names,
synonyms, and InterPro IDs (Mulder et al., 2003), are added from the latest
release of the respective databases.

The ArrayExpress data warehouse supports queries on gene attributes,
for example, gene names, GO terms, InterPro terms, and on sample
and experiment properties, for example, anatomical terms, disease states,
or array platforms used in the experiment (see http://www.ebi.ac.uk/
arrayexpress). The user can retrieve, combine, and visualize the gene
expression values for multiple experiments. For example, a query of gene
name ‘‘jun’’ and sample property ‘‘leukemia’’ results in retrieval of all
experiments that contain data for one or several genes matching this name
(e.g., jun, junb, jund) and that appear in experiments where one or more
samples are annotated as ‘‘leukemia.’’ First a list of genes that match the
query, that is, jun, junb, and jund, is retrieved, from which the user can
make a subselection by ticking the respective check boxes. Data for the
selected genes are visualized using line plots and can be selected for further
analysis. Links are also provided back to the repository where users can
access the full annotation and supporting raw data.

Instead of querying for individual genes by names or properties, all
genes of an organism can be selected. In this case the query retrieves full
gene expression data matrix in a tab‐delimited format, and matrices from
different experiments can be selected (using tick boxes) and combined in a
single matrix. Figure 5 shows the data selection path in the data warehouse
simple interface, with boxes corresponding to sets of data objects and
arrows describing filtering and data retrieval happening as a result of query
parameters supplied by the user.

The advanced data warehouse query option enables users to choose the
query path in a more complex way. A variety of data fields can be used to
select subsets of experiments, hybridizations, samples, and genes and at any
point export the datamatrix with the chosen gene, sample, and hybridization
annotation. For instance, the following query scenarios are possible:

� Select all experiments performed in a given laboratory.
� Select all hybridizations that belong to these experiments, and where
the sample has been treated with a certain compound.

� Export all data available for these hybridizations.
� Select genes belonging to a certain GO category.

http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
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� Export data for selected genes and selected hybridizations.
� Export data for selected genes and all hybridizations.

The data flow corresponding to this scenario is shown in Fig. 6.

Data Analysis with Expression Profiler

Expression Profiler is a web‐based tool that provides access to many
basic exploratory analysis and visualization modules for microarray data
(Kapushesky et al., 2004). Data can be loaded into EP (http://www.ebi.ac.
uk/expressionprofiler/) from ArrayExpress or from any source, including
the user’s own desktop PC. EP presents a graphical user interface to the
most popular components of BioConductor (Gentleman et al., 2004;
Reimers and Carey, 2006), in addition to providing several unique tools
implemented within the EBI. The platform also supports easy integration
of novel algorithms into the uniform interface presented to the user.

Expression Profiler provides a set of functionalities responding to three
basic use‐case groups: identification of differentially expressed genes, cluster
FIG. 5. Example workflow for the ArrayExpress data warehouse simple query interface.

http://www.ebi.ac.uk/expressionprofiler/
http://www.ebi.ac.uk/expressionprofiler/


FIG. 6. Example workflow for the advanced data warehouse interface.
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analysis of large data sets, and comparative analysis of several groups of
biological samples. EP also contains a range of modules providing data
subselection, normalization, and various transformations and data publish-
ing. To use EP the user only needs a web browser, as all the computations
are done on the server side at the EBI.

All the EP components are presented in a set of drop‐down menus
running across the top of the screen; this menu is referred to in the following
sections. On selecting an item from the menu, the respective component
will appear on screen, with horizontal sections containing various input
fields and subsection tabs, as well as the Execute button in the bottom right
corner.

Data Selection, Normalization, and Transformations

After data have been imported into Expression Profiler, descriptive
statistics and basic data visualization graphics are provided—a histogram
of the overall distribution density and a line plot of all rows in the data set
or specialized plots for Affymetrix CEL files (Fig. 7). The Data Selection
component can be used as a first step for identifying differentially
expressed genes. It also provides a way to subselect a ‘‘slice’’ of the gene
expression matrix by row or column names via the Select rows and Select



FIG. 7. Expression Profiler descriptive statistics visualizations. (A) PM intensity plot.

(B) PM intensity box plot. (C) Distribution density histograms (one‐ and two‐channel
experiments, absolute and log‐ratio data). (D) Multigene line plot.
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columns tabs. The Missing values subsection filters out rows of the matrix
with more than a specified percentage of the values marked as NA (not
available). The Select by similarity option provides an option to supply a list
of genes and, for each of those, select a specified number of most similarly
expressed ones in the same data set.

Expression Profiler provides a graphical interface to three commonly
used BioConductor data normalization routines for Affymetrix and other



380 DNA microarrays, part B [20]
microarray data, namely GCRMA, RMA, and VSN (Huber et al., 2002;
Irizarry et al., 2003; Wu et al., 2003) through the Data Normalization
component (from the Data Transformation menu). In EP, GCRMA and
RMA can only be applied to Affymetrix CEL file imports, whereas VSN
can be applied universally to all types of data.

The Data Transformation component is used where data need to be
transformed to make it suitable for some specific analysis. For instance,
with the Absolute‐to‐Relative transformation, absolute expression values
for each gene can be transformed into relative ones: either relative to a
specified column of the data set or relative to the mean value of the gene.

Identification of Differentially Expressed Genes

The Data Selection component provides several basic mechanisms to
filter out the highly variable genes in the data set as ones likely to be
expressed differentially. The Value ranges option under Subselection takes
two parameters and can be used to filter genes that are above or below
their mean at least a chosen number of standard deviations, in at least a
certain percentage of the conditions. This is similar to the commonly
applied fold change criterion, with the difference that it considers the
variability of each gene across multiple conditions.

The t test component in the Statistics menu provides a way to apply this
basic statistics test for comparing the means from two distributions in the
following differentially expressed gene identification situations: looking for
genes expressed significantly above background/control or looking for genes
expressed differentially between two sets of conditions. In the first case, the
user specifies either the background level to compare against or selects the
genes in the data set that are to be used as controls. In the second case, the user
specifies which columns in the data set represent the first group of conditions
and which represent the second group. The t test calculates the mean in both
groups being tested for each gene. When testing against controls, the mean
over all control genes is taken as the second groupmean, and in both cases the
difference between the two means is compared to a theoretical t statistic.

Clustering Analysis

Expression Profiler provides fast implementations of two classes of clus-
tering algorithms (clustering menu): hierarchical clustering and flat parti-
tioning in the Hierarchical Clustering and K‐means/K‐medoids Clustering
components respectively. A range of distance measures such as Euclidean
or correlation‐based distancemeasures can be used. The Signature Algorithm
component is an alternative approach to clustering‐like analysis, based on the
method by Bergmann et al. (2003).
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A common problem with hierarchical clustering is that it is difficult to
identify branches within the hierarchy that form optimally tight clusters.
Similarly, in the case of flat partitioning, determination of the number of
desired clusters is often arbitrary and unguided. TheClustering Comparison
component aims to alleviate these difficulties by providing an algorithm
and a visual depiction of a mapping between a dendrogram and a set of flat
clusters. The implementation is based on Torrente et al. (2005) and pro-
vides a choice of two comparison functions based on mutual information in
the two clusterings and a heuristic measure for maximizing overlap while
minimizing visual complexity (Fig. 8). The clustering comparison compo-
nent highlights the tree branches that best correspond to one or more flat
clusters from the partitioning and is also useful when comparing hierarchi-
cal clustering to a predefined functionally meaningful grouping of the
genes. This component can also be used to compare a pair of flat partition-
ing clusterings to help establish the optimal parameter K by starting with a
high number of clusters and letting the comparison algorithm identify the
appropriate number of superclusters, that is, groups made up of overlaps
between the flat ones.
Comparative Group Analysis

When more than two groups of samples are to be compared and more
than one factor is being studied (e.g., multiple cell lines with several
different chemical treatments), there is a need to identify both the distin-
guished groups of samples and, simultaneously, the differentiating genes
between these groups. Although the questions asked in this scenario are
similar to those for identifying differentially expressed genes between two
samples, the statistical mechanisms need to be more powerful and robust
for this type of analysis, which is provided the Between Group Analysis
component (from the Ordination menu).

Between‐group analysis (BGA) is amultiple discriminant approach that is
performed by ordinating the specified groups of samples and projecting
individual sample locations on the resulting axes (Culhane et al., 2002). In
Expression Profiler the ordination step involved in BGA can be either princi-
pal components analysis (PCA) or correspondence analysis (COA). Both of
these are standard statistical tools for reducing the dimensionality of the data
set being analyzed. This is done by a calculation of an ordered set of values
that correspond to greatest sources of variation in data and using these values
to ‘‘reorder’’ the genes and samples of the matrix. BGA combined with COA
is especially powerful because it provides a simultaneous view of the grouped
samples and the genes that most facilitate the discrimination between them.
Algorithms of the BGA component are provided through an interface to the



FIG. 8. Expression Profiler clustering comparison visualization. A hierarchical flat comparison, matching a

K‐means clustering (K ¼ 5) to a dendrogram. Overlaps between matching clusters are shown with Venn diagrams.
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BioConductor package ‘‘made4,’’ which, in turn, refers to the R multivariate
data analysis package ‘‘ade4’’ (Thioulouse et al.., 1997).

In addition to the various plots, BGA produces several numerical
tables, including tables of gene and array coordinates. The gene coordi-
nates table is of special interest because it provides a set of numbers that
provide a measure of how variable each gene is in each of the identified
strong sources of variation. The sources of variation (principal axes/com-
ponents) are ordered from left to right. Thus genes that have the highest or
lowest values in the first column of the gene coordinates table are the
likeliest candidates for differential expression. When BGA is run within
the COA framework, since the first column in this table corresponds to the
first principal component, looking at the plot we can examine which groups
of samples are best discriminated by the corresponding (first) axis so the
identified genes are most distinguishing between these groups.

Exporting Graphics and Results

Expression Profiler stores all parameters, results, and graphics files for
every analysis step. These can be retrieved at any stage in the analysis by
clicking the Display output button in the history display in the top section
of any component.

Scalable vector graphics are one of the native formats Expression Profiler
employs. These graphics are standard publication quality images that can be
easily imported into, for instance, Adobe Illustrator software. For those
requiring alternative image formats, PNG files can also be exported.

Expression Profiler is a developing platform: more components are
being added, both for providing comprehensive visualizations for basic
techniques and for enabling the analysis of data from complex experiment
designs with specially developed methods.
How to Submit Data to ArrayExpress

Data can be submitted toArrayExpress either online using the submission
tool MIAMExpress (http://www.ebi.ac.uk/miamexpress/) or as MAGE‐ML
files (Spellman et al., 2002) from external databases or applications. To use
MIAMExpress, one needs only a web browser. No prior knowledge
of MIAME guidelines is required, as the tool guides the submitter through a
series of web forms and context‐sensitive help is provided. Large submissions
can bemade via a spreadsheet upload submission system tab2mage. A visual-
ization module provides a graphical representation of experiment structure
submitted up to a given moment (as in Fig. 4). Data files are uploaded from
the user’s desktop PC and linked to the experiment annotation.

To submit MAGE‐ML files directly from a local database or application,
a MAGE‐ML pipeline can be established. To establish such a pipeline,

http://www.ebi.ac.uk/miamexpress/
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ArrayExpress curators will work with the local database developers to make
sure that the exported MAGE‐ML files are consistent with the best practice
recommendations (see http://www.mged.org/Workgroups/MIAME/miame_
mage‐om.html), as well as that the use of identifiers is consistent with those
in ArrayExpress. Once such a pipeline is established, submitting data to
ArrayExpress becomes a simple task and there is no need to use MIAM-
Express. Pipelines from more than 10 different laboratory database have been
established, including Stanford Microarray Database (SMD) (Sherlock,
2001), MIDAS at TIGR (Sa ee d et al., 2003, 2006), and University Medical
Center Utrecht microarray database, as well as the array manufacturers
Affymetrix and Agilent, and more are under construction.

Details of the submi ssion process, including when and how to build a
pipeline and what is need ed for submission , can be foun d at www .ebi.ac .uk/
arraye xpress .

Future

One of the immediate future goals ofArrayExpress is to populate the data
warehouse withmore data from the repository.We estimate that 50% of data
submitted to the repository will eventually be loaded into the warehouse. At
the same time we are working to extend the functionality of the data ware-
house, and new features, such as selecting genes by similar expression profiles
(which is already possible in Expression Profiler), will be added. The data
warehouse will be closely integrated with Expression Profiler data analysis
tools. Links from other EBI resources, including Ensembl, will be expanded
so that users querying, for instance, genomic information, can easily get the
related expression information. We are also exploring a possibility that data
loaded in the data warehouse can be renormalized for consistency (note that
currently we use normalized data provided by the authors).

Another major development task is making data submissions to Array
Express easier. The batch upload tool facilitates the submission of large
experiments. This tool will be improved further to simplify submissions of
standard experimental designs, such as experiments on one‐channel arrays.
The batch upload tool will also be used to establish direct submission
routes to ArrayExpress from laboratory databases.

One of the guiding principles of ArrayExpress development has been
the support of community data standards, such as MIAME, MAGE‐ML,
and MGED ontology. As the development of MAGE‐ML is continuing,
ArrayExpress will be updated constantly to support these developments.
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[21] Clustering Methods for Analyzing Large Data Sets:
Gonad Development, A Study Case

By JÉRÔME HENNETIN and MICHEL BELLIS
Abstract

With the development of data set repositories, it is now possible to collate
high numbers of related results by gathering data from experiments carried
out in different laboratories and addressing similar questions or using a single
type of biological material under different conditions. To address the chal-
lenge posed by the heterogeneous nature of multiple data sources, this chap-
ter presents several methods used routinely for assessing the quality of data
(i.e., reproducibility of replicates and similarity between experimental points
obtained under identical or similar biological conditions). As gene clustering
on large data sets is not straightforward, this chapter also presents a rapid gene
clustering method that involves translating variation profiles from an ordered
set of comparisons into chains of symbols. In addition, it shows that lists of
genes assembled based on the presence of a common term in their functional
description can be used to find the most informative comparisons and to
construct from them exemplar chains of symbols that are useful for clustering
similar genes. Finally, this symbolic approach is extended to the overall set of
biological conditions under study and shows how the resultant collection of
variation profiles can be used to construct transcriptional networks, which in
turn can be used as powerful tools for gene clustering.
Introduction

The advent of microarray technology (Pease et al., 1994; Schena et al.,
1995) has highly stimulated the field of transcriptome studies over the last
decade, and results are now accumulating rapidly in public repositories [Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), European
Bioinformatics Institute (EBI, http://www.ebi.ac.uk/arrayexpress)]. Although
a great number of methods have been described for coping with simple
situations in which a small number of biological conditions are compared in
order to identify genes varying at statistically significant levels (Breitling et al.,
2004; Neuhauser and Senske, 2004), to treat more complex configurations in
which numerous experimental points are used to cluster genes (Gao et al.,
2004), or to find gene expression signatures (Golub et al., 1999), far fewer
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11021-6
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reports have addressedmethods for helping users deal with the specific issues
that arise when working with such large sets of data. For example, when
analyzing data coming from heterogeneous sources it is difficult to assess
the reproducibility of replicates and to measure the similarity of points
obtained under identical or similar biological conditions. This chapter pre-
sents severalmethods devised to treat this kind of problem.Another key issue
relates to the clustering of genes, in which is imperative to simply and suc-
cinctly summarize the main class of genes defined by their variation profile
across the entire set of biological conditions examined.Unfortunately, while a
plethora of clustering methods are available (Datta and Datta, 2003), results
delivered by this type of analysis are strongly affected not only by the particu-
larmethod used, but also by the setup of the parameters, if any (Fred and Jain,
2005).

Another problem relates to the size of data, as huge data sets cannot be
treated in an acceptable amount of time. This chapter presents a clustering
method that is rapid, very simple to implement and use, and is robust with
regard to setting up the necessary parameters. Finally, it explains how this
clustering method can be extended to an entire set of data and used to
construct a transcriptional network, which in turn can be used as a powerful
tool for gene clustering. To demonstrate all of these methods, we have
collected a set of transcriptome experiments related to gonad development
in mice [Schultz et al., 2003 (T2); Shima et al., 2004 (T3); Small et al., 2005
(OV and T1); Hamra et al., 2004 (LA); and Costoya et al., 2004 (ZP); see
Table I for abbreviations used]. These experiments allow one to assemble
76 experimental points and to consider 33 distinct biological conditions
represented by duplicates.
Selection of Data Sets

GEO stores a huge number of microarray data sets in different formats.
We limited our search to Affymetrix chipset models for two main reasons:
(1) it is a single channel technology, whichmeans that experiments carried out
in different laboratories can be compared easily, and (2) as it is an industrial
technology, the genes probed in a data set are determined by the particular
chipset used and are independent of the experimenter. We note that in this
technology, a single gene is represented by one or more collections of probes
called a probe set.

We interrogated version June 2005 of GEO and searched for experi-
ments (GSE items in GEO vocabulary) related to meiosis and using Affy-
metrix technology. We found the GSE described in Table I. Experiments
and biological conditions are designated by their abbreviations (columns 4
and 5 of Table I). Experimental points are referred to by a name constructed



TABLE I

GEO AFFYMETRIX EXPERIMENT RELATED TO MEIOSIS IN MOUSE

Rank Experimentation GSEa Expb Biological conditionsc

1 Ovary postcoitum GSE1359 OV 11d5, 12d5, 14d5, 16d5, 18d5

2 Testis postcoitum GSE1358 T1 11d5, 12d5, 14d5, 16d5, 18d5

3 Testis 1 day to adult GSE640 T2 01d, 04d, 08d, 11d, 14d, 18d,

26d, 29d, Ad, 14/18d, 26/29d

4 Testis postpartum GSE926 T3 00d, 03d, 06d, 08d, 10d, 14d,

18d, 20d, 30d, 35d, 56d

5 Laminin binding GSE829 LA LA, NL, TU, INT

6 Pure germinal cells GSE 2736 PC MY, SE, CSC, SGA, SGB, SC,

PSC, RST
7 Zp145 spermatogonia GSE 1399 ZP WT, KO

aGSE reference [some data sets related to pure germinal cells (PC, rank ¼ 6) were

obtained from the following address: http://www.wsu.edu/�griswold/microarray/].
bAbbreviations used in the text for designating the experiments.
cAbbreviations used in the text for designating biological conditions. All biological

conditions marked in bold are represented by only one experimental point. All others

have exactly two replicates, except for the one in italics, which has three (T2 01d). T2 14d

and T2 18d have been grouped into 14/18d to allow comparisons with other conditions.

T2 26d and 29d were grouped into 26/29d for the same reason. All numerical

abbreviations refer to days either postcoitum (OV and T1) or postpartum (T2 and T3).

Ad, adult; LA, laminin binding; NL, laminin nonbonding; TU, tubular cells; INT,

interstitial cells; MY, myoid cells; SE, Sertoli cells; SEC, Sertoli cell line (MSC‐1); SGA,

spermatogonia of type A; SGB, spermatogonia of type B; SC, spermatocyte; PSC,

pachytene spermatocyte; RST, round spermatid; WT, wild type; KO, knock‐out of

Zfp145.
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by the concatenation of the experimental and biological abbreviations and a
replicate rank: T2 04dR1, T2 04dR2, T2 14dR0 (R0 stands for no replicated
points).
Detection of Statistically Significant Variations by the Rank
Difference Analysis of Microarray Method (RDAM)

RDAM (Martin et al., 2004) allows the identification of statistically
significant signal variations between two biological conditions when each
contains at least two replicates. One of the first steps of this method
consists of calculating an absolute rank (AR) for each gene by ordering
their signals from 0 to N. In earlier versions of their analysis software
(MAS3 or MAS4), Affymetrix allowed negative values as a measure of
expression. While all experiments used in this study were analyzed by
MAS5 (Hubbell et al., 2002), which delivers only positive values, in general

http://www.wsu.edu/~griswold/microarray/
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usage the situation could be encountered in which the results were ana-
lyzed by a mixture of MAS4 and MAS5 or where all the results are of the
MAS4 type. In such cases, negative signals can be treated as follows: in the
case of MAS4 results only, all negative signals have their rank set to zero;
in the case of a mixture of MAS4 and MAS5 results, all signals must be
ranked with different values irrespective of whether they are positive or
negative.

Variations are expressed as standardized rank difference (zRD). The
following quantities are estimated by RDAM: the total variation (TV), the
p value of a variation, the false discovery rate (FDR), that is, the percent-
age of false positives in a selection, and the sensitivity (S), that is, the
percentage of the total variation that is found in a given selection. Subsets
of genes are selected using one of the three latter parameters ( p value,
FDR, or S) or a combination of them.
Reproducibility of Replicates

Before any analysis designed to detect expression variation can be carried
out, the quality of the assembled experiments must be assessed. While this
quality can be envisaged in different ways, we consider the reproducibility
between replicates in each experiment to be a priority because the detection
of statistically significant variations by the RDAM algorithm largely depends
on this property. Indeed, in order to assign a p value to each standardized
variation, we use replicates to empirically construct the variation distribution
observed in the case of the null hypothesis. If the reproducibility of these
replicates is low, the p value will be high, and the power of the test will be low
as well.

We devised a method, illustrated in Fig. 1, which allows the reproduc-
ibility to be examined both qualitatively and quantitatively.

Table II shows that the mean reproducibility score (RS) for each
experiment is consistently higher with chip C than with chip B, which is
itself higher than with chip A.

Figure 2 confirms this observation for each of the pairs of replicates
studied (listed in Table I) and indicates that most of the RS increase can
be explained by an elevation in the curve corresponding to a rank smaller
than 50.

Figures 3 and 5 show the profound effect of this shift on the power of
detection: total variation TV is inversely related to RS and is consistently
lower with chip C than with chip B, which is lower than with chip A. In
view of the form of the RC curves (Fig. 2), we predict that this effect should
be more pronounced for probe sets having their rank smaller than the 50th



FIG. 1. Construction principle of the reproducibility curve (RC) and the reproducibility

score (RS). (Right) The standardized rank difference of all probe sets (zRD) is plotted against

theminimumof the ranksof the two replicatedpoints under consideration (OV11d5R1andOV

11d5 R2). The horizontal line zRD¼ 1, which represents the boundary between points that are

less than one standard deviation unit from those that are equal to or higher than one unit, is

mapped (left) onto the plot of RD against theminimumof the ranks of the two replicated points

to give the reproducibility curve RC. This mapping used the inverse of the standardization

function ofRD, i.e., RDi¼ (zRD* std(RD(Ri))) –�(RD(Ri)). In this formula, the samplemean

and standard deviation (�RDand stdRD)were calculated for all probe sets having a rankwithin

a given neighborhood of Ri, with the rank of points i localized on the line of equation zRD¼ 1.

This notation reflects the fact that the RD distribution (left) is not gene specific but rank

dependent. The surface S1 under the curve SC is measured and normalized by the surface Sm

under the diagonal, which is the maximal possible value of S1: RS ¼ S1/Sm.

TABLE II

MEAN AND STD VALUES OF THE REPRODUCIBILITY SCORE IN DIFFERENT EXPERIMENTS

Chip A Chip B Chip C

Experiment Mean STD Mean STD Mean STD

Ovary postcoitum (OV) 19.4 1.52 27.6 2.19 35.6 2.51

Testis postcoitum (T1) 19.2 2.39 25.2 2.59 32.6 1.52

Testis 1 day to adult (T2) 18.83 2.64 21 2.71 30 2.16

Testis postpartum (T3) 22.73 3.64 30.18 4.49 34.64 5.24

Laminin binding (LA) 27 1 27.5 2.12 30.5 0.71

Pure germinal cells (PC) 19.67 7.09 26.33 8.33 33 7
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percentile. It is striking that the same effect was observed in all of the
experiments, and we deem the most plausible explanation to be that the
same target preparation was used successively in the three chips starting
with chip A and finishing with chip C.



FIG. 2. Modification of the form of the reproducibility curves from chip A to chip C. All

the biological conditions with replicated points have their RC curves traced, as explained in

Fig. 1. Thirty‐three (30þ3) curves are displayed (three RC curves are traced for T2 01d

because this biological condition has three replicated experimental points).
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Relationships between Experimental Points

The second point to be verified is the existence of consistent relation-
ships among the whole set of experimental points. It is expected, for
example, that replicates will be highly similar, as will points obtained under
similar or identical conditions. An elegant way to visualize the quality of
the entire data set is to trace a dendrogram, which is a two‐dimensional
‘‘tree‐like’’ diagram that summarizes the distances between experimental
points by joining points according to their level of similarity. We proceed as
follows.

1. We construct a median sample in which the rank of a gene represents
the median of its ranks over all experimental points.

2. We compare each experimental point with the median sample by
applying the RDAM algorithm.

3. We select all of the probe sets having a p value smaller than, for
example, 0.005, in at least one comparison.

4. We calculate the distance between each pair of experimental points
in the probe set space, with log2 of the signal being used as the unit
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and with each axis representing one of the probe sets selected in the
previous step.

5. We trace the corresponding dendrogram, as shown in Fig. 4.

The principal conclusion to be drawn from this procedure is that the
grouping of experimental points is mainly determined by whether they
originate from the same experiment. For example, corresponding points
between the two time courses T2 and T3 were not grouped together as they
would have been if there had been high levels of reproducibility between
identical or similar biological conditions. At this step, it might have been
opportune to conduct a complementary analysis to possibly eliminate one of
these experiments.We did not explore this possibility, however, and decided
to keep both of them [we show elsewhere (Negre et al., 2006) how a
dendrogram, constructed using a slightly different method, can inform
decisions concerning whether to keep or to eliminate experimental points
in the presence of poor reproducibility]. This anomaly aside, the experimen-
tal points are well grouped: within each time course series, the biological
FIG. 3. Total variation (TV) observed in 528 comparisons in chipsA, B, andC.All of the 528

possible comparisons among the 31 biological conditions having replicates, plus T2 14/18d and

T2 26/29d,were carried out. TV for each comparison in chipsA,B, andCwere plotted versus the

rank of the ordered TV values of chip A. Chip A, B, and C results are represented by plus signs,

points, and circles, respectively.



FIG. 4. Dendrogram showing the relationships among the experimental points. The

selection at p value 0.005 filtered 3541 probe sets.
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conditions are arranged according to the experiment’s date, most of the
replicates are adjacent to each other, and in OV and T1, the points for 11d5
and 12d5, in which the gonads are still undifferentiated, are grouped. It is
worth noting that trees constructed in this way are very stable and are largely
independent of the p value limit used in step 3.
Evolution of Total Variation across Ordered Comparisons in
Each Experiment

Having verified the overall quality of data, the following step was then
carried out in order to obtain a general overview of the variation in gene
expression.We looked at the evolution of the total variation estimate (TV) in
a subset of ordered comparisons for each experiment. In an experiment with
n biological conditions, n*(n‐1)/2 different comparisons can be analyzed. In
reality,we restricted the number of comparisons to three types, as exemplified
in Fig. 5. Important conclusions can be drawn from a visual inspection of the
resulting profiles. For example, it can be seen that the second comparison
(14d5 vs 12d5) from theOV incremental profile (group 1 in Fig. 5A) has a TV
of roughly 1000 probe sets. In contrast, the second comparison (14d5 vs 11d5)
from the OV cumulative profile (group 1 in Fig. 5B) has a TV close to
zero. This apparent discrepancy can be explained by the observation that
the probe sets that were increased between 14d5 and 12d5 were decreased
systematically between 12d5 and 11d5. This decrease is not statistically signif-
icant, however, when tested individually on each gene, explaining why no
variation was detected between OV 12d5 and OV 11d5 (first comparison of
incremental and cumulativeOVprofiles). This illustrates thatmethods aimed
at detecting significant variation in individual comparisons, which are based
on the repetition of a statistical test separately for each gene, cannot take into
account the ‘‘collective’’ behavior of genes and are less powerful than cluster-
ing techniques that are sensitive to this information.

We can generally state that incremental comparisons are less powerful for
detecting genes than cumulative comparisons, particularly with this type of
kinetics in which the expression of a particular gene increases steadily over
several time points. This effect is particularly visible with T3: the 6th (14d vs
10d) and 10th (56d vs 35d) comparisons are the only ones that showa significant
amount of TV in the incremental comparisons. In contrast, all cumulative
comparisons starting from the 6th up to the 10th have a significant amount of
TV. As expected from the substantial distance separating the two testis time
courses T2 and T3 in the dendrogram of Fig. 4, the differential comparisons
between T2 andT3 (group 6 in Fig. 5B) show a high number of varying probe
sets, confirming that these two experiments cannot be considered as similar.



FIG. 5. Estimation of total variation (TV) in several comparisons. Comparisons are

grouped, and the first comparison of each group is indicated by its group number on the

abscissa. The identity of the group is indicated above it. Chip A, B, and C results are

represented by circles, plus signs, and crosses, respectively. Three types of comparisons are

displayed: (1) incremental comparisons [groups 1, 2, 3, and 4 (top)]; each comparison is

between time tnþ1 and time tn (tnþ1 vs tn) or between biological conditions nþ1 and n (the

fourth and fifth comparisons of T2 use 14/18d and 26/29d); (2) cumulative comparisons

[groups 5 and 6 (top) and groups 1, 2, 3, and 4 (bottom)]; each comparison is between time tn

and t1 (tn vs t1) or between biological conditions n and 1 (the first comparison of LA is TU vs

LA and the second is NL vs LA; the first comparison of PC is MY vs SC and the second is SE

vs SC, the fourth and fifth comparisons of T2 use 14/18d and 26/29d); and (3) differential

comparisons [groups 5 and 6 (bottom)]; each comparison is between two identical or similar

biological conditions (the successive comparisons of T2 vs T3 are 01d vs 00d, 04d vs 03d, 08d

vs 08d, 11d vs 10d, 14/18d vs 14d, and 26/29d vs 30d).
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Similarity of Comparison Results

Another way to gain general insight into the relationships between
different biological conditions is to count the number of statistically signifi-
cant variations that any two comparisons have in common. To compare
two conditions with two replicates, we applied a selection criterion of 20%
FDR. Concerning comparisons between conditions without replicates,



FIG. 6. Fraction of increased probe sets common among lists selected either in incremental

comparisons or in cumulative comparisons in chip A. The fraction of probe sets common to

lists 1 and 2 is the number of common probe sets normalized by the minimum number of

probe sets in the two lists. Cumulative comparisons are represented above the diagonal, and

the incremental analysis is shown below. The selection was carried out at 20% FDR except in

experiments T2u, Pcu, and ZFu, where the 400 most increased probe sets were selected. The

fraction of identity is displayed on a gray scale, as indicated on the right.
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we proceed as follows. Because the RDAM method is unable, in this
particular case, to reliably estimate TV, FDR, and S, instead of using two
replicates to construct the empirical noise distribution, we used the two
points under comparison. This means that true variations were treated as
insignificant noise, explaining why the procedure was ineffective at detect-
ing variations. In contrast, the standardization procedure, which transforms
RD into zRD and allows p values to be assigned to each variation, preserves
the ranking of the variations. In other words, the smallest p values are
assigned to the most significant variations. Using this type of comparison,
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we retained the 400 probe sets showing the greatest increase. Figure 6
presents a systematic comparison of these lists concerning increased probe
sets (II overlapping type) and obtained using either incremental or cumula-
tive analysis. Obviously, overlapping of results is less important in incre-
mental analysis, which is in part explained by the lower statistical power of
this type of analysis.

Another conclusion is that existing overlaps generally agree with expecta-
tions: with cumulative analysis, for example, all the results from the compar-
isons in T2u, which concern the late stages of development (18d to adult),
overlapped extensively with their corresponding comparisons in T3. For early
stages, while the results overlapped correctly at 11d and 14d, the agreement
was less obvious at the very beginning of development at 8d and 4d. These
observations suggest that despite the aforementioned lack of reproducibility
between T2 and T3, the RDAM method is able to establish lists with many
genes in common. Another group, with a different method, has also estab-
lished the presence of a common expression pattern between T2 and T3
(Wrobel and Primig, 2005). Similarly, with incremental analysis, we observed
an expected overlap between pachytene spermatocytes and type B sperma-
togonia (PSC vs SGB) and T2 14/18d vs 11d, T2 26/29d vs 14/18d, T3 14d vs
10d, and T3 18d vs 14d. We note, however, that the comparison between
round spermatids and pachytene spermatocytes showedmore overlapwith an
a priori unrelated early stage (T3 08d vs 06d) than with an appropriate later
stage (T3 35d vs 30d). A similar analysis, when conducted for the three other
overlapping types (ID, DI, and DD, results not shown), detected several
other overlaps, which may merit further investigation (e.g., overlaps between
increased in T1 18d5 vs 16d5 and decreased in T1 16d5 vs 14d5, increased
in OV 16d5 vs 14d5 and decreased in T3 30d vs 20d, increased in OV 18d5 vs
14d5 and decreased in T3 14d vs 10d, decreased in PCS vs SGB and increased
in T2 26/29d vs 14/18d, decreased in Zfu WT vs KO and decreased in T3 14d
vs 10d).
Combinatorial Clustering

Plotting TV against time or condition (Fig. 5) is not informative regard-
ing the course of individual genes and does not allow genes with a similar
variation profile to be grouped into disjoint classes. We have developed an
approach, called combinatorial clustering, which is based on the systematic
construction of chains of symbols and which allows the infinite number of
variation profiles to be partitioned into a finite and determined number
of equivalence classes. The basic symbols we manipulate are I, D, and N,
which stand for increased, decreased, and not significant variation, respec-
tively. In an experiment arranged into n ordered comparisons, 3^n such
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chains of symbols can be constructed, each representing a basic variation
profile: for example, in the OV experiment analyzed by increment, the class
NIIN would contain all the genes detected as unchanged in comparisons
12d5 vs 11d5 and 18d5 vs 16d5 and as increased in comparisons 14d5 vs 12d5
and 16d5 vs 14d5 (in a cumulative analysis, the corresponding genes would
have been classified as NIII). This method is very easy to implement and
allows rapid detection of the major variation trends in each experiment.

For each comparison, the assignment of a gene to one of the three
symbols depends on the criterion used to select varying genes, and the
population of each class will increase or decrease according to the stringency
of the selection. For example, the class NINN in the OV experiment ana-
lyzed by increment contains 459, 275 and 482 probe sets for selection con-
ducted at FDR 20%, S 50%, and S 99%, respectively, on chip A (Table III).
Using the same selection conditions, the class NDDN would contain 42, 28,
and 74 probe sets, respectively. The values of the selection parameters also
influence the number of nonempty classes, and we observe 51, 56, and 78
nonempty classes (among the 3^4 ¼ 81 possible classes), respectively, with
the same selection conditions. Despite this fluctuation, the classification can
be considered to be robust because the relative weights of the most popu-
lated classes are stable (see the frequencies f in the last line of Table III) and
because most of the variations occur at a single comparison even if very
different selection conditions are applied (see section of Table III marked
‘‘One variation’’ at FDR 20%, S 50%, or S 99%). The results observed
here for the OV experiment can be generalized to T1, T2, and T3 (results
not shown).
Boolean Clustering

Each chain of symbols generated by combinatorial clustering is de facto
a Boolean expression, for example, a series of intersections (&) or unions
(|) between several subsets, and the NIIN variation profile discussed earlier
corresponds to the simple expression N&I&I&N. More complex expres-
sions can be used to answer particular biological questions. For example,
based on prior knowledge, we could say that meiotic genes should be
particularly expressed in OV (at 12d5 vs 11d5, T2 at 14/18d vs 10d, T3 14d
vs 10d), and that variation profile III, if it exists in this ordered series of
comparisons, should contain a high fraction of meiotic genes. Additional
information could impose supplementary conditions, for example, a possi-
ble delay in expression (T3 18d vs 14d) or a stabilization of expression in the
final stages of testis development (T2 26/29d vs 14/18d, T3 20d vs 18d, T3 30d
vs 20d, T3 56d vs 30d), andwewould thus be interested in the cluster of genes
verifying that expression: ((IIINNNN)|(IININNN)). In the presence of a



TABLE III

MOST POPULATED CLASSES OF OV EXPERIMENT ANALYZED BY INCREMENT (CHIP A)

One variationa Two successive variationsa Two disjoint variationsa

FDR 20% S 50% S 99% FDR 20% S 50% S 99% FDR 20% S 50% S 99%

Symbol R # R # R # Symbol R # R # R # Symbol R # R # R #

nInn 2 459 6 275 5 482 nIDn 8 124 11 62 11 212 nInI 12 55 12 46 16 147

nnDn 3 401 5 302 4 545 nDIn 9 77 10 68 10 266 nInD 15 35 14 35 17 130

nDnn 4 342 3 336 2 702 nnDI 10 66 9 69 8 314 nDnD 17 25 13 41 14 168

nnIn 5 323 7 256 6 465 nnID 11 55 8 70 9 270 nDnI 19 14 19 18 12 178

nnnI 6 251 2 354 1 849 nIIn 13 42 17 28 21 74 InIn 35 2 40 2 57 5

nnnD 7 153 4 314 3 682 nDDn 14 39 16 29 19 93 DnDn 40 1 25 10 30 33

Innn 21 11 21 15 18 16 nnII 19 15 17 16 20 83 InnI 44 1 50 1 60 4

Dnnn 22 10 15 33 7 100 IDnn 24 9 20 11 28 37 InDn 45 1 51 1 54 6

# 1950 1885 3841 nnDD 27 4 26 8 25 50 # 134 154 671

f 0.75 0.72 0.56 DInn 30 3 24 9 24 51 f 0.05 0.06 0.11

DDnn 33 2 27 6 41 15

IInn 37 2 29 2 75 1

# 436 376 1465

f 0.17 0.14 0.21

aColumns marked R and # indicate the rank of the cluster and the number of probe sets it contains, respectively.
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large number of results, the number of possible Boolean expressions is
enormous, and the effectiveness and fertility of this approach depend on a
judicious choice of comparisons and an ability to adequately translate prior
knowledge or a testing hypothesis into a relevant Boolean expression.

One possible source of prior knowledge that is rarely used as such is
Gene Ontology (GO) (Ashburner et al., 2000). Indeed, GO classification
is used very often simply to assess, a posteriori, the pertinence of a particular
selection by searching for significantly overrepresented terms. In our search
scheme, we started by observing the variation profile of a subset of genes that
were selected based on a particular set of GO terms. Figure 7A presents
variation profiles of 45 probe sets (26, 6, and 13 for chips A, B, and C,
respectively) whose corresponding genes have a GO biological process
explicitly related to meiosis. We observed a significant increase for these 45
probe sets at OV for 12d5 vs 11d5, T2 for 14/18d vs 10d, T3 for 14d vs 10d, LA
for LA vsNL, OV vs T1 for 12d5 vs 12d5, and PC for SC vs SE.We recovered
38 probe sets (18, 11, and 9 in chips A, B, and C, respectively) in cluster IIIIII
by interrogating these six comparisons at 99% S. Figure 7B shows that the
variation profile of this selection is more homogeneous than that of the first
selection based on GO terms. In order to increase the number of selected
probe sets, it is possible to admit some degenerancy in the cluster [e.g., 95
supplementary probe sets are selected with one degenerated position (NIIIII,
INIIII,. . .)].
Gene Clustering of Transcriptional Networks

While only intraexperimental comparisons have been discussed here,
there is no fundamental reason why analysis must be restricted in this way.
It is thus tempting to apply the combinatorial clusteringmethod at the level of
the overall set of experiments and to construct the variation profiles of the
33*32/2 ¼ 528 possible comparisons, even if variation profiles with 528 sym-
bols are too complex to be interpreted directly. The information content of
the resulting profiles is very high and can be used to construct a transcriptional
network using the following method. If we align the variation profiles of two
probe sets, we can observe, at each position corresponding to a particular
comparison, three informative types of correlation between the probe sets:
the two symbols are II or DD and the two probe sets are linked by a positive
correlation, the symbols are ID or DI and the two probe sets are linked by a
negative correlation, or the symbols are IN,NI,DN, orDDand the two probe
sets are said to be linked by an unknown correlation (#Corr, #Anti, and
#Quest are the respective number of positions in which these three correla-
tion types are encountered in two aligned variation profiles). We then
calculate for the given pair of probe sets a positive correlation score, CORR



FIG. 7. Variation profiles of meiotic genes (zRD). Comparisons are grouped, and the first

comparison of each group is indicated by its group number on the abscissa. The identity of

each group is indicated at the top of the figure. (A) Forty‐five probe sets selected using GO

based on having the term ‘‘meiosis’’ in the definition of biological function. (B) Thirty‐eight
probe sets selected by Boolean clustering of the comparisons marked by a double‐headed
arrow (cluster IIIIII). (C) The top 50 probe sets from a list of 1400 probe sets from cluster 1 in

Fig. 9. (D) The top 50 probe sets from a list of 160 probe sets from cluster 10 in Fig. 9.
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¼ #Corr/(#Corr þ #Anti þ #Quest), and a negative correlation score, ANTI
¼ #Anti/(#Corrþ#Antiþ#Quest). This calculus is repeated for all possible
probe set pairs, insignificant scores are set to zero [scores below the surface
MinQuest ¼ min(#Quest ¼ f(#Corr,#Anti)), constructed from the #Corr,
#Anti, and #Quest tables calculated after randomization of the variation
profiles, are considered to be significant], and we obtain two tables of
36,899� 36,899 CORRandANTI scores. Figure 8 shows part of the resulting
transcriptional network obtained by applying a selection level of 1% FDR to
each of the 528 comparisons.

These transcriptional networks can be used to clusterize probe sets by
extracting a matrix of N � 36,899 CORR values, corresponding to the
correlation of N probe sets from a list of genes (either a list extracted with
GO terms or a list generated by Boolean clustering). This matrix can then be
transposed and treated by the CLICK clustering algorithm [available in the
EXPANDER suite, http://www.cs.tau.ac.il/�rshamir/expander/expander.
html (Sharan et al., 2003)], which arranges the 36,899 probe sets into several
FIG. 8. Transcriptional network of 6135 probe sets (see Fig. 9). Probe sets are displayed

that had a positive or negative correlation score greater than 0% with at least one probe set of

the meiosis cluster IIIIII discussed in the text. Cluster numbers refer to clusters of Fig. 9.

Probe sets correlated positively (negatively) to the meiosis cluster IIIIII are plotted to the

right (left) of the oblique line. The geometry of the network is determined by a physical model

in which CORR and ANTI values are treated as attractive and repulsive forces, respectively.

Starting from a configuration in which all probe sets are distributed evenly on a sphere, the

free interplay of these two types of forces makes the system evolve toward a stable

configuration. An early step of this accretion process is displayed here.

http://www.cs.tau.ac.il/~rshamir/expander/expander.html
http://www.cs.tau.ac.il/~rshamir/expander/expander.html


FIG. 9. Gene clustering on the transcriptional network with an interrogation list of 38 probe sets. Represented on the X axis are

6135 probe sets with a positive or negative correlation score greater than 0% with at least one probe set of the interrogation list

plotted on the Y axis. Each pair of probe sets (x,y) has its CORR value displayed on a heat map (from black for CORR ¼ 0% to

white for CORR ¼ 100%). The upper bar delimits the clusters found by CLICK (cluster zero contains the probe sets that could not

be clusterized adequately).The second upper bar displays the position and the number of probe sets of the interrogation list found in

each cluster.
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clusters. Finally, the N lines of the N�36,899 CORR matrix are clusterized
using an annealing cluster (Alon et al., 1999). Figure 9 shows the results of
this procedure on the list of 38 probe sets from the meiosis cluster IIIIII
discussed earlier

It can be seen that there are roughly 1400 probe sets that are highly
correlated with this list of 38 probe sets (cluster nb1). Fifty of them, the most
highly correlated, are displayed in Fig. 7C. There were also two populated
clusters that were strongly correlated with a high number (cluster 9) or the
quasi totality (cluster 10) of interrogation probe sets. We observed that
clusters 24, 31, and 35 had relatively few probe sets (around 50 each), but
were also highly correlated with the interrogation genes. Cluster 10 is repre-
sented in Fig. 7D. Comparing the different profiles displayed in Fig. 7 shows
that while their overall trends are very similar, each profile has at least one
particularity. For example, if we focus on comparisons T3 14d vs 10d and T3
18d vs 14d (points 5 and 6 in group 4), we can see that the Boolean cluster
IIIIII (Fig. 7B) has a superposition of two peaks, that cluster 1 (Fig. 7C)
has only one peak encompassing the two comparisons, and that cluster 10
(Fig. 7D) has only one peak corresponding to the first comparison. We
conclude thatCLICK clustering onCORRvalues is capable of differentiating
subtle variations and that each cluster has its own specific characteristics.

Two other properties of this approach deserve attention. First, the
method is very efficient in detecting the ‘‘collective’’ behavior of genes.
Indeed, the network was constructed using a very stringent selection level
(1% FDR), and most of the probe sets clusterized in clusters 1 and 10 would
not have been detected as increased at this level of selection in many of the
discriminative comparisons indicated on Fig. 7 by double‐headed arrows.
Thismeans that comparisons other than those used in theBoolean clustering
of Fig. 7 are also very discriminative for detecting meiotic genes and that our
method of constructing transcriptional networks is able to use all the infor-
mation contained in data. Second, we have seen that the low reproducibility
score of chip C had a profound effect on the detection power of individual
comparisons (Fig. 3). This effect did not exist at the level of the transcrip-
tional networks, and we observed that roughly one‐third of the probe sets in
clusters 1, 9, 10, and 31 originated from each chip.

Finally, we looked at the distribution of the GO Biological Process anno-
tations related to meiosis or gonad development for each of the four clusters
discussed earlier. The first cluster was found to be linked to male gamete
generation (GO:0048232, 17 genes), fertilization (GO:0007338, 1 gene), and
sperm motility (GO:0030317, 3 genes). For cluster number 9, we found the
following annotations: male gamete generation (GO:0048232, 1 gene) and
germ cell development (GO:0007281, 1 gene). The third cluster was recorded
as being involved inmale gamete generation (GO:0048232, 4 genes),M phase
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of meiotic cell cycle (GO:0051327, 3 genes), female gonad development
(GO:0008585, 2 genes), and female gamete generation (GO:0007292, 1 gene).
Finally, cluster number 31 contained 1 gene marked as being involved in the
M phase of the meiotic cell cycle (GO:0051327) and 1 gene related to male
gamete generation (GO:0048232).

Not surprisingly, there were also differences in the distribution of GO
terms that are unrelated to gonad development. For example, cluster 9 had
many more terms related to negative regulation of cellular metabolism
(GO:0031324), negative regulation of nucleobases (GO:0045934), and cell
migration (GO:0016477) than cluster 1. Similarly, cluster 10 contained
many genes that are related to DNA repair (GO:0006281) and response
to radiation (GO:0009314), which were represented far less in cluster 1.

Conclusion

As the number of microarray data sets deposited in public repositories
grows, the number of biological conditions studied in multiple independent
experiments will increase as well. We have shown, using the particular
example of gonad development, that the application of methods adapted
to such composite data sets with a high information content is promising.
Representing variation profiles by chains of symbols, an approach that had
previously been proposed for the study of time series (Phang et al., 2003),
revealed itself to be very fruitful when applied to en masse analysis. First,
this method is efficient for clustering genes rapidly and getting an overview
of the main variation profiles across ordered comparisons. Second, it is easy
to construct chains of symbols designed to clusterize genes that carry out a
particular biological function. Finally, we have shown that a natural exten-
sion of thismethod is the construction of transcriptional networks, which can
in turn be used as powerful tools for gene clustering.
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[22] Visualizing Networks

By GEORGE W. BELL and FRAN LEWITTER
Abstract

An interrelated set of genes or proteins can be represented effectively as
a network that describes physical interactions, regulatory relationships, or
metabolic pathways. Visualizing a network can be a helpfulmethod to extract
biological meaning and to generate testable hypotheses about large‐scale
biological data. This chapter describes some potential rationales for visualiz-
ing networks of microarray and other data types, which can be integrated and
filtered to show potentially significant relationships. It also presents a practi-
cal introduction to Osprey and Cytoscape, two software platforms that are
powerful tools for visualizing, integrating, and manipulating networks.
Introduction

The study of genomics requires large sets of complex data describing the
behavior of genes and gene products functioning not in isolation, but as
interconnected complexes. Making and describing biologically significant
conclusions about these data can be aided greatly by visualizing this multi-
dimensional interrelated information. Computing with large‐scale expres-
sion and other microarray data can be enhanced by the use of network
structures, which can describe relationships between entities in ways not
possible with the typical representation by amatrix of genes by conditions or
cell types. Extracting biological meaning from a microarray experiment can
be enhanced by network visualization of array data alone, but the real power
of network representations comes from the ability to add other perspectives
from additional data sources on the interactions between proteins and other
molecules.

Networks (or, more precisely, ‘‘graphs’’ in a mathematical sense) have
been an essential mathematical representation of data even before the
arrival of computers, and biologists have often used them to show meta-
bolic relationships. With high‐throughput biological data sets, networks are
becoming more common as ways to represent relationships among genes,
RNA, proteins, and/or other biomolecules.

We can think of a network as simply a set of points (‘‘nodes’’ such as
genes, RNAs, or proteins), with pairs joined with lines (‘‘edges’’) describ-
ing some type of interaction. From a geometrical perspective, the two main
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11022-8
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types of networks are undirected (such as a pair of interacting proteins) or
directed (such as a transcription factor binding a gene or the flow of meta-
bolic energy). Both types of networks can be visualized just as easily and
both can contain loops (‘‘cycles’’), but interpretation is generally dependent
on the biological significance of the edge. Because most proteins function
together in complexes, clues to the role of a novel protein may be predicted
from the functions of proteins with which it interacts, a case of ‘‘guilt by
association’’ (Oliver, 2000). High‐throughput methods can identify interac-
tions that occur in vivo at only specific developmental times, tissue types, or
cytoplasmic compartments so a corresponding network may include infor-
mation that is physiologically relevant at only a specific time and place.
Topologically, most biological networks have a power law distribution in
whichmost proteins have only a few interactions and only a few interact with
many others (Bray, 2003). Not surprisingly, the more connected proteins
tend to be those that are the most indispensable (Estrada, 2006).

It is common for a microarray analysis to begin with thousands of or
‘‘all’’ genes and, after filtering, to generate a subset (using differential
expression or selection by function or other properties) containing a much
smaller number of genes. Depending on the goal of the experiments,
interpretation of array data itself may be aided by a network analysis of
either all genes or these final gene sets. The practicalities of network
visualization and analysis are influenced greatly by whether we wish to
start with a population of data or a specific sample. Because visualizing a
genome’s worth of data can be computationally challenging and visually
difficult to interpret, one theme of the tutorials will be ways to reduce the
size of the network to a meaningful amount.

The following are some applications of networks in the context of
microarray analysis, with the potential for integration of other types
of networks.

� Using a set of expression profiles for some or all genes, a distance
matrix can be calculated (as a prelude to clustering) to assay for correlated
genes. Then instead of using the genes by genes distance matrix to
generate a dendrogram, the distances between correlated genes can be
visualized as a network showing coexpressed genes in close proximity
(Zhang et al., 2005). Expression networks from different time points or
tissue types can also be compared for specificity.

� Using any network of expression data for one’s species of study,
layering on a similar network of orthologous genes or proteins can indicate
phylogenetically conserved interactions. One can use multiple species
interaction data to predict functional orthologs (Bandyopadhyay et al.,
2006) or, conversely, one can use one species’ network, together with
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sequence‐based orthology data, to predict interactions in another species
(Kelley et al., 2004).

� The representation of protein–protein interactions is the most
obvious genome‐scale application of networks. Combined with expression
ratios or profiles, such a network can extract groups of coexpressed genes
that interact physically (Ge et al., 2003; Ideker et al., 2002; LaCount et al.,
2005; Rual et al., 2005).

� Starting with a network of protein–DNA interactions, such as those
derived from large‐scale chromatin immunoprecipitation (ChIP chips),
adding another network of expression ratios or profiles can indicate, among
other interpretations, how binding by a transcription factor influences
transcript abundance (Boyer et al., 2005).

� Using a set of known metabolic pathways, highlighting one’s gene
set(s) can help elucidate which pathways may describe any metabolic
themes of the gene set(s).

� Starting with one of the three Gene Ontology (GO) networks, over-
laying enrichment data (such as from the cumulative hypergeometric
distribution) for a gene set can help determine anyGOthemes of the gene set
(Maere et al., 2005).

� Combining a network of expression ratios or profiles with a directed
network of microRNAs and their gene targets (Lewis et al., 2005) can help
determine the relationship (if any) between miRNA activity and gene
expression level (Farh et al., 2005).

For most biologists, a key requirement for the use of networks is an
effective environment for their visualization. This section presents some
software tools for network visualization that can effectively display and
manipulate sets of networks.

Osprey

One choice of software for visualizing networks is Osprey. It is a Java‐
based software platform and runs on desktop operating systems and Linux.
It is freely available to academic scientists after registering at the site
(http://biodata.mshri.on.ca/osprey). For‐profit users can purchase a license
for the software.

There is a very thorough user’s manual that describes the many features
and ways to customize the displays you create. The software comes with
published interaction data or you can enter your own data easily. Several
formats are available and are well documented. Currently there is exten-
sive information for yeast, worm, and fly available with the software. Data
are created for the General Repository for Interaction Datasets (GRID).
The BioGRID (Stark et al., 2006) is the next‐generation version of the

http://biodata.mshri.on.ca/osprey
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interaction database and contains information on human interactions as
well as the model organisms available through the GRID. The information
is culled from the literature and BioGRID contains more than 116,000
interactions. Of potential interest is the BioGRID web site (http://www.
thebiogrid.org), which allows the visualization of networks for one gene at
a time (Fig. 1).

An Example. In this example, we start with a list of 37 genes identified
in a microarray experiment of yeast as being repressed in response to
neutrophils (Rubin‐Bejerano et al., 2003). After opening Osprey, choose
Yeast as the default database. Then from the Insert menu or the tool bar,
FIG. 1. The BioGRID web site (http://www.thebiogrid.org) contains downloadable

interaction data. In addition, one can visualize interaction networks for one gene at a time

by entering the appropriate identifier.

http://www.thebiogrid.org
http://www.thebiogrid.org
http://www.thebiogrid.org
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select ‘‘Add Nodes.’’ You can copy and paste your list of genes into the text
box. In our example, one gene does not get added because its name, HAP2, is
ambiguous in the SaccharomycesGenomeDatabase (Hirschman et al., 2006).

The first display you will see after adding this gene list is color coded
according to GO annotation (Ashburner et al., 2000), and the genes/edges
are distributed randomly in the window. Note that to see a list of GO
categories or to change the color of the categories, select Colour Indexes
and then ‘‘GO Process’’ from the View menu. To get a better view of the
genes, select all genes (Edit menu or typing control‐z). Then select ‘‘One
Circle’’ from theCircularmenu item underLayout. This organizes the display
by GO annotation. To get information on a particular gene, click on the gene
of interest and view the information in the upper left window.Anotherway to
get information about the genes is to get aNodeReport. First select thenodes/
genes of interest and then choose ‘‘Selected Node Report’’ from the View
menu.

Reducing the Data Set. For the rest of the example, we will be working
with the seven genes classified as Cell Organization and Biogenesis accord-
ing to the GO annotations. If necessary, move a gene that you are not
interested in by dragging it to another position in the window. Then, select
the genes of interest by dragging and holding the mouse around them. Now
select ‘‘Invert Selected Nodes’’ from the Edit menu. Next select ‘‘Remove
Nodes’’ from the Edit menu. To make the display more readable, again
select all and then choose One Circle from the Circular menu item under
Layout. Reselect the remaining genes and then, either by right clicking on
the mouse or from the Insert menu, select ‘‘All Interactions for Selected
Nodes.’’

The edges (lines connecting genes) are color coded to identify the
source of interaction data. If an interaction was observed in more than
one experiment, it will be multicolored. If you select an edge, information
about the interaction will be displayed in the upper left window, including a
link to the PubMed references reporting the interactions. To select inter-
actions identified by a particular method (e.g., two‐hybrid, synthetic lethal-
ity), you can filter the networks by Experimental System(s), selecting more
than one method if you prefer. To do this, use the Network Filters window
in the lower left window.

You can continue building networks by selecting any node and then
clicking on the Get New Interactions button in the Gene Info window in
the upper left‐hand window. Be careful not to add too many interactions as
it will become difficult to view a large network. If you do this and want to
locate a particular gene of interest you can select Find from the Edit menu.

Once you have displayed the networks to your liking, you will want to
export them in a format that can be imported into presentations and
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publications (Fig. 2).Your choices include standard graphics formats, such
as PNG, SVG, and JPEG.

Summary of Osprey. We have shown how to get started in Osprey using
interaction data supplied by the GRID. It is worth reading through the
well‐written online program documentation to understand the many fea-
tures and ways to customize the layout of your network. For those scientists
interested in exploring the interactions of one or a few genes, the BioGRID
web interface is a good alternative.

Osprey is under continuing development (personal communication)
and many enhancements are planned. To make sure you have the latest
update, click on ‘‘Check for Updates’’ under the Help menu.

Cytoscape

Another choice of software for visualizing networks is Cytoscape
[cytoscape.org; (Shannon et al., 2003)], a freely available open source
Java‐based software platform that works on all major operating systems.
FIG. 2. A display of an interaction network in Osprey for seven genes of interest. The

nodes (circles) are color coded by GO category. The edges (lines) are color coded by the

publication source of interaction data. The window on the upper left gives annotation about

a highlighted node. Filtering of networks is available from the window on the lower left.
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It can be used to visualize networks of any type, as long as data are
formatted in Simple Interaction Format (SIF; three columns indicating
interacting molecules and the type of interaction) or GML format (which
indicates layout, as well as nodes and edges). Start Cytoscape by running
‘‘cytoscape.sh’’ or ‘‘cytoscape.bat.’’

Viewing and Filtering a Network. To load a network, go to the File
menu, select Load, and then Network. We will start with some recent
protein–protein interaction data. As an example, we can use some human
interactome data (Rual et al., 2005) showing interactions from yeast two‐
hybrid, coaffinity purification, and literature‐based association data. After
downloading (http://www.cytoscape.org/cgi‐bin/moin.cgi/Data_Sets) and
then loading data, note that the network has been created but not visualized.
Visualizing a large network of thousands of nodes is of questionable help
unless one adds a z axis (Stuart et al., 2003) or other measure of node density
that can help organize the network into highly connected subnetworks.

To annotate our nodes, we can start by linking the NCBI Entrez Gene
IDs (in the network file) to gene symbols. The Cytoscape data download
site includes these data in a file format of lines such as ‘‘4089 ¼ SMAD4.’’
To import these data, go to the File menu, select Load, and then ‘‘Node
Attributes.’’

To concentrate on a subregion of the network, we may wish to select
node subsets such as the following:

� A favorite protein and the neighbors with which it interacts
� A set of proteins that interact according to specified types of experi-
mental evidence

� A set of genes, such as those with a similar response or profiles from
an expression array.

To select a node by ID, highlight the network (Rual.sif). Then go to the
Select menu, select Nodes, and ‘‘By Name.’’ Entering 4089 should select
SMAD4. If we would like to look at the proteins with which SMAD4 inter-
acts, go to the Select menu, Nodes, and ‘‘First neighbors of selected nodes’’
(Fig. 3). These interactions can then be used to create another (much smaller)
network by going to Select, To New Network, and ‘‘Selected nodes, all
edges.’’ CytoPanel 1 will show this new network and its size. Right clicking
and selecting ‘‘Create View’’ will finally create a visualization. To create a
layout that is more helpful, go to the Layout menu, Apply Spring Embedded
Network, and ‘‘All Nodes’’ (Fig. 4). To select a set of nodes by ID, we can
create a text file with a list of desired Entrez Gene IDs and select those nodes
by going to the Select menu, followed by Nodes and ‘‘From File.’’

One powerful side ofCytoscape is the flexibility of its display.Going to the
Visualization menu, selecting Set Visual Style, and clicking on ‘‘Duplicate’’

http://www.cytoscape.org/cgi-bin/moin.cgi/Data_Sets


FIG. 3. Selection of first neighbors of selected nodes on Cytoscape. The network ‘‘RUAL.

sif’’ has been highlighted and at least one node has been selected previously.

FIG. 4. Example of a Spring Embedded Network view in Cytoscape. Note that this is a

child network (subnetwork) of the ‘‘RUAL.sif’’ network containing 38 nodes (with one

selected) and 63 edges.
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will copy the current style as a starting point for further customization. Then
clicking on Define opens a Set Visual Style window (Fig. 5), with options for
node and edge attributes, including edge coloring by type of interaction.
Another global setting is the selection of algorithm for the network layout.



FIG. 5. Set Visual Style window in Cytoscape. After clicking on the Node Attributes

button, the Node Label option was selected. Under Mapping, we have chosen to label each

node with its official name. We can also specify a variety of other node parameters.
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In addition to the Spring Embedded Network layout, Cytoscape has a series
of yFiles layouts (derived from Java implementations), such as Hierarchic
and Circular. Certain layouts may be much more effective than others for
representing biological relationships of a certain type.

Combining Interaction and Expression Data. After a brief introduction
to the loading, filtering, and visualization of a network with Cytoscape, we
may be interested in overlaying expression information to identify any
patterns in these two complementary high‐throughput data types. To im-
port expression information, a key requirement is the use of the same
nomenclature system for interactions and expression. This is an important
practicality for integrating data from multiple sources; all interaction data
must use the same system for naming nodes, whether it be gene symbol,
name, or an identifier from a reference database (such as NCBI Gene IDs
or yeast systematic ORFs). In the simplest case, Cytoscape can import a
space‐delimited matrix of expression ratios or values, with each column
for an experimental condition and each row a gene. Cytoscape also has a
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plug‐in that can import files from the NCBI Gene Expression Omnibus
repository using their ‘‘SOFT’’ file format, as long as the network uses the
same set of identifiers.

To load an expression matrix, go to the Load menu and select ‘‘Expres-
sionMatrix File’’ (Fig. 6). Then once expression data are linked to the nodes,
we have several choices about how to use these data. Using a numeric filter,
nodes above or below a threshold expression value/ratio can be selected.
Otherwise, nodes can be colored one of several colors in a spectrum depend-
ing on user‐defined cutoffs. To set up this coloring by expression value, go to
the Visualization menu and select Visual Styles. Click on Define, then Node
Attributes, and select Node Color. Under Mapping, select RedGreen, and
an expression condition can be selected via Map Attribute from the list of
headers in one’s expression file. Then a range of colors can be chosen,
such as bright green to bright red, to indicate ranges of expression values.
Finally, clicking on ‘‘Apply to Network’’ will color the nodes of the network
(Fig. 7).

Visualizing Gene Ontology Annotations. Gene Ontology (Ashburner
et al., 2000) annotations can be applied to expression data in several different
ways, including systems of network‐wide (or array‐wide) analysis and filter-
ing, or overrepresentation analysis of a predefined gene set. Analyzing
GO annotations first requires loading of both GO ontologies (the list of GO
terms and the relationships between them, described in an OBO file) and a
species‐specific association (annotation) file, linking node identifiers to GO
terms. Cytoscape comes with the ontology file and several association files,
but one may need to modify or create an association file to obtain annotation
information for protein identifiers matching those of the network.

Before loading any GO information, go to the Edit menu and select
Preferences. Under Properties, modify the field defaultSpeciesName, if
FIG. 6. Loading an Expression Matrix File in Cytoscape. The white matrix shows a few

lines of this file, with one or two columns of node identifiers, followed by one or more columns

of expression ratios (commonly log transformed). The first column (Entrez Gene IDs) must

use the same identifiers as the corresponding nodes of the network (RUAL.sif).



FIG. 7. An interaction network with nodes colored to indicate expression ratios in a

selected tissue. The two selected nodes are listed in CytoPanel 2 (below), with corresponding

expression ratios and other information shown (for those fields chosen by going to the Select

Attributes button).
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necessary, to reflect the species of the network, as this species and that of the
GO association file must match. Next, go to the File menu and select Load
and then Gene Ontology Server. After selecting the Gene Ontology file
format, you can set the location of the two GO files and then load GO data.

To begin selecting or coloring nodes by GO annotation, click on the
‘‘A’’ (annotation) icon. The Annotation window that pops up should show
the three GO ontologies in the Available box. Expanding an ontology by
clicking on the ‘‘þ’’ will show a series of levels, from most general (1) to
most specific. After selecting a level, click on Apply Annotation to All
Nodes, and the level of that ontology will appear in the Current Annota-
tions box. After expanding the level in Current Annotations, selecting a
GO term will also select the corresponding nodes.

Enrichment analysis is another common way to use GO data to help
extract biological themes from a gene set derived from microarray data.
The BiNGO plug‐in (Maere et al., 2005) is an effective way to perform both
under‐ and overrepresentation analysis in the context of Cytoscape. After
having installed BiNGO from the Cytoscape web site, it can be selected
from the Plugins menu. The options to select are mostly similar to other
GO enrichment tools, but the ontology of enriched GO terms can be
visualized in Cytoscape, with the degree of enrichment indicated by node
colors. After generating the initial figure, Visual Styles of nodes and edges
can be configured further as with any Cytoscape network.

Summary of Cytoscape. We have shown just a few ways to visualize
networks in combination with or derived from expression analysis. The
Cytoscape web site links to a series of tutorials with detailed step‐by‐step
instructions. Ideally an integrated approach combining expression and other
data will encourage the generation of better, more readily testable, hypoth-
eses. Extending the core functionality of Cytoscape, developers have creat-
ed more than 20 plug‐ins to perform specific tasks or to fetch data from
public sources so potential applications to microarray analysis go well be-
yond some common tasks described earlier. When an analysis is complete,
images of networks created inCytoscape can be exported in awide variety of
graphic formats, including publication‐quality vector formats such as Post-
Script, SVG, and PDF. The Cytoscape development team continues to
improve and expand the capabilities of Cytoscape, so it is expected that this
resource will remain an effective tool for visualizing biological networks.
Summary

Analysis of biological networks is an effective way of describing themes of
a highly interrelated ensemble of genes, proteins, or othermolecules. Extract-
ing biological information from a network can be aided greatly by intuitive
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network visualization tools. Software applications such as Osprey and Cyto-
scape are powerful tools for the experimental biologist or the bioinformatics
scientist to display, filter, and explore genome‐scale coexpression data, either
alone or with other sources of biological data represented as networks. Both
allow simple data input and manipulation, flexibility in the representation of
nodes and edges according to their properties, and series of algorithms to
create different graphical layouts. Together with other tools for expression
analysis, these network visualization tools can help generate hypotheses
describing functional relationships between genes or proteins present in very
complex sets of data.
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[23] Random Forests for Microarrays

By ADELE CUTLER and JOHN R. STEVENS
Abstract

Random Forests is a powerful multipurpose tool for predicting and
understanding data. If gene expression data come from known groups or
classes (e.g., tumor patients and controls), Random Forests can rank the
genes in terms of their usefulness in separating the groups. When the groups
are unknown, Random Forests uses an intrinsic measure of the similarity of
the genes to extract useful multivariate structure, including clusters. This
chapter summarizes the Random Forests methodology and illustrates its
use on freely available data sets.
Introduction

Microarrays present new challenges for statistical methods because of
the large numbers of genes and relatively small numbers of microarrays.
Random Forests (Breiman, 2001; Breiman and Cutler, 2005) provide a
general‐purpose tool for predicting and understanding data. They are be-
coming popular for analyzing microarray data (see, e.g., Dı́az‐Uriarte and
Alvarez de Andrés, 2006) in part because they can handle large numbers of
genes without formal variable selection, they are robust to outliers, do not
require data to follow the normal (or any other) distribution, can be used
for badly unbalanced data sets, and can impute missing values intelligently.
This chapter refers to gene expression microarrays, although the ideas
transfer directly to tissue arrays or evenmass spectrometry data.We assume
that all gene expression data have been normalized appropriately using
a preprocessing method such as RMA (Irizarry et al., 2003). Because
the Random Forest methods discussed are invariant under monotone trans-
formations, data do not need to be log transformed, although it may be
advisable for numerical reasons.

A Random Forest is a collection of classification trees generated by
bootstrap sampling from data and randomly sampling predictor variables
at each node. This chapter describes trees and forests in more detail and
intuitively shows how the trees in a Random Forest combine to give more
accurate results.

Random Forests do not perform formal statistical inference and do not
do significance tests or give p values. They are not intended for small,
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
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carefully controlled experiments. However, results of a Random Forests
analysis might suggest interesting experiments and might give insight that
could be missed by formal procedures.

Two quite general applications are considered. In the first situation, we
have two or more labeled groups of microarrays (e.g., tumor versus control)
and want to classify new microar rays or determ ine whi ch genes woul d be
useful in clas sifying new microar rays. We refer to this first situation as
classificat ion and note that it is a form of supervi sed learning (see Gollub
and Sherlock , 2006). The second situati on in which Random For ests may be
useful is when we have unlabeled microarrays and want to find clusters or
other interesting multivariate structure. This situation is referred to as
unsupervise d lear ning. Classi cal statis tical clus tering metho ds (Gollub and
Sherlock , 2006) are popul ar in this situ ation an d can be used in co njunction
with a Random Forests analysis.

This chapter focuses on classification, although the unsupervised learning
approach is also discussed.
Classification

Classification deals with data comprising a number of observations,
each of which is known to come from one of a number of distinct groups
or classes. For each observation, we have a number of predictors. Our goal
is to use the predictors to classify unlabeled observations and to learn
which predictors are important or useful in the classification.

In the microarray context, the observations usually represent the micro-
arrays themselves (or the observational units, such as patients, from which
they are obtained) and the predictors represent the genes. For example, we
may have microarrays for cancer patients and controls and we may want to
classify a new person into one of these two groups based on their micro-
array results. Perhaps more importantly, we may also want to determine
which genes on the microarray are useful in classifying the new person,
with the idea of developing a more efficient diagnostic tool or giving useful
information about the genetic basis of the disease itself.

One common approach to data like these is to treat the genes individu-
ally and perform something similar to a t test to decide which genes are
‘‘significantly different’’ between the two groups, presumably with an ad-
justment for the number of comparisons. Methods such as significance
analysis of microarrays (Tusher et al., 2001) have this flavor. If there
are more than two groups, an ANOVA approach might be used (Ayroles
and Gibson, 2006). We refer to these procedures as ‘‘significance testing.’’
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Classification differs from the significance testing approach in several
important ways. Perhaps the most fundamental difference is that t tests and
ANOVAs test whether the population means for the groups are different.
For overlapping groups, we may conclude that the population means differ,
but the groups may not be distinct enough to make accurate predictions of
group membership. A second difference is that classification is inherently
multivariate, so instead of asking whether each gene is individually good
at separating the groups, we are asking whether the gene expression
information from all the genes is useful. The collective expression levels
of groups of genes may capture higher order terms such as interactions
between genes, which may allow us to separate the groups better than any
single gene.

Traditional statistical methods for classification include linear discrimi-
nant analysis and logistic regression (see, e.g., Hastie et al., 2001). For
microarray data, these methods are not directly applicable because the
number of genes is too large. One approach is to do some sort of gene
filtering. For example, the significance testing approach may be used to
determine a small set of genes that can then be used in a classification.
However, as well as the distributional assumptions, this form of gene
filtering ignores the multivariate structure of data and it is not clear
whether valuable information may be lost. Another common approach is
to use principal components analysis to reduce the dimensionality of data.
One problem with this approach is that principal components analysis
concentrates on finding combinations of genes with large variance and
ignores the class labels. Genes with large variance dominate, and outliers
can have a huge impact.

Random Forests can handle gene expression data sets without gene
filtering and without assuming normality.
Random Forests for Classification

A Random Forest, as the name suggests, is made up of a collection of
classification trees. This section briefly describes classification trees and the
particular type of ‘‘random’’ classification tree used in the Random Forests
method. It also explains how the trees are combined and how measures of
variable importance and other useful quantities are obtained.
Classification Trees

Classification trees (Breiman et al., 1984) are a binary decision. An
example of a classification tree is given in Fig. 1. This tree was fit to data



FIG. 1. Tree diagram for heart disease data.
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from a South African study on coronary heart disease in men (Hastie et al.,
2001; Rousseauw et al., 1983). The response variable was the absence of
myocardial infarction (group ¼ 0) or the presence of myocardial infarction
(group ¼ 1). Predictor variables were age, prevalence of ‘‘type a’’ behavior,
tobacco use, and family history (‘‘a’’ stands for ‘‘absent’’). The tree com-
prises a collection of ‘‘nodes.’’ At each node, we ask a question and if the
answer is ‘‘yes’’ we move to the left, otherwise we move to the right. At the
top node, we ask whether the man’s age is less than 50.5. If it is, the man
goes to the left; if not, he goes to the right. A similar procedure is followed
for subsequent nodes until a stopping criterion is met, at which point the
node is ‘‘terminal.’’ Numbers at the bottom of the tree represent the class
assigned to men who end up in the terminal nodes.

Each node involves a single predictor variable, and we say we ‘‘split’’ on
that variable. To construct the tree, we need to split each node, whichmeans
we need to decide which variable to split on and at what value to split. To
split a node, we look at every possible split on every available predictor. We
choose the split that gives the best value of some criterion such as the gini
index (Breiman et al., 1984). Usually, the trees are grown to be quite large
and are then ‘‘pruned’’ back to prevent overfitting (Breiman et al., 1984).
Classification trees are popular for a wide range of problems, in part because
the tree diagrams are easily understood. More information on classification
trees is given in Breiman et al. (1984). For microarray data, we often have
thousands of genes, and finding the best possible split at each node can be
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computationally expensive. Moreover, it has been suggested (Breiman,
2001; Dietterich, 2000) that we can get more accurate results by combining
a variety of suitably chosen classification trees.

Trees in a Random Forest

A Random Forest combines a collection of classification trees that differ
from each other in two key ways. First, each tree is fit to an independent
bootstrap sample from the original data set. To get the bootstrap sample, we
randomly sample microarrays with replacement from original data until our
sample is as large as the original. Some microarrays appear once in the
bootstrap sample, some twice, some more often, and some not at all. The
microarrays that do not make it into the bootstrap sample are called ‘‘out‐of‐
bag’’ data and form a natural test set for the tree that is fit to the bootstrap
sample. The trees also differ because we do not choose the best possible split
on all genes. Instead, we take a random sample of just a few genes, indepen-
dently for each node, and find the best split on the selected genes. The number
of genes to be selected at each node is usually chosen to be the square root of
the total number of genes.More information about how to choose this value is
available in Breiman and Cutler (2005) by looking at the parameter ‘‘mtry.’’
The trees are grown until each node contains microarrays from only one class
(we say they are ‘‘pure’’), and the trees are not pruned.

Combining Trees

If we have a new microarray that has been suitably preprocessed to be
on the same scale as original data, we pass it down each tree in the forest
and each tree provides its best guess at the class. The most popular class,
over all the trees in the forest, is the one we use as the Random Forest
prediction. This procedure is called ‘‘plurality voting.’’ The votes them-
selves give an idea about which other classes are contenders. For example,
suppose the Random Forest has 1000 trees of which 547 say ‘‘class 1,’’ 398
say ‘‘class 2,’’ and the rest say ‘‘class 3.’’ Then the Random Forest predic-
tion is ‘‘class 1,’’ with ‘‘class 2’’ a possible contender and ‘‘class 3’’ out of
the running. For a microarray that is part of the original data set, the
procedure is modified by only voting the trees for which this particular
microarray is out of bag.

Error Rate Estimates

Out‐of‐bag data are used to give an internal estimate of what the mis-
classification rate will be if the Random Forest is used to predict the classes
for a new data set from the same population as the original (Breiman and
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Cutler, 2005). To get this out‐of‐bag error rate, we use each tree to classify
the corresponding out‐of‐bag data (those that did not make it into the
bootstrap sample used to get that particular tree). For each tree, we compute
error rates for each class and an overall error rate, and we average over all
the trees in the forest.

Gene Importance

One interesting aspect of gene expression data is that genes with large
expression values or those with highly variable expression values are not
always the genes that are important for distinguishing the classes. Random
Forests uses an unusual but intuitive measure of the importance of each
gene in distinguishing the classes. Consider a single tree and think about
the microarrays that are out of bag for this tree. When we pass the out‐of‐
bag microarrays down the tree, we get the out‐of‐bag error rate for the tree.
Now think about randomly permuting the expression values of a particular
gene so that each out‐of‐bag microarray gets a random expression value for
this particular gene and all the other genes are kept at their original values.
Now we pass the modified out‐of‐bag data down the tree and compute its
error rate. If the new error rate is about the same as before, the gene does
not appear to be contributing to accurate classification. If, however, the
new error rate is higher than before, the gene expression values were useful
for accurate classification. The gene importance measure is obtained by
averaging the increase in the error rate over all the trees in the forest and
this average is used to rank the genes.

Unbalanced Data

Unbalanced data sets, where the class of interest is much smaller than
the other classes, are becoming more frequent. A naive classifier will work
on getting the large classes right while getting a high error rate on the small
class. Random Forests has an effective way of weighting the classes to give
balanced results in highly unbalanced data (Breiman and Cutler, 2005).
One reason to do this is that the important genes may be different when we
force the method to pay greater attention to the small class. Even in the
balanced case, the weights can be adjusted to give lower error rates to
decisions that have a high misclassification cost. For example, it is often
more serious to conclude incorrectly that someone is healthy than it would
be to conclude incorrectly that someone is sick.

Proximities

One of the difficult aspects of microarray data analysis is that with
thousands of genes, it is not obvious how to get a good ‘‘feel’’ for data
or a good impression of what is going on. Are there interesting patterns or
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structure s, such as subgroups within the known classes? Are there outliers ?
In a multi class situation , are some of the groups separat ed while oth ers
overl ap? Such questio ns are overw helming if we try to examin e them in
obvious ways. Rando m Forest s provide s a way to look at da ta to give some
insight into these que stions and to show fascinat ing an d unsuspect ed aspect s
of data. We do it by computing a meas ure of pro ximity or similari ty between
each pair of microar rays. We defin e the pro ximity between two microar rays
as the proportio n of the time that they end up in the same termina l node ,
wher e the propo rtion is taken ov er the trees in the forest. If two microar rays
are alwa ys in the same term inal node, their pro ximity will be 1. If they are
never in the same termina l node , thei r pr oximity will be 0. From these
proxim ities, we derive a distan ce mat rix an d use a techniqu e called ‘‘classical
multi dimensi onal scal ing’’ (see, e.g., Cox and Cox, 2001 ). Multidim ensiona l
scaling takes any set of distances between microar rays and creates a set of
points that can be plott ed in two or three dim ensions . Eac h point repres ents
one of the microar rays and the distan ces between the points repres ent, as
closely as possi ble, the dist ances betw een the corres ponding microar rays.
The resulting pict ure allows us to ‘‘look’ ’ at data in a ne w way.

A na tural question at this poin t is whether it woul d be just as goo d to
use multid imensi onal scaling on a conventio nal distan ce, such as Euclidean
distan ce or one of the other dist ances used comm only in clus ter analysis
(Gollub a nd She rlock, 2 006). This can cert ainly be done, but one of the
difficu lties is that a conventio nal distan ce can be dominated by noisy and
uninfor mative genes that can drown out the effe cts of the genes that are
useful . In an y case, it may be us eful to have an addit ional view that may
illuminat e different feat ures of the data.

Proximities are also used to detect outliers and provide a very effective
method for filling in missing data (Breiman and Cutler, 2005).
Unsupervised Learning and Clustering

This section describes how Random Forests can be used for unsuper-
vised learning. The presentation is much more brief because unsupervised
learning is much more exploratory than classification and not as well
understood.

Gollub and Sherlock (2006) describe standar d statistical meth ods for
cluster analysis in the microarray context. In the microarray context, we
might cluster either the microarrays or the genes.Clustering the microarrays
involves separating the microarrays into groups or ‘‘clusters’’ so that micro-
arrays in the same cluster have similar gene expression patterns, whereas
those from different clusters have quite different expression patterns. For
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example, we might cluster the microarrays in a medical example where we
think there may be distinct types of people in the population. Clustering the
genes involves finding groups of genes that have similar expression patterns
across the microarrays, which in this context might represent different
experimental conditions. In this case the goal might be to organize data to
facilitate understanding or to identify coregulated genes.

Unsupervised learning is sometimes equated with clustering, but it can
be viewed in the more general light of discovering multivariate structure.
Cluster structure is one form of multivariate structure, but not the only one.
One of the basic assumptions of all clusteringmethods is that there really are
clusters. If there are not clusters, cluster analysis might not make sense but it
might still make sense to ask whether there is an important multivariate
structure.

RandomForests can be used for unsupervised learningwithout assuming
a cluster structure (Breiman and Cutler, 2005). For simplicity, we describe
the procedure for exploring structure in the genes and note that structure in
the microarrays can be explored in an analogous way. To use Random
Forests for unsupervised learning, we label real data ‘‘class 1’’ and generate
synthetic data, which are labeled ‘‘class 2.’’ Then we use Random Forests to
see if we can separate the two classes. Synthetic data are generated from real
data by randomly permuting the expression values for each gene indepen-
dently. In this way, we form a new data set that maintains the distributions of
the individual expression values while destroying their multivariate struc-
ture. If the original expression values have no multivariate structure, syn-
thetic data will look similar to original data and Random Forests will
misclassify about half of the time. If, however, the misclassification rate is
much lower than 50%, there is evidence of some interesting structure and
we can use all the Random Forests tools (variable importance, proximities,
and multidimensional scaling plots) to investigate the structure. In fact, the
proximities can be used with a sensible clustering method to determine
clusters if a cluster structure turns out to be present.
Case Study: Prostate Cancer Data Set

We illustrate Random Forests using a data set on prostate cancer (Singh
et al., 2002). These data have 6033 gene expression values for 102 arrays (50
normal samples and 52 tumor samples). We used the normalization de-
scribed by Dettling (2004). Random Forests was run with 500 trees and
100 randomly chosen genes at each node. Code is available upon request.
The out‐of‐bag error rate was 7%, which is consistent with Dettling (2004),
who cited a 9% cross‐validation error rate. The four most important genes
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and their relationship to the groups. Solid black circles represent controls and open red circles

represent tumors.
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identified by Random Forests are plotted in Fig. 2. Solid black circles
represent controls and open red circles represent tumors. It is clear, from
both the error rates and the pictures, that Random Forests is able to classify
data very well and also to identify genes useful in this process. We compare
to performing a principal components analysis on the same gene expression
data. The first two principal components are shown in Fig. 3. It is apparent
that the dimensions of greatest variability in these data have very little to do
with the two groups.



FIG. 3. Prostate cancer data: the first two principal components of data and their

relationship to the groups. Solid black circles represent controls and open red circles represent

tumors.
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Conclusion

Random Forests provides a new and powerful approach to understanding
gene expression data. According to Dı́az‐Uriarte and Alvarez de Andrés
(2006): ‘‘Because of its performance and features, random forest and gene
selection using random forest should probably become part of the ‘‘standard
tool‐box’’ of methods for class prediction and gene selection with microarray
data.’’

Open source FORTRAN software for Random Forests is available
from www.math.usu.edu/�adele/forests. A commercial version, with an
easy‐to‐use interface, is available from www.salford‐systems.com. An R
package is also available, written by Liaw and Wiener (2001).
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