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P H Y S I C S I N M O L E C U L A R B I O L O G Y

Tools developed by statistical physicists are of increasing importance in the anal-
ysis of complex biological systems. Physics in Molecular Biology discusses how
physics can be used in modeling life. It begins by summarizing important biolog-
ical concepts, emphasizing how they differ from the systems normally studied in
physics. A variety of subjects, ranging from the properties of single molecules to the
dynamics of macro-evolution, are studied in terms of simple mathematical models.
The main focus of the book is on genes and proteins and how they build interactive
systems. The discussion develops from simple to complex phenomena, and from
small-scale to large-scale interactions.

This book will inspire advanced undergraduates and graduates of physics to
approach biological subjects from a physicist’s point of view. It requires no back-
ground knowledge of biology, but a familiarity with basic concepts from physics,
such as forces, energy, and entropy is necessary.
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Preface
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Introduction

This book covers some subjects that we find inspiring when teaching physics stu-
dents about biology. The book presents a selection of topics centered around the
physics/biology/chemistry of genes. The focus is on topics that have inspired math-
ematical modeling approaches. The presentation is rather condensed, and demands
some familiarity with statistical physics from the reader. However, we attempted
to make the book complete in the sense that it explains all presented models and
equations in sufficient detail to be self-contained. We imagine it as a textbook for
the third or fourth years of a physics undergraduate course.

Throughout the book, in particular in the introductions to the chapters, we have
expressed basic biology ideas in a very simplified form. These statements are meant
for the physics student who is approaching the biological subject for the first time.
Biology textbooks are necessarily more descriptive than physics books. Our sim-
plified statements are meant to reduce this difference in style between the two
disciplines. As a consequence, the expert may well find some statements objection-
able from the point of view of accuracy and completeness. We hope, however, that
none is misleading. One should think of these parts as first-order approximations
to the more complicated and complete descriptions that molecular biology text-
books offer. On the other hand, the physical reasoning that follows the simplified
presentation of the biological system is detailed and complete.

The book is not comprehensive. Large and important areas of biological physics
are not discussed at all. In particular we have not ventured into membrane physics
and transport across membranes, signal transmission along neurons and sensory
perception, to mention a few examples. While there are already excellent books
and reviews on all these subjects, the reason for our limited choice of topics is
more ambitious. The basic physics ideas that are relevant for molecular biol-
ogy can be learned on a few specific examples of biological systems. The ex-
amples were chosen because we find them particularly suited to illustrate the
physics.
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2 Introduction

We have chosen to place the focus on genes, DNA, RNA and proteins, and in
particular how these build a functional system in the form of the λ-phage switch.
We further elaborate with some larger-scale examples of molecular networks and
with a short overview of current models of biological evolution. The overall plan of
the book is to proceed from simple systems toward more complex ones, and from
small-scale to large-scale dynamics of biological systems.

Chapter 1 gives some impression of important ideas in biology. To be more
precise, the chapter summarizes those concepts which, we think, strike a physicist
who approaches the field, either because they have no counterpart in physics, or, on
the contrary, because they are all too familiar. The chapter grew out of discussions
with biologists, and we normally use it as a first introductory lecture when we
give the course. Of the subsequent chapters, we regard Chapter 7 on the λ-phage in
E. coli as especially central: it deals with the interplay between elements introduced
earlier in the book, and it contains a lot of the physics reasoning that the book is
meant to teach.

In Chapter 2 we describe the physics of polymer conformations, emphasizing the
interplay between energy and entropy and examining both the behavior of extended
polymers and how compact configurations may be reached. In the next chapters
we introduce and discuss the most important biological polymers: DNA, RNA and
proteins. Although the covalent bonds forming the polymer backbone have binding
energies �G > 1 eV, the form and function of these biomolecules is associated to
the much weaker forces perpendicular to the polymer backbone. These interactions
are of order kBT , and it is the combined effect of many of these forces that forms
the functional biomolecule. In Chapters 3–5 we characterize the stability of DNA,
RNA and proteins, with emphasis on the cooperativity responsible for this stability.

Biological molecules can be used for various types of computations. Chapter 3
includes a section on DNA computation and DNA manipulation in the laboratory.
This is in part a continuation of Chapter 2 (reptation), and also an introduction to
the computational aspects of molecular replication (the PCR reaction). Chapters
4–6, on the other hand, focus on proteins and protein folding and thus the functional
aspects are left to subsequent chapters. In this book we have addressed in consider-
able detail one of these aspects, namely how a protein may control the production
of another protein (Chapter 7). As we explain in Chapter 7, genetic control in-
volves mechanisms associated to both equilibrium statistical mechanics and to the
timescales involved in complex formation and disruption. Topics in this chapter
include a discussion of cooperativity, of target location by diffusion, of timescales
in a cell and of stability of expressed genetic states.

Chapter 7 also forms a microscopic foundation for the large-scale properties of
molecular networks, which we discuss in Chapter 8. Chapter 8 thus continues the
subject of genetic regulation and molecular networks, in part by venturing into the
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heat shock mechanism. This shows that protein folding is also a control mechanism
in a living cell, and it introduces a type of genetic regulation that was not treated in
the previous chapter: σ sub-units of RNAp, which control the expression of larger
classes of genes. Chapter 8 also discusses the larger-scale properties of genetic
regulatory networks, introducing a few recent physics attempts at modeling these.

Chapter 9 discusses evolution, with emphasis on the interplay between random-
ness and selection from the smallest to the largest scales. The chapter introduces
concepts such as neutral evolution, hill climbers and co-evolution, and uses these
concepts to discuss questions related in part to the concept of punctuated equilib-
rium, and in part to the origin of life in the form of autocatalytic networks. Thus
Chapter 9 introduces some simple models that allow us to discuss the nature of
the history leading to the emergence of life, and in particular aims at stressing
the importance of interactions and stochastic events on all scales of the biological
hierarchy.

In the Appendix we have a short introduction to statistical mechanics, including
the fluctuation–dissipation theorem and the Kramers escape problem; it is meant
to render the book self-contained from the point of view of the physics.
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What is special about living matter?
Kim Sneppen & Giovanni Zocchi

Life is self-reproducing, persistent (we are ∼ 4 × 109 years old), complex (of the
order of 1000 different molecules make up even the simplest cell), “more” than the
sum of its parts (arbitrarily dividing an organism kills it), it harvests energy and
it evolves. Essential processes for life take place from the scale of a single water
molecule to balancing the atmosphere of the planet. In this book we will discuss
the modeling and physics associated, in particular, to the molecules of life and how
together they form something that can work as a living cell. First we briefly review
some basic concepts of living systems, with emphasis on what makes biological
systems so different from the systems that one normally studies in physics.

Conceptually, molecular biology has provided us with a few fundamen-
tal/universal mechanisms that apply over and over. Some concepts, like evolution,
do not have counterparts in physics. Others, like the role of stochastic processes,
are, on the contrary, quite familiar to a physicist.

(1) Biology is the result of a historical process. This means that it is not possible to
“explain” a biological system by applying a few fundamental laws in the same way
that is done in physics. A hydrogen atom could not be different from what it is, based
on what we know of the laws of nature, but an E. coli cell could. In evolution, it is much
easier to modify existing mechanisms than to invent new ones. Thus on evolutionary
timescales nearly everything comes about by cut and paste of modules that are already
working. We will end the book with a chapter dedicated to evolutionary concepts and
models.

(2) The molecules of life are polymers. At the molecular scale, life is made of polymers:
DNA, RNA and proteins. Even membranes are built of molecules with large aspect
ratios. Perhaps mechanics at the nano-scale can work only with polymers, molecules
that are kept together by strong forces along their backbone, while having the property
of forming specific structures by utilizing the much weaker forces perpendicular to the
backbone. In molecular biology we witness nano-mechanics at work with polymers.
We will discuss polymers in Chapter 2, and thereby introduce concepts necessary

4



What is special about living matter? 5

for understanding DNA (Chapter 3), proteins (Chapters 4–5) and polymers in action
(Chapter 6).

(3) Genetic code. Information is maintained on a one-dimensional, double-stranded DNA
molecule, which will be discussed in Chapter 3. Thus the one-dimensional nature of
the information mirrors the one-dimensional nature of the polymers that make life
work. The DNA strands open for copying and transcribing, by separating the double-
stranded DNA into two single strands of DNA that each carry the full information.
The copying is done by DNA polymerase using the complementarity of base pairs.
Similarly the genetic code is read by RNA polymerase and ribosomes that again use
the matching of complementary base pairs to translate codons into amino acids. This
is usually summarized in terms of the central dogma

DNA → RNA → protein (1.1)

This is highly simplified: proteins modify other proteins, and most importantly proteins
provide both positive and negative feedback on all the arrows in (1.1). If one has only
DNA in a test tube, nothing happens. One needs proteins to get DNA → RNA, etc.
Then Eq. (1.1) should be supplemented at least by an arrow from protein to DNA.
Thus it is not always clear where the start of this loop is, and the whole scheme has to
be extended to the complicated molecular networks discussed in Chapter 8.

(4) Computation. A living cell is an incredible information-processing machine: an
E. coli transcribes about 5 × 106 genes during 1/2 h, i.e. about 10 Gb/h of informa-
tion. All this within a 1 µm3 cell, coded by about 5 × 106 base pairs. The information
density far outnumbers that in any computer chip, and even a million E. coli occupy
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Figure 1.1. Information in life is maintained one-dimensionally through a double-
stranded polymer called DNA. Each polymer strand in the DNA contains exactly
the same information, coded in form of a sequence of four different base pairs.
Duplication occurs by separating the strands and copying each one. This interplay
between memory and replication opened 4 billion years of complex history.



6 What is special about living matter?

much less space than a modern CPU, thus beating PCs on computation speed as well.
The levels of computation in a living system increase when one goes to eukaryotes and
especially to multi-cellular organisms (where each cell must have encoded awareness
of its social context also). The simplest organisms (e.g. the prokaryote M. pneumono-
miae with 677 genes) can manage essentially without transcription control. Larger
genome size prokaryotes typically need a number of control units that grow with the
square of number of genes. We discuss modeling of processes within living cells in
Chapter 7 and, to some extent, also in Chapters 6 and 8.

(5a) Life is modular. It is build of parts that are build of parts, on a wide range of scales.
This facilitates robustness: if a process doesn’t work, there are alternative routes to
replace it. Molecular-scale examples include the secondary, tertiary and quaternary
structures of proteins (complexes of proteins); they may include network modules,
such as sub-cellular domains, that each facilitate an appropriate response to external
stimuli. Most importantly, the minimum independent living module is the cell.

(5b) Life is NOT modular. Life is more than the sum of its parts. Removing a single protein
species often leads to death for an organism. Another observation is that the number of
regulatory proteins for prokaryotes increases with the square of the number of proteins
that should be regulated. Thus regulatory networks are an integrated system, and not
modular in any simple way. This is the subject for the chapter on networks.

(6) Stochastic processes play an essential role from molecules to cells; in particular,
they include mechanisms driven by Brownian noise, trial-and-error strategies, and the
individuality of genetically identical cells owing to their finite number of molecules.
An example of a trial-and-error mechanism is microtubule growth, attachment and
collapse (see Chapter 6). Individuality of cells has been explored by individual cell
measurements of gene expression, and variability of cell fate has been associated
with fluctuations in gene expressions. An example of such stochasticity includes the
lysis–lysogeny decision in temperate phages; see Chapter 7.

(7) Biological physics is “kBT -physics”. The relevant energy scale for the molecular
interactions that control all biological mechanisms in the cell is kBT , where T is room
temperature and k is the Boltzmann constant (kB NA = R, where NA is Avogadro’s
number and R is the gas constant; 1 kBT = 4.14 × 10−14 ergs = 0.62 kcal/mole at
T = 300 K ). This is not true for most of the systems described in a typical physics
curriculum, for example:
� the hydrogen atom, with an energy scale ∼ 10 eV, whereas kBTroom � 1/40 eV;
� binding energies of atoms in metals; covalent bonds: energy ∼ 1 eV;
� macroscopic objects (pendulum, billiard ball), where even a 1 mg object moving

with a speed of 1 cm/s has an energy ∼ 10−10 J ∼ 109 eV (1 eV = 1.602 × 10−19 J).
The approach is therefore different. For example, in the solid state one starts with a

given structure and calculates energy levels. Thermal energy may be relevant to kick
carriers in the conduction band, but kBT is not on the brink of destroying the ordered
structure.

Soft-matter systems often self-assemble in a variety of structures (e.g. amphiphilic
molecules in water form micelles, bilayers, vesicles, etc.; polypeptide chains fold to
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form globular proteins). These ordered structures exist in a fight against the disruptive
effect of thermal motion. The quantity that describes the disruptive effect of thermal
motion is the entropy S, a measure of microscopic disorder that we review in the
Appendix. So for these systems energy and entropy are both equally important, and
one generally considers a free energy F = E − T S. The language and formalism of
thermodynamics are effective tools in describing these systems. For example: free-
energy differences are just as “real” as energy differences; therefore entropic effects
can result in actual forces, as we discuss in Chapter 2.

Further reading

Berg, H. C. (1993). Random Walks in Biology. Princeton: Princeton University Press.
Boal, D. H. (2002). Mechanics of the Cell. Cambridge University Press.
Bray, D. (2001). Cell Movements: From Molecules to Motility. Garland Publishing.
Crick, F. H. C. (1962). The genetic code. Sci. Amer. 207, 66–74; Sci. Amer. 215, 55–62.
Eigen, M. (1992). Steps Towards Life. Oxford University Press.
Godsell, D. (1992). The Machinery of Life. Springer Verlag.
Gould, S. J. (1991). Wonderful Life, The Burgess Shale and the Nature of History. Penguin.
Howard, J. (2001). Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates.
Kauffman, S. (1993). The Origins of Order. Oxford University Press.
Lovelock, J. (1990). The Ages of Gaia. Bantam Books/W. W. Norton and Company Inc.
Pollack, G. H. (2001). Cells, Gels and the Engines of Life. Ebner & Sons Publishers.
Ptashne, M. & Gann, A. (2001). Genes & Signals. Cold Spring Harbor Laboratory.
Raup, D. (1992). Extinction: Bad Genes or Bad Luck? Princeton University Press.
Schrödinger, E. (1944). What is Life? Cambridge University Press.
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Polymer physics
Kim Sneppen & Giovanni Zocchi

Living cells consist of a wide variety of molecular machines that perform work
and localize this work to the proper place at the proper time. The basic design idea
of these nano-machines is based on a one-dimensional backbone, a polymer. That
is, these nano-machines are not made of cogwheels and other rigid assemblies of
covalently interlocked atoms, but rather are based on soft materials in the form
of polymers – i.e. one-dimensional strings. In fact most of the macromolecules
in life are polymers. Along a polymer there is strong covalent bonding, whereas
possible bonds perpendicular to the polymer backbone are much weaker. Thereby,
the covalent backbone serves as a scaffold for weaker specific bonds. This opens
up the possibility (1) to self-assemble into a specific functional three-dimensional
structure, (2) to allow the machine parts to interact while maintaining their identity,
and (3) to allow large deformations. All three properties are necessary ingredients
for parts of a machine on the nano-scale. In this chapter we review the general
properties of polymers, and thus hope to familiarize the reader with this basic
design idea of macromolecules.

Almost everything around us in our daily life is made of polymers. But despite
the variety, all the basic properties can be discussed in terms of a few ideas. Some
of these properties are astounding: consider a metal wire and a rubber band. The
metal wire can be stretched about 2% before it breaks; its elasticity comes from
small displacements of the atoms around a quadratic energy minimum. The rubber
band, on the other hand, can easily be stretched by a factor of 4. Clearly its elasticity
must be based on an entirely different effect (it is in fact based on entropy); see also
Fig. 2.1.

Polymers are long one-dimensional molecules that consist of the repetition of
one or a few units (the “monomers”) bound together with covalent bonds. You
can think of beads on a string. Figure 2.2 shows three examples; the first two are
synthetic polymers, the third represents the primary structure of proteins. What is
radically different between these molecules and all others is that the number of

8



Polymer physics 9

Three-dimensional structure

One-dimensional backbone

Figure 2.1. Illustration of the self-healing properties of a device with a one-
dimensional backbone. Thermal or other fluctuations may dislodge a single el-
ement, but if attached to a backbone it typically will move back into the correct
position (from Hansen & Sneppen, 2004).
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PVC

polyethylene
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Figure 2.2. Examples of polymers.

monomers, N , is large, typically N∼102−104 (but note that for DNA N can be
∼108). The single most dramatic consequence is that the molecule becomes flexible.
We normally think of the relative motion of atoms within a small molecule, say
CO2, in terms of vibrational modes. A polymer, however, can actually bend like a
string! There are more consequences. Perpendicular to the strong (covalent) forces
along the one-dimensional backbone, weaker forces may come into play; forces
that would be insignificant if the atoms were not brought together by the backbone
bonds. But given that the backbone forces these monomers together, the cooperative
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CH2 CH2 + CH2 CH2 CH3 CH2 CH CH2

Polymerization

Polycondensation

R1 R1 C

O

O R2

+ H2O

C

O

OH + OH       R2

Figure 2.3. How polymers are formed.

ϕ

θ

Figure 2.4. One mechanism for polymer flexibility: bond rotations.

binding of many of these weaker forces, both within the same molecule and between
different molecules, allows the enormous number of specific interactions found in
the biological world.

In this chapter we will study the simplest polymers, consisting of many identical
monomers (“homopolymers”). This allows us to gain insight into the interplay
between the one-dimensional polymer backbone and the possible three-dimensional
conformations of the molecule.

Polymers are formed by polymerization (e.g. polyethylene) or by polyconden-
sation (e.g. polypeptides); see Fig. 2.3. The single most important characteristic
of polymers is that they are flexible. The simplest mechanism for their flexibil-
ity comes from rotations around single bonds. Figure 2.4 shows three links of,
say, a polyethylene chain; the C atoms are at the vertices and the segments depict
the C–C bonds. The bond angle θ is fixed, determined by the orbital structure of
the carbon, but φ rotations are allowed. As a result, on a scale much larger than the
monomer size a snapshot of the polymer chain may look as depicted on the right in
the figure, i.e. a coil with random conformation. For other polymers, for example
double-stranded DNA, the chemical structure does not allow bond rotations as in
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Fig. 2.4. These polymers are generally stiffer (for example, double-strand DNA is
much stiffer than single-strand DNA), but still flexible at large enough scales; this
flexibility is similar to the bending of a beam.

In the next sections we will study some basic properties of polymer conformation,
such as how the size scales with length in a good solvent and polymer collapse in
a bad solvent, with simple models based on the random walk.

Question

(1) Discuss the information needed to assemble a machine sequentially in one dimension,
and compare it with that needed to assemble it directly in three dimensions. If there are
20 different building blocks, how many different neighborhoods would there be if each
building block is assigned a position on a three-dimensional cubic lattice?

Persistence length of a polymer

In order to quantify the stiffness, one introduces a length scale called the persistence
length lp of the polymer. Operationally lp is associated with the decay length of
correlations of directionality along the chain. Referring to Fig. 2.5, if e(x) is the
unit vector tangent to the chain at some position x along the chain (i.e. x is the
arclength), one considers the correlation function C(x, y) = 〈e(x) · e(y)〉. Here the
〈〉 refer to an ensemble averaging, that is an average over many different copies of
the polymer. The averaging can be replaced by a time averaging, and thus can be
done experimentally by measuring over long time over the same polymer. For a very
long homopolymer the correlation is solely a function of the distance |x − y|; and
the correlation function decays exponentially with distance, with a characteristic
scale lp

C(|x − y|) = 〈e(x) · e(y)〉 ∝ exp(−|x − y|/ lp) (2.1)

(see Question 4 on p.18). The physical meaning of lp is that if one walks along
the chain, after a distance of order lp the direction where the chain is pointing is
essentially uncorrelated to the direction at the starting point. An equivalent statement
is that the persistence length counts how short a segment can bend considerably
(e.g. in a circle) by a fluctuation of order kBT . Clearly this is a measure of the
stiffness of the molecule. For example, consider a simple mechanical model in
which the molecule behaves like an elastic beam; this is appropriate for double-
stranded DNA, for example. The work per unit length necessary to bend a beam
through a curvature 1/R is:

F

l
= B

R2
(2.2)
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Figure 2.5. Measurement of the persistence length of actin (Ott et al., 1993). One
takes the average of the cosines of the angle between the tangent vectors separated
by the contour length �s. This will decrease exponentially with contour length,
with a characteristic length called the persistence length of the polymer.

(quadratic in the curvature); B is called the bending modulus. Thus a fluctuation
F ∼ kBT will bend a length lp into a circle (R ∼ lp) for:

lp ∼ B

kBT
(2.3)

which shows the relation of the persistence length lp to the elastic parameter B.
For very flexible polymers the persistence length is normally inferred from the

size of the coil determined in a scattering experiment. For stiffer polymers, however,
it is sometimes possible to measure the persistence length directly from the relation
in Eq. (2.1); this has been done in the case of polymerized actin; see Fig. 2.5 (Ott
et al., 1993).

Actin is a polymer made of polymers. The actin monomer is a 375 residue
globular protein; it polymerizes in a two-stranded helix of 8 nm diameter that
can be many micrometers (microns) long. Such actin filaments form part of the
cytoskeleton, and are also a component of the muscle contraction system. Because
the polymer is so long and stiff, its contour can be visualized by fluorescence
microscopy. It is remarkable that one can thus directly “see” a single molecule! In
such experiments one observes, at any given time, a conformation of the molecule
as depicted in Fig. 2.5. From the images one constructs the correlation function
(Eq. (2.1)), averaged over an ensemble of conformations. The plot of ln(〈e(x) ·
e(y)〉) vs |x − y| is linear (Fig. 2.5), and from the slope one obtains a value for
lp, which for actin is lp ≈ 17 µm. Polymer stiffness varies over quite a range; for
comparison, the persistence length is ∼10 µm for polymerized actin, ∼100 nm
for double-strand DNA, and ∼1 nm for single-strand DNA; see also Figs. 2.6
and 2.7.
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e(x)

e(y)

Figure 2.6. Definition of the persistence length of a polymer, with unit vectors
at position x and position y along the backbone indicated. When the distance
x–y between two unit vectors is increased, the directions of the vectors become
uncorrelated. The scale over which this happens is the persistence length of the
polymer.

Length

P(bind)

500 bp

Figure 2.7. DNA has a persistence length of about 200 base pairs. DNA loops in a
living cell can result in non-local control of gene expression through DNA binding
proteins, which bind simultaneously to distant binding sites along the DNA. The
figure illustrates that there is an optimal loop size for such binding. For shorter
loops, significant energy is used to bend the DNA; for longer loops the entropy loss
becomes increasingly prohibitive. The effective concentration of sites is maximal
for a separation of about 500 base pairs (where it corresponds to an equivalent
concentration of 100 nm (Mossing & Record, 1986).

In summary, a polymer is stiff at length scales L 	 lp, and flexible at length
scales L 
 lp.

What are the different states of polymeric matter? In this book we encounter
mainly polymers in solution, whereas the one-component system (consisting only
of the polymer) can be in the liquid (polymer melt) or solid state. The solid can
be a crystal or, more commonly, a glass, or something in between. But there are
other states of matter that are peculiar to polymers. One can have a cross-linked
polymer melt (polymer network), for example rubber. The long polymer molecules
can bundle together to form fibers. Finally, a cross-linked polymer in solution forms
a gel (for example, jelly).
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Random walk and entropic forces

We now come back to the conformations of a polymer chain. For length scales
that are large compared with the persistence length lp, the simplest picture of the
conformation of the polymer is that of a random walk of step size given by the
Kuhn length lk ≈ 2lp. A random walk is most easily visualized on a lattice, let us
say a square lattice in two dimensions. You start at a site and walk for N steps; at
each step there is equal probability of moving in any of the four directions. The
question we want to answer is: what is the average size of the walk (the average
end-to-end distance, EED)? This will also be, in the ideal chain approximation, the
size of a polymer chain of N links.

To investigate the random walk properties of a chain we express the EED as:

R =
∫ L

0
�e(s)ds (2.4)

and can then calculate

〈R2〉 =
〈∫ L

0
�e(t)dt ·

∫ L

0
�e(s)ds

〉
(2.5)

=
∫ L

0

∫ L

0
〈�e(t) · �e(s)〉dtds =

∫ L

0

∫ L−s

0
exp(−t/ lp)dtds (2.6)

= 2lp

(
L

lp
− 1 + exp(− L

lp
)

)
≈ 2Llp for L 
 lp (2.7)

Alternatively one may consider a random walk on a square lattice with step length
lk. In that case the end point is given by

R =
N∑

i=1

li (2.8)

where {li : i = 1, 2, . . . , N } is the realization of the walk (each li of length lk). If
we average over an ensemble of realizations, obviously 〈R〉 = 0 because of the
symmetry, but the typical extension of the walk 〈|R|2〉1/2 is given by

〈|R|2〉 =
〈∑

i, j

li · l j

〉
=

N∑
i=1

〈|li |2〉 = Nl2
k = Llk (2.9)

where we have used 〈li · l j 〉 = 0 for i �= j because the steps are uncorrelated. Com-
paring Eq. (2.7) with Eq. (2.9) we see that one can define the Kuhn length

lk = 〈R2〉/L ≈ 2lp (2.10)

as the characteristic step length for a random walk along the polymer chain.
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Ree

Rg

Figure 2.8. Illustration of polymer with end-to-end distance R = Ree and radius
Rg indicated. In the standard treatment we will ignore this quantitative difference.
However, one should keep in mind that the measure of polymer extension R
involves the entire polymer, and not only its ends.

Thus for a polymer of contour length L 
 lk (and thus also 
 lp) the simplest
description of the conformation is in terms of a random walk of step size lk = 2lp

and with an end-to-end distance EED:

R = lk

√
L/ lk (2.11)

For the chain tracing a random walk, the end-to-end distance R =
√

〈R2〉 differs
from the radius of gyration Rg = 〈(1/N )

∑
i (ri − 〈r〉)2〉1/2 by a constant factor

R =
√

6 Rg (2.12)

The difference is illustrated in Fig. 2.8.
As an example, consider the single DNA molecule of the bacterium E. coli. The

molecule is about 5 × 106 base pairs (bp) long; the persistence length of DNA is
about lp = 200 base pairs (∼60 nm) (see Fig. 2.7). The Kuhn length is 400 bp (or
120 nm) and thus we obtain R = 60 ×

√
5 × 106/400 nm ∼6 µm. Thus DNA

inside the bacterium, which has a volume 1µm3, is much more condensed than it
would be outside the cell.

The random walk picture is only true until self-avoidance of the polymer begins
to count. This happens when the polymer becomes long. If we assume that each
monomer is a hard sphere of radius b then the polymer may be viewed as a system
composed of N = L/ lk reduced monomer units, each with an excluded volume
v = lkb2. In the next section we will investigate the behavior of such polymers. We
will do this by using entropy S ∝ ln(number of states), and the fact that entropy is
a source for expansion X and thus for a force ∝ dS/dX :

Entropy → Force (2.13)
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X

BS = k   ln(V )

dX

Figure 2.9. The ideal gas in a box exerts a pressure on the walls because entropy
increases with the volume.

P
F

R

X

Figure 2.10. Number of confirmations N of a polymer as function of end-to-
end distance X . Note that N ∝ P(X ), where P is the probability. When the
polymer is stretched to distance X it therefore exerts a force = −T (dS/dX ) =
T (d ln(P)/dX ) ∝ −kBT · (3X/Nl2

k) on its surroundings. Thus the polymer acts
as a spring with spring constant kspring = 3kBT/(Llk). Typical entropic spring con-
stants are a fraction of a pico Newton per nanometer (pN/nm).

Entropic forces are familiar from simple systems such as an ideal gas confined in a
volume (Fig. 2.9). The force exerted by the gas on the container is purely entropic,
because the energy of the ideal gas does not depend on the volume. In fact, an ideal
gas with N particles in the volume V has entropy S = constant + kB N ln(V ). Thus
it exerts a force on its surroundings given by

Force = −dF

dX
= T

dS

dX
= TA

dS

dV
= kB TAN/V = p A (2.14)

where p is the ideal gas pressure and A is the area that encloses it; F = const. − TS
is the free energy. Similarly we will see that a polymer behaves as an entropic coil,
which tends to be extended to a size that maximizes the number of microstates of
the polymer. The essence of the argument, which we present in more detail in the
next section, is as follows.

Consider the conformation of a polymer coil as a random walk (see Fig. 2.10). The
probability distribution for the end-to-end distance (EED) R is Gaussian, because
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R is the sum of many random variables. Thus

P(R) ∼ e
− 3R2

2〈R2〉 (2.15)

and we have already seen that 〈R2〉 = Nl2
k . The probability P(R) is proportional to

the number of states � with end-to-end distance R: �(R) ∝ P(R), and the entropy
is S = kB ln �. Therefore

S(R) = −kB
3R2

2Nl2
k

+ constant (2.16)

So even if the energy E is completely independent of conformation we still obtain
a free energy that depends (quadratically) on R:

F(R) = kBT
3R2

2Nl2
k

(2.17)

This means that the polymer chain behaves like a spring (an “entropic” spring):

restoring force = −dF

dR
= −3kBT

Nl2
k

R (2.18)

spring constant = 3kBT

Nl2
k

(2.19)

This effect is the reason for the incredible elasticity of rubber, and as we see
from Eq. (2.19), it is temperature dependent (the spring becoming stiffer at higher
temperature!).

A single polymer molecule makes a very soft spring. Consider, for ex-
ample, a polystyrene coil with N ∼ 103, lk = 1 nm; the size of the coil is
〈R2〉1/2 = lk N 1/2 ∼30 nm and the spring constant is 3kBT/(Nl2

k) ∼10−2 pN/nm,
since

kBT

1 nm
≈ 4 pN (at room temperature T = 300 K) (2.20)

The entropic elasticity of a single coil can be measured directly through micro-
mechanical experiments (Fig. 2.11).

Questions

(1) Assume that the 5 000 000 base pairs of a long DNA molecule homogeneously occupy
a spherical cell volume of 1 µm3. One base pair has a longitudinal extension of about
3.5 Å, and the persistence length is about 200 base pairs.
(a) What would be the root mean square (r.m.s.) radius for the DNA outside a cell?

What is the effect of excluded volume on this scale?
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Figure 2.11. Polymer entropic elasticity experiment by Jensenius & Zocchi (1997).
A micron-size bead is tethered to a surface by a single polymer coil. The interaction
potential between the bead and the surface is measured by analyzing the vertical
Brownian motion of the bead. After subtracting the contributions from electrostatic
and van der Waals forces (i.e. the measured potential in the absence of the tether),
one obtains a parabolic potential, which represents the entropic spring due to the
polymer.

(b) What is the average distance between nearby DNA segments inside the cell?
(c) DNA has a radius of about 1 nm. If everything is disordered what is the average

distance between nearby DNA intersections in the cell?
(2) Polymers in water can be charged, because of the dissociation of certain groups, e.g

carboxyl (−COOH ↔ COO− + H+) and amino groups (−NH2 + H+ ↔ NH+
3 ) in pro-

teins. From the electrostatic energy of the dissociated pairs, explain why this happens
only in water.

(3) Suppose there are two preferred conformations (energy minima) for the bond rotation
φ in Fig. 2.4, with an energy difference ε. If a is the monomer size, give an expression
for the persistence length in terms of ε and a.

(4) Consider the following model of a polymer in two dimensions:
� independent segments of length a,
� successive segments make a fixed angle γ with each other (either +γ or −γ with

equal probability).
Thus, γ is the bond angle and rotations by π around the bonds are allowed. Show
that the angular correlation function 〈n(0) · n(s)〉 decays exponentially along the chain
and calculate the persistence length (n(s) is the unit vector tangent to the polymer at
position s).

Homopolymer: scaling and collapse

Here we give a somewhat more sophisticated modeling of polymer conformations
that takes into account monomer–monomer interactions. This allows us to obtain
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the Flory scaling (which describes the behavior of a real polymer in a good solvent
quite well), and a description of the polymer collapse transition in bad solvents.

At high temperatures or in good solvents homopolymers behave essentially like
a random walk. However, this is not entirely true, because a polymer conformation
is not allowed to cross the same space point twice. This is called the excluded
volume effect, and it accounts for the fact that the polymer effectively occupies a
larger volume (is “swollen”) compared with a random walk. We will now repeat
Flory’s classic argument for polymer scaling, in a way that allows us to gener-
alize to the case where there is an attractive interaction between the monomers.
Subsequently we present the classical theory according to DeGennes for polymer
collapse.

The physics here is to count the number of states of a self-avoiding polymer, as a
function of its extension R, and then to find the value of R where the number of states
is maximal. The number of states as function of R is a Gaussian, exp(−R2/N ),
supplemented with a reduction factor of order (1 − v/R3)N because self-crossing
is suppressed (v is a microscopic volume). The famous Flory scaling then follows
from maximizing this product, whereas the discussion of collapse follows when
one includes a two-body attraction described by an energy term ∝ N 2/R3.

First consider a random walk in one dimension (see Fig. 2.12). The number of
walks with N+ steps to the right and N− steps to the left is

N1 = N !

N+!N−!
(2.21)

where N = N+ + N− is the total number of steps and the resulting net number of
steps to the right x = N+ − N−. Thus the number of states of a polymer of N units

Figure 2.12. The number of ways to go from A to B, given that we must take,
say, N steps, decreases greatly as the distance between A and B increases. This is
why homopolymers acts as entropic springs, with a tendency to keep end-to-end
distances to a minimum in one dimension.
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that is stretched to a position x in one dimension is

N1 = N !

((N − x)/2)!((N + x)/2)!
(2.22)

Using Sterling’s formula (n! = (n/e)n up to factors of order
√

n) this is rewritten as

N1 = (2N )N

(N − x)(N−x)/2(N + x)(N+x)/2
(2.23)

Rewriting again by dividing with N N in both nominator and denominator, we obtain

N1 = 2N

(1 − x/N )(N−x)/2(1 + x/N )(N+x)/2
(2.24)

Accordingly

ln(N1) = N

(
ln(2) − 1

2
(1 − x/N ) ln(1 − x/N ) − 1

2
(1 + x/N ) ln(1 + x/N )

)
(2.25)

which approximately (to first order in x/N , using ln(1 + x) = x − x2/2) is

ln(N1) = N (ln(2) − 1

2
(

x

N
)2) (2.26)

or, in fact, the standard Gaussian approximation gives for the number of states
associated with the end-to-end distance x :

N1 = 2N exp(− x2

2N
) (2.27)

This formula means that the probability distribution for the EED is a Gaussian of
width

√
N (i.e. 〈x2〉 = N ). This also follows from the Central Limit Theorem (the

EED is the sum of many independent stochastic variables) and the calculation of
the size of the random walk given in the previous section.

If we now want to extend to three dimensions keeping overall end-to-end length
at position x = Rx/ lk along the x-axis, y = Ry/ lk along the y-axis and z = Rz/ lk

along the z-axis, the number of states for such a configuration is

N (R)dR ∝
∫

dxdydz exp(− (x2 + y2 + z2)

2N
) (2.28)

where we integrate over all volume elements dxdydz within the radius R to R + dR.
Thus when we re-express the phase space volume of all points within R and R + dR,
include the Kuhn length lk directly, the normalization factors, and take into account
the coordination number C and polymer size

√
N , we have

Nfree(R) = 4πC N

(2πN )3/2
(R/ lk)2 exp(−3(R/ lk)2

2N
) (2.29)
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N (R)free

X

P(X)

multiplied
by

equals

R

N(R)

R

Figure 2.13. The number of states to extend a polymer to an end-to-end distance
R is given by the probability of reaching a specific point at distance R multiplied
by number of points at distance R. This is how we obtain Eq. (2.29).

with R2 = R2
x + R2

y + R2
z ; see Fig. 2.13. The factor 3 in 3R2 takes into account that

of the N possible moves along the polymer, N /3 are available for movement in each
direction. For simplicity in the following we write N for L/ lk. C is the coordination
number; that means the number of possible turns of the polymer at each step along
the polymer. For one dimension C = 2, whereas for a three-dimensional cubic
lattice we would normally set C = 6.

All this was for the ideal polymer chain on a square lattice (where we chose
one of three dimensions to move in for each step along the chain, giving C = 6
possible moves). Now we include corrections due to self-avoidance. Assume that
the free chain has C options for each subsequent link. With self-avoidance this is
immediately reduced to C − 1. Further, following Flory, we count the number of
available spots for the polymer as we lay it down, counting at each stage the average
occupation on the lattice:

� the first element can be anywhere, and the acceptance probability is 1;
� the second element can be everywhere except where the first was: the acceptance proba-

bility is 1 − v/V , where v is the excluded volume per monomer;
� the third element can be everywhere except at the positions of the first two, and the

acceptance probability is 1 − 2v/V ; and so forth.

This leads to the following overall phase space reduction factor for a polymer
with N monomers each filling a volume v, the overall polymer being confined into
a volume V :

χ = 1(1 − v

V
)(1 − 2v

V
)(1 − 3v

V
) · · · (1 − (N − 1)v

V
) (2.30)

which should then be multiplied by the above N , with volume V = R3. Let us
rewrite χ by multiplying and dividing by V N , vN :

χ = vN−1

V N−1

V

v
(
V

v
− 1)(

V

v
− 2)(

V

v
− 3) · · · (

V

v
− (N − 1)) (2.31)
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Compact polymer

Number of states = ((C − 1)/e)N

Figure 2.14. The number of different conformations of a compact polymer is
((C − 1)/e)N , where N is the number of independent segments and C − 1 is the
maximum number of new states that each consecutive segment can be in.

Because V/v ≥ N we can also write this as

χ = (V/v)!vN

(V/v − N )!V N
= e−N

(
V/v

V/v − N

)V/v−N

(2.32)

where we have used Sterling’s formula in the last equality.
For a compact polymer, that is where the N monomers each of volume v exactly

fill the volume V , i.e. V/v = N (and R ∝ N 1/3), Eq. (2.31) reduces to χ = e−N ;
see Fig. 2.14. The total possible overlapping or non-overlapping configurations are

Nfree = (C − 1)N−1 (2.33)

which reflects the fact that we first take one monomer, and then add subsequent ones
in any of the remaining C − 1 directions. Thus this relation has been obtained from
direct counting without regard to the end-to-end distance. Ignoring small corrections
due to differences between N and N − 1, we can now count the number of states
of a compact polymer:

N (compact polymer) = Nfree χ =
(

C − 1

e

)N

(2.34)

which was derived by Flory counting the number of possible states of a compact
polymer of length N (in units of the Kuhn length).

For a non-compact polymer, V 
 Nv and the sum of all monomers’ hard core
volumes fills only a small part of the total volume occupied by the polymer. Then
Eq. (2.32) gives

χ = e−N (1 − Nv

V
)N−V/v ∼ exp(−v

N 2

R3
) (2.35)

where in the last equality we have used V = R3, and R must now take the meaning
of the radius of gyration of the polymer; see Fig. 2.15. Notice that, on the contrary,
the first term of our free energy, ∝ exp(−R2), was deduced for the end-to-end
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Ree

Flory approximation

Rg

Figure 2.15. The Flory estimate of the number of self-crossings of a polymer.
The polymer is subdivided into elements, each with volume v given by the Kuhn
length (multiplied by the cross section of the polymer). Each of these elements
is assigned an independent position within a volume V set by the end-to-end
distance R (or rather the radius of gyration). The probability of avoiding overlap is
calculated from noting that each element has the chance (1 − Nv/V ) of avoiding
overlapping with other elements. The probability that none of the elements overlaps
is then (1 − Nv/V )N ∼ e−N 2v/V .

distance. If we simply assume that the end-to-end distance is representative of the
radius of gyration there is no problem, but that is not always true.

The equilibrium size of the coil is now found by maximizing the product of the
Gaussian chain with the penalty for self-exclusion for a polymer confined to be
within the end-to-end distance:

N ∝ R2

l2
k

· exp(−3(R/ lk)2

2N
) · exp(−v

N 2

R3
) (2.36)

Here we ignore prefactors that do not depend on R because they do not contribute
to the derivative below. Setting

dN /dR = 0 ⇒ 2

R
− 3R

Nl2
k

+ 3
vN 2

R4
= 0 (2.37)

we can examine the terms for large N . Assuming the last two terms cancel each
other we obtain R ∝ N 3/5, which is the Flory scaling. This result is consistent
for large N , because it implies that the first term, 2/R ∝ N−3/5, decreases faster
toward zero than the other two terms, both ∝ N−2/5. We will now derive this result
by expressing everything in terms of free energies, thereby in addition opening a
discussion of polymer collapse.

We parametrize the monomer–monomer interaction by the quantity ε:

ε = −
∫

d3xU (x) (2.38)

where U is the two-body short-range interaction potential (negative U → positive
ε means attraction). This allows a description in which the monomer–monomer
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interaction is either on or off; for a given monomer the interaction is on, with a
probability given by the frequency of colliding with other monomers, at a density
ρ = N/V , in a volume V = R3. The free energy is then

F = E − TS = −1

2
N ρ ε − kBT ln(N ) (2.39)

where the factor 1/2 in front of ε eliminates double counting. Notice the dimensions
in the above equation, where ε has the dimension of energy times volume. Again
writing only the R-dependent parts we obtain

F

kBT
= − ε

2kBT

N 2

R3
(2.40)

+ 3

2

R2

Nl2
k

− 2 ln(
R

lk
) + (

R3

v
− N ) ln(1 − vN

R3
) (2.41)

where we remind the reader that ε > 0 means attraction.
For R3 
 vN the formula can be rewritten (removing terms that do not depend

on R) as

F

kBT
= +1

2
(1 − ε

vkBT
)v

N 2

R3
+ 3

2

R2

Nl2
k

+ v2

6

N 3

R6
− 2 ln(

R

lk
) (2.42)

where we expand the logarithm to third order (since we keep three-body interac-
tion terms): ln(1 + x) = x − x2/2 + x3/3, i.e. ln(1 − (Nv/V )) = −((Nv/V ) −
1
2 (Nv/V )2 − 1

3 (Nv/V )3). Figure 2.16 illustrates the different terms in this expan-
sion. Notice that (1) the mean field excluded volume acts as a positive (repulsive)
interaction term between a monomer and the rest of the polymer, proportional to
N · N/R3; and (2) the Flory expansion also provides a repulsive three-body po-
tential where each monomer interacts with intersections of the polymer with itself
(with density N 2/R6).

Now let us consider the lessons to be drawn from the above mean field expression
(mean field because the repulsion is treated by ignoring those correlations between
monomers that should exist because of their position along the polymer). In all
cases we will compare the leading term that tends to expand the polymer (positive
pressure outwards, or dF/dR < 0) with the leading term that favors a compact
polymer.

(1) Flory scaling. The expression δ = 1 − (ε/kBT v) quantifies the net two-body interac-
tion between monomers. When it is positive the hard core repulsion wins; when it is
negative the attraction wins. At δ = 0 we are at the theta () point. For δ > 0 one
obtains Flory scaling by differentiation of Eq. (2.42) and subsequently we consider
the balance between the self-avoidance term δ · (N 2/R3) and the Gaussian limit on
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Figure 2.16. Free energies for a polymer with attraction between its elements. The
polymer is subdivided into elements each of size v that are assigned a hard core
repulsion, and an attraction (indicated by the light-shaded region around the dark
spheres). The third-order correction is a repulsive (positive) term corresponding to
simultaneous overlap of three spheres of radius v. In the bottom-right corner we
illustrate the two ingredients in polymer collapse, the hard sphere volume v and
the effective size of the attraction “volume” ε/(kBT ).

expansion −R2/N : R ∝ N 3/(2+d). This will be valid for large N , where for δ > 0, the
hard core will always dominate. Simulations of large polymers in three dimensions give
R ∝ N 0.58±0.005, whereas simulations in two dimensions are indistinguishable from the
Flory scaling result (Li et al., 1995). The Flory scaling describes a polymer that is
considerably swollen with respect to the “ideal” random coil result (R ∝ N 1/2). This
is not a small difference: for example, for N = 100 we have (100)0.5 = 10, but
(100)0.6 ≈ 16! This is the case of a polymer in a good solvent (ε small, or even ε < 0);
from the expression for δ we see that solvent quality can also be controlled by temper-
ature (high T → good solvent).

(2) Theta point. For δ = 1 − (ε/kBT v) = 0 the balance is determined by the phase space
expansion term 2 ln(R) against the R2/N term. This gives the random-walk scaling for
the polymer

R ∝ N 1/2 (2.43)

The temperature at which this happens is called the  point. For finite but small
δ ≥ 0 one has random-walk scaling out to a certain scale. In fact as long as δN 2/R3 <

R2/(Nl2
k) the self-repulsion can be ignored and the differential of the R2 term

should balance the differential of the logarithmic term. As long as this is the case,
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Figure 2.17. Homopolymer close to, but above, the  point. Small regions of
random coil are separated by longer stretches of polymer that prevents overlap on
larger scales.

R ∼ √
N and this condition gives δN 2−3/2 < 1. Thus we have random-walk scaling for

N < n∗ = 1

δ2
(2.44)

For N > n∗, Flory scaling takes over, giving a picture of compact random-walk blobs,
separated by stretches of self-avoiding polymer, see Fig. 2.17.

(3) Homopolymer collapse. For δ < 0 attraction dominates until the hard core repulsion
stops the collapse. At this point we have a compact polymer, and the term Nv/R3 is of
order 1, i.e. when the monomers are hard packed. Then R = N 1/3, making the collapsed
state distinctly different from the random walk coil at δ = 0. A similar investigation
in two dimensions (d = 2) would give R = N 1/2, which is the same scaling as for
the random walk (because the random walk is space filling in two dimensions, and
accordingly there is no transition from random coil to collapsed state). Thus a transition
exists only for d > 2. However, whether the transition is gradual or sharp depends on the
coefficient of the N 3/R6 term (DeGennes, 1985). In fact if there was no such hard core
repulsion, Eq. (2.42) would predict infinite negative F for R → 0, and thus complete
collapse. Following DeGennes we use

r = R√
Nlk

(2.45)

and the free energy for d = 3 is rewritten (with v′ = v/ l3
k) as

F

kBT
= +1

2
(1 − ε

kBT v′ ) · v′ ·
√

N

r3
+ v′2

6r6
+ 3

2
r2 − 2ln(r ) (2.46)

or

F

kBT
= 3

2
r2 − 2ln(r ) + W1(T )

2
·
√

N

r3
+ W2

2

1

r6
(2.47)
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where W1 = W1(T ) = 1 − ε/(kBT v′) ∝ T − , for T close to the theta point  =
ε/v′ = εl3

k/v and where

W2 = v′2

3
= 1

3

(
v

l3
k

)3

(2.48)

accounts for the hard core repulsion (all three-body interactions).
Equation (2.47) also follows from an expansion in powers of the monomer density,

where the first two terms are entropic, the third term represents monomer–monomer
interactions, and the fourth term represents a three-body interaction.

For any given temperature T (value of W1) the free energy F has at least one
minimum as a function of polymer extension r . If, for a given temperature, we set the
derivative dF/dr = 0 (equivalent of setting the pressure equal to zero), we obtain a
possible equilibrium value of r as

3r − 2

r
− 3

√
N

2

W1

r4
− 3W2

r7
= 0 (2.49)

This has unique solutions for most values of W1, but not all! When there are two solutions
the system can be in two local minima at the corresponding temperature. In the left-
hand part of Fig. 2.18 one sees the existence of such degenerate solutions as a local
minimum at a dilute state (large r ) and at a high-density state for some temperatures
around the  temperature where W1 ∼ 0. When there are two solutions, a temperature
change may induce a sudden shift between one optimum and the other at an entirely
different density. At this point the first derivative of F may change discontinuously,
and the system then experiences a first-order phase transition.

(3r2 − 2 log(r) + 0.5 × 0.0001/r 6 + y/r 3)

0.2 0.4 0.6 0.8 1r −0.4
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(3r2 − 5 log(r) + 0.5 × 0.0001/r6 + y/r 3)

W1 = (T − T0)/T0 W1 = (T − T0)/T0

Figure 2.18. The free energy of a homopolymer as a function of radius (α) and
temperature away from the  point. The figure on the right shows the effect of
increased logarithmic suppression of small end-to-end distances. Because there is
a barrier due to ln(R) versus W1/R3 an increased prefactor for ln(R) makes an
even higher barrier. The prefactor 2 was from the assumption that we identified
the radius with end-to-end distance, which is not strictly correct.
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Figure 2.19. Pressure P = dF/dV ∝ dF/dr = 0 curves for a homopolymer in
the deGennes mean field approach (plotting x ∝ (T − ) versus extension r us-
ing Eq. (2.50)). The different curves correspond to different values of the hard
core repulsion y (i.e. W2). For small y there are three solutions for each W1 and
accordingly the system tends to be either at the metastable solution at high r or
the metastable solution at low r . In that case, the system undergoes a first-order
transition at a temperature T close to (but slightly below) the  point.

In Fig. 2.19 we examine the paths in r, W1 that correspond to the local thermodynamic
optimum. This is done by rewriting Eq. (2.49) in the form

x = r5 − 2

3
r3 − y

r3
(2.50)

where y (=W2) contains the three-body interactions, and x contains the two-body
effects (x = W1

√
N/2) and thereby the temperature dependence (x ∝ T − ). From

this we learn that the collapse (r 	 1) happens to a state where x = −y/r3 with R =
N 1/3. In this densely packed state the bulk energy given by the last two terms of
Eq. (2.47) is

Fbulk

kBT
= x

N
+ y

2N 2
= − y

2N 2
= −(N/8)

W 2
1

W2
(2.51)

In Fig. 2.19 we examined the optimal paths for three different values of W2. In order
to have two solutions we need to have a small W2. Thus a first-order phase transition
demands a small W2 ∝ v2. As v includes excluded volume in terms of volume spanned
by one Kuhn length of the polymer, a first-order phase transition demands persistent
thin polymers. However, for proteins with their rather small size, one should not expect
much of a phase transition. In Fig. 2.20 we show equilibrium configurations of an
N = 500 homopolymer simulated by Metropolis sampling at different temperatures
around the transition temperature.

The precise value of W2 cannot be derived from this very simplified approach. In
particular we emphasize that the nature of the transition is closely linked to the prefactor
to the log; that is, our calculation of translational entropy by counting only the end-
to-end distance of the polymer. This is probably not realistic, as other segments of the
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T = 5T = 1

T = 6 T = 7

Figure 2.20. Simulation of homopolymer equilibrium configurations at four differ-
ent temperatures, by J. Borg (personal communication). One sees that the change
is fairly gradual with temperature, reflecting a soft transition. The simulation was
done with a volume per monomer equal to the distance between the monomers,
properties which are reminiscent of amino acids in proteins. The size of the
homopolymer was N = 500.

polymer also contribute. In the right-hand panel of Fig. 2.18 we show the rather large
increase in barrier that one obtains by using a factor 5 in front of ln(r ) in Eq. (2.47),
instead of the factor 2.

For experiments on homopolymer collapse see Wu & Wong (1998). They observed a
transition with a change in radius of factor 4 when using poly(N -isopropylacrylamide)
with N of order 105. Sun et al. (1980) found that a polymer of length 30 does not
collapse, one of length 1000 collapses its radius by a factor 3, whereas a polymer of
length 250 000 shows a factor 6 reduction in radius. The sharpness of the transition was
seen to increase with length.

Questions

(1) Assume that a polymer is confined inside a volume of radius R. Argue for the scaling
of the number of times that the polymer touches its boundary as R decreases far below√

N .
(2) What would be an appropriate correction to the free energy of a collapsing polymer if

one assumes that the decreased size of the global extension is parametrized in terms of
a polymer broken up into uncorrelated polymer segments?

(3) Repeat the DeGennes mean field model for collapse with the hereby modified collapse
free energy.
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DNA collapse in solution

DNA injected into a biological cell may collapse owing to the presence of other
molecules in the cell. This may occur even if there are no attractive interactions
between the DNA and the molecules. The reason for this resides in excluded vol-
ume effects, i.e. the fact that there is more volume available for the molecules in
solution when the DNA is condensed, than when it is extended (see discussion by
Walter & Brooks (1995)). In terms of our discussion in the previous section the
presence of M solute molecules in a cellular volume V has an entropy S given
by

exp

(
S

kB

)
∝ V M/M! ∝ 1/ρM (2.52)

When a DNA of N base pairs is present, each of the M molecules cannot be
within a volume δ from the DNA monomers. Thus if DNA is stretched out without
self-interactions, the volume available for the M molecules is

V ′ = V − Nδ (2.53)

which is somewhat smaller than V . Here δ ∼ π(rDNA + rprotein)2lk. Thus the pres-
ence of DNA is diminishing the entropy of the solution. Some of this entropy can
be regained by letting the DNA bend upon itself, thereby making excluded volumes
overlap in the intersections (Fig. 2.21). With a radius R for the DNA one obtains
an excluded volume

V ′ = V − Nδ + N 2

R3
δ2 (2.54)

where N (Nδ/R3) counts the number of intersections of DNA of length N , with
the volume Nδ in the volume R3. Note that in the intersection between two vol-
umes each of size δ randomly placed within volume R3 there is an expected

Overlap of
excluded volumes
--- less exclusion>

Figure 2.21. The excluded volume effect effectively squeezes the polymer into
a more compact state, thereby decreasing the reduction of volume for solute
molecules around the polymer.
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average overlap of δ2/R3. All units are in terms of the Kuhn length lk = 2lp of
the DNA. Each of these intersections has volume δ, giving the overlapping volume
(N 2/R3)δ2.

In the following discussion we will ignore the Nδ term because it is much smaller
than V . That is, Nδ is the volume spanned by the 1 mm DNA in an E. coli cell, with
a radius of about 5 nm, giving a volume 1000 µm · π(5 nm)2∼0.1 µm3 << the
V = 1 µm3 volume of an E. coli cell. Notice that Nδ is compared with V and not
the R-dependent term Nδ2/R3. This is because we separate the terms that depend
on R from the terms that have no R dependence.

The added free energy due to the excluded volume will be

F ∼ −kBT ln(V ′M/M!) (2.55)

∼ −kBT M ln

(
V (1 + N 2δ2

V R3
)

)
+ kBT M ln(M) − kBT M ln(e)

Expanding the log we obtain the polymer-dependent part

Fsolute ∼ −kBT
(Nδ)2

R3
ρ (2.56)

where N 2δ2/R3 counts the overlapping excluded volume, which multiplied by
ρ = M/V then counts the number of doubly excluded solute molecules. Notice
that this free energy acts as an attractive potential between the DNA monomers, i.e.
a positive ε. Thus solute molecules act as a condensing force on the DNA.

To estimate the size of this attractive potential we must compare it with the
repulsive potential from the excluded volume of the polymer with itself (from the
first term in Eq. (2.42)):

Fself-avoidance = kBT

2
· v · N 2

R3
(2.57)

where N is counted in units of the Kuhn length, and v is the volume of one Kuhn
length: for DNA, v ∼ 120 nm · π · 1 nm2 = 400 nm3. To estimate the relative
importance of attraction to self-avoidance we calculate the ratio of the attractive to
the repulsive term

ratio = Fsolute

Fself-avoidance
= 2

δ

v
δρ ∼ 60 (2.58)

where we use δ/v ∼ (rprotein + rDNA)2/r2
DNA ∼ 9 (the radius of DNA is 1 nm, and

of a protein typically 2 nm); further δρ is the number of proteins inside a volume of
length 120 nm and radius rprotein + rDNA ∼ 3 nm, i.e. δ ≈ 4000 nm3. The density of
proteins inside E. coli is of order 2 × 106 in a volume of 1 µm3, ρ = 2 × 10−3/nm3,
giving ρδ ∼ 10. Thus the attraction due to solutes is larger than the self-repulsion,
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Phage Phage

Figure 2.22. Visualization of the excluded volume effects imposed on injected
DNA into a bacterial cell where about 20%–30% of the volume is occupied by
proteins, thus presenting a huge excluded volume pressure on the injected DNA. It
is possible that excluded volume also plays a role in the condensation of bacterial
DNA into about 10% of the bacterial volume.

and in principle provides enough pressure on the DNA to collapse it into a dense
phase. In E. coli the DNA is indeed confined to a volume far smaller than the
Gaussian random chain expected at the  point. In fact, it is collapsed to about
a tenth of the cell volume, that is with an overall extension of about 0.5 µm. For
comparison, the  point end-to-end radius was about 25 µm.

Finally, we stress that factors other than osmotic pressure contribute to confine
the E. coli DNA. There are specific sites on the DNA bound to the cell membrane,
there is DNA supercoiling, and in E. coli there are certain histone-like proteins that
bind unspecifically to the DNA and bend it. Thus the relevance in vivo of the above
approach is speculative, and at most relevant to DNA injected into the living cell
by phages, for example. This is shown in Fig. 2.22.

Questions

(1) Estimate the free energy associated with self-avoidance and the free energy associated
with the excluded volume of proteins for E. coli DNA confined to a radius of 0.3 µm
inside an E. coli cell.

(2) Discuss two chromosomes of DNA, each with 5 000 000 bp confined to the same cell
volume of 1 µm3 in a 30% solution of proteins. Will they segregate or mix?

Helix–coil transition

The helix–coil transition is one of the simplest transitions observed for (some)
polymers. It is a transition between a random coil state similar to the self-avoiding
polymer described in Chapter 1, and a helix state where subsequent monomers
make a short turn stabilized by monomer–monomer binding. For a polypeptide
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RR

: Covalent bond

R: Side chain, can be anything from single H to some CCC.

: Hydrogen bond
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Figure 2.23. Left: peptide backbone with possible hydrogen bonds indicated by
dashed lines. Hydrogen bonds appear between a hydrogen donor (N) and an ac-
ceptor (O). The first backbone represents an energy gain of only one unit, but an
entropy loss of order of four units. Subsequent hydrogen bonds each cost only one
entropy unit. Right: geometry of the hydrogen bonds formed between the peptide
backbone of a polymer. The donor and acceptor atoms are on opposite sides of the
polymer, and perpendicular to the backbone. Thereby a helix is favored. As dis-
cussed later, the constraints imposed by H-bonds also leads to a competing state,
the so-called β-sheets.

chain, the helix state is characterized by hydrogen bonds between monomers that
are only a few amino acids away along the polymer chain (see Fig. 2.23). There is
an entropic cost in forming a helix turn, and the overall balance between a helix
state with high binding energy and a coil state with high entropy makes a transition
possible.

Helices are not seen only in homopolymers, but are also important struc-
tural elements of proteins; α-helices were predicted by Pauling & Corey (1951).
Their structure is closely associated to hydrogen bonds between amino acids; see
Chapter 4.

Experimentally the helix content is measured by using the fact that the helix
state absorbs polarized light differently from the coil state. Circular dichroism (CD)
spectra are different for the random coil, α-helix or β-sheet. A detailed account of
this technique is given by Cantor & Schimmel (1980).

The helix–coil transition can be parametrized in terms of two quantities (Zimm,
1959; Scheraga, 1973): an entropy-cost term σ that counts the loss in confor-
mational entropy to form the first bond, and an energy-gain term that counts the
energy for each subsequent addition of a bond. In more detail, let us normalize
the statistical weights relative to the coil (c) state, i.e. we assign to it a free energy



34 Polymer physics

Fc = 0 and therefore a statistical weight exp(−Fc/kBT ) = 1. To initiate a helix
then costs free energy Fch = Fhh − TSch with a corresponding statistical weight
exp(−Fch/kBT ) = σ s; to continue a helix costs free energy Fhh, with a statistical
weight exp(−Fhh/kBT ) = s. From the above, σ < 1 always, while s can be <1
(then there is no transition to a helix state), or >1. Thus:

� σs = statistical weight to initiate a helix in the coil region,
� s = statistical weight to continue the helix.

A small σ reflects a nucleation barrier. Think, for example, of an α-helix in a
polypeptide. To start a helix you have to lock in place at least four residues (because
each residue forms a hydrogen bond with the fourth along the chain, the average
winding number of the α-helix is in fact 3.6). Taking a reasonable number of
minimum-energy orientations for each amino acid relative to the previous one to
be ∼6, a naive estimate of the conformational entropy loss is

�S/kB ∼ −3.6 ln(6) ⇒ σ = e�S/kB ≈ 10−3 (2.59)

To relate σ and s to experimental data on the helix content in polymers at various
temperatures we now review the helix–coil transition model. This will also allow
us to introduce some tools from statistical mechanics.

Denoting a helix segment with “h” and a coil segment with “c”, an example of
a configuration of a polymer of length 30 is

cccccccchhhhhhhhhhccccchhhhhhh

The statistical weight of this segment is σ j sk = σ 2s17, where j is the number of
initiated helix segments (which is 2 in the above example), and k is the number of
helix monomers (17 in above example).

We will now solve the helix–coil system, and thereby illustrate the usefulness
of partition sums, and also show how transition matrix methods are used. To solve
the model we have to calculate the statistical weight for all possible sequences {s}
of h and c, and calculate the partition sum

Z =
∑

{sequences s}
exp(− F{s}

kBT
) (2.60)

where we express the total partition sum in terms of a sum of coarse-grained partition
sums exp(−F(s)/kBT ), each associated with one of the possible helix–coil states
of the system.

The total partition sum Z can be calculated explicitly by the so-called transition
matrix method. This is based on setting up a recursion relation, which tells you
the partition sum for the system of length N + 1 if you know the partition sum for
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the system of length N . From σ and s introduced above, we can write down the
statistical weights associated to the four possible transitions.

c → h: σ s
c → c: 1
h → h: s
h → c: 1

Given a system of size N , we denote as Zc(N ) the statistical weight that the last
state in the sequence is in the coil state. The statistical weight that the last state is
in a helix state is denoted Zh(N ). Then

Z (N ) = Zc(N ) + Zh(N ) (2.61)

is the total partition sum for the system of size N . Now the basic trick is to use the
transition probabilities above and decompose the statistical weight of a system of
size N + 1 as

Zc(N + 1) = Zc(N ) + Zh(N ) (2.62)

Zh(N + 1) = sσ Zc(N ) + s Zh(N ) (2.63)

The first equation reflects that the coil state at position N + 1 can be obtained from
either a helix or a coil state at position N . In any case there is no cost, because the
coil state is the reference state. The second equation reflects that either we have
to continue a helix from position N, or we have to initiate a new helix at position
N + 1. The above set of recursion relations is called a transfer matrix relation,
because it can be written as(

Zc(N + 1)
Zh(N + 1)

)
= M

(
Zc(N )
Zh(N )

)
(2.64)

with a transfer matrix

M =
(

1
σ s

1
s

)
(2.65)

Because Zc(1) = 1, Zh(1) = σ s, and formally(
1
σ s

)
= M

(
1
0

)
(2.66)

we can write the recursion formula as(
Zc(N )
Zh(N )

)
= MN

(
1
0

)
(2.67)
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Now the basic idea is that we are interested in the large N limit. Thus we are
interested in the result after we have multiplied this matrix by itself many times.
The overall product is then determined by the largest eigenvalue λmax, because
λmax > λmin implies that λN

max 
 λN
min. The eigenvalues λ are determined by the

equation

det(M − λ1) = 0 (2.68)

which in this case reads

(1 − λ) · (s − λ) = σ s (2.69)

or

λ = 1

2

(
s + 1 ±

√
(1 − s)2 + 4σ s

)
(2.70)

Only the largest eigenvalue matters in the large N limit, and the total statistical
weight of all configurations is

Z (N ) = Zc(N ) + Zh(N ) ∼ λN
max (2.71)

The free energy is therefore

F = −kBT ln(Z ) = −kBT N ln(λmax)

= −kBT N ln(
1

2
(1 + s +

√
(1 − s)2 + 4σ s)) (2.72)

Now we ask what to use this total statistical weight Z for? The free energy is
anyway only defined relative to a reference state (here the coil state cccccc . . . cccc).
To understand this is important, and it emphasizes a fundamental property of parti-
tion sums as so-called generating functions. The point is that the partition sum can
also be expressed as

Z =
∑

� jkσ
j sk (2.73)

where j is the number of helix segments, and k is the total number of monomers
in the helix state; � jk is the corresponding number of configurations. Now the
quantity

d ln(Z )

d ln(s)
= s

Z

dZ

ds
=

∑
� jkkσ j sk∑
� jkσ j sk

= 〈k〉 (2.74)

determines the average of k. Thus the average helix content of the polymer is

 = 1

N

d ln(Z )

d ln(s)
= s

2λmax

(
1 + s + 2σ − 1√

(1 − s)2 + 4σ s

)
(2.75)
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Similarly the average frequency of helix initiation is

〈 j〉 = 1

N

d ln(Z )

d ln(σ )
= sσ

λmax

√
(1 − s)2 + 4σ s

(2.76)

These two equations represent the predictions of the helix–coil model.
Before discussing the temperature dependence of the parameters, let us stress the

operational range for s and σ . Note that s counts the statistical weight of continuing
a helix. If s < 1 a helix will tend to break up; if s > 1 helices tend to grow. In fact
from the equations above you can see that for s 	 1 then  → 0, while s 
 1
implies  → 1.

The value of σ is typically 	 1, reflecting a nucleation threshold for initiating
helices along the polymer. The smaller the value of σ , the longer the interval between
subsequent helix segments, as we can see from 〈 j〉 ∝ σ . In fact the helix–coil
transition behaves somewhat as a first-order phase transition as long as N < 1/σ ,
where there is at most one helix segment in the system. However, when N > 1/σ ,
there will be several nucleation sites along the polymer, and the sharpness of the
transition will not increase with further increase in N .

Experimentally the helix–coil transition can be induced by varying tempera-
ture. In terms of the parameters in the model, changing temperature changes s,
while σ remains fairly constant. Let us investigate the connection between s and
T around the transition temperature Tm, i.e. for s ≈ 1; remember that σ 	 1,
and consider the case N < 1/σ . Then we have a problem similar to a chemical
equilibrium between h and c, and we can consider the corresponding equilibrium
constant

K = e−�G/kBT (2.77)

where �G is the free energy cost of transforming a coil into a helix. Assuming this
equilibrium constant obeys a van’t Hoff relation1

d ln(K )

dT
= �H

kBT 2
(2.78)

and noting that the equilibrium constant for adding one helical unit to a preexisting
helix is s, we write

d ln(s)

dT
= �H1

kBT 2
(2.79)

1 Note that d ln(K )/dT = −(d�G/T )/kBdT = −d/dT ((�H/kBT ) − (�S/kB)) = �H/kBT 2, where in the last
equation we use (d�H/T dT ) = d�S/dT . Both in fact equal Cp/T . Alternately the derivation follows directly
from d ln(Z )/dβ = −〈E〉.
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Figure 2.24. Left: model-predicted fraction of polymer in the helix state as a
function of the control parameter, for different values of helix initiation costs
(from Eq. (2.75)). For σ = 1 this fraction is linear around the transition, but on
a wider scale behaves as s/(1 + s). For small σ only very long helix segments
contribute to Z , and therefore the helix fraction increases as σ → 0 for s > 1.
Right: the data used here are the temperature-induced coil-to-helix transition of
the polypeptide poly-gamma-benzyl-l-glutamate in mixed dichloroacetic acid–
ethylene dichloride solvent (Zimm et al., 1959). Usually the helix fraction would
decrease with T , but for this polymer the helix-stabilizing forces increase more
with temperature than the contribution from the entropy.

where �H1 is the enthalpy cost of adding one helical unit (which can be measured
experimentally), and where we know that s = 1 at the transition point Tm. Therefore:

ln s(T ) = 1

kB
�H1

∫ T

Tm

dT

T 2
= (�H1)

T − Tm

kBT Tm
(2.80)

from where we find a roughly linear dependence of s on T around the transition
temperature Tm:

s(T ) = 1 + ε with ε ≈ �H1

kBT 2
m

(T − Tm) (2.81)

The value of σ is constant, because it reflects an entropy cost that depends weakly
on the absolute temperature T , and is not proportional to Tm − T . Figure 2.24 shows
the sharpness of the transition for different values of σ .

Finally we give the experimental values of helix parameters for amino acids, as
measured by Scherage (1973). Even for the best helix formers, σ and (s − 1) are
surprisingly small. Helices of amino acids are essentially not stable by themselves,
at least not for helix sizes that are characteristic in proteins (see Question 3 below).

Glycine σ = 0.000 01 s = 0.62
l-Alanine σ = 0.0008 s = 1.06
l-Serine σ = 0.000 75 s = 0.79
l-Leucine σ = 0.0033 s = 1.14
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One lesson from this section was in part methodological, an illustration of the
use of transfer matrix and partition functions as generating functions. The other
lesson was that the helix–coil transition, to a degree set by σ , is cooperative, but it
is not a phase transition. Helix–coil parameters for amino acids demonstrate that
secondary structures in proteins are not stable by themselves.

Questions

(1) Estimate the conformational pressure of confining a random polymer of length L in a
box of size X , both measured in units of the Kuhn length.

(2) Discuss the  point transition in two dimensions and in four dimensions.
(3) Calculate minimal stable α-helix of the four monomers above.
(4) Consider the formal steps that we glossed over in Eqs. (2.68)–(2.72). The total partition

sum was

Z (N ) = Zc(N ) + Zh(N ) = (1, 1)

(
Zc(N )
Zh(N )

)
= (1, 1)MN

(
1
0

)
(2.82)

When diagonalizing M we apply the transformation T : M → T−1MT = Λ such that

Λ =
(

λmax

0
0

λmin

)
(2.83)

Where MN = TT−1MTT−1 . . . MTT−1 = T�N T−1 and thus

Z (N ) = (1, 1) T
(

λN
max

0
0

λN
min

)
T−1

(
1
0

)
(2.84)

Calculate explicitly T in the above expression, and examine to what extent Z (N ) ≈ λN
max.

Collapse versus helix formation

For protein folding, both polymer collapse and the formation of helix structures are
important. A model encompassing both effects may contain a spherically attrac-
tive potential (positive ε) and a directed hydrogen-bonding potential associated to
hydrogen donors and acceptors along the polymer chain. For the peptide backbone
the donors (N) and acceptors (C=O) are directed opposite and perpendicular to the
side chain.

We here adopt a lattice implementation of polymers that is widely used in the
literature, originally introduced by Flory (1949), Ueda et al. (1975) and Lau &
Dill (1989). The polymer is defined by a string of monomers placed on a three-
dimensional cubic lattice. The energy of a configuration {ri } is defined by the
Hamiltonian

HVW = −εVW

∑
i< j

δ(|ri − r j |−1) (2.85)
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where
∑

includes all monomer pairs, the δ function ensures contributions from
nearest neighbors only and εVW represents the strength of the spherically symmetric
potential.

In addition to HVW, one may introduce an energy term associated with the di-
rected interaction that hydrogen bonds would correspond to (Pitard et al., 1997;
Borg et al., 2001). To each monomer i we assign a spin si representing a hydrogen
donor–acceptor pair. This can be easily pictured as a spin because of the opposite di-
rections of the carbon–oxygen Ci=O bond (H acceptor) and the nitrogen–hydrogen
Ni+1−H bond (H donor) on the peptide backbone. The spin is constrained to be
perpendicular to the backbone. The hydrogen bond part of the Hamiltonian reads
(Borg et al., 2001):

HH = −εH

∑
i j

δ(si · s j − 1)δ(|ri − r j | − 1), (2.86)

where only si that are perpendicular to the backbone are allowed, and thus
interactions along the backbone are automatically ignored. The Hamiltonian
H (εVW, εH) = HVW + HH specifies the energy of any homopolymer configuration
including hydrogen bonds.

Figure 2.25 shows examples of structures obtained at low temperatures using
H(0, 2) and H(1, 2), respectively. In the first case, with only hydrogen bonding

1

36

22

1

36

10

(a) (b)

Figure 2.25. Collapsed states of a homopolymer with hydrogen bonds; the right-
hand side is the ground state. Both folds displayed here reveal long-range order. In
particular, (b) displays an up–down symmetry and an organization where sheets
are on one side of the structure and the backbone connections between layers are
concentrated on the opposite side. Figure from Borg et al. (2001).
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energies, one can observe helix-like structures denoted p-helices (because they are
caused by lattice constraints and are not true helices). For a given polymer topology
one can quantify these helices by counting the number of bonds involved in them.
Consider Fig. 2.25(a) where the monomers between 2 and 7 initiate a pseudo-
helix, where neighbors 2–5 and neighbors 4–7 contribute. The p-helix continues
until monomer 22, which breaks it because this monomer is not a neighbor to any
members of a p-helix. A new pseudo-helix is initiated at monomer 25 and lasts
throughout the chain.

Figure 2.25(b) displays the ground state of a polymer where fairly large attractive
van der Waals interactions are included. In this case one can observe structures
resembling β-sheets. The sheets can be either parallel or anti-parallel, as in natural
proteins, in both cases quantified by identifying at least three pairs of consecutive
neighbors (for a parallel sheet it would be {(i, j), (i + 1, j + 1), (i + 2, j + 2)} and
for an anti-parallel sheet it would be {(i, j), (i + 1, j − 1), (i + 2, j − 2)}). In Fig.
2.25(b), for example, monomer pairs (1, 10), (2, 9), (3, 8) and (4, 7) contribute to an
anti-parallel sheet that gets broken at monomer 10. Monomers 6–13 also participate
in an anti-parallel sheet with the layer above.

Both the folds displayed in Fig. 2.25 reveal long-range order. The key result is that
spin interactions induce large-scale organization even in the case of homopolymer
collapse.

Figure 2.26 shows the number of bonds involved in secondary structures (I ), as
function of total number of bonds (NB). The dependence on the number of bonds
is obtained by thermal averaging as a function of temperature. The choice to use
NB rather than the temperature as a free variable is more convenient, because we
are comparing systems with different energy scales. The three curves represent

s

N
B

N
B

I

Figure 2.26. State of homopolymer as function of number of contacts, for various
ratios of directed (hydrogen) to spherical symmetric (van der Waals) bindings.
I denotes structures that are associated to helix or sheet structures. S is the total
entropy of the chain given the constraint imposed by number of contacts NB. Figure
from Borg et al. (2001).
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the case where only van der Waals energy is present (ν ≡ εH/εVW = 0, full line),
where van der Waals and spin coupling energy are present (ν = 2), and the case
where only spin coupling is present (ν = ∞). For any degree of compactness the
amount of secondary structure increases with increasing spin coupling. In general,
it also increases with compactness; however, a back bending for the ν = 2 case is
present at nearly maximal compactness. The back bending for ν = 2 in both plots
is the mark of a phase transition. The transition takes place at almost maximum
compactness (which is associated with low temperature), where entropy is reduced
abruptly while compactness changes to a minor extent. In fact, this transition dis-
tinguishes between two types of compact polymers, a phase in which helices are
predominant, and an ordered, highly symmetric phase, rich in β-sheets. For real
proteins, some are dominated by α-helices, whereas others are dominated by β-
sheets.
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DNA and RNA
Kim Sneppen & Giovanni Zocchi

DNA

The molecular building blocks of life are DNA, RNA and proteins. DNA stores
the information of the protein structure, RNA participates in the assembly of the
proteins, and the proteins are the final devices that perform the tasks. Two other
prominent classes of molecule are lipids (they form membranes and, thus, com-
partments), and sugars (they are the product of the photosynthesis; ultimately life
depends on the energy from the Sun). Sub-units from these building blocks show up
in different contexts. For example ATP is the ubiquitous energy storing molecule,
but adenine (the A in ATP) is also one of the DNA bases; similarly, the sugar ribose
is also a component of the DNA backbone.

Before entering into the details of the basic building units, let us list their re-
spective sizes. We do this with respect to their information content. DNA is used as
the main information storage molecule. The information resides in the sequence of
four bases: A,T, C and G. Three subsequent bases form a codon, which codes for
one of the 20 amino acids. The genetic code is shown in Table 3.1. The weight of a
codon storage unit is larger for DNA (double stranded and 330 Da per nucleotide,
1 Da = 1 g/mol) than for RNA (single stranded) and proteins.

DNA: 2000 Da per codon,
RNA: 1000 Da per codon,
proteins: 110 Da per amino acid.

Thus whereas a 300 amino acid protein weighs 33 kg/mol, the stored information
at the DNA level has a mass of 600 kg/mol.

The peculiar structure of biological macromolecules represents the existence
of two distinct energy scales. The polymer backbone is held together by covalent
(strong) bonds, i.e. energies of order ∼200 kcal/mol (∼10 eV). The secondary and
tertiary structure, i.e. the DNA double helix (see Fig. 3.1), the folded form of a
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Table 3.1. The genetic code

5′ end U C A G 3′ end

U Phe (F) Ser (S) Tyr (Y) Cys (C) U
U Phe (F) Ser (S) Tyr (Y) Cys (C) C
U Leu (L) Ser (S) STOP STOP A
U Leu (L) Ser (S) STOP Trp (W) G

C Leu (L) Pro (P) His (H) Arg (R) U
C Leu (L) Pro (P) His (H) Arg (R) C
C Leu (L) Pro (P) Gln (Q) Arg (R) A
C Leu (L) Pro (P) Gln (Q) Arg (R) G

A Ile (I) Thr (T) Asn (N) Ser (S) U
A Ile (I) Thr (T) Asn (N) Ser (S) C
A Ile (I) Thr (T) Lys (K) Arg (R) A
A Met (M) Thr (T) Lys (K) Arg (R) G

G Val (V) Ala (A) Asp (D) Gly (G) U
G Val (V) Ala (A) Asp (D) Gly (G) C
G Val (V) Ala (A) Glu (E) Gly (G) A
G Val (V) Ala (A) Glu (E) Gly (G) G

Each of the 64 different triplets read from the 5′ end to the 3′ end corresponds
to one amino acid. AUG also codes for the start of translation. Amino acids
are building block of proteins. Some properties of the corresponding amino
acids can be seen in Table 4.1.

Figure 3.1. A little more than one turn of the DNA double helix. The left-hand
panel shows the two strands with bases that match the complementary bases. The
right-hand panel shows the DNA external surface that is accessible for a water
molecule.
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protein, etc., as well as molecular recognition processes, depend on weak bonds
(e.g. hydrogen bonds), of order 1–2 kcal/mol (1/10 eV). As room temperature
corresponds to an energy of 0.617 kcal/mol, the structure of a large functional
biomolecule depends on many such weak bonds. Functional interactions of large
biomolecules are likewise mediated by many such weak bonds, in order to reach
a somewhat universal strength of order 10–20 kcal/mol. The understanding of
these weak interactions is complicated by the fact that all biological processes take
place in water, and interaction with water is a key uncertainty in all attempts at
exact modeling. We will see that the main forces responsible for the functional
behavior of biological macromolecules are associated with hydrogen bonds, or the
absence of hydrogen bonds. That is, a main driving force for polymer collapse is
hydrophobicity associated with deficiency in hydrogen bonds compared with the
surrounding water, whereas the internal order is mostly associated with hydrogen
bonds within the polymer.

In this chapter we will briefly introduce the structure of DNA and RNA, and
then go on to discuss their physical properties such as rigidity, the melting tran-
sition of DNA, and RNA folding. These aspects, as well as the mechanism for
diffusion of DNA through a gel, which is called reptation and forms the basis for
gel electrophoresis, can be described in terms of simple statistical mechanics mod-
els. Further, these processes are technologically important. However, the reader
may keep in mind that the biologically relevant properties are much more related
to the structure of DNA and RNA at the conditions in the living cell. For DNA,
supercoiling is also of relevance. For RNA, hairpin structures and their interaction
with the translation and translational machinery are particularly important.

Questions

(1) The human genome has 3 × 109 base pairs. What is the weight of one copy of the
human DNA? DNA has a diameter of 2 nm = 2 × 10−9 m. If one copy of the human
genome is plated densely on a surface, what area would it fill? How many species with
the same DNA content as humans can be plated on one CD?

(2) Estimate the information content in a CD and compare this to the information in the
score needed to generate the music of a typical piano piece.

(3) The reaction rate in chemistry can be expressed as rate = ν0exp(−�G/kBT ), where ν0

is a characteristic vibration frequency. A length scale of molecular interaction is of the
order 1 Å.
(a) First estimate kBT in kJ/mol.
(b) Now let the typical energy for a fluctuation be ∼kBT and assume that the reacting

molecule has an effective mass of 10 Da. Estimate the typical frequency ν0 of
vibration (assume a harmonic potential).

(c) What is the reaction rate for �G = 5 kcal/mol, 10 kcal/mol, 15 kcal/mol,
20 kcal/mol and 1 eV per molecule?
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Figure 3.2. One unit of the DNA (left) and RNA (right) sugar–phosphate backbone.
The RNA has an extra OH group. Single-stranded RNA is more flexible than single-
stranded DNA.

(4) Assume that we can make 1 g of macromolecules. How many different proteins and
DNA pieces, respectively, could we sample if each had to contain the information
equivalent to a 300 amino acid protein?

DNA, the base pairs

A single strand of DNA consists of a sugar–phosphate backbone (thus there is one
negative charge per monomer), and one of four different bases (A, T, G, C) attached
to each sugar. By way of nomenclature, adenine (A) and guanine (G) are called
purines; thymine (T) and cytosine (C) are pyrimidines. There is also a pyrimidine
called uracil (U), which replaces T when DNA is translated into RNA (Fig. 3.2).
The polymer has a direction: there is a 5′ end and a 3′ end of the strand. Two
complementary DNA strands come together (with anti-parallel orientation) to form
the double helix: A pairs with T, G pairs with C.

In the double-helix structure, the sugar–phosphate backbone is on the outside
with the bases on the inside, stacked like the steps of a ladder. The bases pair through
hydrogen bonds, two hydrogen bonds for A–T, three for G–C, so the latter pairing
is stronger (Fig. 3.3). In addition, there are stacking interactions between adjacent
bases on the same strand. The binding energy for a base pair is 1–2.5 kcal/mol
(depending on the base pair), whereas the energy associated in initiating a “bubble”
in a fully stacked DNA double helix is about 5 kcal/mol.

The persistence length of double-stranded DNA is about lp ∼ 50 nm, whereas
single-stranded DNA is very flexible, with a persistence length of ∼1 nm. For
the normal physiological form of DNA (B-DNA) the helix diameter is 18 Å and
there is one helix turn every 34 Å or 10.4 base pairs. There is a major groove
and a minor groove. But remember that this is the average structure; local twist
angles and conformations depend on the sequence. The basis for the recognition of
specific sequences by DNA binding proteins is through exposing the bases within
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Figure 3.3. Base pairing for DNA with, respectively, two and three hydrogen
bonds. The bases are attached to the sugar–phosphate backbone. Notice also that
adenine and guanine are the same units as used in ATP and GTP, but in that case
they act together with a tri-phosphate group instead of the one-phosphate group
used in the DNA/RNA backbone.

the grooves: the edges of the base pairs form the floor of the grooves. Each of
the four pairs (AT, TA, GC or CG) exposes a unique spatial pattern of hydrogen-
bond acceptors and donors, as well as a single positive charge; these patterns are
recognized by DNA-binding proteins. In all cases there are one H-bond acceptor
and two H-bond donors on the major groove.

It is remarkable that the α-helix structures of proteins typically fit well in the
major groove of DNA, thus achieving ideal exposure of amino acid side chains
toward the DNA base pairs in the major groove. A DNA binding protein mainly
recognizes the unique pattern of H-bond donors and acceptors associated with
a short sequence (typically 6–9 base pairs). More subtle effects involving local
sequence dependent conformations and rigidity may also play a role.

Finally we would like to emphasize that DNA has other structural features apart
from the double helix. In particular, two double strands of DNA can change partners,
as in the so-called Holliday junction shown (after Holliday, 1964) in Fig. 3.4. This
structure is associated with recombination events in living cells. The formation
of the junction requires the breaking and rejoining of DNA strands between two
double-stranded pieces of DNA. The junction is facilitated by helper proteins (in
prokaryotes by RecA, which binds to single-stranded (ss) DNA, and the proteins
RuvA, RuvB and RuvC that bind to the junction and help its migration (Ariyoshi
et al., 2000).
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DNA
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Figure 3.4. The DNA Holliday junction. It is possible for the DNA structure
to allow two DNA strands to exchange partners. Sliding of the Holliday junction
allows recombination of large sections of DNA with the only cost being the creation
and elimination of the crossing between the strands. The initiation of the junction
is by DNA repair mechanisms. The propagation of the junction is facilitated by
certain proteins.

DNA in water and salt

Water plays a prime role in protein–DNA interactions. DNA is always surrounded
by a shell of well-ordered water molecules. In many cases changes in bases within
the protein–DNA interaction region that do not directly hydrogen bond the protein
still have a big impact on the overall binding properties. The attractive interaction
between proteins and DNA is in part electrostatic (DNA is negative and proteins are
positive), but also contains a large entropic part. For example, Takeda et al. (1992)
report that the total �G = �H − T �S is negative (attractive) whereas �H is
positive (repulsive) for the protein Cro binding DNA.

An important aspect of DNA is that it is charged. One length scale that charac-
terizes electrostatic interactions is the Bjerrum length:

lb = e2

4πεkBT
(3.1)

where lb = 0.7 nm in water, ε is the dielectric constant of water, and we are using,
for simplicity, Gaussian units. The significance of lb is that it is the separation
distance at which the interaction energy between two unit charges is equal to kBT
(∼0.617 kcal/mol at room temperature). Thus at distances r > lb this interaction
is weak, while at distances r< lb it is substantial. The potential energy is then
kBT (lb/r ) per charge unit.

If water contains salts, the electrostatic interactions will be screened and this
introduces a second length scale into the problem. Call ρ = ezn the ion charge
density, where z is the charge valence. Around a central charge q there will be a
higher density of counter ions and a lower density of ions with the same sign of
charge, n < n(∞), compared with the charge density n(∞) far from the screened
central charge. The negative ions will thus have a lower density n < n(∞) closer to
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the DNA than far away. The electrostatic potential � fulfils the Maxwell equation

�� = −ρ(r )

ε
(3.2)

where ρ = ezn is the charge density, ε is the dielectric constant of the medium, and
the electric field in terms of the electrostatic potential is �E = −∇�. On the other
hand the charges are distributed according to the Boltzmann factor:

ρ = ρ(∞) exp

(
−ez�

kBT

)
(3.3)

thus giving the self-consistent potential

ε�� = −ezn(∞) exp

(
−ez�

kBT

)
(3.4)

When linearized for ez� << T this becomes

ε�� = −ezn(∞)

(
1 − ez�

kBT

)
(3.5)

or, for a point charge, it can be reformulated into spherical coordinates

ε
1

r2

d

dr

(
r2 d�

dr

)
= −ezn(∞)

(
1 − ez�

kBT

)
(3.6)

which can be solved by the ansatz � = const · exp (−κr )/r . We thus obtain a
potential that decays exponentially

� = �0 exp(−κr ) (3.7)

with �0 = q/(4πεr ) for a point charge q. The characteristic scale 1/κ is called the
Debye length

κ−1 =
√

εkBT

e2z2n(∞)
=

(√
4πlbz2n(∞)

)−1
(3.8)

At cellular concentrations of salt the Debye length is about 1 nm. Under these
conditions the electrostatic self-interaction of DNA is responsible for about half
the persistence length of DNA.

Question

(1) Use a generalized version of Eq. (3.5) in Eq. (3.8) for several types of ion, and prove
that

κ =
√

4πlb

∑
i

z2
i ni (∞) (3.9)

where the summation runs over all ion species. Normally there will be several ion
species because the overall charge is neutral.
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topoisomerase (+))

Writhe counts one unit for each crossing
Twist induces a finite writhe

(in cell done by a gyrase (−) or 
Inducing a Twist

Figure 3.5. Introduction of a twist in a relaxed circular double-stranded molecule
of DNA (on the left) induces DNA that supercoils around itself on a large length
scale. The DNA double strand is shown as a single line; the right-hand part of the
figure shows the induced Writhe. In the cell, the twist is introduced by a gyrase
enzyme.

DNA supercoiling

Double-stranded (ds) DNA has a persistence length of about 50 nm. This sets
the scale for typical curvatures of DNA in the cell. In vivo, however, DNA also
exhibits other larger-scale deformations, the so-called supercoils (Fig. 3.5). These
are imposed by certain proteins (gyrases) that rotate the DNA around itself (similar
to the twist in a telephone cord). Supercoils are thought to have a role for DNA
condensation (Osterberg et al., 1984). Supercoiling is characterized by two types
of twisting:

� Twist, the number of turns of the DNA helix;
� Writhe, the number of times the helix crosses itself on a planar projection.

That is, Writhe is the number of super-helical turns that are present. The large-
scale coiling of DNA consists of both Twist and Writhe; the linking number is
their sum L = Twist + Writhe, and is measured relative to the relaxed DNA, �L =
L − L(relaxed). For circular DNA the linking number can be changed only by
breaking the double-stranded DNA. Let us consider an example. A 5200 base pair
DNA with a preferred twist of 10.4 base pairs will have a relaxed twist number
Twist = 5200/10.4 = 500.

There is a characteristic length scale K = 1050 bp for the loops in supercoiled
DNA; the elastic energy of a molecule of length N bp, with an excess linking
number �L, is of the form:

�G = kBT (K/N )(�L)2 (3.10)
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Supercoiling helps to localize
transcription factors 

TF
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Figure 3.6. Supercoiling of DNA in living cells induces Writhe and thereby tends
to align the DNA with itself. This makes it easier for transcription factors to act on
regulating promoters that are separated by long distances along the DNA. The TF
refer to transcription factors, and the regions on DNA marked O refer to operators,
both regulating the promoter indicated by an arrow. All these terms are explained
further in Chapter 7.

The main biological effect related to supercoils is that the Twist can be changed by
special motor proteins (called gyrases) that temporarily cut the DNA and twist it
around its main axis. Most gyrases induce negative Twist, but reverse gyrases also
exist (observed in bacteria that live at high temperatures). When Twist is changed,
the Writhe will change too, and the DNA will coil around itself on a large scale,
helping to confine the DNA in the cell. Negative supercoil is common in eubacteria,
including E. coli. Theory for supercoils can be found in LeBret (1978) and Marko &
Siggia (1994, 1995).

Supercoiling has implications for the larger-scale organization of DNA within
living cells. In particular, as it tends to wind the DNA around itself it also tends to
make operator sites that are separated by several thousand bases along the DNA
much closer to each other than they would be without supercoil. Thus it will facilitate
the ability to regulate gene transcription activity at a distance; see Fig. 3.6.

Questions

(1) Consider a small piece of DNA that is fixed to stick horizontally out of a wall. The
perpendicular displacement of the free end of this rod x is related to its radius of curvature
by x = L2/2R. At temperature T , what is the average mean square displacement 〈x2〉
of the end of the DNA?

(2) Consider a piece of DNA of length L = 100 nm and bending modulus B = 50T nm.
Assume that the DNA makes one large circular curve. What is the distribution of angles
between tangent vectors at the two ends of the DNA piece?

(3) DNA molecules in the human cell are wrapped around disk-shaped protein complexes
called histones, with one turn consisting of 146 base pairs. What is the bending energy
per turn?
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T << Tm

T = Tm

l

Figure 3.7. DNA melting. As the temperature is raised past the average melting
point Tm, the double-stranded DNA first melts by forming bubbles, then by forming
longer stretches of single-stranded DNA.

(4) Assume that a gyrase twists the 5200 base pair circular DNA with the preferred Twist =
500 from a state where Writhe = 0 to a state where initially Writhe = 0 and Twist =
475. What is the preferred supercoil (Writhe)? What is the statistical distribution in the
supercoil number?

(5) Calculate the probability that one half of the DNA in Question (4) is in an unwound
state, where there is no supercoil (local Writhe = 0, and local Twist relaxed). What is
the probability for such an event?

DNA melting

The double-stranded helix in DNA can melt in a process that to some degree resem-
bles the helix–coil transition (see Fig. 3.7). Thus we interpret the helix state “h” as
the double-stranded state, and the coil state “c” as the single-stranded unbounded
state. For DNA the loop initiation factor is of order σ ∼ 10−4±1. The enthalpy
and entropy differences between double-stranded and single-stranded states de-
pend hugely on temperature and salt concentrations. At 25 ◦C and 1 m Na+ they
are (Borer et al. (1974))

�H ≈ (−6 to −15) kcal/(bp · mol) (3.11)

�S ≈ (−0.013 to −0.035) kcal/(bp · mol · K) (3.12)

�G = �H − T �S ≈ (−1.6 to −4.8) kcal/(bp · mol) (3.13)
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where bp means base pair, and K is Kelvin. That is, in this simple model each
base pair contributes with the above energy and entropy. Notice that the entropic
contribution is much larger than one could possibly associate with conformational
degrees of freedom for the single-stranded DNA base pair; i.e. for T = 300 K,
then TS ∼3–9 kcal/mol, which converted to accessible number of states nacc for
one pair of bases ln(nacc) = S/kB = (3–9)/(kBT ) = 5–15, would mean nacc >

1000 different states. The major part of this entropy is in fact associated with the
interaction with the surrounding water.

DNA melting is quite similar to the helix–coil transition mentioned in Chapter 2;
that is, it is a transition between an ordered helix state where the two DNA strands
form a double helix and a disordered coil state where the two strands are separated
over long distances. In fact one may even identify the s parameter from the helix–
coil transition with exp(−�G/kBT ) with �G from Eq. (3.13). Also in analogy to
the helix–coil transition model, there is a nucleation barrier for changing between
the double-stranded DNA and the two single-stranded DNA states. However, the
analogy stops there. The simple helix–coil picture fails in two regards: first, the
different base pairs have different binding affinity; and second, when there is a
limited coil region, two single strands have to meet again, and this “bubble” costs
some additional loop entropy.

To take the second of these points first, there is an additional entropy cost �S of
bringing the two strands together given by

e�S/kB ∝ conformation space of ends together

conformation space of dangling end
= 1

V (l)
(3.14)

where V (l) is the typical volume that otherwise would be spanned by the end-
to-end distance of two single-stranded DNA pieces of length l that start from the
same point. As V (l) = lp(l/ lp)γ , with γ ≈ 1.5–1.8, the entropy cost associated to
a bound strand of length l is

�S

kB
∼ ln(lp) − γ · ln(l/ lp) with γ = 1.5 → 1.8 (3.15)

In fact loop free energies have been measured, including the loop initiation cost.
For loop length l > 15 bp it can be fitted by (Rouzina & Bloomfield, 2001):

�G = G(loop) − G(closed) = 3 kcal/mol + 1.8 kBT · ln(l) (3.16)

where l is measured in base pairs (bp) and the constant takes into account the
initiation threshold. G(closed) is the free energy associated to the double-stranded
DNA without any melted parts.

If we ignored the loop closure cost, melting of homogeneous DNA would be
equivalent to the helix–coil model. However, the loop closure imposes an entropy
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cost of ∝ ln(l) for any loop, and because

ln(l1 + l2) < ln(l1) + ln(l2) (3.17)

this entropy favors loops to merge. Thus the long-range interaction imposed by
ln(l) will tend to make fewer and longer loop segments than the independent loop
formation assumed in the helix–coil model. That is, the melted regions and the
bound regions separate more than in the helix–coil case, and thus DNA melting
will be more cooperative than the simple helix–coil transition.

The size of the effect induced by the logarithmic loop closure depends on the
prefactor γ to the ln. When γ becomes larger than 2, the DNA melting transition
is first order, in contrast to the helix–coil transition that was not a phase transition.
To see that a large γ makes the transition first order, we now investigate the relative
weight of one bubble versus two bubbles at the transition point T = Tm for DNA
melting.

In Fig. 3.8 we examine entropy of respectively the one-bubble system and the
two-bubble system (see, for example, Tang & Chate, 2001). For each bubble the
entropy is given a contribution from all possible positions of either of its two ends,

−g  ln(L)

ln(L) ln(L)

L

ln(L) ln(L) ln(L) ln(L)

−g  ln(L) −g  ln(L)

Figure 3.8. Competition between one large bubble and two smaller ones. By sep-
arating into two bubbles we gain translational entropy of the additional two ends
(net gain 2ln(L)), but lose entropy because one should merge ends of two bubbles
instead of one. The loss equals γ (ln(L) + ln(L) − ln(L)) ∼ −γ ln(L) when we
ignore that lengths of the bubbles are several factors smaller than the total length
L of the double-stranded DNA. At the transition point bubbles are of a length of
the same order of magnitude as L .
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and a penalty for closing the loop when forming the bubble:

1

kB
S(one bubble) = +2 ln(L) − γ ln(L) (3.18)

We ignore the nucleation barrier because this becomes relatively less important
when L → ∞. Also, for simplicity, we count all lengths as the total length L of
the double-stranded DNA. In principle, of course, the bubble is smaller, and the
positions of the ends constrain each other. However, at the melting point everything
will be of order L , and we only make a mistake that does not depend on L . The
entropy of making two bubbles is given by

1

kB
S(two bubbles) = +2 ln(L) − γ ln(L) + 2 ln(L) − γ ln(L) (3.19)

Thus the entropy gain of going from two bubbles to one bubble is

�S = S(one bubble) − S(two bubbles) = kB(γ − 2)ln(L) (3.20)

which is <0 for γ = 1.8 (the Flory expectation value). Thus in principle for large
L two and therefore also multiple bubbles are favored (see also Fig. 3.9). However,
because γ is close to 2, the one-bubble approximation is fairly good for small L .
In fact the γ = 1.8 deduced from simple self-avoidance in principle may instead
be ∼2.1, because one also has to include avoidance of the part of the DNA that
is not in the loop (Kafri et al., 2002). In practice, because the cost of initiating
a single-melted base pair in a double-stranded DNA piece is of the order 3–5
kcal/mol, there is effectively at most one melted region in even heterogeneous
DNA strands of length less than, say, ∼103 base pairs (Hwa et al., 2003). Thus for

75 80 85 90

dT

T

°C

d Absorbtion (270 nm)

Figure 3.9. DNA melting of a 4662 bp heterogeneous sequence of DNA. Multiple
melting steps are observed; the first at 76 ◦C corresponds to the melting of a
245 bp bubble in a particularly AT-rich domain. The last steps, on the other hand,
correspond to a CG-rich region. The typical width of the melting steps is about
0.5 K (Blake, 1999).
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DNA it is worthwhile to investigate the single-bubble approximation, which, when
the melting happens from one end, is equivalent to the zipper model (Hwa et al.,
2003).

Let us now consider the zipper model (see Schellman, 1955). This is a simpli-
fication where we allow the DNA to melt from only one point, say one end. Thus
no bubbles are allowed. Let the length of the double-stranded DNA be N . Then the
possible states of the system can be labeled by the number of paired base pairs n
counted from the clamped position to the last bases that are paired. Thus the bases
at position i = n + 1, n + 2, . . . , N are free (corresponding to the coil state). The
energy of this state is

E(n) =
i=n∑
i=1

εi = −ε · n (3.21)

where the last part of the equation implies that we ignore variation in base pairing
energies. The entropy of state n is:

S(n)/kB = (N − n)ln(g) (3.22)

where g is the number of possible conformations for one base pair when they are not
bound to each other. For simplicity we ignore excluded volume effects of melted
base pairs, which in principle would decrease this entropy slightly. The statistical
weight associated to this state labeled n is thus

Z (n) = e(N−n)ln(g)+n
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about 5–6 pN (Meyhofer & Howard, 1995). The maximum speed of a kinesin motor
is about 1–2 µm/s, which means that one step of 8 nm in total takes about 0.005 s.
The speed depends on ATP concentration when this is low. In vitro, maximum
speed is reached above ∼1 mm concentration of ATP.

On a more detailed level we now examine the energy source, namely the ATP→
ADP + P reaction. In the cell ATP is found at a concentration of 1 mm. Thus each
potential reaction point in the cell will be bombarded with ∼105 ATP molecules per
second (see the Questions on p. 131). Thus the limit imposed by the ATP capturing
rate is very high when compared with the overall time it takes kinesin to move one
step. Thus it can be ignored: the motor typically works under conditions with ample
energy supply. Energetically, the reaction

ATP ⇀↽ ADP + P (6.1)

is characterized by the dissociation constant

K =
(

[ADP][P]

[ATP]

)
eq

= [M] · e�G0/kBT (6.2)

where the concentrations are at equilibrium and �G0 = 7.3 kcal/mol is the stan-
dard free energy change of the reaction. This means that �G0 is defined as the
free energy of ATP relative to ADP + P when all reactants are present at 1 m
concentration ([M]). Having all reactants at 1 m is not equilibrium; in fact if
[ADP] = [P] = 1 m, the equilibrium [ATP] concentration

[ATP]eq = e−�G0/kBT m−1[ADP][P] = e−7.3/0.617m ∼ 10−5m (6.3)

is very low. This reflects the fact that [ATP] is in an unlikely high-energy state. This
high-energy state of ATP is exactly what makes it a good way to store energy in
the living cell.

The equilibrium concentration of [ATP] is the one where it is not possible to
extract energy from the hydrolysis. In the cell, concentrations are not at equilib-
rium, and it is therefore possible to extract work from the reaction in Eq. (6.1).
The in vivo free energy that ATP has stored relative to ADP+P in the
living cell, �G = G(ATP) − G(ADP + P), is (see derivation in Question 6 on
p. 131):

�G in vivo = kBT ln

(
([ADP][P]/[ATP])eq

([ADP][P]/[ATP])in vivo

)
(6.4)

= �G0 − kBT ln ([ADP][P]/[ATP])in vivo (6.5)

= 7.3 kcal/mol − kBT ln(0.000 02) ≈ 13 kcal/mol (6.6)
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where, in the last equality, we insert the actual in vivo concentrations: [ATP] ∼1 mm,
[ADP] ∼20 µm, and [P] ∼1 mm. Equation (6.5) simply states that the free energy
release due to hydrolysis is equal to what it would be at 1 m concentrations of all
reactants, �G0, plus a contribution due to the entropy gain of diluting/concentrating
the reactants to the actual in vivo concentrations. Thus to a large extent it is the
high concentration of ATP relative to ADP and P concentrations that brings us up
to the hydrolysis energy of 13 kcal/mol in the living cell.

For the motor myosin (or kinesin) the ATP hydrolysis takes place in a small
pocket deeply buried inside the protein. This pocket has a size of about 1 nm.
Confining the reactants to this 1 nm3 cavity in fact corresponds to concentrations
of order 1 m. Thus the last of the two terms in Eq. (6.6) means that about half the
in vivo free energy of hydrolysis is associated to the entropy gained by moving
the ADP and P far away from this reaction volume after the hydrolysis. Figure 6.2
illustrates the cycle of steps that the motor goes through during capture, hydrolyses
and release of fuel.

Questions

(1) Consider ATP → ADP + P with 7.3 kcal/mol energy released in the cavity of 1 nm3

inside the myosin head. If we ignore thermal conductivity, and other ways to store
energy chemically, what is the maximum temperature increase one may have in this
small volume?

(2) A kinesin molecule takes a step of 8 nm and can sustain a load of 6 pN. What work
does can it do per ATP cycle? What is its efficiency in percent?

(3) Convert 1 kBT to pN · nm units.
(4) A myosin motor has a power stroke of 3–5 pN. How many myosin molecules are needed

to carry a man of 80 kg? The speed that myosin can induce is of order 0.5–4 µm/s,
dependent on the myosin. How does one obtain macrosocopic speeds of, say, 1 m/s?
How many myosins should be used to move a human body of 80 kg 1 m/s vertically?
How much do these weigh, when each myosin molecule is 500 000 Da? Muscles
contain about 7–10% myosin, so what is the lowest muscle mass that can sustain
us?

(5) Find, by dimensional analysis, a formula for the rate at which diffusing molecules visit
a given region of space, depending on the concentration c, diffusion constant D, and
size s of the target region. Show that a small molecule like ATP, at mm concentrations,
visits a reaction center ∼105 times per second.

(6) We here consider an alternative derivation of Eq. (6.5), using the formalism derived
in the λ-phage chapter. Argue that statistical weight of an ATP in the in vivo cell is
ZATP = [ADP][P] e−�G0/kBT , and that the statistical weight of the de-hydrolyzed state
ADP+P is ZADP+P = [ATP]. Show that the maximum work that one can obtain from
the hydrolysis, Wmax = kBT ln(ZADP+P/ZATP), is given by Eq. (6.5).
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Figure 6.3. Optical tweezer measurement of the kinetic properties of kinesin. The
kinesin tail is attached to the bead with some antigen. The bead is large, about
1 µm; thus the determination of displacement steps of 8 nm is not trivial! The
lower part of the figure illustrates that kinesin stops when the restoring force from
the optical trap on the bead in about 5–6 nm.

Molecular motors: ratchet mechanism

In this brief discussion we do not venture into the large literature describing the
many beautiful experiments on molecular motors. During the past decade, many of
these experiments have been based on single molecule techniques. In Fig. 6.3 we
illustrate one particular experiment, the setup of Block and coworkers, which uses
optical trapping interferometry to determine the force needed to stop the movement
of kinesin. The reader can find abundant material on these types of experiment
in the reference list (see Block, 1996, 1998; Block et al., 1990). Here we limit
our discussion to simple models that introduce some physical concepts that are
probably relevant for understanding the conversion from chemical to mechanical
energy.

One attractive idea for modeling comes from considering the motion of Brow-
nian ratchets (Julicher et al., 1997). In the model we follow the coordinate of a
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not to move

OFF
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Figure 6.4. Particle in an idealized ratchet: a potential with large left–right asym-
metry. When potential is on, the particle moves in a directed way until it is trapped.
If potential is off, the particle diffuses freely in both directions. Consider the parti-
cle in a potential minimum. If the potential is switched off for a short time interval,
the probability of being in the basin of attraction to the right is 0.50. When potential
is switched on, the particle then moves to the right. If the particle in the off state
has moved to the left basin, it just moves down to the same position as it started
in. In the left panel we show with dark shaded areas the probability distribution of
the particle at various steps of the process.

particle, which may be seen as an idealized state coordinate for the motor protein.
Directed motion of the particle is achieved by changing the potential experienced
by the particle. In a simple ratchet, the change is between a state where diffusion
is non-directed, to a state where the particle’s motion is mostly directed. Switch-
ing the potential requires energy from the outside, which in the motor protein
could be provided by ATP hydrolysis. In Fig. 6.4 we show an idealized ratchet,
and illustrate how directed motion can occur, owing to the interplay between
random motion in the “off” state, and directed motion in the “on” state of the
potential.

We now want to illustrate the ratchet idea in terms of the steps associated to the
sequence of events that characterize one cycle in the motion of a motor protein,
see Fig. 6.2. In Fig. 6.5 this is done through the two binary variables (φ1, φ2), from
Hansen et al. (2000). Here φ1 describes whether the motor protein is bound to the
substrate (φ1 = 1) or not bound (φ1 = 0), and φ2 describes whether the head of
the motor protein is relaxed and randomly diffusing (then φ2 = 0), or whether it is
stretched (φ2 = 1). Thus each of the φ variables is equal to 1 when it is bound or
forced, and 0 when it is relaxed.
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f1 = 0

A = 0 A = −1 A = −1

(a) (b) (d)(c)

A = 0

f1 = 1 f1 = 1
f2 = 0 f2 = 0 f2 = 1

f1 = 0

H = A (f1 + f1f2)

f2 = 1

Figure 6.5. Schematic view of some states during one cycle of the discrete ratchet
model discussed in the text. Below the four states that are labeled as in Fig. 6.2,
we show the parametrization of the states in terms of two binary variables. By
making movement of φ2 dependent on the state of φ1 as shown by the energy
function H , one can drive the cycle of states into a directed motion by externally
changing the potential through the parameter A. As with the continuous ratchet,
this model is also at maximum 50% effective, because state (1,1) can go to state
(1,0) or (0,1), respectively, with equal probability when A = 0. In the first case,
(1, 1) → (1, 0), we are back in state (b), and have not performed any motion. Here,
(c) is the rigor state and the A = −1 → A = 0 transition corresponds to the ATP
binding transition.

The two φ variables are controlled through one external variable A, which may
take the value A = 0 or A = −1, and is associated to the hydrolysis state of the
motor. The control is enforced through the total energy function:

H = A(φ1 + φ1φ2)E0 (6.7)

As there are more non-specific states than specific (bound) ones, the degeneracy
of the φ = 0 states is larger than that of the φ = 1 states. One may set degeneracy
of the φ1 = 0 and of the φ2 = 0 states to be g = 10, whereas we assume only one
specific state for φ1 = 1 and φ2 = 1. Then, for big g and A = 0, the state (0, 0) is
by far the most likely state, and the (1, 1) state will decay to the (0, 0) situation.
For A = −1, on the other hand, then for small enough temperature the (1, 1) state
is favoured.

For each value of A and starting conditions for (φ1, φ2) one may consider the
trajectory for (φ1, φ2). Starting at (0, 0) we have the options:

(a) forward motion x → x + 1, associated with the sequence of events where binding is
followed by stroke: (0, 0) → (1, 0) → (1, 1);

(b) backward motion x → x − 1, associated with the sequence where stroke happens before
binding: (0, 0) → (0, 1) → (1, 1).
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Further, in case of reversal (1, 1) → (0, 0), backtracking a given path implies that
one reverses the corresponding x move.

If A = 0, the two options (a) and (b) are equally likely, and x makes a random
step. If A = −1, the forward step (a) is most likely, because it is associated with
an energy gradient on both steps along the path. That is, a first move along step
(b) may easily be reversed ((0, 0) → (0, 1) → (0, 0)) because this costs no energy.
Thus for A = −1 there will be a bias towards forward motion.

The steps (a) and (b) define what happens from (0, 0) to (1, 1), and we saw a
trend towards forward step when starting at (0, 0) and imposing the switch A =
0 → A = −1. To complete the cycle we must let A = −1 → A = 0. Thus we
retrace what happens with (φ1, φ2) from state (1, 1) in the absence of forces. In that
case either of the two variables may relax first. If they retrace through the reverse
of path (a), then x → x − 1, and there is no net motion. However, if they retrace as
the reverse of path (b), then the system in fact progresses even further. As a result
the A = −1 → A = 0 change induces a move from (1, 1) to (0, 0) that makes no
average motion.

To study the dynamics in a discrete simulation, we shift between A = 0 and
A = −1 at some frequency defined by a certain preset number of updates in each A
situation. For each A the model is simulated in a Metropolis-like algorithm, where
at each timestep (= update) we select randomly either φ1 or φ2 and try to change
it. The factor g > 1 in degeneracy of the φ = 0 states means that for zero energy
difference (A = 0, or considering φ2 for φ1 = 0) a transition 0 → 0, or 1 → 0
is g times more likely than a transition 0 → 1 or 1 → 1. When imposing forces
by letting A = −1, then any move where the energy is increased by one unit is
accepted with a probability proportional to e−E0/kBT . Thereby, with A = −1, the
reversal from midway in path (a) is suppressed, whereas reversal midway in path
(b) is not. The smaller the value of T , the more suppression of wrong moves, and
the more efficient the ratchet. Figure 6.6 shows the simulated movement of x for
two different temperatures.

In reality there are several states of the ATP–motor association, for ATP binding,
hydrolysis, and the subsequent release of the products (see Smith & Geeves, 1995a,
b). Thus this type of simplified scenario where the “off state” is without any directed
motion should be understood only as a zero-order version of a possible true ratchet
mechanism.

Questions

(1) Consider the thermal ratchet in Fig. 6.4. Let the diffusion constant of the particle be
D = 5µm2/s and the distance between subsequent wells be d = 8 nm. What is the time
it takes the particle to diffuse the distance d if the potential is off?
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Figure 6.6. Movement in the discrete ratchet of Fig. 6.5, H = A(φ1 + φ1φ2)E0
for A cycling between 0 and −1 and a degeneracy factor g = 10 for the detached
state (φ = 0). When the temperature increases, the state φ1, φ2 = 1, 1 becomes
thermodynamically suppressed even when A = −1, and the “motor” performs
a random walk (any trajectory between the (0, 0) and the (1, 1) states becomes
equally likely). Note that kBT is measured in units of E0.

(2) Consider the ratchet problem above and implement it on a one-dimensional discrete
lattice with spacings of 1 nm. Use computer simulations to estimate the average speed as
a function of the switching rate of the potential. What is the timescale of the simulations,
in units of real time (use the diffusion constant from Question (1) and consider the system
at room temperature where kBT = 4 pN · nm)? Discuss energy consumption under the
assumption that each switch of potential costs one ATP unit of energy.

(3) Consider the discrete ratchet described by the Hamiltonian H = A(φ1 + φ1φ2) at
various temperatures. For A = −1 and degeneracy of 0 states, g = 10, what tem-
perature is (φ1, φ2) = (1, 1) the lowest free energy state? Simulate the ratchet, by
switching appropriately from A = 0 to A = −1 at T = 0.2 and T = 1.0 (in same units
as A).

(4) Consider the setup from Question (4), but with the addition of an external drag: H =
A(φ1 + φ1φ2) + Fφ2, with F > 0 being a drag force. Assume that each φ variable has
one state where φ = 1 and 10 states where φ = 0 (thus the probability that a state moves
from 0 to 0 is a priori 10 times the probability that a state moves from 0 to 1, as in Fig.
6.6). Simulate the behavior at finite F (at say T = 0.1), and determine the stall force.

The cytoskeleton: motion by polymerization

The motors in the cell often work on substrates. Because work is directed motion
the motor needs to have at least one end fixed to something in order to move
something else. For RNA polymerase, the motion is along the DNA. For kinesin
the movement is along a microtubule. However, motors are not the only molecules
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capable of directed motion. In this section we see that elements of the cytoskeleton,
such as tubulin and actin, can also move – and push.

Microtubules are long fibers resulting from the polymerization of the protein
tubulin; they can be many micrometers long. Together with actin they are a major
component of the cytoskeleton of the eukaryotic cell. The cytoskeleton provides the
cell with stiffness, structure, the ability to move, and directed ways to reorganize
the cellular environment. The most striking reorganization is during cell division,
where the duplicated chromosomes of the cell must be faithfully separated into each
of the emerging daughter cells. Microtubules are key players in this separation, as
first observed by Weisenberg et al. (1968).

A microtubule is a hollow cylinder about 25 nm in diameter. It is very stiff, with
persistence length lp ∼ 5 mm = 5000 µm! Along the microtubule axis, tubulin
heterodimers are joined end-to-end to form protofilaments. Each heterodimer con-
sists of an α-sub-unit and a β-sub-unit. A staggered assembly of 13 protofilaments
yields a helical arrangement of tubulin heterodimers in a cylindrical wall. Micro-
tubules are not only structural elements, they are dynamical in the sense that they
can both grow and shrink (see Fig. 6.7). This dynamical behavior requires energy,
which is supplied in the form of GTP.
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Figure 6.7. Typical in vitro trajectory of a growing and shrinking microtubule
(D. K. Fygenson, private communication). Notice the alternating phases of growth
and collapse, allowing the possibility of retracing from growth attempts that do
not result in attachment of the microtubule end. This trial and error strategy may
be behind a number of reorganization phenomena of living cells, including the
formation of neuron contacts. In the figure only the “plus” end is monitored; the
“minus” end is fixed. The speeds of growth and collapse depend on the conditions:
if glycerol is added, the collapse speed reduces whereas the growth speed remains
unchanged.
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α-Tubulin has a bound GTP molecule, that does not hydrolyze. β-Tubulin may
have bound GTP or GDP, and changes properties upon hydrolysis. Heterodimers
with GTP-charged β-tubulin can polymerize into microtubules. At high enough
concentrations they may even spontaneously polymerize into microtubules, as
seen in in vitro experiments (Fygenson et al., 1995). However, the most inter-
esting aspect of microtubules is their ability to alternate between a slowly growing
state, and a rapidly disassembling state (Mitcheson & Kirshner, 1984a, b). Both
phases can be directly monitored both in vitro and also inside a living (Xenopus)
cell, where one finds that the growth rate is of order 8 µm/min and the shorten-
ing rate is of order 20 µm/min (Shelden & Wadsworth, 1993; Fygenson et al.,
1994; Vasquez et al., 1997). The ability of microtubules to grow and shrink al-
lows reorganization of cellular environments, features that can be implemented in
vitro (Dogterom & Yurke, 1998). Moreover, microtubules can exert forces as they
grow.

Actin filaments are another major component of the cytoskeleton. An actin poly-
mer consist of two actin strands that form a helix. The diameter of actin, the protein,
is 4 nm; the diameter of polymerized actin is 7 nm. The actin polymer has a per-
sistence length lp ∼ 10 µm. The actin monomer has a binding site for ATP at its
center, and actin with ATP polymerizes easily. Hydrolysis of ATP to ADP desta-
bilizes the polymer, which results in a new type of polymer dynamics that we will
discuss later. Apart from its association with the myosin motor, actin polymeriza-
tion in itself is thought to produce forces associated with cell motility (see review
by Theriot (2000)). Cells that crawl across solid substrates use two types of force:
protrusion force to extend the leading edge of the cell margin forward and trac-
tion forces to translocate the cell body forward (Elson et al., 1999; Mitchison &
Craner, 1996). Actin polymerization is also utilized by parasites; in particular, bac-
teria like Listeria monocytogenes and Shigella flexneri that propel themselves inside
a eukaryotic cell by polymerizing the actin on one side, and depolymerizing it on
the other side (Theriot, 2000; Dramsi & Cossart, 1998).

The mechanism for how actin polymerization may perform work was origi-
nally examined by Hill & Kirschner (1982). Here we present a simplified version
(see Figs. 6.8 and 6.12). Assume that actin polymerizes with a rate k(on) = konC ,
where C is the free concentration of actin monomers, and depolymerizes with rate
k(off) = koffe�G/kBT , where �G is the free energy associated to the binding of one
actin monomer to the end of the filament (large negative �G means strong binding).
Thus at the concentration Ccrit, where konCcrit = k(off), the actin filament will not
grow on average. Above this concentration actin tends to polymerize. However,
when the growth is limited by something else, say a bead that is pushed towards
it by an external force F (see Fig. 6.8), the growth rate decreases. In fact, most
of the time the distance between the end of the growing filament and the bead is
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Figure 6.8. A polymerizing actin filament that pushes a bead against a force F . The
bead is exposed to random Brownian movement, confined towards the growing
polymer. When the bead is sufficiently separated from the polymer, a new unit
may be added to the polymer; it grows, and effectively pushes the bead one unit
to the right. The tilted plane illustrates the potential, and not the effect of gravity
(gravity is insignificant on the molecular scale).

less than the minimal distance d that allows a new actin monomer to bind. The
fraction of time where one may add a monomer is the fraction of time where this
distance is >d . This is given by the Boltzmann weight associated to the energy
F · d:

t(F)

t(F = 0)
= e−Fd/kBT (6.8)

where t(F = 0) is the time where the exposure of the tip is as if there were no
external limits to the growth. Thus the “on-rate” at force F is

k(on, F) = k(on, 0)e−Fd/kBT (6.9)

whereas for simplicity we assume that the off rate is independent of F . The average
growth rate is then

r = k(on, F) − k(off) = k(on, 0)e−Fd/kBT − k(off) (6.10)

= k(on, 0)e−Fd/kBT − k(off) = Ckone−Fd/kBT − konCcrit (6.11)

which is >0 when the concentration C > CcriteFd/kBT . Thus the maximum force
that a polymerizing filament can generate at concentration C is

Fmax = kBT

d
ln

(
konC

k(off)

)
= kBT

d
ln

(
C

Ccrit

)
(6.12)

For a single actin filament in a solution with active actin at concentration C = 50 µm
the stall force is Fmax ∼ 9 pN (Peskin et al., 1993).
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+−

with ATP

without ATP

Figure 6.9. Polymerization of a dipolar filament, with different rates at the different
ends. If hydrolysis does not take place, the ratio in the plus end k(in, +)/k(off, +)
must be equal to the ration of rates in the minus end k(in, −)/k(off, −). However,
because hydrolysis takes place in the filament, the polymer tends to grow at the
plus end, and shrink at the minus end.

Force can be generated by any polymerization process. To be useful, however,
it must be possible to repeat the process, such that movements can be generated
beyond the distances set by the number of molecules in the cell. This recycling
is associated with ATP hydrolysis taking place within the monomers that build
the cytoskeleton. Through ATP hydrolysis the monomers can be in at least two
states, one that is “charged” by, say, ATP (for actin), and one that is not. Directed
movements of the filament are made possible by the following three properties
(Wegner, 1976; Theriot, 2000).

(a) The polymer is not front–back symmetric, and the proteins polymerize with distinctly
different rates at the plus end and at the minus end of the growing filament. The plus
end grows faster.

(b) Monomer binding at the end of the filament depends on whether the monomer is ATP
charged or not. If ATP is hydrolyzed in the actin monomer, the monomer leaves the
filament when it reaches its end.

(c) Charging of monomers with ATP takes place in the bulk, not when the monomers are
bound to the filament (where instead ATP is hydrolyzed faster). Thus monomers in the
filament have on average less ATP bound than the free monomers, and because of (a)
they have least ATP in the negative end of the filament.

In Fig. 6.9 we illustrate the mechanism by which the plus end grows, while
the polymer simultaneously shrinks at the minus end. Figure 6.10 shows that, as a
consequence, the polymer effectively moves across a surface (see also Fig. 6.11).
This phenomenon can be monitored in vitro by fluorescent-labeled actin. The end
of the polymer may perform work by pushing something or, alternatively, if the
polymer is confined between two barriers the net difference in growth will make
monomers move from the confining barrier in the growing end to the barrier in the
shrinking end.
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Figure 6.10. Treadmilling, a phenomenon originally suggested by Wegner (1976).
Treadmilling has been seen in vitro for actin and demonstrated in vivo for tubulin
(Rodinov & Borisy, 1997).

retraction
extension and
attachment

detachments and

Figure 6.11. A single cell moving along a surface. A crucial element is the ability
to control polymerization of actin in the front, and depolymerization in the back.

The polymerization of a single filament is an idealization; in real life the polymers
consist of several filaments. Thus an actin polymer consists of two actin filaments,
whereas a microtubule polymer consists of 13 filaments forming a rod. In addition
different polymers may help each other’s growth by subsequently securing the space
for the neighbor polymers to grow (Mogilner & Oster, 1999).

The use of polymerization for directed cell movements not only involves the
polymer building blocks and ATP/GTP, but also utilizes proteins that facilitate
polymerization or depolymerization, and also the initial nucleation of the polymers.
Thus actin depolymerization is increased by a factor 30 when the ADF protein
binds to it. Other proteins, like the Arp2/3 complex, serve as a nucleation center
for growing a second actin polymer on an already existing polymer, and thus allow
the formation of a cross-linked cytoskeleton, which gives the cell internal structure,
and upon which molecular motors may work.
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x

open:

closed:

Figure 6.12. Figure for Questions (1)–(4), where polymerization of a protein fila-
ment pushes against a membrane, which may be the cell wall. Because of Brownian
motion the membrane position x fluctuates in front of the growing filament. When
the gap x is large enough, there is space for a new subunit. If this is attached, the
whole scenario will be moved one step to the right. This resembles the ratchet
mechanism from Fig. 6.4.

Questions

(1) Consider the growth of a single microtubule filament against a membrane (see Fig. 6.12).
At any point the membrane prefers to stay close to the tubule (at position x = 0). The
membrane has thermal fluctuations. If the restoring force is F = −k < 0, what is the
distribution of spacings between the membrane and the end of the microtubule? If
k = 4 pN, what is the probability that the spacing exceeds 8 nm?

(2) Consider the setup from Fig. 6.12 and Question (1) above. Assume that the density of
tubulin dimers is 1 mm. A tubulin dimer can bind to the end of the growing microtubule
if this is longer than d = 8 nm from the membrane. Assume that the binding affinity
of tubulin to tubule is infinite, and estimate the rate at which this microtubule will grow
against the membranes. What happens to the growth rate if restoring force F = −k is
doubled from 4 pN to 8 pN?

(3) Describe qualitatively what happens when the binding affinity of tubulin in a microtubule
is finite, and what happens if k(off) > k(on).

(4) Consider Question (2) above with a finite kon that is of a size that sets the stall force for
the single filament to 4 pN. Consider a polymer consisting of two separate filaments.
The building blocks still have length d = 8 nm, but are displaced by 4 nm relative to
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each other. What is the new stall force for this two-filament system? What would the stall
force be if we consider a full 13-filament system corresponding to a real microtubule
rod?

(5) Consider a simplified model of treadmilling where ATP–actin is added only at the plus
end with rate k(+), and nothing ever dissociates at the plus end. Further ATP–actin
leaves the minus end with rate k(−) < k(+). Nothing is added at the minus end, but
ADP–actin leaves this end immediately when it is reached. If conversion from ATP–
actin to ADP–actin occurs at rate r , what is the equation for the growth and possible
steady-state length of the actin polymer?
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Physics of genetic regulation: the λ-phage in E. coli
Kim Sneppen

Biological molecular systems work inside living cells. As a cell prototype we
consider the prokaryote Escherichia coli. This may be viewed as a small bag of
DNA, RNA and proteins, surrounded by a membrane. The bag has a volume of
about 1 µm3. This volume varies as the cell grows and divides, and also varies in
response to external conditions such as osmotic pressure. The interior of the cell is
a very crowded environment, with about 30% to 40% of its weight in proteins and
other macromolecules, and only about 60% as water. Further, the water contains
a number of salts, in particular K+, Cl− and Mg2+, each of which influences the
stability of different molecular complexes.

The dry weight of E. coli consists of 3% DNA, 15% RNA and 80% proteins. The
genome of E. coli is a single DNA molecule with 4.6 × 106 base pairs (total length of
about 1.5 mm). It codes for 4226 different proteins and a number of RNA molecules.
However, the information content of the genome is larger than that corresponding
to the structure of the coded macromolecules. Important information is hidden
and resides in the regulation mechanisms that appear when these proteins interact
with the DNA and with each other. Some proteins, called transcription factors,
regulate the production of other proteins by turning on or off their genes. Figure 7.1
shows two ways by which a transcription factor can regulate the transcription of a
gene. The figure also shows a specific example of a regulatory protein bound to the
DNA: the CAP protein.

In this chapter we describe in detail one regulation system, the λ-phage switch.
We also use this example to illustrate a number of physical concepts related to
genetic regulation. These include the relation of chemical equilibrium to statistical
mechanics, cooperativity in binding, and timescales and rates associated with diffu-
sion and chemical binding events in the living cell. We will thereby show how one
builds quantitative models of gene regulation. We will also discuss the concept of
robustness in relation to genetic switches, both in view of how it has been observed
in mutants of the λ-phage, and in the variations of genetic switch mechanisms that
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Figure 7.1. In the left-hand panel we show an example of a transcription factor,
the protein CAP, that binds to a piece of DNA. In the right-hand panel we illustrate
positive and negative regulation, respectively, by a transcription factor (TF). The
TF is a protein that binds to a region on the DNA called an operator (the dark
region on the DNA). Positive regulation is through the binding between the TF
and the RNAp (RNA polymerase); this increases the chance that RNAp binds to the
promoter, which is shown as the medium dark region on the DNA strand. Negative
regulation occurs when the operator is placed such that the bound TF prevents the
RNAp from binding to the promoter. On the far right we show how one typically
draws the elementary regulations in a regulatory network.

one finds in other vira that infect bacteria (bacteriophages). But before discussing
these concepts, we will introduce the general properties of the transcription and
translation processes.

Transcription and translation in numbers

In this section we will describe the basic production apparatus of the cell; the
mechanisms of transcription and translation. These processes are the action of
huge molecular motors, which work their way along a one-dimensional string,
using this as a template, for generating another one-dimensional string. This, of
course, demands energy. Energy is, however, abundant in the cell in form of huge
amounts of ATP and GTP. Also, production demands the presence of some building
blocks: the bases to make RNA units, and the 20 amino acids from which one can
build the protein polymer string. We will now describe the processes involved in
transcription and translation in more detail, and put some numbers on this overall
production machinery.

Transcription

When DNA is transcribed, a messenger RNA (mRNA) is produced (see Fig. 7.2).
First RNA polymerase (RNAp) binds to the DNA at certain binding sites, called
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Figure 7.2. RNA polymerase (RNAp) moves along the DNA while transcribing it
into a mRNA string: that is, it opens the DNA double strand, and makes a com-
plementary single-stranded RNA polymer. This mRNA is subsequently translated
into a protein by a ribosome, here shown in black. The same mRNA may easily
be translated into several copies of the protein, as shown here where two ribo-
somes act simultaneously on the mRNA. Notice that translation may be initiated
before transcription is fully finished. However, one should then be aware that the
RNAp rotates around the DNA, implying that the translating ribosome has to spiral
around the DNA. It is thus fortunate that translation speed is only a fraction of
transcription speed.

promoters. Then RNAp may transcribe the DNA in a direction determined by the
orientation of the promoter, see Fig. 7.1. Each gene has one, or more, corresponding
promoter, and some promoters control more than one gene.

The polymerase machine RNAp is a protein complex that consists of at least four
protein sub-units and has a total mass of about 400 kDa. There are about 2000–3000
RNAp molecules in an E. coli cell (Pedersen et al., 1978). This is about one per
promoter. At any time nearly all RNAp enzymes are engaged in transcribing genes.
At any given time only a fraction of the genes are being transcribed. In fact, in a rich
medium about half of all RNAp activity is associated with transcription of genes
associated with production of ribosomes. As a result, the free RNAp concentration is
expected to be only about 30–50 nm. Thus there are only about 30 RNAp complexes
available at any time in the 1 µm3 E. coli cell volume. We remind the reader that
1 nm corresponds to 0.6 molecules per cubic micrometer.

Whether an RNAp can bind to a promoter may depend on the presence or
absence of other proteins, called transcription factors, at nearby locations (operator
sites) on the DNA. This represents one major control mechanism of transcription.
In general such control mechanisms are called genetic regulation. Figure 7.1
illustrates how one protein may increase or decrease, respectively, the transcription
rate of a given gene.
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If RNAp can bind, then the transcription initiation frequency of RNAp is a result
of three consecutive steps (Hawley & McClure, 1982).

(1) An RNAp binding rate: this is facilitated by RNAp binding to nearby DNA and the
subsequent sliding to the promoter site. The recognition part of the promoter stretches
from −55 bp to −6 bp, where position +1 is the starting site for the RNA production, and
+ numbers refer to subsequent nucleotides for the transcription. Especially important
for binding are the short sequences around the −10 bp (TATAAT) and the −35 bp
(TTGACA) positions. These regions are separated by a spacing region 17 ± 1 bp long.

(2) A DNA opening rate (isomerization step): this is the unwinding of about 12–18 bp of
double-stranded DNA to form an open bubble that exposes the base pairs for transcrip-
tion initiation. The bubble is around the region −9 bp to +3 bp. The bound RNAP
occupies the region from −55 bp to +20 bp.

(3) The time it takes RNAp to initiate successful transcription downstream along the DNA
on the 5′ to 3′ DNA strand: notice that the RNAP must rotate along the helix.

Total initiation rates of mRNA synthesis (the three steps above) vary from ∼1/s (for
ribosomal genes) to 1/(18 s) for promoter PR in the λ-phage, and 1/(400 s) for the
unstimulated promoter PRM in the λ-phage (Ian Dodd, personal communication).
Thus the initiation frequency is important in determining the concentrations of the
proteins in the cell. The RNAp is quite a large molecular machine. When it binds
to the promoter it is believed to occupy about 75 bp of DNA. After transcription
initiation, the RNAp transcribes the DNA with a speed that varies between ∼30 bp/s
and 90 bp/s, where the ribosomal genes are the ones that are transcribed fastest
(Liang et al., 1999; Vogel et al., 1992; Vogel & Jensen, 1994). The transcription
is stopped at terminator signals, which in E. coli is a DNA sequence that at least
codes for an mRNA sequence that forms a short hairpin.

Translation

After an mRNA is generated, it can subsequently be translated by a ribosome into a
peptide heteropolymer, which folds to form a protein (see Fig. 7.2). The ribosome is
a large molecular complex that consists of 50 different protein sub-units plus some
fairly large RNA sub-units. In bacteria it has a mass of 2.5 × 106 Da, of which
one-third is proteins. There are about 10–15 000 ribosomes in an E. coli cell, of
which about 750 are free at any time (Vind et al., 1993).

As already stated, production of ribosomes occupies up to 50% of all RNAp
activity in the E. coli cell. In a rich medium the production of ribosomal RNA
(rRNA) represents about half of all RNA production in the cell. And at any time
rRNA occupies 80% to 90% of the total RNA content in the cell. Ribosomes are
huge, and are produced in huge quantities. Ribosome production is controlled,
and balanced. In particular, if ribosomal proteins are not occupied in ribosomes
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by binding to ribosomal RNA, they down-regulate production of more ribosomal
proteins. Ribosomal RNA (rRNA) on the other hand can be up-regulated by both
ribosomal proteins and other factors (Voulgaris et al. (1999a,b), and references
therein).

It is inside the ribosome that the information world of DNA/RNA is merged with
the machine world of proteins. Ribosomes thus translate the nucleotide sequence
to amino acids, by using the genetic code. Each amino acid is attached to a specific
tRNA molecule that contains the triplet codon corresponding to that amino acid. In
the ribosome this triplet is matched to the mRNA triplets, and its attached amino
acid is linked covalently to the previous amino acid in the growing peptide chain.
Thereby a sequence of codons is translated to a sequence of amino acids.

Once initiated, the mRNA-to-protein translation in a ribosome proceeds at a
rate between 6 codons/s and 22 codons/s; see Pedersen et al. (1978). Each mRNA
is translated between 1 and 40 times before it is degraded. This number depends
primarily on the start of the mRNA sequence, in particular whether this is a good
ribosome binding site. The best binding site is the Shine–Delgarno sequence (AG-
GAGGU), located about 10 base pairs upstream from the translation start signal
(Ringquist et al., 1992). For optimal sequences one expects the previously men-
tioned ∼40 fold translation for each mRNA in an E. coli; mRNA degradation
factors also play a role in controlling this copy number (Rauht & Klug, 1999).
This degradation is presumably also under control, in particular through the RNase
enzymes, which actively degrade the mRNA. Typical half times of mRNA in E.
coli are found to be 3–8 min (Bernstein et al., 2002).

Questions

(1) One E. coli cell has a volume of 1 µm3, and consists of about 30% protein by weight.
An amino acid weighs on average 100 Da. Assuming that amino acids have the same
density as water, how many amino acids are there in an E. coli cell?

(2) If an average protein consists of 300 amino acids, how many proteins are there in a
cell?

(3) One bacterial generation takes 30 min, and there are about 10 000 ribosomes in a cell.
What is the average rate of translation in the cell (in units of codons per second per
ribosome)?

(4) There are about 2000–3000 RNAp in an E. coli. If one assumes that transcription and
translation occur at the same rates, how many proteins are produced per mRNA on
average?

(5) Consider the transcription initiation kinetics:
RNAp + P ↔ RNAp − P(closed) → RNAp − P(open), where P is the promoter, and
transition from the closed to open complex is irreversible. Prove that, under certain
conditions, the rate for open complex formation can be written as kobs = kf[RNAp]/
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(KB + [RNAp]). Identify the expressions in terms of constants for the transcription
initiation process, and give the conditions for the validity of this equation.

(6) If KB = 2 × 107 m−1, kf = 0.05/s and [RNAp] = 30 nm, calculate the mean time
between transcription initiations.

(7) For the PR promoter in the λ-phage, we can approximately take KB = 1 × 108 m−1

and kf = 0.01/s. How many mRNA transcripts can be produced in one cell generation
(30 min)?

(8) Consider the setup in Question (5) but with the addition that the RNAp binding site
could be blocked with one repressor at some concentration [Rep] and a binding equi-
librium constant Krep. Derive the equation for the transcription initiation rate.

(9) How long does it takes to clear a promoter site before a new RNAp can bind? What is
the maximal activity of a promoter?

(10) Consider the following production/feedback system for balancing ribosomal rRNA (r)
and ribosomal protein (p) production: dr/dt = ηp(t) + (p − r ) − r/τ and dp/dt =
c + ηp(t) − (p − r ) − p/τ , where the ηs are random noise terms with mean 0, and
the function  reflects a feedback from an overabundance of total p relative to the
total rRNA ((x) = 1 for x > 0 and = 0 elsewhere; in the smoothed version one
may set (x) = x2/(x2 + 1)). Note that c is a constant that secures the presence of
p. Simulate the equations and compare the behavior with that of similar systems
without feedback. Investigate the response to a sudden doubling of c. In terms of real
timescales, an effective lifetime τ for ribosomes given by dilution due to the doubling
rate of the bacteria is ∼30 min. Notice that we have not defined the noise term properly,
and the result may depend on the size of the noise and the timestep in integration.

The genetic switch of the λ-phage

With about 5 × 1030 prokaryotes on Earth, these relatively simple single-celled
organisms are a dominating life form. However, not even for bacteria is the world a
safe place! The bacteria are exposed to their own parasites, the bacteriophages. The
number of phages exceed the number of bacteria by several orders of magnitude, and
their diversity and ability to manipulate genetic information probably makes these
simple information carriers an important force in shaping the global ecosystem.
Molecular biologists have selected a few of these phages for detailed study, and
this has been a major inspiration for developing our understanding of how genetic
regulation works. In particular, the bacteriophage λ has been studied in great detail.
This is not because the λ is particularly abundant in nature, but rather because, by
accident, it was the first bacteriophage that was found to have a genetic switch.

The λ-phage displays one of the simplest examples of computation in living sys-
tems: in response to a sensory input it decides between one of two states (Johnson
et al., 1981; Ackers et al., 1982). Thus, with the same genome, it can be in two dif-
ferent states, a phenomena called epigenetics. Epigenetics is defined as “a heritable
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λ-phage

DNA DNA

E. coli

Figure 7.3. E. coli cell with a λ-phage injecting its DNA through the membrane
(i.e. through the maltose receptor of the E. coli cell). The E. coli cell has dimensions
of about 1 µm, the λ-phage head is 55 nm in diameter, whereas the full length of
λ-head plus tail is 0.2 µm.

change in phenotype in the absence of any change in the nucleotide sequence of the
genome” (Bestor et al., 1994). Epigenetics is inherent to cell differentiation, and
thus essential for multicellular life. Epigenetics comes about because of a positive
feedback that forces the system to differentiate into well-separated states (Thomas,
1998). In an eukaryote, such states would correspond to cell types. In bacteria, it
allows proliferation in widely different environments (Casaderus & D’ari, 2002).
In the λ-phage, epigenetics allows the phage to adopt two widely different survival
strategies.

The λ-phage is a bacterial virus (=phage) that uses a specific receptor protein
on the bacterial surface to enter the cell. If there are no maltose receptors on the
surface, the E. coli is immune to the λ-phage. With the receptor present, the phage
can bind and inject its DNA into the cell, as sketched in Fig. 7.3.

After infection of an E. coli cell the λ-phage enters either into an explosive lytic
state, where finally the bacteria bursts and many copies of λ are released, or the λ

integrates its DNA into the host cell DNA (see Fig. 7.4). The latter case leads to
the lysogenic state, in which the phage DNA can be passively replicated for many
generations of the E. coli. A phage that has this ability to enter into lysogeny is
called temperate.

The initial decision, whether to integrate or to lyse, is taken through the interplay
between two proteins both of which have their production initiated from promoter
PR (see Fig. 7.5). The protein Cro, which degrades slowly (∼30 min; see Pakula
et al., 1986), and the protein CII whose degradation is faster (∼5 min; see Hoyt et
al., 1982). CII degradation depends on a number of cell-dependent factors; in par-
ticular its degradation is slower when the cell is starving, because the protease that
degrades CII is repressed at starvation. Also CII is stabilized at lower temperature
(Obuchowski et al., 1997). Cro favors lysis whereas CII favors lysogeny.

As a result, the lysogeny state is primarily selected when the cell has a slow
metabolism (starvation increases lysogeny frequency by a factor of 100; Kourilsky,
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Lysis: Lysogeny:

Decision

Figure 7.4. E. coli cell after infection by a λ-phage enters either the lysis pathway
(left), or the lysogenic pathway (right). Lysis leads to death plus 50–100 released
phages, whereas lysogeny lets the phage integrate into the E. coli chromosome,
and be passively replicated for many (maybe millions) of generations.

PRM PRE

PR

PL
N

CI

Cro

Operator Left (OL) PRE activated

CII

by CIIOperator Right (OR)

Figure 7.5. The location of the λ-switch and its immediate neighborhood in the
λ-genome. Right of OR, after the Cro gene, there is a promoter site PRE for left-
directed transcription of anti-Cro message and CI. The promoter PRE is activated
by CII, which thereby initiates CI production. This is important in the early phase
of infection, and PRE refers to the promoter for repressor establishment. Left of
OR, after the CI gene, one finds the operator OL that controls the gene for protein
N, which also has a regulatory role in the PR–PRE competition during infection.

1973; Friedman, 1992) or when there are many λ-phages trying to infect the cell
simultaneously (Kourilsky, 1973). CII activates the strong promoter PRE and initi-
ates production of the protein CI that stabilizes the lysogenic state (PRE is short for
Promoter for Repressor Establishment). CI stabilizes lysogeny by repressing the
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promoter PR for Cro production (see Fig. 7.5) and in addition activates a continous
production of itself through the promoter PRM (Promoter for Repressor Mainte-
nance). Once a phage has established the lysogenic state, PR is repressed by CI.
CI thereby both maintains lysogeny and makes the cell immune to infection by
other λ-phages. This immunity is secured through the CI that will repress Cro and
essentially all other genes of the infecting phage. Thus the new entering phage
cannot replicate or integrate into the host chromosome (it cannot express the genes
for integration either).

It is possible to perturb the system out of the lysogenic state. Upon radiation with
ultraviolet (UV) light, the E. coli DNA is damaged, and the SOS rescuing system,
which includes the protein RecA, is activated. RecA cleaves the key molecule
CI, which maintains the lysogenic state. CI is a two-domain protein; one part is
responsible for DNA binding, the other for dimerization. If CI is cleaved it does
not form dimers, and does not bind sufficiently strongly to DNA to suppress PR.
Thereby Cro is produced and the lytic pathway is initiated. When lysis is induced,
the E. coli is killed, and 50–100 phages are released.

Now we focus on the actual genetic switch visualized in Figs. 7.6 and 7.5. Each
of the proteins is produced through a message transcribed by an RNAp that first has
to bind to a corresponding promoter. The main promoter for the cI gene is called
PRM, and the promoter for the cro gene is called PR. They are both controlled by

C1

C1

OR3 OR2 OR1

PRM

RNAp

C1

PR

OR3

PRM

RNAp

C1

OR3

C1

OR3 OR2 OR1

PRM

RNAp C1

RNAp

PR
Cro

RNAp

PRM

Cro
PRPR

Figure 7.6. Basic mechanisms of the λ-phage switch. Arrows indicate transcription
directions. Transcription of the CI gene is thus in the opposite direction (and on
opposite DNA strand) to transcription of the Cro gene. The geometry of operator
sites relative to the two promoters makes CI repress Cro, and Cro repress CI. Thus
a mixture of CI and Cro is unstable and there is a positive feedback driving the
system away from the mixed CI–Cro state. This results in either a CI-dominated
state (lysogeny), or a Cro-dominated state (lysis).
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Figure 7.7. Detailed view of switch where individual base pairs are shown. Each
operator covers 17 base pairs, indicated by bold letters. Further, each operator is
fairly palindromic. For example on OR3 the upper 3′ end starts at TATC, which is
also found on the lower 3′ end of OR3 (on the opposite strand). This means that
the protein binding is mirror symmetric, which is natural as both Cro and CI bind
as dimers.

the operator called OR (“operator right”) that is located in the middle of the ∼40 k
base λ-DNA. When CI binds to the right part of this operator, OR1 or OR2, it
represses the cro gene and thereby represses lysis. The cell is then in the lysogenic
state, and CI will be constantly expressed from the promoter PRM. CI is often just
referred to as the repressor.

CI and Cro are encoded in opposite directions along the DNA. The promoters
for the two proteins are controlled by the operator sites that form OR, as seen in
Fig. 7.6. OR consists of three operator sites, OR1, OR2 and OR3 as illustrated in
Fig. 7.6. Each of these operator sites is a binding site for both Cro and CI, but with
different affinities. Qualitatively CI binds first to OR1 and OR2, and then to OR3.
Cro binds first to OR3 and then to OR1 and OR2. As a result either Cro, or CI,
but not both, can be simultaneously produced from promoters around OR. If CI is
produced, the cell is in a lysogenic state. If Cro is produced the cell is on the way
to lysis.

In Fig. 7.7 we show the DNA sequence for the operators OR. In the real system
the DNA is of course not linear. It is a double helix with a period of 10.4, whereas the
operators consists of 17 base pairs, separated by 6–7 base pairs. Thus the center-
to-center distances are about 23 base pairs, and therefore the binding of two CI
dimers to two consecutive operators will place the two CI dimers on nearly the
same side of the DNA, thus facilitating interactions between the CI dimers. Notice
also that the operators’ sequences are similar; in fact CI and Cro bind to each
operator with energy �G of about −10 kcal/mol. The order of binding is set by the
rather small differences between the operators, with differences in free energies of
��G = �(�G) ∼ 1–3 kcal/mol. This is not much in energy difference, but is up
to a factor exp(�G/T ) ∼ 100 in the chemical binding constant. In the following
sections we will explore the biochemistry and physics involved in this control
system. First, however, we discuss how to make simple biological measurements.
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Figure 7.8. Left: when exposing E. coli to UV light, some are killed and each
of these releases 50–100 λ-phages. The ability to lyse is an inherited trait. Right:
response of the λ-phage to UV radiation. We observe a threshold-like behavior,
where phages lyse when UV is at a level that kills the bacteria. Thus the y-axis is
proportional to probability to lyse.

Questions

(1) Why is it a good strategy for the λ to favor lysogeny when a bacterium is infected
simultaneously by many λs?

(2) A λ-lysogen is infected with another λ-phage. Why does the new phage not induce
lysis?

Using bacteria to count phages

One nice feature of molecular biology is that it facilitates its own exploration. Often
one can use the control of some parts to explore other parts. One example is the
counting of phage release, which is an important quantitative tool of most phage
research. In Fig. 7.8 we show the result of an experiment where λ-infected E. coli
is exposed to different levels of UV radiation. Fig. 7.9 illustrates how one counts
the number of released phages.

Let us say that we want to measure the stability of the lysogenic state. Thus we
want to measure how many phages are released per bacterium in a given situation.
The overall experiment is sketched in Fig. 7.9. The experiment proceed as follows.
First we need a strain of E. coli that is infected with the λ but does not have the
λ-receptor. Such strains have been prepared. Bacteria from this strain are grown
into a culture overnight. In the morning we will have a large sample of bacteria,
plus some phages that were released from bacteria that underwent lysis. We want
to count both the number of bacteria, and the number of released phages. Notice
that because none of the bacteria has the maltose receptor, released phages cannot
enter another bacterium. Therefore only first-generation lysis events are counted.

To count bacteria is easy. One dilutes the solution by a large factor and distributes
it homogeneously on a culture dish (plate it), allows it to grow overnight and
subsequently counts the number of colonies on the dish. Each bacterium gives rise
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E. coli without receptor
but with λ, grown overnight

Count released λ
by plating over E. coli

with receptor

Grow overnight, 
each λ
gives a visible plaque

Figure 7.9. Measurement of phage release. This figure shows spontaneous phage
release (similar experiments can done for the UV-induced release shown in
Fig. 7.8). The primary experiment is done in a test tube; the counting of what
occurred is subsequently done by plating the contents of the test tube on a growing
strain of bacteria which is ready for λ-infection. Each λ will infect and kill its host,
leading to a plaque that can be seen with the naked eye after a night’s incubation.
The resulting number of plaques is then counted manually.

to one colony. If the solution of bacteria was sufficiently diluted the colonies are
non-overlapping and thus countable by naked eye. One can then easily recalculate
the original number of bacteria per mL.

To count phages we remove the E. coli from the solution, and we are left with
a solution containing the released phages. An appropriate dilution of this solution
is poured over a detector strain of E. coli that has receptors for the λ. This plate
is grown overnight. Each phage will then initiate a local plaque. The reason is as
follows. The phage will infect a bacterium and in most cases (∼99%) it enters lysis.
Then new phages are produced and they infect and kill the nearby bacteria. This
is seen as a small circular area where bacterial growth is reduced: a plaque. By
counting the number of plaques one obtains the original number of phages. The
dynamic range of this type of measurement is very large: if there are many phages
one dilutes the fraction poured over the plate accordingly. One can measure phage
release in a range from 100 phages per E. coli to one phage per 107 E. coli.

Actually there is more information that one can extract from this experiment. It
turns out that one observes two types of plaque: clear and turbid. In both types the
bacterial growth is reduced compared with the growth in the surrounding phage-free
area, but for the clear plaques it is reduced to zero. The clear plaques correspond
to phages that cannot establish lysogeny, and thus kill all the bacteria they infect.
These phages are virulant mutants. The turbid plaques originate from phages that
are able to establish lysogeny (in a small percentage of their hosts). The bacteria
where the phage has established lysogeny are the only ones to survive; all others are
killed. This is because lysogenic bacteria cannot be re-infected by another λ. Thus
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in these regions bacterial growth is delayed, but as soon as one lysogenic bacterium
appears it grows at the normal rate to form a colony. This produces a turbid plaque.

Let us start again from the original λ-infected E. coli culture. We expose it to the
agent we want to study (which can also be nothing, if one wants to test the stability
of the lysogenic state), and then we count phages by using the above technique.
If the disturbing agent is UV radiation, the number of mutants will be negligible
compared with the number of phages forced into the lytic state, so one obtains only
turbid plaques. One can quantify the effect by counting the number of plaques per
bacteria exposed to a given dose of UV. This was the type of measurement behind
Fig. 7.8. On the other hand, if one does not perturb the system, the transition to
lysis is mostly caused by mutations. Thus there are more clear plaques than turbid
ones, and we can quantify the mutation rate by counting the clear plaques (about 1
in 106 phages mutate to become virulent).

Questions

(1) Simulate a plaque on a growing bacterial culture plated on a two-dimensional disk. Key
parameters are the diffusion rate of λ-particles, the capture cross section for a phage to
enter the bacteria, and the number of phages released per lysis. Assume for simplicity
that all bacteria lyse.

(2) When a λ decides to lyse the bacteria it doubles its genome through a so-called rolling
mode, where about one copy is generated each 30 s. Assume that an escaped λ instantly
infects a new E. coli and initiates the lysis there. Discuss the optimal lysis strategy in
terms of how many copies the λ should generate from each lysis event. (In principle
there is material for generating about 2000 phage particles in one E. coli cell.)

Basic chemistry – and cooperativity

We now want to turn to a more quantitative description of the possible processes in-
volved in genetic regulation. An elementary process here is the binding–unbinding
of proteins to each other and to the operator DNA that controls transcription initi-
ation. Thus, for readers who are not familiar with chemistry, we now go through
some basic chemistry and cooperativity. In this section we follow the standard ap-
proach quite closely, with on- and off-rates, and consequences of cooperativity. In
the next section we will venture into a more detailed discussion of how to treat
binding to a combination of operators, and through this we will demonstrate how
statistical mechanics provides us with a generic framework.

The basis of chemistry can be understood from considering a titration experiment.
In this we examine the bound fraction of a complex as a function of the total
concentration of one of its constituents. Thus, consider a titration experiment where
we investigate the reaction between repressor CI and an operator site O on a small
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piece of DNA:

CI + O ⇀↽ CIO (7.1)

This reaction is in equilibrium when the rates of the reactions

CI + O → CIO with rate→ = k→[CI][O] (7.2)

CI + O ← CIO with rate← = k←[CIO] (7.3)

balance (rate→ = rate←):

K = k←
k→

= [CI][O]

[CIO]
(7.4)

K is called the dissociation constant. Further we emphasize that all concentrations
refer to free concentrations in the solution, and thus not total concentration. For
example, the total concentration of operator sites is [Ototal] = [O] + [CIO], and
fraction of occupied operator is therefore

[CIO]

[Ototal]
= [CI]

K + [CI]
(7.5)

Thus K is the CI concentration at which [O] is half occupied, that is [O] = [CIO].
In molecular biology K is typically found to be ∼10−8±2 m. In Fig. 7.10 we il-
lustrate such an experiment. Notice that the free concentrations are less than the
total concentrations, as [CItotal] = [CI] + [CIO], and that the experiment is most
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Figure 7.10. Left: elementary chemistry illustrating the first-order reaction be-
tween a repressor CI and one isolated operator site. Right: occupancy as a
function of repressor concentration. This is measurable in a titration experi-
ment, where one measures variation in the fraction of bound operator as a func-
tion of total repressor concentration (for the first-order reaction shown here:
[CIO]/([Ototal]) = [CIO]/([CIO] + [O])). The measurement can be made by sep-
arating bound and free DNA through the difference in displacement upon elec-
trophoresis in a gel filter. More efficient, however, is “foot-printing”, where parts
of the DNA that are bound to the protein are protected against a DNAase enzyme
that degrades all DNA that is not bound. The fraction of surviving DNA fractions
is then measured by gel electrophoresis.
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easily analyzed when operator concentration is kept much lower than all other con-
centrations ([O] 	 [CI]), such that [CItotal] ≈ [CIfree]. This situation is also typical
inside the E. coli cell, where there is often only one operator of any particular
type.

Cooperative chemistry

A genetic switch should switch at a reasonable concentration, and be efficient in
discriminating between its options: it should switch between its two states with only
a small change in concentration of the controlling protein. In molecular biology this
is obtained by an ordered sequence of bindings, the simplest being a dimerization
step.

In the λ-switch, the DNA binding protein CI in fact binds significantly only to
the DNA in the form of a dimer. CI is produced as a monomer, and binding to DNA
goes through a two step process:

(CI)M + (CI)M ⇀↽ CI with KD = [(CI)M]2

[CI]
(7.6)

with a dimerization constant KD, followed by the association

CI + O ⇀↽ CIO with a bound fraction
[CIO]

[Ototal]
= [CI]

K + [CI]
(7.7)

where K = [CI][O]/[CIO]. Expressed in terms of the monomer concentration the
bound fraction is

[CIO]

[Ototal]
= [(CI)M]2

K · KD + [(CI)M]2
(7.8)

which now gives half occupancy at a free monomer concentration

[(CI)M] ≈
√

K · KD (7.9)

Before plotting the behavior versus concentration one should be aware that in the
above expression the (CI)M represents the free concentration of CI monomers. If
we want to express everything as a function of total concentration we have to solve
Eq. (7.6):

2[(CI)M]2

[CItotal] − [(CI)M]
= KD (7.10)

where the total concentration of CI molecules is given by the contribution from the
free dimers [CI] plus the free monomers [(CI)M], [CItotal] = 2[CI] + [(CI)M], when
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Figure 7.11. Left: occupancy of OR1 as a function of total CI concentration. The
two curves illustrate the effect of the finite dimerization constant of CI. Dimer-
ization makes the transition between on and off occur in a narrower CI interval.
Right: a similar plot for Cro-OR3 association, demonstrating that cooperativity is
important on both sides of the switch.

we ignore the few CI dimers bound to the operator. This gives:

(CI)M = − KD

4
+ KD

4

√
1 + 8

KD
[CItotal] ∼ [CItotal] (7.11)

where the last approximation requires small total concentrations [CItotal] 	 KD,
where most of CI is monomers, and dimerization thus represents a barrier to the
operator bound CI state. Depending on the value of total CI concentration the
fractional occupancy of an operator is accordingly:

[CIO]

[Ototal]
≈ [CIT]2

K KD + [CItotal]2
for [CItotal] 	 KD (7.12)

[CIO]

[Ototal]
≈ [CItotal]/2

K + [CItotal]/2
for [CItotal] 
 KD (7.13)

We leave Eq. (7.13) to be proven by the reader. In general we obtain cooperative
effects when concentrations are smaller that KD, whereas high concentration implies
that all CI effectively act as if they are always dimers. The maximum cooperativity
is thus obtained when KD is larger than K , which indeed is the case for the control
of the OR complex (see Fig. 7.11).

In general one may consider an nth-order process of n identical proteins P binding
simultaneously to a molecule O:

nP + O ↔ PnO (7.14)
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with K = [P]n[O]/[PnO] and [Ototal] = [O] + [PnO]. The fractional occupancy

Y = [PnO]

[Ototal]
(7.15)

and

log

(
[PnO]

[O]

)
= log

(
Y

1 − Y

)
= n · log(P) − log(K ) (7.16)

allow us to determine n provided we can measure the functional dependence as a
function of free P concentration [P]. The Hill plot of log(PnO/[O]) versus log(P)
determines a slope h that is called the Hill coefficient. A Hill coefficient h > 1
signals a cooperative process. The larger the Hill coefficient, the sharper (more
cooperative) is the transition from off to on.

Let us now return to the CI binding to OR in the λ-phage switch. In the right-hand
part of Fig. 7.12, we show a Hill plot for the process where the CI first dimerize,
and then bind to a single operator. The two plotted curves show the behavior for
moderate and relatively strong dimerization, compared with the binding to the
operator.

In biology, very large Hill coefficients indeed exist: for example, the chemotaxis
motor in E. coli responds to changes in the phosporylated molecules CheYp with
a Hill coefficient h ∼ 11.
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Figure 7.12. Fractional occupancy Y = [CIO]/[Ot] of a single operator, where the
CI molecules first dimerize, and then bind to the operator. When the dimeriza-
tion constant KD is much smaller than K , the reaction is effectively first order.
On the other hand, when KD > K , the occupancy curve switches in a narrower
concentration interval. On right panel we show the usual Hill plot of Y/(1 − Y ) =
[CIO]/[O], here again versus the total concentration of CI. This plot is on a log–log
scale, thereby determining a slope called the Hill coefficient. In principle this Hill
coefficient is usually defined as the slope at half saturation.
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Questions

(1) If a living bacterium had diameter 1 m, what would one expect for the typical binding
affinities between proteins and an operator?

(2) Consider a titration experiment where one varies CI concentration (with fixed opera-
tor concentration) in order to probe the first-order chemical reaction CI + O ↔ CIO.
Compare the fraction of bound [CIO] to [O] as a function of free [CI] and [CItotal], respec-
tively, for a case where [Ototal] = 10K . Repeat the comparison when [Ototal] = K/10.

Chemistry as statistical mechanics

One molecule in a bacterial volume V corresponds to a concentration

ρ = 1/V ≈ 1015l−1 = 1015(1M/6 × 1023) = 1.5 × 10−9m ∼ 1 nm (7.17)

where m is molar (moles per liter). We now repeat some elementary chemistry
inside such a volume, in order to emphasize the relation between simple counting
and chemical equilibrium. In keeping with the character of the book we choose
to go through the basic derivations from a statistical-mechanical point of view,
because in this approach the role of entropy is more transparent. Also this approach
is easily generalized to more complex situations, as we will see in the subsequent
applications.

Consider, for example, CI binding to DNA. The probability that a molecule
is bound depends on the (Gibbs) free energy difference between the bound and
unbound states. Call this difference �G ′ = G(bound) − G(unbound). When �G ′

is negative the “on” state has lower free energy than the “off” state. Remember
that the statistical weight (=unnormalized probability) of a state is given by the
number of ways the state can be realized, multiplied by exp(−energy of state/T );
see Appendix. Now we count by considering only two states for the N molecules:
an “off state” where all N molecules are free, and an “on state” with N − 1 free
molecules and 1 CI bound to the DNA. The statistical weight of the case with one
molecule bound is then

Z (on) = 1

(N − 1)!

(∫
V

∫
d3rd3 p

h3
e−p2/(2mkBT )

)N−1

e−�G ′/kBT (7.18)

whereas the statistical weight of having no molecules bound to the site is

Z (off) = 1

N !

(∫
V

∫
d3rd3 p

h3
e−p2/(2mkBT )

)N

(7.19)

Here the multiple integrals count all possible positions r and moment p of one
molecule in the cell of volume V . Division by Planck’s constant h takes into account
the discreteness of phase space imposed by quantum mechanics. Division by (N −
1)! and N !, respectively, counts all permutations of molecules and is included
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because these molecules are indistinguishable. This is necessary in order to avoid
double counting of any of the identical free molecules in the cell volume V . In
principle there are other parts of the system, for example the water that surrounds
the molecules. However, one typically assumes that everything else besides the
N molecules is independent of the state of the system (whether on or off), and
therefore gives the same contribution to all weights. Thus one simply forgets it in
the counting, but may include it later on by renormalizing the free energies.

Integrating (and using
∫ ∞
−∞ dy exp(−y2) = √

π), one obtains the result that the
statistical weights of the state where one of the particles is bound (and N − 1 are
free) is:

Z (on) =
(
V [2mkBT π/h2]3/2

)N−1

(N − 1)!
exp

(
−�G ′

kBT

)
∝ cN−1ρ−(N−1) exp

(
−�G ′

kBT

)
(7.20)

where ρ = N/V and c = (2mkBT π/h2)3/2. The statistical weight that all N parti-
cles are free is

Z (off) =
(
V [2mkBT π/h2]3/2

)N

N !
∝ cNρ−N (7.21)

In the last step we used Sterling’s formula x! ≈ (x/e)x and the approximation
(N − 1)/N ≈ 1. This assumes that the densityρ of the free particles does not change
significantly when one molecule binds. The system defined by the N particles in
V with either one bound (on) or none bound (off) has now a total statistical weight
(partition function) of

Z = Z (on) + Z (off) (7.22)

and the probability of the on state is

Pon = Z (on)

Z
and the ratio

Pon

Poff
= Z (on)

Z (off)
= ρ

c
e−�G ′/kBT (7.23)

The counting determines the statistical weights associated with, for example, the
chemical reaction of the DNA binding protein CI to its specific operator O:

CI + O ↔ CIO (7.24)

Usually this is characterized by the dissociation constant

K = [CI][O]

[CIO]
where [O] + [CIO] = [Ot] (7.25)

where [O] is the free operator concentration, [CIO] is the bound operator concentra-
tion and [Ot] = 1/V is the total operator concentration associated with one specific
operator located in the bacterial volume.
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Since the given single operator O can only be on or off, the probability of being
on is Pon = [CIO] · V, and off is Poff = [O] · V, where Pon + Poff = [Ot] · V = 1.
From chemistry

Pon

Poff
= [CIO]

[O]
= [CI]

K
(7.26)

which is consistent with Eq. (7.23) when we set [CI] = ρ and identify

K = c · e�G ′/kBT = [1 m] · e�G/kBT (7.27)

where the last equality sign adopts the usual convention for �G by measuring the
pre-factor in moles per liter (m). Notice that we occasionally use the association
constant KA = 1/K . Looking back to Eq. (7.20) the meaning of �G is that it
reflects the correct statistical weight for the “on” state if N = NA (equals Avogadro’s
number = 6 × 1023) and V = 1 l in Eq. (7.20). In the following we will not write
the [1 m] in our equations, thus always implicitly measuring all concentrations in
moles per liter.

As a standard, in the following we will measure all statistical weights normalized
in terms of Zoff. Thus Eq. (7.20) is

Z (on) = [CI]e−�G/kBT and Z (off) = 1 (7.28)

At this point it is worthwhile to dwell a little on the meaning of the free energy
difference: �G counts the free energy difference between the bound state and the
free state when the concentration of CI in the free state is 1 m. If the concentration
is smaller than 1 m, as indeed it is in the cell, then the entropy gain by going from on
to off is larger, because the volume per molecule in the free state is larger. The free
energy difference between the bound and the free state of one molecule at density
[CI] can be deduced from Eq. (7.28) if we express [CI] in molar terms

�G∗ = kBT (ln(Zoff) − ln(Zon)) = �G − kBT ln([CI]) (7.29)

corresponding to the fact that lower density favors the free state (remember that
[CI] means [CI]/1 m).

Finally we want to conclude the association between statistical mechanics and
chemical equilibrium by addressing the operational range of possible K (and �G
values). From Eq. (7.25) we obtain a bound fraction

[CIO]

[Ot]
= [CI]

[CI] + K
= Zon

Zoff + Zon
= Zon

1 + Zon
(7.30)

where Zon = [CI]/K and Zoff = 1 (see Eq. (7.28)) and occupancy therefore
switches from 0 to 1 when [CI] ∼ K = e�G/kBT . Typically the system should be able
to switch from on to off, or back, by changing the number of molecules from around
1/cell to around 100/cell. Because one molecule in V corresponds to a concentration
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of 1 nm we expect functional K s of about 10−8±1 m. As K = [1 m] · e�G/kBT then
the binding free energies �G ≈ −14 kBT → −18 kBT . In the biological literature,
free energies are often given in units of kcal/mol. Because 1 kBT = 0.617 kcal/mol
at room temperature, one expects �G ∼ −10 kcal/mol, as indeed is the case for
typical binding between regulatory proteins and DNA, including CI and OR.

For the λ-phage, the system uses only a dimer to bind to the DNA. In order to
increase further the sharpness of the switch several CI dimers bind cooperatively
(i.e. strengthening each other) to the closely located operator sites on the DNA.
We now analyze this sequence of reactions employing the statistical-mechanical
analysis of Darling et al. (2000) (see also Fig. 7.13).

At OR in λ there are three operator sites, OR1, OR2 and OR3, that are adjacent to
each other. Thus there are 23 = 8 possible states of CI occupancy of the operators,
and we have to know the �G for all possible occupation of these states (plus some
states, which here we ignore, associated with Cro and RNAP bindings). Each of
these states s = (s1, s2, s3) where sσ = 0 if operator with number σ is empty, and
sσ = 1 if ORσ is occupied by CI dimer. Thus for a state characterized by nM free
monomers, nD free dimers and an operator state s where i = i(s) dimers are bound

−13.4 −10.8 −12.0

−0.6 −1.0

−11.0 −12.8

∆

∆Gij

∆Gi

−9.7

−3.3 −2.6

PRPRM

RNApRNAp

∆Gi

CI

Cro

∆Gij

∆GDim = −8.7

∆GDim = −11.1

OR3 OR2 OR1

∆G = −11.5 G = −12.5

Figure 7.13. Illustration of data on �G (in kcal/mol) involved in OR regulation
from Darling et al. (2000). The top part shows Cro bindings, with Gi being in-
dividual bindings, and �Gi j being additional cooperative bindings. The lower
part shows corresponding numbers for CI and RNAp respectively. Total �G for a
state is obtained by summing individual contributions. Notice that the cooperative
bindings are pairwise exclusive, such that only one of them counts if there is CI or
Cro on all three operator sites. Also notice that when RNAp binds to PR there is
no additional space to bind a CI or Cro on either OR1 or OR2. Free RNAp con-
centration in E. coli is about 30 nm. All energies are relative to the non-occupied
reference state.
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to operators, the exact statistical weight is

Z (s, nM) = V nD

nD!
· V nM

nM!
· 1

K nD+i(s)
D

· e−�G(s)/kBT (7.31)

where nD = (N − nM − 2i)/2 because the number of free dimers in the cell is fixed
by the conservation requirement: N = nM + 2nD + 2i with N the total numbers of
CI proteins in the cell. Notice that each of the nD dimers contributes with its dimer-
ization binding free energy through KD = e−�GD/kBT , whereas only the dimers
bound to the operators contribute to �G(s). For CI the dimerization constant is
KD = 5 × 10−7m. V is counted in m−1. In Eq. (7.31) V nD/nD! counts the number
of states of the free dimers and V nM/nM! counts the number of states of the free
monomers. Again the total partition function can be written as a sum over all states
(s, nM) that the N molecules can be in: Z = ∑

Z (s, nM).
The probability of a state s is then given by the appropriately normalized ratio

P(s) =
∑

nM
Z (s, nM)∑

s,nM
Z (s, nM)

(7.32)

For large N , say N > 30, the above calculation can be simplified by considering
that the fraction of molecules bound to the operators is only a small perturbation
on the monomer–dimer equilibrium. Then we can calculate [CI], from Eq. (7.6),
and express approximately the statistical weights for the s state in terms of dimer
density [CI]:

Z (s) = [CI]i(s)e−�G(s)/kBT (7.33)

which is normalized such that the statistical weight of the state where nothing is
bound is Z (s = 0) = 1. The concentration-dependent factor reflects the entropy
loss in going from a freely moving dimer to a bound dimer. We have seen it already
in Eqs. (7.18)–(7.28): in the case of i(s) repressors bound, the exponent in Eq. (7.18)
would be N − i(s) instead of N − 1; correspondingly the concentration-dependent
factor in Eq. (7.20) would be ρ−(N−i(s)), and in Eq. (7.28) it would be [CI]i(s) instead
of [CI].

If we include both CI and possible RNAp states then Eq. (7.33) generalizes to
(Shea and Ackers, 1985):

Z (s) = [RNAp] j(s)[CI]i(s)e−�G(s)/kBT (7.34)

where j(s) is the number of bound RNAp molecules in state s. Similarly one
can generalize to include the possibility of Cro binding to the operators (Darling
et al., 2000). This formalism is summarized in Fig. 7.14. The chemical binding free
energies for CI and Cro to OR can be found in Fig. 7.13.



168 Physics of genetic regulation

P( ) =

P( ) = 2

C

CC

RC
) =P(

C and R are free concentrations

C exp(−∆G1/kBT )

C  exp(−(∆G1 + ∆G2 + ∆Gcc )/kBT )

CR exp(−∆G(all interactions)/kBT )

Figure 7.14. Statistical mechanics of genetic regulation. Any state of occupancy
of operators can be assigned a statistical weight, or a probability, that is almost
exactly proportional to free concentrations of the involved molecules in the cell
multiplied by some binding energies �G (see also text).

Now all equilibrium properties to be calculated. In particular we can calculate
the probability for any subset of the states to be bound as a function of the total
amount of CI in the cell.

As an example let us calculate promoter activity of the two promoters for CI
and Cro in a cell where there is no Cro. First let us consider the cro promoter PR.
This promoter can only be accessed by RNAp when both OR2 and OR1 are free.
Additionally in order for the promoter to be active, RNAp must first be bound. The
probability for the corresponding state where RNAp is bound to PR is

P(0, RNAp) + P(1, RNAp) = Z (0, RNAp) + Z (1, RNAp)∑
s Z (s)

(7.35)

where 0 means absence of CI on OR3 whereas 1 means CI bound to OR3. To
calculate the Zs we make use of Eq. (7.34); the corresponding values of �G are
given in Fig. 7.13. For example

Z (1, RNAp) = [RNAp][CI] exp

(
−�G(1, RNAp)

kBT

)
(7.36)

= [RNAp][CI] exp

(
−22.2 kcal/mol

0.62 kcal/mol

)
(7.37)

where we inserted the appropriate binding energy from Fig. 7.13 and the room
temperature kBT = 0.617 kcal/mol. The right-hand panel in Fig. 7.15 shows the
Cro promoter activity as function of number of CI calculated in this way. As CI
bound to either OR1 or OR2 prevents RNAp from binding to PR, the probability
of initiating PR decreases strongly with CI concentration.

Similarly one can calculate the activity of the CI promoter PRM, which is shown
in the left-hand panel of Fig. 7.15. The CI promoter PRM is weak, but is strengthened
by a factor of about 5–10 when OR2 is occupied by a CI dimer and OR3 is free.
Thus PRM increases by such a factor when CI concentration becomes sufficient
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Figure 7.15. PRM and PR activity as a function of number of CI molecules
in an E. coli cell that is assumed to have zero Cro molecules. PRM activ-
ity is calculated to be proportional to RNAp polymerase bound to OR3 (=∑1

i=0

∑1
j=0 P(RNAp, i, j)), whereas PR activity is proportional to one RNAp

molecule occupying PR that covers both OR1 and OR2 (= ∑1
i=0 P(i, RNAp)).

RNAp binding to PRM is set to −11.5 kcal/mol, and to PR −10.5 kcal/mol, and
CI is here assumed to bind only to operator DNA.

to make CI on OR2 likely. When OR3 is occupied by either CI or Cro, PRM is
blocked. Further, binding of CI dimers to both OR1 and OR2 involves an additional
binding between the CI dimers, as seen from the additional binding of the s = (011)
state compared with the sum of the (010) and the (001) states; see Fig. 7.13. All
this is included in the PRM activity as a function of state s, and the probability of
state s as a function of CI. The PRM activity curve has in fact been measured, and
Fig. 7.15 differs from the experiments in several ways, owing to effects that will be
discussed in the next sections.

PR and PRM activities are not only functions of CI, but also of Cro in the cell.
When Cro dimers are present in the cell, they bind first to OR3 (with �G(2, 0, 0) =
−13.4 kcal/mol), thereby blocking transcription of cI . In this way a lytic state can
in principle, stabilize itself. It would, however, not lead to a very large amount of
Cro, since Cro binds to OR1 and OR2, and thereby partially represses itself. The
CI-dominated state is the lysogenic state with a total of about 250 CI molecules
in an E. coli cell (Reichardt & Kaiser, 1971), whereas an artificially confined lytic
state (anti-immune state) has about 300 Cro molecules in a cell (Reinitz & Vaisnys,
1990, from Pakula et al., 1986).

Questions

(1) If CI is cleaved by RecA, its dimerization is prevented. What concentration of CI
monomers is needed for maintaining a similar probability of having OR1 occupied as
100 nm of CI dimers does? Assume that monomer–OR3 binding is half of the dimer
CI–OR1 binding (= −12.8 kcal/mol).
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(2) Write a program to calculate the activity of PRM and PR as functions of CI concentra-
tion, given the tabulated free energies for CI to OR sites. Experiment with the switch
behavior by setting CI dimerization to −∞ (all CI in dimers always), and by removing
cooperative binding of CI bound to OR1 and OR2.

(3) Consider RNAp binding to a promoter P with a supposed binding energy of �G =
−11.5 kcal/mol. Assume that free RNAp concentration is 30 nm. What is occupancy
probability θ of the P by RNAp? Assume that bound RNAp initiates transcription
with rate kf = 0.1/s: RNAp + P ↔ RNAp − P → P . . . RNAp (where the last part
of the expression is the elongation initiation, a one-way non-equilibrium reaction).
What, then, is the occupancy θ of RNAp at the operator site? For RNAp “on” rates
we can assume that one RNAp in 1 µm3 will have an on rate kon = 0.1/s. (Hint: argue
with dθ/dt = k(on) · [RNAp − free] · ([P] − θ ) − k(off) · θ − k · θ = 0, and use that
e�G/kBT = k(off)/k(on)).

Non-specific binding to DNA

Gene control involves transcription factors, i.e. proteins that bind to specific DNA
sites and thereby activate or repress the transcription machinery at that point. Thus
binding of a particular protein to a specific site is needed. In practice it is possible
to obtain quite high specific binding energies, but not arbitrarily high: if specific
binding is very high, then often the protein will also bind substantially to non-
specific DNA sites.

The non-specific binding can be taken into account by using Eq. (7.33) for
Z (s), but with the free dimer concentration [CI] given by a modified conservation
equation. In the limit where we ignore depletion due to the few dimers bound to
the operators, the equation reads:

N = nM + 2nD + 2nD · LDNA · e−�Gu/kBT /V (7.38)

Z (s) =
(nD

V

)i(s)
e−�G(s)/kBT (7.39)

where i(s) is the number of dimers bound to operators in occupancy state s, and
V is the volume measured in m−1. Here nD is the number of free dimers in the
cell volume V . In the above equation LDNAe−�Gu/kBT is the total contribution from
non-specific binding in terms of the length of DNA in the E. coli, LDNA ∼ 5 × 106

base pairs (bp), and the typical non-specific binding per base pair, �Gu. �Gu, is the
standard free energy corresponding to 1 m concentration, and the factor 1/V ∼ 1
nm converts to the corresponding concentrations in Eq. (7.38). The non-specific
binding becomes significant when

e−�Gu/kBT · LDNA/V ∼ 1 (7.40)
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which with LDNA ∼ 107 happens when �Gu ∼ −3 kcal/mol. Thus when a DNA
binding protein binds stronger than 3 kcal/mol to non-specific sites, then the 107

binding sites on the DNA win over the about 109 unbound states in the cell. To be
more detailed, ignoring the specific binding the N CI molecules would be parti-
tioned into

N = nM + 2nD without DNA (7.41)

N = nM + 2nD

(
V + LDNAe−�Gu/kBT

V

)
with DNA (7.42)

corresponding to having an additional statistical weight of (LDNA/V )e−�Gu/kBT

for dimers sequestered by non-specific binding to the DNA. Thus we can simply
replace

V → V + LDNAe−�Gu/kBT (7.43)

in Eq. (7.38) and subsequently ignore non-specific binding. The overall effect of
non-specific binding to DNA is to provide an additional volume for dilution of the
molecules of size LDNAe−�Gu/kBT , where LDNA is the number of binding sites on the
DNA that should be compared with the volume V ∼ 6 × 108 × (cell volume/µm3).
The effect of non-specific CI–DNA binding on PRM and PR activity is illustrated
in Fig. 7.16.

Finally we would like to stress that non-specific binding is not only a cost that
has to be accounted for. It is usefull because it adds robustness to the system. In
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Figure 7.16. PRM and PR activity as functions of numbers of CI proteins in a
bacterial cell that is assumed to have zero Cro molecules. The figure illustrates
the effect of a non-specific CI–DNA binding of �Gu = −4 kcal/(mol · bp), by
comparison with behavior in Fig. 7.15 where we ignored non-specific binding.
Non-specific binding is found to weaken the response to, and eventual changes in,
CI concentration. The dilution line shows the rate of CI depletion due to E. coli
growth and division.
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fact, if nearly all transcription regulators are anyway bound non-specifically to the
DNA, then an overall change of protein–DNA binding constant by, for example,
a factor 1000 will not change the relative strength of the operator to non-specific
binding. Thus the non-specific binding effectively buffers the specific bindings
against changes in protein–DNA binding constants. In contrast if there were no non-
specific binding, then the occupancy of the operator state would be solely given by
a free energy of specific binding, which would greatly increase if salt concentration
decreased. As most transcription factors are bound non-specifically, a change in
salt concentration makes a proportional change in both specific and non-specific
binding, and the occupancy of operator sites becomes less salt dependent. For E. coli
changes in intrinsic salt concentration are commonly induced as a response to a
changed external osmotic pressure on the cell.

Questions

(1) The linear dimensions of a human cell are about 10 times those of a bacterium. The
human DNA consists of 3 × 109 base pairs. If one (wrongly!) assumes that the human
cell can be viewed as one big bag of proteins and DNA, what would the non-specific
binding be that makes it equally likely for a protein to be found on the DNA as in the
cell volume?

(2) Consider a DNA binding protein in an E. coli cell that binds to 90% of its DNA with
�G = −3 kcal/mol and to 10% of the DNA with �G = −5 kcal/mol. What is the
probability that such a protein will be free in the cell?

(3) The interaction between a DNA binding protein and the DNA can be written as a sum
of individual interactions between amino acids and the base pairs at the corresponding
position (Stormo & Fields, 1998). Thus the ensemble of non-specific bindings may be
represented by the random energy model examined in the protein chapter (Gerland et al.,
2002). Assume, for a repressor in an E. coli, that each of the 5 000 000 non-specific
binding free energies is drawn from a Gaussian distribution with mean −3 kcal/mol and
standard deviation −2 kcal/mol. What must the binding to the specific operator site O
be in order that a protein should spend at least half its time at O?

(4) Repeat Question (3) if the typical non-specific binding was +3 kcal/mol (trick question,
remember that the protein may also be free).

DNA looping

Given the huge number of non-specific DNA sites in a cell, they may often outcom-
pete the specific DNA binding to a particular operator. The biological remedy for
this is to increase cooperativity, i.e. to build operator sites that demand the simulta-
neous binding of several proteins, such that each protein is bound both to the DNA
and other proteins. Formally, if we have two proteins that each bind with energy
�Gs to a specific site, an energy �Gp for two proteins that bind to each other, and
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an energy �Gu for the proteins binding to a non-specific site, then the competition
between specific and non-specific sites for two repressor dimers is governed by

�G(specific) = 2�Gs + �Gp (7.44)

�G(non-specific) = 2�Gu − 2kBT ln(LDNA) (7.45)

The ln term is the entropy associated with the number of states accessible to a
non-specifically bound repressor (= LDNA). In the above equation we have ignored
the much smaller contribution from non-specific binding where both repressors
bind to each other. This can be ignored because this binding implies an entropy
loss corresponding to an additional T ln(LDNA) ∼ 8 kcal/mol in translational free
energy, which is sufficient to overrule the ∼ −3 kcal/mol binding associated to two
CI dimers forming a tetramer.

The difference between specific and non-specific binding is

�G(specific) − �G(non-specific) = 2�Gs + �Gp − 2�Gu + 2kBT ln(LDNA)
(7.46)

if there is cooperativity. If there is no cooperativity the difference is

�G(specific) − �G(non-specific) = 2�Gs − 2�Gu + 2kBT ln(LDNA) (7.47)

and thus any cooperative binding �Gp < 0 indeed favors specificity (see Fig. 7.17).

∆G = 2∆Gs + ∆Gcoop

∆G = 2∆Gu − 2kBT ln(L)

∆G = 2∆Gu + ∆Gcoop − kBT ln(L)

Figure 7.17. Cooperativity as a mechanism to beat non-specific binding. When co-
operative binding between two transcription factors �Gcoop contributes less than
the free energy of a transcription factor on all possible non-specific DNA binding
sites, then cooperative non-specific binding is not possible. The remaining compe-
tition between the upper two scenarios shows that cooperativity helps the specific
binding sites. Notice that the same competition takes place when comparing with
other non-specific effects, for example proteins in the cell volume, or proteins se-
questered by the cytoplasm. In all cases a small cooperative energy favors specific
bindings.
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W = exp(−∆GR(1,1,0)/kT − ∆GL(0,1,1)/kT )
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Figure 7.18. OL–OR association, separated by a large loop of DNA.

In the case of λ, we have already seen cooperativity between CI bound to OR1
and CI bound to OR2. It turns out that there are additional mechanisms that add to
cooperativity. On the λ-DNA there is also an operator left (OL), ∼2.4 kbase to the
left of OR, and having almost identical sequences; see Fig. 7.5. OR and OL can
interact through DNA looping; see Fig. 7.18. The effect of this loop is to repress
PRM and PR activity as quantified by Dodd et al. (2001) and Révet et al. (2000),
respectively.

In the experiment of Dodd et al., the PRM activity is measured through a re-
porter gene that produces a detectable protein each time PRM is activated. The
CI level is controlled indirectly, through a cI gene on a plasmid (see Glossary)
in the bacterium. The cI gene on the plasmid is under control of the lacZ operon
(operator + promoter), which itself can be induced by the chemical (IPTG). Dodd
et al. reported that the system without OL can reach high PRM activity, reflecting
the factor 10 difference between PRM activity with and without CI bound to OR2.
However, with OL the PRM never reached its maximum level. At CI concentra-
tion corresponding to lysogen (about 250 molecules per cell), PRM with OL only
had 40% of the activity reported without OL. This repression must involve DNA
looping.

This additional interaction between OL and OR can be quantified in terms of
some binding energies. That is, we associate binding energies with OR and OL
occupation patterns in the two cases where the two operators interact (closed loop)
or do not interact (open loop); see Fig. 7.19. The statistical weight of a given binding
pattern s is then either

Z (open) = f (C) · e−�GR(s)/kBT · e−�GL(s)/kBT (7.48)

or

Z (closed) = f (C)e−�GR(s)/kBT · e−�GL(s)/T · e−�G(complex,s)/T (7.49)
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Figure 7.19. Effect of OL–OR loop on production of CI, and how to estimate
involved binding affinities by fitting PRM activity. (a) PRM activity without OL–
OR complex. This is experimentally observed in an OL-mutant. Given CI–OR
bindings, the CI concentration where PRM becomes active is determined by CI
non-specific binding �Gu = −3.5 kcal/mol. (b) PRM activity without OR3 is
experimentally investigated through a mutant where CI does not bind OR3; neither
does it bind OR3 and OL. It teaches us that the middle configuration reduces PRM
by about 35%, reflecting that RNA polymerase has a smaller “on” rate to PRM
when OL–OR 8-mer is formed. (c) The full effect of averaging (a) + (b) in normal
λ (wild type). The decline of PRM with CI is increasingly dominated by the
complete repression due to formation of the 12-mer complex. The overall decline
at large [CI] is fitted by �G(12-mer-loop) = −3.0 kcal/mol. These were analyzed
experimentally by Dodd et al. (2001), where CI was controlled externally.

depending on whether OL–OR interact (Eq. (7.49)) or not (Eq. (7.48)). Here f (C)
is the concentration-dependent factor from Eq. (7.34). �G (complex, s) is the net
free energy associated to OL–OR bound to each other. It involves both the direct
binding energy and the counteracting contribution from entropy cost of bringing OL
and OR together. The binding energies depend on the state s, which now includes
both the OR and the OL occupation pattern.

In Fig. 7.20 we show a calculated profile for PRM and PR that fits the known
repression of CI at the normal lysogenic concentration of about 250 molecules per
cell. In Fig. 7.19 we illustrated the effect of the key parameters in such a fit: a
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Figure 7.20. PRM and PR activity as functions of the number of CI proteins in
a bacterial cell that is assumed to have zero Cro molecules. The figure illustrates
the full effect of both non-specific binding and OL–OR looping. The loop binding
energies are chosen to fit the PRM auto-repression of a factor of about 3 observed
by Dodd & Egan (2002), and the repression of PR observed by Révet et al. (2000)
and Dodd et al. (2004).

non-specific CI binding energy of −3.5 kcal/(mol · bp), a complex forming energy
�G(8-mer-loop) = −1.0 kcal/mol and a full 12-mer energy of �G(12-mer-loop) =
−3.0 kcal/mol.

The L–R association energy �G(8-mer-loop) is then given by the binding energy
and the entropy associated with closure of the DNA loop:

�G(8-mer-loop) = �G8 − T �S(loop) (7.50)

Here �G8 is the energy of two CI dimers on OL interacting with two CI dimers on
OR, and �S(loop) is the entropic part of the free energy associated with the DNA
loop of length given by distance between OL and OR, l ∼ 3 kb.

The loop entropy �S(loop) can be estimated as the ratio of the number of
accessible states for a closed loop and a random coil: v/V(OL−OR). Here V(OL−OR) is
the random coil volume and v is an “interaction volume”, the latter is of the order
of the volume of an occupied operator site, say v ∼ (5 nm)3. In principle there will
also be an entropy cost due to rotational confinement from alignment of CI dimers
at OL and OR. Also the comparison to a random coil DNA is a simplification; the
DNA in the E. coli chromosome is in fact supercoiled. However, in the simplest
estimate, the entropy cost of loop closure �S(loop) = S(bound) − S(open) is given
by

e�S(loop)/kB = v

V(OL−OR)
= v((

l
lk

)0.6
· lk

)3 (7.51)
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where lk ∼ 300 bp is the Kuhn length of the DNA, v is the volume that OL–OR gets
confined to when binding to each other, and V(OL−OR) was the volume spanned by
the DNA between OL and OR, ie. V(OL−OR) ∼ R3 in terms of its radius of gyration
R ∼ lk(l/ lk)3/5. As a result

�S

kB
∼ ln

(
v

V(OL−OR)

)
= ln

v

l3
k

− 9

5
ln

l

lk
(7.52)

where a reasonable value for the length-independent term would be ln(l3
k/v) ∼

3 ln(100/5) ∼ 8, because lk = 300 bp ∼ 100 nm. Thus �S ∼ 13 and

�G(8-mer-loop) = �G8 − T �S(loop) (7.53)

Therefore, using the fitted �G(8-mer-loop) = −1 kcal/mol and T �S(loop) =
−8 kcal/mol, we estimate �G8 ≈ −9 kcal/mol. Assuming that each OR–CI–
CI–OL binding contributes with equal energy, this tetramerization energy for
each pair of CI dimers would then be of the order of −4.5 kcal/mol. Thus we
would predict that the 12-mer complex has an additional �G of −4.5 kcal/mol,
and �G(12-mer-complex) = −5.5 kcal/mol, whereas it was found to be only
−3.0 kcal/mol. The discrepancy in part results from a loop entropy that is too
big, as DNA is probably supercoiled and thus the entropy cost in making the loop
in one dimension along the supercoil is smaller than closing a random loop in three
dimensions.

To summarize this section, we have seen that true transcription factors often
exhibit significant non-specific binding to DNA. To fight this non-specificity, tran-
scription factors use cooperative binding to each other. DNA looping can add new
levels of cooperativity to genetic controls and thereby help to increase specificity.

Questions

(1) Write P(s) in terms of the number of non-specific bound CI dimers, instead of as a
function of free dimer concentration.

(2) Correct the estimate for �G(12-mer-loop) using the fact that the 8-mer association has
some additional entropy due to the two different orientations of OL relative to OR.
Estimate �G(12-mer-loop) if one takes entropy reduction due to alignment of DNA
strands with OL–OR binding. Assume that OL–OR DNA align to within 30◦ of each
other.

(3) The lacZ repressor dimer binds with K = 10−13m binding, whereas the tetramer binds
with about Kt = 0.3 · 10−13m. The part of the DNA which regulates Lac forms a closed
loop of length 26 nm, and the persistence length of the DNA may be set to l0 = 50 nm.
Estimate the elastic energy of the loop (use Chapter 3); see Balaef et al. (1999).

(4) Non-specific DNA bindings: an E. coli has 5 × 106 base pairs. Dimer Cro binds specif-
ically to the operator OR with a binding energy of about �Gs = −13 kcal/mol and
non-specifically to a random DNA site with about �Gu = −4.5 kcal/mol. Calculate
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the fraction of free dimer Cro, specifically bound Cro and non-specifically bound Cro as
function of numbers of Cro in the cell. The dimerization energy of Cro is −8.7 kcal/mol;
calculate everything as functions of the numbers of monomer Cro in the cell.

(5) Consider a piece of double-stranded DNA with “sticky ends” (ending in single-stranded
segments that are complementary). Assume that these end segments are five bases long,
and have a binding energy of �G = −2 kcal/mol per bp. What is the maximum length
of the DNA if you want it to form a stable loop? What is the minimum length?

Combinatorial transcription regulation

One aspect of looping is that it makes it possible to influence a given promoter from
many different operators. This opens extensive options for combinatorial regulation,
which indeed seems typical in eukaryotes (see also Davidson et al. (2002)). In this
regard it is interesting to explore the possibilities for simple combinatorial control
(Buchler et al., 2003). In Fig. 7.21 we show some simple ways to make a simple
logical output as a function of two proteins A and B, as suggested by Buchler et
al. In all cases the output in the form of RNAp binding to the promoter, or not, is
monitored. If it binds, it may form an open complex and later initiate transcription
of the gene. If the RNAp does not bind, the gene is effective turned off. In practice
the Boolean nature of the logic is limited by both the sigmoidal shape (see right
panel of Fig. 7.10) of any binding curve, and by the basal activity of the promoter.
Whereas the sigmoidal binding curve refers to the non-discrete transition from off
to on as a function of input concentration, the basal activity refers to the finite
activity of even the non-activated promoter.

Questions

(1) Calculate promoter activity as a function of A and B concentrations in the four cases
shown in Fig. 7.21. Assume that A or B bind to their operators with binding constants
1, and that the heterodimer AB binds with binding constant 0.01. RNAp binds perfectly
when either A or B is present (binding probability 1), except in Fig. 7.21c, where we
assume that RNAp binds to the promoter with probability 1 if there is no heterodimer
present. Assume that a bound RNAp corresponds to a promoter activity of 1. Calculate
(plot as a two-dimensional surface in three dimensions) promoter activity in all four
cases of Fig. 7.21 as function of A and B concentrations between 0.01 and 100. Set AB
dimerization constant to be equal 1.

(2) Repeat the above plots, assuming that A and B are both dimers, with a dimerization
constant of 10 (and AB is then a tetramer).

Timescales for target location in a cell

To discuss the dynamics associated with transcriptional regulation we introduce a
few basic equations related to the diffusive motion of particles inside the closed
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Combinatorical regulation: XOR(A,B) = (A or B) and Not(A and B):
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Figure 7.21. Combinatorical transcription logic, with protein A and protein B
determining activation of a gene downstream of the promoter. The RNAp binding
is regulated either by recruiting it to the promoter, or by preventing it from binding
to the promoter. Thus in (a) and (b) RNAp needs either A or B in order to bind
to the promoter. In (c) RNAp can bind without help, provided there is no AB
complex on the promoter. In (d) A, B bind strongly to operators at positions 1
and 2, respectively. Only the heterodimer AB binds substantially to the operator
at position 3 and can thereby repress the promotor. In (a), (b) and (d) the RNAp
can bind only by recruitment.

bacterial volume. The inside of a bacterium is a very crowded solution of macro-
molecules. We will assume that protein motion inside the E. coli is diffusive and
can be characterized by a diffusion constant D that can be calculated from the
mobility µ using the fluctuation dissipation equation D = kBT µ (see Appendix).
For a spherical protein of radius r , µ is given by the Stokes relation µ = 1/(6πrη)
and its diffusion constant

D = kBT

6πηr
(7.54)



180 Physics of genetic regulation
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Figure 7.22. Diffusion of a particle that is at position x = 0 when t = 0. The
shaded area illustrates the spatial distribution P(x) of the particles at two times.
When time t → 4t the width of the Gaussian is doubled.

where η is the viscosity of the medium (= 0.001 kg/(m · s) for water). In the Ap-
pendix we will discuss diffusion in more detail, including the diffusion constant
D = v · l, where v is a characteristic velocity (for thermal motion) and l is a char-
acteristic length (the mean distance between collisions). Thus the dimensions of D
are length2/time. For albumin in water the measured value is D = 60 µm2/s. For
GFP inside an E. coli cell it is D = 3–7 µm2/s (Elowitz et al., 1999). The diffusion
equation reads

d

dt
P(r, t) = D

(
d2 P

dx2
+ d2 P

dy2
+ d2 P

dz2

)
(7.55)

where P(r, t) is the probability of finding a particle at position r at time t . A particle
that starts at r = 0 at time t = 0, will at time t be found at position r with probability

P(r, t) = 1√
4πt D

exp

(
− r2

4Dt

)
(7.56)

Technically, this equation is the solution of Eq. (7.55) with a Gaussian distribution
as initial condition for P. In other words the diffusion equation has the property that a
Gaussian evolves into a Gaussian, illustrated in Fig. 7.22. Also note that Eqs. (7.55)
and (7.56) hold equally well for the concentration C(r, t) of many independently
diffusing particles.

From Eq. (7.56) the typical time it takes a particle to diffuse through a distance
d is

tdiffusion = d2/2D (7.57)
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Figure 7.23. A diffusing particle in a volume V will at some time enter a smaller
sub-volume of radius ε. In the text we estimate the time it takes for the first
encounter with this smaller volume. This time sets the diffusion-limited time for a
reaction between the particles in a cell volume, where ε is the radius of the reaction
volume.

Thus for a bacterial cell of diameter d = 1 µm, a protein will typically have reached
the opposite end after a time

tdiffusion = d2/2D = 0.1 s (7.58)

Thus, when considering timescales 
 0.1 s, proteins that diffuse are homoge-
neously distributed in the E. coli cell.

We now consider the time it takes a molecule to find a binding site if the only
process is diffusion. This is the time it takes the molecule to visit a specific reaction
center, which we model as a spherical volume of radius ε 	 d/2. For the sake of
this argument, envision the following: far away from the reaction volume there is
a concentration of particles N/V , which is held constant. The reaction volume is
a sphere of radius ε that is perfectly absorbing for the particles (see Fig. 7.23). For
any distance r > ε this gives rise to a steady state flux into the absorbing volume:

J = −D 4πr2 dC

dr
(7.59)

J is the current density integrated over a spherical shell of radius r , hence the factor
4πr2; the units of J are particles/s; more formally, Eq. (7.59) follows from writing
the diffusion Eq. (7.56) in spherical coordinates:

dC

dt
= 1

r2
D

d

dr

(
4πr2 dC

dr

)
(7.60)
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In the steady state J is independent of r , so from Eq. (7.59) we have

C(r ) = J

D4πr
+ C(∞) (7.61)

Using the fact that the concentration at infinity C(∞) = N/V and C(ε) = 0 (the
reaction volume is considered perfectly absorbing) we obtain

−J

D4πr
= N

V
(7.62)

for r > ε. (J < 0 because the current is in the direction −r.) Thus the rate of
molecules coming into the volume of radius ε is

|J | = 4πεD
N

V
(7.63)

The time it takes one of N molecules to find a specific reaction center of radius ε is
then

τon = 1/|J | = V

4πDεN
(7.64)

Expressed in terms of density N/V , this is called the Smoluchowski equation. For
a cell of volume V = 1 µm3, the diffusion-limited encounter time with a region of
radius ε ∼ 1 nm is about

τon ∼ 20 s/N (7.65)

where the number N of a given protein type in an E. coli is between 1 and 104.
We can now address the off rate associated to establishing an equilibrium distri-

bution. Assuming that the on rate is diffusion limited, i.e. given by τon in the above
equation, the off rate must be

1

τoff
= 1

τon
V exp(�G/kBT ) = 4πDε[M] exp(�G/kBT ) (7.66)

where �G is the binding free energy for, say, a CI molecule to the operator under
consideration. We also introduced [M] to emphasize that the Dε with unit length3/s
should be measured in a volume corresponding to 1 M−1 = 1.6 nm3. For a binding
energy �G = −12.6 kcal/mol and ε = 1 nm the off time is

τoff ∼ 20 s (7.67)

This is a situation where 1 molecule in 1 µm3 will make one operator half occupied.

Questions

(1) Derive the Smoluchowski equation in two dimensions.
(2) Derive the Smoluchowski equation in three dimensions by dimensional analysis, using

the condition that the capture rate must be proportional to the concentration.
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(3) Estimate the typical rate of cro translation in the lysogenic state, assuming (i) that RNAp
initiates transcription immediately upon binding to the promoters, and (ii) that PR is
about as strong as PRM when CI is bound to OR2.

(4) Plot τoff as a function of binding energy �G, and find the �G value where toff equals
the E. coli cell generation time (say, 1 h).

Facilitated target location

The picture of how a protein finds its specific binding site on the DNA is more
complicated if one takes into account non-specific binding, which allows the protein
to diffuse along the DNA for some time. If non-specific binding is, say, a factor
of 105 weaker compared with the typical specific binding of say −12.6 kcal/mol,
then the average time the protein spends on the DNA at a non-specific location
is twalk = τoff ≈ 10−4 s instead of the 20 s at the specific site. If diffusion along
the DNA is comparable with free diffusion, this results in a walk of about �x ≈√

Z Dtwalk ≈ 20 nm. After a walk of this characteristic size, the protein leaves the
DNA, to be recaptured later by another segment of the DNA. Thus the protein walks
partly in three dimensions, partly in one dimension (see Figs. 7.24 and 7.25).

One can ponder about the time spent walking in one or three dimensions, respec-
tively (Hippel & Berg, 1989). This depends strongly on (i) the binding affinity to
DNA and (ii) the density of DNA. In vitro experiments focus on rather short DNA
pieces with much lower density than inside an E. coli. Typical measured “on-rates”
to specific sites on DNA in test tubes increase by up to a factor of 20 when the
length of flanking DNA varies from, say, 20 to about 103 base pairs (Surby & Reich,
1996). In contrast, in vivo conditions present the challenge of searching the very
long DNA before a specific site is located. Thus what was facilitated in vitro, can
easily be time consuming in vivo.

In this section we discuss the search for a specific site in the living E. coli cell.
The time it takes takes to find a specific site of size ε depends on the time spent in
one or three dimensions on the DNA. Let us call the typical time on one visit to the

kon(O) 10 kon(O)

Figure 7.24. Facilitated target search in vitro. A protein searching for a specific
operator site (O) is helped by flanking DNA, as the original three-dimensional
search on the left is replaced by an easier search for the larger DNA, followed by a
one-dimensional search along the flanking DNA. One typically observes increased
on rates, kon of up to a factor 20. The upper limit is set in part by the non-specific
binding strength that naturally limits the time the protein can stay on the flanking
DNA.
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Figure 7.25. A protein searching for a specific operator site inside a cell. (a)
The protein diffuses along the DNA, and diffuses in three dimensions. The ratio
between the time spent in these two states is set by the non-specific binding. When
this binding is very small, the overall search takes a long time because the target is
difficult to locate; when the non-specific binding is very large the search is slowed
down because most time is spent on repeatedly searching along the same segment
of DNA. (b) In vivo facilitated search, where no time is spent in three dimensions,
and the one-dimensional search involves only small segments between interacting
DNA pieces. With a typical in vivo density, parts of the DNA that are separated
by millions of base pairs along the DNA are separated by only 20 nm in three
dimensions, thus making the jumping DNA search fairly fast.

DNA �t . For �t → ∞ the protein is always bound to the DNA and the search is
purely one dimensional. Then the search time is

τ = L2

2D1
(7.68)

where D1 is the diffusion constant for the protein along the DNA. One expects D1 <

D ∼ 5 µm2/s, but even when they are similar, the time to locate the specific site
(in E. coli with 1.5 mm of DNA) will be of order τ = (1500 µm)2/(2.5 µm2/s) =
200 000 s ∼ 2 days. This is a very large time, and thus there must be a jump on
shorter timescales.

If one assumes in vivo binding resembles the one from in vitro measurements,
the measured increase of “on-rates” to specific sites on DNA in test tubes when the
length of flanking DNA varies up to about 103 base pairs implies that the protein
will search at least l = 500 bp ∼ 0.2 µm on each encounter. Thus one encounter
takes the time �t ∼ (0.2 µm)2/D1 ∼ 0.01 s if D1 = D. The number of encounters
should cover in total of L = 5 × 106 bp giving a “facilitated” search time of

(L/ l)�t ∼ 100 s (7.69)

plus the (insignificant) time spent in jumping between the L/ l different segments.
This facilitated time from Eq. (7.69) is slower than the three-dimensional search
without non-specific binding, but much faster than a pure one-dimensional search.
We will now see that (i) the time spent in three dimensions does not contribute,
and (ii) the actual facilitated search time would be even shorter because in vivo
conditions presumably allow proteins to jump faster.
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The time to jump from one part of the DNA to another part depends on the
density of DNA. When a protein is unbound, any part of the DNA is a target, and
the rate to reach the total length L of DNA can thus be estimated by summing up
the rates to reach all parts. If we assume that DNA is everywhere in the cell, the
rate of binding to any part dL of the DNA is

rate ∼ 4πDdL

V
(7.70)

Summing all contributions, the time spent for a three-dimensional search for a site
on the whole DNA is therefore

δt ∼ V

4πDL
∼ 10−5 s for L = 1.5 mm, V = 1 µm3 (7.71)

The real time may be even shorter, because DNA is located in an E. coli cell. Thus,
compared with typical residence times on DNA (in vitro estimate �t ∼ 0.01 s), the
time spent in three dimensions is presumably insignificant.

The walk length l and thus the �t estimate from above is an upper estimate, and
may be shorter because the protein does not need to leave the DNA entirely when
jumping to another segment of DNA. The typical distance “dist” between nearby
DNA in E. coli can be estimated from

π

(
dist

2

)2

· L

length of cell
= area of cross section of cell (7.72)

where the cross section of the cell is divided into a number of areas given by the
number of times the DNA crosses the available cell volume V = (length of cell) ·
(area of cell). Thus if the L = 1500 µm E. coli DNA is everywhere within a cell
volume of 1 µm3, the average distance between neighbor DNA is dist = 30 nm.
If, on the other hand, one takes into account that the DNA is typically confined to
about a tenth of the cell volume, then dist ∼ 10 nm.

We now want to estimate the typical distance l along one DNA section, be-
tween subsequent intersections of neighboring DNA. We define an intersection
as being where the distance is small enough to allow a protein to jump between
the DNA sections, while remaining in contact with DNA all the time. If the typi-
cal protein diameter is b = 4 nm, the distance l can be estimated by considering
the intersections as a mean free path problem. In this case the total length of
the DNA, L = 1.5 mm = 1.5 × 109 nm is subdivided into L/(2b) balls that for
now we assume to be randomly distributed in the volume V . This gives a density
ρ = L/(2bV ). The intersection cross section of a piece of DNA with a protein with
a crossing DNA section is that of a particle with radius b: σ = πb2. Thus the length
between intersections of this particle with one of the DNA sections is

l = 1

ρσ
= 2V

πLb
≈ 150 nm (7.73)
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This distance should be compared with the experimentally measured walking dis-
tance of about 500 bp ∼ 150 nm, teaching us that non-specific binding may be of
a strength where the protein jumps between DNA strands instead of falling off. If
this is the case the search time becomes

τ ∼
(

l2

D1

)
· L

l
= Ll

D1
(7.74)

This is an equation that expresses the fact that when one doesn’t know where to
go, the goal is reached fastest by making big steps (by letting the local walk length
l → 0 and thus making frequent big jumps).

Inserting L = 1.5 mm as the length of E. coli DNA, l ∼ 150 nm and assuming
that the diffusion along DNA is similar to that in the bulk: τ ≈ 50 s. This is slower
than, but comparable to, the original three-dimensional search. For more densely
packed DNA, the search is even faster because very frequent jumps between differ-
ent segments eliminate the costly repetitions of one-dimensional random walkers
(V → V/10 makes τ = 50 s → τ = 5 s). Maybe this is one additional reason for
maintaining the E. coli DNA in a small fraction of the cell volume. Another, prob-
ably more important, reason is that localization simplifies DNA partitioning when
the E. coli cells divide.

Questions

(1) Consider the intermediate case where the protein may be both on and off the DNA.
Argue that the rate of facilitated target location into binding site of size ε behaves as

rate = 1

τ
≈ 4π

V

Dδt

�t + δt

(√
2D1�t + ε

)
(7.75)

where the non-monotonic behavior reflects the gain in the search by increasing effective
binding sites (ε → √

2D1�t + ε), as opposed to the penalty by binding to non-specific
sites (δt + �t). Assume that the diffusion constant D in the medium is the same as D1

along the DNA. What is �t for the maximum rate of location of the target (in units of
δt when ε is small)? Schurr (1979) estimates D1 ∼ D/100 assuming that the protein
spirals around the DNA as it diffuses along the backbone. How would that change the
optimal �t?

(2) Argue that the rate of escaping to distance R away from a one-dimensional DNA strand
before recapturing scale as r ∝ (2πDl)/(ln(R/b)), where b is the diameter of DNA, l
is the length of DNA and where one assumes that touching distance = b always leads
to absorption (this is the diffusion limited case, reaction is instant when possible).

(3) For a finite piece l of DNA, argue for the capturing rate as a function of its length, taking
into consideration first that it is a rod (of radius b), then that it is a random coil (with
persistence length lp).



Traffic on DNA 187

Traffic on DNA

DNA is not only the object for binding/unbinding events and simple diffusion. It is
also a one-dimensional highway with substantial directed traffic. In fast-growing
E. coli the DNA polymerase protein (DNAp) that polymerize the new chromosome
and thus passes any point every 25 min, disrupting any protein–DNA complex, and
splitting the DNA into separated strands. Other molecules are in constant action,
including gyrases and topo-isomerases that maintain the topological properties of
functional DNA. Finally DNA is constantly transcribed by RNAp, which moves
along the DNA while separating the DNA strands locally and transcribing them into
mRNA. This last transcription activity opens up a new level of regulation (Adhya &
Gottesman, 1982; Callen et al., 2004), where a promoter on one strand fires RNAp
into the RNAp bound to a promoter on the opposite strand (see Fig. 7.26). In this
way, opposing promoters can repress each other’s activity and one can build a new
intricate way of regulating genes.

To model the promoter interference consider first an isolated promoter, with
properties determined through the “on rate”, kon, and the “firing rate”, kf, from
a so-called “sitting duck” complex (see Sneppen et al., 2005). The sitting duck
complex is similar to the open complex; it represents a simple description of a state

elongating RNAp
occupy a space l = 35 bp

RNAp entering pS
needs r = 75 bp to bind

qK = kf

KA

pA pS

collisions between RNAp elongating
from pA with RNAp elongating from pS

RNAp elongating from pA

kon

"sitting duck" on pS
can be removed by

(RNAp from pA prevent
RNAp binding to pS)

occlusion

kf : firing rate from complex

Figure 7.26. Geometry of promoter interference, where an aggressive promoter
pA influences the activity of a sensitive promoter pS by firing RNAp through it.
There are several mechanisms for such interference: occlusion, collisions between
moving RNAps and collisions between RNA from pA with RNAp sitting on pS.
In practice, for small distances N between the convergent promoters, the last
interference mechanism, the “sitting duck” interference, is the most important.
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of the RNAp that can leave the promoter only through transcription initiation (or
by other non-equilibrium interventions). Thus we simply describe the transcription
initiation by a two-step process: a one-way formation of a sitting duck complex
with rate kon, and a one-way initiation of elongation from the sitting duck complex
with rate kf. The average occupancy of this complex θ and the total activity K of
the undisturbed promoter is given by

kon(1 − θ ) = kfθ with K = kfθ (7.76)

This balance equation states that RNAp can enter pS only if there is no sitting duck
complex. Thus the average occupancy of an undisturbed promoter

θ = kon

kf + kon
and K = kfθ = konkf

kf + kon
(7.77)

teaches us that a strong promoter needs to have both a large on rate, kon, and a
large firing rate, kf, once RNAp is on the promoter. In the above equations we have
obviously ignored the fact that RNAps have a finite length, and thus that they also
occupy a promoter for some time (∼Kl/v, l ≈ 35 bp is the length of elongating
complex, v ∼ 40 bp/s is its velocity) after they have left.

Now with an antagonistic promoter pA firing into the above promoter, the so-
called sitting duck complex can be destroyed with a probability given by the total
firing rate of this antagonistic promoter K A. We here further assume that K A 
 K ,
such that we can ignore changes in effective firing of pA due to the activity of pS.
In that case, Eq. (7.76) becomes

kon(1 − θ ) = (kf + K A)θ with K = kfθ (7.78)

giving

θ = kon

kf + kon + K A
and K (with pA) = kfθ = konkf

kf + kon + K A
(7.79)

which describes the main effect due to promoter interference, that the stronger
promoter pA will reduce the relative activity of our given promoter by a factor

I = K (without pA)

K (with pA)
= 1 + K A

kf + kon
(7.80)

In practice, for in vivo promoter interference in phage 186 promoters this factor
is found (Callen et al., 2004) to be 5.6, for a pair of promoters where the weak
promoter is a factor 10 weaker that the aggressive promoter pA, K = K A/10.
Equation (7.80) predicts somewhat less interference, but it also ignores effects
associated with occlusion), as well as to collisions of RNAp from pA with RNAp
that has left the sitting duck complex (see Questions or p. 189) and also corrections
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associated with the correlations between subsequent firings of RNAp from pA (see
Sneppen et al., 2005).

Promoter interference is in fact documented in the core regulation in P2-like
phages, but could also be of relevance in establishment of lysogens in λ through
PR–PRE interference. In E. coli about 100 promoters are known to be placed face
to face at fairly close distance, making promoter interference part of the regulation
of ∼5% of the promoters. Furthermore, promoter interference may also act when
promoters fire in parallel, as was seen in the original demonstration of promoter
interference by Adhya & Gottesman (1982).

Questions

(1) Reconsider Eq. (7.77) when taking into account that RNAp needs time Kl/v to leave
the promoter before a new RNAp can bind to it. Here l = 35 is the length of elongating
RNAp, v ∼ 40 bp/s is its velocity. At what promoter firing strength does this correction
become more than a factor 2?

(2) Re-express I in terms of the relative promoter strength K A/K and the so-called as-
pect ratio α = kon/kf. Which value of α gives maximal interference? Discuss why
interference decreases for both very small and very large α.

(3) Consider occlusion, the fact that an entering RNAp from pA prevents an RNAp from
binding to pS for a time given by l + r = 35 + 75 base pairs (see Fig. 7.26). (The
r = 75 bp is the length an RNAp occupies when bound to a promoter.) What is the
interference factor I if one includes this occlusion effect? Calculate I for K = kon/2 =
kf/2 = 0.01/s, K A = 0.1/s and v = 40 bp/s.

(4) Assume that RNAp from pS (see Fig. 7.26) has to travel a distance N − 40 before it
has escaped possible collision with RNAp from PA. Here N is the distance between
promoters, the N − 40 takes into account that each RNAp on a promoter occupies 20 bp
ahead of the promoter start position. How does I change with increasing N?

(5) Implement a stochastic model for promoter interference on a computer. Use the values
from Question (3) and set N = 100 and compare results with Eq. (7.79).

Stability and robustness

Upon infection of an E. coli cell, the λ-phage enters either a pathway leading to
lysis, or it enters lysogeny, in which it can be passively replicated for very long
times. Indeed, the wild-type rate of spontaneous loss of λ lysogeny is only about
10−5 per cell per generation, a life-time of order 5 years. Moreover, this number
is mainly the result of random activation of another part of the genetic system
(the SOS response involving RecA), whereas the intrinsic loss rate has in several
independent experiments been found to be less than 10−7 per cell per generation
(Little et al., 1999), and possibly as low as ∼10−9 if one considers only switching
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due to spontaneous fluctuations in the finite number of CI in a cell, excluding
events where mutations have changed either CI or PRM (J. W. Little, personal
communication).

In Fig. 7.27 we illustrate the result of an experiment by Toman et al. (1985),
where the two possible states are recorded from the color of the bacteria that host
the phage. This is accomplished by using a “defective” λ-phage that cannot lyse,
and by adding a reporter gene gal downstream of cro, which signals when cro is
being transcribed. Namely, if cro is transcribed then gal is also transcribed, and
the enzyme it produces, β-galactoxidase, catalyzes a reaction that turns a substrate
(which is added to the bacterial culture) into a red dye. Thus colonies in the lysogenic
state are white, while colonies in the lytic state are red.

The experiment illustrates not only that the lysogen is stable, but also that the
lytic state would be metastable, if it didn’t normally lead to cell death. Fig. 7.27
illustrates another important feature of cell control, namely the possibility of having
two states with the same genome. This is called epigenetics, and is a property that
cells in our own body utilize massively. That is, we have at least 250 different cell
types, all with the same genetic material. Thus, stability of cell differentiation is
obviously important for multicellular organization.

We now describe a quantitative model for the stability of the λ-phage switch. The
stability of the switch depends on the CI level, which will force the lytic state back

10−4 to 10−9

dependent on

the rest of the

system (RecA, OL)

0.01

PRM

gal

C1 PRM

PR

OR

cro

cro gal
PR

OR

Figure 7.27. Dynamics of switching from lysis to lysogenic state in a defective
λ-phage that cannot escape the E. coli chromosome (Toman et al., 1985). The
state of the phage was recorded through the color exhibited when the gene gal was
expressed. Lysis gave red colonies, while the lysogenic state gave white colonies.
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Figure 7.28. PRM and PR activity as functions of both CI and Cro with same pa-
rameters as used in Fig. 7.20, and a Cro non-specific binding of −3.5 kcal/(mol·bp).
In the absence of CI and Cro the firing rate of PR is 16 times the firing rate of
PRM (Dodd et al., 2004). The two plots define the productions term in Eq. (7.81)
for CI and Cro respectively. In the left-hand plot we see that, for any CI level, the
PRM activity decreases monotonically with [Cro], which reflects the fact that Cro
represses production of CI. The right-hand plot, on the other hand, demonstrates
that PR activity decreases quickly especially with [CI], which reflects the cooper-
ative repression of PR. In both cases the autorepression by the protein of its own
promoter is much weaker that its repression of the opponent’s promoter.

into the lysogenic state, and can be quantified by the spontaneous rate of escape
from lysogeny to the lytic state. The dynamics of the lysogen–lytic states, for a cell
with a given number of CI and Cro molecules (NCI, NCro), can be modeled with
Langevin equations of the type (Aurell et al., 2002)

dN

dt
= production − decay + noise (7.81)

for both CI and Cro, with production given as a function of CI and Cro con-
centrations through the chemistry determined earlier in this chapter, and shown in
Fig. 7.28. The decay term is the sum of dilution due to cell division and degradation.
The noise is caused by random events and is both production and decay. The strength
of the noise term can be quantified by its N -dependent variance, σ 2(N ), which can
be calculated as the sum of the variance of production and the variance of decay

σ 2(N ) = σ 2
production(N ) + σ 2

decay(N ) (7.82)

as the variance of any sum of independent processes is given by the sum of
variances of each process. In lysogen conditions the noise term can alternatively be
measured by single-cell analysis of a suitable placed reporter gene (see Fig. 7.29).

Equation (7.81) can be dynamically simulated; see Aurell et al. (2002). At each
time interval one updates NCI and NCro by a change that consists of a deterministic
part and a stochastic part. Such a simulation can easily take into account discrete
events such as cell divisions or genome duplications, and can, in principle, be done
on a very detailed level with single molecule resolution. The result of such a simu-
lation is shown in Fig. 7.30. In Fig. 7.31 we illustrate trajectories in the state space
for the dynamics of the switch. There are two stable fixed points (corresponding to
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Figure 7.29. Histogram shows data for size of noise term in Eq. (7.81) (from Bæk
et al., 2003). The data are indirect, showing cell-to-cell distribution of the reporter
gene GFP, placed under control of PRM such that it resembles the CI level in the
individual E. coli cell. For comparison we show a theoretical estimate (broken
line) of the size of fluctuations from the same construct. Here it is assumed that
fluctuations are associated with the finite number of molecules, in particular the
finite number of mRNA transcripts, NmRNA. Also the random division of molecules
of the two daughter cells will in principle contribute to fluctuations. In any case,
simulations show that the spread divided by mean of number of molecules in a cell
is given by σ/mean = 1/

√
NmRNA ≈ 0.1. With our current knowledge of mRNA

transcription of CI (1–5 CI per mRNA transcripts) and CI number in a cell (∼250)
the expected fluctuations are smaller than the experimentally observed fluctuations
are σ/mean ≈ 0.25 (see Bæk et al., 2003).

0

100

200

300

400

0 100 200 300

C
ro

 o
r 

C
I m

ol
ec

ul
es

 p
er

 c
el

l

time (generations)

0
200

400Cro per cell 0
200

400

CI per cell

−14

−10

−6

−2

log  (Probability)
10

Figure 7.30. The left-hand plot shows a stochastic simulation of the number of CI
and Cro inside an E. coli lineage (from Aurell et al., 2002). The upper curve shows
CI level from generation to generation, and the lower curve the corresponding Cro
level. Notice that CI and Cro are anti-correlated: the presence of Cro represses
the CI, and decreases the CI amount in a given cell. The right-hand plot shows
a histogram of simulated probability for visiting various CI and Cro states (from
Aurell et al., 2002). The tail at low CI concentrations corresponds to the sponta-
neous transitions to lysis. These are transition events that happen very seldom, as
is reflected in their very low probability (notice that z-axis is logarithmic).
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Figure 7.31. Dynamics of the lysogen–lysis switch. At high CI (∼250 per cell) and
low Cro we find the lysogenic state. At low CI and high Cro (∼300 per cell) we finds
the lysis, which can be realized as a steady state by a defect λ-phage that cannot
lyse see Fig. 7.27. Without fluctuations, all trajectories would be deterministic,
and no random switching would occur.

solutions of Eq. (7.81) such that dN/dt = 0), namely the lysogen state (large NCI,
small NCro) and the lytic state (small NCI, large NCro). The arrows in the diagram
show how one flows into these fixed points from given initial conditions.

For illustrative purposes, and in order to discuss why the transition in fact happens
so rarely, we consider a one-dimensional graphical illustration of the stability issue
(Fig. 7.32). This corresponds to the CI production rate along the most-probable
trajectory that connects lysogeny to lysis, illustrated by the dotted arrow in Fig. 7.31.
We then consider only CI fluctuations along this idealized path. That is, we here
simplify the two variables NCI and Ncro into a single effective coordinate describing
the state of the cell. For a full discussion using the Friedlin–Wentzell formalism
(1984), see Aurell & Sneppen (2002).

In Fig. 7.32 we show the production rate of CI. The straight dotted line is the
“decay” of CI in Eq. (7.81) and it represents a decay that is proportional to CI.
The points where the curves cross are the fixed points (dN/dt = 0), which can
be either stable or unstable. As long as CI remains above the unstable fixed point
Nu, lysogeny will typically be restored. The position of the unstable fixed point is
believed to be at Nu ∼ (0.1 → 0.2) · Nlysogeny. This provides an intrinsic stability
for the lysogenic state.

Both the questions of stability and the response to active CI degradation can also
be illustrated in terms of a potential as seen Fig. 7.32b. The “effective potential”
is obtained by integrating the drift term f = production − decay, which acts as a
“force” on the variable N

V (N ) = −
∫ N

0
f (N ′)dN ′ (7.83)
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Figure 7.32. (a) The solid line shows production of CI due to activation and repres-
sion of PRM along an idealized one-dimensional lysis–lysogeny trajectory. The
dashed line shows the dilution due to the cell growth. The intersections between
the production and dilution define fixed points that are either stable on unstable.
Part (b) shows the effective potential obtained by integrating the production from
the top curve. The transition from lysogeny to the lysis can be treated as a Kramer’s
escape problem with N as the coordinate. Part (c) illustrates that the potential has
a concrete meaning, in terms of probability distribution for CI number inside one
E. coli cell.

with the N -dependent noise σ (N ), representing the amplitude of the noise in
Eq. (7.81).

The transition from the state at Nlysogeny over the unstable (saddle) point Nu to
the lysis state at Nlysis ∼ 0 is a first exit problem, and can be treated with standard
techniques (see Kramer’s escape problem in the Appendix). The system is unstable
at the saddle point and thus the probability of staying there is minimal, as illustrated
in Fig. 7.32c. Following Kramer, the transition rate from lysogeny to lysis over the
saddle point is:

r ∝ r0 · exp

(
−

∫ Nu

Ns

f (N )dN

σ 2(N )/2

)
(7.84)
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where the prefactor r0 is about one event per bacterial generation (see Aurell &
Sneppen, 2002). Thus the noise quantified in terms of the denominator σ 2/2 plays
the role of an effective temperature, whereas the averaged production–decay defines
the mean potential. The stability at lysogen is essentially given by exp(� ln(P))
shown in Fig. 7.32c.

The overall lesson from the stability analysis shown above is that this prob-
lem is similar to escape from a potential well, with coordinates being chemical
concentrations, and potential walls given by CI levels and chemical affinities. As
a result the stability strongly depends on parameters that decide CI and Cro levels
and affinities in the living cell, roughly in the form:

rate(lysogeny → lysis) ∝ exp(�exp(�G/T )) (7.85)

where �exp(�G) is a symbolic notation for the difference between lysogenic CI
numbers and destabilizing levels of CI and Cro at the saddle towards lysis. It is
possible to obtain the observed stabilities within the constraint set by present day
experiments in biochemistry and known PRM, PR activity as function of Cro and
CI; see Aurell et al. (2002) and Sneppen (2003). However, as the stability is the
exponential of an exponential, it is not robust. Even a very small change in �G
for any of the interactions typically makes a dramatic change in the stability of
the system. This suggests that we do not really understand what drives the switch,
especially as Little et al. (1999) reported large robustness with respect to CI and Cro
bindings to the OR1 and OR3 positions, respectively. In fact the mutants considered
were one with OR=OR3–OR2–OR3 and one with OR=OR1–OR2–OR1. The fact
that these mutants have substantial stability thus challenges the current view of how
the switch works.

In particular, the measured stability of the OR3–OR2–OR3 mutant is surprising
in view of the fact that because OR3 binds CI about a factor 50 less than OR1,
PR is less repressed and this mutant is thus expected to have about 50 times larger
amounts of Cro in the cell. This suggests that the current view of stability, based
on the balance between a good molecule (CI) and a bad molecule (Cro), should
be exchanged for a stability based on a balance where CI and Cro are intermixed
in a more subtle way: maybe some moderate amount of Cro stabilizes the switch.
A stochastic model that reproduces all of the observed mutant stabilities can be
constructed, when we use the fact that PRM is repressed by about a factor of 2.5
by the OL–CI–OR complex, and we assume (see Fig. 7.33):

(a) that a Cro bound to any operator site on OL or OR makes formation of closed loop
impossible, and thus de-represses PRM;

(b) that there is some modification in free energy bindings, for example about −1.5 kcal/mol
cooperative binding between Cro and CI would stabilize the 323 mutant.
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Figure 7.33. (a) Suggested role for Cro in lysogen stabilization acting with CI
to enhance CI production (Sneppen, 2003). The little round molecules represent
a dimer Cro. They may disrupt the OL–OR complex that represses PRM, and
thereby open the way for additional production of CI. In WT Cro often binds to
OR3 and represses PRM, but in the mutants it at least as often binds to other
operator positions and thus de-represses PRM. (b) Network illustration of Cro’s
suggested role, illustrated in terms of activation (arrow) or repression (line with
vertical bar on end). By de-repressing CI repression of itself, a moderate amount
of Cro together with CI may increase CI production. This predicts a switch that
is robust towards changes in operator design. As we will see later, robustness is
believed to be a main evolutionary constraint for design of biological systems.

The first assumption is plausible in view of the fact that Cro bound to DNA is
known to bend it by about 40◦ (see Albright & Matthews, 1998), and thereby Cro
will force the negatively charged DNAs towards each other and disrupt the complex.
The second assumption has not, at present, been tested experimentally. In any case,
the fact that λ-phage switch is not truly understood is also conveyed by the strange
properties of the hyp mutant1 (see Eisen et al., 1982). This particular mutant, with a
lysogen that contains a substantial amount of Cro, has properties that demonstrates
that Cro also can act in helping CI to maintain lysogen.

Finally we return to the relation between stability of the lysogenic state and the
function of the switch: to make the phage lyse correctly when it is right to do so. An
illustrative connection between stability and switch function can be found in the

1 The hyp mutant of λ is a challenge to the standard model of λ-phage in this chapter. Note that hyp is normal
λ except that PRE is replaced with a constitutive promoter that is weaker by a factor of ∼30 compared fully
activated PRE, but retains this activity even without CII. The properties of hyp are: (i) hyp is immune to normal
λ and λvir (normal λ is not immune to λvir as this virulent phage cannot repress PRM and PL); (ii) hyp with CI
replaced by temperature-sensitive CI will not induce PL even when the temperature is raised to a level where
the repressor cannot dimerize; (iii) hyp shows no plaques, and thus does not infect well; (iv) the double mutant
hyp cro- behaves as cro- hypcro- behaves as λcor-. Thus in hyp, Cro works on the lysogenic side of the switch,
in direct contrast with the standard model of the λ-phage switch (Harwey Eisen, personal communication); hyp
has 60% more CI in lysogen than wild-type λ.
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Table 7.1. Properties of OR mutants as given by Little et al. (1999),
with stability (= lysis frequency in lysis per cell per generation)

measured for the RecA strain of E. coli

CI in Lysis Burst size if UV dose to
Phage lysogen frequency lysis upon infection induce lysis

λ+ 100% 4 × 10−7 to 10−9 56 high
λ121 25–30% 3 × 10−6 38 medium
λ323 60–75% 2 × 10−5 26 small

The robustness is manifested by the fact that the 121 and 323 mutants form
fairly stable lysogens. This is surprising, especially because 323 has very
weak repression of Cro production.

paper by Little et al. (1999) (see Table 7.1), where not only stability but also lysis
properties and stability against UV induction are recorded for a number of different
mutants. From Table 7.1 it is seen that these properties correlate with stability (lysis
frequency), and not with (for example) the CI level in lysogens. Thus stability seems
to reflect the overall working condition of the phage. In Fig. 7.34 we summarize
the present established knowledge of the λ-phage core decision proteins, including
some key players from E. coli.

Questions

(1) A very simplified model of the OR switch is obtained by assuming that PRM activity
demands CI at OR2 but not at OR3. Thus production effectively takes place in state
(011). The probability of this state is ∝ N 2

D, where ND is number of dimers. When ND

is large, (111) begins to dominate, thus

production ∼ PR(011) ∝ N 2
D/

∑
i=0,3

αi N i
D ∼ N 2

D − αN 5
D (7.86)

where the sum in the denominator takes into account statistical weights of all combi-
nations of CI bound to the three operator sites. Consider the full dN/dt equation with
production, decay N/τ and assume noise = √

�Nη, where η has mean 0 and variance
1 (that is g2(N ) = �N ). Discuss the stable and unstable fixed points, and subsequently
develop a Kramers’ formula for escape from lysogen to lysis.

(2) Consider a simplified model for CI production where its rate dN/dt = Rfree =
rate · N 4/(N 4 + N 4

c ) with Nc = 50. If cell generation is 1 h and average CI level is
300, what is the value of “rate”?

(3) Build a computer model for development of CI level in an E. coli lineage that takes
into account fluctuations in CI numbers on cell division. Hint: assume that each RNA
transcript gives one CI, and selects sufficiently short time intervals to have at most one
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Figure 7.34. Part of the regulatory network of the λ-phage, with positive regu-
lators indicated by arrows, and negative regulators indicated by arrows with per-
pendicular lines at the end. Part of the control is done through degradation of
already-produced proteins, and thus could easily be missed if we examine only
transcriptional control mechanisms. The core switch is decided by CI–Cro mu-
tual repression, which secures domination by only one of them. We have added
the CII, CIII regulatory system, which further interacts with the host metabolic
state through hflA and hflB host proteases. These proteases degrade CII quickly.
CIII protects CII from degradation. The dashed lines indicate regulation from
host proteins, with RecA being the key player in lysis induction. Notice also that
not only proteins, but also the small (77 base pair) mRNA piece oop, are part of
the regulatory system. The oop mRNA binds to complementary CII mRNA and
the double-stranded mRNA so formed is cleaved quickly by the RNAaseIII from
E. coli that cleaves double-stranded mRNA, which is more than 20 base pairs long.
This is regulated down by a factor 4 when LexA binds to its promoter. If repres-
sion by LexA is removed, the lysis emits only half as many phages (Krinkle et al.,
1991).

transcript each time. At cell divisions, place each available CI in one of the daughter
cells randomly.

(4) Extend the model by assuming a negative feedback from CI on its own production
parametrized by dN/dt = Rtotal = Rfree · (1 − N 2/(N 2 + N 2

d )), with Nd = 100. This
extension roughly approximates the average effect of OL on OR through OL–CI–OR
binding. Simulate on a computer the dynamical changes in CI with this additional
negative (stabilizing) feedback on CI production.

(5) Green fluorescent molecules (GFP) are reporter molecules that can be used to monitor
selected genes in a cell. If GFP is linked to the CI gene, then on average one GFP protein
will be produced for each CI molecule. However, GFP is not negatively autoregulated,
and thus may fluctuate more than CI. Simulate the fluctuations of GFP in the model
from Question (4).



The 186 phage 199

(6) Consider Little’s 121 and 323 mutants. Explain why, in an OL-strain, 121 has less CI
in its lysogen than 323, and that this again has less than the wild type. Is this argument
robust for the inclusion of OL?

(7) LexA repression of RecA, and subsequent cleavage of LexA by activated RecA, is at
the center of the SOS response system. LexA is a dimer, to which monomers bind with
Kd ∼ 1µm on the RecA operator, whereas the dimers bind with 10−9 m. Show that a
LexA dimerization constant of ∼1µm is consistent with this picture. Notice that there
is about 1µm LexA in the E. coli cell, whereas RecA repressed is about 2 µm, and RecA
is activated up to 50 µm.

The 186 phage

Given the huge interest and impact the study of λ-phage has had, it may be
worthwhile to ponder about the universality of the functions of this phage. Do
all temperate phages use the same design as λ, or is the regulation of λ just one of
many possible ways in which one may obtain a switch? The answer to this question
is that there indeed exist temperate phages with completely different ways of orga-
nizing the positive feedback associated with a switch. One example is the P2 phage
family, in which the mutual inhibition of the two key proteins involves promoters
that fire into each other (see Fig. 7.35) instead of firing away from the same operator
complex. The best characterized phage in this family is the 186 phage. B. Egan, I.

PRM PR

PE

PREPL

PR PL
lysis lysogeny establishment

lysislysogeny establishment

3.8 kb 0.3 kb

0.3 kb

CI

186:

λ:
CI CI

CI

CII
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CI

CICI CII

Cro

Apl

Figure 7.35. Comparison of core control of λ-phage with 186 phage. The geometry
of the λ-phage regulation is found in all lambdoid phages, including, for example,
HK22. The 186 on the other hand represents the P2 phage family. Only the binding
of the lysogen maintaining gene CI is shown in both phages; the action of the
antagonistic protein Apl in 186 is not fully understood. It is emphasized that
CI(186) has no homology with CI(λ).
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Dodd, B. Callen, K. E. Shearwin and collaborators have characterized 186 to a level
of detail that compares with that obtained for the λ-phage. In Fig. 7.35 we show
the core of the regulatory network for the two phages, for comparison, including
the location of involved promoters on the DNA.

The overall regulation of λ and 186 is very similar (see Fig. 7.36), in particular
on the level of the protein regulatory network. Both phages have essentially the
same regulatory paths, with a few differences associated with replacing a direct
regulation with an intermediate protein. Thus one could believe that the two phages
were closely related. This, however, is not the case. The only homologous protein
between the two phages is the integrase protein Int, which is known to be common
for most phages. However, one does not need to consider that level of detail in order
to find fundamental differences. When considering the molecular network, where
promoters and RNA regulatory elements are included, the two phages differ. Thus
the CI(λ) self-activation through binding to OR2 in λ is replaced by CI repression
of promoter interference; see the promoter location on Fig. 7.35. Further, CI(186)
does not fully repress all promoters leading to Int in 186, and thus Int is present
in lysogens in 186. Finally, λ uses anti-sense RNA in three instances (anti-Q,
oop and sib) for CII repression of Q, for repression of CII and for repression
of Int. In 186 these functions are either done directly by CI(186) or not done
at all.

Presumably the evolutionary origin of the two networks is different, and thus the
similarity of the overall proteins network is an example of convergent evolution.

Question

(1) Consider the λ network and rank the regulatory proteins according to how many proteins
they directly or indirectly regulate. Compare this ranking with the one where we take
only the proteins that they directly regulate.

Other phages

The λ-phage is the most studied phage in biology. It is, however, not the most
abundant on our planet. It was discovered by accident once, and never found again.
In fact the λ-phage we have now is not even the one originally found by accident in
some freezer. It has been reshaped to give larger plaques (to help biologists working
with it), and it has even been completely lost once and subsequently reconstructed
in the 1960s (A. Campbell, personal communication). Then why bother with this
very peculiar organism?

One reason is that close relatives of λ-phages exist: the φ-phage and the 434
phage, both differing from the λ-phage only by having different immunity regions
(from OL to and including the cro region). On a wider scale, the λ represents a
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Table 7.2. Some phage interactions in E. coli, with phages in the first
column influencing the phages in the second column

Phage Phage target Mechanism

P4 P2 P4 infects P2 lysogen and lyses it, and takes all
P2 λ P2 prevents λ from entering
P2 T4,T5,T7 P2 prevents infection. Non-inducible, no CII
186 P2-like, UV inducible, no exclusions known
HK022 λ NUN of HK022 prevent Ns anti-termination in λ
T4 T6 T4 de-represses T6 (and also 30 other phages)
T6 T2 Weak prevention of infection?
RB69 T2,T4,T6 RB69 prevents infection

Many phages could coexist in some E. coli. However, many also try to take control
of the E. coli. P4 is particularly specialized, as it acts as a parasite on P2, and relies
on many of the larger phages’ genes. Phages are often related; phage taxonomy of
144 known phages can be found at http://salmonella.utmem.edu/phage/tree. Some
phages are very similar, for example the lambdoid phages that include λ, φ80,
434, HK97, 21, 82, 933W, HK022 and H19-B. Another phage group consist of
the T4 relatives RB69, RB49, Aeh1 and 44RR2.8t. Yet another is the P2 group,
which includes phage 186, HP1, L-413C and K139 (infecting Vibrio Cholerae)
and PSP3 (Salmonella) and φCTX (infects Pseudomonas Aeruginosa). P2 phages
infect several types of host, including E. coli, Shigella, Serratia, Kelbsiella and
Yersinia (I. Dodd & B. Egan, personal communication). Yet another phage, p22,
is known for its ability to pack additional genes upon lysis, and through this it
may move genes from E. coli to Salmonella, for example.

substantial part of the world of temperate phages. For example, there are φ, 434,
P2, HK022 and RB69, to mention just a few related temperate phages that infect (in
particular) E. coli. In fact, temperate phages belong typically to two main classes:
the λ-type (lambdoid phages) or the P2 type (e.g. the 186 phage). In contrast to
these temperate phages there is the group of instant killer phages (lytic phages) of
E. coli, including T1, T2, T3, T4, T5 and T7 (see Table 7.2). Temperate and lytic
phages can be closely related, as a temperate phage easily degenerates into a lytic
one by losing a few regulatory sites (like λvir), or the repressor (as evidenced by
clear plaques in spontaneous lysis experiments).

Beyond E. coli there are numerous phages infecting other bacteria. One particu-
larly prominent example is the temperate phage CTX that infects the bacteria Vibrio
Cholerae, and in fact carries the cholera toxin. This toxin gives us humans diarrhea
and thereby helps to spread both the bacteria and the phage. In effect phages and
bacteria thereby sometimes collaborate in something we would consider as a “war”
against us.

In fact, collaboration/wars on the microbial world are common. Many phages
collaborate, or compete with each other for control or spreading of their host. For
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example, the CTX story above includes collaboration by the phage KSF and phage
CTX that helps phage RS1 enter Vibrio Cholerae (Davis et al., 2002). Subsequently,
with a lysogenic CTX in the host, RS1 induces lysis of CTX and thereby kills V.
Cholerae but at same time opens the way for spreading CTX to other V. Cholerae.
As mentioned above, without CTX V. Cholerae is harmless. We as humans are
exposed to a network of phage–phage and phage–bacteria interactions, a network
that may result in epidemics of lethal diseases.
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Molecular networks
Kim Sneppen

Cells are controlled by the action of molecules upon molecules. Receptor proteins
in the outer cell membrane sense the environment and may subsequently induce
changes in the states of specific proteins inside the cell. These proteins then again
interact and convey the signal further to other proteins, and so forth, until some ap-
propriate action is taken. The states of a protein may, for example, be methylation
status, phosphorylation or allosteric conformation as well as sub-cellular localiza-
tion. The final action may be transcription regulation, thereby making more of some
kinds of proteins, it may be chemical, or it may be dynamical. A chemical response
would be to change the free concentration of a particular protein by binding it to
other proteins. A dynamical response could be the activation of some motor, as in
the chemotaxis of E. coli.

The presently known regulatory network of yeast is shown in Fig. 8.1. The
action of proteins in this network is to control the production of other proteins.
The control is done through genetic regulation discussed previously, through con-
trol of mRNA degradation, or possibly through the active degradation of the
proteins.

Regulatory genetic networks are essential for epigenetics and thus for multicel-
lular life, but are not essential for life. In fact, there exist prokaryotes with nearly
no genetic regulation. Figure 8.2 shows the number of regulators as a function of
genome size for a number of prokaryotic organisms. One notices that those with a
very small genome hardly use transcriptional regulation. More strikingly, it appears
that the number of regulators, Nreg, grows much faster than the number of genes,
N , it regulates. If life was just a bunch of independent λ switches, this would not
be the case. That is, if living cells could be understood as composed of a number
of modules (genes regulated together) each, for example, associated with a re-
sponse to a corresponding external situation, then the fraction of regulators would
be independent of the number of genes N . Also, if life was simply hierarchical
with each gene controlling a certain number of downstream genes the number of

209
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Figure 8.1. Networks of transcriptional regulatory proteins in yeast, showing all
proteins that are known to regulate at least one other protein. Arrows indicate
the direction of control, which may be either positive or negative. Functionally
the network is roughly divided into an upper half that regulate metabolism, and a
lower half that regulate cell growth and division. In addition there are a few cell
stress response systems at the intersection between these two halves.

10%
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1000 5000

Regulatory
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Number of genes

Figure 8.2. Fraction of proteins that regulate other proteins, as a function of size
of the organisms gene pool (Stover et al., 2000). The smallest genome is M.
Genitalium (480 genes); the largest genome is P. Aeruginosa (5570 genes). The
linear relation demonstrates that each added gene should be regulated with respect
to all previously added genes.
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regulators would grow linearly with N . Further, if life would have been controlled
using the maximum capacity for combinatoric control, one could manage with even
fewer transcription factors. In fact if the regulation of each gene would include all
transcription regulators one could, in principle, specify the total state of all genes
with only log2(N ) regulators.

To see this, imagine that one had 10 regulators that can be on or off. Then one
can, in principle, specify 210 different states, and thus specify all possible states for
up to N = 210 genes.

To summarize:

Nreg ∝ log2(N ) if a combinatorial hierarchy (8.1)

Nreg ∝ N if a simple hierarchy (8.2)

Nreg ∝ N if independent modules (8.3)

where independent modules refer to the particularly simple regulation where genes
are grouped into clusters, each regulated by one or a few regulators.

When sampling all prokaryotes (see Fig. 8.2) one finds

Nreg ∝ N · N for prokaryotes (8.4)

The fact that Nreg/N grows linearly with N indicates that each added gene or
module should be regulated with respect to all other gene modules. Thus, prokary-
otic organisms show features of a highly integrated computational machine. The
above scaling was also reported, and in fact extended, by Nimwegen (2003), who
demonstrated that, for eukaryotes, Nreg ∝ N · N 0.3. In any case the mere fact that
the fraction of regulators increases with genome size shows that networks are in-
deed important. Networks are not just modular, they show strong features of an
integrated circuitry, even on the largest scale.

In addition to the control of production of proteins, there is a huge number
of protein–protein mediated interactions, where one protein changes the status of
another. This may be through changes of its three-dimensional structure (allosteric
modification), or by methylation or phosphorylation or binding other molecules to
it. A diagram of such a modification is outlined in Fig. 8.3 where protein A catalyzes
protein B’s transition to state B∗. For example, the ∗ could refer to addition of a
phosphate group from the ATP freely floating in the cell. A is then an enzyme,
which in this case increases one particular reaction rate by diminishing its barrier;
see the right-hand panel in Fig. 8.3. There are different types of enzymes, classified
into six major groups that we list in order to convey an impression of the possible
types of signaling in a cell.
� Oxidoreductases (EC class 1), transfer electrons (three-body).
� Transferases (EC class 2), transfer functional groups between molecules.
� Hydrolases (EC class 3), break bonds by adding H2O.
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B*B  +  *
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A

Figure 8.3. A catalyzes B’s transition to state B∗. In principle, A would then also
catalyze the opposite process, as the barrier in both directions becomes smaller.
However, if B∗ is consumed by other processes, the process becomes directed.

� Lyases (EC class 4), form double bonds (adding water or ammonia).
� Isomerases (EC class 5), intramolecular arrangements.
� Ligases (EC class 6), join molecules with new bonds (three-body).

In the yeast Saccromyces Cerevisiae there are about 6000 proteins, of which
∼3000 have known functions. Of these 3000 proteins about 1570 are categorized
in one of the six enzyme classes above. As enzymes often work through binding to
another protein, knowledge of the enzymatic networks can be obtained by screening
all possible protein–protein bindings in the cell. One option for doing this is the
two hybrid method. An example of a network of protein–protein binding partners is
shown later in this chapter. Signal transmission with protein binding and enzymatic
reactions will be fast compared with timescales associated to protein production.

In summary, the total molecular network in a cell is the combination of fast
signaling by enzymes, the slower adaptation associated with regulated changes in
protein concentrations, and these two combined with the metabolic networks. This
last network is responsible for production of amino acids, ATP, GTP and other basic
building blocks.

In the next three sections we will analyze regulatory and signaling networks.
We start microscopically by quantifying local properties as defined by degree
distribution, and then continue with fairly local topological patterns in forms of
local correlations. Finally we will analyze the global topology of a network in the
perspective of its communication ability. After these three different levels of topo-
logical analysis, we will return to modeling the elementary parts of a molecular
network. This modeling may also be seen as a natural continuation and extension
of the concepts introduced in Chapter 7.

Questions

(1) Consider an army with hierarchical signal transmission. Assume that an officer of
rank j always has two officers of rank j − 1 to command. Further assume that each
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officer/soldier is, at most, directly commanded by one above himself. What is the fraction
of soldiers at the bottom of the hierarchy? Assume that one eliminates a fraction p of
the soldiers independent of their rank. What is the average size of connected groups of
soldiers? Estimate the probability that a bit of information can be transmitted between
two random soldiers.

(2) Consider a bureaucracy where everyone has to spend 10 s on any paper that is produced.
If it takes 1 h for one employee to produce one paper, and the working week is 40 hours,
calculate the production (of papers) per week as a function of number of employees.
When does it not pay to hire more bureaucrats? In a molecular network analogy, the 10 s
may represent non-specific bindings, and the 1 h may represent the specific/functional
bindings.

Broad degree distributions in molecular networks

A common feature of molecular networks is the wide distribution of directed links
from individual proteins. There are many proteins that control only a few other
proteins, but also there exist some proteins that control the expression level of
many other proteins. It is not only proteins in the regulatory networks (see Fig. 8.4)
that have this wide variety of connectivities (see Fig. 8.5). Metabolic networks and
protein signaling networks also have a large variety of connectivities.

The distribution of proteins with a given number of neighbors (connectivity) K
may (very crudely) be approximated by a power law

N (K ) ∝ 1/K γ (8.5)

with exponent γ ∼ 2.5 ± 0.5 (Jeong et al., 2001) for protein–protein binding net-
works, and exponent γ ∼ 1.5 ± 0.5 for “out-degree” distribution of transcription
regulators (see Fig. 8.5). Notice that the broad distribution of the number of pro-
teins regulated by a given protein, the “out-degree”, differs from the much narrower
distribution of “in-degrees”. We now discuss features and possible reasons for why
life may have chosen to organize its signaling in this way.

One aspect of a broad distribution of connectivity in a network is the possible
amplification of signals. Consider a signal that enters a node, and make the extreme
assumption that it is transmitted along all exit links (unspecific broadcasting). Thus
it is amplified by a factor Kout. However, not all nodes have equal chances to amplify
signals. The probability of entering a node is proportional to Kin. Thus, on average,
one visits nodes with probability ∝ Kin and the weighted average amplification
factor in a directed network (Newman et al., 2001):

A = 〈Kin Kout(given Kin)〉
〈Kin〉 = 〈Kin Kout〉

〈Kin〉 (8.6)
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Figure 8.4. Presently known transcription regulations in yeast (Saccromyces Cere-
visiae). Compared with Fig. 8.1, this figure also includes those that were regulated,
but on the other hand only the one that regulates/is regulated through the transcrip-
tion stage. Notice that yeast has many more positive regulators than E. coli. May
be the histone–DNA complexes in eukaryotes naturally suppress transcription, and
thereby non-regulated genes automatically become silenced.

The first equality assumes that there are no correlations between the degree of a
node and the degree of its neighbors. The second equality assumes that there are
no correlations between a given protein’s “in” and “out” degrees. For undirected
random network the potential amplification would be

A = 〈K (K − 1)〉
〈K 〉 (8.7)

If all nodes have about the same connectivity, we recover the simple result that
when 〈K 〉 = 2 then A = 1. Thus to have marginal transmission, one input signal,
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Figure 8.5. Left: overall distribution of edge degree in the two hybrid measure-
ments of Ito et al. (2001). We show the cumulative distributions P(> K ), as these
allow better judgment of suggested fits. Notice P(> K ) ∝ 1/K 1.5 corresponds to
N (K ) = dP/dK ∝ 1/K 2.5. Right: N (K ) = dP/dK for a regulatory network in
yeast, separated into the in-link and the out-link connectivity distributions, respec-
tively. Notice that out-links are broader, not far from N (K ) ∝ 1/K 1.5.

on average, should lead to one output signal through a new exit. WhenA > 1 signals
can be exponentially amplified, and thus most signals can influence signaling over
the entire network. For broad connectivity distributions A typically depends on the
node with highest connectivity. To see this, assume that the number of neighbors is
power-law distributed (Eq. (8.5)). Then

A =
∫ N

1 (K 2dK )/K γ∫ N
1 (K dK )K γ

− 1 ∼ N 3−γ (8.8)

for γ > 2. That is, in case of γ > 2 the denominator becomes independent of N
in the limit of large N . One notices that, for γ < 3, A depends on the upper cut
off in the integral, which represents the node (protein) with highest connectivity.
Most real-world networks are fitted with exponents between 2 and 3. We stress
that the estimate in Eq. (8.8) is valid only when the network consist of nodes that
are randomly connected to each other. Further, it assumes that signals always are
going anywhere where there are connections. For molecular networks these two
conditions are not fulfilled.

The power-law distribution in Eq. (8.5) is often referred to as scale-free, because
it signals that the change in behavior is independent of scale:

N (aK )

N (K )
= N (a)

N (1)
(8.9)

That is, each time we multiply K by a certain factor a, the frequency N decreases
with a given other factor (1/aγ ). Although scale-free nature of molecular network
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is not as convincing as for other real networks, it is illustrative of some proposals
for evolutionary mechanisms which predict such broad degree distributions.

� Preferential attachment/cumulative advantage. One mechanism for obtaining scale-
free networks is through growth models, where nodes are subsequently added to the
network, with links attached preferentially to nodes that are highly connected (Price,
1976; Barabasi & Alberts, 1999). It is a growth model based on minimal information in
the sense that each new link is attached to the end of a randomly selected old link. Thus
one connects new nodes with a probability proportional to the degree of the older nodes.
Highly connected nodes therefore grow faster. After t steps, t nodes are added and, for
the simplest version, also t edges. Let n(k, t) be the number of nodes with connectivity k
at time t . The evolution of n is given by (Bornholdt & Ebel, 2001)

n(k, t + 1) − n(k, t) = (k − 1) · n(k − 1, t) − k · n(k, t)∑
kn(k)

for k > 1 (8.10)

because the probability to add a link to a specific node of connectivity k is k/
∑

kn(k).
Now each added node is associated with two edge ends, and thus

∑
k kn(k, t) = 2t .

Accordingly, the continuous limit is

dn

dt
= − 1

2t

d(k · n)

dk
(8.11)

Now for large t the relative frequency of most nodes will have a stationary distribution
and n(k)/t is constant. From this one obtains

dn

dt
= n(k)

t
= − 1

2t

d(k · n)

dk
⇒

2n = −n − k · dn

dk
⇒ n(k) ∝ 1

k3
(8.12)

In fact the obtained scaling behavior can be modulated by introducing further addition of
links (see Fig. 8.6).

The preferential growth model was originally proposed in an entirely different context,
relating to the modeling of human behavior quantified by the Zipf law (1949): that “law”
states the empirical observation that incomes, or assets, or number of times particular
words are used, all tend to be distributed with power laws of type 1/s2. Simon (1955)
suggested that this reflected the human tendency to preferentially give to what already has.
For networks, a feature of this history-dependent model is that the most connected nodes
are also the oldest. Another feature is that steady-state preferential attachment and random
elimination of nodes do not generate scale-free networks. Scale-free behavior relies on
the ongoing growth process. This is an unrealistic restriction for molecular network for
which current regulation presumably reflects a snapshot in some sort of steady-state
evolutionary sampling. A third feature also at odds with protein networks in at least yeast,
is that preferential attachment tends to link highly connected nodes with one another.
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Figure 8.6. Connectivity distribution in a preferential attachment model for three
different values of Rnew. For all values of Rnew one obtains a power law. That is, at
each timestep one node is added with probability Rnew and, if not, a link between
two nodes is added. Ends of links are added preferentially, that is each end is
linked to a node with a probability proportional to the connectivity of that node
(see also Bornholdt & Ebel, 2001). The obtained power law depends on Rnew and
approaches 1/K 3 when Rnew = 1. Thus only adding nodes develops a network
with very steep K distribution. Given that each newly added node has to come
with at least one outgoing link it is impossible to obtain steeper distributions with
growth guided by preferential attachment.

� Threshold networks. Another model for generating networks with power-law distributed
connectivity is the threshold networks considered by Calderelli et al. (2002). In this
model each protein i is assigned an overall binding strength Gi selected from an
exponential distribution, P(G) ∝ exp(−G). Then one assigns a link to all protein pairs
i, j where Gi + G j is larger than a fixed detection threshold . Thereby a network with
scaling in some limited range is generated.

Analytically the scaling comes about because a given protein is assigned a G with
probability exp(−G), and thereby the number of binding partners equals the number of
proteins with G ′ >  − G. This number is proportional to exp(+G). Therefore there is
probability P(> G) = exp(−G) for having N ∝ exp(+G) partners:

P(> N ) = 1/N ⇒ dP

dN
∝ 1/N 2 (8.13)

Thus threshold networks generate scale-free networks (when threshold  is rather
large). In contrast to the preferential attachment model, the threshold model is history
independent. But in the above formulation it is very non-specific: good binders bind
to all reasonably strong binders. Presumably real networks have a specific reason to



218 Molecular networks

1/k1.2

0.01

100101

0.1

1

k

P(>k) when merging
followed by new
node with three
links

(b)

Merging: shortening signaling pathways

(a)

merging

Figure 8.7. The merging and creation model of Kim et al. (2003). In addition to
the merging step shown here, a steady-state network demands addition of a node
for each merging. This evolutionary algorithm generates networks with scale-free
degree distribution, as illustrated in (b). The scaling exponent for the steady-state
distribution depends weakly on the average number of links that a new node
attaches to the older ones.

have a broad connectivity distribution. Life would definitely not favor a prion-like
mechanism where some proteins aggregate many other proteins into one giant connected
clump.

� Merging and creation (/duplication). A third scenario for generating a scale-free net-
work is the merging and creation model introduced by Kim et al. (2004). Here a scale-free
network is generated by merging nodes and generating new nodes. In detail, one time step
of this algorithm consists of selecting a random node, and one of its neighbors. These are
merged into one node (see Fig. 8.7a). Subsequently one adds a new node to the network
and links it to a few randomly selected nodes. As a result one may generate a nearly
scale-free network with degree exponent γ ∼ 2.2 (see Fig. 8.7b). The justification for this
algorithm for protein networks would be merging in order to shorten pathways, and cre-
ation in order to generate new functions. In contrast to the preferential attachment model,
the merging/creation scenario does not demand persistent growth. Instead it suggests an
ongoing dynamics of an evolving network, which at any time has a very broad degree
distribution.

The merging and creation model has its correspondence in physics, where it was
originally suggested in the form of the aggregation and injection model for dust (Fields &
Saslow, 1965). The mechanism is probably important in the creation of larger aggregates
in the interstellar vacuum.

For protein interaction networks an ongoing merging process may seem hopeless.
There is simply a limit to how large a protein can be. It is in any case interesting that the
merging of proteins is a real phenomenon. Thus Mirny et al. (personal communication)
analyzed various prokaryotes and concluded that proteins that are close along a metabolic
pathway quite often merge. In living cells the creation, on the other hand, quite often
comes from duplication and subsequent evolution of already existing proteins (see
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Chapter 9). These duplication events can in themselves also contribute to a broad degree
distribution (Pastor-Satorras et al., 2003).

As a summary, we stress that any one of the above models presents only some
possible evolutionary elements in obtaining a broad degree distribution. As we will
subsequently see, the relative positioning of highly connected proteins relative to
each other may provide us with a more functional view.

Questions

(1) Write equations for protein production according to the feed-forward loop of the type
shown in Fig. 8.10, that is A → B → C, while A → C. Let A be given by A = (t)
(step function), and simulate the amount of C when: (a) one assumes that either B or
A have to be present in order for C to be produced, and (b) one assumes that both A
and B have to be present. In all cases assume production from each arrow to be of the
form dNi/dt = N j/(N j + 1) (N j = A or N j = B) and for each protein a spontaneous
decay dNi/dt = −Ni . If there are two input arrows their contribution should be added
in (a), and multiplied in (b).

(2) Repeat the above simulation with the “and” gate when A(t) = (t) · (τ − t) with
τ = 0.1 and τ = 1.0.

(3) Repeat (2) for a production where all Hill coefficients are 4 instead of 1.
(4) Simulate a network that grows with preferential attachment, say at each time step

one node with one link is added with probability Rnew = 0.1, and if not, then only a
link between two nodes is added (preferentially linked to nodes in both ends). Let the
network reach a steady state, by removing nodes plus all their links with small probability
ε ∼ 0.001. Quantify connectivity distribution plus nearest-neighbor correlations.

(5) Consider the model of (4), let n(k, t) be the number of nodes with connectivity k at time
t . Find the analytical expression for the steady-state distribution of n(k) for different
values of Rnew.

(6) Simulate the threshold network model of Calderelli et al. (2002), using various thresh-
olds. Also repeat the simulations for a Gaussian distribution, that is P(G) ∝ exp(−G2),
instead of an exponential distribution.

(7) Consider the merging/creation model. Initially set all ki = 2. Implement the merging
model where one at each step ki , k j → ki = ki + k j − δ and k j = δ, where δ = 1, 2
or 3 with equal probability. Accept moves only where all ki > 0. What is the final
distribution of k? What is the distribution if one allows negative ks?

(8) Prove that the scale-free condition in Eq. (8.9) implies a power-law connectivity distri-
bution (Eq. 8.5).

(9) Simulate the merging/creation model in terms of a set of integers ki , i = 1, 2, . . . n,
which are updated according to

ki , k j → ki = ki + k j − δ, and k j = δ (8.14)
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Figure 8.8. One step of the local rewiring algorithm (see Maslov & Sneppen,
2002a). We have a pair of directed edges A→B and C→D. The two edges then
switch connections in such a way that A becomes linked to D, while C becomes
linked to B, provided that none of these edges already exists in the network, in which
case the move is aborted and a new pair of edges is selected. An independent random
network is obtained when this is repeated a large number of times, exceeding the
total number of edges in the system. This algorithm conserves both the in- and
out-connectivity of each individual node.

where δ is a random number with mean equal to the average 〈k〉 in the total system.
Show that this generates a steady-state distribution of the sizes of the numbers in the
set n(k) ∝ (1/kγ ) with γ ∼ 2.5 when we allow updates only where all ki > 0.

Analysis of network topologies

We now want to discuss how to identify non-trivial topological features of networks.
That is, we want to go beyond the single-node property defined by the degree
distribution, and thus deal with the networks as objects that are indeed connected to
each other. The hope is that, in the end, this may help us to understand the function–
topology relationship of various types of network. The key idea in this analysis is
to compare the network at hand with a properly randomized version of it. As we
want to go beyond degree distributions we want to compare with random networks
with exactly the same degree distribution as the real network we are analyzing.
One way of generating such random networks is shown in Fig. 8.8. Technically the
significance of any pattern is measured by its Z score:

Z (pattern) = N (pattern) − 〈Nrandom(pattern)〉
σrandom(pattern)

(8.15)

where Nrandom(pattern) is the number of times the pattern occurs in the randomized
network. We can also say that

σ 2
random(pattern) = 〈Nrandom(pattern)2〉 − 〈Nrandom(pattern)〉2 (8.16)
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Figure 8.9. Correlation profile (Maslov & Sneppen, 2000a) showing the correla-
tion between connected proteins in the regulatory network of yeast, quantified in
terms of Z scores. The single output modules are reflected in the abundance of
high Kout controlling single Kin proteins. The dense overlapping regulons corre-
spond to the abundance of connections between Kout ∼ 10 with Kin ∼ 3 proteins.
Finally the suppression of connections between highly connected proteins shows
that these tend to be on the periphery of the network.

is the variance of this number among the random networks. Considering patterns of
links between proteins with various degrees, Maslov & Sneppen (2002a, b) reported
a significant suppression of links between hubs, both for regulatory networks and
for the protein–protein interaction networks in yeast (see Fig. 8.9). Similarly, by
defining higher-order occurrences of various local patterns of control, Shen-Orr
et al. (2002) found some very frequent motifs in gene regulation networks. These
are illustrated in Fig. 8.10.

We stress that one should be careful when judging higher-order correlation pat-
terns, because evaluation of these patterns is very sensitive to the null model against
which they are judged. At least one should maintain the in and out degree of all
nodes. But even when maintaining the degree distributions, short loops, for ex-
ample, will easily appear to be hugely over-represented when compared with a
randomly reshuffled network. This is because a simple randomization does not take
into account the fact that proteins with similar functions tend to interact with each
other (see Question (1) on p. 224). This locality in itself gives more loops. In fact
one can often use the number of loops as a measure of locality, quantified in terms
of the so-called cliquishness (Watts & Strogatz, 1998).

The tendency of highly connected proteins to be at the periphery of regula-
tory networks may teach us something about the origin of broad connectivity
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Figure 8.10. Genetic control motifs that are found to be over-represented in regu-
latory networks of both E. coli and yeast (Shenn-Orr et al., 2002). Shenn-Orr et al.
suggest that the feed-forward loop may act as a low pass filter.

distributions: maybe the hub proteins that “give orders” to many tend to give
the same order to everyone below them. We found this feature in the phage net-
works discussed in Chapter 7. In λ the centrally placed CI is the major hub protein
and it acts as a simple repressor for everything except itself. Similarly, the other
hub proteins in λ, namely Cro, N and Q, all direct only one type of outcome.
Thus for simple protein organisms, one may suggest: one regulatory protein, one
commanding.

One may speculate that the broad-degree distribution of molecular networks is
not an artifact of some particularly evolutionary dynamics (gene duplication, merg-
ing, etc.), but rather reflects the broad distribution of the number of proteins needed
to do the different tasks required in a living system (Maslov & Sneppen, 2004).
Some functions simply require many proteins, whereas many functions require
only a few proteins. This scenario is not only supported by the tendency of highly
connected proteins to sit on the periphery of the networks, but is also supported by
the observation that there is essentially no correlation between connectivity of a
regulatory protein and its importance as measured by its chance to be essential. That
is, let us assume that highly connected proteins were involved in many functions,
and also assume that each function had a certain likelihood of being essential. This
would imply that the likelihood of being essential would grow linearly with the
degree of a protein in the network. This is not the case, at least not for the yeast
transcription network (Maslov & Sneppen, 2004). Thus the broad connectivity dis-
tributions in signaling and regulative molecular networks may reflect the widely
different needs associated with the widely different functions that a living cell needs
to cope with.
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Question

(1) Construct a network of N = 1000 nodes subdivided into 10 different classes with
100 nodes in each. Generate a random network where each protein has about 3 links,
and where each link has probability 0.75 to be between proteins of similar classes, and
probability 0.25 to be between different classes. Calculate the number of loops, and
compare this with the number of loops when all links are randomized.

Communication ability of networks

A key feature of molecular, as well as most other, networks is that they define the
channels along which information flows in a system. Thus, in a typical complex
system one may say that the underlying network constrains the information horizon
that each node in the network experiences (Rosvall & Sneppen, 2003). This view
of networks can be formalized in terms of information measures that quantify how
easy it would be for a node to send a signal to other specific nodes in the rest of
the network (Sneppen et al., 2004b). To do this one counts the number of bits of
information required to transmit a message to a specific remote part of the network
or, conversely, to predict from where a message is received (see Fig. 8.11).

In practice, imagine that you are at node i and want to send a message to node
b in a given network (left panel in Fig. 8.11). Assume that the message follows the
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Figure 8.11. Information measures on network topology. Left: search information
S(i → b) measures your ability to locate node b from node i . S(i → b) is the
number of yes/no questions needed to locate any of the shortest paths between
node i and node b. For each such path P{p(i, b)} = (1/ki ),

∏
j 1/(k j − 1), with

j counting nodes on the path p(i, b) until the last node before b. Right: target
entropy Ti measures predictability of traffic to you located at node i . Here ci j is the
fraction of the messages targeted to i that passed through neighbor node j . Notice
that a signal from b in the figure can go two ways, each counting with weight 0.5.
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shortest path. That is, as we are interested only in specific signals we limit ourselves
to consider only this direct communication. If the signal deviates from the shortest
path, it is assumed to be lost. If there are several degenerate shortest paths, the
message can be sent along any of them. For each shortest path we calculate the
probability to follow this path (see Fig. 8.11). Assume that without possessing
information one would chose any new link at each node along the path with equal
probability. Then

P{p(i, b)} = 1

ki

∏
j∈p(i,b)

1

k j − 1
(8.17)

where j counts all nodes on the path from a node i to the last node before the target
node b is reached. The factor k j − 1 instead of k j takes into account the information
we gain by following the path, and therefore reduces the number of exit links by
one. In Fig. 8.11 we show the subsequent factors in going along any of the two
shortest paths from node i to node b. The total information needed to identify one
of all the degenerate paths between i and b defines the “search information”

IS(i → b) = − log2

(∑
p(i,b)

P{p(i, b)}
)

(8.18)

where the sum runs over all degenerate paths that connect i with b. A large IS(i → b)
means that one needs many yes/no questions to locate b. The existence of many
degenerate paths will be reflected in a small IS and consequently in easy goal finding.

The value of IS(i → b) teaches us how easy it is to transmit a specific message
from node i to node b. To characterize a node, or a protein in a network, one may
ask how easy is it on average to send a specific message from one node to another
in the net:

A(i) =
∑

b

IS(i → b) (8.19)

A is called the access information. In Fig. 8.12A(i) is shown for proteins belonging
to the largest connected component of the yeast protein–protein interaction network
obtained by the two-hybrid method. The network shown nicely demonstrates that
highly connected nodes are often on the periphery of the network, and thus do
not provide particularly good access to the rest of the system. This is not what
we see in a randomized version of the network, where all in and out degrees are
maintained; the network is kept globally connected, but partners are reshuffled. In
fact we quantify the overall ability for specific communication

IS =
∑

i

A(i) =
∑
i,b

IS(i → b) (8.20)
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Figure 8.12. (a) Analysis of the protein–protein interaction network in yeast de-
fined by the connected components of the most reliable data from the two-hybrid
data of Ito et al. (2001). The value of the shown access information Ai increases
from the light-colored area in the center to the darker area in the periphery. The
dark colors mark nodes that have least access to the rest of the network, i.e. proteins
that are best hidden from the rest. (b) A randomized version of the same network.
One see that hubs are more interconnected and that typical A values are smaller
(less dark).

and compare it with the value IS(random) obtained for a randomized network. In
Fig. 8.14 we plot the Z score defined as

Z = IS − 〈IS(random)〉√
〈IS(random)2〉 − 〈IS(random)〉2

(8.21)

for the protein–protein network for both yeast (Saccromyces Cerevisiae) (Uetz
et al., 2000; Ito et al., 2001) and fly (Drosophila) (Giot et al., 2003), as well as
for the hardwired Internet and a human network of governance (CEO) defined by
company executives in USA where two CEOs were connected by a link if they are
members of the same board. One sees that IS > IS(random) for most networks,
except for the fly network. Thus most networks have a topology that tends to hide
nodes.

The tendency to hide or communicate, respectively, can be quantified further
by considering the average information 〈S(l)〉 needed to send a specific signal
a distance l inside the network (the average is over all nodes and all neighbors at
distance l to these nodes in the given network). This is done in Fig. 8.13. We see that
〈S(l)〉 − 〈Srandom(l)〉 has a minimum below zero for some rather short distance l ∼ 3,
whereas it becomes positive for large l. Thus the molecular signaling networks have
relatively optimal topology for local specific communication, but at larger distances
the proteins tend to hide.
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Figure 8.13. Average information needed to send a specific signal to a node at
distance l, compared with the information needed if the network was random.
Both cases refer to the protein–protein interaction networks, measured by the two-
hybrid method. In both cases the random network is constructed such that, for each
protein, its number of bait and its number of prey partners are conserved during
the randomization.

In Fig. 8.14 we also show another quantity, the ability to predict from which
of your neighbors the next message to you will arrive. This quantity measures
predictability, or alternatively the order/disorder of the traffic around a given node
i . The predictability based on the orders that are targeted to a given node i is

IT(i) = −
ki∑

j=1

ci j log2(ci j ), (8.22)

where j = 1, 2 . . . , ki denotes the links from node i to its immediate neighbors j ,
and ci j is the fraction of the messages targeted to i that passed through node j . As
before our measure implicitly assumes that all pairs of nodes communicate equally
with one another.

Notice that IT is an entropy measure, and as such is a measure of order in the
network. In analogy with the global search information IS one may also define
overall predictability of a network

IT =
∑

i

IT(i) (8.23)

and compare it with its random counterparts. In general as the organization of a
network appears more disorganized IT increases and the number of alternative
pathways increases.

In summary, networks are coupled to specific communication and their topol-
ogy should reflect this. The optimal topology for information transfer relies on a
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Figure 8.14. Measure of communication ability of various networks (Sneppen
et al., 2004b). A high Z score implies relatively high entropy. In all cases we
show Z = (I − Ir)/σr for I = IS and IT, by comparing with Ir for randomized
networks with preserved degree distribution. Here σr is the standard deviation of
the corresponding Ir, sampled over 100 realizations. Results within the shaded
area of two standard deviations are insignificant. All networks have a relatively
high search information IS. The network of governance CEO shows a distinct
communication structure characterized by local predictability, low IT, and global
inefficiency, high IS.

system-specific balance between effective communication (search) and not having
the individual parts being unnecessarily disturbed (hide). For molecular networks
of both yeast and fly we observed that communication was good at short distances,
whereas it became relatively bad at large distances. Thus local specificity is favored,
whereas globally the proteins tend to hide. Presumably this reflects some hidden
modularity of the protein interaction networks.

Questions

(1) Calculate AS(i) and IT(i) for all nodes i in the network in Fig. 8.11.
(2) Rewire the network such that one degree of all nodes intact, and such that the net-

work is connected. Calculate the total IS and IT for both the old network and the new
network.

Elementary dynamics of protein regulation

When constructing dynamical models of molecular networks it is important to
know which types of interactions one is dealing with. A negative regulation may be
merely inhibitive for the production, it may be blocking activity through binding, or
it may direct the degradation of the regulated protein. Similarly, a positive regulation
may activate production, it may change the protein property through, for example,
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Figure 8.15. Ways to regulate the concentration of a protein (p), through negative
and positive control, and through transcription regulation and something faster
(from Bock & Sneppen, 2004). The upper panels are the simplest regulation option,
where c simply regulates transcription of mRNA for p. In this case the time to
obtain new steady state is set by the degradation rate of p. Fast supression or
activation, respectively, are obtained when one use active degradation (lower left),
and translational control (lower right). In lower right panel, m is inactive mRNA
for protein p that accumulates in a reservoir for eventual conversion into a fast
decaying active form.

phosphorylation and thus instantly activate a hidden reservoir of passive proteins.
Also on fast timescales, it may activate a hidden reservoir of passive mRNA and
thereby lead to a sudden burst in protein production. In any case, the method of
regulation has a huge effect on the dynamics of the regulation.

Figure 8.15 shows different strategies for regulating the concentration of a pro-
tein. In all cases the external regulation takes place through a change in c that
typically represents either a protein or a change in binding constant. The strategies
shown may be combined; for example, a given protein may be both positively reg-
ulated by another protein, and negatively auto-regulated by itself. This is illustrated
in Fig. 8.16.

Comparing the regulations in Fig. 8.15 one sees that protein degradation (for
negative regulation), and translation control (for positive regulation) provide the
most dramatic change in protein concentration. In accordance with this observation,
it is typically these types of interaction that are found in relation to stress responses,
for example the heat shock mentioned in the next section. A quantifiable example
of translation control is found in the unfolded protein response in yeast (see Cox &
Walter, 1996; Sidrauski et al., 1997; and for the model see Bock & Sneppen, 2004).

In the next section we will describe in detail one particular network, where both
transcriptional activation and protein degradation take place.
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Figure 8.16. Illustration of the effect obtained when a protein activates and re-
presses its own gene. Combined with an oppositely acting transcriptional regulator
c, the self-regulation enhances the effect of the c. In the left-hand panel we see
that the contrast between the repressed (c large) and non-repressed states is en-
hanced by self-activation (compare with Fig. 8.15). In the right-hand panel we seen
that a positively acting regulator c may be helped to increase protein level faster,
when the protein represses its own gene. This latter mechanism was suggested and
studied experimentally by Rosenfeld et al. (2002). The suggested factors in the
self-regulation are for Question (2).

Questions

(1) Simulate the different regulations in Fig. 8.15. Explain qualitatively why the translation
response develops an increasing shock as τ becomes increasingly larger than 1 (= units
of degradation time for the protein p in the figure).

(2) Simulate the different regulations in Fig. 8.16. Explain the meaning of the constants in
the self-regulation.

(3) Consider the systems dp/dt = (c/(c + 1)) · (1/(1 + 10 · p)) − p versus dp/dt =
(c/(c + 1 + 10 · p)) − p. Draw the genetic regulation corresponding to the two cases
and investigate which gives the faster response under a c = 0.1 → c = 10 input
change.

The heat shock network: an example of a stress response system

Protein stability and folding properties depend on temperature, as discussed in
Chapter 5. To deal with temperature changes a living cell needs to have a mecha-
nism to maintain all proteins folded even under extreme changes in external con-
ditions. Such changes are common in nature. Think for example of an E. coli that
occasionally moves from a cold water environment to the intestines of a mammal.
Life has to deal with such shocks!

A number of proteins (about 5–10%) need chaperone proteins to fold. A chaper-
one is a molecular machine whose main mechanism is to bind to unfolded proteins,
and facilitate their folding into their correct functional state. The expression level
of these catalysts of protein folding changes in response to environmental stress. In
particular, when a living cell is exposed to a temperature shock, the production of
Chaperone proteins is transiently increased. This change in transcriptional activity
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Figure 8.17. Heat shock response measured as the change in DnaK production
rate as a function of time since a temperature shift. The production is normalized
with overall protein production rate, as well as with its initial rate. In all cases the
step �T = 7 ◦C. The timescale is in units of one bacterial generation measured
at the initial temperature. At T = 37 ◦C the generation time is 50 min, at 30 ◦C
it is 75 min and at 20 ◦C it is 4 h. Do not put too much emphasis on the flawed
experiment for the late response to the temperature decrease experiment.

is called the heat shock. The response is seen for all organisms, and in fact involves
related proteins across all biological kingdoms. The heat shock (HS) response in
E. coli involves about 40 genes that are widely dispersed over its genome (Gross,
1996).

Following Arnvig et al. (2000) we will see that the heat shock indeed addresses
protein stability and how this is communicated to a changed transcriptional activity.
For E. coli the response is activated through the σ32 protein. The σ32 binds to RNA
polymerase (RNAp) where it displaces the σ70 sub-unit and thereby changes the
affinity of RNAp to a number of promoters in the E. coli genome. This induces
production of the heat shock proteins.

The heat shock is fast. In some cases it can be detected by a changed synthesis
rate of, for example, the chaperone protein DnaK about 1 min after the temperature
shift. Given that production of DnaK protein in itself takes this time, the fast change
in DnaK production must be triggered by a mechanism that is at most a few chemical
reactions away from the DnaK production itself. To quantify the heat shock, Arnvig
et al. (2000) measured the dependence of σ32 synthesis with initial temperature. In
fact Arnvig et al. (2000) used the expression of protein DnaK because its promoter
is activated only through σ32.

In practice the heat shock shown in Fig. 8.17 is measured by counting the num-
ber of proteins produced during a short pulse of radioactive-labeled methionine.
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Methionine is an amino acid that the bacteria absorb very rapidly, and then use
in protein synthesis. After a large sample of bacteria have been exposed to a sud-
den temperature shift, small samples of the culture are extracted at subsequent
times. Each sample is exposed to radioactive-labeled methionine for 30 s, after
which non-radioactive methionine is added in huge excess (105 fold). During the
30 s of exposure, all proteins including DnaK will be produced with radioactive
methionine. Protein DnaK can be separated from other proteins by 2-dim gel elec-
trophoresis, a method that is briefly described later in this chapter. Finally the total
amount of synthesis during the 30 s of labeled methionine exposure is counted
through its radioactive activity.

The result is a count of the differential rate of DnaK production (i.e. the fraction
DnaK constitutes of the total protein synthesis relative to the same fraction before
the temperature shift). For the shift T → T + �T at time t = 0

r (T, t) = Rate of DnaK production at time t

Rate of DnaK production at time t = 0
(8.24)

where the denominator counts steady-state production of DnaK at the old tem-
perature T . Figure 8.17 displays three examples, all associated with temperature
changes of absolute magnitude �T = 7 ◦C. When changing T from 30 ◦C to 37 ◦C,
r increases to ∼ 6 after a time of 0.07 generation. Later the expression rate relaxes to
normal levels again, reflecting that other processes counteract the initial response.
When reversing the jump, one observes the opposite effect, namely a transient de-
crease in expression rate. Thus the heat shock reflects some sort of equilibrium
physics, where a reversed input gives reversed response.

Figure 8.17 also shows the effect of a temperature jump starting from a low
temperature T . The shock is then reversed: a positive jump in T causes a decreased
expression r . Figure 8.18 summarizes the findings by plotting the value of r = R
where the deviation from r = 1 is largest, for a number of positive temperature
quenches T → T + 7 ◦C. The dependence of R on initial temperature T is fitted
by

ln(R(T )) = (α�T ) (T − Ts) (8.25)

where R(T = Ts = 19◦) = 1 and α�T = ln(R1/R2)/(T1 − T2) = 0.2 · K −1 (i.e.
α = 0.03K −2). Notice that the R = 1 at 19◦, corresponds to a T shift from T =
Ts = 19 to T = Ts + �T = 26◦. Thus a shift in temperature around Ts + �T/2 =
23 will not give any heat shock. If we interpret R as a ratio of a chemical binding
constant K at two different temperatures (r does not change at time = 0), one may
write

R = K (T + �T )

K (T )
(8.26)
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as a function of initial temperature. The straight line corresponds to the fit used.

which implies

ln(R) = ln(K (T + �T )) − ln(K (T )) = d ln(K )

dT
�T (8.27)

Inserting Eq. (8.25) into this expression we obtain

ln(K ) ≈ const + α

2
(T − Ts)

2 (8.28)

Setting K = exp(−�G/kBT ) we obtain

�G ≈ �Gs − αkBT

2
(T − Ts)

2 (8.29)

Thus one might expect �G to have a maximum at about T = Ts + �T/2 = Ts +
7◦/2 ∼ 23◦.

The association of the heat shock to a �G with a maximum at T = Ts + �T/2 ≈
23◦ presumably reflects the fact that many proteins exhibit a maximum stability
at T between 10◦C and 30◦C (see Fig. 8.19 and Chapter 5). Thus for a typical
protein, �G = G(unfolded) − G(folded) is maximum at 23◦. In fact the size of the
�G change inferred from the measured value of α = 0.03K −2 corresponds to the
change in �G with temperature T that one observes for typical proteins (see also
Question (1) on p. 237).

To provide a positive response when one moves toward temperatures where pro-
teins are less stable, one of the interactions along the signaling path from unfolded
proteins to DnaK production should reverse the signal (be inhibitory). Figure 8.20
shows the known molecular network for regulation of the heat shock with the
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Figure 8.20. Molecular network for early heat shock. All lines with arrows at both
ends are chemical reactions that may reach equilibrium within a few seconds (they
represent the homeostatic response). The broad arrows are one-way reactions,
with the production of DnaK through the σ32–RNAp complex being the central
one. The temperature dependence of the early heat shock is reproduced when the
concentration of unfolded proteins ([U]) is much larger than the concentration
of DnaK, which in turn should be much larger than the concentration of σ32.
Equilibrium feedback works from high to low concentrations! The DnaK–σ 32

complex exposes only σ32 to degradation.

inhibitory link of DnaK to σ32. This network allows us to build a dynamic model
for the production of DnaK.

DnaK is produced owing to the presence of σ32. If one assume that σ32 are bound
either to DnaK or to RNAp then there is a tight coupling between DnaK levels and
DnaK production rates (see Fig. 8.20). Formally the total σ32 concentration [σ32

total]



234 Molecular networks

10 20 30 40

Number of
DnaK in E. coli cell

Figure 8.21. DnaK steady-state level in E. coli as a function of temperature.
Steady-state levels of DnaK in an E. coli cell vary from ∼ 4000 at T = 13.5◦C
to ∼ 6000 at 37◦C, thereby remaining roughly proportional to the number
of ribosomes (Herendeen et al., 1979; Pedersen et al., 1978). One observes
a sharp rise above 37◦C, reflecting either (1) decreased stabilization of al-
ready folded proteins, or (2) larger problems with folding proteins at higher
temperatures.

is related to the free σ32 concentration

[σ32] = [σ32
free] + [σ32

free][RNAp]

K32
+ [σ32

free][DnaKfree]

KD32
(8.30)

where, for simplicity, we don’t distinguish between free and bound RNAp (the
amount of RNAp is always much larger than that of σ32). Thus

[σ32
free] = [σ32]

1 + K −1
32 [RNAp] + K −1

D32[DnaKfree]

= [σ32]

K −1
32 [RNAp] + K −1

D32[DnaKfree]
(8.31)

where in the last step we assume that there is a large amount of DnaK or RNAp
relative to σ32. The above equation can be inserted into

� [RNAp · σ32] = [RNAp][σ32
free]/K32

� [DnaK · σ32] = [DnaKfree][σ32
free]/KD32

which direct DnaK production and σ32 degradation, respectively.
To obtain expressions for the feedback from the amount of unfolded proteins

[U] we also need to relate the free DnaK to the total DnaK concentrations, given
the amount of free unfolded proteins [Uf]

[DnaK] = [DnaKfree] + [DnaKfree][Uf]

KDU
+ [DnaKfree][σ32]

KD32
(8.32)

We stress that the key inhibitory coupling between σ32 and DnaK is not only
inhibition by binding, but also expose σ32 to proteases (Gottesman, 1996, see also
Fig. 8.20). Thus we need both an equation for the DnaK production given total σ32
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concentration, [σ 32], and an equation for changes in [σ32]. With a little algebra the
DnaK production rate may be shown to depend on the changed amount of unfolded
proteins through

d[DnaK]

dt
∝ a[RNAp · σ32] − [DnaK]

τDnaK
≈ a · [σ32]

1 + ([DnaK]/u)
− [DnaK]

τDnaK

d[σ32]

dt
∝ S − b[DnaK · σ32] ≈ S − b · [σ32]

1 + (u/[DnaK])
(8.33)

where τDnaK is the effective decay of DnaK concentration in the growing and di-
viding E. coli cell, S is the production rate of σ32 and a, b are two rate constants.
The factor u parametrizes the amount of unfolded proteins. In the approximation
where we ignore free σ32, and the fraction of DnaK bound by σ32, we obtain the
following equation:

u ∝ KD32 + KD32

KDU
[Uf] (8.34)

when we take into account the fact that the free DnaK concentration in Eq. (8.31)
primarily depends on the unfolded protein concentration. The heat shock is as an
increased level of σ32, which in turn is caused by its decreased degradation because
DnaK instead binds to unfolded proteins. In this way DnaK provides a feedback
that also has consequences for the about 40 other genes that are regulated through
σ32.

To summarize the dynamics of the network: when moving away from the tem-
perature Ts where proteins are most stable, we increase u, and thereby the rate for
DnaK production. For a unchanged “supply” S of σ32 the extreme in DnaK produc-
tion occurs when d[σ32]/dt = 0 to a value ∝u. One may thus identify R = max(r )
with u and thereby with the free energy difference �G between folded and unfolded
proteins.

To summarize the network lesson of the heat shock, we note that its core motif
shown in Fig. 8.22 is a common control element in molecular networks. A similar in-
terplay between proteins is found, for example, in the apoptosis network controlled
by proteins p53 and mdm2 (see Fig. 8.23 and Question (4)). Thus negative feed-
back between a transcription factor and its product often takes place through an
inhibitory binding away from the DNA, a motif also emphasized in Fig. 8.15. In
general, stress responses may often be an interplay between a slowly reacting tran-
scription part, and feedbacks facilitated by fast chemical bindings; for example, a
feedback that goes from highly abundant proteins (DNAK) to the scarce regulatory
protein [σ 32].



236 Molecular networks

B

A

B

A

Decay

Figure 8.22. The core of the heat shock network, consisting of a motif where a
protein A directs transcription of protein B, and where protein B directs degrada-
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Figure 8.23. The p53 induction network exhibiting the same core motif as found in
the heat shock. Induction of p53 pulse is done through phosphorylation of p = p53,
that increase (see Tiana et al., 2002) binding between p53 and m = mdm2.

Questions

(1) Assume that a typical protein has a maximum stability of 15 kcal/mol at Ts = 23◦C,
and that the protein melts at 73◦C. Assume parabolic behavior of �G = G(unfolded) −
G(folded) with T . Calculate the corresponding α (in Eq. (8.25)) that would govern the
heat shock dependence with temperature for temperature quenches of 7◦C.

(2) Arnvig et al. (2000) measured the heat shock in a strain where the σ32 gene is located on
a high copy number plasmid. In this strain where the synthesis rate for σ32 may approach
that of DnaK, the HS was smaller and also remained positive down to temperature jumps
from T well below Ts = 23. Explain these findings in terms of the model in the text.

(3) Tilly et al. (1983) found that over-expression of DnaK through a σ32 dependent pathway
represses HS. Explain this in terms of the above model. Notice that DnaK–σ32 binding
still plays a crucial role here, and discuss why the heat shock disappears.
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(4) Feedback loops such as the one of the HS are seen in other systems. Consider the
network that controls induced cell death in eukaryotes, through the p = p53 protein
level (Fig. 8.23). Discuss the equations (Tiana et al., 2002) dp/dt = S − a · (pm) and
dm/dt = c(p − (pm))/(Kg + p − (pm)) − dm for the network with Kg being the bind-
ing constant for protein p53 to operator for p53, c the production rate when p53 is
bound, and the rest of the parameters identified from Fig. 8.23. Typical values are
a = 0.03 s−1, K = 180 nm, Kg = 28 nm, S ∼ 1 s−1, c = 1 s−1 and d = 0.01 s−1 (see
Tiana et al., 2002). Notice that the concentration of p53–mdm2 complex (pm) is given
by K = (p − (pm))(m − (pm))/(pm). Simulate the equations and, after reaching steady
state, simulate the response of K → 15K and K → K/15, respectively.

(5) Consider the damped equation dy/dt = −y(t) and compare this with the time-delayed
version dy/dt = −y(t − τ ). For which values of τ does the time-delayed equation start
to oscillate? (Hint: make the guess y = exp(r t) with r complex.)

(6) Consider the p53 network from Question (4) but with a time delay where mdm2 pro-
duction is delayed by 1200 s relative to the p53 concentration. After reaching steady
state, simulate the response to the same K changes as in Question (4).

Bacterial chemotaxis: robust pathways and scale invariant greed

Molecular networks are used for more than just changing concentrations of proteins.
They are used to send signals, mediated through protein interactions where one
protein modifies another protein. That is, the acting protein is an enzyme. A classical
example of such a protein signaling system is the chemotaxis network in E. coli.

E. coli can chemotax: it can find food by sensing a gradient in food concentra-
tion. The sensing happens through receptors on the surface of the bacterial outer
membrane (see Fig. 8.24) that through a sequence of events changes the phospho-
rylation status of a protein CheY and thereby the direction of motors placed on
other positions in the bacterial membrane.

An example of such a receptor is the maltose receptor used by the λ-phage.
Many other receptors exist. Each receptor can have a food molecule bound to
it. When this is the case, the receptor properties on the inside of the membrane
change, thus facilitating a signal. Upon processing the signal the bacterium decides
whether to change direction or continue where it is heading, through a so-called
tumbling process where its flagella motor changes direction (see Fig. 8.25). When
the food concentration drops, it tends to shift direction (tumble). When the food
concentration increases the bacterium continues straight by diminishing the fre-
quency of tumbling. Thereby the bacterium makes a directed random walk towards
larger concentrations of food.

A key element in chemotaxis is that the bacterium measures the change in food
concentration over some distance. Thus it measures the difference in food oc-
cupation of the receptor, and does that sensitively for a huge range (factor 104)



238 Molecular networks

CheY P

Motor
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Receptor

CH3

tumbling signal

(CheR,CheB)+CheA+CheW

Figure 8.24. The decision to tumble or not is mediated through the receptor that
modulate phosphorylation status of CheY, which thereby signals which way the
motor should run: clockwise or counterclockwise (→ tumbling or moving straight).
Proteins involved in signaling are Tar (the lac receptor), CheR methylation (adding
CH3 group to receptor), CheB demethylation, CheY messenger, CheAW kinase
and CheZ phosphatase. CheZ adds a phosphate group to CheY, and deletion of
CheZ is found to increase the tumbling rate by a factor of 5. Other mutant examples
are a 12-fold increase in CheB, which decreases tumbling rate by a factor of 4,
and increases adaptation time by a factor of 2.5.

1/s
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~ 30 µm

Figure 8.25. Chemotaxis of E. coli. The lower panel shows a trajectory of an E. coli
bacterium consistent with a smooth path interrupted by sudden changes. Each
sudden direction change is associated with a reversal of the bacterial movement
engine, and is called a tumble. The upper figure illustrates an experiment where
tumbling rate is shown to depend on addition of food that the bacteria are attracted
to. At early times the tumbling frequency drops suddenly, allowing the bacteria
to run longer. Later the bacteria adjust to a new level of attracting molecules, an
adjustment that remarkably raises to exactly the same level as before the attracting
molecules were added.
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CheB
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CH3

CH3
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Tumbling

dA = −KA+kI−BA

reservoir
res= dI

dt

dt
= +KA−kI+R[res]

Steady state: A=R[res]/B
independent of rate K
and thus of attractant.

Figure 8.26. The Barkai–Leibler model for adaptation. Receptors in the membrane
of E. coli control chemotaxis. When “attractants” are bound to a receptor it tends to
stay in normal mode (low level of active state A). When “attractant” concentration
increases, reaction rate K is increased and thus transiently occupation of state A
is decreased. Thus there is less tumbling, until a new steady state is reached. The
steady state is the same with any value of K , so there is perfect recovery from any
change in K . One obtains perfect recovery for a wide range of parameters. This is
denoted robustness, because the adaptation does not change when one perturbs or
alters the system.

of absolute food concentrations. Figure 8.26 demonstrates how Barkai & Leibler
(1997) imagined this to be possible. In the figure the reaction rate K determines the
rate at which the active form of the receptor becomes deactivated, that is A → I.
The active form of the receptor (A) determines the tumbling rate. Upon changing
outside food occupation of receptor, the rate K changes, thereby giving a transient
change in the number of active receptors, and thus in the tumbling rate. However,
when one assumes a reservoir of receptors indicated on the left, then a one-way
flow of the active receptors to this reservoir makes the steady-state number of active
receptors independent of K . The equations governing the amount of A are

dA/dt = −K · A + k · I − B · A (8.35)

dI/dt = +K · A − k · I + R · [res] (8.36)

The steady-state level of A = R · [res]/B is independent of K (the outside food
level). This set of equations implicitly assumes that the flow from the reservoir, R ·
[res], is independent of the flow to the reservoir B · A. Then the tumbling frequency
will be independent of the absolute level of the external amount of food; see also
Fig. 8.27.

After a sudden increase in food concentration, K increases, and one first observes
a decrease in A and thus in the tumbling rate. Subsequently, after some minutes,
the rate recovers exactly to the same rate as with the lower food concentration, see
Fig. 8.25. This is robustness toward external conditions. Further, when one changes



240 Molecular networks

CheY

CheZ
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proton driven

CheYp

Signal from
active receptor

CheYp controlled

Figure 8.27. The last step in the controls of the motor involves phosphorylated
CheY (called CheYp). CheZ de-phosphorylates CheYp, and thus maintains it at
low concentrations. The state of the motor depends on CheYp to the 11th power
(very large Hill coefficient). The motor uses a proton gradient as an energy source,
not GTP or ATP as usually used by other motors in the cells. Notice also that the
motor is cylindrical, probably with eight cylinders: the motor is an eight-cylindrical
electro-motor!

the chemistry inside the cell through mutation, one may change the tumbling rate as
a function of A. However, when A always recovers to the same level, the tumbling
rate will also recover to the same level after a change in food concentration. Thus
different bacteria may have different intrinsic tumbling rates, but each bacterium
will always maintain its own food level independent tumbling rate. Chemotaxis
is also robust against details of internal signaling chemistry that comes after the
receptor (Alon et al., 1998).

In summary, bacterial chemotaxis is a remarkable example of scale-invariant
greed: at (nearly) any food concentration, the bacteria respond equally well to a
relative change in external food concentration.

Questions

(1) Consider the Barkai–Leibler (1997) model at some value K0. Set k = K0 and R = 1,
B = 1 and res = 1 and find expression for A and I. Simulate the rate of tumbling as
a function of a constantly increasing K , K = αt + K0, over a time interval where K
changes by a factor of 10.

(2) Consider a random walker along a one-dimensional line, performing simple chemotaxis.
After each step in some direction it may change direction. If it moves left it changes
direction with probability p > 0.5, say p = 0.55. If it moves right it changes direction
with probability 0.5. If it does not change direction, it continues one step in same
direction as before. This resembles some increased food gradients towards the left.
Simulate the average displacement per step as a function of p.

(3) Simulate the push–pull reaction (Stadtman & Chock, 1977; Koshland et al., 1978),
where A converts B to C, and C spontaneously converts back to B with rate r (assume
that [B]+[C] is constant). Plot concentration of C as a function of concentration of A
for two different values of r .
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Evolution
Kim Sneppen

Evolution and evolvability

Evolution, and the ability to evolve, is basic to life. In fact, it separates life
from non-life. The process of evolution has brought us from inorganic material in
∼3.5 billion years, our bacterial ancestors in ∼2 billion years, from primitive sea-
dwelling chordates in ∼500 million years and from common ancestors to mice
in only ∼100 million years. Evolution has inspired our way of looking at life
processes throughout modern biology, including the idea that evolvability is an
evolving property in itself.

Most mutations are either without any consequences, i.e. neutral, or deleterious.
Thus evolution is a costly process where most attempts are futile. That it works
anyway reflects the capacity of life to copy itself so abundantly that it can sustain
the costly evolutionary attempts.

Evolution is the necessary consequence of:

� heredity (memory);
� variability (mutations);
� each generation providing more individuals than can survive (surplus).

The last of these points implies selection, and thus the principle of “survival of
the fittest”. In fact, the surplus provided by growth of successful organisms is so
powerful that it provides a direct connection between the scale of the molecule and
the worldwide ecological system: a successful bacterium with a superior protein
for universal food consumption may in principle fill all available space on Earth
within a few days. In fact, bacteria on Earth number about 5 × 1030 (Whitman
et al., 1998), a biomass that dominates all other animal groups together. The bacteria
have already won! The dynamics of this interconnected microbiological ecosystem
thus challenges any model built on a separation of phenomena at small and larger
length scales.

245
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Another important fact of evolution is that it always works on a number of in-
dividuals, N , that are much smaller that the combinatorial possibilities in their
genome. There are maybe 5 × 1030 bacteria on Earth, but a bacterial genome pro-
vides a number of codes of order 4L , where a typical genome length of a prokaryote
is L ∼ 106–107. The implication of this is that evolution is a historical process,
where new variants arise by rather small variations of what is already present. Or,
stated in another way, if one imagined starting life again, the outcome would in all
likelihood be entirely different, and this difference would probably be on all scales,
from strategies of molecular interactions to design of animal bodies.

An example of widely different body designs is found during Cambrian times
(530 million years ago), where there was a wealth of organisms with body designs
that are very different from what is found among phyla alive today (for a beautiful
review see Gould, 1989). Each of these now-extinct life designs existed for millions
of years, with no apparent inferiority to the survivors. They subsequently became
extinct, leaving only the well-separated phyla (= body plans) that we know today.
Figure 9.1 shows life history since Cambrian times in a way that illustrates the
coherent emergence and collapse of whole ecosystems, as is evident by the nearly
block diagonal form of the origination–extinction “matrix”.
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Figure 9.1. Origination and extinction of 35 000 genera in the Phanerozoic, from
Bornholdt & Sneppen (2004). Data from Sepkoski (1993). Every event is quantified
by the number of genera. A genera is a group of related animal species. For example,
all types of humans, like Neanderthals, homo sapiens, cro-magnon, etc., form
one genera. The vertical distance from a point to the diagonal measures the lifetime
of the group of genera with that particular origination and extinction. Notice the
collapse of many points close to the diagonal, reflecting the fact that most genera
exist for less than the overall genera average of about 30 My (million years).
Notice also the division of life before and after the Permian extinction 250 My b.p.
(million years before present).
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Walking in landscapes with seperated peaks? Walking in neutral landscapes?

Figure 9.2. Possible fitness landscapes: does evolution proceed as a steady increase
in fitness, eventually interrupted by barriers, as Wright envisioned (1982), or is
evolution a random walk on large fitness plateaus, as in the neutral evolution
scenario of Kimura (1983)?

There are some concepts of evolution that are useful to keep in mind when
thinking about life: for example, the genetic drift model (Kimura, 1980, 1983)
or the adaptive trait concept (Fisher, 1930; Wright, 1982). Or, reformulated (see
Fig. 9.2):

� the neutral scenario where every mutant is equal, thus allowing for large drift in genome
space;

� fitness climbers – evolution viewed as an optimization process, where some individu-
als/species are better than others.

The neutral theory has experimental support in molecular evolution, where the
sequence of most proteins/RNAs varies substantially between species. Probably all
variants of the same macromolecule (homologs) do their job well, and evolution
on a larger scale is seldom associated with developing better molecules. Instead,
evolution of species is associated with reallocation of functions between cells. The
reallocation is done through rewiring of the underlying genetic networks, which are
responsible for cell differentiation and subsequent positioning of the large variety
of organs in multicellular organisms. Presumably such network rewirings are not
always neutral: occasionally they lead to mutant organisms that are better suited to
deal with particular environments or competitors.

Genetic network rewirings are fast, and probably faster than single-point mu-
tations. Mechanistically they may be done through a number of DNA edition
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processes, like transpositions. Transposition is the movement of a DNA segment
from one position of the genome to another position. It may even be programmed
through inverted repeats at ends of short or medium segments of a movable DNA
piece, and moved with help of transposease proteins. Transposition was discovered
in maize by Barbara McClintock (1950, 1953), and has since been found in all
organisms from bacteria to higher eukaryotes.

The evolution of multicellular species is closely coupled to the evolution of body
plans. Thus it is coupled to the genetic regulation that governs the spatial location
of cells relative to each other. At the core of the development of an organism are
the Hox genes that specify the grand-scale body plan of an organism. Subsequently
it is the interplay between lower ranking developmental transcription factors that
specifies traits of an organism.

Questions

(1) The K12 strain of bacteria doubles itself every 20 min (at 37 ◦C), and every 2 h at 20 ◦C.
If this bacterium could utilize all material on Earth, how long would it take to convert
all of the Earth into bacterial material at the two temperatures?

(2) (a) How many bacterial generations have passed since life started on Earth? (Assume
near optimal growth, with 1 h doubling time.)
(b) Assume that, on average, there is one base pair mutation per bacterium per gener-
ation. Assume that there have always been about 5 × 1030 bacteria on Earth. Give an
estimate of how many of all possible bacterial mutants have been tested.
(c) With 5 000 000 million base pairs in the genome, what fraction of all mutants have
been tested until now?

Adaptive walks

The conceptually simplest model of evolution is the one based on local fitness
optimization, as illustrated in Fig. 9.3. In this one follows a species consisting
of individuals with some variation in genotype. One describes the population as
approximately Gaussian in a one-dimensional genome space. With a fitness gradient
as shown in Fig. 9.3 the fittest part of the population tends to be more represented
in the next generation. For a simple linear increasing fitness landscape this model
predicts a steady increase in fitness with a rate proportional to the spread of the
Gaussian distribution.

If a local fitness maximum is reached, the evolution is arrested, and the population
remains at the maximum until, by random fluctuation, a sub-part of the population
appears with a higher fitness. The chance of such a fluctuation depends both on
the size of the fitness barrier and on the effective size of the population Ne. The
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Figure 9.3. Walks in fitness landscapes. The left-hand figure illustrates the Fisher
theory of evolution, where the population indicated by the Gaussian moves steadily
to higher fitness by selecting the individuals with highest fitness to dominate sub-
sequent generations. Evolutionary drift proportional to genetic variation, which in
turn depends on mutation rate µ. The right-hand figure illustrates the trapping of
a population on a local fitness peak for long periods followed by a sudden jump
when the fitness barrier is punctuated by a rare event.

effective population is given by

1

Ne
= 〈 1

N
〉time (9.1)

The effective size may be the whole population N , but typically it will be smaller,
as only a fraction of individuals may contribute directly to the next generation.

If we estimate the probability that a population of size Ne escapes from a fit-
ness peak by a random fluctuation (mutation), we need to know the minimal fit-
ness “barriers” �F that separate the peak from a neighboring higher peak. Given
that, one may consider the escape as a Kramer’s escape problem (see Appendix)
with a barrier �F and an effective “temperature” set by the random mutations
(Lande, 1985):

P ∝ Ne · exp

(
− Ne�F

µ

)
(9.2)

Here µ is the individual mutation rate and µ/Ne is the effective mutation rate for
a well-mixed population consistent of Ne individuals. Thus when the population
grows, the escape probability diminishes exceedingly quickly! This is behind the
belief that speciation is connected with the isolation of small sub-populations,
for example owing to localization on small islands. Also this type of behavior
is behind the “hopeful monster” proposal of Wright (1945), who suggested that
evolutionary jumps are associated with individuals taking large evolutionary leaps
by rare accidents. In any case, the walks between subsequent fitness maxima will
be intermittent, with large waiting times on peaks, and rather fast adaptations when
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the population shifts. This mechanism has been proposed to be responsible for
the punctuated equilibrium of individual species, observed in the fossil record by
Eldredge & Gould (1972) and by Gould & Eldredge (1993).

Beyond the walk to the individual fitness peaks, one may have to consider multi-
peaked fitness landscapes. One such model is the Kauffman L K model, where each
of the L genes is coupled to K others of the L genes. Each gene is assumed to be
either on or off, that is σ j = 0 or σ j = 1. The fitness is assumed to be of the form

F = 1

L

∑
Fi (9.3)

where Fi = Fi (σi , σi,1, . . . σi,K−1) is a random number between 0 and 1 for each
of the possible K inputs to gene i . For K = 1, the “F” landscape is a simple
Mount Fuji landscape with one fitness peak. For K = L − 1 the landscape is multi-
peaked; any change in any gene affects all random numbers in the sum

∑
Fi . Thus

the energy landscape resembles the random energy model of Derrida (1980). As
proven by Bak et al. (1992), in these extremely rough landscapes we can say the
following.

� The probability that a given σ is at a fitness peak is equal to 1/(L + 1), because this is
the probability that σ is the largest of itself plus all L neighboring variants. Note also that
the fitness of a local maximum will be of order 1 − 1/(L + 1) ∼ 1 − 1/L .

� The number of upwards steps from a random σ to a local fitness maximum is, on average,
log2(L). This is because at each step from a fitness value F one selects a new random fitness
in the interval 1 − F . Thus the interval 1 − F will be a half length at each consecutive
step, and when it reaches 1/(L + 1) we should have reached a maximum. If l is the
number of upwards steps, then 1 − 2−l = 1 − 1/(L + 1), giving a typical walk length of
l = log(L)/ log(2).

Looking at the history of life on large scales as in Fig. 9.1, there is no particular
sign of any overall increase in fitness with time. In fact, when one compares exis-
tence times of various species groups, they show no sign of an overall increase with
time (Van Valen, 1973). On the other hand, the survival time of a given species has
a characteristic length that can be estimated from the average survival time for its
“cousins” (see Fig. 9.4). Thus species evolve and inherit their basic robustness, but
they typically do not improve this robustness against extinction.

In summary, adaptive walks are fine for local exploration but hopeless when large-
scale jumps are needed. Reasonable population sizes will prohibit these jumps. As
we will see now, neutral landscapes, on the other hand, open the way for large-scale
meanderings and thus facilitate evolution. Another increase of evolution possibil-
ities may occur by changing fitness landscapes dynamically. Such dynamics may
be induced by the ever-changing ecosystem, maybe because other species evolve
and thereby open new opportunities for each other.
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Figure 9.4. Sketch of typical existence time distributions for genera in the fossil
record. If evolution was a steady hill climbing to an ever improved robustness, one
should expect that species are better able to survive with time. This is not the case;
distribution of survivorship in a given class of species is close to exponential, with
similar time constants for early and late members of the class. This implies that the
extinction risk for a species is a constant, independent of time. This led Van Valen
(1973) to propose the “Red Queen” hypothesis: one has to run to remain at the
same relative fitness to its environment. Further, the figure indicates that stability
against extinction is inherited, whereas the actual extinction is a random event.

Questions

(1) Draw random numbers from a continuous distribution, and remember the largest you
have had until now. Simulate the times at which the largest number increases, and show
that the times for such changes get subsequently larger as time passes. What is the
distribution of these times? The numbers may be fitness values, and each newly drawn
number may be a mutation attempt of the species. Only a fitter species will “outrun”
the current species.

(2) The sex ratio of all species with two sexes is 1:1. Given the fact that each child has
both a father and mother, argue that when there are fewer males than females in the
population, it is favorable to produce males for the propagation of your genes.

(3) This is a computer exercise: study numerically the space-time trajectory of a particle
in a double-well potential V (x) = −x2 + x4 by using overdamped Langevin dynamics
(see Appendix) and different strengths of the noise term. Discuss the results in terms
of evolution in a double-peaked fitness landscape F = −V .

Quasi-species model

The quasi-species model (Eigen, 1971; Eigen et al., 1989) is an illustrative study
of the non-biological limit where N 
 2L . One assumes that there is an infinite
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supply of all genotypic variants. However, as it is studied only in the neighborhood
of some optimal species, it presents a useful understanding of the role of mutational
load.

The model deals with localization of a population around an optimal fitness,
which is a point in genome space where individuals reproduce faster than other
places. The population is divided into a number of mutants, each characterized by
a certain genome, σ . The population at time t + 1, nt+1 is given from population
at time t , nt through the equation

nt+1(σ ) =
∑
σ ′

qσσ ′w(σ ′)nt (σ
′) (9.4)

where w(σ ) is the reproductive rate of the particular genome, and q is a mutation
matrix. The mutation matrix typically includes one-point mutations with some low
probability, µ. For µ very small, population will be localized in the area where w

is largest. For larger µ the system undergoes a phase transition where suddenly the
individuals lose contact to an optimal point.

Consider a single-peaked fitness landscape, with replication rate

R(σ ) = R0 if σ = σ0 = (1, 1, 1, 1, 1, 1, 1 . . .) (9.5)

R(σ ) = R < R0 for all other points (9.6)

For genome length L the growth of biomass at the master sequence is proportional
to

dN11111...

dt
∝ (1 − µ)L R0 N1111... (9.7)

per generation. The net growth of species in the immediate neighborhood is

dNothers

dt
∝ RNothers + · · · (9.8)

per generation. The condition for maintaining the population at the fitness peak is
that the main contribution in any generation comes from the master sequence. To
first order this means:

(1 − µ)L R0 > R (9.9)

thus the critical µ = µ∗ is given by

(1 − µ∗)L = R/R0 (9.10)

For µ > µ∗ the population de-localizes. This de-localization transition is called the
error catastrophe: when errors become larger, the species collapses as an entity. Not
surprisingly one obtains a critical µ = µ∗, which is of order 1/L; see examples of
µ tabulated below.
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Replication of RNA
without enzymes µ = 0.05 Lmax ∼ 20

Viruses µ = 0.0005 Lmax ∼ 1000–10000
Bacteria µ = 1.0 × 10−6 Lmax ∼ 106

Vertebrates µ = 1.0 × 10−9 Lmax ∼ 109

In fact most organisms appear to work close to the error threshold: if one plots
the average error rate per replication of stem cells and per genome, one obtains a
fairly constant number close to 1! An extreme example is the HIV virus, which
has a very small genome and by operating close to its error threshold has a very
high mutation rate. This allows many mutations, which help the virus to escape the
host immune system, as well as to escape any single drug with which we attack
the virus. An interesting applicaton of host–parasite co-evolution of quasispecies
is discussed by Kemp et al. (2003) and Anderson (2004).

Neutral evolution

Mutation rates of living species are quite high, for humans µ ∼ 2 × 10−8 base
pairs/generation. If most mutations were deleterious, there would be a substantial
mutational load on the species: most offspring would die. Accordingly Kimura
(1980, 1983) suggested that most mutations are without noticeable effects, i.e. that
they are neutral. A few mutations are presumably deleterious. If the chance that a
mutation leads to death is denoted pkill, then survival of the offspring requires

pkill · µ · L < 1 (9.11)

where L is the genome length. Thus the chance that one mutation is deleterious has
to be less than (µ · L)−1. The deleterious mutations are instantly removed from the
gene pool, and can thus be ignored. Finally an even smaller fraction of mutations
may be favorable, a fraction that one may ignore for the first analysis. In summary,
Kimura argues that most mutations are without effects, and accordingly one can
count time by measuring changes in the genome. This molecular clock idea is
a good working hypothesis, in spite of the variability of mutation rates between
various parts of the genome, between species and maybe also over time.

One remarkable effect of neutral evolution is the fact that any new neutral mu-
tation has a chance to take over the population. And that the probability of new
mutations doing so is independent of population size. Say the probability that a
neutral mutation arises in an individual at generation t is r · Ne, where Ne is the
effective population size and r = µ · L is the probability to mutate per generation
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Ne

P=1/Ne

Figure 9.5. Probability of fixation of a single mutation in a population of size Ne
is proportional to 1/Ne. The figure shows two random walks: one where the initial
mutation is eliminated, and one where it is fixated (i.e. the mutation spreads to the
total population Ne). The x-axis is not in real time, but in the number of events
where the number of mutants increases or decreases in the population.

per individual. In the next generation this mutation may spread such that two in-
dividuals may carry it, or it may be annihilated. Since the mutation was neutral,
and the total population size was constant, these two events are equally likely. Thus
at each time step the number of surviving individuals with this mutation follows
a random walk. If this reaches the absorbing state, 0, the mutation vanishes. If it
reaches the absorbing state, Ne, the mutation takes over the population, and it is
fixated. As random walks represent a fair game, the probability P to win (become
fixated), multiplied by the amount one wins (Ne) has to be equal to the initial in-
vestment (one mutation). As the probability to obtain the mutation in the first place
was proportional to Ne, then the overall rate of fixations becomes

P(fixation) = rPNe = r (9.12)

independent of effective population size (see Fig. 9.5). For an alternative approach
using random walker theory, see the Questions below.

Questions

(1) Consider an initial single-point mutation in one member of a population of size N .
At each event, the mutation may duplicate with the duplication of the member, or die
out with the member. In a steady-state population the numbers of members that carry
the mutation thus make a random walk. What is the chance that the mutation becomes
fixated, defined as being present in all N members of the species?

(2) Consider a gambler’s ruin version of species evolution, where at each time step each
individual in the species has a fifty-fifty chance to double, or be eliminated. If species
always start with one individual, what is the distribution of lifetime of the species?

(3) In a computer model of sympatic speciation, consider a population of N individuals each
with Ng binary genes (1, 0, 0, 1, . . .). One individual is chosen, and another is selected
randomly until its Hamming distance to the first is less than k. Then an offspring of
the two is created, by randomly selecting genes from the two parents and mutating
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each gene with probability µ. Finally one selects a random individual and removes it
(constant population assumption). Demonstrate that this may lead to speciation of the
population (when the population fills only a small fraction of genomic space).

Molecular evolution of species

Evolution on the molecular level can be quantified by comparing genomes of dif-
ferent species that live today. To do this reliably, one must know something about
mutation rates of the genes, and between the respective species. For a start one
may assume that all mutation rates are the same, independent of species, and are
the same for all single base-pair changes. From this one can construct phyloge-
netic trees, which illustrates who are closest to whom. Thus distances between two
species may be quantified by the number of million years of evolution that separate
the two species.

Let us first address the evolution on the smallest molecular scale, where the
different types of events occur with widely different frequency. For example, in-
sertions/deletions (indels) are a factor of 10–20 less likely than single base-pair
mutations. And, further, different single base-pair mutations depend on which base
is exchanged by which, with G–C substitutions being more frequent than A–T
substitutions, as seen in Table 9.1. More striking, however, is that the relative fre-
quencies of these events differ between species. Deletions, for example, are more
prominent in Drosophila than in humans (Petrov & Hartl, 1999).

Single-point mutations are typically either completely neutral, or confer a rather
small change to a given protein (if they lead to a change in amino acid). Thus they
are associated with the fine-tuning of properties of given proteins, not to the overall
properties defining an organism. Thus species are presumably not evolved through
single-point mutations, or simple deletions, but rather with an intricate set of ge-
nomic re-arrangements. When comparing genomes of different life forms, one often
finds similar genes, but at different chromosomes and arranged in a different order.

Table 9.1. Nucleotide mutation matrix qi j on the
so-called PAM 1 level, defined as one substitution

per 100 nucleotides: of the 1% substitutions, a fraction
0.6 will be an A replaced with G (or vice versa)

A G T C

A 0.990 0.006 0.002 0.002
G 0.006 0.990 0.002 0.002
T 0.002 0.002 0.990 0.006
C 0.002 0.002 0.006 0.990

From Dayhoff et al. (1978).
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Figure 9.6. Distribution of protein paralogs in S. Cerevisiae. Two proteins are
paralogs if they have a common origin. This is the case for about one third of all
the proteins in yeast. The left-hand panel shows the number of paralog pairs as a
function of their sequence similarity. The right-hand panel shows the fraction of
essential proteins in single gene knockout experiments, as a function of similarity
to the most similar paralog in the yeast genome. It demonstrates that proteins with
very similar paralogs can be eliminated from the organism, because the duplicate
can take over its basic functions. Notice also the insert, illustrating that proteins
in the yeast nucleus tend to have a much larger probability to be essential than the
“workforce” proteins of the cytoplasm (from Maslov et al., 2004).

Even more strikingly, different groups of species differ hugely in their junk DNA, in
particular by their repeat sequences (see Shapiro, 1997). Primates are, for example,
characterized by huge sections of the so-called ALU repeat family. Thus evolution
is random, but some events are self-propelled, even on the scale of the full genome.

There are many mechanisms that can rearrange or copy genes in molecular
biology: mechanisms that are found even in quite primitive bacterial phages. This
fact in itself makes one wonder to what extent genetic material can be transferred
between species (horizontal transfer). An example of gene rearrangements is
retroviruses, which are able to read an RNA message into DNA and insert it into the
genome. Within a given cell, an mRNA → DNA mechanism thus copies genes into
other places in the genome. However, it typically copies a working gene into a silent
gene (a pseudogene), because it will not have the appropriate start signals for new
transcription and translation. In any case many of the naturally occurring DNA engi-
neering mechanisms can in principle be coupled to the environment of the organism,
and be triggered by, for example, external stresses like osmotic stress, toxins,
etc.

Genomic rearrangements can be traced by comparing protein sequences in an
organism. Genes duplicate in the chromosome of any organism (Ohno, 1970). This
provides a raw material of proteins, from which new functions can be developed. A
pair of duplicated proteins within the same organism are called paralogs. Paralogs
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Figure 9.7. In the left-hand panel we show the decay of overlap of upstream
transcription regulation (for yeast), with decreasing similarity of proteins, from
Maslov et al. (2004). As the time since duplication increases, similarity decreases,
and similarity in who regulates the two proteins decreases. In the right-hand panel
we show the decay in overlap between the paralog binding partners, with binding
partners determined from the two hybrid experiments of Ito et al. (2001) and Uetz
et al. (2000).

can be identified with statistical methods that identify related proteins by examining
their sequence similarity. For the yeast Saccaromyces Cerevisiae one finds that about
2000 of 6200 proteins have more than 20% similarity with at least one other yeast
protein (Gilbert, 2002).

Obviously, gene duplication starts as a single organism event that only rarely
spreads to the whole species. However, for the few duplications that actually take
over the whole population, subsequent mutations will change the two paralogs
independently. Thereby the paralogous proteins diverge in sequence similarity with
time. As a result we see today a wide variety of protein similarities in any living
organism. The left-hand panel of Fig. 9.6 shows the numbers of paralog pairs in
yeast, distributed according to their amino acid similarity (PID = percent identity).
Here, the duplicated genes consist of 4443 pairs of paralogous yeast proteins (data
from Gilbert (2002); plot from Maslov et al. (2004)).

Recent duplicated proteins will be close to identical, whereas ancient duplica-
tions will have small PID. To set a very rough timescale, paralogs with a PID
of about 80% typically were duplicated about 100 My ago. Following Gu et al.
(2003) and Maslov et al. (2004) the right-hand panel of Fig. 9.6 shows diver-
gence/redundancy of a pair of paralogs by investigating viability of a null-mutant
lacking one of them. Notice that lethality first increases for PID< 60%, indicat-
ing that paralogs with a higher level of similarity can substitute for each other.
This shows substantial room for neutral evolution, also on the amino acid sequence
level.
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The set of paralogous genes in S. Cerevisiae can also be used to examine evolution
of molecular networks (Wagner, 2001; Gu et al., 2002, 2003; Maslov et al., 2004).
Figure 9.7 shows how the overlap in the molecular networks typically diverges
with decreasing PID, again indicating the importance of network rearrangements
in shaping evolution.

Question

(1) Consider the spectrum of paralog frequencies; see Fig. 9.6. Assume that proteins are
duplicated at a constant rate. Further assume a constant rate of single-point mutations.
Derive an equation for the frequencies of paralogs as a function of PID. Why are there
more paralogs with 20% PID than with 98% PID?

Punctuated equilibrium and co-evolution

Life on our scale, and also the evolution of species during the past 540 million years,
present some intriguing evidence for cooperative behavior: Often during the history
of life there have been major “revolutions” where many species have been replaced
simultaneously. This is illustrated in Fig. 9.1, and also in Fig. 9.8. Spectacular
examples are the Cambrian explosion 540 million years ago where a huge variety

0100200300400500

−1000

0

1000

2000

3000

4000

5000

Time, My b.p.

N
um

be
r 

of
 g

en
er

a

Figure 9.8. Extinction and origination as well as total number of observed genera
throughout the Phanerozoic (the period of multicellular life on Earth). The two
intermittent signals along the time axis are the horizontal and vertical projections
of the activity in Fig. 9.1. Extinction is negative, origination is counted positively,
and the total diversity of course is positive. Notice that extinction and origination
appear synchronously, presumably all happening in the instants that divide the
geological stages. Data from Sepkoski database on genera level (1993).
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Figure 9.9. Histogram of family extinctions in the fossil record as recorded by
Raup (1991, 1994) and Raup & Sepkoski (1992). For comparison we show the
prediction of the random-neighbor version of the BS model.

of life arose in a short time interval, and the Cretaceous–Tertiary boundary where
mammals took over large parts of the ecosystem.

In between these major revolutions there have been periods of quiescence, where
often all species seemed to live in “the best of all worlds”, and only a few species
suffered extinctions. However, the pattern of life is more subtle than completely
on–off transitions of macro-evolutionary revolutions. When inspecting the extinc-
tion record of Fig. 9.8 one observes that there was often extinction of smaller
size in the quieter periods. In fact if one plots the size distribution of ecological
events (see Fig. 9.9), one observes all sizes of extinctions. That is, the large events
are becoming gradually less frequent than smaller events. There is no “bump” or
enhanced frequency for the large-scale extinctions. However, the distribution is
broader than a Gaussian, in fact it is close to scale-free, as indicated by the fitted
1/s1.5 curve. This overall gradual decline of event size distributions indicates the
following.

� The probability distribution for extinction events are non-Gaussian, implying that the
probability for obtaining large events is relatively large. This shows that the species in the
ecosystem do not suffer extinction independently of each other. Thus the overall macro-
evolutionary pattern supports cooperativity, even on the scale of the global ecosystem.

� Large and small events may be associated with similar types of underlying dynamics. If
extinctions were external, because of asteroid impacts, for example (Alvarez, 1987), one
would expect a peak at large events.
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In may be instructive to look at the macro-evolution data a little more closely.
In Fig. 9.10 we show the family tree of ammonites from their origination over
350 million years ago until their extinction 66 million years ago. One observes a
tree-like structure, with branchings and killings, that occasionally undergoes a near
total extinction. However, as long as a single species survives, one sees that it can
diversify and subsequently regain a large family. Finally 66 million years ago, not
a single ammonite survived, and we now know them only from their very common
fossils. What we cannot see on the family tree are the interactions between the
species, nor can we see which other species these ammonites interacted with. Thus
the dynamics behind their apparent nearly coherent speciation and extinction events
far beyond species boundaries is unknown. All we can say is that the behavior is
far from what we would expect from a random asynchronous extinction/origination
tree.

To model the observed macro-evolutionary pattern we will start with objects of
the size of the main players on this scale; let us call them species. A species, of
course, consists of many individual organisms, and dynamics of species represent
the coarse-grained view of the dynamics of these entire populations. Thus, whereas
population dynamics may be governed by some sort of fitness, we propose that
species dynamics is governed by stabilities. In the language of fitness landscapes,
we picture the species dynamics as erratic jumps over fitness barriers.

Population dynamics Barrier dynamics
large time scale−→

Survival of fittest Evolve the least stable

Obviously, stability is a relative concept that depends on the particular environ-
ment and type of fluctuations at hand. It is also important to realize that evolution
is not an equilibrium process. If one really had a fixed fitness landscape one may
be misled to view movements in this landscape as part of an equilibrium dynamics.
However, even for a fixed landscape, its sheer size would prevent any equilibration.
Further, there is no reason to consider a fixed landscape. Changes in environment
would change the landscape (Kauffman, 1990). And genomic rearrangement in
itself would invalidate the concept of an underlying metric for such a landscape.
Overall, fitness is ill defined in large-scale evolution. However, stability still has
meaning, in particular in a given environment.

We characterize the basic evolutionary entity, called a species, with one number
Bi . This number is the stability of the species on some rather long evolutionary
timescale (a timescale much longer that the organism reproduction timescale). An
ecosystem of species consists of selecting N numbers Bi , each representing a
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Figure 9.10. Ammonoid family tree, redrawn from Eldredge (1987). Ammonites
lived in water on the continental shelves. They fossilized well and there are about
7000 different ammonoid species in the fossil record. During their evolutionary
history (from 400 million to 66 million years ago) we observe times with fast
speciation into many species and also of simultaneous extinction of many different
species. Today there are no living ammonites.
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species. Each of these species are connected to a few other species. For simplicity,
we put the numbers Bi , i = 1, 2, . . . N on a one-dimensional line, corresponding
to a one-dimensional food chain realization of an ecosystem. At each timestep we
change the least stable species. In addition, fitness/stability is defined in relative
terms, which implies that the fitness of a given species is a function of the species
it interacts with. The co-evolutionary updating rule then reads (Bak & Sneppen,
1993; Sneppen et al., 1995) as follows.

The smallest of the {Bi }i=1,N is located at each step. For this, as well as its
nearest neighbors, one replaces the Bs by new random numbers in [0, 1].

We refer to this model as the BS (Bak–Sneppen) model. It is the simplest model
that exhibits a phenomenon called self-organized criticality. As the system evolves,
the smallest of the Bi s is eliminated. After a transient period, for a finite system,
a statistically stationary distribution of Bs is obtained. For N → ∞ this distri-
bution is a step function where the selected minimal Bmin is always below or at
Bc and therefore the distribution of B is constant above Bc. For a grid dimension
d = 1, we update the two nearest neighbors, and obtain a self-organized thresh-
old Bc = 0.6670 (see Fig. 9.11). The right-hand panel illustrates how the minimal
B sites move in “species space” as the system evolves. One observes a highly
correlated activity, signaling that the system has spontaneously developed some
sort of cooperativity.

To understand how such a threshold arises we consider a simpler version of the
model, the random neighbor model (Flyvbjerg et al., 1993; de Boer et al., 1994),
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Figure 9.11. Left: Example of snapshot distribution of barriers Bi in space. One
observes that B > Bc = 0.6670 are distributed randomly in space. In contrast,
sites with B < Bc are highly correlated and tend to remain in a small region.
Right: Space-time plot of the activity where “time” is counted by the number
of updates. At any timestep the site with the minimum barrier is shown with a
large dot.
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Figure 9.12. Distribution of barriers/fitnesses in the BS model, random neighbor
version, where one takes a minimal B and one random B, and replaces them with
new random B ∈ [0, 1]. The B distribution reaches a steady state where the one
minimal selected below Bc = 1/2 and distributed everywhere in [0, 1] provides
the same net transport into the interval [Bc, 1], as the one selected at random does
for the opposite transport away from [Bc, 1] to [0, Bc].

where at each timestep we take the minimal B as well as one other random B
(see Fig. 9.12). Because of the lack of spatial correlations between the B values it
can be solved, as we will now demonstrate. Starting with a random distribution of
Bs, as the system evolves, the smallest of the Bi s is eliminated. After a transient
period a statistically stationary distribution of Bs is obtained. For N → ∞ this
distribution is a step function where the selected minimal Bmin is always below or
at Bc. This means that species with B > Bc cannot be selected as the minimum, and
thus are selected only as the random neighbor, irrespective of their actual B value.
Therefore, the distribution of B is constant above Bc. At each step the dynamics
selects one B below Bc and the other B above Bc. As the two newly assigned Bs are
assigned uniform random values in [0, 1], the condition for a statistically stationary
distribution of number of species in the interval [0, Bc] is

−1 + 2 Bc = 0 or Bc = 1/2 (9.13)

The timeseries of selected minimal B exhibits correlations. Let us now define an
avalanche as the number of steps between two subsequent selections of minimal
B > Bt. The number nc of Bs below Bt = Bc exhibits a random walk and the size
of the avalanche is determined by the first return of this random walk: P(s) ∝ s−3/2,
the distribution of waiting times in the gambler’s ruin problem.
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Figure 9.13. Evolution in number of sites with B < 1/2 in the random version
of the BS model. At any time the chance of increasing or decreasing the number
of active species is equal, thus defining a random walk. The first return of the
random walk to zero defines an avalanche (terminates when all B > 1/2, and
thus the system is everywhere fairly stable). The first returns of random walks are
distributed as 1/tσ , with σ = 3/2.

To prove this we consider first returns of a random walk in one dimension. The
random walk can be assumed to be scale invariant, because it repeats itself on all
scales. Thus the distribution of first returns of the random walk is assumed to be
distributed as Pfirst–return(t) ∝ 1/tτ , and we want to determine τ (see Fig. 9.13). Let
the total time interval be T . Now consider the division of the long time interval T
into first returns (Maslov et al., 1994):

T = 〈t〉T · (no. of returns in T ) = 〈t〉T · T 1/2 (9.14)

where the number of returns in time T is counted by noting that the chance that
the random walker is at x = 0 at any time t < T is ∝ 1/

√
t . When this is inte-

grated from t = 0 to t = T we obtain the above scaling. When we insert 〈t〉T =∫ T t/tτ dt (the definition of average return withing the interval [0, T ]) we obtain the
equation

T = T 1/2T 2−τ (9.15)

giving the scaling

Pfirst–return(t) ∝ 1/t3/2 (9.16)

which is then also the distribution of avalanche sizes in the random neighbor version
of the BS model.

We now return to the model with fixed geometry, in the sense that neighbors
are put on the one-dimensional line. In right-hand panel of Fig. 9.11 we showed
a “space-time” map of those sites on which species change barrier values in the
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Figure 9.14. Left: development of minimal B with the number of updates in the BS
model. Notice that the minimum never (nearly) exceeds the threshold Bc = 0.67.
Any horizontal line with B = Bt < Bc will divide the dynamics into localized
avalanches. For smaller Bt one confines activity to sub-avalanches of the larger
ones. Right: location of the minimal B from the left-hand panel. Notice that the
larger jumps in position at time ∼t + 120 and time t + 710 are associated with
the largest values of Bmin on the left-hand panel.

time interval covered. Whenever the lowest barrier value is found among the three
last renewed, the site of lowest barrier value performs a random walk, because
those three sites have equal probability of being the one with smallest barrier value.
Figure 9.11 shows that this is what happens most frequently. When the site of lowest
barrier value moves by more than one lattice spacing (jumps), it most frequently
backtracks by two lattice spacings to a site that was updated in the next-to-last
timestep. But longer jumps occur, too; actually jumps of any length occur, the
longer jumps typically to a less recently updated site.

In fact, as we evolve the system it self-organizes towards a state where there are
power-law correlations in both space and time. This state is therefore critical, and
the algorithm is one of a class of models that lets systems self-organize toward such
critical conditions.

To compare the outcome of such a simplified model with real macro-evolutionary
data is speculative. However, it is possible if we identify the replacement of one Bi

with a new one with an extinction/origination event. That is, let us assume that the
species with the smallest B gets eaten and the ecological space becomes occupied
by a new species. Further one should of course not use a one-dimensional food
chain model, but rather a ramified random network that represents the topology of
a real ecological system. Finally, one should identify the observable to look for.
In fact, the selection of least stable species to mutate next implicitly assumes a
separation of timescales in the dynamics. Thus the selection of the least fit of all
species to change next is the natural outcome of the updating model.
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Figure 9.15. Space-time plot of the activity in the model. Each update is shown
as a black dot. On the time resolution of the plot, the avalanches appear as almost
horizontal lines. The increased magnification on the right shows that there are
avalanches within avalanches. The calculations were done at a mutation rate set
by µ = 0.02.

At each step: select each of the {Bi }i=1,N with probability ∝ e−Bi /µ dt . This
selection defines a list of active sites. Replace members in this list, as well as
their nearest neighbors, by new random numbers in [0, 1].

Here µ represents an attempt rate for microscopic evolutionary changes, and is
proportional to the mutation rate per generation. In order to avoid too many iterations
without any active sites, one in practice applies this algorithm with varying timestep
dt ∼ eBmin/µ. For low enough µ (mutation rate 	 Bc) this model degenerates into
the one where the minimal Bi is always selected. The value of Bmin represents a
timescale (in fact ∝ log(time)). Thus if Bmin is large, exponentially long times pass
without any activity at all. If Bmin is small it is selected practically instantly (see
Fig. 9.15).

For each barrier Bt below the self-organized critical threshold Bc, a “Bt

avalanche” starts when a selected Bmin is below Bt and terminates when a se-
lected Bmin is above Bt. In the local formulation, all activity within a Bt avalanche
occurs practically instantly when seen on a timescale of order exp(Bt/µ). And this
statement may be reiterated for the larger avalanches associated with Bt2 > Bt,
thereby defining a hierarchy of avalanches within avalanches. Thus one may view
the avalanche-within-avalanche picture as burst-like activity on widely different
timescales. This is illustrated in the space-time plot where each step of the algo-
rithm is associated with a time interval

�t ∝ 1∑
i e−Bi /µ

∼ eBmin/µ for Bc − Bmin 
 µ (9.17)

The last approximation uses the fact that the distribution of barriers below Bc is
scarce, thus for low µ only the smallest barrier counts.
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For µ → 0 the probability of having an avalanche of size s associated with a
punctuation of Bt = Bc − ε can be expressed as

P0(s, ε) ∝ s−τ F
( s

ε−1/σ

)
(9.18)

where avalanches s 	 ε−1/σ are power-law distributed with exponent τ (F(x) ≈
const for x 	 1), whereas large avalanches s > ε−1/σ are suppressed by F . The
exponent τ depends on the dimension; τ = 1.07 for d = 1, whereas τ = 3/2 for
high dimension d of the ecosystem network. The value of τ = 3/2 compares well
with the histogram of extinction events on the family level (see Fig. 9.9).

Apart from the technical similarity to the overall macro-evolutionary dynamics,
the above model exhibits a number of worthwhile lessons, of potential relevance
for analysis of paleontological data.

(1) Each evolutionary avalanche consists of sub-avalanches on smaller scales. Thus when
we analyze the fossil data on finer-grained time (and space) levels, we should expect to
find each extinction event subdivided into smaller extinction events.

(2) Macro-evolutionary extinction is closely connected to micro-evolutionary changes in
phenotype of selected species.

(3) Time separation between evolutionary events of a given lineage will be power-law
distributed, with long periods of stasis, sometimes broken by a sequence of multiple
small jumps. Punctuated equilibrium thus allows for large evolutionary meanderings,
where barriers that would seem impossible at a stasis period are circumvented by
changed fitness landscapes due to co-evolution adaptations.

In summary, we have discussed a model that extends the concept of punctuated
equilibrium known from single fossil data. This demonstrates that both stasis and
global extinction could be a natural part of co-evolution of the discrete life forms
that we know from our surrounding biological world.

Questions

(1) Simulate the BS model for 100 species placed along a line. Plot the selected Bmin

as a function of time. Change the local neighborhood to four nearest neighbors at
each update, and repeat the simulation. How does the minimum of B change as time
progresses toward steady state (look at the envelope defined as maximum over all Bmin

at earlier times)?
(2) Consider the random neighbor version of the BS model, and update K neighbors at

each time step. What is the self-organized threshold?
(3) Generate a scale-free network with N = 200 nodes, and degree distribution dP/dK ∝

1/K 3 (see Chapter 8). Assign a number B between 0 and 1 to each node and simulate
the BS model on it. Use a version where, at each timestep, one updates the site with
the smallest B and ONE of its neighbors. Plot the accumulated activity versus degree
of the different nodes.
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(4) Calculate the distribution of time intervals between changes in the finite mutation
rate version of the BS model. (Hint: consider P(t) ∝ ∫

P(Bmin)P(t |Bmin)dBmin with
P(t |Bmin) = e−tmin/τ and τmin = eBmin/µ.)

(5) One may consider a globally driven version of evolution based on stability of species
(Newman & Sneppen, 1996). Consider a system of N , say 1000, species. Assign a
random number B in [0, 1] to each species. At each time step select an external noise
x from a narrow distribution p(x) ∝ exp(−x/σ ), σ 	 1. At each time step: replace all
B < σ with a new random number between 0 and 1 and, in addition, select one random
species and replace its stability B with a new random number. Simulate this model and
explain why it predicts a power law of type p(s) ∝ 1/s2 for extinction sizes (Sneppen &
Newman, 1997).

Evolution of autocatalytic networks

One of the main problems in the origin of life is understanding the emergence of
structures that can replicate/copy themselves. A main problem in this regard is that
the size of the replication machinery in even the simplest living organisms must
have arisen from spontaneous fluctuations. In fact the requirement of sufficient
exact replications is so complicated that it seems impossible for it to have arisen by
spontaneous fluctuations. Formally this problem has been addressed by Eigen &
Schuster (1977, 1978) who suggested a hyper-cycle to circumvent it (see Fig. 9.16).
A hyper-cycle is a group of interconnected molecular species that each help other
members of the set to replicate. None of the molecules can replicate themselves, and
thus there is no competition between them. However, acting together they should
be able to replicate the whole. The basic trick is that if any single molecule makes

i =1

2

3 4

5

6

Parasite

= w(i,i−1) NiNi−1
idN

dt
Break down

Figure 9.16. A hyper-cycle, an inspiring possibility suggesting that a system may
use mutual dependence to avoid the winner taking all. This was proposed in order
to circumvent the huge error rates associated with spontaneous copying of larger
molecules. However, the proposed mechanism is unstable against emergence of
parasites that drain but do not contribute to the cycle.
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a b

a b

b  eats a to replicate (catalyze its own formation):

a b

c

dt

db

db

dt

dt
db

= a

= ab

= ac

b  is made from a:

c  catalyzes the conversion of a to b:

Figure 9.17. Catalytic reactions, as in the Jain–Krishna model (top), with predator–
prey like autocatalysis (middle), and finally as in standard catalytic reaction as they
typically occur in for example metabolic networks (bottom).

a faulty replication it is discarded and replaced by the next exact copy. However,
the Eigen & Schuster hyper-cycle is unstable against parasites, in the sense that it
dissolves when there are mutated molecules that take resources from the cycle but
do not give back to it. This is a serious fault, first realized by Smith (1979).

The basic equation in Eigen & Schuster’s hyper-cycle is of the form

dNi

dt
=

∑
i, j

w(i, j)Ni N j (9.19)

a type of catalytic reaction that we visualize in the middle of Fig. 9.17. It repre-
sents a production of species i that is proportional both to itself and to some other
species (the populations N j where w(i, j) > 0). In addition there is an overall con-
straint that fixes the total amount of biomass

∑
Ni in the system. This is modeling

an ecology based on self-replicating entities that each catalyze self-replication of
some other species. The couplings are also known from the predator–prey model.
The evolutionary consequence of this type of equation is exponential amplifica-
tion of the best replicator, to the cost of all others. Thus only very few species
survive with this type of model, and larger networks tends to break up owing to
parasites.
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The instability can be removed if one instead uses

dNi

dt
=

∑
i, j

w(i, j)
Ni N j

Max + Ni
(9.20)

where “Max” sets an upper limit of Ni that the system can sustain (a maximum that
may be set by factors that are not associated with the other species). For a saturated
system, where Ni 
 max, one may then study the network of species described
by

dNi

dt
=

∑
j

w(i, j)N j (9.21)

This is a system that opens the way for a much more prolific evolution than the
earlier nonlinear one (Jain & Krishna, 1998, 2001, 2002; Segre et al., 2000). It
allows many species to co-exist, as no one is able to take all the resources by itself.
When comparing with Fig. 9.17 we see that the above set of couplings could also
be obtained as saturated versions of other types of couplings, and as such may be
a useful starting point for analyses.

The Jain–Krishna model for evolving networks of the type governed by
Eq. (9.21) is a model for evolving the coupling matrix w(i, j) for a number of
i = 1, 2, . . . ,N species. The evolution is again done by separating the problem
into two timescales. At the fast timescale one runs the equations until a steady state
is reached (all Ni constant). This state can in principle be analytically calculated as
the eigenvector of the largest eigenvalue for a set of linear equations.

Once a steady state is reached (on a fairly fast timescale of population dynamics)
one selects the species with the lowest (minimal) Ni , say with label imin, and replaces
all couplings w(imin, j) and w( j, imin) with new random couplings with an a priori
set probability p < 1/N for being non-zero. This defines a new network with a
new steady state, and the evolution is repeated.

On the longest timescale one records how the network evolves. Starting from
no network (disconnected species) one obtains a large autocatalytic network that
remains stable for quite long periods (see Fig. 9.18). When the network breaks
down, on a timescale 1/p2 it replaces itself with a new network. The Jain–Krishna
model may thus be seen as an elegant network extension of the punctuated evolution
scenario outlined in the previous section.

Questions

(1) Simulate the dynamics of the two species cycle: dx/dt = y and dy/dt = −x .
(2) Consider dynamics of the two species cycle: dx/dt = x + ax · y and dy/dt = y + bx ·

y. Simulate for (a, b) = (1, 1), (a, b) = (10, 10) and (a, b) = (1, −1).
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      =  C(i, j ) N( j )

Initial non-catalytic set:

An ecosystem builds on top of core: Core may collapse         Ecosystem collapse

An autocalytic core is formed:
dt
dN(i)

(a) (b)

(c) (d)

Figure 9.18. Evolving networks as suggested by Jain & Krishna. Initially (a) no
species replicate, but after some time a self-catalyzing core (b) is formed. Sub-
sequently a larger network is developed on this basis (c). Occasionally new parts
of the networks develop that out-compete the original core, and without these
“key-stone” species a larger part of the ecosystem may collapse (d).

Evolution of evolvability

In addition to the topological properties discussed in Chapter 8, the regulation of
genes also has a combinatorial part (Davidson et al., 2002). In other words, the
regulation of a given gene may depend on the combination of the concentration
of its regulators. An inspiring way to model such combinatorial regulation was
proposed already in 1969 by Kauffman. In this very simplified approach, each gene
is assigned a binary number, 0 or 1, that counts whether the gene is off or on. Each
gene i is assumed to be on or off, depending on some logical function of the state
of the genes that regulate it. A simple version of this Boolean rule is the threshold
network where the state of gene i at time t is given by

σ (i, t) = (
∑

Ai jσ ( j, t − 1)) (9.22)

where (x) is zero for x < 0 and = 1 else. The Ai j is non-zero for genes j
that regulate gene i . Ai j is positive for activation, and negative for repression.
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Starting from an arbitrary initial condition the system will move through a se-
quence of states that at some point is bound to repeat itself. This is because the
state space is finite and the update is deterministic. Substantial effort has been
invested in characterizing the behavior of these attractors as a function of the
connectivity pattern of the system. One simple result is that the system under-
goes a percolation phase transition when the average connectivity is increased
beyond a critical out-connectivity 〈Kout〉 ∼ 2 for the ensemble of random Boolean
rules (Derrida & Pomeau, 1986). Above this transition the attractors become
very long (exponentially growing with system size) and the behavior is called
chaotic.

The Boolean paradigm allows us to model how long time evolution of rewiring
and changes of combinatorial rules may constrain the evolution of such networks.
In this regard it is especially interesting to consider robustness as an evolutionary
principle (Bornholdt & Sneppen, 2000). One way to implement this is as follows.

Evolve a new network from an old network by accepting rewiring mutations
with a probability determined by their expression overlap.

This minimal constraint scenario has no outside fitness imposed. Also it ignores
competition between networks, as it only compares a network with its predecessor.
However, the model naturally selects for networks that have high overlap with
neighboring mutant networks. This feature is associated with robustness, defined
as the requirement that, not only should the present network work, but also mutations
of the networks should work. In terms of network topology this means a change
in the wiring {Ai j } → {A′

i j } that takes place on a much slower timescale than the
{σ j } updating using the Boolean dynamics itself.

The system that is evolved is the set of couplings Ai j in a single network. One
evolutionary timestep of the network is as follows.

(1) Create a daughter network by (a) adding, (b) removing, or (c) adding and removing a
weight in the coupling matrix Ai j at random, each option occurring with probability
p = 1/3. This means turning Ai j = 0 to a randomly chosen ±1, or vice versa.

(2) Select a random input state {σi }. Iterate simultaneously both the mother and daughter
systems from this state until they have reached and completed the same attractor cycle,
or until a time where {σi } differs between the two networks. In case their dynamics
is identical then replace the mother with the daughter network. In case their dynamics
differs, keep the mother network.

This dynamics favors mutations that are phenotypically silent, in the sense
that they are neutral under at least some external condition. Iterating these steps
represents an evolution that proceeds by checking overlap in expression pattern
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Figure 9.19. Evolving networks with local overlap automatically generate net-
works with simpler expression patterns. Here the expression is quantified in terms
of size of the frozen component, which for any value of average connectivity 〈K 〉
is much larger than the one found in a randomized network with the same overall
connectivity. The frozen component consists of nodes that always have the same
output state. The more frozen components, the simpler the dynamics of the system.
Figure from Bornholdt & Sneppen (2000).

between networks. If there are many states {σi } that give the same expression of the
two networks, then transitions between them are fast. On the other hand, if there are
only very few states {σi } that result in the same expression for the two networks, then
the transition rate from one network to the other is small. If this is true for nearly
all neighbors of a network, the evolution of this network will be hugely slowed
down.

The result of this type of modeling is an intermittent evolutionary pattern:
occasionally, the evolved network is trapped in states with few evolution paths
away from it, sometimes it is instead in an evolutionary active region of “network
space”, which allows for fast readjustments of genome architecture. Further, the
obtained networks exhibit a less chaotic behavior than random networks. A com-
putational structure has emerged; see Fig. 9.19. The system self-organizes into
robust logical structures, characterized by simplicity. This is reminiscent of the
simplification in topology that one sees in the yeast molecular network with its
highly connected proteins placed on the periphery of the network. In the Boolean
model networks explored here, the attractors for the networks are shorter, and
there are more frozen regulators than in a random network at the same average
connectivity.
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Questions

(1) Which of the networks (a) A → B, B → C and A → C , and (b) A → B, B → C and
C → A, are most robust with respect of elimination of one connection? (Analyze all
possible signs and attractors of the corresponding Boolean networks, and see which
maintain most frequently their attractors/fixed points.)

(2) Consider the organization of networks where the signal from one node should control
N = 15 other nodes. What is the organization and cost in terms of number of links by
a hierarchy, a one-dimensional linear organization, or a direct hub-like control? Which
is most robust against a single node deletion?
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Appendix Concepts from statistical mechanics
and damped dynamics

Kim Sneppen

Thermodynamics from statistical mechanics

Here we introduce a few counting techniques associated with thermodynamic quan-
tities. The most elementary quantity is the entropy S, defined as the logarithm of
the number � of possible states the system could be in:

S = kB ln(�) (A1)

� can be calculated by counting the number of microstates consistent with the
constraints on the system. Thus the probability of finding a system in some macro-
scopic state characterized by an extropy S is proportional to eS/kB , where kB is
the Boltzmann constant. A key property of S is that the combined entropy of two
independent systems equals the sum of the entropy of each system: the entropy is
an extensive quantity.

Before quantum mechanics one did not know what a microstate was and ac-
cordingly one would know the entropy S only up to an additive constant. However,
quantum mechanics specify the size of the discretization of our world, thereby
allowing us to count S by counting phase-space cells dx · dp in units of Planck’s
constant h. Thus the � of Eq. (A1) is the phase space counted in units of h.

Entropy is closely associated with information. If we know a system is in one of
� states we can specify exactly in which of the states it is by answering log2(�)
yes–no questions. At one instant we may know its location to within one of the
states �. As times proceed, this certainty will diminish, owing to molecular chaos,
for example, and at a later time we will only be able to locate the system to within
a larger set of states �2 > �. Thus the entropy has increased. This is a general
phenomenon that is called the second law of thermodynamics.

In addition to its entropy, the other fundamental quantity for a system is its energy
E . The first principle of thermodynamics says that the energy for a closed system
never changes.
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Figure A1. The total system, here 1 + 2, isolated from its surroundings. The en-
ergy change in 1 must be compensated by an opposite energy change in 2. In equi-
librium S1 + S2 maximal and thus dS1/dE1 = dS2/dE2 = 1/T . The Boltzmann
distribution for energy E1 of system 1, P(E1) ∝ exp(−E1/kBT ) is caused by an
entropy reduction of the large system 2 when the energy of system 1 increases
(surrounding system 2 is assumed large because we use the linear approximation
S2(E − E1) = S2(E) − (dS2/dE)E1).

For a system with several/many degrees of freedom, a large E implies that there
are many ways to distribute energy between the variables (see Fig. A1). In contrast,
for sufficiently low energy there will be large volumes of phase space that are
excluded. Thus S typically increases with E . The variation of S with E is written
as

dS

dE
= 1

T
(A2)

where T is the temperature. A nice property for this quantity is that when two
systems exchange energy, their temperature approaches the same value. To see
this, consider two systems with energy and entropy E1, S1 and E2, S2. The total
entropy of the combined system is

Stot(E) = S1(E1) + S2(E2) (A3)

where E = E1 + E2 is fixed. The probability for any given partition of the energy
between the two systems is proportional to the total number of microstates with
that partition. Thus the probability that system 1 has energy E1 is

P(E1) ∝ e(S1(E1)+S2(E−E1))/kB (A4)

The most likely partition is accordingly given by dP/dE1 = 0, or

dS1

dE1
+ dS2

dE1
= 0 or

dS1

dE1
= dS2

dE2
(A5)

where we use dS2/dE1 = −dS2/dE2. Thus the most likely partition of energy is
where the temperatures of the two systems are equal. When this is the case we say
that they are in thermal equilibrium.
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Now consider a system, say 1 in the above discussion, in thermal equilibrium
with a much larger reservoir, say 2 from above. Then the overall temperature
T = (dS2/dE2)−1 is fixed by the big system, whereas the energy in system 1 may
fluctuate. We now want to calculate the distribution of energies of system 1. Ex-
panding the entropy of system 2 with a slight change in its intrinsic energy E − E1

away from its most likely value E − E0
1 gives the total number of states (counting

in both systems) corresponding to having energy E1 of system 1

P(E1) ∝ e(S1(E1)+S2(E−E1))/kB (A6)

∝ eS1(E1)/kB−(E1−E0
1 )/kBT = eS1(E1)/kB e−E1/kBT (A7)

where the first term counts the degeneracy of states of E1 with energy E1, whereas
the second term counts the probability that one state at energy E1 is selected. The
second term reflects the reduction of phase space for the surroundings of system 1.
Thus we have obtained the famous Boltzmann weight factor, stating that if a system
has two states separated by energy �E , then the probability P(upper) of being in
the upper state is a fraction of the probability of being in the lower (P(lower)) state

P(upper)

P(lower)
= e−�E/kBT (A8)

This is a very useful equation. Most processes in the living world are regulated by
Boltzmann weights. With �E of order of 10 kBT –20 kBT these weights make bio-
logical processes take place at sufficiently slow rates (of order one per millisecond
to one per minute) to allow large cooperative structures to function.

When system 1 can populate a number of states {i}, the total statistical weight for
populating all these states is given by a simple sum of all the single-state weights:

Z =
∑

i

e−E1(i)/kBT (A9)

This quantity is called the partition function. It simply counts the total phase-space
volume of system 1 and its surroundings under the constraint that system 1 has
energy E1.

The partition function is a useful quantity. Setting β = 1/kBT one can for ex-
ample express

d ln(Z )

dβ
= 〈E〉 (A10)

Here 〈E〉 is the average energy of the system at temperature T , defined as

〈E〉 =
∑

i

pi Ei =
∑

i Ei e−Ei /kBT∑
i e−Ei /kBT

(A11)
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where the probability to be in a state of energy Ei is

pi = e−Ei /kBT

Z
(A12)

Also, Z allows us to calculate the entropy of the system. This is in general given
as the sum over all its intrinsic states weighted by their relative occurrences:

S = −
∑

i

pi ln(pi ) (A13)

That is, when all pi are equal, each of them = 1/� and the definition agrees with
that given for an isolated system where all allowed states are equally allowed.

When the pi vary, as they will for a system that exchanges energy with its
surroundings, the sum over pi · ln(pi ) is the function that preserves the additive
property of counting two independent systems as one. With the thermal distribution
of energy levels, S is

S = −
∑

i

pi ln(pi ) = −
∑

i

(
e−E(i)/kBT

Z

)
· ln

(
e−E(i)/kBT

Z

)
(A14)

or

S = 1

Z

∑
i

(
E(i)

kBT
+ ln(Z )

)
e−E(i)/kBT (A15)

Using the definition of Z and the expression for average energy 〈E〉, we obtain:

−kBT ln(Z ) = 〈E〉 − TS (A16)

which is also called the free energy F for the system. Thus

Z =
∑

i

e−E(i)/kBT = e−F/kBT (A17)

Thus the free energy F = E − TS is treated similarly to the energy of the system.
In addition to the energy it counts the size of the state space.

The free energy F can be used for extracting work out of the system, meaning
that a difference in free energy can be transformed into mechanical work. This is as-
sociated with the fact that, for a closed system, available phase space increases with
time. Normally this is formulated as the theorem that the entropy never decreases
in a closed system. This is a pure probabilistic argument, which nevertheless be-
comes close to an absolute truth for rather small systems. Thus if we have a system
at a rather high intrinsic free energy, for example by having constrained it from
occupying certain parts of phase space, then when releasing these constraints we
can convert the decrease in free energy into work. To be specific, let system 1 have
free energy F1(c) in the constrained state, and F1(u) in the unconstrained state with
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F1(c) > F1(u). Now open the system by combining it with a secondary system,
which is at energy 0 when system 1 is constrained and at energy W when 1 is
unconstrained. The total partition sum for the combined system is then

Zcombined = e−Fc/kBT + e−W/kBT e−Fu/kBT (A18)

thus when Fu + W < Fc, i.e. when W is not too large, the last term in the partition
sum dominates, implying that the system most likely elects to change free energy
F of the system into energy W in the secondary system. Further, the maximum
work W that can be extracted equals the free energy drop.

Finally, in biology we typically deal with systems where the energy and also the
volume of the considered system may change. This means that we have to couple the
possible states of the system not only to the changed energy of its surroundings, but
also to the changed volumes of the surroundings. The calculation corresponding
to this change of constants proceeds exactly as with going from fixed energy to
fixed temperature. However, we now have to consider our system 1 at volume V1 in
contact with a larger system with volume V2, where the total volume V = V1 + V2

is fixed. The partition function for the whole system at a given volume V1 of system
1 is

Z (V1, V2) = Z1(V1) · Z2(V2) (A19)

and, using that V = V1 + V2 is constant, one finds that the most likely partition is
the one where

d ln Z1

dV1
= d ln Z2

dV2
(A20)

Thus the quantity d ln(Z )dV tends to equilibrium for large systems, justifying the
definition of a quantity P called the pressure

P = −dF

dV
= kBT d ln(Z )

dV
(A21)

and the corresponding statistical weight of a particular volume V1 is

Z (V1) = e−(F1(V1)+F2(V −V1))/kBT = e−(F1(V1)+P(V1−V 0
1 ))/kBT ∝ e−(F1+PV1)/kBT

(A22)
Thus the effective free energy in case of constant pressure is the so-called Gibbs
free energy

G = E − T · S + P · V (A23)

which is often expressed through the enthalpy H defined as

H = E + P · V (A24)
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The constant temperature and constant pressure condition is the one we deal with in
life as well as in chemistry. Thus the Gibbs free energy G counts the corresponding
statistical weights, and thereby also the possible mechanical work that one can
extract from various reactions.

Now let us return to the constant volume situation. The heat capacity is de-
fined as the amount of heat needed to increase the temperature of the sample by
1 K

C = d〈E〉
dT

(A25)

It is instructive to rewrite the heat capacity in terms of energy fluctuations. Thus,
using that the average energy is given in terms of the partition function, and taking
the derivative

Z =
∑

i

exp

(
− εi

kBT

)
(A26)

〈E〉 =
∑

i εi exp(−εi/kBT )∑
i exp(−εi/kBT )

= −d ln(Z )

d(β)
, with β = 1

kBT
(A27)

C = − 1

kBT 2

d〈E〉
dβ

=
∑

i ε2
i exp(−εiβ) − (

∑
i εi exp(−εiβ))2

kBT 2(
∑

i exp(−εiβ))2
(A28)

= 〈E2〉 − 〈E〉2

kBT 2
(A29)

one sees that a high heat capacity thus implies large (energy) fluctuations. For
constant pressure, one similarly obtains

C = Cp = dH

dT
= 〈H 2〉 − 〈H〉2

kBT 2
(A30)

where H is the enthalpy.
Typically C represents the number of degrees of freedom that may change energy

levels. In particular, when the energy of a system depends only on temperature and
not on pressure, overall energy conservations give the condition that all added heat
must go to increase average internal energy 〈E〉 = E . This is, for example, the case
for an ideal gas where equipartition tell us that the energy per degree of freedom is
1
2 kBT , and thus that the heat capacity is equal to N/2, where N equals the number
of degrees of freedom1.

1 To prove equipartition use 〈E〉 · ∫
dp exp(−p2/2mkBT ) = ∫

dp(p2/2m) exp(−p2/2mkBT ) and find
〈E〉 = kBT/2, which is valid for any quadratic variable in the energy function. In particular it is valid for
each of the three spatial directions of motions for an ideal gas, giving a total of 3kBT/2. And for a crystal the
harmonic potential in each of the three directions gives 3kBT/2 additional energy contributions, for a total of
3kBT per atom in the crystal.
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Although F or G are always continuous functions with temperature, because Z
is, then E or H do not need to be continuously varying with temperature. When it
is not, we have a first-order phase transition.

Phase transitions have been studied in great detail in a number of physical sys-
tems. They are implicitly important because they allow us to classify behavior into
a few important regimes, like solid, liquid and gas. They are explicitly important
also because they reflect a certain class of cooperative phenomena: that large sys-
tems can sometimes select to be in one of two states with only a slight change of
one control parameter. A first-order phase transition is a transition where the first
derivative of the free energy develops a discontinuity as the system size increases
to infinity. A second-order phase transition is a transition where the first derivative
is continuous, but the second derivative develops a discontinuity as system size
increases to infinity. The difference between first and second order becomes more
striking when considering the change in energy (enthalpy at fixed pressure) as a
function of the control parameter, say temperature T .

As energy or enthalpy are given by a first derivative of the free energy, then
for a first-order transition the energy contents of the two phases are different; this
difference is called the latent heat. The canonical example of a first-order transition
is the liquid–gas transition, a transition between a liquid phase with large binding
energy on one side, and a gas phase with large entropy on the other side. The latent
heat is the energy released when the gas condenses to the liquid. The latent heat also
gives rise to a divergence of the heat capacity with system size, a divergence that
simply follows from the association of the heat capacity to the second derivative of
the free energy.

For a second-order phase transition, the energy contents of the two phases are
equal. However, the second derivative, i.e. the heat capacity C , is discontinuous,
signaling that the degrees of freedom are different in the two phases. A second-
order transition is less cooperative than a first-order transition; the transition is
less sharp. In any case, for biological applications one often has a rather small
system, for proteins N ∼ 100, which replace divergences by softer functions and
make discussion of the order of the transition less useful than characterizing the
sharpness by other methods (see Chapter 5).

Dynamics from statistical mechanics

Free energies are the thermodynamical variables that can be converted to mechanical
work. Thus the effective equations of motion of macroscopic variables are governed
by free energies, and not by energies or enthalpies. To prove this from a probabilistic
argument, let us consider a system in a volume V that can be changed continuously
along a one-dimensional coordinate x . The canonical example is gas in a piston.
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Also let the system be in thermal equilibrium with its surroundings. Now let the
statistical weight (partition sum) of the system being at position x be Z (x), and at
position x + dx let it be Z (x + dx). The transition rate of going from x to x + dx
must be proportional to the number of exit channel states (Z (x + dx)) per entrance
channel state (of which there are Z (x)):

�(x → x + dx) ∝ Z (x + dx)

Z (x)
(A31)

Averaging over forward and backward motions, the overall drift at position x must
be proportional to

�(x → x + dx) − �(x → x − dx) ∝ d ln(Z )

dx
dx (A32)

Thus the drift velocity

dx

dt
= (µkBT )

d ln(Z )

dx
= −µ

dF

dx
(A33)

is proportional to the free energy gradient with a prefactor µ called the mobility.
This is what one should expect for a slowly changing system where inertia plays
no role (overdamped motion). The factor µ measures the friction of moving the x
coordinate of the system, and the derivative dF/dx = A · dF/dV = −P · A is the
area multiplied by the pressure.

In biology, systems are often not truly macroscopic, but rather in the range where
fluctuations from case to case may play a role. Therefore we have to consider not
only the mean trajectories, but also the effect of noise/randomness. In general, for
a particle moving in a potential V (x), its equation of motion is given by a Langevin
equation

m
d2x

dt2
= −dV

dx
− 1

τ

dx

dt
+ f (x, t) (A34)

where f is some randomly fluctuating force coming from degrees of freedom that
are not explicitly included in the description. The term (1/τ )(dx/dt) is the damping
due to friction, and f is often Gaussian uncorrelated noise, obeying:

〈 f (x1, t1) f (x2, t2)〉 = �δ(x1 − x2)δ(t1 − t2) (A35)

where 〈 〉 denotes an average over many realizations of the noise (normally called
ensemble averaging).

For most molecular biological applications the friction coefficient 1/τ is so large
that motion is overdamped. Large 1/τ means that v/τ 
 dv/dt and therefore that
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dissipation overrules any other acceleration. Ignoring the acceleration term, the
equation of motion is a Langevin equation

dx

dt
= −µ

dV

dx
+ ξ (x, t) (A36)

which is similar to the equation derived from phase space dynamics apart from the
noise term ξ = ξ (x, t) = τ f . V is thus the free energy associated to a coarse-grained
variable x , and the noise term ξ should be of a size that makes the distribution of
x in potential V resemble the equilibrium distribution

P(x) ∝ e−V (x)/kBT (A37)

Thus the size of ξ is dictated by the temperature and mobility µ.
There are two ways to deduce the relation between ξ and T ; these are the

fluctuation–dissipation theorem and the Einstein relation. We now go through both
derivations, because they both give some insight into the description of random
processes. But first we discuss noise, as manifested in the Brownian random walk
and diffusion.

Diffusion: microscopic model

Normal random walkers are walkers that always make small steps (length δl), and
always forget everything about the past. In a one-dimensional discrete simulation
of a random walker consider the walker at position x(t) at time t . At time step
t + δt :

x(t + δt) = x(t) ± δl (A38)

where each neighboring position is chosen with equal probability. An example of a
random walk is the so-called Brownian motion. Consider initially a random walker
at x = 0 to time t = 0. After t steps the position

x =
t∑

i=1

(±1)δl =
t∑

i=1

ς (i)δl (A39)

is the sum of t random numbers times the step length δl. Each of the random
numbers is from a distribution with zero mean and with finite second moment. For
example, each of the random nunbers η may be either +1 or −1 as indicated above,
corresponding to a step left or a step right; see Fig. A2. The mean displacement of
x is

〈x(t)〉 =
t∑

i=1

〈ςi 〉δl = 0 (A40)
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t = 1

t = 4
t = 5

t = 3

t = 2

x

Random walker

Figure A2. A random walk in one dimension; at each timestep it moves one step
to the right or left with equal probability.

Because x is the sum of t independent numbers, the variance of x is then the sum
of the t variances:

var(x) = 〈(x(t) − 〈x〉)2〉 =
t∑

i=1

var(ςi ) (δl)2 = t var(ς )δl2 = t δl2 (A41)

where in the last identity we use the fact that the distribution of ς is given by
ς = +1 or ς = −1, and then the variance of ς is 1 (the reader can prove that).

Further, according to the central limit theorem, when t is large then the sum
of the t random numbers is Gaussian distributed. Therefore after t timesteps the
random walker is at position x with probability

p(x) dx = 1√
2πt δlp

e−x2/(2tδl2) dx (A42)

The average position after t timesteps is thus 〈x〉 = 0 whereas the root mean square
position xrms is

xrms(t) = 〈
x2

〉1/2 =
(∫

x2 p(x)dx

)1/2

=
(∫

x2 e−x2/(2tδl2) dx∫
e−x2/(2tδl2) dx

)1/2

=
√

2tδl2 (A43)

We can re-express this in terms of actual time, when we remember that t was
measured in units of the timestep δt at which we take a step of length δl:

xrms =
√

2t(δl2/δt) =
√

2t D (A44)

where we introduce the diffusion constant

D = (δl)2/δt (A45)
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which has the dimension of a velocity multiplied by a step length. For Brownian
diffusion D is given by a typical velocity times a mean free path. At scales much
larger than this, the behavior of the diffusing particles does not depend on mi-
croscopic details, and exhibits a random walk with xrms ∝ √

t . The random walk
contrasts with directed motion, where displacement xrms ∝ t .

On large scales, a random walk can also be described by the diffusion equation.
Consider many non-interacting random walkers and let n(x, t) denote their density
distribution. As each random walker performs steps of length δl during time δt , the
density distribution n(x, t) of these walkers evolves according to:

n(x, t + δt) − n(x, t) ∝ 1

2
n(x − δl, t) − 1

2
n(x, t) − 1

2
n(x, t) + 1

2
n(x + δl, t)

(A46)

where at position x we add and subtract contributions according to the exchange of
particles with neighboring positions. The proportionality factor would be the diffu-
sion constant D. Thus the density distribution evolves as in the diffusion equation

dn

dt
= D

d2n

dx2
(A47)

Notice that n = constant is preserved by the diffusion equation. Also the Gaussian
n(x, t) = 1/

√
4πDt exp(−x2/4t D) solves the diffusion equation. Thus as time

t → ∞ then n → constant.

Fluctuation–dissipation theorem

Consider the Langevin equation for a variable x moving in a flat potential,
dV/dx = 0

m
d2x

dt2
= −1

τ
m

dx

dt
+ �ξ (t) (A48)

where the noise term fulfils 〈ξ (x, t)〉 = 0, 〈ξ (x1, t1)ξ (x2, t2)〉 = δ(t1 − t2) and where
τ is the typical time it takes to dissipate velocity. Integration gives

m
dx

dt
= p =

∫ t

−∞
dt ′�ξ (t ′)e−(t−t ′)/τ (A49)

reflecting a momentum determined by a series of random kicks at previous times,
with an influence that decays exponentially because of the friction as illustrated in
Fig. A3. This equation can also be proven backwards by differentiation. Try!

Consider the ensemble averaged (averaged over many trajectories)

〈p2〉 =
∫ t

−∞

∫ t

−∞
dt ′dt ′′ �2〈ξ (t ′)ξ (t ′′)〉 e−(t−t ′)/τ e−(t−t ′′)/τ (A50)
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v = dx/dt

Random force kicks

Velocity becomes

damped due to viscosity

Time

Figure A3. Newton equations with random forces and viscous damping transform
into the Langevin equation. To secure that the resulting average velocity is such
that there is T/2 energy per degree of freedom, there must be a relation between the
size of the random kicks, and the damping due to viscosity. This is the fluctuation–
dissipation theorem.

Because the noise has no temporal correlations, we obtain

〈p2〉 =
∫ t

−∞
dt ′ �2 e−2(t−t ′)/τ = 1

2
�2τ (A51)

On the other hand, the average kinetic energy for a one-dimensional free particle
is kBT/2, where T is the temperature:〈

p2

2m

〉
= kBT

2
(A52)

This follows from the Boltzmann distribution of kinetic energies P(E)dE ∝
exp(−E/kBT )dE with E = p2/(2m). Identifying the terms in Eqs. (A51) and
(A52) one obtains

� =
√

2mkBT

τ
(A53)

an equation that relates the size of fluctuations to the damping time τ and thus to
the friction. To simplify this further we return to Eq. (A48) in an external potential
V (x):

dp

dt
= −1

τ
p − dV

dx
+

√
2mkBT

τ
· ξ (A54)

or, expressed in overdamped limit without the potential,

dx

dt
= − τ

m

dV

dx
+

√
2τkBT

m
ξ (A55)
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Now, before proceeding, we note in general that an equation

dx

dt
= αξ (t) (A56)

which with 〈ξ (t ′)〉 = 0 and 〈ξ (t ′)ξ (t ′′)〉 = δ(t ′ − t ′′) implies that

x =
∑

t ′

dx

dt
(t ′) and thus 〈x2〉 = α2

∑
t ′

∑
t ′′

〈ξ (t ′)ξ (t ′′)〉 = α2t (A57)

Thus the factor α2 is equal to 2D; see Eq. (A44) where D is the diffusion constant.
Returning to Eq. (A55) we have

D = τkBT

m
(A58)

For large 1/τ , Eq. (A55) can be reformulated by ignoring the acceleration term:

dx

dt
= −µ

dV

dx
+

√
2D · ξ (A59)

Here 〈ξ (t ′)ξ (t ′′)〉 = δ(t ′ − t ′′), and the mobility µ = τ/m. A larger mobility means
that the particle moves faster. In this last equation the ratio between the mobility
and the diffusion constant is

D/µ = kBT (A60)

This is often called the fluctuation dissipation theorem.
To iterate on the physics of the above derivation: the average thermal en-

ergy is kBT/2. The typical velocity is therefore given by mv2/2 = kBT/2, or
v = √

kBT/m. The momentum is given a new independent kick every timestep
τ , thereby making any directed motion dissipate with rate 1/τ . Between each kick
the particle moves a distance l ≈ v · τ = √

kBT/m · τ . The particle therefore per-
forms a random walk quantified by a diffusion constant that is equal to the product
of the velocity and the step length

D = v · l = kBT τ

m
= kBT µ (A61)

To put the above equations in perspective we note that for a single amino acid
in water, say glycine, the diffusion constant D = 10−9 m2/s = 1000 µm2/s and a
timescale for dissipation

τ = m D

kBT
= 0.03 × 10−12 s (A62)

On timescales longer than 0.03 ps, single amino acids have forgotten their momenta,
and molecular dynamics will degenerate into first-order Langevin dynamics. For a
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single protein, say albumin in water, D = 60 µm2/s (i.e. albumin diffuses 10 µm
in 1 s) and τ = 1.7 ps.

The Fokker–Planck equation and the Einstein relation

The alternative approach to the relation between mobility and noise is through the
Fokker–Planck equation. If x fulfils a Langevin equation

dx

dt
= −µ

dV

dx
+

√
2Dη(t) (A63)

with 〈η(t ′′)η(t ′)〉 = δ(t ′′ − t ′) then one can construct a probability distribution for
x at a given time t :

P(x, t)dx = probability for x ∈ [x, x + dx] at time t (A64)

By using the physical insights we have for the two terms in the Langevin equation
in terms of loss and gain terms to a given x coordinate, P will evolve according to
the Fokker–Planck equation

dP(x, t)

dt
= − d

dx
J (A65)

where the current J is given by

J = −µ · P
dV

dx
− D

dP(x, t)

dx
(A66)

At equilibrium P = constant, implying that J = 0 and thus

P(x, t) = P(x) ∝ e−µV (x)/D (A67)

which can only be ∝ e−V (x)/kBT if µ = D/kBT .
Thus the Einstein relation states that mobility (µ) is proportional to the diffusion

constant D. The diffusion constant D has dimension of a mean free path times a
typical (thermal) velocity. The diffusive part of the Fokker–Planck equation de-
scribes how an initial localized particle spreads out in flat potentials to a Gaussian
with spread σ ∝ √

Dt that simply follows from the central limit theorem. The con-
vective part of the Fokker–Planck equation states that the particle moves downhill,
with a speed proportional to both dV/dx and the mobility µ.

Kramers’ formula

Escape from a potential well is an old and important problem in physics, as well
as in chemistry. It has also recently proven important in a number of biological
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V

x
A

B

∆V

C (transition state)

n particles

n exp(−∆V/kBT )

Figure A4. Escape over a one-dimensional potential, where a particle is confined
at A, but is allowed to escape over barrier C to the outside of the well. In the figure
we show a number of particles, to illustrate the approach by Kramers.

problems, such as stability of genetic switches in molecular biology and macro-
evolution in abstract fitness landscapes. Here we present the derivation proposed
by H. A. Kramers (Brownian motion in a field of force and the diffusion model of
chemical reactions. Physica VII (1940), 284–304) for escape from a potential well
in the overdamped case.

Consider a one-dimensional potential well as in Fig. A4 where point A is at the
bottom of the well and point B is somewhere outside the well. Following Kramers,
we consider the stationary situation with the current leaking out from the well to
be insignificant. Thus current J in Eq. (A66) is an x-independent small number
and the corresponding P in Eq. (A65) is constant in time. Using µ = D/kBT the
x-independent current can be rewritten as

J = − D

kBT
P

d

dx
V − D

dP

dx
= −D · e−V/kBT · d

dx

(
P · eV/kBT

)
(A68)

When rewritten and integrated from point A to point B:

J · eV/kBT = −D · d

dx

(
P · eV/kBT

)
(A69)

or

J = −D

[
PeV/kBT

]B
A∫ B

A eV/kBT dx
(A70)
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where the quasi-stationary condition states that PB ∼ 0 and PA ≈ local equilibrium
value:

J = −D
PAeVA/kBT∫ B
A eV/kBT dx

(A71)

The value of PA can be estimated from using a harmonic approximation around
the minimum A, and setting PA equal to the corresponding maximum of the corre-
sponding Gaussian density profile. Thus around point A

V (x) ≈ VA + 1

2

d2V

dx2
(x − xA)2 = VA + 1

2
k (δx)2 (A72)

For a particle with mass m this is a harmonic oscillator with frequency ω = √
k/m.

The peak density PA is given by normalization of exp(−kδx2/(2kBT )) (everything
is counted as if there is one particle in the potential well that can escape). The
escape rate (J per particle) is

r = ωAτ

m

√
mkBT

2π

eVA/kBT∫ B
A eV/kBT dx

(A73)

The remaining integral is calculated by a saddle point around its maximum, i.e.
around the barrier top at point C:∫ B

A
dx eV/kBT = eVC/kBT

∫ ∞

−∞
dx e−kCδx2/(2kBT ) =

√
2πkBT√

kC
eVC/kBT (A74)

which with kC = mω2
C gives the final escape rate for overdamped motion:

r = ωA

2π
· ωCτ · exp

(
−VC − VA

kBT

)
(A75)

This equation can be interpreted in terms of a product between a number of at-
tempted climbs:

number of attempts = ωA

2π
(A76)

multiplied by the fraction of these climbs that can reach C, simply given by the
Boltzmann weight e−(VC−VA)/kBT . Finally just because a climb reaches the saddle
point, it is not certain that it will pass. The chance that it will pass is ωC · τ , which
is equal to one divided by the width of the saddle, in units of the steps defined by
the random kicking frequency 1/τ . That is, imagine that the saddle is replaced by
a plateau of w = 1/(ωCτ ) steps, and we enter the first (leftmost) of these steps. We
then perform a random walk over the plateau, with absorbing boundaries on both
sides. As this is equivalent to a fair game, the chance of escaping on the right-hand
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side is 1/w. Thus one may interpret the overdamped escape as:

r = (Attempts to climb)

· (chance to reach top, given it attempts)

· (chance to pass top, given it reached top) (A77)

One notices that a higher viscosity, meaning a lower τ , implies that the escape rate
diminishes. This is not surprising, as a higher viscosity means that everything goes
accordingly slower, and therefore this applies also to the escape.

Although all biology essentially takes place at this overdamped limit, it may for
general interest be worthwhile to notice that Kramers also considered the general
case and thus also treated the case of “underdamped” motion. In that case the
motion is not limited by viscosity; instead the chance to get kicks to sufficiently
high momenta will be proportional to the kicking frequency. In that case the escape
rate r ∝ 1/τ , and when escape momentum is reached, no collisions will stop the
particle from leaving the potential well.
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activator Transcription factor that activates the production of a gene, typically through
binding to a promoter upstream of the region for the gene and recruiting the RNAp.

active site The site on an enzyme where the substrate molecule binds and where its
reaction is facilitated.

amino acids The building blocks of proteins; see Chapter 4.

anticodon The three nucleotide region of a tRNA that base pairs with the codon on mRNA
during protein synthesis.

Arrhenius law Probability of escaping from a potential well of depth E per unit time
is ∝e−E/kBT , where T is some temperature, and the relaxation probability at time t is
exponential in t . Non-Arrhenius behavior is found in glasses where the decay rate is
∝e−(E/kBT )2

. Signs of such transition-rate dependence is found for some supercooled liquids,
for example glycerin. For an example of non-Arrhenius behavior found in flash photolysis
of proteins at low temperatures, see R. H. Austin et al. (Phys. Rev. Lett. 32 (1974), 403–
405).

atoms in life Biological molecules mostly consist of C, O, N and H atoms. This does
not mean that other atoms are not important. Other atoms are used to facilitate special
functions, e.g. Fe is used in hemoglobin and Zn is found in the large class of zinc-finger
DNA binding proteins. In diminishing amount, living cells use Ca, K, Na, Mg, Fe, Zn,
Cu, Mn, Mo and Co, where Ca is found in 15 g, Mg in 0.5 g and Cu in 2 mg per kg in a
human.

bases Building blocks of DNA or RNA. For DNA they are divided into purines (A and
G) and pyrimidines (T and C). In RNA, T is replaced by uracil (U).

base pairs (bp) Two bases linked by non-covalent forces (hydrogen bonds), that pair in
double-stranded DNA.

bending modulus The bending of a polymer like dsDNA is similar to the bending of a
beam, so it can also be described through a bending modulus. Consider a piece of DNA of
length L bent around a disk of radius R. The bending energy per unit length is quadratic
in the curvature E/L = B/2R2, where B is the bending modulus. On the other hand, the
persistence length lp is roughly the length that can be bent into a circle by a thermal
fluctuation kBT ∼ Blp/(l2

p) or lp = B/kBT . For dsDNA, lp = 50 nm corresponds to a
bending modulus B = 200 pN · nm.

297
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Bethe lattice (or Cayley tree) Hierarchically ordered network without ends and without
any loops. Each unit is connected to one above and to two below, and there is only one line
of connection between any two units. A Bethe lattice is effectively infinite dimensional.

Boltzmann constant kB is the conversion factor from temperature measured in Kelvin into
energy per molecule, in biological terms into kcal/mol. The energy unit 1kBT = 4 pN · 1nm
in terms of a typical molecular force times a typical distance.

Boolean automaton An automaton that works with two outputs only (on or off). It can
be used in a Boolean network. A candidate for simplified descriptions of single genes in
genetic networks. See S. A. Kauffman (J. Theor. Biol. 22 (1969), 437).

Boolean network Random directed network where each node becomes either on or off,
depending on inputs to the node. For k input there are n = 2k input states. Each of these
should be assigned either on or off, giving 2n (n = 2k) Boolean functions. A simple Boolean
network is two states of cellular automata arranged on lattices with only nearest-neighbor
interactions. A random Boolean network is critical if the average number of inputs is two
per node. At this value a change in state will barely propagate along the network. For a
review see pp. 182–235 in Kauffman’s book, The Origins of Order (Oxford University Press,
(1993)), and for possible connections to number of cell types in eukaryotic organisms, see
pp. 460–462. See also R. Somogyi & C. A. Sniegoski (Complexity 1(6) (1996), 45–63.

cDNA Complementary DNA.

centromere The site of attachment for spindle fibers during mitosis and meiosis.

CD (or circular dicroism) A way to detect secondary structure in proteins, using
polarized light. It uses the effect that, for example, α-helices absorb left- and right-handed
polarized light differently, in a characteristic way that depends on wavelength. Similarly,
β-sheets can be detected through a different wavelength-dependence absorbance of left-
and right-handed polarized light. See the review by A. J. Alder et al. (Method. Enzymology
27 (1973), 675).

cellular automata (CA) Defined on a lattice, say on the integer position on a line. At
each position assign a discrete variable, say 0 or 1. Parallel update; the variable on each
position is changed deterministically according to the value it and its neighbors had at the
previous timestep. If one considers only a binary variable and the nearest neighbors, there
are 23 = 8 possible neighborhoods to consider: 000, 001, 010, 011, 100, 101, 110, 111. For
each of these one should define whether the outcome is 0 or 1. Thus any nearest-neighbor
rule could be specified by a four-digit binary number.

probabilistic CA. Not deterministic, but with probabilities of having the outcome de-
pendent on current values.

chaperone A protein that helps to fold other proteins. Most famous are GroEL and DnaK.
Chaperones use energy to redirect the folding process, probably by unfolding misfolded
proteins and thereby giving them a chance to fold correctly on a second try.

coarse graining Describes your system with larger-scale variables that each represent
some effective description average of effects of smaller-scale variables. In equilibrium sys-
tems one can rewrite the partition sum Z = ∑

i, j exp(−Ei j/T ) = ∑
i exp(−Fi/T ), where

the free energy of the coarse-grained variable labeled by i is given by exp(−Fi/T ) =∑
j exp(−Ei j/T ).

codon A sequence of three nucleotides (in a DNA of mRNA) that encodes a specific
amino acid.



Glossary 299

complementary sequence Sequence of bases that can form a double-stranded structure
by matching base pairs. The complementary sequence to base pairs C–T–A–G is G–A–T–C.

complexity A loosely defined term used in many different contexts. High complexity im-
plies a structure that is intermediate between a stage of perfect regularity (minimum entropy)
and a stage of complete disorder (maximum entropy). One definition, by Hinegardner &
Engleberg (J. Theor. Biol. 104 (1983), 7) is that an object’s complexity is defined as the
size of its minimal description. That a structure has large complexity roughly means that
one needs either a long time or a complicated algorithm to develop it. The paleontolog
J. W. Valentine proposed measuring complexity of an organism by the number of different
cell types that it has. Valentine et al. (Paleobiology 20 (1994), 131) make the observation that
the hereby defined complexity of the most complex species at time t has grown as

√
t since

the Cambrian explosion, ending at human-like organisms, which have about 250 different
cell types.

consensus sequence A sequence constructed by choosing at each position the residue
that is found there most often in the group of sequences under consideration.

convergence The tendency of similar proteins placed close on the DNA to be “error” cor-
rected during replication. For example many paralogs that have first diverged later converge
owing to this error correction.

cooperativity More than the sum of its parts. Acting cooperatively means that one part
helps another to build a better functioning system. Cooperative bindings include dimeriza-
tion, tetramerization, and binding between transcription factors on adjacent DNA sites.

cumulants For a variable x the first four cumulants are K1 = 〈x〉, K2 = 〈(x − 〈x〉)2〉,
K3 = 〈(x − 〈x〉)3〉 and K4 = 〈(x − 〈x〉)4〉 − 3K 2

2 . The cumulant Kn measures what new
is to be said about the distribution, given all previous cumulants Ki , i < n. The cu-
mulants can be obtained from the generating function G(z) = log(〈exp(zx)〉), by Kn =
limz→0(dnG/dzn).

dalton Mass unit, 1 dalton (Da) is 1 gram per mole. Thus carbon weights 12 Da, and
water weighs 18 Da.

detailed balance A dynamical algorithm that defines transition probabilities T (1 → 2)
between states in some space has detailed balance if one can assign probabilities P to all
states such that any two states a and b fulfil T (a → b)P(a) = T (b → a)P(b). A transition
probability T (1 → 2) is the probability that in the next step we get state 2, given we are in
state 1. Detailed balance is not a trivial requirement, and if it is violated then the algorithm
typically will not sample an equilibrium distribution. In order to sample an equilibrium
distribution there is the further requirement that the transition rules T should be defined
such that all phase space is accessible. The transition rule is then a Metropolis algorithm.

diffusion coefficients d f/dt = Dd2 f/dx2. Large D means fast dissipation. D is a typical
length times a typical velocity (i.e. closely connected to viscosity). For protein in water Dp ≈
100 µm2/s; for sucrose in water D = 520 µm2/s; for oxygen in water D = 1800 µm2/s. A
protein molecule diffuses a distance of order x ≈ √

2Dpt = 0.6 mm in 1 h.

distributions
exponential p(t) ∝ exp(−t/τ ). If t is a waiting time this is the distribution for a random

uncorrelated signal. In that case the expected waiting time for the next signal does not
change as time passes since the last signal.

power law p(t) ∝ 1/tα . For example, if t is a waiting time, then expected waiting time
for the next signal increases as time passes since the last signal.
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normal or Gaussian distribution Obtained by sum of exponentially bounded random
numbers that are uncorrelated. Distribution: p(x) ∝ e−x2/σ 2

.
log normal Obtained by product of exponentially bounded random numbers that

are uncorrelated. If x is normal distributed then y = exp(x) is log normal: q(y)dy ∝
exp(− log(y)2/σ 2) dy/y ∼ dy/y for y within a limited interval.

stretched exponentials These are of the form p(x) ∝ exp(−xα).
Pareto–Levi Obtained from the sum of numbers, each drawn from a distribution ∝ x−α .

A Pareto–Levi distribution has a typical behavior like a Gaussian, but its tail is completely
dominated by the single largest event. Thus a Pareto–Levi distribution has a power-law
tail.

DNA chips mRNA activity in a cell sample can be analyzed with DNA chips. These are
large arrays of pixels. Each pixel represents part of a gene by having of the order of 106–109

single-stranded DNA-mers, that are identical copies from the DNA of the gene. The chip size
is of the order of 1 cm2, and can (in 2001) contain 12 000 different pixels (each measuring one
gene). The analysis consists of taking a cell sample, extracting all mRNA in this (hopefully)
homogeneous sample, and translating it to cDNA (DNA that is complementary to the RNA,
and thus identical to one of the strands on the original DNA). The cDNA is labeled with
either red or green fluorescent marker. The solution of many cDNAs is now flushed over the
DNA chip, and the cDNAs that are complementary to the attached single-stranded DNA-
mers will bind to them. The DNA chip is washed and illuminated and the fluorescent light
intensity thus measures the effective mRNA concentration.

DNA forms Besides the standard B-form for double-stranded DNA there are several other
known conformations of DNA. In B-DNA the planes of the bases are perpendicular to the
axis of the helix; when dehydrated, DNA assumes the A-form in which the planes of the
bases are tilted by ∼15 ◦. Certain sequences (GCGCGC . . . ) can form a left-handed helix,
which is called Z-DNA; finally it is possible mechanically to stretch DNA into the S-form.

DNAp Short for DNA polymerase; this is the machinery that copies DNA.

diploid Cells have two copies of each chromosome. The human diploid number is 46.
Sperm and egg cells are haploid, with one copy in each cell.

epigenetics Defined as “a heritable change in phenotype in the absence of any change in
the nucleotide sequence of the genome.”

entropy/information Information definition: I = ∑
i pi log2(pi ), where the sum runs

over all possible outcomes; −I counts the minimal number of yes/no questions needed
to specify microstate completely. S ∝ −kBI is the corresponding entropy. Minimal infor-
mation is equivalent to maximum entropy, and implies equilibrium distributions within an
accessible state space {i}. For example, we minimize I with constraint

∑
i pi = 1 to give all

pi equal (micro-canonical ensemble). Minimization with constraint on average energy con-
servation gives the canonical ensemble pi ∝ e−Ei /T , where 1/T is determined by average
energy conservation.

equilibrium/non-equilibrium An isolated system is in equilibrium if all available states
are visited equally often. This is secured by a detailed balance. Equilibrium distributions are
obtained by minimizing information (maximizing entropy) under constraints given by the
contacts between the system and its surroundings. An isolated system is out of equilibrium
if some parts of state space (phase space) are more populated than others. Dynamic systems
may be driven out of equilibrium by an externally imposed flux. For example, a convective
fluid is driven out of equilibrium by its attempt to transport heat. Without an externally
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imposed free energy flow a system always decays towards equilibrium (second law of
thermodynamics). To popularize: equilibrium describes dead systems; non-equilibrium
opens the way for spontaneous organization and apparently even for organization as subtle
as life.

eukaryote An organism whose genetic information is, in contrast to prokaryotes, con-
tained in a separate cellular compartment, the nucleus. Eukaryotes are believed to have
originated by a merging of normal bacteria with the Archea bacteria.

evolutionary concepts
Macro-evolution is the evolution of life on a large scale, including many (eventually, all)

species.
A phylogenetic tree is a family tree of species. One lineage is the development line

leading to one species.
Taxa are hierarchical subdivisions of species in groups according to familiarity. From

low to high there are the following levels: species, genera, family, order (like primates),
class (like mammals), phyla (like Chordata), kingdoms (like animals).

Some numbers: there are about 107 species on Earth today. There have been about 1010

species on Earth in total during history. The largest extinction event (at the end of the
Permian, c. 250 My ago) wiped out 60% of all genera. The largest origination event is
the Cambrian explosion (≈540 My ago, where multicellular life flourished in origination
over a rather short timespan). Oxygen originated in atmosphere 1600 My ago. Eukaryotes
appeared about 2000 My ago. The first life-forms originated about 3600 My ago. See S.
Wright (Evolution 36 (1982), 427); and D. M. Raup (Science 231 (1986), 1528) and Bad
Genes or Bad Luck (New York: W. W. Norton & Company, 1991).

evolvability This concept may be quantified by the probability of obtaining a new working
and survivable property (phenotype) by a mutation. That means that evolvability is quantified
by the fraction of small (likely) mutations that exhibit new viable phenotypes. Evolvability
is thus related to robustness against mutations. Note, however, that whereas evolvability
requires variability in adjacent phenotypes, robustness requires only that adjacent genotypes
sustain basic functions. In any case adjacent mutants should be able to survive.

evolution in the lab For simple organisms, Lenski has recorded the evolution of 20 000
generations of E. coli in the lab, and observed a number of phenomena including history-
dependent outcomes, stasis and punctuated equilibrium of fitness value (Elena et al., Science
272 (1996), 1797), and coexistence of evolved strains that differ significantly in reproduction
rate (Rozen & Lenski, Am. Nat. 155 (1) (2000), 24). Also the inter-dependence of fitness with
environmental conditions has been recently explored in an interesting laboratory experiment
of bacterial evolution by A. Kashiwagi et al. (J. Mol. Evol. 52 (2001), 502). In this work it
was found that in evolving bacterial cultures starved of glutamine, the culture in which there
was excessive crowding developed diversity in strain composition, whereas a culture grown
under less crowded conditions tended to eliminate an already present diversity in strain
composition. Thus, with crowding, the different strains develop symbiotic specializations
that favor coexistence.

exons Segments of a eukaryotic gene that encode mRNA. Exons are adjacent to non-
coding DNA segments called introns. After transcription, the non-coding sequences are
removed.

fractals Scale-invariant structures that fill a measure zero part of space. Physical examples
are the coastline of Norway, river networks, snowflakes, dielectric breakdown (from DLA-
like processes) and snapshots of high dissipation regions in turbulent media. Fractals are
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also seen in biology, where there is a need to cover a big area with little material (in trees
or in lungs). Self-organized critical models may be seen as an attempt to present a unified
dynamical principle for the origination of fractals.

frozen accidents Concept of Brian Arthur that refers to decision points in history that
freeze later decisions to conform to a frozen landscape. Frozen accidents confront an equi-
librium view, by implying a non-ergodic evolution of the system in question.

Gaia The world viewed as one living organism. Paradigm of Lovelock that means that
there are stabilizing biological feed-back mechanisms that keep conditions on Earth optimal
for life. A simple example is the oxygen level, which is kept as high as possible given that
forest fires should be self-terminating. Another is the fact that the average temperature on
Earth has kept constant within a few degrees over billions of years. Biological mechanisms
governing CO2 concentration, surface albedo and amount of rainfall are suggested. Explicit
modeling is through the Daisy world model (A. J. Watson & J. E. Lovelock, Tellus 35B
(1983), 384).

gel electrophoresis (two-dimensional) Two-dimensional gel electrophoresis is a way
to sort proteins by both size and their surface charge (P. H. O’Farrel, J. Biol. Chem. 250
(1975), 4007). The proteins are first separated horizontally by their charge by meandering
in a pH gradient until the point where they have no net charge (isoelectric focusing). This
point is the isoelectric point for the corresponding protein. The pH gradient is made by
a special polymer (an ampholyte), which migrates to form the gradient when an electric
field is applied. In the perpendicular direction on the gel, the proteins are subsequently
separated after size by electrophoresis. The velocity of migration of compact globular
proteins is ∝ charge/radius = q/M1/3 (this follows from Stokes’ law). The size of the spot
on the gel is a measure of the protein abundance. The two-dimensional gel technique thereby
allows a determination of concentrations of many proteins in living cells. Quantitatively the
counting involves radioactive labeling of the proteins.

gene A section of DNA that codes for a protein, a tRNA, or rRNA.

genetic recombination Transfer of genetic material between DNA molecules.

GFP (green fluorescent protein) A protein that one uses to measure ongoing activity
of selected promoters. GFP was originally found in jellyfish. When irradiating the protein
with some UV light, it emits light at some specific wavelength. The GFP proteins in a
single cell can then be seen in a microscope. The fluorescent property of GFP is preserved
in virtually any organism that it is expressed in, including prokaryotes (like E. coli). GFP
can be genetically linked to other proteins (covalent bond along the peptide backbone).
This allows microscopic tracking of this protein inside the living cell. Often this linking
with GFP does not influence the properties of the particular protein. GFP comes in red and
yellow variants. The most severe limitation with all these fluorescent proteins is that they
typically obtain their maximum maturation after a sizable amount of time. The “maturation
time” may be from 15 min to some hours.

globular proteins Proteins with a compact three-dimensional native state.

haploid The number of chromosomes in egg or sperm. It is half the diploid number.

Hill coefficient The number of molecules that must act simultaneously in order to make
a given reaction. The higher the Hill coefficient, the sharper the transition.

histones DNA binding proteins that regulate the condensation of DNA in eukaryotes. The
DNA makes two turns around each histone. Histones play a major role in gene silencing in
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eukaryotes, and a large fraction of transcription regulators in yeast, for example, is associated
with histone modifications.

Holiday junction A DNA structure that is a precursor for recombination (see Chapter 3).

homeostasis A state where all gene products are maintained at a steady state, and is thus
typically the result of a negative (stabilizing) regulative feedback.

hybridization Base pairing of two single strands of DNA or RNA.

hydrophilic A molecule that has an attractive interaction with water molecules. Molecules
that engage in hydrogen bonding are typically hydrophilic.

hydrophobic The property of having no attractive interactions with water. Hydrophobic
substances are non-polar, and are effectively repelled by water.

intron A non-coding sequence of DNA that initially is copied to mRNA, but later cut out
before protein in produced from the mRNA.

kinase An enzymatic protein that transfers a phosphate group (PO4) from a phosphate
donor to an acceptor amino acid in a substrate protein. Kinases have been classified after
acceptor amino acids, which can be serine, tyrosine, histedine, cytosine, aspartane or gluta-
mate. All kinases share a common (homologous) catalytic core (T. Hunter, Meth. Enzymol.
200 (1991), 3–37).

ligase A enzyme that helps to put other macromolecules together.

microarray See DNA chips.

microtubules Very stiff parts of cytoskeleton that consist of tubulin sub-units arranged
to form a hollow tube.

mismatch repair A system for the correction of mismatched nucleotides or single-base
insertions or deletions produced during DNA replication.

mitochondria Semi-autonomous, self-reproducing organelles in eukaryotes. These or-
ganelles are responsible for the energy conversion into ATP.

mitosis The process of cell division in eukaryotic cells.

mobility Mobility of a particle, µ = v/F , determines how fast (v) the particle moves,
when exposed to force F .

mRNA (messenger RNA). A single-stranded RNA that acts as a template for the amino
acid sequence of proteins.

NKC models These are models of interacting species, after Kauffman & Johnnson (J.
Theor. Biol. 149 (1991), 467), where each species is assigned a “fitness” function. Inter-
actions between species occur only through this fitness function. In the NKC models the
fitness of a species is given by F = ∑

fi , where i runs over N internal spin variables (base
pair in the genome), that are each coupled by K internal couplings within the species and by
C external couplings to other species. In practice, for each spin variable i the fi is assigned
a random value between 0 and 1 for each of the 2K+1+C configurations. For a small C ,
different species become effectively decoupled and the ecology evolves to a frozen state,
whereas a large C means that a change in one species typically implies a “fitness” change
in other species and, subsequently, a reshuffling in some of their N spin variables. For a
fine-tuned value of C , the system is critical and one may say that the ecology evolves on
the “edge of chaos”.
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nucleosome A structural unit made up of 146 bp of DNA wrapped 1.75 times around an
octamer of histone proteins.

nucleotide Basic element of DNA and RNA. DNA nucleotides are A, T, C and G.

open reading frames (ORF) DNA stretches that potentially encode proteins. They always
have a start codon in one end (ATG) and a translation terminating stop codon at the other
end.

operator DNA site that regulates the activity of gene transcription. It is typically located
behind the promoter for the gene.

operon A set of contiguous prokaryotic structural genes that are transcribed as a unit,
plus the regulatory elements that control their transcription.

paralogs A pair of duplicated proteins within the same organism (homologs within the
same species). The paralogs will be similar in sequence (PID); typically one can identify
them with certainty only when PID > 20%.

palindrome A sequence of DNA that is the same on one strand read right to left as on
the other strand read left to right.

persistence length Length lp that characterizes how stiff a polymer is: 〈e(x) · e(y)〉 ∝
exp(−|x − y|/ lp), where e denotes the local tangent vector to the polymer. Thus 〈r (end-to-
end)2〉 ≈ 2lpL , where L is the contour length of the polymer. Note that lp is half the Kuhn
length.

phage Also known as a bacteriophage, this is a virus that attacks a bacteria.

plasmid A piece of double-stranded DNA that encodes some proteins, which is expressed
in the host of the plasmid. It may be viewed as an extrachromosomal DNA element, and as
such it can be transmitted from host to host. Plasmids are, for example, carriers of antibiotic
resistance, and when transmitted between bacteria thereby help these to share survival
strategies. Plasmids often occur in multi-copies in a given organism, and can thus be used
to greatly overproduce certain proteins. This is often used for industrial mass production of
proteins.

prokaryotes Single-celled organisms without a membrane around the nucleus. Whitmann
et al. (Proc. Natl Acad. Sci. USA 95 (12) (1998), 6578) estimated that there are (4–6) ×
1030 prokaryotes on Earth. The number of prokaryote divisions per year is ∼1.7 × 1030.
Prokaryotes are estimated to contain about the same amount of carbon as all plants on Earth
(5 × 1014 kg). Some 5000 species have been described, but there are estimated to be more
than 106 species.

promoter Region on DNA where RNAp binds in order to initiate transcription of a gene.
The gene is downstream of the promoter. The transcription factors mostly bind upstream of
the promoter.

protease A protein that actively degrades other proteins. An example is HflB, which plays
a role in both heat shock in E. coli and the initial decision of λ to lysogenize.

protein A polymer composed of amino acids.

punctuated equilibrium Term from biological evolution meaning that evolution of
species occur in jumps. It can be understood if each species is in a metastable state, and its
evolution corresponds to escape from a metastable state (see R. Lande, Proc. Natl Acad.
Sci. USA 82 (1985), 7641). The content of the Bak–Sneppen model is that local punctuated
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equilibrium implies global correlations. For data on local punctuations, see S. J. Gould &
N. Eldredge, Nature 366 (1993), 223–227.

random walk This is a very important concept in physics, as it represents the micro-
scopic mechanism for the phenomenon of diffusion. A diffusing particle moves a dis-
tance

√
2Dt in the time t , where D is the diffusion constant. For the random walk, we

introduce a microscopic time τ as the time between subsequent randomization of veloc-
ity, and l the distance moved in time τ , then R =

√
2(l2/τ )t . The diffusion constant

D = l2/τ = velocity × mean free path; with velocity = l/τ and mean free path l.

receptor A protein, usually in the cell wall, that initiates a biological response inside the
cell upon binding a specific molecule on the outside of the cell.

recombinant DNA technique A method of inserting DNA segments into the chromo-
some of an organism, often an E. coli. The E. coli is put together with the DNA in pure
water (no ions) and exposed to strong alternating electric fields (of order 10 kV/cm). The
DNA segments enter the cell, and if the ends of the DNA are single-stranded and have
some base pairs on these single-stranded ends that are identical to some of the chromo-
somal E. coli DNA, it is often inserted into this DNA on the matching sites. This inser-
tion presumably happens when the replication fork passes the part of the chromosome
where the injected DNA has matching segments. The DNA is inserted in the lagging strand
of the replication fork, in competition with usual complementation with new base pairs.
The DNA is successfully inserted in only a small fraction of the E. coli (maybe one in
10 000). Successful insertion is checked through reporter genes associated with successful
inserts.

repressor Transcription factor that represses a gene, typically by blocking the promoter
for the gene.

reporter genes Certain genes that can report the activity on some promoter system.
Typically they are inserted into the chromosome after the promoter, possibly even after the
protein that is normally encoded by the promoter. A much used reporter is green fluorescent
protein (GFP), which emits green light after the cell is irradiated with UV light in some
particular wavelength.

ribosome This is the machine that translates the mRNA into a protein.

RNA (ribonucleic acid) Polymer composed of a backbone of phosphate and sugar sub-
units to which different bases are attached: adenine (A), cytosine (C), guanine (G) and uracil
(U).

RNAi RNA interference is the introduction of specific double-stranded RNA correspond-
ing to specific target genes in an organism. When present in the cell this results in elimination
of all gene products of the target gene, and thus is an efficient way of making a null-mutant
of the corresponding gene. It is believed to act through activation of an ancient immune re-
sponse inside a cell (against RNA viruses), an immune response that when induced removes
all RNA that is homologous to the injected RNAi. Through its activation of an immune re-
sponse it is found to be highly specific and very potent, and only a few molecules of RNAi
induce complete silencing of a gene. It was first studied in C. Elegans by S. Guo & K.
Kemphues (Cell 81 (1995), 611–20) and by Fire et al. (Nature 391 (1998), 806–811). It was
subsequently studied in Drosophila by J. R. Kennerdell & R. W. Carthew (Development 95
(1998), 1017–1026) and by L. Misquitta & B. M. Paterson (Proc. Natl Acad. Sci. USA 96
(1999), 1451–1456).
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RNAp RNA polymerase enzyme. The molecular machinery that translates DNA into
RNA.

rRNA Ribosomal RNA.

robustness This refers to an overall non-sensitivity to some of the parameters/assumptions
of a particular machinery/model. The robustness can be towards changed parameter values
(different environments) or towards changed rules (mutational variants). Robustness is
presumably coupled to evolvability.

scRNA (small cytoplasmic RNA) A set of RNAs that are typically smaller than 300
nucleotides. Also used in signalling.

snRNA (small nucleic RNA) A set of RNAs that are typically smaller than 300 nu-
cleotides, used to regulate post-transcriptional RNA processing.

spindle A mechanical network of microtubules and associated macromolecules that is
formed prior to mitosis in eukaryotic cells. It mediates the separation of the duplicated
chromosomes prior to cell division.

strain A genetically well-defined sub-group of a given species. E. coli comes in many
strains that can vary by up to 20% in genome length. Some E. coli are harmless, others
lethal.

stop codons Triplets (UAG, UGA, and UAA) of nucleotides in RNA that signal a ribosome
to stop translating an mRNA and release the translated polypeptide.

suppressor Protein that suppresses the effects of a mutation in another gene.

Southern blot A way to analyze genetic patterns. The technique involves isolating the
DNA in question, cutting it into several pieces, sorting these pieces by size in a gel, and
denaturing the DNA in the gel to obtain single-stranded segments in the gel. Denaturation
can be done by NaOH. Finally the DNA is blotted in the gel through a sheet of nitrocellulose
paper in a way that makes it stick permanently (by heating it). The DNA fragments will
retain the same pattern as they had on the gel. Analysis is then done through hybridization
with radioactive complementary ssDNA that can be detected on an X-ray film.

Stokes’ equation The force needed to drag a sphere of radius r through liquid with
viscosity η is F = 6πηrv, where v is the velocity. For water η = 0.001 Pas = 0.001 kg
s/m.

sympatic speciation A species separating into two species without geographical isolation.
Contrast this with allopatic speciation.

temperate phage This is a phage that can live within the bacterium and be passively
replicated with it, or can lyse the bacterium and use the host’s raw material to generate a
number (typically of order 100) progeny phages.

terminator Stop sign for transcription at the DNA. In E. coli it is typically a DNA sequence
that codes for an mRNA sequence that forms a short hair-pin structure plus a sequence of
subsequent Us. For example, the RNA sequence CCCGCCUAAUGAGCGGGCUUUUU-
UUU terminates RNAp elongation in E. coli.

transcription The process of copying the DNA template to an RNA.

transcription factors Proteins that bind upstream to a gene and regulate how much it is
transcribed.
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transduction If a phage packs host DNA instead of phage it forms what are called trans-
ducing particles. These can inject their packed DNA into another bacterium, and thereby
allow for horizontal transfer of DNA. Examples are the P22 and P1 phages of E. coli, where
about 1/1000 phages carry host DNA. P22 also infects Salmonella typhimurium, and can
thus carry DNA across species boundaries.

translation The process of copying RNA to protein. It is done in the ribosome with the
help of tRNA.

transposable element (transposon) A mobile DNA sequence that can move from one
site in a chromosome to another, or between different chromosomes.

tRNA This is transfer RNA – small RNA molecules that are recruited to match the triplet
codons on the mRNA with the corresponding amino acid. This matching takes place inside
the ribosome. For each amino acid there is at least one tRNA.

two-hybrid method The two-hybrid system is a way of recording whether two proteins
bind to each other inside the cell (in the nucleus, as is presently mostly done for eukaryotes).
It uses the mechanism of recruitment of RNA polymerase to the promoter for an inserted
reported gene. The typical setup is to use the GAL protein and separate its DNA binding
domain (GAL4-BD) and its RNAp activating domain (GAL4-AD). The genes for each of
these domains are linked to their selected gene. Each such link is inserted in a plasmid, and
two different plasmids are inserted into the same organism (usually yeast). Only the cells
where there is an attraction between the bait and prey protein can transcribe the reporter
gene. Thus one can test whether there is attraction or not between the two tested proteins. The
two-hybrid method allows for large-scale screening of all pairs of proteins in the organism’s
genome.

van’t Hoff enthalpy The �HvH enthalphy deduced from plotting ln(K ) = ln(Nu) −
ln(Nf) vs 1/T and measuring the slope. For a two-state system where Nf and Nu are
well determined, this enthalpy would be identical to the calorimetrically measured enthalpy
difference �Hcal = Hu − Hf = Q, where Q is the latent heat of folding. If �HvH < �Hcal
there are folding intermediates.

vector A virus or a plasmid that carries a modified gene into a cell.

Western blot A technique to identify and locate proteins based on their binding to specific
antibodies.

Zipf law See G. K. Zipf, Human Behaviour and the Principle of Least Effort (Reading,
MA: Adldison-Wesley, 1949). This law is especially famous for the distribution of fre-
quencies of words, and defines the rank of a word according to how frequently it appears.
The most frequent word has rank 1, the next rank 2, etc. The actual frequency of the word
is plotted against its rank, both on a logarithmic scale. One observes a power law with
exponent of about 1. Zipf did similar plotting for frequencies of cities, and because larger
cities are less frequent, the map directly translates into a plot of frequency of cities larger
than a given size m versus m. The exponent, observed to be about z = 0.8, indicates that
the frequency of city of given size m is ∝ m−α with α = 1 + 1/z ≈ 2.5. Recent data of
D. H. Zanette and S. Manrubia (Phys. Rev. Lett. 79 (1997), 523) give α = 2.0 ± 0.1 for
city size distributions. See also H. A. Simon (Biometrika 42 (1955), 425–440), G. U. Yule
(Phil. Trans. R. Soc. Lond. B213 (1924), 21–87) and B. M. Hill & M. Woodroofe (J. Statist.
Assoc. 70 (349) (1975), 212).
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collapse, 18, 27
collapse transition, 29, 31, 39
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