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Preface

Matter has many states, including soft condensed, inert or alive. The latter is far
from thermodynamic equilibrium, and apparently has an agenda of its own. Yet
the same physical laws apply to all matter. The difference is in the complexity to
which living systems have evolved, to states that gather and process information,
replicate themselves, etc.

Molecular and cell biology have dramatically expanded our knowledge
about this complexity in the last decades. This knowledge is the foundation of
biological physics, which is currently expanding rapidly and is itself adding to
this knowledge. Its role in biology is a wonderful challenge: to draw the line
between necessity and possibility, between results of immutable physical laws
and results of evolution that may be specific to the one natural history we have
access to. The study of life is, after all, similar to reverse engineering1. What
fascinating engineering it describes, however! The deeper one gets into the
details, the more captivating the study becomes: these systems were “designed”
bottom-up, so answers to some of the biggest questions about Life are hidden in
their smallest parts.

The 75th Les Houches summer school addressed the physics of
biomolecules and cells. In biological systems ranging from single biomolecules
to entire cells and larger biological systems, it focused on aspects that require
concepts and methods from physics for their analysis and understanding. The
school opened with two parallel lecture series by Robijn Bruinsma and Jonathon
Howard. Physics of Protein-DNA Interaction by Robijn Bruinsma started from
the structure of DNA and associated proteins, and lead to discussions of
electrostatic interactions between proteins and DNA, and the diffusive search for
specific binding sites. Joe Howard’s lectures on Mechanics of Motor Proteins
discussed mechanical properties of individual proteins and motors, and of
complex cytoskeletal structures. Simultaneously, Evan Evans’ shorter series
Using Force to Probe Chemistry of Biomolecular Bonds and Structural
Transitions explored the rich dynamic behaviors of rupturing individual
biomolecular bonds. These lectures were followed by Erich Sackmann’s
discussion of Micro-rheometry of Actin Networks and Cellular Scaffolds. He
gave an introduction to membranes and the cytoskeleton and discussed the
mechanical properties of cells and the physics of cell adhesion. Robijn Bruinsma
                                                       
1 Reverse engineering: “the process of analysing a subject system to identify the
system’s components and their interrelationships and create representations of
the system in another form or at a higher level of abstraction”. (E.J. Chikofsky
and J.H. Cross, II. IEEE Software 7 (1990) 13-17.)
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complemented Erich Sackmann’s lectures with theoretical lectures on Statistical
Mechanics and Bioadhesion. The second half of the school contained two long,
parallel lecture series by Thomas Duke and Bill Bialek. Tom Duke
complemented Joe Howard’s course with Modelling Motor Protein Systems,
which focused more on theoretical approaches. Starting with physical models for
motor proteins, he discussed physical aspects of cilia and flagella and showed
that active physical phenomena on the cellular scale are important in hearing.
Another example of motion generation was discussed in Jacques Prost’s lectures
Physics of Listeria Propulsion, which provided a general description of how the
controlled polymerization of an actin gel can be used for propulsion. Bill
Bialek’s long series of lectures Thinking About the Brain gave an introduction to
the principles governing sensory and nervous systems. Starting from simple
examples of information processing in the visual system of the fly, he moved to
fundamental questions on how nervous systems process information. In
Bioinformatics and Statistical Mechanics Eric Siggia reviewed decoding of
genetic information obtained from genome projects. It was followed by Bob
Austin’s lectures on Micro- and Nanotechnology-Physics in Biotechnology, new
technologies which make it possible to study and manipulate biomolecules in
artificial arrays and structures. Marcelo Magnasco wrapped up the school
excellently with his Three Lectures on Biological Networks, which covered the
unknotting of DNA, the analysis of gene chip data, and studies of gene
expression in learning canaries, all in a style that kept the attention of the
audience to the last minute of four weeks.

The lectures were complemented by invited seminars given by Albert
Libchaber (RecA Polymerization on Single-Stranded DNA and Directed
Evolution: A Molecular Study) and Marileen Dogterom (Polymerization Forces).
Two public lectures were given in the town of Les Houches, by Albert Libchaber
(Qu'est-ce que la vie ?) and Thomas Duke (Les moteurs de la vie). Furthermore,
Phil Williams gave an invited lecture within Evan Evan's series, and Tom
McLeish and Chris Wiggins contributed with seminars: The Mysterious Case of
Too Many β-Sheets and Into Physical Models of Biopolymers, respectively.
During a study period, Tom McLeish gave a well-attended tutorial on thermally
activated barrier crossing, on the school's lawn, with Mt. Blanc as a backdrop
and most illustrative barrier. We also organized sixteen short student
presentations over four evenings, and two poster sessions with a total of
seventeen posters; see titles and presenters at the end of this volume. The
students had great energy and enthusiasm, and, amazingly in view of their
schedule, kept it up till the very end.

This school had three times as many applicants as there are seats in the
lecture hall, and we had to turn down many strong applicants. We hope this book
to some extent makes up for this unfortunate restriction on admission.
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The relative isolation of the Les Houches Physics School on the mountain
side vis-à-vis Mt. Blanc is perfect for learning and interacting. As are long hikes
in the mountains on weekends. Life-long friendships are formed, we know: Two
of this school’s organizers first met as students in a Les Houches summer school.
If the present school has taught and inspired its participants as much as that
school did years ago, we have done well.
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PHYSICS OF PROTEIN-DNA INTERACTION

R.F. Bruinsma

1 Introduction

1.1 The central dogma and bacterial gene expression

1.1.1 Two families

Life is based on a symbiotic relationship between two families of biopoly-
mers: DNA and RNA, constituted of nucleic-acids, and proteins, consti-
tuted of amino-acids [1]. Proteins are the active agents of the cell. As
enzymes, they control the rates of biochemical reactions taking place inside
the cell. They are responsible for the transcription of the genetic code, i.e.,
the production of copies of short segments of the genetic code that are used
as blue-prints for the production of new proteins, and for the duplication
of the genetic code, i.e., the production of a full copy of the genetic code
during cell division. Synthesis of other macromolecules, such as lipids and
sugars, is carried out by proteins, the mechanical force of our muscles is gen-
erated by specialized proteins adept at “mechano-chemistry”, they detect
light, sound, and smell, and maintain the structural integrity of cells.

If we view the cell as a miniature chemical factory that simultaneously
runs many chemical processes, then the proteins form the control system of
the factory, turning reactions on and off. The control system obeys orders
from the central office: the cell nucleus. The DNA inside the nucleus can
be considered as the memory of the computer system of the central office:
it is the information storage system of the cell. Blueprints for the synthesis
of proteins are stored in the form of DNA base-pair sequences, much like
strings of zero’s and one’s store information in digital computers. A gene is
the data string required for the production of one protein (actually, multiple
variants of a protein can be produced from the same gene). The beginning
and end points of a gene are marked by special “start” and a “stop” signals.
When a protein has to be synthesized, a specialized copying protein, RNA
polymerase, transcribes a copy of a gene beginning at the start signal and
ending at the stop signal (see Fig. 1).

c© EDP Sciences, Springer-Verlag 2002
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4 Physics of Bio-Molecules and Cells

Fig. 1. Gene transcription.

This copy is in the form of an RNA strand known as mRNA (or “mes-
senger” RNA). A huge molecular machine, the Ribosome, synthesizes the
protein from the mRNA blueprint. Interestingly, these Ribosomes are com-
pound constructs of RNA strands (known as rRNA) and proteins, with the
active biochemistry carried out not by the protein part, as you might have
expected, but by the RNA part. Indeed, unlike DNA, RNA strands are in
fact capable to act as enzymes.

The information stream is strictly one way: DNA contains the informa-
tion required for the synthesis of proteins. The genetic code is not altered
by the transcription, and RNA strands do not insert their code into DNA.
We call this basic principle of biochemical information flow the “central
dogma”. We know next to nothing about how this elaborate relationship
between the nucleic and amino acids developed. The basic chemical struc-
ture of the two families is quite different. The molecular biology of living
organisms is all highly similar and based on the central dogma and we do
not know of the existence of more primitive molecular information and con-
trol systems from which we could somehow infer a developmental history
(though we suspect that once upon a time both information storage and en-
zymatic activity was based purely on RNA since RNA is able to carry out
enzymatic activity as we saw). The central dogma applies to living organ-
isms. Retroviruses are able to insert their RNA code into host DNA, using a
special enzyme called “reverse transcriptase”. This looks like an exception
to the central dogma but viruses are not considered living organisms since
they are not able to reproduce themselves independently nor do they carry
out metabolic activity, the two defining requirements of a living organism.
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R.F. Bruinsma: Physics of Protein-DNA Interaction 5

It is reasonable to ask why biopolymers should be of special interest to
physicists. The physics of polymers – particular synthetic polymers – has
been studied for decades and an elegant, general theoretical framework is
available. The motivation behind a study of the interaction between DNA
and proteins is quite different from that of a study of synthetic polymers.
In polymer physics, we want to compute the free energy and correlation
functions of a typical polymer in a solution or melt, with results that are
as much as possible independent of the detailed molecular structure of the
polymers. That philosophy does not apply to biopolymers where we are
dealing with highly a-typical molecules that carry out certain functions.
Their structure presumably evolved under the adaptive pressures exerted
on micro-organisms that relied for their survival on efficient performance of
the functions these molecules are involved with. A molecular biophysicist
tries to shed light on how functional molecular devices work and how their
design constraints are met. These are of course very complex systems, so it
is a good strategy to focus as much as possible on basic principles of physics
of general validity and relying as little as possible on assumptions concerning
the detailed molecular structure. The hope is that this will provide us with
constraints on the design and operation of functional biopolymers in the way
that the Second Law of Thermodynamics constrains the maximum efficiency
of steam engines.

In order to illustrate this approach, we will focus on two special cases
that have been particularly important in the development of our under-
standing of protein-DNA interaction, the lac repressor and the Nucleosome
Complex. These two systems have been studied in such detail that we may
hope to understand how they “work” as molecular devices. In these lectures,
we will see what insights thermodynamics, statistical mechanics, elasticity
theory, and electrostatics can provide us in this respect.

1.1.2 Prokaryote gene expression

How does an organism “know” when to turn gene transcription on and
when to turn it off? We divide cells in two groups: eukaryotes and prokary-
otes. The cells of animals and plants – the eukaryotes – have their DNA
sequestered inside a nucleus and the cell has a complex set of internal “or-
gans” called organelles. Gene expression of eukaryotic cells, the focus of
much current research, is a complex affair, which we will discuss in a later
section. Bacteria, prokaryotes, lack a nucleus and organelles and their gene
expression is much better understood [3]. We will discuss a simple example:
the expression of the “lac” gene of the bacterium Escirichia Coli (E.Coli for
short) [4].

Large numbers of the E.Coli parasitic bacteria live inside your intestines
(“colon”). When you drink a glass of milk, part of it will be metabolized



“bruinsma”
2002/8/8
page 6

�

�

�

�

�

�

�

�

6 Physics of Bio-Molecules and Cells

not by you but by your E.Coli bacteria. The first step is the breakdown
of lactose, sugar molecules consisting of two linked molecular rings. Lac-
tose is broken down into two single-ring glucose molecules. This chemical
reaction requires an enzyme, called “β Galactosidase”, to proceed because
lactose does not dissociate spontaneously (an enzyme speeds up a reac-
tion by lowering the activation energy barrier). First though, the lactose
molecules must be transferred from the exterior of the bacterium to the cell
interior (or “cytoplasm”) across the membrane that surrounds E.Coli. This
is done by another protein, called “Permease”. Finally, a third protein,
called “Transacetylase”, is required for chemical modification of the sugar
molecules.

The DNA of E.Coli carries three separate genes for the production of
these three enzymes: lacY, lacZ, and lacA. Expression of the three genes
starts when the environmental lactose concentration rises, and it stops when
the lactose concentration drops (to avoid wasteful use of precious macro-
molecular material). The three genes are located right behind each other on
the DNA, and – sensibly – they are transcribed collectively. Such a cluster
of functionally connected genes is called an “operon”. The lac operon also
contains three regulatory sequences:

a) Promoter Sequence

This sequence is “recognized” by RNA Polymerase. By that we mean
that RNA Polymerase molecules in solution bind to Promoter
Sequences on the DNA but not to other sequences. From this start
site, RNA polymerase can transcribe RNA in either direction. In
one direction, “downstream”, it produces the RNA code of our three
enzymes. In the other direction, “upstream”, it transcribes the neigh-
boring “Regulator” sequence.

b) Regulator Sequence

The Regulator sequence is the code of a fourth protein: lac repressor.
The lac repressor, which is not involved in the metabolic of lactose,
plays a key regulatory role in turning the gene “on” or “off”.

c) Operator Sequence

The operator sequence is a DNA sequence that is recognized by lac
repressor. If lac repressor is bound to the operator sequence, then
downstream gene expression is blocked. The Figure 2 shows how this
“genetic switch” works.

First, assume that the concentration of lactose in the environment is high.
Lactose molecules bind reversibly to the repressor protein. For high lactose
concentrations, the lactose-bound form is favored under conditions of chem-
ical equilibrium. In the lactose-bound (or “induced”) form, the repressor
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Fig. 2. The lac operon and gene regulation.

has a different structure in which it does not bind to the operator sequence.
RNA polymerase proteins binding to the promoter sequence are free to tran-
scribe in the down-stream (and up-stream) direction. Along the downstream
direction, it will produce an RNA copy of the genes of the three enzymes
required for lactose breakdown. Transcription along the up-stream direction
produces an RNA copy of the lac repressor gene. Production of repressor
proteins at a low level is necessary to maintain their concentration since
proteins have a finite lifetime (after a certain period, a protein receives a
molecular “tag” targeting it for future breakdown as part of the scheduled
maintenance program of the cell).

Next, assume that the lactose concentration has dropped. The chemical
equilibrium now favors the lactose-free conformation of the repressor. Lac



“bruinsma”
2002/8/8
page 8

�

�

�

�

�

�

�

�

8 Physics of Bio-Molecules and Cells

repressor binds to the operator sequence and downstream gene transcription
is blocked. Genetic switches of this type are used by E.Coli (and other
bacteria) to respond to changes in temperature, salinity, acidity, and the
oxygen level. Efficiency of these switches clearly is a matter of life and
death for the bacterium so we should expect that the structure of proteins
like the lac repressor has been “sharpened” by natural selection for optimal
performance. If you would put yourself the task of designing a lac repressor
protein some obvious minimum engineering requirements would be:

Specificity: the lac repressor must be able to recognize the operator se-
quence. Repressor proteins must be able to efficiently “read” the DNA
code.

Reversibility: the lac Repressor must bind reversibly to lactose or else gene
expression could not be turned off. Similarly, it must bind reversibly to
DNA or else gene expression could not be turned on.

Reactivity: The lac Repressor must locate the operator sequence within
minutes after the lactose concentration drops. If it takes too long to turn a
genetic switch then the bacterium could be dead before it had the change
to respond to the changing environment.

In the next sections, we will see what thermodynamics, statistical mechan-
ics, and elasticity theory have to say about these requirements. First, we
have to learn more about the molecular structure of the two biopolymer
families [2].

1.2 Molecular structure

1.2.1 Chemical structure of DNA

The basic monomer unit – the polymer repeat unit – of double-stranded
DNA is shown in Figure 3.

The parts marked B and B∗ are large, planar organic groups consisting of
one or two 5-atom aromatic rings. They resemble benzene and, like benzene,
these groups do not dissolve very easily in water. The symbols B and B∗

stand either for the smaller single- ring Cytosine and Thymine (the “pyrim-
idines”), or the larger two- ring Guanine and Adenine (the “purines”). We
will use the notation G, T, C, and A for short. The four groups all have the
chemical character of a base (i.e., they are proton acceptors).

Not every combination of bases is permitted: in particular only B-B∗

pairs of purines and pyrimidines are possible. The Watson–Crick base-
pairing consists of combining A with T and G with C. An A-T pair is
connected by two hydrogen bonds and a G-C pair by three hydrogen bonds,
so they have a higher binding energy. Other purine-pyrimidine pairings
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R.F. Bruinsma: Physics of Protein-DNA Interaction 9

Fig. 3. Double-stranded DNA repeat unit.

(like G with T) are possible, but they do have a lower binding energy. The
genetic code of an organism, or “genome”, is simply a listing of the different
base-pairings along the DNA sequence of that organism. Note that if you
know the sequence of bases of one strand, you always can reconstruct the
other “complementary” strand, assuming that Watson–Crick base pairing
is valid.

The bases are connected to sugar groups (indicated by S in the figure).
Sugars have the general formula (CH2O)n and usually are water soluble.
The particular sugar of DNA belong to the group of pentoses, 5-atom sugar
rings, and is known as deoxyribose. The deoxyriboses of two adjacent bases
are connected together by tetrahedral phosphate groups (PO−4 ) to form to-
gether the sugar-phosphate “backbone”. Adjacent sugar groups are sepa-
rated by 6 Å. The backbone strands have a directionality: they start with
a deoxyribose at the 3′ end and end with a phosphate at the 5′ end. The
backbone has two important physical characteristics for our purposes: it is
highly flexible and, in water at room temperature, it is highly charged. The
negative charge of the backbone is due to the fact that the phosphate groups
in water at physiological acidity levels are fully dissociated. Charged molec-
ular groups are usually soluble in water and the sugar-phosphate backbone
is indeed highly soluble in water. The flexibility is due to the fact that the
covalent P-O bonds can freely rotate around so adjacent PO−4 tetrahedra
and ribose rings along the backbone can rotate around their joining axis.
We can describe the backbone as a charged, freely jointed chain.
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10 Physics of Bio-Molecules and Cells

RNA molecules are similar to single stranded DNA molecules with two
differences. First, the base Thymine is replaced by another base, Uracil,
and second, the sugar group has an extra OH group and is called a ribose.

Intermezzo: Hydrogen bonding and the hydrophobic force

Hydrogen bonding provides the binding mechanism between complementary
bases. Hydrogen bonding plays in general a central role whenever macro-
molecules are dissolved in water. The hydrogen bond is an electrostatic
bond with a positively charged proton from one molecular group associat-
ing with a negatively charged atom of another molecular group, usually an
oxygen (O−), Carbon (C−) or nitrogen (N−) atom. The cohesion of wa-
ter is due to hydrogen bonding between water molecules, with the proton
of one water molecule binding to the oxygen of another water molecule.
The characteristic energy scale of the hydrogen bond is of the order of the
thermal energy kBT , so it is a relatively weak bond. At room tempera-
ture, a thermally fluctuating network of hydrogen bonds connects the water
molecules.

Molecules such as alcohol that are easy to dissolve in water are called
“hydrophilic” while molecules, such as hydrocarbons, that are not soluble
in water are called “hydrophobic” [5]. Hydrophobic molecules cannot be
incorporated in the thermally fluctuating network of the hydrogen bonds.
They are surrounded by a shell of water molecules that have a reduced
entropy, since they have fewer potential partners for the formation of a
hydrogen bonding network. As far as the water molecules are concerned,
the surface of a large hydrophobic molecule resembles the air-water surface,
which has a surface energy γ of about 70 dynes/cm. We thus can estimate
the solvation free energy – the free energy cost of inserting a molecule in
a solvent – as the surface area of the hydrophobic molecule times γ. If
we wanted to dissolve a certain number of hydrophobic molecules we could
reduce the total exposed surface area in order to minimize the free energy
cost by collecting the hydrophobic molecules in dense clusters. This effect
is known as the “hydrophobic interaction”, though it obviously is not a
pair-wise interaction between molecules. Ultimately, the clustering leads to
phase-separation, which you can observe when you try to mix oil with water.
An important thermodynamic characteristic of the hydrophobic interaction
is that it is predominantly entropic in nature.

1.2.2 Physical structure of DNA

The physical structure of double-stranded DNA is determined by the fact
that it is neither hydrophobic nor hydrophilic. It belongs to a special
intermediate group the “amphiphiles” that share properties from both
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classes: one part of DNA – the backbone – is hydrophilic and another
part of DNA – the bases – is hydrophobic. This frustrated, amphiphlic
character of DNA, plus the flexibility of the backbone, produces the famous
double-helical structure of DNA. To see how, imagine DNA stretched out
like a (straight) ladder (Fig. 4).

Fig. 4. Geometry of stretched DNA.

It turns out that the gaps between the rungs of the ladder, 2.7 Å, are
wide enough to allow water molecules to slip in between the bases. Under
the action of the hydrophobic force, the bases attract each other. The fixed
6 Å spacing between the sugar groups prevents a contraction of the ladder,
but there is another way to bring the bases in contact. Imagine that we
gradually twist the ladder, thereby forming a double spiral. This is possible
because of the flexibility of the backbone. As we increase the twisting, the
bases are brought into closer contact and the water molecules are squeezed
out. For a twist angle T of about 32 degrees between adjacent bases, the
gap is completely closed. This produces the classical double helix shown
below. The repeat length is 360/T bases, or about 11 bases. The repeat
distance along the helix, or pitch, is about 35 Å (using Fig. 4, compute T
yourself).

The DNA double-helix is thus held together by the hydrophobic at-
traction between bases, sometimes called the stacking interaction, and the
hydrogen bonding between complementary bases. The double-helix is not
very stable. If you heat DNA, the two strands start to fall apart for temper-
atures in the range of 70–80 ◦C. In addition, a number of different variants
of the double helix can be realized by modest changes in the environmen-
tal conditions. Under conditions relevant for the life of cells, the dominant
structure is the “B form”, a right-handed helix with a 24 Å diameter. In-
creasing the salt concentration somewhat weakens the electrostatic repulsion
between the two backbones. A new structure, known as “A DNA”, appears,
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12 Physics of Bio-Molecules and Cells

Fig. 5. B DNA.

with a smaller 18 Å diameter for the double helix and larger pitch of about
45 Å. This structural flexibility of DNA is actually essential for its function:
in order for the genetic code to be “read” by RNA Polymerase and other
proteins, you must be able to “open-up” the double-helix. Storing the ge-
netic code in an overly rigid and stable storage device would be like having
a library with no doors.

1.2.3 Chemical structure of proteins

There are 20 different monomer units, or “residues”, that can be used to
construct protein biopolymers. These are the naturally occurring amino-
acids. Amino-acids have the form of a tetrahedron with a Carbon atom at
the center, denoted by Cα. Recall that carbon has 4 electrons available to
make chemical bonds. For the central Cα atom, these four electrons occupy
four electronic orbitals (the “sp4” orbitals) directed towards the vertices of a
tetrahedron (as in diamond). At the four vertices are placed, respectively, a
hydrogen atom, an NH2 “amino” group, an acidic COOH “carboxyl” group,
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and finally one of 20 different side groups denoted by “R”. There are two
distinct ways of distributing the four molecular groups over the tetrahedron.
The one shown in the next figure is known as the left-handed or L form. If
the amino and hydroxyl groups are exchanged, we obtain the right-handed
or R form. In proteins, only the L form is encountered. The side group
determines the chemical character of an amino-acid. It can be neutral or
charged, hydrophobic or hydrophilic, acidic or basic.

Fig. 6. Amino-Acid.

The simplest case is Glycine, with R a hydrogen atom. There are two
abbreviations for Glycine: Gly and G. Each amino acid has two of these
abbreviations (which biochemists know by heart). Lysine for instance is
a positively charged amino-acid with R equal to (CH2)4NH+

2 having the
abbreviations Lys and K.

Nature uses its own abbreviation for the 20 amino-acids when it stores
the information required to produce a protein. Three adjacent DNA bases
code for one amino-acid. For instance, the triplet AAA is the code for the
amino-acid “Phenylalanine” while TTT is the code for Lysine. We call such
a triplet a “codon”. You can construct 43 = 64 different codons from such
a triplet, more that enough for the 20 natural amino-acids. Finding the
complete set of codons of all the amino-acids was one of the great landmark
achievements of molecular biology.

To construct a protein, we must hook together these amino-acids by a
polymerisation reaction. This takes place between the amino group of one
amino acid and the hydroxyl group of another amino acid creating a covalent
bond – known as a peptide bond – between a Carbon and a nitrogen atom
under release of a water molecule. The link between amino-acid complexes is
not rigid: the peptide bond allows considerable freedom of motion. When
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14 Physics of Bio-Molecules and Cells

repeated over and over, this reaction produces a flexible string of amino
acids – a polypeptide – that starts with an amino group, the so-called “N-
terminal” and that ends with a hydroxyl group, the “C-terminal”.

We saw that the base-pair sequence of the DNA of an organism is a
code for the production of amino-acid strings with three adjacent base-
pairs coding for one amino-acid. The following DNA sequence for instance
will produce a simple polypeptide of four amino-acids, starting with an N
terminal and ending with a C terminal:

Fig. 7. Codons and amino-acids.

(“Ala” stands for “Alanine”, a hydrophobic amino-acid.) Note that only
one of the two DNA strands is actually used for the production of proteins,
the “coding” strand.

1.2.4 Physical structure of proteins

The physical structure of protein is determined by two physical mecha-
nisms. On the one hand, proteins are again amphiphiles. Among the
string of residues making up a protein, certain will have side chains that
are hydrophobic, like Ala, and certain that are hydrophilic, like Lys. When
dissolved in water, the string will try to fold up into a ball, with the hy-
drophobic residues hidden in the interior and the hydrophilic residues on
the exterior surface. Such a ball is called a “globule”, with a radius of the
order of 2–3 nm.

The second important effect is the ability of amino-acids to establish
hydrogen bonds. The oxygen atom of the C = O group at one of the corners
of the amino-acid tetrahedron of one residue can act as a proton receptor
for the C–H or N–H group of another residue. Linus Pauling first proposed
that for a helical polypeptide string having the right pitch and diameter,
known as the α-helix, every residue can establish a hydrogen bond with a
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Fig. 8. A small protein with two α-helices and a β sheet.

residue further up (or down) the helix. Not every residue of a protein “likes”
to be part of an α-helix because certain side groups may interfere with each
other by steric hindering. Hydrogen-bonding also can be used to link two
straight polypeptide strands that run either parallel or anti-parallel, which
is known as a β-sheet.

The actual structure of a protein is mainly determined by the combined
effects of α-helix/β-sheet formation and the requirement to keep hydropho-
bic residues inside the protein interior. Drawings of protein structures show
the α-helical regions as spirals and the β sheets as arrows. Figure 8 shows
an example of a very simple protein with two α helices and a β sheet. Note
that not all amino acids are part of α helices or β sheets.

What is remarkable about natural proteins compared with a random
polypeptide chain, is that over a certain range of temperatures, the mini-
mum free energy state is a unique, folded structure with most of the atoms
of the protein occupying well-defined positions. Only in this folded state
can proteins act as molecular machines. This functional, folded state of
a protein is not very stable. Formation of the folded structure involves a
significant loss of entropy. Heating indeed unfolds, or “denatures” proteins.
The “folding energy” – the difference between the properly folded state and
the denatured state – is only of order 10 kBT or so. Moderately raising (or
lowering!) temperature, changing salt concentration or acidity level can pro-
duces unfolding. However, it is precisely the fragility of folded proteins that
allows them to adopt multiple configurations, which permits their use as
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16 Physics of Bio-Molecules and Cells

switching devices, catalysts, and detection devices. For a molecule to act
as a molecular machine, it must have “moving parts”.

The following website has a nice tutorial on the chemical structure of
DNA and proteins

http://www.clunet.edu/BioDev/omm/exhibits.htm#displays

2 Thermodynamics and kinetics of repressor-DNA interaction

2.1 Thermodynamics and the lac repressor

The first branch of physics that we will bring to bear on the design of a
repressor protein is thermodynamics/statistical mechanics. We will apply
the principles of thermodynamics to understand how the specificity and re-
versibility requirements are met for the interaction between the lac repressor
and DNA.

2.1.1 The law of mass action

Prepare an aqueous solution containing a certain low concentration of short,
identical DNA strands and the repressor proteins. The base-pair sequence
of the DNA strands may or may not contain the operator sequence. We can
describe the reversible binding of the repressor to the DNA as an associative
chemical reaction:

R + DNA↔ R|DNA

where R|DNA stands for a repressor-DNA complex. The concentration of
DNA strands with no repressor is indicated by [DNA], that of free repres-
sor by [R], and that of the complexes by [R|DNA]. Concentrations can be
measured by filtration methods and the results are expressed in “Molar”, or
moles per liter (symbol M). Salt water has, for instance, a salt concentra-
tion of about 0.1 M while one molecule per micron3 (volume of a bacterium)
equals 10−9 M.

Thermodynamic processes inside cells normally take place under condi-
tions of (nearly) fixed temperature and pressure. Under these conditions,
the Gibbs Free Energy G must be minimized according to the Second Law
of Thermodynamics. The Gibbs Free energy can be expressed as:

G = NDNA µDNA +NRµR +NR|DNA µR|DNA. (2.1)

Here, N and µ are the number of molecules and the chemical potential of
each of the three species (actually, we also should add a term for the water
molecules). At low concentrations, the chemical potential µ([C]) of “solute”
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molecules in a solvent like water has the following general form:

µ([C]) = kBT ln([C]νC) + µC. (2.2)

The first term, with νC the volume of the molecule, is very similar to the free
energy per particle of an ideal gas and it is indeed due to the translational
degrees of freedom of the solute particles. The second term, the “standard
chemical potential”, can be viewed as the intrinsic free energy per solute
particle meaning that it depends on the type of solute molecule, and on
temperature and pressure, but not on concentration.

Assume that there is a very small variation δN in the number of R|DNA
complexes. According to the reaction scheme R + DNA ↔ R|DNA, there
must be corresponding variation of −δN in the number of uncomplexed
DNA and repressor molecules. The change in G equals:

δG = [µ([R|DNA])− µ([DNA])− µ([R])] δN. (2.3)

The Second Law of Thermodynamics demands that δG = 0 so µ([R|DNA])
= µ([DNA) + µ([R)]. Using equation (2.2) and this condition gives:

[R][DNA]
[R|DNA]

=
1
ν

exp(−∆G0/kBT ) (2.4)

where we introduced the following two quantities:

∆G0 = µR + µDNA − µR|DNA

ν =
νR νDNA

νR|DNA
· (2.5)

The energy scale ∆G0 is called the “Standard Free Energy Change” of the
reaction. At the intuitive level, you can think of it as the free energy gain
when a repressor combines with a DNA strand, the binding energy in other
words. The quantity ν has dimensions of a volume. You can think of it as
the “reaction volume”: if the repressor is located inside this volume, then it
can bind to DNA.

Equation (2.4) is a special case of a fundamental principle of chemical
thermodynamics: the Law of Mass Action. The Law of Mass Action is such
an important principle that the right hand side of equation (2.4) has it’s
own name and symbol: the equilibrium constant Keq

Keq =
1
ν

exp(−∆G0/kBT ). (2.6)

Equilibrium constants of associative reactions have dimensions of concen-
tration, so they are expressed in Molar. Using the Law of Mass Action, the
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equilibrium constant can be obtained by measuring the concentrations, and
hence the standard free energy change. The beauty is that we obtain this
way an important microscopic quantity, the standard free energy change,
by measuring purely macroscopic quantities.

When such an experiment is performed in a test-tube (“in vitro”) on a
DNA/repressor solution [6], one finds that the result is very sensitive to the
absence or presence of the operator sequence on the DNA:

Keq ≈
{

10−10 operator DNA
10−4 non− operator DNA. (2.7)

This large difference between the specific and non-specific equilibrium con-
stants is the thermodynamic signature of the ability of repressor proteins to
read DNA sequences.

We call the interaction between lac repressor and operator DNA the
“specific” protein-DNA interaction and that with non-operator DNA the
“non-specific” interaction. You might expect the equilibrium constant for
the non-specific interaction to be independent of the DNA sequence but
it actually can vary over two orders of magnitude when the non-operator
sequence is varied. Later, this will turn out to be a quite important effect.
From equations (2.6) and (2.7), one finds that the standard free energy
change for the operator case ∆G0 (specific) is of the order of
20−25 kBT while for the non-operator case ∆G0 (non-specific) is of the
order of 5−10 kBT .

What happens if we apply the Law of Mass Action to conditions relevant
to the crowded interior of E.Coli (rather than test-tubes)? The genome of
E.Coli contains about 107 base-pairs (or “bp”) restricted to a volume of the
order of one µ3. Let’s approximate the non-operator part of the bacterial
genome as a fairly concentrated solution of short (10 bp) DNA sequences
having a concentration of the order of 106/µ3 (10 milliMolar). First suppose
that the lac repressors all are bound to lactose molecules, so they will not
recognize the operator sequence. Let F be the fraction of unbound lac
repressors. This “free fraction” can be related to the equilibrium constant
through the Law of Mass Action:

F =
[R]

[R] + [R|DNA]

=
[R][DNA]/[R|DNA]

[R][DNA]/[R|DNA] + [DNA]

=
Keq

Keq + [DNA]
· (2.8)
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The Law of Mass Action was used in the last step. If we insert the measured
value of the equilibrium constant (for the non-specific interaction) and our
estimated value for [DNA], we find that F is of the order of 10−2 (the non-
specific equilibrium constant Keq is measured in the absence of lactose so
we are assuming here that lactose binding does not affect the non-specific
interaction). That is an interesting result! Induced lac repressors in E.Coli
still “live” most of the time on DNA even though they do not recognize the
operator sequence.

Intermezzo: Energy scales in molecular biochemistry

This 25 kBT value for ∆G0 (specific) is a typical energy scale for the
complexation of biological macromolecules. On the one hand, this en-
ergy scale must be sufficiently high compared with the thermal energy
scale kBT so thermal fluctuations do not break up the complex. On the
other hand, the energy scale must be sufficiently low so the binding is re-
versible and can be easily disrupted when required for the signaling process.
In molecular biology, the universal “energy currency” for driving thermo-
dynamically unfavorable processes is the hydrolysis of an ATP molecule:
ATP +H2O→ ADP + Pi + H, which delivers about 10 kBT in free energy.
A 25 kBT value for the binding energy is thus quite reasonable. Protein
complexes are in general maintained by multiple “weak bonds”, such as
the van der Waals attraction, hydrogen bonds, and the “polar” interaction
(i.e. screened electrostatic interaction), all of the order of kBT . Spatial
patterns of these weak links provide a basis for highly specific “lock-and-
key” type recognition between proteins. This must be contrasted with the
covalent “strong bonds” (of the order of a hundred kBT ) that maintain the
structural integrity of the macromolecules.

2.1.2 Statistical mechanics and operator occupancy

Now assume that the lactose concentration has dropped so the lac repres-
sor proteins can bind to the operator sequence. Efficient design requires
a high probability for the operator site to be occupied (to avoid unwanted
gene transcription). We will compute the operator occupancy probability P
using elementary statistical mechanics. Let there be M copies of the lac re-
pressor distributed over N possible sites of the bacterial genome (with N ,
of the order of 107, large compared to M). We will neglect the small frac-
tion of free repressors. There are then A(N,M) = N.(N − 1)..(N −M)
ways to distribute the M proteins over the N non-operator sites and there
are C(N,M) = M [N.(N − 1)....(N − (M − 1))] ways of choosing one of
the M proteins to occupy the operator site and distribute the remain-
ing M − 1 proteins over the non-operator sites, treating the proteins as
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classical, distinguishable objects. Let the Boltzmann factor of a protein
occupying an operator site, respectively, a non-operator site, be Bs,ns ≡
exp(+∆G0(specific, non− specific)/kBT ). The occupation probability is
then

P =
C(N,M)Bs(Bns)M−1

C(N,M)Bs(Bns)M−1 +A(N,M)(Bns)M
· (2.9)

This simplifies to

P =
1

1 +
(

N
M

)
exp(−∆∆G0/kBT )

(2.10)

where ∆∆G0 = ∆G0 (specific)−∆G0 (non-specific) is the difference be-
tween the specific and non-specific binding energies [7].

When we put in the “numbers” for the binding energy obtained earlier
something interesting shows up: the very large number N and the very small
number exp(−∆∆G0/kBT ) nearly cancel each other (N exp(−∆∆G0/kBT )
is about 10). Suppose we wanted to make sure that the operator is at least
99% of the time occupied. According to equation (2.10), that requires the
number of copies M of the lac repressor to exceed 103. The actual number
of lac repressors of an E.coli bacterium is maintained at a comparable value
(about 102). There is thus a “design connection” between the values of the
specific and non-specific binding energies on the one hand and the number of
repressor copies maintained by the cell on the other hand. Simple statistical
mechanics arguments provide us with insight how the “working parameters”
are set for bacterial gene expression. The most important lesson is that the
value of quantities such as ∆G0 (specific), ∆G0 (non-specific), N and M
must be understood in the light of the functioning of the bacterium as an
integrated system.

What is puzzling at this stage is why we need the non-specific interaction
in the first place. According to equation (2.10), if we turned off the non-
specific interaction, we would only need about 10 repressor copies. We will
return to that question in the discussion of the kinetics.

2.1.3 Entropy, enthalpy, and direct read-out

The Gibbs Free Energy is defined as

G = H − TS. (2.11)

It is the sum of an “energetic” term: the enthalpy H = E + PV (E is
the internal energy) and an “entropic” term. The change in Gibbs Free
Energy ∆G0 that takes place when a repressor molecules binds to DNA
can be obtained from the equilibrium constant. Can we obtain the separate
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enthalpic and entropic contributions as well? Under conditions of fixed
pressure and temperature, the change in enthalpy equals:

∆H = ∆E + P∆V = ∆Q (2.12)

with ∆Q the heat released (which is why we call the enthalpy also the
“heat function”). We call chemical reactions exothermic if ∆Q > 0 and
endothermic if ∆Q < 0. Endothermic reactions are interesting because the
driving mechanism is entropy increase rather than reduction of the potential
energy of interaction between molecules. The heat released by a reaction
can be measured by calorimetry so the change in enthalpy can be found.
Since the total change of the Gibbs Free Energy is known, we can also
deduce the change in entropy.

When the enthalpic and entropic contributions ∆H and −T∆S are de-
termined in this manner for the interaction between the lac repressor and
DNA, one finds the following results [8].

Specific interaction

The dominant contribution to ∆G0 is entropic. As a function of tempera-
ture, −T∆S decreases significantly with T . ∆H is negative so the reaction
is endothermic.

Non-specific interaction

The dominant contribution to ∆G0 is again entropic, but −T∆S now does
not depend significantly on temperature. The enthalpic contribution is
again negative.

Both are surprising results. To see why, we turn to the results of structure
determinations of protein-DNA complexes. It is possible to grow crystals of
repressor proteins complexed with short bit of DNA, known as “co-crystals”.
X-ray diffraction experiments on these crystals allow us to determine atomic
positions with a resolution of 2A, and sometimes even better than that [9].
Below we show the result of such an experiment for case of “cro” a very
simple bacterial repressor (unlike the lac repressor).

The first panel shows the pattern of chemical bonds. There is a C2

rotation symmetry. This symmetry is a characteristic of many prokaryote
repressor proteins. The DNA operator sequence has a corresponding (ap-
proximate) rotation symmetry. Simple repressor proteins like cro address
the DNA with “reading heads”. A reading head is an α-helix that can be
inserted into the major or minor groove of the DNA double helix (usually
the major groove). The second panel is a cartoon of the cro repressor/DNA
complex showing the α-helices of the protein. There are two reading heads
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Fig. 9. Cro-repressor/DNA Complex. First panel: chemical bonds. Second panel:

cartoon showing reading heads.

visible, one near the top and one near the bottom. The ends of certain side
chains of the reading head can establish specific links with certain DNA
bases. An example is the interaction between the amino-acid Arginine and
the base Guanine shown in Figure 10 below.

The Arg side chain terminates with two N-H pairs. The two hydrogen
atoms are positively charged and they “fit” exactly with negatively charged
nitrogen and oxygen atoms of the Guanine base. The nitrogen and oxygen
atoms act as proton acceptors so hydrogen bonds can be established, indi-
cated in the figure by the two ovals. Base-pairs are surrounded by a unique
combination of proton donors and proton acceptors that can be read by
specific amino-acids. For instance, the amino-acid Glutamine “recognizes”
an A-T pair in the major groove of DNA, just as Arginine recognizes a G-C
pair in the major groove, while Asparagine recognizes a G-C pair in the
minor groove.

We call this the “Direct Read-Out” mechanism [10] and it is based on
hydrogen bonding between amino-acids and nucleic acids.

Intermezzo: The second code

Molecular Biologists have established long lists detailing contacts between
the amino-acids of DNA-binding proteins and DNA base-pairs [11]. They
originally hoped they could determine a “second code”. By this they mean
a one-to-one relation between amino-acids and base-pairs so they could pre-
dict to which base-pair sequence a given repressor protein would bind. That
would enable design of highly specific drugs turning on or off particular
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Fig. 10. Direct read-out.

genes. Unfortunately, there appears to be no universal second code. DNA-
associating proteins come in different design forms. The same amino-acids
interact differently in different types of proteins.

There is an obvious discrepancy between the Direct Read-Out model and
the results obtained from thermodynamics. If hydrogen bonding between
the reading heads and DNA really was the dominant binding mechanism,
then DNA/repressor binding should have been enthalpic in nature and for-
mation of the complex would be associated with a loss of entropy. The
puzzle is that there can be little doubt that Direct-Read Out is an impor-
tant mechanism for the reading of DNA sequence by proteins.

2.1.4 The lac repressor complex: A molecular machine

The resolution of this paradox comes from X-ray structural studies of lac
repressor/DNA co-crystals [12] shown below.

The actual structure responsible for the repression of gene transcrip-
tion is a complex consisting of two lac repressor protein dimers, so four
copies in all. They bind pair-wise to two separate operator sequences; note
the four reading heads. The four reading heads are pair-wise attached to
the body of the complex by a linker unit that undergoes an order-disorder
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Fig. 11. The lac repressor complex.

transition upon lactose binding. In the presence of lactose, the complex
adopts a structure in which the linker unit is disordered and the reading
heads can not be inserted into the DNA major groove. Release of the lactose
produces ordering of the linkers and allows insertion of the reading heads
into DNA. In addition, the transition brings two hydrophobic surfaces, be-
longing to the two dimers, into close contact. It seems reasonable to assume
that if lactose-free repressor monomers or dimers move along non-operator
DNA, locate the operator sequence, and form the full four-protein repressor
complex, then the hydrophobic attraction plays a central role as well, so we
can understand at least qualitatively why the specific binding of the lac re-
pressor has an entropic character. The intervening DNA sequence between
the two operator sequences loops around as shown in Figure 12. Interest-
ingly, another protein, known as CAP, binds to the DNA sequence inside
the loop. This stabilizes the loop but once the loop opens, it also stimulates
gene expression!

The reading heads thus are only a small part of the lac repressor com-
plex. We could view the complex as a molecular detector and amplifier.
The binding of lactose to the repressor complex triggers a large structural
transition that breaks up the complex and opens the loop. Release of the
lactose closes the loop and restores the complex. Note that there is an anal-
ogy between the operation of the lac repressor complex and the molecular
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motors discussed in J. Howard’s lectures where the binding/release of ATP
and ADP drives a cyclical structural transition that performs work.

Fig. 12. Order-disorder Transition of the lac repressor complex.
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The thermodynamics of the non-specific interaction also is puzzling. The
binding free energy had a different temperature dependence, indicating that
the hydrophobic interaction is not the interaction that dominates the ther-
modynamics, which is indeed the case. The structural studies tell us that
the linker units connecting the reading heads of the lac repressor to the
body of the protein are positively charged and interact with the adjacent
minor groove: the non-specific interaction is electrostatic in origin. We must
understand how electrostatic attraction can have an entropic character. We
will postpone addressing this question to Section 4.

At this point, you should go the following Web site where you will find
an elegant tutorial on the structural changes of the lac repressor tetramer
and its interaction with DNA.

http://www.worthpublishers.com/lehninger3D/index title.html

2.2 Kinetics of repressor-DNA interaction

We now turn to the third engineering requirement: reactivity. How quickly
does a lac repressor respond to environmental changes, such as a reduc-
tion in lactose concentration? We start again with a discussion of in vitro
experiments.

2.2.1 Reaction kinetics

The rate of change with time of the concentration of a repressor-DNA com-
plex is the sum of two terms. A positive contribution due to complex for-
mation between a previously unbound DNA molecule and a previously free
repressor, and a negative contribution due to complex break-up. At suffi-
ciently low concentrations, the first term must be proportional to the prob-
ability of finding a free DNA molecules and a free repressor molecule at the
same site, and the second term must be proportional to the concentration
of the complex:

d
dt

[R|DNA] = ka[R][DNA]− kd[R|DNA]. (2.13)

The proportionality constants ka and kd are called, respectively, the “on-
rate” and the “off-rate”. These constants are supposed not to depend on
concentration though they can be quite strongly temperature dependent.
The off-rate really does have dimensions of a rate but the (so-called) on-
rate has dimensions of Volume/Time (chemists and biologists have a free-
and-easy attitude to units). The on-rate and the off-rate have a surprising
connection. Under conditions of thermodynamic equilibrium, the concen-
trations of the reactants obviously must be constant, so the left hand side



“bruinsma”
2002/8/8
page 27

�

�

�

�

�

�

�

�

R.F. Bruinsma: Physics of Protein-DNA Interaction 27

must be zero. That means that in equilibrium the following relation must
hold:

[R][DNA]
[R|DNA]

=
kd

ka
· (2.14)

This is just the Law of Mass Action so the right hand side must equal the
equilibrium constant:

kd

ka
= Keq. (2.15)

Because the on and off rates do not depend on concentration, this rela-
tion must hold also away from thermal equilibrium! That means that we
only need to determine one of the two rates, the other rate follows from
equation (2.15). In vitro experiments on repressor-DNA solutions (contain-
ing the operator sequence) report that for the lac repressor ka is of order
1010 M−1 s−1 under standard conditions.

Using this information, let’s apply equation (2.13) to a colony of E.Coli
bacteria. Suppose that at times t < 0 there are no complexes because
the environmental concentration of lactose is high. At time t = 0, the
lactose concentration drops to zero. How long will it take the activated lac
repressors to locate the operator sequence and switch-off gene expression?
There are only a few operator sequences per E.Coli. Assuming a volume
of 1µ3, the (initial) concentration of unoccupied operator sequences is of
order 1/µ3 or about 10−9 M. According to equation (2.13), for early times
t, the concentration of occupied operator sequences in the colony will grow
linearly in time as:

d
dt

= [R|DNA] ≈ (ka[DNA])[R] (2.16)

keeping in mind that at t = 0, [R|DNA] = 0. It follows that we can identify
τ = 1/(ka[DNA]) as the characteristic time scale for a free repressor to
locate the operator sequence, the switching time in other words. For the
measured value of ka, this switching time is of order 0.1 s. This is a sensible
result from the viewpoint of design: the actual switching time should be
less than a minute or so for genetic switching to be a relevant response to a
changing environment. Our estimate of the switching time must be viewed
as a lower bound, because the cell environment is quite crowded. The actual
on-rate inside a cell must be significantly less than this in vitro value. This
means that the in vitro on rate must be of order 1010 M−1 s−1 (or higher)
for reasonable in vivo repressor reactivity.
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2.2.2 Debye–Smoluchowski theory

Let’s try to compute this on-rate. The classical theory of the on-rate of
diffusion-limited chemical reactions is due to Debye and Smoluchowski (DS).
Assume a spherical container (the cell) of radius R. Place the operator
sequence at the center of the container. Let C(�r, t) be the concentration of
free repressors. The concentration field obeys the diffusion equation:

∂C

∂t
= D3∇2C (2.17)

with D3 the diffusion constant of the lac repressor in water. It is about
3×10−7 cm2/s in vitro though under the crowded conditions of the bacterial
interior, the effective diffusion constant is likely to be smaller.

We now want to know when the operator is occupied for the first time
by a repressor. Assume that this will happen when a diffusing repressor
enters for the first time a small sphere, of radius b� R, at the origin (b is
a molecular length scale). You can view this sphere as the reaction volume
of the Law of Mass Action.

Aside: you can estimate the diffusion constant for proteins using the
formula D = kBT

6πηr for the diffusion constant of a sphere of radius r of order
a few nanometer in a fluid with viscosity η (for water η = 10−2 poise).

We actually will solve an easier problem by assuming that the small
sphere at the origin acts as an absorber, so whenever a diffusing particle hits
the small sphere, it disappears. The concentration at the outer radius R
is kept at a fixed value c(∞). This is an easier problem because under
these conditions, a time-independent steady-state current I is established
of repressor molecules diffusing from the outer to the inner sphere. To
obtain this current, we must solve Laplace’s Law:

∇2c = 0 (2.18)

with the boundary conditions c(R) = c(∞) and c(b) = 0 (because diffusing
particles disappear at r = b). The only solution of Laplace’s Law with
spherical symmetry is the monopole field. Assuming b � R, and imposing
the boundary conditions:

c(r) = c(∞)
[
1− b

r

]
· (2.19)

The diffusion current density �J = −D3
�∇c is along the radial inward direc-

tion, so the diffusion current I equals J(r) times the surface area 4πr2:

I = −4πD3bc(∞). (2.20)
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Now compare this result with equation (2.13) for the case kd = 0. The
left-hand side of equation (2.13) is the number of complexes forming per
second. That must equal (minus) the incoming current I. On the right-
hand side we can identify c(∞) with the repressor concentration [R] far
from the operator. This leads to:

ka = 4πD3b (2.21)

known as the Debye–Smoluchowski (DS) rate. If we use for the “target
radius” b the typical size of a protein, say 4 nm, we find that on-rate is of
order 109 M−1 s−1.

It turns out that this is a “hard” upper bound. Actual on-rates are
nearly always smaller than the DS rate because it takes a certain time for
the protein to line up with the target. Associative reactions involving pro-
teins able to achieve on-rates approaching a limiting value of 109 M−1 s−1

are said to have reached “kinetic perfection”. Now recall that for repres-
sor/DNA association, an on-rate of 1010 M−1 s−1 was obtained, an order of
magnitude larger than kinetic perfection. We also saw that this high on-rate
was quite essential to support a reasonable response time of the bacterial
gene-transcription system. If the bacterium had to make do with a typical
protein-protein association on-rate it would be living a live on the Razor’s
Edge.

How does the lac repressor manage this phenomenally high rate? It was
suggested by M. Eigen in the 1970’s that the non-specific protein-DNA in-
teraction may provide the answer. If inactive repressors are mostly located
on the DNA, then diffusion is a predominantly one-dimensional process,
not three-dimensional as assumed in the DS theory. This ought to speed
up the on-rate since less time is wasted searching empty space. Eigen’s idea
can be tested. If we could somehow reduce the non-specific repressor-DNA
interaction, we should find that the on-rate decreases and approaches the
DS value, since one-dimensional diffusion is replaced by three-dimensional
diffusion. This is actually possible: increasing the salt concentration reduces
the non-specific binding energy ∆G0 (non-specific) since this interaction is
predominantly electrostatic. Experimentally, one finds the following depen-
dence of the non-specific equilibrium constant on salt concentration:

− log10 Keq(non− specific) ∼= −10 log10[KCl]− 2.5. (2.22)

It follows from the definition of the equilibrium constant that−log10(νKeq)=
0.43∆G0

kBT , so the non-specific binding energy decreases monotonically with
the salt concentration [KCl]. If Eigen’s idea is correct, we would expect
that the on-rate decreases monotonically as well. Actually, the dependence
of the on-rate on [KCl] in laboratory experiments is highly non-monotonic.
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Fig. 13. Dependence of the on-rate on salt concentration.

As shown in Figure 13, there is sharp maximum for salt concentrations
around 0.1 M (which happens to be the physiological salt concentration).

There are also functional objections against Eigen’s idea. DNA does not
really provide a nice one-dimensional “track” for a rondom walh. Under
realistic conditions, the repressor will encounter many obstacles such as
other repressor proteins bound to their respective operator sites or structural
proteins that keep the DNA properly folded. These obstacles would quickly
terminate a one-dimensional search. We could not hope to have free “runs”
for one-dimensional diffusion of more than a few hundred bp.

2.2.3 BWH theory

Our present understanding of the on-rate for protein-DNA interaction is
based on the work of Berg et al. [13] (BWH). Assume that at time t = 0
a repressor protein, located somewhere on the highly convoluted genome
of an E.Coli bacterium, is activated due to the release of its bound lactose
molecule. How long will it take for the repressor to locate the operator
site, assuming that there are no other repressors? Let L(t) be the length
of DNA searched by the repressor at time t. The characteristic time T ∗ for
the protein to locate the operator sequence is obtained by equating L(T ∗)
with the total length Ltot of the genome.

To find L(t), recall that we learned earlier that a non-specifically bound
repressor spends most of its time on the DNA, say 99%. Most of the time the
repressor motion is thus restricted to the DNA. When however the repressor
is released from the DNA, it starts a three-dimensional random walk – as
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Fig. 14. Two points close in space but distant along the DNA.

in the classical DS theory – that terminates when the protein comes once
again in contact with bacterial DNA. The key idea of the BWH theory is
that even though the Euclidean Distance between the start and end of the
three-dimensional random walk is likely to be short – since the interior of a
bacterium is densely crowded with DNA – the Base-Pair Distance is likely
to be very large since the bacterial genome is highly convoluted.

This means that, as long as L(t) � Ltot, it is very likely that the
new section of DNA that will be explored by the repressor following a
three-dimensional jump has not yet been explored after the repressor was
activated. Assume that at time t0, the repressor is just starting a new one-
dimensional random walk. At time t, it has explored a length of DNA
equal to:

∆L(t) ≈
√
D1(t− t0) (2.23)

with D1 the one-dimensional diffusion constant. Let k∗d be the repressor
dissociation rate for non-operator DNA, which can be measured experimen-
tally, just as for the case of operator DNA. The typical duration of the
one-dimensional random walk is thus about 1/k∗d seconds so the length of
DNA section searched equals:

∆L ≈
√
D1/k∗d. (2.24)

Since repressors spend only a small fraction of their time away from DNA,
the duration of the three-dimensional random walk must be short compared
to that of the one-dimensional random walk. This means that after T 	
1/k∗d seconds, there have been of order k∗dT one-dimensional random walks.
The total DNA length visited equals ∆L times k∗dT or:

L(T ) ≈ T
√
D1/k∗d (2.25)

valid as long as L(T ) is less than Ltot.
That is a surprising prediction. Even though the molecule is performing

a random walk, the length of searched DNA grows linearly in time. The
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total search time T ∗ required to locate the operator is found by equating
L(T ∗) with the total length Ltot:

T ∗(Ltot) ≈ Ltot√
D1/k∗dT

(2.26)

so the search time is proportional to the length of the genome.
Let’s put in the numbers. The one-dimensional diffusion constant for a

sphere in water confined to a cylindrical surface with the appropriate di-
mensions is about 10−9 cm2/s (considerably less than the three-dimensional
diffusion constant). In vitro measurements of the non-specific dissociation
rate show that k∗d is quite sensitive to the salt concentration but in the phys-
iological range, it is of the order of 10 s−1 for lac repressor. The distance ∆L
of DNA searched per jump (Eq. (2.24)) is then of the order of 1000 Å, and
the total search time for a genome of 10 microns is about 10 s. For a purely
one-dimensional search, the corresponding search time T ∗(Ltot) ≈ L2

tot/D1

would have been about 1000 s. Note that the search-time would be pro-
portional to the square of the total DNA length for purely one-dimensional
diffusion.

These results are quite encouraging. The one-dimensional part of the
search process extends only over stretches of the order of 1000 Å, a few hun-
dred bp, and the total single-protein search time of 10 s is reasonable. Keep
in mind that there could be of order 100 copies of the repressor search-
ing at the same time. “Mixed diffusion” works much better as a search
strategy than either purely one-dimensional diffusion or three-dimensional
diffusion. The “on-rate” can be calculated as a function of k∗d and, using
the measured dependence of k∗d on salt-concentration, one indeed finds that
the on-rate of the lac repressor has a maximum around the physiological
value of 0.1 M representing the cross-over from one-dimensional diffusion to
three-dimensional diffusion.

We now begin to appreciate the biological role of the non-specific protein-
DNA interaction: it significantly speeds up the search kinetics. Recall that
when we discussed the equilibrium properties, the non-specific interaction
only had a “nuisance value” since it required the bacterium to maintain an
extra number of lac repressor copies to assure high operator occupancy. We
can speculate that for bacteria the adaptive value of rapid genetic switching
outweighs the metabolic cost of maintaining extra copies of the repressor.

2.2.4 Indirect read-out and induced fit

Apart from the Direct Read-Out mechanism, there actually is a second
mechanism enabling repressors to read the DNA sequence [14]. Recall that
the non-specific equilibrium constant Keq (non-specific) depends on the bp
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sequence: it can vary by two orders of magnitude if the bp sequence is
varied. It turns out that the non-specific binding energy is maximized when
the DNA sequence approaches the operator sequence.

How is the lac repressor able to identify the operator sequence, at least
in a crude way, without “addressing” directly the bp’s? The geometrical
parameters characterizing the DNA double helix and the local deformability
depend on the base-pair sequence. When a protein binds to DNA, the DNA
structure is deformed. If you look carefully at the structure of the cro-DNA
complex shown in Figure 9, you will see that the DNA is bent. Transcription
regulation proteins indeed usually induce a local bend or kink in the DNA
structure [15]. As a result, certain sequences allow a better structural fit
between the repressor and DNA than others (even if they do not contain
the precise operator sequence). The idea that, apart from Direct Read-Out,
the local structural and elastic properties of the DNA operator sequence
must present a good fit for the repressor is known as the “Induced-Fit”
model [16].

What is the point of a second read-out mechanism? The indirect read-
out mechanism is much less sensitive than Direct Read-Out (for specific
recognition, the equilibrium constant of the operator sequence is a factor
106 smaller than that of a random sequence while for the non-specific part
the variation is only a factor 102). Consider how much time the lac repressor
has available to make sure that it is or is not at the operator site. The lac
repressor should be within a bp of the target site for the reading heads
to be able to swing in place. The time τ spent by lac repressor on one
bp is of the order τ ≈ a2

D1
with a the distance between bp’s (say 3 Å)

and D1 the one-dimensional diffusion constant. This is of the order of a
micro-second, taking our earlier value for D1. Now recall that we know
from the structural and thermodynamics studies that full recognition of
the operator by lac repressor involves a significant structural change. The
characteristic time-scale for large structural changes of a protein is in the
micro-to-milli second range, so there is not enough time to “test” each and
every DNA site by continually swinging the reading heads in and out of
position all the time.

We thus can speculate that the lac repressor is slowed down, by in-
duced fitting, on DNA sequences that structurally resemble the operator
sequence. The extra time available provides the opportunity for the full
Direct Read-Out mechanism to test whether the sequence actually is the
operator sequence. If correct, this would mean make the engineering design
of the lac repressor even more impressive.
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3 DNA deformability and protein-DNA interaction

3.1 Introduction

We have seen that when a protein binds to DNA, the DNA structure de-
forms in return and that sequence dependent structural flexibility provides
the second read-out mechanism for protein-DNA interaction. A second ex-
ample of the importance of structural flexibility of DNA for protein-DNA
interaction is connected to “DNA Condensation”: the folding of DNA by
histone proteins in eukaryotes. There are two sorts of descriptions of DNA
deformability. The simpler “Worm-Like Chain” (WLC) model, popular
among physicists, is inspired by continuum elasticity theory and focuses on
the response of DNA to bending and twisting deformation at large length
scales. It is particularly useful to help us understand how DNA condensa-
tion works. The more sophisticated “RST” model focuses on the connection
between DNA deformability and translation and rotation of the bases and
it provides insight how the indirect read-out mechanism works. We first
will consider the WLC, starting with a brief discussion of gene expression
in eukaryotes.

3.1.1 Eukaryotic gene expression and Chromatin condensation

The DNA of eukaryotic cells is sequestered inside the nucleus where the
gene transcription takes place. The mRNA strands are exported through
gateways in the nuclear membrane called “nuclear pores”. Unlike bacteria,
only a certain part of the genome is accessible for transcription, depending
on cell type. Differentiation of eukaryotic cells takes place by the progressive
“silencing” of certain genes and enhanced expression of other genes.

After bacterial gene expression had been clarified, it was expected that
gene expression of animal and plant cells quickly would be understood as
well, so it was a great disappointment when it was found that eukaryotic
gene transcription was far more complex. In particular, when eukaryotic
DNA sequences and RNA Polymerase molecules are placed in a solution
of nucleotides, test-tube gene transcription does not take place. Gene tran-
scription in the eukaryotes requires the presence of a large regulatory cluster
of proteins known as the “Pre-Initiation Complex” (or PIC) [17], of which
RNA Polymerase is a part. Wrapped around the PIC is a large loop of up-
stream DNA, containing enhancer and repressor sequences that affect the
structure of the PIC. The resulting PIC structure determines the rate of
gene expression by RNA Polymerase, possibly by differential adjustments
of the RNA Polymerase binding energy to the PIC. The PIC can in fact
be considered as a universal molecular computer that calculates for a given
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gene the appropriate level of gene expression based on input coming from
the DNA in the form of the pattern of upstream enhancer and repressor
sequences. Figuring out exactly how the PIC computer works would be a
major step forward, but so far there have not been any serious studies of
the physical properties of PIC’s.

Silencing of genes can take place by (irreversible) binding of represser
proteins at the transcription start sites or by chemical alterations (methy-
lation). A third – and for our purpose most interesting – mechanism [18] is
related to the fact that eukaryotic DNA material is highly condensed. Hu-
man DNA consists of pairs of 23 separate DNA strands, the chromosomes,
each a few centimeters long. The total DNA length is thus of the order of
one meter. The volume of a meter of DNA with a “hard-core” diameter of
20 Å is about 3 µ3, only a little less than the actual volume of the nucleus.
DNA inside the nucleus is thus nearly close-packed. In the highly condensed
regions of the nucleus (“euchromatin”), there is no room for the assembly
of the PIC. Active genes are indeed mostly located near the nuclear pores,
where the DNA is partially decondensed (“heterochromatin”). Cell differ-
entiation is thus in part a question of smart DNA folding so as to locate the
right genes close to the nuclear membrane.

Proteins are responsible for the folding of DNA. The nucleus contains
a considerable amount of protein and the combined nuclear DNA-Protein
material is known as “chromatin” [19]. The main component of the nu-
clear proteins is the histone family denoted by H1, H2A and H2B, H3, and
H4. These proteins – which are nearly the same for different species – are
characterized by an usually large positive charge. It is possible to chemi-
cally extract the chromatin material from the nucleus and de-condense it in
solutions of low salinity. Electron micrographs of decondensed chromatin
reveal a linear, necklace-like array of beads separated by linkers as shown
in the second panel of Figure 15 [20].

The beads, known as nucleosomes [21], have a diameter of about 10 nm,
so the necklace is often called the “10 nm fiber”. As the salinity is re-
duced [22] the 10 nm fiber condenses into a thicker fiber with a diameter of
about 30 nm called the “30 nm fiber” (first panel). Recent simulation [23],
SFM [24] and cryo-TEM studies [25] have addressed its internal structure,
but there is as yet no consensus: a superhelical solenoid [26] has been pro-
posed, as well as an “in-out” zig-zag structure [27]. The overall length of the
DNA strand is reduced by a factor of about 40 in the 30 nm fiber, still much
less than the total required amount of condensation. The organization of
chromatin at larger length scales is even more controversial [28]. We should
stress that local de-condensation of chromatin in the nucleus could not take
place by changes in the global salinity level of the nucleus. Instead chemical
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Fig. 15. Electron micrographs of the 30 nm fiber (first panel) and the 10 nm fiber

(second panel). From reference [20].

modification of the histones, in particular acetylation, changes the binding
affinity of DNA.

Certain proteins (such as DNaseI) cut DNA strands that are not com-
plexed with proteins. Such “digestion” experiments on chromatin produced
DNA strands with lengths quantized in units of the order of about 200 bp,
depending on the species. Combined with the electron microscopy results,
the natural explanation is that about 200 bp’s are associated with each nu-
cleosome. Additional digestion by another enzyme, micrococcal nuclease,
showed that the DNA directly associated with the nucleosome itself has a
fixed length of 140 bp, while the linker length connecting nucleosomes varied
from species to species.

Remarkably, it proved possible to produce crystals of the nucleosome
complexes. In a landmark achievement of X-ray crystallography, it proved
possible to perform diffraction experiments on nucleosome crystals and
hence to determine their atomic structure [29], shown in Figure 16.

It was found this way that the nucleosome consists of a core of 8 his-
tones, two copies each of H2A, H2B, H3, and H4, in the form a of cylinder
with a height of 55 Å, a diameter of 110 Å, and a 2-fold symmetry axis
perpendicular to the cylinder. The core is also called the histone octamer.
DNA is wrapped around the core in the form of a spiral with 1.75 turns,
while the H1 histone straddles the incoming and outgoing DNA strands as
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Fig. 16. Nucleosome structure (Ref. [29]).

a safety pin. As a consequence of the nucleosome structure, the 10 nm fiber
has a spiral structure:

Fig. 17. The 10 nm fiber.

3.1.2 A mathematical experiment and White’s theorem

Figure 18 shows a mathematical experiment inspired by DNA condensation.
Wrap a belt N spiral turns around the surface of a cylinder so that the
belt is not twisted. If you slide a ruler along the belt, the ruler should not
rotate. Now remove the cylinder and stretch the belt, without allowing the
endpoints to rotate, for instance by first closing the belt into a loop using
the buckle.

When the belt is straightened out, slide the ruler again along the belt.
The ruler now makes N turns: we have transformed N turns in space (the
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Fig. 18. A mathematical experiment. Spiral writhe is converted to twist, which

in turn is converted to a plectonym.

spiral) into the N twist turns of the straight belt. We call the spatial turns
“Writhe” and the turns of the straight belt “Twist”. Finally, bring the
endpoints together, still not allowing end-point rotation. After the tension
is removed, the belt is twisted up like a telephone wire into a shape known
either as “interwound” or “plectonymic”. Using the ruler, verify that for
large N the number of twists of the belt in the interwound state is much
less than that for the straight belt. In this step, we reconverted twist into
writhe, but the writhe is in a form different from the spiral we started out
with. Note that you had to perform work to convert writhe into twist when
you stretched the belt. This indicates that writhe is energetically less costly
than twist.
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The spiral (or “toroidal”) structure we started with is characteristic of
DNA condensation in eukaryotes while the interwound state is characteristic
of bacterial DNA folding: DNA extracted from bacteria has a branched
plectonymic structure. Our mathematical experiment shows that there is
no fundamental topological difference between the two ways of folding DNA;
they represent different forms of writhe and can be inter-converted.

Fig. 19. Sign convention for computing Wr.

The concept of writhe of an interwound curve can be quantified as fol-
lows. Move along the curve in a given direction. Assign each crossing of
the curve with itself +1 or −1, according to the convention given in the
picture. The writhe Wr of the curve is the sum of these numbers over all
the crossings. The twist Tw is defined as the number of turns of the ruler
in radians divided by 2π. If the mathematical experiment is repeated, you
wil discover that – provided you do not open the buckle – the sum of Tw
and Wr is a constant, known as the Linking Number Lk:

Lk = Tw +Wr. (3.1)

This is known as White’s Theorem, and it can be demonstrated mathemat-
ically [30]. You can freely convert twist into writhe and vice versa but the
sum remains fixed. If the belt is closed, then the linking number can be
identified as the number of turns of the belt before you close it. You must
be aware that the Lk = 0 state sometimes is defined with respect to the
relaxed B DNA state and sometimes with respect to fully untwisted DNA
with no double helix.

How do you compute the writhe if the belt is not a plectonym but, say,
a spiral that twists in space without self-crossings? There exists a more
precise definition of writhe. For a closed loop, Wr is a double path integral
along the contour C:

Wr =
1
4π

∮
C

∮
C

[d�r1 × d�r2] · �r12

|�r12|3 · (3.2)
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If you compute this integral, you find that the writhe of a spiral with N
spiral turns and a pitch angle α equals:

Wr = ±N(1 + sinα) (3.3)

with the + sign for a right handed spiral and the − sign for a left handed
spiral (try to prove this yourself). What is the Lk? We already know that
after stretching the belt you obtain N twisting turns. In this stretched
state, there are no spatial turns so Wr = 0. It then follows from White’s
Theorem that the linking number must be +N or −N . (the convention is
that right handed twist is positive). Applying again White’s Theorem, we
find the twist:

Tw = ±N sinα. (3.4)

Let’s now apply White’s Theorem to the 10 nm fiber. Assume that the
DNA of the 10 nm fiber is wrapped around the nucleosomes like a belt
around a cylinder. In that case, we can simply adopt the preceding formu-
lae. The Linking Number of the 10 nm fiber should then be approximately
1.75 times the number of nucleosomes N . When you measure Lk, you
find that Lk is only about 1.0 times N . This is known as the “Linking
Number Paradox”. It is not really a paradox: it only shows that that DNA
is not wrapped around the nucleosome the way a belt is wrapped around a
cylinder. White’s Theorem tells us that the nucleosome surface twists up
the DNA to produce a negative contribution of about −0.75 per nucleo-
some. A mathematical theorem is providing us with detailed, microscopic
information on the association of DNA with histones!

3.2 The worm-like chain

We now introduce the WLC model for DNA deformation [31]. It is based on
the idea that the energy cost of small deformations that do not seriously alter
the local DNA structures can be computed by elasticity theory. According
to elasticity theory the energy cost of an infinitesimal deformation of a tube
with uniform cross-section made of an isotropic elastic material is given by:

H =
1
2

∫
ds

{
κ

1
R2(s)

+ C

(
dθ
ds

)2
}
· (3.5)

The line integral runs along the center of the tube, with s the arc-length.
In the first term, R(s) is the curvature radius of the center line with s the
arclength along the center line (see Fig. 20, 1/R is called the curvature). If
t̂(s) is the tangent unit vector of the center line then (1/R(s))2 = (dt̂/ds)2.
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Fig. 20. The Worm-Like chain.

If this relation is used in the first term of equation (3.3) we obtain the well-
known one-dimensional non-linear sigma model. The material parameter
κ – with dimensions of Energy Length – is called the bending modulus (also
denoted by A). The torque τ required to bend the tube along a circle of
radius R is equal to κ/R.

The second term of equation (3.3) describes the twist energy. Let n̂ be
a unit vector attached everywhere along the axis of the undeformed tube
in a direction perpendicular to the tube axis. In the deformed state, dθ/ds
is then the rate of rotation of n̂(s) along s. (n̂(s) is just the ruler of our
mathematical experiment). Note that the twist modulus C has the same
dimensions as the bend modulus.

DNA is of course not well described as being composed of an isotropic
elastic material so why does equation (3.5) make any sense? That is because
the mathematical form for H can be valid even if elasticity theory does not
apply. Assume that if DNA is only very weakly deformed, the energy cost
must be an integral along s of some function of the bend, twist, and torsion.
If you assume that this expression is an analytic function of bend, twist, and
torsion and if you expand this function in a Taylor series to lowest order,
you again obtain equation (3.5) if you demand that DNA has no intrinsic
bend, twist, or torsion.
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3.2.1 Circular DNA and the persistence length

As a first application of the WLC, consider a closed strand of DNA that lies
along a circle of radius R (no twisting). The elastic energy cost (Eq. (3.5))
equals

H = 2πκ/R. (3.6)

For increasingR,H becomes smaller than the thermal energy kBT forR	 ξ
with ξ = kBT/κ known as the “persistence length”. If R	 ξ, then thermal
fluctuations will deform the large circle by introducing smaller loops and
turns with a characteristic size equal to ξ. On the other hand, if R� ξ, then
it is not possible for thermal fluctuations to deform the circle. We conclude
that thermal fluctuations are not able to deform DNA on length-scales less
than ξ. It is possible to microscopically observe the thermal fluctuations –
or Brownian Motion – of DNA strands by attaching fluorescent markers and
measure the persistence length ξ (about 500 Å). As an application, we can
calculate the bending energy cost of the lac repressor loop. The distance
between the two lac repressor operator sequences is about 300 Å. Assuming
that the DNA spans a 300 Å perimeter circle between the operator sequences
and using equation (3.6) gives a bending energy H for the loop of more than
30 kBT . This is an overestimate, but the elastic energy cost of the loop is
indeed substantial compared with the typical protein-DNA binding energy.

By the way, the precise definition of the persistence length is as a cor-
relation length for orientational fluctuations:

lim
s→∞

〈
t̂(0) · t̂(s)〉 ∝ exp(−s/ξ) (3.7)

where 〈. . . 〉 denotes a thermal average and t̂(s) is again the tangent unit
vector.

3.2.2 Nucleosomes and the Marky–Manning transition

We now apply the WLC to the nucleosome. Let L be the length of DNA
wrapped around the core, with L less than or equal to 140 bp. Treat the
core as a cylinder of radius R equal to 5 nm. The bending energy cost is
then H = 1

2κL/R
2 according to equation (3.5) (there is some twist energy

too but we will neglect it). Assuming κ/kBT = 500 Å, one finds that
wrapping the full 140 bp around the core requires about 36 kBT in energy
per nucleosome. The total human genome is about 109 bp, requiring about
109/200 nucleosomes. The total amount of DNA elastic energy stored in the
nucleus is about 108 kBT . That is serious energy. In the figure below [32],
you see what some of this energy does when you decondense the chromatin
by chemical treatment: it causes a DNA explosion!
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Fig. 21. Decondensed Chromatin (from Ref. [32]).

This bending energy cost must be compensated by some form of at-
tractive interaction between the core and the DNA. This attraction is due
to electrostsatics and will be discussed further in Section 4. Here we only
need the fact that the binding between DNA and histones is nearly sequence-
insensitive so the binding energy should mainly depend on how much DNA is
associated with the nucleosome, i.e., on L. We thus introduce an (unknown)
adhesion energy λ per unit length, with λ to be determined experimentally.
Adding bending and adhesion energies gives:

E(L) =
(

1
2
κ/R2 − λ

)
L. (3.8)

There are now two possibilities: if 1/2κ/R2 does not exceed λ, then DNA
will wrap around the core to the maximum amount since E(L) decreases
with increasing L. If 1/2κ/R2 exceeds λ, then E(L) is minimized by L = 0
so there is no complexation. This “unwrapping” transition of Marky and
Manning [33] was studied experimentally by Yaeger and von Holde [34] (see
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Fig. 22. Phase Diagram of a Nucleosome Solution.

Fig. 22). They changed the salt concentration in a dilute solution of nucle-
osome particles – in order to change λ – and found a first-order unwrapping
transition for salt concentrations somewhat above the physiological level of
0.1 M. At even higher salt concentrations, the core fell apart. That indicates
that nucleosome particles are rather close to the unbinding transition under
physiological conditions. Since we know the bending modulus of DNA, we
can estimate this way that λ is of order κ/R2, which is about 0.2 kBT/A,
or about 0.6 kBT/A per bp.

It is actually a very reasonable design strategy for nucleosomes to be
close to the unwrapping transition. Chromatin decondensation can then
take place by minor chemical changes of the nucleosome core (e.g., by re-
ducing the positive charge of the histones through acetylation).

Polach and Widom developed a clever way of measuring λ in an in-
dependent way [35]. Recall that digestion enzymes can cut DNA strands
that are not protected by proteins. If the nucleosome “operating point”
indeed is close to the Marky–Manning transition, we might expect signifi-
cant thermal fluctuations in the wrapping length L. This can be checked by
allowing the nucleosome solution to be incubated for a while with digestion
enzymes. According to the Boltzmann Distribution, the probability distri-
bution P (L) of the wrapping lengths should be an exponential function of
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L (using Eq. (3.6)):

P (L) ∝ exp
{(

1
2
κ/R2 − λ

)
(Lmax − L)/κBT

}
(3.9)

with Lmax the maximum wrapping length. The distribution of wrapping
lengths was indeed found to be exponential, which allowed a separate mea-
surement of λ (obtaining a value of the same order as our crude estimate).

The fact that there are significant fluctuations in the DNA length is
interesting by itself for a number of reasons. The possibility of formation
by thermal fluctuations of small, open DNA loops along the wrapped length
provides a mechanism for the mobility of nucleosomes along DNA without
the nucleosome becoming detached from the DNA [36], which indeed has
been observed experimentally.

3.2.3 Protein-DNA interaction under tension

Our next example of the WLC concerns what happens with DNA associated
proteins when the DNA is placed under tension. We saw earlier that the
binding of many proteins to DNA produces a bend or a kink in the DNA.
Tension will increase the energy cost of producing the kink. Let’s compute
this energy cost? Assume that the protein binds at the midpoint of a strand
of length L. Let the kink angle be π− 2α (see figure). Now place the DNA
strand under a tension F .

Fig. 23. A protein/DNA complex under tension.

Let s be the arc-length along the DNA, with s = 0 the kink location.
The curvature 1/R(s) at s is then dθ/ds, with θ the angle between the
tangent and the direction along which the tension is applied. The boundary
conditions on θ(s) for large L are θ(0) = α and θ(∞) = 0. The total energy
is the WLC bending energy plus the work −F Xp performed by the DNA
against the tension, with Xp the length of the projection of the DNA along
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the coordinate axis:

E = 2
∫ L/2

0

ds

{
1
2
κ

(
dθ
ds

)2

− F cos θ

}
· (3.10)

Equation (3.10) is a famous 19’th century problem of elasticity known as the
“Elastica”. The Euler–Lagrange equation δE/δθ = 0 minimizing E reads:

κ
d2θ

ds2
− F sin θ = 0. (3.11)

This happens to be the equation of motion for an ideal pendulum of length l,
mass M if we make the following identifications:

κ→ Ml
F → Mg
s→ time

and θ(s) the angle between the pendulum and the upwards vertical direction
(so θ = π is the equilibrium position). The particular pendulum solution
we are interested in starts in an upside-down position and then rotates
clockwise until the pendulum makes an angle α with the vertical:

Fig. 24. The Pendulum Analog.

This must be matched with a similar solution that makes a counter-
clockwise turn. Although the general solution can be expressed in terms of
ellipitic integrals, we will restrict ourselves to the case that α� 1. In that
case, we can linearize the Euler–Lagrange equation:

κ
d2θ

ds2
− Fθ ∼= 0. (3.12)

Note that this is not the harmonic oscillator equation, and the solution is
an exponential, not a trigonometric function:

θ(s) = ±α exp(−|s|/λ)

λ =
√
κ

F
· (3.13)
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The length scale λ tells us how far away from the protein we still find
a noticeable deformation of the DNA. Note that λ diverges when we al-
low the tension F to vanish. For a tension of one pN (one pN equals
10−12 Newton), λ is about 7 nm. If we insert equation (3.10) into the
energy expression and perform the integral, we obtain:

∆E = 2α2
√
κF (3.14)

for the bending energy contribution to E [37].
If ∆E exceeds the binding energy of the protein, then it would be en-

ergetically favorable to remove the protein from the DNA. In other words,
when the binding energy is less than the work done by the tension T upon
removing the protein, the protein will “pop” from the DNA. Writing ∆E
as 2α2kBT (ξ/λ), it follows that for a modest one pN tension and α = 0.5,
∆E is equal to 3.6 kBT . This already is not negligible compared to the
typical DNA/protein binding energy of a protein (20−30 kBT ). Since ∆E
scales as F 1/2, a tension of 100 pN would effectively prevent protein/DNA
complexation.

That is interesting since DNA is placed under tension during cell divi-
sion. When a cell divides, two duplicates of the chromosome are pulled apart
towards opposite “poles” of the cell by two bundles of fibers (the mitotic
spindles) that generate force through motor proteins. If this would produce
tensions of the order of 100 pN or larger on individual DNA strands making
up the two chromosomes, then this would lead to massive loss of DNA- as-
sociating proteins, including the nucleosome cores required to maintain the
structural integrity of chromosomes. Fundamental physical considerations
place limits on the operating parameters of the cell machinery.

3.2.4 Force-Extension Curves

Let’s compute the projected length Xp as a function of the applied tension:

Xp =
∫

ds cos θ(s)

∼= 2
∫ L/2

0

ds
(

1− 1
2
θ2(s)

)

= L− 1
2
α2
√
κ/F (3.15)

where we used equation (3.13) in the last step. This is known as a “force-
extension curve”. Force extension curves play an important role in modern
single-molecule biophysics because they can be measured experimentally. It
is possible to chemically attach silicon beads to the end of a DNA strand
and capture these beads in the focus of a lens. By measuring the position of
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the bead in the trap, one can measure the force F on the bead and hence, by
Newton’s Third Law, the force exerted by the bead on the strands. Pulling
the two beads apart, one obtains a relation between the distanceXp between
the beads and F .

It is usual to plot the dependence of F on the extension Xp, as shown in
Figure 25. In the present case, F diverges as 1/(L−Xp)2. This divergence

Fig. 25. Force-Extension Curve of a DNA/protein complex.

is truncated when the tension reaches the maximum value Tmax where the
protein pops off. In principle, both the kink angle and the binding energy
can be obtained from the force extension curve.

Measuring force extension curves is extremely popular: they have been
measured for DNA itself [38] and the 30 nm fiber [39] (as well as for RNA
strands and large proteins). In practice, the interpretation of force ex-
tension curves in terms of molecular-level events is complex beacuse the
measurements are characterized by irreversibility and “waiting-time” de-
pendence as you go up and down the force- extension curve. The lectures
of Evans address the fact that applying direct mechanical forces to macro-
molecule complexes indeed must produce, for fundamental reasons, highly
“rate-dependent” results.

Why would the force extension curve of a DNA strand be of such inter-
est? In the calculation leading up to equation (3.15) we assumed that DNA
is inextensible. This is not a good approximation. In the harmonic approx-
imation, the bending energy of a strand under tension (without associated
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proteins) is:

E =
∫ L/2

−L/2

ds

{
1
2
κ

(
dθ
ds

)2

− F cos θ

}

∼= TL+
1
2

∫ L/2

−L/2

ds

{
κ

(
dθ
ds

)2

+ Fθ2

}

∼= TL+
1
2
L
∑

q

[
κq2 + F

] |θq|2 . (3.16)

In the last step, we performed a Fourier Transform θ(s) =
∑

q θqeiqs.
Equation (3.16) is not quite right because it actually assumes that the DNA
is restricted to a plane, but this only affects numerical factors.

The energy is the sum of decoupled harmonic degrees of freedom for each
Fourier mode. That means that we can apply the Equipartition Theorem,
taking the Fourier amplitudes as the displacement variables. The effective
“spring constant” for θq equals κq2 + F so it follows that:

〈
|θq|2

〉
=

kBT

κq2 + F
(3.17)

from the Equipartition Theorem. Using Parseval’s Theorem:

〈
θ2
〉

=
∑

q

〈
|θq|2

〉

=
∑

q

kBT

κq2 + F

=
L

2π

∫ ∞
0

dq
kBT

κq2 + F
· (3.18)

In the last step we changed from summation to integration. If you introduce
the variable x = (κ/F )1/2 q, then this integral becomes a numerical factor:

〈θ2〉 = C
kBT√
κF

(3.19)

with C some number. The amplitude of the angle fluctuations is thus
proportional to 1/F 1/2. Using again equation (3.15), we can obtain a
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force-extension curve:

Xp =
∫

ds cos θs

∼= 2
∫ L/2

0

ds
(

1− 1
2
θ2(s)

)
= L

(
1− 〈θ2

〉)
= L

(
1− C kBT√

κF

)
· (3.20)

Solving for F , we find that the tension is again proportional to 1/(L−Xp)2:

F ≈ kBT

ξ

(
1

1−Xp/L

)2

(high tension). (3.21)

This equation tells us that when you pull on DNA against the restoring
force due to thermal fluctuations, DNA will be stretched out for tensions
large compared to kT/ξ, the ratio of the thermal energy and the persistence
length. This force is about 0.01 pN. That means that if you do force ex-
tension measurements using DNA as your “leads”, as for instance for the
protein pop-off case, then for tensions of less than, say, a few pN, you must
allow for this “entropic” elasticity of the DNA strands to properly interpret
your results. Actually, equation (3.21) curve is not right for tensions of
order 0.01 pN or less, since the harmonic approximation breaks down. In
that regime (not particularly relevant for our purposes) the force extension
curve can be shown to be linear:

F ≈ kBT

ξ

(
Xp

L

)2

(low tension). (3.22)

3.3 The RST model

The worm-like chain is a great favorite among physicists working on DNA
but it has a serious drawback. It treats DNA as a generic flexible tube
so it is of no help to understand the induced-fit mechanism of protein-
DNA interaction and the remarkable dual information storage capability of
DNA. There exists a second model, the RST model, that is more suitable
to address these issues.

3.3.1 Structural sequence sensitivity

Recall that a DNA base-pair consist of a larger purine and a smaller pyrim-
idine base. Treat these two groups as a smaller and a larger rectangular
plate. Importantly, the two plates do not lie in the same plane: they are
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rotated by a certain angle known as the propeller twist. In order to satisfy
the hydrophobic interaction, we must stack these twisted pairs on top of
each other, each one rotated with respect to the previous one by an angle
of about 30 degrees, the twist angle T . There is no particular problem to
stack a pyrimidine-purine pair on top of a pyrimidine-pair as shown in the
next figure. However, when you place a pyrimidine-purine pair on top of
a purine-pyrimidine (such as in a TATA sequence) you run into a “frustra-
tion” problem because of the propeller twist: there is no way for the two
lower plates both to be in contact with the upper plates. By sliding the lower
pair in one direction (see figure), you can improve the overlap between the
two purine plates. Alternatively, by sliding it in the opposite direction and
rotating along an axis perpendicular to the double helix (“roll”), you can
increase somewhat the overlap between a purine and a pyrimidine (show
this yourself). Clearly, there is considerable structural flexibility in the sec-
ond case, so it is indeed reasonable that both the local structure and the
local deformability of DNA depend strongly on sequence.

Fig. 26. A purine/pyrimidine pair does not stack easily on top of a pyrimi-

dine/purine pair.

Suppose for simplicity that for every pair of bases (like AT followed by
GC), we can identify preferred values for the relative Roll (R), slide (S),
and Twist (T), which are known as the Calladine Parameters (see Fig. 27).
Imagine the base-pair sequence as a deck of cards stacked on top of each
other. Let R, S, and T specify the relative orientation of subsequent pairs
(see figure). For R = S = 0, and fixed T, you obtain a spiral. If R has a
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fixed non-zero value, then you obtain a super-spiral: the axis of the original
spiral is itself a spiral. In general, by specifying R, S, and T for each pair
of cards, we obtain a unique three-dimensional structure that reflected the
base-pair code [40].

Actually, the relative twist, slide, and roll of two base-pairs on top of
each other are not uniquely defined by the base-pair identity of the two pairs,
though there is a statistical distribution of preferred values [41], presumably
related to longer-range correlations.

Fig. 27. Calladine parameters.

3.3.2 Thermal fluctuations

The interior structure of DNA is far from rigid and the R, S, and T val-
ues actually undergo quite dramatic thermal fluctuations. The next figure
shows an example of a DNA configuration obtained by a 140 picosecond
molecular dynamics (MD) simulation [42] compared with the ideal B DNA
structure. Long-time MD simulations of DNA molecules in a “box” of wa-
ter molecules lead to RMS fluctuation angles for R and T of order 5 and
9 degrees [43] in the ns time-window. The mean base-pair spacing also
shows large-amplitude fluctuations. When the R, S, and T variables are
treated as collective harmonic degrees of freedom, then the respective stiff-
ness constants can be obtained either from these MD simulations (or from
analysis of thermal diffuse X-ray scattering of DNA crystals).

Structural fluctuations in the ps to nanosecond (ns) time-window have
been observed [44] experimentally as dynamic Stokes shifts in the fluores-
cence spectrum of DNA. These local fluctuations are extraordinary strong
compared with those due to thermally excited phonon modes in crystalline
materials. The RST model clearly gives a more interesting and realistic
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Fig. 28. DNA structure after a 140 ps simulation (first panel) compared with the

DNA crystal structure (second panel). From reference [42].

account of the structural properties of DNA than the Worm-Like Chain.
However, it is mathematically complex and the structural, elastic, and
statistical mechanics properties of the RST model so far have not been
investigated by physicists.

4 Electrostatics in water and protein-DNA interaction

We noted that electrostatics provides the basis both for the non-specific
repressor-DNA interaction and for the stabilization of the nucleosome com-
plex. Electrostatics is known to be of general importance the organization
of chromatin [45]. DNA is about the most highly charged polymer you
are likely to come across: it has a negative charge per unit length λ of
−0.6 elementary charges per Angström (the negatively charged phosphate
groups discussed in Sect. 1). There is a fundamental functional reason for
all this charge: DNA is highly concentrated inside cells and bacteria and the
Coulomb self-repulsion prevents unwanted aggregation by the van der Waals
attraction. Other important biopolymers such as actin, microtubules, and
hyaluronic acid also are negatively charged and also often come in high con-
centrations. The fact that charged biopolymers all have a negative charge
prevents unwanted complexation between biopolymers of opposite charge.
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The high charge per unit length produces counter-intuitive effects that
are of considerable importance for DNA-protein interaction and they form
the focus of this section. We will emphasize fundamental aspects that do
not depend on making highly specific assumptions concerning the atomic
structure that would obscure the elegant, underlying physics of aqueous
electrostatics. First, we will introduce the physics of aqueous electrostatics
as it applies to macro-ions and their interactions [46].

4.1 Macro-ions and aqueous electrostatics

Assume a collection of highly charged macromolecules (“Macro-Ions”)
placed in water at fixed positions. Treat the water molecules as a
continuous medium of polar molecules, characterized by a large dielectric
constant ε (about 78 at 25 ◦C, this is a reasonable description only for
length-scales large compared to the size of a water molecule). In order to
determine the electrostatic potential φ surrounding the macro-ions, we must
solve Poisson’s Law:

∇2φ = −4π
ε
ρ (4.1)

with ρ the charge density. This charge density includes both the charge
density of the small mobile ions and of the fixed macro-ions. Macro-ions
have a low dielectric constant interior, while their charges normally are
located on the outer surface in contact with water. Under these conditions,
the electrical field just outside the macro-ions is determined by Gauss’ Law:

∂φ/∂n = −4πσ
ε

(4.2)

with σ the macro-ion surface charge density. We now can treat
equation (4.2) as a boundary condition to the solution of equation (4.1)
restricted to the space in between the macro-ions. To obtain the charge
density of the “small” salt ions we assume the Boltzmann–Poisson (BP)
approximation in which the concentration profile of the small ions is deter-
mined by the Boltzmann Distribution:

ci(�r) = ci exp(−eziφ(�r)/kBT ). (4.3)

Here, zi is the small ion valence, and ci the ion concentration far from
the macro-ions. The total charge density is ρions(�r) = e

∑
species

zici(�r). The

condition of charge neutrality requires that the charge density of the salt
solution far from the macro-ions vanishes so: e

∑
species

zici = 0.
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If we insert ρions(�r) = e
∑

species

zici(�r) in equation (4.1) assuming equa-

tion (4.2), we are left with a well-posed mathematical problem: we must
solve a second-order non-linear differential equation for the electrical po-
tential with boundary condition equation (4.2), plus the condition that the
potential vanishes at infinity.

From the solution of the BP equation, we can calculate the forces on the
macro-ions by computing first the free energy:

F =
∫

d3r


kBT

∑
species

ci(�r) ln ci(�r) +
1
2
ρ(�r)φ(�r)


 · (4.4)

The first part, with the sum over the different ion species, is entropic in
origin. It assigns each species the free energy density of an ideal, non-
interacting solution. The second term is purely enthalpic: it is the electro-
static energy density of a collection of charges. The electrostatic or charging
free energy is defined as the difference in free energies of F and the free en-
ergy of the system with all charges set to zero. The free energy F (�R1, �R2, ...),
computed as a function of the positions of the macro-ions, can be treated
as an effective potential energy of the macro-ions.

Why is this the correct free energy density for the BP equation? The
derivative of the free energy density with respect to ci(�r) should equal the
chemical potential of the i-th species, µi, according to the principles of
thermodynamics. Using ρions(�r) = e

∑
species

zici(�r), you find:

kBT (ln ci(�r) + 1) + 1/2eziφ(�r) =? µi.

This is not quite right since the potential in equation (4.4) depends on
the ion concentration through Poisson’s Law, equation (4.1). If you allow
for this dependence, by expressing first the potential in terms of the charge
density, you find that the factor 1/2 turns into one. If you then solve for the
concentration, you obtain Boltzmann’s Law equation (4.3). Equation (4.4)
is thus the “right” variational free energy.

The BP equation has been solved only for a few special case. The mathe-
matical difficulties of the BP theory simplify however in the high-temperature
limit. If the electrostatic energy per ion always is small compared to the
thermal energy, we can linearize the exponential in equation (4.3) to obtain:

ci(�r) = ci exp(−eziφ(�r)/kBT ) ∼= ci(1− eziφ(�r)/kBT ). (4.5)
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Inserting equation (4.5) in equation (4.1):

∇2φ ∼= −4π
ε


e ∑

species

zici(1− eziφ(�r)/kBT )




=


 4πe2

εkBT

∑
species

z2
i ci


φ(�r) (4.6a)

using again e
∑

species zici = 0. This is the famous Debye–Hückel (DH)

equation. In terms of the Debye Parameter κ ∼=
√

4πe2

εkBT

∑
species z

2
i ci (di-

mensions of 1/L), equation (4.6) has the form of the Helmholtz equation:

∇2φ = κ2φ (4.6b)

which is much easier to solve than the BP equation. For instance, for a point
charge q the solution of equation (4.6) is (q/εr) exp(−κr) while there is no
analytical form for the potential of a spherical charge in the BP equation.

The DH equation tells us that the characteristic length-scale over which
the potential decays to zero is 1/κ, the famous Debye Screening length. This
length-scale depends on the salt concentration. For concentrations in the
physiological range around 0.1 M, it is of the order of one nanometer, while
at the lowest salt concentrations that can be achieved (“millipore water”), it
is of the order of microns. The crucial question concerning the applicability
of DH theory to macro-ions will be discussed shortly.

From Poisson’s Law equation (4.1) and the DH equation equation (4.6),
it follows that the charge density ρ is proportional to the potential: ρ ∼=
− εκ2

4π φ. Using this in equation (4.4) with equation (4.5), you can find the
electrostatic free energy:

∆FDH =
εκ2

8π

∫
d3rφ2(�r). (4.7)

The DH electrostatic free energy is thus positive and equal to minus the
electrostatic energy: the positive entropic contribution is twice as large as
the negative enthalpic contribution.

4.2 The primitive model

The “Primitive Model” is a simple toy model that is helpful to study the
electrostatics of cylindrical macro-ions like DNA. The macro-ion is repre-
sented as an infinitely long, negatively charged rod. The radius of the rod is
denoted by a and the charge per unit length by λ (see Fig. 29). If we write λ



“bruinsma”
2002/8/8
page 57

�

�

�

�

�

�

�

�

R.F. Bruinsma: Physics of Protein-DNA Interaction 57

as −e/b, with b the spacing per elementary charge, then the surface charge
density σ equals −e/2πab. The charged rod is immersed in a cylindrical
container with radius R	 a filled with water (you also could consider R as
the typical distance to other rod-like macro-ions).

4.2.1 The primitive model: Ion-free

We start with the case of ion-free water. Poisson’s Law reduced to Laplace’s
equation ∆φ = 0 in a cylindrical geometry with solution φ(r) = α ln r + β.
Imposing the boundary condition equation (4.2) gives α:

φ(r) = −2λ
ε

ln r/R (4.8)

(demanding φ(R) = 0). The first thing you learn from equation (4.8) is
that there is a characteristic voltage scale ∆V = −λ/ε in the problem. How
does this voltage scale compare with the thermal energy? First, introduce
the Bjerrum Length lB:

e2

εlB
= kBT. (4.9)

Two monovalent ions that are one Bjerrum length apart have an electro-
static energy equal to the thermal energy (the Bjerrum length is about
7 Å under standard conditions). In terms of the Bjerrum Length, the ratio
ξ = e∆V/kT of the electrostatic and thermal energies equals:

ξ =
e∆V
kBT

=
lB
b
· (4.10)

For DNA, this ratio – which is known as the Manning Parameter – is
about 5, so the electrostatic energy dominates over the thermal energy near
the surface of DNA.

4.2.2 The primitive model: DH regime

Now let’s add ions and assume the high temperature limit where we can
apply DH theory. We must solve the Helmholtz Equation ∆φ = κ2φ
in cylindrical geometry. The appropriate solution vanishing at infinity is
the K0 Bessel Function: φ(r) = αK0(κr). Using the boundary condition
equation (4.2) to fix the intgeration constant α gives α = 2λ

εκaK′
0(κa) so

φ(r) =
2λ

εκaK ′0(κa)
K0(κr). (4.11)
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For small arguments, K0(x) can be approximated by − lnx, and we recover
the ion-free case (up to a constant). For large arguments, K0(x) can be
approximated by x−1/2 exp−x, so the potential is screened exponentially
distances large compared to the Debye screening length. From the relation
ρ ∼= − εκ2

4π φ it follows that there is a cloud of positive ions surrounding the
negatively charged rod (also called the “bilayer”). The total the charge per
unit length of this cloud equals:

λ+ = −εκ
2

4π

∫ R

a

2πrd r
{

2λ
εκaK ′0(κa)

K0(κr)
}

= −λ. (4.12)

The positive charge per unit length of the bilayer is just equal to the negative
charge per unit length so the net enclosed charge is zero. You thus can
consider the charged rod as a cylindrical capacitor.

The number of positive and negative small ions is thus not equal. The
extra (positive) ions required to neutralize the rod are called the “counter-
ions”, the other positive and negative ions the “co-ions”.

4.3 Manning condensation

4.3.1 Charge renormalization

Is DH theory valid for DNA under physiological conditions? It depends.
For DNA, κa is of the order of one, so it follows from equation (4.11) that
the characteristic voltage scale at the surface is still ∆V = −λ/ε. We know
that in that case the ratio ξ of the electrostatic energy and thermal energy
is large compared to one so DH theory fails seriously near the surface of
DNA. Yet, far from the surface the potential decreases to zero. In the
asymptotic regime far from the macro-ion where the electrostatic energy
is small compared to the thermal energy, the DH equation must be valid.
What this really amounts to is that when we solve the DH equation, we are
not allowed to use the boundary condition equation (4.2) to determine α!
The integration constant α must be determined by a full solution of the
non-linear Boltzmann–Poisson (BP) equation (or even some more accurate
theory). This leads to a change in the value of α which we will incorporate
by the introduction of a “renormalized” charge per unit length λ∗:

lim
r→∞φ(r) =

2λ∗

εκaK ′0(κa)
K0(κr). (4.13)

We thus can use the nice, linear DH theory to compute, for example, the
asymptotic force of interaction between two highly charged rods, for sepa-
rations large compared to the Debye screening length, provided we replace
everywhere the bare charge by the renormalized charge. All the “hard” part
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of the problem is hidden in obtaining the renormalized charge, but that can
be determined experimentally if necessary! We can use in general DH the-
ory to study the phase behavior of dilute solutions of macro-ions of the same
sign of charge and it has been used with success to study dilute polyelec-
trolyte and colloidal solutions. It is however not appropriate for a study of
the short-range interaction between macro-ions. The interaction between
DNA strands in chromatin and the interaction between macro-ions of oppo-
site charge, such as in DNA/protein association, are beyond DH theory as
we shall see shortly. Our next step is to look for a physical description that
can apply to these cases without excessive mathematical complications.

4.3.2 Primitive model: Oosawa theory

First, let’s try to estimate the renormalized line charge. Assume that the
Manning Parameter is large compared to one so the electrostatic energy of
an ion near the surface of the negatively charged rod exceeds kBT . Some
of the positive ions will be attracted by the negative charges of the rod and
establish a close association with the rod. For the first of these “condensed”
ions, the thermal energy is small compared to the electrostatic energy so
thermal fluctuations will not break up the association. The condensed ions
are known as the “Manning Cloud” [47] by the way. Condensed ions are
restricted to a thin sheet surrounding the rod and should be considered as
a separate “population” from the free ions further out in the Debye Cloud
(see Fig. 29).

As more and more positive ions become associated with the rod, the
effective charge per unit length decreases and the ratio of electrostatic and
thermal energy decreases as well. We will estimate the equilibrium value
λ∗ of the effective charge by demanding that the ions of the two popula-
tions are in chemical equilibrium with each other. Note that ions can freely
exchange between the two populations. This point of equilibrium is set by
the condition that the electrostatic energy per ion in the Manning Cloud
must be comparable to thermal energy: the energy gain per ion is then
balanced by the entropy loss. Using equation (4.10), this condition gives
e∆V
kBT ≈ −λ∗e/ε

kBT ≈ 1, or λ∗ ≈ −e/lB. The prediction is thus that the renor-
malized charge per unit length should be of order one charge per Bjerrum
Length. That is curious: the renormalized charge should not depend on
the bare charge! Of course, if the bare charge per unit length is so small
that the Manning parameter is less than one, then there would be no charge
renormalization in the first place and λ∗ = λ.

We can make this argument more precise in the limit κa � 1. Let CC

be the ion concentration of the condensed fraction and CDH the free ion
concentration far from the rod but inside the DH cloud. If you placed a
microscopic voltmeter with one electrode at the edge of the Debye layer and
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the other just inside the Manning cloud, you would measure an electrical
voltage difference ∆Φ between the two populations:

Fig. 29. Measuring the potential of the primitive model.

We can use the DH expression equation (4.12) for the asymptotic part
of the electrostatic potential to compute ∆Φ:

∆Φ ∼= −(2λ∗/ε) ln(1/κa). (4.14)

Since the two populations are in chemical equilibrium with each other, their
concentration ratio must obey the Boltzmann Distribution:

CC

CDH
= exp(−e∆Φ/kBT ). (4.15)

Next, we know from DH theory (Eq. (4.12)) that the free ion concentration
of the Debye cloud must cancel the effective charge of the rod:

eπκ−2CDH ≈ −λ∗. (4.16)
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Overall charge neutrality requires that the total number of free ions per unit
length in the Debye cloud plus that of the condensed ions must cancel the
bare charge per unit length:

eCCπa
2 + eCCπκ

−2 = −λ. (4.17)

Now eliminate the free and condensed ion concentrations in the Boltzmann
condition using the last two equations. Inserting equation (4.13), you then
obtain a self-consistency condition for the renormalized charge λ∗:( |λ| − |λ∗|

|λ∗|
)

(κa)2 ∼= exp
(
−2e|λ∗|
εkBT

ln(1/κa)
)
. (4.18)

That does not seem very interesting since it is only an approximate ex-
pression and we already have an estimate for λ∗. Here is the subtle part
though: the approximations involved the “fuzzyness” of length scales κ−1

and a. The only thing we are going to assume concerning these two length
scales is that κa� 1. If you look at the self-consistency condition, you see
that the functional dependence on κa imposes a condition on the exponent
of κa, no matter what these two length scales precisely are. The exponent
equals two on the left-hand side so it must equal two on the right-hand side
as well! This means that (at least in the limit of low salt) λ∗ = −e/lB
exactly.

Actually, this is the solution only if the renormalized charge differs from
the bare charge per unit length, which is the case as long as |λ| > e/lB.
There is another solution to the self-consistency equation, namely λ = λ∗!
Check yourself that this is the solution if |λ| < e/lB. There is thus a
mathematical singularity in the dependence of the renormalized charge on
the bare charge at the point |λ| = e/lB.

It is possible to compute the renormalized charge per unit length an-
alytically from the non-linear BP equation [48] in the limit of zero salt
and it confirms this result. From numerical solutions of the BP equation
at finite salt concentration, we know that this mathematical singularity is
“smeared-out” as the salt concentration increases.

You can apply this method – due to Oosawa [49] – also to a charged
sphere of radius a, charge Z. Show yourself that in the large Z limit, the
renormalized charge Z∗ of a sphere is of order (a/lB) [50], the ratio of the
radius and the Bjerrum length.

4.3.3 Primitive model: Free energy

If the analytical BP solution for an infinite rod is inserted in the free energy
expression equation (4.4), you obtain in the strong- coupling limit of large



“bruinsma”
2002/8/8
page 62

�

�

�

�

�

�

�

�

62 Physics of Bio-Molecules and Cells

Fig. 30. Dependence of the renormalized charge per unit length on the bare

charge per unit length.

Manning Parameter ξ for the electrostatic free energy:

lim
ξ→∞

f(ξ) =
kBT

b
ln
{
2ξ2/(κa)2

}
(4.19)

in the limit of low salt concentration (this result, due to Lifson and
Katchalsky [51], dates from 1954!). Like the weak-coupling DH expression
equation (4.7), the charging free energy is positive. That is surprising: you
would expect that in the strong coupling limit the electrostatic free energy
should be negative due to the free energy gain obtained when you bring
positive and negative charges together after the charge is turned on. Such
an enthalpic term is indeed present, but it is a factor of order 1/ξ smaller.
The electrostatic free energy for large ξ in BP theory is dominated by the
entropic contribution. Its origin lies in the entropy loss that is suffered by
the ions drawn into the Manning cloud: when you “turn on” the charges
from zero, counter-ions are forced to condense on the rod once ξ exceeds one.
The condensed ions lose kBT per ion in the charging process, so the entropic
contribution to the free energy per unit length is of order kBT per charge
or kBT/b, which is indeed the order of magnitude of f . We sometimes call
this effect “counterion confinement”.

It is interesting to compare the entropic free energy of the counterions
and the conformational free energy of a polymer. For DNA, the latter is of
order kBT per persistence length. Since the persistence length is of order
500 Å, we see that the conformational free energy of DNA is completely
negligible compared to the counter-ion free energy.
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4.4 Counter-ion release and non-specific protein-DNA interaction

4.4.1 Counter-ion release

Assume a positively charged macro-ion with a charge Z of order 10 or so
approaching a highly negatively charged rod. For distances large compared
to 1/κ, the electrostatic potential can be approximated by the asymptotic
DH form. However, when the positive charge enters the Debye cloud unusual
things start to happen. Recall that the counter-ions of the Manning cloud
carry a free energy cost of about kBT per counter-ion. When the positive
macro-ion charges are brought into close contact with the negative macro-
ion charges, a certain number of condensed counter-ions can be released. If
the number of released counterions equals Z ′ < Z, then the free energy gain
∆FCR upon binding is:

∆FCR = Z ′bf(ξ)

= Z ′ kBT ln
{
2ξ2/(κa)2

} · (4.20)

This is a predominantly entropic binding mechanism. You might think of
the highly charged rod with it condensed cloud of counter-ions as an entropic
electro-chemical battery and the binding of the positive charge as a local
discharge of this battery.

Let’s apply the idea of counter-ion release to protein-DNA
interaction [52]. Most proteins associating with DNA have a small total
charge, but a quite significant dipole moment. The protein surface that fits
on the DNA is lined with positive charge and the surface facing away with
negative charge. Z ′ is then the number of positive charges on the DNA-
binding surface of the protein. Note that this clever arrangement assists the
“docking”, the proper orienting of the protein, as it approaches DNA, while
it avoids generic association of the protein with other negatively charged
biopolymers.

In Section 2, we discussed the fact that the non-specific interaction
between the lac repressor and DNA is predominantly entropic. We now
understand this at a fundamental level [53]: the entropy gain of the non-
specific interaction is due to release of the counter-ions, just like the entropic
hydrophobic interaction can be viewed as being due to release of water
molecules. Since the Debye Parameter is proportional to [Salt]1/2, ∆FCR

should be proportional to − ln([Salt]) according to equation (4.19). This
indeed agrees with the dependence on salt concentration of the non-specific
interaction between the lac repressor and DNA given by equation (2.21).
Comparing equations (2.21) and (4.19), we even can estimate the number
Z ′ of released counter-ions of the lac repressor to be about ten.

The predominantly entropic nature of the non-specific protein-DNA in-
teraction informs us that the DH approximation is inappropriate for treating
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protein-DNA complexation because in the DH approximation, entropic and
enthalpic contributions are comparable in magnitude, in disagreement with
the experimental observations on the non-specific binding energy discussed
in Section 2. In general, the use of DH potentials with renormalized charges
is thus not appropriate for solutions containing macro-ions with opposite
sign of charge, since that will lead to formation of complexes of macro-ions
of opposite charge and counter-ion release of condensed counterions.

4.4.2 Nucleosome formation and the isoelectric instability

The most dramatic example of the non-specific protein-DNA interaction is
the complexation of the positively charged nucleosome core with negatively
charged DNA discussed in the previous section. The total positive charge
of the core, Zcore, is about 245 elementary charges and the total negative
charge of the wrapped DNA equals ZDNA = −292. That is curious: the
net charge Z∗ of the nucleosome is positive, about −47. It is not obvious
why more DNA should be wrapped around the nucleosome than required
to neutralize the core charge, assuming that electrostatics is the dominant
association mechanism. If anything, it would be expected that Z∗ is neg-
ative, because of the free energy penalty incurred when we bend the DNA
around the nucleosome.

Let’s apply the concept of counter-ion release to nucleosome formation.
We discussed, in Section 3, the Marky–Manning model for the formation of
the nucleosome. In this model, the electrostatic attraction between DNA
and the nucleosome core is characterized by an adhesion energy per unit
length. If the binding of DNA to the nucleosome core is due to counter-ion
release, then we can simply identify the adhesion energy per unit length with
the f(ξ) given by equation (4.18). Within the counter-ion release model we
would expect to release no more counter-ions than required to compensate
the positive charge of the core. That again leads to the (intuitive) result
that Z∗ should be zero (or negative). Such neutralized, charge compensated
complexes are known as “isoelectric” by the way.

Let’s return to the Oosawa description of counter-ion condensation and
measure the electrostatic potential around an isoelectric nucleosome com-
plex with Z∗ = 0, using again a microscopic voltmeter. One of the electrodes
of the voltmeter is placed in contact with the Manning cloud of the DNA
far from the nucleosome and the other electrode is placed near the surface
of the nucleosome (see figure). Let ∆Φ = V (DNA) − V (Nucleosome) be
the read-out of the voltmeter. The Boltzmann distribution informs us that
the ratio of (small) positive ion concentration at the two electrode locations
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Fig. 31. Measuring the electrical potential of a charge-neutral nucleosome.

under conditions of chemical equilibrium must equal:

CDNA

CNucleosome
= exp(−e∆Φ/kBT ). (4.21)

Since the complex is charge neutral, the concentration of positive ions at
the nucleosome surface must be low (not quite zero since the electrostatic
potential surrounding the complex will contain higher order multipole con-
tributions), while the ion concentration inside the Manning cloud is high
as we saw (of order 1 M in fact). That means that the left-hand side of
equation (4.20) must be large, so the voltage difference ∆Φ must be large
and negative to insure chemical equilibrium of the positive ions.
The electrical potential at the nucleosome surface thus must exceed the
potential at the DNA surface by a significant amount. This electrical po-
tential difference will “pull-in” extra DNA material leading to a deviation
from charge neutrality, in fact to charge-reversal: by that we mean that
the effective charge Z∗ of the complex has a different sign from the bare
charge. Counter-ions are not released to infinity when this happens but in-
stead remain associated with the charged nucleosome complex, but this still
increases their entropy. As you wrap more and more DNA over the complex,
the capacitive charging energy cost of the complex grows and eventually the
wrapping process stops.

Let’s try to make this argument quantitative [54]. Assume a spherical
nucleosome of radius a with bare charge Z and assume that a length L of
DNA has been wrapped around it. The net charge Z∗(L) of the nucleosome
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equals:

Z∗(L) = Z − (L/b) (4.22)

with b the spacing between charges along DNA. At the isoelectric point
Z∗ = 0, the wrapping length is Liso = Zb. The free energy is the sum
of three terms. The bending energy cost, the adhesion energy per unit
length, and the capacitive charging contribution just mentioned. The first
two terms were already present in the Marky–Manning model of Section 3,
while the last term will be handled by treating the nucleosome as a sperical
capacitor with capacitance 1/εa:

∆F =
{ κ
a2
− f(ξ)

}
L+

e2Z∗(L)2

εa
(4.23)

(we are not concerned here about numerical factors). The second term has
a quadratic minimum at L = Liso, while the first linear term favors large
L (at least in the relevant regime where the adhesion energy exceeds the
bending energy). The optimal value L∗ clearly must exceed Liso. After
minimization with respect to L, we obtain:

Z∗ ≈ a

lB

[
ln(1/(κa)2)− κb/kBTa

2
]
. (4.24)

The effective net charge is predicted to be of the order of the ratio of
the radius of the nucleosome and the Bjerrum length. Note that at the
Marky–Manning unwrapping point, the effective nucleosome charge van-
ishes. Interestingly, this effective charge is of order the typical renormalized
charge of a highly charged sphere in BP theory. We actually might have
guessed our result right away!

This charge-reversal effect is our final example of proper design. A clas-
sical biophysics experiment is the precipitation of proteins at the iso-electric
point (by varying pH). A solution of isoelectric complexes aggregates under
the action of the van der Waals attraction. If the nucleosomes would have
been charge-neutral, they would have stuck together, even though DNA is
highly charged. The effective charge of the nucleosome prevents this un-
wanted aggregation. A subtle and counter-intuitive physical mechanism,
counter-ion release, is recruited in the efficient management of the macro-
ion household of the cell.
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MECHANICS OF MOTOR PROTEINS

J. Howard

1 Introduction

Motor proteins are molecular machines that convert the chemical energy
derived from the hydrolysis of ATP into mechanical work used to power
cellular motility. In addition to specialized motile cells like muscle fibers
and cellular processes like cilia, all eukaryotic cells contain motor proteins
(Fig. 1). The reason is that eukaryotic cells are large and their cytosols are
crowded with filaments and organelles; as a result, diffusion is too slow to
efficiently move material from one part of a cell to another (Luby-Phelps
et al. 1987). Instead, the intracellular transport of organelles such as vesi-
cles, mitochondria, and chromosomes is mediated by motor proteins. These
proteins include myosins and dyneins that are relatives of the proteins found
in the specialized muscle and ciliated cells, as well as members of a third
family of motor proteins, the kinesins, which are distantly related to the
myosin family.

The focus of this chapter is on how motor proteins work. How do they
move? How much fuel do they consume, and with what efficiency? How do
chemical reactions generate force? What is the role of thermal fluctuations?
These questions are especially fascinating because motor proteins are un-
usual machines that do what no manmade machines do–they convert chem-
ical energy to mechanical energy directly, rather than via an intermediate
such as heat or electrical energy. Tremendous insight into this chemome-
chanical energy transduction process has come from technical developments
over the last ten years that allow single protein molecules to be detected
and manipulated. The goal of this review is to provide a framework within
which to understand these new observations: how do mechanical, thermal,
and chemical forces converge as a molecular motor moves along its filamen-
tous track. For background, the reader is directed to Molecular Biology of
the Cell (Alberts et al. 2002) for an introduction to the biology of cells and
molecules, to Cell Movements (Bray 2000) for a broad review of cell motil-
ity, and to Mechanics of Motor Proteins and the Cytoplasm (Howard 2001)
for more detailed discussion of the mechanics of molecular motors and the
cytoskeleton.

c© EDP Sciences, Springer-Verlag 2002
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Fig. 1. Motor proteins and cellular motility.

2 Cell motility and motor proteins

The study of motor proteins begins with myosin, which drives the contrac-
tion of muscle. Myosin was first isolated as a complex with actin filaments
by Kühne (Kühne et al. 1864), though it was not until the 1940s that
the complex was dissociated into the separate proteins, myosin and actin
(Straub 1941-2; Szent-Gyorgyi 1941-2). The discovery of the myosin cross-
bridges by H.E. Huxley in 1957 (Huxley 1957b, Fig. 2A) provided a molec-
ular basis for the contraction of muscle: the bending or rotation of these
crossbridges causes the actin-containing thin filaments to slide relative to
the myosin-containing thick filaments, and the sliding of these filaments, in
turn, leads to the shortening of the muscle, as had been demonstrated a few
years earlier (Huxley & Hanson 1954; Huxley & Niedergerke 1954).

Since its initial discovery, the crossbridge (also called a head) has proven
to be central to the mechanism of cell motility. Dynein, which drives the
beating of cilia, was identified in the 1963 (Gibbons 1963). The dynein
crossbridges cause the adjacent doublet microtubules to slide with respect to
each other (Fig. 2B). Because shear between the microtubules at the base of
the cilium (e.g. near the head of the sperm) is prevented by strong linkages,
the sliding is converted into bending of the microtubules along the length
of the cilium. In this way the sperm undergoes its snake-like propulsion
through solution. Kinesin, which moves organelles along microtubules, was
purified in 1985 (Brady 1985; Vale et al. 1985). Attached to the cargo
at one end, the crossbridges at the other end of the kinesin molecule walk
along the surface of the microtubule (Fig. 2C).
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Fig. 2. Crossbridges formed by the motor domains of motor proteins drive motion

along cytoskeletal filaments. A. Muscle. Myosin crossbridges protruding from the

thick, myosin-containing filament drive the sliding of the thin, actin-containing

filaments. B. Kinesin crossbridges walk along microtubules carrying organelles.

C. Sperm, dynein crossbridges cause the sliding of adjacent microtubules.

In all cases studied in detail, the motion of a motor protein is directed.
Actin filaments and microtubules are polar structures made of asymmet-
ric protein subunits, and a given motor always moves towards a particular
end of the filament. The myosin, dynein and kinesin families have a large
number of members. For example, humans have 33 genes which code for
proteins of similar amino acid sequence to the heavy chain of muscle myosin
(http://www.gene.ucl.ac.uk/nomenclature/, http://www.mrc-lmb.
cam.ac.uk/myosin/myosin.html), and they have 21 dynein heavy-chain
genes and 45 kinesin genes (Miki et al. 2001; http://www.blocks.fhcrc.
org/ kinesin/index.html). Interestingly, different myosins go in different
directions along actin filaments and different kinesins go in different direc-
tions along microtubules. This is important because the orientation of actin
filaments and microtubules in cells is tightly controlled: thus, by using dif-
ferently directed motors cells are able to move cargoes from one part of the
cell to another (and back) in order to organize the cell’s internal structure.

3 Motility assays

The study of motor proteins was revolutionized by the development of
in vitro motility assays in which the motility of purified motor proteins
along purified cytoskeletal filaments is reconstituted in cell-free conditions.
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Fig. 3. A motility assay in which the motor is bound to a surface and the filament

is observed to glide over the surface in the presence of ATP. B, C. Fluorescently

labeled microtubules gliding across a kinesin-coated surface (15 s between frames).

The arrowed microtubule has a bright mark on its slowly growing end (called the

minus end): this end leads, showing that kinesin is a plus-end-directed motor.

An important milestone in this development was the visualization of fluo-
rescent beads coated with purified myosin moving along actin cables in the
cytoplasm of the alga Nitella (Sheetz & Spudich 1983). This was quickly
followed by the first completely reconstituted assay in which motor-coated
beads were shown to move along oriented filaments made from purified actin
that had been bound to the surface of a microscope slide (Spudich et al.
1985). Though “threads” of actin and myosin had been known to contract in
the presence of ATP (Szent-Gyorgyi 1941), this contraction was very slow.
The significance of the new findings was that they proved that myosin (to-
gether with actin) was sufficient to produce movement at rates consistent
with the speeds of muscle contraction and cell motility.

There are two geometries used in in vitro motility assays: the gliding
assay and the bead assay. In the gliding assay, the motors themselves are
fixed to the substrate, and the filaments are observed under a light micro-
scope as they diffuse down from solution, attach to, and glide along the
motor-coated surface (Fig. 3) in the presence of ATP (Fig. 4). In the bead
assay, filaments are fixed to a substrate, such as a microscope slide, and
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Fig. 4. The hydrolysis of the gamma-phosphate bond (arrowed) of ATP can be

summarized by the following reaction: ATP ↔ ADP + Pi

∆G = ∆G0 − kT ln [ATP]c
[ADP]c[Pi]c

∆G0 = kT ln
�

[ATP]eq
[ADP]eq[Pi]eq

�
= −54 × 10−21 J

where the subscript c refers to cellular, the subscript eq refers to equilibrium and

the concentrations have units moles per liter. In cells, the reaction is very far

from equilibrium with typical concentrations [ATP] = 1 mM, [ADP] = 0.01 mM

and [Pi] = 1 mM; this makes the free energy very large and negative, ∆G ∼=
−100 × 10−21 J.

motors are attached to small plastic or glass beads with typical diameters
of 1 µm. The motions can be recorded and the speed measured by tracking
the centroid of the bead or the leading edge of the filament (see Scholey
1993 for detailed methods). There is good overall agreement between the
speed of a motor protein in vitro and the speed of the cellular motion that
is attributed to the motor (Table 1).

4 Single-molecules assays

The progress of research on motor proteins has gone hand-in-hand with
increases in the sensitivity of light microscope techniques. Single protein
molecules can now be observed and manipulated. A crucial development
was the visualization of individual actin filaments by darkfield microscopy
(Nagashima & Asakura 1980). This was followed by visualization of micro-
tubules by differential interference contrast microscopy (Allen et al. 1981)
and actin filaments by fluorescence microscopy (Yanagida et al. 1984). Fur-
ther refinement of the motility assays led to detection of movement by single
motor molecules (Howard et al. 1989). With improved fluorescence sensi-
tivity, it was even possible to image individual fluorescently labeled motors
(Funatsu et al. 1995) (rather than the much larger filaments), and to watch
the motors individually while they move along filaments (Vale et al. 1996;
Yajima et al. 2002). The combination of these assays with increasingly
sophisticated optical and mechanical techniques such as optical tweezers
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Table 1. Motor speeds in vivo and in vitro.

Motor Speeda Speedb ATPasec Function

in vivo in vitro (s−1)

(nm/s) (nm/s)

Myosins

1. Myosin IB 500 200 6 Amoeboid motility, hair cell adaptation

2. Myosin II 6000 8000 20 Fast skeletal muscle contraction

3. Myosin II 200 250 1.2 Smooth muscle contraction

4. Myosin V 200 350 5 Vesicle transport

5. Myosin VI ND −58 0.8 Vesicle transport?

6. Myosin XI 60 000 60 000 ND Cytoplasmic streaming

Dyneins

7. Axonemal –7000 –4500 10 Sperm and cilial motility

8. Cytoplasmic –1100 –1250 2 Retrograde axonal transport, mitosis,

transport in flagella

Kinesins

9. Conventional 1800 840 44 Anterograde axonal transport

10. Nkin 800 1800 78 Transport of secretory vesicles

11. Unc104/KIF 690 1200 110 Transport of synaptic vesicle precursors

and mitochondria

12. Fla10/KinII 2000 400 ND Transport in flagella, axons, melanocytes

13. BimC/Eg5 18 60 2 Mitosis and meiosis

14. Ncd ND –90 1 Meiosis and mitosis

ND not determined or known.

(Svoboda et al. 1993) has allowed measurement of the stepwise movement
of motors along their filaments (Fig. 5) and the measurement of the force
generated by a single motor protein (Fig. 11).

Single-molecule mechanical and optical techniques are now being applied
to many biochemical processes mediated by other molecular machines; these
include ATP synthesis (Noji et al. 1997), DNA transcription (Wang et al.
1998), and DNA replication (Wuite et al. 2000). The folding of individual
proteins (Deniz et al. 2000) and RNA (Liphardt et al. 2001) can also be
followed. The techniques can even be used to record from molecules on
the surfaces of intact cells (Sako et al. 2000; Benoit et al. 2000; Schutz
et al. 2000) and recordings deep inside cells should soon be possible. Thus
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Fig. 5. A rat kinesin molecule taking 8 nm steps along a microtubule at low ATP

concentration. (Courtesy of Nick Carter and Rob Cross).

single-molecule techniques are becoming to cell biology what the patch
clamp technique and single ion-channel recordings are to neurobiology
(Neher & Sakmann 1976; Sakmann & Neher 1995).

5 Atomic structures

The structural and physical basis for motility has been placed on a firm
foundation by the solution of the atomic structures of actin (Kabsch et al.
1990) and myosin (Rayment et al. 1993) and of tubulin (Lowe & Amos 1998;
Nogales et al. 1998) and kinesin (Kull et al. 1996). By fitting the atomic
structures into electron micrographs, atomic models of the actin filament
(Holmes et al. 1990) and the microtubule (Nogales et al. 1999) have been
built. There are also reasonable guesses for how the motors dock to these
filaments (e.g. Fig. 6).

The atomic structures have brought many key questions into focus. For
example, how do small changes associated with the hydrolysis of ATP (on
the order of a few Angströms) lead to protein conformational changes on the
order of several nanometers? What determines the directionality of a motor
protein? The detailed answers to these problems will require many addi-
tional atomic structures: the motors complexed with their filaments, and the
motors with different nucleotides bound to them (e.g. ATP, ADP and Pi,
ADP and no nucleotide). But this will be very difficult, and even when
solved, these structures will provide only static pictures, with no kinetic or
energetic information: photographing an internal combustion engine at top
dead center and at the bottom of the down stroke does not explain how it
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Fig. 6. Kinesin docked to the microtubule. Kinesin has two identical heads joined

by the dimerization domain (dark). Each head binds nucleotide, which was ADP

in these crystallization conditions. The microtubule is composed of dimers of the

closely-related α and β tubulins. The dimers associated “head-to-tail” to form a

polar structure that has the β-subunit at the plus end.

works. In the following sections I will address some of physical and ther-
modynamic questions which are essential to answer in order to understand
how conformational changes driven by ATP hydrolysis might generate force
and produce directed motion.

6 Proteins as machines

The structural and single-molecule results reinforce the concept of proteins
as machines (Alberts 1998). According to this view, a molecular motor is
an assembly of mechanical parts–springs, levers, swivels and latches–that
move in a coordinated fashion as ATP is hydrolyzed. How does such a
molecular machine move in response to a internal and external forces? The
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answer depends on the Reynolds number, which determines the pattern of
fluid flow around a moving object. The Reynolds number is equal to

Re =
ρLν

η
(1)

where ρ is the density of the liquid, L is the characteristic length of the
object (in the direction of the flow), ν is the speed of the movement relative
to the fluid, and η is the viscosity. Note that the Reynolds number is
dimensionless, and its physical meaning is that it is the ratio of the inertial
and the viscous forces. For proteins in aqueous solution ρ ≈ 103 kg/m3,
L ≈ 10 nm, ν ≈ 1 m/s (corresponding to 1 nm per ns, which is on the order
of the fastest global conformational changes of proteins) and η ≈ 10−3 Pa.s.
This makes Re ≈ 10−2 (and even less for slower motions). A Reynolds
number much less than one means that the inertial forces can be neglected
and that the motion is highly overdamped: when subject to a force, a protein
will creep into a new conformation rather than undergo oscillations. The
time constant of the motion is γ/κ, where γ is the drag coefficient (∼ ηL
according to Stokes law) and κ is the stiffness of the protein.

To get a feeling for how proteins move, imagine that the size of a protein
were increased by a factor of 107, so that a 10-nm-diameter protein became
a mechanical device of diameter 100 mm, fitting nicely in the palm of one’s
hand (Fig. 7). Now the density and rigidity (Young’s modulus) of protein
is similar to that of plastic or Plexiglas, so that we can consider that our
device is built of plastic (Howard 2001). If the viscosity of the fluid bathing
the device is increased by the same factor of 107 (by putting it in honey, for
example), then the ratio of the inertial to the viscous forces will the same
for both the protein and the macroscopic device. The Reynolds number
will be unchanged (see Howard 2001 for the detailed argument) and the
pattern of fluid flow will be preserved, just scaled in size. However, to
deform the plastic device to the same relative extent as the protein will
require a much larger force because the device has a much greater cross-
sectional area: whereas a force of only 1 pN might be needed to induce a
protein conformational change of 1 nm (corresponding to a strain of 10%),
a force of 100 N, corresponding to a weight of 10 kg, would be required to
produce the same strain in the plastic device. In response to the respective
forces, the protein and the mechanical device will move at the same initial
speed, but because the protein conformational change is so much smaller,
the relaxation of the protein will be complete in much less time: a relaxation
that took an almost imperceptible 100 ns for the protein will take a leisurely
1 s for the device. The work done scales with the volume, so the free energy
corresponding to the hydrolysis of one molecule of ATP scales to ∼100 J.
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Fig. 7. Comparison of scales between a motor protein (left) and a toy car (right).

Quantity Motor protein Macroscopic device

Dimension 10 nm 100 mm
Material (Youngs modulus) Amino acids (2 GPa) Plastic (2 GPa)
Solution (viscosity) Aqueous (1 mPas) Honey (10 kPas)
Speed 1 m/s 1 m/s
Reynolds number 0.01 0.01
Time constant 100 ns 1 s
Force 1 pN 100 N
Energy 1−100 × 10−21 J 1–100 J

7 Chemical forces

In addition to mechanical forces, proteins are subject to chemical forces.
By chemical forces, we mean the forces that arise from the formation or
breakage of intermolecular bonds. For example, consider what happens
when a protein first comes in contact with another molecule: as energetically
favorable contacts are made, the protein may become stretched or distorted
from its equilibrium conformation. Chemical forces could also arise from
changes in bound ligands: the cleavage of ATP (Fig. 4) will relieve stresses
within the protein that had been built up when the ATP bound. If a protein
can adopt two different structures, the binding of a ligand or the change in
a bound ligand could preferentially stabilize one of these structures and
therefore change the chemical equilibrium between the structures. In this
way, we imagine that a chemical change produces a local distortion that in
turn pushes the protein into a new low-energy conformation.

To understand how protein machines work, it is essential to understand
how proteins move in response to these chemical forces. Just as a chemical
force might cause a protein to move in one direction, an external mechanical
force might cause the protein to move in the opposite direction. For exam-
ple, the binding of a ligand might stabilize the closure of a cleft, whereas
an external tensile force might stabilize the opening of the cleft; as a result,
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the mechanical force is expected to oppose the binding of the ligand. Thus
mechanical forces can oppose chemical reactions and conversely, chemical re-
actions can oppose mechanical ones. If the chemical force is strong enough,
the chemical reaction will proceed even in the presence of a mechanical load:
in this case we say that the reaction generates force.

8 Effect of force on chemical equilibria

The influence of a mechanical force on the chemical equilibrium between
two (or more) structural states of a protein can be calculated with the
aid of Boltzmann’s law. If the difference between two structural states is
purely translational–i.e. if state M2 corresponds to a movement through
a distance ∆x with respect to state M1 as occurs when a motor moves
along a filament against a constant force–then the difference in free energy
is ∆G = −F ·∆x, where F is the magnitude of the force in the direction of
the translation. If the length of a molecule changes by a distance ∆x as a
result of a conformational change, then the difference in free energy is

∆G ∼= ∆G0 − F∆x (2)

where F is the tension across the molecule and ∆G0 is the free energy
difference in the absence of tension. The equality is exact if the molecule is
composed of rigid domains that undergo relative translation, or if the two
structural states have equal stiffness. Application of Boltzmanns law shows
that at equilibrium

[M2]
[M1]

= exp
[
−∆G

kT

]
∼= exp

[
−∆G0 − F∆x

kT

]
= k0

eq exp
[
F∆x

kT

]
(3)

where K0
eq is the equilibrium constant in the absence of the force. The

crucial point is that an external force will couple to a structural change if
the structural change is associated with a length change in the direction of
the force. If the change in length of a molecule is 4 nm, then a force of
1 pN will change the free energy by 4 pN.nm ∼= kT , the unit of thermal
energy where k is Boltzmanns constant and T is absolute temperate. Ac-
cording to equation (3), this will lead to an e-fold change in the ratio of
the concentrations. Because protein conformational changes are measured
in nanometers, and energies range from 1 kT to 25 kT (ATP hydrolysis)
(Fig. 4 legend), it is expected that relevant biological forces will be on the
scale of piconewtons (10−12 N).

An expression analogous to equation (2) holds for the effect of volt-
age on membrane proteins (Hille 1992). If a structural change of a mem-
brane protein such as an ion channel is associated with the movement of
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a charge, ∆q, across the electric field of the membrane, then the energy
difference between the open and closed states will include a term V ∆q, and
this makes the opening sensitive to the voltage, V , across the membrane
(Fig. 8). The openings of the voltage-dependent Na and K channels that
underlie the action potentials in neurons are strongly voltage dependent:
classic experiments by Hodgkin and Huxley showed that the ratio of open
probability to closed probability increased approximately e-fold per 4 mV
(Hodgkin 1964). This indicates that the opening of each channel is associ-
ated with the movement of about six electronic charges across the membrane
(∆q = kT/V ∼= 6e, where e is the charge on the electron). The predicted
movement of these electronic charges has been directly measured as a non-
linear capacitance of the membrane (Armstrong & Bezanilla 1974). Protein
conformational changes are sensitive to many other “generalized” forces
including membrane tension, osmotic pressure, hydrostatic pressure, and
temperature. Sensitivity to these forces requires that conjugate structural
changes occur in the protein, respectively area, solute accessible volume,
water accessible volume and entropy (Howard 2001).

The chemical analogy to force and voltage is chemical potential, a mea-
sure of the free energy change associated with a molecular reaction. For
example, if a ligand at concentration L preferentially binds to one state of
a protein over another, then the difference in free energy between the two
states is equal to kT lnL · ∆n, where kT lnL is the chemical potential of
the ligand and ∆n is the number of ligand-binding sites on the protein. If
a protein is subject to a combination of mechanical forces, electrical forces
and chemical forces, then the free energies will add, allowing one to cal-
culate how physical and chemical forces trade off against each other under
equilibrium conditions.

9 Effect of force on the rates of chemical reactions

To understand how force might influence the kinetics of protein reactions is
more difficult. Proteins are very complex structures, and a full description
of the transition from one structure to another would require following the
trajectories of each of the amino acids. The problem is even more difficult
because it expected that there are a huge number of different pathways
from one structure to another, and so a full description would require the
enumeration of all the different pathways, together with their probabilities.
This is simply not possible at present given that we do not even understand
how a protein folds into even one structure. Thus we need a simple model
for the kinetics of protein reactions.
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Fig. 8. Effects of generalized forces on protein conformations. In this example an

ion channel sitting in a membrane can be either open or closed depending on the

position of the gate. If the gate is coupled to a movement of charge (top), then

the channels probability of being open will depend on the membrane potential.

If it is coupled to a vertical movement (middle), then the probability will depend

on a vertical force. And if the opening of the gate is coupled to the binding of

a small molecule (bottom), then the probability will depend on that molecules

concentration (lnL) and the number of binding sites (∆n).

The simplest model for a chemical change between two reactants M1

and M2 is a first order process:

M1

k1

−→
←−
k−1

M2
d[M1]

dt
= −k1[M1] + k−1[M2]. (4)

This reaction is said to obey first-order kinetics because the rate of change
depends linearly on the concentration of the species. The constants of pro-
portionality, k1 and k−1 are called rate constants and they have units of s−1.
Many protein reactions have successfully been described by one first order
processes (e.g. McManus et al. 1988), though some reactions may not be
describable in this way (Austin et al. 1975).
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Almost inherent within the concept of a first order reaction is that it
occurs via a high-energy intermediate, called a transition or activated state.
If the transition state has a free energy, Ga, then the rate constant for the
transition is equal to

k1 = A exp
[
−∆Ga1

kT

]
∆Ga1 = Ga − G1 (5)

where A is a constant called the frequency factor. A similar expression holds
for the reverse reaction so that the ratio,

k1

k−1
= exp

[
−∆G

kT

]
=

[M2]
[M1]

(6)

accords with Boltzmann’s law at equilibrium.
The activated-state concept makes specific predictions of how rate con-

stants depend on external force. If the protein structures are very rigid and
the transitions M1 → Ma → M2 are associated with displacements x1, xa,
and x2 in the direction of the force, F , then the energies of the states will
be decreased by Fx1, Fxa and Fx2 respectively. This implies that

k1 ≡ A exp
[
−∆Ga1 − F∆xa1

kT

]
= k0

1 exp
[
F∆xa1

kT

]

∆Ga1 = Ga − G1 ∆xa1 = xa − x1. (7)

An analogous expression holds for k−1. Note that the ratio of the forward
and reverse rate constants must give the correct force dependence for the
equilibrium (Eq. (3)).

A useful way of thinking about the effect of force on the reaction rates
is that it tilts the free energy diagram of the reaction (Fig. 9). If the
displacement of the activated state is intermediate between the initial and
final states (x1 < xa < x2), then a negative external force (a load) will slow
the reaction, whereas a positive external force (a push) will accelerate the
reaction. However, if xa = x1–i.e. if the transition state is reactant-like–
then force will have has little effect on the forward rate constant. On the
other hand, if xa = x2–i.e. if the transition state is product-like–then the
force will have little effect on the reverse rate constant. If the displacement
of the activated state is not intermediate between the initial and final states,
it is even possible that a load could increase the forward rate constant (if
xa < x1), though in this case the backward rate would be increased even
more.
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Fig. 9. Transition-state concept. A high energy barrier limits the rate of the

transitions between the initial and final states of a chemical reaction.

10 Absolute rate theories

To predict the absolute rate of a biochemical reaction, a more detailed
theory is needed in order to estimate the frequency factor A. Two such
detailed theories are the Eyring rate theory and the Kramers rate theory.
Both require that the reaction coordinate, the parameter that measures the
progression of the reaction, be specified. If a protein changes overall length
as a result of the M1 → M2 transition, then we could make length the re-
action coordinate, though, many other reaction coordinates are possible;
indeed, the distance between any two atoms that move relative to one an-
other during the reaction could be used as a reaction coordinate. If the
protein is subject to a force, then the natural reaction coordinate is the
length of the protein in the direction of the force.

The Eyring rate theory was originally introduced in the 1930s to de-
scribe reactions between small molecules such as the bimolecular reaction
2ClO ↔ Cl2 + O2. The theory assumes that the reaction occurs via a tran-
sition state which is in equilibrium with the reactants. The transition state
breaks down to the products when one of its molecular vibrations becomes a
translation (Eyring & Eyring 1963; Moore 1972; Atkins 1986). The rate is

kE = ε
kT

h
exp

[
−∆Ga1

kT

]
∆Ga1 = Ga − G1 (8)

where ε ∼ 1 is an efficiency factor (equal to the probability of making the
transition when in the transition state), and the frequency factor, kT/h, is
equal to ∼6 × 1012 s−1, where h is the Planck constant, and Ga is the free
energy of the activated state (ignoring the vibrational degree of freedom
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that breaks down). According to the Eyring equation, the absolute rate is
the frequency factor reduced by the exponential term: assuming that the
efficiency is unity, a reaction with a rate constant of 103 s−1 would have an
activation free energy of 22 kT . The Eyring theory proved to be a better
model than collision theory to describe the rates of small-molecule reactions
in the gas phase. It might also apply to covalent changes of proteins and
their ligands. But there is no reason to think that it would apply to global
conformational changes of proteins in aqueous solution where there are many
degrees of freedom and the motions are expected to be highly overdamped.

Kramers had a different view of the passage through the transition state
(Kramers 1940). He assumed that the transition corresponded to a diffusive
motion of a particle out of a potential well. This might correspond to the
thermal fluctuation of two protein domains held together by a flexible region.
Let the (reduced) mass be m, the damping equal γ, and the spring constant
of the well be κ. If the motion is underdamped, then the Kramers expression
for the rate is

k =
ω0

2π
exp

(
−∆Ga1

kT

)
(9)

where ω0 =
√

κ/m is the resonance frequency associated with the potential
well. This is a generalization of the Eyring expression which holds for
quantum mechanical and non-quantum cases (Haenggi et al. 1990). If
the motion is overdamped, the rate is

k =
1

2πτ∗ exp
(
−∆Ga1

kT

)
(10)

where τ∗ is the geometric mean of the damping time constant in the well
(γ/κ) and the damping time constant at the top of the barrier (γ/κ∗ where
κ∗ is the negative of the second derivative at the top of the energy barrier).
Note that in the overdamped case, the pre-exponential factor depends on the
shape of the energy barrier because the efficiency of the reaction (probability
of making the transition) depends on the shape. If the peak is precipitous–if
there is an absorbing boundary at the top of a harmonic well–then the rate
constant in the overdamped case is

kK =
1
πτ

√
∆Ga1

kT
exp

[
−∆Ga1

kT

]
· (11)

Because global conformational changes of proteins are expected to be over-
damped (Howard 2001), the overdamped equations are more appropriate,
and it is for the overdamped result that the Kramers paper is most widely
appreciated (Haenggi et al. 1990). According to the overdamped Kramers
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rate theory, the frequency factor is approximately equal to the inverse of
the relaxation time, τ = κ/γ where κ is the stiffness of the protein and γ is
the damping from the fluid (the other terms are close to unity). This makes
intuitive sense: we can think of the protein sampling a different energy level
every τ seconds, because τ is the time over which the protein’s shape be-
comes statistically uncorrelated. The protein can react only when it attains
the energy of the transition state, and the probability of this occurring is
proportional to exp(−∆Ga1/kT ).

The Eyring and Kramers rate theories represent two extreme views of
the mechanism of global conformational changes of proteins. In the Eyring
model, the transition state is like the initial state. A sudden, local chem-
ical change (such as the binding of a ligand or the chemical change in a
bound ligand) creates a highly strained protein which subsequently relaxes
into a new stable conformation. In the overdamped Kramers model, the
transition state lies towards the final state on the reaction coordinate: after
the protein has diffused into the transition state, the reaction proceeds and
locks the conformational change in. The Kramers model is a “foot-in-door”
mechanism, in the which the foot plays the role of the chemical change that
prevents the opening from being reversed. Obviously these are two extreme
cases, and in general the transition state could be anywhere in between the
initial and final states (or even outside). The important point of all this is
that the various mechanisms can be distinguished: in the Eyring model the
forward rate is independent of force whereas in the Kramers model the for-
ward rate (and perhaps the reverse rate as well) will depend on force. Thus
force dependence offers a way to tell whether a transition is chemical in
the sense that it is reached by localized fluctuations, or whether the transi-
tion is physical in the sense that it is reached by global spatial fluctuations.
The latter, Kramers-type mechanisms have been termed a thermal ratchet
mechanism (see below).

11 Role of thermal fluctuations in motor reactions

From a physical viewpoint, we expect thermal fluctuations to play crucial
roles in the motor reaction because thermal forces at the molecular scale are
large compared to the average directed forces that motor proteins generate.
For example, an unconstrained protein will diffuse through a distance equal
to its own size, ∼10 nm, in tens of microseconds; this is three orders of
magnitude faster than the duration of the ATP hydrolysis cycle, which is
typically 10 to 100 ms (motors typically hydrolyze 10–100 ATP per second
while they are moving, Table 1). Indeed, it is their noisy, diffusive environ-
ment that distinguishes molecular machines from the man-made machines
of our everyday world. From a chemical viewpoint, we also expect thermal
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fluctuations to play crucial roles: all chemical reactions require thermal en-
ergy in order for a molecule to enter the transition state (see last section),
and the chemistry of the hydrolysis reaction is no exception. The challenge
is to merge these two views.

An extreme model is that movement of a motor to its next binding site on
the filament is purely diffusive, and the role of ATP hydrolysis is to somehow
rectify diffusion so that motion in the wrong direction is blocked (Braxton
1988; Braxton & Yount 1989; Vale & Oosawa 1990). This is reminiscent
of the pawl and ratchet discussed by Feynman (Feynman et al. 1963): if a
pawl (the motor) and ratchet (filament) are at different temperatures then
they can do work without violating the second law of thermodynamics. But
motor proteins cannot literally be heat engines because the diffusion of heat
is so rapid over molecular dimensions that thermal gradients will dissipate
within picoseconds, much faster than the timescale of the biochemical re-
actions (Howard 2001). Instead of being driven by temperature differences
like heat engines, motors are driven by chemical reactions (ATP hydrolysis)
that are out of equilibrium.

These ratchet ideas have inspired a number of papers in the physics
literature that explore the fundamental requirements of directed motility
(Ajdari & Prost 1992; Magnasco 1993; Rousselet et al. 1994; Astumian
& Bier 1994; Zhou & Chen 1996). Some of the physical models are very
specific, and fail to explain how real motor proteins move. For example,
Astumian and Bier proposed a mechanism in which a motor alternates be-
tween times when it diffuses along a filament and times when it is subject to
an asymmetric energy profile (a ratchet). However, such a purely diffusive,
thermal ratchet model fails in two respects. First, the maximum force that
it can generate against viscous loads is small, only 2 kT/δ, where δ is the
distance between binding sites (Hunt et al. 1994). But for kinesin, which
has δ = 8 nm, this force is only 1 pN, much less than the measured value of
4 to 5 pN (Hunt et al. 1994). And second, because the motor diffuses in the
right direction only half the time, it is expected that two molecules of ATP
would be hydrolyzed for each forward step. But for kinesin, there is one
step per ATP hydrolyzed (Coy et al. 1999; Iwatani et al. 1999). While they
may fail in some specific cases, the physical models have never-the-less been
very important because they have clearly defined the two conditions that
are necessary for directed motion: spatial asymmetry (a ratchet), which for
motor proteins arises from their stereospecific binding to polar filaments;
and temporal asymmetry which arises from an out-of-equilibrium chemical
reaction (e.g. ATP hydrolysis).

A less extreme picture of motility is that only part of the motor diffuses
to the next binding site, rather than the whole motor. In other words,
the motor is elastic, like a spring, and picks up mechanical energy via
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thermal fluctuations; once it is “cocked” it can then bind to the filament
and generate force. This was the picture in the original A.F. Huxley model
of muscle contraction (Huxley 1957a), and it forms the basis of other ratchet
models (Cordova et al. 1992). If the cocking of the spring requires a global
conformation change, then the diffusion time will be limited by the stiffness
of the spring and the damping from the fluid (as well as possible internal
damping within the protein). This a Kramers-type mechanism. The Huxley
model was abandoned in the 1970s (Huxley & Simmons 1971; Eisenberg &
Hill 1978; Eisenberg et al. 1980) in favor of a mechanism in which a local
conformational change in the nucleotide-binding pocket drives the subse-
quent global conformational change. This is an Eyring-type mechanism.
The Kramers-type mechanism was abandoned because it was argued that it
would take too long for myosin to pick up an appropriate amount of mechan-
ical energy by diffusion; but if a more reasonable mechanical efficiency of
muscle is assumed (∼50%) then the diffusion time is not prohibitive (Hunt
et al. 1994).

Thermal energy always plays a crucial role in chemical reactions. In
the local, Eyring-type model, thermal fluctuations are still needed to get
the molecule into the transition state for the localized structural change.
The advantage of the local mechanism is that it is faster: because a short
lever is stiffer than a longer one and because the damping on a small do-
main is less than the damping on a large domain, high-energy states can
be reached much more quickly through localized conformational changes.
For example, if the lever ratio is 10, then a local conformational change oc-
curs 1000-times faster than a global change (Howard 2001). The extent to
which force-generating protein conformational changes are due to diffusive
global conformational changes that are locked in by chemical changes, or
to localized chemical changes that drive global changes must be determined
experimentally by measuring the dependence of the rates on force.

12 A mechanochemical model for kinesin

To illustrate how these concepts apply to motor proteins, I present a model
for the chemomechanical cycle of kinesin. Structural, biochemical and bio-
physical experiments suggest that the two heads of kinesin alternate in
their binding to the microtubule, first one head leading and then the other
(Fig. 10, Schief & Howard 2001, but see Hua et al. 2002). For simplicity, we
assume that the ADP and Pi concentrations are zero (as is approximately
the case in the in vitro assays). This gives the following kinetic equation

M ↔k1T

k−1
M · D · P k2−→ M · P k3−→ M (12)
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Fig. 10. Hand-over-hand model for kinesin. T = ATP, D = ADP, Pi = phosphate,

φ = no nucleotide.

where M symbolizes the motor, T the ATP, D the ADP, and P the phos-
phate ion.

The solution to this equation is

ν = δ · kATPase = δ · kcat
[T]

KM + [T]
kcat =

k2k3

k2 + k3
KM =

k3(k2 + k−1)
k1(k2 + k3)

(13)

where ν is the average speed of movement, kATPase is the ATPase rate, and
δ is the distance per ATP (8 nm for kinesin).

In accordance with our discussion above, we model the force-dependence
by assuming that the transitions between states are associated with struc-
tural changes through distances δi = xi+1 −xi, so that the rates depend on
a load, F , in the opposite direction to δi, according to

k+i = k0
+i exp

[
−fi

Fδi

kT

]

k−i = k0
−i exp

[
(1 − fi)

Fδi

kT

]
(14)

where fi is the location of the transition state as a fraction of the distance
between the i and i + 1 states, and k0

+i and k0
−i are the rate constants in
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Fig. 11. A. Three examples of a kinesin molecule walking along a microtubule at

a high ATP concentration. The molecule is pulling against a flexible glass fiber

and stalls when a maximum force of ∼5 pN is reached. B. The speed as a function

of the force at high (filled circles) and low (open circles) ATP concentration. The

curves correspond to the model in the text.

the absence of load (Fig. 10). Note that δ1 + δ2 + δ3 = 8 nm, the step
size. Normally we think that fi lies between 0 and 1, but this is not an
absolute requirement. For the hand-over-hand model, we make the simple
assumption that all fi = 1, meaning that the transition state is displaced
all the way towards the final state. This puts all the force sensitivity in the
forward step, like a Kramers-type mechanism. The solid curves in Figure 11
are generated with δ1 = 1 nm, δ2 = 1 nm, δ3 = 6 nm; k0

1 = 100 µM−1.s−1,
k0
−i = 3000 s−1, k0

2 = 105 s−1, and k0
3 = 5000 s−1.
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13 Conclusions and outlook

The agreement between the model curve and the experimental data in
Figure 11 shows that the ideas presented in this review are plausible: the
motor reaction can be described as a small number of first order chemical
reactions in which force effects the rate constants through a Boltzmann-type
exponential prefactor. However, the picture is very incomplete. What is the
reaction coordinate for a molecular motor? How does diffusion and ther-
mal agitation drive a protein’s moving parts during the transition from one
structural state to another? There are clearly many conceptual questions to
be addressed, in addition to the practical ones. It is likely that ideas from
protein folding will prove useful, and that experiments using single-molecule
techniques will become increasingly useful for probing the motor reaction.

Study of the mechanics of motor proteins has given us a deeper un-
derstanding of biological force generation, and in particular how mechani-
cal, chemical, and thermal forces act on proteins. Because conformational
changes of proteins, RNA, and DNA are driven by the mutual action of
forces, it is likely that the principles learned from the interactions of motors
with their filaments should have wide application to other macromolecular
machines.
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MODELLING MOTOR PROTEIN SYSTEMS

T. Duke

Abstract

Motor proteins are the cell’s workforce. They are specialized
molecules which convert chemical energy to mechanical work, thereby
generating force and directional motion. In some situations motor
proteins act individually, but more commonly they cooperate in large
ensembles to accomplish cellular functions. How do molecular mo-
tors work? And how do they work together? This lecture course re-
counts theoretical approaches to these questions, which complement
the experimental investigations of motor protein systems described
in Jonathon Howard’s course. The methods of non-equilibrium sta-
tistical mechanics permit a general analysis of how chemical energy
can most effectively be used to generate the movement of an individ-
ual motor. The class of models known as “isothermal ratchets”, in
particular, is a powerful tool for discussing the principles of energy
transduction. More specific kinetic models, such as the “swinging
lever-arm” model which is based on the known structure and chem-
istry of the myosin protein, indicate how these molecules are designed
to work efficiently together to drive the contraction of muscle. Both
classes of model indicate what types of collective effects can arise
when many molecules operate in concert. Cooperative interactions
within a team of motor proteins may lead to dynamical instabilities
and hysteretic behaviour, which can be exploited to generate oscil-
lations. Physiological processes which may rely on such instabilities
include the vibration of insect flight muscle and the undulation of
spermatozoid flagella. Motor proteins also play functional roles in
sensory systems – hearing being a particularly intriguing example.
Hair bundles, which are the mechano-sensors that detect motion in
the inner ear, have been found to vibrate spontaneously. Motor pro-
teins appear to play a role either in generating the oscillations, or in
maintaining the bundles at the threshold of the oscillatory instabil-
ity. Poised on the verge of vibrating, they are especially responsive
to faint sounds.

c© EDP Sciences, Springer-Verlag 2002
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1 Making a move: Principles of energy transduction

1.1 Motor proteins and Carnot engines

Molecular motors’ principal role in biological cells is the generation of force
and motion [1–4]. The basis of their function is thus the transduction of
chemical energy to mechanical work. When trying to understand how this
is achieved, the most important consideration to bear in mind is the tiny
size of these molecular machines. Motor proteins live in the Brownian do-
main [5–14]. Their operation is based on individual chemical reactions,
which are accompanied by energy changes that do not greatly exceed the
thermal energy. As a result, they function in a highly stochastic way. The
consequences are strange. For example, motor proteins cannot be held still
in one place, owing to the continual bombardment by molecules in the sur-
rounding solution. Conversely, molecular motors cannot exert a sustained
force without the continual consumption of chemical energy.

In this unfamiliar Brownian realm, our knowledge of how macroscopic
engines work, based on the laws of classical thermodynamics, is of little
help. Molecular motors are not miniature Carnot engines [8,12]. Neverthe-
less, the microscopic model of a Carnot engine invented by Feynman [15]
serves as a useful starting point, because it introduces the notion of a mi-
croscopic ratchet. In our everyday experience, ratchets are devices that are
used to rectify motion – to ensure that movement in one sense is permit-
ted and motion in the opposite sense is denied. Feynman asked whether
such a device, contructed on the microscopic scale, could be used to rec-
tify the fluctuations caused by Brownian motion. His machine consisted of
a rotating vein connected to a cogwheel with saw-teeth, whose movement
was restricted by a pawl. He demonstrated that the random percussion of
molecules on the vein could drive the cog round, but only on one condi-
tion: the cog must be enveloped by molecules at a different temperature
to those surrounding the vein. Feynman’s thermal ratchet operates exactly
like a Carnot engine. It can convert heat to mechanical work provided that
a difference in temperature between cog and vein is maintained. Might a
motor protein function the same way? Could a molecular motor use an
exothermic chemical reaction to produce heat and raise the temperature
of the surroundings, and then use the difference in temperature to drive a
microscopic Carnot engine? The answer is no. At the scale of individual
molecules, thermal diffusion is far too rapid to permit the maintenance of
a temperature gradient. Molecular motors must therefore function isother-
mally. They must directly transduce chemical energy to mechanical work,
without passing through the intermediary of heat.
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1.2 Simple Brownian ratchet

Can microscopic ratchets be employed to rectify Brownian motion at a sin-
gle, fixed temperature? To demonstrate that they can, it suffices to provide
an illustration. Perhaps the simplest Brownian ratchet consists of a parti-
cle moving in one dimension in a periodic but asymmetric potential which
is switched on and off at regular intervals of time [16–19]. Consider, for
example, the saw-tooth potential in Figure 1, characterized by asymmetry
factor γ and periodicity a.

Fig. 1. Movement of a Brownian particle in a ratchet potential which is switched

on and off at regular intervals of time. The particle, which is localized when the

potential is on, starts to diffuse freely when the potential is turned off and has a

Gaussian probability distribution (shown in grey). When the potential is switched

back on, the particle slides down the potential gradient. Owing to the asymmetry,

there is a higher probability that it hops to the right than to the left.

If the peak of the potential is considerably higher than the thermal
energy, the particle tends to be localized at the bottom of one of the wells
when the potential is on. But when the potential is switched off, the particle
is free to diffuse by Brownian motion. Suppose that the diffusion coefficient
is D and that the potential is turned on again after time T . Then if γ2 <
DT/a2 < (1 − γ)2, there is quite a high probability that the particle will
drop into the next potential well to the right, but only a small chance that it
will fall to the left. Thus with continued pulsing of the potential at intervals
of time T , the particle moves noisily but, on average, it drifts to the right.
The Brownian motion has been rectified. Yet no external force has been
applied – the potential is globally flat at all times.

Of course, the laws of thermodynamics have not been violated here; in
order to generate directional motion, an external agent has had to do work.
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There is an input of energy each time that the potential is switched on,
raising the potential energy of the particle. This energy is subsequently
transferred to the environment by viscous dissipation as the particle drifts
towards the bottom of the well. Thus the Brownian motion has been recti-
fied at the cost of transforming some mechanical work to heat.

1.3 Polymerization ratchet

We would like to develop a general formalism to study the movement of
a Brownian particle in a ratchet potential. An illustrative example which
serves as a useful starting point is the process of polymerization of a filament
from a large pool of monomers. This is a stochastic process which is driven
in the direction of polymer extension by the negative free energy change,
∆G, which occurs each time a monomer is added. If a mechanical force F
is applied to the tip of the polymer, however, the growth can be slowed, or
even reversed [20, 21]. Because the insertion of a monomer of size a at the
tip requires the energy Fa, the thermodynamic principle of detailed balance
imposes a condition on the rates r± at which monomers bind and unbind
at the tip:

r+/r− = e−(Fa+∆G)/kT . (1.1)

The growth velocity v = a(r+ − r−) can be determined if the two rates
r+ and r− are known independently. These rates, however, depend on
the energy barriers which the system must overcome in order to insert or
detach a monomer – barriers which depend on microscopic details of the
polymerization process and which are not fixed by thermodynamic laws.
Suppose that insertion of a monomer at the end requires passage over a
potential barrier U(F ) which depends on the external force. If U � kT ,
polymerization events are thermally activated with the Arrhenius rate r+ =
r0e−U/kT and the growth velocity is

v = r0a e−U(F )/kT
[
1 − e−(Fa+∆G)/kT

]
. (1.2)

Two important conclusions can be drawn: Thermodynamic laws only de-
termine the stall force for which the velocity vanishes, F0 = −∆G/a; and
the form of the force-velocity relationship can vary widely, depending on
the unknown function U(F ) which determines the strain-dependence of the
polymerization reaction.

Kramers [22] introduced the notion that an individual chemical reaction
can be modelled as the stochastic motion of a Brownian particle over a
potential barrier. Extending his approach, we see that polymerization in
the absence of a force is formally equivalent to stochastic motion in an
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Fig. 2. a) Polymerization of a filament under the constraint of an applied force.

b) The stochastic polymerization process may be mapped onto the Brownian mo-

tion of a particle in a potential V (x), which is the sum of a periodic potential W (x)

and a uniform potential gradient proportional to the polymerization energy ∆G.

effective energy landscape

V (x) = W (x) − ∆G

a
x, (1.3)

where W (x) is a periodic function (which is related to the potential barrier)
and x is a position variable along a linear axis (Fig. 2). The polymers of
different length correspond to the local minima of V (x). A particle mov-
ing stochastically in this potential would drift downhill, corresponding to
the direction of polymerization. When an opposing force is applied, the
total energy of the corresponding particle changes to V (x) + Fx. It can
be seen that this becomes a periodic function when F = F0 = −∆G/a,
at which point there is no net drift of the particle and, correspondingly,
polymerization is halted.

The motion of a Brownian particle in a tilted periodic potential, and
simulataneously under the influence of an external force F , is most conve-
niently discussed using the Smoluchowski equation. The probability density
P (x, t) of finding the system at position x at time t obeys

∂tP = −∂xJ

J = −1
ζ

[(∂xV + F )P + kT∂xP ] , (1.4)
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where J is the current. The stationary solution which satisfies ∂tP
stat = 0

corresponds to constant current J and is given by

P stat(x) = e−
V (x)+F x

kT

[
A +

J

D

∫ x

0

dye
V (y)+F y

kT

]
, (1.5)

where A is a constant of integration and D = kT/ζ is the diffusion coeffi-
cient. Normalization (one particle per period) and the condition of period-
icity determine both A and the current J . The average velocity v = Ja is

v =
Da[1 − e−(Fa+∆G)/kT ]∫ a

0 dx e−
V (x)+F x

kT

∫ x+a

x dy e
V (y)+F y

kT

, (1.6)

which is the same as equation (1.2), with an effective energy barrier

U(F ) = kT ln
(∫ a

0

dx

a
e−

W (x)+(F−F0)x
kT

∫ x+a

x

dy

a
e

W (y)+(F −F0)y
kT

)
(1.7)

and attempt rate r0 = D/a2. If the form W (x) of the energy barrier is
known, then the strain-dependence U(F ) can be calculated and the force-
velocity relation determined. For example, if W (x) has minima at x = Na,
and sharply peaked maxima at x = (N + γ)a, then U(F ) ≈ U(0) + γaF .
Force-velocity relations corresponding to different forms of W (x) are shown
in Figure 3.

Fig. 3. Growth velocity of a polymer as a function of the restraining force, for

two different realizations of the periodic potential W (x), whose form is indicated.
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1.4 Isothermal ratchets

The reason for the spontaneous motion of the Brownian particle in the poly-
merization ratchet is clear; it occurs because of the global tilt of the po-
tential which, in turn, corresponds to the non-equilibrium nature of the
polymerization reaction. Yet we have seen, in the preceding example, that
directional movement can also occur in a globally flat potential, provided
that the potential changes with time. We shall now explore what condi-
tions must be satisfied for such motion to occur. More specifically, we shall
focus our attention on a Brownian particle that can exist in a number of
different states. In each state, the particle experiences a periodic potential
Wi(x) = Wi(x+a); and the particle makes stochastic transitions from state
i to state j at rate ωij(x). Systems of this type, which generate motion in
the absence of an external force, and at a constant temperature, are called
isothermal ratchets [12].

The dynamics of a particle in an isothermal ratchet may be described
by generalized Smoluchowski eqations

∂tPi = −∂xJi +
∑

j

(ωjiPj − ωijPi)

Ji = −1
ζ

[(∂xWi + F )Pi + kT∂xPi] (1.8)

where Pi(x, t) denotes the probability of finding the particle at time t at
position x and in state i. The total probability P ≡ ∑

i Pi and total cur-
rent J ≡ ∑

i Ji satisfy an ordinary Smoluchowski equation of the type of
equation (1.4), but with an effective potential:

J = −1
ζ

[(∂xVeff + F )P + kT∂xP ] . (1.9)

This can be shown by introducing the local fractions of occupation in con-
formation i

λi(x) ≡ Pi(x)
P (x)

, (1.10)

which describe how P is divided amongst the different states. Expressing
the total current as

J = −
∑

i

1
ζ

[(λi∂xWi + kT∂xλi + λiF )P + kTλi∂xP ] (1.11)

we find

Veff(x) =
∑

i

∫ x

0

dx′λi∂xWi. (1.12)
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The system generates spontaneous motion (i.e. motion in the absence of
the external force F ) if the effective potential is globally tilted. This tilt
can be characterized by the effective energy difference per period

∆Geff =
∑

i

∫ a

0

dx′λi∂xWi. (1.13)

In order for ∆Geff to be nonzero, two conditions must be satisfied: (i) the
system as a whole, i.e. the potentials Wi(x) and/or the transition rates
ωij(x), must be asymmetric with respect to x → −x; (ii) the system must
be out of thermodynamic equilibrium.

If the system is completely symmetric, then so are the functions λi(x)
and the integral in equation (1.13) vanishes by symmetry. No spontaneous
motion occurs. If the system is in thermodynamic equilibrium, the transi-
tion rates satisfy the condition of detailed balance

ωij

ωji
= e(Wi−Wj)/kT . (1.14)

In this case, the steady state solution is given by the Boltzmann distribution
P stat

i ∼ e−Wi/kT , and the integrand in equation (1.13) is the derivative of
the periodic function −kT ln(Σe−Wi/kT ), so ∆Geff = 0. Again, no motion
occurs.

To summarize, the two conditions for spontaneous motion in an isother-
mal ratchet are broken spatial symmetry and broken detailed balance.

1.5 Motor proteins as isothermal ratchets

Motor proteins interact with cytoskeletal filaments. Because these are polar
polymers, this interaction may be characterized as an asymmetric periodic
potential, with the periodicity equal to the monomer size a. Molecular
motors also hydrolyse ATP and can therefore exist in a number of distinct
chemical states, depending on whether or not nucleotide is bound (and
which type of nucleotide is bound). Crucially, the chemical state of the
motor modulates the interaction between the motor and the filament. It is
therefore natural to model a molecular motor as a particle in an isothermal
ratchet. In each state i (identified with the chemical state of the motor) the
particle experiences a different potential Wi(x) (identified with the motor-
filament interaction). A simple illustration is given in Figure 4.

As the hydrolysis reaction proceeds around the cycle, the laws of ther-
modynamics state that the transition rates satisfy

ωi→i+1

ωi+1→i
= e−(Wi−Wi+1)/kT Θi→i+1 (1.15)
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Fig. 4. a) The hydrolysis cycle of a typical molecular motor. The motor passes

through a number of distinct chemical states in which a different nucleotide (or

no nucleotide) is bound. b) The interaction potential between the motor and the

cytoskeletal filament depends on the chemical state. In this case the motor in

state 1 (with ATP bound) is detached from the filament, and the other two states

are bound to the filament.

where

Θi→i+1 = e−∆µi→i+1/kT (1.16)

and ∆µi→i+1 is the change on chemical potential that would accompany
the reaction in free solution.

So we see that the two elements required to generate movement are in
place. The polarity of the filaments ensures broken spatial symmetry of
the ratchet potentials; and the coupling of the motor-filament interaction
to the hydrolysis reaction breaks detailed balance by the factors Θi→i+1,
thereby ensuring that the transitions between the ratchet states are not
just thermally activated. Note, however, that if the product of the factors
around the cycle

∏
i Θi→i+1 were equal to unity, global equilibrium would be

preserved and no movement would occur. This is not the case in a biological
cell because for each traversal of the cycle, one molecule of ATP has been
hydrolysed to ADP and Pi. The total free energy change is therefore ∆µATP

and
∏

i Θi→i+1 = e−∆µATP/kT . The continual manufacture of ATP in the
cell maintains the reaction ATP → ADP + Pi out of equilibrium, with
∆µATP ≈ −20 kT . It is the nonequilibrium nature of this reaction which
ultimately drives the motor.

1.6 Design principles for effective motors

We have seen how to generate motion, but what functional form of the
potentials and the transition rates would make for an especially effective
motor? Desirable properties of a motor protein such as kinesin, which
acts individually to transport substances in the cell, include swiftness of
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Fig. 5. Examples of two-state isothermal ratchets. In b) the stimulated transi-

tions between the states are localized to the shaded regions.

movement, the ability to resist high loads, and the efficient transduction
of chemical energy to mechanical work. Can the formalism that we have
developed suggest what principles of design might lead to such properties?
We noted that the force-velocity relation can vary widely depending on the
shape of the effective potential, which in turn depends on the detailed func-
tional form of both the periodic ratchet potentials and the transition rates.
Nonetheless, we can gain some insight by examining a simple 2-state model.

Consider therefore the system shown in Figure 5a, where the saw-tooth
potential W1 (with barrier height W � kT ) represents a bound state of the
motor, and the flat potential W2 represents a detached state. We assume
that the binding rate is constant, ω21 = α, and write the detachment rate as

ω12(x) = αe(W1−W2)/kT + Ω (1.17)

where the first term on the right hand side corresponds to thermal transi-
tions and the rate Ω, which is assumed to dominate, represents transitions
that are stimulated by coupling to a non-equilibrium process. The effective
generation of directional movement in this isothermal ratchet requires care-
ful matching of two time scales. First, the particle in the detached state
must diffuse a distance greater than γa, but smaller than a, in the typical
time α−1 that it takes to bind. The optimal situation occurs roughly at the
midpoint of this range, when

α ≈ kT

γζa2
· (1.18)

Second, when in the bound state, the particle must have time to drift to the
bottom of the potential well before it detaches again. Taking into account
that the force acting on the particle in the bound state is approximately
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W/a, this condition may be written

Ω <
W

ζa2
· (1.19)

Thus this very simple isothermal ratchet generates spontaneous motion only
if the chemical transition rates are adjusted to match the dynamical param-
eters of the system. Moreover, it cannot support a significant load, despite
the high value of the force that is generated in the bound state. This hap-
pens because the particle in the detached state slips backwards very readily.
Indeed, the motor will stall if it slips a distance of order γa when it is de-
tached, as it will then fail to diffuse beyond the peak of the potential W1.
Taking into account that the slip velocity is F/ζ and the time spent detached
is α−1, with α specified by equation (1.18), the stall force is

F0 ≈ kT

a
· (1.20)

The force that the motor can support is determined by the thermal energy
and not by the chemical energy available to pump the transitions between
states. In summary, this simple 2-state ratchet would be a very poor design
for a motor: it is quite awkward to get it to operate at all; and when it does
work, it is puny and wasteful of energy.

A system which provides a vastly improved performance [12,23] is shown
in Figure 5b. In this case, the potential W2 has a similar saw-tooth form
to W1, but is shifted by half the lattice constant. In addition, both transi-
tions are assumed to be stimulated at a position-dependent rate Ω(x), which
is significant only when the particle is close to the bottom of a well. The
advantages of this system are clear. The particle in state 1 moves down
the long slope of the potential W1 to the bottom of the well, whereupon
it makes a stimulated transition to state 2. It then moves down the slope
of W2, reverting to state 1 when it reaches the bottom. There is now no
need to match the kinetic rates with the dynamical parameters to generate
effective movement. And because the particle always experiences a potential
gradient, the stall force is now determined by the barrier height, F0 ≈ W/a,
rather than the thermal energy. From equation (1.16), it can be seen that
in order to stimulate the transitions from the bottom of the wells, the mag-
nitude of the chemical energy change ∆µij that accompanies each change
of state must exceed the potential energy change, which is equal to half the
barrier height. If |∆µ12| = |∆µ21| ≈ W/2, little energy is dissipated as heat
during the transitions and the maximal mechanical efficiency of the system
can be close to unity. In this case, the stall force is governed by the chemical
potential ∆µATP = ∆µ12 + ∆µ21 that is available to power the motor,

F0 ≈ −∆µATP

a
· (1.21)
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The principles of effective energy transduction outlined above appear to be
used by actual molecular motors. It is believed, for example, that kinesin
moves along microtubules by advancing its two motor domains in a coordi-
nated, “hand-over-hand” fashion [24,25]. Such cooperation would require a
switch-like mechanism, whereby the binding of one domain induces a chem-
ical change in the other, stimulating it to detach. This model corresponds
quite closely to the type of isothermal ratchet we have just discussed, where
the potential W1 represents the kinesin-microtubule interaction with one
of the motor domains bound, and W2 the interaction with the other do-
main bound. Suppose that the domains can only bind at localized binding
sites, situated at the minima of the potentials, and that binding causes the
stimulated detachment of the other head. Then the transitions between
the two potentials are localized, as in Figure 5. The ratchet generates di-
rectional movement very effectively and can support a high load. Another
molecular motor that makes use of localized transitions to ensure a high
efficiency of operation is the F1 component of ATP synthase. In this case,
three motor domains work together in a highly coordinated way to generate
rotational motion [26]. At any one time, each domain is at a different stage
of the hydrolysis cycle: one has ATP bound, one has ADP bound and the
third has no nucleotide bound. This motor can be modeled as a three-state
ratchet [27] in which the potentials have offset minima, and transitions be-
tween states are controlled by a molecular switch so that they take place
only at particular angles of rotation.

More generally, position-dependence of the transition rates can be asso-
ciated with strain-dependence of the chemical reactions, and a shift in the
position of the potential minima between two states can be associated with
a conformational change of the motor domain. In the next section we shall
explore these concepts in the context of the interaction between myosin and
actin.

2 Pulling together: Mechano-chemical model of actomyosin

2.1 Swinging lever-arm model

Isothermal ratchets are a convenient formalism for discussing the generic be-
haviour of motor proteins. However, for specific motor systems, for which
structural and chemical information is available, models based on chemical
kinetics can be more appropriate since they may more immediately be re-
lated to experimental data. Such is the case for actomyosin. The resulting
models [28–34] are termed crossbridge models, reflecting the fact that the
myosin head forms a transient bridge between the thick and thin filaments
in a muscle fibre.
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Early electron micrographs of crossbridges bound to the thin filament
indicated that there were two, structurally distinct, attached states [35].
Recent crystallographic studies [36], together with micromanipulation ex-
periments [37,38], have refined this view, strongly suggesting that the distal
portion of the myosin head acts as a lever arm to amplify small changes in
structure occurring at the nucleotide binding site. This has led to the swing-
ing lever-arm model [39], which is shown in Figure 6a.

Fig. 6. Swinging-lever arm model of the mechano-chemical cycle of actomyosin.

The basic assumption is that the myosin head can undergo a structural
change, provoked by chemical reactions at the nucleotide binding site, which
alters the orientation of the lever arm. Biochemical techniques [40] have elu-
cidated the nucleotide reactions which are coupled to the structural change
and which modulate the myosin-actin interaction (Fig. 6b). The hydrolysis
cycle proceeds in four steps: (1) ATP hydrolysis occurs when the myosin
is detached. Energy is not liberated at this stage but is used instead to
prime the lever arm. (2) The head binds to the thin filament. (3) The
products of hydrolysis, Pi and ADP are released, provoking a significant ro-
tation of the lever arm. The large change in free energy which accompanies
product release is not liberated as heat, but is stored in an elastic element
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which connects the myosin head to the thick filament. Because the head
is now in a state that generates a shear force between the thick and the
thin filament, this transition between bound states is often referred to as
the power-stroke. If the force is not compensated by an applied load, the
filaments will slide relative to one another. (4) Finally, a new molecule of
ATP binds to the myosin head, destabilising its interaction with the actin
filament. The myosin detaches, completing the cycle.

In the cell, the concentration of ATP is maintained well above its equi-
librium value, so that the actomyosin cycle proceeds only in the forward
direction (the free energy of hydrolysis is approximately 20kBT , so the prob-
ability of cycling backwards is e−20 ≈ 10−9 in the absence of an external
load). As successive hydrolysis reactions occur, the mysoin acts as an “oar”
which “rows” along the thin filament.

2.2 Mechano-chemical coupling

Kinetic models of myosin action may be based on this 4-state cycle, but care
must be taken to ensure consistency with the laws of thermodynamics. Each
state i can be considered to be internally at equilibrium, and may therefore
be characterised by a Gibbs free energy Gi which includes contributions
from the myosin-actin interaction and the nucleotide-myosin interaction. In
contrast to ratchet models, the motor domain is taken to be immobilized
when it is bound to the actin binding site. Nevertheless, the crossbridge is
assumed to be compliant, so that the thin filament can still move relative
to the thick filament. Then the free energy of the actomyosin complex Gi

depends on the relative displacement x of the thin and the thick filaments,
owing to the mechanical deformation of the myosin molecule. In a given
state, the actomyosin undergoes Brownian motion in the potential Gi(x)
and the instantaneous force exerted on the thin filament by the myosin
head is equal to the gradient of the potential, Fi = ∂xGi.

For each transition between a pair of states, the principle of detailed
balance dictates that the ratio of forward and reverse rates is related to the
difference of the free energies:

ωij

ωji
= e−(Gj−Gi)/kT . (2.1)

In transitions involving a bound state, Gj−Gi will, in general, depend on the
relative displacement of the thick and thin filaments, so either the forward
or the reverse transition rate (or both) must be strain-dependent. Put an-
other way, the kinetic rates depend on the force experienced by the myosin
molecule. This mechano-chemical coupling [30] is the key to understand-
ing motor protein action. Thermodynamics provides strong constraints on
theoretical models. The relations between kinetic rates must be associated
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Dm

Fig. 7. Free energies of actomyosin states in the swinging lever-arm model.

with the mechanical properties of the molecules. However, there remains
considerable freedom to choose the functional form of individual rates.

In most mechano-chemical models of actomyosin, the dependence of free
energy on position is simplified and given a physical interpretation by sup-
posing that the myosin molecule contains a linear elastic element. Thus
two parameters characterise the mechanical properties of a crossbridge: the
distance d that the distal end of the lever moves when the myosin makes a
transition between the two attached states; and the spring constant K. The
force exerted by the myosin head in each state is then Kx and K(x + d),
respectively, where x is the shear displacement between the two filaments.
The values of the structural parameters are difficult to measure experimen-
tally, but recent data suggests that d ≈ 5 nm and K ≈ 1 pN/nm [41].

The corresponding free energies Gi are indicated in Figure 7. Note that
traversal of the cycle in the clockwise direction is tightly coupled to the
hydrolysis of one molecule of ATP so, although the actomyosin returns to
the same state, the free energy of the whole system has changed by ∆µATP.

2.3 Equivalent isothermal ratchet

Although crossbridge and isothermal ratchet models are not entirely equiv-
alent, it is possible to construct a ratchet model which strongly resembles
a crossbridge description. As an example, we outline an isothermal ratchet
which would generate approximately the same dynamics as the swinging
lever arm model. The ratchet model involves transitions between four dif-
ferent potentials Wi, which represent the actomyosin interaction, as shown
in Figure 8. Potentials W1 and W4 represent detached states and are there-
fore flat. The potentials W2 and W3, which represent the two bound states,
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Fig. 8. 4-state ratchet equivalent to the swinging lever-arm model.

are each symmetric and periodic, with period l equal to the distance between
the binding sites on the thin filament (l = 34 nm for actin). The minima
of W2 are shifted by d relative to those of W3, and the curvature of both
potentials is ∂2

xW = K. Transitions between these states are stimulated by
chemical reactions occurring at the nucleotide binding site. Indeed, the as-
sumption of tight-coupling in the swinging lever-arm model implies that the
transition rates are governed by equations (1.15) and (1.16). Although the
individual periodic potentials Wi of this ratchet are symmetric, the system
as a whole is asymmetric if d < l/2, thereby satisfying one of the conditions
for movement. The second condition is that the transitions between the po-
tentials Wi violate detailed balance, i.e. that the product of the factors Θij

is not equal to unity. Since ΠΘij = exp(−∆µATP/kT ), this is assured if the
nucleotide hydrolysis reaction is maintained out of equilibrium.

This 4-state model differs from the swinging lever-arm model in only
one respect: the ratchet potentials Wi corresponding to the bound states
are periodic and have multiple minima, whereas the free energies Gi of the
bound states in the crossbridge picture are assumed to have a single mini-
mum (whose location varies according to which site on the thin filament the
myosin head is bound). Whether this difference is significant is a question of
time scale. If transitions between states occur more rapidly than diffusion
over the potential barrier, then the two models differ only in insubstantial
detail.

2.4 Many motors working together

Many millions of myosin molecules work together to drive muscle contrac-
tion. A hundred or so myosin molecules interact with each thin filament, a
few thousand filaments make up each sarcomere, and a single myofibril fibre
is typically composed of thousands of sarcomeres in series. A single muscle
fibre is then formed by a bundle of a few thousand myofibrils. In order to
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Fig. 9. Protein friction.

understand muscle contraction, therefore, we need to construct a statistical
mechanical model, based on the mechano-chemical cycle of an individual
myosin molecule that has been outlined above. How do many motors act
together to drive a single thin filament? Clearly they can combine their
efforts to generate a large force. But they can also get in each other’s way
and hinder sliding. We shall explore this potential problem first, and see
how proteins can create friction [42].

Consider a set of N proteins, each of which independently binds to a
filament at rate ωon and detaches at rate ωoff , as shown in Figure 9. For
the moment, we will assume that these proteins are not motors (and so do
not undergo a conformational change when bound) but that, like myosin,
they form crossbridges of elasticity K. Suppose that an external force F
is applied to the filament, causing it to move with steady velocity v. The
mean fraction of proteins that is bound at any one time is r = ωon/(ωon +
ωoff), and the probability that each of these proteins has strain x is p(x) =
(v/ωoff) exp(−xωoff/v). When a protein detaches, the elastic energy 1

2Kx2

is dissipated as heat. The total dissipation rate due to the proteins is
therefore Nrωoff

1
2K<x2> = ζproteinv2, where

ζprotein =
NrK

ωoff
(2.2)

is the effective friction coefficient associated with the proteins. Unless the
number of bound proteins is very small, or the detachment rate is very rapid,
this protein friction is considerably larger than the viscous drag exerted on
the filament by the surrounding fluid.

Now suppose that the N proteins are myosin molecules, each of which
is executing its mechano-chemical cycle. Let us make a simple assumption
about the kinetics, and suppose that the rate-limiting steps are the binding
to (2→3) and detachment (4→1) from the filament, and that these occur
at strain-independent rates ωon and ωoff . The fraction r of motors bound
to the filament is then fixed. It is convenient to characterize the properties
of an individual motor by a unitary velocity vunit = ωond and a unitary
force Funit = Kd. When the filament is loaded with an external force F , its
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Fig. 10. For strain-independent transition rates, the force-velocity relation is

linear. Rapid sliding and a high stall load can be combined if the fraction of

bound motors increases with the load (curve).

equation of motion is Fmot = F +ζv, where Fmot is the total force generated
by the motors. It is clear that when v = 0, each bound motor generates
force Funit, so that the stall force is

F0 = NrFunit. (2.3)

Since the system is linear, the force-velocity relation must be a straight line
with slope equal to the total effective friction ζprotein +ζ. Thus, the velocity
at zero load is

v0 =
vunit

r/(1 − r) + τviscωon
(2.4)

where τvisc = ζ/NrK is the viscous relaxation time of the system. If the
viscous relaxation is rapid compared to chemical reaction times, as is the
case in a sarcomere,

v0 ≈ vunit

(
1
r
− 1

)
. (2.5)

Then, as indicated in Figure 10, a small fraction of bound motors (r � 1)
produces rapid sliding in unloaded conditions, but provides only a low stall
force. If, on the other hand, the majority of motors are bound (r ≈ 1),
the sliding is slow, but the stall force is high. Neither situation is ideal
for muscle contraction, where a combination of rapidity and strength is
required. However, this combination can be achieved by regulating the
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fraction of bound motors r according to the load. What is required is some
kind of control mechanism whereby few motors are bound at zero load, but
more are recruited as the load increases.

2.5 Designed to work

How can regulation of the fraction of bound motors be accomplished? The
observation that the two products of hydrolysis are not released simulta-
neously provides a clue. Phosphate is released first, and this provokes the
power-stroke of the lever arm. Subsequently ADP is released more slowly,
and this makes way for the immediate binding of a new ATP molecule,
which precipitates detachment of the head from the actin filament. Thus
the detachment step (4 → 1) is really controlled by the rate of ADP release.
Now, we might expect that the departure of any ligand from the nucleotide
binding site would result in a small change of conformation there, which
gets amplified by the lever arm. Thus ADP release might cause the distal
end of the lever arm to shift by a modest amount δ, as indicated in the more
complete model of the actomyosin cycle [33] shown in Figure 11. Mechano-
chemistry would then make the rate of ADP release strain-dependent. If
a muscle fibre is loaded isometrically so that the filaments are prevented
from sliding, each bound motor will be strained, exerting approximately
the unitary force Funit = Kd. As a result, the small movement of the lever
arm accompanying ADP release will involve an amount of mechanical work
equal to Funitδ. This slows down the reaction by a factor exp(−Kdδ/kBT ),
compared to the unstrained situation at zero load. The delayed detachment

Fig. 11. Model of the actomyosin cycle.
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augments the fraction of motors bound to the thin filament, helping to
support the high load.

It thus appears that the lever-arm structure of myosin serves a dual
function. The large swing of the arm on phosphate release is designed
to generate force. And the smaller shift on ADP release is designed to
endow muscle with a “continuous automatic transmission”, by adjusting
the number of motors appropriately to the load. This second shift need
not very big (δ ≈ 1 nm), which may explain why it has not been observed
for skeletal-muscle myosin. Movement of the lever on ADP release has,
however, been detected in a number of other myosins [43, 44].

There is a second aspect of the structural design of myosin, which con-
cerns the strength of its elastic element. Clearly this should not be too
weak, or a motor would produce only a feeble unitary force Funit. However,
it should not be too strong either, since the power-stroke would be inhibited
if the mechanical work required to move the lever arm, 1

2Kd2, exceeded the
free energy change that accompanies phosphate release, ∆µPi . In fact, it
appears that the molecular design of myosin pushes this limit as far as pos-
sible, choosing a value of 1

2Kd2 that slightly exceeds ∆µPi . This is slightly
surprising, because it means that an individual myosin molecule would be
ineffective, not having enough energy to power its stroke. But a team of mo-
tors working together is actually more efficient in this case, for the following
reason: when a myosin head binds to the filament, it cannot immediately
execute its power-stroke, but the transition is postponed until filament slid-
ing (due to the action of other motors) has strained the motor and reduced
the work accompanying the power-stroke to ∆µPi . Consequently, all of the
energy of phosphate release gets stored in the elastic element, and none gets
wasted as heat.

2.6 Force-velocity relation

Although muscle contraction is clearly a dynamical process, individual pairs
of thick and thin filaments may be treated as though they are in “quasi-
mechanical equilibrium”. This is because the viscous relaxation time is
short compared to the time scale of chemical reactions, so that each time an
individual motor changes state, the filaments quickly readjust their position
as shown in Figure 12.

A simple stochastic simulation algorithm can therefore be used to deter-
mine the sliding velocity for a given load [33]. The resulting force-velocity
relation is shown in Figure 13. The shape of the curve is concave [45],
owing to the regulation of the fraction of bound motors discussed above.
However, another interesting feature is apparent. As the load approaches
the stall force (or “isometric tension”), the velocity drops abruptly to zero.
Precisely this type of behaviour is seen in the experimentally determined
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Fig. 12. a) In mechanical equibrium, the sum of the forces exerted by the motors

(grey arrow) opposes the applied load (black arrow). b) If one of the motors binds

and undergoes its power-stroke, the force balance is momentarily upset. c) As a

consequence, the filaments slide to restore mechanical equilibrium.

Fig. 13. Force-velocity relation (black) and efficiency (grey) of muscle. Experi-

mental data (points) are compared with model predictions (lines).

force-velocity relation of single muscle fibres [46]. In the model, it is caused
by the inhibition of the power-stroke at high loads. As already mentioned,
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when 1
2Kd2 slightly exceeds ∆µPi , a motor needs the assistance of its team

mates to effect its power-stroke. Close to isometric conditions, the other
motors do not advance the filament rapidly enough to help, and sliding
breaks down. At still higher loads, almost no power-stroke transitions can
occur and the myosin heads simply bind and detach reversibly, without re-
leasing the products of hydrolysis. In doing so they create a high protein
friction, so the filaments slide backwards (corresponding to muscle exten-
sion) only slowly. This suggest another reason why a strong elastic element
may be favourable. It permits the muscle to support a variety of high loads
while remaining at an almost constant length and without expending much
energy.

2.7 Dynamical instability and biochemical synchronization

The abrupt decline of sliding velocity at high loads actually corresponds to a
sudden change of dynamical behaviour. As shown in Figure 14, the filaments
no longer slide smoothly at a constant velocity, but move in a stepwise fash-
ion [33]. The transition is a direct consequence of the fact that myosin heads
must cooperate with one another in order to execute their power-strokes.
At zero load, they are able to do so in an uncorrelated way, with individual
molecules binding and detaching at random intervals. Those heads which
have been bound for the longest period of time get dragged into a position
in which they exert negative force. This balances the positive force exerted
by the heads that have just executed their power-stroke. Because of the

Fig. 14. At high load, the dynamics changes from smooth sliding to stepwise

motion.
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strain-dependence of ADP release, it is the former subset of heads that has
the highest instantaneous detachment rate. Their continual dissociation
causes the thin filament to advance sufficiently rapidly to ensure that any
newly bound heads are always able to execute their power-stroke. Conse-
quently, the sliding is smooth. As the load is raised and the average sliding
velocity diminishes, this situation breaks down. The power-stroke transi-
tions of individual motors begin to fail. Nevertheless, if an individual head
does succeed in accomplishing a power-stroke, it causes the thin filament to
advance by a small amount and reduces the strain of all the other attached
heads, thereby facilitating their own power-stroke transitions. Owing to
this cooperativity, a large fraction of the bound heads can stroke almost si-
multaneously, like a rowing crew, causing the thin filament to lurch forward
through a distance approximately equal to the length of the power-stroke.
Subsequently, the heads detach stochastically and they must rebind in suf-
ficient numbers to be able to coordinate another cascade of power-stroke
transitions. Thus the dynamics is quasi-periodic, with a period defined by
the cycle time of an individual molecule. This suggests that the isometric
condition of muscle may not be a steady state, but rather one in which
some sarcomeres are lengthening and others are shortening at any instant
of time.

2.8 Transient response of muscle

There is one experiment in which the absence of a steady state in near-
isometric conditions would have a clear, observable consequence: the iso-
tonic transient response, in which an isometric muscle fibre is subjected to a
sudden decrease in load. The external mechanical stimulus would synchro-
nise the power-stroke transitions of the bound myosin heads throughout the
filament. Subsequently, individual sarcomeres would start to shorten in a
stepwise fashion but, owing to filament compliance, the coordination of dif-
ferent sarcomeres would gradually be lost. The consequence would be an
apparent, damped oscillatory motion of the fibre. This is precisely what is
observed in muscle [47, 48].

3 Motors at work: Collective properties of motor proteins

3.1 Dynamical instabilities

One of the fundamental lessons of statistical physics has been that even a
very simple system, composed of identical elements with pairwise interac-
tions, can display emergent collective properties. An example is the abrupt
condensation of a gas as the temperature falls below a critical value. Such
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phase transitions, in which one type of collective behaviour becomes unsta-
ble and another comportment is favoured, are a consequence of cooperativ-
ity in the microscopic interactions. A system in which many motor proteins
act collectively is considerably more complex than a gas, because the indi-
vidual entities are not just passive molecules, but active force generators.
A collection of motors is a non-equilibrium system, but by analogy with a
thermodynamic system we should expect the cooperativity (which is due to
mechano-chemical coupling) to induce dynamical instabilities. The transion
from smooth sliding to stepwise motion, discussed in the previous section,
is one example. In order to explore other examples, we will return to the
isothermal ratchet model, whose simple formulation facilitates the analysis
of collective effects.

3.2 Bidirectional movement

In Section 2, we saw that an individual motor can move unidirectionally
along a polar filament, and that its direction of motion is determined by
the form of the interaction potentials and by the position dependence of
the transition rates between different motor states. When a number of
motors act together to propel a filament, however, the direction of motion
is a team property. The filament might move in either sense, and, in some
cases, it might be able to move in both directions [49]. To see how such
bidirectionality can arise, it is easiest to consider the hypothetical case of a
non-polar filament. The absence of asymmetry in the potentials means that
an individual motor is incapable of moving directionally. But as shown in
Figure 15, multiple motors can propel a filament in either direction if the
reaction rates are strain-dependent, such that detachment can only take
place at a localized position near the bottom of a potential well. Suppose
that the motors are driving the filament to the left. Then, owing to the
detachment of motors which have recently passed through a potential well,
there are more bound motors on the right-facing slope of the potential

Fig. 15. A team of motors can propel a filament, even if the interaction between

an individual motor and the filament is symmetric.
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than on the left-facing slope (as shown). Sliding down the slope, these
motors produce a force which sustains the filament’s leftward movement.
An equivalent argument shows that the filament could just as well be driven
to the right.

Thus, there are situations in which a team of motors can drive a filament
either forwards or backwards. A filament would not travel one way for an
indefinite period, however. Stochastic fluctuations in the numbers of motors
pushing and pulling would eventually cause an abrupt switch to the alter-
native steady-state solution [50]. Interestingly, such behaviour has recently
been seen in a motility assay, in which the motion of microtubles was ob-
served as they glided over a lawn of Ncd motors absorbed on a surface [51].
Typically, an individual microtubule travelled for several micrometers with
its plus end leading, then abruptly reversed direction and travelled for a
similar distance in the opposite sense. The speed was approximately the
same in each direction and the reversals appeared to occur quite randomly.
The particular Ncd molecule used was a mutant with a single amino-acid
substitution in the neck region, which links the heads to the coiled-coil tail.
The ratchet model suggests that this mutation modifies the effective in-
teraction potential of the motor with the microtubule, so that it is almost
symmetric despite the microtubule’s polarity.

3.3 Critical behaviour

The collective property of bidirectional motion arises because, when a num-
ber of motors are pulling one way, they enhance the likelihood that their
teammates will join in and pull in the same direction. This only happens,
however, only if the rate of stimulated detachment is faster than a critical
value. The system has to be sufficiently far from equilibrium (which means,
in practice, that the concentration of ATP has to be above a critical level).

This critical behaviour may be analysed using a simple model 2-state
isothermal ratchet model [12, 49], writing the transition rates as

ω21 = α

ω12(x) = α e(W1−W2)/kT + Ω(x). (3.1)

Here Ω(x) is the rate of non-thermal transitions from the bound state;
it represents detachment stimulated by chemical reactions, and its value
characterizes how far the system is from equilibrium. If the motors and
the filament are moving with respect to one other at relative velocity v, the
probabilities of occupancy of either state satisfy

∂tP1 + v∂xP1 = −ω12(x)P1 + ω21(x)P2

∂tP2 + v∂xP2 = ω12(x)P1 − ω21(x)P2 (3.2)
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Fig. 16. Force-velocity relation for a team of motors interacting with a symmetric

filament.

and P1 + P2 = 1 gives

v∂xP1 = − [ω12(x) + ω21(x)] P1 + ω21(x) . (3.3)

If the motion is opposed by an external load F , the equation for the balance
of forces is

N

∫ a

0

dxP1∂xW1 = F + ζv (3.4)

where the expression on the left hand side is the active force generated by
the motors. Equations (3.3) and (3.4) together specify the force-velocity
relation. At low velocities the relation may be written as an expansion
which, for the case of the symmetric system discussed above, contains only
odd terms

F = −ζv + A(Ω)v + B(Ω)v3 + ... (3.5)

The force-velocity relation is shown in Figure 16 for different values of Ω. At
equilbrium, Ω = 0, the cubic coefficient vanishes, B(0) = 0, and the linear
coefficient is negative, representing the protein friction: −A(0) = ζprotein.
Thus the filament simply slides passively backwards, as expected

v(Ω = 0) = − F

ζ + ζprotein
· (3.6)
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Fig. 17. a) Team of motors interacting with a polar filament. b) Possible force-

velocity relation.

However, when the system is out of equilibrium, the linear coefficient A can
become positive; and above a critical value of the stimulated detachment
rate, it can exceed the viscous drag coefficient. Thus, for Ω > ΩC, given by
A(ΩC) = ζ, equation (3.5) can have a non-zero solution for v in the absence
of an applied load F . Spontaneous motion occurs with velocity

v±(Ω) = ±
(

A(Ω) − ζ

B(Ω)

)1/2

∼ (Ω − Ωc)1/2. (3.7)

In the vicinity of the critical point, the behaviour is generic and the veloc-
ity obeys characteristic power-law relations. For example, when a load is
applied, the velocity varies as

v(Ωc) ∼ −F 1/3. (3.8)

Although the occurrence of bidirectionality is especially easy to illustrate for
the case of a symmetric ratchet, it is not confined to this situation but is also
likely to occur under certain load conditions in asymmetric ratchets [12,49].
A typical case is shown in Figure 17. Crossbridge models can also display
regimes in which multiple motors can drive a filament both forwards and
backwards [34]. Thus bidirectional motion may be common in naturally oc-
curring motor protein systems, and not just a property of unusual mutants.
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Indeed, bidirectional motion was first reported in an actomyosin motility
assay [52].

3.4 Oscillations

A region of hysteresis in the force-velocity diagram of the type shown in
Figure 17 has an interesting implication: if the filament is connected in
series with an elastic element, it will oscillate [53]. The motors first drive
the filament forwards and as the spring stretches, the increasing load slows
the movement down. But before the filament comes to a halt, the forward
motion becomes unstable and the system jumps to the other stable branch,
for which the velocity is negative. Consequently the motors start to drive
the filament backwards. As they do so, the tension in the spring declines
and thus so does the speed. But again, before the filament stops, the mo-
tion becomes unstable and the system abruptly jumps back to the original
branch. As shown in Figure 18 these motor-driven oscillations have a char-
acteristic saw-tooth form. In general, the amplitude of oscillation depends
on the degree of hysteresis, which itself depends on the amount by which Ω
exceeds ΩC.

Fig. 18. Oscillations induced by a team of motors in series with a spring.

The critical point Ω = ΩC corresponds to a Hopf bifurcation [53]. It
is at this point that sinusoidal oscillations with vanishing amplitude, but a
well- defined frequency, set in. Their characteristic frequency

ωc ∼
(

α
K

ζ

)1/2

(3.9)

is the geometric mean of two rates: the typical kinetic rate of the motor α;
and the rate of viscous relaxation of the filament 1/τvisc = K/ζ. Interest-
ingly, the frequency of oscillation can be significantly faster than the cycle
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time of an individual motor. There is, however, an upper limit to the fre-
quency, since the dynamical instability is eliminated if the external spring
is stonger than the total effective elasticity of the motor crossbridges (the
elastic constant kxb of a single crossbridge may be estimated in the ratchet
model as kxb = U/l2, where U is the height of the potential maximum and l
is the period). Thus the maximum attainable frequency is [54]

ωc ∼
(

α
Nkxb

ζ

)1/2

· (3.10)

There are a number of natural motor systems which oscillate. The vibration
of insect flight muscle is too rapid to be controlled by nervous impulses on
a cycle-by-cycle basis [55], and is thought to be generated by a dynamical
instability of the actomyosin system, which might be based on the type of
mechanism described here. Normal striated muscle, in unusual chemical
conditions of elevated ADP concentration, also displays large scale oscil-
lations with a characteristic saw-tooth profile [56, 57]. Of special interest,
however, is the undulation of spermatazoid flagella, which might be caused
by an oscillatory instability of teams of axonemal dynein motors. Before
examining this possibility, we shall investigate how the force generated by
motor proteins can be used to bend cytoskeletal filaments and generate
dynamical patterns.

3.5 Dynamic buckling instability

In a gliding motility assay, fluorescently-stained cytoskeletal filaments are
observed as they move across a surface on which motor proteins have been
absorbed. The filaments usually glide smoothly, but occasionally they en-
counter defects, which pin them at their leading end [58]. As shown in
Figure 19, the filaments then move in an intriguing way: they either whirl
around in a spiral, or they writhe like a snake. These two patterns of be-
haviour are a consequence of a buckling instability, caused by the force that
the motors generate along the contour of the filament. Despite the micro-
scopic size of the system, the dynamics can be treated using continuum
elasticity theory [58]. In a standard buckling instability (such as that which
occurs when a flag-pole is built too tall) the system comes to a new me-
chanical equilibrium. In the case of the gliding assay, however, the direction
of the applied force changes as the filament bends. As a result, the system
evolves to a limit-cycle, instead of a fixed point.

Describing the instantaneous configuration of the filament by the
curve r̃(s), and writing the gradient of the curve ũ = ∂sr̃, the equation
of motion of the filament is

ζ∂tr̃ = fũ + κ∂3
s ũ + T∂sũ. (3.11)
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Fig. 19. Dynamical behaviour of cytoskeletal filaments which have been momen-

tarily pinned in motility assays. a) Spiral motion. b) Undulation reminiscent of

a flagellum.

Fig. 20. Dynamic buckling instabilities. a) Spiral motion of a filament pinned at

one end. b) Figure-of-eight motion of a filament pinned at two positions.

Here, f is the force per unit length that the motors exert along the filament
contour, and κ is the bending modulus of the filament. The action of the
motors additionaly gives rise to an internal compressive thrust T in the fila-
ment, which can be determined by imposing the constraint of fixed contour
length. This equation must be supplemented with appropriate boundary
conditions.

If the position of the leading end is fixed, but the filament is free to swivel
about this point, the asymptotic solution is a spinning spiral pattern, shown
in Figure 20a. A simple scaling argument reveals how the radius R of the
spiral varies with the driving force per unit length. On the limiting circle,
the bending moment is M = κ/R. In the steady state, this must be equal
to the torque Γ produced by the external forces (the motor force and the
friction). Since the radius of the spiral is the only relevant length scale,
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Γ must scale as fR2. Thus the condition M ∼ Γ yields the scaling relation

R ∼ (κf)1/3 · (3.12)

Since the bending modulus of cytoskeletal filaments is known, a simple
measurement of the size of the spiral provides a direct measure of the motor
protein force.

If the filament is pinned at two separate locations near the leading end,
both the position and the vector of the end are fixed. In this case, the solu-
tion for short filaments is the serpentine motion that is seen experimentally.
However, the asymptotic solution for long filaments is the pattern shown
in Figure 20b. While the leading end of the filament writhes from side to
side, the back end continually traces out a figure of eight – the curve called
the “elastica” [59] which can be obtained by pressing on the ends of a thin
elastic rod until both ends meet.

3.6 Undulation of flagella

Cilia and spermatzoid flagella share a common structure, called the
“axoneme” [60], which is composed of a cylinder of microtubule doublets
(Fig. 21a). Dynein motors attached to each doublet interact with the neigh-
bouring doublet around the ring, generating a shear force. Because all of the
microtubules are firmly held in place in a basal body (next to the head of a
spermatozoan, or at the root of a cilium), the sliding of ajacent microtubule
doublets causes to bending of the entire axoneme [61]. Clearly, in order to
generate the wavelike undulation of a flagellum, the shear force between a
given microtubule doublet must vary with both time and position. Does
this require a chemical control mechanism to ensure that the motors on one
side of the axoneme work while the motors on the opposite side detach [62]?
Or might wave-like motion occur natually as a result of a dynamical insta-
bility? The buckling of filaments in a gliding motility assay demonstrates
that instabilities can indeed lead to complex periodic movement. In that
case, however, the motors exert an external force on the filament. In the
axoneme, the motor action is internal. Can a dynamical instability produce
undulations in this situation too?

The basic physical properties of the axoneme can be captured by the
two-dimensional model shown in Figure 21b, in which a pair of filaments is
connected by a set of motor proteins [63]. The rotational symmetry of the
axoneme – in which each doublet slides on its neighbour – corresponds to
a lack of polarity in the 2-dimensional case. So the motor-mediated inter-
action between the pair of filaments might be represented as a symmetric
isothermal ratchet. As we saw in Section 3.2, this type of system can be
bistable, and the total shear force generated between the filaments by the



128 Physics of Bio-Molecules and Cells

Fig. 21. a) Cross-section through an axoneme. b) Model of a flagellum. c) Bend-

ing caused when the lower filament slides forwards relative to the upper filament.

team of motors can have either sign. The relative sliding of the filaments
in response to this force bends the axoneme, as shown in Figure 21c. Now,
this movement is countered by a force derived from the elastic bending of
the axoneme. To a first approximation, we can consider the motors to be
working against a uniform spring. Then, as discussed in Section 3.4, an os-
cillatory instability can occur, such the shear force generated by the motors
varies periodically.

The simplest model [63] of a flagellum, then, supposes that the force
per unit length f generated by the motors is independent of the position s
along the axoneme, but varies sinusoidally in time, f = f0 cosωt. Writing
the perpendicular displacement of the axoneme as h(s), the local sliding
displacement is ∆(s) = a(∂sh(s)− ∂sh(0)), where a is the distance between
the two filaments. This leads to the following equation of motion,

η⊥∂th = −κ∂4
sh − a∂sf, (3.13)

where κ is the bending modulus and η⊥ is the friction coefficient per unit
length orthogonal to the axoneme axis (which is approximately equal to the
viscosity of the surrounding fluid). To solve for the motion, this equation
must be supplemented by two boundary conditions at each end. The
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Fig. 22. Undulation generated by oscillatory motor forces within a flagellum.

solution for the situation correponding to a spermatozoan is shown in
Figure 22. A bending wave propagates from the head to the tail, if the
head experiences a large viscous drag.

A more general treatment [64] recognizes that the elastic force opposing
the action of the motors varies along the axoneme, and that the motor
force is therefore also a function of position. Solutions may be obtained by
considering the form of the response function relating the local motor force
to the local sliding velocity, derived for example from a simple two-state
isothermal ratchet model. In this case, the stationary solution is stable
when the system is close to equilibrium, but a dynamical instability occurs
at a critical value of the control parameter Ω. The dynamical mode that
is selected, and the characteristic frequency of the movement, both depend
upon the length of the axoneme. Long flagella propogate a bending wave,
similar to that shown in Figure 22. Shorter axonemes simply flex from side
to side, at a frequency which is governed by equation (3.9), with an effective
spring constant K ≈ κL3 and an effective friction ζ ≈ η⊥L. The critical
frequency is then

ωc ≈
(

ακ

η⊥

)1/2 1
L2

, (3.14)

which increases rapidly as the length of the axoneme decreases.

4 Sense and sensitivity: Mechano-sensation in hearing

4.1 System performance

The performance of our senses is remarkable, and none more so than hearing.
The faintest sounds that we can hear impart no more energy, per cycle, than
the thermal motion. At the same time, the ear can cope with loud noises
that carry more than twelve orders of magnitude more energy. And, of
course, it can analyze frequency: two tones that differ by a few percent can
be resolved. Just how this astonishing feat is achieved has been a puzzle for
over a century, but recent research is beginning to penetrate the mystery.
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The key to the ear’s acuity is an active system of sound detection [65].
The ear is powered. That this was likely to be the case was first realized
by Gold [66], more than fifty years ago. He pointed to a problem with the
theory of hearing propounded by Helmholtz [67], who had argued that the
ear uses a set of inertial resonators to capture the energy of sound waves.
Given that the cochlea is filled with fluid, and the likely size of the resonators
is a few microns at most, the strong damping precludes a sharp resonant
response. Gold proposed that the ear must work like a regenerative radio
receiver, and add in energy at the very frequency it is trying to detect. It
was clear to him that such a mechanism must be very delicate, however, as
it would require a positive feedback of exactly the right magnitude to cancel
the damping. Any less and the ear would be insensitive; any more and it
would ring spontaneously.

It was not until the 1970s that the idea of an active cochlea began
to be taken seriously. At that time, the first successful measurements
on a living ear revealed it to respond far more sensitively than the dead
cochlea [68, 69]. Subsequently it was discovered that the ear can sponta-
neously emit sounds [70]. A microphone placed in the ear cannal usually
records a faint hum, but occasionally shrill whistles can be detected as well.
Clearly, something within the cochlea is oscillating. In this section, we shall
explore how active oscillators can help the ear to hear, and discuss whether
motor proteins might be an important component of the active system.

4.2 Mechano-sensors: Hair bundles

A hair bundle is an appendage measuring a few microns high that sticks up
above the surface of every hair cell [71] (see Fig. 23). It consists of a number
of stereocilia (each composed of a bundle of actin filaments) which slope up
against each other to form a pyramidal structure. Each stereocilium is
connected to its neighbour by a fine filament, called a “tip link”. Shear flow
in the cochlea fluid causes the whole bundle to deflect, with each stereocilium
pivoting at its base, so that the tip links get stretched. Each tip link connects
directly to a tension-gated transduction channel in the cell membrane, which
admits potassium ions. So the deflection leads to a change in the ionic
current that, it turn alters the cell potential. The hair bundle is therefore a
transducer which provides a very direct conversion of a mechanical stimulus
to an electrical signal.

In the 1980s it was discovered that hair bundles can oscillate sponta-
neously [72]. This behaviour had been very difficult to reproduce, however,
until recently when it bacame possible to control of the extracellular ionic
concentrations, so that they resemble the conditions in vivo [73]. In this
situation, oscillations occur quite readily. It appears that calcium ions,
which are present at low concentration in the fluid surrounding the bundle,
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Fig. 23. Hair bundle of a non-mammalian vertebrate.

and which are also admitted by the transduction channel, are crucial to the
active process.

Hair bundles also contain molecular motors. Attached to the transduc-
tion channel are a number of myosin-1C motors. They are believed to play
a role in adapting the hair bundle to varying cellular conditions, by main-
taining the proper tension in the tip links [74]. But they might also be more
directly involved in generating bundle oscillations. The hair bundles of non-
mammalian vertebrates also incorporate a “kinocilium”, which has the same
architecture as an axoneme. The dynein motors within this structure might
also play an active part in the hair bundle response.

4.3 Active amplification

There is considerable evidence, then, that hair bundles contain a force-
generating dynamical system that can generate spontaneous oscillations at
a characteristic frequency ωC. In general, the behaviour of such a nonlinear
dynamical system may be described by a control parameter C. Above a
critical value, C > Cc, the system is stable; for C < Cc it oscillates spon-
taneously. At the critical point C = Cc, which is a Hopf bifurcation, the
system has remarkable response properties. Because the behaviour close
to critical points is generic, we can calculate these properties without a
detailed knowledge of the physical process that gives rise to the dynamical
instability [75–77].
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If a stimulus force f(t) is applied at frequency ω, the hair bundle dis-
placement x(t) has a principal component at that same frequency. So writ-
ing the complex Fourier coefficients at frequency ω as f̃ and x̃, the reponse
may be expressed as a systematic expansion

f̃ = A x̃ + B |x̃|2x̃ + ..., (4.1)

where A(ω, C) and B(ω, C) are two complex functions. For a system that
undergoes a Hopf bifurcation, the first nonlinear term is cubic. The bi-
furcation point is characterized by the fact that A vanishes for the critical
frequency, A(ωc, Cc) = 0.

Suppose that the system is poised right at the critical point, C = Cc.
Then the response to a stimulus at the critical frequency, ω = ωC has
amplitude

|x̃| ≈ |f̃ |1/3

|B|1/3
· (4.2)

This is a highly compressive response, which boosts weak signals much more
than strong signals. Indeed, the gain

r =
|x̃|
|f̃ | ∼

1
|f̃ |2/3

(4.3)

becomes arbitrarily large for small forces. The critical Hopf oscillator acts
as a nonlinear amplifier.

If the stimulus frequency differs from the critical frequency, the lin-
ear term in equation (4.1) is non-zero and can be expressed to first order
as A(ω, Cc) � A1 (ω − ωc). When this term exceeds the cubic term in
equation (4.1), active amplification is lost and the response becomes linear

|x̃| � |f̃ |
|(ω − ωc)A| · (4.4)

The bandwidth of active amplication ∆ therefore depends on the level of
the stimulus:

∆ ≈ |B|1/3

|A1| |f̃ |2/3. (4.5)

The resonant response of a critical Hopf oscillator is summarized in
Figure 24. The active system acts as a sharply tuned high-gain amplifier for
weak stimuli, and as a low-gain filter for strong stimuli. These main features
are displayed by the response of the basilar membrane in the mammalian
cochlea [78].
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Fig. 24. Hopf resonance. The gain and the sharpness of response are much greater

for a weak stimulus (black), than for a stimulus of ten times greater amplitude

(grey).

Fig. 25. The working point of the self-tuned system is just on the oscillating side

of the bifurcation, yielding self-tuned critical oscillations (STCO).

4.4 Self-tuned criticality

The Hopf resonance is perfectly suited to the ear’s needs. It permits fre-
quency descrimination; it boosts faint sounds; and the strongly compressive
response provides a huge dynamic range – the twelve orders of magnitude
of sound energy that we can comfortably hear give rise to hair bundle dis-
placements that vary by only a factor of one hundred. To profit from the
nonlinear amplification, however, each oscillator has to be very close to its
critical point. Clearly some kind of regulation mechanism is required to
ensure that this is the case.

A feedback mechanism that links the reponse of the system to the con-
trol parameter can permit the system to operate automatically close to the
bifurcation point, whatever its characteristic frequency [76] (Fig. 25). Sup-
pose that some mechanism causes the control parameter to decrease as long
as the system does not oscillate. After some time, critical conditions will be
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reached and spontaneous oscillations will ensue. The onset of oscillations
triggers an increase of the control parameter which tends to restore stability.
Hence the system converges to an operating point close to the bifurcation
point. The following simple feedback, which changes C in response to de-
flections x, illustrates the general idea:

1
C

∂tC =
1
τ

(
x2

δ2
− 1

)
(4.6)

where δ is a small amplitude. If no external force is applied, this feedback,
after a relaxation time τ , tunes the control parameter to a value Cδ (just
less than Cc) for which spontaneous oscillations with |x̃| � δ occur. These
small-amplitude oscillations are referred to as self-tuned critical oscillations.
Maintained on the threshold of vibrations by this control mechanism, a hair
bundle is exquisitely sensitive to purturbation by periodic stimuli at its
characteristic frequency.

4.5 Motor-driven oscillations

What is the physical basis of the dynamical system that generates the os-
cillations? Because motor proteins are specialized to produce motility, they
are an obvious candidate. One possibility is that the kinocilium is the motile
element of non-mammalian hair bundles [76]. We have already seen that an
axoneme can flex at a frequency that depends on its length, equation (3.9).
So in this case, the characteristic frequency of a hair bundle would depend
on its architecture. Tall bundles would oscillate at lower frequencies than
short bundles. This agrees with what is known about the tonotopic or-
ganization of hair cells in the cochlea [79]. It is also plausible that it is
the myosin-1C motors joined to the transduction channels, rather than the
dynein motors in the kinocilium that cause the oscillations. In either case,
the characteristic frequency of the bundle can be significantly faster than
the cycle rate of individual motors.

How could self-tuning to the critical point be realized in this system?
One possibility is that the influx of calcium ions through the transduction
channel down-regulates the motor activity (Fig. 26a) [76]. In this case,
the Ca2+ concentration plays the role of the control parameter C. Assuming
that ion pumps in the cell membrane constantly pump Ca2+ out of the cell,
C obeys the dynamical equation

∂tC = − C

τion
+ JPo(x), (4.7)

where τion is the ionic relaxation time and J is the Ca2+ current through an
open transduction channel. The probability Po(x) that a channel is open
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Fig. 26. Self-tuning mechanism. a) Calcium flux through the hair cell. b) Chan-

nel open probability P (x). c) The bundle settles down to self-tuned critical oscil-

lations after a relaxation time τion, whether the Ca2+ concentration C is intially

too high or too low.

depends on the hair bundle displacement, as shown in Figure 26b. This is
the typical sigmoidal relation, of the form

Po(x) =
1

1 + Ae−x/δ
(4.8)

that is expected if the channel makes rapid stochastic transitions between an
open and a closed state, gated by the tension in the tip link. The coefficient
A is large, so that when the bundle is still, there is only a slight probability
that the channel is open. However, owing to the curvature of Po(x) at
x = 0, the mean probability of the channel being open increases if the
bundle becomes unstable and starts to oscillate. Equation (4.7) then implies
that C rises. If the Ca2+ ions down-regulate the motors, for example by
decreasing the rate Ω at which they detach, the system moves back towards
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the quiescent regime. This feedback control is a robust way of generating
self-tuned critical oscillations, as illustrated in Figure 26c.

4.6 Channel compliance and relaxation oscillations

An alternative mechanism by which oscillations might be generated is sug-
gested by recent micromanipulation experiments on hair bundles [80]. When
the tip of a bundle is abruptly displaced by a small amount, the bundle
reacts by generating the force in the opposite direction. Indeed, the instan-
taneous force-displacement relation of the bundle (i.e. the relation obtained
before adaptation processes mediated by motors or calcium have an affect)
displays a region of negative slope (Fig. 27a).

Fig. 27. a) Two-state transduction channel with a lever arm. b) The force-

displacement relation has a region of instability owing to the channel compliance.

c) The action of the myosin-1C motors can push the system around the arrowed

curve, generating relaxation oscillations.
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One potential explanation of this behaviour is channel compliance [80, 81].
Suppose that the transduction channel has a lever arm, similar to that of
a myosin molecule, which amplifies the small movements associated with
the opening and closing of the channel (Fig. 27b). Then when the hair
bundle is pushed a distance x the positive direction, adjacent stereocilia are
sheared by y = γx, where γ is a geometric factor that depends on the bundle
height. The increased tension Ttl in the tiplinks causes the channels to open.
Indeed, assuming that the channel kinetics is rapid enough for there to be
an equilibrium between open and closed states, the open probability Po is

Po =
1

1 + Ae−Ktlyd/kT
, (4.9)

where Ktl is the elastic constant of the tip link, d is the swing of the lever
arm and A is a dimensionless constant whose value depends on the free
energy difference of the two channel states. The associated movement of
the lever arm diminishes the tension in the tip links, so that

Ttl = Ktl(y − dPo). (4.10)

The total reactive force of the bundle has contributions from both the tip
links and the deformation of the stereocilia pivots,

F = N(γTtl + Kspx), (4.11)

where N is the total number of stereocilia and Ksp is the effective Young
modulus due to a single sterocilium. The force-displacement relation result-
ing from equations (4.9–4.11) has a region of negative slope if

Ktld
2 > 4kT. (4.12)

In this situation, there is a range of applied forces for which the bundle is
bistable. If the position of the adaptation motors is fixed, the hair bundle
will settle at one or other of the stable positions. However, this state of
affairs can be upset if calcium down-regulates the motors, as suggested
above. Suppose, for example, that the bundle is at the fixed point with the
higher value of x, for which there is a high probability that the transduction
channels are open. The Ca2+ ions entering through the channel bind to the
motors, causing a fraction of them to detach; the diminishing force exerted
by the motors causes the tension in the tip links to fall, and the bundle
to move backwards. As indicated in Figure 27a, the fixed point vanishes
at a critical value of the motor force, and the system then abruptly jumps
to the other fixed point. At this lower value of x, the channels are mostly
closed. The resulting drop in calcium concentration augments the number
of bound motors, increasing the tension in the tip links until the lower fixed
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Fig. 28. Three-state channel, in which one of the closed states is stabilized by

calcium.

point becomes unstable, whereupon the hair bundle jumps back to its initial
position.

This dynamics, whereby the myosin-1C motors shift the bundle from
one stable fixed point to another, results in relaxation oscillations with a
characteristic form, shown in Figure 27c. Oscillations of this type have been
observed in an in vitro system [73, 80]. It is not clear, however, whether
this mechanism forms the basis of the active amplier. There is no obvious
way that the system could be regulated to the critical point at which the
oscillations have vanishing amplitude.

4.7 Channel-driven oscillations

There is a second adpatation process that modifies the transduction cur-
rent, which is much faster than the mechanism mediated by the myosin-1C
motors [74, 82]. It depends on the concentration of calcium ions outside the
cell and is believed to be caused by Ca2+ ions binding to the transduction
channels and favouring their closure. Thus, a more appropriate model of
the channel might incorporate three states, as shown in Figure 28, in which
one of the closed states is stabilized by the binding of Ca2+. The dynamics
of calcium, which enters through the transduction channels and is continu-
ally pumped out of the cell, as described by equation (4.7), provides a fast
feedback. By shifting the channel states and modifying the contribution of
the channel compliance, it modifies the force-displacement relation. If the
feedback is strong enough, the region of negative stiffness is eliminated and
the system has a single fixed point [83]. However, this fixed point may be
either stable or unstable and, in the latter case, the bundle executes limit
cycle oscillations. Thus the interaction of the calcium with the channel is
able to generate a Hopf bifurcation. With their long lever arms, the chan-
nels effectively act like molecular motors, driven by calcium rather than
by ATP.
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The characteristic frequency of oscillation depends on two time scales

ωc ≈
(

1
τmechτion

)1/2

, (4.13)

where τion is the relaxation time of the calcium concentration and τmech is
the viscous relaxation time of the bundle. It scales as

ωc ∼
(

N

L3τion

)1/2

, (4.14)

and thus depends strongly on the architecture of the bundle.
Crucially, the stability of the fixed point is determined by the location

of the myosin-1C motors. If these motors generate a large force, the hair
bundle oscillates; if they generate a small force, the bundle is quiescent. This
suggests that the function of the myosin-1C motors is to tune the system
to the critical point [83]. Down-regulation of the motors by Ca2+ entering
through the channels when the bundle oscillates could fulfil this function.

Thus, the two adaptation mechanisms that have been identified for hair
cells can together generate self-tuned critical oscillations. Calcium acting
on the channels creates a dynamical instability and the molecular motors,
acting on a slower time scale, adjust the system to the immediate vicinity
of the critical point.

4.8 Hearing at the noise limit

Hair bundles are subject to noise from a number of sources. In addition to
the Brownian forces of the molecules in the surrounding fluid, the stochas-
tic nature of the force-generating system adds further randomness to the
system. How can the bundle detect a weak signal in the presence of this
noise?

As a consequence of the stochasticity, the self-tuned critical oscillations
are irregular, as illustrated in Figure 26c. The response of a self-tuned
hair bundle to a sinusoidal force with a frequency approximately equal to
the bundle’s characteristic frequency [76] is illustrated in Figure 29. For
weak stimuli, the amplitude of the oscillation does not increase with the
amplitude of the applied force; this is because the small response to the
stimulus is masked by the noisy, spontaneous motion. Instead, the phase
of the hair-bundle oscillation becomes more regular; as it does so, a peak
emerges from the Fourier spectrum at the driving frequency. The height of
the peak grows as the cube root of the stimulus amplitude, following the
generic behaviour at a Hopf bifurcation specified by equation (4.2).

This suggests how a hair bundle can achieve its remarkable sensitivity
to weak stimuli [76]. By profiting from the periodicity of a sinusoidal input,
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Fig. 29. Detection in the presence of noise. Response to sinusoidal forces of

different magnitude (left), and Fourier transform of the response (right). The

response of an equivalent passive system in the absence of noise is indicated in

grey.

and measuring phase-locking rather than the amplitude of response, the
mechano-sensor can detect forces considerably weaker than those exerted
by a single molecular motor (if the bundle were a simple, passive structure,
its response to such forces would be smaller than its Brownian motion). An
important implication of this detection mechanism is that the signal must
be encoded by the interval between spikes elicited in the auditory nerve.
Paradoxically, the stochastic noise serves a useful purpose. It ensures that
the self-tuned critical oscillations of the hair bundle are incoherent, so that
the pattern of spontaneous firing in the nerve is irregular. Against this back-
ground, the regular response to a periodic stimulus can easily be detected.
Another beneficial feature of noise arises from the fact that weak stimuli do
not increase the amplitude of oscillation above the spontaneous amplitude.
Thus the Ca2+ concentration remains constant, the hair bundle stays in the
critical regime, and active amplification can be sustained indefinitely.

The active system of detection, in which motor proteins play a key role,
explains how the ear can detect sound waves whose energy per cycle is
similar to that of the thermal noise.

My understanding of motor protein systems has benefited from conversations with numer-
ous colleagues, including S. Block, L. Bourdieu, S. Camalet, J. Howard, A.J. Hudspeth,
A.F. Huxley, S. Leibler, M. Magnasco, P. Martin, and A. Vilfan. I am especially indepted
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to F. Jülicher and J. Prost, on whose research much of this course is based. The Royal
Society provided funding. Last but not least, I thank the organisers and participants of
the School who made the summer at Les Houches such an enjoyable experience.
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E. Evans1 and P. Williams2

Part 1: E. Evans and P. Williams

1 Dynamic force spectroscopy. I. Single bonds

1.1 Introduction

Weak-noncovalent interactions govern structural cohesion and mediate most
of life’s functions from the outer membrane surface to the interior nucleus
of a cell. On laboratory time scales, the energy landscape of a weak bond is
fully explored by Brownian-thermal excitations, and energy barriers along
its dissociation pathway(s) become encoded in a rate of unbonding that can
range from ∼1/µs to 1/year. When pulled apart with a ramps of force,
the dissociation kinetics become transformed into a dynamic spectrum of
unbonding force as a function of the steepness of the force ramps (load-
ing rates). Expressed on a logarithmic scale in loading rate, the spec-
trum of breakage forces begins first with a crossover from near equilib-
rium to far from equilibrium unbonding and then rises through ascending
regimes of strength. These regimes expose the prominent energy barriers
traversed along the dissociation pathway. Labelled as dynamic force spec-
troscopy [7, 10], this approach is being used to probe the inner world of
biomolecular interactions [7, 8, 13, 14, 23, 24, 26, 30] and reveals energy bar-
riers that are difficult or impossible to access by solution assays of near-
equilibrium kinetics. These hidden barriers are crucial for specialized dy-
namic functions of molecules.

In this first chapter of our tutorial, we begin with an outline of the
physics needed to understand the impact of force on lifetime of a single
bond. Then deriving prescriptions for rate of transition under force, we
analyze the stochastic process of unbonding in a probe experiment and

1Physics and Pathology, University of British Columbia, Vancouver, Canada V6T
2A6; Biomedical Engineering, Boston University, Boston, MA 02215, USA.

2Pharmaceutical Sciences, University of Nottingham, Nottingham, UK.

c© EDP Sciences, Springer-Verlag 2002



“evans”
2002/8/28
page 148

�

�

�

�

�

�

�

�

148 Physics of Bio-Molecules and Cells

demonstrate the kinetic origin of the force distribution, the peak of which
defines bond strength. Finally, we show how these developments come to-
gether to establish the method of dynamic force spectroscopy and give ex-
amples of single molecule experiments. In the second chapter to follow, we
describe how a nanoscale attachment made up of a few bonds fails under
force and develop limiting models for use in analysis of probe tests that
involve multiply-bonded contacts.

1.1.1 Intrinsic dependence of bond strength on time frame for breakage

Unlike interatomic linkages within nucleic acid – protein – lipid – carbo-
hydrate structures, weak noncovalent bonds between these biomolecules
have limited lifetimes and will dissociate under almost any level of force if
pulled on for modest periods of time. When close to equilibrium in solution,
large numbers of molecules continuously bond and dissociate under zero
force; thus, application of a field (e.g. electrical force or osmotic stress) to
the reacting molecules simply alters the ratio of bound-to-free constituents.
But at infinite dilution, an isolated molecular complex (“bond”) exists far
from equilibrium and has no strength on time scales longer than the time
toff = 1/Koff needed for spontaneous dissociation. If pulled apart faster
than toff , a solitary bond will resist detachment. The unbonding force can
range up to – and even exceed – the adiabatic limit f∞ ∼ |∂E/∂x|max

defined by the steepest gradient in the intermolecular potential E(x) that
binds the complex. In other words, if the bond is broken in less time than
required for diffusive relaxation (∼10−9 s), the force must exceed the “brit-
tle” fracture strength of the bond. However, between the extremes in time
scale (from a nanosecond to the time for spontaneous dissociation), the
force needed to disrupt a weak bond is reduced significantly by thermal
activation. Albeit very rarely, Brownian excitations in the liquid environ-
ment occasionally contribute large transient impulses of force which, added
to a modest external force, exceed the steepest gradient in the intermolec-
ular potential. This enables passage of the confining energy barrier. The
physics that governs activated processes in liquids is century old beginning
with Einstein’s theory of Brownian motion [6] and culminating in Kramers
theory for escape from a bound state in liquids [16, 18]. We will use this
physics to establish the crucial connection between force – lifetime – and
chemistry for a single molecular bond.

1.1.2 Biomolecular complexity and role for dynamic force spectroscopy

What’s subtle and daunting about biomolecular bonds it that the inter-
actions are usually made up of many atomic scale bonds distributed over
diverse regions of large molecules – i.e. not localized to a single amino acid
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nm

Fig. 1.1. Determined by X-ray diffraction, a vertex (stick) representation shows

the important 19 amino acid tip (SGP) of the mucin P-selectin glycoprotein ligand-

1 (PSGL-1) in its bound state conformation superposed on the van der Waals

surface of the outer lectin domain of the cell membrane receptor P-selectin (taken

from Somers et al. [29]).

or other small molecular residue. As an illustration, Figure 1.1 shows the
structural complex obtained recently for the reactive tip of a glycosylated
protein ligand bound to the outer protein domain of its cell surface receptor
called P(for platelet)-selectin [29]. Essential in immune function, this inter-
action enables white blood cells to transiently stick and carry out a rolling
patrol of the vascular wall under high shear stress in blood vessels. Referred
to as a carbohydrate-protein bond, this ligand-receptor interaction is com-
prised of several sugar-peptide and sulfopeptide-peptide hydrogen bonds
plus a metal-ion coordination bond spread over many residues of both the
receptor lectin domain and the tip of the large glycoprotein ligand. Even
so, association and dissociation of this ligand-receptor complex in solution
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seems to exhibit first order kinetics as expected for an ideal “bond”, which
is modeled as a bound state confined by a single energy barrier. Further-
more, from force probe tests, we will also see that a single barrier dominates
the kinetics of dissociation over many orders of magnitude in time scale for
this complex interaction. Yet, probe tests of other species of the same class
of bonds reveals that a sequence of barriers impede dissociation in differ-
ent ranges of force. Thus, the landscape of energy barriers in a complex
interaction can produce highly specialized dynamic responses in molecular
reactions and linkages under stress, which is a principal design requirement
for chemistry in living systems. An important step towards understanding
these designs lies in probing the relation between force – time – chemistry
at the level of single molecules.

In this tutorial, our aim is to show that measuring forces to pull apart
single biomolecular complexes over an enormous span of time scales provides
a spectroscopic method to explore the energy landscape of barriers which
govern dissociation kinetics. By landscape, we mean the free energy pro-
file along a preferential pathway (or pathways) followed most often through
configuration space during dissociation; other pathways involve significantly
greater energy, which makes their traverse extremely rare. Thus, an energy
landscape is viewed to start from a minimum representing the bound state
and rise over one or more peaks with intervening valleys to reach the disso-
ciated state as illustrated schematically in Figure 1.2. The peaks are local
saddle points in the energy surface and define barriers to kinetics. Because of
the thermal (Boltzmann) weighting of the energy barriers, the most promi-
nent barrier is the dominant impedance to kinetics with little retardation
to dissociation from passage of lower barriers. When a bond or molecular
complex is pulled apart under a ramp of force in a probe test, the barri-
ers diminish in time and thus unbonding force depends on rate of loading
(= force/time). As a consequence of diminishing barrier heights, the most
frequent forces for unbonding plotted on a scale of log(loading rate) yield
a dynamic spectrum that images the hierarchy of energy barriers traversed
along the force-driven pathway [7, 10]. Thus, the method of dynamic force
spectroscopy (DFS) probes the inner world of molecular interactions.

1.1.3 Biochemical and mechanical perspectives of bond strength

Given the conceptual energy landscape shown in Figure 1.2, it is useful to
compare traditional ways of characterizing the strength of chemical bonds.
Starting with biochemistry, the scale for bond strength is usually taken as
the free energy difference E0 between bound and free states – or “binding”
energy. In an ideal-dilute solution, the binding energy sets the equilibrium
partition of “bound-to-free” constituents, i.e. the mole fraction of bound
complexes vw [AB] divided by the product of free reactants vw [A] vw [B],
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Fig. 1.2. Conceptual energy profile along a scalar reaction coordinate. In this

hypothetical example, the energy landscape exhibits a primary bound state and a

secondary metastable state punctuated by two energy barriers. From the perspec-

tive of biochemistry, only the outer barrier Eb and binding energy E0 = Eb−∆Eb

are important in bond formation and dissociation.

where concentrations [number/volume] are converted to a scale of mole frac-
tion by the partial molar volume of water vw (e.g. ∼ one liter per 55 Moles).
At equilibrium, the ratio Keq = [AB]/{vw[A][B]} expresses the thermody-
namic balance, kBT log(Keq) = E0, between reduction in (mixing) entropy
and gain in free energy from binding. The important dynamical corollary to
thermodynamic equilibrium is “detailed balance” where the number of com-
plexes that form per unit time Kon [A] [B] must exactly equal the number
that dissociate per unit time Koff [AB]. The “on” rate Kon (M−1 time−1)
and “off” rate Koff (time−1) are empirically-defined parameters.

As such, the connection between equilibrium thermodynamics and phe-
nomenological kinetics is through what’s called the dissociation constant
KD = Koff/Kon, which has units of concentration and is inversely related
to the equilibrium constant, i.e. 1/Keq = vwKD.

Consistent with the label, lowering the concentration of reactants be-
low KD leads to complex dissociation and increasing concentration pro-
motes complex formation. Introduced by Van’t Hoff and Arrhenius in the
late 19th century [16], the long-held phenomenological view is that kinetic
rates start with primitive-attempt rates driven by molecular excitations
but then are discounted dramatically by an inverse exponential (Arrhenius)
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dependence on a dominant energy barrier. For instance, once the react-
ing molecules come together rapidly by diffusion, the entrance barrier ∆Eb

shown in Figure 1.2 would retard association on approach to the bound
state, i.e. Kon ∼ exp(−∆Eb/kBT ). Likewise, given that inner barriers are
more than kBT lower, the height Eb of the paramount-outer barrier rel-
ative to the primary minimum would govern the rate of dissociation, i.e.
Koff ∼ exp(−Eb/kBT ). Since the difference Eb − ∆Eb in energy barriers
equals the binding energy E0, the ratio of kinetic rates is consistent with
“detailed balance” at equilibrium. However, what’s clearly missing in this
biochemical perspective of bond strength is force!

Fig. 1.3. Schematic of the force (solid curve) required to displace molecular com-

ponents of a bond given the conceptual energy landscape in Figure 1.2. From the

viewpoint of mechanics, the complex should become unstable and dissociate from

the location of the steepest energy gradient just beyond the primary minimum.

The remainder of the energy landscape (dotted curve) would appear not to affect

bond strength.

In contrast to the biochemical perspective, classical mechanics is precise
in its prescription of bond force. Specifically, the force required to sep-
arate interacting molecules is the gradient in energy along the landscape
(or interaction potential). The subtlety is that not all positions along the
energy profile are accessible as we apply increasing force to pull molecules
apart. As sketched in Figure 1.3, only regions of the energy contour with
monotonically-increasing gradients would be stable under rising force, which
could leave major portions of the landscape as “virtual” or unmapped by
a pulling force. Once force exceeds the steepest gradient in energy (just
beyond the primary minimum in Fig. 1.2), the molecules would jump apart.
Hence, from a mechanical perspective, bond strength is independent of
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barrier heights or features of the landscape other than the maximum gradi-
ent. Here, what’s missing is time and temperature!

1.1.4 Relevant scales for length, force, energy, and time

At the beginning, it is important to introduce the relevant length, force,
energy, and time scales appropriate to measurements of single bond prop-
erties. The increment of length is obviously the size of a small molecule,
which is taken as a nanometer (about three water molecules end-to-end).
One nanometer is comparable to the mean spacing between molecules at
a concentration of ∼1 mole/liter and five hundred-fold smaller than the
wavelength of green light. Next, the characteristic scale of force needed to
speed up dissociation and quickly break weak-noncovalent bonds is a pi-
conewton (pN). One piconewton is about one ten-billionth of a gram weight
(10−10 gm) or ten thousand-fold smaller than can be measured with an an-
alytical microbalance. The product of length and force scales reveals the
appropriate scale for energy – thermal energy kBT – which is ∼4 pNnm at
biological temperatures (∼300 K), which is better known as ∼0.6 Kcal/mole
for Avogadro’s number (∼6× 1023) of molecules.

Time scale is a much more complicated issue. At the atomic level, the
time scale for excitations is typically 10−15 s or comparable to the frequency
of the light photons emitted or adsorbed in atomic transitions. Much longer,
however, kinetics in vacuum or gas phase reactions are theorized to start
at an attempt frequency defined by thermal energy over Planck’s constant,
kBT/h ∼ 1013/s. This frequency characterizes thermally-driven transitions
in a quantum oscillator model of chemical dissociation as developed by
Eyring [16]. However, in condensed liquids or inside compact structures
like proteins, kinetics are slowed significantly by dissipative collisions be-
tween and within the molecular components as well as with the myriad of
other molecules in the surrounding solvent. For example, an instantaneous
impulse of momentum from a thermal collision in water will die out on a
time scale of ∼10−12 s or less as set by the ratio of damping to molecular
inertia. Because of damping, many impulses are needed to separate molecu-
lar components over a distance comparable to the scale of bond length even
in the absence of a bonding interaction.

Hence, as will be shown next, kinetics in the overdamped world of
biomolecular interactions begin on a time scale set by a diffusive relaxation
time for the bond. This relaxation time is on the order of 10−9 s which
means that attempt frequencies for unbonding in liquids are four orders
of magnitude slower than predicted by vacuum theory. The corresponding
attempt frequency of ∼109/s is then diminished many orders of magnitude
by bond chemistry to reach laboratory kinetic rates of as long as 1/month
or more for dissociation of weak biomolecular interactions – i.e. a range
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of more than sixteen orders of magnitude in time scale! Most important,
this enormous span in time scale corresponds to breakage forces that range
from the maximum gradient in the molecular interaction potential (∼nN)
under nanosecond detachment to zero force under detachment slower than
the spontaneous dissociation rate 1/toff .

1.2 Brownian kinetics in condensed liquids: Old-time physics

To make the connection between force – time – and chemistry, we need to re-
view the physics that underlies kinetics in a liquid environment. Motivated
by Einstein’s theory of Brownian motion [6], these well-known developments
take advantage of the huge gap in time scale that separates rapid thermal im-
pulses in liquids (<10−12 s) from slow processes in laboratory measurements.
Three equivalent formulations describe molecular kinetics in an overdamped
environment (see for example, N.G. van Kampen: Stochastic Processes in
Physics and Chemistry [33]). The first is a nanoscopic description where
molecules behave as particles with instantaneous positions or states x(t)
governed by an overdamped Langevin equation of motion,

dx/dt = [f + δf ]/ζ. (1.1)

Changes in state are driven by instantaneous force scaled by the mobility
of states or inverse of the damping coefficent ζ. The deterministic part of
the force (f = −∇E+ fext) includes the local gradient in molecular interac-
tion potential E(x) plus the applied external force fext. To this is added a
random-uncorrelated force δf that embodies the many body collisions asso-
ciated with the thermal environment. These random impulses are governed
by the fluctuation-dissipation theorem, 〈δf2〉∆t ∼ kBTζ. (Einstein’s great
insight was to recognize that the average mechanical energy imparted by
thermal impulses had to equal thermal energy, i.e. the ensemble-average
integral of mechanical power 〈∫∆t δf · δv dt′〉 = kBT . The assumption of
overdamped motions δv = δf/ζ then yields the autocorrelation relation
that governs force fluctuations.) The nanoscopic view can also be described
by a stochastic process, which has become the foundation for an important
computational technique – Brownian dynamics or dissipative Monte-Carlo
simulations (referred to by its creators as “smart Monte-Carlo” [27]). In this
description, the likelihood P (x+∆x, t+∆t|x, t) that a state x(t) will evolve
to a new state x + ∆x over a time increment ∆t is the product of the equi-
librium (long-time) Boltzmann weight for the step and a diffusive-Gaussian
weight for dynamics,

P (t→ t+ ∆t) ∼ exp{−[∆E − fext ·∆x]/kBT }
× exp{−|∆x− f∆t/ζ|2/(4D∆t)}/(D∆t)1/2 (1.2)
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where the diffusivity of states D is taken here to be a constant given by the
Einstein–Stokes relation, D = kBT/ζ. Finally, on time scales that include
many thermal impulses (∼10−9 s and longer), the overdamped dynamics can
be cast in a continuum theory where the density of states ρ(x, t) at location
x and time t evolves according to the Smoluchowski transport equation,

dρ/dt = −∇ · J (1.3)

with the flux of states J = (fext−∇E)ρ/ζ−D∇ρ defined by force-driven con-
vection plus the diffusive gradient. Although each description illuminates
different features of kinetics in a dissipative environment, Kramers [16, 18]
demonstrated that Smoluchowski transport can be used to predict the rate
for thermally-activated escape from a deeply bound state.

1.2.1 Two-state transitions in a liquid

To illustrate the important features of chemical kinetics in liquids and the
utility of Kramers approach, we begin by examining two-state transitions
with an energy landscape modelled by two deep energy minima separated by
an intervening barrier (Fig. 1.4). In this 1-D abstraction, a scalar coordinate
“x” is assumed to map the transition pathway over a barrier at energy Ets

relative to the deepest minimum. Following Kramers, rates of transition
between these two states are approximated by stationary fluxes (constant
#/time) between the states under appropriate boundary conditions,

J = −D[(∂E/∂x)ρ/kBT + ∂ρ/∂x] = constant. (1.4)

Again treating the diffusivity or mobility of states as locally constant, in-
tegration of the stationary flux relates flux to the end-state densities (ρ1,
ρ2),

J = D{ρ1 exp(E1/kBT )− ρ2 exp(E2/kBT )}/
{∫

1→2

dx exp[E(x)/kBT ]
}
·

(1.5)

Directional rates of transition ν1→2 and ν1←2 between the two states are
then found by starting with all states essentially at “1” or “2” and an
adsorbing boundary at the final state “2” or “1” (i.e. ρ2 = 0 or ρ1 = 0).
This leads to the expressions for forward and reverse rates of transition,

ν1→2 = Dρ1 exp[(E1 − Ets)/kBT ]/Lts

ν1←2 = Dρ2 exp[(E2 − Ets)/kBT ]/Lts. (1.6)

Energy-weighted, the major contribution to the pathway integral in
equation (1.5) arises local to the transition state and defines a length scale
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Fig. 1.4. Conceptual energy landscape for a two-state transition.

for barrier width, Lts ≡
∫
1↔2 dx exp[(E(x) − Ets)/kBT ]. As expected, “de-

tailed balance” (ν1→2 = ν1←2) yields the ratio (ρ1/ρ2)∞ = exp[(E2 −
E1)/kBT ] required for densities of states at long times.

1.2.2 Kinetics of first-order reactions in solution

Another revealing application of Kramers theory is to bimolecular reac-
tions (A + B ↔ AB) in solution. Here, we imagine that a 1-D density ρA

(#/length) of reactant (e.g. A) exchanges with the bound state (reactant B)
at one end of a scalar coordinate x as sketched in Figure 1.5. As such, the
reverse rate in equation (1.6) predicts the rate of capture by the attractive
potential:

νB←A ≈ DρA exp[−∆Eb/kBT ]/Lts (1.7)

which may involve passage of an entrance barrier ∆Eb like that sketched
in Figure 1.5. To connect with the solution in 3-D beyond the reaction
pathway, the 1-D density ρA is modelled as the product of solution concen-
tration cA (number/volume) and the effective cross section of the reactive
site, i.e. ρA ∼ 4πx2

bcA. In this way, the bimolecular “on” rate in solu-
tion is found from the rate of capture per concentration of reactant A, i.e.
Kon = νB←A/cA. Since barrier width Lts will be comparable to barrier
location xb, “on” rate in solution can be approximated by,

Kon ∼ (4π “xbD”) exp[−∆Eb/kBT ]. (1.8)
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Fig. 1.5. Conceptual energy landscape for capture and release of components in

solution.

The prefactor 4π“xbD” in equation (1.8) represents the well-known
Smoluchowski rate for diffusion-controlled aggregation which, for two-
spheres (A–B), is given by the product of interparticle separation (“xb” =
rA + rB) at contact and combined particle diffusivity, (“D” = DA + DB).
For nanometer-size molecules in water, the Smoluchowski scale for “on”
rate is ∼109−1010 M−1 s−1, whereas typical “on” rates for macromolecular
interactions are only ∼106 M−1 s−1. Thus, formation of macromolecular
bonds appears to involve entrance barriers of ∼10kBT in energy.

In examining the “off” rate, the crucial concept is that the constituents
in a bound complex are driven to escape by entropy confinement. In 1-
D, the relevant entropy gradient is determined by the density of states ρ1

(#/length) local to the minimum. Under strong confinement, the distribu-
tion of states ρ(x) = ρ1 exp[−(E −E0)/kBT ] diminishes rapidly away from
the minimum and, hence, the integral

∫
1 ρ(x)dx ≈ 1 relates the entropy

gradient to a confinement length, i.e. ρ1 = 1/Lc and Lc =
∫
1
exp[−(E −

E0)/kBT ]dx. Introducing this length scale into equation (1.6) yields a
generic expression for “off” rate (1/toff = νB→∞),

νB→∞ = D exp(−Eb/kBT )/LcLts (1.9)

where kinetics are driven by a diffusive attempt frequency D/LcLts and
attenuated by the classic Arrhenius dependence on barrier energy Eb. Be-
cause of near-thermodynamic equilibration on a local scale, confinement
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length and barrier width are tied to curvatures (κ = ∂2E/∂x2) of the energy
landscape at the minimum and transition states, i.e. Lc ≈ (2πkBT/κc)1/2

and Lts ≈ (2πkBT/κts)1/2 respectively. (Note: These approximations fol-
low from expansions of energies to quadratic order, E − E0 ≈ κc(x −
x0)2/2, and, E − Eb ≈ −κts(x − xb)2/2, in the vicinity of the minimum
and transition state respectively.) We now have Kramers’ classic prescrip-
tion [16, 18] for attempt frequency in an overdamped liquid environment,
i.e. D/LcLts = (κcκts)1/2/2πζ, and the corresponding diffusive relaxation
time tD = 2πζ/(κcκts)1/2. Although little is known about these molecular-
scale properties, damping coefficients of ∼2−5 × 10−8 pN-sec/nm are typ-
ically deduced from molecular dynamics MD simulations of bonds under
force [15, 17, 22]. Assuming a product of length scales LcLts on order of
0.01–0.1 nm2, Kramers theory predicts that kinetics are driven by an at-
tempt frequency of ∼1010−109/s, but actual rates of dissociation end up at
∼1/s for barrier heights of ∼21kBT , or, astonishingly, at ∼1/40 years for
barrier heights of ∼42kBT , and so on!

1.3 Link between force – time – and bond chemistry

1.3.1 Dissociation of a simple bond under force

As illustrated in Figure 1.6, application of a persistent-external force (inde-
pendent of distance) to a bond contributes a mechanical disjoining potential
that deforms the chemical energy landscape. Energy barriers are lowered,
displaced inward, and narrowed in ways that significantly affect kinetics.
The shapes, levels, and locations of intervening minima are also altered
but as we’ll see, this has little impact on rate of dissociation provided that
there is no switch in location of the primary minimum. Neglecting many
subtle features, shifts in locations and changes in widths of barriers merely
introduce weak prefactor dependencies on applied force in the unbonding
rate (e.g. 1/Lts ∼ fα with α ∼ 1 or less, see Ref. [10]), which become in-
significant for sharp energy barriers and so will be suppressed here. The
major impact on kinetics stems from the enormous increase in likelihood of
unbonding as barriers fall under applied force.

Force lowers a barrier in proportion to its thermally-averaged projection
xβ = 〈xts cos θβ〉 along the pulling direction, i.e. Eb(f) = Eb− fxβ ; the an-
gle θβ accounts for instantaneous deviations of the reaction coordinate from
this direction. The reduction in energy under force leads to exponentiation
of the rate of barrier passage, i.e. ν→∞=(1/tD)exp(−Eb/kBT )exp(fxβ/kBT ),
as first hypothesized by Bell [4] over twenty years ago. Consequently, the
characteristic scale for force is determined by thermal
activation, i.e. fβ = kBT/xβ , which can be surprisingly small since kBT ≈
4.1 pN nm at room temperature and xβ ∼ 0.1−1 nm. Thus, because of
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Fig. 1.6. Coupled to the projected reaction coordinate x, a persistent-external

force f adds a mechanical potential – f x that tilts the landscape and lowers the

barrier to dissociation. (Note: from here on, f represents an externally applied

force fext.)

thermal activation, pulling on a bond with forces of a few times the thermal
force fβ will cause a bond to dissociate a hundred or thousand times faster
than it would spontaneously. But to break a bond in less than a nanosecond,
it can take 40–50 times the thermal force fβ, as demonstrated in molecular
dynamics simulations [15, 17, 21, 22].

1.3.2 Dissociation of a complex bond under force: Stationary rate
approximation

Since macromolecular bonds involve widely-distributed atomic-scale inter-
actions, a rough terrain of barriers can exist in the energy landscape even
after averaging over fast degrees of freedom before reaching laboratory time
scales. When force is applied, outer barriers are driven below inner barriers
so that an inner barrier becomes the dominant impedance to unbinding as
sketched in Figure 1.7. We will see that switching of the prominent barrier
leads to a hierarchy of exponential amplifications in rate of escape under
force.

Unlike an ideal single-level transition, analysis of a multilevel transition
under changing force is not transparent and usually requires numerical com-
putation or simulation. However, we can develop useful approximations for
the effective rate of unbonding over a cascade of N -1 sharp barriers that
separate N levels (minima). These approximations follow directly from
Kramers stationary-flux theory. Step-wise integration of the flux J from
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Fig. 1.7. Conceptual switching of dominant energy barriers in complex bond as

the outer barrier is driven below an inner barrier by application of force.

one level to the next yields coupled equations that relate the rate of com-
plete transition ν→(= J in 1-D) to the densities of states ρn at each energy
minimum Ec(n) along the energy contour. With energies defined relative
to the first minimum (i.e. Ec(1) = 0), the initial integration from the first
(n = 1) to second minimum (n = 2) gives,

ν→ Lts(1) exp[Ets(1)/kBT ]/D = P1/Lc(1)− P2 exp[Ec(2)/kBT ]/Lc(2)
(1.10)

which is followed by integration through intermediate levels,

ν→ Lts(n) exp[Ets(n)/kBT ]/D = Pn exp[Ec(n)/kBT ]/Lc(n) . . .
− Pn+1 exp[Ec(n+ 1)/kBT ]/Lc(n+ 1) (1.11)

all the way to the unpopulated Nth level where PN = 0 (i.e. an adsorbing
state),

ν→ Lts(N − 1) exp[Ets(N − 1)/kBT ]/D =
PN−1 exp[Ec(N − 1)/kBT ]/Lc(N − 1). (1.12)

Here, the density of states ρn at each minimum is expressed in terms of the
likelihood (probability) Pn of being at that level, scaled by a confinement
length Lc(n) as defined earlier, i.e.

ρn = Pn/Lc(n) and Lc(n) =
∫

n

dx exp{[E(x)− Ec(n)]/kBT } ·
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Also, barrier widths Lts(n) are again introduced to represent the energy-
weighted integrals local to each transition state at energy Ets(n),

Lts(n) =
∫

n→n+1

dx exp{[E(x)− Ets(n)]/kBT } ·

For convenience, we idealize the landscape as a sequence of narrow minima
and sharp transition states having the same confinement length Lc(n) = L0

and barrier width Lts(n) = Lb. In this way, a common relaxation time
tD = L0Lb/D is defined for all transitions, and equations (1.10–1.12) predict
Boltzmann-weighted likelihoods for levels, i.e.

tD ν→Σj=1→N−1{exp[Ets(N − j)/kBT ]} = P1 (1.13)
.

tD ν→Σj=1→N−n{exp[Ets(N − j)/kBT ]} = Pn exp[Ec(n)/kBT ] (1.14)
.

tD ν→{exp[Ets(N − 1)/kBT ]} = PN−1 exp[Ec(N − 1)/kBT ]. (1.15)

At equilibrium, we expect each weighted likelihood to be unity, i.e. Pn →
exp[−Ec(n)/kBT ].

However, for the non-equilibrium process of unbonding, the likelihood
of being in a particular level will deviate from a Boltzmann distribution.
Two particular cases provide limiting initial conditions for the distribution
of states in the stationary flux model. The first limit represents a strongly
bound complex where the vast majority of states lie in a deep primary
minimum, i.e. P1 ≈ 1. In this case, the approximate rate of unbonding is
given by equation (1.13) [7, 8],

ν→ ≈ (1/tD)/Σn=1→N−1 exp[Ets(n)/kBT ]. (1.16)

No surprise, we see that the rate of unbonding is dominated by the largest
exponential, which is set by the highest transition state relative to the pri-
mary minimum. But for complexes with low-lying secondary minima, par-
tial filling of intermediate levels may affect the unbonding rate in ways that
can become important under force. This case is easily treated using the
auxiliary requirement that the occupation of inner levels add up to one, i.e.
Σ1→N−1Pn = 1 (as noted by Ajdari et al. [3]). In this case, the unbonding
rate is found by rearranging equations (1.13–1.15) to obtain the Pn’s and
then evaluating their sum, i.e.

ν→ ≈ (1/tD)/Σn=1→N−1 exp[−Ec(n)/kBT ]Σj→N−n exp[Ets(N − j)/kBT ].
(1.17)
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Fig. 1.8. Amplification of unbonding kinetics under persistent force for an energy

landscape of two barriers as depicted in Figures 1.3 and 1.7.

As expected, the approximation in equation (1.17) reduces to equation (1.16)
when metastable levels are more than a few kBT above the primary
minimum.

So how does external force affect the rate of unbonding over a multilevel
energy landscape? Given narrow minima bounded by sharp barriers, the
energies at these locations will change through proportionalities to force set
by projections of the minima xc(n) and barriers xβ(n) along the pulling
direction, i.e. Ec(n) ≈ E0(n)− fxc(n) and Ets(n) ≈ Eb(n)− fxβ(n). This
introduces exponential dependencies on force into the approximations for
unbonding rate, i.e.

ν→ ≈ (1/tD)/Σn→N−1 exp[Eb(n)/kBT ] exp[−fxβ(n)/kBT ] (1.18)

ν→ ≈ (1/tD)/Σn=1→N−1Σj→N−n exp{[Eb(N − j)− E0(n)]/kBT }
× exp{f [xc(n)− xβ(N − j)]/kBT } · (1.19)

Hence, consistent with a changing hierarchy of barriers, application of force
to a complex bond leads to an sequence of exponential increases in unbond-
ing rate as illustrated in Figure 1.8.



“evans”
2002/8/28
page 163

�

�

�

�

�

�

�

�

E. Evans∗ and P. Williams∗∗: Dynamic Force Spectroscopy 163

Table 1.1. Master equations for unbonding in an N-level system.

bound
dS1/dt = −ν1→2S1(t) + ν1←2S2(t)
.
.
dSn/dt = −{νn→n+1 + νn−1←n}Sn(t) + νn−1→nSn−1(t) + νn←n+1Sn+1(t)
.
.
unbound
dSN/dt = −νN−1←NSN (t) + νN−1→N SN−1(t)

1.3.3 Evolution of states in complex bonds

To describe the detailed evolution of states in a complex bond, a hierarchy
of “master equations” (Table 1.1) is needed to predict the likelihood Sn(t)
of being in the nth level (local minimum) as a function of time. In this
Markov sequence, the forward νn→n+1 and reverse transition rates νn←n+1

at each barrier depend exponentially on the height of the barrier relative
to the adjacent minima. Assuming a simple 1-D topology where xc(n) <
xβ(n) < xc(n + 1), forward rates of barrier passage would increase under
force as,

νn→n+1 = (1/τn→n+1) exp{f [xβ(n)− xc(n)]/kBT } (1.20)

and reverse rates would decrease as,

νn←n+1 = (1/τn←n+1) exp {−f [xc(n+ 1)− xβ(n)]/kBT } · (1.21)

The prefactors in these expressions are the spontaneous rates of transition
defined by the initial height of a barrierEb(n) relative to its adjacent minima
E0(n) and E0(n+ 1),

(1/τn→n+1) = (1/tD) exp{−[Eb(n)− E0(n)]/kBT }
(1/τn←n+1) = (1/tD) exp{−[Eb(n)− E0(n+ 1)]/kBT } · (1.22)

Even with ideal exponential dependencies of transition rates on force, these
master equations can only be solved analytically when force is constant.
In this case, Laplace transform of the master equations leads to a linear
system of algebraic equations in transform space. This set of equations
can be diagonalized and inverse transformed to obtain a superposition of
decaying exponentials in time that describe the probability of reaching the
unbonded state. However, as we will see next, probe tests of bonds and
dynamic force spectroscopy in particular involve changing levels of force
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in time. Under rising force, the dynamics of multilevel transitions can be
extremely complex and solution of the master equations will require nu-
merical computation or tedious Monte-Carlo simulation. Fortunately, the
strong exponential dependence on force and wide separation of energy bar-
riers in real interactions often allow transitions from bound to free states to
be described by a stationary-rate approximation (Eqs. (1.16) or (1.17)) and
a single master equation. In this way, we will demonstrate that multilevel
unbonding under increasing force leads to a distinct pattern of force versus
loading rate, which is the basis of dynamic force spectroscopy.

1.4 Testing bond strength and the method of dynamic force spectroscopy

With few exceptions, tests of bond strength with force probes usually follow
a common approach. The probe tip and substrate are first decorated with
reactive molecules using methods that vary from nonspecific adsorption to
covalent attachment with heterobifunctional polymer spacers or noncovalent
attachment by high-affinity complexes such as biotin-streptavidin. Once
prepared, a probe and substrate are repeatedly brought to/from contact by
steady-precision movements. If decorated with a very low density of reac-
tive sites, repeated contact between the probe tip and test surface will only
result in an occasional bond. Under controlled conditions of contact, a low
frequency of attachment provides quantitative verification of the likelihood
of rare-single bond events (e.g. probability >0.9 when 1 attachment occurs
out of 10 touches). When a bond has formed, the tip is held to the substrate
and the probe transducer (“spring”) is stretched as the surfaces separate.
Bond rupture is signalled by rapid recoil of the transducer to its rest position
and the maximum transducer extension yields the rupture force. Histories
of force over the course of approach – touch – separation with and with-
out formation of a bond are demonstrated in Figure 1.9. After numerous
touches, the few detachment forces are cumulated into a histogram (as will
be shown later). The peak in this histogram is the most likely force for
rupture and establishes a statistical definition for bond strength. Surpris-
ingly, we’ll see later that no matter how carefully measured or precise the
technique, bond forces will always be spread in value and the most frequent
breakage force will depend on how fast force is applied to the bonds. The
crucial feature of the typical probe test is that the force experienced by a
bond rises in time. As seen in Figure 1.9, a bond broken under slow loading
has a long lifetime but only withstands a small force; whereas, the same
type of bond broken under fast loading has a very short lifetime and with-
stands a large force. We will see that when plotted on a logarithmic scale of
loading rate (force/time), measurements of rupture force over an enormous
span in rate from very slow to extremely fast image the prominent energy
barriers traversed along the dissociation pathway.
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Fig. 1.9. Examples of tests performed at slow (upper plots) and fast (lower plots)

speeds with a biomembrane force probe BFP (shown in Fig. 1.10). The force is

traced over time in the course of approach–touch–separation with (right) and

without (left) formation of a bond.

1.4.1 Probe mechanics and bond loading dynamics

At present, measurements of single bond strength are usually performed
with one of three types of apparatus: (i) the atomic force microscope
AFM [5] where force is sensed by deflection of a thin silicon nitride can-
tilever; (ii) the biomembrane force probe BFP [11] where force is sensed by
axial displacement of a glass microsphere glued to the pole of a micropipet-
pressurized red blood cell (example in Fig. 1.10); and (iii) the laser optical
tweezer LOT [1,2, 19, 31] where force is sensed by displacement of a micro-
sphere trapped in a narrowly-focused beam of laser light. Each of these
probes acts as a very soft spring with a small elastic stiffness κf (force ∆f
per deflection ∆x) that ranges from <1 pN/nm to 1 nN/nm. Low values of
probe stiffness represent high sensitivity to force for each nm deflection of
the spring but also large thermal fluctuations in position (δx2 ∼ kBT/κf).
On the other hand, high probe stiffness represents low sensitivity to force
per unit deflection and large thermal fluctuations in force (δf2 ∼ kBT ·κf ).

As seen in Figure 1.9, bond strength and lifetime depend critically on
how fast force is applied which involves both stiffness of the spring that
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Fig. 1.10. Prepared to test a ligand-receptor interaction, a biomembrane force

probe (symbolized by the “spring” – left) with a glass tip decorated by the ligand

(“pin heads”) is shown on approach to a glass bead (right) decorated by the

receptor (“darts”). The pipet suction ∆P applied to the red blood cell transducer

(scaled by pipet radius Rp) sets its membrane tension τm ∼ Rp∆P and thereby

tunes the elastic stiffness κf of the transducer “spring”, i.e. κf ∼ τm.

pulls on the bond and the pulling speed v. However, even with a known
product of probe stiffness and separation speed, the rate of force applica-
tion to a bond can deviate signficantly from this expected value when soft
molecular structures connect the bond and probe. If the bond is linked
symmetrically to tip and substrate by components with the same stiff-
ness κm, the effective spring that pulls on the bond has a compliance given
by, 1/κs = 2/κm + 1/κf . Most biomolecules are linked to solid surfaces
by highly flexible polymers. These connections have a nonlinear elastic re-
sponse and a very small thermal scale kBT/(Lpb) for stiffness that depends
on contour length Lp and persistence length b of the polymer. Even for
relatively short linkers, the stiffness scale is <1 pN/nm. So when connected
to a stiff probe (e.g. with κf > 10 pN/nm), the soft linker becomes the ef-
fective spring that pulls on the bond but applies a nonlinear loading history
as seen in Figure 1.11. In addition, bond rupture almost always occurs in
the asymptotic regime of loading as the polymer is pulled taut. Here, force
diverges f ≈ (kBT/cb)/(1− x/Lp)α as length x→ Lp, with α = 1 & c = 1
for a freely-jointed polymer and α = 2 & c = 4 for a worm-like polymer.
Under constant pulling speed (x = v t), loading increases rapidly with an
approximate rate, rf (t) ≈ (kBT/cLpb)v/(1 − vt/Lp)α+1. We will see later
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Fig. 1.11. Loading of bonds formed between the biotinylated glass tip of a BFP

and an avidinated latex microsphere (superposition of 8 tests). The plot shows

that the bonds are anchored to the latex microsphere by long, flexible chains of

polystyrene.

that this unsteady loading plays an important role in the dependence of
rupture force on detachment speed.

What’s subtle with operation of any probe in liquids is that hydrody-
namic interactions always accompany relative motion between the probe
and substrate. Moreover, each hydrodynamic situation has to be analysed
carefully to determine the impact on probe force. But a particularly impor-
tant effect is the hidden contribution to force ∆f that arises when a probe
is pulled quickly; the force augmentation is governed by the probe damping
coefficient ζ and deflection speed v, i.e. ∆f = ζv. In general, the damping
coefficient is proportional to viscosity η of the liquid environment and a hy-
drodynamic profile length Lζ for the probe, i.e. ζ ≈ ηLζ . As such, damping
coefficients are in the range from ∼10−5 pN-s/nm for a micron-size particle
trapped by LOT to ∼10−4 pN-s/nm for a BFP and ∼10−3 pN-s/nm for a
long AFM cantilever, which implies viscoelastic response times tf ∼ ζ/kf

in the range of ∼10−5−10−3 s. Unfortunately, damping coefficients are dif-
ficult to predict accurately by theory and usually have to be measured. As
an example of such measurement, Figure 1.12 shows the recovery of a BFP
following release from a deflecting force at three different settings of elastic
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Fig. 1.12. BFP recovery (normalized by initial deflection) following bond rupture

events at three elastic stiffnesses kf . Superposed on each test is the exponential

decay (dotted curve) defined by the time scale ζ/kf with a common damping

coefficient ζ ∼ 5 × 10−4 pN-s/nm and each value of stiffness.

stiffness. Exponential fits to each recovery curve with decay times defined
by ζ/kf were used to determine the BFP damping coefficient.

1.4.2 Stochastic process of bond failure under rising force

Because of the enormous gap in time scale between diffusive relaxation
(tD ∼ 10−10−10−9 s) and laboratory experiments (∼10−4 s to minutes),
kinetic rates of bond dissociation can be treated as continuous functions of
the instantaneous force on the laboratory time scale. In the limit of large
statistics, the master equations listed in Table 1.1 describe the stochastic
process of bond failure under dynamic loading. In the idealized context of
a simple bond, evolution of a bound complex under force involves the net
of forward → and reverse ← transitions in a single master equation,

dS1/dt = −ν→(t)S1(t) + ν←(t)S2(t) (1.23)

S1(t) is the likelihood of being in the bound state and S2(t) ≡ 1 − S1(t) is
the likelihood of being detached. When pulled by an elastic linkage κs(f)
at constant speed v, force and time become equivalent statistical variables
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connected through the dynamical transformation df = [κs(f)v]dt. Thus,
the likelihood of bond survival to a particular time can be described in terms
of survival to a particular level of force [7, 10], i.e.

dS1/df = −[ν→(f) + ν←(f)]S1(f)/rf (f) + ν←(f)/rf (f) (1.24)

which reveals the intrinsic dependence on loading rate rf (f) ≡ κs(f)v.
The distributions of bond lifetimes and rupture forces are given by the
probability density p(t) = −dS1/dt for rupture times between t → t + ∆t
and the probability density p(f) = −dS1/df for rupture forces between
f → f + ∆f respectively.

1.4.3 Distributions of bond lifetime and rupture force

We begin by analyzing the loading condition where the time dependent
force does not diminish with separation distance (as in Fig. 1.6). Once
force rises above the thermal scale fβ for exponentiation of dissociation
rate, molecules that have separated to distances beyond the barrier will
continue to drift apart by force faster than diffusion can recombine them.
The likelihood of bond survival becomes dominated by rate of dissociation
and falls rapidly. So above fβ, the bond is driven far from equilibrium and
rebinding vanishes (ν←S2 ∼ 0), which leads to simple relations for distri-
butions of lifetimes, p(t) ≈ ν→(t) exp{− ∫

0→t
ν→(y)dy}, and rupture forces,

p(f) ≈ [ν→(f)/rf (f)] exp{− ∫
0→f

[ν→(y)/rf (y)]dy}. Thus, loaded by a lin-
ear spring under a constant pulling speed, the statistics of rupture for a bond
confined by a single-sharp barrier become universal on a dimensionless scale
rf = toff rf/fβ for loading rate [7, 10], i.e.

p(y) = exp{y − [exp(y)− 1]/rf}/rf (1.25)

where y ≡ rf t/fβ or ≡ f/fβ and given the expression for rate of passage un-
der force, ν→ = (1/toff) exp(f/fβ)]. For dimensionless rates rf ≥ 1, a peak
appears in the distribution due to the crossover between exponentiation of
the unbonding rate and the precipitous decline in bond survival under in-
creasing force. The distribution peak at y = y∗ is defined by ∂p(y)/∂y = 0,
which yields the time t∗ = fβ y

∗/rf and force f∗ = fβ y
∗ for most frequent

rupture or bond lifetime and bond strength respectively. Locating the distri-
bution peak, we see that both lifetime and strength of a bond depend loga-
rithmically on loading rate, i.e. y∗ = log(rf ). Hence, under constant speed
separation with a linear spring (i.e. rf = κsv), observation of a straight line
regime in a plot of bond strength versus log(loading rate) reveals the dom-
inance of a single-sharp energy barrier where the slope fβ = kBT/xβ is set
by the barrier projection xβ along the direction of force. Moreover, strength
emerges when loading rate surpasses r0f = fβ/toff and becomes fast enough
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to contribute kBT of energy or greater to the bond within the time for
spontaneous dissociation toff . Thus, the plot of most frequent rupture force
as a function of log(loading rate) can establish both distance scales xβ and
spontaneous rates 1/toff of passage for barriers traversed in detachment of
bonds, which is a spectral image of the energy landscape of a bond [7, 10].
The universal expression in equation (1.25) shows that a distribution of
forces is always broadened by kinetics – even with no experimental error
– and the spread σf in rupture forces is determined by the thermal force
scale, σf = fβ. Thus, the widths of force distributions should match the
slopes of linear regimes observed in a dynamic force spectrum.

Fig. 1.13. Histograms of detachment forces for bonds between the SGP ligand

and P-selectin receptor (Fig. 1.1) obtained at loading rates of 100, 1000, and

10 000 pN/s. Superposed are distributions predicted by the universal distribution

for failure of an ideal bond (Eq. (1.25)) rescaled by the slope and intercept of

the spectrum of most frequent rupture force versus log(loading rate) plotted in

Figure 1.14.

To demonstrate that these universal features arise in tests of real bonds,
we take results from our recent tests of the carbohydrate-selectin interaction
pictured in Figure 1.1, which surprisingly exhibits simple bond-like kinetics
under force. Using a BFP, we performed thousands of repeated touches to
target microspheres at set loading rates as illustrated in Figure 1.10. From
these touches, a few hundred forces were obtained at each rate and collected
into histograms, samples of which are shown in Figure 1.13 for a three order
of magnitude span in rate. Superposed in Figure 1.13 are the universal
probability distributions predicted by equation (1.25) with the thermal force
fβ = 19 pN and spontaneous dissociation rate 1/toff = 0.1 s−1. These
force and rate scales were determined from the plot of histogram peaks
as a function of log(loading rate), which is the dynamic force spectrum
shown in Figure 1.14. From the close match in Figure 1.13, we see that the
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distributions predicted by the slope and intercept derived from the force
spectrum are fully consistent with the histograms of forces measured at
each loading rate. This agreement is the requisite control for validity of the
dynamic force spectrum. It is important to recognize that each probability
distribution is a complete view of the stochastic process of unbonding over
all time where the kinetics are imaged through a “shutter” set by loading
rate. However, also keep in mind that for complex interactions like the
SGP-selectin bond in Figure 1.1, observation of simple bond-like behavior
most likely reflects the dominance of one of several energy barriers over a
particular – but limited – range of loading rates. This span of dominance
is governed by the difference in height of the barrier relative to the next
prominent barrier as we will see later.

Fig. 1.14. Dynamic spectrum of the most frequent forces in histograms as a

function of log(loading rate) for bonds between the SGP ligand and P-selectin

receptor (Fig. 1.1).

To examine bond strength f∗ in more complicated processes (e.g. un-
der nonsteady loading), the location of the maximum, ∂p(f)/∂f = 0, is
found from the derivative of the general integral expression for the force
distribution,

p(f) ≈ [ν→(f)/rf (f)] exp
{
−

∫
0→f

[ν→(y)/rf (y)]dy
}
· (1.26)
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Fig. 1.15. Energy landscapes for a simple bond pulled by a soft and stiff spring.

In this way, the most frequent force is specified by inversion of the following
transcendental expression [7, 10]:

[ν→]f=f∗ = rf [∂ log(ν→)/∂f − ∂ log(rf )/∂f ]f=f∗ (1.27)

which unfortunately rarely yields a simple expression for force as a function
of rate like that for a single-sharp barrier. In the same way, we can di-
rectly estimate the spread σf in a force distribution using the dimensionless
curvature at the peak of the distribution, i.e.

1/σ2
f =

{
[∂ log(ν→/rf )/∂f ]2 − ∂2 log(ν→/rf )/∂f2

}
f=f∗ .

1.4.4 Crossover from near equilibrium to far from equilibrium unbonding

Unlike the concept of persistent force with no chance of rebinding after pass-
ing the transition state, pulling on a bond with a probe applies a force that
diminishes with distance and eventually changes sign to establish a capture
well as depicted in Figure 1.15. Deepening and moving outward with time,
the capture well facilitates rebinding until force becomes large enough to
drop the energy level below the bound state minimum. Here, linkage stiff-
ness κs is very important since the ratio of rebinding-to-unbinding rates
falls in proportion to exp(−f2/2κs). (Note: when possible in the analy-
ses to follow, we will employ a single barrier model for bonds and conve-
niently express variables in a dimensionless form defined by force f ≡ f/fβ,
unbonding rate toff ν→, loading rate rf ≡ rf toff/fβ, and linkage stiffness
κs ≡ κsx

2
β/kBT .)

More subtle, linkage stiffness also modifies the reduction in barrier height
under force and introduces a threshold into the dependence of unbonding
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rate on force, i.e. toff ν→ = exp(f − κs/2) for f ≥ κs/2. In other words,
force must be large enough to push the capture well beyond the barrier to
enable escape. Under rising force, the forward rate of barrier passage will
eventually overwhelm the rate of reverse passage and eliminate rebinding,
i.e. ν→ > ν←. This condition defines the crossover from near equilibrium –
to far from equilibrium – dissociation.

To determine the impact of force on rebinding, we utilize our earlier
analysis of two-state transitions. First, the barrier energy Eb, confinement
length Lc, barrier width Lb, and molecular damping ζm define the time
scale for spontaneous dissociation, i.e. toff = (ζmLcLb/kBT ) exp(Eb/kBT ).
For simple harmonic loading, the rate of forward transition will increase as
an exponential of the force, toff ν→ = exp(f − κs/2), given in dimension-
less units. Similarly, these properties and the entrance barrier height ∆Eb

can be used to define a time scale ton ≡ (ζmLcLb/kBT ) exp(∆Eb/kBT ) for
spontaneous-inward passage. As expected, the ratio of characteristic times
represents the equilibrium constant Keq = exp[(Eb−∆Eb)/kBT ] for the in-
teraction, i.e. toff/ton = Keq. Because of the sharp barrier, we will assume
that the height of the entrance barrier is little affected by application of
force so the reverse rate of transition is set by the time scale ton and local
density of states ρe at the entrance barrier, i.e. ton ν← ≈ ρeLc. To evaluate
the entrance density of states ρe, we use Kramers approach and integrate
the rebinding flux from the minimum of the capture well to the entrance
barrier, i.e.

ν←{ζsLs exp(Es/kBT )/kBT } = ρs − ρe exp(Es/kBT ). (1.28)

Depth of the capture well, Es/kBT = f2/2κs−f+κs/2, and local density of
states ρs ≈ (κs/2πkBT )1/2 = (κs/2π)1/2/xβ depend on linkage stiffness; the
dynamics depend on the linkage damping coefficient ζs. The Boltzmann-
weighted distance Ls from the entrance barrier to the minimum of the cap-
ture well is dominated by the decay in energy with distance from the barrier
and can be approximated by Ls ∼ xβ/(f+1). Matched to the rate of inward
passage defined by ton ν← = ρeLc, we eliminate the density of states ρe and
establish the dependence of rebinding rate on force, i.e.

ton ν→ ≈ (κs/2π)1/2

× exp(−f2/2κs + f − κs/2)/{(ts/ton)κs/(f + 1) + (xβ/Lc)} (1.29)

where ts ≡ ζs/κs is the characteristic relaxation time of the linkage.
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Fig. 1.16. Dynamic spectra of most frequent rupture force as a function of

log(loading rate) calculated by numerical solution (closed symbols) to the master

equation (1.24) for rupture of a simple bond pulled by a linear spring. The thresh-

old force and crossover to far-from-equilibrium detachment (solid line) depend on

the linkage stiffness κs and the equilibrium constant Keq = toff/ton of the bond.

Complete unbonding will occur when force rises above the level f⊗
needed to drive the forward rate of transition above the reverse rate, i.e.
ν→/ν← > 1. The crossover force is easily found from the ratio of transition
rates [7],

ν→/ν← ≈ (2π/κs)1/2 exp[(f2/2κs)− log(Keq)][(ts/ton)/(f + 1) + (xβ/Lc)].
(1.30)

Hence, the force must rise above, f⊗ ∼ [2κskBT log(Keq)]1/2 to achieve
complete breakage. As shown in Figure 1.16, crossover to far from equi-
librium detachment occurs once loading rate is fast enough to produce
forces >f⊗, i.e. rf > (fβ/toff) exp(f⊗/fβ). We see that f⊗ defines a near
equilibrium threshold for strength that depends on mechanical properties
of the linkage as well as energetics of the bond [7]. Therefore, rebind-
ing and the threshold for strength are predicted to diminish significantly
when bonds are connected to probes by soft linkages like ideal polymers.
Without going through the details, a similar ratio of transition rates can
be derived for a polymer linker. With a freely jointed polymer of Lp/b
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segments and b ∼ xβ , the exponential dependence on depth of the capture
well in equation (1.29) is replaced by a power law (f + 1)Lp/b, which leads
to f⊗ ∼ (kBT/b)[(Keq)b/Lp − 1]. Thus, for long polymer linkers, the near
equilibrium threshold drops to very small forces.

1.4.5 Effect of soft-polymer linkages on dynamic strengths of bonds

Polymer linkers are essential for projecting and isolating reactive sites in
single molecule experiments. Also, we’ve just seen that long polymer link-
ages to bonds help suppress rebinding events. However, polymer linkages
alter bond strength under constant speed detachment in ways that are
especially important at low speed [12]. Clearly demonstrated in
Figure 1.17 with results from the work of Fernandez and coworkers [20],
pulling on bonds through polymer connections produces unsteady loading
where forces usually increase markedly prior to bond failure. Connected to a
stiff probe, a polymer linker dominates the loading rate and under constant
pulling speed, loading rate increases essentially as a power law of the force
level, rf (f) ≈ (v/vβ)f1+1/α as described earlier, where rf = rf toff/fβ and
f = f/fβ. Thus, loading rate becomes parameterized by a characteristic
velocity, vβ = (Lp/αtoff)(xβ/cb)1/α, which represents the speed needed to
pull the polymer taut within the time toff required for spontaneous disso-
ciation. (Recall: α = 1 & c = 1 for a freely-jointed polymer and α = 2 &
c = 4 for a worm-like polymer). With the exact expression for loading rate
rf (f) ≡ (vs/vβ)g(f) and assuming far from equilibrium detachment, the
distribution of unbonding forces can be predicted by the integral expression
in equation (1.26),

p(f) ≈ (vβ/v) exp
{
f − (vβ/v)

∫
0→f

[exp(y)/g(y)]dy
}
/g(f). (1.31)

Specified in reference [12], g(f) is a complicated function that approaches
f1+1/α once force exceeds fβ (i.e. f > 1). Since unbonding usually occurs in
the asymptotic regime, the most likely force for bond rupture can be easily
derived using equation (1.27) and the power law approximation to loading
rate,

f∗ ≈ fβ log(v/vβ) + fβ[log(f∗/fβ − 1− 1/α) + (1/α) log(f∗/fβ)]. (1.32)

Equation (1.32) shows that bond strength deviates from the expected pro-
portionality to log(detachment rate) until loading at high speeds (v � vβ).
Moreover, correlation of equation (1.32) to data for rupture force versus
log(pulling velocity) can only provide values of thermal force fβ and charac-
teristic velocity vβ but not the time scale toff for unbonding. To determine
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Fig. 1.17. The famous saw-tooth pattern of force obtained by pulling on a recom-

binant construct of eight Ig-I27 domains at constant speed with an AFM (taken

from Li et al. [20]). Each precipitous drop in force signalled a bond rupture event

and unfolding of an I27 domain, which added ∼28 nm to the contour length.

the time scale toff from the parameter vβ , we need to know the polymer
contour and persistence lengths (Lp, b).

Figure 1.17 is a beautiful example of bond rupture under soft poly-
mer loading. Each rupture event led to unfolding of an Ig (I27) domain
and added a well defined increment to the total chain length thereby in-
creasing the extensional compliance. Figure 1.18 shows the average forces
needed to unfold the I27 domains at different pulling speeds plotted on
a logarithmic scale. We can roughly characterize the average force 〈f∗〉
for unfolding of N domains at a particular speed using equation (1.32)
and introducing an effective log(velocity scale) defined by the expression,
(1/N)Σj=1→N log[vβ(j)] ⇒ log(〈vβ〉). Superposed on the data in
Figure 1.18, the match with equation (1.32) required a thermal force scale
of fβ ≈ 18 pN (or xβ ≈ 0.225nm) and an effective velocity scale of 〈vβ〉 ≈
0.1 nm/s. At slow pulling speeds, the correlation (solid curve) deviates
significantly from the linear behavior expected for steady loading.

To extract single domain properties from the parameters fβ and 〈vβ〉,
we need to recognize that there are several (N) equivalent sites for un-
folding and that the number of sites diminishes as the length of the chain
increases. In particular, the unbonding rate is proportional to the num-
ber of folded domains at each step. Hence, the probability distribution
for unfolding events and most likely unfolding force change at each step in
the process. Given that at each unbonding step Lp(j) ≈ (j + 1)∆LI27 and
toff ν→ = (N−j+1) exp(f), the velocity scale for a worm-like chain will vary
as vβ(j) ≈ (j + 1)(N − j + 1)(∆LI27/2toff)(xβ/4b)1/2 and result in the fol-
lowing approximation for effective velocity scale: 〈vβ〉 ≈ [N2+2/N/ exp(2 −
2/N)](∆LI27/2toff)(xβ/4b)1/2. With the value of xβ ≈ 0.225 nm from the
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Fig. 1.18. Average forces for unfolding a sequence of eight I27 domains as a

function of log(pulling speeds) taken from Li et al. [20]. Superposed is the dynamic

spectrum predicted by equation (1.32) using a thermal force scale of fβ ≈ 18 pN

and an effective velocity scale of 〈vβ〉 ≈ 0.1 nm/s. The dashed line illustrates the

regime of rupture forces that would be measured if the molecular linkage possessed

a constant stiffness κs ≈ 5 pN/nm.

correlation in Figure 1.18 plus a persistence length b ∼ 0.4 nm from Li
et al. [20], this approximation yields 〈vβ〉 ≈ 3.5(∆LI27/toff). Thus, with
the length increment ∆LI27 ∼ 28 nm and 〈vβ〉 ≈ 0.1 nm/s, we can derive
the time for spontaneous unfolding of a single domain, i.e., toff ∼ 1000 s.
To check our analysis, force distributions were predicted at each unfolding
step using equation (1.31) with fβ ≈ 18 pN and toff ∼ 1000 s under a
pulling speed of 600 nm/s; then the average distribution was compared to
the histogram of forces obtained at this speed by Li et al. [20]. Plotted in
Figure 1.19, the close match verifies that the force events arise from con-
volution of simple bond-like kinetics with unsteady loading dynamics of a
polymer linkage.

1.4.6 Failure of a complex bond and unexpected transitions in strength

Rupture of a complex molecular bond under rising force involves transi-
tions over a changing landscape of multiple barriers. Here, the nontrivial
aspect is that the flux of states can vary significantly with time along the
reaction coordinate. As pointed out earlier, such details can only be re-
vealed by modeling the evolution of states in a hierarchy of master equations
(Table 1.1). Although rupture dynamics under rising force can be quite com-
plicated, we will begin by showing that the most frequent unbonding forces
under ramps of force can be reasonably well predicted using the single rate
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Fig. 1.19. Left: histogram of forces for unfolding eight Ig-I27 domains at a pulling

rate of 600 nm/s (taken from Li et al. [20]). Superposed is the average probability

distribution computed using equation (1.31) plus the parameters fβ ≈ 18 pN and

toff ∼ 1000 s derived from the correlation in Figure 1.18 as described in the text.

Because of changing length with each unfolding step, small shifts in probability

distributions occurred as demonstrated at right for the first, last, and middle

unfolding events (dashed and dotted curves) relative to the average distribution

(open circles).

approximations derived earlier. Under rising force, the single rate approxi-
mations can be viewed as representing a dynamic barrier that moves along
the reaction coordinate and changes height with time.

With the single rate approximation ν→ and a steady ramp of force
rf = ∆f/∆t, distributions of unbonding forces far from equilibrium are
predicted by the integral expression given in equation (1.26). Although this
usually requires numerical computation, the most frequent forces f∗ for de-
tachment of a complex bond can be easily derived from the maximum in
the distribution, equation (1.27), which locates the peak in the probability
distribution. Transforming equation (1.27) to a derivative of the reciprocal
rate,

1/rf = −[∂(1/ν→)/∂f ]f=f∗ (1.33)

we obtain a convenient way to derive the most frequent rupture force f∗

from the superposition of transit times that define the single rate approx-
imations. (The spread in the equivalent distribution is given by, 1/σ2

f =
νN→[∂2(1/νN→)/∂f2]f=f∗ .) First, applied to the single rate approxima-
tion in equation (1.18), the relation between bond strength and loading
rate is found to be,

1/rf ≈ Σn→N−1[toff(n)/fβ(n)] exp[−f∗/fβ(n)]. (1.34)
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Here, energies Eb(n) and locations xβ(n) for each barrier relative to the pri-
mary minimum define the forces fβ(n) ≡ kBT/xβ(n) and spontaneous pas-
sage times toff(n) ≡ tD exp[Eb(n)/kBT ] that govern the most frequent rup-
ture force. Next, applied to the single rate approximation in equation (1.19),
a similar but more complicated expression is obtained that involves the ad-
ditional dependence on energies E0(n) and locations xc(n) = kBT/fc(n) of
the intervening levels:

1/rf ≈ Σn=1→N−1Σj→N−ntoff(N − j)[1/fβ(N − j)− 1/fc(n)]
× exp[−E0(n)/kBT ] exp{f∗[1/fc(n)− 1/fβ(N − j)]} · (1.35)

As for the rate approximations themselves, equation (1.35) reduces to in
equation (1.34) when intervening levels remain more than a few kBT above
the primary minimum.

To demonstrate important features of the force spectra approximations,
we compare the predictions of equations (1.34) and (1.35) in Figure 1.20 to
results for the most frequent rupture forces found by numerical solution to
the master equations (Table 1.1) given an energy landscape of two energy
barriers. Both approximations cross over smoothly from a linear regime
(low slope) for the outer barrier to the linear regime (high slope) for the
inner barrier with heights defined relative to the primary minimum. Pre-
dicted by equation (1.35) and shown in Figure 1.20 (left), the crossover
region spans a broad range of loading rates when the secondary minimum
between the barriers is low and differs little from the primary minimum
(here E0 ∼ 1kBT ). On the other hand, the crossover region diminishes to
a narrow range of rates once the intervening level is raised to E0 ∼ 3kBT
as in Figure 1.20 (right) and consistent with the reduced approximation in
equation (1.34). The simple geometric construction in Figure 1.20 (left)
shows that the width of the crossover region can be anticipated from the
intersection between an intermediate-linear regime and the limiting linear
regimes for the two barriers. Arising from the exponential dependence on
force in equation (1.35), this intermediate regime is specified by the dif-
ferences of location and energy between the intervening minimum and the
barrier that follows. As the energy E0 of the minimum is increased, the
intermediate regime shifts to higher loading rates and eventually falls below
the crossing of the limiting regimes for the outer and inner barriers. This
defines a critical energy E∗0 below which the secondary minimum becomes
important.

Superposed on the spectra predicted by the single-rate approximations
in Figure 1.20 are the most frequent rupture forces derived from the prob-
ability densities of failure computed numerically with the master equations
in Table 1.1. As shown by the force distributions for a deep interven-
ing minimum in Figure 1.21 (left), an unexpected jump in bond strength
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Fig. 1.20. Left: the dynamic force spectrum (solid curve) predicted by the single-

rate approximation in equation (1.35) compared to results (open triangles) from

numerical solution of the master equations (Table 1.1) for a hierarchy of two bar-

riers. Superposed are linear regimes expected for force ∼log(loading rate) defined

by the transition rate 1/toff(n) and force scale fβ(n) for each barrier relative to

the primary minimum. Also plotted is the intermediate-linear regime defined by

the differences in energy and location of the outer barrier relative to the secondary

minimum. Force, time, and loading rate are scaled by outer barrier properties,

which were set equal to one. In these units, fβ(2) = 1, toff(2) = 1, and rf (0) = 1,

properties of the inner barrier and secondary level were specified as, fβ(1) = 4

and toff(1) = 0.01 plus fc(1) = 3 and E0(2) = 1.2kBT respectively. Right: the

dynamic force spectrum (solid curve) predicted by the single-rate approximation

in equation (1.34) compared to results (open triangles) from numerical solution

of the master equations for the same barriers but with E0(2) = 3kBT .

occurs in the crossover region as a second peak emerges in the distribution
under increased loading rate and eventually overtakes the initial peak. On
the other hand, when the secondary minimum is raised, only a single peak
appears in each distribution that shifts upward and broadens continuously
in force with increased loading rate. Thus, energy landscapes with multiple
barriers and deep intervening minima can produce dynamical transitions in
rupture strength with first order-like coexistence and switching of peaks in
distributions of failure events, which is likely to play an important role in
dynamic functions of bonds under stress. We see that there are many op-
portunities for surprises in the highly nonlinear dynamics of bond breakage!
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Fig. 1.21. Force distributions predicted by the master equations in Table 1.1 at

each decade of loading rate for unbonding impeded by two barriers. The scales

of force and spontaneous passage time for the outer barrier have been set equal

to one, i.e. fβ(2) = 1, toff(2) = 1, and rf (0) ≡ 1. As for Figure 1.19 above, the

inner barrier and secondary level are defined by, fβ(1) = 4 and toff(1) = 0.01 plus

fc(1) = 3 and E0(2) = 1.2kBT or 2.3 kBT respectively.

The power of DFS is the capability to quantify these dynamics in a way
that can reveal the hierarchy of barriers in a complex interaction. However,
the challenge is to measure forces over many orders of magnitude in loading
rates.

Under steady ramps of force in time, the signature of escape over a sharp
energy barrier is a straight line in a plot of rupture force versus log(loading
rate). Although unexpected, tests of the SGP ligand and P-selectin exhib-
ited simple bond-like kinetics under force as seen in Figures 1.13 and 1.14.
Here, on the other hand, we will use tests of a far simpler interaction – hy-
drophobic anchoring of lipids in a membrane – to demonstrate dynamic fail-
ure of a complex interaction. To test lipid anchoring strength, we decorated
the tip of a BFP with PEG-biotin chains and prepared giant phosphatidyl
choline PC lipid vesicles doped with a small fraction of PEG-biotinylated
PE lipid (diC14 phosphatidyl ethanolamine). Pre-equilibration of both sur-
faces with streptavidin SA was then used to block nearly all biotin groups
leaving only a few sites for probe-vesicle attachment. Many touches of the
BFP tip to vesicles led to a few extraction events as illustrated schematically
in Figure 1.22. Sample histograms of the forces are presented in Figure 1.23
for a three thousand-fold range in loading rate.

We see in Figure 1.23 that only small forces were needed to extract
diC14 PE lipids from the surface of a C18:0/1 PC lipid bilayer even at fast
loading rates. Moreover, we also see that the force distributions begin very
narrow at slow rates of loading, then broaden and become bimodal at fast
rates of loading. Clearly similar to the complex landscape in the idealized
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Fig. 1.22. Schematic of PEG-biotin lipid extraction from a lipid bilayer mem-

brane. For typical biomembrane lipids (e.g. C18:0/1 phosphatidyl choline),

X-ray diffraction yields a mass average thickness of ∼4 nm for the full mem-

brane [25]. Augmented by headgroup structure, the distance from the midplane

to the headgroup-water boundary is estimated to be ∼2.5 nm as sketched above.

Fig. 1.23. Distributions of forces measured by BFP in extraction of single receptor

lipids (biotin-PEG-diC14 PE) from C18:0/1 PC lipid vesicles.

model described above, the histograms in Figure 1.23 correlate well with the
probability distributions (superposed) predicted by solution of the master
equations for an optimal sequence of two energy barriers punctuated by a
deep intervening minimum. Matched to the most frequent forces obtained
from experiment, Figure 1.24 shows the dynamic spectrum of anchoring
strength predicted by the single-rate approximation equation (1.35) with
the locations and energies for the two barriers and intervening level used in
the numerical computation of probability densities. As in the model above,
the continuous spectrum approaches the limiting linear regime set by the
properties of the outer barrier at very slow loading and the limiting linear
regime set by properties of the inner barrier at very fast loading.
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Fig. 1.24. The dynamic force spectrum (solid curve) predicted by the single-rate

approximation in equation (1.35) (solid line) compared to locus of most frequent

extraction force (open/closed triangles) from the experimental distributions plot-

ted in Figure 1.23. Also shown are the limiting linear regimes for two barriers

defined by the transition rate 1/toff (n) and force scale fβ(n) for each barrier rel-

ative to a primary minimum: fβ(2) = 1.4 pN and toff(2) = 3 × 103 s for the

outer barrier; fβ(1) = 7 pN and toff (1) = 0.25 s for the inner barrier. Derived

from correlation to the evolution of the two peaks in the force distributions with

loading rate (Fig. 1.22), the intervening level was found to be characterized by a

force scale fc(1) = 4 pN and an energy level E0(2) = 2kBT above the primary

minimum.

Based on established concepts of hydrophobic interactions [32], we
expect the anchoring potential to increase in energy linearly with distance
as the lipid is displaced outward along the surface normal. The energy
barrier to extraction should scale as the number of CH2 groups exposed
to water with a proportionality of ∼1kBT per CH2 [32]. So taking tD ∼
10−9 s as the diffusive relaxation time for lipid “hopping” motions, the
time scale for spontaneous dissociation into aqueous solution would be
toff ∼ (10−9 s) exp(NCH2). Although difficult to measure for diacyl lipids
with more chains longer than 12 carbons, this scaling for toff agrees with
results for PEG-lipid dissociation from bilayer membranes in solution [28]
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and even yields a value of ∼10−9 s for the pre-exponential factor. Like-
wise, analysis of the force distributions in Figure 1.23 and the spectrum
in Figure 1.24 yields a time scale toff(2) = 3 × 103 s for passage of the
outer barrier which is consistent with the spontaneous time for escape of
a diC14 receptor lipid under zero force in solution [28]. Another expec-
tation based on this description of hydrophobic interactions is that the
thermal force scale fβ should be set by the insertion depth xlipid in the
membrane, i.e. fβ = kBT/xlipid. As sketched in Figure 1.22, the distance
from the headgroup-water boundary to the midplane of a C18:0/1 phos-
phatidyl choline bilayer would define a limiting value for insertion depth of
xlipid ∼ 2.5 nm [25], which could be accommodated by full extension of the
diC14 PE lipid (i.e. 14 × 0.125 nm for chain length plus ∼1 nm for head-
group ∼2.8 nm). Interestingly, the distance derived from the thermal force
scale for the outer barrier of xβ(2) = kBT/1.4 pN ≈ 2.9 nm is comparable
to the maximum insertion depth of 2.8 nm. However, the slightly longer
length derived from force spectroscopy could be due to a small outward
deformation of the lipid interface as sketched in Figure 1.22. Because of
the large length scale associated with hydrophobic anchoring, we see that
the thermal force scale [fβ(2) = 1.4 pN] is small and the extraction force
distributions are very narrow at slow loading rates (Fig. 1.23).

Fig. 1.25. Schematic of the energy landscape for diC14 PE anchoring in a

C18:0/1 PC bilayer. Barrier locations and relative energies were obtained from

analysis of the extraction force distributions (Fig. 1.23) and force spectrum

(Fig. 1.24) as described above. However, to specify the depths of minima, a value

has to be specified for the diffusive relaxation time of lipid “hopping” motions,

which here was taken to be tD ∼ 10−9 s.

Consequently, anchoring strength remains weak under slow loading and,
even when the time needed for lipid extraction is decreased more than
million-fold (i.e. from 3000 s to 0.001 s), extraction forces only reach∼20 pN.
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Unexpectedly, however, lipid anchoring strengthens abruptly when lipids
are forced to dissociate in less than 0.001 s, which requires loading rates
10 000 pN/s and above. Here, a broad second peak appears in the force
distributions and the narrow peak wanes. The emergence of a broad peak
stems from impedance to dissociation caused by a second barrier character-
ized by a small length scale, i.e. xβ(1) = kBT/7 pN ≈ 0.6 nm. Encountered
first along the extraction pathway, this initial barrier probably represents
impedance to disruption of the headgroup interface (e.g. weak hydrogen
bonding as well as hydrophobic exposure) and appears to be followed by a
secondary minimum at ∼1 nm. Putting together these features, Figure 1.25
demonstrates how dynamic force spectroscopy reveals the inner complexity
of hydrophobic anchoring in membranes and significantly extends the test
tube picture of the energy landscape for kinetics.

1.5 Summary

We have seen that measuring bond detachment forces and lifetimes under
steady loading can provide an intimate view of prominent energy barri-
ers that govern physical strength and limit bond dissociation under stress.
Moreover, the distribution of rupture events at each loading speed is a
complete picture of the unbonding process in time as barriers fall at a par-
ticular rate. Even though dynamic force spectroscopy allows us to look
inside molecular interactions, specific experimental requirements must be
met in order to achieve a reliable picture of the landscape. Not only do we
need an accurate and sensitive force probe, we have to be confident that
we are only testing single molecular attachments. This means we have to
chemically decorate surfaces with dilute sites for attachments and to also
regulate the assembly process (e.g. through very soft touch under feedback
control). Next, we have to know the compliance properties of the linkage to
the bond (e.g. the contour and persistence lengths of polymeric connections)
and the dynamic response when coupled to the probe. Having met these
requirements, it is imperative to measure forces over an enormous range of
time scales, or more specifically, loading rates. Having satisfied these cri-
teria, the final-critical step is to compare the histograms of rupture events
measured at each loading rate to the probability densities predicted by the
thermal forces and spontaneous transition times derived from the dynamic
force spectrum.
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Part 2: P. Williams and E. Evans

2 Dynamic force spectroscopy. II. Multiple bonds

2.1 Hidden mechanics in detachment of multiple bonds

Dynamic force spectroscopy (DFS) is a uniquely powerful tool to investi-
gate the physics and chemistry of molecular interactions. It is not surprising,
therefore, the extent of research in both the physical and life sciences into
the use of DFS for such areas as structural biology, rational drug design and
biomaterials science. When attempted, though, it is soon discovered that a
major complication in the measurement of bond strength is often the occur-
rence of multiple bond attachments. Moreover, single attachments between
macromolecules often involve bonding interactions distributed over many
widely separated groups and behave as multiply-bonded systems. Although
careful sample preparation methods and high skills in surface chemistry
may mean that the numbers or densities of sites for binding are known,
force spectra will always involve some multiply-bonded structures which
can be difficult or impossible to interpret because the partition of force
and degree of cooperativity amongst binding sites is unknown. Fortunately,
examining dynamic rupture strength for a few generic types of multiple
bonds can provide useful insights into the nature of hidden interactions in
a molecular assembly. We begin by describing simple mechanical scenarios
for multiple bonds. The first case is a series or chain of bonds where the
force is experienced fully by each bond in the system. By comparison, the
second case is a zipper which is a series of bonds where the force is applied
only to the lead bond; once that bond fails, force propagates to the next
and so on. Finally, the third case is parallel bonds where the force is par-
titioned equally amongst existing bonds in an attachment. These idealized
cases are simple stereotypes of multiple bond attachments. It is important
to recognize that structural deformation on the nanoscale can lead to very
different conditions of loading for multiple bonds. Still, the series, zipper,
and parallel bond descriptions encompass a broad range of configurations.
Thus, we consider two general architectures in which multiple interactions
withstand stress; that in which force is shared across the intact connections
– the parallel description – and that in which one or more bonds feel all of
the force – a serial description. These are illustrated in Figure 2.1. As we
see, the zipper is a specific case of bonds loaded in series where the bonds
connecting two surfaces are broken one after the other. In Part I we have
already described a experiment where a series of bonds was ruptured, i.e.
the unfolding of Ig domains in the muscle protein titin (Sect. 1.4.5 of Part I),
which will come up again in this part.
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Fig. 2.1. Schematic representations of the prototypes of bonding architecture

that we consider here. a) Bonds loaded in series. The system fails on breakage of

a single bond. b) Bonds loaded in series, but breakage of a bond does not lead to

failure of the system (analogy of the unfolding of tandem repeats in multidomain

proteins). c) Bonds loaded in parallel. Force is spread evenly across intact bonds.

d) A zipper. Bonds are loaded and broken consecutively.

2.2 Impact of cooperativity

We first need to consider the profound impact of cooperativity in multi-
ple bond detachment. By this, we mean some type of strong mechanical
coupling exists within a array of bonds that only allows the molecules to
pass transition states synchronously. Even though atomic scale excitations
remain uncorrelated in time, stiff mechanical coupling can create collective
modes on long length scales that lead to strong correlations on the time
scale for overdamped relaxation of the complex. Such a system behaves
like a macro-single bond with a barrier given by the sum of the individual
barrier energies. But quite different outcomes arise for the series and par-
allel loading arrangements shown in Figure 2.1. For a simple-ideal bond,
we have seen that the lifetime is set by the exponential magnitude of the
energy barrier with a diffusive relaxation time as the prefactor,

toff = tD exp(Eb/kBT ). (2.1)

With N -identical bonds, cooperative unbinding leads to an enormous in-
crease in the time scale for dissociation as approximated by

toff(N) ≈ Ntoff exp[(N − 1)Eb/kBT ]. (2.2)
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Fig. 2.2. A system of identical attachments that fail cooperatively when loaded

in parallel can be considered as a single bond with a N-fold increase in the barrier

compared to a single bond. The force scale of the compound bond remains the

same as for a single bond interaction.

(Note: The prefactor N is based on the assumption that molecular damping
scales with N .) For identical-cooperative bonds in parallel (cf. Fig. 2.2),
location of the transition state xβ and thermal force scale fβ = kBT/xβ

remain that for the single bond (see Part I for more details). Hence, the
unbinding rate under force f is,

ν→(N) ≈ [1/toff(N)] exp(f/fβ). (2.3)

For identical bonds in series, each bond contributes an increment in length
along the direction of force on unbinding and thus the thermal force scale is
lowered N fold, i.e. fβ/N . Hence, the unbinding rate for cooperative bond
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Fig. 2.3. A system of identical attachments that fail cooperatively when loaded

in series can be considered as a single bond with both a barrier and force scale

N-times that of the single bond. The increase in force scale makes the series

connection weaker under force than the parallel system.

in series,

ν→(N) ≈ [1/toff(N)] exp(Nf/fβ) (2.4)

increases exponentially faster with force than for bonds in parallel. Based on
the generic relation for most frequent rupture force f∗ (defined by, 1/rf =
−[∂(1/ν→)/∂f ]f=f∗, from Eq. (1.34) in Part I), equations (2.3) and (2.4)
show that it takes much less force for cooperative failure of bonds in series,

f∗ ≈ (fβ/N)[log(rf ) + 2 log(N) + (N − 1)Eb/kBT ] (2.5)

than for bonds in parallel, i.e.

f∗ ≈ fβ[log(rf ) + log(N) + (N − 1)Eb/kBT ] (2.6)

when either is broken far from equilibrium.
As shown in Figure 2.4, cooperative failure of multiple bonds has been

observed in DFS studies of short strands of DNA (oligonucleotides) using
the atomic force microscope (AFM). The DNA double helix is held together
by the predominately hydrogen-bonding interaction of nucleotides along the
strands. Each interaction accounts for a few kBT of energy and the extrapo-
lated dissociation rate appears to increase exponentially with the number of
base pairs. Hence, increasing the number of base pairs from 10 to 30 leads
to an increase in the lifetime of the duplex from several seconds to many
years! Interestingly, recent experiments with RNA (to be published) show
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Fig. 2.4. Left: DFS study of the rupture of oligonucleotide strands of 10, 20

and 30 base-pair length behaves like cooperative failure of bonds in series (taken

from Strunz et al.). The force scale diminishes with increase in length and is ap-

proximated by (35/N) pN. The extrapolated off-rate increases exponentially with

increasing length. Right: DFS study of RNA duplexes. 12 base pairs produces

a force scale of 5.5 pN. It appears that insertion of a 3-base bulge along one of

the strands apparently disrupts the cooperativity and effectively doubles the force

scale to 9.4 pN.

identical results but addition of a bulge at the mid-point of the duplex
disrupts cooperativity and increases of the force scale. Thus, this type of
design could be of use to probe the origin of cooperative unbinding.

2.3 Uncorrelated failure of bonds loaded in series

2.3.1 Markov sequence of random failures

Given the soft compliance of most molecular interfaces in liquids, there is no
reason a priori to expect multiple bonds holding two surfaces together to act
cooperatively or pass transition states coincidently in time. For example,
several selectin interactions hold a white blood cell to an endothelial wall
under strong hydrodynamic loading. Whilst each selectin bond is made up
of several widely separated atomic scale interactions that may unbind coin-
cidently, there will be no coincidence between detachment at the different
selectin sites even though the rupture event may occur extremely rapidly.
Uncorrelated failure of multiply-bonded attachments is distinctly different
from that of the cooperative case described in Section 2.2. Like the evolution
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of states in a complex bond (see Sect. 1.3.3 in Part I), the state of bonding
amongst multiple bonds in an attachment is treated as a Markov sequence
where a hierarchy of master equations predicts the survival of the attach-
ments as a function of time. In the examples to follow, we will consider
multiples of simple bonds with a single transition state but will note the
approach to treating multiples of complex interactions with additional-inner
transition states. The master equations for unbonding a multiple bonds are
identical to those in Table 1.1 of Part I except the “level” in an energy
landscape is replaced by the number of bonds that remain during the time
course of detachment. (Note: for obvious reasons, we will define the system
hierarchy so that subscript “u” represents the unbonded state and that “n”
represents the transient n-bonded attachment where n = 1→ N .) Tempo-
ral evolution of the N -bonded state commences with the rate at which N
bonds decrease to N − 1 diminished by the rate at which N − 1 increase
to N ,

dSN/dt = −νN→N−1SN (t) + νN←N−1SN−1(t)
and sequentially through intermediate states according to,

dSn/dt = −[νn→n−1 + νn+1←n]Sn(t) + νn+1→nSn+1(t) + νn←n−1Sn−1(t)

ending with complete detachment,

dSu/dt = −ν1←uSu(t) + ν1→uS1(t).

Here unbonding νn→n−1 and rebinding νn←n−1 rates reflect the rates for
rupture or formation between populations of “n” and “n− 1” bonds, which
will depend on the type of architecture and mechanics of loading bonds in
the multiple attachment. Again for simplicity, we will base our discussion
on the behaviour of identical bonds, each of which has an unbonding rate
under force given by toff ν→ = exp(f/fβ), and assume that under rapid rise
in force, detachment occurs far from equilibrium at each step (i.e., ν← ∼ 0).
Hence, under a force ramp, rf = df/dt, the master equations reduce to,

N bonds
dSN/df ≈ −(1/rf ) νN→N−1(N, f)SN (f)

.

.

dSn/df ≈ −(1/rf) νn→n−1(n, f)Sn(f) + (1/rf ) νn+1→n(n+ 1, f)Sn+1(f)
(2.7)

.

.

complete detachment
dSu/df ≈ (1/rf ) ν1→u(1, f)S1(f)
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where, in general, the rate of transition νn→n−1(n, f) at any step of de-
tachment can depend on existing number “n” of bonds as well as force.
For instance, the statistical rate of failure of “n” equivalent bonds is n-fold
that of a single bond, irrespective of the system architecture and loading
dynamics. When breakage of one bond does not lead to failure of the attach-
ment, it is essential to specify the manner in which the force is redistributed
amongst the remaining bonds.

2.3.2 Multiple-complex bonds

As a footnote to Section 2.3.1 above, the situation becomes much more
complicated when the attachments are formed by complex bonds with sev-
eral levels and transition states. For a multiple attachment of N identical
complex bonds, each with M levels (local energy minima) and intervening
barriers, evolution of the system involves N ×M master equations where
survival of the n-bonded state is governed by transport of states between
the interior m levels until an unbinding event. Thus, a matrix of functions
Sn,m(t) is needed to describe the likelihood of being in the mth level of the
n-bonded state. Even when each bond rupture occurs with no chance of
rebinding, the internal states of complex bonds may still undergo forward
and reverse transitions past interior barriers. So for example, steady loading
and rupture of N -identical bonds with two transition states are modelled
by the following hierarchy,

N bonds
dSN,1/df = −(1/rf ) ν1→2(N, f)SN,1(f) + (1/rf ) ν1←2(N, f)SN,2(f)
dSN,2/df = −(1/rf ) [ν2→u(N, f) + ν1←2(N, f)]SN,2(f)

+ (1/rf) ν1→2(N, f)SN,1(f)
.

.

dSn,1/df = −(1/rf) ν1→2(n, f)Sn,1(f) + (1/rf ) [ν2→u(n+ 1, f)Sn+1,2(f)
+ ν1←2(n, f)Sn,2(f)]

dSn,2/df = −(1/rf) [ν2→u(n, f) + ν1←2(n, f)]Sn,2(f)
+ (1/rf) ν1→2(n, f)Sn,1(f)

.

.

dS1,1/df = −(1/rf) ν1→2(1, f)S1,1(f) + (1/rf ) [ν2→u(2, f)S2,2(f)
+ ν1←2(1, f)S1,2(f)]
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dS1,2/df = −(1/rf ) [ν2→u(1, f)S1,2(f) + ν1←2(1, f)S1,2(f)]
+ (1/rf ) ν1→2(1, f)S1,1(f)

complete detachment
dSu/df = (1/rf) ν2→u(1, f)S1,2(f).

Again at any stage of detachment, the rates of transition can depend on
existing number “n” of bonds as well as force and passage of the final tran-
sition state ν2→u(n, f) is assumed to be terminal for each state of bonding,
i.e. ν2←u(n, f) = 0. Clearly, solving such a system of master equations
for many attachments demands tedious numerical computation. But as de-
scribed Part I, useful analytic approximations (Eqs. (1.18) and (1.19) of
Part I) exist for multiple bond attachments which will prescribe effective
rates νn→n−1(f) for transition of the n-bonded state to n−1 bonds over the
course to complete failure. We introduce these approximations where ap-
propriate in our discussion of the different bonding architectures illustrated
in Figure 2.1.

2.3.3 Multiple-ideal bonds

Beginning with a chain of identical bonds, each bond experiences the same
force but the rate of transition from N to N − 1 bonds is proportional
to the number of bonds in the chain, toff νN→N−1 = N exp(f/fβ). If an
unbinding event breaks the chain, the probability density for failure or force
distribution pN (f) follows from a single master equation:

dSN/df = −(1/rf)(N/toff) exp(f/fβ)SN (f) = −pN(f).

This simply rescales the loading rate to give pN (f) = N exp{f/fβ −
Nfβ[exp(f/fβ) − 1]/(rf toff)}/(rf toff) and introduces a log(N) weakening
of the most frequent force for failure, f∗ = fβ [log(rf toff/fβ)− log(N)]. By
comparison, a series of bonded “knots” (like folded Ig domains of a long titin
protein) behave differently in that the chain does not fail with an unbonding
event. There is an quick drop in force to a new level which arises from the
length of unfolded protein inserted in the chain. The system re-equilibrates
and the random process “clock” is reset. Force again increases although
from a level which is not necessarily zero. Also, as discussed previously in
Section 1.4.5 of Part I, adding a large length of unfolded material into the
chain can have an important impact on the loading rate. For unravelling
a series of knots, therefore, rupture events become separated in time and
produce a “saw-tooth pattern” of force with very nonlinear loading charac-
teristics. Each of these force “spikes” can be considered as a distinct test of
the knot-bond strength amongst the n remaining knots under anharmonic
loading conditions.
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By comparison, there is little drop in force on breakage of a bond in
the case of a zipper (peeling a sequence of bonds). Nearly the same level of
force is transferred to the next bond and so on. Again, there are N inde-
pendent tests of bond strength but starting at randomly-distributed initial
loads. Assuming identical bonds under steady loading, the rate of failure
for each bond has the same dependence on force and force is proportional to
time. Thus, evolution of a zipper can be modelled by the following master
equations,

N bonds
dSN/df = −1/(rf toff) exp(f/fβ)SN (f)
.

.

dSn/df = −1/(rf toff) exp(f/fβ)Sn(f) + 1/(rf toff) exp(f/fβ)Sn+1(f)
.

.

complete detachment
dSu/df = 1/(rf toff) exp(f/fβ)S1(f) = pN (f).

Somewhat more complicated than simultaneously pulling on a series of
bonds, the master equations can still be integrated to find the probabil-
ity density pN(f) for final detachment of a zipper with N identical bonds.
A simple transformation of variables, u ≡ fβ [exp(f/fβ) − 1]/(rf toff), leads
to the Poisson-like result,

pN (f) ∼ uN−1 exp(−u) du/df = {fβ[exp(f/fβ)− 1]/(rf toff)}N−1 p1(f)

where p1(f) = exp{f/fβ − fβ [exp(f/fβ)− 1]/(rf toff)}/(rf toff) is the prob-
ability density for failure of the one bond. As shown below in Figure 2.5, a
zipper of bonds results in a log(N) strengthening of the most frequent force
for complete detachment.

2.3.4 Equivalent single-bond approximation

Although often necessary, solving the system of master equations for mul-
tiple-bond attachments is clearly time consuming and requires detailed def-
initions of many molecular scale parameters. Thus, as for a complex-single
bond described in Section 1.4.6 of Part I, we employ analytic approxima-
tions for effective rate of unbinding ν→ in a multilevel system to collapse
the master equations for complete detachment of multiple bonds to a rate of
failure νN→ for an “equivalent single bond”. In this way, the most frequent
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Fig. 2.5. Rupture forces (scaled by fβ) found by solution to the master equations

(symbols) for a zipper of between 2 and 20 bonds. (Loading rate is scaled by

fβ/toff .) Also shown by solid lines are the forces predicted by the equivalent

single attachment model, which closely match the computational results at forces

f/fβ > 1.

rupture force or strength of a multibond attachment f∗ can be easily esti-
mated using the generic expression for location of the peak (at ∂pN/∂f = 0)
in the probability density for failure of the equivalent single bond (Eq. (1.33)
in Part I),

1/rf = −[∂(1/νN→)/∂f ]f=f∗ . (2.8)

The case of N -identical simple bonds in series (Fig. 2.1a) is trivial. Here,
each bond experiences the same force history and any rupture event leads
to failure of the attachment. Thus, the rate of failure events is N -fold faster
than the rate for one bond (as any one of the N may break). Because of the
N -fold scaling of rate, it follows from equation (2.8) that the attachment is
weakened slightly as demonstrated earlier, f∗ = fβ[log(rf toff/fβ)− log(N)],
compared to a single bond at the same loading rate.

Serial linkages of dissimilar bonds are, however, more subtle. We
expect rupture to occur at the weakest bond and naively also expect that
strong versus weak should follow the scale set by the energy
barriers sustaining the bonds. But surprisingly, thermal force scales for
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exponentiation of unbinding rates are also important factors in the deter-
mination of strong versus weak. This follows from the failure rate defined
by the sum of the unbinding rates for each bond. Taking properties (toff
or Eb, and fβ) of the bond with the smaller barrier energy for a refer-
ence, the combined rate of failure of two bonds in series can be expressed
as, toff ν→ ≈ exp(f/fβ){1 + exp[−∆Eb/kBT + f∆(1/fβ)]}; ∆Eb > 0 and
∆(1/fβ) are the differences in barrier energy and rate-exponentiation scale
of the bond with a higher barrier. Based on the combined rate of failure,
the bond with the smaller energy barrier remains the weak bond so long as
the inequality, ∆Eb/kBT > f∆(1/fβ) holds. However, if the bond with a
higher barrier has a greater amplification of rate under force or smaller force
scale (i.e., ∆(1/fβ) > 0), a crossover, ∆Eb/kBT < f∆(1/fβ), will occur as
the force is increased. Beyond the crossover, the bond with the higher bar-
rier will become the most likely site of failure (i.e., the weak bond). Thus,
in a DFS spectrum, an abrupt reduction of slope from a linear regime at
low loading rates to the next regime at higher rates signals a switch in site
of failure amongst bonds in a series linkage.

In zipper-like failure (Fig. 2.1d), bonds break in sequence but at random
times from first to last. Hence, far from equilibrium, the failure of the nth
bonded state to n−1 attachments proceeds at a common rate, νn→n−1(f) =
(1/toff) exp(f/fβ), so given N identical bonds, the approximate rate for
breaking all bonds is essentially the reciprocal of the sum of times to break
each bond,

1/νN→(f) = toffΣ1→N exp(−f/fβ) = Ntoff exp(−f/fβ). (2.9)

Thus, the effective loading rate for the equivalent single-bond attachment
is diminished by N fold and equation (2.8) shows that final separation of a
zipper of identical bonds requires a slightly larger force than one bond (see
Fig. 2.5),

f∗ ≈ fβ[log(rf toff/fβ) + log(N)]. (2.10)

This approximation is easily verified by calculation of the peak (at ∂pN/∂f =
0) of the zipper probability density described in the previous section. For
comparison, imagine that each unbinding event was punctuated by force
drops to zero and that the loading rate remained constant. Then, the time
needed to unzip N bonds would be nearly N -fold longer, i.e. ΣNf

∗(1)/rf =
N(fβ/rf ) log(rf toff/fβ). But when force propagates instantly from one
bond to the next, the time for complete detachment is only slightly longer
than needed to break a single bond, f∗(1)/rf + (fβ/rf ) log(N).
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2.4 Uncorrelated failure of bonds loaded in parallel

2.4.1 Markov sequence of random failures

The same series of master equations (2.7) describe the evolution of the n-
bonded states for systems loaded in parallel (Fig. 2.1c). However, here force
is distributed across the bonds that are intact. As for series loading, the
probability of a bond failure increases with the number of intact bonds; but
in parallel loading, amplification of unbonding kinetics is reduced due to
sharing of the force. Partitioning of force between N bonds is equivalent
to an N -fold increase in the thermal force. For bonds in parallel, therefore,
the failure rate and effective thermal force scale for each level are n/toff
and nfβ respectively, i.e. νn→n−1(f) = (n/toff) exp[f/(nfβ)]. Even with
no rebinding at any step, analytical solution of the master equations is not
possible in general for N bonds loaded in parallel so we will employ the
equivalent single-bond attachment model to derive an analytical approx-
imation for rupture strength and then compare this prediction to results
obtained from numerical computations.

2.4.2 Equivalent single-bond approximation

For uncorrelated failure of bonds in parallel, we assume that force is shared
equally amongst existing bonds in the attachment. Thus, the force expe-
rienced by bonds increases with each failure event during detachment, i.e.
f/bond = f/(N − j) from j = 0→ N − 1. Also, assuming identical bonds,
there are N − j possibilities for unbinding at each step, which increases the
frequency for bond failure by the factor (N − j). Thus, the effective rate
to detach multiple bonds is estimated by the reciprocal of the times to pass
from one state of bonding to the next,

1/νN→(f) = toffΣ1→N (1/n) exp[−f/(nfβ)]. (2.11)

Using this single-bond approximation, equation (2.8) predicts that the force
needed to rupture multiple-bonds loaded in parallel is essentially (but not
quite) N -fold larger than for a single bond at the same rate of loading
(see Fig. 2.6). Beyond the low force range, the strength of a multiple-bond
attachment is predicted to follow a transcendental relationship given by,

f∗ ≈ Nfβ [log(rf )− log(f/fβ)] (2.12)

which shows that the most probable rupture force is always somewhat less
than N -times the single bond value. It is often assumed that multiple
attachments will produce exactly N -fold increase in strength or rupture
force, which is only approached in the large N limit. This contradicts the
naive interpretation invoked in many early AFM studies to rationalize the
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Fig. 2.6. Rupture forces (scaled by fβ) found by solution to the master equations

(symbols) for detachment of between 2 and 20 bonds loaded in parallel. (Loading

rate is scaled by fβ/toff ). The strength of the attachment increases in reason-

able proportion to the number of bonds in the attachments. For comparison, the

rupture force predicted by the equivalent single-bond attachment approximation

(Eq. (2.12)) is plotted as the solid curves, which closely approaches the computa-

tional results especially for large numbers of bonds.

apparent presence of a few bonds. Moreover, we will show next that a
unitary rupture force per bond cannot be derived from simple analysis of
force histograms. The reason is that bond strength is a dynamic property
and dependent on the rate of loading. Thus, sharing the load between
multiple attachments reduces the single-bond loading rate and hence shifts
the force at which bonds break at each step in detachment.

2.5 Poisson statistics and bond formation

The most obvious feature anticipated in tests of multiple bond attachments
is that distributions of rupture forces will be very broad. The immedi-
ate question that comes to mind is whether or not the spread σN in the
force distribution and the mean force 〈fN 〉 are related in some well-defined
way to the number of bonds N in the attachments. From our equivalent
single-bond attachment model, we would expect (Eq. (2.12)) that the mean
rupture force will scale with N at very fast loading rates. Moreover, as
noted in Part I, the spread in a force distribution for single bond rupture
is set by the slope of force versus log(loading rate), i.e. σf ∼ fβ. Hence,
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we might naively expect the spread in the force distribution for rupture of
multiple bonds loaded in parallel to scale as σN ∼ Nfβ when N is large.
This behaviour implied at large N seems consistent with the perspective of
“force quanta”. As such, we might expect to use Poisson statistics to derive
a “unitary force” from moments of force distributions for multiple bond
detachment. Indeed, such approaches have been proposed and employed in
several studies [15–18]. The rationale begins with the view that if the prob-
ability of bond formation on contact is low, the number of bonds present
in attachments will be sampled from a Poisson distribution. Thus, as pre-
dicted by this distribution, the average number of attachments formed in
an infinite number of repeated contacts, N , equals the variance in number
formed, σ2

N . The next – and seriously flawed – assumption is that all forces
scale with the number of bonds in an attachment multiplied by the unitary
force f1 so that both the average rupture force and variance in force would
be, 〈fN 〉 = Nf1 and σ2

N = Nf2
1 respectively. Hence, the unitary rupture

force f1 could be found by dividing the variance of a force distribution by
the mean, or more robustly, determining the slope of variance versus mean
force taken from experiments with a random number of bonds/attachment.
However, the assumption that all n-bonded attachments are characterized
by a common-unitary force can’t be true given the kinetic dependence of
rupture force on loading rate. Even though the mean force for rupture of
multiple bonds at fixed loading rate is closely proportional to N at large N ,
the variance in distributions changes nonlinearly at large N as shown below
(and demonstrated qualitatively by the analytical expression for an equiv-
alent single bond, 1/σ2

N = νN→[∂2(1/νN→)/∂f2]f=f∗).
To critically test the Poisson hypothesis, we used the master equations

to simulate force distributions [pN (f) = dSu/df ] for rupture of multiple
bond attachments and then determined both the mean and variance. In
particular, we focussed on a dimensionless rate, rf = rf toff/fβ = 1000
because it is comparable to the effective rates employed in recent AFM
studies of mulitiple biotin/streptavidin bonds. This dimensionless loading
rate is based on actual loading rates rf of 105 to 106 pN/s and transition
state properties of fβ ∼ 40 pN and toff ∼ 0.1 s under fast loading. In
performing these computations, the initial populations of bonding states
were defined by the Poisson distribution

Sn = exp
(−N) Nn

n!
(2.13)

where we varied N from 0.1 to 20. As evident in Figure 2.7, variance in
force diminishes with increase in the mean force. The derivative of variance
with respect to mean force is largest (∼4.6) at low force and is always less
than the mean force for single bond rupture (∼6.9). Hence, the rupture
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Fig. 2.7. Variance in rupture force distributions plotted against the mean as

the average number of bonds formed on contact N varies between 0.1 and 20

under the assumption of precise parallel loading. The distributions were obtained

by solution to the master equations computed at a dimensionless loading rate

of 1000. Clearly, the variance in force does not increase linearly with the mean and

demonstrates that a “Poisson-type” analysis cannot be applied to tests of multiple

bond attachments. Inset is one of the distributions of rupture forces computed

for multiple bonds distributed randomly about an average 20 bonds/attachment

where at a rate of 1000, the most probable force for rupture of a single attachment

is 6.9.

force for a single bond can only be estimated from extrapolation of the
slope of variance versus mean force when the probability of attachment
is well below 1. Inset in Figure 2.7 is one of the distributions of rupture
forces computed for multiple bonds distributed randomly about an average
20 bonds/attachment. Clearly, the rupture forces in this distribution fall off
monotonically away from a single peak with no evidence of quantization or
hint of multiple peaks. So we see that the ratio of variance – to – mean of
force distributions for large numbers of bonds/attachment cannot provide
the force for rupture of a single bond.
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Single molecule experiments are not easy to achieve in practise. To mea-
sure the force between two molecules, the likelihood of bond formation on
contact has to be reduced to a “limit of dilution” through control of sur-
face chemistry, molecular density, contact force and time. Even when the
contact area and surface chemistry are controlled, multiple interactions can
still become significant. Unfortunately, as just discussed, there appears to
be no simple way to extract precise-quantitative information about a single
bond from measurements of multiple bond detachments. However, in this
regard, Poisson statistics can provide an important estimate of the likeli-
hood of multiple interactions amongst a series of tests of bond strength.
If a low probability of bond formation exists upon contact and we con-
trol the mechanics of contact to be equivalent each time, then the fraction
of surface contacts that adhere in repeated trials Nf/Nt (number forces
against total number of tests) can be used to estimate the mean number of
bonds/attachment,

∞∑
n=1

exp
(−N) Nn

n!
=
Nf

Nt
(2.14)

and therefore the mean number per contact is predicted to be,

N = ln
(

Nt

Nt −Nf

)
(2.15)

which we can relate to the fraction of single-bond events Ns/Nt in the data,

Ns

Nt
=
Nt

Nf
N exp

(
N

)
=
Nt −Nf

Nf
ln

(
Nt

Nt −Nf

)
· (2.16)

For example, a 70% frequency of adhesive attachment implies that the aver-
age number of bonds formed on each contact is ∼1.2 and, most important,
that nearly half of the forces measured will be from multiple interactions.
On the other hand, a 20% frequency of attachment implies that nearly 90%
of the forces recorded are due to single rupture events. Hence, our aim in
experiments should be to achieve a reduced level adhesion events (around
20%) which always involves the frustrating trade off between likelihood of
single events vis a vis the duration of data acquisition. To emphasize again
our comments from the previous chapter, each rupture event is a particular
sample from a distribution of forces and therefore many hundred forces are
needed to describe the process at each rate. With adhesion events only oc-
curring one in every ten or so trials, and with the need to test many orders of
magnitude in loading rate, many thousands of tests are required to explore
the full kinetic process. This introduces significant challenges to instrument
design, requires durable sample preparation, and tests the patience of the
investigator!
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2.6 Summary

We have enlarged the scope for dynamic strength of molecular interactions
to include detachment of multiple bonds. We’ve emphasized that whilst ex-
periments may be designed with the utmost care, contacts in experiments
can often lead to multiple bond attachments because of the vagaries of
molecular scale association. In this context, we’ve identified three prototyp-
ical mechanisms for detachment of bonds in attachments: series, parallel,
and zipper loading. In nearly all situations of adhesive rupture, multiple
bond interactions involve uncorrelated nanoscale excitations and thus the
kinetics of failure can be treated as independent random processes with only
force related to time and the number of surviving bonds in an attachment.
However in the exceptional case of mechanically-constrained multiple bonds,
cooperative unbinding can arise and thereby the system behaves as a sin-
gle “compound” bond. As a rare but significant example, experiments on
oligonucleotides have revealed the profound impact of cooperativity, which
is to extend the natural lifetime of a complex enormously. Focussing prin-
cipally on uncorrelated failure of bonds, we first treated a series of bonds
that break in random sequence, then a zipper of bonds that break in deter-
ministic sequence but at random times, and finally multiple bonds loaded in
parallel that again fail in random sequence but which share an equal force
that increments with each unbinding event. To follow the detailed evolution
of a collection of bonds, we described how a series of master equations is
employed to account for both deterministic and random changes force. But
even with no rebinding between bond-breakage steps, analytical solution of
the master equations is only possible in special cases. So by comparison to
numerical computations of the master equations, we demonstrated that an
equivalent single-bond model provides a good approximation for strength
of multiple bond attachments. To first order, multiple bond attachments
loaded in series or peeled apart like a zipper have strengths comparable to
that of a single-constituent bond. For a series of chemically distinct bonds,
the most likely site of failure is the “weakest” bond but we showed that
“weak” versus “strong” must be viewed as dynamical characteristics. By
comparison to systems dominated by single bond strength, multiple bonds
loaded in parallel withstand forces nearly proportional to the number but
only in the limit of large numbers of bonds and very large forces. Because
of the nontrivial relationship between attachment strength and the num-
ber of bonds, there is no reliable way to extract characteristics of single
bond dynamics from statistics of multiple-bond force measurements when
the numbers of bonds vary. Moreover, there’s no reason to expect that de-
tachment of an assembly of many bonds will lead to an identical mechanical
loading of each bond. Indeed the opposite should be expected – i.e. a sub-
set of bonds will take the load at each step with the remainder only weakly
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stressed if at all. As the bottom line: the most significant uncertainty in
interpreting rupture force for attachments with multiple bonds is knowing
which of these scenarios most closely represents the nanoscale mechanics of
detachment.

The authors gratefully acknowledge support from US National Institutes of Health
HL65333, HL31579, Medical Research Council of Canada grant MT477 to (EE) and
the Engineering and Physical Sciences Research Council, the Biological and Biomedical
Sciences Research Council, Universitas 21 and the University of Nottingham to (PMW).

References

[1] E. Evans and K. Ritchie, Biophys. J. 72 (1997) 1451.

[2] U. Dammer, et al., Biophys. J. 70 (1996) 2437.

[3] S. Allen, et al., FEBS Lett. 390 (1996) 161.

[4] J.M. Williams, T.J. Han and T.P. Beebe, Langmuir 12 (1996) 1291.

[5] E. Evans, Faraday Discuss. Chem. Soc. 111 (1998) 1.

[6] R. Merkel, et al., Nature 397 (1999) 50.

[7] E. Evans, et al., Proc. Natl, Acad, Sci, USA 98 (2001) 3784.

[8] E. Evans, Annu. Rev. Biophys. Biomol. Struct. 30 (2001) 105.

[9] T. Strunz, K. Oroszlan, R. Shafer and H.-J. Guntherodt, Proc. Natl. Acad. Sci.
USA 96 (1999) 11277.

[10] L. H. Pope, et al., Eur. Biophys. J. Biophys. Lett. 30 (2001) 53.

[11] M. Rief, et al., Science 276 (1997) 1109.

[12] E. Evans and K. Ritchie, Biophys. J. 76 (1999) 2439.

[13] C. Gergely, et al., Proc. Natl. Acad. Sci. USA 97 (2000) 10802.

[14] H. Skulason and C.D. Frisbie, J. Amer. Chem. Soc. 112 (2000) 9750.

[15] F. Stevens, Y.-S. Lo, J.M. Harris and T.P. Beebe, Lanmguir 15 (1999) 207.

[16] Y.-S. Lo, et al., Langmuir 15 (1999) 1373.

[17] Z.Q. Wei, et al., Surf. Sci. 459 (2000) 401.

[18] Y.-S. Lo, Y.J. Zhu and T.P. Beebe, Langmuir 17 (2001) 3741.



SEMINAR 1

POLYMERIZATION FORCES

M. DOGTEROM

FOM Institute AMOLF,
Kruislaan 407, 1098 SJ Amsterdam,

The Netherlands



POLYMERIZATION FORCES

M. Dogterom

The mechanical framework (cytoskeleton) of higher order (eukaryotic) cells
consists of three types of protein filaments: actin filaments, intermediate
filaments, and microtubules [1]. The assembly or polymerization of both
actin filaments and microtubules has been implicated in cellular force gen-
eration processes. Examples are: the pushing forward of membranes by
polymerizing actin filaments in the leading edge of crawling cells [2]; the
propulsion of Listeria bacteria through their host cell, again by polymeriza-
tion of actin filaments [3,4]; and the motion of chromosomes by the assembly
and disassembly of microtubules during the process of cell division [5]. In
this seminar I will describe how force is expected to affect the assembly of
cytoskeletal filaments [6–8] and describe experiments designed to measure
the forces generated by single growing microtubules.

Let us first consider the assembly of a single linear filament [9]. Above
the so-called critical subunit concentration, the (concentration-dependent)
rate at which subunits attach (the on-rate) is higher then the (concentration-
independent) rate at which they detach (the off-rate). The velocity of poly-
merization is positive and given by:

V = δ(kon − koff) (1)

where δ is the subunit size.
Figure 1A shows schematically the free energy difference ∆G between

the on-and off-states of a subunit as well as the activation barrier for transi-
tions between the two. The absolute values of the on- and off-rates depend
on the activation energy, but the ratio kon/koff does not. In the absence of
load this ratio is simply given by exp(∆G/kBT ), where kB is Boltzmann’s
constant and T is the absolute temperature. When a load is applied, the

This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek
der Materie (FOM)”, which is financially supported by the “Nederlandse organisatie voor
Wetenschappelijk Onderzoek (NWO)”.

c© EDP Sciences, Springer-Verlag 2002
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Fig. 1. Polymerization of a single filament in the presence of a load (see also

text). A) Thermodynamic arguments predict that the ratio between the on- and

off-rate decreases exponentially with an applied force. The gain in free energy,

∆G, associated with the assembly reaction is reduced by Fδ, the amount of work

performed per assembling subunit. B) Alternatively, the assembly process can

be viewed as a thermal ratchet, where the on-rate is reduced by the probability

P(∆x ≥ δ) that thermal fluctuations create a gap between the filament and a

barrier large enough to insert a new subunit. D is the diffusion constant of the

barrier.

gain in free energy due to assembly of a subunit is reduced by the amount
of work performed to ∆G-Fδ, which gives:

kon(F )
koff(F )

= e(∆G−Fδ)/kBT =
kon(0)
koff(0)

e−Fδ/kBT . (2)

This formula gives the relative effect of force on the on- and off-rates, but
not the absolute effect. To obtain the latter, the activation energy is needed.
The growth velocity of the filament as a function of force (the force-velocity
curve) is given by:

V (F ) = δ
(
kone−qFδ/kBT − koffe(1−q)Fδ/kBT

)
(3)

where the value of q depends on how much the off-rate is affected by the
force relative to the on-rate. The force needed to stall the assembly of the
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filament is independent of q and given by

Fstall =
∆G

δ
= kBT ln

kon

koff
· (4)

A more mechanistic view on the force generation process is provided by
the thermal ratchet model originally introduced by Peskin et al. to describe
force generation by actin filaments [6]. In Figure 1B one imagines that as-
sembly takes place in contact with a “barrier” on which a load F is applied.
Insertion of new subunits takes place at the contact point between the grow-
ing filament and the barrier. In the absence of thermal fluctuations there is
no space between these two objects and proteins are physically prevented
from attaching to the filament. Thermal fluctuations (e.g., in the form of
diffusion of the barrier) create temporary gaps that allow new subunits to
add themselves to the end of the filament. After such an addition of another
subunit, the barrier can no longer diffuse back to its original location and
has thus been “pushed” forward by the assembling filament against the ap-
plied load. The off-rate is in this scenario not affected by the force. When
diffusion of the barrier over distances of order δ is fast compared to the
time between subsequent subunit additions, the rate of assembly is simply
the on-rate in the absence of any force or barrier, multiplied by the proba-
bility of opening a gap large enough for a new subunit to be added. This
probability depends on the energy associated with moving the load F over
a distance δ and is given by exp(−δF/kBT ). In this case the force-velocity
curve is given by:

V (F ) = δ(kone−Fδ/kBT − koff) (5)

which is the same result as equation (3) for a force-independent off-rate
(q = 1).

In our experiments we aim at measuring the force-velocity behavior for
the assembly of cytoskeletal proteins. We hope to learn (by comparison with
available models) how the assembly free energy of proteins is converted into
mechanical work. But also to find out how large these forces are compared
to the forces that are generated by molecular motors that use cytoskeletal
filaments as rails and play an equally important role in cellular motility
processes. Of course the assembly of cytoskeletal filaments is not as simple
as the situation sketched in Figure 1, and care should be taken in compar-
ing experimental results with the simple predictions above. In particular,
microtubules consist of (typically) 13 protofilaments forming a hollow tube,
assembled from tubulin protein dimers. For an individual microtubule, pe-
riods of assembly randomly alternate with periods of disassembly, a process
that depends on the hydrolysis of associated GTP molecules [10].
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Fig. 2. Experiment to measure the force-velocity curve for a single growing mi-

crotubule. A) Schematic representation of the experimental set-up (see text).

B) DIC microscopy images of a growing microtubule before (left) and after (right)

encountering the barrier. The crosses indicate the shape of the microtubule as

recognized by our image analysis software. The solid line is the result of fitting

this shape to the shape of an elastic rod. The arrow gives the direction of the

force as obtained from the fit. Scale bar is 5 µm. C) Contour length (left) and

parallel component of the force (right) as a function of time as obtained from

the fits. The initial (zero force) growth velocity of this microtubule was around

2.5 µm/min [12].

Figure 2A shows schematically the experimental set-up that we devel-
oped to study, quantitatively, the forces generated by single growing mi-
crotubules [11, 12]. Short pieces of stabilized microtubules (templates) are
biochemically attached to a glass substrate that has been decorated with
barriers for growing microtubules. The barriers are lines (15 µm wide, 2 µm
high) of silicon-monoxide that were deposited with lithography techniques.
When tubulin proteins are added, microtubules grow from the templates,
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some of which encounter the barriers. An important technical detail of
these barriers is that they were created with a small “undercut” by briefly
etching the substrate in hydrofluoric acid. These undercuts force the micro-
tubule ends to stay in the focal plane of the microscope and prevent them
from sliding upwards after reaching the barrier. When microtubules hit
the barrier they generally continue to grow. To accommodate the increase
in length, two things can happen: either the elongating microtubule end
slides laterally along the barrier, giving rise to a modest deflection of the
microtubule. Or the microtubule end is hindered in this lateral motion (by
an encountered irregularity in the barrier profile) which results in a more
dramatic buckling of the microtubule as its growing end pivots around a
fixed contact point with the barrier; see Figure 2B. In this last case the
elastic restoring force of the buckled microtubule puts a significant load on
the microtubule, directly affecting the further growth of the filament. Using
image analysis to obtain the shape of the growing microtubule as a function
of time and fitting the obtained curves to the shape of an elastic rod, both
the magnitude and the direction of the force acting on the microtubule end
can be determined [13]. Also the increase in microtubule length and thus
the growth velocity can be derived from these fits (Fig. 2C). Calibration is
provided by an independent measurement of the flexural rigidity and the
forces one finds are close to the critical buckling force of a homogeneous
elastic rod, given the appropriate boundary conditions.

Note that compared to the situation in Figure 1, it is in this case not
the barrier that is fluctuating but the position of the assembling filament
end itself. In addition the load is not applied externally, but caused by the
elastic deformation of the filament itself. This however does not change the
ratchet behavior, as long as the fluctuations in the gap size are sufficiently
fast and the applied load is not itself dependent on the gap size.

Figure 3 shows a force-velocity curve for microtubules obtained after
averaging many data such as shown in Figure 2. As said before one should
take care in comparing these experimental results with the simple Brown-
ian ratchet model described above. A microtubule consists of 13 laterally
connected protofilaments forming a hollow tube, instead of a single linear
filament, and the geometrical details of the growth process are not well
known. (To make matters worse, electron microscopy studies of micro-
tubules have suggested that growing ends consist of sheet-like structures
that close into hollow tubes during the assembly process [14].) In addi-
tion, there is the possibility that the hydrolysis of GTP, responsible for the
occasional switching to a shrinking state, should be taken into account to
understand the response of the growth process to force. In this case the
stall force may no longer be simply connected to the free energy associated
with tubulin assembly.
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Fig. 3. Force-velocity curve for the growth of single microtubules [11]. Under these

conditions the initial (zero force) growth velocity was around 1.2 µm/min. The

solid line is predicted by a regular assembly process; the dotted line is predicted

by a model that assumes 13 independently growing filaments. For simplicity only

6 protofilaments are shown in these drawings. In both cases the stall force is

arbitrarily set to 18.5 piconewton.

Given what is known about the structure of microtubules, it is tempt-
ing to try to include the geometrical details of a growing microtubule into
a thermal ratchet model. A simplistic generalization of the original ratchet
model describing the growth process of a polymer consisting of two filaments
(as is the case for actin) certainly does not fit the available data [11]. In
this case it is assumed that the size of the gap needed to insert each new
subunit is equal to the added microtubule length per dimer: δ/n, where
n is the number of filaments in the polymer (inset Fig. 3; regular growth).
Mogilner and Oster therefore generalized the ratchet model described above
in a different way [15]. They assumed 13 laterally connected, independently
growing ratchets, initially arranged as a staircase with subsequent shifts
equal to one 13th of the subunit size, with the longest filament in contact
with the barrier at any time. Growth of any particular filament requires
a fluctuation of the barrier large enough for that filament to insert a new
subunit, which thus becomes a function of the distance of the end of that fil-
ament to the barrier (inset Fig. 3; independent growth). Through numerical
solutions as well as simulations of this model the steady state distribution of
filament-barrier distances can be determined as a function of applied force
and with this the average growth rate can be calculated. The outcome fits
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the available experimental data surprisingly well. The fit is however very
insensitive to the only free parameter in this model: the stall force (i.e. the
ratio between the bare on- and off-rates, given that their difference is fixed
by a measurement of the growth velocity at zero force), and no conclusions
about the stall force can be made [16]. Even though this model makes a lot
of implicit assumptions and there is no reason to insist on its details, the
outcome of the comparison with the experimental data may in fact suggest
that the end of a growing microtubule (under these conditions) looks more
like a irregular pointed structure than a blunt end. More data, taken at
different initial growth velocities, should allow us in the future to test this
as well as other hypotheses.

To be able to compare between different possible models (including the
ones discussed here) we would also like to be able to measure the stall
force directly. The buckling technique does however not allow for such a
measurement. Due to the geometry of the experiment the force on the
microtubule end never increases after the buckling of the microtubule has
started, and in fact decreases during the course of the experiment (due to
the strong dependence of the critical buckling force on the filament length:
Fcrit ∼ L−2). Microtubules that are attached relatively close to the barrier
stop growing as soon as they encounter the barrier, apparently because
the force needed to overcome their critical buckling force is too large. In
these cases we have no direct way of measuring the force applied (although
estimates can be made). Currently we are therefore working on a second
experimental set-up based on optical tweezers techniques [17]. In this set-
up the microtubule template is attached to two micron-sized silica spheres.
These beads are each held in an optical trap orienting the growth direction
of the microtubule towards a barrier similar to the one used in the previous
experiment. In this case the distance to the barrier should ideally be chosen
such that the force needed to buckle the microtubule is larger than the
expected stall force. In response to the growth of the microtubule the beads
will move with respect to the centers of the optical traps, thereby linearly
increasing the force on the growing microtubule end until growth stops. An
independent calibration of the trap stiffness will then give a direct measure
of the force applied [18].

From a biological point of view, the microscopic details of forces gener-
ated in contact with an artificial glass barrier may not be all that interesting.
What will be important in the future is to repeat these types of experiments
with barriers consisting of chromosomes, kinetochore complexes, or sim-
ple motor-coated surfaces. Comparison with our current experiments may
reveal important hints as to how molecular growth details and the force
generating process are affected or even regulated by interaction with these
specific barriers.
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THE PHYSICS OF LISTERIA PROPULSION

J. Prost

1 Introduction

Listeria is a pathogenic bacterium, which can be dangerous for immune
deficient individuals. It can be found almost everywhere, in particular in
food such as soft cheese and smoked salmon. After ingestion, it is able to
penetrate in the cellular system where it moves from cell to cell and divides
on average every twenty minutes. The reason why it can move from cell to
cell is that it develops a comet-like tail (Fig. 1), which pushes the bacterium
forward and deforms the plasma membrane until it invades the neighbour-
ing cell. Since it is inside the cellular system it is hard to be detected by
the immune system. In order to understand the Listeria propulsion mecha-
nism, a particularly intense scientific activity has been developed over these
last years [1,2]. Why should one be particularly interested in this problem?
The reason is that Listeria motility is due to the polymerisation and cross-
linking of an actin gel (i.e. the comet) just like eukaryotic cell motility is due
to the polymerisation of actin in the cell lamellipodium. It is then believed
that learning something on Listeria is useful for understanding eukaryotic
cells as well. Of course studying Listeria does not avoid studying eukaryotic
cells since there are many more aspects to eukaryotic motility than to Liste-
ria motility [3] (like adhesion, molecular motors etc.). Yet this allows us to
select one aspect, namely actin polymerisation and cross-linking, in geomet-
rical conditions, which are much simpler than those of eukaryotic cells since
the process is exterior to the bacterium. One can in particular use cell ex-
tracts to perform in vitro experiments. Yet a priori simpler than eukaryotic
cell motility, Listeria motility has its mysteries: in particular a mutant has
been observed to move by a succession of jumps followed by periods during
which the bacteria is essentially immobile [4] (Fig. 2). During the waiting
period the gel grows around the whole bacterium producing some kind of
sheath. Eventually the bacterium gets expelled from the sheath, hence the
jerky motion. In the following I give a few guidelines for thinking about
the physics of the propulsion mechanism, and show that it is essentially a
continuum mechanics problem with very unusual boundary conditions.

c© EDP Sciences, Springer-Verlag 2002



“prost”
2002/8/28
page 218

�

�

�

�

�

�

�

�

218 Physics of Bio-Molecules and Cells

Fig. 1. Example of a wild type Listeria and its homogeneous comet.

2 A genuine gel

2.1 A little chemistry

Before getting to the characterisation of the gel, it is necessary to give a
few tips concerning the biochemistry of the polymerisation process. First,
it is now well established that in order to observe the formation of a comet,
a particular enzyme called ActA must be present on the surface of the
bacterium. In vitro experiments can be made by placing bacteria in cell ex-
tracts, or in reconstituted extracts. The presence of ActA is necessary but
not sufficient for getting a polymerisation process comparable to the one
observed in vivo. Actin filaments are polar: they have two fundamentally
different extremities. One, called barbed (or plus) end, can polymerise while
the other, called pointed (or minus), can simultaneously de-polymerise. Of
course this can only happen if energy is constantly fed into the system and
this is done by hydrolysing ATP in ADP. Phosphorylated monomers poly-
merise at the barbed end, while dephosphorylated monomers de-polymerise
at the pointed end. In the absence of any other protein the polymerisation
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Fig. 2. ActA∆21−97 Listeria mutant (Courtesy Lasa et al. [4]): a) DIC view of

the modulated comet, b) displacement and velocity as a function of time.

rate of actin is about two orders of magnitude slower than in vivo. In order
to obtain the right values three other types of proteins must be added:

a) cofactor, which speeds up de-polymerisation at the pointed end and
thus speeds up turn over and polymerisation at the barbed end;

b) capping protein, which caps free barbed ends and localises polymeri-
sation at the bacterium surface or its immediate neighbourhood;

c) protein complex called Arp 2/3 which provides branching to the net-
work [5, 6], and also speeds up the gel formation.

The identification of the minimum number of constituents necessary to re-
produce in vitro the bacterium motion was an important step towards a
quantitative understanding of the process [7]. Another important step is
the demonstration that it is possible to replace the bacterium itself by inert
beads such as polystyrene beads, on which the enzyme ActA is grafted or
adsorbed [8,9]: I will give more details on this aspect in the last two sections
of this article.
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2.2 Elastic behaviour

In the introduction of this article I have written without further justification
that the comet like structure of Figure 1 was a gel, and that polymerisation
was taking place at the bacterium surface. Proving that polymerisation
is taking place at the bacterium surface was shown by using fluorescently
labelled actin [10, 11]. This still does not tell us that the actin gel is a
real gel in the sense that it has the mechanical properties of an elastic
body. This can be done by cutting pieces of the comet using laser surgery
techniques, and measuring the bending modulus of the comet [12,13]. These
experiments show that the comet does have elastic behaviour over time
scales of minutes. Elastic moduli are found in the kilo-Pascal range with a
large total spread of two orders of magnitude. This spread is not related
to a slow de-polymerisation process known to exist in the comet and which
can be studied independently. These experiments show that the gel elastic
properties must be explicitly taken into account in the physics of the motion.

Next one wants to know about the connection between the bacterium
surface and the gel. By using laser tweezers or better electric fields one
can exert piconewton forces between bacterium and comet during typically
a minute: no relative motion at a micron resolution can be detected [13].
This shows that the bacterium is firmly connected to the gel. More quanti-
tatively, if one describes the bacterium-gel lateral interaction by a friction
coefficient, such experiments put a lower limit to the friction coefficient,
four orders of magnitudes larger than the hydrodynamic friction coefficient
of the bacterium on the surrounding fluid!

3 Hydrodynamics and mechanics

3.1 Motion in the laboratory frame

One can split the problem of Listeria motion into two parts. First an
external and simple part deciding which of the bacterium or the comet moves
with respect to the surrounding fluid, second an internal part describing the
motion of the bacterium relative to the comet. The Reynolds numbers in
this problem are extremely low (i.e. of the order of 10−7) this means that
only friction forces should be retained; under such conditions the external
dynamics reads:

f ext = ζb νb + ζc νc.

Where f ext is an external force acting on the bacterium/comet system,
ζb, ζc, νb, νc are the friction coefficients on the surrounding fluid and ve-
locities of the bacterium and the comet respectively. The polymerisation
process itself is responsible for the existence of a relative velocity between
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bacterium and comet: νb − νc = ν. Note that ν is not related simply to
the polymerisation rate νp, as illustrated in the following. Combination of
the two equations allows us to extract the velocity of the bacterium with
respect to the surrounding fluid:

νb =
ζc ν + f ext

ζb + ζc
·

Only in the absence of external force and when ζc � ζb is νb ≈ ν.
This limit is obtained as soon as the comet length is larger than the

bacterium size, and does not depend on the surrounding fluid viscosity
since both friction coefficients are proportional to it. Note also that since
the friction of the gel on the bacterium surface is at least four orders of
magnitude larger than ζb, an increase by at least four orders of magnitude of
the viscosity is required to influence ν in a significant way, via the developed
stressed as shown in the following. Such an experiment has been done
recently [14]. Yet, for most practical purposes one can ignore the world
external to Listeria for discussing its motion. Note eventually that external
forces cannot be mixed with internal ones in the force conservation equation.

3.2 Propulsion and steady velocity regimes

Since experiments show that the comet is indeed a gel in the continuum me-
chanics sense, this implies that one has to understand what kind of stresses
are generated by the polymerisation-gelation process. If polymerisation
was taking place only at the rear part of Listeria then life would be sim-
ple. ν would be simply the polymerisation velocity νp. One could write
for instance: ν ∼= νp = a(kb

+c
i − kb−), in which kb

+, k
b−, ci, a are respectively

the polymerisation and de-polymerisation rates, an actin monomer concen-
tration and size at the bacterium surface. Most microscopic theories are
concerned with the calculation of νp [15–18].

However the gel grows not only at the rear of the bacterium. In other
bacteria like Shigella [19], or in vesicles developing comets [20,21], the comet
is hollow which means that there is no rear gel. To understand the propul-
sion mechanism one has to understand that once a first layer has been
polymerised and cross-linked, a subsequent polymerisation can only occur
if the first layer is stretched to a new position leaving space for it (Fig. 3).
The stretching costs elastic energy and the release of this energy is the driv-
ing force for the motion. More precisely, if B is the shear modulus of the
gel the stored elastic energy per unit length reads:

We
∼= B(e/r)22πreL.
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Fig. 3. The grey gel layer, initially with inner radius r must stretch to a new

radius r + δe to allow for a new gel layer to form.

Fig. 4. The elastic force, gives rise to a propulsion force F1 along the bacterium

axis; surface friction equilibrates F1 with F2.

Where e, r, L, (e/r) are the gel thickness, the bacterium radius, length and
tensile strain, respectively (Fig. 4). Thus the propelling force is:

fp ∼= 1
2π
Be3/r.

The gel-bacterium friction balances this force (remember we have shown
that external hydrodynamic friction is in most practical situations entirely
negligible). We will discuss in more details the notion of gel/bacterium
friction, but for the sake of argument let us first describe the friction force by
a friction coefficient ξ: ff = ξν2πrL. One obtains immediately an expression
for the velocity: ν ∼= νie

3/r2L. In which νi = (B
ξ ) is an intrinsic velocity

scale, related only indirectly to the polymerisation process. Two limits merit
discussion.

In the first neither the developed stress nor the actin monomer depletion,
are large enough to influence the polymerisation process. Then in steady
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state:

e =
(νp
ν

)
L

since the time e
νp

needed to generate a thickness e, must equal the time L
ν

to advance one length L, then

ν ∼= (νi)1/4 ν3/4
p

(
L

r

)1/2

·

Note that in this regime the bacterium velocity relative to the gel ν can be
larger than the polymerisation rate νp, and that it is not proportional to
it. Note also that it depends only weakly on the comet gel properties νi: a
two orders of magnitude change of the gel elastic modulus (everything else
being kept constant), results in a factor of three change of the velocity ν
only. This explains why the experimentally observed velocity spread is by
no means comparable to the one found for the gel modulus.

In the second regime the thickness saturates to a value e∗ controlled
either by the developed stresses or by the actin monomer diffusion process
(figure). Then:

ν = νi
e∗3

r2L
·

We will show that under appropriate circumstances e∗ = e2 ln(ν0
p/ν

0
dp), in

which e2 is a length proportional to the bacterium radius r, and ν0
p, ν

0
dp

are the polymerisation and de-polymerisation rates in the absence of stress
respectively. In this case the dependence of the bacterium velocity on the
polymerisation rate is extremely weak!

3.3 Gel/bacterium friction and saltatory behaviour

In the above discussion, we have used the notion of surface friction with-
out further justification. The physical nature of this friction may be un-
derstood the following way: during the polymerisation process the actin
filaments spend some time τc connected to the bacterium surface, and some
other time τd disconnected to it. When the gel moves with respect to
the bacterium the connected filaments gradually distort until they detach.
A force results from the distortion, as first understood by Tawada and
Sekimoto [22]. The average force per unit area reads: Ff = ncΦ where
nc is the average number of connected filaments and Φ a typical force per
filament. In steady state: nc = n τc

τc+τd
where n is the number of enzymes

per unit area on the bacterium surface. The force Φ is simply given in terms
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of the product of a filament elastic modulus K multiplied by a typical dis-
placement ντc.

A first regime of small velocities is easy to discuss. Both τc and τd have
their intrinsic thermodynamic value τ0

c and τ0
d , and the notion of a friction

coefficient with a velocity independent value emerges as anticipated: ξ =
τ02
c

τ0
d+τ0

d
nK. If one estimates the gel elastic modulus on dimensional grounds:

B ∼= kTλp/λ
4, and the filament surface modulus by K ∼= kTλp/λ

3, in
which λp is the actin filament persistence length and λ the average distance
between cross-links, then the intrinsic velocity takes the very simple form:
νi ∼= τ0

c +τ0
d

λnτ02
c

, which further simplifies to νi ∼= λ(τ0
c +τ0

d )
τ02
c

. Although it is possible
to have reasonable values of λ, nothing is known on the connected and
disconnected times.

A second regime is that of high velocities. The connections are broken
in times much shorter than the thermodynamic connection time τ0

c , such
that the work done on the connection with the enzyme is of the order of
the potential barrier wb hindering the escape of the filament from its bound
state. This condition requires: Kντcab

∼= wb, in which ab is a length of
order a. The essential result is that now the connected time is inversely
proportional to the velocity and the friction force becomes also inversely
proportional to it: Ff

∼= nw2
b

τcKν . The friction force due to this phenomenon
tends to zero, simply because all bounds break. The total friction does not
vanish though, since there is always a conventional hydrodynamic friction.
The total Ff(ν) curve plotted in Figure 5 exhibits the typical shape of a
solid on solid friction with stick/slip behaviour. Under such circumstances
the saltatory mutant is easy to understand. A conventional steady state
smooth motion is obtained when the curve characterising the elastic force
intersects the friction curve once. The saltatory behaviour is obtained when
the friction oscillates between the high and the low friction regimes. Typ-
ically the bacterium starts to accumulate a thick gel layer until the elastic
force reaches a value such that the unstable regime is reached, that is until
surface bonds break. In this phase the bacterium velocity is very small.
Then the gel layer is quickly expelled which gives a velocity burst, and
leaves the bacterium surface in its initial state; the cycle can start again.
A more elaborate description can be found in references [12, 23]. It is in-
teresting to remark that all known phenotypes can be assembled in a single
dynamical state diagram, provided one treats at the same level the side gel
and the rear gel [23, 24]. This work shows in particular that the rear part
of the gel in general does not participate positively in the propulsive force.
Only close to stall force does the rear part contribute positively. As a re-
sult, the force-velocity relation was predicted to exhibit two regimes [23],
as observed experimentally recently [14]. This analysis further shows that,
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Fig. 5. Typical curve giving the friction as a function of the bacterium/gel dif-

ferential velocity.

what is called a saltatory mutant, is in fact nothing but the crossing of
a boundary line in the state diagram due to the mutation. The crossing,
however, might result from many other causes. We illustrate this remark in
the following section. Note eventually that although microscopic models are
interesting in their own right, a comprehensive analysis cannot ignore the
elastic level of interpretation, which naturally provides a correct distinction
between internal an external forces.

4 Biomimetic approach

4.1 A spherical Listeria

If it is true that Listeria needs only to display the enzyme ActA at its surface
and for the rest of it steals all the needed compounds to the surrounding
cell, it should be possible to replace the bacterium by an inert bead on
which this enzyme is grafted. Then, placing the bead in a cell extract or in
a reconstituted extract containing all relevant proteins and energy sources,
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Fig. 6. Example of a symmetry breaking perturbation.

one should be able to observe actin polymerisation and hopefully a comet
formation. This has been done in several laboratories [8,9] proving that in-
deed only ActA was needed at the surface; it was further shown, that human
actin polymerisation enzymes could give rise to similar observations [25,26].
Can one learn more with these in vitro bio-mimetic assays?

4.2 Spherical symmetry

In many cases, the beads which are used, are spherical and unless a sym-
metry breaking process develops, the produced actin gel respects the beads
symmetry. One observes that the gel growth stops after a given thickness
is reached. It is possible to prove that it corresponds to a steady state [27]:
polymerisation is still going on at the bead surface, while de-polymerisation
takes place at the outer one. The observed thickness is always a fraction of
the bead radius, orders of magnitude smaller than the comet length. Why
is it so?

The point is that both the polymerisation rate at the inner surface, and
the de-polymerisation rate at the outer surface depend on the stresses that
develop as we have already explained in the preceding paragraphs. The
polymerisation rate at the inner surface decreases under the action of the
compressive normal stress while the de-polymerisation rate at the outer
surface increases under the action of the tensile stress. When both take on
the same value a steady state is reached.
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It is possible to be more quantitative by writing standard chemical rate
equations:

dνi
dt

= kb
+ci − kb

−,
dνe
dt

= −kp
−,

de
dt

= a

(
dνi
dt

+
dνe
dt

)

dνi
dt , dνe

dt are the average number of added monomers per unit time, per
filament at the inner and the outer surfaces, kb

+ is the second order rate
constant for the addition of a monomer at the inner surface were monomer
density is ci, and kb−, k

p
− are the first order rate constants for removing a

monomer from the filament at the inner and outer surfaces respectively.
The monomer addition events at the outer surface are rare enough that the
corresponding term can be safely neglected in all cases. The superscripts
b, p stand for barbed and pointed and indicate that the polymerisation takes
place at the barbed end while the de-polymerisation takes place at the pointed
end. As in the preceding paragraph, e is the gel thickness and a the typical
size of a monomer.

The stress dependence of the rates results from the fact that the potential
barrier for adding or suppressing a monomer is shifted from its value at
zero stress, from a quantity equal to the work given by the force that a
given filament exerts on the link of interest. It is thus of the form: k =
k0 exp

(
−fa
kT

)
. The forces are deduced simply from the stresses. We have

already noted that the tensile strain was e
r in the geometry of Listeria and

it is still the case in spherical geometry. Thus the tensile stress, at the outer
surface, is σt

∼= B e
r and the force per filament is ft = σtl

2, where l = n−
1
2 , is

the average distance between filaments. The normal stress obeys Laplace’s
law: σr = 2T

r where T ∼= σt.r is the total tension across the gel layer. We
thus get: σn

∼= 2B e2

r2 . With all these remarks we can write:

kb
+ = kb0

+ exp
(
−e

2

e20

)
, kb

− = kb0
− exp

(
e2

e21

)
, kp

− = kp0
− exp

(
e

e2

)
·

With: ei = r( kT
ail2B )j and j = 1

2 for i = 0, 1, j = 1 for i = 2. In all cases ai

is a length of order a. Note that all ei scale like r.

4.3 Steady state

In order to discuss the conditions for steady state one still needs to express
the monomer concentration at the inner surface ci as a function of its con-
centration at infinity c∞. In a first approximation, it is reasonable to assume
that the actin monomer concentration obeys a standard diffusion law. Thus
in steady state the flux j = −D ∂C

∂r = const in the gel, and c = c∞ outside.



“prost”
2002/8/28
page 228

�

�

�

�

�

�

�

�

228 Physics of Bio-Molecules and Cells

Monomer conservation further imposes (for e � r): l2D ∂c
∂r = dni

dt = dne
dt .

These conditions specify entirely the problem. One finds two regimes con-
nected by a smooth crossover. For small radii, the inner concentration is
essentially c∞, and the steady state thickness is solution of the equation:

c∞k0b
+

k0p
−

=
k0b
−
k0p
−

exp
(
e∗2

(
e−2
0 + e−2

1

)
+ exp

(
e∗e−1

2 + e∗2e−2
0

)
.

Since all the ai scale like r, the steady state thickness e∗ also scales like r.
Actually with numbers relevant to experimental situations one expects:

e∗ ∼= r/10.

This is what is observed experimentally for radii smaller than 10 microns [9].
Such numbers imply that the normal stress exerted by the gel on the bead
is of the order of one atmosphere!!

Note that if the leading term is provided by the de-polymerisation at
the barbed end one finds exactly the expression announced in the second

paragraph, that is (with transparent notations): e∗ = e2Ln(
ν0
p

ν0
dp

).
The other limit corresponds to what happens on a flat surface. Then

no stress is developed, but the thickness is still limited by the monomer
depletion due to the need for the monomers to diffuse from outside. Now
the steady state condition reads simply:

l2
(
c∞ − ci
e∗

)
= cik

b
+ − kb

− = kp
−.

For all practical purposes kb
− can be neglected in this stress free situation.

It is then easy to infer:

e∗ =
l2Dc∞
kp
−
·

For large enough beads, this regime is always obtained. The crossover ra-

dius between the two regimes is given by re ∼= a
1
2 Dl3c

3
2∞

kTdp
−

. Plugging the value
of the diffusion constant as measured in solution we estimate the crossover
radius in the millimetre range. It turns out that one can clearly observe
the two regimes in the 10 microns range, which implies that the monomer
diffusion constant is about one thousand times smaller in the gel than in a
solution [28]. There may be many reasons for this large difference (tempo-
rary fixation sites on the gel, steric hindrance, other objects like the Arp2/3
complex diffusing slowly and limiting the polymerisation rate).

What is more important is that the measured value (0.02 µm2 s−1) is
such that diffusion processes cannot be neglected in cells! The crossover
length corresponds precisely to typical cell lengths!
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4.4 Growth with spherical symmetry

The arguments developed above allow us to write the gel thickness
growth as:

de
dt

= a

(
kb0
+ exp

(
−e

2

e20

)
− kp0
− exp

(
e

e2

))

(where we have omitted the kb− term for the sake of simplicity). The solution
of this equation with initial condition e = 0, is a continuous monotonic
function, with essentially two regimes:

– at short times the growth is predicted to be linear: de
dt
∼= a(kb0

+ − kp0
− ),

that is with obvious notations, e = ν0
pt. Such a relation is probably

too naive since it ignores the problems of the nucleation of filaments
and of their multiplication with Arp2/3, etc.

– at long times, the gel thickness is close to its steady state value e∗ and
the dynamical equation can be linearised as a function of δe = e− e∗.
The solution is then:

δe(t) = δe(t1) exp
(
− t− t1

τ

)
;

τ−1 = kb0
+

(
2
e∗a
e20

+
a

e2

)
exp

(
−e

2
∗
e20

)
=

(
2e∗

e20
+

1
e2

)
νp.

The thickness approaches its steady state value exponentially with a time
constant growing linearly with the sphere radius r.

4.5 Symmetry breaking

In the following we keep the arguments as simple as possible, and deal
only with the thin shell regime. A more elaborate version can be found
in reference [29]. As understood first by Sekimoto the important point
is that mechanical equilibrium requires that the total integrated tension
across the gel thickness must be constant everywhere. If the gel thick-
ness is smaller in some place than in others, since the integrated tension
is the same, this means that the tensile stress must be larger. Now, since
the de-polymerisation rate at the exterior surface depends exponentially on
the tensile stress, this means that the de-polymerisation is faster where the
gel is thinner, which amplifies the thinning process. This is a clear sign of
instability, which we investigate in the following.

Assume that at some point the gel thickness has picked up a sinusoidal
variation of the sort (Fig. 5):

e(t) = ei(t) + ε(t) cos(θ).
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In which θ is the polar angle in spherical coordinates, ei and ε the isotropic
and anisotropic parts of the gel thickness. We consider the system in the
late time regime since in the earlier regime the stresses play essentially no
role. Thus we can consider ei − e∗ and ε as small quantities which we need
to treat at first order only, for the discussion of stability. The tension being
constant, it cannot depend on θ, and can only depend on ei and ε2, thus to
lowest order:

T = B
e2i
r

+ 0
(
ε2

)
and, σr =

T

r
= const.

On the contrary:

σθ =
T

e(θ, t)
∼= T

ei

(
1− ε

ei
cos(θ)

)
+ 0

(
ε2

)
.

As announced the tensile stress is maximal where the thickness is minimal.
If we extend the use of the dynamical equation to this non-homogeneous

case, we can write:

de(θ, t)
dt

= a

(
kb0
+ exp

(
−e

2
i

e20

)
− kp0
− exp

(
ei

e2

(
1− ε

ei
cos(θ)

)))
.

Which yields after linearisation:

dδei

dt
= −δei

τ
dε
dt

= +
ε

τ0
·

As expected, we find that the isotropic part is stable and converges ex-
ponentially fast toward the steady state value e∗, and that the symmetry
breaking part is always unstable and grows exponentially fast with a time
scale τ0 = τ(1 + 2 e2e∗

e2
0

) = e2
νp

. Note that τ0 grows linearly with the bead
radius, just like τ , and is of the same order of magnitude.

Now we know that symmetry-breaking fluctuations are amplified, but
where do they come from? Could thermal fluctuations be sufficient?

The typical fluctuation amplitude can be expressed as:

εb ∼=
(
kTe∗

Br2

) 1
2

·

For a 100 nm bead such as used in [8], the corresponding amplitude is in the
nanometer range. It might be sufficient to trigger the instability because
of its exponential amplification. However, other factors such as enzyme
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heterogeneous distribution or deviation from pure spherical shape may be
more important. For instance if there is a total number N of enzymes at the
bead surface, there will always be an imbalance of the order of N

1
2 between

the two sides of the bead. The integrated tension T is still a constant and
so is the normal stress σr at the bead surface. However the force acting on
filaments now depends on position through the enzyme density dependence.
With l2(θ) = l2i + 2la.li cos(θ), li, la being the isotropic an anisotropic parts
of the average distance between nucleation enzymes, one obtains a force
per filament, l2σr, which also depends on angle and the equation for the
anisotropic part of the gel thickness becomes:

dε
dt

=
ε

τ0
+ νb.

In which νb = 2la
li
νp ∼= 2√

N
νp; νp is the polymerisation velocity as defined

in the first part of this article. The solution reads:

ε(t) = νbτ0

(
exp

(
t

τ0

)
− 1

)
.

In order to assess, which of thermal fluctuations or enzyme heterogeneity,
is the leading term in the symmetry breaking source, one should then com-
pare νbτ0, and εb. Their bead radius dependence is such that at r large
enough the enzyme disorder should always win. Plugging reasonable or-
ders of magnitudes, suggests that even for a few nanometers size bead the
enzyme disorder is already more important.

An other symmetry-breaking source is the lack of sphericity of the beads.
Arguments, very similar to the one we have used for enzymes heterogeneity,
can be made. One has essentially to replace la

li
, by ra

ri
in which the subscripts

refer to the beads radius of curvature variation, with obvious meaning. It
is difficult to put numbers on this term, since it depends on the preparation
chemistry of the beads. It seems that beads smaller than a micron, have
excellent sphericity, controlled by surface tension. In that range one ex-
pects enzyme heterogeneity to provide the main symmetry breaking term.
It seems more difficult to obtain beads larger than a few microns, in which
case spherical aberrations might provide the main symmetry breaking term.
It would be interesting to design carefully controlled experiment, for check-
ing quantitatively these predictions. Clever microscopic models have been
imagined in order to obtain symmetry-breaking conditions [17,30]. However
they do not take into account the very nature of the actin gel.

4.6 Limitations of the approach and possible improvements

In the discussion developed above, we have kept only diagonal stresses.
However as soon as the gel thickness is inhomogeneous, some of the elastic
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energy is released by shear, and a complete analysis should contain the
corresponding terms. One can show however that the exposed results are not
changed in any significant way [29]. Furthermore, whenever the anisotropy
changes with time, the gel redistribution causes friction at the bead/gel
interface, a phenomenon that is not included in the present analysis. It is in
fact possible to show that it does not modify the structure of the equations
but simply renormalizes the onset time τ0 of the anisotropy.

Indeed, under such circumstances, the tension has an angular dependent
part, which must be proportional to the friction coefficient, the velocity of
the gel relative to the bead and have the right dimensions:

T (θ) = Ti + κξr
dε
dt

cos(θ).

Where κ is a dimensionless number and ξ is the bead/gel friction coefficient
already discussed. The equations are formally unchanged and only the onset
time of the modulation is modified to a new value:

τ∗0 = τ0 +
r2

νi

(
e2
e20

+ e∗−1

)
.

The main conclusions are similar to the one obtained before, for instance the
symmetry breaking onset time is again proportional to the sphere radius,
since e0, e2 and e∗ are. This expectation is indeed born out by experi-
ment [31]. Furthermore if the friction is very high the spherical steady state
can be reached much before symmetry is actually broken. This will in par-
ticular happen if the gel is dense, expectation also born out by experiment.

There are several other implicit simplifications in the above presentation:
we have considered only one elastic modulus, without specifying whether it
corresponds to compression or shear or a combination of them. A proper
description is possible by the use of a covariant description of the gel [29].
Actually, the very geometry of the polymerisation/cross-linking process im-
plies that the gel should be anisotropic as well, but keeping this feature adds
in complexity without bringing further understanding to the question.

A more important limitation comes from the hidden assumption that the
gel density is constant throughout the gel and that all de-polymerisation is
located at its external surface. In fact it is known that the gel density
decreases exponentially in a Listeria comet, over length scales comparable
to the comet total length, i.e. several tens of microns [13]. One could be
tempted to argue that this length scale is much larger than the one we
discuss here and forget about this slow bulk de-polymerisation. It would,
however, be a wrong argument, since the de-polymerisation mechanism is
certainly stress dependent. In fact, the dynamical equation for the gel
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density ρ should read:

∂ρ

∂t
+ �ν · �∇ρ = S − kdρ.

Where, �ν is the gel velocity relative to the bead or the bacterium, S is
the gel density source localised at or close to the surface, and kd is the
de-polymerisation probability per monomer connected to the gel, per unit
time. In general, one expects stress dependence similar to the one already
described, that is kd = k0

d exp(σtφ
2a3

kT ), in which φ2 = ρ−1a−1 is the average
area spanned by a filament, and a3 a model dependent length. Far from
the surface, in an essentially unstressed comet tail, one does obtain an
exponential decrease of the density over a length L = ν

k0
d
. Knowing ν

and the comet length, one deduces k0
d easily. The physical mechanism,

behind this de-polymerisation is not obvious: it could be that actin filaments
can spontaneously break anywhere, or that reticulation points stabilise the
structure and provide the rate limiting step in the de-polymerisation, or that
there is a one to one mapping of the pointed end density on the connected
monomer density. In all cases a constant average number of monomers
should leave the gel for each event. Note that a de-polymerisation from
the pointed ends of the filaments cannot in general be represented by such
a mathematical structure. For instance if the filaments were parallel on
average, all starting from the surface at the barbed end, and with a length
distribution, the term would read −kp

− �ap · �∇ρ, in which �p is the unit vector
in the filaments direction. Indeed, under such circumstances a�p · �∇ρ is a
measure of the printed and density.

Because of the exponential dependence of the de-polymerisation coef-
ficient on stress, the length over which the density significantly decreases,
may become very short in the presence of such a stress and this mechanism
could provide an alternative interpretation of the steady state in spherical
symmetry. Under such circumstances, the density decrease occurs essen-
tially over a length such that σt = kT

φ2a3
, or with the scaling laws derived

in spherical geometry e ∼= kTρ
Ba3

r. The sharpness of the density decrease is
controlled by the ρ dependence of B. In all reasonable cases, it is quite
pronounced. For instance, if B is proportional to ρ, which is the case when-
ever the cross-link angular elasticity determines the elastic modulus, then
ρ = ρ0 exp( r0

αL (1−exp(α(r−r0)
r0

))). In this equation, r0, ρ0 denote the radius
and density at the bead surface, and α a dimensionless number of order ten.
There is a sharp cut off, for r − r0 ∼= r0

α . Further considering that below a
threshold density, the gel integrity is totally lost, it is clear that any thick-
ness measurement will give a value very close to r0

α , essentially equivalent to
the one derived in Section 4. The drawback of this type of presentation is
the added complexity. Its merit is the connection of the comet slow density
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decrease with the fast one under stress. The same type of result holds for
other ρ dependences of B, such as the one used in Section 2.

An observation, which is not accounted for by the present analysis, is
the strong density increase of the comet in the saltatory mutant. Simu-
lations, taking into account the detailed chemistry of the polymerisation
process, but ignoring the role of the polymerisation enzyme, show a strong
density dependence on external stress [16]. A simple phenomenological way
of taking this effect into account consists in writing the gel density source s:

S = νρ− exp
(
ls
ντ

)
δs.

In which δs is the delta function at the surface. ρ− = 1
l2a , is determined by

the enzyme density, the exponential factor expresses the exponential growth
due to Arp 2/3, ls the length over which the branching phenomenon can
occur and τ a typical capping time. The gel density ρ+, just outside the
proximal domain, reads: ρ+ = ρ− exp( ls

ντ ). The expression of the growth
velocity ν is model dependent. If one assumes that a fraction of order unity
of all filaments contributes to the stress, then the natural generalisation of

the polymerisation law under stress reads: ν = ν0
p exp(−σnρ−1

+ a0

kTa ). Solving
for this set of equations reproduces fairly well the results of the simulation.
Indeed, in the large force, slow velocity limit, one finds: ν ∼= ls

τLn( σn
kT ρ− ) ,

and ρ = σn

kTLn(
ν0
p

ν )
, in which we have assumed a0

∼= a for simplicity. In this

regime, the velocity is essentially independent of stress and determined by
the branching and capping processes. Conversely, the density is practically
proportional to the stress. Both features show up clearly in the simulation.
For “large” velocities a more conventional regime in which ρ+

∼= ρ−, and
ν ∼= ν0

p exp(− σn
kTρ−

), may exist. Such a formulation should be exploited
further.

5 Conclusion

In these lectures we have shown that if one wants to understand the physics
of the propulsion mechanism of the bacterium Listeria, one must analyse
the mesoscopic stress distribution in the actin gel, and the solid on solid
friction that the gel exerts on the bacterium surface. Keeping in mind,
only the polymerisation process misses so to speak half of the problem. In
particular, recognizing the importance of the non-linear friction allows us to
understand the saltatory mutant as being a system working in a “stick-slip”
regime familiar in solid friction. In general the system gets into the saltatory
regime at a well defined threshold called a Hopf bifurcation. In its vicinity
measurable quantities such as the velocity and comet density modulations
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are sinuöıdal functions (of time and space respectively). Away from the
bifurcation variations are more abrupt like in Figure 2. It is important to
understand that the role of mutation is simply to drive the system in a
region of phase space where the behaviour is saltatory, but that many other
external perturbations could have the same result without changing the
genome. This point is well illustrated in bio-mimetic experiments, where a
simple bead diameter change drives the behaviour from regular to saltatory.
This example shows that the relation between genotype and phenotype will
not be easy to unravel. One will need to fully understand all the complex
dynamical diagrams governing biological systems, before being able to fully
exploit the formidable genetic data that we are getting now.

It is important to stress that the mesoscopic approach is not antagonistic
to microscopic ones, but rather complementary. Microscopic theories can
be used as input for writing boundary conditions in mesoscopic theories.
They should not only focus on the polymerisation process, but on friction
and de-polymerisation as well. An other message is that, even if the Listeria
propulsion mechanism can be, in some way, representative of the biochem-
istry involved in more complex Eukaryotic cells, the physics of it will be
very different for two simple reasons. Indeed, the stress distribution will
be very different because the gel is now produced in the inside of an object
topologically spherical, and second because the tangential friction is very
different since on a fluid membrane. Yet, what we learn here will be very
useful for understanding cell motility. At last, what I find most reward-
ing, is the potential importance of the bio-mimetic approach for medical
applications [32, 33].

The ideas developed here result from many discussions with F. Jülicher, K. Sekimoto and
C. Sykes. It is a pleasure for me to express my warm thanks. I further thank C. Sykes
for her help with the reference list. I am also grateful to M.F. Carlier and D. Pantaloni
for introducing me to the biochemistry of actin polymerisation.
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PHYSICS OF COMPOSITE CELL MEMBRANE
AND ACTIN BASED CYTOSKELETON

E. Sackmann, A.R. Bausch and L. Vonna

1 Architecture of composite cell membranes

The composite cell envelope is an impressive example of nature’s strategy to
design complex materials and machineries with unique and stunning phys-
ical properties by self-assembly of hierarchical structures. The most simple
prototype of a composite cell membrane is the envelope (often called plasma
membrane) of red blood cells.

As illustrated in Figure 1 of the chapter on adhesion it is composed of
the central lipid/protein bilayer, the glycocalix exposed to the extracellular
space and a thin macromolecular network (the cytoskeleton) coupled to the
cytoplasmic leaflet.

1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic

like architecture

The lipid/protein bilayer forms an electrically insulating barrier. It is a mul-
ticomponent two-dimensional smectic liquid crystal composed of roughly
100 different types of pin-like lipid molecules including the amphiphilic
steroid cholesteroid and proteins such as ion channels, cell surface recep-
tors or hormone amplifiers. The driving force for the self-assembly is the
hydrophobic effect which it is determined by the entropy gain of the wa-
ter molecules surrounding the lipid. The hydrophobic binding energy of
a lipid molecule is roughly proportional to the surface of the hydrocarbon
chains. Therefore nature used two-chain lipids (instead of single chain sur-
factants) the solubility of which is extremely small in water (<10−12 M, cf.
Sackmann 1995). Similarly, integral proteins are anchored in the bilayer by
their hydrophobic domains: mostly α-helical segments, the length of which
is adopted to the thickness of the hydrophobic center of the bilayer. The
matching of the thickness of the bilayer and the hydrophobic domains of
the proteins may provide a key driving force for lateral reorganization of

c© EDP Sciences, Springer-Verlag 2002
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the lipids (cf. Sackmann 1994, for hydrophobic matching concept). The
cell surface receptors are typically embedded in the bilayer with only one
α-helical segment, while the bulk of the protein is pointing into the extra-
cellular/intracellular space (cf. article on adhesion, Ch. X)1. In contrast,
ion channels are formed by arrangements of several α-helical segments (e.g.
thirteen in the case of the anion channel band3, cf. Fig. 1).

Despite of the complex composition, small changes in the lipid compo-
sition (e.g. of the fraction of charged lipids or cholesterol) may have severe
consequences for the viability of the cells. It appears that similar to the
ensemble of genes (the genom) and proteins (the proteom) each individuum
has a well preserved lipid composition (which we could call lipidom).

A large fraction of the biochemical reactions in cells occur at membranes.
Prominent examples are (1) the lipid and protein biosynthesis at the ribo-
somes adsorbed to the endoplasmatic reticulum membrane, (2) the charge
separation in photosynthetic membranes, the electron transfer in mitochon-
drial membranes mediated by a chain of proteins acting alternatingly as
electron acceptor and donor or (3) the hormone amplifiers (cf. Fig. 13).

To allow for a fast material transport the lipid bilayer is on the average
in a fluid state. The two-dimensionality of the bilayer has important con-
sequences for the efficiency of diffusion controlled chemical reactions. The
lateral diffusivity depends only logarithmically on the radius of the diffus-
ing particle. Consequently, large integral proteins may diffuse nearly as
fast as lipid molecules unless they are coupled to the cytoskeleton. On the
other side it becomes more and more evident that the membrane exhibits
a mosaic like structure due to local lateral phase separations of the lipids
(cf. Sackmann 1994). This leads to the (often transient) formation of do-
mains of specific composition such as so-called rafts or small invaginations
(buds) called caveoli. These domains appear to contain a high content of
cholesterol and sphingomyelins besides proteins2.

The glycocalix can be considered as a monofilm of macromolecules which

1In the following we will denote the lipid protein bilayer of the cell envelope by “plasma
membrane” and the complete outer shell of cells as “composite membrane” or “cell enve-
lope”, which is composed of the cytoskeleton, the plasma membrane and the glycocalix.

2Most natural lipids exhibit hydrocarbon chains with several C-C double bonds and
form a randomly mixed fluid phase at physoilogical temperature (cf. Sackmann 1995).
In contrast bilayers of natural sphingomyelins exhibit fluid-solid coexistence up to 60 ◦C
(cf. Döbereiner et al. 1993) and it is thus likely that they form gel-like domains in
natural membranes, in particular since the outer monolayer of the plasma membrane
contains 20% of this lipid. Similarly, the cholesterol content of plasma membranes is
about 50 mole % and accordingly to model membrane studies it is expected to form
precipitates above 40 mole % (cf. Baeyrl & Sackmann 1992). Besides lateral phase
separation, domains of specific composition form in fluid membranes by budding which
can be induced by adsorption of a protein coat. Thus caveoli are stabilized by the coat
protein cavolein.
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Fig. 1. Composite shell of the red blood cell as most simple prototype of a compos-

ite cell membrane. The quasi two-dimensional meshwork is composed of spectrin

tetramers and actin oligomers. Spectrin is a highly flexible filament of ∼100 nm

contour length composed of two interwinded chains. It associates by tail-tail in-

teractions and the tetrameres form the sides of the triangles. The corners consist

of actin oligomers (length ∼35 nm) which couple to a specific actin binding site

at the free end of spectrin (which shares in fact common features with α-actinin,

cf. Fig. 10). The length of the sides of the triangles is about 80 nm and therefore

the spectrin dimers exhibit ellipsoidal rather than rod-like shapes. The network

is locally coupled to the bilayer in two ways: the actin oligomer is linked to the

band 3 protein (serving simultaneously as anion channel) through a linker called

ankyrin; the center of the sides are coupled to the cytoplasmic domain of the

glycoprotein glycophorin through the coupling protein band IV.1, which belongs

to the family of Ezrin proteins (Bretscher 1999; cf. also Sackmann 1995).
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is formed mainly by the giant head groups of cell surface receptors (cf.
article by Bruinsma and Sackmann on Cell Adhesion). It has a typical
thickness of 40 to 50 nm, but by the binding of giant macromolecules of
the extracellular matrix such as collagen, fibronectin or hyaluronic acid (a
giant polysaccharide) to their respective receptors it can be much thicker.
The main task of the glycocalix is the communication with the environment
but it is assumed to serve also as protective film by repelling bacteria and
parasites. Most helpful in this context is the high negative charge which is
mostly due to sialic acid-rich oligosaccharides.

1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer

How can a fluid leaflet which is thousand times thinner than paper form
stable shells of 10 µm dimension. Although the cohesion between lipid
molecules due to the hydrophobic effect is very strong, the red cell enve-
lope would decay into small vesicle if it was not stabilized by the mem-
brane associated fishernet-like meshwork. It is essentially composed of
spectrin (a flexible filamentous protein) and rod-like oligomers of actin and
these components assemble into a roughly triangular network as shown in
Figure 1. The network is coupled to the membrane through association of
the linker protein ankyrin and band IV.1 with membrane proteins. The cou-
pling strength is, however, most likely regulated in a dynamic way by phos-
phorylation and dephosphorylation of the coupling proteins which requires
ATP (cf. Bennet 1990). It is supposed that for this reason ATP-depletion
leads to stiffening of the membrane.

The human body contains about 2.5×1012 copies of erythrocyte and the
production rate of these cells is about 2.5×106 per second. They are formed
by detachment from giant mother cells (megacytes) and contain initially a
nucleus together with other cellular compartments. This excess material
is expelled by exocytosis resulting in the well defined biconcave sack filled
with mainly hemoglobin (cf. Sackmann 1995).

The inventiveness of nature becomes really evident if we consider the
elastic properties of the shell. Despite of their complex composition, ery-
throcytes are perfect elastic shells as becomes evident if we deform cells
in high frequency electric field (cf. Engelhardt & Sackmann 1988). The
cell can be stretched by a factor of two and relaxes to its original shape
within a period of a second. The elastic deformation can be well described
by the three classical modes of deformation: isotropic extension, shearing
and bending characterized by the corresponding elastic moduli. Various
methods have been developed to measure the elastic moduli (cf. Evans &
Needham 1986; Engelhardt & Sackmann 1988). The values are compared
in Figure 2 with the moduli of a hypothetical plastic shell of the same size
and shape made of plastic material (e.g. polyethylene). It is seen that the
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Fig. 2. a) Top: representation of the three classical modes of deformation of

an elastic shell. Bottom: comparison of elastic moduli of erythrocyte membrane

(RBC) with corresponding parameters of a hypothetical shell of the same shape

and size made of technical material (e.g. polyethylene). Note the enormous

softness of RBC with respect to shearing and bending. b) Typical values of

bending moduli of membranes presented in terms of thermal energy. Note that

cholesterol stiffens while small surfactants soften the membrane. The different

κ-values for erythrocytes correspond to different measuring techniques.

biological shell is orders of magnitude softer than the technical one with
respect to shearing and bending but is as resistant as soft metal towards
area changes. This combination of elastic properties is absolutely essential
for the survival of the shell during its 400 km long travel through the blood
vessel system consisting to a large part of very narrow capillaries. The soft-
ness with respect to bending and shearing prevents elastic instabilities due
to buckling (cf. Evans 1972) while the lateral incompressibility is important
to minimize the loss of ions. This minimizes the ATP-consumption required
to maintain the osmotic equilibrium (cf. Sackmann 1995). A most spec-
tacular feature of the red cell membrane and giant non-spherical vesicles
is the dynamic surface roughness caused by the pronounced thermally ex-
cite bending undulations (cf. Brochard & Lennon 1975; Strey et al. 1995).
This so-called membrane flickering has important consequences for the elas-
tic properties of membranes. It gives rise to an entropic lateral membrane
tension associated with the entropic free energy required to stretch out the
dynamic wrinkles (cf. Evans & Rawicz 1990). The most important conse-
quence is the generation of entropy-determined repulsive undulation forces
which play a key role for the swelling of multilamellar stacks of membranes
in water (cf. Helfrich & Harich 1984). It impedes the adhesion of the
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erythrocytes for instance to tissue surfaces or white blood cells and may
thus help to prolong the life time of the cells in the body.

The thermal excitation of erythrocytes or vesicles can be described
in terms of a superposition of overdamped spherical harmonic modes
(cf. Brochard & Lennon 1975; Millner & Safran 1987). If one considers
only a small area L2 (with L small compared to the radius of the shell)
the membrane excitations may be represented by planar modes and the
dynamic deflection of the membrane at position �r is

u (r, t) =
∑
q

uq (t) exp {i�q · �r} (1.1)

(where �r is the position and �q the wavevector in the plane of the mem-
brane) The amplitudes uq can be related to the bending modulus and the
membrane tension σ by the equipartition theorem as

L2
〈
u2

q

〉
=

kBT

κq4 + σq2
· (1.2)

By measuring the mean square amplitudes
〈
u2

q

〉
as a function of the wave

vector q the elastic modulus and the membrane tension can be measured
with high precision for free (cf. Brochard & Leuno 1990; Duwe & Sackmann
1990) and adhering vesicles (cf. Rädler et al. 1995). The bending energies
presented in the diagram of Figure 2b have been determined in this way.
The most intriguing result of such measurements is the surprisingly low κ
value (cf. Fig. 2b) found for the erythrocyte membrane. Since the mem-
brane contains 50 mole % of cholesterol one would expect a ten fold higher
value of κc. This is even more surprising since the cell membrane exhibits
also a shear elasticity µ due to the membrane-cytoskeleton coupling. The
mean square amplitude is expected to be reduced (according to Monte Carlo
calculations by Lipowsky & Girardet 1990) to

L2
〈
u2

q

〉 ≈ kBT

2c(kBT · µ)1/2q3 + κq4 + γq2
(1.3)

where c is a numerical constant c ≈ 1.3. With the value of µ = 5×10−5 J/m2

(cf. Fig. 2) the undulations should be suppressed at wavelengths larger
than 0.5 µm.

One likely and interesting explanation is that the membrane undulations
are mainly excited by fluctuating chemical forces. Such excitations could
for instance be caused by the dynamic phosphorylation and dephosphory-
lation of the proteins (ankyrin, band IV.1) mediating the coupling of the
cytoskeleton to the bilayer membrane proteins. They appear to be related
to the activity of Mg-ATP-ases (cf. Tuvia et al. 1999). The local decoupling
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of spectrin-membrane binding sites is also supposed to play a role for the
great softness of red cell membranes.

In normal cells the flickering is suppressed since the bilayer membrane
is coupled to the stiff actin cortex. It has, however, been postulated that
membrane undulations could control the kinetics of the formation of pseu-
dopods (of Dictyostelia Discoideum, cf. Oster 1988). The idea is that free
volume is created by flickering at the front of the cells mediated by local
decoupling of the bilayer from the actin cortex and that this process medi-
ates unidirectional growth of the cortex (cf. Oster) in a Brownian ratchet
process.

1.3 The actin cortex: Architecture and function

The envelope of nucleated eukaryotic cells is a much more complex multi
purpose machinery than the erythrocyte membrane. The inner wall of the
outer membrane is stabilized by a roughly 0.5 µm thick crosslinked actin
network (called actin cortex) which forms part of the chemomechanical
machinery mediating the locomotion of cells (cf. Fig. 4 for the case of
Dictyostelia Discoideumcells). The adaptive mechanical properties of the
composite shell are outstanding and enable cells to undergo a stunning man-
ifold of shape changes and mechanical processes.

As an example we consider the function of the endothelial cells which line
the inner wall of blood vessels (Fig. 3). The closed cell monolayer forms a
selective filter between blood and tissue or between blood and brain (blood-
brain-barrier) and have to be permeable for white blood cells in a control-
lable way. Thus, lymphocytes have to patrol the body continuously for
foreign antigens by recirculating from blood through tissue into the lymph
and back to the blood (cf. Springer 1994). Granulocytes have to penetrate
into the tissue to destroy invaders causing inflammations. The selective
filter function of the endothelium is associated with two fundamental pro-
cesses: cell adhesion and cellular shape changes resulting in the formation
of gaps within endothelial cell monolayers.

Let us consider first cell adhesion which comes into play several times
(cf. also Chapter on Adhesion). First, the lateral connection between cells
is mediated by the mutual interaction of homophilic (self recognizing) re-
ceptors of the cadherin family. Secondly, the endothelial cells are grafted
to the basal membrane by binding of integrins (αiβi) to adhesion epitopes
of collagen IV (α2β1) or laminin (e.g. α6β1). Thirdly, the white blood
cells adhere transiently to the endothelial surfaces by binding of recep-
tors of the selectin family (selectin E) to oligosaccharide rich cell adhe-
sion molecules (so-called Gly-CAMs, cf. article on adhesion) of the white
blood cells surface where selectin recognizes the specific oligosaccharide
Sialyl Lewis X. The selectin receptors are enriched on the cell surface during
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Fig. 3. a) Top: schematic view of endothelial cell monolayer covering the inner

wall of blood vessels. Also shown are white blood cells (WBC) which roll along the

surface of the endothelium and a WBC penetrating the gap in the cell monolayer

formed by local contraction of the endothelium. Bottom: representation of three

scenarios of adhesion. Right: coupling of endothelial cell to the wall of a blood

vessel through binding of integrin to tissue proteins (collagen IV and laminin).

Middle: formation of tight cell-cell contact by homophilic receptor of cadherin

family. Left: weak coupling of WBC to endothelial cells by coupling of the en-

dothelial cell surface receptor selectin E and oligosugars of Lewis X-type which

are attached to oligosugar-rich molecules (CAMs; cf. article on adhesion). Note

that the inner surface of the blood vessel (the basal membrane) is composed of

a network of collagen (type IV) which is associated with other macromolecules

of the extracellular matrix such as laminin and percelan into a multifunctional

network (cf. Lodish et al. 1995). b) Left: Schematic view of radnom network

of actin in cortex of a resting cell. Right: Schematic view of bundle formation in

actin cortex induced by activation resulting in the centripetal contraction of en-

dothelial cells. Note that stress fibers are formed within seconds. Bottom: Freeze

fracture electron micrograph of random actin network (left); and the bundled

network structure.

inflammation. Close to the site of infection the white blood cell WBC (gran-
ulocyte) adheres strongly to the endothelial cell by switching on the inter-
actions between integrins (αLβi) on the WBC with cell surface proteins
(E CAMs) on the endothelial cells. This adhesion process is enforced by
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Fig. 4. a) Distribution of actin in cortex of Dictyostelia cell visualized by mi-

crofluorescence. b) Distribution of myosin in Dictyostelia cells. Scale bar on both

images is 20 µm.

chemoattractant molecules formed close to the site of infection which bind
to specific receptors on the WBC membrane and induce the accumulation
of integrins (αMβ2) on the WBC-cell surface. This accumulation occurs
by fusion of intracellular vesicles enriched in the integrins with the plasma
membrane or by de novo synthesis of integrins (cf. Springer 1994). This
shows, firstly, that adhesion is a dynamic process involving genetic expres-
sion processes and secondly, that the composite cell membrane is an open
system. It is interesting to note that the receptor for the chemoattractant
resembles hormone receptors. It spans the membrane with seven hydropho-
bic α-helices and exhibits a loop which activates Gαβγ-proteins (cf. Ch. 3.2)
after binding of chemoattractants.

The second basic process, the formation of gaps within the endothelium
cell monolayer, is associated with a dramatic change of the structure of the
actin cortex. The most dramatic and immediate effect occurring within a
few seconds after stimulation is the formation of actin bundles (stress fibers)
within the actin cortex. Similar actin bundle formation is also observed dur-
ing the stimulation of blood platelets (thrombocytes) where it leads to the
formation of tentacle-like membrane protrusions (so-called filipodia) which
are filled by actin fibers. Before we discuss this process in detail we de-
scribe in the following the tricks by which nature controls the architecture
of the actin cortex and show how rapid structural changes may be controlled
through phase transitions within heterogeneous gels.

Actin is the most abundant protein in many eucaryotic cells; e.g. blood
platelets contain about 0.5 mM or 22 mg/ml of actin. Only about 50% of
this actin is polymerized forming filaments with lengths varying from a frac-
tion of a µm to a few µm. The filaments are most likely partially crosslinked
(cf. Podolski & Steck 1990). Under many conditions (e.g. endothelial
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cells in the resting state or Dictyostelia cells in the vegetative h0-state; cf.
Jungbluth et al. 1994) the crosslinked actin network forms a thin shell of
about 0.2−0.3 µm thickness (cf. Figs. 3b, 4) which is locally anchored to
membrane proteins of the bilayer membrane in a still mostly unknown way.
In thrombocytes for instance the inner membrane leaflet is supposed to be
coupled to a spectrin-actin network similar to erythrocytes (cf. Hartwick
1991). In other cases (such as for instance Dictyostelia cells) the membrane
coupling of actin is accomplished by various families of coupling proteins to
cytoplasmatic domains of cell membrane receptors. Examples are

• Talin, α-actinin and vinculin mediating the binding of actin filaments
to the inner domain of integrins (β chain); often these actin binding
proteins form part of the focal adhesion complexes (cf. Fig. 2 in
chapter “Adhesion”);

• Cadenin coupling actin to inner domains of cadherins; a connection
which is particularly important for the lateral stabilization of endothe-
lial cell layers;

• The family of ezrins such as the band IV anchoring protein of red
blood cells which couple actin filaments tangentially to membranes
(cf. Fig. 2 in chapter “Adhesion”);

• Dystrophin, a spectrin-like molecule coupling actin to a glycoprotein
complexes of muscle cells and the lack of which causes a severe form
of muscle dystrophy.

In most cases the outer domains of the membrane receptors couple to macro-
molecules of the extracellular matrix, thus providing a pathway of signal
transmission between the tissue and the cytoplasm of cells. It should be
noted that in vitro experiments show that many actin-membrane coupling
proteins can mediate direct binding of actin to lipid bilayers in particular
in presence of charged lipids. This holds for talin, vinculin and also for the
actin crosslinker filamin (cf. Tempel et al. 1994). Finally, actin membrane
coupling may also be mediated by motor proteins such as myosin I and
myosin V. For this purpose, these proteins exhibit membrane binding do-
mains which bind strongly to lipid bilayers in the presence of charged lipids
such as phosphatidylserine. Interestingly, the inner leaflet of the plasma
membrane and the inner leaflet of intracellular compartments contain about
20% of such acidic lipids and the electrostatic actin-membrane coupling may
thus play an important role even under physiological conditions.
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2 Physics of the actin based cytoskeleton

2.1 Actin is a living semiflexible polymer

As illustrated in Figure 5 actin is a living polymer forming double stranded
filaments of several 10 µm length which coexist with monomers at a concen-
tration of about 0.1 µM. In appropriate buffer (containing Ca++ or Mg++

and ATP) a random network is formed. The average distance between the
filaments (the mesh size ξ) decays with monomer (G-actin) concentration
according to ξ ∼ c

−1/2
A . The actin filaments are typically about 20 µm

long and the contour length L is thus large compared to the mesh size. The
length of the filaments can be adapted by so called capping molecules which
bind to the fast growing end (cf. Ch. 3.1).

Actin is a semiflexible macromolecule. This is demonstrated by pro-
nounced conformational fluctuations which can be directly observed by mi-
croscopic observation of fluorescence labelled filaments which are for in-
stance embedded in a network of non-labelled filaments. Another technique
for the direct visualization of single filament dynamics will be described
below (Fig. 9). The flexibility of the filaments is characterized by the per-
sistence length Lp. It is defined as the contour length, s, over which the
local orientations (characterized by the tangent vector �t) are correlated (cf.
Käs et al. 1996). The correlation of the orientation of the local tangent to
the contour position s = 0 and s′ decays exponentially (cf. Doi & Edwards
Sect. 8.8)

〈
�t(0)�t(s)

〉
= exp

(
− s

Lp

)
· (2.1)

Since the manifold of conformations is a consequence of thermally excited
bending fluctuations the persistence length can be related to the filament
bending elastic modulus, B, by

B = kBT · Lp (2.2)

B is defined through the bending energy function

∆Gela =
1
2
B

∫ (
∂2u

∂s2

)2

ds (2.3)

where u is the deflection of the filament at the contour position s and
∂2u/∂s2 is the local curvature. The bending modulus can be measured
most directly by Fourier analysis of the bending fluctuations of fluorescent
labelled filaments (cf. Käs et al. 1996) similar to the procedure for the
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Fig. 5. a) Schematic view of actin as living macromolecule. The filaments are

double stranded and exist in a dynamic equilibrium with monomers. They exhibit

a fast growing end (also called barbed or plus end) where the rate of monomer as-

sociation is ten fold higher than the dissociation rate (kon/koff ∼ 10) while at the

opposite end (pointed or minus end) the rate of monomer dissociation is higher

(kon/koff ∼ 0.3). b) At stationary equilibrium the growth rate at the barbed end

equals the dissociation rate at the pointed end (a situation which is called tread-

milling), resulting in a random network of filaments coexisting with monomeric

actin (G-actin, where “G” stands for “globular”). There exists a threshold concen-

tration for polymerization which is of the order of 0.1 µM. c) Electron micrograph

(negative staining) of network of F-actin (of meshsize ∼1 µm). In addition the

crosslinker filamin has been added at a molar ratio actin to filamin of 100:1 which

leads to the formation of bundles in the network (cf. Sect. 3.1).

measurement of the membrane bending modulus. The momentary deflec-
tion is

u (s, t) =
∑
q

uq (t) exp {iqs} · (2.4)

The total bending energy of a filament of length L is ∆Gela = 1
2BL

∑
q q

4u2
q
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and the equipartition theorem (stating that the average energy per mode is
1
2kBT ) provides a relationship between uq and B:

Lu2
q =

kBT

Bq4
· (2.5)

Measurements of uq as function of the wavelength of the mode Λ = π/q allow
to measure B rather precisely (cf. Käs et al. 1996). The bending stiffness
of an actin filament is B ≈ 6 × 10−26 J·m and thus the persistence length
Lp ∼ 15 µm. The persistence length can be modified by a factor of two
through binding of actin regulation proteins such as tropomyosin (cf. Götter
et al. 1996). An interesting (still unsolved) question is wether filaments may
also be rendered more flexible by local defects (cf. Piekenbrock & Sackmann
1992). In this context it is interesting to note that the parallel coupling
of the single strands is weak and that filaments unwind locally resulting
in pronounced local fluctuations of the torsional angle (cf. Bremer et al.
1991). Such fluctuations are expected to cause restricted torsional motions
of the filaments.

Further evidence for the role of defects is provided by the finding that
binding of the sequestering molecule cofilin to actin filaments results in a
shortening of the twist of the actin filament by 75%. The effect is mediated
by the cooperative binding of cofilin between the two strands of a filament.
Local binding of cofilins is expected to change the torsional angle of the
filament.

An important quantity characterizing the flexibility of semiflexible fil-
aments is the mean square amplitude of the fluctuations

〈
u2

〉
, also called

roughness. Integration over all modes defined in equation (2.5) yields the
following scaling relation between the roughness and the filament length

〈
u2

〉
=
kBT

B
L3. (2.6)

The roughness has important consequences for the behaviour of filaments
in networks where the excitation of the conformational degrees of freedom
is impeded. Following the strategy of classical polymer physics (cf. Doi &
Edwards 1986) the constraints imposed on a single (e.g. fluorescence la-
belled) test chain by the surrounding network can be accounted for by as-
suming that the filament is surrounded by a tube of constant diameter ξ
which is about equal to the mesh size. As illustrated in Figure 6 the fil-
ament exhibits restricted wiggling motions within the tube. It is obvious
that the confinement by the tube truncates the long wavelength excitations.
According to equation (2.6) the longest wavelength unaffected is of the order

Λe ≈ (Lp · ξ2)1/3. (2.7)
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Fig. 6. Restricted local motion of single test filament embedded in macromolecu-

lar network. The constraints imposed by the network are accounted for by a tube

of constant diameter. The network thus forms an effective medium for the test

filament determining
�
u2

�
. Note that due to the constraint a maximum bending

excitation wavelength Λe can be defined which characterizes the bending mode

with the smallest wave vector not affected by the wall of the tube.

This follows by noting that
〈
u2

〉 ≈ (ξ2) and equation (2.2) and defines a
new contour length scale: Le ≈ Λe, called “deflection length” or (Odijk)
“entanglement length” which determines the crossover between two types
of behaviour of the filaments (cf. Odijk 1983). Over contour lengths L < Le

the bending fluctuations are determined by the filament bending energy (as
free filaments) while for L > Le (or wave vectors q � L−1

e ) the bending
fluctuations are determined by the fluctuating forces generated by the tube
walls. The entanglement length plays a crucial role for the frequency de-
pendence of the viscoelastic impedance of actin networks (cf. Isambert &
Maggs 1996; Hinner et al. 1998; Morse 1998).

A special but important feature of semiflexible filaments is that (in con-
trast to flexible filaments) their elastic behaviour depends on the length, L,
of the filament (or of a chain segment considered).

If L� Lp the chain behaves as an entropic spring. However, the tension
associated with stretching of the filament is not an universal quantity as for
flexible polymers but depends sensitively on the bending stiffness. The
tension τ associated with an extension δL (in the direction parallel to the
long filament axis) is

τ ∼ B2

kBTL4
δL (2.8)

and thus depends strongly on the bending stiffness and the filament length.
This relationship follows from the following consideration. The elastic en-
ergy of a filament under tension is (similar to the situation of membranes
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forming semiflexible shells)

∆Gela =
1
2

∫ {
B

(
∂2u

∂s2

)2

+ τ

(
∂u

∂s

)2
}

ds. (2.9)

Similar to (1.2), the mean square amplitude of the thermally excited mode
of wavelength q is

L
〈
u2

q

〉
=

kBT

Bq4 + τq2
· (2.10)

(Note that τ has dimension [τ ] = N).
We consider now the change in length δL = (L − L◦) and remember

that we can express it as L − L◦ � 1/2
∫
(∇u)2 ds. The total mean square

amplitude is obtained by replacing the sum over all modes 〈u〉 ∝ ∑
uq by

an integral L◦/(π)
∫
uq dq (with the limits π/L and π/a, where a is the

filament diameter and L◦ the contour length). It follows

δL ≈ L◦ kBT√
Bτ

arctan
(
L

π

√
τ

B

)
· (2.11)

For small tensions (which are relevant for the present lecture) one can ex-
pand δL in terms of τ/B and obtains equation (2.8). It is very important
to realize that the extension-versus-force relationship depends critically on
the orientation of the force with respect to the average filament axis (cf.
Kroy & Frey 1996).

For L ≤ Lp the deformation is no longer temperature dependent and the
deformation is highly anisotropic (cf. Frey and Wilhelm for a discussion of
the tangential elasticity in terms of the Euler model of rigid rods). For
forces perpendicular to the filament axis the deflection Umax is proportional
to B−1: Umax ∝ fL3/B (cf. Landau & Lifshitz, Sect. 20).

2.2 Actin network as viscoelastic body

A physical property of actin networks of uttermost importance is its vis-
coelasticity. It controls the dynamics of many cellular processes such as cell
locomotion, centripetal endothelial cell contractions (cf. Sect. 5) or cellu-
lar shape changes (e.g. under shear flow in blood vessel). From the point
of view of biological physics even more important is that measurements
of viscoelastic properties yield insights into the structural organization of
biomacromolecular networks or into the correlation between macroscopic
viscoelasticity and the conformational dynamics of single molecules as will
be discussed below. Microrheological techniques provide a powerful tool
to study the control of cellular processes by viscoelastic properties of the
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Fig. 7. a) The definition of viscoelastic behaviour of body subjected to sudden

shear strain by angle γ. b) Time dependence of elastic shear modulus, G(t),

of entangled actin network. Note the composition of G(t) of three regimes: an

initial relaxation regime at 0 ≤ t ≤ τe, a plateau regime at τe < t < τd and

a terminal regime at t ≥ τd.

cell membrane and cytoskeleton through simultaneous systematic studies
of model systems and biomaterials (cf. Bausch et al. 2000; Palmer et al.
1999).

To introduce the concept of viscoelasticity we make the following
Gedankenexperiment (cf. Fig. 7). We confine an actin network between
two parallel plates and deflect the top plate tangentially by a distance ∆x
corresponding to a sudden shearing of the network by an angle Θc. Observ-
ing the effect of the shear onto a single test filament, we recognize that the
test filament within the networks would feel a time dependent stress. In
the case of small deformations the elastic response is linear and Hooks law
holds for this time dependent elastic stress

σ (t) = G (t)Θc (2.12)

G (t) is a time dependent elastic modulus called the relaxation modulus.
For entangled actin networks we find three time regimes. At short times
the networks behave as an elastic body but the elastic constant decreases
rapidly with time. After a relaxation time τe (typically ∼10−1 s), G (t)
remains nearly constant over a time regime τe ≤ t ≤ τd (called plateau
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regime). At long times t > τd (called the terminal regime) the entangled
network starts to flow like a liquid3.

Viscoelasticity is determined by two sets of viscoelastic param-
eters. There are two strategies to measure viscoelastic moduli: the creep
response experiment and the oscillatory experiment (cf. Doi & Edwards
1983; Tempel et al. 1996). In the first case a sudden strain (or stress pulse)
is applied and the stress (or strain) response is measured as a function of
time. The response is characterized by a time dependent frictional coef-
ficient ζ(t) (measured in terms of Pa·s) and an elastic modulus G(t) also
called relaxation modulus (or an elastic compliance J(t) also called response
compliance). G(t) and ζ(t) are interrelated through the response time τ

τ =
ζ(t)
G(t)

· (2.14)

In the creep experiments one of the moduli (G(t) or J(t)) and τ are mea-
sured. However, in general the relaxation behaviour is determined by a
whole spectrum of relaxation times. We will ignore this aspect in the present
review and refer the reader to the monograph by Ferry (1980) for a rigorous
discussion of this point.

In the oscillatory experiment an oscillatory stress (or strain) is applied
and the response is analyzed according to the classical method known from
the treatment of damped oscillators. The viscoelasticity is characterized by
a complex impedance according to

σ(ω) = G∗(ω) · γ(ω) (2.15)

with γ(ω) = γ◦ exp{iωt} and

G∗(ω) = G′(ω) + iG′′(ω). (2.16)

The real part, G′(ω), (called the “storage modulus”) determines the re-
sponse in phase with the excitation and is the frequency dependent shear
elastic modulus. The imaginary part G′′(ω) represents the out of phase
component and is called “loss modulus” since it characterizes the energy
dissipation during one cycle (cf. Eq. (2.19)). G′′(ω) is related to the shear

3For more general time dependent shear strains one has to consider that the momen-
taneous stress depends on the pre-history of deformation and equation (2.12) has to be
replaced by

σ (t) =

�
G
�
t − t′� dα (t′)

dt′ dt′ (2.13)

where dα/dt is the shear rate.
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viscosity by

G′′(ω) = ω · η(ω). (2.17)

Various methods for the high precision measurements of G∗(ω) of soft actin
networks are available. These include (i) torsional rheometry enabling mea-
surements of the elastic impedance of macroscopic networks (cf. Müller
et al.; Janmey 1995), (ii) magnetic bead microrheometry (cf. Ziemann
et al. 1994; Amblard et al. 1996) shown in Figure 8 and (iii) a force free
technique suitable for soft materials is based on the Fourier analysis of the
random motion of colloidal probes embedded in the networks (cf. Crocker
et al. 2000).

As mentionend, the moduli have a simple physical meaning: G′ is a
measure for the energy stored during one cycle of the deformation which is

Wstored =
1
4
G′(ω)γ2

0 (2.18)

for a half cycle of the oscillatory excitation. G′′ is a measure for the energy
dissipated during a half cycle

Wdissip = πG′′(ω)γ2
0 . (2.19)

It is often helpful to measure the phase shift between both response functions
which is defined as

tanφ =
G′′(ω)
G′(ω)

∝ Wdissip

Wstored
· (2.20)

An impedance spectrum of the entangled network is shown in Figure 8. As
expected G′(ω) is the mirror image of the relaxation modulus G(t) exhibit-
ing again the three characteristic regimes. It is noteworthy that G′′ has a
minimum in the plateau regime of G′(ω) which can be used to define the
center of the plateau.

It is also important and helpful to realize that the loss modulus G′′(ω)
exhibits maxima in the frequency regimes associated with relaxation pro-
cesses. Examples are the stress relaxation by selfdiffusion of the chains
within the confinement tube leading to the low frequency band of G′′(ω) or
the relaxation of the filament bending modes leading to the sharp rise of
G′′(ω) at ω > 1 rad/s in Figure 8c.

The viscoelasticity of the network is characterized by two elastic moduli
corresponding to the two frequency regimes. The major parameter char-
acterizing the elasticity at low frequencies (∼10−1 − 1 Hz) is the value of
G′(ω) in the plateau regime II (also called rubber plateau regime since
it is also a characteristic feature of the viscoelastic behaviour of rubber).
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Fig. 8. a) Magnetic bead microrheometry: a powerful tool to study local vis-

coelastic parameters of soft macromolecular networks. Magnetic beads (called

magnetic tweezers) are embedded in the network a) and the bead deflection in-

duced by an oscillatory magnetic field or a force pulse is analyzed by fast image

processing. By analyzing the bead deflection with ultramicroscopy deflection am-

plitudes of 5 nm may be observed and the time resolution is 10−2 s. Forces from

femto-Newton to nano-Newton may be applied. The maximum stress achieved

with iron oxide beads of 4 µm diameter is about 500 Pa. By embedding also

non-magnetic beads b) the strain field induced by local forces can be determined

simultaneously. c) Viscoelastic moduli G′(ω) and G′′(ω) for entangled actin net-

work of mesh size ξ ∼ 1 µm (cA = 300 µg/ml). Note that G′′(ω) is shifted in the

vertical direction by an order of magnitude to facilitate better distinction between

and that G′ and G′′ cross at ω ≈ 2 rad/s.

The plateau shear modulus G′◦ is related to the mesh size ξ and the chain
length through the following power law

G′◦ ∼ kBTL
−1/5
p ξ−14/5 ∼ kBTL

−1/5
p c

7/5
A (2.21)

where we made use of the relationship ξ ∝ c−1/2
A (cf. Hinner et al. 1998).

The high frequency regime (ν > 10 Hz) is determined by the tension of
the filaments. The theoretical prediction for this relaxation modulus in this
regime is (cf. Morse 2001; Gittes & MacKintosh 1998)

G′ (t) ∼ ρkBTL

Lp

{
ζL3

p

kBT
t

}3/4

(2.22)
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where ρ is the polymer density (number of filaments of length L per unit
area) and ζ is the frictional coefficient of the filament in the tube. A mea-
sure for the cross-over frequency between the two regimes is the reciprocal
relaxation time of the mode of wavelength Λe

τe ∼ ζΛ4
e

B
· (2.23)

The power laws have been verified experimentally (cf. Isambert & Maggs
1996; Hinner et al. 1998) for a large range of concentrations. This scaling
law is very helpful (i) to compare the data measured for different concentra-
tions, (ii) to check the purity of actin preparations with respect to crosslink-
ers or (iii) to estimate the elastic modulus of the actin cortex of cells if the
mesh size is known.

2.3 Correlation between macroscopic viscoelasticity and molecular motional

processes

The three regimes can be related to distinct molecular processes by studying
the conformational dynamics and diffusion of simple test filaments labelled
with fluorescent markers (cf. Käs et al. 1996; Amblard et al. 1996) or
colloidal probes (cf. Dichtl & Sackmann 1999; cf. also Fig. 9). In the latter
case, the local motion of the test filament is analyzed by measuring the
mean square displacements of the colloidal bead as a function of time in the
direction parallel

〈|U‖(t)− U‖(0)|2〉 and perpendicular
〈|U⊥(t)− U⊥(0)|2〉

to the long axis of the filament (which defines also the local axis of the
tube). By using confocal ultramicroscopy the position of the bead (in the
image plane) can be determined with an accuracy of ±5 nm.

The mean square displacements exhibit a short time regime t < 0.5 s
where the local segments move isotropically and exhibit a time dependence〈|U‖(t)− U‖(0)|2〉 =

〈|U⊥(t)− U⊥(0)|2〉 ∼ t0.75 (2.24)

and a long time behaviour where
〈|U⊥(t)− U⊥(0)|2〉 saturates

(
〈|U⊥(t)− U⊥(0)|2〉 = U2

⊥0) while the parallel component increases linearly
with time

〈|U‖(t)− U‖(0)|2〉 ∼ t. The short time motional behaviour for
both directions is determined by the local wiggling motion of a semiflexible
filament which is confined within a tube and therefore subjected to a line
tension (cf. Gittes & MacKintosh 1998; Amblard et al. 1996).

The different long time behaviour for the two directions yields the fol-
lowing important information:

1. From the distribution P
(
U2
⊥0

)
of the saturation values U⊥0 of the

transverse bead motion one can determine the local interaction po-
tential V⊥ (U⊥) characterizing the confinement of the filament by
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Fig. 9. a) Labelling of test filaments with colloidal beads and a magnetic force

probe (=tweezer) at one chain end. The bead can be transiently pulled through

the network by application of force pulses and by analyzing the bead deflection. If

the bead diameter is small compared to the mesh size this experiment corresponds

to microrheometry with linear force probes (cf. M. Dichtl 2001). b) Random walk

of colloidal probe which reflects local motion of filament. By decoupling into com-

ponent parallel and perpendicular to filament axis the mean square displacements

can be measured yielding the reptation (self-) diffusion coefficient and the lo-

cal potential of interaction between the filament and the surrounding network.

c) Time dependence of mean square displacement of colloidal bead coupled to

filament in direction parallel (MSD‖) and perpendicular (MSD⊥) to the tube

direction. Note that the MSD⊥ saturates after a time τs ∼ 0.5 s while MSD‖
increases linearly with time after τs. The slope yields the selfdiffusion coefficient

of the filaments along the tube direction (often called reptation). d) The effec-

tive interaction potential determined from the distribution of the perpendicular

motion P
�
U2

⊥0

�
.

the network. This is achieved by application of Boltzmann’s law:
V⊥ (U⊥) ∼ kBT lnP

(
U2
⊥0

)
(cf. Dichtl & Sackmann 1999). A remark-

able finding is that the width of the potential and thus the local tube
diameter varies by up to a factor of two along a single filament;

2. The longitudinal mean square displacement yields the selfdiffusion
coefficient (the reptation diffusivity D‖) of the chain along the tube
axis according to

D‖ ∝
〈|U‖(t)− U‖(0)|2〉

t
· (2.25)
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This reptation diffusion coefficient determines the terminal relaxation time
τd of the viscoelastic impedance spectra since τd is determined by the time
required by the filaments to escape the confinement tube by selfdiffusion.
For a chain of L ∼ 20 µm we determined D‖ ≈ 10−16 m2/s which corre-
sponds to a value of τd = 10−5 s, in good agreement with experimental
data (cf. Dichtl & Sackmann 1999). The previous microfluorescence analy-
sis yielded larger values of D‖ (D‖ ∼ 10−14 m2/s) (cf. Käs et al. 1996).

3 Heterogeneous actin gels in cells and biological function

3.1 Manipulation of actin gels

In order to manipulate the structural organization of actin networks for
the multiple functions of the composite biological membranes nature uses
manifold of actin regulating (or actin binding) proteins. These include:

• Severing proteins (examples: gelsolin, severin) which can cleave fil-
aments and bind to the fast growing end, thus controlling the fila-
ment length (which varies from 0.1 to 20 µm in Dictyostelia cells; cf.
Podolski & Steck 1990);

• Sequestering proteins (example: profilin) which bind actin mono-
mers and can thus control the concentration of polymerizable actin
monomers and thus the mesh size ξ;

• A manifold of crosslinking proteins which link actin filaments non-
covalently and which can induce the formation of randomly cross-
linked gels (α-actinin), tree-like branched gels or bundles;

• Actin membrane couplers (examples: vinculin, talin, ankyrin) which
can anchor actin filaments to various membrane proteins (cf. Fig. 1).

Another key feature of actin manipulation is that the function of the ma-
nipulating proteins in cells is regulated by second messenger molecules as
illustrated in Figure 10 for the severing protein gelsolin. This second mes-
senger is activated by Ca++ and mediates the formation of soft or sol-like
networks. The protein is inhibited by the phospholipid phosphatidylinositol-
diphosphate (PIP2) which thus promotes gel formation. Similarly, PIP2

inhibits the activity of the sequestering protein profilin and thus decreases
the mesh size while Ca++ is supposed to activate the sequestering proteins
thus diluting the network (cf. Janmey 1995).

Through the second messengers the structure of the actin cortex is con-
nected to the manifold of cell signalling processes. As will be shown below
(for the case of thrombin) this provides a powerful and versatile tool to re-
spond to external signals by structural reorganization. In this context it is
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Fig. 10. a) Summary of different classes of actin manipulating proteins enabling

the control (i) of the filament length through severing proteins; (ii) of the mesh size

through sequestering proteins controlling the fraction of polymerizable G-actin;

(iii) of the membrane coupling of the actin cortex and (iv) of the connectivity

of the actin filaments through various cross-linkers including myosins shown at

the bottom. Note that cross linkers can generate gels of distinct topology such as

random networks, tree-like branched networks and bundles. b) Control of activity

of actin manipulation proteins by second messengers, for example of the severing

protein gelsolin. The protein is activated by Ca++ which is thus a sol-former and

inhibited by binding of phosphatidyl-inositol-diphosphate (PIP2) which is thus a

gel-former (cf. Janmey 1995).

highly important to note that actin filaments bind messenger-RNA and can
influence its transport and translation (cf. G. Bassell & R.H. Singer 1997),
which may provide a link between actin structure and genetic expression.

A central property of the cellular cytoskeleton is its ability of rapid re-
organisation as demonstrated by the fast generation of actin bundles. One
important example is the formation of actin stress fibers during the activa-
tion of blood platelets. In this case actin bundling leads to the formation
of tentacle-like protrusions which mediates the rapid closing of wounds by
self-assembly of the spider-like cells over openings of blood vessels thus im-
peding bleeding. A second example is the formation of gaps in endothelial
cell monolayers by centripetal contraction discussed in Section 3.2.

How can such transition of actin networks be induced in the fraction of
seconds or faster? One intriguing possibility is through phase transitions
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Fig. 11. a) The state of crosslinked actin networks is controlled by two length

scales: the mesh size ξ and the average distance between the cross-linkers dcc. The

ratio ζ = ξ/dcc is an essential parameter characterizing the degree of cross-linking.

b) Variation of shear modulus G′(ζ) and loss modulus G′′(ζ) of actin-α-actinin

networks with fraction ρact of active crosslinkers. Note first, that according to

equation (3.2) ρact and thus ζ increases monotonically with decreasing tempera-

ture but that the absolute value of ρact can not be determined and the quantita-

tive relationship between ρact and ζ is not know. Note secondly, that the storage

modulus G′(ζ) increases abruptly by two orders of magnitude above a threshold-

temperature corresponding roughly to the value of ζg ≈ 1 (called the gel point).

The loss-modulus (or the loss angle tan φ = G′′(ζ)/G′(ζ)) diverges and exhibits a

maximum at the critical value ζg while G′(ζ) starts to increase sharply at ζ ≥ ζg.

This behaviour is typical for a percolation transition into a gel-like state.

within actin networks as described below for actin-α-actinin networks. It
is obvious that the state of cross linked actin networks is determined by
two length scales: the mesh size ξ and the average distance between the
crosslinkers dcc (cf. Fig. 11a). The ration ζ = ξ/dcc can thus be considered
as a control parameter which determines the state of the actin network. For
ζ > 1 the distance dcc is larger then the average distance between points of
entanglement within the network and crosslinking occurs predominantly at
these sites without changing the structure. For ζ > 1 crosslinking induces
local contractions of the gel as shown in Figure 12a (thin line ζ ∼ 1).

Some crosslinkers bind weakly to actin resulting in a dynamic
association-dissociation equilibrium under physiological conditions. One ex-
ample is myosin II which forms an active and dynamic crosslinker in the
presence of ATP (but acts as rigid connector in the absence of ATP). An-
other prominent example is α-actinin which is also supposed to be involved
in the coupling of actin to membranes, the formation of focal complexes
and the generation of filipodia and lamellipodia (cf. Lodish et al. Sect. 22).
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Fig. 12. a) Equivalent phase diagram of actin gels according to Tempel et al.

(1996). The state of the network is determined by two parameters, the fraction

of active cross-linkers ρact (or ζ) and the mesh size ξ; ξ is related to the actin

concentration cA by ξ ∝ c
−1/2
A . The thin line defines the phase boundary of the

percolation transition and the thick line defines the coexistence of bundles (or

random networks) with a dilute solution. Note that the bundle state may also

coexist with the heterogeneous network. Electron micrographs of the heteroge-

neous states can be found in Tempel et al. (1996). b) Distribution of plateau

values of storage modulus of an entangled actin network (bar A) and of a network

crosslinked by myosin in the rigor state (ATP depletion). The network exhibits

the same microgel state as actin/α-actinin networks.

The association-dissociation equilibrium of the actin/α-actinin system

A+ αA
K0� C (3.1)

is nearly balanced under physiology-like conditions. The association disso-
ciation equilibrium can be shifted in either direction by small temperature
variations since the binding energy of the α-actinin-actin complexes is of the
order of kBT at 300 K (cf. Tempel et al. 1996). According to the chemical
equilibrium theory the fraction of active crosslinkers is related to the actin
concentration by

ρc =
[A]K0 exp {∆H/kBT }

1 + [A]K0 exp {∆H/kBT } (3.2)

whereK0 is the prefactor of Van’t Hoff’s law of the temperature dependence
of the equilibrium constant K = K0 exp {∆H/kBT }. Therefore the degree
of crosslinking (expressed by ζ) can be changed reversibly by variation of
the temperature around 20 ◦C.

As shown in Figure 11b the viscoelastic moduli change in a characteristic
way with ζ (or T ). The loss modulus G′′(ζ) (expressed in terms of the loss
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angle tanϑ = G′′/G′) exhibits a broad band whereasG′(ζ) starts to increase
sharply by to two orders of magnitude at the distinct value of ζ = ζg ≈ 1
(or T = Tg) where the broad band of G′′(ζ) exhibits a maximum. This
behaviour is distinct typical for percolation transitions (cf. de Gennes 1979).
This analogy is further supported by the finding that the decaying branch
of G′′(ζ) and the divergence of G′(ζ) exhibit power laws

G′(ζ) ∼ (ζ − ζg)t, G′′(ζ) ∼ (ζg − ζ)−s, (3.3)

and the exponents agree roughly with theoretical predictions (cf. Tempel
et al. 1996).

The viscoelastic and structural studies by electron microscopy suggest
that the behaviour of the actin-α-actinin network can be described by the
phase diagram of Figure 12a. If the average distance dcc between cross-
linkers is considerably larger then the mesh size a homogeneous gel is formed
and the shear modulus is only slightly larger than the plateau modulus of the
merely entangled actin network. At ζ ≥ 1 a heterogeneous gel starts to form.
It consists of domains of tightly crosslinked filaments (with mesh size ξ′ < ξ)
which are interconnected by regions of low polymer density. At further
increasing ζ well defined bundles of actin are formed which can coexist with
the randomly cross-linked state. Further decreasing ζ the bundles may form
an interconnected network which can have a smaller viscoelastic impedance
than the heterogeneous gel.

Magnetic bead microrheometry studies of cells show that the local vis-
coelastic moduli of the cell cytoskeleton vary by more than an order of
magnitude (cf. Bausch et al. 1999) suggesting that the intracellular scaf-
folds form highly heterogeneous gels such as the coexistence of randomly
organized networks and bundles. The heterogel state exhibits unique fea-
tures. It combines high mechanical stability with the existence of soft voids
or pathways for the embeddement of intracellular compartments or the local
transport by active forces in the 10 pN range (cf. Sect. 4). Another unique
property of the heterogel state is that the local elasticity can be changed
drastically by the formation or cleavage of a few interconnections between
dense clusters or bundles – enabling effective local switching between gel-
and sol-like states.

The state of intracellular actin networks can also be controlled by myosin
which can act either as highly dynamic linker or as stable crosslinker de-
pending on the presence or absence of ATP, respectively. Evidence for this
has been provided by studies of mutants of Dictyostelia cells lacking myosin.
It has been shown that the effective cytoplasmic viscosity G′′(ω) at low fre-
quencies is much higher in the absence of myosin II than in the presence of
this motor protein.

In vitro studies show that in the absence of ATP myosin II behaves
similar to α-actinin and forms a heterogel consisting of starlike assemblies
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which are embedded within a randomly organized network. In contrast, a
homogeneous network is formed in the presence of ATP. If ATP is depleted
gradually in actomyosin-networks one can observe a gradual transition from
a soft network to a heterogeneous gel (M. Keller and E. Sackmann, unpub-
lished data).

A characteristic feature of the heterogeneous gel state (also called micro-
gel state) is that it combines high mechanical stability with local softness.
Measurements with magnetic tweezers show that the viscoelastic moduli
vary by an order of magnitude between the dense clusters and the soft
voids (cf. Fig. 12b). Strikingly similar behaviour has been observed for
cytoplasms of cells such as macrophages or Dictyostelia cells (cf. Sect. 6).
Thus the shear modulus in macrophages varies between 10 Pa and 600 Pa
and the viscosity between 10 Pa·s and 500 Pa·s (cf. Bausch et al. 1999)
strongly suggesting that the cytoplasm exhibits a similar heterogel state as
the actin/α-actinin system although all three subsystems of the cytoskele-
ton are involved. The heterogeneity may be even more pronounced due
to the composition of the cytoskeleton from the three subsystems actin,
intermediate filaments and microtubuli.

In summary, the heterogel state appears to be ideally suited for the de-
sign of cells. It confers upon them high global mechanical stability while
the large soft voids between densely crosslinked clusters enable the em-
beddement of intracellular compartments. When the hard regions form a
percolated meshwork the soft regions may form a continuous networks of
soft channels enabling the transport of the compartments by weak forces in
the ten piconewton range generated typically by Kinesin or myosin motors.
The local elasticity may be varied drastically by breakage or formation of
a few bundles mediated by activation of severing or crosslinking proteins
through second messengers. As will be discussed below (Sect. 6) the long
range transport of compartments by relatively weak forces is further made
possible by the viscoplastic effect.

3.2 Control of organization and function of actin cortex by cell signalling

The manipulation of the structure and viscoelasticity of actin networks
by the actin regulating proteins and the control of the activity of these
molecules by second messengers provides the basis for the regulation of the
function of the actin cortex by extrinsic signals (e.g. hormones, growth fac-
tors, inflammational agents) through intracellular signalling (cf. Fig. 13b).
A simplified scheme of the signal pathways induced by thrombin which me-
diates the activation of myosin II by phosphorylation of chains of myosin II.
This myosin light chain phosphorylation is activated by two major pro-
cesses. A fast signalling pathway is based on the intracellular increase
of the Ca++-level by opening of Ca++-storage vesicles through
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Fig. 13. a) Model of activation of myosin II by phosphorylation of its light chain

(MLC) through MLC-kinase. This enzyme activates the myosin head group (S1).

The kinase works in tandem with the light chain phosphorylase which dephos-

phorylates and thus deactivates the MLC. The activation may be accompanied

by formation of microbundles (cf. Pasternak et al. 1989). b) Simplified scheme

of regulation of myosin activity by various cell signalling pathways induced by

the inflammational agent thrombin. There are two major pathways. A fast pro-

cess (acting in the second time scale) is mediated by Ca++ which activates the

MLC-kinase through calmodulin. The increase of the Ca++-level is initiated by

activation of G-protein switches of the Gαβγ-family. The Gαβγ-protein binds to

the inner loop of the receptor (after thrombin binding) resulting in the exchange

of GDP for GTP. The α-domain is thus activated and diffuses in the membrane

to the phospholipase C (symbolized as scissors) which is activated and cleaves

the inositol-triphosphate (IP3) form the phosphatidyl-inositol-diphosphate. IP3

induces the libration of Ca++ from storage vesicles by binding to IP3 receptors of

Ca++ storage vesicles. A slower pathway (response times in the order of minutes)

is mediated by a small G-protein switch of the rho-family: rhoA. The protein

(activated again by GDP-GTP exchange) activates the MLC-kinase.

inositol-triphosphate (IP3). The MLC-kinase can be activated either
through calmodulin-Ca++-complexes or through kinase C which is acti-
vated by diacylglycerol (DAG). Both DAG and IP3 are generated from
phosphatidylinositol-diphosphate (PIP2) by phospholipase C which is acti-
vated by the extrinsic signal.

The thrombin receptor shares two common features with other hormone
receptors (e.g. adrenalin) and the photon receptor rhodopsin of the visual
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membrane. It penetrates the membrane with seven hydrophobic α-helixes
and exhibits an intracellular loop which contains a binding site for the Gαβγ-
protein. Binding of the agent to the receptor induces coupling of the G-
protein to the loop which is followed by exchange of GDP for GTP in the α-
domain of the Gαβγ complex. The GTP-α-domain is detached and activates
the enzyme associated with the pathway (phospholipase C in the case of
thrombin). The receptor can be deactivated again by phosphorylation of the
loop or by coverage by a capping proteins (arrestin in the case of rhodopsin).
In this way the activity of the receptor may be switched off and the action
of hormones may be downregulated.

4 Micromechanics and microrheometry of cells

Mechanics and hydrodynamics play a key role for numerous biological pro-
cesses comprising the control of animal motion or the adaptive growth of
plants or bones. Mechanical forces control also numerous cellular functions
such as cell locomotion, phagocytosis or cell adhesion. An enlightening ex-
ample is the regulation of the blood pressure through the hydrodynamic
shear force exerted by the blood flow or endothelial cells. The hydrody-
namic shear stress induces the generation of NO-molecules in a stress de-
pendent manner which control the state of contraction of the smooth muscle
surrounding the blood vessels (a process again activated by cell signalling
pathways). The production of NO increases with increasing blood pressure
(for instance induced by a decreasing diameter of the blood vessel) and this
small molecule causes the relaxation of the muscles resulting in the widen-
ing of the blood vessel. The study of continuum-mechanical properties of
biomaterials from macroscopic to nanoscopic scales is therefore expected
to become a challenging field of future biophysical research. One example
concerns the viscoelasticity of cells. Measurements of local viscoelastic pa-
rameters can yield useful and new insights into the microscopic architecture
of cell envelopes or the cytoplasm and into the stimulation of cell signalling
pathways by mechanical stresses. A powerful tool to study microscopic
mechanical and hydrodynamical properties of cells is magnetic bead mi-
crorheometry (cf. Fig. 14). Magnetic colloidal beads are coupled to specific
sites of cells such as the cell membrane, the actin based cytoskeleton or mi-
crotubuli through specific ligands, cell receptors or molecular motors. The
magnetic beads are deflected by sequences of short pulses of inhomogeneous
magnetic fields and the trajectories of the beads are analyzed as a function of
time by particle tracking using confocal laser scanning or phase contrast mi-
croscopy combined with fast image processing (cf. Keller & Schilling 2001).
Viscoelastic parameters (spring constants and viscosities) are obtained by
analyzing the viscoelastic response curves (also called creep functions or
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Fig. 14. a) Microrheometry of cell membranes and cell cytoskeleton. Magnetic

beads are coupled to specific sites of the cell (cell plasma membrane, cytoskele-

ton, microtubuli) by functionalization with specific ligands. Viscoelastic response

curves are taken by application of force pulses in the nano-Newton range and by

recording the deflection as a function of time by particle tracking with fast image

processing techniques (cf. Fig. 17). The advantage of the method is that pulses

may be applied repeatedly to test the reproducibility of the measurement or the

linearity of the response and to explore active responses of the cell to external

mechanical stimuli.

retardation functions) in terms of mechanical equivalence circuits. A typi-
cal creep response curve is shown in Figure 15. It consists of three regimes:
an instantaneous elastic deflection (I), a relaxation regime (II) and a region
where the bead exhibits continuous flow (III).

The first step is to evaluate the viscoelastic response in terms of a simple
mechanical equivalent circuit. It consists of a dashpot (friction γ◦) in series
with a so-called Voigt body. The latter consists of a parallel arrangement of
a spring (spring constant k◦) and a series connection of a second spring (k1)
and a dashpot (γ1). The same model was introduced by Zener to account
for the viscoelasticity of solids and is thus also called the standard solid
model. The deflection is given by (cf. Bausch et al. 1998)

x (t)
F

=
1
k◦

(
1− k1

k◦ + k1
exp

{
− t
τ

})
+

t

γ◦
· (4.1)

The last term accounts for the flow and characterizes the long time be-
haviour. For t→ 0: x (t) = F/(k◦+ k1) and the effective spring constant of
the membrane is thus keff = k◦+k1. The relaxation time is τ = γ1keff/k◦k1



“sackman-2”
2002/8/28
page 269

�

�

�

�

�

�

�

�

E. Sackmann et al.: Physics of Composite Cell Membranes 269

 

Fig. 15. a) Typical viscoelastic response curve of magnetic bead in cytoplasm of

macrophage. Obtained for 1 µm diameter magnetic bead and f ≈ 400 pN. Note

that J(t) is composed of three regimes: a fast elastic response (I), a relaxation

regime (II) and a viscous flow (III). b) Mechanical equivalent circuit enabling

formal representation of creep response curve of cytoplasm of macrophages. The

dashpot η0 accounts for the viscous flow due to the viscoplasticity of cell. The

effective total spring constant is µ = µ1 + µ2. c) Typical response function

calculated for the Zener model as given in equation (4.1).

and is a measure for the time interval within which the local bonds yield
resulting in the flow of the bead.

In reality the relaxation process is determined by a distribution of relax-
ation times and a more general expression for the deflection x (t) would be

x (t) = F
∑

i

Ji

(
1− exp

{
− t

τi

})
+
t

η
(4.2)

where Ji = k−1
i are elastic compliances characterizing the softness of internal

bonds.
The viscoelastic parameters of the mechanical model are relative mea-

sures for the membrane stiffness and viscosity. In order to obtain true
elastic constants and viscosities of the cell surface one has to analyze the
viscoelastic response in terms of the theory of the elasticity of shells. This
is an unsolvable problem for large heterogeneously structured shells. Fortu-
nately, measurements of the deformation field evoked within the membrane
by a local tangential force showed that the membrane deformation is a lo-
cal quantity. This deformation field mapping technique is illustrated in
Figure 16. It is based on the analysis of the deflection of an assembly of
small non-magnetic beads which are anchored to the cell surface together
with the magnetic tweezers. It is seen (cf. Fig. 15b) that the deflection of
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Fig. 16. a) Deformation field mapping technique. For the measurement of the

range of the elastic strain field u (r) generated by a tangential force a magnetic

bead is coupled to integrin receptors αVβ3 through fibronectin and non-magnetic

beads are coupled to the cell surface by nonspecific (electrostatic) forces or fi-

bronectin. The tangential deflection u (r) of these colloidal probes induced by

lateral deflection of the magnetic tweezer is measured as a function of distance

of the probe from the center of the applied force f0. Mechanical model of thin

lobe of cell which corresponds to the situation of spread fibroblasts or endothelial

cells. Each of the two juxtaposed membranes are coupled to dense actin network

and these are interconnected by inner cytoskeleton. b) Plot of lateral displace-

ment ux (�r) in the direction (x) of the force as a function of the distance from

the force as predicted by the theory of deformation of a thin plate coupled to an

underlying network which is fixed to the surface. The range of the decay field and

the elastic shear modulus is obtained by fitting the theoretical curve u (r) to the

experimental data.

the non-magnetic beads, u (r), decays rather rapidly with the distance from
the source of the force. The range of the deformation is characterized by a
decay length of λ−1 ∼ 5−10 µm, depending on the cell type. This is a very
important result since it shows that the elasticity of composite cell mem-
branes is a local quantity. A detailed theoretical analysis shows that the
decay of the deformation field (induced by a point force) with the distance
can be explained in terms of the coupling of the lipid/protein bilayer to the
intracellular scaffold. The deformation of a thin plate coupled to a network
(fixed to a substrate) is determined by the following differential equation

∆u+
1 + σ

1− σ∇∇u − λ
2u = − F

µ∗
, (4.3)

where µ∗ is the two-dimensional shear modulus which is related to the bulk
modulus µ by µ∗ = µh, where h is the membrane thickness. The param-
eter λ has the dimension of a reciprocal length and λ−1 is thus a measure
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for the screening length. It is determined by the coupling strength of the
bilayer membrane to the underlying scaffold. This coupling strength can
be expressed in terms of a spring constant per unit area (χ = J/m4) and
since λ−2 = µ∗/χ, measurements of the screening length yield insight into
the coupling strength of the clustered integrin receptors to the actin cortex.
This is still a rough model and more refined microscopic theories of compos-
ite cell membranes are required to derive reliable viscoelastic moduli from
microrheological studies. In particular it is essential to separate passive and
active viscoelastic responses as shown in Section 6.

5 Activation of endothelial cells: On the possibility of formation
of stress fibers as phase transition of actin-network triggered by cell
signalling pathways

The centripetal contraction of endothelial cells required for the formation
of gaps within the confluent endothelial cell larger lining the inner wall of
blood vessels involves two processes. First the formation of actin stress
fibers within or close to the initially random network of the cortex (cf. also
Fig. 3) and second, the aggregation and activation of myosin II to form
acto-myosin motors.

The microscopic details of this process are still largely obscure, but there
is ample evidence that the structural change in the actin cortex and the acti-
vation of the myosin motor is mediated by intracellular signal transduction
involving GTP-hydrolyzing proteins so called G-proteins. Several signal
pathways are known which regulate the organization and functionality of
the actin scaffold on different time scales.

For biophysical studies the process of endothelial cell contraction can
be induced by the inflammation agents thrombin and histamine which al-
low to mimick the gap opening under controlled conditions. Monolayers of
endothelial cells from veins of human naval cord are grown on solid sup-
ports. Addition of above mentioned thrombin or histamine induces dra-
matic effects. Firstly, it causes the formation of numerous actin bundles
within the actin cortex within a few seconds, which can be visualized by
labelling actin with fluorescent derivatives of phalloidin (cf. Fig. 17b). Sec-
ondly, the stimulation causes centripetal contraction of the cells by disrup-
ture of cadherin-cadherin bonds resulting in the formation of gaps within
the initially confluent cell monolayer. This gap formation can be detected
with very high sensitivity through the reduction of the electrical impedance
measured by electrical impedance spectroscopy (cf. Wegener et al. 1999;
Hillebrandt et al. 2001). Thirdly, the shear elastic modulus of the com-
posite membrane increases dramatically. As demonstrated in Figure 17a
this stiffening effect can be followed and analyzed in real time by repeated



“sackman-2”
2002/8/28
page 272

�

�

�

�

�

�

�

�

272 Physics of Bio-Molecules and Cells

a

Fig. 17. A real time demonstration of rapid formation of stress fibers associ-

ated with dramatic stiffening of composite membranes by magnetic tweezer force

spectroscopy. A sequence of viscoelastic response curves evoked by force pulses

(amplitude f◦ = 2 nN) is recorded to establish the reproducibility of the mea-

surement. The response curves exhibit a fast response, a relaxation regime and

finally flow-like behaviour similar to Figure 15 and are fully reversible. Throm-

bin is added at the time indicated by an arrow. The deflection amplitude decays

within 2−5 s after addition of thrombin, but recovers after a few minutes, although

thrombin is still present. As demonstrated by the fluorescence micrographs at the

bottom the stiffening is accompanied by formation of stress fibers. Note that the

actin forms a randomly organized network before addition of thrombin.

observation of local deflections of the magnetic tweezers coupled to integrins
αVβ1 through fibronectin. Even forces of up to 10 nN are too weak to evoke
appreciable deflections a few seconds after addition of thrombin. The stiff-
ening effect relaxes after about 1 hour despite of the continuous presence
of thrombin which is most likely due to the downregulation of the throm-
bin receptor. The close correlation between actin bundling and membrane
stiffening strongly suggests that the stiffening is due to the coupling of the
stress-fibers to the integrin clusters.

Following Garcia & Schaphorst (1995) the formation of stress fibers, the
membrane stiffening and the cell contraction is associated with the three
following biochemical processes: (i) the F-actin concentration increases by
60% (most likely due to inhibition of sequestering molecules), (ii) the intra-
cellular Ca++ level increases also by about 50% and (iii) the light chains
of myosin II are phosphorylated. Interestingly, in the above described stiff-
ening response a different biochemical pathway is involved: the specific
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Fig. 18. Biochemical changes induced by thrombin in endothelial cells accord-

ing to Garcia et al. (1995). Concerted time dependent increase of intracellular

Ca++-concentration, F-actin content and amount of myosin II activated by phos-

phorylation of the light chain.

inhibition of parts of the described pathway did not result in an inhibi-
tion of the stiffening response. This demonstrates that the quantification of
the viscoelastic properties is also a powerful tool to study in real time the
biochemical process in living cells.

The growth rate of actin filaments is typically ∼1 µm s−1 and it is hard
to imagine that the rapid formation of rather regular arrays of stress fibers
is caused by concerted growth of single filaments. In view of the above
results, the spontaneous and rapid formation of stress fibers could also be
explained in terms of a phase transition of the actin-network if it exists in a
state close to the percolation transition. According to the phase diagram of
Figure 12a transition from a nearly homogeneous network to a state where
the network coexists with actin bundles can be induced both by increasing
the F-actin content and/or by activation of the cross-linkers.

It is not known yet whether actin cross-linkers are also activated by
thrombin or wether bundling is solely due to the increase of F-actin. In
fact, microbundles of myosin could be involved in the actin bundling process
as demonstrated in the authors laboratory (M. Keller, authors laboratory,
unpublished data). The activation of myosin II by MLC-phosphorylation
could thus simultaneously serve the bundling of actin and the formation of
contractile fibers. The formation of myosin II microbundles by phosphory-
lation has been demonstrated for Dictyostelia cells. However in this case
the phosphorylation site is located at the heavy long arm (cf. Pasternak
et al. 1998; Jungbluth et al. 1994).
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Fig. 19. a) Phase contrast micrograph of intracellular active motion of mag-

netic beads of 1.4 µm and 0.5 µm diameter in Dictyostelia Discoideum cells. The

trajectories consist of nearly straight paths interrupted by local random walks.

Note that small beads move first towards the center and then back to the periph-

ery. Since the path is several µm long it occurs most likely along microtubuli.

b) Time sequence of velocity of large (top) and small phagosomes (bottom). The

peak velocities indicated by arrows (∼2 µm/s for the large bead and ∼4 µm/s

for the small bead) correspond to motions along straight paths. The velocities

v ≤ 1 µm/s are mostly found for the local motions.

6 On cells as adaptive viscoplastic bodies

As pointed out above, the cytoplasm is a highly heterogeneous viscoelas-
tic body which must combine high mechanical stability with local softness
to enable effective transport of compartments along the microtubuli and
actin filaments by forces of the order of ten piconewton. As demonstrated
above such behaviour can be realised by heterogeneous gels consisting of
entangeled bundles or clusters of tightly crosslinked fibrous macromolecules
interconnected by a few thin bundles in such a way that a fully perco-
lated network results. The magnetic bead microrheometry provides a non-
invasive technique to measure the distribution of viscoelastic moduli in cells
(cf. Bausch 1999). A convenient and most natural way to incorporate mag-
netic beads is uptake by phagocytosis. The engulfed beads are wrapped by
the plasma membrane with the inner leaflet of the membrane exposed to
the cytoplasm. These “magnetosomes” behave then similar to intracellular
particles. Two types of studies can be performed: firstly, measurements
of intracellular transport forces and secondly, determinations of spatial dis-
tributions of the intracellular viscoelastic parameters (shear moduli and
friction coefficients) by creep experiments. As an instructive example we
consider measurements in Dictyostelium Discoideum cells (cf. Feneberg
et al. 2001). Figure 19a shows that the magnetosomes are transported over



“sackman-2”
2002/8/28
page 275

�

�

�

�

�

�

�

�

E. Sackmann et al.: Physics of Composite Cell Membranes 275

large distances within the cell. This transport occurs often repeatedly from
the periphery to the center and back and the bead is finally expelled again.
Obviously, the trajectories of the beads consist of nearly straight stretches
and local random walks. The local velocities along the quasi straight pathes
depend on the bead size and are 4 µm/s for the 0.5 µm and about 2 µm/s for
the 1.4 µm bead. The velocity of the local random motion varies between
0.1 µm/s and 0.5 µm/s and does not depend appreciably on the size of the
beads.

These findings show that the cytoplasm consists of alternating soft and
hard regions. In the soft regions the particles can be transported by the
molecular motors over long distances (most likely along microtubuli by ki-
nesin or dynein) while they are trapped in the hard regions. Since the
velocity does not depend on the bead size the nearly random local walks
are most likely due to actively driven local motions of the cytoplasm which is
also directly visible by local motion of intracellular particles (e.g. vacuolea)
using phase contrast microscopy. A very remarkable result is that for cells
in which myosin II has been knocked out by mutation the velocity distri-
bution of the small local motion is shifted to lower values. This interesting
result suggests that the motor protein acts as softener of the cytoskeleton
(if ATP is present).

The local viscoelastic response of the cytoplasm of Dictyostelia cells ex-
hibits very complex often non-linear behaviour. Two characteristic response
curves are shown in Figure 19. Under the action of a strong shear stress
(σ ∼ 100 Pa) the bead is deflected with rapid initial velocity and saturates
after a relaxation regime. After turning off the stress it relaxes, however,
only partially showing that the bead exhibited viscous flow. For a weak
stress (σ ∼ 50 Pa) the bead does not respond appreciably for the first three
seconds and is then suddenly deflected by ∼2 µm before the deformation
saturates. Again, after the the application of the shear stress stops, the
bead relaxes only partially, indicating a viscous loss. For higher stresses
(σ > 100 Pa) the bead motion does not saturate and it moves over long
distances with force-dependent velocity. Analysis of the numerous response
curves showed that the yield strength of the cytoplasm varies between 10
and 20 Pa and the apparent cytoplasmic viscosity varies between 10 and
350 Pa·s. This strongly force-dependent behaviour suggests that the cyto-
plasm behaves as viscoplastic body exhibiting highly heterogeneous yield
forces.

It further suggests tat the bead deflection with constant velocity 〈v〉 is
a consequence of the breakage of internal bonds rather that the internal
friction associated with momentum transfer between the bead and the fluid
cytoplasm. It is thus more realistic to characterize the constant bead motion
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in terms of a force-dependent local mobility µ (fex) according to:

〈v〉 = µ (fex) fex. (6.1)

Each bond breaks with a rate

k = k0 exp
{

∆g − fexξ
kBT

}
, (6.2)

where ∆g is the activation energy of the bond breakage, fexξ is the work
associated with the bond breakage and ξ is of the order of the local mesh
size. The mobility is then related to the local shear stress σ by

µ (fex) = µ0 exp
{

∆G− ξ2σex

kBT

}
, (6.3)

where ∆G is the activation energy of all bonds which must be broken to
advance the bead by a distance ξ. For weak external stresses (σ ≤ 50 Pa,
Fig. 20, bottom) the deflection scenario depends sensitively on the local yield
strength of the cytoplasm. If the latter is smaller than the externally applied
stress σex one observes a similar response curve as for the high force. If the
bead is initially embedded in a region of higher yield stress (σyield > σex)
only a small deflection is initially observed. It escapes, however, in general
from the pinched state after prolonged application of the force and moves
fast again, once a softer region is reached.

Note that within the scope of the viscoplastic model the viscosity is
replaced by a reciprocal mobility. Despite of the complex viscoelastic be-
haviour one can measure distributions of the shear elastic moduli. The
range of shear elastic moduli depends on the type of cells. For Dictyostelia
Discoideum cells the values vary between 10 Pa ≤ µ ≤ 100 Pa while for
macrophages values range from µ = 50 Pa to 600 Pa.

The viscoplastic behaviour is expected to play an important role for the
intracellular transport of particles by relatively weak active forces as will be
argued in the following. Magnetic tweezers can be applied as force trans-
ducers to measure these active transport forces in cells. For this purpose the
local motion of magnetosomes is perturbed by application of a force pulse
and the active force is obtained by analysing the change of the velocity.
The initial velocity is �vact = fact/ζloc where ζloc is the local and unknown
frictional coefficient. The changed velocity is

�v = �vact + �fex/ζloc (6.4)

and the active force is thus obtained from the resulting velocity �v during
the pulse according to

fact = ζloc�v − fex. (6.5)



“sackman-2”
2002/8/28
page 277

�

�

�

�

�

�

�

�

E. Sackmann et al.: Physics of Composite Cell Membranes 277

Fig. 20. Nonlinearity of intracellular viscoelastic response: two characteristic ex-

amples of viscoelastic response curves induced by force pulses of 200 pN and 50 pN,

respectively. Note that the response induced by the large pulse is immediate but

does not relax after switching off the pulse while for the small pulse the response

is drastically delayed but is partially reversible.

The active force in Dictyostelia cells obtained in this way is about fact ≈
30 pN which would correspond to the concerted action of seven kinesin
motors. Active forces of the order of 30 pN are too weak to transport
intracellular compartments such as mitochondria or vesicles through the
cytoplasmic regions of high mechanical strength exhibiting typically yield
forces of 300 pN. However, this problem is overcome by the viscoplastic be-
haviour of the cytoplasm. As demonstrated in Figure 20 the compartments
can penetrate the high elasticity regions by extended application (for a few
seconds) of forces considerably smaller then the yield force. After reaching
the soft regions exhibiting yield strengths of ∼10 Pa rapid transport is pos-
sible again. The transport could be further accelerated by active softening
of the intracellular regions of high mechanical strength mediated through
intracellular signalling.

The situation is further obscured by the active adaptive response of the
cells to mechanical stimuli and it is essential to develop further concepts
and methods enabling the distinction between passive and active mechanical
processes.
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Fig. 21. a) Schematic view of micropipette aspiration technique. Note that as-

piration occurs above a threshold pressure pth1. b) Phase contrast micrograph of

Dictyostelia Discoideum cell aspired by a micropipette (inner diameter ∼3.8 µm)

with constant suction pressure at the leading edge (left) and the trailing end of

the cell (right). At the cell front, where a new pseudopod is forming, the aspira-

tion length is significantly larger than at the trailing end of the cell. Black arrows

denote the end of the aspirated cell lobe. Note that in both cases A and B the

aspirated lobe exhibits a clear hyaline cap, free of internal cell compartments. The

hyaline cap extends from the tip of the aspirated cell lobe to the beginning of the

organelle-containing region (thin white arrow). The bold white arrow in B marks

the pseudopod at the leading front of the cell.

7 Controll of cellular protrusions controlled by actin/myosin cortex

Another powerful micromechanical technique to study adaptive mechanical
properties of cell envelopes and to gain insight into the coupling strength
of the outer shell with the intracellular scaffold is the micropipette aspira-
tion technique (cf. Evans & Yeung 1989; Zhelev & Hochmuth 1995). An
instructive example is shown in Figure 21. The cell envelope of Dictyostelia
cells is aspirated by cylindrical pipettes with defined suction pressures (cf.
Simson et al. 2000). Above a threshold pressure pth1 the cell envelope dis-
rupts from the cell body and a tube-like protrusion moves into the pipette
with nearly constant velocity until a finite protrusion length lc is reached
(cf. Fig. 21a). After a recovery phase (typically 10–20 s) the protrusion is
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actively pulled back provided the applied pressure is kept below a second
threshold pressure pth2.

Initially only the lipid/protein bilayer together with a thin layer of actin
is pulled into the pipette while the intracellular compartments are hold back
by the bulk of the actin shell (cf. Fig. 21b). This fraction of the actin cortex
forms a closed shell. It holds back the intracellular compartments which are
aspired only at a later time if the suction pressure is high.

Dictyostelia cells exhibit several advantages for micromechanical studies
of the cell cytoskeleton and the composite shell (cf. Schleicher & Noegel
1992). The cytoskeleton can be modified in a controlled way by removing
one or several of the actin-binding proteins by mutations. Moreover, dis-
tinct cytoskeletal proteins can be fluorescent labelled by fusion with green
fluorescent proteins through transfection. The shape of the cells can be
controlled by starving the cells for distinct periods of time (cf. Schleicher &
Noegel 1992). Moving cells exhibit transient polarities and the momentary
front and rear of the cells may be distinguished as follows: the locomotion
of amoeba like (rounded) Dictyostelia cells is associated with three distinct
shape changes (cf. Schindl et al. 1995). First a thin lobe of the cell spreads
over the surface for about 10 s forming a flat protrusion (pseudopod) of
about 5 µm length. After formation of a new actin cortex in the protruded
lobe the trailing end retracts (at fixed position of the leading edge of the
pseudopod) and the cell assumes a buldged shape resulting in a strong re-
duction of the contact area. For several tens of seconds the cell persists in
this resting state (typically for 100 s) before a new pseudopod forms in a
new direction. In this way the leading front and the trailing end may be
distinguished to study the micromechanical properties at sites of distinct
activity within the cells. The micropipette experiments show (cf. Simson
et al. 2001)

• The threshold pressure pth1 and thus the coupling strength of the
membrane to the actin cortex is remarkably smaller (by 50%) at the
leading edge than at the trailing end. The length lc for a given pressure
is about twice as large at the leading front;

• The maximum protrusion length increases roughly linearly with the
applied suction pressure;

• The velocity of the advancing protrusion increases linearly with the
suction pressure enabling estimates of the viscosity of the composite
cell envelope;

• The aspired cell lobe is retraced again after a recovery time of ∼20 s,
however only against suction pressures smaller than pth2 ≈ 1000 Pa;
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Fig. 22. Demonstration of the reorganization of actin/myosin cortex beneath

the membrane (envelope) of aspirated cell protrusion by microfluorescence of

transfected cells containing myosin II with attached green fluorescent proteins.

Top row: fluorescence micrograph of freshly aspirated protrusion exhibits nearly

isotropic distribution of myosin II within the cytoplasm of the aspired cell lobe.

Bottom row: myosin II distribution after 20 s (along sections a and b indicated

in the figure at the top) showing accumulation of motor proteins close to the wall

and the mouth of the pipette.

• During the recovery period the actin/myosin cortex of the aspired
cell lobe is re-established again. This follows from microfluorescence
studies of the redistribution of myosin II which is labelled with green
fluorescent protein by transfection. As shown in Figure 22 myosin II
is isotropically distributed in the direction perpendicular to the axis
of the pipette and is only slightly accumulated towards the pipette
entrance. After several (typically 20) seconds the motor protein accu-
mulates close to the inner wall of the cell membrane (along the whole
length of the protrusion). Moreover it is further accumulated close
to the entrance of the micropipette. The protrusion can only retract
after completion of this reorganization process. A second prerequisite
for the retraction is that the cell adheres with the free cell body to the
substrate because the protrusions are not retracted again if the cell is
freely suspended in the buffer;

• The necessity of myosin II for the retraction process is also demon-
strated by the fact that myosin II deficient cells are not able to retract
the protrusions.

The micromechanical experiments provide also useful tools to study the
effect of mutations of the cytoskeleton in a quantitative way. Removal of
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myosin II increases the threshold pressure required for the aspiration of the
protrusions by a factor of five that is from pth = 210 Pa for wild type cells
to pth = 1000 Pa for the mutant. In agreement with the results obtained
with magnetic bead microrheometry (cf. Sect. 6) this observation shows
that the motor protein acts as softener of the actin-based cytoskeleton.

Conclusion: the envelopes of eucaryontic cells are soft, trilamellar shells
composed of the central lipid protein bilayer (the biomembrane), the gly-
cocalix, covering the outer surface and the cortex associated with the inner
leaflet of the membrane. This composite membrane mediates local struc-
tural changes of the glycocalix (for the membrane) and the membrane-
associated macromolecular cortex, which plays an essential role for the
signal transduction between extracellular space during numerous cellular
processes. In this lecture we discussed the physical properties of lipid mem-
branes, the viscoelastic properties of the ultrasoft quasi-twodimensional net-
works of red blood cells and of pure cytoskeletal networks such as the semi-
flexible polymer actin and the regulation of the viscoelastic properties of
composite membranes of eucaryontic cells.

The red blood cell exhibits outstanding elastic properties unmatched by
technical materials: it is extremely soft with respect to bending and shearing
but hard as solids towards extensions which is essential for the survival of
the cells during their several hundred kilometer long journey through the
capillary system. These unique properties are due to the ultrasoft quasi-
twodimensional triangular network (mesh size 80 nm) with the sides formed
by flexible spectrin filaments and corners formed by actin oligomers.

Pure Actin networks are also of great interest from the point of view of
polymer physics. Since the contour lengths (20 m) and persistence lengths
(10 m) are easily accessible to the optical microscopy one can visualize and
analyze the conformational dynamics, the local and long range diffusivity
and the flexibility of single filaments by microflueorescence or the analysis of
the Brownian motion of filament coupled colloidal gold. Together with novel
colloidal bead microrheometry techniques such studies open the possibility
to relate molecular motional properties of the local structural fluctuations
to the macroscopic viscoelastic impedance.

We discussed the self-assembly and function of the endothelial cell mono-
layers lining the inner wall of blood vessels which implies two fundamental
and vital processes, cell adhesion (treated in the accompanying article by
Sackmann and Bruinsma) and numerous chemo-mechanical processes. The
manifold functions of the actin based cytoskeleton (e.g. during numerous
chemomechanical processes) is determined by the outstanding viscoelastic
properties of this prototype of a semiflexible macromolecule. A Phallanx of
actin manipulating proteins (including motor proteins of the myosin family)
together with the regulation of their activity by second messengers enables
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cells to switch rapidly between different local structural organizations of the
cytoskeleton. Heterogeneous gels can be rapidly formed or reorganized (in
sub-second time scales) through phase transitions such as the formation of
heterogels composed of densely packed domains (microgels) interconnected
by single filaments or bundles from homogeneous networks by switching on
the activity of cross-linkers (e.g. a-actinin). Such percolated networks com-
bine astonishingly high stifnesses with lage soft voids enabling the uptake
and effective transpot of particles. They can transform further into states
of bundle-network coexistence.

Magnetic bead microrheometry studies demonstrate that the cytoplasm
exhibits typical viscoelastic features of such heterogeneous networks with
two fundamental differences. The heteogels are highly dynamic and thus
behave as soft viscoelastic bodies and the active transport of intracellular
phagosomes is thus determined by a force dependent mobility. The cells
can respond to extrinsic forces by adaptive active reorganizations of the
cytoskeleton thus facilitating the intracellular transport.

These examples demonstrate the continuous need for new physical tech-
niques, which allow the local manipulation of biomaterials to understand
their unique physical properties. The study of their complexity and their
heterongenety are not only of fundamental physical interest but also al-
low the quantification and thus fundamental understanding of important
biological processes.
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[70] F. Ziemann, J. Rädler and E. Sackmann, Biophys. J. 66 (1994) 2210.

[71] A. Zilker, M. Ziegler and E. Sackmann, Phys. Rev. A 46 (1992) 7998.



“main”
2002/8/29
page 285

�

�

�

�

�

�

�

�

COURSE 7

CELL ADHESION AS WETTING TRANSITION?

E. SACKMANN∗ AND R. BRUINSMA∗∗

∗ Physik Department E22,
James-Franck-Straße, D-85748

Garching b. München, Germany
∗∗ Universiteit Leiden,

Instituut-Lorentz voor Theoretische
Natuurkunde, Postbus 9506, NL-2300

RA Leiden, The Netherlands



“main”
2002/8/29
page 286

�

�

�

�

�

�

�

�

Contents

1 Introduction 287

2 Mimicking cell adhesion 292

3 Microinterferometry: A versatile tool to evaluate adhesion strength
and forces 294

4 Soft shell adhesion is controlled by a double well interfacial potential 294

5 How is adhesion controlled by membrane elasticity? 297

6 Measurement of adhesion strength by interferometric contour
analysis 299

7 Switching on specific forces: Adhesion as localized dewetting process 300

8 Measurement of unbinding forces, receptor-ligand leverage
and a new role for stress fibers 300

9 An application: Modification of cellular adhesion strength
by cytoskeletal mutations 303

10 Conclusions 303

A Appendix: Generic interfacial forces 304



“main”
2002/8/29
page 287

�

�

�

�

�

�

�

�

CELL ADHESION AS WETTING TRANSITION?
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Abstract

Cell adhesion is controlled by a complex interplay of short range (lock-
and-key) forces mediated by cell surface receptors, a phalanx of (short
and long range) non-specific (generic) interactions and, last but not
least, membrane elasticity. The physical basis of cell adhesion is ex-
plored by the design of simplified model systems mimicking cell and
tissue surfaces enabling local measurements of cellular shape changes
and adhesion forces by microinterferometry. Cell adhesion can be un-
derstood as first order dewetting transition resulting in the formation
of adhesion plaques such as focal adhesion sites of cells which allows
cell adhesion at astonishingly low receptor densities. The repeller
molecules of the glycocalix play a key role for the control of the adhe-
sion transition and the mechanical stability of the adhering cells by
relaxing the strength of the binding forces. Stress fibers are postu-
lated to be essential for the stabilization of adhesion domains against
leverage through bending moments enforced by hydrodynamic shear
forces.

1 Introduction

Cell adhesion is a fascinating albeit very complex biological process which
controls many life processes. Examples are the formation of specific organs
during the magic process of the transformation of fertilized eggs into em-
bryos or the assembly of endothelial cells into tubular structures during the
formation of blood vessels or of the blood-brain barrier [1]. The specificity
of cell adhesion is controlled by genetic expression of receptors at the cell
surface which bind specifically to adhesion molecules of target cells or tissue
by the lock-and-key force principle. However, as illustrated in Figure 1, cell
adhesion is also controlled by a manifold of generic forces and, most impor-
tantly, by membrane elasticity. The situation is further obscured by often

1Physik Department E22, James-Franck-Straße, D-85748 Garching b. München,
Germany.

2Universiteit Leiden, Instituut-Lorentz voor Theoretische Natuurkunde, Postbus 9506,
NL-2300 RA Leiden, The Netherlands.
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Fig. 1. Control of cell adhesion by interplay of receptor-mediated specific forces,

a manifold of generic interfacial forces and membrane elasticity. The cartoon

shows the interaction of a cell with a biofunctional surface mimicking target cells

or tissue. Non specific forces include: (i) electrostatic interactions which can

be mediated by cell surface receptors exhibiting large numbers of acidic sialic

acid residues (cf. GlyCAM, Fig. 3); (ii) attractive Van der Waals interactions,

(iii) repulsive undulation forces due to thermally excited bending undulations

(flickering) of lipid protein bilayers; (iv) a manifold of polymer induced forces.

The latter may include steric repulsion forces between molecules of the glycocalix

such as cell adhesion molecules exhibiting long extracellular chains (cf. Fig. 3) but

also interactions mediated by extracellular matrix proteins such as hyaluronic acid

and fibronectin which are bound to their respective receptors CD44 and integrin,

respectively. These interactions can be attractive if the opposing cells (or cells

and tissue-surfaces) exhibit receptors for the macromolecules but will be repulsive

in the absence of such receptors. Note that fibronectin has also a binding domain

for collagen IV a major component of the basal membrane forming the top layer

of endothelial cells.

drastic reorganizations of the membrane-coupled, actin-based cytoskeleton
induced by receptor-ligand recognition. A prominent example is the for-
mation of focal adhesion complexes formed by a phalanx of actin binding
proteins mediating the formation of actin bundles (stress fibers) and their
coupling to the cytoplasmic domains of membrane spanning cell surface
receptors [1].

Studies of adhesion processes are further hampered by the fact that the
formation of stable cell-cell and cell-tissue contacts is a dynamic process
involving a sequence of steps [2].

Firstly, as shown in Figure 2, the receptors and ligands are often hidden
within the several ten nm thick glycocalix. It is formed mainly by membrane
anchored cell surface molecules with very large head groups such as cell
adhesion molecules (CAMs) exhibiting head groups which may extend by up
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Fig. 2. a) Cartoon of three-layered composite cell membrane. The central leaflet

is composed of a multicomponent lipid/protein bilayer. It is coupled at the cyto-

plasmic side to the actin-based cytoskeleton (the actin cortex); a several hundred

nm thick meshwork of actin filaments which are partially interconnected by cross-

linkers (including myosin) and which is locally connected to the bilayer membrane.

Note that the actin filaments are in fact about twice as thick (8 nm) as the bilayer

(4 nm). The outside is covered by the (several ten nm thick) glycocalix which is

made up of the head groups of cell receptors (carrying mostly several oligosac-

charide chains) of glycolipids but also of huge macromolecules of the extracellular

matrix (such as hyaluronic acid and fibronectin) which are transiently coupled to

their respective receptors. b) Coarse grained models of local coupling of actin

filaments to bilayers resulting in the formation of a thin shell of partially cross-

linked actin (left) or of bundles (right) that can act as stress fibers and may serve

the enforcement of local cell adhesion.

to 40 nm into the extracellular space (cf. Fig. 3). Many of these molecules
may act as receptors or repellers depending on the surface of the target
cell or tissue. In addition the effect of the glycocalix may be enhanced
by huge macromolecules of the extracellular matrix such as fibronectins
(∼70 nm long) or hyaluronic acid (= hyaluran, a linear polysaccharide of up
to 25 000 monomers) attached to their respective receptors. The formation
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Fig. 3. Text see on page 291.

of tight cell-cell contacts thus requires the expulsion of these repellers from
the adhesion zone.

Secondly, the cell adhesion molecules are randomly distributed within
the plasma membrane and the formation of tight adhesion zones by receptor
segregation is a diffusion controlled process [3].

Thirdly, long term modulations of adhesion associated with adhesion
induced cell signaling have to be considered. Examples are the transfer of
receptors from cytoplasmic storage compartments to the plasma membrane
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Caption to Figure 3: Summary of families of cell adhesion molecules (involved

in the process of migration of white blood cells through endothelial cell layers

lining the inner wall of blood vessels [2]) stressing structure of extracellular do-

mains only. The lengths of the head groups are approximately drawn to scale.

The head groups of the family of selectin receptors are composed of chains of

identical polypeptides and exhibit a lectin-like outer domain which recognizes

glycolipids and oligosaccharide side chains of glycoproteins (Gly-CAMs) with

acidic sialic acid residues (such as so-called sialylated Lewis X factors). The dif-

ferent members of the family are distinguished by the number of repeat units.

The longest representative with eight repeat units (P-selectin) may extend up

to 30 nm into the extracellular space. The superfamily of so-called cell ad-

hesion molecules (CAM) comprises two families: X-CAMs and Gly-CAMs.

The extracellular domains of the family of X-CAMs are composed of chains of

immunoglobulin(IgG)-like polypeptides (composed of about 100 amino acids)

which are separated from the α-helical membrane anchor by a domain (also

called III-domain) which is also found in fibronectins. The second superfamily

of CAM-receptors (also called Gly-CAMs or “muccin”-like receptors) are com-

posed of long polypeptide chains, rich in serin and threonin, to which sialylated

oligosaccharide chains are coupled. Gly-CAMs are found on white blood cells

(leucocytes). The head group may exhibit up to 80 oligosugar chains and may

extend up to 40 nm into the extracellular space. These molecules act both as re-

peller and receptor [2,3] depending on whether the target cell exhibits a receptor

or not. The superfamily of cadherins belongs to the group of homophilic (or

self-recognizing) receptors which can mediate the tight mutual coupling of cells

within cell monolayers (such as the epithelial cell layers of skin or the endothelial

cell layers lining the inner wall of blood vessel). The cadherin family also plays

a central role for the control of the formation of specific tissue during embryonal

development where epithelial cell layers enclosing specific developing organs (e.g.

the neural tube or the precursor of muscle cells) are interconnected by a specific

class of cadherins which are genetically expressed at the cell surface. Integrin

is the most versatile type of receptor found hitherto. It is a heterodimer com-

posed of an α- and a β-chain with 15 nm long headgroups. Since there exist a

number of different types of α- and β-chains a matrix of integrin receptors αiβj

can be formed. Many integrins bind giant macromolecules of the extracellular

matrix such as fibronectin (which are about 50 nm long) and these may act as

repulsive spacers between cells which compete transiently with receptor-ligand

pair formation. A cell receptor which is only involved in cell-matrix interaction

is the CD44. It recognizes hyaluronic acid a giant polysaccharide which may

exhibit Flory radii of up to ∼500 nm and which can thus also contribute to long

range cell-cell repulsions.
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or the de novo synthesis of these receptors. A prominent and fascinating
example of the regulation of adhesion by cell signaling is the activation
of strong adhesion of leucocytes on endothelial cells by chemoattractants
which triggers the emigration of the cells through the endothelial cell layer
of blood vessels [2,3]. This process is assumed to be initiated by activation
of the G-proteins through the receptor for the chemoattractants which span
the membrane with seven helices (thus resembling hormone receptors) and
results eventually in the opening of gaps in the monolayer by centrifugal
contraction of the endothelial cells [4].

The enormous interest in cell adhesion is exemplified by the more than
20000 publications on this topic in 6 years. One group of studies concentrate
on the molecular basis of specific cell-cell and cell-tissue-interaction and
resulted in the discovery of an appallingly large number of receptors and
conjugate ligands. Fortunately, these can be classified in terms of a relatively
small number of sub groups which share the same structural motifs (cf.
Ref. [2] and Fig. 3 for a summary). Moreover, concerning the interaction
mechanisms the receptors may be divided into two distinct groups: (1)
homophilic receptors which interact by non-covalent association with an
anti-parallel oriented receptor of the same type in the opposing membrane
mostly of the same type of cell and (2) heterophilic receptors which recognize
distinct ligands (called adhesion epitopes) of opposing cell membranes or
tissue (called “lock-and-key bonds” or “links”, below).

A second major group of studies deals with the cell biological basis of
cell-cell interaction processes associated with immune responses, such as
the above mentioned inflammation-induced selective interaction of white
blood cells (leucocytes) with the endothelial cell layers of blood vessels [2].
These studies showed impressively that cell adhesion is a multistep pro-
cess (as pointed out above) which involves the whole composite cell plasma
membrane and that adhesion processes are intimately linked (i) to diffu-
sive lateral reorganizations within the lipid/protein membrane, (ii) to re-
organizations of the actin cortex, (iii) to the exchange of material between
cytoplasm and plasma membrane through endocytosis and exocytosis and
(iv) to genetic expression of new receptors.

2 Mimicking cell adhesion

To study the physical basis of cell adhesion model systems were designed
which exhibit key elements of the cell surface involved in adhesion and which
enable the simultaneous measurement of free energies of adhesion and adhe-
sion forces with high precision (for literature cf. Refs. [5, 6]). Test cells are
mimicked by giant vesicles with reconstituted homophilic receptors (such as
natural lipid coupled homophilic cell surface receptors [5]) or lipid-coupled
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Fig. 4. a) Design of mimetics of tissue surfaces. Fractions of giant extracellu-

lar matrix proteins or synthetic peptides (called “adhesion epitopes”) which are

specifically recognized by receptors (e.g. of the integrin family) are coupled to

lipids (via spacers) which are reconstituted into supported lipid monolayers or

bilayers. To avoid denaturing of the proteins, the lipid layers must be separated

from solid supports (e.g. semiconductors) by ultrathin polymer cushions. In

the example shown, these films are made by deposition of multilayers of cellu-

lose filaments exposing alkylchains (called hairy) [5]. On the left side the car-

toon shows adhesion epitopes of fibronectin composed of cyclic hexapeptide with

arginin-glycin-aspartate (RGD-) tripeptide sequence which are specifically rec-

ognized by integrin αvβ3 and the right side shows collagen epitopes composed

of a recombinant triple helix of collagen [L. Moroder, private communication].

b) Typical model system mimicking cell adhesion. Giant vesicle with reconsti-

tuted lipid-coupled RGD-ligands shown in a) serves as test cell and supported

membrane with reconstituted integrin receptors of blood platelets (α2bβ3) acts as

target cell or target tissue. To mimick the repulsion by the glycocalix, lipids with

macromolecular head groups (polyethyleneglycol) are reconstituted in one or both

membranes [6,7].

ligands (such as cyclic peptides with arginin-glycin-aspartate tripeptide mo-
tifs (so-called RGD-ligands) which are recognized by receptors of the in-
tegrin family; cf. Fig. 4). The generic long range repulsion is modeled
by embedding lipopolymers such as phospholipids with polyethyleneglycol
(= PEG) head groups (abbreviated as PEG-lipids or “repellers” in the fol-
lowing). Target cells are modelled by supported membranes with reconsti-
tuted receptors (such as integrins recognizing RGD-ligands) or lipid-coupled
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adhesion epitopes while target tissue is mimicked by coupling of adhesion
epitopes to ultrathin hydrophilic polymer cushions anchored on solids [5].

3 Microinterferometry: A versatile tool to evaluate adhesion strength
and forces

Microinterferometry is a most versatile technique (1) to visualize cell ad-
hesion and (2) to determine local free energies of adhesion or to measure
unbinding forces between membrane-bound receptor-ligand pairs [6]. The
technique (called reflection interference contrast microscopy RICM) is sum-
marized in Figure 5. The image is formed by interference of light reflected
from the surface of the adhering shells and from the biofunctionalized sub-
strate, respectively. It is essentially a Fourier transformation of the height
distribution h (x, y) of the adhering shell hovering over the substrate. The
surface profile of the shell can be reconstructed by inverse cosine transform
of the intensity distribution I (x, y) with a relative height resolution of about
1 nm and a lateral resolution of about 0.3 µm [5]. The maximum height
accessible is ∼5 µm, the time resolution is ∼10 ms. Several procedures for
the improvement of RICM image analysis have been developed [6].

4 Soft shell adhesion is controlled by a double well interfacial potential

The non-specific potential of interaction V (h) between an adherent soft
shell and the target cell or tissue is composed of several contributions (cf.
Appendix A). These include the (attractive) van der Waals potential Vvdw,
electrostatic interactions Vel, repulsive undulation forces Vund and the short
range repulsions exerted firstly by the supported membrane and secondly by
the repeller molecules of the glycocalix. For practical purposes it is useful to
fill the model cell with a higher density fluid which attributes a gravitational
potential Vg (h) and which corresponds to real biological situations.

The undulation force (discovered by W. Helfrich [8]) is a unique feature
of soft membranes. It is a consequence of thermal excitations of bending
undulation of the highly flexible bilayers (bending modulus κ ≈ 25 kBT ).
As illustrated in Figure 6, it results in a pronounced dynamic surface rough-
ness of the soft shell membrane. It counteracts adhesion since in order to
approach the membrane to the solid surface the Brownian motion has to
be frozen in and this corresponds to a decrease in entropy. The resulting
disjoining pressure is analogous to the pressure generated by a compressed
ideal gas. In biology, undulation forces may play a key role for the control
of adhesion of erythrocytes since these cells exhibit very strong undulatory
excitations. The undulations are suppressed in normal cell membranes.
At small membrane tensions (σ < 10−6 mN/m) the repulsion decays with
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Fig. 5. a) Schematic view of image formation by interference of light reflected

from the surface of the soft shell and from the substrate surface, respectively.

b) Interferogram of adhering vesicle on solid support with adhesion zone defined

by dark disc. The Newtonian fringes define the contour of the vesicle close to the

substrate. The horizontal line defines the direction of contour reconstruction b).

c) Schematic view of typical surface profile of soft shell vesicle adhering moder-

ate strength. Note that the profile exhibits a straight regime with the slope θ

defining a contact angle (very similar to a partially wetting fluid droplet on a

solid). However, the finite bending stiffness of the membrane leads to a smooth

transition from the free to the adherent membrane at the rim of the adhesion disc

defining a contour curvature Rc. The distance between the rim of the adhesion

disc (defined by the contact line L) and the intersection of the tangent to the

straight profile with the abscissa defines the capillary length λ =
�

κ/σ (κ is the

membrane bending modulus and σ is the membrane tension). λ is a measure for

the range of the membrane deformation dominated by bending elasticity that is

at x > λ the deformation is dominated by lateral membrane tension and at x < λ

by bending elasticity.

distance d, as Vund = (kBT )2/κd2 while it is reduced with increasing ten-
sion [8].

Even more important is the repulsion potential due to the repeller
molecules which plays the key role for the control of adhesion. It is not
only determined by the interaction potential due to the steric repulsion be-
tween the head groups but also by the chemical potential of the repellers
in the non-adherent part of the shell [6] and determines the depth of the
strong attraction potential [5, 6].
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Fig. 6. a) Demonstration of dynamic surface roughness of vesicles caused by

thermally excited bending undulations of lipid bilayer as visualized by temporal

change of local contrast of leopard-like pattern of adhesion disc (cf. left and

right image). The distance between dark and bright areas is about 250 nm.

b) Time fluctuation of membrane-substrate distance (at encircled area of a))

demonstrating the oscillatory transition of membrane between state of strong and

weak adhesion (courtesy of Stefanie Marx and Jörg Schilling).

Some of the interactions decrease hyperbolically with distance (such as
Vvdw and Vund which decay with the square of the inter-membrane distance)
while some decay exponentially (such as the electrostatic and steric forces).
It is obvious that the superposition yields a general potential V (h) consist-
ing of an attractive and a repulsive branch but that the different interaction
potentials cannot be determined separately. For moderate interaction po-
tentials, V (h) may be approximated by a harmonic potential [10, 11]

2V (h) = ∂2V/∂h2(h− h0)2 = V ′′0 (h− h0)2. (4.1)

Under this condition one always finds two limiting situations: at small
generic attractions the soft shells hover over the surface at a distance of
about 30 nm exhibiting strong flickering (since the adhesion induced tension
is small). At increasing attraction the shells start to adhere to the surface
forming a circular adhesion disc (as shown in Fig. 5b). The reason for this
transition to the adherent state is that the undulations are suppressed by
the adhesion-induced tension (which is in fact the case in Fig. 5b). In fact,
the “tension-induced” transition from the free to the bound state has typi-
cal features of a first order phase transition. As demonstrated by the time
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series of distance fluctuations in Figure 6, one finds an intermediate situation
where the membrane switches between a state of weak and strong adhesion,
suggesting that the adhesion is determined by a double well potential with
minima at a short (ho ∼ 10 nm) and a long distance (h1 ∼ 40 nm) [5, 6].

The reason for the appearance of a double well potential is the chemical
potential (µR = kBT · ln cR) of the repeller molecules (of concentration cR)
in the non-adherent part of the membrane which controls the relative height
of the two minima. At high repeller content the van der Waals minimum
Vvdw (ho) is higher than the shallow minimum and the vesicle hovers 30–
40 nm over the surface. With decreasing cR the Van der Waals minimum
is lowered and eventually becomes the absolute minimum resulting in the
transition from the weakly to the strongly bound state. The analysis of the
local interaction potential by the above flicker spectroscopy suggests the
following adhesion laws:

• Since the two minima are separated by an activation barrier this adhe-
sion transition is of first order and is a typical nucleation and growth
process. Therefore the initial phase of the adhesion process consists
in the formation of adhesion domains which can slowly merge into a
single adhesion disc;

• The repeller chemical potential µR corresponds to the osmotic pressure
πR exerted by the reservoir of repellers in the bulk (non-adhering part)
of the membrane. There exists a state of coexistence of weak and
strong adhesion when the two minima exhibit the same depth. This
occurs when the osmotic pressure becomes equal to the Van der Waals
adhesion energy πR = Wvdw [5, 12];

• The osmotic pressures of the repellers but also of the receptors in the
non-adherent part of the membrane [12] relax the strong attraction
forces by orders of magnitude as demonstrated in a model membrane
study by Nardi et al. [14] where oppositely charged lipids were used
as toy receptor-ligand pairs. This is absolutely necessary to maintain
the mechanical equilibrium between the intrinsic membrane tension
and the adhesion-induced tensions (which is determined by the Young
equation) at the contact line.

5 How is adhesion controlled by membrane elasticity?

The physical laws controlling the state of adhesion and the shape of soft
shells and of fluid droplets (e.g. of water on glass), respectively, share some
common features but differ in one aspect: the surface elasticity. The free
energy ∆Gad of a partially wetting fluid droplet (that is the work gained by
the partial spreading of a droplet) is equal to the gain in adhesion energy
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∆Gad = w ·Ac (where w is the specific adhesion energy and Ac the contact
area; cf. Fig. 5) minus the energy cost, σ∆O, associated with the increase,
∆O, of the surface area caused by the deformation of the initially spherical
droplet (σ is the surface tension):

∆G = −wAc + σ ·∆O. (5.1)

The work of adhesion of soft shells is also determined by these contributions
but, in addition, one has to consider the elastic energy ∆Gb associated with
the bending of the fluid shell. The bending deformation of a thin (non-
spherical) shell is determined by the mean curvature H = 1/R1 + 1/R2

(where R1 and R2 are the principal radii of curvature of the surface). If
the thickness of the shell (∆s ∼ 4 nm for bilayers) is small compared to
its radius (R ∼ 103 µm) the bending elastic energy associated with the
deformation of the initially flat plate into the adhering shell is, according to
Hook’s law, ∆Gbend = 1/2κ

∫ ∫
H2dO. κ is the two-dimensional bending

elastic modulus of the membrane which is measured in units of energy. It
is typically of the order of 25 kBT for lipid layers at 37 ◦C.

The total free energy (work) of adhesion is thus

∆Gadh = −wAc + σ∆O + 1/2κ
∫ ∫

H2dO. (5.2)

The state of adhesion and the shape of the adhering shell can in principle
be calculated by application of the variation calculus methods [13]. This is
a very complex problem which can only be solved analytically for the very
simple situation of a single-component bilayer vesicle adhering weakly on a
homogeneous smooth surface. The adhesion energy can then be accounted
for by a harmonic interfacial interaction potential (introduced above). The
problem has been solved by Lipowsky & Seifert [10] who showed that the
state of adhesion and the vesicle shape depends in a subtle way on two
parameters: the normalized adhesion energy w∗ = wR2/κ and the reduced
volume v = V/(4πR3/3) (where v is the ratio of the actual volume to the
volume of a sphere with the same membrane area A = 4πR2).

The balance between the gain in adhesion energy and the cost in bending
energy has surprising consequences. For instance by monotonous deflation
(decrease of v) a vesicle may undergo a transition from the free to the
bound state which can, however, be followed by an unbinding transition due
to local membrane budding. A second result is that the suppression of the
membrane bending excitation (and thus of the undulation force) by adhesion
induced membrane tension can induce a binding transition (tension-induced
switching).

In the case of mixed membranes (such as the system of Fig. 4) the vari-
ational problem can only be solved numerically. Fortunately, the adhesion
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energy and even the force exerted by receptor-ligand pairs can be measured
by interferometric analysis of the contour of soft shells close to the surface
on the basis of elastic boundary condition as shown below.

6 Measurement of adhesion strength by interferometric contour
analysis

The contour of adhering soft shells close to the contact line (which defines
the circumference of the contact disc) exhibits the general shape shown in
Figure 5c. The membrane is slightly bent at the contact line and goes
smoothly over into a straight line region and the contour is thus completely
defined by a contact curvature Rc and a contact angle θc. The straight line
region is a consequence of the membrane tension induced by the adhesion.
In analogy to the well-known Young law on the balance of surface tensions
(at the triple line of partially wetting fluid droplets) the contact angle is
related to the adhesion strength, W , according to

W = σ(1 − cos θc) (6.1)

W has the dimension of a surface pressure (force per unit length) and is
thus often called spreading pressure. Similarly, the contact curvature is
determined by the balance of bending moments which provides a second
relationship between the free adhesion energy and the contact curvature
W = κ/R2

c [10, 15].
The two boundary conditions provide a powerful tool to determine the

physical parameters W and σ through measurements of the geometric pa-
rameters θc and Rc (if the bending stiffness is measured in a separate ex-
periment e.g. by flicker analysis [8]).

A more rigorous analysis of the membrane deformation close to the con-
tact zone in terms of the boundary conditions provides a more general re-
lationship for the contour in the direction, s, perpendicular to the contact
line [6]

H (s) = θc (s− λ) + θcλ exp
{
− s
λ

}
· (6.2)

Where λ is the “capillary length” λ =
√
κ/σ, which is related to Rc as

Rc = θc · λ. By fitting this curve to the contour of the adhering shell (as
determined by the microinterferometric technique illustrated in Fig. 5) Rc

and θc and thus W and σ may be determined with high precision. Note
that λ has a simple meaning. It is the length over which the contour is
determined by the bending elasticity before it becomes tension dominated
and is typically λ ∼ 1 µm.
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7 Switching on specific forces: Adhesion as localized dewetting process

The adhesion scenario changes dramatically when specific forces are
switched-on. At low receptor densities of the order of cR ≤ 10 µm−2 (which
are comparable to the situation in real cells) the adhesion area decomposes
into domains of tight adhesion (formed by 2D assemblies of receptor ligand
pairs) which are separated by areas of weak adhesions which may exhibit
strong flickering. This phenomenon is reminiscent of the formation of ad-
hesion plaques or focal adhesion contact sites of adhering cells and it is in
both cases a consequence of adhesion-induced lateral receptor segregation.
The adhesion is driven by the lowering of the short range (van der Waals)
minimum of the double well potential by switching on the receptor-ligand
interaction potential Uoo (where Uoo is of the order of 10 kBT for integrin-
mediated lock-and-key forces corresponding to an energy density of about
10−4 J/m2). It can thus be understood in terms of a first order dewetting
transition of a two-dimensional fluid.

It is important to note that the adhesion domain formation is a transient
(nucleation and growth) process and that the domains merge in the time
course of hours. The coarsening is driven by the line tension arising due
to the bending deformation at the rim of the domains exhibiting a width
ξ = (κ/V ′′)1/4. V ′′ is defined in equation (4.1). ξ, which is defined in
Figure 7a, is called the correlation length [6, 11] and is of the order of
ξ ∼ 10 nm (that is much smaller than the capillary length λ). As is well
known from the dynamics of nucleation and growth, the merging of domains
with time t is very slow and follows a t1/3-law. In biomembranes the merging
of adhesion plaques is expected to be further slowed down by the attraction
between receptors, their coupling to focal adhesion complexes and actin
bundles. The domain structure is thus a quasi-static state on biological
time scales.

8 Measurement of unbinding forces, receptor-ligand leverage
and a new role for stress fibers

The thermodynamic concept described above breaks down if the binding
energy between receptor-ligand pairs becomes considerably larger than the
thermal energy (w ≥ 10 kBT ). This becomes most clearly evident if we
consider a situation of soft shells adhering through a small number of pinning
centers. These can be exposed and studied if one pulls the shell at the
top by a force F⊥ (applied through magnetic tweezers glued to the top
pole of the shell; cf. Fig. 8 and [6]). The contact line exhibits relatively
sharp protrusions of nearly triangular shape. A closer inspection also shows
that the tip of the protrusion has rounded edges exhibiting a radius of
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Fig. 7. a) Adhesion leads invariably to lateral segregation of receptors and ligands

resulting in the formation of tightly bound adhesion plaques (distance do ∼ 10 nm)

separated by weakly adhering often flickering regions (with distance d1 ∼ 30 nm)

determined by repeller repulsion and undulation forces. The adhesion may be

described as a localized dewetting transition. Note that membrane forms a dimple

near adhesion plaques extending over a correlation length of ξ ∼ 20 nm. µL and

µp are the chemical potentials of the repeller (xi molar fractions). b) RICM image

of cell model adhering through tight adhesion plaques (encircled and indicated by

arrows).

curvature ρc [17]. These edges can only exist if they are stabilized by a line
force f mediated by the membrane tension (cf. [15], Sect. 12). The vertical
component f⊥ which balances the force generated by the receptor-ligand
pairs is related to the contour ζ (h) of the shell above the substrate (defined
in Fig. 8a)

f⊥ = κ
(
ζ′′′ + ρ−1

c ζ′′
)

(8.1)

(with ζ′ = ∂ζ/∂h). This equation follows from the boundary condition for
the mechanical stability of an adhering plate with a curved contour and is
derived in reference [15] (Sect. 12). It is a second order boundary condition
since it depends on the third derivative of the vertical deflection of the shell
and κ · ζ′′′ is the gradient of the bending moment. However, for small radii
of curvatures of the contour (ρc) the force f⊥ becomes large and the second
order boundary condition becomes important. The contour at distances
r > λ from the edge of the pinning center is no longer a straight line as
in the regions of weak adhesion but the slope decreases with the inter-
membrane distance h as ζ′ = Fλ/2πσr. The components of the line force
f⊥ perpendicular to the substrate can be determined by the following trick
(illustrated in Fig. 8b). Since the membrane tension σ of fluid membranes is
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Fig. 8. a) Magnetic tweezer technique to expose pinning centers by pulling vesicle

in vertical direction with force Fm. ζ is the distance between the substrate and

the membrane. b) Exposure of pinning center along contact line by application of

force at top vesicle with magnetic tweezer. The white lines parallel to the contour

line mark contours of equal height above surface yielding local contact angle. Note

that the contact line of the pinning center exhibits a triangular shape forming an

angle with round tips of radius ρc. c) Plot of line force (force per unit length)

along contact line from which receptor-ligand unbinding force can be measured.

isotropic it can be measured by analyzing the contour at any region of weak
adhesion along the contact line. If θc (s) is measured along the contours the
vertical line force is:

f⊥ = σ sin θc (s) (8.2)

and is related to the applied force as F⊥ = σ
∫

sin θc (s) ds. θc (s) can often
be measured by the distance ∆d (s) between the first and second interference
fringe yielding f⊥ (s). Figure 8b shows a plot of f⊥ (s) along the contour
and the sharp peaks clearly define the pinning centers. By simultaneously
measuring f⊥ and the radius of the pinning centers while F⊥ is increased,
one can measure the line force where the bonds break and thus obtain the
binding force per link if the receptor density is known.

A very surprising result is that bonds break at very weak forces
(∼1 pN). It has been postulated [6] that this is caused by the leverage
of the receptor-ligand bond due to an amplification of the unbinding force
by the bending moment exerted by the external force on the site of the
receptor-ligand pairs. This finding attributes a new role to the stabiliza-
tion of sites of cell adhesion by focal adhesion complexes associated with
stress fibers. By this trick, nature prevents the disrupture of cells subjected
to large hydrodynamic shear stresses such as endothelial cells lining in the
blood vessels.
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9 An application: Modification of cellular adhesion strength
by cytoskeletal mutations

The microoptical method opens new possibilities to quantify the cell adhe-
sion strength in order to explore the effect of mutations or deceases on
cell-adhesion. Very often cytoskeletal mutations do not affect the phe-
nomenological behavior of cells substantially, and quantitative methods of
characterization are necessary [18]. On the other side, specific mutations
provide a valuable tool to induce distinct structural alterations of the com-
posite membrane for systematic studies of the correlations between mem-
brane structure and adhesion. Thus, the effect of the coupling strength of
the actin cortex to the lipid/protein bilayer has been studied by removal of
the actin-membrane coupling protein talin (cf. Fig. 2a).

In order to measure the work of adhesion, the membrane tension and
the bending modulus simultaneously, the changes of the surface profile by
hydrodynamic shear fields were measured. As shown in Table 1 the mem-
brane bending stiffness of the talin-deficient mutant is decreased by a factor
of 20 and the adhesion strength W by a factor of 5. In fact, the bending
stiffness of the mutant agrees well with that of the pure bilayer containing
50 mole% cholesterol. Two major messages of this experiment are: (i) talin
is indeed essential for the coupling of the actin cortex to the membrane and
(ii) the adhesion strength is closely related to membrane bending stiffness.

Table 1. Effect of knock-out of talin on the bending stiffness of the cellular

envelope and on adhesion strength (according to Simson et al. [18]).

Cell type κ [kBT ] Wad

[
µJ/m2

]
wild type 1000 20

mutant 50 5

10 Conclusions

Insight into the physical basis of cell adhesion is gained by interferometric
studies of vesicles or cells adhering on substrates which mimick the role
of cell or tissue surfaces and adhesion forces can be measured locally by
analysis of the contour of adhering shell in terms of the equilibrium of
elastic stresses close to the adhesion zone.

The adhesion process is controlled by interplay of short range specific
forces between repeller-ligand pairs and long range repulsion between cell
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surface molecules forming the glycocalix. This competition can lead to
spontaneous segregation of receptors resulting in the formation of tight ad-
hesion domains similar to the generation of focal contact sites of adhering
cells. The adhesion process shares common features with a first order dewet-
ting transition which explains why a rather small number of receptors can
drive cell adhesion. The merging of the adhesion plaques is very slow (typ-
ical for coarsening processes) and could be further slowed down by the cou-
pling of cell receptors to the actin cortex. The adhesion strength is closely
related to the membrane elasticity and thus to the receptor-cytoskeleton
coupling and its measurement can yield valuable insight into modification
of the actin cortex by mutations or cell damaging agents.

Our model membrane studies attribute an important role to the glyco-
calix, namely the maintenance of mechanical equilibrium of adhering cells.
Mobile repeller molecules (but also non-adherent receptors) in the non-
adhering part of adhering soft shells exerts a two-dimensional osmotic pres-
sure on the adhering membrane fraction which relaxes strong receptor-ligand
forces. Surprisingly weak forces on adhering shells (e.g. hydrodynamic shear
forces) can disrupt receptor-ligand pairs due to leverage. This could be the
reason for the strategy of cells to stabilize adhesion plaques by stress fibers.

We greatly appreciate the help of Nikita Ter-Oganessian with the preparation of the
manuscript.

A Appendix: Generic interfacial forces

Below we summarize the essential generic interfacial forces governing the
adhesion of soft shells. The modification of these forces by steric repul-
sion associated with membrane undulations (or the dynamic surface rough-
ness) are discussed at the end. The dominant forces are the ubiquitous
Van der Waals and electrostatic forces, short range steric or solvation in-
duced forces and steric repulsion mediated by repellers of the glycocalix
and/or of the target tissue.

The Van der Waals attraction between a membrane of thickness δ
(∼2 nm) and planar surface can be expressed as

VVdW ≈ − H

12π

(
1
h2
− 1

(h+ δ)2

)
(A.1)

where H is the Hamaer constant and is of the order of kBT . The adhesion
energy for a distance of h ≈ 10 nm (the distance enforced typically by
repellers) is VVdW ∼ 10−6 J/m2. It is by an order of magnitude smaller for
two interacting bilayers. For bare membranes d is about 2 nm (cf. Evans
et al.) and VVdW ∼ 10−5 J/m2. The electrostatic interaction between
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two differently charged membranes in the presence of electrolyte exhibiting
charge densities (per unit area) σ1 and σ2, respectively, is best expressed in
terms of the disjoining pressure P = ∂V/∂h [19].

P (h) =
8π
ε

(
σ2

1 + σ2
2 − 2 |σ1|σ2 cosκh

)
(2 sinκh)2

∝ e−κh (A.2)

where ε is the dielectric constant (ε ≈ 80) and κ is the Debye screening
length which depends on the salt concentration

κ2
D =

8πe2c
εkBT

· (A.3)

(Note that for room temperature the screening length (in units of nm) is
κ−1

D = 3.08
√
c
−1 where the salt concentration c is measured in units of

mole/l).
If the two membranes exhibit the same sign of the surface charge the

electrostatic force is repulsive and counteracts the Van der Waals attraction.
An extensive discussion of adhesion mediated by attractive electrostatic
forces between oppositely charged receptor-ligand pairs can be found in [14].

There are several contributions to the short range steric repulsion. A
contribution which becomes only relevant at distances of ∼0.2 nm is the
dehydration force associated with the removal of hydration water between
the interfaces. The potential decays exponentially: Vhyd = V0 exp {−h/λ}
with a screening length of λ ∼ 0.3 nm [20]. A steric short range repulsive
force arises for the case of the adhesion of cells or cell models on biofunc-
tionalized solid supports due to the repulsion exerted by the surface protein
layer. It dominates the short range repulsion at full hydration and can also
be expressed in terms of an exponential law Vrep = K/h exp {−h/τ}, where
K is the compression modulus of the protein cover and τ the thickness of
the biofunctional film [12].

The third and under practical conditions most important short range
force is the repulsion mediated by the glycocalix. It depends critically on
the surface concentration cR and the mobility of repeller molecules (besides
the Van der Waals radius of the headgroup). An approximate expression for
the interaction potential can be given for the model systems where lipids
with polyethyleneoxide head groups are used as repellers (cf. Bruinsma
et al. [6]). The size of the head group is determined by the Flory radius
of the flexible macromolecule. For the specific (saturation) situation that
the concentration of the repellers is adjusted in such a way that the head
groups (of radius Rg) start to overlap (cRR2

g ≈ 1) the repulsion potential
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can be expressed as (cf. Bruinsma et al. [6])

Vrep (h) =
π2

6
kBTcR

(
Rg

h

)2

exp

{
−1.5

(
h

Rg

)2
}
· (A.4)

For cells the situation is more complicated but it is still possible to define
an effective Flory radius of the semiflexible head groups such as chains of
IgG-like domains and a similar exponential expression is expected to hold.

Much more important than the detailed structure of the membrane
proteins forming the glycocalix is the fact that the repellers are in gen-
eral mobile and can exchange between the adhesion zone and the bulk of
the non-adherent membrane fraction. The repeller molecules in the non-
adherent (bulk) membrane fraction provide a reservoir of fixed chemical
potential µR,bulk = kBT ln

{
c◦R/R

2
g

}
which modifies the repulsive interac-

tion potential. In equilibrium µR,bulk must be equal to the repeller chem-
ical potential, µR, in the adhesion zone. The effective thermodynamic po-
tential of the repellers in the adhesion zone is determined by the sum of
the bare repulsion potential Vrep (Eq. (A.4)) and the translational entropy
(kBT · ln cR (h) /R2

g) where the concentration of the repellers depends on the
interfacial distance h. The effective potential which depends now on c◦R is

VR,eff (h) = kBT

{
1− exp

{
−π

2

6

(
Rg

h

)2

exp

{
−1.5

(
h

Rg

)2
}}}

· (A.5)

It is now helpful to consider two limiting situations:
For large interfacial distances h� Rg one obtains

Vrep (h) ≈ kBTc
◦
R

(
Rg

h

)
exp

{
−3

2

(
h

Rg

)2
}

(A.6)

which corresponds to the interaction potential at fixed concentration c◦R of
the repeller.

For h� Rg one obtains

Vrep (h) = kBTc
◦
R (A.7)

which is the maximum value of Vrep (h) and corresponds to the two-dimen-
sional osmotic pressure of the repeller.

The interplay between Van der Waals attraction and the thermody-
namic repulsive interaction potential of the repellers has two important
consequences

• The interaction potential can exhibit two minima corresponding to a
state of strong adhesion (the Van der Waals minimum) and a state of
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weak adhesion. On physically or chemically rough surfaces (exhibiting
lateral inhomogeneities of the interaction potential VVdW) this can
lead to a decomposition of the adhesion zones into domains of tight
adhesion separated by regions of weak coupling;

• With increasing repeller concentration the depth of the Van der Waals
minimum is shifted to higher energies and reaches the value of the
shallow minimum at c◦RR

2
g ≈ 0.6. Since the two minima are separated

by an activation barrier this leads to a first order unbinding transition
of the adhering shell driven by the chemical potential of the repellers;

• The binding strength of the tight adhesion is strongly reduced by
the lateral osmotic pressure exerted by the repeller molecules in the
non-adherent membrane fraction, a point discussed in the main text
(cf. Ref. [21] for an experimental verification).

Consider now the effect of undulation forces. This beautiful concept was
introduced by Helfrich to explain the spontaneous swelling of lipid multi-
layers. It is an entropic force associated with the gradual freezing-in of long
wavelength bending excitations if a flickering membrane approaches a sur-
face. The decrease in entropy gives rise to a repulsive disjoining pressure
Pund which can be estimated as follows [22]. The bending excitations are
statistically excited local events and local deflections U (r, t) decay with a
correlation length ζp [22,23]. Because ζp (∼1 µm) is small compared to the
size of vesicles or cells (erythrocytes) we can consider the soft shell to be
composed of small segments (cushions) of dimension ζp · ζp which exhibit
independent Brownian motions in the normal direction. In the Helfrich im-
age a disjoining pressure arises due to the local collisions of the membrane
segments with the wall, similar to the pressure generated by an ideal gas
through the momentum transfer onto the wall. Since equipartition theory
predicts an energy transfer of kBT per collision the undulation pressure is

Pund =
kBT

2ζ2
p · 〈h〉

(A.8)

where 〈h〉 is the average distance between the two interfaces.
The correlation length ζp is proportional to the average distance 〈h〉

according to ζp ≈
√
κ/kBT 〈h〉. This relationship follows from the condi-

tions that the mean square amplitude (the so-called roughness)
〈
u2

L

〉
of a

membrane segment L ∗ L is
〈
u2

L

〉
= (kBT/κ)L2. This relationship follows

by integrating over all bending modes of amplitude u2
q = kBT/κq

4L2 from
q = π/L to q = π/∆, with ∆ the membrane thickness. The roughness of a
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membrane at average distance 〈h〉 must be
〈
u2

L

〉 ≤ 〈h〉2. It therefore follows

Pund = c
kBT

〈h3〉 · (A.9)

For one-component membranes the constant c has been more rigorously
calculated by renormalization group calculations [23] and by Monte Carlo
simulations to c = 0.1 and is considered as a universal number. The sit-
uation may be quite different for mixed membranes due to concentration
fluctuations induced by the interaction of soft membranes with surface (S.
Marx et al., unpublished data of authors laboratory).
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BIOLOGICAL PHYSICS IN SILICO

R.H. Austin

Abstract

The following set of notes outlines the work that my colleagues and I
have been doing for the past 10 years which have exploited the oppor-
tunities that that silicon micro to nanomachining technologies pro-
vide in biological physics. This work started with my graduate stu-
dent Wayne Volkmuth and has grown to include the efforts of a great
many people, including but being limited to the following faculty:
Tom Duke (University of Cambridge Physics), Ted Cox (Princeton
Molecular Biology), Harold Craighead (Cornell University Applied
Physics), Jim Sturm (Princeton University Electrical Engineering),
Steve Chou (Princeton University Electrical Engineering), Paul Kohl
(Georgia Institute of Technology), Lois Pollack (Cornell University
Applied Physics, Bill Eaton (National Institutes of Health), Klaus
Gehardt (Bochum University, Germany); and the following students
and post docs: Wayne Volkmuth, Jim Brody, Judith Castellino, Rob
Carlson, Olgica Bakajin, Jeff Chou, Jonas Tegenfeldt, Richard Huang,
Christelle Prinz and Nick Darnton. To everybody, thanks for all the
hard days and nights.

This work has been generously supported by the National Science
Foundation, The Office of Naval Research, The National Institutes of
Health, and the Defense Research Projects Administration.

1 Why micro/nanofabrication?

The integrated circuit revolution, made possible by microfabrication tech-
nology, is just now entering the world of biology. I am old enough to have

This work has been generously supported by the following granting agencies of the United
States of America: Office of Naval Research, The National Institutes of Health, The
National Science Foundation, the Defense Research Project Administration. Without
their support, none of this work could have been done. I would also like to thank my
lovely wife Shirley Chan, a formidable biological physicist, for helping me deal with all
things. Henrik Flyvbjerg deserves so much credit for expertly and patiently organizing
the entire proceedings.

c© EDP Sciences, Springer-Verlag 2002
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built a Heath Kit tube tuner and amplifier, and to notice that the trans-
fer characteristics of a FET resemble a triode. So, I know the revolution
that can happen. When I first realized that that micro and nanofabrication
technologies could be used to change the face of biology I launched into a
major campaign to realize this goal. I have long since been passed by people
smarter and more energetic than I, but I must say it has been a good trip.

The world of biology is inherently on the micron and below scale, and
this is where microfabrication lives. We can process, examine, move bio-
logical objects at their natural length scale. Further, the world of biology
is all about heterogenity: no two objects are alike. Sometimes, the rarest
one is the most interesting. Microfabricated devices, which basically are
“flatlanders” can find those rare ones.

I WON’T speak much in these lectures about “gene chip” technology,
which uses spots of hybridized small DNA molecules (olgionucleotides) to
measure patterns of gene expression. This technology is under furious devel-
opment by many gene chip companies and while very powerful is reaching
maturity (and past-IPO status). Instead, I want to talk a bit about efforts
to utilize physics to probe biological objects. It will be a very parochial view
from my own lab, so if what I say doesn’t interest you be aware that there
are many other excellent efforts in physics departments across the country.

To give focus and motivation to this introuction, let’s discuss how we
might use micro/nanofabrication to attack the real killer out there: cancer.

Cancer is basically a break-down in the control logic of the cell: instead
of behaving like a well behaved, differentiated, loyal part of some organ,
in cancer a cell becomes a rebel and ignores the control rules. Sometimes
this can happen due to a single gene mutation, but usually it is caused
by a what is called genetic instability: many mistakes in the genome and
the attendant breakdown in the highly controlled biological networks that
control organisms. Cancer is thus difficult because it is not due to some
single organism but rather to the summed effects of many perturbants to a
system.

It is often a mistake amongst physicists to think that DNA is all of
biology. It is true that DNA contains the code for you. There are about
3 billion basepairs in the human genome, or about 1 meter of DNA. The
total length of DNA reaches from the center of the sun to about Pluto.
Nearly all the 1014 cells in your body contain the SAME genome. Probably
each cell has a slightly different genetic sequence. But, it isn’t the genome
that makes each cell different. Promoter and repressor proteins, which bind
to specific parts of the genome, control expression. The CYTOPLASM
of the cells contains the DYNAMIC control information. The DNA is the
ROM, the proteins are the OS that makes a liver cell a liver cell. That’s why
there was all the excitement about Dolly: they took the NUCLEUS from
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a fully differentiated cell in the udder, put it into the egg cell of another
sheep which presumably had the right protein content to reset the clock,
and transformed a mature cell into a “fertilized” egg. In some respects,
this is what cancer does: goes BACK in time, to embryo level. Since I am
among non-biologists, I can let you in on a little secret: biology experiments
basically never work MOST of the time, once in awhile things work and you
publish that one good result.

Shhhhh....keep it quiet.
In the case of Dolly, it took about 300 tries to get a egg that developed

into a normal sheep. And I also note that “Dolly”, the world’s first cloned
mammal, has arthritis, one of her creators said today, heightening fears that
cloning causes genetic defects that would make animal clones unsafe for use
in human medicine. Professor Ian Wilmut, of the Edinburgh-based Roslin
Institute, who led the team that cloned the sheep, said defects were possible
and that cloning methods were still “inefficient”. (Manchester Guardian,
January 4, 2002.)

Fig. 1. Dolly(s).

There is a rather new term being used by biologists that gives a word to
the realization that the genome itself while important is by now means the
final word in what makes all the cells in your body so different... after all,
they all contain the same genome but morphologically and chemically are
quite different. The word is “Epigenetics”, meaning that there is something
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over and above genomics per se, the sequence of basepairs in the genome.
Epigentics can narrowly mean the chemical modification of the DNA by the
addition of typically a methyl group, or more broadly the dynamic occupa-
tion of promoter and repressor sites on the genome. This is an extremely
difficult area to get at using conventional biological tools. Epigenetics al-
most by definition involves studying the unique behavior of (ideally) single
cells as a function of time, watching the way that the system controls the
expression of the genome and the subsequent response of the organism. It
is an impossible task, rather like trying to compute the wavefunction of the
world if I can draw an analogy. However, in principle the technology I dis-
cuss, in the hands of people smarter and with more energy that I can, can
make a serious attack on this goal. Unfortunately, much of what I discuss
at the start must be of a technological nature because that is where the
main raodblock is at present.

My lectures at the les Houches summer school consisted of 6 subjects,
although I badly misjudged my time and crushed things at the end, helping
nobody in the process. Some of these lectures are new, some are heavily
based upon previously published work. Unlike many of the les Houches
speakers, I am a simple experimentalist who still tries to keep in the lab,
and piles on teaching responsibilities and obligations to my community of
fellow physicists and biology the work load can be crushing... but exciting,
at times.

Lecture 1a: Why silicon micro/nanomachining? What problems are
you going after?

Lecture 1b: Hydrodynamic and electrodynamic transport in a 2.5 D
world.

Lecture 2: Fractionation of DNA in a micro/nano world
Lecture 3: Going after epigenetics
Lecture 4: Cell Fractionation in a micro world
Lecture 5: Protein folding and dynamics using a micromachined device

I have made a brief stab at the Introduction, now on to Lecture 1.
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Abstract

I’m going to start with a basic discussion of the Navier-Stokes equa-
tion in a flat world and show how it is actually a rather subtle subject.
Applications will be discussed later. We show that by applying a pos-
sibly complicated set of boundary values in the x − y plane we can
properly model and control flows in planar microfabricated structures.
We also show that the hydrodynamic impedance change in moving
from one set of confining structure to another greatly influences the
streamlines of the flow pattern in somewhat non-intuitive ways. We
consider how understanding of hydrodynamics in 2 1/2 D can help us
form a thin stream of one liquid imbedded in another liquid, that we
refer to as “injector jet”. Finally we extend these ideas to possibili-
ties of precisely controlled complex flow patterns in microfabricated
fluidic devices.

This talk is directly driven by our work using micro/nanofabrication in
biotechnology and molecular biology. I am NOT interested per se in nanoflu-
idics, I only use it as a tool to do biological physics. I have learned, to my
sorrow, that if you DON’T understand micro/nanofluidics you make ma-
jor mistakes. We transport objects in our chips using primarily two forces,
hydrodynamic and electrophoretic. I want to stress right away that the
two forces are very closely connected because of the counter-ion shielding
of polyelectrolytes in solution. This means that ions moving in the solution
pull via hydrodynamic drag on the polyelectrolyte and this shearing action
basically cuts off long-range hydrodynamic interactions. This has profound
consequences. For the second part of lecture 1 I will discuss the dielec-
trophoretic response of DNA molecules, because I think that this aspect of
the response of a polymer to an AC electric field is a fundamental part of
how you can move and separate molecules in silico.

1 Introduction: The need to control flows in 2 1/2 D

The problems of fluid transport that are usually considered describe fluid
flow in pipes, a system in which one dimension, the length, is much greater
than the two other dimensions. There are, however, many occasions where
one wants to control fluid flow in a sheet, a system where two of the di-
mensions, length and width, are much larger than the third, the height.
What we call here “2 1/2-D hydrodynamics” describes such sheet flow. A
familiar example of a 2 1/2-D system is the flow of air that gives rise to
the weather. A typical pattern of clouds shown in Figure 1 arises from the
turbulent flow pattern of air in the layer of atmosphere that is only at the
most 10 km thick which is much smaller than Earth’s diameter of 12 700 km.
The turbulent nature of this sheet flow makes the weather so notoriously
difficult to predict. The 2 1/2-D flows in the low Reynolds number world
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of the microfabricated chip can be predicted and controlled, particularly if
some basic aspects of hydrodynamics under the unique conditions of low
Reynolds number flow are understood.

Fig. 1. A snapshot from GEOS-8 of clouds over the surface of the earth. Courtesy

of NASA-Goddard Space Flight Center.

Understanding of 2 1/2 D flows is of great importance for the rapidly
developing field of bio-device miniaturization. Over the past decade there
have been immense efforts directed towards miniaturization of bio-analysis
systems through applications of microfabrication. The goal is to inte-
grate different micro components into a single micro total analysis system
(µTAS) [1] and run an array of such systems in parallel. So far, many es-
sential components of the µTAS have been demonstrated to perform better
than their large scale equivalents. New technologies for sorting and mixing
of biomolecules [2] and for fractionation of cells from blood [3] have also
arisen.

Highly integrated lab-on-a-chip devices have also been proven feasi-
ble [4–6]. For example, capillary electrophoresis (CE) on microchips has
been applied to the analysis of nucleic acids, amino acids, and other types of
samples [7]. Other microfabricated electrophoretic devices, such as entropic
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trap arrays [8], could utilize new mechanisms to enable faster fractiona-
tion of macromolecules with better resolution than conventional gel elec-
trophoresis. Various types of microfluidic pumps [9] which can potentially
be used to transfer samples on microchips have also been demonstrated.
Many other applications, such as polymerase chain reaction (PCR) [11, 12]
and fluorescence-activated cell sorting (FACS) [13,14], have been performed
on microchips. Microfabrication is the method of choice for integration of
all these miniaturized components into a micro-total analysis system. Since
microfabrication is basically a set of planar processes applied to planar sub-
strates, the fluid flows in microfabricated devices are often effectively two
dimensional. The thickness of the fluid flow sheet, however, cannot be ig-
nored. The flow in these systems is NOT uniform and unbounded in the
x−y plane. The z dimension, although small compared to the characteristic
sizes of the x − y plane, cannot be set to zero. In this lecture we refer to
such geometries (shown in Fig. 2) as “2 1/2” dimensional.

Fig. 2. The xyz coordinate system considered for the rest of this lecture. The etch

depth h in the z direction is considerably smaller than any confining boundaries

in the x − y plane.

2 Somewhat simple hydrodynamics in 2 1/2 D

In the derivation of the Navier-Stokes equation, Newton’s law is of course
the starting point [15]. We consider �F = m�a for a small element of fluid
of mass dm = ρ dxdy dz under the influence of a force. Since when using
Newton’s law one always has to follow the motion of the same atoms, the
elemental boundaries dx, dy and dz enclosing the mass dm change as the
tubing twists and turns out that in order to find the true acceleration one
has to worry about the spatial derivatives as well as the simple ∂�v/∂t. This
transforms the simple total derivative into a convective derivative and in
the end the acceleration �a is broken into two terms. Some careful thought,
beautifully described in Feynman’s Lectures, [16] then yields the famous
Navier-Stokes Equation that describes the movement of a viscous fluid of



“austin”
2002/9/13
page 322

�

�

�

�

�

�

�

�

322 Physics of Bio-Molecules and Cells

density ρ and viscosity η:

−∇P + η∇2�v = ρ

(
∂�v

∂t
+ (�v · ∇)�v

)
. (2.1)

The above equation says that the forces per unit volume due to a pressure
gradient (∇P ) and shear (η∇2�v) are equal to the mass per unit volume (ρ)
times the acceleration of the fluid. The right hand side terms are sometimes
referred to as the “inertial forces”, although they are not forces in the strict
physics use of the word. If there are additional forces acting on the fluid
(for instance, gravity), these terms are just added onto the left hand side
(ρ�g). The Navier-Stokes equation is a non-linear equation in velocity v
which makes it analytically unsolvable in a general case. However, when
appropriate approximations are made, the Navier-Stokes equation can be
reduced and solved.

A useful concept in fluid dynamics is the ratio of the inertial forces (the
right hand side of Eq. (2.1)) to the viscous forces for steady flow because
it determines what terms of the Navier-Stokes equation can be ignored in
a particular situation. In steady flow, the velocity is independent of time,
so ∂�v/∂t = 0. The magnitude of the inertial forces expressed in the term
ρ(�v · ∇)�v is ρv2/l, where l is a typical length scale over which the velocity
changes, i.e., it is the effective size of the spatial derivative d�r in Navier-
Stokes Equation. The viscous force, η∇2�v goes as ηv/l2. This ratio, referred
to as the Reynolds number is usually written as:

Re =
ρlv

η
· (2.2)

In the microfabricated world that we are interested in, with water as the
transporting fluid, the typical dimensions of the system set some limits to Re

and allow us to significantly reduce the Navier-Stokes equation. The length
over which velocity changes l is at most 0.01 cm, the density ρ is 1 gm/cm3

and the viscosity η is 0.01 gm/cm/s. Hence, Re is less than 1 for fluid
velocities less than 100 cm/s, a huge velocity on a chip. Since Re in the
chip is low, we can safely drop the non-linear inertial term ρ(�v · ∇)�v from
equation (2.1). In addition, we are interested in the steady state flow with
no time dependence of the velocity fields (∂v/∂t = 0). The vector equation
that describes our system is then:

η∇2�v = ∇P. (2.3)

The second equation that our system obeys follows directly from the in-
compressibility of water. At the modest pressures and flows found in the
world of microfabricated chips the compressibility of water is negligible.
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Therefore, all solutions to the equation (2.3) will also be divergence free:

∇ • �v = 0. (2.4)

The type of flow encountered in microfabricated structures has certain un-
intuitive characteristics. It is known by various names: “Stokes Flow”,
“Creeping Flow”, “Potential Flow”, or most simply and clearly “Low
Reynolds Number Flow”. At low Re the fluid flow is determined entirely
by the pressure distribution and, of course, the boundary conditions (v = 0
at the walls). The boundaries of a flow chamber have a profound effect on
the flow profile. Such effects determine the relationship between pressure
gradients and volumetric flow rates, the uniformity of velocity profiles trans-
verse to the mean flow direction, as well as aspects of advection-enhanced
diffusion (that is, enhancement of mixing by shearing flow – Taylor diffu-
sion). Note also that equation (2.3) contains no time derivatives, unlike the
general case of the Navier-Stokes equation (2.1). Because of this, under low
Reynolds number conditions all motion is symmetric in time, meaning that
if the pressures or forces exerted on the fluid are reversed the motion in
the fluid is completely reversed [17]. While at high Reynolds number, it is
virtually impossible to move a fluid and then return it to its original state,
at low Reynolds numbers (<1) this is easily done.

We start solving the Navier-Stokes equation by considering the most
important physical situation encountered: the flow through a long channel.
Surprising predictions for the flow profile in this case are easy to obtain.
For both pipe (cylindrical) and channel (rectangular) flow, we consider a
conduit of infinite extent in the z-direction, with a (fixed) pressure gradient:

∂P

∂z
= −G, (2.5)

with G > 0. The velocity field is �v(x, y) = u(x, y)�̂ez, and is automatically
divergence-free for any scalar function u(x, y). In the case of flow through
a cylindrical pipe, the azimuthal symmetry yields

1
r

∂

∂r

(
r
∂u

∂r

)
= −G

η
· (2.6)

With boundary condition u(R) = 0. The solution is:

u(r) =
G

4η
(
R2 − r2) . (2.7)

This is the usual parabolic flow profile. It is of great interest to note that
the flow is proportion simply to the gradient in the pressure with distance.
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Thus, we can find a very simple relationship between the total rate of fluid
flow Q from a pipe of length L and the pressure drop δP across the pipe:

ZQ = δP ; Z =
8ηL
πR4

· (2.8)

This is nothing more than Ohm’s law. Ohm’s law is simply the flow of
electrons at low Re!

Although we derived this simple proportionality between flow and pres-
sure using the special case of an infinitely long cylindrical pipe at low
Reynolds number, the relationship holds for any long conduit of any cross
section, and even up to moderate Reynolds numbers. This original discovery
that Q ∝ δP dates back to Henry Darcy’s experiments with sand traps in
the 1850’s [18]. Provided the Navier-Stokes equation (2.1) can be reduced to
a linear form, we will always find that δP ∝ v, and of course Q ∝ v as well.
The pesky nonlinearity on the right hand side of (2.1) is caused by curving
flows. When confined to a long, straight channel in the ẑ-direction, any
fluid will eventually achieve a uniform flow with �v(x, y) = u(x, y)�̂ez. The
nonlinear term in the Navier-Stokes equation (∇ · �v)�v = (∂u/∂z)�v vanishes
because u does not depend on z. With the nonlinear term removed, we will
always find that A ∝ δP . At intermediate Reynolds numbers (Re > 1, but
still laminar flow), the flow entering the mouth of a pipe will take longer
to settle into a steady state. This simply means that we must expand the
definition of a “long” pipe to allow a greater region at the entrance and
exit of the pipe where transients will produce a deviation from the linear
law. The hydrodynamic circuits at low Re can, therefore, be modeled by
simple resistive networks. This a huge computational advantage compared
to those poor souls trying to predict the weather.

So far we have solved a 1-D flow problem in the pipe and we are now
going to discuss flows in systems that are wide and shallow. We found that
the flow in a pipe is a linear function of the pressure drop across the pipe.
Much of what we want do using microfabricated chips, however, involves
large 2-D areas (Fig. 2) rather than narrow pipes. What happens when a
pipe injects fluid into a large area? You might be tempted to think that in
the case of laminar flow that a “jet” of fluid injected into the area would
continue onwards into the area as a well defined “jet stream”. That is
actually a case in a high Re situation where the inertial terms dominate.
In low Re situations the viscous damping terms dominate and fight against
any high shear environment. Consequently the jet “instantly” slows down
to the average rate of flow in the new area. Due to the conservation of mass,
it then broadens enormously.

We now make a subtle step by moving from truly three dimensional
flow to flow in wide area in the x − y plane which is thin along the
z-axis. In this wide area we assume that the thickness of the area h is
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much smaller than the lateral dimensions hx and hy (Fig. 2). We hope that
we can separate variables by writing �v(x, y, z) = �u(x, y) · f(z). By consid-
ering the flow profile in the thin dimension z, we move from a case in 2-D
in which the flow would be infinitely deep to the 2 1/2 D case in which
the flow is shallow. Since the sheet flow is much thinner than it is wide or
long, the most important boundary condition is the stick condition at the
top and bottom surface. It is the shear forces against these surfaces which
restrict how fast the fluid can move. The sides that are a thousand times
farther away than the top and bottom control the direction in which the
fluid moves. The stick boundary conditions on the top and bottom surface
thus will dominate and set up a standard parabolic profile:

f(z) = 1− (2z/h)2. (2.9)

where h is the depth of the chip: 7 microns in the chip used below. This
is sometimes known as the Darcy approximation [18]. Substitution of this
form for �v into equation (2.3) gives:

∇2�u(x, y) · f(z) +
2
h2
�u(x, y) = ∇P (x, y), (2.10)

where ∇2 now refers only to the dimensions x and y. Note that you can get
the same equation by making the approximation

∂2

∂z2
� ∂2

∂x2
,
∂2

∂y2
(2.11)

directly in equation (2.3), separating variables, deducing the parabolic form
for the z-dependence, and eliminating the z-coordinate.

Given that �u has to be divergence free, it is convenient to define the
scalar stream function Ψ(x, y) which allows us to simplify the equation we
need to solve for a shallow chip even further and end up with a simple
Laplace’s equation. The stream function is defined so that �u ∼ ∇× (Ψ�̂ez).
By taking the curl of equation (2.10) and substituting this form of Ψ(x, y)
after some vector identities we obtain:(

f(z)∇2 +
2
h2

)
∇2Ψ = 0. (2.12)

Considering that the entire z-dependence of the problem has already been
absorbed into the statement (2.9), the Laplace operator in equation (2.12)
only applies to the x and y dimensions. The statement ∇2 � 2/h2 follows
as long as the boundaries in x and y are far away compared to h. The
governing equation is then simply

∇2Ψ = 0. (2.13)
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This is a pleasure to solve using your favorite computer program, Fourier
analysis, or conformal mapping technique.

By assuming that the Laplace’s equation is valid we make some major
approximations and we need to consider their consequences. If we have
“sharp” turns in the jet (near a right-angle turn or an inlet, for instance),
then the equivalent assumptions (2.9) and (2.11) will fail. We expect that
there will be a region of size about h in which equation (2.13) will not be
valid. However, for most places in a large array the solution should be
applicable.

Since the end result is a well-behaved two-dimensional stream function
Ψ(x, y), it is tempting to posit such a form from the beginning, apply the
same definition �v ∼ ∇× (Ψ�̂ez), substitute this into the Navier-Stokes equa-
tion, and perform the standard vector calculus manipulations. This quickly
yields the biharmonic equation ∇4Ψ = 0. Comparison with equation (2.12)
reveals that this corresponds to the limit of large h: a very deep chip. This
problem occurs if one specializes to a 2-D stream function without imposing
parabolic velocity profiles. By dropping the third dimension from the start
nothing is allowed to vary with z. In particular, all the pressures and veloc-
ities are then set to be invariant in z which is not a case in a shallow device.
The case described by biharmonic equation actually describes an infinitely
deep chip. In fact, one of us (RHA) had a student write an entire Senior
Thesis at Princeton using the biharmonic solution, and it was a dead-wrong
thing to do because in fact we are in the 2 1/2 D limit, not the 2.0 D limit.
This work arose from studying ultra-fast mixing of vertical sheets of moving
fluids [20] and was maybe of some utility in the case where the fluid jet is
very thick [21] but not for the case of a large flat array.

For the (fourth-order) biharmonic equation (Eq. (2.12)), we must spec-
ify four boundary conditions (per dimension) to get a unique solution.
The physical constraints are the no-slip conditions �v = 0 at the bound-
ary wall ∂D. Since �v = ∇× φẑ, we naturally impose the no-slip condition
by making ∇φ|∂D = 0. This is easier to write as ∇φ · n̂ = 0 and ∇φ× n̂ = 0,
where n̂ is the unit normal to the boundary. If we impose this condition
everywhere, we get the very simple solution φ = constant, which correctly
predicts that a completely enclosed body of fluid doesn’t move. When we
add an inflow channel we construct the long-channel flow solution and con-
vert it to a stream function. We then impose such a φ on the bit of ∂D
where we want fluid to flow in. For a boundary along the x-axis, the rel-
evant stream functions could be φ = x − x3/3,−1 ≤ x ≤ 1 (for parabolic
flow in the deep etch) or φ = x (for plug flow in the shallow etch). Since the
long channel has translational invariant flow, it must also have ∇φ · n̂ = 0,
where n̂ points along the direction of flow. Since we already know that
∇φ × n̂ = 0 on all the parts of ∂D where there is no channel flowing in or
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out, we can just integrate this up along ∂D. This gives a φ which is con-
stant between the channels, and analytically specified in the channels. We
have, thus, constructed the eight boundary conditions for the biharmonic
equation that determine φ everywhere: we know φ on all four walls, and we
impose ∇φ · n̂ = 0 on all four walls.

When we move to the second-order Laplace equation (Eq. (2.13)), the
system is overconstrained and we have to give up some of the boundary con-
ditions resulting with a solution that is valid everywhere but in the narrow
region near the walls. We have to give up either ∇φ× n̂ = 0 or ∇φ · n̂ = 0.
The first of these guarantees that v⊥ = 0: i.e. that no fluid flows in or
out through the wall. If we give this up, we will lose conservation of mass!
The second guarantees v‖ = 0: i.e. the no-slip condition. If we lose the
no-slip condition we allow infinite shear on the fluid at the boundary. In
our argument we retain the first condition, and give up the second. This
definitely and unavoidable violates the no-slip condition but it is just the
mathematical consequence of assuming an infinitely shallow chip. For in-
stance, an infinitely shallow, straight channel would have perfectly plug-like
flow, with �v = constant right up to the wall, where it would fall discon-
tinuously to zero, giving an infinitesimal region of infinite shear. Again, it
is precisely this physically dubious region next to the wall which we know
violates the approximations which got us to the Laplace equation in the
first place. A full 3-D model would correct the solution next to the wall,
forcing v‖ smoothly to zero. If we attempt to impose the usual boundary
conditions of stick at the walls, so �v = 0 → ∇Ψ = 0 we find that we get a
problem which although annoying does not cause major problems. Inside a
channel, we assume we have established plug flow: �v = cx̂ → Ψ = cy. At
the very edge of a channel we no longer have plug flow, so �v is not parabolic
in z and the collapse from 3 dimensions to 2 is no longer meaningful. This
situation falls under the caveat above: there will be a region of size h where
Laplace’s equation does not exactly apply. On the plus side, this means
we should not get too concerned about the shape of Ψ near the edge of the
channel, since we know our differential equation is not really accurate there.
In particular, we do not have to worry that the boundary condition Ψ = cy
produces an infinite shear at the wall of the channel.

The solution we propose here arises from a well established Darcy’s
approximation to which we apply complex x − y boundary conditions and
explicitly solve �v(x, y). In the Darcy approximation we assume a vector
field v(x, y) and a parabolic profile in z between the plates. The Laplacian
potential function equation is really the Saffman-Taylor problem at zero
tension (i.e., no surface interface between two different fluids) and in that
sense it is a “trivial” example of the much more difficult problems that
Bensimon et al. tackle in their beautiful article in Rev. Mod. Phys. [19].
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What IS new here is application of complex x− y boundary conditions that
allows us to find the explicit �v(x, y) solutions using potential functions for
two components of the same fluid moving at different initial speeds into a
common area.

Making jets

Let us now turn to a practical problem of making fluid run in a narrow
stream of constant width across an open area. We will see how our under-
standing of “2 1/2 D” hydrodynamics can help us design a more uniform
jet.

One might think that the structure shown in Figure 3 would work. The
philosophy behind this particular chip design was that the two wide side
channels would squeeze the already narrow fluid flow from center channel
and create a thin jet of fluid moving across the array. Figure 4 shows a
wide spreading of the jet upon entering the open area. The problem arises
because in a low Re configuration abrupt changes in fluid velocities are
not allowed. The velocity of the fluid near the entrance changes slowly
resulting in initial broadening of the jet profile. The jet ultimately narrows
as determined by net fluxes but it has to spread first. The resulting profile,
thus, is not a jet of uniform width over its entire length.

Simulations of the flow profile using the potential function solutions to
equation (2.12) show how well the “2 1/2 D” Darcy approximation agrees
with the data. Figure 4 shows a view of a 3 port jet with the predicted
streamlines shown as dark lines and the actual flow as outlined by a stream
of fluorescent balls. Laplace solution outlined above does an excellent job
of modeling these flows. Note that the solution works well even near the
boundaries of the area. The simulation confirms that if there are only three
channel inputs, there is always a large bulge in the initial flow pattern of
the jet upon its entrance to the main open area.

3 The N-port injector idea

There is, however, a way to establish uniform and confined flow patterns by
careful consideration of boundary conditions and at a cost of microfabrica-
tion complexity.

The key concept here is that the boundary values explicitly determine
the flow patterns in the area and that by controlling them we can control the
flow. The boundary values in hydrodynamics are determined by the fluxes
of fluids at the surface. Normally, as we discussed above, we assume that the
boundaries have no fluid flow across them, but this does not have to be the
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Fig. 3. A three-port injector. The center channel has a width of 10 microns

and the two wide side channels have widths of 100 microns. The entire device is

7 microns deep.

case. Suppose that the sides of the area have a large array of microchannels
feeding a large number of streams into the area, the boundary conditions
are now changed to a given flux of fluid. In principle the flux itself is an
unknown quantity and difficult to posit a priori. However, if the fluid flux is
injected into a region from a device with high fluid compliance then the flux
is constant to a high degree of accuracy and independent of the subsequent
restrictions of the area into which the fluid is injected. In this way the fluid
pattern becomes “ballistic” as is true of high Re flow without the problems
of turbulence. A high compliance fluid source is nothing more than a current
source. It can easily be constructed in a hydrodynamic array in the same
way current sources are constructed in electronics. By passing a fluid at an
initial high pressure through a long narrow pipe one assures that most of
the pressure drop occurs over the pipe and that only a small fraction of it
occurs over the subsequent hydrodynamic “circuit”. In this way the fluid
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Fig. 4. Comparison of data (bead tracks) and best fit model flowlines (solid dark

lines) for the fluid jet observed in a three port jet. This figure shows the center

jet formed by higher pressure from the two side inputs. The curvature of the jet

arises from the asymmetry of the position of the center jet relative to side jet, and

the blooming of the center jet upon entering the open area is due to the change

in hydrodynamic impedance.

flux becomes independent to first order of the low impedance part of the
circuit and the boundary conditions are fixed.

Figure 5 shows a microphotograph of a device in which the above de-
scribed principles have been applied. The large open area is an array of posts
on a hexagonal lattice used for the fractionation of genomic DNA [22]. The
side channels that determine the boundary value flux conditions can be seen
as the series of lines feeding into the main are. These long channels act as
pressure dropping fluidic resistors and establish the current source nature
of the boundary values. One of the channels is special and is connected to a
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Fig. 5. A corner of a N-port array showing the array of channels feeding into an

open area consisting of a hexagonal array of 2 micron posts. The width of the

narrow channels feeding fluid into the array is 4 microns.

Fig. 6. A view of the input channel which brings a confined stream of liquid into

the array. The input channel is 6 microns wide.

unique reservoir which contains a the material to be transported across the
array, in our case DNA molecules. Figure 6 taken 1/4 of the way down the
side of the array shows the special channel, hydrodynamically isolated from
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Fig. 7. An enlargement of the injector channel showing the interface of the injector

channel with the hexagonal array. The round posts are separated by 2 microns

center to center.

the rest of the channels which brings in the biological molecules that will
be fractionated in the array. Figure 7 shows a view of this sample injection
line. By properly adjusting the pressure heads on the channel reservoirs we
now can inject a straight stream of fluid across a large open area without
the blooming problem seen in a 3 port injector seen in Figure 4. Figures 8a
and b show the propagation of such a flow across the hexagonal array of
posts.
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Fig. 8. a) A stream of DNA molecules injected into the post array. Some DNA

molecules have been seeded into adjacent channels so that the stream lines of

the injected currents can be seen. b) The same injected jet now seen about

500 microns across the stream. The broadening seen is due to diffusion but the

streamlines of the jet remain intact and focused.

4 Conclusion

The above described technology can be scaled to get increasingly complex
flow patterns. By having the channels divided up into a large number of
independently adjustable pressure sources the complex boundary value flux
patterns can be established. The elegance of the 2 1/2 D hydrodynamics
can then be exploited to solve critical problems of transport in miniature
bio-devices.
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Abstract

There are two ways to move biological objects: hydrodynamics (which
I have just discussed in Lecture 1a) and with some sort of an external
force field. Although usually the force field is a static electric field,
a more intriging possibility is AC fields, in which case you probe
both the usual electrophoretic response (translation by the force on a
charged object) AND dielectrophoretic response (translation by the
force on a polar object). Clearly, the dielectrophoretic response is
more complex and potentially more powerful in terms of the number
of possible parameters, so we will explore that here. This lecture is
a mixture of theory and experiment, as are others, so the reader is
asked to tolerate the experimental details, in which can be found the
Devil himself. They are important.

1 Introduction

Dielectrophoresis (DEP) is the translation of neutral matter caused by po-
larization effects in a nonuniform electric field [1]. Measuring and under-
standing the magnitude of the dielectrophoretic force exerted on important
biopolymers such as DNA is a difficult fundamental problem that we address
in this lecture.

An electrically polarizable object will be trapped in a region of a focused
electric field, provided there is sufficient dielectric response to overcome
thermal energy and the electrophoretic force. The standard way to make
a DEP trap is to create an electric field gradient with an arrangement of
planar metallic electrodes either directly connected to a voltage source [2,3]
or free-floating [4, 5] in the presence of an AC field. In this paper we use a
constriction or channel in an insulating material instead of a metallic wire
to squeeze the electric field in a conducting solution, such as ionic buffer,
thereby creating a high field gradient with a local maximum. The advan-
tages of the electrodeless DEP (EDEP) technology introduced here are: (1)
no metal evaporation during the fabrication is needed, (2) the structure is
mechanically robust and chemically inert, and (3) a very high electric field
may be applied without gas evolution due to electrolysis at metal DEP elec-
trodes. Figure 1 outlines the differences between the metal electrode and
the confined field technology of this paper. The simplicity of the device and
the lack of metallic objects which cause electrochemical reactions involving
gas evolution enable us to probe the response of DNA molecules well below
1 kHz, revealing a huge increase in the dielectric response at low frequen-
cies (below 1 kHz) difficult to observe using metal electrodes as trapping
structures.

The subject of this letcture is not only the basic physics of dielec-
trophoresis, but it also has applications to biotechnology. One of the great
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Fig. 1. Schematic of a microfluidic DEP trap A). A metallic DEP trap made of

microfabricated wire(s) on a substrate. The wire(s) may be either free-floating or

connected to a voltage source B). An electrodeless DEP trap made of dielectric

constrictions. The solid lines are electric field lines E C). A scanning electron

micrograph of an electrodeless DEP device consisted of a constriction array etched

in quartz. The constrictions are 1 microns wide and 1.25 microns deep. The whole

chip measures 1×1 cm. The applied electric field direction z is shown by the double

headed arrow.

challenges in biotechnology is to move and concentrate molecules in a micro-
fabricated environment. Notable applications of DEP include the separation
of colloidal particles [6], DEP ratchets [7,8], the separation of biological ob-
jects such as yeast cells [9] viruses [10] and cancer cells [11, 12] and the
trapping and manipulation of DNA molecules [4]. EDEP can be used in all
of the above listed applications.
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2 Methods

The devices were fabricated on quartz wafers using reactive ion etching
techniques, and sealed with a glass coverslip coated with an elastomer thin
film to act as a sealing gasket. DNA dissolved in electrophoretic buffer was
introduced into the sealed space and external gold electrodes attached to
a high voltage source provided the external currents. It is important to
understand a fundamental aspect of current flow in a basically insulating
fluid such as water, namely that the current density J is proportional to
the ion flux since the ions carry the charge. Since it is the electric field
that makes the ions move in the solution, in a backward way of saying it
that we hope makes some sense the electric field E is thus proportional to a
hydrodynamic flow of charged ions. Thus, the electric fields are everywhere
parallel to the surfaces of the constrictions in the insulating quartz and
the relative dielectric constants of the quartz and the water are irrelevant.
Calculation of the electric fields is thus relatively easy, and no electric fields
penetrate the insulating structures.

2.1 Fabrication

The device (see Fig. 1c) was fabricated using UV lithography and reactive
ion etching on 3′′ (76 mm) crystalline quartz wafers polished on both sides
(Hoffman Materials). The gaps in the quartz obstacles are 1 micron wide.
Chips were diced out of the wafer and were 1 cm in length.

A 200 nm thick aluminum film was thermally evaporated onto the quartz
wafer and treated with hexamethyldisilazane (HMDS) in a Yield
Engineering Systems LP-III Vacuum Oven to promote adhesion of the pho-
toresist. Shipley S1813 (Microchem Corp., Newton, MA) photoresist was
spun on the aluminum coated quartz wafer at 4000 rpm in 60 s with a
3 s linear ramp. A pre-exposure bake at 115 ◦C for 60 s was used. The
wafers were exposed in a projection aligner (GCA 6300 DSW Projection
Mask Aligner, 5× g-line Stepper). After development in MicroPosit CD26
(tetramethylammoniumhydroxide solution in water) (Shipley) for 60 s the
aluminum is etched using a modified PK1250 ion etcher from PlasmaTherm.
The PlasmaTherm PK1250 was also used to etch the quartz. Etch times of
33 min resulted in an etch depth of 1.25 microns as determined by a Tencor
AlphaStep 200 Surface Profilometer. The device was then sealed with a
glass coverslip coated with silicone (polydimethylsiloxane) elastomer (RTV
615 A&B, General Electric, NY). Both the coated coverslip and the device
were pretreated with oxygen plasma to make the surfaces hydrophilic and
wettable when sealed. The top-sealed device is then wetted by capillary
action with buffer solutions (pH 8.0, 0.5X Tris-borate-EDTA buffer (TBE),
0.1M dithioDTT, and 0.1% POP-6). POP-6 is a linear polyacrylamide of
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proprietary formula provided to us by Applied Biosystems and serves to
eliminate the transport of fluid in a sealed device due to bound charges on
the quartz surfaces, known as electroendoosmosis (EEO). In the absence
of POP-6, fluid is transported by ionic currents due to this surface effect
greatly complicating the forces acting on objects because of the added hy-
drodynamic transport.

2.2 Viscosity

Tests of the viscosity dependence of the EDEP force were carried out in 0.5X
TBE buffer (pH = 8.0 with 0.1% POP-6 and 0.1 M DTT). The viscosity
was adjusted by adding sucrose to the buffer without changing the dielectric
constant of the buffer [13]. The buffer viscosity of 3.7 cP was prepared by
adding 46 g of sucrose to 100 grams of buffer (31% w/w). The viscosity of
5.9 cP was prepared by adding 62.5 grams of sucrose to 100 grams of buffer
(38% w/w). Viscosities were checked by viscometry at 20 ◦C.

2.3 Electronics and imaging

A Kepco BOP 1000M amplifier with 1 kHz bandwidth provided the±1000 V
driving voltage. The input to the Kepco BOP was provided by a HP 3325A
signal generator which was connected via a GPIB interface to a MacIntosh
computer running LabView (National Instruments) software. External gold
electrodes driven by the Kepco BOP were immersed in liquid troughs which
contacted the liquid wetting the sealed chip. All voltages quoted in the text
are the amplitude of the sinusoidal output of the BOP as measured by a
HP 34401A digital multimeter. DNA was stained with TOTO-1 (1 dye
molecules/5 bp) in 0.5X TBE buffer (pH = 8.0 with 0.1% POP-6 and 0.1 M
dithiotreitol (DTT). The images were gathered with a Nikon Microphot-SA
microscope using an oil immersion objective lens (60X, N.A.1.4), a cooled
CCD camera (Hamamatsu C4880, NJ), and excitation at 488 nm by an
Ar-Kr ion laser. Images of the DNA in the chip were taken by epifluores-
cence. The C4880 camera was run at −20 C.

2.4 DNA samples

We used 5 different double stranded DNA with lengths of 368, 1137, 4361
and 39 936 bp, and a single stranded DNA of length 1137 nucleotides. These
were prepared as follows:

Double-stranded DNA

The 368 bp DNA was produced from an initial 54 base sequence. Both ends
of the monomer duplex had complimentary 4-base overhangs. The monomer
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was kinased and ligated to create a multimer. Then a ligation step was done
at about 15 C to create a multimer ladder by varying the time of ligation
from 6 to 24 hours. Then a duplex which had a 20-base primer sequence
and a 24-base linker sequence was added to complete the ligation at both
ends of the multimers. A quick spin column was used to wash away the
monomer duplex, the primer-linker duplex and the short ligated fragments
(less than 200 bp). Then the multimers were precipitated by cold ethanol,
dried and resuspended in TE buffer. A PCR step was performed on this
ladder and analyzed by 1.8% agarose mini gel. When two or three clean
bands could be observed in an analyzing gel, a preparatory gel was run and
the bands were cut to extract the fragments individually. Then PCR was
repeated in preparatory quantity to produce sufficient amounts (10–50 µg)
of each fragment for experiments. The resulting product was cloned and
sequenced. The GC content was 50% and the sequence is available from the
authors. The 1137 bp DNA was prepared by PCR amplification of positions
2457 to 3594 of bacteriophage λ DNA. Before use, the PCR product was
purified by standard methods from agarose gels.

The 4361 bp sample was prepared by digesting pBR322 DNA with BstII
and purifying the linearized DNA from an agarose gel. The 39 936 bp DNA
is bacteriophage T7 DNA, and was purchased from Sigma Chemical and
was used without further purification.

1137 nucleotide ssDNA

Single stranded λ DNA was prepared by amplifying the 1137 base pair
fragment (above). The primer homologous to the 2457 sequence was la-
beled at the 5′ terminus with biotin (BiotinTEG phosphoramidite, Glenn
Research, Sterling, Virginia). The PCR reaction contained fluorescein-11-
dUTP (Amersham Pharmacia, Piscataway, NJ) at a dTTP/dUTP-
fluorescein ratio of 1:1. Single stranded product was isolated by adsorb-
ing the reaction mixture to Dynal-streptavidin beads (Dynabeads M-280,
Dynal A.S., Oslo, Norway) and isolating single stranded DNA from the
beads by incubation at 00 C in 100 mM NaOH for a few min. Under these
conditions the biotin-labeled strand remains attached to the Dynal beads,
which are removed magnetically. The fluorescein-labeled single -stranded
product in the supernatant was then concentrated and purified by ethanol
precipitation and resuspension in buffer.

3 Results

3.1 Basic results and dielectrophoretic force extraction

We first present a typical image of the basic data. Figure 2 shows the image
of trapped DNA density vs. applied voltage for 368 bp long fragments at
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an applied voltage of 1 kV across the cell as a function of frequency. At
low frequencies there is basically no trapping, as the frequency is raised the
DNA molecules are attracted to the gap between the constrictions and the
concentration of the DNA molecules in the gap increases. Clearly, the con-
finement of the electric field lines within the 1 micron gaps of the structures
results in a powerful trapping of the molecules. The apparent force clearly
rises with increasing frequency for this 368 bp long sample. However, there
are many parameters that must be explored to fully understand and exploit
the ability of EDEP to trap and fractionate DNA molecules. Before we can
proceed with explaining the way that EDEP can trap DNA molecules as a
function of applied electric fields, field frequency, and size (length) of the
molecules it is important to have a quantitative way to analyze the trapping
force felt by the molecules so that a physical model of the phenomena can
be attempted.

Fig. 2. A–D) Optical micrographs of DEP trapping of 368 bp dsDNA with

driving voltage of 1 kV (corresponding to 5 V p-p across each unit cell) and applied

frequencies of 200, 400, 800 and 1000 Hz. The frame size is 80× 80 microns. The

images shown here were each averaged over 3 consecutive frames started with

the first one taken 1 min after the AC electric field parameters being changed,

and 1 min interval for each following images to allow equilibrium densities to

be achieved. Equilibration typically occurred in a few seconds at each new field

value. Each frame was exposed for 10 s and the light source was shut off when the

camera shutter was closed to reduce photobleaching. The line shown in Figure 2d

shows the pixel swath used to analyze the density of the molecules in the trap.
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In the absence of electrophoretic forces the molecular forces acting on
single DNA molecules can be extracted from the images shown in Figure 2.
Since DNA at neutral pH is charged due to the phosphate groups it also is
transported by a DC electric field (electrophoresis), the following analysis
is oversimplified and can give rise to misleading effective “forces”, but does
help to catalog the data. We will attempt to briefly discuss corrections later
in this lecture.

The trapping shown in Figure 2 is due to the force a polarizable object
feels in a field gradient. Charged polymers such as DNA at pH 7 are elec-
trically neutral in the absence of an external electric field E because of the
counterion cloud that surrounds the polymer. However, in the presence of
an external field two things happen: (1) the movement of ions in the fluid
shears away the counterions at the zeta potential surface giving rise to a net
charge density σ along the length of the polymer and (2) the counter-ion
charge distribution becomes polarized along the length of the molecules,
giving rise to a dielectric moment p. Since the origin of the dipole moment
is due to electrophoretic movement of counterions within the zeta poten-
tial surface, the induced dipole moment is a function of the applied electric
field, the time over which the field is applied and the size of the polymer.
Typically the induced dipole moment p is opposite to the the direction of
the applied field E, but this is not always the case. The Clausius-Mosotti
(CM) ratio [14] , which relates the sign of the dielectric force Fd to the gra-
dient in the electric field energy density, can be either positive or negative,
depending on the response of the material to the field [9], although in our
case the induced polarization is more complex in origin than the relatively
simple displacement of charge within a molecule. Figure 3 shows a cartoon
of the way that the counter-ion cloud around a molecule of length L becomes
polarized in an external field, leading to an induced dipole moment.

Let the distance z be the distance of a particle between the two external
electrodes. The potential energy Up(z, ω) of a polar but uncharged molecule
in an applied field E(z, ω) is:

Up(z, ω) = −p ·E = −α(ω)/2(E)2 (3.1)

where α is the in-phase component of the complex polarizability of the
molecule [15] and includes the CM term. DNA trapping only occurs when
U > kT and the CM factor is positive (positive EDEP).

The gradient in the potential energy U(z, ω) gives rise to a dielec-
trophoretic force Fd:

Fd = −grad(U) = (α/2)grad(E2) = α|E|dE
dz

(3.2)

where |E| is the scalar magnitude of the field. This equation is the low-
frequency limit of a generalized theory that can explain both DEP and the
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Fig. 3. A) Cartoon of the positive counter-ions surrounding a negatively charged

DNA molecule of length L. B) Distortion of the counter-ion cloud due to an

externally applied electric field E.

“laser tweezer” trapping observed when the wavelength of the radiation is
smaller than the object [16]. If the electric field has a local maximum then
a potential well is formed that traps the molecule since the field gradient
changes sign around the maximum. At a finite temperature T the thermal
energy kT broadens the distribution of molecules trapped in the potential
well. In our system, a DNA molecule is driven by diffusional motion and
an average drifting velocity v due to the external EDEP force Fd and the
external electrophoretic force Fe. The diffusion coefficient D and the aver-
age velocity v of a particle in the presence of an applied force F are linked
through Einstein’s relation: v = DF/kT , where D is the Brownian diffusion
coefficient of a DNA molecule and kT the thermal energy. The flux of DNA
molecules J(z, t) at point z is governed by the modified Fick’s equation:

J(z, t) =
DF
kT
• n(z, t)−Dgradn(z, t). (3.3)

where n(z, t) is the local concentration of DNA molecules. At equilibrium,
J(z, t) = 0, the distribution of DNA molecules n(z, t) obeys a Boltzmann
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distribution: n(z, t) = no exp[−U(z, t)/kT ], where no is the density of DNA
molecules at the minimum of the potential well.

In the limit of thermodynamic equilibrium the flux J(z, t) is zero and
equation (3.3) allows us to analyze the local density of molecules n(z, t)
and extract the DEP force acting on them. The image analysis program
NIH Image was used to extract a contour plot of the average density of the
DNA across the constrictions (the scan region of the density plot is defined
in Fig. 2), and computation of effective force from the density follows from
equation (3.3):

F (z, t) = kT
grad[n(z)]

n(z)
(3.4)

where gradn(z) is the spatial gradient of the density distribution. Deter-
mination of the EDEP force is independent of no, provided a dilute DNA
solution is used in which intermolecular interactions are negligible across
the unit cell of the device. Note that the force is determined in absolute
units, femtonewtons (fN), since we need only kT to get absolute units.

Many biological molecules are charged as well as polarizable [17] and
this complicates our analysis since there is also an electrophoretic force act-
ing on charged molecules during dielectrophoresis. The net force is the sum
of the two, and this complicates the analysis because the dielectrophoretic
force always points towards the region of high field gradient and thus does
not oscillate with the field direction change, while the electrophoretic force
points along the direction of E and thus oscillates with the field direction
change. If the electrophoretic force locally is greater than the dielectric
force, the net translation ∆z ∼ ve∆t ∼ µeE

2π
ω can be large compared to

the size of the dielectric trap. In that case, the assumption of thermody-
namic equilibrium breaks down and the forces are not correctly determined.
Thus our analysis correctly describes the high frequency response. At low
frequencies the molecule is pulled out of the well by electrophoretic forces,
and the apparent force is reduced due to a finite particle flux out of the
trap.

4 Data and analysis

Figure 4 shows the dielectrophoretic force exerted on the 368 bp molecule
for a given field strength as a function of frequency and distance from the
center of the trap. The force was extracted from the density distribution
gradient using the pixel swatch shown in Figure 2d. Note how the force
reaches its maximum not at the position of the strongest field (the center
of the gap) but rather where the product of EdE/dz is largest. For the
remainder of the analysis we will quote these peak values. It is clear from
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Fig. 4. EDEP force response curve of 368 bp DNA with applied field 1000 V

pp/cm (5 Vp-p per unit cell) as a function of frequency. Each curve is an average

of all the unit cells in the microscope field of view.

Figure 4 that the dielectrophoretic force is a strong function of frequency.
For the 368 bp sample, it rises with frequency to the 1 kHz limit of our
amplifier. Figure 4 shows how at 1 kV the maximum force in the trap rises
monotonically with frequency. Although for 368 bp molecules we cannot
measure the maximum frequency at which the EDEP response peaks with
our current apparatus, longer lengths of DNA do show peaks in the trapping
response with increasing frequency, as we shall show. We thus we believe
the trapping frequency for this sample must also peak at higher values.

We discussed above the basic origin of this force, and in equation (3.2)
showed that the trapping force should vary as the square of the electric
field. For this to hold experimentally, it is necessary to ensure that the
length of the molecule and the frequency of the applied field is such that
the density of the trapped molecules has a spatial width great enough for us
to easily extract the maximum force without the DNA concentrating into
a band narrower than our optical resolution of about 0.5 microns. Figure 5
illustrates this problem. At 1 kV and 200 Hz the 368 bp sample is barely
trapped and data analysis is very difficult, while a 39.9 kb long sample at
100 V and 100 Hz is trapped so tightly that analysis again is impossible.
Figure 6 shows that within our margin of error the force does scale as E2

for the 1.1 kB sample using a 200 Hz frequency.
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Fig. 5. Images of the trapped DNA density as a function of length, voltage and

frequency.

Fig. 6. The measured peak force vs. the applied voltage for the 368 bp DNA

sample at 200 Hz plotted on a log-log scale. The solid line is a fit to this data

assuming that the force varies as E2. The only variable was the scaling parameter

for the force magnitude.

We further show that the dielectrophoretic force greatly depends on the
length of the DNA molecules. Figure 7 shows the extracted forces for 368 bp
and 1 kB samples as a function of frequency at 1 kV. Next, we show in
Figure 8 the peak forces as a function of frequency for 4361 bp and 39.9 kB
DNA at 200 V. These measurements were done at a relatively low driving
voltage of 200 V as opposed to the 1 kV values used in Figure 7 because at
the higher voltages the trapping force for long DNA molecules is so strong
that we cannot accurately measure the width of the distribution (see above).
Unlike the shorter fragment data, which show a monotonic rise in the trap-
ping force with frequency, there is a hint of a maximum in response for the
4361 bp DNA and a very clear maximum in response for 39.9 kB DNA. Note
that there is great dispersion in the force with length, hence by appropriate
choice of parameters one can envision selectively trapping one range of DNA
molecules while removing others.
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Fig. 7. Force versus frequency for 1137 kb and 368 bp long DNA molecules at an

applied voltage of 1 kV.

Fig. 8. Force versus frequency for 4.36 kB and 39.9 kB long DNA at an applied

voltage of 200 volts.

We next examined the effect of solvent viscosity on the frequency depen-
dence of the force. These experiments address the issue of the origin of the
observed dielectric response of DNA: internal charge transport down the
backbone of the DNA molecule, as would happen if DNA were a conductor,
would be expected to result in a very fast response, while counter-ion flow
within the Debye sheath of counter ions near the DNA would be dominated
by viscous drag. Figure 9 shows the dependence of the EDEP force on our
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longest DNA molecule over the three viscosities studied: 1 cP, 3.7 cP and
5.9 cP. There is a clear shift of the frequency of maximum force response to
lower frequencies with increasing viscosities.

Fig. 9. Force versus frequency and viscosity for a 39.9 kB DNA molecule.

Finally, we briefly explore the dependence of the EDEP force on single
stranded DNA (ssDNA). One would expect to find differences in the di-
electrophoretic forces acting on two DNA molecules of identical molecular
length, one ssDNA and the other dsDNA, because (1) ssDNA has half the
linear charge density of dsDNA, (2) a different stacking conformation, and
most importantly (3) a greatly different persistence length. The persistence
length of ssDNA is believed to be much shorter than dsDNA. The persis-
tence length of dsDNA is close to 50 nm, and somewhere between 1 to 6 nm
for ssDNA [19–21, 28]. Figure 10 compares EDEP forces on dsDNA and a
ssDNA molecule which have the same number of nucleotide units (basepairs
for dsDNA, bases for ssDNA). Clearly, ssDNA experiences a substantially
smaller force than dsDNA of the same number of nucleotide units.

5 Origin of the low frequency dielectrophoretic force in DNA

We now offer a simplified explanation for the length and low frequency
dependence of the EDEP experiments, a complex subject which we only
address briefly so that the reader can obtain an intuitive basis for the ef-
fects seen in the experimental section. We take as our fundamental starting
point that the DNA backbone is an insulator consisting of fixed charges on
the backbone with a surrounding layer of counterions. By noting the fre-
quency dependence of the dielectrophoretic force on viscosity, we can fur-
ther assume that when a DNA molecule is exposed to an externally imposed
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Fig. 10. Force versus frequency for ssDNA and dsDNA of 1137 basepairs (dsDNA)

and 1137 bases (ssDNA) at an applied voltage of 1000 volts.

electric field E the surrounding counterion cloud becomes distorted by the
diffusion of the counterions along the backbone [22]. This diffusion results
in the formation of an electric dipole moment, but lagged in phase with
the applied voltage. The resulting frequency dependence (dispersion) of the
phase shift of the dipole moment on the polymer relative to the applied volt-
age from the external electrodes gives rise to a Debye-like relaxation process
which can be used to explain a large part of the frequency dependence of
the dielectrophoretic force. In the words of the excellent paper by Foster
et al. [14], we confine ourselves to a dispersive object (the DNA polymer)
in a non-dispersive solvent (water).

When charge moves along the length of a polymer, the polymer behaves
like a capacitor C which is “charged” by the movement of the counteri-
ons along the backbone and from the surrounding solvent, resulting in an
effective charge couple ±Q separated by some characteristic length d (see
Fig. 3). The time for this charge couple to develop we call τ , rather like the
charging time RC of a resistor in series with a capacitor, only in this case
there is no resistor in series with the capacitor but rather a time-dependent
charge build-up on the plate due to diffusion of the counterions, giving rise
to the dispersion in the dielectric response.

The solution in the frequency domain for the frequency dependent in-
duced charge Q(ω) across the polymer is:

Q(ω) = Qo

[
1

1 + (ωτ)2
+ i

ωτ

1 + (ωτ)2

]
(5.1)
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where Qo is the DC induced charge. In the frequency domain the charge
response of the molecule thus has an in phase (real) response and an out of
phase (imaginary) response due to the lag time of the polarization of the
polymer as the ions diffuse along the backbone. The effective dipole moment
p = Q(ω)d thus has an in phase (real) and out of phase (imaginary) response
to the applied field, where d is some characteristic molecular distance that
defines the separation of the charge on the molecule. Both Qo and d are
functions of the length of the polymer and the persistence length γ of the
polymer. The in phase component is the component parallel to the applied
field and is the component that gives rise to the dielectrophoretic force. In
terms of the notation used in equation (3.1), we have:

Eα(ω) = Re[Q(ω)]d. (5.2)

Note that the polarizability as given by equations (5.1), (5.2) and (3.2) goes
to zero at frequencies large compared to 1/τ and has a finite value at zero
frequency.

The relaxation time τ of the system can be viewed as the relaxation
time RC of the capacitance of the polymer viewed as a charged object, and
the resistance R of the counterion cloud which allows the charge separated
on the ends of the molecule to flow together. Thus, the relaxation time τ
of the response must be the diffusion time of the counter-ions across a
distance x which represents the mean size of the molecule. The fundamental
relationship between τ and x is:

< x2 >= 2Dτ (5.3)

where D is the diffusion coefficient of the ions. The diffusion coefficient
of the ions is related by Einsten’s relationship to the ratio of the thermal
energy kBT to the frictional coefficient ζ of the ion:

D ∼ ζ

kBT
; ζ ∼ 6πηa (5.4)

where η is the viscosity of the medium and a is some mean hydrodynamic
radius. Monovalent ions such as Na+ have diffusion coefficients on the
order of 10−5 cm2/s at room temperature in water of viscosity 1 cP [23]. In
addition to the diffusion coefficient of the counter-ions, in order to estimate τ
we have to have some idea of the size of the polymer which separates the
charge. We should point out here that we consider only the diffusion of
the counter ions, not the diffusion of the center of mass of the polymer.
The ability of the counter-ions to diffuse freely through the polymer is due
to the free-draining nature of the hydrodynamics of a polymer undergoing
electrophoresis [24].
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We need to point out here that the above analysis is surely oversimplified.
We assumed that the dipole moment relaxes due to pure diffusive motion
of the counterions, but of course the electric field generated by the dipole
moment should enhance this relaxation rate. However, electric fields in a
ionic medium are shielded by the counterions and this greatly reduces the
actual field due to the dipole across the molecule. An excellent review paper
by Hoagland et al. [25] gives a clear description of the physics of counterion
shielding. The basic length scale for shielding by counter ions is the Debye
length λD:

λD =
[

εkBT

4πke2nb

]1/2

(5.5)

where ε is the dielectric constant of the fluid, e is the electron charge,
k is Coulomb’s law constant (9×109 Nm2/C2) and nb is the number of
ions/volume in the bulk solvent. For a 0.1 M salt concentration, λD is
about 3 nm, so the screening distance is very short relative to the length of
our molecules and perhaps the field enhanced diffusion is not important.

Given then that the purely diffusive relaxation may overestimate relax-
ation times, we continue with it since it seems to give bascially order of
magnitude correct relaxation rates. We can consider easily two extreme
cases: (1) long polymers, whose persistence length γ is much less than the
extended length L of the polymer, and (2), short polymers whose length L
is much less than the persistence length γ.

In the case of a very long polymer, the diffusion distance x can be
approximated by the mean separation between the two ends of the polymer
R = (2Lγ)1/2 of the polymer. In the case of a short polymer, we can use
x ∼ L since the polymer is simply extended roughly to its full length. Thus,
we have for long polymers the relaxation time τlong:

τlong =
Lγ

D
(5.6)

while for short polymers τshort:

τshort =
L2

2D
· (5.7)

These two expressions can be roughly used to predict the relaxation times,
but should be taken with a grain of salt. For example, consider the T7
dsDNA data shown in Figure 9, which shows the EDEP force as a function
of frequency and viscosity. Measurements at the two higher viscosities (3.7
and 5.9 cp) clearly show that the dielectrophoretic force decreases at high
frequencies. This occurs at approximately 1 kHz for 1 cP, 300 Hz for 3.7 cP
and 150 Hz for 5.9 cP. Since T7 at 39.9 kB is definitely in the L >> γ
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case for long polymers, we can use equation (5.6) to estimate the relaxation
time of these polymers. Figure 11 shows the satisfactory agreement between
the observed relaxation times and the ones predicted for a long polymer,
considering the simplicity of the model used. Short polymers can be ex-
pected to have faster relaxation times. In the case of our 368 bp fragment,
equation (5.7) predicts a relaxation time in water of about 10−5 s, sub-
stantially beyond the present 1 kHz bandwidth of our high voltage power
supply.

Fig. 11. The measured relaxation time of 39.9 kB (T7 phage) DNA vs. viscosity

(solid line) vs. the predicted relaxation time (dot-dash line).

Rough calculation of the force F felt by the polymer is more difficult as
we have mentioned. From equation (3.2) we know that the dielectric force
is proportional to the product of the polarizability of the molecule α times
|E|dE/dz. The polarizability α is equal to Cx2, where C is the effective
capacitance of the molecule and x2 is the mean squared separation of the
two charged ends of the molecule. In the rough approximation that the
capacitance C is equal to εεoA/x, where A is the area of the charged ends of
the molecule, we once again find that the force also depends on the statistical
mechanics of the polymer. If (1) L >> γ, we get that αlong = εεo[(2Lγ)]3/2,
while if (2) L << γ we find that αshort = εεoAoL, where Ao is an area which
characterizes the end area of rigid length of the molecule. These numbers are
rather poorly defined. The backwards way to do this is simply to calculate
from the measured force at a given E and dE/dz the polarizability α. As
we have shown, α is a strong function of length and conformation of the
molecule so there is no single intensive parameter that characterizes DNA.
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There is still a problem with this analysis. Equations (3.2) and (5.1)
together imply that the EDEP force is effectively zero at high frequencies
(which is not true because of other processes that come into play [18, 26]),
rises at a frequency given by 1/τ and then remains constant down to DC. In
fact, all our data show the apparent force falling to zero at DC frequencies.
The problem is that we have ignored the electrophoretic force. The total
force acting on a polyelectrolyte in an external electric field is the sum of
the electrophoretic force Fe due to the net effective linear charge density
β of the polymer, and the dielectrophoretic force Fd due to the induced
dipole moment p discussed above. The electrophoretic force Fe on a poly-
electrolyte in the presence of an electric field is proportional to the local
applied electrical field E and gives rise to a constant velocity ve:

ve = µeE; Fe = ζve = ζµeE (5.8)

where µe is the electrophoretic mobility of the polymer, ve is the elec-
trophoretic velocity and ζ is drag coefficient between the electrophoretic
velocity and the force. The origin of the electrophoretic force Fe in poly-
electrolytes has been intensively studied [27] and is characterized by the
surprising fact that the electrophoretic mobility of a polyelectrolyte is ba-
sically independent of the length of the polymer in free solution, hence we
can treat µe as a constant independent of length. We then have a final ex-
pression for the total force acting on a charged, polarizable polyelectrolyte:

Ftot = ζµeE + α|E|dE
dz
· (5.9)

An interesting aspect of the dielectric force is that it is a nonlinear force
as a function of E, and hence at sufficiently high field strengths and suffi-
ciently low ratios of µe/α a gradient can trap a molecule even in a static
DC field, since the dielectrophoretic force will ultimately be greater than
the linear electrophoretic force. By combining the electrophoretic and the
dielectrophoretic response, we show in Figure 12 the forces and potential
surfaces that charged, polarizable objects experience going through a gap
similar to one of our devices. The parameters for the polarizability α and
the electrophoretic mobility µe were chosen here to roughly correspond to
our longest molecules studied, the 40 kB dsDNA. Note that the nonlinear
dielectrophoretic component of the trapping force gives rise to a short-range
trapping potential. If the field direction is switched, the electrophoretic po-
tential surface will slope in the opposite way while the dielectrophoretic
potential is invariant, so that only the dielectrophoretic component of the
force serves as a trap.

Since the free flow electrophoretic mobility µe is basically independent
of length of the DNA molecule, the effect of electrophoresis of the molecule
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Fig. 12. The total force, electrophoretic and dielectrophoretic, experienced by a

particle passing through the gradient trap shown in Figure 1 is presented as the

dashed line in the figure. The potential U(z) surface that the particle moves along

is shown by solid line.

is an apparent decrease in the force at low frequencies if the electrophoretic
force is greater than the dielectrophoretic force, which seems to be the case
for DNA. In fact, our entire model which we used to analyze the dielec-
trophoretic force acting on the molecules basically breaks down at low fre-
quencies, since we do not have an equilibrium condition. At present, we have
no way of disentangling the true dielectrophoretic force at low frequencies
from the electrophoretic force.

6 Conclusion

We have used electrodeless EDEP to trap and concentrate single and double
stranded DNA. The analytical simplicity of the field pattern in a electrode-
less trap has allowed us to characterize the length and frequency dependence
of the EDEP force. We showed the strong dielectrophoretic response of the
DNA in the audio frequency range. We also demonstrated that for the given
trapping voltage applied, the dielectrophoretic force dramatically increases
with the increase of the length of the DNA molecule. There is actually a
great dispersion in the force with length, hence by appropriate choice of pa-
rameters one can envision selectively trapping one range of DNA molecules
while removing others. By measuring dielectrophoretic force under differ-
ent solvent viscosity conditions, we were able to determine that movements
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of counterions in the Debye layer are responsible for the dielectrophoretic
response of the DNA for 2 reasons: (1) a strong dependence of relaxation
times on solvent viscosity indicates that the charge redistribution occurs
via movement through the solvent; (2) the expected relaxation times due to
diffusion of ions across the radius of gyration of the polymer are in rough
agreement with the observed relaxation times.

The dielectrophoretic trapping of the DNA in electrodeless traps has a
great potential for use in biotechnology. The EDEP force may be adjusted
accordingly by varying the shape and cross section of the constriction. Posi-
tion of the constriction also can be controlled at will. Since EDEP trapping
occurs in high field gradient regions, EDEP allows easy patterning of DNA
by appropriate geometrical obstacle design. Other potential applications of
EDEP method are selective trapping of specific ranges of DNA, concentra-
tion of DNA molecules to very tight bands before launch into a fractionating
media, PCR cleanup, concentration of DNA in gene array chips to enhance
sensitivity of the detection limit by increasing local S/N , or acceleration of
gene hybridization rates by concentration of single stranded DNA, and in
general for any reaction for which the rate scales with concentration or any
power of the concentration greater than 1.
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Abstract

Now, I want to try and apply some of the principles I have outlined in
the design of a real working device. Long DNA molecules in agarose
gels and other polymer matrices, get hooked on many gel fibers si-
multaneously, exhibiting complex motion, and confounding theory
and experiment alike. I’ll describe how a hex array allows better pre-
diction of pulsed field parameters for a given range of molecular sizes,
and a relatively simple theory describes the motion. The analytical
nature of the motion is a real advantage of the technique since it may
allow us to separate unlabeled molecules.

1 Introduction

This story is about 8 years long, and it is so long purely because of the
stupidity of the author. Had I been a bit more subtle in my understanding
of Nature the story would be shorter and more interesting I suspect.

As I originally mentioned, the shearing boundary at the zeta potential
means that DNA molecules undergoing electrophoresis are free-draining,
that is, the solvent effectively passes through the random coil of the polymer.
In “normal” hydrodynamics, if you move a polymer there is a velocity vector
flow pattern V (r) radiating out from a point on the polymer that couples
different parts of the object together, modifying the drag coefficient of the
polymer from a strictly linear sum of terms (typically a 1/ln(L) correction),
L = length of the object.

For a free-draining polymer, that is, a polymer undergoing electrophore-
sis, the linear sum works, and the drag is proportional to simply L and not
L/ ln(L). Since the drag and the force both scale as L, the electrophoretic
mobility is independent of the length and you cannot fractionate DNA
molecules in bulk solution using electrophoresis. Thus, the ubiquitous pres-
ence of some sort of retarding medium (a gel) in most molecular biology
labs. The retarding medium adds a length-dependent additional force as
the random coil try to squeeze through the medium.

Thus, the basic idea of the microfabricated arrays was simply to simulate
a gel by microfabricating obstacles which add another length dependent
term to the drag on the polymer. However, there are two things at work
here that kill the technology:

(1) The pore sizes (a = 1 micron) are much bigger than typical gels,
where the pore sizes range from 10 nm to 500 nm or so.

(2) the self hydrodynamic forces acting on a random polymer in a “thin”
slit of thickness d are MUCH greater than the self-forces felt by a polymer
in bulk solution.
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Let’s now consider each of these points in turn. However, before we can
launch into this subject we need to carefuly at how polymers move through
structures.

The effect of large pore sizes is to increase the effective force acting at
the contact points between polymer parts and the posts, these larger forces
serve to enhance stretching of the polymer. That is, consider if you will
that there is an electric field E in the solution. The applied force F on a
stretched fragment spanning the pore of size a is aρE, ρ = linear charge
density of the polymer. If the polymer is randomly coiled, the effective
amount of polymer in the pore is increased leading to an even greater force
acting on the polymer. There is of course an entropic “spring” constant

The end-end distance Rz of a “hung” polymer in an electric field E is
roughly:

Rz = κ ln[sinh(L/κ)/(L/κ)] (1.1)

where L = total length of the polymer, made of N pieces of length 2p
(p = persistence length of the polymer) and:

κ = 2ρpE/kbT (1.2)

where ρ = charge/length of the polyelectrolyte.
If you play with this equation you learn a Big Lesson: in a “large” pore

environment, DNA is highly aligned at low fields! A further fact, which can
be ascertained from my earlier notes on hydrodynamics in 2.5 dimensions,
is that in my thin “slit” of thickness h there is a hydrodynamic coupling
to the surface via stick boundary conditions. The stick boundary condition
slows down the entropic relaxation time of the polymer. This can be a big
effect, and the slow relaxation time enhances elongation. The bottom line
is that elongation increases with decreasing etch depth.

Once the polymer is elongated, the mobility becomes length independent
because the drag acting on the polymer is now proportional to the length.
This is a disaster!

This is why you can’t run a gel at high voltages to speed up fractionation
times, and why I didn’t believe the Human Genome Initiative could suc-
ceed as originally planned. Tom Duke in collaboration with our group has
suggested two ways to get around this problem. I will first talk about the
pulsed field/hex array idea. The idea here is if you can’t beat the physics,
use the physics: that is, if the polymer physics wants to elongate the poly-
mer, figure out a way to use elongated molecules. Tom’s idea was a take on
Ed Southern’s idea for using PULSED TRANSVERSE fields to fractionate
elongated polymers.

Transverse pulsed field electrophoresis in hexagonal arrays uses an array
of 2 µm pillars with 2 µm spacings arranged in a hexagonal lattice and takes
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advantage of the DNA elongation that occurs in microfabricated arrays [5].
Application of a pulsed field along alternating axes of the array, separated
by 120o, causes net motion of the DNA molecules along the bisector of the
axes, with average migration speeds that depend on their length (Fig. 1).

Fig. 1. 2 µm wide pillars were used in these experiments. Cartoon DNA molecules

are drawn to illustrate the motion of individual molecules of different lengths.

Each period T consists of two pulses aligned along the channels created by the

posts in the array, giving a net angle between the two field directions of 120o.

Shorter molecules move farther in the array because once they have reoriented

along the axis of the field they move in an unhindered straight line for the duration

of the pulse. Longer molecules, on the other hand, spend most of the pulse period

retracing their paths. In the example shown here, the longer of the two will never

advance.

A useful separation device, in addition to using an effective separation
mechanism, must also collect and launch molecules in a narrow zone, since
initial zone broadening destroys resolving power. In our device the DNA was
entropically trapped and released as a band using the principle described
by Han et al. [6]. We used an entropic barrier placed in the path of the
DNA near the entrance to the array (Fig. 2). There is a small gap between
the barrier top and the cover slip that seals the array. The gap between the
top of the barrier and the cover slip was smaller than the radius of gyration
of the DNA molecules to be fractionated (150 nm in these experiments).
When very low DC fields are applied to move DNA molecules into the
array, the molecules do not have enough applied force applied to them to
squeeze through the gap, and hence they get trapped (Fig. 2A). Under
higher fields they get stretched and move through the gap with mobilities
that are independent of molecular length.
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Fig. 2. A) Sketch of the device. The diameter of a typical device was 1 cm to

3 cm. The pulsed field was applied through two pairs of external electrodes (C-D

and E-F). The remaining electrode pair (A-B) was used for entropic trapping.

The electrodes were insulated from each other by six silicone structures (lozenge

shaped in panel A)). B) Cross section of the device showing entropic trapping.

The arrows point in the direction of DNA motion, while their lengths correspond

to the strength of the applied field. B-I): the beginning of DNA transport across

the barrier using a high electric field. B-II): the concentration and cleanup step

where the molecules are forced back against the barrier at low field before they

are launched into the array.

In our device molecules were first transported into the array through
the gap using a high electric field. They were then concentrated against the
barrier by applying a low electric field oriented in the opposite direction.
Concentrated molecules were then launched into the array by reversing the
field direction. The alternating fields were not applied directly at the en-
tropic barrier but rather were applied only after the DNA band had been
moved several millimeters into the array. This was done to avoid the field
curvature seen at the corners of the array and ensure that the fields were
uniform in the directions necessary for predictable fractionation.
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2 Experimental approach

The devices were made of quartz using standard photolithography and re-
active ion etching techniques. They contained an array of pillars oriented
in a hexagonal lattice whose height was 2 µm. The arrays were sealed using
glass coverslips with a spun on thin layer silicone elastomer [7] (RTV615A
and RTV615B, GE Silicones, Waterford, NY). The silicone elastomer sur-
face was treated for one minute in an oxygen plasma to make the silicone
hydrophobic, necessary for wetting of the sealed device. The devices were
shaped as hexagons 3 cm in diameter (Fig. 2B) to allow easy application of
electric fields oriented at 120o [8]. They were mounted on a plastic holder
that contained the outside electrodes. Two pairs of outside electrodes were
used to apply pulsed fields (C-D, E-F Fig. 2) while the remaining pair was
used for entropic trapping (A-B).

Fig. 3. Video clips of λ and T4 DNA pulsed at 244 V and with period T = 1 s

after release from the entropic trap.

The DNA fluoresence stain TOTO-1 (Molecular Probes) was used at
1 µg/ml concentrations to stain T4 and λ DNA molecules which were loaded
into the arrays in concentrations of 15 µg/ml and 5 µg/ml, respectively,
and observed by epifluorescence using the 488 nm line of an Ar/Kr laser.
The 0.5 × TBE electrophoresis buffer (45 mM Tris/borate, 1mM EDTA,
pH 8.0) contained 0.1% POP-6 (Perkin Elmer Biosystems) to reduce electro-
endosmosis and 0.1 M DTT to reduce bleaching.

T4 (168.9 kbp) and λ (48.5 kbp) DNA were separated in a very short
time with high resolution. The mixture (see Experimental Protocol) was
resolved into two bands in 10 s (Figs. 3 and 4). The position of the peaks
is plotted vs. time in Figure 4. From t1 = −10 s to t2 = 0 s, the applied
voltage was 100 V and the pulse period T was 1 s. Under these conditions
the bands separated by less than the bandwidth. At time t2 the voltage was
increased to 244 V, keeping the period the same. The two bands were then
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Fig. 4. The position and speeds of the band peaks of λ (squares), T4 (circles) and

the mixed band (diamonds) vs. time. From t1 until t2, the pulsing parameters

were 100 V and T = 1 s. The peak of the mixed band moved at 2.3 µm/s. At

time t2 the voltage was increased to 244 V. The two bands were cleanly resolved

in approximately 10 s. T4 DNA moved at 5.6 µm/s, while λ DNA moved at

14.9 µm/s. Speeds were obtained by fitting the straight lines shown through the

band centroid positions.

resolved in approximately 10 s. Figure 5 confirms that under our pulsed field
conditions the shorter molecules move faster than the longer molecules.

The widths of the bands after 11 min were approximately the same
for both DNAs (FWHM was ∼200 µm). For a diffusion constant D ∼
1 µm2/s the expected diffusional broadening (∼[2Dt]1/2 due to self diffusion
in t = 11 min is ∼30 µm, while the observed broadening is 100 µm. This
dispersive broadening possibly occurs because individual molecules of equal
lengths get stretched by different amounts, or some times not at all, when
encountering posts. The location of the bands after 11 min was consistent
with the band separation derived from the microscopic migration velocities,
∆x = (Vλ−VT4)t = 6100 µm. The band capacity [9] nC in this experiment
is estimated to be ∆x/[1.5[σ(λ) + σ(T 4)] = 20, i.e. 20 bands could be
resolved in the 50 to 170 kbp range under the conditions used here. Since
the separation is approximately linear in molecular weight (see below), this
means that molecules which differ by 6 kbp can in principle be distinguished.

Observation of the microscopic dynamics confirms that the separation
is a consequence of “switchback” motion of the DNA molecules for op-
posing field directions greater than 90o, as reported in preliminary inves-
tigations [10, 11] and illustrated in Figure 1. When the field direction is
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Fig. 5. Images of single molecules taken at 11 minutes after the start of pulsing.

These images were gathered 10 mm (left) and 4 mm (right) from the entropic

barrier. In the images at the top, the field was turned off and the molecules were

at thermal equilibrium, while the bottom panels show the separated molecules

elongated under pulsed field conditions. Note that the radius of gyration of the

relaxed molecules in the top panels clearly establishes that the faster moving

species is λ DNA.

switched, each molecule moves off in the new field direction, led by the
end which was previously trailing. As a result, the molecules retrace part
of the path they have traveled. Since longer molecules backtrack further
than shorter molecules, the rate of advance along the bisector of the field is
slower.

The overall speed of migration in a pulsed hexagonal array is length-
dependent. Under the simplifying assumption that the molecules remain
uniformly stretched during this motion, the net velocity VL of molecules of
length L in a pulsed field array can be described by the simple equation [10]:

VL = µoE cos(θ/2)
[
1− L

L∗

]
(2.1)

where the angle θ between transverse fields in our case is 120o and µo is the
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continuous-field mobility, which is independent of length and L∗ is a critical
cut-off parameter. The critical cut-off length L∗ arises from that fact that
molecules which do not have time to reorient completely during a single
pulse repeatedly retrace the same path and, since they make no progress,
their velocity is effectively zero. The reorientation time tor is to first order
simply L/µ0E, or more empirically given by:

tor = c1L/(µ0E) (2.2)

where c1 is a parameter which takes into account the fact that the DNA
molecules are not fully aligned. Roughly, in order to fractionate molecules
of length L the pulse period T should be set to tor. Thus, the upper limit
of separation, L∗, is proportional to the pulse time T and to the speed µoE
of a molecule along a free channel:

L∗ =
T

2
µ0E

c1
· (2.3)

It is a strength of the analytical nature of the dynamics of DNA molecules
in synthetic arrays that L∗ and T can be predicted. Note that we can obtain
expressions for µoE and L∗ from our experimental data at 244 V with a
pulse period T of 1 s for T4 and λ DNA. Some algebra gives:

µoE =
LT4Vλ − LλVT4

(LT4 − Lλ) cos(θ/2)
(2.4)

L∗ =
LT4Vλ − LλVT4

(VT4 − Vλ)
· (2.5)

These expressions can then be used to check the actual parameters used in
the experiment. We can assume (somewhat incorrectly) that the lengths
of the DNA in the above expression are the fully stretched lengths taking
into account that one Kuhn length b contains 300 basepairs and is 130 nm
long for TOTO-1 stained DNA [12], giving LT4 = 168.9 kbp = 73 µm and
Lλ = 48.5 kbp = 21 µm. The measured values of the retarded velocities are
VT4 = 5.6 µm/s and Vλ = 14.9 µm/s; from these parameters we get that
µoE = 37 µm/s and L∗ = 104 µm. The pulse periods T that should be
used at L∗ are then roughly tor = 3 s. Thus, pulse periods on the order of
1 s in this particular protocol are appropriate.

We can check the consistency of the experimental data at the two field
strengths. Since the migration velocity in a continuous field is propor-
tional to the applied voltage, we expect that at 100 V, µ0 E = 15 µm/s.
Equation (3) then predicts that L∗ = 43 µm. Equation (1) predicts that
lambda DNA should move at velocity Vλ = 3.9 µm/s, which is what we
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observe. Since the T4 DNA is longer than L∗, the theory predicts that
it will not move, but in practice it advances at the low speed of 2 µm/s.
This migration occurs because the backtracking motion is not ideal. We
observe that the molecules do not remain uniformly extended, but usually
get stretched by the field and subsequently relax during each pulse. Because
of this inherent stochasticity, even the longest molecules do not retrace the
same path indefinitely. Our measurements yields c1 = 0.18. Duke et al. [10]
calculated the value c1 = 1.39, assuming that molecules are extended to
their full contour length at all times. If the molecules are stretched to only
a fraction of their length, we would expect the value of c1 to be proportion-
ately reduced, because the reorientation time would be faster. The lower
value of c1 that we measure is therefore consistent with our observations
that, at the field strengths used, the molecules are rarely extended to more
than 30–40% of their full contour length.

3 Conclusions

Separation in the hexagonal arrays will be even faster when higher electric
fields with shorter periods are applied. In our experiments we were limited
to relatively low electric fields and long periods because we wished to record
single molecule images. Higher fields would cause greater molecular exten-
sion, which would enhance the regularity of the “switchback” motion and
improve the discrimination between molecules of different size. Reduction
of the depth of the device is also expected to increase the extension of the
molecules [12].

We can compare these results with those of others. Pulsed field cap-
illary gel electrophoresis [13, 14] achieves fast separation, but this method
is severely limited by the tendency of high molecular weight DNA to form
supramolecular complexes that interfere with separation. Chou et al. [15]
have proposed a single molecule sizing device in which molecules in the 2
to 200 kbp range are sized one at a time. This method, however, cannot
be used to separate many thousands of molecules simultaneously. Other
methods, such as recently developed arrays that separate molecules based
on their diffusion coefficients [16], suffer from rapidly deteriorating resolu-
tion as the molecules get bigger. Han et al. [6] have shown that entropic
trapping can be used to separate molecules in reverse order, with the largest
molecules moving the fastest. This method, although faster than conven-
tional methods, is still at least an order of magnitude slower than separation
in hexagonal arrays using quantitatively understood pulsed field parameters
that we report here.

The separation principle that we demonstrate here is not limited to
DNA molecules of a particular size. By appropriately adjusting the applied
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electric field, the pulse time and array parameters such as the pillar size
or spacing, the technique could be extended to the separation of polymers
of all lengths. Nor is it limited to the separation of fluorescently-stained
molecules. Because the motion of the molecules is predictable, it should be
possible to operate the device “blind”, without the addition of dye stains
which can contaminate subsequent processes such as polymerase chain reac-
tions. Alternatively, the dye can be removed by standard techniques using
ion exchange resins. In the future, it should be feasible to dispense with
fluorescence-based detection methods and detect the DNA molecules elec-
tronically using nanosensors constructed on the chip [17].
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Abstract

The previous lecture discussed how using crossed fields greater than
90o can be used to quickly fractionate DNA. However there are prob-
lems with the technique we described in the past lecture: it requires
running DNA as a single run of prepurified DNA, so that if one is
lysing and extracting genomic DNA as part of a continuous process it
is very difficult with the technology described. Further, we have not
really exploited the ideas of 2.5 D hydrodynamics that we described
earlier. Now it is time to correct that problem with what we call a
DNA prism, which uses the idea of transverse pulsed field fractiona-
tion but with a twist: asymmetric pulsed fields. We now tie things
together.

1 Introduction

The previous lecture discussed how using crossed fields greater than 90o

can be used to quickly fractionate DNA. However there are problems with
the technique we described inn the past lecture: it requires running DNA
as a single run of prepurified DNA, so that if one is lysing and extracting
genomic DNA as part of a continuous process it is very difficult with the
technology described. Further, we have not really exploited the ideas of
2.5 D hydrodynamics that we described earlier. Now it is time to correct
that problem with what we call a DNA prism, which uses the idea of trans-
verse pulsed field fractionation but with a twist: asymmetric pulsed fields.
We now tie things together.

The basic principle of prism separation is shown in Figure 1. As we have
discussed, when an electric field is applied in one direction, molecules of all
sizes migrate between the SiO2 posts with similar mobility (Fig. 1A). When
the field is switched 120o, all molecules must backtrack through channels
formed by the post array (Fig. 1B). The longer molecules take longer to
reorient, and thus at each change in field direction, the separation between
small and large molecules increases (Fig. 1C). This is the physical basis for
pulsed field gel electrophoresis in microfabricated devices, and probably also
for conventional gels. The prism device incorporates these principles and
in addition allows continuous fractionation by biasing either the strength of
the field from pulse to pulse, or the duration of the pulse at constant field
strength (Fig. 1D). Because of the microfluidic design the field should be
constant across the device.

2 Design

In our design the microfluidic channels of Figure 2 act as resistors and
serve to shape a uniform electric field. Whether or not the device produces
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Fig. 1. Schematic diagrams showing the different behavior of small and large

DNA molecules in microfabricated arrays with asymmetric alternating-angle elec-

tric fields; A–C) illustrate the sequential motion of a long and a short molecule

through a full cycle of alternating field. A) The high field moves both small and

large molecules in a channel (arrow shows direction of motion). B) A low field

rotated 120o causes reversal of the leading and trailing ends, and the low field

(or short time) prevents the long molecule from sliding off the posts and revers-

ing direction. C) The original field reapplied. The ends again reverse, the large

molecule resumes its original track while the small molecule is now in a new track.

D) Net motion after multiple cycles of a mixture of large and small molecules in-

jected into the array at the same point. The small molecules follow the average

field while large molecules follow the stronger field. Here and elsewhere the vectors

point in the direction of DNA migration, rather than the direction of the electric

field as traditionally defined.

uniform electric fields at the desired angles was tested by tracing the tra-
jectory of fluorescently stained DNA. Predetermined voltages were applied
to the reservoirs to create a DC field at −30o with respect to the vertical
axis (Fig. 3 inset). A mixture of bacteriophage λ and T2 DNA was loaded
into the DNA reservoir and then injected electrophoretically. The injected
band should flow along the electric field line. A straight and narrow band
∼50 microns wide was formed. If the electric field had not been uniform
in direction, the band would have curved. If the electric field had not been
uniform in strength, the band would have been tapered or dispersed. We
therefore conclude that the electric field is uniform. The voltages were then
switched to create a DC field 120o from the previous one, and the band
moved at constant speed (Fig. 3).

3 Results

By tracking individual molecules in the bands, we found that the electric
field was indeed horizontal. The field is uniform in strength as well, since if
it were not, the band would curve or smile as it moves. The injected band
is slightly S shaped, but this does not interfere with separation. The slight
S-shape near the array boundary results because the non-infinite resistance
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Fig. 2. Structure of the device illustrating the microfabricated sieving matrix

integrated with the microfluidic channels. Insets are micrographs of 2 micron

microposts with 2 micron spacing, microfluidic resistive channels connecting the

post array to electrolyte buffers, and a single special channel connecting the post

array to the DNA reservoir.

of the channels makes them imperfect current sources, a well-understood
design compromise. In a second experiment designed to test the separation
power of the array, restriction enzyme digests of BAC and PAC preparations
were injected and electrophoresed with constant pulse times, in a manner
similar to conventional pulsed field electrophoresis [1]. A mixture of 61 kbp
and 158 kbp BAC inserts was cleanly resolved in 7 s (Figs. 4B,C). The
resolution in this experiment, defined as the full width at the half maximum
of a band 7, was ∼77 kbp at 7 s, and ∼36 kbp at 14 s (Fig. 4). Although
the resolution is not yet as sharp as can be achieved with standard methods
(Fig. 4A), it is clear that the resolution increases with separation distance.
Moreover, the current separation time was more than 4 orders of magnitude
faster (7 s vs. 16 hr). We then continuously loaded and sorted a mixture
of four BAC inserts using asymmetric pulsing (the prism mode) (Fig. 5A).
The pulsing conditions empirically determine the angles and the widths of
the bands. Although the resolution of the four species was achieved in a
1 mm long matrix in 4 s under certain pulsing conditions (Fig. 5A), the two
smallest species (61 kbp and 114 kbp) were not resolved under other pulsing
conditions tested (Fig. 5B). For molecules larger than ∼100 kbp, however,
continuous separation does occur with high resolution (Figs. 5B,C).

The resolution achieved in this weight range is about 10 to 15 kbp,
comparable to conventional methods. Note, however, that the separation
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Fig. 3. Overlay of sequential fluorescent images of bacteriophage T2 DNA

(164 kbp) mixed with l DNA (48.5 kbp) to show the spatial uniformity of the

electric field. The band on the left (0 s) was imaged just after DNA injection

using a 52 V/cm electric field −30o with respect to the vertical axis. The other

four bands are from images taken at one second intervals later at a field strength

of 38 V/cm in the horizontal (+90o) direction. The inset is a low power schematic

of the device to orient the reader. The area of the field in Figure 3 is boxed with

a dotted line.

is achieved in ∼10 s, using a 2.5 mm long array. These results can be
understood with reference to Figure 2. The separation angle is simply the
angular difference between the band formed by very small molecules, which
follow the average field direction, and the band followed by larger molecules,
which tend more toward the direction of the stronger electric field pulse. As
random coils, molecules smaller than the spacing between posts follow the
average field direction, because they are too small to interact with the posts.
For the device used here, with 2 micron post spacing, we observed a cut-off
∼100 kb (Fig. 5C). The 61 kb insert in Figure 5C is below this cutoff, while
the inserts above the cutoff (∼100 kb) interact with the posts and move in
a manner depicted by Figure 2. Of course, a major reason for designing
microfabricated devices of the kind discussed here is that we can control
both the size of the posts in the array and their spacing, tuning both to suit
the size range of the DNA molecules.

We note a second valuable feature of this device, its micron scale features.
Apart from the advantages mentioned above small volumes, speed, a very
shallow chamber depth and hence no heating at high field strengths, and
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Fig. 4. Pulsed-field electrophoresis of BAC and PAC inserts in a microfabricated

array. A) Characterization of the BAC and PAC inserts by PFGE. The first lane is

a l-multimer marker, and the next lanes are NotI-digested artificial chromosomes

of insert sizes 61, 114, 158, and 209 kbp, respectively. Running time, 16 hr at

6 V/cm. B) A time series showing the separation of a mixture of the 61 and 158 kb

inserts. The initial DNA concentration was 10 micrograms/ml. The sample was

injected at 50 V/cm along the vertical axis (0 s). The field was then pulsed

symmetrically (60o with respect to the horizontal axis, 167 ms pulse duration,

50 V/cm field strength). C) Fluorescence profiles of bands at 0, 7, and 14 s.

Fig. 5. Prism separation. A) Four bands (61, 114, 158, 209 kbp, 10 micro-

grams/ml total) were resolved using 41 ms pulse times and asymmetric voltages

of 231 V/cm and 137 V/cm. B) Profile of bands resolved using 100 ms pulse times

and asymmetric voltages of 196 V/cm and 108 V/cm, observed 2.5 mm below the

injection point fitted with Gaussian distributions. The horizontal axis is in units

of degrees with respect to the vertical. C) Experimentally observed dependence

of the peak deviation angle on molecular mass.

the ability to tune post size and placement there are very low shear forces in
micron scale devices. Consequently, very large DNA molecules do not break
as they move through them. This is because DNA shearing is a function
of turbulence [8] and there is no turbulence at the low Reynolds numbers
at which these devices operate [2]. The lack of shearing is evident from the
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data of Figures 4B and 5B. The bands remain discrete and well separated,
with some diffusional broadening, and the optical density trace in Figure 4C
shows that the peaks remain symmetrical with time, and the areas under the
peaks remain constant. Because there is unavoidable shearing during the
preparation of BAC and PAC inserts from bacterial cultures, the baseline in
Figure 4C is not zero, as one might expect; the baseline in the conventional
separation shown for comparison in Figure 4A is also not zero. In fact an
optical density scan of Figure 4A shows that the base-line is higher than
Figure 4C. Thus the lack of shearing forces at low Reynolds numbers is an
important general advantage.

Although band broadening (dispersion) in the prism mode is not yet
fully understood, the various molecular sizes in Figure 5 are broader than
can be accounted for by diffusion alone. It seems likely that the angle
of sample entry and, more importantly, the degree to which all molecules
are fully stretched and therefore back track as required for high resolution
(Fig. 2), currently limits resolution. Since an important strength of the
microfabrication approach used here is the ability to define and modify
parameters such as these, it is likely that resolution in the prism mode can
be greatly improved with further work. At the same time, we note that the
resolution required for many BAC and PAC sizing experiments, where the
size of the insert is the criterion for further use, can now be easily carried
out in seconds in the non prism mode (Fig. 4). This represents not only a
vast saving in reagents and time sensitive costs, but in space as well.

These results may be compared to other reports in the literature, also de-
signed to separate or analyze high molecule weight DNA by unconventional
methods. In previous work from this laboratory, we showed in principle that
pulsed field separations in a microfabricated array of posts was possible [3,4]
and that diffusion arrays could be used to separate DNA molecules in the
many kb range [11]. Evidence for separation in both these cases was gath-
ered by tracking individual molecules at high magnification. These devices
are not yet practical tools, however, chiefly because the electric fields were
shaped by a few discrete platinum electrodes which resulted in a highly spa-
tially non-uniform electric field distribution. Further, the diffusion arrays
are very slow. Other valuable recent reports either operate in a much lower
molecular weight regime and on a time scale of many minutes or hours using
entropic trapping [5], or use a variant of FACS sorting, where size is judged
by fluorescence [6]. These latter approaches are essentially single molecule
devices, and although FACS sorting is fast, the total number of molecules
that can be harvested per unit time is low, and the macroscopic versions
suffer from very high shear forces.

Finally, the success of these experiments has hinged largely on our dis-
covery that microfluidic channels can be used to shape electric fields. In
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pulsed field gel electrophoresis the electric field must not only be switched
on a programmable basis, but the array boundary conditions must be set
so that the field lines are straight. This latter principle, first established by
Davis and colleagues [1], led directly to the clamped homogeneous electric
field device now widely used for the sizing and separation of DNA molecules
greater than ∼25 kb. The electric field is set by clamping the electric po-
tential at the gel boundary with a series of electrodes surrounding the gel.
This principle cannot be carried over to micro and nanofabricated devices
because these devices are sealed with a cover slip or, as reported here, a sil-
icone coated cover slip, and even at low field strengths the electrodes evolve
hydrogen and oxygen, which very quickly obscures the observational field.
This problem is solved here, where microfluidic channels serve to shape
the field by acting as large electrical resistors, and thus also act as cur-
rent sources to inject current uniformly across the array boundaries, rather
than set the potential at the array boundaries. There is no gas evolution
in the viewing area, and this design principle can now be used wherever
current must be carried by buffer in a microfabricated device, for example,
if molecules are to be trapped by dieletrophoresis [7].

4 Conclusions

In summary, a new method for the continuous sorting of DNA in a mi-
crofabricated device has been realized using the principles outlined in this
lecture series. Its distinctive features are its tiny size and consequent fluid
volume, control of field shape by a new microfluidics principle, high speed,
the complete replacement of standard sieving matrices and electronic con-
trol of field shape with structures fabricated on a wafer, and the ability
to operate the device at high field strengths without the need for external
cooling. We expect that the separation range can be extended both to much
larger molecules using the current version, and to much smaller molecules,
perhaps as small as 1 kb, in future versions.

The lower bound is set by the sieving power of the post array, where
the clear channel has to be smaller than the DNA in its randomly coiled
state. Although the current clear channel width is ∼1.5 micron, compara-
ble to a ∼100 kbp randomly coiled molecule, modern fabrication facilities
routinely mass-produce feature sizes smaller than 200 nm by optical lithog-
raphy. When a DNA molecule of contour length L is randomly coiled, its
radius of gyration RG is R2

G = pL/3, where p is the persistence length [8,9],
p ∼ 50 nm for double stranded DNA. The width of a ∼1.5 micron channel
is comparable to the size of a 100 kbp DNA molecule (2RG ∼ 1.5 micron).
Thus in principle, a 200 nm post array could effectively separate 1 kbp
DNA molecules. Longer arrays allowing longer separation distances should
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improve resolution for all molecular weights, since band broadening is a
random process. This is clear from Figures 4 and 5. Using the same pulsing
conditions used in Figure 5, resolution comparable to conventional pulsed
field gel electrophoresis (∼10 kbp) should be achieved with a 2 cm-long
array.

Theoretical analysis suggests that the resolution can be further improved
with higher field strengths and shorter pulse times, currently limited by the
power amplifier in our laboratory. Importantly, the methods used here
to realize asymmetric pulsed-field fractionation, such as the generation of
tunable uniform electric fields over larger arrays by current injection, will
be practical tools for the realization of many lab-on-a-chip systems [10].
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Abstract

We close this series of lectures on fractionation with this lecture on
how to do brownian ratchets RIGHT, and it involves very careful
consideration to the boundary value issues I talked about in Lecture 1.

1 The problems with insulators in rachets

It has been proposed that an array of spatially asymmetric obstacles could
operate as a continuous-flow Brownian ratchet [1–3]. As particles drift down
through the obstacle array, they are selectively displaced perpendicular to
their drift direction based on diffusion in the asymmetric structure. Exper-
iments [4, 5] showed that such asymmetric obstacle arrays can fractionate
DNA molecules of high molecular weight (∼105 base-pair). However, be-
cause there are discrepancies between the theory [1, 2] and the experimen-
tal results [4, 5], it is not clear how the fractionation efficiency scales with
molecular weight. While early theories proposed that smaller molecules
should fractionate faster [1, 2], a recent analysis [6] suggests that arrays
of ion-impermeable obstacles could not serve as continuous-flow Brownian
ratchets for point-like particles. Thus it remained questionable whether an
ion-impervious obstacle array could in principle fractionate small macro-
molecules (oligonucleotides, proteins, etc.), which are of great biological
importance.

The conventional understanding of continuous-flow sorting by
Brownian motion using asymmetric obstacle arrays [1, 2] is depicted in
Figure 1a. Consider particles emerging from gap A driven towards gap
B by electric fields. Executing biased random walks towards gap B, the
particles spread out over the parabolic shaded region. While particles tak-
ing path 1 are blocked and deflected back to gap B, particles taking path 2
are deflected to gap B+. The probability of being deflected depends on how
likely a particle diffuses past the corner of an obsticle (point C in Fig. 1a),
and thus is a function of the ratio between the width of the parabolic shaded
region and the characteristic obstacle dimension [1]. This ratio can be writ-
ten mathematically as a dimensionless parameter D/va, where D is the
particles diffusion coefficient, v is its drift velocity, and a is the gap width
between the obstacles. Since the deflection probability depends on the dif-
fusion, particles of different diffusion coefficients should migrate at different
directions. Based on theoretical calculation, Duke et al. suggested that for
the particular array geometry (Fig. 1a), the D/va of the molecules being
separated should be between 0.02 and 0.3 for the best resolution, and the
largest deflection probability should occur at D/va ∼ 0.7 [1].

Two major assumptions are made in the above model [1, 2]: (i) There
is no deflection of the electric field lines by the obstacles. (ii) The particles
are assumed to have no physical size (point-like particles).
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Fig. 1. a) Basic principle of continuous sorting in an asymmetric obstacle array.

b) Electric field lines (and streamlines) in an ion-impermeable array. The bound-

ary conditions used in this simulation is that all field lines flowing into gap A

continue through gap B. c) Equipotential lines corresponding to the electric field

under same condition.

In the actual implementation of these arrays by microfabrication tech-
niques [4,5], however, the obstacles consist of fused silica or other materials
impervious to the ions in the fluid. Because the ions flow around the obsta-
cle and the electric field E is related to the ion flow J by Ohms law, J = σE,
where σ is the conductivity of the electrolytic fluid, the electric field lines go
around the obstacles (Fig. 1b), violating the first of the above assumptions.

To isolate deflection due to diffusion, it is required that all field lines
through an upper gap (A in Fig. 1b) map through a lower gap (B), which
is aligned to the upper gap. If the field lines are misaligned so that some
field lines through gap A leak to gap C or D, we will not be able to distin-
guish whether a particle migrating from gap A to C is by diffusion or by
following the field. This requirement has to hold over the entire array area.
This occurs only for a single choice of the angle of the equipotential lines.
The proper equipotential contours (Fig. 1c) in our array were determined
by numerically solving Poissons equation using the said field requirement
as boundary conditions. Note that although the average current flow is in
the vertical direction (from A to B as shown in Fig. 1b), and the equipoten-
tial lines are always perpendicular to the local electric field by definition,
they are not perpendicular to the average current direction and are not
horizontal.

2 An experimental test

Assuming the upper and lower array edges are held at equipotentials, they
should be along such an equipotential direction to generate the desired
aligned current distribution in the array (in direction of gap A to gap B
in Fig. 1b). Therefore we designed our structure with properly slanted
top and bottom edges (Fig. 2). The array was etched in fused silica by
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Fig. 2. Schematic diagram of the device. The obstacles are 1.4 microns wide,

5.6 microns long, and 5 microns tall. The etched fused silica substrate was capped

with a glass cover slip to form enclosed microfluidic channels. The array is 12 mm

high and 6 mm wide.

standard microfabrication methods and sealed with a glass cover slip to
form the channels. For fabrication convenience, the structure was designed
so that the direction of the calculated equipotential lines was parallel to the
rows of obstacles, which we found by modeling not to be the case in general.
Further, in practice, the boundary condition is not implemented as a voltage
source along the boundary, but rather as an array of current sources which
inject (and extract) current along the top (and bottom) boundary. The
current sources were implemented as an array of microfluidic channels with
a high electrical resistance (compared to that of the array) connected to
common fluid reservoirs (Fig. 2) [7]. Holes through the substrate allowed
access to the reservoirs. The similar high voltage drop across all channels
(compared to the small voltage drop in the array) leads to the same current
flowing in each channel at the boundary. The microfluidic channel arrays
ensure that in case of imperfect dimension control during microfabrication,
the current pattern will still be highly aligned to the obstacles. A single
extra channel connected to a special reservoir (with voltage calculated to
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give the same current as the other channels) was used to inject a 90-micron
wide band of the molecules to be separated.

A mixture of Coliphage λ DNA (48.5 kbp, ∼5 µg/ml) and Coliphage T2
DNA (167 kbp, ∼2 µg/ml) in Tris-borate-EDTA buffer was injected into
the array at various speeds using electric fields. At high fields (>5 V/cm),
diffusion was negligible (D/va < 0.05). In calculation of the diffusion con-
stants, we assume that Coliphage λ DNA and T2 DNA molecules adopt ran-
dom coil conformations. According to the approach used in
Reference 1 for calculating the diffusion coefficients, Dλ = 0.64 micron2/s,
and DT2 = 0.35 micron2/s. The D/va values of experimental data are cal-
culated using the measured velocities and a = 1.4 microns. As expected
no lateral separation occurred (Fig. 3a) for these diffusion constants. The
fact that the band did not curve even at the boundary of the array shows
that the equipotential boundary conditions were properly imposed, and the
current direction was well-aligned to the obstacle array. Lateral separation
of the two species was observed at a field strength lower than ∼2 V/cm
(D/va > 0.13 for Coliphage λ DNA), with λ molecules being deflected from
vertical more than those of T2. The separation became larger (∼1.3o T)
as the electric field was lowered to 0.8 V/cm (Fig. 3b, D/va ∼ 0.32). The
drift velocity at fields less than 0.8 V/cm was so low (<1 micron/s) that
the stability of the separated bands became hard to maintain. The two
species could be separated into two cleanly resolved bands 11 mm from the
injection point, and the density profile of these bands was well fitted by
two Gaussian peaks (Fig. 3c). The resolution in the range of ∼50 kbp is
∼30 kbp, or ∼60% [8]. Although we did observe separation of molecules in
the D/va range proposed by Duke et al. [1], the measured separation was
much smaller than the theoretical predictions (Fig. 3d).

To examine the scaling of the deflection to very small molecular sizes,
a mixture of 411 bp (PCR product, ∼1 µg/ml) and λ DNA (∼20 ng/ml)
was injected into the array, using electric fields ranging from 6 V/cm to
120 V/cm. At these field conditions, λ DNA molecules do not deviate from
the field direction (Figs. 3a and 3d), and thus are used to label the field
direction. The measured D/va for 411 bp molecules using 6 V/cm is ∼2.7.
Because 411 bp DNA molecules are not random coils, the parameter D/va
was obtained by experimentally measuring the band broadening instead of
using the method in [1]. Assuming that band broadening is not influenced
by the obstacles, we used the following equations: t = y/v and ∆x2 =
2Dt + ∆x2

o, where y is the length of the band, ∆x2
o is the initial width

of the band, and ∆x is the width of the band after time t. Therefore,
D/va = (∆x2−∆x2

o)/2ya. The measuredD/va value at low field conditions
(6 V/cm) is ∼2.7, which implies that the mean diffusion distance during
the time when a molecule moves from one row to the next is larger than
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Fig. 3. a) Fluorescence micrograph of Coliphage λ and T2 DNA stained with

fluorescent dye TOTO-1 forming a band of ∼90 microns wide and 12 mm long

at 12 V/cm. The slanted lines on the top and bottom mark the boundary of

the obstacle array. Scale bar = 300 microns. b) Fluorescence micrograph of the

two species separated into two band at ∼11 mm from injection using 0.8 V/cm.

c) Fluorescence profile of b). Experiment data (thick black line) fitted with two

Gaussian peaks. d) Separation angle between λ and T2 bands as a function of the

dimensionless parameter D/va of λ molecules. The solid curve is the theoretical

prediction from reference 1. Circles mark experiment data using electric fields of

12 V/cm, 1.8 V/cm, 1.2 V/cm, and 0.8 V/cm. The dash line is the theoretical

curve calculated according to reference 1 using an effective gap size 4.1 times

larger than the physical gap size (5.7 microns instead of 1.4 microns). Note the

log scale of the horizontal axis.
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the size of the obstacles. Therefore, the assumption holds. The D/va
values for high field conditions were derived assuming constant mobility.
so the corresponding D/va range tested is from 0.14 to 2.7. This covers
the entire range that the theory suggests the maximum deflection (D/va ∼
0.7) [1]. Therefore deflection should be observed for these smaller molecules.
However, contrary to all expectations based on the theory [1, 2], absolutely
no lateral deflection was observed.

We believe the reason the array failed to deflect small molecules (411 bp
DNA) lies in the fact that small particles can precisely follow the electric
field lines as they flow through the obstacle geometries (Fig. 4a). Contrary
to the basic principles of diffusion array [1, 2], where particles could widen
out over the parabolic shaded region in Figure 1a only via diffusion, small
molecules will be spread out by the electric field. Particles are now drifted
towards the vicinity of boundary L (via field line a in Fig. 4a) as well as to
boundary R (via field line c). Thus small molecules injected from a gap will
have a much higher chance to diffuse to the left than what the old theory
suggested. In fact, a recent analysis showed that point-like particles are
equally likely to diffuse in both directions [6]. We summarize the argument
as follows. For small particles that precisely follow electric field lines, their
flux density Jparticle can be written as Jparticle = ρµE − D∇ρ, where ρ is
the particle density, µ is the mobility, and D is the diffusion coefficient. The
first term of the flux density is due to the electric field, whereas the second
term is from diffusion. According to the continuity equation, we have:

∂ρ

∂t
= ∇ • Jparticle = µE • ∇ρ−D∇2ρ. (2.1)

Note we have used ∇ • E = 0 because the electrolytic solution is neutral.
If there is a high field so that the second term in equation (1) becomes
relatively small, we find:

E • ∇ρ = 0 (2.2)

at steady-state. This says the particle density is approximately constant
along any field line. Thus if one has a uniform concentration of parti-
cles arriving across all field lines entering a given gap (originating from a
reservoir of uniform concentration), as the field lines (particle streamlines)
widen out after the gap, the particle density will remain unchanged. This
is illustrated in the fluorescence image of 411 bp DNA molecules in the ar-
ray (Fig. 4a), which shows that DNA under high fields uniformly fills the
entire space between rows of obstacles. Now, consider uniform injection of
particles into all gaps at the top of the array using high fields, leading to uni-
form particle distribution in the array, and then we lower the field strength
so that diffusion becomes important. Since all spatial derivatives of ρ in
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Fig. 4. Schematic flow diagram and fluorescence image of particles in center of

band for particles of size a) 411 bp at average field of 120 V/cm and b) 48.5 kbp

(1.2 V/cm). The exposure times were 2 s so that the image brightness shows the

particle density.

equation (1) are zero in our case of uniform density distribution, the parti-
cle density stays uniform according to equation (1), and thus the diffusion
flux of particles across any field line must be equal to the inverse flux.
Combined with translational symmetry, this implies that the probability
of a particle diffusing across boundary L in Figure 4a equals that across
boundary R, a result which must hold for any distribution, not just for the
assumed uniform distribution of particles. Given that there is no preferred
direction of diffusion, there is no physical basis for ratcheting.

When a much larger λ DNA molecule approaches a gap, it is physically
deflected by the obstacle and centered to the gap, because of its finite size
(a random coil of ∼1 micron) compared to the gap width (∼1.4 microns).
Thus molecules initially following field lines a, b, and c in Figure 4b will all
tend to leave the gap region on line b. The fluorescence image in Figure 4b
clearly shows this shadowing in contrast to Figure 4a for the case of small
molecules. Unlike 411 bp molecules, which are spread out in the space
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between rows of obstacles by the field, λ DNA molecules can only reach
boundaries L and R in Figure 4b by diffusion. Because boundary R is
farther than boundary L from the gap where molecules emerge, molecules
are more likely to diffuse across boundary R. Once a molecule reaches field
line d, it will be driven to the right. Therefore the obstacle array acts as a
Brownian ratchet. The reason that the observed deflection is smaller than
what the theory predicted (Fig. 3d) is because the electric field funnels back
most molecules that the theory counts as being deflected, such as particle C
in Figure 4b. In fact, our experimental data (Fig. 3d) suggest that the old
theory can take into account the funneling effect of the field by using an
effective gap size that is 4.1 times larger than the physical gap size for the
calculation of D/va (Fig. 3d).

3 Conclusions

In summary, this lecture clearly shows (at least I hope I clearly showed)
that in a continuous-flow Brownian ratchet array, there exists a critical
particle size threshold, which is related to the size of the narrowest feature
through which the particles must pass in the array. Particles below this
threshold maintain their flow along electric field lines through the gaps and
are thus incapable of being ratcheted. Particles above this threshold size
will be deflected from their original field lines by the obstacles, and can
thus be ratcheted. Once above this size, larger particles are ratcheted less
because of their lower diffusion coefficient. This points to the importance
of very narrow gaps in the obstacle array if the separation of small particles
is desired.
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Abstract

I discussed in the introduction to this lecture series that there are
two aspects to modern genomics: deciphering the actual sequence of
basepairs of a particular organism and then deciphering out of all the
possible genes that are present the actual genes that are expressed
and the interactions between them... a daunting task. In this lecture
I will discuss a possible technique, taken from nanotechnology, that
claims to be able to determine the actual occupation of various control
elements in the genome.

1 Introduction

The goal of this project is to develop a robust experimental approach to
reveal the logic of the transcription code of the DNA of a living cell, be-
cause this is the process which controls the function and life of biological
organisms. The most immediate challenge for the scientific community, to
identify the individual genes in each genome, is well underway, with both
experimental and bioinformatic approaches reasonably in hand for the pur-
pose. What is not in hand are intellectual approaches and technologies to
understand how the genetic program is interpreted, which is at the heart of
the question of how do biological organisms really work?

In broad terms, the genetic program encoded in the DNA is interpreted
by the “expression of genes” – i.e. the genes encoded in the DNA each
lead to the creation of a specific protein, and the proteins in turn regulate
the activity of the cell. But an understanding in precise terms the code or
logic by which the cell selects which genes to express, and exactly how this
happens in a temporally and spatially appropriate manner is not known.
That fundamental challenge is the subject of this proposal.

It is well established that expression of genes requires the interaction of
proteins with DNA in the vicinity of the gene, the most significant of which
is known as a “transcription factor”. While all cells in an organism have the
same DNA, it is different transcription factors bound in different locations
on the DNA, which cause one cell to evolve and function different that the
next. Furthermore for a relatively small number of genes that have been
studied in detail, it is clear that the efficient expression of a gene requires
the simultaneous binding of multiple proteins. However how those proteins
are chosen, and in what combinations they may productively interact with
one another, is unknown.

There are four main directions to our approach for understanding the
expression of genes.

I. Preparation of DNA with different tagged transcription factors.
II. Identification of the location of transcription factors on DNA.
III. Regulation and Functional Analysis.
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IV. Proteomic Analysis.
Our general approach will be to combine the expertise of three groups in
nanofabrication, molecular biology, and informatics to analyze this problem
in the following way.

First, we will continue to develop and adapt a near field device invented
at Princeton which is capable of detecting single fluorescent molecules with
a spatial resolution of 50 nm.

Second, we will construct strains of E. coli carrying regulatory proteins
fused to the Green Fluorescent protein (GFP) that will bind with high
affinity to a specific site on the genome. A red-shifted variant of GFP
will be designed to bind to a second well-defined site, and the near field
detector will be used to measure the distance between them as the DNA
flows through the detection channels. These are test of principle strains and
apparatus.

Third, a large number of strains for high throughput analysis of the
combinatorial code will be constructed by a random insertion technique that
will fuse GFP to essentially all of the E. coli transcription regulatory proteins
one at a time. These strains will then be analyzed in a massively parallel
fashion in the nanofabricated device. The localization of each protein for a
variety of cell states will then give us a large and important data base with
which to understand the combinatorial code.

Fourth, we will use our strengths in biological computing to begin an
analysis of the data base, using clustering algorithms, hierarchical ordering
schemes, and vector support machines.

I will examine in this lecture just the near field scanner which is central
to the entire scheme, because it is the one subject we have been attacking
most vigorously at present.

2 The nearfield scanner

There is a great need in in our approach to obtain the highest possible
spatial resolution images of biological structures in the shortest amount of
time. The information obtained from such images ranges from mapping of
the genome on chromosomal length DNA molecules [1, 2] to obtaining im-
ages of surface components on cells. In the case of the work of Schwartz
et al. [1] and Bensimon et al. [2] molecular combing techniques are used to
map DNA molecules by observing the fragment lengths of restriction cut
DNA molecules. Although there are robust computer algorithms used in re-
constructing the DNA map, ultimately the information is limited by the spa-
tial resolution R of the microscope objective used, given by R = 0.6λ/N.A.,
where λ is the wavelength of the light used and N.A. is the numerical aper-
ture of the objective. Although R can approach 0.3 microns for a very well
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designed high N.A. objective, asR decreases the field of view of the objective
also decreases and scanning times of molecules become prohibitively long
and data rates prohibitively low. Similarly, although high resolution point
scanning techniques such as the near-field optical microscope (NSOM) [3]
or the atomic force microscope (AFM) [4] can obtain very high spatial res-
olution images, it is at the cost of relatively slow scanning speeds and the
need to find the object to be scanned in a very small field of view compared
to the area where the object may be located.

3 The chip

In this lecture we discuss a technology which provides high optical resolution
as well as very high data rates for moving molecules. The basic idea is
simple: we bring molecules past a near-field slit, the spatial resolution is not
determined by the wavelength of light but by the width of the slit. Long
slits were nanofabricated in an evaporated aluminum film using electron
beam lithography and reactive ion etching. Laser light from a collimated
Ar:Kr ion laser was focused onto the back side of the film, creating a non-
radiating near field on the other side of the film. When macromolecules pass
over the slit in the vicinity of the near-field, fluorophores in the object are
excited and can radiate in the far field. A microscope objective captures
this far-field radiation which is recorded in a time-dependent manner by
a photomultiplier. This time-dependent signal then gives a record of the
passage of the object over the slit with a spatial resolution roughly equal
to the width of the slit, independent of the resolution R of the objective
used. Figure 1a shows a scanning electron microscope image of a completed
device. The aluminum floor was 200 nm thick and protected by 100 nm of
SiO2, which ultimately gives the limiting resolution for this device. Future
devices will have thinner insulating floors. The channel which is oriented
perpendicular to the slits is 5000 nm wide and etched to a depth of 1000 nm,
much too deep to truly confine the DNA molecules to under their persistence
length of 50 nm [5] but easy to fabricate in this first device. An array of
posts was used at the entrance to the slits in anticipation of the need to
stretch DNA molecules before they entered the slit region. Three slits were
used so that the velocity of the molecules as they passed over the slits
could be measured by arrival times of molecules at slits of a known spacing.
The multiple slits also act as a good rejection of uncorrelated events since
we could demand that the signal from a molecule show that 3 slits were
traversed with equal time intervals in order to be counted as a valid event.

An important aspect of this device is the dependence of both the near
field radiation pattern and the far-field transmission of a thin slit on the po-
larization of the incident light, which has been discussed theoretically in the
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Fig. 1. a) Scanning electron microscope image of three 100 nm wide slits and

hydrodynamic channels nanofabricated into a etched quartz structure. b) Shear

force feedback signal image from the NSOM of a 100 nm slit. c) NSOM imaging

of the evanescent light from a 100 nm slit. Electric field polarized parallel (p-

polarization) to the slit. A 532 nm diode pumped solid state laser illuminated the

back (glass side) of the chip. An Al coated tapered fiber probe of approximately

50 nm diameter positioned ∼50 Å from the chip was used to collect the evanescent

wave from the slit. The polarization of the incident light was rotated by a λ/2

plate. The light collected by the tapered fiber probe was sent into a photon

counting TE-cooled PMT. d) NSOM signal for light polarized perpendicular to

the slit (s-polarization).
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literature but never before measured. There is a substantial literature on
near field optics, starting with Bethe’s classic calculation of the transmission
of light through a small hole [6]. Unfortunately, most work has concerned
itself with optimizing the transmission of the far-field light through a struc-
ture, in our case we are concerned with minimizing the amount of far-field
radiation, since our use of fluorescent probes means that any transmitted
light will result in excitation and loss of resolution. Thus, although Betzig
et al. [7] have done an exhaustive calculation of the electric fields for a slit
with E polarized perpendicular to a slit in fact this is exactly the wrong
polarization for our work since this polarization in fact maximizes far field
radiation. In the case of a slit, it is convenient to use Babinet’s principle [8]
and view the slit problem as the re-radiation by a metallic line of width w.
Intuitively, we expect that when B is parallel to the slit (TE excitation) that
the transmission will be largest and we would expect that when the B of
the light is perpendicular to the slit (TM excitation) that the transmission
is minimized. We would also expect that the near field pattern would be
confined to the region between the slit for polarization parallel to the slit
and would radiate as two lobes from the edges of the slit for polarization
perpendicular to the slit, resulting in poor spatial resolution.

Calculation of the amount of the intensity of the near field radiation
and the far field (radiating) intensity is important. Unfortunately, a finite
thickness slit geometry is difficult to do analytically [9]. Those calculations
that have been done [7] assumed that the thickness of the metal film T was
much greater than the wavelength of the radiation λ and so only consid-
ered TE wave propagation. However, as we show below this results in a
high background of far field transmission since a TE wave in a rectangular
waveguide with infinitely long width has no cutoff frequency [8]. Our sit-
uation is apparently new to the literature: the film thickness T (200 nm)
is less than the wavelength of the radiation (488 nm) and hence the film is
not thick, and we are concerned with TM waves. No closed form analytical
expressions seem to exist for the far-field transmission [10] of a slit or the
near field pattern. Measurements of the near-field radiation patterns for a
100 nm slit using a NSOM constructed by Fann et al. [11], are shown in
Figures 1b–d. In agreement with the near field calculations of [7], the NSOM
image confirms that for electric field polarization perpendicular to the slit
the near-field pattern has two lobes radiating from the edges of the slit,
while for polarization parallel to the slit the near-field pattern is confined
to the opening between the slits, indicating that the techniques developed
in [7] can in principle be used successfully to calculate the near-field patterns
for our particular geometry.

However, although it is crude we can recognize two basic regimes at
least for the far-field radiation whose background we must minimize. When
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the slit width w is much greater than the film thickness T the far field TE
radiation is from an electric dipole whose magnitude P is proportional to
the slit width w. We would then expect that the far-field transmission in
this range should vary as P 2 and hence as w2, a power law. However, as
the slit width w becomes less than the film thickness T from analogy to the
attenuation of radiation in a waveguide we would expect that the far field
will now be further decreased by the transmission coefficient of a waveguide
beyond cut-off, where imaginary solutions to the wave equation lead us to
expect the far-field transmission will fall off exponentially with (λ/w).

I(w) ∼ Io 1
1 + (T/w)2

× exp
(
−Γλ
w

)
(3.1)

where T is the film thickness, w is the width of the slit, λ is the wavelength
and Γ is the polarization dependent transmission coefficient of the slit. Thus,
as a function of 1/w we expect first a slow power law decrease in transmission
with exponent 2 followed by an exponential decay.

To test these assumptions we carried out far-field transmission measure-
ments using the 488 nm line of a Kr:Ar laser, λ/2 plate polarization rotation
and a cooled CCD camera (C4880, Hamamatsu Corp., Bridgewater, NJ) op-
erated in integrating mode. The data shown in Figure 2a however indicate
that there is in fact a cutoff for both TE and TM waves as the slitwidth is
decreased. The lines in Figure 2b show fits to equation (3.1), with a value
for Γ of 0.8 for TE waves and 1.3 for TM waves, showing that although
the TE wave does have higher transmission it ultimately falls exponentially
as the slit width gets much less than T . At slit widths of 100 and 50 nm
the primary excitation is near-field, in agreement with our near-field NSOM
measurements which are shown in Figure 2b. In this data the intensity of TE
polarized light was measured as a function of the distance z of the NSOM
tip from a 100 nm slit. The exponential decay fit has a value of 100 nm ±
30 nm, the constant offset intensity we ascribe to farfield radiation for TE
polarization. The TM polarization used for the remainder of this paper will
have far-field intensity 1/30 of the 10% farfield observed for TE.

4 Experiments with molecules

Since the actual near field (and far field) TM radiation patterns for a finite
thickness slit is ultimately not well understood, the spatial resolution of
the device was determined by running fluorescent polystyrene balls of a
known diameter across slits of decreasing widths from 1000 nm to 50 nm
and measuring the time-resolved emission of the balls as they passed across
the slit. Figure 3 shows the response of the photomultiplier for 100 nm balls
passing 1000 nm, 300 nm and 50 nm wide slits under back illumination with
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Fig. 2. a) Far-field transmission of the 100 nm wide slit taken using a 5 nm band-

pass interference filter, λo = 650 nm. The left side log scale is the transmission for

TE (E field perpendicular to the slit, circles) and TM (E field parallel, squares) to

the slit. Intensity is normalized to the perpendicular transmission for a 1000 nm

wide slit. The right side axis is the ratio of the TE/TM (triangles) for far field

transmission. Solid lines are curve fits to the data using equation (3.1). b) Nor-

malized NSOM intensity from a 100 nm wide slit as a function of distance z from

the slit surface for p polarization. The solid curve fit is to an exponential decay

plus constant offset.

488 nm wavelength laser excitation, with a N.A. = 0.9 objective as the light
gathering optic. Our present slits have 100 nm of SiO2 over the slits to
protect the aluminum, the result is that at present our resolution is limited
to 200 nm spatial resolution. The fact that the pulse width of the light from
a bead passing over a slit decreased with the width of the slit and exceeded
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Fig. 3. a) Fluorescence vs. distance as determined by time of flight for a 100 nm

diameter fluorescent ball passing a 1000 nm (red line) slit and 300 nm slit (green

line). Typically, 50 mW of excitation light was used on the back side, focused to

a 10 micron spot size using a 50 mm focal length lens (Gradium lens, Newport

Optics). b) Fluorescence vs. distance as determined by time of flight for a 100 nm

ball passing by a 50 nm wide slit. The FWHM of the signal is 200 nm.

the resolution of the objective used for this measurements (R = 350 nm)
indicates that the beads were excited by the near-field pattern. Note that
resolution observed here is independent of the N.A. of the light gathering
microscope objective.

Linear polymers such as double stranded DNA (dsDNA) consist of long
sequences of basepairs whose sequential ordering comprise the genomic con-
tent of the organism from which the DNA came from. We examine here
the passage of T4 phage dsDNA molecules, T4 has a length of 169 kilo-
bases, or a stretched length when loaded with our intercalating dye TOTO-1
(Molecular Probes, Eugene, OR) of 7.4 × 104 nm [12]. In the absence of a
shearing force field DNA undergoing electrophoretic transport T4 would be

expected to form a Gaussian coil of radius Rg =
√

Lp
6 , where p is the persis-

tence length of DNA, about 50 nm [5]. This yields an expected Rg = 700 nm
for T4 DNA.

The forces acting on charged polymers in microfabricated environments
have been discussed in reference [12]. In our case the channels are 5000 nm
wide and 1000 nm deep, both dimensions are large compared to the persis-
tence length of dsDNA (approximately 50 nm). The forces acting on the
polymer create a tension T (z) in the polymer where z is the distance from
the tethered end. The forces acting on a polymer which is momentarily
hooked on an obstacle create a tension in the chain which declines from a
maximum value at the hooked end to zero at the free end; as a result, the
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Fig. 4. Fluorescence signal from T4 dsDNA molecules passing across a slit.

T4 molecules were pre-incubated with the fluorescent intercalating dye TOTO

(Molecular Probes, Eugene, OR) before entering the array using electrophoresis.

3 different molecules are shown under different states of elongation: a) a relatively

extended molecule, b) molecule with entropically coiled leading head, c) compact

molecule.

polymer appears as a highly stretched “stem”, surmounted by a “flower” of
increasingly disordered random coils. The terminal blob of the DNA free
end should have a diameter D ∼ (kT

ηv )1/2 where η is the viscosity of the
medium and v is the velocity of the polymer in the medium [12].

Typically in these experiments the molecules had electrophoretic veloc-
ities of ∼100 µm/s, with a predicted disordered head size of 200 nm.

Figure 4 shows selected time traces of T4 molecules passing by a 100 nm
slit. Data selection was needed here because with the present channel width
the DNA molecules can come off the posts in a variety of entropic configu-
rations, and the deep etch of the channel gives rise to a background of low
intensity poorly resolved molecules. The molecules chosen gave an exam-
ple of the range of signals of a molecule which has been extended by the
applied force field and then released. The brief light pulse at the heads of
the molecules is the disordered head of the extended molecule, the diam-
eter of the head is 200 nm, within the resolution limits of our apparatus
at present, and also approximately the expected size from the parameters
of the stretching force parameters we are using. In addition to the disor-
dered head of the molecule there is also visible small “lumps” of disordered
sections which are generated when the tension in the molecule is suddenly
released. The faster the DNA molecules are run through this structure the
more extended the molecules are and the less time there is for the taut end
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to form a disordered region. Thus, for DNA mapping applications using the
posts one can use electrophoretic high velocities and simply work backwards
from the taut end and still maintain high spatial resolution.

5 Conclusions

The real use of this technology will be realized when the channels which the
molecule traverses are made on the same scale as or smaller than the persis-
tence length of the polymer, so that the molecule must enter the channel not
as a coil but as an extended strand. Under those conditions truly high spa-
tial resolution of the length of the molecule will occur allowing this technique
to do high resolution dynamic mapping of single dsDNA molecules. Given
the high degree of discrimination between polarized light oriented parallel
and perpendicular to the slit (Fig. 2), it also seems likely that this device
can be used to measure fluorescence polarization [13] of single molecules as
they pass successive slits. This can be achieved by placing the polarized
light source on the solution side of the device, and the detector below the
slit. In this configuration the relaxation time of a polarized signal [14] could
also be followed as a function of slit number.

References

[1] J. Lin, R. Qi, C. Aston, J. Jing, T.S. Anantharaman, B. Mishra, O. White, J.C.
Venter and D.C. Schwartz, Science 285 (1999) 1558-1562.

[2] X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra, N. Hornigold, M.
van Slegtenhorst, J. Wolfe, S. Povey, J.S. Beckmann and A. Bensimon, Science 277
(1997) 1518-1523.

[3] Optics at the Nanometer Scale, E. Nieto-Vesperinas and N. Garcia (eds.) (Kluwer
Acad. Publ., 1996).

[4] M. Miles, Science 277 (1997) 1845-1847.

[5] M. Hogan, R.H. Austin and J. LeGrange, Nature 304 (1983) 752-754.

[6] H.A. Bethe, Phys. Rev. 66 (1944) 163-182.

[7] E. Betzig, A. Harootunian, A. Lewis and M. Isaacson, Appl. Opt. 25 (1986) 1890-
1900.

[8] Classical Electrodynamics, J.D. Jackson, 3rd edition (John Wiley & Sons, N.Y.,
1998).

[9] T.W. Ebbessen, H.J. Lezec, H.F. Ghaemi, T. Thio and P.A. Wolff, Nature 391
(1998) 667-669.

[10] M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, Oxford,
1984).

[11] P.K. Wei, R.L. Chang, J.H. Hsu, S.H. Lin, W.S. Fann and B.R. Hsieh, Opt. Lett.
21 (1996) 1876.

[12] O.B. Bakajin, T.A.J. Duke, C.F. Chou, S.S. Chan, R.H. Austin and E.C. Cox, Phys.
Rev. Lett. 80 (1998) 2737-2740.

[13] F. Perrin, J. Phys. Radium 7 (1926) 390-401

[14] X. Chen, L. Levine and P.-Y. Kwok, Genome Res. 9 (1999) 492-498.



“austin”
2002/9/13
page 392

�

�

�

�

�

�

�

�

392 Physics of Bio-Molecules and Cells

Abstract

I discuss in this lecture a magnetic separation idea which utilizes
several ideas from microfabrication and nanomagnetics. The basic
idea comes from our earlier work using asymmetry in obstacles and
brownian motion to effect separation of objects [10] by moving them
in streams whose angle to the hydrodynamic average velocity is a
function of the diffusion coefficient of the object.

1 Introduction

Cellular and molecular biologists have developed a variety of ways to sort
living cells according to certain characteristics. It is frequently desirable
to sort cells according to their chemical content, enzyme activity, surface
antigens, or size. Such steps allow physicians to purify a patient’s blood
sample for further analysis and allow scientists to isolate rare cell types
to study biological processes. The possibility of isolating rare cells, such as
hematopoietic stem cells and metastatic cancer cells, carries important med-
ical applications as well. Density centrifugation, fluorescence-activated cell
separation (FACS), and magnetic-activated cell separation (MACS) have
proven to be very effective cell sorting methods to this point. However, the
great importance of such methods requires constant innovation and refine-
ment of the technique.

The device I propose here is not technically a brownian ratchet device
but uses the idea of force which acts at angle to the hydrodynamic flow. In
our case, the force is generated by a magnetic field gradient which comes
from an array of magnetized wires which lie at an angle θ to a hydrodynamic
field flow. The sum of the hydrodynamic force and the magnetic force create
a new vector which as in the case of the brownian ratchet moves the cell
out of the main stream direction. Figure 1 shows how the two ideas are
correlated.

2 Blood specifics

Blood carries nourishment and oxygen to, and waste products away from,
all parts of the body through the arteries, veins, and capillaries. Blood
also mediates the immune system, recognizing foreign macromolecules and
mounting an attack against them. Humans contain approximately five liters
of blood, which accounts for 7% of our body weight. There are three main
types of blood cells: erythrocytes (red blood cells), leukocytes (white blood
cells), and platelets. However, all three arise from precursor cells in the
bone marrow, called hematopoietic stem cells.

Erythrocytes are the most common type of blood cell, existing at con-
centrations around 5×1012 cells per liter [2]. They constitute approximately



“austin”
2002/9/13
page 393

�

�

�

�

�

�

�

�

Lecture 4: Fractionating Cells 393

Fig. 1. a) The original thermal ratchet concept. As molecules are moved down in

a flow field, the odds of moving to the left or right are not equal. b) The magnetic

force separation idea. High magnetic field gradients provide forces at an angle to

the flow of cells.

45% of the total volume of blood. Erythrocytes are very small (7.8 µm) and
are normally shaped as biconcave disks. Aside from rare exceptions, mature
erythrocytes have no nuclei or internal membranes. Their purpose is the
first listed above: they are primary components of the circulatory system.
Leukocytes exist at nearly one-thousandth the concentration of erythro-
cytes, and they serve an entirely different purpose. Leukocytes protect the
body from infection, in cooperation with the organs of the immune system.
They are typically classified into three types: granulocytes, monocytes, and
lymphocytes. Granulocytes, so named because of granules in their cyto-
plasm, make up the majority of leukocytes at 5 × 109 cells per liter. They
range from twelve to fifteen microns in diameter. Monocytes exist at only
4×108 cells per liter, but they range from fifteen to eighteen microns across.
Lymphocytes, at 3 × 109 cells per liter, are only slightly larger than ery-
throcytes, though each has a very large nucleus which occupies most of the
cell.

All adaptive immune responses are mediated by B-lymphocytes (B cells)
and T-lymphocytes (T cells). All lymphocytes bear variable cell-surface
receptors to detect antigens, or foreign macromolecules and cells. Of special
interest to cellular and molecular biologists are the blood-borne proteins
called antibodies, for they can be used as highly-specific probes to identify
and distinguish between different cell populations. Antibodies are Y-shaped
proteins of the immunoglobulin (Ig) family. The body produces antibodies
as a defense against extracellular materials. For instance, an antibody may
bind to a virus or toxin to prevent it from infecting a cell, or it may coat
a foreign bacterial cell and mark it for destruction. However, a particular
antibody can only bind to select molecules that fit into its antigen-binding
site. Although the amino acid sequence among all antibodies is mostly
constant, the end of each “arm” of the Y-shaped molecule sports a variable
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region. These arms form the binding site of an antibody, and it is their
variability that accounts for the specificity in what they can bind to. Today,
antibodies can be obtained which distinguish between two polypeptides that
differ by only a single amino acid [3]. Once families of antibodies have been
produced, they can be conjugated to small fluorescent molecules, such as
fluorescein or rhodamine, by which they can be detected under a fluorescent
microscope.

Cell biologists have isolated families of antibodies that selectively rec-
ognize different subpopulations of leukocytes by specific proteins contained
in the cells’ outer membranes. Though they are natural components of the
leukocytes, these cell-surface molecules are called “antigens” because anti-
bodies can be raised against them. A more fitting name for them is “mark-
ers” because they are characteristic of specific cell populations. Markers
can be grouped into multiple categories; some are specific for cells of a par-
ticular lineage, while the presence of others may vary according to the stage
of differentiation of cells of the same type [4]. Any cell surface marker that
identifies a particular lineage or differentiation stage and is recognized by a
group of monoclonal antibodies is part of a “cluster of differentiation”. All
leukocyte surface markers whose clusters are defined are designated with a
CD, followed by a number.

The CD system has allowed immunologists to identify cells participating
in various immune responses. For instance, most helper T cells are CD3+

CD4+ CD8−, while cytotoxic T cells are CD3+ CD4− CD8+ [4]. Fluorescent
molecules can be conjugated to the antibody clusters that recognize their
specific markers, and then incubated with the cells in a sample. However,
the CD system also enables the fractionation of blood cells according to their
specific surface antigens. Clusters of antibodies can be used to selectively
bind fluorescent molecules or magnetic beads to certain leukocytes, which
are then isolated by flow cytometry techniques. This system is crucial to our
method of separating cells as well as to the existing technologies. Figure 2
gives a picture of how antibodies can be labeled and attached to cells.

Fluorescence-activated cell separation provides scientists with one way to
isolate cells of a uniform type from a tissue or cell suspension. Specific cells
in a sample are labeled with antibodies of an appropriate cluster, coupled
to a fluorescent dye. The cells are sent single file in a fine stream through
the path of a laser beam. As each cell passes the beam, it is monitored for
fluorescence. A nozzle then forms droplets containing single cells and gives
each a positive or negative charge, depending on whether the cell it contains
is fluorescent. Finally each droplet is deflected by a strong electric field into
a collection chamber [2]. This process results in two collection tubes, one
containing labeled cells and one containing unlabeled cells. Consequently,
the specific cells in the sample that were labeled are isolated from the rest
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Fig. 2. Labeled antibodies and their attachment to a cell membrane.

of the sample. A schematic view of a FACS machine and a magnetic sorting
device is shown in Figure 3.

The beads themselves are composed of iron (II) oxide nanocrystals ap-
proximately 50 nm in diameter, coated with a polysaccharide which provides
functional groups for the attachment of antibodies [6]. Thus, each bead is
smaller than the average leukocyte by a volume factor of more than 106.
Their extremely small size makes them very gentle on the cells to which they
attach, and they bear apparently effect on the cells’ function or viability.
However, although only a few dozen beads are needed to separate a cell,
several thousand may be bound to a particular cell after incubation [7].

An interesting physics result of the nanosize of the beads is that they
are superparamagnetic, which means that they are single domain but too
small to form a stable magnetic moment (ferromagnetic materials have sta-
ble magnetic moments in the absence of an external magnetic field H).
Ferromagnetism comes from the Fermi exchange interaction between two
atoms, each of which has a net electronic unpaired spin S, and the net odd
symmetry that the total wavefunction must have. The sign of the exchange
interaction is such that the spins have a parallel alignment energy on the
order of 400 K, and if the system is big enough can be ferromagnetic at
room temperature. However, for small volumes thermal fluctuations will be
sufficient to overcome the anisotropy energy and cause the spontaneous loss
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Fig. 3. Two conventional ways to sort labeled cells from whole blood.

of a permanent magnetic moment. Under such conditions the material is
classified as superparamagnetic. In zero external field, the net magnetic mo-
ment of the superparamagnetic beads is zero. In the presence of an external
magnetic field the beads can be highly magnetized.

The high specificity and efficiency of magnetic methods have made them
quite useful in obtaining rare cell types. Hematopoietic stem cells, residual
tumor cells, and antigen-specific B and T cells can be isolated and used in
a variety of functional assays. Hematopoietic stem cells can be isolated by
their expression of the CD34 antigen [8]. Stem cell purification techniques
are of great value for both science and medicine. Pure populations of stem
cells will make possible scientific studies of blood cell formation and dif-
ferentiation. Additionally, they are necessary for successful transplantation
procedures. Stem cells from the bone marrow and peripheral blood are
transplanted in combination with chemotherapy for the treatment of cer-
tain malignant and genetic disorders. The success of a transplant procedure
depends on the effectiveness of techniques that are used to isolate the cells
for the transplant. Any additional cells lingering in the preparation may
pose a risk to the recipient.

Cancer patients benefit from cell separation techniques by their capacity
to remove residual tumor cells from the bone marrow. Since conventional
cancer therapy is toxic to bone marrow stem cells, a fraction of bone marrow
must be removed from a patient before high dose therapy can be given. The
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bone marrow can subsequently be reinfused into the patient. But before this
occurs, it is desirable to eliminate all tumor cells from it. Tumor cells can
be selected by specific antibodies to surface markers and then removed from
the sample. Scientists have achieved removal of 99.9% of the malignant cell
population using magnetic separation techniques [9].

We describe an alternative way to isolate biological cells from a larger
sample. Our method is similar to MACS in that specific cells are attached to
antibody-coated magnetic beads in a high magnetic field gradient. However,
our device is entirely confined to one single microchip. Additionally, it
confers the advantages of continuous input and two-dimensional separation.
It is believed that our device could potentially yield a higher efficiency and
a greater degree of purification than existing cell separation techniques.

3 Magnetic separation

In our device, cell fractionation is made possible by an array of very thin
magnetized “wires” which are aligned at an angle to a net hydrodynamic
flow direction. There are two advantages to these microfabricated wires:
the extremely thin ferromagnetic layer forces the spin system to be single
domain, or at least “few domain” with resultant very high magnetic fields.
Secondly, because of the small length scale of the wires such small structures
have large magnetic field gradients at their edges. Since magnetic force
depends on field gradients, the path of a paramagnetic object exposed to this
array of wires will be altered. Thus, our device can separate paramagnetic
objects from diamagnetic ones. Paramagnetic beads attached to cells are
attracted to the wires and are deflected away from unlabeled cells.

Since there are no magnetic monopoles, forces result from field gradients
acting on magnetic dipole moments. If an object is ferromagnetic with a
permanent magnetic moment, �µ, it will feel a force in the presence of a
magnetic field gradient given by:

�Fm = (�µ · ∇) �B. (3.1)

The magnetic moment of a paramagnetic object is induced by an external
field. A paramagnetic object with magnetic susceptibility χ will feel a force
given by:

�Fm = (χ�B · ∇) �B. (3.2)

In our apparatus, beads attached to the cells have an induced magnetic
moment (χ�B) aligned parallel to the field produced by the wires. The pre-
ferred magnetization direction of the magnetic stripes is to place �B mag-
netized perpendicular to the plane of the wafer, so the field points in the
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+y-direction. Since beads travel through our device at a fixed height yo
above the wires, the force that they encounter is:

F = µ∂By/∂x. (3.3)

Our beads are single domain, 50 nm particles of ferrous iron oxide (FeO).
They are superparamagnetic, which means that they are too small to sustain
a stable dipole moment but that they will exhibit a net moment in an
external applied field.

4 Microfabrication

Microfabricated devices are capable of accessing the small length scales of
biological cells and providing magnetic field gradients high enough for cell
fractionation. Microfabrication was performed at the Princeton Center for
Photonics and Optoelectronic Materials (POEM). The facility offers a full
range of sophisticated processes and equipment for scientific research, which
enables the fabrication of devices that could not have been made several
years ago.

The fabrication of our device required a series of steps to make it suitable
for magnetic cell separation. First, the outer design was exposed onto a sil-
icon wafer by photolithography. This included the channels, inlets, outlets,
and central chamber, constituting the framework of the apparatus. Then,
this design was etched 16 µm into the wafer and the remnant photoresist
was stripped off. A separate pattern for the diagonal magnetic wires was
exposed onto the central chamber, again by photolithography. Grooves for
these wires were then etched an additional 0.2 µm so that the wires would be
countersunk and not impede the flow of cells. A ferromagnetic metal alloy
was deposited onto the wafer in a uniform coat. The unexposed photoresist
was then removed from the wafer, lifting off the overlapping metal with it.
This left behind only the thin wires on the wafer. Finally, a protective layer
of SiO2 was deposited on top of all structures.

Masks for positive imaging were made commercially by Adtek
Photomask of Montreal, Quebec. Our device required two masks: one for
the outer channels and outlets, and one for the magnetic wires. Each mask
was a square quartz plate, 5′′ × 5′′ × 0.09′′. The masks were designed on
L-Edit, a computer graphics program, and they were fabricated by electron
beam lithography. A pair of alignment marks at opposite ends of each mask
ensured that the patterns overlapped each other precisely.

To form magnetic wires, a cobalt-chrome-tantalum (Co-Cr-Ta) alloy was
sputtered onto silicon wafers that had been exposed to the diagonal wire
pattern. Co-Cr-Ta was used because of its high remanent magnetization.
Co-Cr-Ta was chosen as a suitable alloy for our magnetic structures because
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it has an exceptionally high remanent magnetization of 6000 Gauss [16].
This should be compared to the saturation magnetization of its main com-
ponent, cobalt (1400 Gauss) [15]. As an alloy, Co-Cr-Ta has the ability to
acquire and retain a greater magnetic moment than each of its three compo-
nents. Co-Cr-Ta occupies a hexagonal close packed (hcp) lattice structure,
and, like most sputtered films, it is isotropic [17]. Additionally, as the wires
in our device are very thin films, it is expected that they are single domain.
Evidently the wires are capable of acquiring a large, uniform magnetization
in an applied field and retaining it when removed from the field. As they
are isotropic, they may be magnetized either in the plane of the wafer or
perpendicular to it.

Wires were magnetized perpendicular to the plane of the wafer, in a
uniform external field. The magnetic field was provided by a large elec-
tromagnet and measured at 5 kG. It is believed that wires achieved their
saturation magnetization in this field and retained a nearly uniform internal
field of 6000 Gauss as the electromagnet was disabled.

The strength of the magnetic remanence of the wires was tested using
paramagnetic and latex beads. First, fluorescent paramagnetic beads were
suspended above the wires. Beads were attracted by the wires in a striking
fashion, accumulating at the edges where the field gradients were the high-
est. As a control, nonmagnetic polymer beads were then suspended. They
disseminated uniformly, showing no preference for the magnetic wires.

5 Magnetic field gradients

Magnetic fields are produced by Co-Cr-Ta wires positioned at a 45o an-
gle to the input stream of cells. Each wire is 10 µm wide and 0.2 µm
thick, and neighboring wires are separated by 25 µm. The following calcu-
lations presume uniform magnetization of the wires, with a remanent field
of 6000 Gauss.

Wires may be magnetized in either of two directions: in the plane of
the wafer or perpendicular to the wafer. The two orientations are shown in
Figure 4, with a consistent coordinate system. For neither method is there
a force directed along the length of the wire; ∂B/∂z = 0 in each case. How-
ever, for both orientations, there are very large gradients in the magnetic
fields near their edges. These gradients attract paramagnetic objects to the
wires and redirect their flow through the chamber. The orientation that can
provide higher field gradients should be chosen for optimal results.

Field gradients were also calculated analytically. Since cells travel at a
fixed height yo above the wires, only ∂B/∂x is significant. Although gradi-
ents for both in-plane and perpendicularly magnetized wires are comparable
at large yo, gradients at lower heights are significantly greater for the case
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Fig. 4. Two possible directions for magnetization.

of perpendicular magnetization. Thus, in order to maximize the magnetic
force for separation, wires were magnetized perpendicular to the plane of
the wafer.

A bead that is not attached to a cell will roll along the floor of the
chamber. The bead is separated from the wires by only a 0.2 µm layer of
SiO2. Since its magnetic moment aligns with the field and �Fm = (�µ · ∇) �B,
the bead will experience horizontal forces of up to 3 × 10−11 Newtons, or
3×10−6 dynes. A bead attached to a cell will feel a smaller force because it
is elevated above the floor of the chamber. Lymphocytes are approximately
8 µm in diameter. Beads will therefore be, on average, 4 µm above the wires
in the chamber. At this height, fields are 0.0045 Tesla and gradients are
1300 T/m. Consequently, beads will experience forces up to 1.5× 10−13 N,
or 1.5× 10−8 dynes. For comparison, a constant force of 1.5 × 10−8 dynes
will cause a leukocyte to reach a terminal velocity in water of 1 µm/s, a
modest speed for a cell in a microchip. In reality, though, the forces on the
cells will be considerably higher. Because the beads are so small, several
thousand may bind to each cell. Also, many of these beads will be closer
to the wires than 4 µm, where forces are significantly greater. Cells will
experience the net effect of the magnetic forces on all beads bound to them.

It is important to note that magnetic forces point in the x-direction,
perpendicular to the wires. The magnetic force is greatest at the edges, and
it is always attractive. Since the cells flow at a 45o angle to the wires, there
is an x-component to the hydrodynamic force which should exactly cancel
the magnetic force. All that is left is the z-component to the hydrodynamic
force (and viscous drag). As a result, the cells flow in the z-direction, along
the lengths of the wires. Although they continue to be propelled by the
input jet stream, they are constrained to follow the wires by the high field
gradients at their edges.
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6 Device interface

In order for the deflected cells to be resolved, the input jet stream must be
confined to a narrow width through the entire chamber. If the jet stream
broadens out over time, magnetic separation becomes impossible. However,
for a single jet that stands alone, this is exactly what happens. As soon
as the jet enters the chamber, it experiences an abrupt change in environ-
ment. It slows down almost at once to the velocity of the surrounding fluid
and, by conservation of mass, broadens immediately. Designed with this in
mind, our device contains an alternative to the single input jet: the N-port
injector [23]. The foundation for this idea can be derived from elementary
fluid dynamics, as I discussed in the first lecture.

The apparatus consists of a series of channels and chambers etched into
a silicon wafer (Fig. 5). Channels are sealed by a glass coverslip. Large
hydrodynamic forces produced by a pressure gradient drive cells through
the device, where they are collected in nine outlet portals. All structures in
the apparatus are etched 16 µm deep, allowing ample room for cells to flow.

Fig. 5. The basic schematic of the microfabricated cell fractionation chip.
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Once cells are labeled, the sample is fed into the main input channel at
a high hydrodynamic pressure. The input channel is 40 µm wide and feeds
into a central rectangular chamber. Buffer flows through multiple channels
on both sides of the input at an even higher pressure. This confines the
sample to a narrow stream as it flows through the chamber. The ratio-
nale behind this “N-port injector” has been discussed in earlier lectures, ad
nauseaum no doubt.

The central chamber (5 mm × 18 mm) contains the magnetic structures
and is where magnetic separation occurs. Wires of a ferromagnetic material
are countersunk into the floor of the chamber at a 45o angle to the flow
of cells. The wires are 10 µm wide and spaced 25 µm apart. The stripes
were magnetized by placement in a 10 kG external magnetic field from
an electromagnet. The high magnetic field gradient at the edge of each
wire imposes a force on the superparamagnetic beads at an angle to the
hydrodynamic force. The component of the magnetic force perpendicular to
the flow causes the lateral deflection of all labeled cells. Cells are constrained
to move along the magnetic wires by the large field gradients that exist at
their edges. Figure [2] shows fluorescent images of magnetic beads.

Fig. 6. Magnetic wire array with paramagnetic beads bound to the edges of the

strips where the magnetic field gradient is highest.

However, the undeflected cells must stay confined to a narrow stream
across the length of the chamber in order for perpendicular deflections to
be resolved. Channels are positioned at the sides and end of the chamber to
capture cells as they exit. More than 350 channels, 24 µm wide, feed into
nine outlets where cells are collected. All unlabeled cells will flow into the
central outlet. In the outlets to the right, the fraction of labeled cells will
be enriched. No cells should migrate to the left.
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Fig. 7. Microscopic views of etched structures, before sputtering.

If cells can indeed be sorted by the high gradients in our device, rare
cell types expressing known surface antigens can be isolated. Though its
implications are the same as for FACS and MACS, our method comes with
several unique advantages. First, it allows for the continuous input of cells.
It therefore holds the promise of tolerating a large volume of cells with high
efficiency. Second, its two-dimensional design allows simultaneous isolation
of different cell types. By labeling different populations of cells with parti-
cles of differing magnetic susceptibilities, one could expect different degrees
of lateral separation. Third, its small size would make it a cheap and con-
venient mechanism for separating cells.

The central chamber (5 mm × 18 mm) contains the magnetic structures
and is where magnetic separation occurs. Wires of a ferromagnetic material
are countersunk into the floor of the chamber at a 45o angle to the flow of
cells. The wires are 10 µm wide and spaced 25 µm apart. The high magnetic
field gradient at the edge of each wire imposes a force on the superparamag-
netic beads at an angle to the hydrodynamic force. The component of the
magnetic force perpendicular to the flow causes the lateral deflection of all
labeled cells. Cells are constrained to move along the magnetic wires by the
large field gradients that exist at their edges. However, the undeflected cells
must stay confined to a narrow stream across the length of the chamber in
order for perpendicular deflections to be resolved.

Channels are positioned at the sides and end of the chamber to capture
cells as they exit. More than 350 channels, 24 µm wide, feed into nine outlets
where cells are collected. All unlabeled cells will flow into the central outlet.
In the outlets to the right, the fraction of labeled cells will be enriched. No
cells should migrate to the left. Figures 7–9 show images of various features
of the fabricated wafer.
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Fig. 8. Entrance to the central chamber. Magnetic wires are at a 45o angle to the

input jet stream. Round dots are posts to prevent the coverslip from collapsing.

Fig. 9. Channels and outlets at the end of the central chamber.

Once a chip IS prepared with a coverslip, it is loaded onto a lucite chuck
which mediated the flow of fluid (Fig. 10). The chuck was machined in
the Princeton Physics Department machine shop. It is designed so that
a high pressure could be applied to the fluid in all three inlets to drive it
through the chip. Twelve tubes are drilled in the chuck so as to exactly line
up with the holes in the chip. Fluid can enter the chip from the bottom,
through the holes drilled at the inlets. It can then exit through one of the
nine outlet holes in the chip, eventually filling up the tubes in the chuck
that were exposed to atmospheric pressure. From there, the cells can be
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Fig. 10. Chuck assembly.

collected. The sealed chip is placed on top of the o-rings and held down by
a rectangular steel frame. It is recommended that spring washers be used
with the screws that hold down the frame so that the chip does not crack
under stresses. However, controlling the flow through the input channels
is not easy. Bubbles are a big obstacle to establishing hydrodynamic flow.
Small bubbles that became trapped in the apparatus blocked off channels
to flow. To work around this problem, the empty chuck was submerged in
buffer before it was even assembled. The chip was then loaded onto the
chuck, completely underwater. Additional problems came from loading the
inlets with the syringe. The right angles in the input tubes turned out to be
an awkward design for filling them. When bubbles are encountered, vacuum
pumping of the chip under buffer can often liberate them. Otherwise, the
chuck can be soaked overnight to let the bubbles gradually disappear.
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7 A preliminary blood cell run

Since this is really a progress report on the development of a technology
as we develop this idea it is unfortunate that we cannot present at this
time pictures of cells labeled with magnetic beads separating in the device.
However, we have been able to show at this point that whole blood samples
can be run in the device and that ultra-narrow jets of cells can be run across
the entire 2 cm length of the chip with precision, and that white blood cell
adhesion to the device walls can be controlled.

White blood cell adhesion is a major problem because of the high con-
centration of proteins presented at the cell surface, particularly white blood
cells. Our chip was fabricated out of silicon and has approximately a
0.2 micron thick silicon dioxide overcoat. However, silicon dioxide sur-
faces are highly charged and strongly bind cells to the surface. We have
been exploring ways to avoid cell adhesion, and one of the most promis-
ing materials is the tri-block copolymer polyethylene oxide-polypropylene
oxide-polyethylene oxide (PEO-PPO-PEO), also known as Pluronics under
the manufacture of BASF. A good reference on the use of Pluronic sur-
factants to prevent the adhesion of cells to surfaces can be found in the
papers of Karin Caldwell [27]. The great advantage of the Pluronic system
is that the hydrophobic center bloc (PPO) can bind to hydrophobic surfaces
of silicone elastomers (polydimethylsiloxane, PDMS) while the end group
polyethylene oxide (also commonly known as polyethylene glycol, PEG) is
a very unusual polymer that is neutral but very hydrophilic and strongly
hydrogen bonding. If the PPO end groups and the center PPO group are
chosen to be of the appropriate molecular weights, a very robust surface on
a virgin PDMS surface can be created which does not bind proteins due
to a combination of the shielding of the hydrophobic surface of PDMS by
the Pluronics and an entropic repulsion of the surface PPO groups of the
protein.

In our case, we used a 0.1% solution of Pluronic F108 from BASF (BASF
Corporation, Mount Olive, NJ 07828) in a saline buffer to wet our magnetic
array wafer that was sealed with a cover slip upon which a thin layer of
PDMS had been spun and polymerized. Although PDMS is very hydropho-
bic and normally water will not penetrate a sealed PDMS structure, a saline
buffer solution which contains 0.5% F108 will over a period of 24 hours
penetrate and wet a sealed PDMS structure. This then provides a very
interesting surface which is hydrophilic, uncharged and not “biofouling”.

Once the array was successfully wet and the surface passivated a
20 microliter sample of blood from a finger prick was put into Becton
Dickinson Microtainer tube treated with lithium heparin to prevent clot-
ting of the blood (Becton Dickinson, Franklin Lakes, NJ 07417-1885). The
white blood cells in the blood sample were then stained with the vital
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Fig. 11. Brightfield image of blood at entrance to the array.

Fig. 12. Epifluorescence image of labeled white blood cells at entrance to the

array.

nuclear stain Hoechst 33342 (Molecular Probes, Eugene, OR 97402-9165)
by incubation at 37 ◦C for 30 min. The sample of stained blood was then
loaded in the center chamber and positive air pressure of approximately
0.2 psi where applied to the center jet and the side fluid curtain flow.

Figure 11 shows in epi bright field illumination the blood sample at
roughly×40 magnification leading up to the injection jet. Figure 12 shows in
epifluorescence the same blood sample only now the labeled white blood cells
are visible. Figure 13 shows the stream of blood cells flowing from right to
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Fig. 13. Brightfield image of blood cells flowing a) from injection port and b) in

the center of the array about 1 cm in from the injection port.

left into the magnetic line array, illustrating how the hydrodynamics ensures
a smooth non-expanding flow into a large open area, both at the entrance (a)
and well within the array (b). No evidence of red blood cell adhesion to the
device was seen. Figure 14 shows an image of two labeled white blood cells
constrained within the red blood cell stream seen in Figure 13b, showing
how the white cells move smoothly with the stream of red cells and show
very little adhesion to the surface. Clearly, the next step now is to label
these cells with paramagnetic antibody beads and deflect them from the
main stream, but alas due to the deadline constraints of this paper that
project remains to be done in the next several months.
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Fig. 14. Epifluorescence image of two white blood cells in (b) of Figure 13.

8 Conclusions

Progress has been made in constructing a magnetic cell separation device.
However, its potential to fractionate cells remains unfulfilled. Several pro-
cedures still need to be optimized, and several experiments still need to be
run. In this section, a few main areas are highlighted.

It is important to determine how to optimize the hydrodynamic forces in
scale with the magnetic forces produced by the wires. Magnetic separation
of beads must be demonstrated. If the hydrodynamic forces are so strong
that they overshadow magnetic deflections, the pressure gradient must be
diminished in a way that does not compromise the jet width. If instead
the beads adhere to the wires, pressures may need to be increased. The
electrostatic adhesion of beads to wires is a concern, in which case the SiO2

layer on top of the wires should be made thicker. At all points along the
way, careful control experiments need to be conducted. Paramagnetic beads
can be run alongside latex beads, preferably of two different colors.

Also, it will be important to have more confidence in handling cells. La-
beling cells is crucial for achieving magnetic fractionation. Experimenting
with different stains and different markers will likely determine a good test
sample for the apparatus. Further, multiple markers and fluorescent stains
will be necessary to conduct control experiments. Surface passivation mea-
sures must also be optimized in order to prevent the adhesion of cells to
silicon structures.
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Abstract

The continuous-flow mixing chips presented in this lecture open up
new dimensions for spectroscopy of protein reactions. The time res-
olution of 400 microseconds is about 1000 times faster than recent
IR stopped-flow setups [20]. Additionally, the miniaturisation re-
duces the sample consumption by an even higher magnitude. For a
reactant with a higher diffusion constant than TFE, the time resolu-
tion can be further improved by using a smaller IR focus spot and
a higher flow velocity. With the current design and the 10 mm spot
of a synchrotron IR source [29], a time resolution on the order of
50 microseconds is feasible.

1 Introduction

The rough energy landscape of a protein includes not only the steep free
energy funnel that guides the unfolded protein into its compact native
state [1, 2], but also traps of misfolded intermediates. In some cases this
rough surface can lead to distinct conformations of the same protein that
consist of either α-helix or β-sheet. An erroneous transition from α-helix
to β-sheet structures has fatal consequences in prion and other amylogenic
diseases. Since these distinct conformations are both highly compact, an
important question is the size of the energy barriers and the interconversion
times for α-helix to β-sheet structural changes. An excellent model system
to study helix/sheet transitions is b-lactoglobulin (BLG), a major compo-
nent of mammalian milk. BLG-A consists of nine antiparallel b-strands
(51%) and one α-helix (7%) in its native state (Fig. 1) [3]. The high β-sheet
content sharply contrasts with secondary structure predictions for the amino
acid sequence that indicate a distribution of 48% helix and 13% sheet [4].
In fact, BLG has the remarkable property of refolding to 80% helical con-
tent under the influence of TFE [5, 6]. The transition occurs cooperatively
between 15% and 20% TFE.

So far, protein folding has been mostly probed by UV/Vis, fluorescence
and circular dichroism (CD) spectroscopy as well as NMR spectroscopy.
Each one of these techniques probes different structural changes. UV-
Vis and fluorescence spectroscopy monitor the interactions of a prostetic
group or a fluorophore like tryptophan with its microenvironment. CD
spectroscopy is mainly sensitive to helical secondary structure. NMR spec-
troscopy can provide residue resolved information [7, 8] but spectra of de-
natured states are difficult to interpret and the time resolution in real time
measurements is low. Fourier-transform infrared spectroscopy on the other
hand is able to clearly distinguish between all types of secondary struc-
ture [9], it is sensitive to tertiary structure [10] and capable of detecting
single residue reactions on a nanosecond time scale [11, 12]. The most
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Fig. 1. Backbone representation of β-lactoglobulin A. Regions with high helical

preference are marked.

frequent approaches to initiate folding reactions in kinetic experiments have
been rapid mixing techniques in either stopped-flow or continuous-flow op-
eration mode [13]. FTIR-spectroscopy, despite its sensitivity, has only been
rarely used for kinetic mixing experiments. The main obstacle has been
the necessity to mix solutions in a few micron thick samples to keep the
background absorption of water and guanidine low. These thin layers make
it impossible to generate turbulent flow, the phenomenon utilised by macro-
scopic mixers to facilitate mixing [13]. Here, we overcome this problem by
silicon microfabrication of a diffusional IR mixer which allows microsecond
mixing in thin films.

2 Technology

Silicon micromachining has great potential to establish FTIR spectroscopy
as a new method for microsecond mixing experiments since silicon is trans-
parent in the mid-infrared. When the dimensions of liquid channels are
reduced to a few microns, the flow will be laminar at virtually all veloc-
ities [14]. Therefore, there are no turbulent vortices to enhance mixing.
In micron dimension channels, diffusion is the only way reactants can be
brought together and the flow pattern has to be designed such that diffu-
sion length scales are kept small. It has been shown that micro scale mix-
ing devices can decrease the characteristic mixing time from milliseconds
down to 10 microseconds [14–16]. Based on the idea of Brody et al. we
have designed a continuous-flow mixing chip for FTIR microscopy shown in
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Figure 2. The protein solution in the centre and two streams of mixing
buffer enter through 80 mm deep inlet channels (Fig. 2a, green) which in-
tersect with the 8 mm deep observation channel (Fig. 2a, red). Because the
three inlet channels are a factor of ten deeper than the observation channel,
at the merger there is almost equal pressure over the whole width of the
observation channel. Due to the viscosity determined laminar flow, no tur-
bulence is induced when the second and third channel merge in, but a layer
of the centre (protein) solution between two buffer layers over the whole
width of the observation channel results. A fluid dynamics simulation was
performed to verify the desired flow pattern.

Fig. 2. Design of the mixing chip. a) Top view on the chip. The 80 micron deep

inlet channels are shown in green and the 8 micron deep outlet channel is shown in

red. b) Two dimensional fluid dynamics simulation with false color representation

of the TFE concentration. A jet of the center (protein) solution between two layers

of buffer solution is formed. The TFE concentration is computed by adding the

advective term to the diffusion equation.

Figure 2b shows a side view of the intersection of the channels. By
approximating the observation channel as “infinitely wide”, we can make
a two-dimensional model of the fluid flow. At low Reynolds number, the
stream function for the flow must obey the biharmonic equation. The re-
sulting flow pattern (Fig. 2b) verifies the desired formation of a protein layer
between two layers of buffer solution. Just because the protein layer is so
thin, diffusion of the reactant molecules from the buffer into the protein jet
and thus mixing is fast. The time resolution is achieved by scanning along
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Fig. 3. Epi-fluorescence image of the flow pattern with superimposed contour.

Fluorescein solution is flowed in the center channel and non-stained buffer in

the side inlet channels. The fluorescence cross section b) shows a homogeneous

jet over 180 microns width. The peak in intensity in the upper part results

from the small flow velocity component in the direction of the in let channels.

c) TFE concentration profiles through the observation channel as extracted from

the Figure 2b.

the observation channel with the focussed beam of an FTIR microscope [17].
Since the protein only moves in about the centre third of the observation
channel only marginal blurring of the time axis due to the parabolic flow
profile occurs. The flow pattern is visualised by a fluorescein solution flow-
ing in the centre inlet channel and buffer in the two side channels (Fig. 3a).
The fluorescence cross section of the observation channel (Fig. 3b) shows
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the formation of a homogeneous jet over a width of about 180 microns. In
the top 20% the formation of the jet is distorted which can be explained by
the velocity component in the direction of the inlet channels.

3 Experiments

To induce the refolding of BLG, a protein solution containing 10% TFE
(below the refolding transition) entered the center channel and mixed with
60% TFE in the side channels. The mixing time was estimated using a
numerical solution of the flow and diffusion equations. The advective term
is added to the diffusion equation and solved for the concentration of TFE
everywhere in the jet. The TFE concentration is depicted in false-colour
in Figure 2b. Once the three inlet streams have combined, the TFE profile
gradually relaxes to a constant level as the jet travels down the observa-
tion channel. The evolution of the TFE concentration, as a function of
channel depth, is pictured in Figure 3c. At the first data point (taken at
100 microns or 1.1 ms), the TFE concentration in the middle of the chan-
nel exceeds 30% which is well above the cooperative transition threshold of
15–20%. The characteristic mixing time, extracted from the simulation is
0.4 microseconds. When the IR focus is further confined, this is the maxi-
mum time resolution.

Figure 4a shows the time-resolved FTIR spectra of BLG after mixing
with TFE between 1600 cm−1 and 1700 cm−1 where the amide I band (the
protein backbone carbonyl groups) absorb. The amide I spectrum is sensi-
tive to the secondary structure of the protein. In the time course of the reac-
tion the maximum of the amide I band shifts from 1632 cm−1 to 1652 cm−1.
In order to resolve the overlapping bands of secondary structure elements
the second derivative spectra are calculated (Fig. 4b). Absorbance maxima
correspond to negative peaks in the second derivative spectra. The initial
state spectrum (black) shows bands at 1632 cm−1 (strong) and 1691 cm−1

(weak). These are characteristic of β-sheet structures [9], as expected. In
the course of the transition, the signal at 1632 cm−1 decreases in favour of
the more intense peak at 1652 cm−1 which is assigned to α-helices [9]. Ad-
ditionally, the weak band at 1692 cm−1 first shifts to 1686 cm−1 and finally
disappears. The spectrum of the final state indicates an almost complete loss
of β-sheet structure, consistent with CD and NMR results [4, 18, 19]. There
is no isosbestic point between the two bands at 1632 cm−1 and 1652 cm−1

in Figure 4b, revealing the population of at least one intermediate state
along the conformational pathway.

The dataset was kinetically analysed by two methods, singular value
decomposition (SVD) and least squares curve fitting. SVD of the spectra
between 1620 cm−1 and 1700 cm−1 resulted in three linear independent
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Fig. 4. Time-resolved FTIR spectra and kinetic analysis. a) Time-resolved ab-

sorbance spectra taken along the observation channel. Time-resolved spectra at

1.1 ms, 3.4 ms, 5.7 ms, 10.2 ms, 21.6 ms, and 103 ms. Spectrum before mixing

(black line) and final state spectrum (green line). b) Second derivative spectra

of a) (solid lines) and results of a three-state exponential fit (dots, plotted only up

to 1670 cm−1). Line colouring same as in a). c) The three basis spectra, resulting

form the fit. d) Time course of the three states as deduced by the fit.

basis spectra. Similarly, least squares fits yielded at least three spectral
states necessary to model the data adequately. The kinetic analysis pro-
vided no clear preference for either an exponential, stretched exponential or
exponential model which includes back reactions for the time dependence of
the states. The result of the three-state fit with two simple exponential func-
tions is shown in Figures 4b to 4d. Figure 4c depicts the three basis spectra:
the β-sheet state spectrum (maximum at 1632 cm−1), the helical state spec-
trum (maximum at 1652 cm−1) , and the intermediate state spectrum. The
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amide-I peak of the intermediate is centred at 1637 cm−1 (Fig. 4c) and the
high wavenumber β-sheet peak has shifted to 1686 cm−1. These wavenum-
bers are within the typical range of antiparallel β-sheet structures [9]. The
intermediate clearly is not unfolded which would correspond to a amide I
band centred at 1645 cm−1 [20]. However, an upshift from 1632 cm−1 to
1637 cm−1 points in the direction of a more loosely packed β-sheet structure.
A similar amide-I frequency is observed for the molten globule of pressure
denatured RNAse A, another predominantly β-sheet protein [21].

This suggests a molten β-sheet structure of the intermediate. The fre-
quency upshift can be explained by intruding of TFE into the hydrophobic
core of the protein and weakening backbone hydrogen bonding. The struc-
ture of the kinetic intermediate differs from the structure of the equilibrium
intermediate detected by CD spectroscopy [18] which was proposed to have
53% helical and only 2% sheet content. However, in the equilibrium inter-
mediate detected by heteronuclear NMR about half of the β-sheet structure
persists [19]. The kinetic intermediate state structure deduced from our
FTIR measurements resembles more the NMR intermediate.

Fig. 5. A schematic of the free energy surface of β-lactoglobulin A as deduced

by this work and extrapolated from other work on the local conformational dis-

tribution of barrier heights and radii of gyration of protein structures of similar

molecular weight.

The intermediate state is formed with a time constant of (2.2 ± 0.1) ms
and disappears with a time constant of (7.7 ± 0.1) ms. The β to α transition
of BLG is is more than three orders of magnitude faster than the unfolding
in 4 M guanidine hydrochloride or the refolding to the native state [22,23].
This is surprising because the change in free energy from the native (β-
sheet) state to the (helical) TFE-state almost equals the free energy change
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from the guanidine denatured state [24]. Hence, similar rates would be ex-
pected [25]. However, since the β to α transition proceeds via a compact
state, in contrast to the unfolding, the transition might be performed mach
faster from a phase space argument [26]. The question thus arises, how
does TFE reshape the energy landscape to facilitate an interconversion be-
tween compact structures without unfolding the protein? The well known
equilibrium effect of TFE is the weakening of hydrophobic interaction in
the core of the protein and the enhancement helical structures [27]. Addi-
tionally, TFE forms hydrophobic clusters in water, providing a hydrophobic
micro environment [28]. This facilitates a movement of hydrophobic groups
from the hydrophobic inside to the outside of the protein. By providing
a hydrophobic microenvironment and by favouring helical structures, the
protein seems to be able to rearrange within a rather compact state with
low activation barriers.

4 Conclusions

Our results with this new technology indicate that specific changes in the
(micro) environment can make the transition between compact structures
much more likely because the protein does not have to unfold. From this
finding it may be postulated that a hydrophobic microenvironment is gener-
ally a crucial factor in helix/sheet transitions. It is known that chaperones
like GroEL expose hydrophobic side chains in their cavity to allow for re-
arrangement of misfolded structures [30]. One may speculate further that
a yet unknown microenvironment might be the missing link to explain the
formation of prion β-sheet structure.
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SOME PHYSICAL PROBLEMS IN BIOINFORMATICS

E.D. Siggia

Abstract

Bioinformatics is a data driven field, in which a significant number
of problems require statistical modeling. The flood of data emerging
from genome centers uses sequence comparison to delimit and assign
function to genes, and in very limited ways infers gene control from
approximately repeated sequence motifs near to the genes themselves.
Traditional topics in computer science such as coding theory, natu-
ral language processing, and old fashioned cryptography all impinge
on the problem of deducing regulatory information from the genome,
but are not probabalistic enough to cope with the fuzziness of biolog-
ical patterns. The means by which living things encode information
is a problem common to both neural biology and the regulation of
gene expression by the genome. Physical analogies are employed to
highlight some of the problems and opportunities in this area.

1 Introduction

The intent of this very condensed summary is to stimulate the curiosity of
students in the physical sciences for a nascent field where a medley of tech-
niques are required for success. Bioinformatics is most fruitfully situated
as a branch of natural science: merely publishing a clever algorithm is not
enough, it has to be used on real data to solve a real problem. The most
significant problems will probably emerge by looking at genome-wide data
rather than reading biology texts, though they are essential. Their authors
are in most cases not quantitatively trained and do not know what can be
done computationally. The flood of quantitative information in the form of
genomic sequences, gene expression, and protein interactions, provides for
the first time in molecular biology a realm where the primary discoveries
could emerge from analysis of public data.

The author’s work has been supported for many years by the Division of Materials
Research of the National Science Foundation.

c© EDP Sciences, Springer-Verlag 2002
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Biological sequence data is growing at a faster rate than Moore’s law.
Sequencing is now an industrial enterprise carried out by robots and venture
capitalists with not a graduate students in sight. Biologists flock to lectures
with titles such as “Drowing in data, thirsty for knowledge” (S. Brenner &
Rockefeller 2001) hoping to learn what the genome teaches us about the
large scale organization of life. While there is no question that an organ-
ism’s genome is of immediate utility to experiments targeting individual
genes, and the comparison of genomes provides glimpses into the evolution
of homologous genes, there is nothing immediately evident in the genome
about how all the genes are coordinated. The various celebratory articles
announcing a new genome give little more than lists of genes in this or that
category by way of exegesis. It is as if those searching for extraterrestrial
life obtained a telephone book (or, to be charitable, the yellow pages) of
some remote civilization and tried to reconstruct the social system.

One route into the problem of how the genome defines the organism
is through development and specifically how the genome dictates the ex-
pression of genes listed therein (E. Davidson). (All steps in the process by
which a segment of a eukaryotic genome is transcribed into nuclear RNA;
the introns spliced out; the mRNA is capped; exported to the cytoplasm;
translated; and the nascent peptide chain chemically modified; are subject
to regulation. The details fill several chapters of the major molecular bi-
ology texts and the student needs to become familiar with them). Among
the commentaries surrounding the publication of the human genome (which
will not be “complete” in the usual sense of this word for many years), was
how few genes we have (30–35 k), roughly twice the number of a model
plant, nematode, and fly (16 k). (Single celled organisms such as yeast have
6000 genes and bacteria have typically between 1000–4000 genes.) Man
is not the center of the genomic universe, anymore than he is the center
of the celestial one. The realization of the commonness of man’s genomic
endowment recalls an earlier “paradox” that a number of seemingly sim-
pler organisms (salamander, tulips, and water lilies) have larger genome
sizes than we do by a factor of ∼8. The resolution of this paradox was
the category of “junk DNA”, that with no obvious function; they may have
more total DNA, but we have more genes. (Because of their genetic over-
endowment, the number of tulip genes may never be known directly, since
they are expensive to sequence.)

The next line in defense of man’s uniqueness is gene control, as revealed
most clearly in development. Here at least the numbers mark a big jump in
the fraction of the genome available for regulatory purposes (80% vs. 20%)
when comparing model multicellular organisms (plant, nematode, and fly)
with genome sizes in the range of 150 megabases (Mb) compared with 12Mb
for yeast and 1–4Mb for bacteria. (For humans, genes, narrowly defined as
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protein coding regions, make up less than 3% of the 3000Mb genome, and
manifestly repetitive and perhaps parasitic DNA another 50%.) Thus mul-
ticellularity, at least, calls for a big increase in regulatory depth. (How this
regulation is achieved is also the subject of many texts and actively stud-
ied, but suffice it to say there is no Cartesian system in the genome giving
coordinates for this or that body part, but rather a seemingly haphazard
medley of space and time dependent signals that define one part relative to
others.)

Everyone realizes but sometimes forgets to say, that cells make cells,
genomes do not. There are no genes coding for lipids per se, but hundreds
of different lipids, specific to particular locations in the cell, are built by a
variety of enzymes. The cell is highly compartmentalized, traffic between
compartments is regulated, and proteins with correlative activities are clus-
tered. Particular subsystems can be reconstituted in vitro from purified
components, but even the biochemists would not call this life.

About references: in addition to the books cited at the end of this
chapter, a number of other authors are mentioned in the text. Their past
and future contributions along with abstracts can be found by searching in
the medline data base [1] which any student must be familiar with. The
references are restricted to a few common texts.

2 New technologies

Bioinformatics deals with such issues as efficient archival, retrieval, and dis-
semination of information (e.g., gene ontologies); how to effectively compare
sequence; automatically assign function to stretches of the genome (anno-
tation); how to organize sequencing projects and assemble the ∼600 base
pair (bp) fragments that are the immediate output of the sequencing ma-
chines into whole genomes. A snapshot of the field can be found on the web
sites and proceedings of the major meetings (e.g., ISMB, and RECOMB),
however the tone of these contributions is closer to a technology essential
to biology rather than theoretical biology.

A number of bioinformatic problems such as locating genes in raw se-
quence, have a heavy statistical component [2]. Regulatory sequences pose
different problems, since they occur in 100–500bp clumps of 2–20 sites each
of 5–15bp. In the fly these so called “modules” can be up to 100kb from the
genes they control, though under 10 kb is typical. Their discovery is akin to
deciphering a language without knowing either the words or the grammar
and in the presence of much variability. The algorithms are again statisti-
cal and involve difficult search problems to which physicists have much to
contribute.
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Biology just as physics, progresses through the application of new tech-
nologies. Sequencing is one such technology whose costs have decreased (to
about $0.10 per finished base) so much that a recent cover of Science pic-
tured a Noah’s ark of organisms at a cocktail party discussing whose genome
would be sequenced next. (Cornell is coordinating a canine project, so fido
will be pleased.) There is an interesting technical history to be written about
the advances in instrumentation (capillary electrophoresis), chemistry (the
end-labeling dyes, and preparation of clones), computer science (the assem-
bly algorithms), and process control (there were over 107 clones amplified
and sequenced for the human project) that made all this possible. Suc-
cess depended on engineering in the best sense of the term, since the costs
and accuracies of all the technologies that intervened between organism and
finished sequence had to be balanced against each other.

Another technology essential to my lectures is mRNA gene expression.
Currently there are both artesanal small-lab approaches and high tech in-
dustrial ones competing for acceptance and commercial success. The tech-
nology depends on an enzyme that copies RNA to DNA, used by certain
viruses such as HIV; now productively harnessed to copy in one reaction all
the mRNA produced by a population of cells to chemically labeled DNA.

The problem is then how to assay the level of all 6000 potential tran-
scripts in yeast say, which are mixed in one tube. The key is, of course, to
exploit the base-complementarity of DNA. In the laboratory-scale spotted
array technology [3] as applied to yeast, pairs of gene specific primers are
used in 6000 separate reactions to amplify genomic DNA (with the aid of
another product of biotechnology, PCR, itself made possible by another hi-
jacked enzyme, this time from hot spring bacteria). Then ∼50–100µm spots
of ∼500bp double stranded (ds) DNA for each gene are arrayed on a spe-
cially surfaced glass slide by a robot, and anchored down. The fluorescently
labeled single-stranded (ss) cDNA (complementary to the mRNA) is then
allowed to hybridize with the slide and the fluorescent level of each spot
is a measure of that gene’s expression. However the hybridization kinetics
of ssDNA with surface bound dsDNA is unknowable, so the fluorescence
is calibrated by processing a reference sample of mRNA identically to the
real sample, but labeling it with another color. The color ratio is then the
mRNA expression ratio. Clearly genes with similar sequences will cross
hybridize and can not be distinguished.

The alternative high-tech approach to measuring mRNA levels synthe-
sises about 20 tags of length 26 bp for each gene directly on the chip, by
methods inspired by lithography in the semiconductor industry [4]. The re-
dundancy is necessary for controls and the company supplies black-box soft-
ware (that the mathematically literate would want to modify (M.
Magnasco, submitted)) to reduce the multiple oligo-readings to a single
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number. The kinetics of hybridization again has to be calibrated by color
ratios, which now go on separate chips (each costing hundreds of dollars, so
this is a technology aimed at medical applications). There are still many
other technologies vying for attention (e.g., http://www.rii.com/home.htm);
let a hundred flowers bloom! Because there is money to be made, lawsuits
are common (e.g., the saga of Ed Southern vs. Affymetrix).

DNA chips are a versatile genome-wide readout device. They have been
utilized (P. Brown and M. Snyder) to measure where certain proteins bind
on regulatory DNA, by crosslinking all proteins attached to DNA, frag-
menting the DNA, extracting the protein (plus DNA) of interest with an
antibody; undoing the crosslinks; and assaying the liberated DNA on an
array spotted with all the intergenic regions of yeast.

3 Sequence comparison

The comparison between two sequences was probably the first “killer ap-
plication” that drew many computer scientists into molecular biology, and
as a measure of their success, it would be impossible to imagine modern
biology without it. This subject is well described in textbooks [5, 6], so I
will merely state the general ideas which recur in other problems and em-
phasize the shortcomings. General expositions have such a preemptory tone
that the student might infer that it is a closed subject, whereas many ob-
vious questions are not resolved and provide problems for the statistically
inclined. The experts are well aware of these questions, but seldom write
about them.

The first ingredient of sequence comparison for proteins is a scoring
“matrix” which quantifies, for pairs of amino acids, the differing penalities
to be assigned to the replacement of one amino acid by another, (slight
for similar residues and large when a hydrophobic residue is substituted
for a charged one). Values are derived from collections of aligned homolo-
gous protein domains where there are no gaps or deletions. Treat positions
in the alignment as independent and compute Pa,b = 〈ρaρb〉 where the a
and b run over the 20 amino acids and the normalizations are such that∑

b Pa,b = 〈ρa〉, the fraction of a-residues in the data set. There is an im-
plicit time parameter τ induced by grouping with weight one, all sequences
with percent identity over some value (this also prevents biases in the pro-
tein data base from overly influencing the scoring matrix). That τ indeed
acts as a time within the correlation function Pa,b, can be seen from two
limits; Pa,b(τ → 0) = δa,b〈ρa〉 and Pa,b(τ → ∞) = 〈ρa〉〈ρb〉. One then
defines the transition probability T (a → b) = Pa,b/ρa and the scoring or
substitution matrix sa,b = ln(Pa,b/ρaρb). (Thus for short times there are no
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transitions, while for long times the probability for obtaining a given residue
is independent of where it came from.) I have added these few details to
make evident there is nothing very subtle in the construction of the scoring
functions (e.g., BlosumXX) that everyone uses.

Two sequences (not necessarily of the same length) are brought into
correspondence and thus scored, either by making point mutations or cre-
ating gaps (or intervals of deletions) which are penalized by one parameter
to create and another to extend. Global alignment finds the optimal score
accounting for the entire sequence. It is constructed in a time of O (prod-
uct of the two sequence lengths) by a recursive calculation. Place the two
sequences along the x- and y-axis, and map each alignment between them
into a path through the rectangle thus defined. A diagonal bond means
bases (or residues) i, j are paired, a horizontal bond means i (on the x-axis)
is paired with a gap, and a vertical bond means the reverse. Starting from
(0, 0), find the best scoring path up to the perimeter of the sub rectan-
gle defined by (i, j), and then fill in the next row and column from these
values and proceed to the end of either sequence. Local alignment finds
the highest-scoring subsequences in a pair of sequences in comparable time.
Various shortcuts to complete pairwise comparison are essential to practical
applications because there are over 1010 bases deposited in GENBANK, and
go under names such as BLAST [7] and FASTA [8].

The first thing a biologist does with a new sequence, is compare it with
the huge database of known sequences. Thus it is important to know the
probability of obtaining a certain score by chance from uncorrelated se-
quences, which is best done by first determining the functional form of
P (s ≥ s0), the probabality of a score larger than s0. This is done by a
stationary phase argument (Yu and Hwa) very analogous to the passage
from a microcanonical ensemble to a canonical one. One finds for large s0,
P ∼ N1N2 e−λs0 , where N1,2 are the lengths of the two sequences (or se-
quence times data base) being compared and for ungapped alignment λ = 1
because of the definition of the scoring function, while for gapped align-
ment λ has to be computed numerically as function of the gap penalties.
Rapid ways of doing this akin to importance sampling in Monte Carlo have
been developed by T. Hwa and coworkers. Some theory is necessary here,
since a probabality has to be placed on events that are rare, but become
possible when looking through a sample size of 1010.

Now for the problems. The scoring function is designed for ease of
computation, the iterative algorithm ignores history (prior resides on the
optimal path) other than whether a gap is being created or extended.
There are no block rearrangement moves for instance. The most widely
used algorithms return the best local alignment (i.e., entropy is ignored)
rather than the probability of transforming one sequence into another in all
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possible ways, which is more relevant biologically even within the impover-
ished move-set of current algorithms. The scoring optimizes the contiguous
interval with the highest total score without regard to length, but this does
not mean that a shorter region of greater similarity might not give a more
significant probability score under some other scheme.

The scoring parameters are not contingent on the species being com-
pared and, more importantly, not optimized for maximum discrimination.
To make this clear by analogy, imagine a substrate with patches of material
(the sequences) with different affinities for water. If the regions are to be
distinguished based on their ability to adsorb water, what is the optimal
point in the phase diagram at which to work? Clearly the condition where
water wets one substrate and not the other will provide optimal discrimina-
tion, i.e., near a phase transition point small inhomogeneities can have large
effects. In reality there are, of course, a continuum of substrate affinities
and a cost to be paid for small domains. Nevertheless, working at a random
point in the phase diagram is not a recipe for optimal discrimination.

Two other issues are addressed in part by an extension of the BLAST al-
gorithm, PSI-BLAST. The typical scoring function is position independent,
yet certain regions of proteins are more constrained than others, and they
should be weighted differently (i.e., the catalytic region is more constrained
than the loops which tether domains together). BLAST also looses informa-
tion by using only pair scores in matching against a data base. A marginal
match to several unrelated database entries may be significant even if any
pair is not. However, separate database entries for a human, mouse, and rat
protein do not add much to comparisons against an unknown fly protein.
So it is not trivial to put a significance measure on the comparison of several
species at once.

Given a genome, the first question asked is what are the genes. Most
attention has been focused on protein-coding genes; those encoding func-
tional RNA’s (i.e., not messages) are very interesting, but require different
algorithms (S. Eddy). The primary modeling tool is Hidden Markov Models
(HMM’s) [2]. To illustrate just a simple Markov model, imagine one is pre-
sented with a long string σi of 0’s and 1’s which is not obviously periodic.
One might model it by letting the ith bit occur with a probability that de-
pends on several previous ones. So in the simplest case, where only memory
of the previous bit matters, the model is entirely specified by a 2×2 matrix
of transition rates T (σ1 → σ2) where

∑
σ2
T1,2 = 1, i.e., the sum of all

probabilities for leaving a state, must be 1. The probability of observing
0,1 satisfies

∑
1 p(σ1)T1,2 = p(σ2). Thus we have given the right and left

eigenvectors of the matrix T with eigenvalue 1, which is in fact the largest
eigenvalue, because all the entries of T are positive. (Under these defini-
tions, the usual nearest-neighbor Ising model in one dimension would not
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be Markov since the correlations in spin are not strictly limited to a finite
number of lattice sites).

Hidden Markov models originated in speech-recognition where the com-
puter was presented with sounds and needed to infer the phonemes that
the speaker was uttering. So in our context, assume there were two hidden
states, coding (C) and non-coding (N), with transitions between them as
defined for our Markov model. For each hidden state there are separate
probabilities for “emitting” 0, 1, and it is only 0, 1 that one observes. The
inversion problem has two levels; first of inferring the model parameters
from data, and then partitioning the data into domains corresponding to
hidden states. In the case of gene-finding, one has a large training-set where
the hidden state is known, and one can fit the emission-probabilities, and
also the transitions between hidden states. Then real data can be scored
and probabilities assigned to where the coding and non-coding regions lie.
A HMM is well suited to gene-finding since the biological structure can
be built in. Promoters are followed by exons, exons by introns, successive
exons must maintain a common codon-phasing, and various splice signals
must fall in the correct place etc. See C. Burge and S. Karlin for the current
state of the art.

The task of determining parameters directly from data is done by it-
eration. The basic idea is to note that a transfer-matrix -like calculation
(by summing over all paths through the hidden states starting from either
end) will supply the total probability for the data, given the model. Work
from both the right and left ends, and compute the probability for observ-
ing a certain base and hidden state (or transition between them) at a given
point in the data. A suitable spacial average of this “profile” value gives the
next iterate for the parameters. (When parameters have converged or are
directly fit, a profile calculation will reveal where the hidden states are.)

4 Clustering

Many problems in bioinformatics call for grouping similar things together–
the task of clustering. These may be genes whose behavior is monitored in a
series of chip experiments, or a series of samples of cancer tissues for which
the expression of a palette of genes is observed and one wants to group the
cancers into types. Clustering can be effected along one dimension as in
these examples, or in two when for instance one wants to find blocks in
the array of genes×samples which isolates subsets of genes that are most
indicative of particular samples.

Algorithms can be categorized by a series of Levi-Straussian binaries;
hard vs. soft (is cluster membership binary or probabilistic?); one-pass or
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annealed; agglomerative vs. divisive (do clusters grow from the primary
elements by fusion, or do clusters derive by fission from larger sets?). Phy-
logenetic (family tree) clustering is hard, one-pass, and agglomerative. The
k-means algorithm is a descent-scheme in which each point is assigned to the
nearest center, and the centers repositioned to be the geometric centers of
the points assigned to them. It becomes a divisive algorithm if new centers
are added to eccentric clusters. Another scheme assigns a Potts variable to
each element, and the coupling constant between two elements is a mono-
tone function of their degree of similarity. As the temperature is lowered,
groups within which the Potts degree of freedom is more correlated than
some value, define clusters (E. Domany).

There is no clustering algorithm optimal for all problems. Often essential
to success is the choice of metric. For gene expression, frequently only a
small percentage of the genome has a meaningful response. If one measures
the correlation between genes by summing over all experiments (assuming
many are available) the real signal from a few experiments is washed out
by the noise from the others. Thus the metric should weight experimental
values by their significance determined from the noise level.

Given a metric, cluster membership can be based on the average pair-
score of the new element with other cluster members, the best score with
any single cluster member, or some other cluster-wide score which is not
a sum of pairs. Clustering is bedeviled, as are many other optimization
problems, by multiple local optima, and it is frequently unclear when, if
ever, one has hit upon the best one. Another shortcoming of most schemes
is the absence of a statistical model from which to assign significance to a
particular clustering. Most algorithms will cluster random variables.

Some of these issues are illustrated by a clustering scheme for sequences
developed at Rockefeller (van Nimwegen) which has an obvious bearing on
motif finding and illustrates aspects of Bayesian statistics (named after an
18th-century English cleric now the object of cultic veneration [9]). Assume
an alphabet of size A and letter probabilities pa. Then the probability of
a particular string of letters (na of each,

∑A
1 na = N) is P (data|model) =

P (na|pa) =
∏A

1 p
na
a . This is properly normalized since the sum over all pos-

sible strings of data just reduces to (
∑A

1 pa)N = 1. To compute P (pa|na) =
P (na|pa)P (pa)/P (na) (the definition of conditional probability), we have to
make an assumption about P (pa), namely that it be uniform, i.e., P (pa) ∝
δ(1 −∑A

1 pa)
∏A

1 dpa. To compute P (na) we have to evaluate the integral
I(x) =

∫∞
0 δ(x −∑A

1 pa)P (nα|pα)
∏A

1 dpa for x = 1 (in which case the
upper limit can be replaced by 1). By homogeneity, I(x) = xN+A−1I(1);
multiply both sides by e−x and integrate from zero to infinity on x, to find,
I(1) =

∏A
1 na!/(N + A − 1)!. From this we can derive P (pa|na) and for

instance show 〈pa〉 = (na + 1)/(N +A), i.e., the average value of the model



“siggia”
2002/8/28
page 432

�

�

�

�

�

�

�

�

432 Physics of Bio-Molecules and Cells

parameter pa, given a finite sample drawn from the distribution, is not the
most probable value na/N , which for instance can be 0.

To apply this to clustering, consider a large number, S, of sequences,
each of length � obtained by sampling M unknown frequency matrices, wi

a,
where i = 1, 2..�,

∑A
1 w

i
a = 1 (i.e., the entries in the matrix give for each

column i the frequencies of the letters). The problem is then to group
together the sequences from a common weight-matrix and recover, within
the errors imposed by the finite sample-size, the set of wi

a. Consider a subset
of N sequences, then the probability P (C) that they were drawn from single
weight matrix is the product of I(1) over all the � columns. A probability
distribution can be defined over the entire set of S sequences by allowing all
possible partitions into clusters, each with a weight

∏
i P (Ci). Thus there is

a competition between all ways of partitioning S things into subsets and the
“energy” which favors putting sequences from the same frequency matrix
together, one can show. This weighting scheme can be used, either in a one-
pass phylogenetic clustering, or more correctly with Monte Carlo sampling
which will generate soft clusters and allow an assignment of significance.

Intuitively, for given S, there is a limit to how many frequency matrices
can be resolved (which depends also on their degree of polarization). Dis-
crimination obviously improves if more samples from the same matrix are
supplied. Finally, there is a very interesting regime where it is possible to
classify most sequences if the set of M frequency matrices is known, yet
it is impossible to cluster these sequences if one knows nothing about the
matrices. The former problem is the one faced by the cell, since it “knows”
the proteins which do the site-recognition, whereas sequence-clustering is
only a problem for the bioinformatician.

5 Gene regulation

The extraction of the sites active in transcription control from the genome is
a more daunting task than gene identification, since the individual protein-
binding sites are much smaller than typical exons, and their arrangement is
not so choreographed as the promoter-exon-intron pattern of genes. Three
types of data can be brought to bear on the problem, and all appear nec-
essary. For a single genome, one can search for repetition between the
regulatory regions of different genes. The repeats can be at the level of spe-
cific strings (perhaps with a few spelling errors) or groups of similar strings
that occur in clusters. In all cases it is assumed that improbability under
some model implies function, and for the calculations to be tractable there
needs to be some vestige of the signal on scales short enough to be searched
exhaustively. (The hard cases are those where the motif is long and mutated
and where there is no statistically significant signal in just a few copies.)
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The issue raised above, that the cell can function by merely classifyng sites
while there may not be enough copies to allow clustering, is clearly relevant
here. The application of one genome-wide algorithm to yeast was discussed
by H. Bussemaker.

The second source of data is comparative genomics, namely we exploit
the fact that what is functional is more constrained and evolves less rapidly
than what is not. The protein coding regions serve as landmarks for the
regulatory regions to compare since they are much larger and evolve more
slowly than the regulatory sites. In reality there are merely degrees of
constraint and the scale in bp on which compensatory mutations (preserving
fitness) can occur is also unknown. The ideal case is individual protein
binding sites immersed in a sea of random sequence. In bacteria where
the total regulatory region of a gene is a few hundred bases, the conserved
domains are typically larger than a single binding site (N. Rajewsky). The
current state of the art (McCue and C. Lawrence) in this area is to examine
the regulatory regions for one gene from several species. One is then faced
with the task of clustering sites for individual genes into families recognized,
one hopes, by a single protein.

Finally there remains mRNA expression data. If the question being
asked is how expression follows from sequence, there is little reason to first
cluster genes based on similarity of expression, and then look for common
sequence motifs. The clustering should follow from the sequence. Following
the idea that the polymerase which makes mRNA is recruited to the pro-
moter by equilibrium binding to certain sites (or other proteins attached
to these sites), we have fit the log of the expression ratio, Rg for gene g,
to the sum of contributions Fm for motif m by minimizing

∑
g(Rg − C −∑

m(FmNg,m))2 with respect to Fm and C, where the integer Ng,m is the
number of copies of motif m upstream of gene g. (H. Bussemaker). This
scheme is sensitive to combinatorial control. Genes which do not respond,
but carry a functional site, are informative about potential compensatory
factors. All genes are fit and when the residuals are Gaussian it is easy to
assign significance to the sequence motifs that correlate with expression.
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THREE LECTURES ON BIOLOGICAL NETWORKS

M.O. Magnasco

Abstract

This course comprised three lectures whose uniting thread was the
study of some biological networks of interest to the physicist: enzy-
matic, gene transcription and neural.

Lecture 1: Enzymatic networks. Proofreading knots: A
conjecture on how DNA topoisomerases disentangle DNA. It
is vitally important to living cells to be able to manage the topology
of their DNA. Topoisomerases are the enzymes in charge of handling
knotting and supercoiling of DNA. It was believed for a long time that
they did so by permitting random strand passage, rendering DNA ef-
fectively a ghost-like polymer. But it has been shown experimentally
that this is not so: topoisomerases do quite substantially better than
random strand passage. This then begs the question of how an en-
zyme may survey the topology of a DNA strand thousands of times
larger than itself. We discuss some possible mechanisms for this.

Lecture 2: Gene Expression Networks. Methods for anal-
ysis of DNA chip experiments. We outline and discuss the
most important features behind “gene chips”, hybridization arrays in
widespread use for gene expression. We concentrate on one of the two
most popular technologies, the GeneChip arrays. We discuss various
methods for reconstructing RNA concentrations from the measured
fluorescence in the arrays.

Lecture 3: Neural and gene expression networks. Song-
induced gene expression in the canary brain. We outline the
basic features of immediate early gene expression following stimu-
lation. We show how it has been used, via large-scale histological
mapping, to dissect the rules of representation of song elements in
canary brain.

These lectures are about pieces of research with which I have been per-
sonally involved over the past few years. Their subject matter goes from
enzymology, through bioinformatics, to neuroscience; and spans purely the-
oretical work, through data analysis, to experimental work. Yet though

c© EDP Sciences, Springer-Verlag 2002
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apparently dissimilar they do have an overarching theme: the study of bio-
logical networks, in their various incarnations and hugely diverse timescales
and lengthscales. Networks are interesting, in that their function does not
reside in any given part, but in the way the whole is assembled together–too
many times do we think that biological function is carried out by a specific
and single-purpose piece of hardware which does “just that”.

I opened with a theme with which physics and mathematical audiences
would feel probably more at ease. Topoisomerases are enzymes which man-
age the topology of DNA, a vital function to living beings. Experimental ev-
idence shows that topoisomerases are somehow able to unknot DNA better
than random strand crossing–i.e., they obtain information about the topol-
ogy of DNA. How an enzyme may survey the topology of an object several
orders of magnitude larger is a clearly defined problem for a physicist. That
it happens to be of some biological importance does not detract from the
clarity of the definition. One could conceive a machine of measuring topol-
ogy. But one could also conceive that the measurement is accomplished by
the enzymatic network of chemical reactions defined by the dynamics of the
enzyme, and this is the possibility explored here.

The next subject was meant to exemplify the dire need for analytically-
minded people in the gene expression network area. Gene expression arrays,
or gene chips, have become hugely popular tools to try to infer gene reg-
ulation interactions. I describe a bit the general ideas and then plunge
into a problem we studied in detail, that of obtaining a measurement of
concentration from the GeneChip arrays manufactured by Affymetrix.

I close with what I consider to the be frontier, in every sense. Neuro-
science is, to my mind, the most deeply fascinating branch of science; also
the most deeply disturbing. For a physicist, the extent to which the discus-
sion is ill-defined is simply unsettling; yet the mystery is so deep that one
cannot but feel excited and awed. I hope I have been able to illustrate this
by means of our studies of representations of song fragments in the brain of
canaries, a study which we carried out by looking at gene expression in the
auditory nuclei.

1 Enzymatic networks. Proofreading knots: How DNA
topoisomerases disentangle DNA

In many instances, biochemistry shows us little specific machines which
undertake a particular job: they cut one specific bond in one specific con-
figuration, or they take such an arrangement of atoms and rearrange it
exactly thus. So it is usually thought that a specific job is carried out
by the enzyme, just like a little clockwork thingie; and so the doctrine of
one enzyme, one function evolved. On the other hand, we don’t think of
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thought as something done on a single neuron level: it is a task collectively
carried out by a network of neurons. In this lecture I will tell the story of
something in between: a very specific job, the untangling of DNA, which
may be a job carried out, not by a specific machine doing one specific rear-
rangement, but by a network. There is, of course, an underlying machine,
the topoisomerase, which is the one carrying out the strand rearrangements
necessary to actually change the topology; but untangling does not entail
strand crossings alone, but also the ability to discriminate the topology
of the system being untangled. Such discrimination between the knotted
and unknotted states could not have been done by one particular machine;
we propose that it is, rather, a property of the network of chemical re-
actions the topoisomerase carries out. The network of chemical reactions
is structurally similar, and quantitatively behaves similarly, to the kinetic
proofreading reaction networks proposed by Hopfield and Ninio to under-
stand the specificity of biological polymer replication–hence the title of this
lecture.

1.1 Length scales and energy scales

DNA is a long and thin polymer, and living beings carry a whole lot of
it. In bacteria, as a rough guide, DNA is about 1000 times longer and
1000 times thinner than a typical bacterium. So if E. coli was the size of a
small classroom, about 5 m, its DNA payload would be about 5 kilometers’
worth of 5-mm-thick wire; or about as much ethernet wire as there is in a
whole small building. A polymer in a fluid freely fluctuates under the action
of thermal agitation, bending and writhing to the extent compatible with
thermal energetics. A natural comparison between its bending stiffness
and thermal energy scale may be introduced by a lengthscale, called the
persistence length, which intuitively is the “typical” radius of curvature
of the polymer strand when agitated by thermal motion. It is defined,
equivalently, as the correlation length of the tangent vector to the polymer,
or as the length of polymer that can be bent in a circular arc of a radian
angle change with a cost of 1 kT worth of bending energy. The persistence
length of DNA is less than a tenth of the size of a typical bacterium. Thus
DNA is quite flexible within the scale of the bacterium, and it can be easily
fit within one, as far as elastic energy is concerned. On the other hand, if
left to its own devices, the bacterial genome would form a Gaussian loop of
string about 10 times the size of the bacterium (10 000 persistence lengths’
worth of DNA would like to random walk around a heap of approx 100
persistence lengths in diameter, or 10 times the size of the bacterium).

Stuffing a lot of DNA within the small confines of a bacterium is a
problem, as can be seen in electron micrographs showing punctured bacteria:
DNA literally geysers out of them by the loopful. But as we have argued
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above, confining DNA to the inside of a bacterium does not poise an elastic
energy problem, but an entropic problem. This unusual characteristic will
stay with us through this lecture: pretty much everything which we shall
discuss below carries the strange flavor that bending is not so much the
issue as confining entropically to a small region.

1.2 DNA topology

So there’s a lot of DNA and it is bending and writhing under the kicking of
thermal energy, which is a recipe for a topological nightmare. In addition to
this, it should be remembered that DNA is a double helix. The individual
strands are twisted around one another, about 1 turn per 10 base pairs, or
half a million turns for E. coli. This means one strand may not be easily
separated from the other. They could, in principle, if the ends were free–but
free ends of DNA are chemically fragile and hard to replicate, so bacteria
either carry their DNA in a loop, or they anchor DNA free ends to the wall.
(We have a sophisticated structure in place at the free ends of our DNA, the
telomere, deserving much lengthier description). In either case, the ends are
rigidly held, so we can speak about the topology of the DNA: while a knot
may be smoothly removed from a piece of string with free ends (which is
the reason one should first locate the free ends in order to untangle a knot)
a loop of string, or a piece of string tethered to a wall, has no free ends, and
so a knot may not be smoothly removed from it. If in addition, the string
has an internal structure such as being made of two twisted cables, then the
number of links between the cables is a topological invariant.

In order to reproduce, a bacterium needs to duplicate its DNA. To do
so, it shall make a copy of each of the two strands. But in order for each
cell to go its separate way, the two strands need to be separated from one
another–unlinked, in topological terms. Thus it is necessary, just to be
able to reproduce, to perform topological operations; at least a few hundred
thousand per reproductive cycle, since there are about half a million links
between E. coli strands. These operations must be performed with utmost
care, as is anything affecting the integrity of the DNA backbone.

The enzymes charged with managing the topology in DNA in living
cells are called topoisomerases. The name itself requires an explanation.
In biochemistry talk, a widdigly-ase is an enzyme charged with catalyzing
a reaction of widdigly into something else; i.e., widdigly is a substrate of
the widdiglase. You don’t choose to name the enzyme after whatever is
in common between the before and after the catalysis states, but after the
most prominent difference, that which has something to do with whatever
is it that the enzyme has changed, with the reaction that took place. Now,
sometimes you have stuff that is identical except in some particular way:
such stuff are called isomers. In particular, topoisomers are two or more
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structures which are identical except in topological terms. A 10 572 base
pair loop of DNA in an untangled configuration, and the identical strand
tangled in a knot cannot be considered the same chemical substance, since
there is no transformation short of cutting the covalent bonds of the back-
bone, untangling and then soldering the covalent bonds again that will
change one into the other. They are thus called topoisomers, since they are
identical except for their topology. An enzyme whose job is the catalytic
transformation of one topoisomer into another is, thus, called a topoiso-
merase. Then another deep-seated tradition steps in, and topoisomerases
become “topos”.

1.3 Topoisomerases

Topoisomerases are classified according to whether they do or do not use
energy to perform their jobs, a very basic distinction between enzymes in
the biological world. Enzymes which do not use energy are catalysts, pas-
sively accelerating the reaction rates of reactions that otherwise would take
place naturally. They can change the timescale of the reaction (say by
binding the reactants in close-together spots in their surface that favor the
reaction to take place; however, they cannot change the equilibrium prob-
abilities of finding the reactants in this or that configuration, for this is
given by the Boltzmann distribution. Once the Boltzmann equilibrium has
been achieved, and in the absence of energy consumption, the discussion is
that of one isothermal bath and the Second law forbids moving away from
equilibrium. Powered enzymes, on the other hand, can perform chemical
tasks which are thermodynamically “uphill” [8]. They do so by coupling
the uphill reaction to a “downhill” reaction–the consumption of some form
of fuel or energy currency–which makes the overall reaction be downhill [9].
An example is a motor protein, which consumes energy by hydrolyzing ATP
(the universal energy currency in cells) and may exert mechanical work by
moving against an external force. This has been a major subject during the
previous Lectures, and hence I’ll refer back to them. Here I shall point out
that it is not always evident what the energy being spent is being used for,
or in which way; I think this lecture will provide an example.

Energetically passive topoisomerases are called “class I”, while topos
which couple to energy consumption are “class II”. Class I topoisomerases
catalyze the following reaction: they bind to DNA, they temporarily nick
or cut the covalent backbone in one strand of DNA; they allow the free ends
to rotate for a while around the un-nicked covalent bond, then solder them
again. Thus they change the number of links between the two DNA chains,
and they do so in the strictly energetically downhill direction: if the two
strands had been overwound, type I topo relaxes this back to the equilibrium
torsion. Strictly speaking, this is all that would be needed to allow a circular
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Fig. 1. Some of the topological operations performed by topoisomerases. a) Class

I topos can nick a strand, rotate around the unnicked one, and religate, changing

the linking number of the two strands. Class II topos permit double strand passage

and so can b) remove knots and c) link and unlink (catenate and decatenate, in

topospeak) circular strands. From [15].

piece of DNA to be replicated and the two daughter strands to be separated
from one another, but there are other problems and situations to solve.

Type II topoisomerases perform more sophisticated jobs. All known
type II topos allow segments of two-stranded DNA to cross through an-
other segment of two-stranded DNA. To do so, they bind to the DNA, cut
through the two strands (while keeping a hold on the ends), and let the
other segment through. One specific kind, gyrases, perform this task in a
particular way: they bind to DNA, twist around the DNA segment, and
then they let the top segment though the bottom segment; in this way,
they change the linkage of the DNA strands always in the same direction,
rather than in the energetically downhill direction. This direction is that of
unwinding, making DNA less twisted; this is important, for all of the ma-
chinery that needs to access the letters of DNA needs to open the strands
apart, thus pushing the helical turns closer together outside of the open
bubble; unwinding the DNA makes it easier to open the strands. Other
type-II topos simply permit the passage of far-away segments, allowing, for
instance, the disentanglement of knots.
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Fig. 2. This reaction is “futile” from the viewpoint of a single-stranded polymer;

however, it changes the linking number between the two strands of a double-

stranded polymer by ±2. This is the reaction catalyzed by gyrases.

Now, it should be clear to the reader that topoisomerases are a matter of
life and death to the organism. This may sound like an abstract idea, but it
is not abstract at all. At the turn of the eighties, patient care for the treat-
ment of gram-negative infections was completely revolutionized. Prior to
that point, gram-negative bacteria, being hard to target with conventional
antibiotics, were being treated with large dose intravenous antibiotics; this
required a month’s stay in the hospital, where the patient was bound to get
more intrahospital infections. The worst, toughest, most resistant strains
of any given infection are most easily found at a hospital. A gram negative
infection was thus akin to some ancient curse, for patient and caregivers
alike. But then, gyrase inhibitors were introduced into clinical treatments–
fluoroquinolones, for instance, can treat the same infection in seven days,
by taking one pill a day in the privacy of home, with no risk of intrahospital
strains and no IV line, at a hundredth of the cost for patient care. A gyrase
inhibitor operates by targeting bacterial gyrases, which are evolutionarily
distinct enough from vertebrate gyrases that they can be targeted specifi-
cally. The fluoroquinolone inserts itself into the gyrase during the time the
enzyme is bound to DNA and has cut one of the two strands; it immobilizes
the enzyme in that state, not allowing it to move forwards or backwards
along its chemical cycle. Thus, the enzyme does not perform its job, and
the signal that caused the enzyme to act in the first place stays on, and more
and more enzymes are sent to the job and immobilized while attempting.
Pretty soon there’s a large number of double stranded breaks in the DNA,
held on to by gyrases with little monkey wrenches in their works. As they
fail and fall apart, the bacterial genome is blasted into little pieces. This
has caused literally a revolution in patient care. Needless to say, quinolones
and fluoroquinolones have meant huge incomes to the pharmaceutical com-
panies that marketed them. Raxar, the star antibiotic of Glaxo-Welcome,
was a huge best seller for years for its ability to target rare respiratory infec-
tions. Cipro has been one of the best selling items from Bayer–originally for
its ability to treat otherwise-resistant urinary tract infections. Recently it
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appeared in the cover of the New York Times every day for weeks: Cipro is
the only antibiotic cleared by the american F.D.A. to treat anthrax. It be-
came a best-selling item in the aftermath of bioterrorist threats in Oct. 2001
in the U.S., when the anthrax-laced-letter scares caused the population of
New York City to deplete the city’s stock of Cipro in a matter of days and
caused the stock price of Bayer to soar. Thus we see a clinical application of
topology: how knot theory is really a matter of life-and-death, for bacteria
and patient alike.

1.4 Knots and supercoils

Knowing now of their importance, let’s review briefly what knots and super-
coils are. Knottedness is a topological property of the embedding of circles
in 3-space. There are no knots in 2 or 4 dimensions: there is no way to
tangle a loop in 2 dimensions without self intersections, while in 4-D any
1-D structure, loops in particular, may be smoothly untangled without ever
going through a self-intersection. We know from basic differential topology
the “dimension” formula from intersection theory, which tells us that the
dimension of the intersection between two submanifolds is the sum of their
dimensions minus the dimension of the ambient manifold; so surfaces and
lines in an ambient 3D space typically intersect at a zero-dimensional set:
a discrete number of points. So in the case of knots, if we visualize a line
trying to move “though” another line that is left static, the first line traces
out an object of one more dimension, a surface; and hence they typically
will intersect at a discrete number of points in 3D (thus knotting) or not at
all in 4D (thus no knotting). Notice that the topological dual of this situa-
tion is a point moving through a surface, which is the case of ions moving
through an ion channel; thus, topologically, topoisomerases are in a sense
“topological dual” ion channels, since a DNA segment bars the passage of
another DNA segment in, topologically, the exactly dual way to a mem-
brane barring passage to an ion, and a molecule must be there to permit or
deny passage.

The typical way to depict knots is by their projections onto the 2D page,
where the projection causes strands at different depths to appear to self-
intersect; in this case the further-away strand is drawn with a break through
it, to give the illusion of an “occlusion” by the nearer strand.

The simplest knot is the unknot, a knot that is not knotted. A cir-
cle is the simplest projection of the unknot, but there are infinitely many,
arbitrarily complicated projections of the unknot.

I do not think there’s any need to stress here that knot theory is hard–I
may just refer the curious reader to the many excellent textbooks [1, 2].
I will just point out a couple of points. There is currently no known “run-
ning”algorithm that can recognize the unknot. One may compute the Jones
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Fig. 3. Knot projections. Top line: two projections of the unknot. The left one

is the “canonical” projection, while the right one can be transformed into the

left one by lifting the “flap” up and untwisting. Bottom: two projections of the

trefoil. Please notice that the right projections of the unknot and the trefoil can

be changed into one another by switching the sign of the bottom right crossing.

polynomial, an NP-complete task [3], and check whether it’s trivial; but it
has not yet been proven whether the Jones polynomial (or its extensions like
Homfly) do classify knots; thus there is still the possibility that a nontrivial
knot may exist whose Jones polynomial is trivial, though none is known.
On the other hand, there is an algorithm, due to Haken & Hermion [4],
that can classify all knots; but there is no running implementation of this
algorithm that I know of, and it is unclear whether it stands in the com-
plexity hierarchy–it seems to be a lot worse than NP-complete! Thus, the
seemingly innocuous task of deciding whether a projection of a knot is or
is not actually knotted is still an unsettled business, and in the best pos-
sible current scenario (that the Jones polynomial or a relative are shown
to classify) is NP-complete: exponential in the number of crossings of the
projection.

An ideal, infinitely-thin object may be endowed with elastic properties.
An object with a finite thickness has, additionally, torsional elasticity: the
resistance of a rod to have opposite ends twisted in opposing directions.

Supercoiling results from the competition between torsional elasticity
and bending elasticity–since both of them are quadratic the total energy is
minimized by appointing a fraction to both rather than most to any one of
them. Thus if a torsion is embedded in the polymer, it will spontaneously
attempt to relieve some by writhing, i.e., twisting its core into space; see
Figure 4.

Supercoils are usually seen in desktop telephones, in the cables joining
the handset to the body. Taking a message is a sure way to imbed torsion
into such a cable: a right handed person will typically take the handset with
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Fig. 4. Supercoiling is produced when an object with torsional elastic degrees of

freedom suffers overall torsion; in this case part of the elastic energy from twisting

around the axis is relieved by the axis itself writhing around in space. Try this

with any cable with appreciable resistance to being twisted, like an ethernet cable.

the right hand, and lift it straight up to his ear. If a conversation ensues in
which no use is otherwise made of his hands, he shall hang up by the reverse
of the original path and nothing will happen topologically. But if he has to
take a message, then he will pass the handset over to his left ear, so that
the right hand is free for action, and in doing so turn the handset by half a
turn clockwise (seen from the cable). After the conversation finishes, he will
hang up using the left hand, since the phone is on the left ear, embedding
another half turn clockwise. Thus one can generally learn the handedness
of a person by looking at the handedness of the supercoils off her phone.

1.5 Topological equilibrium

A ghost polymer is a theoretical model of a polymer that has all the normal
local properties of a polymer, but can freely pass through itself–i.e., it has
no interactions which are long-range along the polymer strand and hence
can not “feel” self-intersections. This is the easy, “lazy” thing to do if
one tries to implement a computer model of a polymer–the nice description
of a polymer is along its arclength, and thus a self intersection, which is
local in space but nonlocal in arclength, would require, in the most naive
implementations, everyone-against-everyone checking. This can be avoided
by more sophisticated techniques, e.g. 3D Delaunay tesselations, but they
are a pain to implement.

One can then implement the simplest polymer–a ghost polymer with
bending elasticity–in thermal agitation. If we made it a closed loop, one
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could then check to see how often the loop was knotted and how often it
wasn’t. In fact, one may do a histogram of how often the loop is found on
any given knot. This distribution over the knots is called the topological
equilibrium distribution [10, 11]: it is nothing other than the Boltzmann
distribution integrated over topological classes, and so it is the most basic
object of discussion in the statistical mechanics of DNA loops.

For sufficiently short loops the knotting probability is very small, and
vanishes as e−

L0
L , where L is the length and L0 is the length at which it

first becomes probable to twist so much knots can be made, of the order of
100 persistence lengths. While a circle is obliged to accumulate a total of
2π worth of curvature, and thus the integral of absolute value of curvature
needs to be at least 2π, it has been shown that any knot has to accumulate
at least 6π in total curvature. (A result derived by John Milnor at the
age of 17!). This represents an energy barrier to knotting which becomes
steeper and steeper the shorter the polymer loop is, since the elastic energy
is the integral of the square of curvature differential of length, which is
homogeneous order −1 in the length.

Experiments can be made to check this theory. They have been done by
using equilibrium religation [12, 13] – the nice thing about an equilibrium
distribution is that it does not matter how one reaches it, and so the ex-
periments were done by letting DNA loops with “sticky ends” flicker freely
between open (i.e., linear) and closed (circular) configurations. At some
point an enzyme (DNA ligase) is added which solders the sticky ends, thus
freezing the mixture at an equilibrium snapshot. If the DNA pieces are
run through a gel, they migrate through it at different speeds depending
upon their topology, and so it can be quantified with exactness how much
of a given topology there is in the mixture. For instance, for 10 kb loops,
about 3% are trefoils, 0.1% are figure eight knots, and negligible quantities
of higher-order knots; about 97% of the mixture is unknotted loops. For 7kb
loops about 1.8% are knots. These experimental results were in complete
agreement with the theoretical calculations, and everyone was happy.

1.6 Can topoisomerases recognize topology?

So experiment and theory were in agreement. But then, someone had the
idea of checking whether this topological equilibrium was respected by topoi-
somerases. And thus the trouble started.

The idea people had about class-II topoisomerases was that, by allowing
double stranded DNA to pass through itself, they effectively rendered real
DNA into a ghost polymer. There is no topology problem in a ghost poly-
mer. It was hard to think that they could do anything else, since topology is
a global property and the topoisomerases are thousands of times smaller than



“magnasco”
2002/8/28
page 448

�

�

�

�

�

�

�

�

448 Physics of Bio-Molecules and Cells

the DNA they untangle. But becoming a ghost polymer cannot alter the
topological equilibrium distribution, since it is just given by the Boltzmann
distribution of the elastic polymers. So, adding type-II topoisomerases to a
topological equilibrium mixture should not change the distribution, accord-
ing to these thoughts.

But of course it did. Type-II topos strongly suppressed knots, as well as
supercoil density fluctuations. Let’s look at knotting first.

Equilibrium Experimental [5]
10 kb P4 0.031 0.00062

7 kb PAB4 0.017 0.00019
nm P4 Links 0.064 0.04

So from this experiment the suppression of knotting and linking can be
as large as a hundredfold. Pretty impressive for an enzyme many thousands
of time smaller than the DNA it is unknotting. Furthermore, titration of
enzyme concentration showed that full activity was being reached with an
average concentration of only one enzyme per DNA plasmid; thus this effect
is not the outcome of collective interactions.

Now, the fact that a deviation from the Boltzmann distribution is ef-
fected is no problem, since class-II topos consume energy in the form of
ATP to perform their job. The Second Law is not the one at risk here. The
problem is that topology is a global object, while the enzyme acts locally.
It is even more insulting when we think that we do not have a good solution
to the unknotting problem.

1.7 Proposal: Kinetic proofreading

Now, the problem rapidly acquires twists. The suggestion in [5] is that
somehow topos recognize a few specific configurations and only effect strand
passage on them. A suggestion then developed further by Vologodskii is that
topos may bend DNA locally into a hairpin, and then strand passage into a
hairpin would be more likely from a knotted than from an unknotted state.
This proposal has its own problems which we will comment upon later. For
the time being let us just look at one feature. If the topo binds to DNA in
one place, and allows a different segment to cross through it, the overall rate
at which this happens will be computable as an integral over all possible
locations of the first and second segment–the path integral decomposes into
a double integral. Now, it is known that no double integral can discriminate
a knot from an unknot; the linking number can be computed as a double
integral, but it diverges when evaluated in a single loop rather than on two
disjoint loops. No equivalent for knottedness, no matter how crude, has been
developed. Higher order binding rapidly becomes complex, and disagreeably



“magnasco”
2002/8/28
page 449

�

�

�

�

�

�

�

�

M.O. Magnasco: Three Lectures on Biological Networks 449

chiral. Chirality is of vital importance, since there are two trefoils, the right
handed and left handed ones, and both seem to be strongly suppressed in
the experiment, so we have to find a chirally-insensitive mechanism.

It looks like, simply stated, there is a “ground” state (unknotted) and
“excited” states (knots), and a way has been found to focus the system
onto the ground state. There is one biochemical mechanism that does just
that, and it is called kinetic proofreading. It was discovered/invented by
Hopfield [6], and independently by Ninio [7], in an attempt to explain how
the accuracy of DNA replication comes about. I will detail the mechanism
below, but the key point is that the signature of kinetic proofreading is the
squaring of the error rates: if the native mechanism had an error rate of 1%,
then by repeating it twice independently in a kinetic proofreading scheme
it becomes 0.01%.

Now, examination of the previous table becomes suggestive the moment
we add a new column with the square root of the experimental data:

Equilibrium Experimental [5]
√

[expe]
10 kb P4 0.031 0.00062 0.025

7 kb PAB4 0.017 0.00019 0.014
nm P4 Links 0.064 0.004 0.063

i.e., the square root of the experimental data is almost unreasonably
close to coinciding with the topological equilibrium distribution. Even if
our detailed model below is wrong, which it might very well be, it sounds
like too much of a numerical coincidence to have close to a square of the
Boltzmann number for there not to be some form of two-collision process
at work.

1.8 How to do it twice

The kinetic proofreading proposal works as follows. Naively, one always
expects that if there is a test to weed out unwanted stuff, if the test fails to
detect an undesirable with probability p, then repeating the test twice will
fail with probability p2. This is, of course, subject to all sorts of caveats,
including the tests being fully random and statistically independent of one
another; i.e., for any undesirable, it must be the case that it is detected
with probability p.

The problem is how to implement this in chemical reactions. In equilib-
rium statistical mechanics there’s no such thing as doing it exactly twice,
since everything is a random walk: any attempt at doing it twice will result
in doing it once with some probability, and doing it thirteen times with
some other probability. This is evident in the specific setting that Hopfield
discussed: assembling a biopolymer such as DNA so that the right letters
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are copied faithfully. Let’s say the global strokes are such: there is a letter
soup containing the right and wrong letters. Both must be there because
next letter will be different and so we need a soupwith all letters. We have a
substrate, and then we want to incorporate the right letter to the substrate
at some rate:

S +R ↔ SR →ϑ right
S +W ↔ SW →ϑ wrong

the discrimination here is carried out at the level of the double arrow, which
establishes different equilibria for the SR. Now, in the case of DNA replica-
tion, it can be argued that the left arrow in the reaction has the same rate
at the top and bottom reaction: the letters in the soup don’t have a clue as
to what letter is being copied, and thus arrive at the same rates, without
regards for whether it’s the right or wrong letter. What does change be-
tween the right and wrong reaction is the back arrow: the right letter sticks
longer than the wrong letter. It sticks exactly e∆E/kT longer than the wrong
letter, to be precise, where ∆E is the discrimination energy. Then if ϑ is
sufficiently slow, then enough time is given to the back reaction to equili-
brate and the overall rate at which wrong product is being incorporated is
p = e−∆E/kT .

In order to proofread these reactions, there must be a way in which
the discrimination can be done twice. But the discriminating step is the
unbinding part, the back arrow; how can this be done twice? Only by adding
a new state, SR∗, and allowing this new state to dissociate–otherwise there’s
no way to add another dissociation

S +R ↔ SR ↔ SR∗ →ϑ right
�

S +R

and a similar set of reactions for the wrong substrate. But the problem is
that the moment we put a down arrow to allow SR∗ to decay to S+R again,
we necessarily must put an up arrow. Therefore, allowing the exit path that
permits the reaction to be carried out twice allows the entry into the second
stage of the reaction directly, without ever doing the first check. When all is
said and done, when all reactions satisfy all necessary energetic constraints,
no major improvement is achieved from this mechanism: instead of getting
a geometric improvement like p2 we get an algebraic improvement like p/2.
This is all good and sound: there should be no way to cheat Boltzmann in
an equilibrium situation.

Hopfield and Ninio’s observation is that energy expenditure breaks us
away from these limitations. Notice that the � is not the only arrow we
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added to the reaction diagram: we necessarily added a ↔between the SR
and SR∗ states. In an equilibrium situation this is the no-win place: all
forward arrows starting at the left S +R and ending at the bottom S +R
must multiply to one to satisfy detailed balance, and simile for the back
arrows. Otherwise we would be gaining energy going through a loop, which
is forbidden by the first law. Making SR∗ higher in energy than SR dimin-
ishes the chances of entering through the vertical pathway, but in so doing
slows down the horizontal pathway by exactly the same amount because of
this balancing requirement. But if we couple the transition from SR to SR∗

to degradation of ATP, for example, we shall be exempt of this restriction:
we can make the SR→ SR∗ reaction effectively unidirectional.

The effect of this energy expenditure is deep: we can then make the SR∗

state a higher-energy state than SR, and so make entry through the second
pathway arbitrarily difficult.

S +R ↔ SR∗ →ϑ right
↑

S +R ↔ SR

while the quotient of left and right rates may be the same for the top and
bottom arrows, their individual values now will be scaled by a factor of the
exponential of the energy difference between the SR and SR∗ states.

1.9 The care and proofreading of knots

This is all fine and dandy, but the question remains of how we could possibly
proofread a knot. In order to know how to do it twice, we need to know
how to do it once. Let’s first imagine a topological transition in the ghost
polymer setting. The transition between the unknotted U and knotted state
K goes through a self-intersecting or singular state S:

κ λ
K � S � U.

λ ν

But we have theorems telling us that there is no way to know, when we are
in the state S, which way lies the knot and which way the unknot. Thus λ
must necessarily be the same in both decays; this feature is going to give our
diagrams a weird symmetry. In physical terms, this symmetry comes about
because our problem is purely entropic. If elasticity was important, then the
strands would be pressed against one another trying to untangle the knot
and it would be possible to know which way the unknot lied. This is the
most important difference between this model and the standard proofread-
ing models of Hopfield and Ninio: in these models, there was a difference
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in energy of discrimination; in our case the energy of the intermediate state
is the same, we must proofread on the basis of entropy. But of course this
distinction is illusory: while a forward arrow is an energy and a backward
arrow an entropy, looking at the diagram in reverse simply exchanges them.

Fig. 5. The kinetic proofreading model for topoisomerases. Notice all rates are

mirror-symmetric except for the crossing attempts, which are given by κ, κ′, ν

and ν′. Notice also that the path from right to left crosses both κ and κ′.
From [14].

This diagram must be complicated a little bit because the state S going
from K to U is distinct from the state S′ going from U to K; this distinction
comes about because the topo grabs one DNA segment first, and allows the
second segment to cross, but cannot chemically allow it backwards: its
clamp has an entrance and an exit which are distinct.

In order to proofread we must do something twice that we were doing
only once before. What we were doing once is that a DNA segment bangs
against a second segment in an attempt to cross it; there happens to be a
topo sitting there, and it lets it through. So we need to allow two bangs,
two crossing attempts; but we couldn’t possibly if the topo lets the segment
through on the first try. So the proofreading model simply says: the topo
will insist on getting two attempts at crossing (within a small time period)
before allowing it.

Thus the enzyme must be able to count to two, and so needs a physical
substrate for a one-bit memory. There’s of course a large number of different
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ways that bistability can be built into such a system: enzymes can have
more than one conformational state (like ion channels) or can be subject to
reversible posttranslational modifications, like phosphorylation. This “bit”
has to be strongly coupled to other mechanical properties of the enzyme,
since it is on the basis of this bit that the second strand is allowed passage or
isn’t. In this particular case, the “bit” need only exist during the duration of
the enzyme-DNA complex, since the proofreading scheme does not require
memory “across” instances of the complex. Furthermore, the chemistry of
the topo itself already has a “bit” of information, though unused: whether
the covalent backbone of the segment has been cut or not. Thus one possible
physical embodiment of this model proposes itself: the “bit” is whether
the segment has been cut or hasn’t, and so the proofreading translates to
stating that segment cutting is triggered by a crossing attempt. A further
attractive feature is that if the “high energy state” of proofreading is the
DNA segment having been cut, then evidently there’s no strand crossing
through the low energy state–the segment is still uncut; and there is a need
for a γ built in, since we do not want to leave cut DNA lying around too long.
Thus this particular implementation of proofreading is attractive because
of the simplicity with which everything falls together; but Occam’s razor is
dangerously blunt in biology so we should not make that much of it.

There is a regime in which the choice of all the rates becomes immaterial;
the analytic solution to this diagram is

Pknot

Punknot
=
νν′

κκ′
γ(λ′ + µ) + κ′µ
γ(λ′ + µ) + ν′µ

so when γ and λ′ are much larger than the other quantities the resulting
ratio becomes κκ′/νν′ which is P 2

eq, the square of the topological equilibrium
probability. All the rates have fallen off the equation! Figure 6 shows then
the agreement between this model and the data.

In other words: the model, while still local in space, by insisting on
receiving two independent crossing attempts has become nonlocal in time.

1.10 Suppression of supercoils

An interesting aspect kinetic proofreading is that the proofreading property
is a function of the network of reactions, and not of any individual reaction.
Furthermore, this network works out to have a neat property: the squar-
ing of probabilities looks exactly like squaring the Boltzmann distribution,
which can be done by doubling the energies or halving the temperature.
In any case, even though the internal arrows of the diagrams are out-of-
equilibrium, the diagram as a whole works out to be a pseudoequilibrium,
detailed-balance-respecting gizmo.
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Fig. 6. The proofreading model predicts a quadratic improvement. This plot

shows the knot data from [5] graphed against the square line. Please note that

this is not a fit since the solution of our model has no free parameters. From [14].

Fig. 7. An infinite stack of linking number change reactions, and how to proofread

them. From [15].

Therefore, if all of the relevant reactions are proofread, we can then
kinetically proofread an infinite stack of reactions and have it work out
as if it was still in detailed balance. This is the easiest out-of-equilibrium
kind of system one can conceivably get. Notice that because of the
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temperature-halving analogy, the moment one reaction is not proofread we
have a system with two equivalent temperatures, and we’re stuck with a
full, hideous, out-of-equilibrium, probably-intractable model.

But if all the reactions in an infinite stack are proofread, we just need
to square the equilibrium probabilities and we’re done. This is the case for
linking numbers and supercoiling. In the range of the experiments, the su-
percoiling energy looks just like a parabolic potential deviation from some
minimum: E = ED(Lk− Lk0)2/2 where ED is the supercoil discrimination
energy and Lk the linking number. Thus the probabilities for the equilib-
rium model would be Gaussian, and their squares would also be Gaussian,
with exactly the same energy form except that the width of the Gaussian
distribution will be reduced by a factor of

√
2, or, equivalently, the super-

coil discrimination energy would be doubled. Interestingly, the supercoiling
data from Rybenkov et al. [5] shows quite a good Gaussian behaviour, which
can be fit to a supercoiling discrimination energy which is about 1.9 times
the actual one.

Thus we can say that all the quantitative data currently in existence
is compatible with a kinetic proofreading model; furthermore, we cannot
emphasize enough that in this model there is no freedom to fit anything, so
we cannot dismiss the agreement between the model and the data on the
basis of the scant number of datapoints.

1.11 Problems and outlook

The only competing model to ours which we are aware of has been champi-
oned by Alex Vologodskii. As mentioned before, the idea is that topos bend
the segment to be cut into a hairpin shape; since they only allow passage of
the second segment from the inside to the outside of the hairpin, this is an
out-of-equilibrium reaction capable of recognizing knottedness. This model
has currently two problems: first, there is no analytical treatment showing
the model to be capable of the amount of knottedness suppression shown
by both experiment and our proofreading model. So even though it sounds
plausible that such a mechanism might distinguish knots from unknots, it
is not yet known if it can agree with the data. Second, it is unclear why it
should suppress supercoiling fluctuations, and Volovodskii’s team has not
studied this issue. On the other hand, in support of the model, it has been
shown that EM pictures of topos attached to DNA bend the DNA locally;
which as evidence is somewhat slim, since almost anything that binds DNA
will bend it, especially after freezing to produce EM pictures.

Vologodskii has raised in turn a serious objection to our model. Notic-
ing that the model depends crucially on the assumption that the first and
second crossing attempts are of the same topological type, he claims that
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Fig. 8. Comparison between the theory and the data. These plots should be

straight lines if and only if the distributions are Gaussian. The slope of the line

reflects the width of the Gaussian distribution, which in turn is the supercoiling

discrimination energy. The three datasets are the equilibrium distribution, the

proofreading model (in which we just multiplied the equilibrium distribution by

two, and the experimental dataset, which is in quite close agreement with the

model). Once again, this is not a fit, for the model gives a parameterless function

with no freedom for fitting. From [15].

this implies that the vast majority of crossing attempts must be topology
changing for our model to hold.

His computation of crossing attempt rates shows that the vast majority
of such attempts do not change the knottedness state. This part is of course
true. Given a circular polymer of only a few hundred persistence lengths,
the primary crossing attempt is when the polymer acquires a figure-eight
shape; or perhaps I should say “hourglass shape” to avoid confusion with
the figure eight knot. Crossing in that state does not lead to knotting–but
it is the primary means of changing supercoil number as in Figure 2, and
is taken into account in the supercoiling analysis of the previous section,
which agrees in detail with the experimental data. Second, the regime in
which our knotting analysis is correct is the limit in which the two crossing
attempts are close to one another because the de-excitation rate γ is large.
Of course, the time required for the polymer to change conformation from
a trefoil-like conformation as shown in the figures to an hourglass should
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be quite bigger than the time between two successive crossing attempts in
either state.

1.12 Disquisition

I like this model particularly because of two reasons. The first one, is that
we have an implementation of a rather precise function in molecular biology
which is not being carried out by an enzyme which does exactly this or that–
it is the outcome of the dynamics of a network of chemical reactions, and
not a result of any individual reaction.

Second, because the model presented here could very well be wrong. It
may sound strange, but the thing that I personally miss the most from my
life as a physicist is the ability to be wrong, which stems from the ability
to make a model possessing unambiguous predictions which can be checked
against experimental reality without arguing room. Our problem is such:
topoisomerases either wait for two bangs or they don’t, and this can be, in
due time, checked. Rarely this happens in the interaction between physics
and biology, because rare is the time when theory can take a leap in front
of experimentation–most usually one is left fitting experimental data with
models which have seventeen parameters too many.

2 Gene expression networks. Methods for analysis of DNA chip
experiments

I will give a fast and loose description of the regulation of gene expression,
gene chip technology etc. This introduction is meant to whet the appetite
of the physicist considering studying this fascinating branch of technology;
it is deliberately fast and loose, so much that biologists may feel annoyed by
the lack of precision. The reader interested in continuing the study of this
subject are well advised to get into a real textbook on genes and reading
the many reviews on the subject of gene chips, like [18–20].

2.1 The regulation of gene expression

Cells encode in their genes proteins which carry out the various tasks re-
quired to stay alive, be it to digest foods, detoxify dangerous chemicals, or
sense and process information. They adapt themselves to circumstances by
changing the amounts or even the kinds of proteins which they deploy; a
first line of intervention to change these levels is to change the amount of
RNA transcription for a given gene.

transcription translation
DNA → RNA → protein.
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A gene, in the genetics sense, is a unit of heredity. There are various
inequivalent ways to define such things and the details gets messy if one
tries to be rigorous, so we won’t try to here. In common parlance, a gene
is a “functionally meaningful” region of the genome, and as such defined
by its sequence and its position within the chromosome; it has a “coding”
region, which is the one in which the code for the gene product (a protein)
is spelled out; around the coding region there are “control” regions in which
various little sequence snippets act as landing pads for the elements of the
transcription machinery and its regulatory entourage. The latter consists of
various proteins which either enhance or diminish the chances of getting the
transcriptional machinery to transcribe the gene; these are the activators
and repressors of transcription. Coding and control refer, in this context,
exclusively to the transcriptional process, for the copy of the coding region
which we call the RNA transcript contains various control elements for
everything that happens later.

So, through transcription, various substrings of the DNA sequence get
copied each into individual RNA pieces; the little pieces of RNA for vari-
ous different genes then float around, in various abundances, and get shut-
tled around, processed by splicing and other alterations before being used
for translation; any particular gene may have from zero or one RNA tran-
scripts to thousands of identical transcripts in any given cell. The transcript
abundance for a given gene is established by the competition between two
processes: transcription generates more transcripts, while RNA degrada-
tion destroys them. Degradation is less specific than transcription, but not
unspecific: the RNA transcripts contain sequences which target them for
degradation at various rates. Some transcripts are very rapidly transcribed
and degraded, establishing thus a non-equilibrium steady state that can be
controlled on very fast timescales. This is the case with various information-
processing enzymes like kinases, whose transcripts have half-lives in the 0.2
to 2 hour range. There are various transcripts which are very slowly de-
graded, like those of various ion pumps and the like, whose half-life may be
days.

The process is similarly complex for the rest of the diagram, i.e., pro-
tein synthesis. Zooming in on any portion of this diagram would reveal
many complexities we have glossed over. The one piece we shall need to
concentrate on is the region above mRNA: the control of mRNA abundance
through the control of the arrows around it.

This picture suggests a dynamical network of control for any particular
gene. One should imagine a diagram like the above for every single gene;
these diagrams are then strung together by various interactions, because all
arrows in all such diagrams are effected by proteins which are themselves
controlled and may be in various states of activation etc.
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DNA
↓ transcriptional

transcription control
complex

bound to DNA
⇓ transcription

RNA transcript
↓ splicing etc.

RNA ← mRNA
turnover ↓ initiation of

mRNA in translation
ribosome

degradation ⇓ translation
of misfolds ← peptide chain

↓ processing
protein ← protein and folding
turnover

The function of a given protein may be to cut one specific bond in a
particular sugar, in which case we call it an enzyme; or it may be to bind to
the little snippets of DNA sequence and help or prevent the assembly of the
transcriptional machinery, thereby inducing or repressing expression of the
gene where the snippet lies. In the latter case we call it a transcriptional
regulator or transcription factor. Gene regulation networks are the networks
of interactions caused by all proteins which are transcriptional regulators
of other proteins (perhaps including themselves), of which there is a fair
amount. Since a transcriptional regulator can regulate many genes and any
gene may be (and usually is) regulated by many factors in a combinatorial
way, the transcriptional network is capable of sophisticated behaviour; since
regulators may be activated or inactivated through processes like phospho-
ryllation by elements outside the transcriptional network proper (like pro-
tein kinases) the network reacts to outside inputs. Regulation of genes not
in the network is then the output of this network.

All long-term changes in living beings are mediated through transcrip-
tional regulation programs. The differentiation of genetically identical cells
into distinct cell types, like liver cells or muscle cells, is mediated through
flip-flop-like switches of transcriptional regulation; the long-term changes
to synapses in brain cells that mediate our memory are supported through
gene regulation circuits, as will be described in the third part of this course.
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2.2 Gene expression arrays

Traditionally it has been extremely laborious to figure out pieces of tran-
scriptional regulation circuits; even now, when in possession of the whole
genome sequence, data mining techniques have failed to pop things out
brightly, but rather provide long lists of possible suspects to be confirmed by
the slow traditional methods [21]. We do not know the whole complement of
transcriptional regulator binding sites, we do not know any precedence rules
stating, if an activator and a repressor are active at the same time, which one
prevails, or, obviously, any of the higher-order combinatorics. The picture is
complex because even history effects have to be taken into account. The set
of binding sites for the transcription factors for a given gene is more than
a “logic gate” reacting instantaneously to the inputs, since the chemistry
of binding permits, for instance, history effects: overlapping binding sites
exclude simultaneous binding by the respective proteins, in which case the
factor which was turned on first will bind, and prevent the one turned last
from binding. Finally, it bears mentioning that fluctuations are an essential
part of this picture since we are not dealing with a mass-action system here:
these are single-molecule systems virtually by definition.

It would be interesting to attempt to start reverse-engineering the cir-
cuits from measurements of the behaviour, on the assumption that genes
whose expression is temporally correlated have a large chance of being co-
regulated. This assumption is naive, but the best shot we currently have at
a problem whose complexity is otherwise overwhelming, and whose impor-
tance overshadows most of Biology.

Gene expression arrays are solid surfaces onto which pieces of DNA have
been attached in spatial patterns. This pattern is arranged as an array of
regions or spots; within a spot the DNA is chemically homogeneous. Spots
may be 1–100 µm and contain many millions of identical copies of DNA.
When a drop of fluorescently labeled RNA is placed on such a surface, the
individual RNA molecules will bind to the DNA complements attached to
the surface. The binding will be sequence-specific: the RNA is expected
to bind extremely well to its exact complement, while little or not at all to
completely different sequences. The drop is then washed away together with
any unbound pieces of RNA. When the array is viewed under a fluorescence
microscope, the spots will glow in direct proportion to how many pieces
of fluorescently-labeled RNA are bound to its DNA. A measurement of
spot fluorescence is then a proxy for a species-specific measurement of RNA
concentration.

There are two main kinds of array in existence, following a divide be-
tween the do-it-yourself approach versus the ready-made approach, that
somehow mimics similar divides in other areas like operating systems
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(Windows vs. Linux for example). For a clear introduction (aimed mostly
at the biological public) see [18].

spot arrays GeneChip (R)
who do it yourself buy if from Affymetrix
for your favorite animal, commercially important

your favorite tissue animals (human, rat...)
what full-length cDNAs short (∼25) bp DNA

on a glass surface oligos on a glass surface
how deposit a drop from photolithographic

a test tube and let dry chemical synthesis
how as many as you have as many as will fit in the
many patience for: wafer at given feature size:

100→ 10 000 cDNAs, 500 000 features at (30–40)
hopefully distinct features per gene (now)

source you make the library sequence database
cost with a library, 2 $ each about 2000 $ each (Fedex’ed)

+ your copious time minus university discounts

Spotted arrays are home-made. Their popularity took a great boost
when Pat Brown’s group published (open-source style, [24]) the plans and
specs for a robot device costing about 13 000 $ that would make batches of
hundreds of arrays from cDNA libraries in standard 384-well plates. The
robot operates simply by dipping a small array of metal pins into the little
tubes, and then impacting the pins upon a glass slide (the same kind used
for microscopes). The robot repeats the operation through an array of glass
slides, then changes the tubes, until the collection of tubes is exhausted. As
the fluid droplets dry, the cDNA from the libraries dries on the glass and
somehow bonds to the surface. At any given research institution, it’s likely
that one of these robots will have already been built at some central facility
(or at a nearby institution), so the main expense is the creation, normaliza-
tion and curation of the cDNA library. This is an arcane branch of black
magic so we shall not dwell upon it here–just remark two important points.
A cDNA library contains cloned pieces from the expressed mRNA in the
cells of the tissue/animal the RNA was purified from. As such, the sequence
is unknown, so the data is labelled by spot number and eventually points
to a test tube. If something interesting is inferred–well, a bit will be drawn
from the tube and get sequenced. The other point is that one may end up
with multiple copies of the cDNA clone in many different tubes; which is
not known in advance. A process called “normalization” attempts to factor
out relative mRNA abundance, but it introduces noise and fragmentation
into the collection. Another process called “substraction” attempts to make
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a library enriched for the mRNAs present in one tissue but not in another;
it also generates a lot of noise.

A company called Affymetrix has a broad patent covering a range of
techniques having to do with putting lots of different DNAs on solid sur-
faces. The patents are so broad no one else has been able to sell DNA on
a solid surface, so Affymetrix enjoys a dominant position in the market-
place. Affymetrix manufactures RNA hybridization arrays under the trade
name GeneChip; they are the other popular array, perhaps the most popular
by “arrays used” count. The technology is a photolithography adaptation
of solid-phase synthesis in broad use for sequence-directed oligonucleotide
synthesis. Because photolithography works in parallel, the number of spots
(called features or probes in this context) is not a concern. But the synthesis
is directed by sequence, and so the sequence of every spot must be known
in advance so that the photolithographic masks can be laid out. Also, since
about 4 masks will be needed per position, the sequence can’t get too long:
a couple dozen letters is a practical limit. This poses a conundrum: short
DNA segments are not expected to have the sharp complementary-sequence
specificity of longer DNA fragments, and cross-hybridization is expected to
happen. To solve this, Affymetrix uses a two-fold approach in GeneChip
arrays. First, a differential signal is generated, by taking the difference be-
tween a “perfect match” sequence (PM) and a “single mismatch” (MM)
obtained by replacing the middle letter in the PM sequence by its oppo-
site letter. Both probes together are called a probe pair. The rationale
behind this construct is that MMs will bind less well the target sequence,
but get full-strength all of the cross-hybridization and other physical noise
sources, so the difference between the PM and MM should eliminate cross-
hyb. Second, redundancy is introduced, by tiling the target gene sequence
with several (sometimes overlapping) PMs. Current chip versions use 16
to 20 PMs of length 25 base pairs; letter number 13 is then changed to its
complement to generate an equal number of MMs. The whole set of probe
pairs tiling a target is called a probeset. The sequences are considered by
Affymetrix to be proprietary information and are not disclosed to the public
like us.

Thus, in GeneChip arrays, we get between 32 and 40 numbers (the
brightnesses at each probe in the probeset), out of which we need to re-
construct a single number, the mRNA concentration. There’s obviously
infinitely many different functions of 40 variables returning identical values
for “ideal” measurements, but having inequivalent noise rejection proper-
ties on imperfect or noisy data. One standard algorithm is provided in the
Affymetrix software suite, and many researchers are completely unaware of
its shortcomings or even that it may be bypassed and your own favourite
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algorithm used instead. I will describe the problems we encountered when
studying this issue in the last section.

2.3 Analysis of array data

So, how is this data then used? There are two prototypical experimental
designs: time series and condition clustering. Time series works as follows.
A culture of cells (say, fibroblasts, or yeast cells, or...) is “synchronized”,
i.e., all cells are brought to an appropriately similar state. In the case of
fibroblasts, they may be starved for a particular serum growth factor; or
yeast cells may be arrested at a given stage in their cell cycle. The cultures
are then given the appropriate “start” signal, be it the growth factor or
nutrient. Samples of the culture are taken periodically, their RNA extracted,
amplified and fluorescently labeled, and then hybridized on the chips. The
output of such an experiment is an N × M table of numbers, where N
is the number of spots on the array or genes being probed, and M is the
number of time points; similar gene expression patterns are then grouped
by similarity using clustering techniques (along the N gene directions), and
sorted by the relative time order in which activation or repression happens.
The hope here is to observe a cascade of transcriptional events unfold.

An apparently simpler design is one in which a number of dissimilar
samples are thrown together. For instance, one may collect a number of
clinical tissue biopsies may be collected, say polyps from colon biopsies and
nearby healthy tissue. In this case, not only are genes clustered together by
similar expression profiles, but also the experiments get clustered together.
In this case one is trying to get a transcriptional signature for a classification
of colon tumors: hopefully the top level of the clustering will divide healthy
from cancerous tissue, and subsequent branches of the clustering will reveal
distinct tumor types. Clustering analysis was fairly well established already
before gene chips, but they have provided a strong impetus and so a flurry
of new methods has appeared [42].

Analysis of array data differs strongly from established time-series anal-
ysis methods, because the data has the wrong aspect ratio for proper time-
series analysis. For example, a flurry of methods for dynamical system iden-
tification were created in the “chaos” boom of the seventies and eighties.
Most of them require a number of time slices which increases exponentially
with the dimension of the attractor to be reconstructed [23]. This is be-
cause high-dimensional spaces are exponentially large: they require many
many points to be “filled” so that their volume is sampled throughout.
(Consider how many “corners” a hypercube has). But in array analysis, the
aspect ratio of the data is all wrong: best cases we know of involve about
104 genes in 102 experiments. Notice that the number of experiments is not
only smaller than the number of genes, but is smaller than the square root
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of the number of genes. Because of this. it has become apparent recently
that the full N×M data set may be too large an object to analyze together.
Clearly, even if we had uncorrelated, Gaussian white noise as our only noise
source, as we cluster along the “genes” direction, the residual noise goes
like the square root of the vector dimension; so we get a disadvantageous
signal to noise ratio, S/N ∼ 1 simply because of the geometry of the data!
So methods have evolved to find and cluster submatrices of the full thing.
This is also in keeping with the notion that gene expression is there for
many purposes in addition to the one we’re looking at in the experiment–
transcriptional regulation of colon tissue may respond to the kind of diet
the patient had before the biopsy, for instance. In addition, gene expression
is so labile that any small change imprints itself on the data: there may be
the experimental artifacts one would like to avoid. (Tumor data sets have
been known to result in clustering of the surgeon performing the biopsy, for
instance). Thus, a proper way of selecting a smaller subset of the genes and
experiments for analysis is extremely important [43–45].

I hope I’ve been able to convey the impression that the analysis of array
data is by now a thriving subject, and that the interested reader should
immerse herself into the growing literature. I will now first describe some
of the unwritten concerns that a physicist may want to carry into the sub-
ject, and then describe a much more basic problem: that of actually getting
the numbers to do clustering on. Most researchers are happy to use what-
ever numbers the available software spew out without giving them much
thought, be it software like Scanalize for spot arrays, or the Affymetrix
software suite for GeneChip arrays. However, close inspection shows that
there are so many unsolved issues at the level of the measurement process
that substantial improvements to the quality of the data could be made just
by treating the raw measurement data more carefully.

2.4 Some simplifying assumptions

Here we shall detail a few of the common simplifying assumptions that lurk
about in this subject ready to catch the unwary analyst. Once again, I
would like to stress that, in many cases, it is known that the assumption
is wrong, it’s just the best shot one has at a problem, and it is otherwise
unknown whether its a “safe” wrong assumption or a deadly one.

One way in which simplifying assumptions ruin an otherwise good piece
of science is by creeping into the null hypothesis. Any quantitative analysis
in this subject must be validated by an estimate of its statistical valid-
ity, since these experiments generate copious noise together with the signal
(whose “copiousness” is unknown a priori). No test of statistical validity
operates against a vacuum, but as a way of distinguishing the observed
experimental data from a null hypothesis. If the null hypothesis is highly
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artificial, then it is worthless to assure us that the observed experiments are,
with high statistical confidence, different from the artificial null hypothesis,
because we already knew they were. There is a widespread tendency to
accept otherwise unacceptably dumb null hypothesis, because the tests to
establish significance against any more refined model are extremely difficult
to carry out, and researchers do not agree on a standardized null hypothesis.
The result is an escalation of the “significance scores” that are expected.
For instance, sequence alignment algorithms are supposed to tell us what
the optimal alignment of their input sequence is, against the sequences in a
database; and then tell us what is the probability that this alignment arose
by pure chance alone. What do we mean by pure chance alone exactly?
The usual test is to test against a scrambled sequence of similar length;
but of course, a scrambled sequence is spectrally white, while all biological
sequences have prominent correlations. A test against a random sequence
of similar composition and correlation structure would require people to
agree on which feature of correlation structure is the important one, and
would be much more difficult to carry out. As a result, the simpler null
hypothesis gets ingrained, and researchers just expect astronomically small
significance scores. But it should always be borne in mind, that significance
scores against a more refined null hypothesis are not necessarily monotonous
respect to the scores of a simpler hypothesis.

It is not known what a proper null hypothesis would be for expression
array data, and it is a matter of current debate. Researchers have by and
large used the arrays as sieves, trying to catch low-hanging fruit, to be
verified by more conventional methods. Since biology labs have in the past
struck gold by discovering and then studying the right molecule for a given
process, a list of the 20 top candidates to be “the right molecule” is worth a
lot to a biology lab–even though it hardly makes a piece of finished science.
In this regard, the current climate favours sensitivity over accuracy: the
people running the sieves are worried about catching some fruit, and so
prefer to get a bigger list with many false positives and all of the right
candidates over a smaller list with no false positives but important puzzle
pieces missing. So it has been hard to get anyone worked up about the
appropriate null hypothesis to quantify things like clustering analysis.

One simplifying assumption is that RNA concentration is a proxy for
RNA transcription (just 90 degrees out of phase). The importance of RNA
degradation rates cannot be overstressed, since it is roughly homogeneous
within a given family of proteins but varies by orders of magnitude across
families. Thus, any clustering of the observed raw signals likely will cluster
together genes with similar RNA degradation rates even if unrelated–just on
the basis of a similar spectral profile inducing spurious correlations against
the “spectrally white” null hypothesis.
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Another is that averaging over cells preserves the appropriate correla-
tions one is trying to use. Instances of boolean processes which have a
graded population distribution are known, and any population average is
incapable of distinguishing such a thing from a graded response at the cel-
lular level. See [28], where kinase cascades which had been shown to be
graded in vitro were actually boolean at the single-cell level. Even for
graded responses, instances are known in which the exact population dis-
tribution carries an enormous amount of information (see the third part of
this course). This is a matter of much current concern for many people,
who are trying to push array technology to single-cell detection limit.

Finally, gene expression is extremely labile, and it responds to every-
thing a living being is in contact with. As discussed above artifacts are
easy to come by. The assumption that the gene expression patterns ob-
served only have information related to the parameters the experimentalist
is attempting to control has already been shown to be quite dangerous.

2.5 Probeset analysis

In theory, theory and practice are the same, but in practice they
aren’t. Attributed to Yogi Berra.

If one takes an experimental sample of RNA extracts from tissue, divides
them into two identical vials, and then carries out all of the amplification,
fluorescence labeling, hybridization to the microarray, washing, fluorescence
laser scanning and image analysis of the scanned image required to get
the brightnesses at each probe, one observes a curious feature. The probe
brightnesses are, by an large, repeatable with a high degree of certainty–for
bright probes, within a few percent. There are about 20 probes per probeset,
so averaging over them should make things better by a factor of

√
20 ∼ 4.

So the technology holds the promise that, somehow within it, there is the
possibility of making measurements precise to two decimal digits. Yet, in
actual practice, the final numbers coming out of analysis can scarcely be
trusted for changes smaller than a factor of two–“times/over two” is the
standard error line for chip data. ne may argue that the differential design
is of course sensitive to noise, but still there is evidently something wrong,
and we shall now explore what.

The rationale behind using PM and MM sequences is that sequence-
specific hybridization will definitely notice a change of one letter, while
cross-hybridization, or any other nonspecific effect won’t. A statement of
this thinking, which I will call the standard hybridization model, is

PM = IS + INS +B

MM = αIS + INS +B
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where IS is the brightness due to the binding of the specific target, INS

the nonspecific binding, B a background brightness of “physical” origin
(photodetector dark current or reflections in the glass), and 0 < α < 1 is
the loss of binding strength due to the single letter change.

The Affymetrix software suite then analyzes these numbers as follows.
∆ = PM −MM = (1− α)IS, so the nonspecific and background contribu-
tions should have been obliterated from the probe pair differentials. There
are 16−20 such ∆, one per probe pair, per gene being probed. In order
to discard outliars, the top and bottom scores are discarded; the rest are
then algebraically averaged, as is sometimes practiced in the scoring of some
olympic sports. This would eliminate the influence of defective probes.

The implicit assumptions that would allow such an averaging procedure
to work are:

1. That IS = k[RNA], i.e., that the relationship between brightness and
RNA concentration be linear. This implies a conversion constant k
that translates from concentrations to brightness. Similarly, there
should be a constant p relating the nonspecific portion of the bright-
ness with the RNA concentration which causes it;

2. That the conversion constant k be the same for PM and MM , and
similarly that p should be the same for PM and MM . Otherwise
substraction does not cancel them out;

3. That 0 < α < 1;

4. That the α and k be relatively homogeneous in magnitude throughout
the probeset.

Grabbing a dataset and doing some statistics quickly belies these assump-
tions. In fact, such an exercise shows that all the assumptions are violated.
The most visible violation (and the one that was first noted by researchers
in the subject) is that (3) implies that ∆ > 0, or PM > MM , an assertion
that’s easy to check. Turns out that probe pairs for which MM > PM
were noticed quite early on, since they lead to negative concentrations in
the Affy software suite.

Let me repeat that MM > PM is a very evident violation of the hy-
bridization assumptions; evident since no more numerical analysis than a
substraction and checking for a − sign is necessary. Felix Naef and I have
been working on a number of large datasets, including an 86 sample set
from human blood from rheumathoid arthritis patients, from Nila Patil
at Perlegen Inc., formerly the human genetics division of Affymetrix; 36
Drosophila chips from M. Young’s lab at Rockefeller and 24 mouse chips
from mouse brain tissue by Dan Lim et al. We have found that across
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different chips, different kinds of tissue, different people carrying out the
reactions, etc. all chips with the single exception of yeast chips (arguably
a different beast altogether) show pretty much the same statistics: about
30% of all probe pairs show MM > PM . Thirty percent is a figure hard
to dismiss as negligible or small. We have checked whether these probe
pairs are clustered in any way we can figure out. The first naive idea would
be that at low intensity levels, noise becomes percentwise higher, and so it
might make some probe pairs cross the line. It isn’t so: 27% of all probe
pairs in the top quartile of intensity are MM > PM . The “bad” probe
pairs are not concentrated into bad or problematic probesets either: 97% of
all probesets have at least one such bad guy, and 60% have in excess of 5.
(See the table in [27].)

This begs the question of whether there’s any interesting feature in the
joint probability distribution of PM andMM . Figure 1 shows a gray-coded
two-dimensional histogram with quite an interesting structure.

Fig. 9. Histograms of log PM vs. log MM for two different datasets: a) 86 human

chips (HG-U95A), human blood, and b) 20 mouse chips (Mu11K/A), mouse brain

tissue. The difference in overall brightness scale reflects a change in the standard

scanning protocol; data set a) is more recent, and was scanned at lower laser

power. From [27].

Notice that the joint probability distribution forks out into two branches,
leaving a little “button”-like structure at the center of the branching
structure. The lower branch and half of the button are completely be-
low the PM = MM diagonal. This plot not only belies the standard
model above by showing the deviations to be meaningful–it also indicates
that the deviations are likely interesting, since they appear as an elaborate
structure. Unfortunately, it is impossible to check the obvious assumptions
about sequence-specificity, since the sequences are considered proprietary
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information. Clearly the single mismatch binding is a much more com-
plex process than naively thought, and a great deal of care should be ex-
ercised with exactly how to construct a differential discriminator from the
match/mismatch game. Obvious culprits are secondary structure both in
the probes and the targets, sequence-specific stacking interactions, and fab-
rication efficiencies, which are strongly letter-specific and so evidently ac-
cumulate exponentially through the 100-odd mask processes that the chips
are subject to during fab.

So the MM probes are not doing what they were expected to be doing.
A simple method to deal with this problem has been presented in [27]: sep-
arate factors are fitted to PM and MM by a singular-value decomposition
process.

Assumption (4) in the list above is easily belied too. Brightnesses within
a probeset vary by orders of magnitude. The histogram of log(maxPM/min
PM) has its mode around 300, so the typical probeset spans two orders of
magnitude and a half. The distribution of intensities within probesets can be
assayed by normalizing all intensities to the median of the probeset (which
is always well defined); since there is an abundance of data, we can build
separate histograms for bright, medium and dim probesets.

Fig. 10. Histograms of log(PM/median(PM) for the dataset of Figure 1a. Three

distinct intensity ranges have been histogrammed separately, this allows to verify

that it is not the low-end of the data that contaminates the histograms.

Because of the exponentially-distributed nature of the data, it is clear
that algebraic averages do not converge. An average over quantities that
vary on an exponential scale is dominated by the largest value, which is
with high probability an outliar. Simply replacing the algebraic average
with a geometric mean does wonders for the reliability of the data, as we
showed in [26]. Yet, it is not sufficient for a high-quality method, for it
has no built-in method to reject cross-hybridization. A simple way of doing
cross-hyb rejection without resorting to the MM was also shown in [26]
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for the ratio comparison between two chips: a sum of two exponentially
varying quantities looks mostly like the maximum of the quantities, except
in the narrow diagonal range when they are of comparable size. Thus one
may assume that a given probe is diplaying either mostly specific signal or
mostly cross-hyb. So, if we compare all PM probes from one experiment to
the corresponding probes in the second experiment, their ratios are likely
to be showing either the real ratio between the two RNA concentrations, or
nonsense. A histogram (if one had enough data to build one) would show
the superposition of two distinct distributions: a sharp “specific” peak on
a broad “nonsense” background. Robust estimators to fish out the signal
out can be built, on a maximum likelyhood basis or any of many known
statistical methods.

Finally, we should like to observe that we have clear indications that
assumption (1) is false as well. The change in protocol alluded to in the
caption to Figure 1 was introduced because of widespread complaints by
GeneChip users that their data was showing saturation and that highly
expressed genes which were known from blot assays to vary quite a bit were
showing up as unchanging in the Affy data. That individual probe pairs
were showing optical saturation is clear from Figure 1b–just notice the top
and right borders. But a much more interesting problem is that many probes
show (to the careful observer) evidence of chemical that some probes get
chemically saturated, even when they are not optically saturated.

2.6 Discussion

In order to build better methods for extracting the RNA concentrations
from this data, clearly a close look at the data is necessary. We’ve now
seen the data and some of its problems, and I hope to have succeeded in
making the case that, in all likelyhood, not one single method will be able
to mine all relevant information from the data. This is because complex
methods are very hard to validate, while simple methods fail to capture
all of the complexities. We believe this should be so, and that analysis of
this kind of data shall benefit from many methods in existence, rather than
few–just like the existence of several different clustering techniques enriches
the arsenal of the analyst rather than complicating life. Only the purveyors
of proprietary software, and the harried scientist who can’t be bothered to
use anything other than pret-a-porter solutions can think otherwise–yet it
has been quite problematic for people to, for instance, publish in this area.
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3 Neural and gene expression networks: Song-induced gene expression
in the canary brain

This lecture is more of a story. Partly because the underlying material is
largely unfinished and ill understood; just the beginning of a long tale to
be unraveled during many more years. It’s a story that happens at the
busy intersection between two large avenues of exploration: the corner of
“gene expression networks” and “neural networks”. This is the place where
perception becomes memory. There’s too much happening here, and it’s a
lot of effort to tease apart the pieces of the picture, but it’s an interesting
and exciting place nonetheless.

As we discussed in the previous lecture, gene expression is regulated;
in fact, the point of it is to be regulated. As a response to changes in
the environment, transcriptional programs are put in motion that effect
long-lasting adaptations to cope with those changes. The nervous system
is no exception: in fact, it is the tissue in which these changes are most
prominent, varied and clear. All of the consolidations of long-term memory,
for instance long-lasting synaptic change, involve transcriptional regulation.
The marvel is the swiftness of the response and the ease with which it is
put in motion.

So the outline of our story is thus. Imagine a canary sitting in a cage.
You place a tape recorder next to it, and you press PLAY. The tape contains
a recording of another canary’s song–one our particular canary hadn’t heard
before. Hearing the song causes a blush of gene expression in some auditory
nuclei of the canary brain: a transient, yet vigorous response, easily excited.
Studying the blush reveals it to be topographically organized, so that dif-
ferent song elements cause geometrically different blushes. In fact, within a
small family of stimuli, we were able to invert the map: we could say what
was on the tape based on the shape and “color” of the blush. And this is
the response to doing nothing more than playing sounds to the canary–we
can scarcely say we have “done” anything to the bird, and yet there is a
discernible response to just one or two playbacks of the song; the response
is visible within 5 min, and lasts for hours.

This level of resolution cannot be achieved with any other technique
currently in existence short of large-scale electrophysiological recording.
We were able to dissect extremely important differences between similar-
sounding natural and artificial sounds. Yet the story has so many open
threads that it’s hard to foresee how it shall go on.

The story has three main characters: a bird, a song, and a gene; they
act on a stage, the brain. I need to introduce these characters now.
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Fig. 11. Zebra finches and canaries. Courtesy of A. Alvarez-Buylla.

3.1 The study of songbirds

We intuit as one of the basic features of human beings that we are talking
animals. We communicate vocally (the means through which this lecture
was originally delivered) and so much of our culture goes through this chan-
nel that we hardly think about it as special, or as any more special than
an opposable thumb. Curiously, it actually is, for within the animal king-
dom there’s precious few species which learn to vocalize. Lions don’t learn
to roar from their daddys, nor do dogs learn to bark from mom. Within
the great apes there’s no other talker than us, and even within mammals,
there’s hardly more than some marmosets and some species of whales and
dolphins. These are not exactly “lab” animals, I dare say. Needless to
say, vocal learning is even rarer outside of mammals, with one noticeable
exception: three orders of songbirds. There’s several dozen species, from
canaries, finches, silver sparrows to hummingbirds (which vocalize in the
near ultrasound range) which learn vocalizations which get to be extremely
elaborate.

So we are left with songbirds as the only viable experimental animal
for the study of vocal learning. As is well known, songbirds like canaries
are easily bred in captivity and also easily kept and cared for–much easier
than whales. As a laboratory animal they are so much nicer than rats that
one cannot but feel privileged: they smell much nicer than rats, they sing
rather than bite, and are a colorful and cheerful presence in the otherwise
drab surroundings of a lab. I shall henceforth talk mostly about canaries,
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though some of the pioneering studies in gene expression were carried out
in several other species, such as zebra finches.

3.2 Canary song

The first thing that has to be understood about songbirds is that their song
is as vital to them as the spoken word is to us. They live and die by song:
they warn others of danger, recognize one another, call their children. If
they don’t sing well, they don’t get any sex, so they spend most of their
spare time practicing. Courtship may be more exhausting than singing the
Nibelungen: in some species a male may need to sing for several hours
straight to the female before she will accept him.

The song of a songbird satisfies several of the most desirable require-
ments in a stimulus to be used in neurophysiological studies: it is be-
haviourally and ecologically relevant, easy to record, and easy to play back
to an awake and attentive animal. You may compare with visual stimuli,
which while simple to play back to an anesthetized animal, they are hard to
play back to an awake and unrestrained animal, for it may easily turn away
its gaze. And then what would be an ecologically and behaviourally relevant
sound or visual stimulus to play to a rat? On the other hand, we do not yet
understand the space of song well enough to generate songs ourselves that
may pass as “natural” to a canary–not yet at any rate, though the subject is
an active area of study, from the basic features of the vocal production [33]
to the statistics of the song ensembles. The difference between natural and
artificial stimuli is quite relevant, as you’ll see shortly.

Canary song is composed of repetitions of the same syllable, strung to-
gether in phrases. A common way to depict the song is via a sonogram, a
moving-window Fourier transform that displays energy content as a func-
tion of frequency, across time. This two-dimensional plot is a coordinate
system not unlike a musical score, in which time is the horizontal axis and
frequency the vertical [32]–the main difference being the homogeneity of the
sonogram’s coordinates. See Figure 12. Canaries have several dozen sylla-
bles in their repertoire, though particular strains or social groups may use
a fraction only. A most prominent syllable in the strain in the lab of our
collaborators, is a whistle, a flute-like sound in which the second and higher
harmonics have been deliberately muted. (It’s known that it is “deliberate”
since letting the canaries breath a mixture of air and helium changes the
frequency of their whistles–and makes the second harmonic prominent, so
it had been filtered in the first place, see [31].)
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Fig. 12. A sonogram. Thanks to Tim Gardner.

3.3 ZENK

The third character in our story is a gene: a transcriptional regulator of
the immediate-early gene (IEG) family. It is variously known by incompre-
hensibly different names in different species from mice to human: zif268,
EGR-1, NGFI-A and krox24. The avian version was named by Claudio
Mello by the acronym of the previous names: ZENK. I will refer to it as
ZENK henceforth, though everyone calls it by the proper name in their own
favorite animals.

ZENK is a transcriptional regulator of the zinc finger family: this means
its job is to bind to DNA, using a zinc atom in the joint, and once bound,
cause or impede assembly of the transcriptional machinery as described in
the previous lecture. (Yes, the Z in ZENK comes from the z in zif268, which
is, as you may imagine, “zinc finger 268”... so ultimately from z as in zinc).

In every cell type and tissue where it has been studied, ZENK plays a role
mediating plastic changes. The general pattern is that ZENK is not tran-
scribed while conditions are constant, and then upon some sudden change
bearing directly on the cell’s function, ZENK is rapidly induced for some
period, and then turned off. Osteocytes, (bone cells), which strengthen
the bone along stress lines, transcribe ZENK when the bone is subject to
perpendicular stresses. Endothelial cells, the inner lining of capillary ar-
teries, transcribe ZENK after an injury–when the vascularization has to be
remapped around the wound. Lymphocytes (white blood cells) transcribe
it upon their first encounter with an antigen–when the acquisition of immu-
nity is made–but not during subsequent immune responses. ZENK figures
prominently among the response factors activated after lesions to the liver
and kidney, during muscle formation, etc. And in every tissue type, ZENK
is what is called a “passive tumor suppressant”: since ZENK activity signals
differentiation, and tumor formation involves de-evolving into less differen-
tiated stages, ZENK has to be inactivated in order for tumors to be able to
grow.

But nowhere is the role of ZENK as visible as in neurons, for neurons
are in continuous and subtle states of differentiation, and ZENK is one
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gateway to visualizing their physiology. When rats are placed in “complex
environment” (meaning a really ugly mess of a maze, where they may have
to walk a tightrope over a chasm filled with burning coals to get their food–
you get the picture), they have to develop complex topographical maps of
their environment to avoid electric shocks and the like. These maps are
believed to be stored in the hypocampus. Some hypocampal neurons ex-
hibit profuse arborization and sprouting of new synapses and connections
during the exploration of the “complex environment”–well, the same neu-
rons express ZENK at the same time. But, most meaningfully, ZENK is
the only immediate-early gene which is activated by the long-term poten-
tiation (LTP) protocol. LTP is a long-lasting increase in synaptic strength
which follows vigorous stimulation of both the pre- and post-synaptic neu-
ron simultaneously. Since LTP is the closest thing anyone has found in
neuroscience to the famous Hebb rule of neural nets, it is widely believed
(mostly on ideological grounds, I should admit) to be the process underlying
memory [30]. Briefly after the discovery that the electrical stimulation that
induces LTP also induced ZENK (and ZENK alone of all IEGs), Claudio
Mello decided that if he could clone the avian homolog of ZENK, play a
song to a bird and then stain its brain for the ZENK protein, he might
have a standing chance at finding where on earth do canary brains store
the memories of song. This story we shall develop in some more detail in
the rest of the lecture. Most noteworthy after this work was the tour de
force by Sabrina Davis’ group that ZENK induction is required for long-term
memory: a controlled ZENK knockout is long-term-memory impaired [41].

ZENK is in the midst of a high-connectivity area of the genetic and enzy-
matic circuits of the cell, and thus teasing apart its local net of interactions
has proved quite difficult. ZENK is an immediate-early response gene: this
means it is at the “input layer” for the gene circuit. The pieces that are
known are thus: sustained membrane depolarization in the neuron provokes
calcium influx, which causes a number of enzymatic pathways to turn on;
in particular, a well-studied pathway is via the cre/creb system (calcium
response element/CRE binding protein), protein kinase C, and then ZENK
induction. There are in excess of 100 putative binding sites for ZENK in
the vertebrate genome, so the potential connectivity is huge. An extremely
meaningful confirmed link is that ZENK directly promotes the induction of
synapsins–the proteins promoting synaptic sprouting and proliferation.

It may seem strange that we know so little and in such vagueness about
this gene–even though a MEDLINE search hits thousands of papers men-
tioning the names ZENK (or zif268 etc.) in their abstract. The problem is
that the effects are so many that they are extremely hard to unravel.
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3.4 The blush

Claudio Mello succeeded in cloning the ZENK homolog in birds,
coined the ZENK acronym/name (thus contributing to general confusion
and to the ever-growing mess that is the biological naming of genes), and
then did the following experiment. He kept two canaries in sound-proof
cages. At T = 0 he played several times a song to one of them. He sac-
rificed them both at T = 1 hour, cut the brains and reacted the tissue
with a probe to look for the ZENK gene, comparing the slices to find it
differentially in the animal that had heard the song. He found a very ro-
bust induction in a hitherto little studied nucleus of the canary brain, the
caudiomedial neostriatum (NCM).

Some features that are worth noticing. The induction is extremely rapid:
statistically significant levels of ZENK transcript are visible within 5 min.
The induction is strong: the contrast between the animal kept in silence and
that exposed to song is a factor of 12 (in number of visibly labelled cells).
In fact, this induction has such high contrast that it can be observed in the
wild: Mello, Ribeiro and friends took a tape-recorder to the field station,
and played in it a new song, following which they captured a bird, which
showed significant amounts of ZENK induction in its NCM. The induction
does not require many repetitions: D. Clayton has shown that as little as
one exposure to a 2 s song is enough to elicit measurable activation in zebra
finches, and full strength is achieved at 3 repetitions [40]. I wish we had
known this before our own study.

After induction, the timecourse of ZENK is a typical activation-
habituation dynamics; i.e., the levels of gene expression as a function of
time show a pulse of gene induction followed by a slower return to zero.
The time course for the ZENK protein lags behind the ZENK mRNA, of
course: the peak of mRNA induction appears to be 30 min after stimulation,
while the peak of ZENK protein seems to lie at about 90 min [38].

After habituation, gene induction is not reinstated by playing the song
all over again. No gene induction at all is elicited. But this habituation
is song specific: playing a different song induces the original timecourse all
over again. This stimulus specificity in the habituation dynamics of ZENK
was grounds to speculate that ZENK induction might be part of the circuit
in charge of consolidating long-term memories and has now been partly
validated by Davis’ study.

3.5 Histological analysis

At this stage, Sidarta Ribeiro (in Mello’s lab) and Guillermo Cecchi (in
mine) decided that they wanted to use this induction as a means to probe
the structuring of representations of complex objects. The idea was that the
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robustness of the ZENK signaling made it a better marker than any other
histological marker in use (cFOS, jun, etc.), and the specificity to memory
consolidation would give us the “support” of a representation, in the sense
that one would observe the set of cells involved in the representation of an
object. The direct relevance of canary song to canary life and the evolution-
ary forces that shaped its brain during millennia made the study of canary
song as a “complex object” not an idle exercise made for the sake of getting
the word “complex” into the abstract, but one with direct implications for
physiology.

But standing in the way of all this highly-charged ideology was a minor
technical drawback–one that became the centerpiece of our work, of course,
as is always the case with biology. The problem was analyzing the gene
expression patterns. The way biologists had been doing it usually entailed
a camera lucida–a contraption so medieval I shall skip its description. The
way we did it entailed writing a lot (about 30 000 lines) of C code, which,
while modern, is not that less medieval.

The analysis flow is as follows: after stimulation the bird is quickly (and
painlessly) sacrificed, its brain extracted and rapidly frozen in liquid nitro-
gen. Some time later it is sliced with an ultrasound-driven knife within
a cryostat, at −20 ◦C. The 20 µm slices are then dipped in a strong de-
tergent to solubilize all membranes, and reacted with an antibody to the
ZENK protein. This reaction is then amplified to generate a macroscopi-
cally observable stain by a method known as ICC; this amplification step
is not unlike the development reactions used in photography, in that it is
monotonic but nonlinear. The other issue is that the reactants are specific
but not infinitely so, and then one is left with a tissue sample that is full of
histological debris of all sorts.

Since ZENK protein is a transcriptional regulator, it is immediately
shuttled to the nucleus of the cell after production, and so the histological
stain is confined to the cellular nucleus. Please beware: nucleus is being
used here in two distinct senses, the nucleus of a cell is the organelle where
the chromosomes are contained, while a neuronal nucleus like NCM is a
collection of neurons which performs some distinct job in a geographically
distinct area–one is a part of a cell or neuron, while the other is made of
millions of neurons. Because the neuronal nucleus has a distinctive shape,
it is possible to write image-recognition algorithms which can pick it up
from a high-quality photograph of the tissue–provided this photograph is
high-resolution enough, which in our case was about 3 pixels per micron.
At this resolution, a 2 mm nucleus like the NCM becomes a 36 megapixel
photo–we’ve worked with photos as large as 50 thousand pixels on a side, for
marmoset visual cortex. These photographs are constructed by connecting
a camera to the microscope and the computer, and then joining to the
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computer also an XYZ computer-controlled microscope stage; the photos
are then stitched together in memory, a job that’s very easy to do to a low
level of quality, but very hard to do at the quality levels we need. Please see
in Figure 13 a screenshot of the program we wrote to deal with the analysis
issue.

Fig. 13. Snapshot of our program’s main window. See [36].

After the photo is reconstructed, we apply image-recognition algorithms
to recognize ZENK-labelled nuclei, extract the coordinates and staining
levels, and then align the NCM boundary outlines to a prototypical NCM
using affine transforms. Maps of labelled cell density are constructed for
distinct labeling intensities separately. In the search for discriminants that
extracted the maximal amounts of information from our datasets, we found
that the histogram of labeling intensities was distinctive enough to allow
us to discriminate stimulus family on the basis of single slices alone. So
an important component of our analysis was discriminating between a case
where a few cells were expressing a lot of ZENK as opposed to many cells
expressing a little bit of ZENK, and hence we created a representation where
we displayed areal densities of cells in different ranges of gene expression
levels.
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3.6 Natural vs. artificial

Fig. 14. Activation for natural vs. artificial stimuli. From [34].

We found that for natural stimuli such as repetitions of recorded canary
whistles, gene induction was confined to a somewhat stereotyped band of
intensities, almost a boolean phenomenon: a few percent of neurons showed
gene induction in this band, while most neurons did not show any measur-
able expression level. On the other hand, artificial stimuli elicited a broad
band of activation: many cells with extremely high level of gene induction,
and a whole lot of cells with very faint (but measurable) labeling. Thus,
rather than a single well-defined peak, the histogram of gene expression lev-
els becomes broader band. Please notice, in connection with the previous
lecture, that this effect would be completely invisible to a gene-chip analy-
sis as currently performed on solubilized tissue: by averaging over all cells
the ability to see the different ways in which different cells respond to the
stimulus a great deal of violence has been done to the underlying biology.
However, at 2000 $ a shot one can not expect to run a gene chip per neuron
either!

There is a similar “compactness” feature occurring, not in the space
of gene expression level, but in real geographical layout. Looking at the
whistles it becomes clear that a relatively tight clump of cells is activated,
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and that this clump moves up and down the dorsoventral axis of NCM
according to the frequency of the whistle. One would normally label this
as a tonotopic organization, meaning that there is a geographical organi-
zation to the neuronal system according to tone, or physical frequency.
However, we then did the following experiment: given that the whistle is
almost a pure tone (the second harmonic is more than 20 dB below the
main harmonic) we reasoned that, if we were to eliminate all the little
irregularities inherent in a natural emission, like the little fluctuations in
amplitude envelope or the fluctuations in frequency, then we might get a
tighter clump of cells being activated. We then constructed a “synthetic”
whistle, made by digitally enveloping a pure sine wave with a parabolic
envelope. Instead of getting less cells activated, we got more. We then
proceeded to generate a sound that the bird could not conceivably imitate,
yet was similarly narrow-band: we filtered a guitar sample narrowly around
its main frequency to eliminate higher harmonics. It’s a percussive sound,
one that canaries would find most difficult to imitate. The result was even
more activation than before: both over a larger geographical range, with
a larger amount of cells, as well as a larger spread over gene expression
intensities. Composite grayscale panels are shown in Figure 14. Please re-
fer to http://asterion.rockefeller.edu/marcelo/Canario/ for a full-
color, Java version with all stimuli and sound.

The conclusions are strange. First, clearly the cells in the NCM are not
working, as is naively thought in visual neurophysiology, as “feature detec-
tors”. If this were so, we would be hard at ease explaining how a stimulus
with a lot less features could elicit so much more activation, in geographic
range, gene expression range and sheer numbers. Second, if only in a poetic
sense, it seems to be that canaries are not “expanding sound in a Fourier
basis”. Whatever it is that they are doing, they are doing it in a “canary
basis”. It seems to be the case that the representations are not tonotopi-
cally organized: if they were so, there would be an organization according
to tone, which is narrowly defined in all three stimuli; the representations
seem to be organized according to pitch only for the natural stimuli, with
the artificial stimuli largely unorganized.

3.7 The Blush II: gAP

We tend to think of electrical activity as the primary function of neurons.
Yet neurons have a complex physiology which goes well in excess of electrical
activity alone. One of these physiological aspects is that some kinds of
electrical activity, which by means currently ill-understood are judged as
“novel”, excite into motion transcriptional programs which ultimately result
in long-term changes underlying memory. Let me belabor the point that as
we effortlessly visually and auditorily parse scenes around us, we perceive
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distinct objects which we immediately recognize–and there is no re-cognition
without a prior cognition and the memory of it. Even in the shortest of
timeframes, the fractions of seconds required for a cognitive event, the path
travelled by electrical activity in the brain does not propagate over virgin
ground, but rather over a landscape that was labored by means of complex
transcriptional patterns.

David Clayton has nicknamed the transcriptional programs triggered by
various kinds of electrical activity the genomic action potential (gAP), in
analogy with the more familiar electric action potential [35]; he describes
the latter as integrating over the dendritic arbor inputs the various forms
of electrical activity conveyed by synapses, while the former integrates in
time, over a much longer timeframe, the changes and adaptations necessary
to become memory. Clearly it is no less a neuronal function to adapt than
it is to integrate and transmit information–even the dumbest being with
neurons has a memory.

3.8 Meditation

Neuroscience is a highly charged, ideologic field. Where else would a choice
of preposition denounce an ideological stance? When we were preparing
our first manuscript on this subject, my collaborators and I got into a
heated argument over the phrase: “the sensory environment is processed
by the brain”. The issue was whether to use “by the brain” as opposed to
“in the brain”; in the first case, the brain is the active element which takes
the initiative, goes out and finds the world and analyzes it; while in the
second case, we have the brain as information processor, brain as computer,
brain as Shannon communication channel idea.

The topoisomerase collaboration started when John Marko dropped down for a visit and
related the problems in identifying a mechanism raised by the Rybenkov study; I have
learned a lot from John in the 12 years we have done research together, and hope to
continue. Most of the gene chip data analyis and algorithm development described here
was carried out by Felix Naef, working on data of our excellent collaborators: Dan Lim
and Arturo Alvarez-Buylla, whose work on neurogenesis in the adult mammalian brain
started us trying to refine the analysis techniques available, and Nila Patil and Colleen
Hacker at Perlegen (formerly the human genetics division of Affymetrix), first through
the collaboration on neurogenesis and afterwards on the rheumathoid arthritis data; the
Drosophila circadian rythm dataset by the Young lab, etc. The canary work was done
in collaboration with Sidarta Ribeiro and Claudio Mello, then at the lab of Fernando
Nottebohm, who has been extremely supportive of all of our nonsense; and on our side,
most of the work was done by Guillermo Cecchi; I’d also like to acknowledge the work
of Pabel Delgado, in charge of the “prosciutto machine”. That work received invaluable
ideological support from Roy Crist and the ineffable support of Jim Hudspeth. Finally,
I would like to warmly thank the organizers of the Les Houches meeting, the colleagues
who taught the other courses and lectures, and, particularly, the students at the Les
Houches summer school, for an extremely stimulating time.
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THINKING ABOUT THE BRAIN

W. Bialek

Abstract

We all are fascinated by the phenomena of intelligent behavior, as
generated both by our own brains and by the brains of other animals.
As physicists we would like to understand if there are some general
principles that govern the structure and dynamics of the neural cir-
cuits that underlie these phenomena. At the molecular level there is
an extraordinary universality, but these mechanisms are surprisingly
complex. This raises the question of how the brain selects from these
diverse mechanisms and adapts to compute “the right thing” in each
context. One approach is to ask what problems the brain really solves.
There are several examples–from the ability of the visual system to
count photons on a dark night to our gestalt recognition of statistical
tendencies toward symmetry in random patterns–where the perfor-
mance of the system in fact approaches some fundamental physical
or statistical limits. This suggests that some sort of optimization
principles may be at work, and there are examples where these prin-
ciples have been formulated clearly and generated predictions which
are confirmed in new experiments; a central theme in this work is the
matching of the coding and computational strategies of the brain to
the statistical structure of the world around us. Extension of these
principles to the problem of learning leads us into interesting theo-
retical questions about how to measure the complexity of the data
from which we learn and the complexity of the models that we use
in learning, as well as opening some new opportunities for experi-
ment. This combination of theoretical and experimental work gives
us some new (if still speculative) perspectives on classical problems
and controversies in cognition.

1 Introduction

Here in Les Houches we are surrounded by many beautiful and dramatic
phenomena of nature. In the last century we have come to understand the
powerful physical forces that shaped the landscape, creating the peaks that

c© EDP Sciences, Springer-Verlag 2002
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reach thousands of meters into the sky. As we stand and appreciate the
view, other powerful forces also are at work: we are conscious of our sur-
roundings, we parse a rich scene into natural and manmade objects that
have meaningful relationships to one another and to us, and we learn about
our environment so that we can navigate even in the dark after long hours of
discussion in the bar. These aspects of intelligent behavior–awareness, per-
ception, learning–surely are among the most dramatic natural phenomena
that we experience directly. As physicists our efforts to provide a predictive,
mathematical description of nature are animated by the belief that qualita-
tively striking phenomena should have deep theoretical explanations. The
challenge, then, is to tame the evident complexities of intelligent behavior
and to uncover these deep principles.

Words such as “intelligent” perhaps are best viewed as colloquial rather
than technical: intelligent behavior refers to a class of phenomena exhibited
by humans and by many other organisms, and membership in this class is
by agreement among the participants in the conversation. There also is a
technical meaning of “intelligence”, determined by the people who construct
intelligence tests. This is an area fraught with political and sociological
difficulties, and there also is some force to Barlow’s criticism that intelligence
tends to be defined as what the tests measure [1]. For now let us leave the
general term “intelligence” as an informal one, and try to be precise about
some particular aspects of intelligent behavior.

Our first task, then, is to choose some subset of intelligent behaviors
which we can describe in quantitative terms. I shall have nothing to say
about consciousness, but for learning and perception we can go some way
toward constructing a theoretical framework within which quantitative ex-
periments can be designed and analyzed. Indeed, because perception con-
stitutes our personal experience of the physical world, there is a tradition of
physicists being interested in perceptual phenomena that reaches back (at
least) to Helmholtz, Rayleigh, Maxwell and Ohm, and a correspondingly
rich body of quantitative experimental work. If we can give a quantitative
description of the phenomena it is natural to hope that some regularities
may emerge, and that these could form the basis of a real theory.

I will argue that there is indeed one very striking regularity that emerges
when we look quantitatively at the phenomena of perception, and this is a
notion of optimal performance. There are well defined limits to the relia-
bility of our perceptions set by noise at the sensory input, and this noise
in turn often has fundamental physical origins. In several cases the brain
approaches these limits to reliability, suggesting that the circuitry inside
the brain is doing something like an optimal processing of the inputs or an
optimal extraction of the information relevant for its tasks. It would be very
attractive if this notion of optimization–which grows out of the data!–could
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be elevated to a principle, and I will go through one example in detail where
we have tried to carry out this program.

The difficulty with collecting evidence for optimization is that we might
be left only with a list of unrelated examples: there is a set of tasks for
which performance is near optimal, and for each task we have a theory of
how the brain does the task based on optimization principles. But precisely
because the brain is not a general purpose computer, some tasks are done
better than others. What we would like is not a list, but some principled
view of what the brain does well. Almost since Shannon’s original papers
there has been some hope that information theory could provide such orga-
nizing principles, although much of the history is meandering rather than
conclusive. I believe that in the past several years there has been substantial
progress toward realizing the old dreams. On the one hand we now have
direct experimental demonstrations that the nervous system can adapt to
the statistical structure of the sensory world in ways that serve to optimize
the efficiency of information transmission or representation. On the other
hand, we have a new appreciation of how information theory can be used
to assess the relevance of sensory information and the complexity of data
streams. These theoretical developments unify ideas that have arisen in
fields as diverse as coding theory, statistics and dynamical systems... and
hold out some hope for a unified view of many different tasks in neural
computation. I am very excited by all of this, and I hope to communicate
the reasons for my excitement.

A very different direction is to ask about the microscopic basis for the
essentially macroscopic phenomena of perception and learning. In the last
decade we have seen an explosion in the experimental tools for identifying
molecular components of biological systems, and as these tools have been
applied to the brain this has created a whole new field of molecular neu-
robiology. Indeed, the volume of data on the molecular “parts list” of the
brain is so vast that we have to ask carefully what it is we would like to
know, or more generally why we are asking for a microscopic description.
One possibility is that there is no viable theory at a macroscopic level: if
we want to know why we perceive the world as we do, the answer might
be found only in a detailed and exhaustive investigation of what all the
molecules and cells are doing in the relevant regions of the brain. This is
too horrible to discuss.

One very good reason for looking at the microscopic basis of neural com-
putation is that molecular events in the cells of the brain (neurons) provide
prototypes for thinking about molecular events in all cells, but with the
advantage that important parts of the function of neurons involve electrical
signals which are wonderfully accessible to quantitative measurements. Fifty
years of work has brought us a nearly complete list of molecular components



“thinking”
2002/8/29
page 490

�

�

�

�

�

�

�

�

490 Physics of Bio-Molecules and Cells

involved in the dynamics of neural signalling and computation, quantitative
experiments on the properties of these individual molecules, and accurate
mathematical models of how these individual molecular properties combine
to determine the dynamics of the cell as a whole. The result is that the best
characterized networks of molecular interactions in cells are the dynamics
of ion channels in neurons. This firm foundation puts us in a position to ask
questions about the emergent properties of these networks, their stability
and robustness, the role of noise, ... all in experimentally accessible systems
where we really know the relevant equations of motion and even most of the
relevant parameters.

A very different reason for being interested in the molecular basis of per-
ception and learning is because, as it turns out, the brain is a very peculiar
computational device. As in all of biology, there is no obvious blueprint
or wiring diagram; everything organizes itself. More profoundly, perhaps,
all the components are impermanent. Particularly when we think about
storing what we have learned or hope to remember, the whole point seems
to be a search for permanence, yet almost every component of the relevant
hardware in the brain will be replaced on a time scale of weeks, roughly
the duration of this lecture series. Nonetheless we expect you to remember
the events here in Les Houches for a time much longer than the duration
of the school. Not only is there a problem of understanding how one stores
information in such a dynamic system, there is the problem of understand-
ing how such a system maintains stable function over long periods of time.
Thus if the computations carried out by a neuron are determined by the
particular combination of ion channel proteins that the cell expresses and
inserts in the membrane, how does the cell “know” and maintain the cor-
rect expression levels as proteins are constantly replaced? Typical neurons
express of order ten different kinds of ion channels at once, and it is not
clear what functions are made possible by this molecular complexity–what
can we do with ten types of channel that we can’t do with nine? Finally,
as in many aspects of life, crucial aspects of neural computation are carried
out by surprisingly small numbers of molecules, and we shall have to ask
how the system achieves reliability in the presence of the noise associated
with these small numbers.

The plan is to start by examining the evidence for optimal performance
in several systems, and then to explore information theoretic ideas that
might provide some more unified view. Roughly speaking we will proceed
from things that are very much grounded in data–which is important, be-
cause we have to convince ourselves that working on brains can involve
experiments with the “look and feel” of good physics–toward more abstract
problems. I would hope that some of the abstract ideas will link back to
experiment, but I am still unclear about how to do this. Near the end of
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the course I will circle back to outline some of the issues in understand-
ing the microscopic basis of neural computation, and conclude with some
speculative thoughts on the “hard problems” of understanding cognition.

Some general references on the optimality of sensory and neural systems
are reviews which Barlow [2] and I [3, 4] have written, as well as sections
of the book Spikes [5], which may provide a useful reference for a variety
of issues in the lectures. Let me warn the reader that the level of detail,
both in the text and in the references, is a bit uneven (as were the lectures,
I suspect). I have, however, taken the liberty of scattering some problems
throughout the text. One last caveat: I am almost pathologically un–visual
in my thinking, and so I wrote this text without figures. I think it can
work, in that the essential ideas are summarizable in words and equations,
but you really should look at original papers to see the data that support
the theoretical claims and (more importantly) to get a feeling for how the
experiments really were done.

2 Photon counting

Sitting quietly in a dark room, we can detect the arrival of individual pho-
tons at our retina. This observation has a beautiful history, with its roots
in a suggestion by Lorentz in 19111. Tracing through the steps from photon
arrival to perception we see a sampling of the physics problems posed by
biological systems, ranging from the dynamics of single molecules through
amplification and adaptation in biochemical reaction networks, coding and
computation in neural networks, all the way “up” to learning and cogni-
tion. For photon counting some of these problems are solved, but even in
this well studied case many problems are open and ripe for new theoretical
and experimental work. I will try to use the photon counting example as a
way of motivating some more general questions.

Prior to Lorentz’ suggestion, there was a long history of measuring the
energy of a light flash that just barely can be seen. There is, perhaps
surprisingly, a serious problem in relating this minimum energy of a visible
flash to the number of photons at the retina, largely because of uncertainties
about scattering and absorption in the eye itself. The compelling alternative
is a statistical argument, as first exploited by Hecht et al. (in New York)
and van der Velden (in The Netherlands) in the early 1940s [8, 9]:

• The mean number of photons 〈n〉 at the retina is proportional to the
intensity I of the flash;

1Reviews on photon counting and closely related issues include Refs. [2, 3, 7] and
Chapter 4 of Ref. [5].
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• With conventional light sources the actual number n of photons that
arrive from any single flash will obey Poisson statistics,

P (n|〈n〉) = exp(−〈n〉) 〈n〉
n

n!
· (2.1)

• Suppose that we can see when at least K photons arrive. Then the
probability of seeing is

Psee =
∑
n≥K

P (n|〈n〉). (2.2)

• We can ask an observer whether he or she sees the flash, and the
first nontrivial observation is that seeing really is probabilistic for dim
flashes, although this could just be fluctuations in attention;

• The key point is that however we measure the intensity I, we have
〈n〉 = αI, with α some unknown proportionality constant, so that

Psee(I) =
∑
n≥K

P (n|〈n〉 = αI). (2.3)

If we plot Psee vs. log I, then one can see that the shape of the curve
depends crucially on the threshold photon count K, but changing the
unknown constant α just translates the curve along the x-axis. So we
have a chance to measure the threshold K without knowing α (which
is hard to measure).

Hecht et al. did exactly this and found a beautiful fit to K = 5 or K = 7;
subjects with different age had very different values for α but similar values
of K. This sounds good: maybe the probabilistic nature of our perceptions
just reflects the physics of random photon arrivals.

Problem 1: Poisson processes2. To understand what is going on here it would
be a good idea if you review some facts about Poisson processes. By a “process”
we mean in this case the time series of discrete events corresponding to photon
arrivals or absorption. If the typical time between events is long compared to
any intrinsic correlation times in the light source, it is plausible that each photon
arrival will be independent of the others, and this is the definition of a Poisson
process3. Thus, if we look at a very small time interval dt, the probability of

2Many of you have seen this before, so this is just a refresher. For the rest, you might
look at Appendices 4 and 5 in Spikes which give a fairly detailed step–by–step discussion
of Poisson processes [5].

3There is also the interesting fact that certain light sources will generate Poisson
photon counting distributions no matter how frequently the photons arrive: recall that
for a harmonic oscillator in a coherent state (as for the field oscillations in an ideal single
mode laser), measurements of the number of quanta yield a Poisson distribution, exactly.
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counting one event will be rdt, where r is the mean counting rate. If we count in
a time window of size T , the mean count clearly will be 〈n〉 = rT .

a. Derive the probability density for events at times t1, t2, . . ., tn; remember
to include terms for the probability of not observing events at other times.
Also, the events are indistinguishable, so you need to include a combinatorial
factor. The usual derivation starts by taking discrete time bins of size dt,
and then at the end of the calculation you let dt → 0. You should find that

P (t1, t2, . . ., tn) =
1

n!
rn exp(−rT ). (2.4)

Note that this corresponds to an “ideal gas” of indistinguishable events.

b. Integrate over all the times t1, t2, . . ., tn in the window t ∈ [0, T ] to find the
probability of observing n counts. This should agree with equation (2.1),
and you should verify the normalization. What is the relation between the
mean and variance of this distribution?

An important point is that the 5 to 7 photons are distributed across a
broad area on the retina, so that the probability of one receptor (rod) cell
getting more than one photon is very small. Thus the experiments on
human behavior suggest that individual photoreceptor cells generate reliable
responses to single photons. This is a lovely example of using macroscopic
experiments to draw conclusions about single cells.

It took many years before anyone could measure directly the responses
of photoreceptors to single photons. It was done first in the (invertebrate)
horseshoe crab, and eventually by Baylor and coworkers in toads [10] and
then in monkeys [11]. The complication in the lower vertebrate systems
is that the cells are coupled together, so that the retina can do something
like adjusting the size of pixels as a function of light intensity. This means
that the nice big current generated by one cell is spread as a small voltage
in many cells, so the usual method of measuring the voltage across the
membrane of one cell won’t work; you have to suck the cell into a pipette
and collect the current, which is what Baylor et al. managed to do. Single
photon responses observed in this way are about a picoamp in amplitude vs.
a continuous background noise of 0.1 pA rms, so these are easily detected.

A slight problem is that van der Velden found K = 2, far from the
K = 5−7 found by Hecht et al.. Barlow explained this discrepancy by not-
ing that even when counting single photons we may have to discriminate (as
in photomultipliers) against a background of dark noise [12]. Hecht et al.
inserted blanks in their experiments to be sure that you never say “I saw it”
when nothing is there [that is, Psee(I = 0) = 0], which means you have to
set a high threshold to discriminate against the noise. On the other hand,
van der Velden was willing to allow for some false positive responses, so
his subjects could afford to set a lower threshold. Qualitatively this makes
sense, but to be a quantitative explanation the noise has to be at the right
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level. Barlow reasoned that one source of noise was if the pigment molecule
rhodopsin spontaneously (as a result of thermal fluctuations) makes the
transitions that normally are triggered by a photon; of course these ran-
dom events would be indistinguishable from photon arrivals. He found that
everything works if this spontaneous event rate is equivalent to roughly 1
event per 1000 years per molecule: there are a billion molecules in one rod
cell, which gets us to one event per minute per cell (roughly) and when we
integrate over hundreds of cells for hundreds of milliseconds we find a mean
event count of ∼10, which means that to be sure we see something we will
have to count many more than

√
10 extra events, corresponding to what

Hecht, Shlaer and Pirenne found in their highly reliable observers.
One of the key points here is that Barlow’s explanation only works if peo-

ple actually can adjust the “threshold”K in response to different situations.
The realization that this is possible was part of the more general recognition
that detecting a sensory signal does not involve a true threshold between
(for example) seeing and not seeing [13]. Instead we should imagine that–
as when we try to measure something in a physics experiment–all sensory
tasks involve a discrimination between signal and noise, and hence there
are different strategies which provide different ways of trading off among
the different kinds of errors.

Suppose, for example, that you get to observe x which could be drawn ei-
ther from the probability distribution P+(x) or from the distribution P−(x);
your job is to tell me whether it was + or −. Note that the distribution
could be controlled completely by the experimenter (if you play loud but
random noise sounds, for example) or the distribution could be a model of
noise generated in the receptor elements or even deep in the brain. At least
for simple forms of the distributions P±(x), we can make a decision about
how to assign a particular value of x by simply setting a threshold θ; if
x > θ we say that x came from the + distribution, and conversely. How
should we set θ? Let’s try to maximize the probability that we get the right
answer. If x is chosen from + with probability P (+), and similarly for −,
then the probability that our threshold rule gets the correct answer is

Pcorrect(θ) = P (+)
∫ ∞

θ

dxP+(x) + P (−)
∫ θ

−∞
dxP−(x). (2.5)

To maximize Pcorrect(θ) we differentiate with respect to θ and set this equal
to zero:

dPcorrect(θ)
dθ

= 0 (2.6)

⇒ P (+)P+(θ) = P (−)P−(θ). (2.7)

In particular if P (+) = P (−) = 1/2, we set the threshold at the point
where P+(θ) = P−(θ); another way of saying this is that we assign each x
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to the probability distribution that has the larger density at x–“maximum
likelihood”. Notice that if the probabilities of the different signals + and −
change, then the optimal setting of the threshold changes.

Problem 2: More careful discrimination. Assume as before that x is chosen
either from P+(x) or from P−(x). Rather than just setting a threshold, consider
the possibility that when you see x you assign it to the + distribution with a
probability f(x).

a. Express the probability of a correct answer in terms of f(x), generalizing
equation (2.5); this is a functional Pcorrect[f(x)].

b. Solve the optimization problem for the function f(x); that is, solve the
equation

δPcorrect[f(x)]

δf(x)
= 0. (2.8)

Show that the solution is deterministic [f(x) = 1 or f(x) = 0], so that if
the goal is to be correct as often as possible you shouldn’t hesitate to make
a crisp assignment even at values of x where you aren’t sure (!).

c. Consider the case where P±(x) are Gaussian distributions with the same
variance but different means. Evaluate the minimum error probability (for-
mally) and give asymptotic results for large and small differences in mean.
How large do we need to make this “signal” to be guaranteed only 1%
errors?

d. Generalize these results to multidimensional Gaussian distributions, and
give a geometrical picture of the assignment rule. This problem is easiest if
the different Gaussian variables are independent and have equal variances.
What happens in the more general case of arbitrary covariance matrices?

There are classic experiments to show that people will adjust their thresh-
olds automatically when we change the a priori probabilities, as expected for
optimal performance. This can be done without any explicit instructions–
you don’t have to tell someone that you are changing the value of P (+).
At least implicitly, then, people learn something about probabilities and
adjust their assignment criteria appropriately. As we will discuss later in
the course, there are other ways of showing that people (and other animals)
can learn something about probabilities and use this knowledge to change
their behavior in sensible ways. Threshold adjustments also can be driven
by changing the rewards for correct answers or the penalties for wrong an-
swers. In this view, it is likely that Hecht et al. drove their observers to high
thresholds by having a large effective penalty for false positive detections.
Although it’s not a huge literature, people have since manipulated these
penalties and rewards in HSP–style experiments, with the expected results.
Perhaps more dramatically, modern quantum optics techniques have been
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used to manipulate the statistics of photon arrivals at the retina, so that
the tradeoffs among the different kinds of errors are changed... again with
the expected results [14].

Not only did Baylor and coworkers detect the single photon responses
from toad photoreceptor cells, they also found that single receptor cells
in the dark show spontaneous photon–like events at just the right rate to
be the source of dark noise identified by Barlow [15]! Just to be clear,
Barlow identified a maximum dark noise level; anything higher and the
observed reliable detection is impossible. The fact that the real rod cells
have essentially this level of dark noise means that the visual system is
operating near the limits of reliability set by thermal noise in the input. It
would be nice, however, to make a more direct test of this idea.

In the lab we often lower the noise level of photodetectors by cooling
them. This isn’t so easy in humans, but it does work with cold blooded
animals like frogs and toads. So, Aho et al. [16] convinced toads to strike
with their tongues at small worm–like objects illuminated by dim flashes
of light, and measured how the threshold for reliable striking varied with
temperature. It’s important that the prediction is for more reliable behavior
as you cool down–all the way down to the temperature where behavior
stops–and this is what Aho et al. observed. Happily, Baylor et al. also
measured the temperature dependence of the noise in the detector cells.
The match of behavioral and cellular noise levels vs. temperature is perfect,
strong evidence that visual processing in dim lights really is limited by input
noise and not by any inefficiencies of the brain.

Problem 3: Should you absorb all the photons? Consider a rod photore-

ceptor cell of length �, with concentration C of rhodopsin; let the absorption cross

section of rhodopsin be σ. The probability that a single photon incident on the

rod will be counted is then p = 1−exp(−Cσ�), suggesting that we should make C

or � larger in order to capture more of the photons. On the other hand, as we

increase the number of Rhodopsin molecules (CA�, with A the area of the cell) we

also increase the rate of dark noise events. Show that the signal–to–noise ratio for

detecting a small number of incident photons is maximized at a nontrivial value

of C or �, and calculate the capture probability p at this optimum. Do you find

it strange that the best thing to do is to let some of the photons go by without

counting them? Can you see any way to design an eye which gets around this

argument? Hint: think about what you see looking into a cat’s eyes at night.

These observations on the ability of the visual system to count single
photons–down to the limit set by thermal noise in rhodopsin itself–raise
questions at several different levels:

• At the level of single molecules, there are many interesting physics
problems in the dynamics of rhodopsin itself;
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• At the level of single cells, there are challenges in understanding how a
network of biochemical reactions converts individual molecular events
into macroscopic electrical currents across the rod cell membrane;

• At the level of the retina as a whole, we would like to understand the
rules whereby these signals are encoded into the stereotyped pulses
which are the universal language of the brain;

• At the level of the whole organism, there are issues about how the
brain learns to make the discriminations which are required for opti-
mal performance.

Let’s look at these questions in order. The goal here is more to provide
pointers to interesting and exemplary issues than to provide answers.

At the level of single molecule dynamics, our ability to see in the dark
ultimately is limited by the properties of rhodopsin (because everything else
works so well!). Rhodopsin consists of a medium–sized organic pigment,
retinal, enveloped by a large protein, opsin; the photo–induced reaction is
isomerization of the retinal, which ultimately couples to structural changes
in the protein. One obvious function of the protein is to tune the absorption
spectrum of retinal so that the same organic pigment can work at the core of
the molecules in rods and in all three different cones, providing the basis for
color vision. Retinal has a spontaneous isomerization rate of ∼1/yr, 1000
times that of rhodopsin, so clearly the protein acts to lower the dark noise
level. This is not so difficult to understand, since one can imagine how a big
protein literally could get in the way of the smaller molecule’s motion and
raise the barrier for thermal isomerization. Although this sounds plausible,
it’s probably wrong: the activation energies for thermal isomerization in
retinal and in rhodopsin are almost the same. Thus one either must believe
that the difference is in an entropic contribution to the barrier height or
in dynamical terms which determine the prefactor of the transition rate. I
don’t think the correct answer is known.

On the other hand, the photo–induced isomerization rate of retinal is
only ∼109 s−1, which is slow enough that fluorescence competes with the
structural change4. Now fluorescence is a disaster for visual pigment–not
only don’t you get to count the photon where it was absorbed, but it might
get counted somewhere else, blurring the image. In fact rhodopsin does not
fluoresce: the quantum yield or branching ratio for fluorescence is ∼10−5,
which means that the molecule is changing its structure and escaping the

4Recall from quantum mechanics that the spontaneous emission rates from electronic
excited states are constrained by sum rules if they are dipole–allowed. This means that
emission lifetimes for visible photons are order 1 nanosecond for almost all of the simple
cases...
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immediate excited state in tens of femtoseconds [17]. Indeed, for years
every time people built faster pulsed lasers, they went back to rhodopsin
to look at the initial events, culminating in the direct demonstration of
femtosecond isomerization [18], making this one of the fastest molecular
events ever observed.

The combination of faster photon induced isomerization and slower ther-
mal isomerization means that the protein opsin acts as an electronic state
selective catalyst: ground state reactions are inhibited, excited state reac-
tions accelerated, each by orders of magnitude. It is fair to say that if these
state dependent changes in reaction rate did not occur (that is, if the prop-
erties of rhodopsin were those of retinal) we simply could not see in the
dark.

Our usual picture of molecules and their transitions comes from chem-
ical kinetics: there are reaction rates, which represent the probability per
unit time for the molecule to make transitions among states which are
distinguishable by some large scale rearrangement; these transitions are
cleanly separated from the time scales for molecules to come to equilibrium
in each state, so we describe chemical reactions (especially in condensed
phases) as depending on temperature not on energy. The initial isomeriza-
tion event in rhodopsin is so fast that this approximation certainly breaks
down. More profoundly, the time scale of the isomerization is so fast that
it competes with the processes that destroy quantum mechanical coherence
among the relevant electronic and vibrational states [19]. The whole notion
of an irreversible transition from one state to another necessitates the loss
of coherence between these states (recall Schrödinger’s cat), and so in this
sense the isomerization is proceeding as rapidly as possible. I don’t think
we really understand, even qualitatively, the physics here5. If rhodopsin
were the only example of this “almost coherent chemistry” that would be
good enough, but in fact the other large class of photon induced events

5That’s not to say people aren’t trying; the theoretical literature also is huge, with
much of it (understandably) focused on how the protein influences the absorption spectra
of the chromophore. The dynamical problems are less well studied, although again there
is a fairly large pile of relevant papers in the quantum chemistry literature (which I
personally find very difficult to read). In the late 1970 and early 1980s, physicists got
interested in the electronic properties of conjugated polymers because of the work by
Heeger and others showing that these quasi–1D materials could be doped to make good
conductors. Many people must have realized that the dynamical models being used by
condensed matter physicists for (ideally) infinite chains might also have something to say
about finite chains, but again this was largely the domain of chemists who had a rather
different point of view. Kivelson and I tried to see if we could make the bridge from the
physicists’ models to the dynamics of rhodopsin, which was very ambitious and never
quite finished; there remains a rather inaccessible conference proceeding outlining some
of the ideas [20]. Our point of view was rediscovered and developed by Aalberts and
coworkers a decade later [21, 22].
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in biological systems–photosynthesis–also proceed so rapidly as to compete
with loss of coherence, and the crucial events again seem to happen (if you
pardon the partisanship) while everything is still in the domain of physics
and not conventional chemistry [23, 24]. Why biology pushes to these ex-
tremes is a good question. How it manages to do all this with big floppy
molecules in water at roughly room temperature also is a great question.

At the level of single cells, the biochemical circuitry of the rod takes
one molecule of activated rhodopsin and turns this into a macroscopic re-
sponse. Briefly, the activated rhodopsin is a catalyst that activates many
other molecules, which in turn act as catalysts and so on. Finally there is
a catalyst (enzyme) that eats cyclic GMP, but cGMP binds to and opens
ionic channels in the cell membrane. So when the cGMP concentration falls,
channels close, and the electrical current flowing into the cell is reduced6.
The gain of this system must be large–many molecules of cGMP are broken
down for each single activated rhodopsin–but gain isn’t the whole story.
First, most models for such a chemical cascade would predict large fluctua-
tions in the number of molecules at the output since the lifetime of the active
state of the single active rhodopsin fluctuates wildly (again, in the simplest
models) [7, 26]. Second, as the lights gradually turn on one has to regulate
the gain, or else the cell will be overwhelmed by the accumulation of a large
constant signal; in fact, eventually all the channels close and the cell can’t
respond at all. Third, since various intermediate chemicals are present in fi-
nite concentration, there is a problem of making sure that signals rise above
the fluctuations in these concentrations–presumably while not expending to
much energy too make vast excesses of anything. To achieve the required
combination of gain, reliability, and adaptation almost certainly requires a
network with feedback. The quantitative and even qualitative properties of
such networks depend on the concentration of various protein components,
yet the cell probably cannot rely on precise settings for these concentrations,
so this robustness creates yet another problem7.

Again if photon counting were the only example all of this it might
be interesting enough, but in fact there are many cells which build single
molecule detectors of this sort, facing all the same problems. The different
systems use molecular components that are sufficiently similar that one can
recognize the homologies at the level of the DNA sequences which code for
the relevant proteins–so much so, in fact, that one can go searching for un-
known molecules by seeking out these homologies. This rough universality
of tasks and components cries out for a more principled view of how such

6Actually we can go back to the level of single molecules and ask questions about the
“design” of these rather special channels...

7If the cell does regulate molecule counts very accurately, one problem could be solved,
but then you have to explain the mechanism of regulation.
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networks work (see, for example, Ref. [27]); photon counting is such an
attractive example because there is an easily measurable electrical output
and because there are many tricks for manipulating the network components
(see, for example, Ref. [28]).

At the level of the retina as a whole, the output which gets transmitted
to the brain is not a continuous voltage or current indicating (for example)
the light intensity or photon counting rate; instead signals are encoded
as sequences of discrete identical pulses called action potentials or spikes.
Signals from the photodetector cells are sent from the eye to the brain (after
some interesting processing within the retina itself...) along ∼106 cables–
nerve cell “axons”–that form the optic nerve. Roughly the same number of
cables carry signals from the sensors in our skin, for example, while each
ear sends ∼40 000 axons into the central nervous system. It is very likely
that our vision in the photon counting regime is triggered by the occurrence
of just a few extra spikes along at most a few optic nerve axons [5, 29].
For the touch receptors in our fingertips there is direct evidence that our
perceptions can be correlated with the presence or absence of a single action
potential along one out of the million input cables [30]. To go beyond simple
detection we have to understand how the complex, dynamic signals of the
sensory world can be represented in these seemingly sparse pulse trains [5].

Finally, the problem of photon counting–or any simple detection task–
hides a deeper question: how does the brain “know” what it needs to do
in any given task? Even in our simple example of setting a threshold to
maximize the probability of a correct answer, the optimal observer must at
least implicitly acquire knowledge of the relevant probability distributions.
Along these lines, there is more to the “toad cooling” experiment than a test
of photon counting and dark noise. The retina has adaptive mechanisms
that allow the response to speed up at higher levels of background light,
in effect integrating for shorter times when we can be sure that the signal
to noise ratio will be high. The flip side of this mechanism is that the
retinal response slows down dramatically in the dark. In moderate darkness
(dusk or bright moonlight) Aho et al. found that the slowing of the retinal
response is reflected directly in a slowing of the animal’s behavior [25]: it
is as if the toad experiences an illusion because images of its target are
delayed, and it strikes at the delayed image8. But if this continued down

8We see this illusion too. Watch a pendulum swinging while wearing glasses that
have a neutral density filter over one eye, so the mean light intensity in the two eyes is
different. The dimmer light results in a slower retina, so the signals from the two eyes are
not synchronous. As we try to interpret these signals in terms of motion, we find that
even if the pendulum is swinging in a plane parallel to the line between our eyes, what
we see is motion in 3D. The magnitude of the apparent depth of oscillation is related to
the neutral density and hence to the slowing of signals in the “darker” retina.



“thinking”
2002/8/29
page 501

�

�

�

�

�

�

�

�

W. Bialek: Thinking About the Brain 501

to the light levels in the darkest night, it would be a disaster, since the
delay would mean that the toad inevitably strikes behind the target! In
fact, the toad does not strike at all in the first few trials of the experiment
in dim light, and then strikes well within the target. It is hard to escape
the conclusion that the animal is learning about the typical velocity of the
target and then using this knowledge to extrapolate and thereby correct
for retinal delays9. Thus, performance in the limit where we count photons
involves not only efficient processing of these small signals but also learning
as much as possible about the world so that these small signals become
interpretable.

We take for granted that life operates within boundaries set by physics–
there are no vital forces10. What is striking about the example of photon
counting is that in this case life operates at the limit: you can’t count
half a photon, your counting can’t be any more reliable than allowed by
thermal noise, chemical reactions can’t happen faster than loss of quantum
coherence, and so on. Could this be a general principle? Is it possible
that, at least for crucial functions which have been subjected to eons of
evolutionary pressure, all biological systems have found solutions which are
optimal or extremal in this physicist’s sense? If so, we have the start of
a real program to describe these systems using variational principles to
pick out optimal functions, and then sharp questions about how realistic
dynamical models can implement this optimization. Even if the real systems
aren’t optimal, the exercise of understanding what the optimal system might
look like will help guide us in searching for new phenomena and maybe in
understanding some puzzling old phenomena. We’ll start on this project in
the next lecture.

3 Optimal performance at more complex tasks

Photon counting is pretty simple, so it might be a good idea to look at more
complex tasks and see if any notion of optimal performance still makes
sense. The most dramatic example is from bat echolocation, in a series

9As far as I know there are no further experiments that probe this learning more
directly, e.g. by having the target move at variable velocities.

10Casual acceptance of this statement of course reflects a hard fought battle that
stretched from debates about conservation of energy in ∼1850 to the discovery of the
DNA structure in ∼1950. If you listen carefully, some people who talk about the mys-
teries of the brain and mind still come dangerously close to a vitalist position, and the
fact that we can’t really explain how such complex structures evolved leaves room for
wriggling, some of which makes it into the popular press. Note also that, as late as 1965,
Watson was compelled to have a section heading in Molecular Biology of the Gene which
reads “Cells obey the laws of physics and chemistry”. Interestingly, this continues to
appear in later editions.
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of experiments by Simmons and colleagues culminating in the demonstra-
tion that bats can discriminate reliably among echoes that differ by just
∼10−50 nanoseconds in delay [31]. In these experiments, bats stand at the
base of a Y with loudspeakers on the two arms. Their ultrasonic calls are
monitored by microphones and returned through the loudspeakers with pro-
grammable delays. In a typical experiment, the “artificial echoes” produced
by one side of the Y are at a fixed delay τ , while the other side alternately
produces delays of τ ± δτ . The bat is trained to take a step toward the side
which alternates, and the question is how small we can make δτ and still
have the bat make reliable decisions.

Early experiments from Simmons and coworkers suggested that delays
differences of δτ ∼ 1µsec were detectable, and perhaps more surprisingly
that delays of ∼35µsec were less detectable. The latter result might make
sense if the bat were trying to measure delays by matching the detailed
waveforms of the call and echo, since these sounds have most of their power
at frequencies near f ∼ 1/(35µsec)–the bat can be confused by delay dif-
ferences which correspond to an integer number of periods in the acoustic
waveform, and one can even see the n = 2 “confusion resonance” if one is
careful.

The problem with these results on delay discrimination in the 1−50µsec
range is not that they are too precise but that they are not precise enough.
One can measure the background acoustic noise level (or add noise so that
the level is controlled) and given this noise level a detector which looks at
the detailed acoustic waveform and integrates over the whole call should be
able to estimate arrival times much more accurately than ∼1µsec. Detailed
calculations show that the smallest detectable delay differences should be
tens of nanoseconds. I think this was viewed as so obviously absurd that
it was grounds for throwing out the whole idea that the bat uses detailed
waveform information11. In an absolutely stunning development, however,
Simmons and company went back to their experiments, produced delays in
the appropriate range–convincing yourself that you have control of acoustic
and electronic delays with nanosecond precision is not so simple–and found
that the bats could do what they should be able to do as ideal detectors.
Further, they added noise in the background of the echoes and showed that
performance of the bats tracked the ideal performance over a range of noise
levels.

Problem 4: Head movements and delay accuracy. Just to be sure you un-

derstand the scale of things... When bats are asked to make “ordinary”

11The alternative is that the bat bases delay estimates on the envelope of the returning
echo, so that one is dealing with structures on the millisecond time scale, seemingly much
better matched to the intrinsic time scales of neurons.
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discriminations in the Y apparatus, they move their head from arm to arm with

each call. How accurately would they have to reposition their head to be sure

that the second echo from one arm is not shifted by more than ∼1µsec? By

more than 10 nsec? Explain the behavioral strategy that bats could use to avoid

this problem. Can you position (for example) your hand with anything like the

precision that the bat needs for its head in these experiments?

Returning to vision, part of the problem with photon counting is that
it almost seems inappropriate to dignify such a simple task as detecting
a flash of light with the name “perception”. Barlow and colleagues have
studied a variety of problems that seem richer, in some cases reaching into
the psychology literature for examples of gestalt phenomena–where our per-
ception is of the whole rather than its parts [32]. One such example is the
recognition of symmetry in otherwise random patterns. Suppose that we
want to make a random texture pattern. One way to do this is to draw the
contrast C(�x) at each point �x in the image from some simple probability
distribution that we can write down. An example is to make a Gaussian
random texture, which corresponds to

P [C(�x)] ∝ exp
[
−1

2

∫
d2x

∫
d2x′C(�x)K(�x− �x′)C(�x′)

]
, (3.1)

where K(�x− �x′) is the kernel or propagator that describe the texture. By
writing K as a function of the difference between coordinates we guarantee
that the texture is homogeneous; if we want the texture to be isotropic we
take K(�x−�x′) = K(|�x−�x′|). Using this scheme, how do we make a texture
with symmetry, say with respect to reflection across an axis?

The statement that texture has symmetry across an an axis is that for
each point �x we can find the corresponding reflected point R · �x, and that
the contrasts at these two points are very similar; this should be true for
every point. This can be accomplished by choosing

Pγ [C(�x)] ∝ exp
[
−1

2

∫
d2x

∫
d2x′C(�x)K(�x− �x′)C(�x′)

+
γ

2

∫
d2x|C(�x)− C(R · �x)|2

]
, (3.2)

where γ measures the strength of the tendency toward symmetry. Clearly
as γ → ∞ we have an exactly symmetric pattern, quenching half of the
degrees of freedom in the original random texture. On the other hand,
as γ → 0, the weakly symmetric textures drawn from Pγ become almost
indistinguishable from a pure random texture (γ = 0). Given images of a
certain size, and a known kernel K, there is a limit to the smallest value
of γ that can be distinguished reliably from zero, and we can compare this
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statistical limit to the performance of human observers. This is more or
less what Barlow did, although he used blurred random dots rather than
the Gaussian textures considered here; the idea is the same (and must be
formally the same in the limit of many dots). The result is that human
observers come within a factor of two of the statistical limit for detecting γ
or its analog in the random dot patterns.

One can use similar sorts of visual stimuli to think about motion, where
rather than having to recognize a match between two halves of a possibly
symmetric image we have to match successive frames of a movie. Here
again human observers can approach the statistical limits [33], as long as
we stay in the right regime: we seem not to make use of fine dot posi-
tioning (as would be generated if the kernel K only contained low order
derivatives) nor can we integrate efficiently over many frames. These re-
sults are interesting because they show the potentialities and limitations of
optimal visual computation, but also because the discrimination of motion
in random movies is one of the places where people have tried to make close
links between perception and neural activity in the (monkey) cortex [34].
In addition to symmetry and motion, other examples of optimal or near
optimal performance include other visual texture discriminations and audi-
tory identification of complex pitches in the auditory system; even bacteria
can approach the limits set by physical noise sources as they detect and
react to chemical gradients, and there is a species of French cave beetle
that can sense milliKelvin temperature changes, almost at the limit set by
thermodynamic temperature fluctuations in their sensors.

I would like to discuss one case in detail, because it shows how much
we can learn by stepping back and looking for a simple example (in proper
physics tradition). Indeed, I believe that one of the crucial things one must
do in working at the interface of physics and biology is to take some partic-
ular biological system and dive into the details. However much we believe in
general principles, we have to confront particular cases. In thinking about
brains it would be nice to have some “simple system” that we can explore,
although one must admit that the notion of a simple brain seems almost a
non–sequitur. Humans tend to be interested in the brains of other humans,
but as physicists we know that we are not at the center of the universe, and
we might worry that excessive attention to our own brains reflects a sort of
preCopernican prejudice. It behooves us, then, to look around the animal
kingdom for accessible examples of what we hope are general phenomena.
For a variety of reasons, our attention is drawn to invertebrates–animals
without backbones–and to insects in particular.

First, most of the animals on earth are insects, or, more precisely, arthro-
pods. Second, the nervous system of a typical invertebrate has far fewer
neurons than found in a mammal or even a “lower vertebrate” such as a
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fish or frog. The fly’s entire visual brain has roughly 5 × 105 cells, while
just the primary visual cortex of a monkey has ∼109. Third, many of the
cells in the invertebrate nervous system are identified: cells of essentially
the same structure occur in every individual, and that if one records the
response of these cells to sensory stimuli (for example) these responses are
reproducible from individual to individual12. Thus the cells can be named
and numbered based on their structure or function in the neural circuit13.
Finally, the overall physiology of invertebrates allows for very long, stable
recordings of the electrical activity of their neurons. In short, experiments
on invertebrate nervous systems look and feel like the physics experiments
with which we all grew up–stable samples with quantitatively reproducible
behavior.

Of course what I give here is meant to sound like a rational account of
why one might choose the fly as a model system. In fact my own choice
was driven by the good fortune of finding myself as a postdoc in Groningen
some years ago, where in the next office Rob de Ruyter van Steveninck was
working on his thesis. When Rob showed me the kinds of experiments he
could do–recording from a single neuron for a week, or from photoreceptor
cells all afternoon–we both realized that this was a golden opportunity to
bring theory and experiment together in studying a variety of problems
in neural coding and computation. Since this is a school, and hence the
lectures have in part the flavor of advice to students, I should point out
that (1) the whole process of theory/experiment collaboration was made
easier by the fact that Rob himself is a physicist, and indeed the Dutch
were then far ahead of the rest of the world in bringing biophysics into
physics departments, but (2) despite all the positive factors, including the
fact that as postdoc and student we had little else to do, it still took months
for us to formulate a reasonable first step in our collaboration. I admit that
it is only after having some success with Rob that I have have had the
courage to venture into collaborations with real biologists.

What do flies actually do with their visual brains? If you watch a fly
flying around in a room or outdoors, you will notice that flight paths tend
to consist of rather straight segments interrupted by sharp turns. These ob-
servations can be quantified through the measurement of trajectories during

12This should not be taken to mean that the properties of neurons in the fly’s brain are
fixed by genetics, or that all individuals in the species are identical. Indeed, we will come
to the question of individuality vs. universality in what follows. What is important here
is that neural responses are sufficiently reproducible that one can speak meaningfully
about the properties of corresponding cells in different individuals.

13If you want to know more about the structure of a fly’s brain, there is a beautiful
book by Strausfeld [35], but this is very hard to find. An alternative is the online flybrain
project that Strausfeld and others have been building [36]. Another good general reference
is the collection of articles edited by Stavenga & Hardie [37].
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free [38, 39] or lightly tethered [40, 41] flight and in experiments where the
fly is suspended from a torsion balance [42]. Given the aerodynamics for an
object of the fly’s dimensions, even flying straight is tricky. In the torsion
balance one can demonstrate directly that motion across the visual field
drives the generation of torque, and the sign is such as to stabilize flight
against rigid body rotation of the fly. Indeed one can close the feedback loop
by measuring the torque which the fly produces and using this torque to
(counter)rotate the visual stimulus, creating an imperfect “flight simulator”
for the fly in which the only cues to guide the flight are visual; under natural
conditions the fly’s mechanical sensors play a crucial role. Despite the im-
perfections of the flight simulator, the tethered fly will fixate small objects,
thereby stabilizing the appearance of straight flight. Similarly, Land and
Collett showed that aspects of flight behavior under free flight conditions
can be understood if flies generate torques in response to motion across
the visual field, and that this response is remarkably fast, with a latency
of just ∼30 msec [38]. The combination of free flight and torsion balance
experiments strongly suggests that flies can estimate their angular veloc-
ity from visual input alone, and then produce motor outputs based on this
estimate [42].

When you look down on the head of a fly, you see–almost to the exclusion
of anything else–the large compound eyes. Each little hexagon that you see
on the fly’s head is a separate lens, and in large flies there are∼5000 lenses in
each eye, with approximately 1 receptor cell behind each lens14, and roughly
100 brain cells per lens devoted to the processing of visual information. The
lens focuses light on the receptor, which is small enough to act as an optical
waveguide. Each receptor sees only a small portion of the world, just as
in our eyes; one difference between flies and us is that diffraction is much
more significant for organisms with compound eyes–because the lenses are
so small, flies have an angular resolution of about 1◦, while we do about
100× better. There is a beautiful literature on optimization principles for
the design of the compound eye; the topic even makes an appearance in the
Feynman lectures.

Voltage signals from the receptor cells are processed by several layers of
the brain, each layer having cells organized on a lattice which parallels the

14This is the sort of sloppy physics speak which annoys biologists. The precise state-
ment is different in different insects. For flies there are eight receptors behind each lens.
Two provide sensitivity to polarization and some color vision, but these are not used
for motion sensing. The other six receptors look out through the same lens in different
directions, but as one moves to neighboring lenses one finds that there is one cell under
each of six neighboring lenses which looks in the same direction. Thus these six cells are
equivalent to one cell with six times larger photon capture cross section, and the signals
from these cells are collected and summed in the first processing stage (the lamina). One
can even see the expected six fold improvement in signal to noise ratio [43].
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lattice of lenses visible from the outside of the fly. After passing through the
lamina, the medulla, and the lobula, signals arrive at the lobula plate. Here
there is a stack of about 50 cells which are are sensitive to motion [44, 45].
The cells all are identified in the sense defined above, and are specialized to
detect different kinds of motion. If one kills individual cells in the lobula
plate then the simple experiment of moving a stimulus and recording the
flight torque no longer works [46], strongly suggesting that these cells are
an obligatory link in the pathway from the retina to the flight motor. If one
lets the fly watch a randomly moving pattern, then it is possible to “decode”
the responses of the movement sensitive neurons and to reconstruct the time
dependent angular velocity signal [47], as will be discussed below. Taken
together, these observations support a picture in which the fly’s brain uses
photoreceptor signals to estimate angular velocity, and encodes this estimate
in the activity of a few neurons15. Further, we can study the photoreceptor
signals (and noise) as well as the responses of motion–sensitive neurons with
a precision almost unmatched in any other set of neurons: thus we have a
good idea of what the system is “trying” to do, and we have tremendous
access to both inputs and outputs. I’ll try to make several points:

• Sequences of a few action spikes from the H1 neuron allow for discrim-
ination among different motions with a precision close to the limit set
by noise in the photodetector array;

• With continuous motion, the spike train of H1 can be decoded to
recover a running estimate of the motion signal, and the precision of
this estimate is again within a factor of two of the theoretical limit;

15Let me emphasize that you should be skeptical of any specific claim about what the
brain computes. The fact that flies can stabilize their flight using visual cues, for example,
does not mean that they compute motion in any precise sense–they could use a form
of “bang–bang” control that needs knowledge only of the algebraic sign of the velocity,
although I think that the torsion balance experiments argue against such a model. It also
is a bit mysterious why we find neurons with such understandable properties: one could
imagine connecting photoreceptors to flight muscles via a network of neurons in which
there is nothing that we could recognize as a motion–sensitive cell. Thus it is not obvious
either that the fly must compute motion or that there must be motion–sensitive neurons
(one might make the same argument about whether there needs to be a whole area of
motion–sensitive neurons in primate cortex, as observed). As you will see, when the dust
settles I will claim that flies in fact compute motion optimally. The direct evidence for
this claim comes from careful examination of the responses of single neurons. We don’t
know why the fly goes to the trouble of doing this, and in particular it is hard to point to
a behavior in which this precision has been demonstrated experimentally (or is plausibly
necessary for survival). This is a first example of the laundry list problem: if the brain
makes optimal estimates of x, y and z, then we have an opening to a principled theory of
x−, y−, and z−perception and the corresponding neural responses, but we don’t know
why the system chooses to estimate x, y, z as opposed to x′, y′, and z′. Hang in there...
we’ll try to address this too!
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• Analogies between the formal problem of optimal estimation and sta-
tistical physics help us to develop a theory of optimal estimation which
predicts the structure of the computation that the fly should do to
achieve the most reliable motion estimates;

• In several cases we can find independent evidence that the fly’s compu-
tation has the form predicted by optimal estimation theory, including
some features of the neural response that were found only after the
theoretical predictions;

We start by getting an order–of–magnitude feel for the theoretical limits.
Suppose that we look at a pattern of typical contrast C and it moves by

an angle δθ. A single photodetector element will see a change in contrast
of roughly δC ∼ C · (δθ/φ0), where φ0 is the angular scale of blurring due
to diffraction. If we can measure for a time τ , we will count an average
number of photons Rτ , with R the counting rate per detector, and hence
the noise can be expressed a fractional precision in intensity of ∼1/

√
Rτ .

But fractional intensity is what we mean by contrast, so 1/
√
Rτ is really

the contrast noise in one photodetector. To get the signal to noise ratio we
should compare the signal and noise in each of the Ncells detectors, then add
the squares if we assume (as for photon shot noise) that noise is independent
in each detector while the signal is coherent. The result is

SNR ∼ Ncells ·
(
δθ

φ0

)2

C2Rτ. (3.3)

This calculation is rough, and we can do a little better [4,48], but it contains
the right ideas. Motion discrimination is hard for flies because they have
small lenses and hence blurry images (φ0 is large) and because they have
to respond quickly (τ is small). Under reasonable laboratory conditions
the optimal estimator would reach SNR = 1 at an angular displacement of
δθ ∼ 0.05◦.

We can test the precision of motion estimation in two very different ways.
One is similar to the experiments described for photon counting or for bat
echolocation: we create two alternatives and ask if we can discriminate
reliably. For the motion sensitive neurons in the fly visual system Rob
pursued this line by recording the responses of a single neuron (H1, which
is sensitive, not surprisingly, to horizontal motions) to steps of motion that
have either an amplitude θ+ or an amplitude θ− [49]. The cell responds
with a brief volley of action potentials which we can label as occurring at
times t1, t2, . . .We as observers of the neuron can look at these times and try
to decide whether the motion had amplitude θ+ or θ−; the idea is exactly
the same as in Problem 2, but here we have to measure the distributions
P±(t1, t2, . . .) rather than making assumptions about their form. Doing the
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integrals, one finds that looking at spikes generated in the first ∼30 msec
after the step (as in the fly’s behavior) we can reach the reliability expected
for SNR = 1 at a displacement δθ = |θ+ − θ−| ∼ 0.12◦, within a factor of
two of the theoretical limit set by noise in the photodetectors. These data
are quite rich, and it is worth noting a few more points that emerged from
the analysis:

• On the ∼30 msec time scale of relevance to behavior, there are only
a handful of spikes. This is partly what makes it possible to do the
analysis so completely, but it also is a lesson for how we think about
the neural representation of information in general;

• Dissecting the contributions of individual spikes, one finds that each
successive spike makes a nearly independent contribution to the signal
to noise ratio for discrimination, so there is essentially no redundancy;

• Even one or two spikes are enough to allow discrimination of motions
much smaller than the lattice spacing on the retina or the nominal
“diffraction limit” of angular resolution. Analogous phenomena have
been known in human vision for more than a century and are called
hyperacuity; see Section 4.2 in Spikes for a discussion [5].

The step discrimination experiment gives us a very clear view of reliabil-
ity in the neural response, but as with the other discrimination experi-
ments discussed above it’s not a very natural task. An alternative is to
ask what happens when the motion signal (angular velocity θ̇(t)) is a com-
plex function of time. Then we can think of the signal to noise ratio in
equation (3.3) as being equivalent to a spectral density of displacement noise
N eff

θ ∼ φ2
0/(NcellsC

2R), or a generalization in which the photon counting
rate is replaced by an effective (frequency dependent) rate related to the
noise characteristics of the photoreceptors [48]. It seems likely, as discussed
above, that the fly’s visual system really does make a continuous or running
estimate of the angular velocity, and that this estimate is encoded in the
sequence of discrete spikes produced by neurons like H1. It is not clear that
any piece of the brain ever “decodes” this signal in an explicit way, but if we
could do such a decoding we could test directly whether the accuracy of our
decoding reaches the limiting noise level set by noise in the photodetectors.

The idea of using spike trains to recover continuous time dependent
signals started with this analysis of the fly visual system [47, 50, 51], and
has since expanded to many different systems [5]. Generalizations of these
ideas to decoding from populations of neurons [52] even have application
to future prosthetic devices which might be able to decode the commands
given in motor cortex to control robot arms [53]. Here our interest is not
so much in the structure of the code, or in the usefulness of the decoding;
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rather our goal is to use the decoding as a tool to characterize the precision
of the underlying computations.

To understand how we can decode a continuous signal from discrete
sequences of spike it is helpful to have an example, following Ref. [51].
Suppose that the signal of interest is s(t) and the neuron we are looking at
generates action potentials according to a Poisson process with a rate r(s).
Then the probability that we observe spikes at times t1, t2, . . ., tN ≡ {ti}
given the signal s(t) is (generalizing from Problem 1)

P [{ti}|s(t)] =
1
N !

exp
[
−

∫
dt r(s(t))

] N∏
i=1

r(s(ti)). (3.4)

For simplicity let us imagine further that the signal s itself comes from
a Gaussian distribution with zero mean, unit variance and a correlation
time τc, so that

P [s(t)] ∝ exp
[
− 1

4τc

∫
dt

(
τ2
c ṡ

2 + s2
)] · (3.5)

Our problem is not to predict the spikes from the signal, but rather given
the spikes to estimate the signal, which means that we are interested in
conditional distribution P [s(t)|{ti}]. From Bayes’ rule,

P [s(t)|{ti}] =
P [{ti}|s(t)]P [s(t)]

P [{ti}] (3.6)

∝ exp
[
−τc

4

∫
dt ṡ2 −

∫
dtVeff(s(t))

] N∏
i=1

r(s(ti)),

(3.7)

where

Veff(s) =
1

4τc
s2 + r(s). (3.8)

I write the probability distribution in this form to remind you of the
(Euclidean) path integral description of quantum mechanics, where the am-
plitude for a particle of massm to move along a trajectory x(t) in a potential
V (x) is given by

A[x(t)] ∝ exp
[
−m

2

∫
dt ẋ2 −

∫
dtV (x(t))

]
, (3.9)

in units where � = 1. If we want to estimate s(t) from the probability
distribution P [s(t)|{ti}], then we can compute the conditional mean, which
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will give us the best estimator in the sense that χ2 between our estimate
and the true signal will be minimized (see Problem 5 below). Thus the
estimate at some particular time t0 is given by

sest(t0) =
∫
Ds(t) s(t0)P [s(t)|{ti}] (3.10)

∝
〈
s(t0)

N∏
i=1

r(s(ti))

〉
, (3.11)

where 〈· · · 〉 stands for an expectation value over trajectories drawn from
the distribution

Peff [s(t)] ∝ exp
[
−τc

4

∫
dt ṡ2 −

∫
dtVeff(s(t))

]
· (3.12)

Thus estimating the trajectory involves computing an N +1–point function
in the quantum mechanics problem defined by the potential Veff .
Problem 5: Optimal estimators. Imagine that you observe y, which is related
to another variable x that you actually would like to know. This relationship can
be described by the joint probability distribution P (x, y), which you know. Any
estimation strategy can be described as computing some function xest = F (y).
For any estimate we can compute the expected value of χ2,

χ2 =

�
dxdyP (x,y)|x − F (y)|2. (3.13)

Show that the estimation strategy which minimizes χ2 is the computation of the
conditional mean,

Fopt(y) =

�
dx xP (x|y). (3.14)

If we took any particular model seriously we could in fact try to compute
the relevant expectation values, but here (and in applications of these ideas
to analysis of real neurons) I don’t really want to trust these details; rather
I want to focus on some general features. First one should note that trying
to do the calculations in a naive perturbation theory will work only in some
very limited domain. Simple forms of perturbation theory are equivalent
to the statement that interesting values of the signal s(t) do not sample
strongly nonlinear regions of the input/output relation r(s), and this is
unlikely to be true in general. On the other hand, there is a chance to do
something simple, and this is a cluster expansion:〈

s(t0)
N∏

i=1

r(s(ti))

〉
≈ 〈s(t0)〉

N∏
i=1

〈r(s(ti))〉

+A
N∑

i=1

〈δs(t0)δr(s(ti))〉+ · · · , (3.15)
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where δs refers to fluctuations around around the mean 〈s〉, and similarly
for r, while A is a constant. As with the usual cluster expansions in statisti-
cal physics, this does not require perturbations to be weak; in particular the
relation r(s) can have arbitrarily strong (even discontinuous) nonlinearities.
What is needed for a cluster expansion to make sense is that the times which
appear in the N–point functions be far apart when measured in units of the
correlation times for the underlying trajectories. In the present case, this
will happen (certainly) if the times between spikes are long compared with
the correlation times of the signal. Interestingly, as the mean spike rate
gets higher, it is the correlation times computed in the full Veff(s) which are
important, and these are smaller than the bare correlation time in many
cases. At least in this class of models, then, there is a regime of low spike
rate where we can use a cluster expansion, and this regime extends beyond
the naive crossover determined by the number of spikes per correlation time
of s. As explained in Spikes, there are good reasons to think that many
neurons actually operate in this limit of spike trains which are “sparse in
the time domain” [5].

What are the consequences of the cluster expansion? If we can get away
with keeping the leading term, and if we don’t worry about constant offsets
in our estimates (which can’t be relevant...), then we have

sest(t) =
N∑

i=1

f(t− ti) + · · · , (3.16)

where f(t) again is something we could calculate if we trusted the details
of the model. But this is very simple: we can estimate a continuous time
dependent signal just by adding up contributions from individual spikes, or
equivalently by filtering the sequence of spikes. If we don’t want to trust
a calculation of f(t) we can just use experiments to find f(t) by asking for
that function which gives us the smallest value of χ2 between our estimate
and the real signal, and this optimization problem is also simple since χ2

is quadratic in f [5, 47]. So the path is clear–do a long experiment on the
response of a neuron to signals drawn from some distribution P [s(t)], use
the first part of the experiment to find the filter f(t) such that the estimate
in equation (3.16) minimizes χ2, and then test the accuracy of our estimates
on the remainder of the data. This is exactly what we did with H1 [47],
and we found that over a broad range of frequencies the spectral density of
errors in our estimates was within a factor of two of the limit set by noise in
the photoreceptor cells. Further, we could change, for example, the image
contrast and show that the resulting error spectrum scaled as expected from
the theoretical limit [5].

To the extent that the fly’s brain can estimate motion with a precision
close to the theoretical limit, one thing we know is that the act of processing
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itself does not add too much noise. But being quiet is not enough: to make
maximally reliable estimates of nontrivial stimulus features like motion one
must be sure to do the correct computation. To understand how this works
let’s look at a simple example, and then I’ll outline what happens when we
use the same formalism to look at motion estimation. My discussion here
follows joint work with Marc Potters [54].

Suppose that someone draws a random number x from a probability
distribution P (x). Rather than seeing x itself, you get to see only a noisy
version, y = x + η, where η is drawn from a Gaussian distribution with
variance σ2. Having seen y, your job is to estimate x, and for simplicity
let’s say that the “best estimate” is best in the least squares sense, as above.
Then from Problem 5 we know that the optimal estimator is the conditional
mean,

xest(y) =
∫

dxxP (x|y). (3.17)

Now we use Bayes’ rule and push things through:

xest(y) =
∫

dxxP (y|x)P (x)
1

P (y)
(3.18)

=
1

P (y)
1√

2πσ2

∫
dxxP (x) exp

[
− 1

2σ2
(y − x)2

]
(3.19)

=
1

Z(y)

∫
dxx exp

[
−Veff(x)
kBTeff

+
Feffx

kBTeff

]
, (3.20)

where we can draw the analogy with statistical mechanics by noting the
correspondences:

Veff(x)
kBTeff

= − lnP (x) +
x2

2σ2
(3.21)

kBTeff = σ2 (3.22)

Feff = y. (3.23)

Thus, making optimal estimates involves computing expectation values of
position, the potential is (almost) the prior distribution, the noise level is
the temperature, and the data act as an external force. The connection
with statistical mechanics is more than a convenient analogy; it helps us in
finding approximation schemes. Thus at large noise levels we are at high
temperatures, and all other things being equal the force is effectively small
so we can compute the response to this force in perturbation theory. On
the other hand, at low noise levels the computation of expectation values
must be dominated by ground state or saddle point configurations.
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Statistical mechanics Optimal Estimation

Temperature Noise level

Potential (log) Prior distribution

Average position Estimate

External force Input data

In the case of visual motion estimation, the data are the voltages pro-
duced by the photoreceptors {Vn(t)} and the thing we are trying to estimate
is the angular velocity θ̇(t). These are functions rather than numbers, but
this isn’t such a big deal if we are used to doing functional integrals. The
really new point is that θ̇(t) does not directly determine the voltages. What
happens instead is that even if the fly flies along a perfectly straight path, so
that θ̇ = 0, the world effectively projects a movie C(x, t) onto the retina and
it is this movie which determines the voltages (up to noise). The motion θ(t)
transforms this movie, and so enters in a strongly nonlinear way; if we take
a one dimensional approximation we might write C(x, t) → C(x − θ(t), t).
Each photodetector responds to the contrast as seen through an aperture
function M(x − xn) centered on a lattice point xn in the retina, and for
simplicity let’s take the noise to be dominated by photon shot noise. Since
we have independent knowledge of the C(x, t), to describe the relationship
between θ̇(t) and {Vn(t)} we have to integrate over all possible movies,
weighted by their probability of occurrence P [C].

Putting all of these things together with our general scheme for finding
optimal estimates, we have

θ̇est(t0) =
∫
Dθ θ̇(t0)P [θ(t)|{Vn(t)}] (3.24)

P [θ(t)|{Vn(t)}] = P [{Vn(t)}|θ(t)]P [θ(t)]
1

P [{Vn(t)}] (3.25)

P [{Vn(t)}|θ(t)] ∝
∫
DC P [C] exp

[
−R

2

∑
n

∫
dt |Vn(t)− V̄n(t)|2

]

(3.26)

V̄n(t) =
∫

dxM(x − xn)C(x − θ(t), t). (3.27)

Of course we can’t do these integrals exactly, but we can look for approx-
imations, and again we can do perturbation theory at low signal to noise
levels and search for saddle points at high signal to noise ratios. When the
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dust settles we find [54]:

• At low signal to noise ratios the optimal estimator is quadratic in the
receptor voltages,

θ̇est(t) ≈
∑
nm

∫
dτ

∫
dτ ′Vn(t− τ)Knm(τ, τ ′)Vm(t− τ ′). (3.28)

• At moderate signal to noise ratios, terms with higher powers of the
voltage become relevant and “self energy” terms provide corrections
to the kernel Knm(τ, τ ′).

• At high signal to noise ratios averaging over time becomes less impor-
tant and the optimal estimator crosses over to

θ̇est(t) ≈
∑

n V̇n(t)[Vn(t)− Vn−1(t)]
constant +

∑
n[Vn(t)− Vn−1(t)]2

, (3.29)

where constant depends on the typical contrast and dynamics in the
movies chosen from P [C(x, t)] and on the typical scale of angular
velocities in P [θ(t)].

Before looking at the two limits in detail, note that the whole form of
the motion computation depends on the statistical properties of the visual
environment. Although the limits look very different, one can show that
there is no phase transition and hence that increasing signal to noise ratio
takes us smoothly from one limit to the other; although this is sort of a
side point, it was a really nice piece of work by Marc. An obvious question
is whether the fly is capable of doing these different computations under
different conditions.

We can understand the low signal to noise ratio limit by realizing that
when something moves there are correlations between what we see at the
two space–time points (x, t) and (x + vτ, t + τ). These correlations extend
to very high orders, but as the background noise level increases the higher
order correlations are corrupted first, until finally the only reliable thing left
is the two–point function, and closer examination shows that near neighbor
correlations are the most significant: we can be sure something is moving
because signals in neighboring photodetectors are correlated with a slight
delay. This form of “correlation based” motion computation was suggested
long ago by Reichardt and Hassenstein based on behavioral experiments
with beetles [55]; later work from Reichardt and coworkers explored the
applicability of this model to fly behavior [42]. Once the motion sensitive
neurons were discovered it was natural to check if their responses could be
understood in these terms.
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There are two clear signatures of the correlation model. First, since
the receptor voltage is linear in response to image contrast, the correlation
model confounds contrast with velocity: all things being equal, doubling the
image contrast causes our estimate of the velocity to increase by a factor
of four (!). This is an observed property of the flight torque that flies gen-
erate in response to visual motion, at least at low contrasts, and the same
quadratic behavior can be seen in the rate at which motion sensitive neu-
rons generate spikes and even in human perception (at very low contrast).
Although this might seem strange, it’s been known for decades. What is
interesting here is that this seemingly disastrous confounding of signals oc-
curs even in the optimal estimator: optimal estimation involves a tradeoff
between systematic and random errors, and at low signal to noise ratio this
tradeoff pushes us toward making larger systematic errors, apparently of a
form made by real brains.

The second signature of correlation computation is that we can pro-
duce movies which have the right spatiotemporal correlations to generate
a nonzero estimate θ̇est but don’t really have anything in them that we
would describe as “moving” objects or features. Rob de Ruyter has a sim-
ple recipe for doing this [56], which is quite compelling (I recommend you
try it yourself): make a spatiotemporal white noise movie ψ(�x, t),

〈ψ(�x, t)ψ(�x′, t′)〉 = δ(�x − �x′)δ(t− t′), (3.30)

and then add the movie to itself with a weight and an offset:

C(�x, t) = ψ(�x, t) + aψ(�x + ∆�x, t+ ∆t). (3.31)

Composed of pure noise, there is nothing really moving here. If you watch
the movie, however, there is no question that you think it’s moving, and
the fly’s neurons respond too (just like yours, presumably). Even more
impressive is that if you change the sign of the weight a... the direction of
motion reverses, as predicted from the correlation model.

Because the correlation model has a long history, it is hard to view evi-
dence for this model as a success of optimal estimation theory. The theory of
optimal estimation also predicts, however, that the kernelKnm(τ, τ ′) should
adapt to the statistics of the visual environment, and it does. Most dramat-
ically one can just show random movies with different correlation times and
then probe the transient response of H1 to step motions; the time course of
transients (presumably reflecting the details of K) can vary over nearly two
orders of magnitude from 30–300 msec in response to different correlation
times [56]. All of this makes sense in light of optimal estimation theory but
again perhaps is not a smoking gun. Closer to a real test is Rob’s argument
that the absolute values of the time constants seen in such adaptation ex-
periments match the frequencies at which natural movies would fall below
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SNR = 1 in each photoreceptor, so that filtering in the visual system is set
(adaptively) to fit the statistics of signals and noise in the inputs [56, 57].

What about the high SNR limit? If we remember that voltages are linear
in contrast, and let ourselves ignore the lattice in favor of a continuum limit,
then the high SNR limit has a simple structure,

θ̇est(t) ≈
∫

dx (∂tC)(∂xC)
B +

∫
dx (∂xC)2

→ ∂tC

∂xC
, (3.32)

where the last limit is at high contrasts. As promised by the lack of a phase
transition, this starts as a quadratic function of contrast just like the cor-
relator, but saturates as the ratio of temporal and spatial derivatives. Note
that if C(x, t) = C(x + vt), then this ratio recovers the velocity v exactly.
This simple ratio computation is not optimal in general because real movies
have dynamics other than rigid motion and real detectors have noise, but
there is a limit in which it must be the right answer. Interestingly, the cor-
relation model (with multiplicative nonlinearity) and the ratio of derivatives
model (with a divisive nonlinearity) have been viewed as mutually exclusive
models of how brains might compute motion. One of the really nice results
of optimal estimation theory is to see these seemingly very different models
emerge as different limits of a more general strategy. But, do flies know
about this more general strategy?

The high SNR limit of optimal estimation predicts that the motion es-
timate (and hence, for example, the rate at which motion sensitive neurons
generate spikes) should saturate as a function of contrast, but this contrast–
saturated level should vary with velocity. Further, if one traces through the
calculations in more detail, the the constant B and hence the contrast level
required for (e.g.) half–saturation should depend on the typical contrast
and light intensity in the environment. Finally, this dependence on the en-
vironment really is a response to the statistics of that environment, and
hence the system must use some time and a little “memory” to keep track
of these statistics–the contrast response function should reflect the statistics
of movies in the recent past. All of these things are observed [56–58].

So, where are we? The fly’s visual system makes nearly optimal esti-
mates of motion under at least some conditions that we can probe in the
lab. The theory of optimal estimation predicts that the structure of the
motion computation ought to have some surprising properties, and many
of these are observed–some were observed only when theory said to go look
for them, which always is better. I would like to get a clearer demon-
stration that the system really takes a ratio, and I think we’re close to
doing that [59]. Meanwhile, one might worry that theoretical predictions
depend too much on assumptions about the structure of the relevant prob-
ability distributions P [C] and P [θ], so Rob is doing experiments where he
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walks through the woods with both a camera and gyroscope mounted on his
head (!), sampling the joint distribution of movies and motion trajectories.
Armed with these samples one can do all of the relevant functional integrals
by Monte Carlo, which really is lovely since now we are in the real natural
distribution of signals. I am optimistic that all of this will soon converge
on a complete picture. I also believe that the success so far is sufficient to
motivate a more general look at the problem of optimization as a design
principle in neural computation.

4 Toward a general principle?

One attempt to formulate a general principle for neural computation goes
back to the work of Attneave [60] and Barlow [61,62] in the 1950s. Focusing
on the processing of sensory information, they suggested that an important
goal of neural computation is to provide an efficient representation of the
incoming data, where the intuitive notion of efficiency could be made precise
using the ideas of information theory [63].

Imagine describing an image by giving the light intensity in each pixel.
Alternatively, we could give a description in terms of objects and their
locations. The latter description almost certainly is more efficient in a
sense that can be formalized using information theory. The idea of Barlow
and Attneave was to turn this around–perhaps by searching for maximally
efficient representations of natural scenes we would be forced to discover
and recognize the objects out of which our perceptions are constructed.
Efficient representation would have the added advantage of allowing the
communication of information from one brain region to another (or from
eye to brain along the optic nerve) with a minimal number of nerve fibers
or even a minimal number of action potentials. How could we test these
ideas?

• If we make a model for the class of computations that neurons can do,
then we could try to find within this class the one computation that
optimizes some information theoretic measure of performance. This
should lead to predictions for what real neurons are doing at various
stages of sensory processing;

• We could try to make a direct measurement of the efficiency with
which neurons represent sensory information;

• Because efficient representations depend on the statistical structure
of the signals we are trying to represent, a truly efficient brain would
adapt its strategies to track changes in these statistics, and we could
search for this “statistical adaptation”. Even better would be if we
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could show that the adaptation has the right form to optimize
efficiency.

Before getting started on this program we need a little review of information
theory itself16. Almost all statistical mechanics textbooks note that the en-
tropy of a gas measures our lack of information about the microscopic state
of the molecules, but often this connection is left a bit vague or qualitative.
Shannon proved a theorem that makes the connection precise [63]: entropy
is the unique measure of available information consistent with certain sim-
ple and plausible requirements. Further, entropy also answers the practical
question of how much space we need to use in writing down a description
of the signals or states that we observe.

Two friends, Max and Allan, are having a conversation. In the course
of the conversation, Max asks Allan what he thinks of the headline story in
this morning’s newspaper. We have the clear intuitive notion that Max will
“gain information” by hearing the answer to his question, and we would like
to quantify this intuition. Following Shannon’s reasoning, we begin by as-
suming that Max knows Allan very well. Allan speaks very proper English,
being careful to follow the grammatical rules even in casual conversation.
Since they have had many political discussions Max has a rather good idea
about how Allan will react to the latest news. Thus Max can make a list of
Allan’s possible responses to his question, and he can assign probabilities
to each of the answers. From this list of possibilities and probabilities we
can compute an entropy, and this is done in exactly the same way as we
compute the entropy of a gas in statistical mechanics or thermodynamics:
If the probability of the nth possible response is pn, then the entropy is

S = −
∑

n

pn log2 pn bits. (4.1)

The entropy S measures Max’s uncertainty about what Allan will say in
response to his question. Once Allan gives his answer, all this uncertainty
is removed–one of the responses occurred, corresponding to p = 1, and all
the others did not, corresponding to p = 0–so the entropy is reduced to
zero. It is appealing to equate this reduction in our uncertainty with the
information we gain by hearing Allan’s answer. Shannon proved that this is
not just an interesting analogy; it is the only definition of information that
conforms to some simple constraints.

16At Les Houches this review was accomplished largely by handing out notes based on
courses given at MIT, Princeton and ICTP in 1998–99. In principle they will become
part of a book to be published by Princeton University Press, tentatively titled Entropy,
Information and the Brain. I include this here so that the presentation is self–contained,
and apologize for the eventual self–plagiarism that may occur.
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To start, Shannon assumes that the information gained on hearing the
answer can be written as a function of the probabilities pn

17. Then if all N
possible answers are equally likely the information gained should be a mono-
tonically increasing function ofN . The next constraint is that if our question
consists of two parts, and if these two parts are entirely independent of one
another, then we should be able to write the total information gained as the
sum of the information gained in response to each of the two subquestions.
Finally, more general multipart questions can be thought of as branching
trees, where the answer to each successive part of the question provides
some further refinement of the probabilities; in this case we should be able
to write the total information gained as the weighted sum of the information
gained at each branch point. Shannon proved that the only function of the
{pn} consistent with these three postulates–monotonicity, independence,
and branching–is the entropy S, up to a multiplicative constant.

If we phrase the problem of gaining information from hearing the answer
to a question, then it is natural to think about a discrete set of possible
answers. On the other hand, if we think about gaining information from
the acoustic waveform that reaches our ears, then there is a continuum of
possibilities. Naively, we are tempted to write

Scontinuum = −
∫

dxP (x) log2 P (x), (4.2)

or some multidimensional generalization. The difficulty, of course, is that
probability distributions for continuous variables [like P (x) in this equation]
have units–the distribution of x has units inverse to the units of x–and
we should be worried about taking logs of objects that have dimensions.
Notice that if we wanted to compute a difference in entropy between two
distributions, this problem would go away. This is a hint that only entropy
differences are going to be important18.

17In particular, this “zeroth” assumption means that we must take seriously the no-
tion of enumerating the possible answers. In this framework we cannot quantify the
information that would be gained upon hearing a previously unimaginable answer to our
question.

18The problem of defining the entropy for continuous variables is familiar in statistical
mechanics. In the simple example of an ideal gas in a finite box, we know that the
quantum version of the problem has a discrete set of states, so that we can compute
the entropy of the gas as a sum over these states. In the limit that the box is large,
sums can be approximated as integrals, and if the temperature is high we expect that
quantum effects are negligible and one might naively suppose that Planck’s constant
should disappear from the results; we recall that this is not quite the case. Planck’s
constant has units of momentum times position, and so is an elementary area for each
pair of conjugate position and momentum variables in the classical phase space; in the
classical limit the entropy becomes (roughly) the logarithm of the occupied volume in
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Returning to the conversation between Max and Allan, we assumed that
Max would receive a complete answer to his question, and hence that all
his uncertainty would be removed. This is an idealization, of course. The
more natural description is that, for example, the world can take on many
states W , and by observing data D we learn something but not everything
about W . Before we make our observations, we know only that states of the
world are chosen from some distribution P (W ), and this distribution has
an entropy S(W ). Once we observe some particular datum D, our (hope-
fully improved) knowledge of W is described by the conditional distribution
P (W |D), and this has an entropy S(W |D) that is smaller than S(W ) if we
have reduced our uncertainty about the state of the world by virtue of our
observations. We identify this reduction in entropy as the information that
we have gained about W .

Problem 6: Maximally informative experiments. Imagine that we are

trying to gain information about the correct theory T describing some set of

phenomena. At some point, our relative confidence in one particular theory is

very high; that is, P (T = T∗) > F · P (T �= T∗) for some large F . On the

other hand, there are many possible theories, so our absolute confidence in the

theory T∗ might nonetheless be quite low, P (T = T∗) << 1. Suppose we follow

the “scientific method” and design an experiment that has a yes or no answer,

and this answer is perfectly correlated with the correctness of theory T∗, but

uncorrelated with the correctness of any other possible theory–our experiment is

designed specifically to test or falsify the currently most likely theory. What can

you say about how much information you expect to gain from such a measurement?

Suppose instead that you are completely irrational and design an experiment that

is irrelevant to testing T∗ but has the potential to eliminate many (perhaps half) of

the alternatives. Which experiment is expected to be more informative? Although

this is a gross cartoon of the scientific process, it is not such a terrible model of

a game like “twenty questions”. It is interesting to ask whether people play such

question games following strategies that might seem irrational but nonetheless

serve to maximize information gain [64]. Related but distinct criteria for optimal

experimental design have been developed in the statistical literature [65].

Perhaps this is the point to note that a single observation D is not, in
fact, guaranteed to provide positive information, as emphasized by

phase space, but this volume is measured in units of Planck’s constant. If we had tried
to start with a classical formulation (as did Boltzmann and Gibbs, of course) then we
would find ourselves with the problems of equation (4.2), namely that we are trying to
take the logarithm of a quantity with dimensions. If we measure phase space volumes in
units of Planck’s constant, then all is well. The important point is that the problems with
defining a purely classical entropy do not stop us from calculating entropy differences,
which are observable directly as heat flows, and we shall find a similar situation for the
information content of continuous (“classical”) variables.
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DeWeese & Meister [66]. Consider, for instance, data which tell us that
all of our previous measurements have larger error bars than we thought:
clearly such data, at an intuitive level, reduce our knowledge about the world
and should be associated with a negative information. Another way to say
this is that some data points D will increase our uncertainty about state W
of the world, and hence for these particular data the conditional distribution
P (W |D) has a larger entropy than the prior distribution P (D). If we iden-
tify information with the reduction in entropy, ID = S(W )−S(W |D), then
such data points are associated unambiguously with negative information.
On the other hand, we might hope that, on average, gathering data corre-
sponds to gaining information: although single data points can increase our
uncertainty, the average over all data points does not.

If we average over all possible data–weighted, of course, by their prob-
ability of occurrence P (D), we obtain the average information that D pro-
vides about W ,

I(D →W ) = S(W )−
∑
D

P (D)S(W |D) (4.3)

=
∑
W

∑
D

P (W,D) log2

[
P (W,D)
P (W )P (D)

]
· (4.4)

Note that the information which D provides about W is symmetric in D
andW . This means that we can also view the state of the world as providing
information about the data we will observe, and this information is, on
average, the same as the data will provide about the state of the world. This
“information provided” is therefore often called the mutual information, and
this symmetry will be very important in subsequent discussions; to remind
ourselves of this symmetry we write I(D;W ) rather than I(D →W ).

Problem 7: Positivity of information. Prove that the mutual information

I(D → W ), defined in equation (4.4), is positive.

One consequence of the symmetry or mutuality of information is that
we can write

I(D;W ) = S(W )−
∑
D

P (D)S(W |D) (4.5)

= S(D)−
∑
W

P (W )S(D|W ). (4.6)

If we consider only discrete sets of possibilities then entropies are positive
(or zero), so that these equations imply

I(D;W ) ≤ S(W ) (4.7)
I(D;W ) ≤ S(D). (4.8)
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The first equation tells us that by observing D we cannot learn more about
the world then there is entropy in the world itself. This makes sense: entropy
measures the number of possible states that the world can be in, and we
cannot learn more than we would learn by reducing this set of possibilities
down to one unique state. Although sensible (and, of course, true), this is
not a terribly powerful statement: seldom are we in the position that our
ability to gain knowledge is limited by the lack of possibilities in the world
around us19. The second equation, however, is much more powerful. It says
that, whatever may be happening in the world, we can never learn more
than the entropy of the distribution that characterizes our data. Thus, if
we ask how much we can learn about the world by taking readings from a
wind detector on top of the roof, we can place a bound on the amount we
learn just by taking a very long stream of data, using these data to estimate
the distribution P (D), and then computing the entropy of this distribution.

The entropy of our observations20 thus limits how much we can learn
no matter what question we were hoping to answer, and so we can think
of the entropy as setting (in a slight abuse of terminology) the capacity
of the data D to provide or to convey information. As an example, the
entropy of neural responses sets a limit to how much information a neuron
can provide about the world, and we can estimate this limit even if we
don’t yet understand what it is that the neuron is telling us (or the rest of
the brain). Similarly, our bound on the information conveyed by the wind
detector does not require us to understand how these data might be used
to make predictions about tomorrow’s weather.

Since the information we can gain is limited by the entropy, it is natural
to ask if we can put limits on the entropy using some low order statistical
properties of the data: the mean, the variance, perhaps higher moments or
correlation functions... In particular, if we can say that the entropy has a
maximum value consistent with the observed statistics, then we have placed
a firm upper bound on the information that these data can convey.

The problem of finding the maximum entropy given some constraint
again is familiar from statistical mechanics: the Boltzmann distribution

19This is not quite true. There is a tradition of studying the nervous system as it
responds to highly simplified signals, and under these conditions the lack of possibilities
in the world can be a significant limitation, substantially confounding the interpretation
of experiments.

20In the same way that we speak about the entropy of a gas I will often speak about
the entropy of a variable or the entropy of a response. In the gas, we understand from
statistical mechanics that the entropy is defined not as a property of the gas but as a
property of the distribution or ensemble from which the microscopic states of the gas are
chosen; similarly we should really speak here about “the entropy of the distribution of
observations”, but this is a bit cumbersome. I hope that the slightly sloppy but more
compact phrasing does not cause confusion.
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is the distribution that has the largest possible entropy given the mean
energy. More generally, let us imagine that we have knowledge not of the
whole probability distribution P (D) but only of some expectation values,

〈fi〉 =
∑
D

P (D)fi(D), (4.9)

where we allow that there may be several expectation values known (i =
1, 2, ...,K). Actually there is one more expectation value that we always
know, and this is that the average value of one is one; the distribution is
normalized:

〈f0〉 =
∑
D

P (D) = 1. (4.10)

Given the set of numbers {〈f0〉, 〈f1〉, . . ., 〈fK〉} as constraints on the prob-
ability distribution P (D), we would like to know the largest possible value
for the entropy, and we would like to find explicitly the distribution that
provides this maximum.

The problem of maximizing a quantity subject to constraints is for-
mulated using Lagrange multipliers. In this case, we want to maximize
S = −∑

P (D) log2 P (D), so we introduce a function S̃, with one Lagrange
multiplier λi for each constraint:

S̃[P (D)] = −
∑
D

P (D) log2 P (D)−
K∑

i=0

λi〈fi〉 (4.11)

= − 1
ln 2

∑
D

P (D) lnP (D)−
K∑

i=0

λi

∑
D

P (D)fi(D). (4.12)

Our problem is then to find the maximum of the function S̃, but this is
easy because the probability for each value of D appears independently.
The result is that

P (D) =
1
Z

exp

[
−

K∑
i=1

λifi(D)

]
, (4.13)

where Z = exp(1 + λ0) is a normalization constant.

Problem 8: Details. Derive equation (4.13). In particular, show that

equation (4.13) provides a probability distribution which genuinely maximizes

the entropy, rather than being just an extremum.

These ideas are enough to get started on “designing” some simple neural
processes. Imagine, following Laughlin [67], that a neuron is responsible for
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representing a single number such as the light intensity I averaged over
small patch of the retina (don’t worry about time dependence). Assume
that this signal will be represented by a continuous voltage V , which is true
for the first stages of processing in vision. This voltage is encoded into
discrete spikes only as a second or third step. The information that the
voltage provides about the intensity is

I(V → I) =
∫

dI
∫

dV P (V, I) log2

[
P (V, I)
P (V )P (I)

]
(4.14)

=
∫

dI
∫

dV P (V, I) log2

[
P (V |I)
P (V )

]
· (4.15)

The conditional distribution P (V |I) describes the process by which the
neuron responds to its input, and so this is what we should try to “design”.

Let us suppose that the voltage is on average a nonlinear function of the
intensity, and that the dominant source of noise is additive (to the voltage),
independent of light intensity, and small compared with the overall dynamic
range of the cell:

V = g(I) + ξ, (4.16)

with some distribution Pnoise(ξ) for the noise. Then the conditional
distribution

P (V |I) = Pnoise(V − g(I)), (4.17)

and the entropy of this conditional distribution can be written as

Scond = −
∫

dV P (V |I) log2 P (V |I) (4.18)

= −
∫

dξ Pnoise(ξ) log2 Pnoise(ξ). (4.19)

Note that this is a constant, independent both of the light intensity and
of the nonlinear input/output relation g(I). This is useful because we can
write the information as a difference between the total entropy of the output
variable V and this conditional or noise entropy, as in equation (4.6):

I(V → I) = −
∫

dV P (V ) log2 P (V )− Scond. (4.20)

With Scond constant independent of our “design”, maximizing information
is the same as maximizing the entropy of the distribution of output voltages.
Assuming that there are maximum and minimum values for this voltage,



“thinking”
2002/8/29
page 526

�

�

�

�

�

�

�

�

526 Physics of Bio-Molecules and Cells

but no other constraints, then the maximum entropy distribution is just the
uniform distribution within the allowed dynamic range. But if the noise is
small it doesn’t contribute much to broadening P (V ) and we calculate this
distribution as if there were no noise, so that

P (V )dV = P (I)dI, (4.21)
dV
dI =

1
P (V )

· P (I). (4.22)

Since we want to have V = g(I) and P (V ) = 1/(Vmax − Vmin), we find

dg(I)
dI = (Vmax − Vmin)P (I), (4.23)

g(I) = (Vmax − Vmin)
∫ I
Imin

dI ′P (I ′). (4.24)

Thus, the optimal input/output relation is proportional to the cumulative
probability distribution of the input signals.

The predictions of equation (4.24) are quite interesting. First of all it
makes clear that any theory of the nervous system which involves optimizing
information transmission or efficiency of representation inevitably predicts
that the computations done by the nervous system must be matched to
the statistics of sensory inputs (and, presumably, to the statistics of motor
outputs as well). Here the matching is simple: in the right units we could
just read off the distribution of inputs by looking at the (differentiated)
input/output relation of the neuron. Second, this simple model automat-
ically carries some predictions about adaptation to overall light levels. If
we live in a world with diffuse light sources that are not directly visible,
then the intensity which reaches us at a point is the product of the effec-
tive brightness of the source and some local reflectances. As is it gets dark
outside the reflectances don’t change–these are material properties–and so
we expect that the distribution P (I) will look the same except for scal-
ing. Equivalently, if we view the input as the log of the intensity, then to
a good approximation P (log I) just shifts linearly along the log I axis as
mean light intensity goes up and down. But then the optimal input/output
relation g(I) would exhibit a similar invariant shape with shifts along the
input axis when expressed as a function of log I, and this is in rough agree-
ment with experiments on light/dark adaptation in a wide variety of visual
neurons. Finally, although obviously a simplified version of the real prob-
lem facing even the first stages of visual processing, this calculation does
make a quantitative prediction that would be tested if we measure both the
input/output relations of early visual neurons and the distribution of light
intensities that the animal encounters in nature.
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Laughlin [67] made this comparison (20 years ago!) for the fly visual
system. He built an electronic photodetector with aperture and spectral
sensitivity matched to those of the fly retina and used his photodetector to
scan natural scenes, measuring P (I) as it would appear at the input to these
neurons. In parallel he characterized the second order neurons of the fly
visual system–the large monopolar cells which receive direct synaptic input
from the photoreceptors–by measuring the peak voltage response to flashes
of light. The agreement with equation (4.24) was remarkable, especially
when we remember that there are no free parameters. While there are
obvious open questions (what happened to time dependence?), this is a
really beautiful result.

Laughlin’s analysis focused on the nonlinear input/output properties of
neurons but ignored dynamics. An alternative which has been pursued by
several groups is to treat dynamics but to ignore nonlinearity [68, 69], and
we tried to review some of these ideas in Section 5.3 of Spikes [5]. As far as I
know there is not much work which really brings together dynamics and non-
linearity, although there are striking results about filtering and nonlinearity
in the color domain [70]. While these model problems capture something
about real neurons, it would be nice to confront the real systems more di-
rectly. In particular, most neurons in the brain represent signals through
trains of action potentials. As noted in the introduction to this section,
we’d like to make a direct measurement of the information carried by these
spikes or of the efficiency with which the spikes represent the sensory world.

The first question we might ask is how much information we gain about
the sensory inputs by observing the occurrence of just one spike at some
time t0 [71]. For simplicity let us imagine that the inputs are described
just by one function of time s(t), although this is not crucial; what will be
crucial is that we can repeat exactly the same time dependence many times,
which for the visual system means showing the same movie over and over
again, so that we can characterize the variability and reproducibility of the
neural response. In general, the information gained about s(t) by observing
a set of neural responses is

I =
∑

responses

∫
Ds(τ)P [s(τ) , resp] log2

(
P [s(τ) , resp]
P [s(τ)]P (resp)

)
, (4.25)

where information is measured in bits. In the present case, the response is
a single spike, so summing over the full range of responses is equivalent to
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integrating over the possible spike arrival times t0:

I1 spike =
∫

dt0
∫
Ds(τ)P [s(τ) , t0] log2

(
P [s(τ) , t0]
P [s(τ)]P [t0]

)
(4.26)

=
∫

dt0P [t0]
∫
Ds(τ)P [s(τ)|t0 ] log2

(
P [s(τ)|t0]
P [s(τ)]

)
, (4.27)

where by P [s(τ)|t0] we mean the distribution of stimuli given that we have
observed a spike at time t0. In the absence of knowledge about the stim-
ulus, all spike arrival times are equally likely, and hence P [t0] is uniform.
Furthermore, we expect that the coding of stimuli is stationary in time, so
that the conditional distribution P [s(τ)|t0] is of the same shape for all t0,
provided that we measure the time dependence of the stimulus s(τ) relative
to the spike time t0: P [s(τ)|t0] = P [s(τ −∆t)|t0 −∆t]. With these simpli-
fications we can write the information conveyed by observing a single spike
at time t0 as [50]

I1 spike =
∫
Ds(τ)P [s(τ)|t0 ] log2

(
P [s(τ)|t0]
P [s(τ)]

)
· (4.28)

In this formulation we think of the spike as “pointing to” certain regions
in the space of possible stimuli, and of course the information conveyed
is quantified by an integral that relates to the volume of these regions.
The difficulty is that if we want to use equation (4.28) in the analysis of
real experiments we will need a model of the distribution P [s(τ)|t0], and
this could be hard to come by: the stimuli are drawn from a space of
very high dimensionality (a function space, in principle) and so we cannot
sample this distribution thoroughly in any reasonable experiment. Thus
computing information transmission by mapping spikes back into the space
of stimuli involves some model of how the code works, and then this model
is used to simplify the structure of the relevant distributions, in this case
P [s(τ)|t0]. We would like an alternative approach that does not depend on
such models21.

From Bayes’ rule we can relate the conditional probability of stimuli
given spikes to the conditional probability of spikes given stimuli:

P [s(τ)|t0]
P [s(τ)]

=
P [t0|s(τ)]
P [t0]

· (4.29)

21I hope that it is clear where this could lead: if we can estimate information using
a model of what spikes stand for, and also estimate information without such a model,
then by comparing the two estimates we should be able to test our model of the code
in the most fundamental sense–does our model of what the neural response represents
capture all of the information that this response provides?
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But we can measure the probability of a spike at t0 given that we know the
stimulus s(τ) by repeating the stimulus many times and looking in a small
bin around t0 to measure the fraction of trials on which a spike occurred. If
we normalize by the size of the bin in which we look then we are measuring
the probability per unit time that a spike will be generated, which is a
standard way of averaging the response over many trials; the probability
per unit time is also called the time dependent firing rate r[t0; s(τ)], where
the notation reminds us that the probability of a spike at one time depends
on the whole history of inputs leading up to that time.

If we don’t know the stimulus then the probability of a spike at t0 can
only be given by the average firing rate over the whole experiment, r̄ =
〈r[t; s(τ)]〉, where the expectation value 〈· · ·〉 denotes an average over the
distribution of stimuli P [s(τ)]. Thus we can write

P [s(τ)|t0]
P [s(τ)]

=
r[t0; s(τ)]

r̄
· (4.30)

Furthermore, we can substitute this relation into equation (4.28) for the
information carried by a single spike, and then we obtain

I1 spike =

〈 (
r[t0; s(τ)]

r̄

)
log2

(
r[t0; s(τ)]

r̄

) 〉
, (4.31)

We can compute the average in equation (4.31) by integrating over time,
provided that the stimulus we use runs for a sufficiently long time that
it provides a fair (ergodic) sampling of the true distribution P [s(τ)] from
which stimuli are drawn.

Explicitly, then, if we sample the ensemble of possible stimuli by choosing
a single time dependent stimulus s(t) that runs for a long duration T , and
then we repeat this stimulus many times to accumulate the time dependent
firing rate r[t; s(τ)], the information conveyed by a single spike is given
exactly by an average over this firing rate:

I1 spike =
1
T

∫ T

0

dt
(
r[t; s(τ)]

r̄

)
log2

(
r[t; s(τ)]

r̄

)
· (4.32)

This is an exact formula,independent of any model for the structure of the
neural code. It makes sense that the information carried by one spike should
be related to the firing rate, since the the rate vs. time gives a complete
description of the “one body” or one spike statistics of the spike train, in the
same way that the single particle density describes the one body statistics
of a gas or liquid.

Problem 9: Poisson model and lower bounds. Prove that equation (4.32)

provides a lower bound to the information per spike transmitted if the entire spike

train is a modulated Poisson process [48].
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Another view of the result in equation (4.32) is in terms of the distri-
bution of times at which a single spike might occur. First we note that the
information a single spike provides about the stimulus must be the same
as the information that knowledge of the stimulus provides about the oc-
currence time of a single spike–information is mutual. Before we know the
precise trajectory of the stimulus s(t), all we can say is that if we are look-
ing for one spike, it can occur anywhere in our experimental window of size
T , so that the probability is uniform, p0(t) = 1/T and the entropy of this
distribution is just log2 T . Once we know the stimulus, we can expect that
spikes will occur preferentially at times where the firing rate is large, so
the probability distribution should be proportional to r[t; s(τ)]; with proper
normalization we have p1(t) = r[t; s(τ)]/(T r̄). Then the conditional en-
tropy is

S1 = −
∫ T

0

dtp1(t) log2 p1(t) (4.33)

= − 1
T

∫ T

0

dt
r[t; s(τ)]

r̄
log2

(
r[t; s(τ)]
r̄T

)
· (4.34)

The reduction in entropy is the gain in information, so

I1 spike = S0 − S1 (4.35)

=
1
T

∫ T

0

dt
(
r[t; s(τ)]

r̄

)
log2

(
r[t; s(τ)]

r̄

)
, (4.36)

as before.
A crucial point about equation (4.32) is that when we derive it we do

not make use of the fact that t0 is the time of a single spike: it could be
any event that occurs at a well defined time. There is considerable interest
in the question of whether “synchronous” spikes from two neurons provide
special information in the neural code. If we define synchronous spikes as
two spikes that occur within some fixed (small) window of time then this
compound event can also be given an arrival time (e.g., the time of the
later spike), and marking these arrival times across repeated presentations
of the same stimulus we can build up the rate rE [t; s(τ)] for these events
of class E in exactly the same way that we build up an estimate of the
spike rate. But if we have compound events constructed from two spikes, it
makes sense to compare the information carried by a single event IE with
the information that would be carried independently by two spikes, 2I1 spike.
If the compound event conveys more information than the sum of its parts,
then this compound event indeed is a special symbol in the code. The same
arguments apply to compound events constructed from temporal patterns
of spikes in one neuron.
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If a compound event provides an amount of information exactly equal
to what we expect by adding up contributions from the components, then
we say that the components or elementary events convey information in-
dependently. If there is less than independent information we say that the
elementary events are redundant, and if the compound event provides more
than the sum of its parts we say that there is synergy among the elementary
events.

When we use these ideas to analyze Rob’s experiments on the fly’s H1
neuron [71], we find that the occurrence of a single spike can provide from 1
to 2 bits of information, depending on the details of the stimulus ensemble.
More robustly we find that pairs of spikes separated by less than 10 msec can
provide more–and sometimes vastly more–information than expected just
by adding up the contributions of the individual spikes. There is a small
amount of redundancy among spikes with larger separations, and if stimuli
have a short correlation time then spikes carry independent information
once they are separated by more than 30 msec or so. It is interesting that
this time scale for independent information is close to the time scales of
behavioral decisions, as if the fly waited long enough to see all the spikes
that have a chance of conveying information synergistically.

We’d like to understand what happens as all the spikes add up to give
us a fuller representation of the sensory signal: rather than thinking about
the information carried by particular events, we want to estimate the in-
formation carried by long stretches of the neural response. Again the idea
is straightforward [72, 73]: use Shannon’s definitions to write the mutual
information between stimuli and spikes in terms of difference between two
entropies, and then use a long experiment to sample the relevant distribu-
tions and thus estimate these entropies. The difficulty is that when we talk
not about single events but about “long stretches of the neural response”,
the number of possible responses is (exponentially) larger, and sampling is
more difficult. Much of the effort in the original papers thus is in convincing
ourselves that we have control over these sampling problems.

Let us look at segments of the spike train with length T , and within this
time we record the spike train with time resolution ∆τ ; these parameters
are somewhat arbitrary, and we will need to vary them to be be sure we
understand what is going on. In this view, however, the response is a “word”
with K = T/∆τ letters; for small ∆τ there can be only one or zero spikes in
a bin and so the words are binary words, while for poorer time resolution we
have a larger alphabet. If we let the fly watch a long movie, many different
words will be produced and with a little luck we can get a good estimate
of the probability distribution of these words, P (W ). This distribution has
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an entropy

Stotal(T,∆τ) = −
∑
W

P (W ) log2 P (W ) (4.37)

which measures the size of the neuron’s vocabulary and hence the capacity
of the code given our parameters T and ∆τ [cf. Eq. (4.8) and the subsequent
discussion]. While a large vocabulary is a good thing, to convey information
I have to associate words with particular things in a reproducible way. Here
we can show the same movie many times, and if we look across the many
trials at a moment t relative to the start of the movie we again will see
different words (since there is some noise in the response), and these provide
samples of the distribution P (W |t). This distribution in turn has an entropy
which we call the noise entropy since any variation in response to the same
inputs constitutes noise in the representation of those inputs22:

Snoise =

〈
−

∑
W

P (W |t) log2 P (W |t)
〉

t

, (4.38)

where 〈· · · 〉 denotes an average over t and hence (by ergodicity) over the
ensemble of sensory inputs P [s]. Finally, the information that the neural
response provides about the sensory input is the difference between the total
entropy and the noise entropy,

I(T,∆τ) = Stotal(T,∆τ)− Snoise(T,∆τ), (4.39)

as in equation (4.6). A few points worth emphasizing:

• By using time averages in place of ensemble averages we can measure
the information that the response provides about the sensory input
without any explicit coordinate system on the space of inputs and
hence without making any assumptions about which features of the
input are most relevant;

• If we can sample the relevant distributions for sufficiently large times
windows T , we expect that entropy and information will become ex-
tensive quantities, so that it makes sense to define entropy rates and
information rates;

22This is not to say that such variations might not provide information about something
else, but in the absence of some other signal against which we can correlate this ambiguity
cannot be resolved. It is good to keep in mind, however, that what we call noise could
be signal, while what we call signal really does constitute information about the input,
independent of any further hypotheses.
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• As we improve our time resolution, making ∆τ smaller, the capacity
of the code Stotal must increase, but it is an experimental question
whether the brain has the timing accuracy to make efficient use of
this capacity.

The fly’s H1 neuron provides an ideal place to do all of this because of the
extreme stability of the preparation. In an effort to kill off any concerns
about sampling and statistics, Rob did a huge experiment with order one
thousand replays of the same long movie [72, 73]. With this large data set
we were able to see the onset of extensivity, so we extracted information
and entropy rates (although this really isn’t essential) and we were able to
explore a wide range of time resolutions, 800 > ∆τ > 2 ms. Note that
∆τ = 800 ms corresponds to counting spikes in bins that contain typically
thirty spikes, while ∆τ = 2 ms corresponds to timing each spike to within
5% of the typical interspike interval. Over this range, the entropy of the
spike train varies over a factor of roughly 40, illustrating the increasing
capacity of the system to convey information by making use of spike timing.
The information that the spike train conveys about the visual stimulus
increases in approximate proportion to the entropy, corresponding to ∼50%
efficiency, although we start to see some saturation of information at the
very highest time resolutions. Interestingly, this level of efficiency (and its
approximate constancy as a function of time resolution) confirms an earlier
measurement of efficiency in mechanosensor neurons from frogs and crickets
that used the ideas of decoding discussed in the previous section [74].

What have we learned from this? First of all, the earliest experiments on
neural coding showed that the rate of spiking encodes stimulus amplitude for
static stimuli, but this left open the question of whether the precise timing
of spikes carries additional information. The first application of informa-
tion theory to neurons (as far as I know) was MacKay and McCulloch’s
calculation of the capacity of neurons to carry information given different
assumptions about the nature of the code [75], and of course they drew
attention to the fact that the capacity increases as we allow fine temporal
details of the spike sequence to become distinguishable symbols in the code.
Even MacKay and McCulloch were skeptical about whether real neurons
could use a significant fraction of their capacity, however, and other investi-
gators were more than skeptical. The debate about whether spike timing is
important raged on, and I think that one of the important contributions of
an information theoretic approach has been to make precise what we might
mean by “timing is important”.

There are two senses in which the timing of action potentials could be
important to the neural code. First there is the simple question of whether
marking spike arrival times to higher resolution really allows us to extract
more information about the sensory inputs. We know (following MacKay
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and McCulloch) that if we use higher time resolution the entropy of the
spike train increases, and hence the capacity to transmit information also
increases. The question is whether this capacity is used, and the answer
(for one neuron, under one set of conditions...) is in Ref. [73]: yes, unam-
biguously.

A second notion of spike timing being important is that temporal pat-
terns of spikes may carry more information than would be expected by
adding the contributions of single spikes. Again the usual setting for this
sort of code is in a population of neurons, but the question is equally well
posed for patterns across time in a single cell. Another way of asking the
question is whether the high information rates observed for the spike train
as a whole are “just” a reflection of rapid, large amplitude modulations in
the spike rate23. Equation (4.32) makes clear that “information carried by
rate modulations” is really the information carried by single spikes. The
results of Ref. [71] show that pairs of spikes can carry more than twice the
single spike information, and the analysis of longer windows of responses
shows that this synergy is maintained, so that the spike train as a whole is
carrying 30–50% more information than expected by summing the contribu-
tions of single spikes. Thus the answer to the question of whether temporal
patterns are important, or whether there is “more than just rate” is again:
yes, unambiguously.

These results on coding efficiency and synergy are surprisingly
robust [76]: if we analyze the responses of H1 neurons from many differ-
ent flies, all watching the same movie, it is easy to see that the flies are
very different–average spike rates can vary by a factor of three among in-
dividuals, and by looking at the details of how each fly associates stimuli
and responses we can distinguish a typical pair of flies from just 30 msec of
data. On the other hand, if we look at the coding efficiency–the informa-
tion divided by the total entropy–this is constant to within 10% across the
population of flies in our experiments, and this high efficiency always has a
significant contribution from synergy beyond single spikes.

The direct demonstration that the neural code is efficient in this infor-
mation theoretic sense clearly depends on using complex, dynamic sensory
inputs rather than the traditional quasistatic signals. We turned to these
dynamic inputs not because they are challenging to analyze but rather be-
cause we thought that they would provide a better model for the problems
encountered by the brain under natural conditions. This has become part
of a larger effort in the community to analyze the way in which the nervous

23Note that in many cases this formulation obscures the fact that the a single “large
amplitude modulation” is a bump in the firing rate with area of order one, so what might
be called a large rate change is really one spike.
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system deals with natural signals, and it probably is fair to point out that
this effort has not been without its share of controversies [77]. One way to
settle the issue is to strive for ever more natural experimental conditions.
I think that Rob’s recent experiments hold the record for “naturalness”:
rather than showing movies in the lab, he has taken his whole experiment
outside into the woods where the flies are caught and recorded from H1
while rotating the fly through angular trajectories like those observed for
freely flying flies [78]. This is an experimental tour de force (I can say this
without embarrassment since I’m a theorist) because you have to maintain
stable electrical recordings of neural activity while the sample is spinning at
thousands of degrees per second and and accelerating to reverse direction
within 10 msec. The reward is that spike timing is even more reproducible
in the “wild” than in the lab, coding efficiencies and information rates are
higher and are maintained to even smaller values ∆τ .

All of the results above point to the idea that spike trains really do
provide an efficient representation of the sensory world, at least in one pre-
cise information theoretic sense. Many experimental groups are exploring
whether similar results can be obtained in other systems, in effect asking
if these theoretically appealing features of the code are universal. Here I
want to look at a different question, namely whether this efficient code is
fixed in the nervous system or whether it adapts and develops in response
to the surroundings. The ideas and results that we have on these issues
are, I think, some of the clearest evidence available for optimization in the
neural code. Once again all the experiments are done in Rob de Ruyter’s
lab using H1 as the test case, and most of what we currently know is from
work by Brenner & Fairhall [79, 80].

There are two reasons to suspect that the efficiency we have measured
is achieved through adaptation rather than through hard wiring. First, one
might guess that a fixed coding scheme could be so efficient and informative
only if we choose the right ensemble of inputs, and you have to trust me
that we didn’t search around among many ensembles to find the results that
I quoted. Second, under natural conditions the signals we want to encode
are intermittent–the fly may fly straight, so that typical angular veloci-
ties are ∼50◦/s, or may launch into acrobatics where typical velocities are
∼2000◦/s, and there are possibilities in between. At a much simpler level,
if we look across a natural scene, we find regions where the variance of light
intensity or contrast is small, and nearby regions in which it is large [81].
Observations on contrast variance in natural images led to the suggestion
that neurons in the retina might adapt in real time to this variance, and
this was confirmed [82]. Here we would like to look at the parallel issue for
velocity signals in the fly’s motions sensitive neurons.
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In a way what we are looking for is really contained in Laughlin’s model
problem discussed above. Suppose that we could measure the strategy that
the fly actually uses for converting continuous signals into spikes; we could
characterize this by giving the probability that a spike will be generated
at t given the signal s(τ < t), which is what we have called the firing rate
r[t; s(τ)]. We are hoping that the neuron sets this coding strategy using
some sort of optimization principle, although it is perhaps not so clear what
constraints are relevant once we move from the model problem to the real
neurons. On the other hand, we can say something about the nature of such
optimization problems if we think about scaling: when we plot r[s], what
sets the scale along the s axis?

We know from the previous section that there is a limit to the small-
est motion signals that can be reliably estimated, and of course there is a
limit to the highest velocities that the system can deal with (if you move
sufficiently fast everything blurs and vision is impossible). Happily, most
of the signals we (and the fly) deal with are well away from these limits,
which are themselves rather far apart. But this means that there is nothing
intrinsic to the system which sets the scale for measuring angular velocity
and encoding it in spikes, so if r[s] is to emerge as the solution to an op-
timization problem then the scale along the s axis must be determined by
outside world, that is by the distribution P [s] from which the signals are
drawn. Further, if we scale the distribution of inputs, P [s] → λP [λs] then
the optimal coding strategy also should scale, r[s] → r[λs]24. The predic-
tion, then, is that if the system can optimize its coding strategy in relation
to the statistical structure of the sensory world, then we should be able to
draw signals from a family of scaled distributions and see the input/output
relations of the neurons scale in proportion to the input dynamic range. To
make a long story short, this is exactly what we saw in H1 [79]25.

24I’m being a little sloppy here: s is really a function of time, not just a single number,
but I hope the idea is clear.

25There is one technical issue in the analysis of Ref. [79] that I think is of broader
theoretical interest. In trying to characterize the input/output relation r[t; s(τ)] we face
the problem that the inputs s(τ) really live in a function space, or in more down to
earth terms a space of very large dimensionality. Clearly we can’t just plot the function
r[t; s(τ)] in this space. Further, our intuition is that neurons are not equally sensitive to
all of the dimensions or features of their inputs. To make progress (and in fact to get the
scaling results) we have to make this intuition precise and find the relevant dimensions
in stimulus space; along the way it would be nice to provide some direct evidence that
the number of dimensions is actually small (!). If we are willing to consider Gaussian
P [s(τ)], then we can show that by computing the right correlation functions between s(τ)
and the stream of spikes ρ(t) =

�
i δ(t − ti) we can both count the number of relevant

dimensions and provide an explicit coordinate system on the relevant subspace [59, 79].
These techniques are now being used to analyze other systems as well, and we are trying
to understand if we can make explicit use of information theoretic tools to move beyond
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The observation of scaling behavior is such a complex system certainly
warms the hearts of physicists who grew up in a certain era. But Naama
realized that one could do more. The observation of scaling tells us (exper-
imentally!) that the system has a choice among a one parameter family of
input/output relations, and so we can ask why the system chooses the one
that it does. The answer is striking: the exact scale factor chosen by the
system is the one that maximizes information transmission.

If the neural code is adapting in response to changes of the input dis-
tribution, and further if this adaptation serves to maximize information
transmission, then we should be able to make sudden a change between two
very different input distributions and “catch” the system using the wrong
code and hence transmitting less than the maximum possible information.
As the system collects enough data to be sure that the distribution has
changed, the code should adapt and information transmission should re-
cover. As with the simpler measurements of information transmission in
steady state, the idea here is simple enough but finding an experimental
design that actually gives enough data to avoid all statistical problems is
a real challenge, and this is what Adrienne did in Ref. [80]. The result is
clear: when we switch from one P [s] to another we can detect the drop in
efficiency of information transmission associated with the use of the old code
in the new distribution, and we can measure the time course of informa-
tion recovery as the code adapts. What surprised us (although it shouldn’t
have) was the speed of this recovery, which can be complete in much less
than 100 msec. In fact, for the conditions of these experiments, we can
actually calculate how rapidly an optimal processor could make a reliable
decision about the change in distribution, and when the dust settles the
answer is that the dynamics of the adaptation that we see in the fly are
running within a factor of two of the maximum speed set by these limits to
statistical inference26.

I have the feeling that my presentation of these ideas mirrors their devel-
opment. It took us a long time to build up the tools that bring information
theory and optimization principles into contact with real experiments on

the analysis of Gaussian inputs and low order correlation functions. I find the geometrical
picture of neurons as selective for a small number of dimensions rather attractive as well
being useful, but it is a bit off the point of this discussion.

26Again there is more to these experiments than what I have emphasized here. The
process of adaptation in fact has multiple time scales, ranging from tens of milliseconds
out to many minutes. These rich dynamics offer possibilities for longer term statistical
properties of the spike train to resolve the ambiguities (how does the fly know the absolute
scale of velocity if it is scaled away?) that arise in any adaptive coding scheme. The
result is that while information about the scaled stimulus recovers quickly during the
process of adaptation, some information about the scale itself is preserved and can be
read out by simple algorithms.
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the neural coding of complex, dynamic signals. Once we have the tools,
however, the results are clear, at least for this one system where we (or,
more precisely, Rob) can do almost any experiment we want:

• Spike trains convey information about natural input signals with
∼50% efficiency down to millisecond time resolution;

• This efficiency is enhanced significantly by synergistic coding in which
temporal patterns of spikes stand for more than the sum of their parts;

• Although the detailed structure of the neural code is highly individu-
alized, these basic features are strikingly constant across individuals;

• Coding efficiency and information rates are higher under more natural
conditions;

• The observed information transmission rates are the result of an adap-
tive coding scheme which takes a simple scaling form in response to
changes in the dynamic range of the inputs;

• The precise choice of scale by the real code is the one which maximizes
information transmission;

• The dynamics of this adaptation process are almost as fast as possible
given the need to collect statistical evidence for changes in the input
distribution.

I think it is fair to say that this body of work provides very strong evidence
in support of information theoretic optimization as a “design principle”
within which we can understand the phenomenology of the neural code.

5 Learning and complexity

The world around us, thankfully, is a rather structured place. Whether we
are doing a careful experiment in the laboratory or are gathering sense data
on a walk through the woods, the signals that arrive at our brains are far
from random noise; there appear to be some underlying regularities or rules.
Surely one task our brain must face is the learning or extraction of these
rules and regularities. Perhaps the simplest example of learning a rule is
fitting a function to data–we believe in advance that the rule belongs to a
class of possible rules that can be parameterized, and as we collect data we
learn the values of the parameters. This simple example introduces us to
many deep issues:

• If there is noise in the data then really we are trying to learn a prob-
ability distribution, not just a functional relation;
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• We would like to compare models (classes of possible rules) that have
different numbers of parameters, and incorporate the intuition that
“simpler” models are better;

• We might like to step outside the restrictions of finite parameterization
and consider the possibility that the data are described by functions
that are merely “smooth” to some degree;

• We would like to quantify how much we are learning (or how much
can be learned) about the underlying rules.

In the last decade or so, a rich literature has emerged, tackling these prob-
lems with a sophistication far beyond the curve fitting exercises that we
all performed in our student physics laboratories. I will try to take a path
through these developments, emphasizing the connections of these learning
problems to problems in statistical mechanics and the implications of this
statistical approach for an information theoretic characterization of how
much we learn. Most of what I have to say on this subject is drawn from
collaborations with Nemenman & Tishby [83–85]; in particular the first of
these papers is long and has lots of references to more standard things which
I will outline here without attribution.

Let’s just plunge in with the classic example: We observe two streams
of data x and y, or equivalently a stream of pairs (x1, y1), (x2, y2), . . .,
(xN , yN ). Assume that we know in advance that the x’s are drawn inde-
pendently and at random from a distribution P (x), while the y’s are noisy
versions of some function acting on x,

yn = f(xn; α) + ηn, (5.1)

where f(x; α) is one function from a class of functions parameterized by
α ≡ {α1, α2, · · · , αK} and ηn is noise, which for simplicity we will assume
is Gaussian with known standard deviation σ. We can even start with a
very simple case, where the function class is just a linear combination of
basis functions, so that

f(x; α) =
K∑

µ=1

αµφµ(x). (5.2)

The usual problem is to estimate, from N pairs {xi, yi}, the values of the
parameters α; in favorable cases such as this we might even be able to find
an effective regression formula. Probably you were taught that the way to
do this is to compute χ2,

χ2 =
∑

n

[yn − f(xn; α)]2, (5.3)
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and then minimize to find the correct parameters α. You may or may not
have been taught why this is the right thing to do.

With the model described above, the probability that we will observe
the pairs {xi, yi} can be written as

P ({xi, yi}|α) = exp
[
−N

2
ln(2πσ2)− χ2

2σ2

]∏
n

P (xn), (5.4)

assuming that we know the parameters. Thus finding parameters which
minimize χ2 also serves to maximize the probability that our model could
have given rise to the data. But why is this a good idea?

We recall that the entropy is the expectation value of − logP , and that
it is possible to encode signals so that the amount of “space” required to
specify each signal uniquely is on average equal to the entropy27. With a
little more work one can show that each possible signal s drawn from P (s)
can be encoded in a space of − log2 P (s) bits. Now any model probability
distribution implicitly defines a scheme for coding signals that are drawn
from that distribution, so if we make sure that our data have high probability
in the distribution (small values of − logP ) then we also are making sure
that our code or representation of these data is compact. What this means
is that good old fashioned curve fitting really is all about finding efficient
representations of data, precisely the principle enunciated by Barlow for the
operation of the nervous system (!).

If we follow this notion of efficient representation a little further we can
do better than just maximizing χ2. The claim that a model provides a code
for the data is not complete, because at some point I have to represent my
knowledge of the model itself. One idea is to do this explicitly–estimate how
accurately you know each of the parameters, and then count how many bits
you’ll need to write down the parameters to that accuracy and add this
to the length of your code; this is the point of view taken by Risannen
and others in a set of ideas called “minimum description length” or MDL.
Another idea is more implicit–the truth is that I don’t really know the
parameters, all I do is estimate them from the data, so it’s not so obvious
that I should separate coding the data from coding the parameters (although
this might emerge as an approximation). In this view what we should do
is to integrate over all possible values of the parameters, weighted by some

27This is obvious for uniform probability distributions with 2n alternatives, since then
the binary number representing each alternative is this code we want. For nonuniform
distributions we need to think about writing things down many times and taking an
average of the space we use each time, and the fact that the answer comes out the same
(as the entropy) hinges on the “typicality” of such data streams, which is the information
theorist’s way of talking about the equivalence of canonical and microcanonical ensembles.
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prior knowledge (maybe just that the parameters are bounded), and thus
compute the probability that our data could have arisen from the class of
models we are considering.

To carry out this program of computing the total probability of the data
given the model class we need to do the integral

P ({xi, yi}|class) =
∫

dKαP (α)P [{xi, yi}|α] (5.5)

=

[∏
n

P (xn)

]

×
∫

dKαP (α) exp
[
−N

2
ln(2πσ2)− χ2

2σ2

]
· (5.6)

But remember that χ2 as we have defined it is a sum over data points, which
means we expect it (typically) will be proportional to N . This means that at
large N we are doing an integral in which the exponential has terms propor-
tional to N–and so we should use a saddle point approximation. The saddle
point of course is close to the place where χ2 is minimized, and then we do
the usual Gaussian (one loop) integral around this point; actually if we stick
with the simplest case of equation (5.2) then this Gaussian approximation
becomes exact. When the dust settles we find

− lnP ({xi, yi}|class) = −
∑

n

lnP (xn) +
χ2

min

2σ2
+
K

2
lnN + · · · , (5.7)

and we recall that this measures the length of the shortest code for {xi, yi}
that can be generated given the class of models. The first term averages
to N times the entropy of the distribution P (x), which makes sense since
by hypothesis the x’s are being chosen at random. The second term is as
before, essentially the length of the code required to describe the deviations
of the data from the predictions of the best fit model; this also grows in
proportion to N . The third term must be related to coding our knowledge
of the model itself, since it is proportional to the number of parameters.
We can understand the (1/2) lnN because each parameter is determined
to an accuracy of ∼1/

√
N , so if we start with a parameter space of size

∼1 there is a reduction in volume by a factor of
√
N and hence a decrease

in entropy (gain in information) by (1/2) lnN . Finally, the terms· · · don’t
grow with N .

What is crucial about the term (K/2) lnN is that it depends explicitly on
the number of parameters. In general we expect that by considering models
with more parameters we can get a better fit to the data, which means
that χ2 can be reduced by considering more complex model classes. But
we know intuitively that this has to stop–we don’t want to use arbitrarily
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complex models, even if they do provide a good fit to what we have seen.
It is attractive, then, that if we look for the shortest code which can be
generated by a class of models, there is an implicit penalty or coding cost for
increased complexity. It is interesting from a physicist’s point of view that
this term emerges essentially from consideration of phase space or volumes
in model space. It thus is an entropy–like quantity in its own right, and the
selection of the best model class could be thought of as a tradeoff between
this entropy and the “energy” measured by χ2. If we keep going down this
line of thought we can imagine a thermodynamic limit with large numbers
of parameters and data points, and there can be “aha!” types of phase
transitions from poor fits to good fits as we increase the ratio N/K [86].

The reason we need to control the complexity of our models is because
the real problem of learning is neither the estimation of parameters nor the
compact representation of the data we have already seen. The real problem
of learning is generalization: we want to extract the rules underlying what
we have seen because we believe that these rules will continue to be true
and hence will describe the relationships among data that we will observe
in the future. Our experience is that overly complex models might provide
a more accurate description of what we have seen so far but do a bad job at
predicting what we will see next. This suggests that there are connections
between predictability and complexity.

There is in fact a completely different motivation for quantifying com-
plexity, and this is to make precise an impression that some systems, such
as life on earth or a turbulent fluid flow, evolve toward a state of higher
complexity; one might even like to classify these states. These problems
traditionally are in the realm of dynamical systems theory and statistical
physics. A central difficulty in this effort is to distinguish complexity from
randomness–trajectories of dynamical systems can be regular, which we take
to mean “simple” in the intuitive sense, or chaotic, but what we mean by
complex is somewhere in between. The field of complexology (as Magnasco
likes to call it) is filled with multiple definitions of complexity and confus-
ing remarks about what they all might mean. In this noisy environment,
there is a wonderful old paper by Grassberger [87] which gives a clear signal:
systems with regular or chaotic/random dynamics share the property that
the entropy of sample trajectories is almost exactly extensive in the length
of the trajectory, while for systems that we identify intuitively as being
complex there are large corrections to extensivity which can even diverge
as we take longer and longer samples. In the end Grassberger suggested
that these subextensive terms in the entropy really do quantify our intu-
itive notions of complexity, although he made this argument by example
rather than axiomatically.
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We can connect the measures of complexity that arise in learning prob-
lems with those that arise in dynamical systems by noticing that the subex-
tensive components of entropy identified by Grassberger in fact determine
the information available for making predictions28. This also suggests a
connection to the importance or value of information, especially in a biolog-
ical or economic context: information is valuable if it can be used to guide
our actions, but actions take time and hence observed data can be useful
only to the extent that those data inform us about the state of the world
at later times. It would be attractive if what we identify as “complex” in a
time series were also the “useful” or “meaningful” components.

While prediction may come in various forms, depending on context,
information theory allows us to treat all of them on the same footing. For
this we only need to recognize that all predictions are probabilistic, and
that, even before we look at the data, we know that certain futures are
more likely than others. This knowledge can be summarized by a prior
probability distribution for the futures. Our observations on the past lead us
to a new, more tightly concentrated distribution, the distribution of futures
conditional on the past data. Different kinds of predictions are different
slices through or averages over this conditional distribution, but information
theory quantifies the “concentration” of the distribution without making
any commitment as to which averages will be most interesting.

Imagine that we observe a stream of data x(t) over a time interval −T <
t < 0; let all of these past data be denoted by the shorthand xpast. We are
interested in saying something about the future, so we want to know about
the data x(t) that will be observed in the time interval 0 < t < T ′; let these
future data be called xfuture. In the absence of any other knowledge, futures
are drawn from the probability distribution P (xfuture), while observations
of particular past data xpast tell us that futures will be drawn from the
conditional distribution P (xfuture|xpast). The greater concentration of the
conditional distribution can be quantified by the fact that it has smaller
entropy than the prior distribution, and this reduction in entropy is the
information that the past provides about the future. We can write the
average of this predictive information as

Ipred(T, T ′) =

〈
log2

[
P (xfuture|xpast)
P (xfuture)

]〉
(5.8)

= −〈log2 P (xfuture)〉 − 〈log2 P (xpast)〉
− [−〈log2 P (xfuture, xpast)〉] , (5.9)

28The text of the discussion here follows Ref. [84] rather closely, and I thank my
colleagues for permission to include it here.
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where 〈· · · 〉 denotes an average over the joint distribution of the past and
the future, P (xfuture, xpast).

Each of the terms in equation (5.9) is an entropy. Since we are interested
in predictability or generalization, which are associated with some features
of the signal persisting forever, we may assume stationarity or invariance
under time translations. Then the entropy of the past data depends only on
the duration of our observations, so we can write −〈log2 P (xpast)〉 = S(T ),
and by the same argument −〈log2 P (xfuture)〉 = S(T ′). Finally, the entropy
of the past and the future taken together is the entropy of observations on
a window of duration T + T ′, so that −〈log2 P (xfuture, xpast)〉 = S(T + T ′).
Putting these equations together, we obtain

Ipred(T, T ′) = S(T ) + S(T ′)− S(T + T ′). (5.10)

In the same way that the entropy of a gas at fixed density is proportional to
the volume, the entropy of a time series (asymptotically) is proportional to
its duration, so that limT→∞ S(T )/T = S0; entropy is an extensive quantity.
But from equation (5.10) any extensive component of the entropy cancels in
the computation of the predictive information: predictability is a deviation
from extensivity. If we write

S(T ) = S0T + S1(T ) , (5.11)

then equation (5.10) tells us that the predictive information is related only
to the nonextensive term S1(T ).

We know two general facts about the behavior of S1(T ). First, the
corrections to extensive behavior are positive, S1(T ) ≥ 0. Second, the
statement that entropy is extensive is the statement that the limit

lim
T→∞

S(T )/T = S0 (5.12)

exists, and for this to be true we must also have limT→∞ S1(T )/T = 0. Thus
the nonextensive terms in the entropy must be subextensive, that is they
must grow with T less rapidly than a linear function. Taken together, these
facts guarantee that the predictive information is positive and subextensive.
Further, if we let the future extend forward for a very long time, T ′ → ∞,
then we can measure the information that our sample provides about the
entire future,

Ipred(T ) = lim
T ′→∞

Ipred(T, T ′) = S1(T ) , (5.13)

and this is precisely equal to the subextensive entropy.
If we have been observing a time series for a (long) time T , then the

total amount of data we have collected in is measured by the entropy S(T ),
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and at large T this is given approximately by S0T . But the predictive
information that we have gathered cannot grow linearly with time, even if
we are making predictions about a future which stretches out to infinity. As
a result, of the total information we have taken in by observing xpast, only
a vanishing fraction is of relevance to the prediction:

lim
T→∞

Predictive Information
Total Information

=
Ipred(T )
S(T )

→ 0. (5.14)

In this precise sense, most of what we observe is irrelevant to the problem
of predicting the future.

Consider the case where time is measured in discrete steps, so that we
have seen N time points x1, x2, . . ., xN . How much is there to learn about
the underlying pattern in these data? In the limit of large number of ob-
servations, N → ∞ or T → ∞, the answer to this question is surprisingly
universal: predictive information may either stay finite, or grow to infinity
together with T ; in the latter case the rate of growth may be slow (loga-
rithmic) or fast (sublinear power).

The first possibility, limT→∞ Ipred(T ) = constant, means that no matter
how long we observe we gain only a finite amount of information about the
future. This situation prevails, in both extreme cases mentioned above.
For example, when the dynamics are very regular, as for a purely periodic
system, complete prediction is possible once we know the phase, and if we
sample the data at discrete times this is a finite amount of information;
longer period orbits intuitively are more complex and also have larger Ipred,
but this doesn’t change the limiting behavior limT→∞ Ipred(T ) = constant.

Similarly, the predictive information can be small when the dynamics are
irregular but the best predictions are controlled only by the immediate past,
so that the correlation times of the observable data are finite. This happens,
for example, in many physical systems far away from phase transitions.
Imagine, for example, that we observe x(t) at a series of discrete times
{tn}, and that at each time point we find the value xn. Then we always can
write the joint distribution of the N data points as a product,

P (x1, x2, . . ., xN ) = P (x1)P (x2|x1)P (x3|x2, x1) . . . . (5.15)

For Markov processes, what we observe at tn depends only on events at the
previous time step tn−1, so that

P (xn|{x1≤i≤n−1}) = P (xn|xn−1), (5.16)

and hence the predictive information reduces to

Ipred =

〈
log2

[
P (xn|xn−1)
P (xn)

]〉
· (5.17)



“thinking”
2002/8/29
page 546

�

�

�

�

�

�

�

�

546 Physics of Bio-Molecules and Cells

The maximum possible predictive information in this case is the entropy
of the distribution of states at one time step, which in turn is bounded by
the logarithm of the number of accessible states. To approach this bound
the system must maintain memory for a long time, since the predictive
information is reduced by the entropy of the transition probabilities. Thus
systems with more states and longer memories have larger values of Ipred.

Problem 10: Brownian motion of a spring. Consider the Brownian motion
of an overdamped particle bound a spring. The Langevin equation describing the
particle position x(t) is

γ
dx(t)

dt
+ κx(t) = Fext(t) + δF (t), (5.18)

where γ is the damping constant, κ is the stiffness of the spring, Fext(t) is an
external force that might be applied to the particle, and δF (t) is the Langevin
force. The Langevin force is random, with Gaussian statistics and white noise
correlation properties,

〈δF (t)δF (t′)〉 = 2γkBTδ(t − t′). (5.19)

Show that the correlation function has a simple exponential form,

〈x(t)x(t′)〉 = 〈x2〉 exp(−|t − t′|/τc), (5.20)

and evaluate the correlation time. Now take the original Langevin equation and

form a discrete version, introducing a small time step ∆t; be sure that your

discretization preserves exactly the observable variance 〈x2〉. You should be able

to find a natural discretization in which the evolution of x is Markovian, and then

you can compute the predictive information for the time series x(t). How does

this result depend on temperature? Why? Express the dependence on ∆t in units

of the correlation time τc. Is there a well defined limit as ∆t → 0? Again, why

(or why not)?

More interesting are those cases in which Ipred(T ) diverges at large T .
In physical systems we know that there are critical points where correlation
times become infinite, so that optimal predictions will be influenced by
events in the arbitrarily distant past. Under these conditions the predictive
information can grow without bound as T becomes large; for many systems
the divergence is logarithmic, Ipred(T →∞) ∝ logT .

Long range correlation also are important in a time series where we can
learn some underlying rules, as in the discussion of curve fitting that started
this section. Since we saw that curve fitting with noisy data really involves
a probabilistic model, let us talk explicitly about the more general problem
of learning distributions. Suppose a series of random vector variables {�xi}
are drawn independently from the same probability distribution Q(�x|α),
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and this distribution depends on a (potentially infinite dimensional) vector
of parameters α. The parameters are unknown, and before the series starts
they are chosen randomly from a distribution P(α). In this setting, at least
implicitly, our observations of {�xi} provide data from which we can learn
the parameters α. Here we put aside (for the moment) the usual problem
of learning–which might involve constructing some estimation or regression
scheme that determines a “best fit” α from the data {�xi}–and treat the
ensemble of data streams P [{�xi}] as we would any other set of configurations
in statistical mechanics or dynamical systems theory. In particular, we can
compute the entropy of the distribution P [{�xi}] even if we can’t provide
explicit algorithms for solving the learning problem.

As shown in [83], the crucial quantity in such analysis is the density of
models in the vicinity of the target ᾱ–the parameters that actually gener-
ated the sequence. For two distributions, a natural distance measure is the
Kullback–Leibler divergence,

DKL(ᾱ||α) =
∫

d�xQ(�x|ᾱ) log
[
Q(�x|ᾱ)
Q(�x|α)

]
, (5.21)

and the density is

ρ(D; ᾱ) =
∫

dKαP(α)δ[D −DKL(ᾱ||α)]. (5.22)

If ρ is large as D → 0, then one easily can get close to the target for many
different data; thus they are not very informative. On the other hand, small
density means that only very particular data lead to ᾱ, so they carry a lot
of predictive information. Therefore, it is clear that the density, but not
the number of parameters or any other simplistic measure, characterizes
predictability and the complexity of prediction. If, as often is the case for
dimα < ∞, the density behaves in the way common to finite dimensional
systems of the usual statistical mechanics,

ρ(D → 0, ᾱ) ≈ AD(K−2)/2, (5.23)

then the predictive information to the leading order is

Ipred(N) ≈ K

2
logN. (5.24)

The modern theory of learning is concerned in large part with quantifying
the complexity of a model class, and in particular with replacing a simple
count of parameters with a more rigorous notion of dimensionality for the
space of models; for a general review of these ideas see Ref. [88], and for a
discussion close in spirit to this one see Ref. [89]. The important point here



“thinking”
2002/8/29
page 548

�

�

�

�

�

�

�

�

548 Physics of Bio-Molecules and Cells

is that the dimensionality of the model class, and hence the complexity of
the class in the sense of learning theory, emerges as the coefficient of the
logarithmic divergence in Ipred. Thus a measure of complexity in learning
problems can be derived from a more general dynamical systems or statisti-
cal mechanics point of view, treating the data in the learning problem as a
time series or one dimensional lattice. The logarithmic complexity class that
we identify as being associated with finite dimensional models also arises,
for example, at the Feigenbaum accumulation point in the period doubling
route to chaos [87].

As noted by Grassberger in his original discussion, there are time se-
ries for which the divergence of Ipred is stronger than a logarithm. We can
construct an example by looking at the density function ρ in our learning
problem above: finite dimensional models are associated with algebraic de-
cay of the density as D → 0, and we can imagine that there are model
classes in which this decay is more rapid, for example

ρ(D → 0) ≈ A exp [−B/Dµ] , µ > 0. (5.25)

In this case it can be shown that the predictive information diverges very
rapidly, as a sublinear power law,

Ipred(N) ∼ Nµ/(µ+1). (5.26)

One way that this scenario can arise is if the distribution Q(�x) that we
are trying to learn does not belong to any finite parameter family, but is
itself drawn from a distribution that enforces a degree of smoothness [90].
Understandably, stronger smoothness constraints have smaller powers (less
to predict) than the weaker ones (more to predict). For example, a rather
simple case of predicting a one dimensional variable that comes from a
continuous distribution produces Ipred(N) ∼ √N .

As with the logarithmic class, we expect that power–law divergences in
Ipred are not restricted to the learning problems that we have studied in de-
tail. The general point is that such behavior will be seen in problems where
predictability over long scales, rather then being controlled by a fixed set of
ever more precisely known parameters, is governed by a progressively more
detailed description–effectively increasing the number of parameters–as we
collect more data. This seems a plausible description of what happens in
language, where rules of spelling allow us to predict forthcoming letters of
long words, grammar binds the words together, and compositional unity of
the entire text allows predictions about the subject of the last page of the
book after reading only the first few. Indeed, Shannon’s classic experiment
on the predictability of English text (by human readers!) shows this be-
havior [91, 92], and more recently several groups have extracted power–law
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subextensive components from the numerical analysis of large corpora of
text.

Interestingly, even without an explicit example, a simple argument en-
sures existence of exponential densities and, therefore, power law predictive
information models. If the number of parameters in a learning problem is
not finite then in principle it is impossible to predict anything unless there
is some appropriate regularization. If we let the number of parameters stay
finite but become large, then there is more to be learned and correspond-
ingly the predictive information grows in proportion to this number. On
the other hand, if the number of parameters becomes infinite without reg-
ularization, then the predictive information should go to zero since nothing
can be learned. We should be able to see this happen in a regularized prob-
lem as the regularization weakens: eventually the regularization would be
insufficient and the predictive information would vanish. The only way this
can happen is if the predictive information grows more and more rapidly
with N as we weaken the regularization, until finally it becomes extensive
(equivalently, drops to zero) at the point where prediction becomes impos-
sible. To realize this scenario we have to go beyond Ipred ∝ logT with
Ipred ∝ Nµ/(µ+1); the transition from increasing predictive information to
zero occurs as µ→ 1.

This discussion makes it clear that the predictive information (the subex-
tensive entropy) distinguishes between problems of intuitively different com-
plexity and thus, in accord to Grassberger’s definitions [87], is probably a
good choice for a universal complexity measure. Can this intuition be made
more precise?

First we need to decide whether we want to attach measures of com-
plexity to a particular signal x(t) or whether we are interested in measures
that are defined by an average over the ensemble P [x(t)]. One problem in
assigning complexity to single realizations is that there can be atypical data
streams. Second, Grassberger [87] in particular has argued that our visual
intuition about the complexity of spatial patterns is an ensemble concept,
even if the ensemble is only implicit. The fact that we admit probabilistic
models is crucial: even at a colloquial level, if we allow for probabilistic
models then there is a simple description for a sequence of truly random
bits, but if we insist on a deterministic model then it may be very compli-
cated to generate precisely the observed string of bits. Furthermore, in the
context of probabilistic models it hardly makes sense to ask for a dynamics
that generates a particular data stream; we must ask for dynamics that
generate the data with reasonable probability, which is more or less equiv-
alent to asking that the given string be a typical member of the ensemble
generated by the model. All of these paths lead us to thinking not about
single strings but about ensembles in the tradition of statistical mechanics,
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and so we shall search for measures of complexity that are averages over the
distribution P [x(t)].

Once we focus on average quantities, we can provide an axiomatic proof
(much in the spirit of Shannon’s [63] arguments establishing entropy as a
unique information measure) that links Ipred to complexity. We can start by
adopting Shannon’s postulates as constraints on a measure of complexity:
if there are N equally likely signals, then the measure should be monotonic
in N ; if the signal is decomposable into statistically independent parts then
the measure should be additive with respect to this decomposition; and if
the signal can be described as a leaf on a tree of statistically independent
decisions then the measure should be a weighted sum of the measures at
each branching point. We believe that these constraints are as plausible for
complexity measures as for information measures, and it is well known from
Shannon’s original work that this set of constraints leaves the entropy as
the only possibility. Since we are discussing a time dependent signal, this
entropy depends on the duration of our sample, S(T ). We know of course
that this cannot be the end of the discussion, because we need to distinguish
between randomness (entropy) and complexity. The path to this distinction
is to introduce other constraints on our measure.

First we notice that if the signal x is continuous, then the entropy is not
invariant under transformations of x, even if these reparamterizations do not
mix points at different times. It seems reasonable to ask that complexity
be a function of the process we are observing and not of the coordinate
system in which we choose to record our observations. However, it is not
the whole function S(T ) which depends on the coordinate system for x; it
is only the extensive component of the entropy that has this noninvariance.
This can be seen more generally by noting that subextensive terms in the
entropy contribute to the mutual information among different segments of
the data stream (including the predictive information defined here), while
the extensive entropy cannot; mutual information is coordinate invariant,
so all of the noninvariance must reside in the extensive term. Thus, any
measure complexity that is coordinate invariant must discard the extensive
component of the entropy.

If we continue along these lines, we can think about the asymptotic ex-
pansion of the entropy at large T . The extensive term is the first term in
this series, and we have seen that it must be discarded. What about the
other terms? In the context of predicting in a parameterized model, most
of the terms in this series depend in detail on our prior distribution in pa-
rameter space, which might seem odd for a measure of complexity. More
generally, if we consider transformations of the data stream x(t) that mix
points within a temporal window of size τ , then for T >> τ the entropy
S(T ) may have subextensive terms which are constant, and these are not
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invariant under this class of transformations. On the other hand, if there
are divergent subextensive terms, these are invariant under such temporally
local transformations. So if we insist that measures of complexity be in-
variant not only under instantaneous coordinate transformations, but also
under temporally local transformations, then we can discard both the ex-
tensive and the finite subextensive terms in the entropy, leaving only the
divergent subextensive terms as a possible measure of complexity.

To illustrate the purpose of these two extra conditions, we may think of
measuring the velocity of a turbulent fluid flow at a given point. The condi-
tion of invariance under reparameterizations means that the complexity is
independent of the scale used by the speedometer. On the other hand, the
second condition ensures that the temporal filtering due to the finite inertia
of the speedometer’s needle does not change the estimated complexity of
the flow.

I believe that these arguments (or their slight variation also presented
in [83]) settle the question of the unique definition of complexity. Not only
is the divergent subextensive component of the entropy the unique com-
plexity measure, but it is also a universal one since it is connected in a
straightforward way to many other measures that have arisen in statistics
and in dynamical systems theory. In my mind the really big open ques-
tion is whether we can connect any of these theoretical developments to
experiments on learning by real animals (including humans).

I have emphasized the problem of learning probability distributions or
probabilistic models rather than learning deterministic functions, associa-
tions or rules. In the previous section we have discussed examples where
the nervous system adapts to the statistics of its inputs; these experiments
can be thought of as a simple example of the system learning a parameter-
ized distribution. When making saccadic eye movements, human subjects
alter their distribution of reaction times in relation to the relative probabil-
ities of different targets, as if they had learned an estimate of the relevant
likelihood ratios [93]. Humans also can learn to discriminate almost opti-
mally between random sequences (fair coin tosses) and sequences that are
correlated or anticorrelated according to a Markov process; this learning can
be accomplished from examples alone, with no other feedback [94]. Acqui-
sition of language may require learning the joint distribution of successive
phonemes, syllables, or words, and there is direct evidence for learning of
conditional probabilities from artificial sound sequences, both by infants
and by adults [95, 96].

Classical examples of learning in animals–such as eye blink conditioning
in rabbits–also may harbor evidence of learning probability distributions.
The usual experiment is to play a brief sound followed by a puff of air to
the eyes, and then the rabbit learns to blink its eye at the time when the
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air puff is expected. But if the time between a sound and a puff of air to
the eyes is chosen from a probability distribution, then rabbits will perform
graded movements of the eyelid that seem to more or less trace the shape
of the distribution, as if trying to have the exposure of the eye matched
to the (inverse) likelihood of the noxious stimulus [97]. These examples,
which are not exhaustive, indicate that the nervous system can learn an
appropriate probabilistic model, and this offers the opportunity to analyze
the dynamics of this learning using information theoretic methods: what is
the entropy of N successive reaction times following a switch to a new set
of relative probabilities in the saccade experiment? How much information
does a single reaction time provide about the relevant probabilities?

Using information theory to characterize learning is appealing because
the predictive information in the data itself (that is, in the data from which
the subject is being asked to learn) sets a limit on the generalization power
that the subject has at his or her disposal. In this sense Ipred provides an
absolute standard against which to measure learning performance in the
same way that spike train entropy provides a standard against which to
measure the performance of the neural code. I’m not really sure how to do
this yet, but I can imagine that an information theoretic analysis of learning
would thus lead to a measurement of learning efficiency [1] that parallels
the measurement of coding efficiency or even detection efficiency in photon
counting. Given our classification of learning tasks by their complexity, it
would be natural to ask if the efficiency of learning were a critical function of
task complexity: perhaps we can even identify a limit beyond which efficient
learning fails, indicating a limit to the complexity of the internal model used
by the brain during a class of learning tasks.

6 A little bit about molecules

It would be irresponsible to spend this many hours (or pages) on the brain
without saying something that touches the explosion in our knowledge of
what happens at the molecular level. Electrical signals in neurons are car-
ried by ions, such as potassium or sodium, flowing through water or through
specialized conducting pores. These pores, or channels, are large molecules
(proteins) embedded in the cell membrane, and can thus respond to the
electric field or voltage across the membrane. The coupled dynamics of
channels and voltages makes each neuron into a nonlinear circuit, and this
seems to be the molecular basis for neural computation. Many cells have the
property that these nonlinear dynamics select stereotyped pulses that can
propagate from one cell to another; these action potentials are the dominant
form of long distance cell to cell communication in the brain, and our under-
standing of how these pulses occur is one the triumphs of the (now) classical
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“biophysics”. Signals also can be carried by small molecules, which trigger
various chemical reactions when they arrive at their targets. In particular,
signal transmission across the synapse, or connection between two neurons,
involves such small molecule messengers called neurotransmitters. Calcium
ions can play both roles, moving in response to voltage gradients and regu-
lating a number of important biochemical reactions in living cells, thereby
coupling electrical and chemical events. Chemical events can reach into the
cell nucleus to regulate which protein molecules–which ion channels and
transmitter receptors–the cell produces. We will try to get a feeling for this
range of phenomena, starting on the back of an envelope and building our
way up to the facts.

Ions and small molecules diffuse freely through water, but cells are sur-
rounded by a membrane that functions as a barrier to diffusion. In par-
ticular, these membranes are composed of lipids, which are nonpolar, and
therefore cannot screen the charge of an ion that tries to pass through
the membrane. The water, of course, is polar and does screen the charge,
so pulling an ion out of the water and pushing it through the membrane
would require surmounting a large electrostatic energy barrier. This barrier
means that the membrane provides an enormous resistance to current flow
between the inside and the outside of the cell. If this were the whole story
there would be no electrical signalling in biology. In fact, cells construct
specific pores or channels through which ions can pass, and by regulating
the state of these channels the cell can control the flow of electric current
across the membrane.

Ion channels are themselves molecules, but very large ones–they are
proteins composed of several thousand atoms in very complex arrangements.
Let’s try, however, to ask a simple question: if we open a pore in the cell
membrane, how quickly can ions pass through? More precisely, since the
ions carry current and will move in response to a voltage difference across
the membrane, how large is the current in response to a given voltage? We
recall that the ratio of current to voltage is called conductance, so we are
really asking for the conductance of an open channel. Again we only want
an order of magnitude estimate, not a detailed theory.

Imagine that one ion channel serves, in effect, as a hole in the membrane.
Let us pretend that ion flow through this hole is essentially the same as
through water. The electrical current that flows through the channel is

J = qion · [ionic flux] · [channel area], (6.1)
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where qion is the charge of one ion, and we recall that “flux” measures the
current across a unit area, so that

ionic flux =
ions
cm2s

=
ions
cm3

· cm
s

(6.2)

= [ionic concentration] · [velocity of one ion] (6.3)
= cv. (6.4)

Major current carriers like sodium and potassium are at c ∼ 100 milliMolar,
or c ∼ 6×1019 ions/cm3. The average velocity is related to the applied force
through the mobility µ, the force on an ion is in turn equal to the electric
field times the ionic charge, and the electric field is (roughly) the voltage dif-
ference V across the membrane divided by the thickness � of the membrane:

v = µqionE ∼ µqionV
�
∼ D

kBT
qion

V

�
, (6.5)

where in the last step we recall the Einstein relation between mobility and
diffusion constant. Putting the various factors together we find the current

J = qion · [ionic flux] · [channel area]
= qion · [cv] · [πd2/4] (6.6)

∼ π

4
qion · cd

2D

�
· qionV
kBT

, (6.7)

where the channel has a diameter d. If we assume that the ion carries
one electronic charge, as does sodium, potassium, or chloride, then qion =
1.6× 10−19 C and

qionV

kBT
=

V

25 mV
· (6.8)

Typical values for the channel diameter should be comparable to the di-
ameter of a single ion, d ∼ 0.3 nm, and the thickness of the membrane is
� ∼ 5 nm. Diffusion constants for ions in water are D ∼ 2× 10−9 m2/s, or
∼2 (µm)2/s, which is a more natural unit. Plugging in the numbers,

J = gV (6.9)
g ∼ 2× 10−11 Amperes/Volt = 20 picoSiemens. (6.10)

So our order of magnitude argument leads us to predict that the conductance
of an open channel is roughly 20 pS, which is about right experimentally.

Empirically, cell membranes have resistances of Rm ∼ 103 ohm/cm2,
or conductances of Gm ∼ 10−3 S/cm2. If each open channel contributes
roughly 10 pS, then this membrane conductance corresponds to an average
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density of ∼108 open channels per cm2, or roughly one channel per square
micron. This is correct but misleading. First, they are many channels which
are, at one time, not open; indeed the dynamics with which channels open
and close is very important, as we shall see momentarily. Second, channels
are not distributed uniformly over the cell surface. At the synapse, or
connection between two neurons, the postsynaptic cell has channels that
open in response to the binding of the transmitter molecules released by
the presynaptic cell. These “receptor channels” form a nearly close packed
crystalline array in the small patch of cell membrane that forms the closest
contact with the presynaptic cell, and there are other examples of great
concentrations of channels in other regions of the cell.

Problem 11: Membrane capacitance. From the facts given above, estimate

the capacitance of the cell membrane. You should get C ∼ 1 µF/cm2.

Channels are protein molecules: heteropolymers of amino acids. As
discussed by other lecturers here, there are twenty types of amino acid and
a protein can be anywhere from 50 to 1000 units in length. Channels tend
to be rather large, composed of several hundred amino acids; often there
are several subunits, each of this size. For physicists, the “protein folding
problem” is to understand what it is about real proteins that allows them to
collapse into a unique structure. This is, to some approximation, a question
about the equilibrium state of the molecule, since for many proteins we can
“unfold” the molecule either by heating or by chemical treatment and then
recover the original structure by returning to the original condition29. At
present, this problem is attracting considerable attention in the statistical
mechanics community. For a biologist, the protein folding problem is slightly
different: granting that proteins fold into unique structures, one would like
to understand the mapping from the linear sequence of amino acids in a
particular protein into the three dimensional structure of the folded state.
Again, this is a very active–but clearly distinct–field of research.

We actually need a little more than a unique folded state for proteins.
Most proteins have a few rather similar structures which are stable, and the
energy differences between these structures are several (up to ∼10) kBT ,
which means that the molecule can be pushed from one state to another
by interesting perturbations, such as the binding of a small molecule. For
channels, there is a more remarkable fact, namely that (for most channels)
out of several accessible states, only one is “open” and conducting. The
other states are closed or (and this is different!) inactivated. If we think
about arranging the different states in a kinetic scheme, we might write

C1 ↔ C2 ↔ O, (6.11)

29Of course there are interesting exceptions to this rule.
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which corresponds to two closed states and one open state, with the con-
straint that the molecule must pass through the second closed state in order
to open. If the open state also equilibrates with an “inactive” state I that
is connected to C1,

C1 ↔ C2 ↔ O ↔ I ↔ C1, (6.12)

then depending on the rate constants for the different transitions the chan-
nel can be forced to pass through the inactive state and then through all
of the closed states before opening again. This is interesting because the
physical processes of “closing” and “inactivating” are often different, and
this means that the transition rates can differ by orders of magnitude: there
are channels that can flicker open and closed in a millisecond, but require
minutes to recover from inactivation. If we imagine that channels open in
response to certain inputs to the cell, this process of inactivation endows
the cell with a memory of how many of these inputs have occurred over the
past minute–the states of individual molecules are keeping count, and the
cell can read this count because the molecular states influence the dynamics
of current flow across the membrane.

Individual amino acids have dipole moments, and this means that when
the protein makes a slight change in structure (say C2 → O) there will be a
change in the dipole moment of the protein unless there is an incredible coin-
cidence. But this has the important consequence that the energy differences
among the different states of the channel will be modulated by the electric
field and hence by the voltage across the cell membrane. If the difference
in dipole moment were equivalent to moving one elementary charge across
the membrane, then we could shift the equilibrium between the two states
by changing the voltage over ∼kBT/qe = 25 mV, while if there are order
ten charges transferred the channel will switch from one state to another
over just a few mV. While molecular rearrangements within the channel
protein do not correspond to charge transfer across the whole thickness of
the membrane, the order of magnitude change in dipole moment is in this
range.

It is important to understand that one can measure the current flow-
ing through single channels in a small patch of membrane, and hence one
can observe the statistics of opening and closing transitions in a single
molecule. From such experiments one can build up kinetic models like that
in equation (6.12), and these provide an essentially exact description of the
dynamics at the single molecule level. The arrows in such kinetic schemes
are to be interpreted not as macroscopic chemical reaction rates but rather
as probabilities per unit time for transitions among the states, and from
long records of single channel dynamics one can extract these probabilities
and their voltage dependences. Again, this is not easy, in part because one
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can distinguish only the open state–different closed or inactivated states
all have zero conductance and hence are indistinguishable when measuring
current–so that multiple closed states have to be inferred from the distribu-
tion of times between openings of the channel. This is a very pretty subject,
driven by the ability to do extremely quantitative experiments; it is even
possible to detect the shot noise as ions flow through the open channel, as
well as a small amount of excess noise due to the “breathing” of the channel
molecule while it is in the open state. The first single channel experiments
were by Neher & Sakmann [98], and a modern summary of what we have
learned is given in textbooks [99, 100].

Problem 12: Closed time distributions. For a channel with just two states,

show that the distribution of times between one closing of the channel and the

next opening is exponential in form. How is this distribution changed if there are

two closed states? Can you distinguish a second closed state (“before” opening)

from an inactive state (“after” opening)?

We would like to pass from a description of single channels to a descrip-
tion of a macroscopic piece of membrane, perhaps even the whole cell. If we
can assume that the membrane is homogeneous and isopotential then there
is one voltage V across the whole membrane, and each channel has the same
stochastic dynamics. If the region we are talking about has enough chan-
nels, we can write approximately deterministic equations for the number
of channels in each state. These equations have coefficients (the transition
probabilities) that are voltage dependent, and of course the voltage across
the membrane has a dynamics driven by the currents that pass through the
open channels. Let’s illustrate this with the simplest case.

Consider a neuron that has one type of ion channel that is sensitive to
voltage, and a “leak” conductance (some channels that we haven’t studied
in detail, and which don’t seem to open and close in the interesting range
of voltages). Let the channel have just two states, open and closed, and a
conductance g when it is open. Assume that the number of open channels
n(t) relaxes to its equilibrium value neq(V ) with a time constant τ(V ). In
addition assume that the gated channel is (perfectly) selective for ions that
have a chemical potential difference of Vion across the membrane, while the
leak conductance Gleak pulls the membrane potential back to its resting
level Vrest. Finally, assume that the cell has a capacitance C, and allow for
the possibility of injecting a current Iext across the membrane. Then the
equations of motion for the coupled dynamics of channels and voltage are

C
dV
dt

= −gn(V − Vion)−Gleak(V − Vrest) + Iext, (6.13)

dn
dt

= − 1
τ(V )

[n− neq(V )]. (6.14)
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These equations already have a lot in them:

• If we linearize around a steady state we find that the effect of the
channels can be thought of as adding some new elements to the ef-
fective circuit describing the membrane. In particular these elements
can include an (effective) inductance and a negative resistance;

• Inductances of course make for resonances, which actually can be
tuned by cells to build arrays of channel–based electrical filters [101].
If the negative resistance is large enough, however, the filter goes un-
stable and one gets oscillations;

• One can also arrange the activation curve neq(V ) relative to Vion so
that the system is bistable, and the switch from one state to the other
can be triggered by a pulse of current. In an extended structure like
the axon of a neuron this switching would propagate as a front at
some fixed velocity;

• In realistic models there is more than one kind of channel, and the
nonlinear dynamics which selects a propagating front instead selects
a propagating pulse, which is the action potential or spike generated
by that neuron.

It is worth recalling the history of these ideas, at least briefly. In a series
of papers, Hodgkin & Huxley [102–105] wrote down equations similar to
equations (6.13, 6.14) as a phenomenological description of ionic current
flow across the cell membrane. They studied the squid giant axon, which
is a single nerve cell that is a small gift from nature, so large that one can
insert a wire along its length! This axon, like that in all neurons, exhibits
propagating action potentials, and the task which Hodgkin and Huxley set
themselves was to understand the mechanism of these spikes. It is important
to remember that action potentials provide the only mechanism for long
distance communication among specific neurons, and so the question of
how action potentials arise is really the question of how information gets
from one place to another in the brain. The first step taken by Hodgkin
and Huxley was to separate space and time: suspecting that current flow
along the length of the axon involved only passive conduction through the
fluid, they “shorted” this process by inserting a wire and thus forcing the
entire axon to become isopotential. By measuring the dynamics of current
flow between the wire and an electrode placed outside of the cell they were
then measuring the average properties of current flow across a patch of
membrane.

It was already known that the conductance of the cell membrane changes
during an action potential, and Hodgkin and Huxley studied this system-
atically by holding the voltage across the membrane at one value and then
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stepping to another. With dynamics of the form in equation (6.14), the
fraction of open channels will relax exponentially... and after some effort
one should be able to pull out the equilibrium fraction of open channels and
the relaxation rates, each as functions of of voltage; again it is important to
have the physical picture that the channels in the membrane are changing
state in response to voltage (or, more naturally, electric field) and hence the
dynamics are simple if the voltage is (piecewise) constant.

There are two glitches in this simple picture. First, the relaxation of
conductance or current is not exponential. Hodgkin and Huxley interpreted
this (again, phenomenologically!) by saying that the equations for elemen-
tary “gates” were as in equation (6.14) but that conductance of ions trough
a pore might require that several independent gates are open. So instead of
writing

C
dV
dt

= −gn(V − Vion)−Gleak(V − Vrest) + Iext,

they wrote, for example,

C
dV
dt

= −gn4(V − Vion)−Gleak(V − Vrest) + Iext, (6.15)

which is saying that four gates need to open in order for the channel to
conduct (their model for the potassium channel). To model the inactiva-
tion of sodium channels they used equations in which the number of open
channels was proportional to m3h, where m and h each obey equations
like equation (6.14), but the voltage dependences meq(V ) and heq(V ) have
opposite behaviors–thus a step change in voltage can lead to an increase
in conductance as m relaxes toward its increased equilibrium value, then a
decrease as h starts to relax to its decreased equilibrium value. In modern
language we would say that the channel molecule has more than two states,
but the phenomenological picture of multiple gates works quite well; it is
interesting that Hodgkin and Huxley themselves were careful not to take
too seriously any particular molecular interpretation of their equations. The
second problem in the analysis is that there are several types of channels,
although this is easier in the squid axon because “several” turns out to be
just two–one selective for sodium ions and one selective for potassium ions.

The great triumph of Hodgkin and Huxley was to show that, having
described the dynamics of current flow across a single patch of membrane,
they could predict the existence, structure, and speed of propagating action
potentials. This was a milestone, not least because it represents one of the
few cases where a fundamental advance in our understanding of biological
systems was marked by a successful quantitative prediction. Let me remind
you that, in 1952, the idea that nonlinear partial differential equations like
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the HH equations would generate propagating stereotyped pulses was by no
means obvious; the numerical methods used by Hodgkin and Huxley were
not so different from what we might use today, while rigorous proofs came
only much later.

Of course I have inverted the historical order in this presentation, de-
scribing the properties of ion channels (albeit crudely) and then arguing
that these can be put together to construct the macroscopic dynamics of
ionic currents. In fact the path from Hodgkin and Huxley to the first obser-
vation of single channels took nearly twenty five years. There were several
important steps. First, the HH model makes definite predictions about
the magnitude of ionic currents flowing during an action potential, and in
particular the relative contributions of sodium and potassium; these predic-
tions were confirmed by measuring the flux of radioactive ions30. Second,
as mentioned already, the transitions among different channels states are
voltage dependent only because these different states have different dipole
moments. This means that changes in channel state should be accompanied
by capacitive currents, called “gating currents”, which persist even if con-
duction of ions through the channel is blocked, and this is observed. The
next crucial step is that if we have a patch of membrane with a finite num-
ber of channels, then it should be possible to observe fluctuations in current
flow due to the fluctuations in the number of open channels–the opening
and closing of each channel is an independent, thermally activated process.
Kinetic models make unambiguous predictions about the spectrum of this
noise, and again these predictions were confirmed both qualitatively and
quantitatively; noise measurements also led to the first experimental esti-
mates of the conductance through a single open channel. Finally, observing
the currents through single channels required yet better amplifiers and im-
proved contact between the electrode and the membrane to insure that the
channel currents are not swamped by Johnson noise in stray conductance
paths.

Problem 13: Independent opening and closing. The remark that channels
open and close independently is a bit glib. We know that different states have
different dipole moments, and you might expect that these dipoles would interact.
Consider an area A of membrane with N channels that each have two states.
Let the two states differ by an effective displacement of charge qgate across the
membrane, and this charge interacts with the voltage V across the membrane in
the usual way. In addition, there is an energy associated with the voltage itself,

30It also turns out that the different types of channels can be blocked, more or less
independently, by various molecules. Some of the most potent channel blockers are
neurotoxins, such as tetrodotoxin from puffer fish, which is a sodium channel blocker.
These different toxins allow a pharmacological “dissection” of the molecular contributions
to ionic current flow.
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since the membrane has a capacitance. If we represent the two states of each
channel by an Ising spin σn, convince yourself that the energy of the system can
be written as

E =
1

2
CV 2 +

1

2

N�
n=1

(ε + qgateV )σn. (6.16)

Set up the equilibrium statistical mechanics of this system, and average over the

voltage fluctuations. Show that the resulting model is a mean field interaction

among the channels, and state the condition that this interaction be weak, so

that the channels will gate independently. Recall that both the capacitance and

the number of channels are proportional to the area. Is this condition met in real

neurons? In what way does this condition limit the “design” of a cell? Specifi-

cally, remember that increasing qgate makes the channels more sensitive to voltage

changes, since they make their transitions over a voltage range δV ∼ kBT/qgate;

if you want to narrow this range, what do you have to trade in order to make

sure that the channels gate independently? And why, by the way, is it desirable

to have independent gating?

So, in terms of Hodgkin–Huxley style models we would describe a neuron
by equations of the form

C
dV
dt

= −
∑

i

Gim
µi

i h
νi

i (V − Vi)−Gleak(V − Vrest) + Iext, (6.17)

dmi

dt
= − 1

τ i
act

[mi −mi
eq(V )], (6.18)

dhi

dt
= − 1

τ i
inact

[hi − hi
eq(V )], (6.19)

where i indexes a class of channels specific for ions with an equilibrium
potential Vi and we have separate kinetics for activation and inactivation.
Of course there have been many studies of such systems of equations. What
is crucial is that by doing, for example, careful single channel experiments on
patches of membrane from the cell we want to study, we measure essentially
every parameter of these equations except for the total number of each
kind of channel. This is a level of detail that is not available in any other
biological system as far as I know.

If we agree that the activation and inactivation variables run from zero
to unity, representing probabilities, then the number of channels is in the
parameters Gi which are the conductances we would observe if all channels
of class i were to open. With good single channel measurements, these are
the only parameters we don’t know.

For many years it was a standard exercise to identify the types of chan-
nels in a cell, then try to use these Hodgkin–Huxley style dynamics to ex-
plain what happens when you inject currents etc. It probably is fair to say
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that this program was successful beyond the wildest dreams of Hodgkin and
Huxley themselves–myriad different types of channel from many different
types of neuron have been described effectively by the same general sorts of
equations. On the other hand (although nobody ever said this) you have to
hunt around to find the rightGis to make everything work in any reasonably
complex cell. It was Larry Abbott, a physicist, who realized that if this is a
problem for his graduate student then it must also be a problem for the cell
(which doesn’t have graduate students to whom the task can be assigned).
So, Abbott and his colleagues realized that there must be regulatory mech-
anisms that control the channel numbers in ways that stabilized desirable
functions of the cell in the whole neural circuit [106]. This has stimulated
a beautiful series of experiments by Turrigiano and collaborators, first in
“simple” invertebrate neurons [107] and then in cortical neurons [108], show-
ing that indeed these different cells can change the number of each different
kind of channel in response to changes in the environment, stabilizing par-
ticular patterns of activity or response. Mechanisms are not yet clear. I
believe that this is an early example of the robustness problem [109, 110]
that was emphasized by Barkai and Leibler for biochemical networks [111];
they took adaptation in bacterial chemotaxis as an example (cf. the lectures
here by Duke) but the question clearly is more general. For more on these
models of self–organization of channel densities see [112–114].

The problem posed by Abbott and coworkers was, to some approxima-
tion, about homeostasis: how does a cell hold on to its function in the
network, keeping everything stable. In the models, the “correct” function is
defined implicitly. The fact that we have seen adaptation processes which
serve to optimize information transmission or coding efficiency makes it nat-
ural to ask if we can make models for the dynamics which might carry out
these optimization tasks. There is relatively little work in this area [115],
and I think that any effort along these lines will have to come to grips with
some tough problems about how cells “know” they are doing the right thing
(by any measure, information theoretic or not).

Doing the right thing, as we have emphasized repeatedly, involves both
the right deterministic transformations and proper control of noise. We
know a grat deal about noise in ion channels, as discussed above, but I think
the conventional view has been that most neurons have lots of channels and
so this source of noise isn’t really crucial for neural function. In recent work
Schneidman and collaborators have shown that this dismissal of channel
noise may have been a bit too quick [116]: neurons operate in a regime
where the number of channels that participate in the “decision” to generate
an action potential is vastly smaller than the total number of channels, so
that fluctuation effects are much more important that expected naively. In
particular, realistic amounts of channel noise may serve to jitter the timing
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of spikes on time scales which are comparable to the degree of reproducibility
observed in the representation of sensory signals (as discussed in Sect. 4).
In this way the problems of molecular level noise and the optimization of
information transmission may be intertwined [109].

It should be emphasized that the molecular components we have been
discussing are strikingly universal. Thus we can recognize homologous
potassium channels in primate cortex (the stuff we think with) and in the
nerves of an earthworm. There are vast numbers of channels coded in the
genome, and these can be organized into families of proteins that probably
have common ancestors [99]. With such a complete molecular description
of electrical signalling in single cells, one would imagine that we could an-
swer a deceptively simple question: what do individual neurons compute?
In neural network models, for example, neurons are cartooned as summing
their inputs and taking a threshold. We could make this picture a bit more
dynamical by using an “integrate and fire” model in which input currents
are filtered by the RC time constant of the cell membrane and all the ef-
fects of channels are summarized by saying that when the resulting voltage
reaches threshold there is a spike and a resetting to a lower voltage. We
would like to start with a more realistic model and show how one can iden-
tify systematically some computational functions, but really we don’t know
how to do this. One attempt is discussed in Refs. [117, 118], where we use
the ideas of dimensionsality reduction [50,59,71] to pass from the Hogdkin–
Huxley model to a description of the neuron as projecting dynamic input
currents onto a low dimensional space and then performing some nonlinear
operations to determine the probablity of generating a spike. If a simple
summation and threshold picture (or a generalized “filter and fire” model)
were correct, this approach would find it, but it seems that even with two
types of channels neurons can do something richer than this. Obviously this
is just a start, and understanding will require us to face the deeper question
of how we can indentify the computational function of a general dynamical
system.

In this discussion I have focused on the dynamics of ion channels within
one neuron. To build a brain we need to make connections or synapses
between cells, and of course these have their own dynamics and molecular
mechanisms. There are also problems of noise, not least because synapses
are very small structures, so that crucial biochemical events are happening
in cubic micron volumes or less. The emergence of optical techniques that
allow us to look into these small volumes, deep in the living brain, will quite
literally bring into focus a number of questions about noise in biochemical
networks that are of interest both because they relate to how we learn and
remember things and because they are examples of problems that all cells
must face as they carry out essential functions.
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7 Speculative thoughts about the hard problems

It is perhaps not so surprising that thinking like a physicist helps us to
understand how rod cells count single photons, or helps to elucidate the
molecular events that underlie the electrical activity of single cells. A little
more surprising, perhaps, is that physical principles are still relevant when
we go deeper into a fly’s brain and ask about how that brain extracts inter-
esting features such as motion from a complex array of data in the retina, or
how these dynamic signals are encoded in streams of action potentials. As
we come to the problems in learning, we have built an interesting theoretical
structure with clear roots in statistical physics, but we don’t yet know how
to connect these ideas with experiment. Behind this uncertainty is a deeper
and more disturbing question: maybe as we progress from sensory inputs
toward the personal experiences of that world created by our brains we will
encounter a real boundary where physics stops and biology or psychology
begins. My hope, as you might guess, is that this is not the case, and that
we eventually will understand perception, cognition and learning from the
same principled mathematical point of view that we now understand the
inanimate parts of the physical world. This optimism was shared, of course,
by Helmholtz and others more than a century ago. In this last lecture I want
to collect some of my reasons for keeping faith despite obvious problems.

In Shannon’s original work on information theory, he separated the prob-
lem of transmitting information from the problem of ascribing meaning to
this information [63]:

Frequently the messages have meaning; that is they refer to or
are correlated according to some system with certain physical or
conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem.

This quote is from the second paragraph of a very long paper; italics ap-
peared in the original. Arguably this is the major stumbling block in the use
of information theory or any other “physical” approach to analyze cognitive
phenomena: our brains presumably are interested only in information that
has meaning or relevance, and if we are in a framework that excludes such
notions then we can’t even get started.

Information theory is a statistical approach, and there is a widespread
belief that there must be “more than just statistics” to our understanding
of the world. The clearest formulation of this claim was by Chomsky [119],
in a rather direct critique of Shannon and his statistical approach to the
description of English. Shannon had used N th order Markov approxima-
tions to the distribution of letters or words, and other people used this N–
gram method in a variety of ways, including the amusing “creative writing”
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exercises of Pierce and others. Chomsky claims that all of this is hopeless,
for several reasons:

1. The significance of words or phrases is unrelated to their frequency of
occurrence;

2. Utterances can be arbitrarily long, with arbitrarily long range depen-
dences among words, so that no finite N th order approximation is
adequate;

3. A rank ordering of sentences by their probability in such models will
have grammatical and ungrammatical utterances mixed, with little if
any tendency for the grammatical sentences to be more probable.

There are several issues here31, and while I am far from being an expert on
language I think if we try to dissect these issues we’ll get a feeling for the
general problems of thinking about the brain more broadly in information
theoretic terms.

First we have the distinction between the true probability distribution
of sentences (for example) and any finite N th order approximation. There
are plenty of cases in physics where analogous approximations fail, so this
shouldn’t bother us, nor is it a special feature of language. Nonetheless,
it is important to ask how we can go beyond these limited models. There
is a theoretical question of how to characterize statistics beyond N–grams,
and there is an experimental issue of how to measure these long range
dependencies in real languages or, more subtly, in people’s knowledge of
languages. I think that we know a big part of the answer to the first
question, as explained above: the crucial measure of long range correlation is
a divergence in the predictive information Ipred(N), that is the information
that a sequence of N characters or words provides about the remainder of
the text. We can distinguish logarithmic divergence, which means roughly
that the sequence of words allows us to learn a model with a finite number
of parameters (the coefficient of the log then counts the dimensionality of
the parameter space), from a power law divergence, which is what happens
when longer and longer sequences allow us to learn a more and more detailed
description of the underlying model. There are hints that language is in the
more complex power law class.

31Some time after writing an early draft of these ideas I learned that Abney [120]
had expressed similar thoughts about the nature of the Chomsky/Shannon debate; he is
concerned primarily with the first of the issues below. I enjoyed especially his introduc-
tion to the problem: “in one’s introductory linguistics course, one learns that Chomsky
disabused the field once and for all of the notion that there was anything of interest to
statistical models of language. But one usually comes away a little fuzzy on the question
of what, precisely, he proved”.
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A second question concerns the learnability of the relevant distributions.
It might be that the true distribution of words and phrases contains every-
thing we want to know about the language, but that we cannot learn this
distribution from examples. Here it is important that “we” could be a child
learning a language, or a group of scientists trying to analyze a body of
data on language as it is used. Although learnability is a crucial issue, I
think that there is some confusion in the literature. Thus, even in very
recent work, we find comments that confuse the frequency of occurrence
of examples that we have seen with the estimate that an observer might
make of the underlying distribution32. The easiest way to see this is to
think about distributions of continuous variables, where obviously we have
to interpolate or smooth so that our best estimate of the probability is not
zero at unsampled points nor is it singular at the sampled points. There
are many ways of doing this, and I think that developments of the ideas in
Ref. [90] are leading us toward a view of this problem which at least seems
principled and natural from a physicist’s point of view [123–127]. On the
other hand, the question of how one does such smoothing or regularization
in the case of discrete distributions (as for words and phrases) is much less
clear (see, for example, [128]).

Even if we can access the full probability distribution of utterances (leav-
ing aside the issue of learning this distribution from examples), there is a
question of whether this distribution captures the full structure of the lan-
guage. At one level this is trivial: if we really have the full distribution
we can generate samples, and there will be no statistical test that will
distinguish these samples from real texts. Note again that probability dis-
tributions are “generative” in the sense that Chomsky described grammar,
and hence that no reasonable description of the probability distribution is
limited to generating sequences which were observed in some previous fi-
nite sampling or learning period. Thus, if we had an accurate model of the
probability distribution for texts, we could pass some sort of Turing test.
The harder question is whether this description of the language would con-
tain any notions of syntax or semantics. Ultimately we want to ask about

32In particular, a widely discussed paper by Marcus et al. [121] makes the clear state-
ment that all unseen combinations of words must be assigned probability zero in a sta-
tistical learning scheme, and this simply is wrong. The commentary on this paper by
Pinker [122] has some related confusions about what happens when one learns a distribu-
tion from examples. He notes that we can be told “that a whale is not a fish... overriding
our statistical experience...” In the same way that reasonable learning algorithms have to
deal with unobserved combinations, they also have to deal with outliers in distributions;
the existence of outliers, or the evident difficulty in dealing with them, has nothing to
do with the question of whether our categories of fish and mammals are built using a
probabilistic approach. The specific example of whales may be a red herring: does being
told that a whale is not a fish mean that “all the fish in the sea” cannot refer to whales?
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meaning: is it possible for a probabilistic model to encode the meanings of
words and sentences, or must these be supplied from the outside? Again
the same question arises in other domains: in what sense does knowing the
distribution of all possible natural movies correspond to “understanding”
what we are seeing?

Recently, Tishby, Pereira and I have worked on the problem of defining
and extracting relevant information, trying to fill the gap left by Shan-
non [85]. Briefly, the idea is that we observe some signal x ∈ X but are
interested in another signal y ∈ Y . Typically a full description of x requires
many more bits than are relevant to the determination of y, and we would
like to separate the relevant bits from the irrelevant ones. Formally we can
do this by asking for a compression of x into some new space X̃ such that
we keep as much information as possible about Y while throwing away as
much as possible about X . That is, we want to find a mapping x→ x̃ that
maximizes the information about Y while holding the information about X
fixed at some small value. This problem turns out to be equivalent to a
set of self–consistent equations for the mapping x → x̃, and is very much
like a problem of clustering. It is important that, unlike most clustering
procedures, there is no need to specify a notion of similarity or distance
among points in the X or Y spaces–all notions of similarity emerge directly
from the joint statistics of X and Y .

To see a little of how this works, let’s start with a somewhat fanciful
question: what is the information content of the morning newspaper? Since
entropy provides the only measure of information that is consistent with
certain simple and plausible constraints (as emphasized above), it is tempt-
ing to suggest that the information content of a news article is related to
the entropy of the distribution from which newspaper texts are drawn. This
is troublesome–more random texts have higher entropy and hence would be
more informative–and also incorrect. Unlike entropy, information always is
about something. We can ask how much an article tells us about, for exam-
ple, current events in France, or about the political bias of the editors, and
in a foreign country we might even use the newspaper to measure our own
comprehension of the language. In each case, our question of interest has a
distribution of possible answers, and (on average) this distribution shifts to
one with a lower entropy once we read the news; this decrease in entropy is
the information that we gain by reading. This relevant information typically
is much smaller than the entropy of the original signal: information about
the identity of a person is much smaller than the entropy of images that
include faces, information about words is much smaller than the entropy of
the corresponding speech sounds, and so on. Our intuitive notion of “un-
derstanding” these high entropy input signals corresponds to isolating the
relevant information in some reasonably compact form: summarizing the
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news article, replacing the image with a name, enumerating the words that
have been spoken.

When we sit down to read, we have in mind some question(s) that we
expect to have answered by the newspaper text. We can enumerate all of
the possible answers to these questions, and label the answers by y ∈ Y :
this is the relevant variable, the information of value to us. On the other
hand, we can also imagine the ensemble of all possible newspaper texts,
and label each possible text by x ∈ X : these are the raw data that we
have to work with. Again, there are many more bits in the text x than are
relevant to the answers y, and understanding the text means that we must
separate these relevant bits from the majority of irrelevant bits. In practice
this means that we can “summarize” the text, and in the same way that we
enumerate all possible texts we can also enumerate all possible summaries,
and labelling them by x̃ ∈ X̃. If we can generate good or efficient summaries
then we can construct a mapping of the raw data x into the summaries x̃
such that we discard most of the information about the text but preserve
as much information as possible about the relevant variable y.

The statement that we want our summaries to be compact or efficient
means that we want to discard as much information as possible about the
original signal. Thus, we want to “squeeze” or minimize the information
that the summary provides about the raw data, I(x̃;x). On the other hand,
if the summary is going to capture our understanding, then it must preserve
information about y, so we want to maximize I(x̃; y). More precisely, there
is going to be some tradeoff between the level of detail [I(x̃;x)] that we are
willing to tolerate and the amount of relevant information [Ix̃; y)] that we
can preserve. The optimal procedure would be to find rules for generating
summaries which provide the maximum amount of relevant information
given their level of detail. The way to do this is to maximize the weighted
difference between the two information measures,

−F = I(x̃; y)− TI(x̃;x), (7.1)

where T is a dimensionless parameter that measures the amount of extra
detail we are willing to accept for a given increase in relevant information.
We will refer to this parameter as the temperature, for reasons that be-
come clear below. So, to find optimal summaries we want to search all
possible rules for mapping x→ x̃ until we find a maximum of −F , or equiv-
alently a minimum of the “free energy” F . Note that the structure of the
optimal procedure generating summaries will evolve as we change the tem-
perature T ; there is no “correct” value of the temperature, since different
values correspond to different ways of striking a balance between detail and
effectiveness in the summaries.

There are several different interpretations of the principle that we should
minimize F . One view is that we are optimizing the weighted difference of
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the two informations, counting one as a benefit and one as a cost. Alter-
natively, we can see minimizing F as maximizing the relevant information
while holding fixed the level of detail in the summary, and in this case we
interpret T as a Lagrange multiplier that implements the constraint hold-
ing I(x̃;x) fixed. Similarly, we can divide through by T and interpret our
problem as one of squeezing the summary as much as possible–minimizing
I(x̃;x)–while holding fixed the amount of relevant information that the
summaries convey; in this case 1/T serves as the Lagrange multiplier.

It turns out that the problem of minimizing the free energy F can solved,
at least formally. To begin we need to say what we mean by searching all
possible rules for mapping x→ x̃. We consider here only the case where the
summaries forma discrete set, and for simplicity we (usually) assume that
the data x and the relevant variable y also are drawn from discrete sets of
possibilities. The general mapping from x to x̃ is probabilistic, and the set
of mapping rules is given completely if we specify the set of probabilities
P (x̃|x) that any raw data point x will be assigned to the summary x̃. These
probabilities of course must be normalized, so we must enforce∑

x̃∈X̃

P (x̃|x) = 1 (7.2)

for each x ∈ X . We can do this by introducing a Lagrange multiplier Λ(x)
for each x and then solving the constrained optimization problem

min
P (x̃|x)


F − ∑

x∈X

Λ(x)
∑
x̃∈X̃

P (x̃|x)

 , (7.3)

and at the end we have choose the values of Λ(X) to satisfy the normaliza-
tion condition in equation (7.2).

As shown in Ref. [85], the Euler–Lagrange equations for this varia-
tional problem are equivalent to a set of self–consistent equations for the
probability distribution P (x̃|x):

P (x̃|x) =
P (x̃)
Z(x, T )

exp

{
− 1
T

∑
y∈Y

P (y|x) ln
[
P (y|x)
P (y|x̃)

] }
(7.4)

P (y|x̃) =
∑
x∈X

P (y|x)P (x|x̃)

=
1

P (x̃)

∑
x∈X

P (y|x)P (x̃|x)P (x). (7.5)

Up to this point, the set of summaries X̃ is completely abstract. If we choose
a fixed number of possible summaries then the evolution with temperature
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is continuous, and as we lower the temperature the summaries become pro-
gressively more detailed [I(x̃;x) is increasing] and more informative [I(x̃; y)
is increasing]; the local coefficient that relates the extra relevant information
per increment of detail is the temperature itself.

If X is discrete, then the detail in the summary can never exceed the
entropy S(X), and of course the relevant information provided by the sum-
maries can never exceed the relevant information in the original signal. This
means that there is a natural set of normalized coordinates in the informa-
tion plane I(x̃; y) vs. I(x̃;x), and different signals are characterized by
different trajectories in these normalized coordinates. If signals are “un-
derstandable” in the colloquial sense, it must be that most of the available
relevant information can be captured by summaries that are very compact,
so that I(x̃; y)/I(x; y) is near unity even when I(x̃;x)/S(X) is very small.
At the opposite extreme are signals that have been encrypted (or texts
which are so convoluted) so that no small piece of the original data contains
any significant fraction of the relevant information.

Throughout most of the information plane the optimal solution has a
probabilistic structure–the assignment rules P (x̃|x) are not deterministic.
This means that our problem of providing informative but compact sum-
maries is very different from the usual problems in classification or recogni-
tion, where if we ask for assignment rules that minimize errors we will al-
ways find that the optimal solution is deterministic (recall Problem 2). Thus
the information theoretic approach encompasses automatically a measure of
confidence in which the optimal strategy involves (generically) a bit of true
random guessing when faced with uncertainty. Returning to our example
of the newspaper, this has an important consequence. If asked to provide a
summary of the front page news, the optimal summaries have probabilistic
assignments to the text–if asked several times, even an “optimal reader” will
have a finite probability of giving different answers each time she is asked.
The fact that assignment rules are probabilistic means also that these rules
can be perturbed quantitatively by finite amounts of additional data, so that
small amounts of additional information about, for example, the a priori
likelihood of different interesting events in the world can influence the opti-
mal rules for summarizing the text. It is attractive that a purely objective
procedure, which provides an optimal extraction of relevant information,
generates these elements of randomness and subjectivity.

Extracting relevant information has bene called the “information bottle-
neck” because we squeeze the signal X through a narrow channel X̃ while
trying to preserve information about Y . This approach has been used, at
least in preliminary form, in several cases of possible interest for the analysis
of language. First, we can takeX to be one word and Y to be the next word.
If we insist that there be very few categories for X̃–we squeeze through a
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very narrow bottleneck–then to a good approximation the mapping from X
into X̃ constitutes a clustering of words into sensible syntactic categories
(parts of speech, with a clear separation of proper nouns). It is interesting
that in the cognitive science literature there is also a discussion of how one
might acquire syntactic categories from such “distributional information”
(see, for example, [129]), although this discussion seems to use somewhat
arbitrary metrics on the space of conditional distributions.

If we allow for X̃ to capture more bits about X in the next word prob-
lem, then we start to see the general part of speech clusters break into
groups that have some semantic relatedness, as noted also by Redington
et al. [129]. A more direct demonstration was given by Pereira et al. [130],
who took X and Y to be the noun and verb of each sentence33. Now one
has the clear impression that the clusters of words (either nouns or verbs)
have similar meanings, although this certainly is only a subjective remark
at this point. Notice, however, that in this formulation the absolute fre-
quency of occurrence of individual words or even word pairs is not essential
(connecting to Chomsky’s point #1 above); instead the clustering of words
with apparently similar meanings arises from the total structure of the set
of conditional distributions P (y|x).

Yet another possible approach to “meaning” involves taking X as the
identity of a document Y as a word in the document. Slonim & Tishby [131]
did this for documents posted to twenty different news groups on the web,
of course hiding any information that directly identifies the news group in
the document. The result is that choosing roughly twenty different values
for X̃ captures most of the mutual information between X and Y , and
these twenty clusters have a very strong overlap with the actual newsgroups.
This procedure–which is “unsupervised” since the clustering algorithm does
not have access to labels on the documents–yields a categorization that is
competitive with state of the art methods for supervised learning of the
newsgroup identities. While one may object that some of these tasks are
too easy, these results at least go in the direction of suggesting that analysis
of word statistics alone can identify the “topic” of a document as it was
assigned by the author.

33This was done before the development of the bottleneck ideas so we need to be a
bit careful. Tishby et al. proposed clustering X according the conditional distributions
P (y|x) and suggested the use of the Kullback–Leibler divergence (DKL) as a natural
measure of distance. In the bottleneck approach there is no need to postulate a distance
measure, but what emerges from the analysis is essentially the soft clustering based on
DKL as suggested by Tishby et al.
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I think that some reasonably concrete questions emerge from all of this:

• How clear is the evidence that language–or other (colloquially) com-
plex natural signals–fall into the power-law class defined through the
analysis of predictive information?

• On a purely theoretical matter, can we regularize the problem of learn-
ing distributions over discrete variables in a (principled) way which
puts such learning problems in the power–law class?

• Can we use the information bottleneck ideas to find the features of
words and phrases that efficiently represent the large amounts of pre-
dictive information that we find in texts?

• Can we test, in psycholinguistic experiments, the hypothesis that this
clustering of words and phrases through the bottleneck collects to-
gether items with similar meaning?

• If we believe that meanings are related to statistical structure, can we
shift our perceptions of meaning by exposure to texts with different
statistics?

This last experiment would, I think, be quite compelling (or at least provoca-
tive). When we set out to test the idea that neural codes are “designed”
to optimize information transmission, the clear qualitative prediction was
that the code would have to change in response to the statistics of sensory
inputs, and this would have to work in ways beyond the standard forms
of adaptation that had been characterized previously. This prediction was
confirmed, and it would be quite dramatic if we could design a parallel
experiment on our perception of meaning. Surely this is the place to stop.

The text and reference list make clear the enormous debt I owe to my colleagues and
collaborators. I especially want to thank Rob de Ruyter, since it is literally because of
his experiments that I had the courage to “think about the brain” in the sense which I
tried to capture in these lectures. The adventure which Rob and I have had in thinking
about fly brains in particular has been one we enjoyed sharing with many great students,
postdocs and collaborators over the years: A. Zee, F. Rieke, D.K. Warland, M. Potters,
G.D. Lewen, S.P. Strong, R. Koberle, N. Brenner, E. Schneidman, and A.L. Fairhall
(in roughly historical order). While all of this work blended theory and experiment to
the point that there are few papers which are “purely” one or the other, I’ve also been
interested in some questions which, as noted, have yet to make contact with data. These
ideas also have developed in a very collaborative way with C.G. Callan, I. Nemenman,
F. Pereira, and N. Tishby (alphabetically). Particularly for the more theoretical topics,
discussions with my current collaborators J. Miller and S. Still have been crucial. I am
grateful to the students at Les Houches for making the task of lecturing so pleasurable,
and to the organizers both for creating this opportunity and for being so patient with me
as I struggled to complete these notes. My thanks also to S. Still for reading through a
(very) late draft and providing many helpful suggestions.
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