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Multiple Sequence Alignment

Desmond G. Higgins and William R. Taylor

1. Introduction
The alignment of protein sequences is the most powerful computational tool

available to the molecular biologist. Where one sequence is of unknown struc-
ture and function, its alignment with another sequence that is well character-
ized in both structure and function immediately reveals the structure and
function of the first sequence. This ideal transfer of information is,
unfortunately, not always attained and can fail either because the two sequences
are equally uncharacterized (although they might align quite well) or because
the alignment is too poor to be trusted. Both these situations can be helped
if the analysis is extended to incorporate more sequences. In the former case,
the addition of further sequences can reveal portions of the protein that are
important in structure and function (even if that structure or function is
unknown), whereas in the latter, the revelation of conserved patterns can help
add confidence in the alignment.

In this chapter, we describe two methods that can be used to produce mul-
tiple sequence alignments. Both are based on the simple heuristic that it is best
to align the most similar sequences first and gradually combine these, in a
hierarchic manner, into a multiple sequence alignment.

2. MULTAL
2.1. Outline of the Algorithm

The Program MULTAL was originally devised to deal with large numbers
of protein sequences that are typically encountered in the analysis of large fami-
lies (such as the immunogobulins or globins) or in sifting out the often exten-
sive collections of sequences produced as the result of a search across the
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sequence databanks. These applications are the main topic considered in this
section. Those who wish to use the program only as an alignment/editor for
a small number of sequences would be best to seek out the program
CAMELON <http://www.oxmol.co.uk/prods/camelon/> (which is an imple-
mentation of MULTAL by Oxford Molecular) or CLUSTAL (see Subheading 3.).

Where CLUSTAL takes a more rigorous phylogenetic approach to ordering
of sequences prior to alignment, MULTAL uses a simple single-linked cluster-
ing iterated over several cycles. On each cycle, only sequences that have a
pairwise similarity greater than a predefined cutoff (specified of each cycle)
are aligned. If more than two sequences are mutually similar above the current
cutoff score, then all are brought together in one step using a fast concatenation
algorithm (see ref. 1). However, as this is only robust for closely related
sequences, later cycles are restricted to pairwise combinations.

In each cycle, all subalignments and all single sequences are again com-
pared with each other. Here the algorithm differs significantly from CLUSTAL,
which adheres to the original guide tree and is more similar to the GCG pro-
gram PILEUP (http://www.gcg.com/products/software.html) that developed
out of a simpler approach (2). When aligning a sequence with an alignment or
an alignment with an alignment, MULTAL calculates a pairwise sum over the
similarity of each amino acid in one alignment with each amino acid in the
other alignment. MULTAL retains this simple sum, whereas CLUSTAL pro-
vides a weighting scheme to down-weight the contribution from similar
sequences. This feature was not provided in MULTAL, as the alternate
approach (which is more practical with large numbers of sequences) is simply
to remove one of a pair of similar sequences. A protocol for this is described as
follows.

2.2. Strategies for Large Numbers of Sequences

MULTAL contains numerous methods to deal with large numbers of
sequence (where large is considered to be hundreds or thousands of sequences).
Although very valuable, this aspect can require understanding and careful treat-
ment if the program is not to miss expected similarities. Generally, there is a
trade-off between time spent and the chance of missing a relationship.

2.2.1. The Span Parameter

The greatest saving in time that can be made when dealing with a large
number of sequences is to avoid the costly comparison of all against all (this is
especially true for MULTAL, where this calculation is performed on each
cycle). If the sequences were presented in an optimal order in which the most
similar sequences were adjacent, then MULTAL would only need to consider
adjacent sequences on each cycle — transforming a time dependency that was
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proportional to the square of the sequences into a time dependency that is lin-
ear in the number of sequences. As such an optimal order cannot easily be
obtained, MULTAL considers the pairwise similarity over a number of adja-
cent sequences, specified by a parameter called the span, which can be varied
from cycle to cycle, as can all the MULTAL parameters.

In general, the span starts small (comparing only local sequences) and
expands from cycle to cycle. However, even if it remains fixed at a small num-
ber, there is still a good chance of obtaining a complete multiple alignment,
because, as the cycles progress, the number of “sequences” (which now
includes subalignments) decreases relative to the span so that by the final
cycles, the number of subalignments plus unaligned sequences (referred to
jointly as blocks) is less than the span and so all are eventually compared to all.

2.2.2. The Window Parameter

A related saving can be made at the level of the detailed calculation of the
alignment. If the initial cycles are only aligning relatively similar sequences,
then the size of relative insertion and deletion needed to obtain the optimal
alignment can be expected to be relatively small. If restrictions are placed on
the alignment path, then a calculation of time dependent on the product of the
sequences becomes approximately linear in sequence length. The parameter
that controls this is called the window and its value specifies a diagonal stripe
(placed symmetrically) through the matrix (dot-plot) constructed from placing
each sequence on the sides of a rectangle. As a safeguard, however, if the dif-
ference in sequence length is greater than the size of the window parameter
value, then the sequences are not compared on that cycle. In general (as with
the span parameter), the value of the window parameter should be increased
through successive cycles.

2.2.3. Peptide Presort

The efficient operation of both the span and window parameters rely on
having a well-ordered starting list of sequences. Often, sequences are fouund
preordered in existing databanks or as the result of a previous alignment using
MULTAL or some other program. (Both MULTAL and CLUSTAL record the
resulting alignment to be used in this way.) However, if this is not avaliable,
then MULTAL can (optionally) attempt to create it based on a rough measure
of similarity based on an analysis of the peptide composition of each sequence
— specifically, the number of common peptides between sequences. This can
be calculated very quickly using a simple hash-table or as in the current ver-
sions of MULTAL, using a dynamic radix tree structure that can accommodate
any peptide size. The size of peptide that is used for this analysis can be speci-
fied but, in general, less than three is too general and over four is too specific
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(too few common peptides are found in all but the most similar sequences).
Originally, a tetrapeptide was used (3) and it was also shown (4) that a tripep-
tide measure can capture sequence similarity quite well down to roughly the
level of 50% identity.

2.3. Alignment Parameters

As in all alignment methods, it is necessary to specify a measure of similar-
ity between amino acids to provide an alignment score and, in addition, specify
both a model and parameters for the penalty attached to relative insertions and
deletions (gaps). As in other aspects of MULTAL, these aspects are kept very
simple as it is the general philosophy of the approach that the important
contribution to the alignment is the number and quality of the sequences (with
respect to their phylogenetic distribution) that makes a good alignment and not
the fine tuning of parameters. For example, if a good selection of sequences are
obtained, then these effectively define their own local amino acid exchange
matrix at every position.

2.3.1. Amino Acid Exchange Matrix

MULTAL allows two matrices to be used in each run and these can be com-
bined in varying proportions on each cycle. Generally, the two matrices used
are the identity matrix (in which amino acid identites score 10 and all else 0)
and the PAM120 matrix (5). These are stored in the files id.mat and md.mat but
can be substituted for any other matrix, e.g., Dayhoff’s PAM250 matrix, a
BLOSUM matrix (15), or even the JTT matrix (4). Through the different cycles,
the current matrix is a linear interpolation between the two given matrices,
specified by the parameter matrix that gives the porportion (out of 10) that the
matrix in md.mat contributes. For example, if matrix = 3, then (with the PAM120

matrix in md.mat), the values used in the alignment calculation are 30% of the
PAM120 values augmented by 7 on the diagonal (being 70% of the values in the
identity matrix in id.mat). The same overall effect might have been attained by
using a series of PAM or BLOSUM matrices (as can be used in the CLUSTAL
program), however, the fine specification of values makes little difference to
the alignment and the use of an identity matrix produces values that are more
familiar.

In the past, the matrix parameter was increased from cycle to cycle, with the
expectation that later alignments would be composed of more distant sequences
and should therefore have a matrix suited to their degree of divergence (e.g.,
the PAM250 matrix). However, although this is still true for isolated sequences
that have not aligned, it does not apply to subalignments, as these have already
effectively created their own individual amino acid exchange matrix at every
position composed out of the sum of amino acid pairwise similarities. This
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effect combined with a “soft” matrix (one that scores general similarity) leads
to too much flexibility in the match and tends to diminish the importance of
highly conserved positions (of which there are often relatively few) and can
lead to both misalignment and the false incorporation of sequences that do not
belong in the family.

2.3.2. Gap Penalties

Adhering to the philosophy that the simplest alignment principles are suffi-
cient, MULTAL has only one gap penalty that is paid once for a gap of any size
— but not at the beginning or end of a sequence. This is justified in the context
of the alignment of distant protein sequences by the expectation (1) that the
locations where insertions can occur in the protein structure are generally on the
surface and (2) that if a small insertion can be made, there are probably few
constraints on this forming a linker out to a larger insertion that might even
comprise a complete domain. As with the matrix parameter, the gap penalty can
be varied over the cycles, but little justification has been seen for this and, gen-
erally a constant gap value in the range 20–30 is maintained over the full run.

Some later and more experimental versions of MULTAL embody more com-
plex gap functions. These were designed to take account of the structural
expectation that matches in a sequences alignment are correlated, often being
found in runs (typical of a conserved secondary structure) (6,7), or having an
overall distribution that cannot be adequately controlled by a penalty applied
independently at each insertion point (8). These more subtle aspects have also
been reviewed in a less technical volume (9).

2.4. When to Stop Aligning

Programs such as MULTAL or CLUSTAL (or any of their ilk) contain no
inherent method to detect when two sequences (or subalignments) should not
be aligned together. The various algorithms can produce an alignment even
when the sequences are random. Rough guidelines, such as percentage
sequence identity can be used, or statistics such as those employed in databank
search methods. However, there are no adequate statistics that can be applied
to the more complex situation of aligning alignments. Even the percentage iden-
tity is not a good guide as the pairwise similarity among sequences that can be
reliably aligned using multiple sequence alignment methods extends far into
what would be considered random were the two sequences to be extracted and
assessed as a pair. These scores are also directly derived from the current matrix
and gap penalty, which is also difficult to allow for.

Strategies, that can be employed with MULTAL are to allow the alignment
to go to completion (one big family) but then to backtrack up the cycles (using
careful visual assessment) until the point at which the subfamilies last seemed
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to be credible. This places considerable burden on the method used for “visual
assessment” and in the absence of any structural or functional knowledge, this
can only be judged by the conservation of groups that might be involved in
structure or function. The former are generally interesting residues, such as
arginine, aspartate, histidine, or any charged amino acid that might be capable
of catalysis or binding. The residues of structural importance are generally
hydrophobic, with glycine, proline, and cysteine often conserved because of
their unique properties.

Visual assessment cannot be employed in automatic family compilation or
where the user has little “feel” for the data. In this situation, it has been found
(through accumulated experience) that with a matrix value of 3 and a gap pen-
alty of 20–30, the recommended lower limit on the score cutoff is 150. At this
level, in repeated trials, there are roughly as many family members that do not
align as there are false alignments. A value of 200 or 250 would be recom-
mended as a safer choice for those who have little or no feel for the quality of
sequence alignments (see Table 1 for an example of parameter file).

2.5. Sequence Selection with MULTAL

2.5.1. Sequence Criteria

Sequences can be selected using the program MULTAL as a prefilter to form
subfamilies above a preset degree of similarity (details in Tables 1 and 2).
From each subfamily, a representative sequence was chosen according to the
weighting scheme that valued sequences with a respresentative length that did
not contain any nonstandard amino acids. A measure r was calculated:

Table 1
MULTAL Parameter Files for Alignment

Matrix Gap Span Win. Cutoff

5 20 3 30 700
5 20 5 40 600
5 20 7 50 500
5 20 9 60 400
5 20 9 70 300
5 20 9 80 250
5 20 9 90 200
5 20 9 100 150
5 20 9 100 150

The columns are, respectively, the matrix parameter (5 = 50% PAM120), the gap penalty, the
number of adjacent sequences considered (span), boundary (window) on alignment deviation
(win.), and the score cutoff. Each line of parameters is used in successive cycles. (See and ref. 3
for details.)
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Table 2
MULTAL Parameter Files for Filtering

(A) Filter to 90%
Matrix Gap Span Win. Cutoff

0 20 1 1 990
0 20 2 1 980
0 20 4 2 960
0 20 8 3 940
0 20 10 4 920
0 20 10 5 900
0 20 10 5 900

(B) Filter to 80%
Matrix Gap Span Win. Cutoff

0 20 1 5 890
0 20 2 6 880
0 20 4 7 860
0 20 8 8 840
0 20 10 9 820
0 20 10 10 800
0 20 10 10 800

(C) Filter to 70%
Matrix Gap Span Win. Cutoff

0 20 1 10 790
0 20 2 12 780
0 20 4 14 760
0 20 8 16 740
0 20 10 18 720
0 20 10 20 700
0 20 10 20 700

The columns are, respectively, the matrix parameter (0 = identity), the gap penalty, the
number of adjacent sequences considered (span), boundary (window) on alignment deviation
(win.), and the score cutoff. Each line of parameters is used in successive cycles. (See above
and ref. 3 for details.)

r = log(d2 + 1) + s (1)

where d is the difference in length of an individual sequence from the mean
length of the subfamily in which it is aligned and s is the number of nonstand-
ard amino acid symbols (included, B J O U X Z). To this basic score, penalties
and bonus points were added as defined in Table 3 and the sequence with the
lowest score was selected.
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Table 4
Sequence Selection Penalties

Attribute Penalty

PROBABLE 1
PRECURSOR 2
HYPOTHETICAL 5
MUTANT 40
FRAGMENT 50
Special –100
Structure –60

If the description line contained the
attribute key word (in capitals) the penalty
was added to the base score r (Eq. 1). The
bonus points (below the line) were added if
the sequence has some special significance
(determined by the used), or had a known
structure.

Table 3
Structure Selection Penalties
Attribute Penalty

MODEL 999
NMR 5
MUTANT 2
FRAGMENT 1

If the protein description contained
the attribute key word, the penalty was
added.

The sequences can be filtered (using the foregoing criteria) in successive
cycles, first to eliminate any sequences with more than 90% similarity, then
80%, and finally 70% similarity. (See Table 2 for alignment parameter details.)

2.5.2. Structural Criteria

A set of protein structures can be filtered using the same approach but
with a different set of criteria. With this data, the base score (r) was taken
as the atomic resolution plus the average B-value over the α-carbons
divided by 100. If the resolution was not defined a value of 5 was taken and
similarly an undefined B-value contribution was taken as 1 (i.e., an average
of 100/residue). Onto this base score were added the penalties and bonus
scores defined in Table 4.
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2.6. Installation and Operation

2.6.1. Installation

MULTAL can be downloaded by ftp from <http://mathbio.nimr.mrc.ac.uk/>.
It is currently implemented on Silicon Graphics computers (SIG, Mountain
View, CA), but the source code (which is in standard C language) is provided
and can be easily recompiled on other machines. Note that this version is the
user-unfriendly version for use by acedemics. Commercial companies and
those who need a friendly interface or user support should contact Oxford
Molecular (Web site <http://www.oxmol.co.uk/prods/cameleon/>) to investi-
gate purchasing CAMELEON.

1. In the internet location <http://mathbio.nimr.mrc.ac.uk/>, click on the MULTAL-
FTP name to go to the MULTAL directory. Here, two files will be found:
README.txt and multal.tar.gz.

2. Click on MULTAL.tar.gz and provide a local directory name into which it can be
copied.

3. Unpack the file in the local directory by typing gunzip -c multal.tar.gz | tar xvof -
. This will create a directory called MULTAL containing the program and a
subdirectory data containing some amino acid similarity matrices.

4. MULTAL can be run simply by typing multas. All parameters and sequences are
specified in the file called test.run, of which an example is provided along with
some test sequences. The sequence selection version (which differs only in its
output) is called MULSEL.

2.6.2. Operation

A good example on which to test MULTAL is the small β/α protein
flavodoxin. These bacterial proteins are widely diverged, having large inser-
tions and deletions, but they still retain some relatively clear motifs by which
to judge the quality of the alignment. This is aided in the test sequences pro-
vided (in the flavo.seq), which have been edited to include a lowercase residue
in the motifs that should align. In the final alignment these lowercase letters
should be aligned. It is a useful exercise to vary the matrix, gap penalty, and
number of sequences to get a feel for the effect that these variables have on the
accuracy of the alignment. The sequence file contains 13 sequences (with three
of the known structure from which the motif alignment can be checked) and
the start of the default run is shown in Fig. 1.

In Fig. 1 the names and lengths of the input sequences are echoed, along
with the parameters for the first cycle. Following this, a top-triangle matrix of
scores is presented for all the pairwise comparisons. Here, sequence paris out-
side the range of the span parameter (3) are not calculated, and this is indicated
by the entry >s. Similarly, those not calculated because of the length difference
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Fig. 1. Initial text output from MULTAL comparing 13 flavodoxin sequences.
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condition (window) are indicated as <w. The highest scoring pairs of sequences
are selected and the alignment of two of these is shown at the bottom of Fig. 1.

This process is repeated through each cycle until, at the final cycle, all the
sequences have aligned (the final alignment scores more than the 150 cutoff in
test.run). The final result is shown in Fig. 2, in which the two current
subalignments are brought together with a score of 389. The crude “graphic”
(of “p-b---”s) is a (fallen) treelike record of the order in which the sequences
were brought together. For example, the three pairs aligned in the first cycle
(Fig. 1) are bridged by a p-b- graphic on the part closest to the sequence codes,
whereas further condensations progress progress to the left. The parameters
producing this result (in which all motifs align) are shown in Table 1, which is
an amplification of the file test.run. (Details of the options can be found in the
README.txt file on the Web server.)

2.6.3. Execution Time

Using the test sequences provided in the flavo.seq (along with the param-
eters provided in test.run), the time taken to align the sequences was measured
when running on a single Silicon Graphics R10000 processor (174 MHz) by
typing the command time multas > /dev/null. The times returned by the UNIX
time utility were 0.825u 0.072s 0:01.10 80.9% 0+ok 14+3io 5pf+0w; this speci-
fies under one second in the user field (u).

3. CLUSTAL
CLUSTAL is the generic name for a family of programs that have been pro-

duced to carry out multiple alignments since 1988 (10–13). The most recent
versions are CLUSTAL W (12), which uses a simple text menu interface, and
CLUSTAL X (13), which uses a portable windowing system. Both programs
are freely available for academic use and may also be used from within some of
the main sequence analysis packages as well as from a number of sites on the
Internet. The algorithmic details for the two programs are more or less identi-
cal, but CLUSTAL X does have some extra features for selecting subsets of
sequences for realignment and for viewing misaligned regions. It also looks
nicer and provides the user with multicolored alignments.

The basic method is similar to that of MULTAL (ref. 3 and Section 2). Each
pair of sequences is aligned in turn and the similarity of the sequences is
recorded as the percent identity between them, ignoring any positions with
gaps. These scores are used to build an approximate phylogenetic tree between
the sequences using the Neighbour–Joining method (14). These trees are
referred to here as dendrograms (structures that indicate similarity in a hierar-
chical manner between a set of objects but do not necessarily indicate phyloge-
netic relatedness). Finally, the multiple alignment is built up gradually by
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Fig. 2. Final text output from MULTAL aligning 13 flavodoxin sequences.
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aligning together larger and larger groups of sequences, following the branching
order in the dendrogram, with the most similar sequences being aligned first.

3.1. Basic Multiple Alignment

The sequences to be aligned must be collected together in one file. These
can be in any of seven different file formats, all of which are recognized and
read automatically by the program. These formats are NBRF/PIR, EMBL/
SWISSPROT, Pearson (Fasta), CLUSTAL (*.aln), GCG/MSF (Pileup), GCG9/
RSF, and GDE flat file. All nonalphabetic characters (spaces, digits, punctua-
tion marks) are ignored except ”-” which is used to indicate a GAP (”.” in
GCG/MSF). A complete alignment may be input to the program for further
analysis such as the calculation of a phylogenetic tree. Sequence input is car-
ried out by requesting the appropriate item from the menus and the user will
enter the name of the file to be read. The file will be checked for sequence type
(amino acid or nucleic acid) and number and lengths of the sequences.

If there is no error on input, the sequences will be kept in memory awaiting
alignment. In CLUSTAL X, the sequences are displayed on the screen as they
were read in and the user may then scroll though them. Multiple alignment
is carried out by going to the Multiple alignment menu where the first option is
Do complete multiple alignment now. Selecting this option will trigger requests
file names for the complete alignment (the original file name with the charac-
ters .aln appended or as a replacement for an existing file extension name) and
for the dendrogram file (the same file name but ending in .dnd instead of .aln).
The complete alignment process is then carried out automatically and the inter-
mediate results are displayed on the screen to help monitor progress. The scores
(percent identity) of each initial pairwise alignment are displayed as they are
calculated, and then the scores of each intermediate alignment in the final align-
ment are displayed along with the numbers of sequences being aligned at each
stage. If any sequences are particularly distant from the remaining set of
sequences, the alignment of these may be delayed until all of the more easily
aligned sequences are dealt with and a message is posted on the screen.

With CLUSTAL W, the complete alignment is displayed on the screen, one
page at a time, using three different symbols to indicate conservation in each
column of the alignment: “*” for complete conservation (identity), “:” for a
strongly conserved column (conserved amino acid type) and “.” for a weakly
conserved position. A user-modifiable coloring scheme is used with CLUSTAL
X to indicate conservation in each column. Furthermore, CLUSTAL X can
detect and display alignment positions and sections of sequence that appear to
be badly aligned (relative to the rest of the sequences). This is particularly
useful in detecting scrambled sections of proteins, perhaps due to DNA
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Fig. 3. CLUSTAL X display of aligned flavodoxin sequences.

sequencing errors that cause frameshifts in the translated amino acid sequence
(see Fig. 3).

If the user has many sequences to align, the initial all against all compari-
sons may become very time consuming. This can be helped by adjusting the
parameters (see Subheading 3.2.) or the user may use an old dendrogram file
(file names ending in .dnd), providing it applies to exactly the same sequences
(the same sequence names and the same number of sequences). Similarly, users
can request the dendrogram file only. Dendrograms are written in the New
Hampshire/nested parentheses format and can be viewed using tree display
software and can, in principle, be modified in order to change the order in
which sequences are aligned. The latter is a complex task, however, without
appropriate tools for modifying trees unless the tree is very simple.

3.2. Changing Alignment Parameters

There are many parameters that can be used to control the alignments. There
are two sets, one for the initial pairwise alignments and a second for the final
multiple alignments. Under normal circumstances, it will make little differ-
ence to change the pairwise parameters. The only measurable effect will be to
change the branching order in the dendrogram, and hence the order of sequence
alignment in the final stages. There is one useful parameter, however, that can
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be used to carry out the initial alignments using full dynamic programming or
using a much faster but less accurate method. This parameter can be set using a
clearly marked item in the multiple alignment menu. For small numbers (e.g.,
less than 30 or so) of small sequences (e.g., 200 or so residues each), this
parameter will have little effect, but for large numbers of long sequences there
can be a huge saving in time by using the faster method.

The multiple alignment parameters may be changed in a submenu of the
multiple alignment menu. The main parameters are the two gap penalties (the
gap-opening penalty, which gives the cost of opening a new gap, and the gap-
extension penalty, which gives the cost of extending a gap) and the amino acid
weight matrix. Terminal gaps are not penalized. Default values are given for
these, but the user is free to select alternatives. The situation is complicated
because the initial values selected from the menu will be modified depending
on the weight matrix chosen, the similarity of the sequences, and the sequence
lengths. The gap penalties are also varied along each sequence or prealigned
set of sequences, depending on the local occurrence of existing gaps or certain
residue types. Nonetheless, the overall occurrence of gaps may be easily con-
trolled by setting the two gap parameters. The user can choose to have fewer
gaps (increase the gap opening penalty) or shorter gaps (increase the gap
extension penalty) overall.

The scores given to various aligned pairs of amino acids are controlled by
the use of amino acid weight matrices. In principle, these give a score for each
possible pair of residues and are balanced by the gap penalties. In practice, it is
more complicated, as there are now several sets of matrices available and each
usually consists of a series of matrices suitable for sequences of different degrees
of divergence. Some matrices are ideal for very similar sequences where most
weight is given to identical pairs of residues. Other matrices are better suited
for distantly related sequences where much weight is given to residues with
similar biochemical properties (e.g., hydrophobic residues, aromatic residues,
positively charged residues). By default, the software uses the BLOSUM series
of tables from Jorja and Steven Henikoff (15) and uses four different ones,
depending on the divergence of the sequences to be aligned. These matrices are
changed automatically by the software as the alignment progresses. Two alter-
native series of matrices are offered and the user can enter their own if they
have a matrix in the format used by the BLAST program. In MULTAL, weight
matrices are also adjusted for sequence divergence but in a different way (see
Section 2).

Gaps do not occur with equal frequency in all parts of protein alignments.
They are rare in the main secondary structure elements of alpha helices and
beta strands and more frequent in loops and non-core regions. CLUSTAL
attempts to mirror this by making gaps more or less likely along alignments.
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This is controlled by a series of protein gap parameters, which are set from the
multiple alignment parameters menu. First, the user can use a series of weights
that are associated with each of the 20 amino acids, which make gaps more or
less likely adjacent to certain columns of residues. These weights are empiri-
cally derived from the observed frequencies of gaps in structurally based pro-
tein alignments. Columns with conserved glycines are more likley to have gaps
beside them than columns in alignments that are rich in valine, for example.
Second, the user can choose to make gaps more likely beside short runs of
hydrophilic residues. These runs are usually in exposed loop regions. The
length of these runs and the residues that are considered to be hydrophilic may
both be set from the menu.

Of the remaining parameters, the most important is that marked as “use nega-
tive matrix” in the menu. By default, all amino acid weight matrix values are
set to being positive, regardless of whether or not they contain negative values.
This has the effect of making all alignment regions, even completely misaligned
ones, score positively. Occasionally, fragments or sequences with large N-ter-
minal or C-terminal overhangs, will be misaligned because of this. It is worth
checking the ends of alignments for serious mismatches and changing this
parameter. It is difficult to make settings for alignments that will automatically
work well with both full-length sequences and mixtures of full-length
sequences and fragments.

3.3. Phylogenetic Trees

The dendrograms that are used to decide the branching order of the
alignments may be viewed using appropriate tree-viewing software (e.g.,
NJPLOT or TREEVIEW). These are not normally used as real phylogenetic
trees, although they may give a reasonable approximation. The dendrograms
are approximate because the pairwise distances are derived from separately
aligned sequences rather than a complete multiple alignment, which is expected
to be more accurate and because the distance measure that is used is simple
percent distance rather than an evolutionary distance. The Neighbour–Joining
method (14) is used because it is fast and gives accurate trees in a wide variety
of situations. There are more sophisticated and/or more accurate methods avail-
able, many of which are available in alternative packages and users are encour-
aged to explore these. The Neighbour–Joining method works by taking all
pairwise distances between the sequences and attempting to fit these to a tree
topology using an iterative least-squares procedure. It produces unrooted trees
with branch lengths for each branch in the tree.

Before trees are calculated, the sequences must already be aligned. If not,
the tree topology will be roughly star like with all sequences very distant from
each other. The alignment can be read in from an existing alignment that the
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user has carried out previously and that is stored in a file. Alignments can be
read in a variety of formats, including CLUSTAL “.aln” files. Alternatively, if
the user has just carried out a multiple alignment, the alignment will still be in
memory and trees can be calculated. If an appropriate alignment is in memory,
a phylogenetic tree can be requested from the phylogenetic tree menu. Here
there is a menu item that will produce a tree in one step after the user is
prompted for the name of the file to contain the tree (by default, these files end
in .ph). There are no facilities in CLUSTAL for displaying the trees graphi-
cally. User must take the tree file (*.ph ) and use a tree-drawing program such
as TREEVIEW or NJPLOT to view them.

There are two parameters that users can set from the menus and that are used
to help control the production of the trees. First, users may request that all gap
positions be removed from the alignment. This means that any positions in the
multiple alignment that contain gaps in any sequence will be ignored. This is
wasteful of data in that sites are removed, even if just one sequence is not
represented at any position. This is not appropriate when fragments of
sequences are used for this reason. It does have the benefit, however, of remov-
ing the most difficult alignment areas (the sections of alignment that are most
ambiguous) automatically as these tend to cluster around gap positions. It also
means that all calculations are carried out on exactly the same positions in all
sequences.

The second parameter allows users to use a correction for multiple hits. The
pairwise distances are initially calculated as mean numbers of observed differ-
ences per position. These distances are roughly percent differences divided by
100. With closely related sequences, these distances will approximate the num-
ber of substitutions per site that have occurred between each pair. For more
distantly related sequences, however, these distances will greatly underesti-
mate the actual numbers of substitutions and the user can then use this option
to try and correct for this. The correction is based on the model of protein
evolution by Margaret Dayhoff and coworkers (5). This model is the same one
that was also used to produce the famous PAM series of amino acid weight
matrices. It has the effect of taking distances and stretching them, especially
with large distances that can be stretched several fold.

Finally, users may request bootstrap confidence measures for each grouping
in the tree. This involves making a series of trees from randomized alignments
and comparing the original tree with this set of bootstrap pseudoreplicate trees.
The measures are expressed as percentages and can crudely be used as mea-
sures of confidence. The precise interpretation of these figures in a statistical
sense is the subject of ongoing debate, but they do give very useful indications
of stability and reliability in the trees. Informally, any groupings that occur in
more than 90% of the pseudoreplicates is often considered strongly supported
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by the data, given the method used to make the tree. It does not prove biologi-
cal significance. Strong bootstrap support for incorrect groupings may be
obtained with highly biased data and poor or inappropriate methods.
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Protein Structure Comparison Using SAP

William R. Taylor

1. Introduction
In contrast to DNA, proteins exhibit an apparently unlimited variety of struc-

ture. This is a necessary requirement of the vast array of differing functions
that they perform in the maintainance of life, again, in contrast to the relatively
static archival function of DNA. Not only do we observe a bewildering variety
of form but even within a common structure, there is variation in the lengths
and orientation substructures. Such variation is both a reflection on the very
long time periods over which some structures have diverged and also a conse-
quence of the fact that proteins cannot be completely rigid bodies but must
have flexibility to accommodate the structural changes that are almost always
necessary for them to perform their functions. These aspects make comparing
structure and finding structural similarity over long divergence times very dif-
ficult. Indeed, computationally, the problem of recognizing similarity is one of
three-dimensional pattern recognition, which is a notoriously difficult problem
for computers to perform. In this chapter, guidance is provided on the use of a
flexible structure comparison method that overcomes many of the problems of
comparing protein structures that may exhibit only weak similarity.

1.1. Structural Hierarchy

The aspect of protein structure that makes the comparison problem inher-
ently tractable, is that protein structure is organized in a hierarchy of structural
levels, beginning with the basic unit of an amino acid, short stretches of these
can adopt one of two semiregular local structures referred to as α and β, being,
respectively, helical and extended in nature. The simplicity of having only two
secondary-structures (as they are jointly known) is that there are only three
(pairwise) combinations of them that can be used to construct proteins, thus
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giving the three major structural classes: (1) α with α, (2) α with β, and (3) β
with β. Various attempts have been made to order and classify the proteins
within these groups. One early attempt called a Structural Classification of
Proteins (SCOP), is based mainly on visual assessment (http://
scop.mrc-lmb.cam.ac.uk/scop/), whereas a later classification,
called CATH, is based on a more automatic classification, using an earlier ver-
sion of the program to be described in this chapter. CATH, which stands for the
four major levels in this hierarchy — Class, Architecture, Topology (fold fam-
ily), and Homologous superfamily — also contains a considerable degree of
expert added information (http://www.biochem.ucl.ac.uk/bsm/
cath/). The third main classification is Dali, which is more oriented toward
searching for structural similarity using a fast, but rough, similarity method
(http://www2.ebi.ac.uk/dali/). The resulting similarities are
ordered by a variety of measures but it is sometimes difficult to draw the line
between true and chance

1.1.1. All-α Proteins

The all-α protein class is dominated by small folds, many of which form a
simple bundle with helices running up and down. The interactions between
helices are not discrete (in the way that hydrogen bonds in a β-sheet are either
there or not), which makes their classification more difficult. Set against this,
however, the size of the α-helix (which is generally larger than a β-strand)
gives more interatomic contacts with its neighbors (relative to the a β-strand),
allowing interactions to be more clearly defined.

1.1.2. All-β Proteins

The all-β proteins are often classified by the number of β-sheets in the struc-
ture and the number and direction of β-strands in the sheet. This leads to a
fairly rigid classification scheme that can be sensitive to the exact definition of
hydrogen-bonds and β-strands. Because they are less rigid than an α-helix, the
β-sheets in two proteins can be relatively distorted — often with differing
degrees of twist of fragmented or extra strands on the edges of the sheet —
making comparisons difficult.

1.1.3. α–β Proteins

The α–β protein class can be subdivided roughly into proteins that exhibit a
mainly alternating arrangement of α-helix and β-strands along the sequence
and those that have more segregated secondary-structures. The former class
includes some large and very regular arrangements of structure (in which
a central β-sheet formed of parallel β-strands is covered on both sides by
α-helices. Often it is not clear whether this dominance is an evolutionary relic
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or simply a stable (and so favored) arrangement of secondary-structures. If the
latter, then any evolutionary implications based on finding similar substruc-
tures must be weak.

1.2. Comparison Methods

The simplest approach to compare two proteins is to move the coordinate
set of one structure (as a rigid body) over the other and look for equivalent
atoms. This can only be done easily for relatively similar structures and any
large scale movement of equivalent substructure can quickly obscure
similarities.To avoid this problem, one structure can be broken into fragments;
however, this can lead to a series of local comparisons in which the overall
global “picture” might be missed.

Both global and local aspects are important and were combined in a number
of approaches that used local environments (or views) of the structure to pro-
duce an overall equivalence (1,2). These methods determine an alignment of
one protein sequence on the other (but based on structure not generic sequence
similarity) that may then be used as a set of equivalences to produce a three-
dimensional superposition of the structural coordinate sets. Both methods
embody the constraint that the structures maintain a linear equivalence, and
although this is usually a firm basis for evolutionary relationship, other meth-
ods can identify similarity without this constraint. The constraint of the linear
ordering of structure is sometimes neglected simply for computational conve-
nience but sometimes through a specific wish to find non topological relation-
ships in structures (3). Although these might elucidate structural principles —
such as the mode of packing of an α-helix on a β-sheet (regardless of the
β-strand ordering in the sheet) — their application to problems of evolutionary
relationships would not be recommended. A major use for such methods, how-
ever, is in the identification of local arrangements of groups that constitute an
active site or binding pocket, which might well have arisen independently. One
of these algorithms based on a geometric hashing algorithm (1) is shown in
Fig. 1.

1.3. Statistical Significance

The statistical significance of structure comparison results is not easily
assessed. This is largely because there is no simple model of a random protein
(in the same way that random sequences can be simply generated). The
approach often taken (e.g., in Dali), is to generate a “random” background
distribution from miss-hits on other proteins in the protein structure databank.
This suffers from the problem that some of this background might contain
unrecognized nonrandom similarities. However, it is a reasonable assumption
to assume that these are relatively few.
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Fig. 1. Geometric hashing algorithm. Two protein structures (A) and (B) are shown
schematically. Two pairs of positions (i, j) in (A) and m, n in (B) are selected. Both
structures are centered on the origin of a grid (C) at i and m and orientated by placing
a second atom in each structure (j and n) on the vertical axis which is (coincidentally)
the terminal atom of each structure. (In three dimensions, three atoms are required to
define a unique orientation.) Atoms in both structures (open and filled circles) are
assigned an identifier that is unique to the cell in which they lie (the hash key). For
simplicity, this is shown as the concatenation of two letters associatedwith the ordinate
with the abscissa (XY). For example, atoms in structure (B) are assigned identifiers
AD, BC, CC, CD, etc. The number of common identifiers between the structures pro-
vides a score of similarity. In this example, these are CD, CE, FE, GF, HE, and FA (not
counting i, j and m, n) giving a score of 6. The process is repeated for all pairs of pairs,
or in three dimensions, all triples of triples and the results pooled.
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When one is dealing only with unconnected secondary-structure segments,
better theoretical distributions can be deduced, allowing very fast filtering of
potentially significant similarities (5). This is the basis underlying the vector
alignment search tool (VAST) structure comparison and search method
(http://www.ncbi.nlm.nih.gov/Structure/VAST.vast.html).

A hybrid approach adopted in the program SAP (described in Subheading 2.)
in which the protein structure is reversed to form a random model (as this
program only uses α-carbons, the secondary-structure remains virtually unal-
tered under reversal). Further variation is generated by random reconnections
of secondary-structure and randomization in the selection phase of the com-
parison algorithm (6).

2. SAP
The program described here is called SAP (for Structure Alignment Pro-

gram) and was derived from a related program SSAP, which forms the basis of
the CATH classification and was one of the earlier methods based on the use of
a local structural view to make an alignment (1,7). The current version is largely
a simplification of its predecessor but is also based on a refined iterative algo-
rithm.

2.1. Structure Alignment Algorithm

The core comparison algorithm underlying both SAP (as well as SSAP, and
also some sequence/structure comparison methods [8,9]) is based on the same
algorithm as is used to compare protein sequences (10). As such, insertions and
deletions can be easily incorporated, allowing the full range of variation that
would be expected between distantly related proteins. When comparing just
sequences, one amino acid is (from the point of view of the algorithm) just like
any other amino acid of the same type, and as such can be assigned a generic
score when matched up (aligned) with another residue. This is not the situation
in structure comparison where an amino acid in the core of the protein is funda-
mentally different from an amino acid on the surface of the protein — even if
they are the same amino acid type. This difference in situation can be embod-
ied in a measure of the local structural environment of each residue that can
then form the basis of a similarity measure between positions and so allow an
alignment algorithm to be applied.

2.1.1. Double Dynamic Programming

The simplest comparison approach would be to have a measure based only
on the secondary-structure state and degree of burial of the two residues in the
two proteins being compared. Such a simplistic measure, however, could not
distinguish two adjacent β-strands, both of which were buried in the core of
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both proteins. For this, a description of environment is required that can cap-
ture the true three-dimensional relationship between residues (referred to as
their topological relationship). This is a difficult computational problem and
might best be appreciated by the following simple example. Consider two
β-strands — A and B — found in both proteins being compared and lying in
that order both in the sequence of the two proteins and also in their respective
β-sheets. If both pack against an α-helix then, in both proteins, a point on A
would be buried by a β-strand to the right and an α-helix above, and would be
considered to be in similar environments. If, however, in one protein, the
α-helix lay between strand A and B, while in the other protein it lay after strand
B, then the two arrangements would not be topologically equivalent (Fig. 2).

To discount the contribution of the α-helix in the foregoing example, one
must know before assessing the environments of the β-strands that the two
helices are not equivalent. Were this known beforehand (for all such elements),
then the comparison problem would be solved before the first step was taken.
To break this circularity, the following computational device was used: given
the assumption (retaining the foregoing example) that strand A in both proteins
are equivalent, then how similar can their environments be made to appear
while still retaining topological equivalence? If, in the foregoing example, only
the B strands could be equivalenced and, consequently, the assumption that the
two A strands are equivalent would not be supported strongly. If, on the other
hand, the two helices were also equivalent (say both proteins had a βαβ struc-

Fig. 2. Two β-strands, A and B, are shown schematically as triangles packing against
an α-helix (circle) in two distinct structural fragments, (A) (βαβ) and (B) (ββα).
The packing in the two fragments could be identical but a comparison method that
takes account of the topology (or connectivity) of the units would not detect any great
similarity.
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ture), then the equivalence of the A strands would be scored more highly. These
scores themselves can be calculated between all pairs of residues and taken to
form the basis of a score matrix, from which the “best-of-the-best” set of
equivalences can be extracted while still retaining topological equivalence.

The basic alignment (or Dynamic Programming) algorithm is applied at two
distinct levels: a low level to find the best score given that residue i is equiva-
lent to j, and at a high level to select which of all possible pairs form the best
alignment. This double level (combined with the basic algorithm) gave rise to
the name “Double Dynamic Programming.” Although previously discussed in
terms of secondary-structures, the algorithm operates at the level of individual
residues and the environments that are compared consist of interatomic vector
sets. To convey some impression of these data, a simplified (two-dimensional)
example is shown in Fig. 3, in which the construction of the low-level matrix is
demonstrated.

2.1.2. Selection and Iteration

The Double Dynamic Programming algorithm described earlier, requires a
computation time proportional to the fourth power of the sequence length (for
two proteins of equal length) as it performs an alignment for all residue pairs.
To circumvent this severe requirement, some simple heuristics were devised
based on the principle that comparing the environment of all residue pairs is
not necessary. Based on local structure and environment, many residue (indeed
most) pairs can be neglected. This selection is based on secondary-structure
state (one would not normally want to compare an α-helix with a β-strand) and
burial (those with a similar degree of burial are most similar) but a component
based on the amino acid identity can also be used, giving any sequence similar-
ity a chance to contribute.

The basic algorithm was implemented, as previously (11), in an iterative
form using the heuristics on the first cycle to make a selection of potentially
similar residue pairs. On subsequent cycles, the results of the comparison based
on this selection are used to refine the next selection. Previously, a large num-
ber of potentially equivalent residue pairs were selected for the initial compari-
son, and after this only 20 were taken. In the reformulated algorithm, this trend
is reversed and an initially small selection (typically 20–30) pairs are selected
and gradually increased with each iteration. This initial sparse sampling can,
however (just by chance), be unrepresentative of the truly equivalent pairs. To
avoid this problem, continuity through the early sparse cycles was maintained
in the current algorithm by using the initial rough similarity score matrix
(referred to as the bias matrix) as a base for incremental revision. As the cycles
progress, the selection of pairs becomes increasingly determined by the domi-
nant alignment, approaching (or attaining), by the final cycle, a self-consistent
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Fig. 3. Two protein structures (A) and (B) are shown schematically. A pair of posi-
tions (i in (A) and m in B) is selected. Both structures are centered on i and m and
orientated by a local measure, such as the α-carbons geometry (indicated by the large
cross). In this superposition the relationship between all pairs of atoms (e.g., n and j) is
quantified, either as a simple distance (dnj) or by some more complex function. All pair
values are stored in a matrix and an alignment (white trace) found by the dynamic
programming algorithm. The arbitrary choice of equating i and m is circumvented by
repeating the process for all possible i,m super positions and pooling the results. In the
SSAP algorithm, a final alignment is extracted from the pooled results by a second
dynamic programming step.
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state in which the alignment has been calculated predominantly (or completely)
from pairs of residues that lie on the alignment

2.2. Multiple Structure Comparison

The problem of multiple structure comparison, which is often problematic
when dealing with structure superposition falls naturally into the structure
alignment algorithm described earlier. The approach follows that described for
the multiple alignment of protein sequences by MULTAL (see Chapter 1). The
only difference is that the idea of comparing a point in one subalignment with
a point in another requires a measure that is more complex than simply the
average pairwise amino acid similarity used in MULTAL.

In SAP the internal description of the structural environments is captured as
interatomic vector sets. In a multiple version, in which the positions in two
proteins have been equivalenced (say, i and j), these vector sets are combined
to produce an averaged set in which the multiple vector is an average of the two
(or more) contributions. Importantly, the coherence of the vector is recorded. If
the combined vectors form a tight bunch, then the position is conserved and
given a high weight (one for identical vectors), whereas if the vectors point in
opposite directions their weight is zero (12).

The multiple version of SAP is currently being developed for use on a para-
lyzed Web server called PHASE (funded by the European Union Esprit pro-
gram) and the state of availability can be checked at the following Web site:
http://mathbio.nimr.mrc.ac.uk/.

2.3. Treatment of Domains

In most comparison problems, the problem of domains is avoided by divid-
ing the proteins into different domains before any comparison is made. This is
also done in the various classification databases (CATH, SCOP, etc.) and also
in specialized domain databases such as DDBASE (http://www-
cryst.bioc.cam.ac.uk/~ddbase/) or 3Dee (http://circinus.
ebi.ac.uk:8080/3Dee/help/help\_intro.html).

The approach in SAP is to iteratively define domains as the comparison of
the structures progresses. This approach is experimental and is not yet gener-
ally implemented in the publicly available program (see Subheading 3.) except
for a limited facility that looks for internal domain duplication within a struc-
ture. If the same structure is presented twice to SAP, rather than return the
obvious, the trivial solution (on the diagonal of the comparison matrix) is
masked out in the program, and the ensuing selection of pairs with similar
local structure directs the search toward off-diagonal solutions that correspond
to internal duplications.
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3. Installation and Operation
3.1. Installation

SAP can be downloaded by ftp from http://mathbio.nimr.mrc.
ac.uk/. It is currently specific to Silicon Graphics computers.

1. In the Internet location http://mathbio.nimr.mrc.ac.uk/, click on the
SAP–FTP name to go to the sap directory. Here, two files will be found:
README.txt and sap.tar.gz.

2. Click on sap.tar.gz and provide a local directory name into which it canbe
copied.

3. Unpack the file in the local directory by typing gunzip -c sap.tar.gz |
tar xvof -. This will create a director called sap containing the program and
a subdirectory data containing an amino acid similarity matrix.

4. SAP can be run by typing the line sap file1.pdb file2.pdb. The pro-
gram can read the full PDB (Protein DataBank) files but needs only the α-car-
bons

3.2. Operation

A good example on which to test SAP is the two small β/α proteins
flavodoxin and the chemotaxis-Y (PDB codes: 4fxn and 3chy, respectively).
These two proteins have the same fold but no specific sequence similarity.
After 10 cycles, SAP should find a solution in which 102 common α-carbons
are equivalenced, at which point 84.21% of the selected residue pairs lay on
the alignment — in other words, convergence was not complete. This is
reported in the output as “Percents sel on aln.” Of the 102 residues in
the alignment, 62.75% of them had been selected as pairs for comparison
(reported as “Percent aln in sel”). These percentages are a guide to
the quality of the comparison but should not be expected to reach 100%. How-
ever, if either (or both) fall far below 50%, then caution should be exercised in
the interpretation of the results.

The alignment is presented in vertical format with the numbered sequences
on either side. Inserted or deleted segments are not printed; these are only
apparent from breaks in the residue numbering.* Between the sequences is a
numeric value that reflects the degree of similarity between the two local
environments (big is more similar). Thus the similar portions are immediately
apparent (having values over 100, whereas the dissimilar regions will have
values below 10). These numbers are normalized and applied as weights to
produce a weighted rigid body superposition of the two structures (13), for

*The numbering is the sequential numbering in the files as presented and not the attached
(PDB) residue number.
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Fig. 4. Text output from SAP. Two small proteins were compared (4fxn and 3chy).
In each alignment, the sequences run vertically and the intervening numeric value is a
measure of the strength of each equivalence in the alignment. Solvent exposure is also
indicated as “**” = very buried and “*” = partly buried.
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which the root-mean-square deviation (RMSD) is quoted as “Weighted
RMSD = 2.498 (over 102 atoms).” Two further values are quoted,
which are the unweighted RMSD based on the highest scoring (most locally
similar) residue pairs and an unweighted RMSD over all the matched atoms
(see Fig. 4, previous page).

3.3. Visualization

SAP uses the alignment of the two structures and the local similarity values
to perform a weighted rotation of one coordinate set onto the other. The result

Fig. 5. PROTDRAW display of 4fxn (gray) on 3chy (black).The dashed lines
connect residues (α-carbons positions) that have been aligned by the SAP program as
described in the text.
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of this transformation is saved in the file super.pdb (which is written with
each run of the program). Only the α-carbons are saved, but the format is in
standard PDB form with each structure separated by a “TER” record and the
local similarity score written to the B-value field. Any visualization program
(such as RASMOL) can be used to view the results, however, a simple viewing
program called PROTDRAW (András Aszódi, unpublished software) is pro-
vided in the FTP-file (and should automatically appear in the local directory)
(see Fig. 5). The README.txt file should be consulted for a full description
of this program.

PROTDRAW has various options (which can be reached by pressing the
right mouse button), the most useful of which is to color the structures by B-value
and so illuminate their most similar regions. These appear as red with grada-
tions through yellow and green to blue for the least similar parts of the struc-
ture. The darkest blue is reserved for unaligned portions of the structures. A
second useful feature to visualize the equivalence between the structures is to
connect the equivalent residues. SAP does this by writing “fake” hydrogen-
bond records to the PDB file and when these are turned-on in PROTDRAW, a
white dashed line links equivalent atoms
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Discovering Patterns Conserved
in Sets of Unaligned Protein Sequences

Inge Jonassen

1. Introduction
A protein family is a set of proteins that are homologous (have a common

ancestor) and have similar function and structure. If one discovers that a pattern
of residues is common to the sequences in a family, it is possible that the pres-
ence of these residues is crucial to the structure and/or function of the proteins.
For example, the sequences in the zinc finger c2h2 family of DNA binding pro-
teins all match the pattern C-x(2,4)-C-x(3)-[LIVFYWC] -H-x(3,5)-
H. The pattern describes residues critical to the formation of the substructure
(finger) that interacts with the DNA molecule. The substructure contains a zinc
ion coordinated by two cysteines and two histidines. In addition to characterizing
the sequences of the proteins in the family, the pattern can be used for classifica-
tion, i.e., for identifying new proteins belonging to the zinc finger c2h2 family.

The problem that we are addressing in this chapter is how to discover the most
interesting patterns conserved in a protein family or in any set of protein
sequences believed to be related. We focus on two important aspects of this prob-
lem. The first is how to decide which are the most interesting patterns, i.e., the
problem of evaluating the patterns. The second aspect is how to proceed to dis-
cover the most interesting patterns.

One approach to pattern discovery is to first obtain a global or local alignment
of the sequences. Depending on the quality of the alignment, interesting con-
served patterns can be found from the alignment. Another approach is to use a
method for discovering conserved patterns directly from the unaligned sequences.
Both approaches have their strengths and weaknesses. For example, high-quality
multiple alignments are difficult to obtain when the sequences contain repeated
elements, and in these cases methods for discovering conserved patterns directly
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from the unaligned sequences can provide better results. And, conversely, mul-
tiple global alignment methods may be better at picking up subtle similarities
between sequences that are globally similar.

Other chapters in this volume cover methods for the automatic alignment of
sequences. Here we describe methods for the automatic discovery of patterns
conserved in unaligned protein sequences. A number of methods have been
developed, and we look in some detail at the methods implemented in the PRATT
programs (1,2). We give a detailed procedure for how to use the program. First
we provide some background on the use of patterns, and on alternative ways to
discover and evaluate patterns. See ref. 3 for a more in-depth discussion of pat-
tern discovery approaches.

1.1. Defining Patterns

We adopt the pattern notation used in the PROSITE database of protein sites
and families (4). A pattern is a list of pattern positions, the positions being sepa-
rated by hyphens “- “. A pattern position can be:

1. An identity position contains one letter, e.g., C, and matches one identical letter in
the sequence.

2. An ambiguous position matches any one of a specified set of alternative letters. The
set is specified in one of two ways:
a. The allowed letters are given within brackets, e.g., [ADE].
b. The forbidden letters are given within braces, e.g., {KEH}.
A sequence letter matches the ambiguous pattern position if it is one of the allowed
letters (given within brackets), or if it is not one of the forbidden letters (within
braces).

3. A wildcard x which matches any one letter in the sequence.

Pattern positions can be repeated a fixed or variable number of times by writ-
ing (i) or (i,j) after the position where i and j are non-negative integers. The
repeated position is matched by i (or between i and j) consecutive letters in the
sequence that each matches the pattern position. For example, [DE](4,6)
matches between four and six consecutive letters in the sequence, each letter
being either D or E, and x(2,4) matches between two and four consecutive
arbitrary letters.

When one is matching a sequence and a pattern, consecutive pattern positions
are to match consecutive elements of the sequence. A sequence matches the
pattern if it contains consecutive elements matching all of the positions of the
pattern. For example, the pattern A-x(2,3)-[DE] is matched by any sequence
containing an A followed by two or three arbitrary letters followed by a D or an
E. So the sequence SEALVDS  matches this pattern, but the sequence
SALVIKESLA does not. Additionally, PROSITE patterns can be restricted to
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match from the beginning of the sequence by writing “<” in front of the pattern
or to match until the end of a sequence by appending “>” to the pattern. For
example, the sequence ALVDS matches <A-x(2,3)-[DE], but SEALVDS
does not. Most patterns used for protein sequences can be described using the
PROSITE pattern notation.

We will write patterns in a simplified form that allows for writing most of the
patterns given in the PROSITE database and all patterns that can be discovered
using the PRATT algorithm (see Subheading 2.2.2.3.).

P = A1 – x(i1,j1) – A2 – x(i2,j2) – A3– . . . – x(ip–1,jp–1) – Ap (1)

where each Ak is a nonempty set of amino acid symbols, and ik and jk are non-
negative integers so that ik ≤ jk. The set Ak represents a nonwildcard pattern posi-
tion (from now on simply called pattern position). Ak is an identity position if it
contains one letter and an ambiguous position if it contains more than one letter.
We write ambiguous pattern positions using brackets. A wildcard x(ik,jk) is said
to be flexible if jk > ik, otherwise it is fixed.

Most pattern discovery methods use exact matching between patterns and se-
quences, i.e., they report only patterns that have exact matches in all the input
sequences, or in some proportion of them. However, some methods do allow for
approximate matching. A sequence S matches a pattern P approximately if there
is another sequence T that matches P so that T can be obtained from S by, at most,
some maximum number of basic operations (substitutions, insertions, deletions).
An alternative to patterns is profiles or hidden Markov models (see Note 1).

1.2. Use of Patterns

Patterns can be used to describe residues that are conserved in a set of
sequences. Discovering patterns conserved in a protein family can help in the
understanding of relationships between sequence, structure, and function of
the proteins under study. When a conserved pattern has been discovered, one
should analyze how likely it is that pattern has been conserved by chance. The
less likely this is, the more likely the pattern is to describe functionally or struc-
turally important residues (see Subheading 2.1.).

If one finds a pattern that not only is conserved in the family, but also is
unique to the family, i.e., no (or few) sequences outside the family matches the
pattern, then the pattern can be used to identify new members of the family.
The PROSITE database of protein sites and families illustrates this. Release 13
(November 1995) of PROSITE contains more than 1000 families. For most of
the families a pattern is given that is matched by (most of) the sequences in the
family and a few other sequences. The patterns often describe structurally or
functionally important residues, but the primary purpose of the patterns is that
they should be useful for classification purposes. The sequences in the family
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that do not match the pattern are called false negatives, and the sequences out-
side the family that do match the pattern are called false positives. Ideally, the
pattern for a family has no false positives or negatives.

Using a pattern to identify new family members is more efficient than
comparing a new sequence to every sequence in the family. Also, a pattern can
sometimes provide a more sensitive test of family membership. While
similarities and dissimilarities are rewarded and penalized equally along the
complete sequences in pairwise sequence comparison, one can define a
sequence pattern that describes only the elements needed for the sequence to
be a member of the family.

Recently, PROSITE has started using profiles (see Note 1) as an alternative
to patterns. The profiles have higher expressive power and are able to describe
conserved regions that cannot be described by patterns, e.g., when there are too
few completely or highly conserved positions. However, when it is possible to
describe the conserved elements using a pattern, this gives a very compact and
easily interpretable representation. Also, the direct discovery of profiles from
unaligned sequences is more difficult than discovery of conserved patterns.
Profiles contain many parameters and, to get good estimates of their values,
one needs a large number of examples (sequences in the family). Otherwise the
resulting profile might overfit the examples, i.e., it might fail to generalize to
other family members.

Pattern discovery methods can be used to “fish” for new relationships in sets
of sequences, e.g., to find new protein families. Finding that a set of sequences
contains a conserved pattern, depending on the “strength” of the pattern, one
might find it unlikely that the pattern has evolved independently in these
sequences and therefore hypothesize that the sequences are evolutionarily
related. This type of analysis is similar to that used in sequence similarity
searches like FastA (5) and BLAST (6). However, using pattern discovery, one
is not limited to analyzing two sequences at the time. Patterns that are not
unexpected to be shared by two sequences can be highly unexpected when
found to be common to many sequences. Thus, multiple sequence comparison
in general, and pattern discovery in particular, is more sensitive to subtle
similarities between sequences than is pairwise comparison.

Methods for the discovery of conserved pattern can also be used as an aid in
solving other problems. For example, in order to find a good profile for a fam-
ily, a first step can be to discover patterns conserved in subsets of the sequences
in the family. The local alignment of the segments matching a pattern can be
used as a starting point for making a multiple global sequence alignment. This
ideas was used in early alignment methods that first found sets of identical (or
very similar) segments, one from each sequence, and based their alignment on
using these as “anchors,” see, e.g., ref. 7. Also, structure prediction methods



Patterns in Protein Sequences 37

can be based on patterns. We will not discuss this use of patterns further, but
refer the interested reader to a survey (8).

2. Pattern Discovery
We have seen that pattern discovery can be used for different purposes, i.e.,

classification, characterization, and discovery of new families. In this section
we describe approaches to the automatic discovery of patterns. The aim is to
help the investigator in making informed decisions about how to proceed in
his/her own analysis, e.g., what sequences to include in the analysis, what
method to use, and how to interpret the results. Figure 1 illustrates pattern
discovery.

If the aim is to find a pattern characterizing a family of proteins, one should
collect a set of sequences belonging to the family so that the set represents as
much variation within the family as possible. For most methods, one should

Fig. 1. Schematic figure of pattern discovery process. The unaligned sequences are
input to a pattern discovery program that finds conserved patterns. Each pattern also
defines a local alignment of the segments matching the pattern. For example, the fig-
ure shows a pattern output from the Pratt program when analyzing a subset of the
sequences in the zinc finger c2h2 family from PROSITE (accession number PS00028).
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also try to avoid biases in the selected set of sequences in order to get a fair
evaluation of the discovered patterns (see Subheading 2.1.). Collecting
sequences, one may, by mistake, include some sequences that do not belong to
the family, or the sequences may contain errors (9). Also, patterns conserved in
subsets of the family may bring valuable information especially in cases where
there is no nontrivial pattern conserved in the complete family. Therefore, one
should not only look for patterns matching all the sequences, but also for pat-
terns matching subsets of the sequences. Hence, the problem of discovering
patterns in a family is very closely related to the problem of discovering fami-
lies in sets of possibly related sequences. In both cases one searches for inter-
esting patterns shared by a subset of the input sequences.

A pattern discovery method normally takes as input one or several sets of
sequences and tries to find the patterns that are “best” for the input sequences.
Before going in detail on the methods used to do this, we will discuss different
ways of evaluating the “goodness” of the patterns.

2.1. Evaluation of Patterns
Having found that a number of patterns all are shared by the input sequences

S, we want to rank higher the patterns that brings us the most information about
the sequences in S or that are the least likely (probable) to be conserved in S by
chance. Both information content and statistical measures have been used to
rank discovered patterns.

2.1.1. Information Content and Minimum Description Length

In ref. 1 we defined the information content of a pattern. The information
content of the pattern as defined in Subheading 1.1., is

p p–1

I(P) = ΣI1(Ak) – Σc · (jk – ik) (2)
k = 1 k = 1

where c is a constant (normally set to 0.5), and

I1(Ak) = –Σ(p(a) · log p(a)) + Σp(a)/p(Ak) · log p(a)/p(Ak) (3)
a∈A a∈A

A is the set of all 20 one-letter amino acid symbols, p(a) is the a priori probabil-
ity of amino acid a (approximated by the frequency of a in a sequence data-
base), and p(A) = Σb∈A p(b).

The information content is the sum of the information content of the pattern
positions A1 to Ap minus a penalty for the flexibility of the wildcards. The
information content of the position Ak is the reduction in uncertainty when
you are told that an amino acid belongs to the set Ak, and is defined as in (10).
The function I(P) gives a reasonable ranking of patterns when all the patterns
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match the same number of sequences. A generalization of the measure above
taking into account the number of sequences matching each pattern was devel-
oped by Brazma et al. (11). They used the minimum description length (MDL)
principle from machine learning (12), which states that the best explanation for
a set of examples/observations is the theory that minimizes the length (in bits)
of the coding of the theory (pattern) itself, and the examples (sequences)
encoded using the theory. In our case, a strong pattern will shorten the descrip-
tion when coding each matching sequence using the pattern, but on the other
hand describing the pattern itself will also require some bits and might not give
increased compression if it is only matched by a few sequences. Using the
MDL principle helps to penalize patterns overfitting the example sequences.

2.1.2. Statistical Significance
Another way of defining the fitness measure is based on the statistical signifi-

cance of the patterns defined as follows (3,13). Assume that we have found the
patterns p1,…, pn, each pi matching a set of sequences Si � S. Then, for the pat-
tern pi, the pattern probability is the probability that pi matches at least |Si| out of
|S| random sequences (of the same length and composition as the sequences in S)
purely by chance. In this analysis, the sequences and the sequence positions are
assumed to be independent. The pattern significance can be defined as the reverse
of the pattern probability, thus patterns having lower probability should be ranked
higher. The statistical significance of the pattern will increase either if the infor-
mation content of the pattern increases or if the pattern matches more sequences.

Both the statistical significance measure and the MDL-based fitness measure
is sensitive to biases in the sequence set. For example, if a set of very similar
sequences has been included, a pattern matching one of these will probably match
them all and in this way get a too high score. This effect can be avoided by not
including very similar sequences in the set of sequences to be analyzed, or by
using a measure explicitly taking this effect into account. One such measure has
been proposed by Jonassen et al. (14), and is included in the PRATT program
(see Subheading 2.3.2.).

2.1.3. Evaluating Patterns to be Used for Classification
If the aim of the discovery is to find a pattern that can be used for classifica-

tion, then the best pattern is one that matches all of the sequences in the family S
(no false negatives) and none of the sequences outside S (no false positives) and
at the same time avoids overfitting the examples. In choosing a pattern to be used
for classification, there will often be a trade-off between the specificity (number
of false positives) and the sensitivity (number of false negatives): weaker pat-
terns may pick up all family members, but also a number of false positives,
whereas stronger patterns may match no sequences outside the family, but they
may also fail to match some family members. In order to calculate the number of
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false positives, one needs to check the patterns against the set (or some subset) of
sequences outside the family under analysis. Some methods for pattern discov-
ery therefore take as input not only positive examples (sequences in the family)
but also a set of negative examples (sequences outside the family); see, e.g., ref.
15. As an alternative, one can use the pattern probability or information content
to estimate the number of false positives. An analysis performed by Sternberg
demonstrates that there is a strong correlation between the pattern probability
and the number of false positives for the patterns in the PROSITE database (16).

2.1.4. Biological Significance
If we have found a significant pattern, it is likely that the matching sequences

are evolutionarily related. We might also hypothesize that it corresponds to resi-
dues critical to the function of the proteins in the family. The hypothesis can be
tested using experimental techniques, e.g., site-directed mutagenesis. Alternatively,
if the structure of one or several of the proteins in the family, is known, one can
analyze the structural location of the residues in the pattern, e.g., using the tool
PDBMOTIF (17) in combination with RASMOL (18). Moreover, if the structures
of several proteins in the family are known, one can assess whether the residues
matching the pattern are structurally equivalent in the proteins. McClure et al.
(19) carried out a systematic study of multiple sequence alignment programs to
see whether they correctly aligned structurally conserved motifs.

2.2. Discovery of Patterns
There exist a large number of different methods for the discovery of patterns.

Here we only give a few examples of methods reported in the literature. For a
more thorough survey, see ref. 3. Important characteriztics of the individual
methods are:

1. What class of patterns are they able to discover? Most methods are able to
discover subsets of the patterns that can be written using PROSITE notation.
All methods can discover patterns with identity positions, some allow for
ambiguous and wildcard positions, and some allow for flexibility — e.g., ele-
ments of the type x(2,4).

2. How are discovered patterns evaluated? Which fitness function is used?
3. Is the algorithm guaranteed to find the best pattern (with respect to the fitness

function)?
4. How efficient is the algorithm? The running time may depend linearly on the num-

ber and length of the sequences, quadratically in the number of sequences, etc.

2.2.1. Pattern Discovery Algorithms Based
on Pairwise Sequence Comparisons

In ref. 3 these algorithms are referred to as sequence driven approaches.
Methods for comparing pairs of sequences are often based on dynamic pro-
gramming, which finds an optimal (with respect to a predefined scoring
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scheme) alignment using time proportional to the product of the lengths of the
two sequences. Theoretically this could be extended to aligning k sequences
for any k > 1, but the computation time would grow proportionally to lk where
l is the average sequence length. Thus, the approach becomes infeasible even
for quite small k values, e.g., k = 10. There are strong reasons to believe that
there does not exist efficient (polynomial time) algorithms guaranteed to find
optimal multiple alignments when the number of sequences is not bounded by
a constant (20).

A natural approach to multiple sequence comparison is to combine the
results of several pairwise comparisons. This approach is used in many meth-
ods for multiple global sequence alignment. For example, the program
CLUSTAL W uses what has been called the progressive alignment method (see
ref. 21 and Chapter 1 in this volume). Smith and Smith proposed to use a
closely related method for pattern discovery (22). They progressively build a
pattern that is common to all the sequences, first finding the best pattern com-
mon to the two most similar sequences, and later on finding the best pattern
common to a pair of sequences, a pair of patterns, or a pair of one pattern and
one sequence. Each pairwise comparison is done using dynamic program-
ming, and its result is a pattern with maximum score (instead of an alignment
as in CLUSTAL W). A pattern here is a string of amino acid characters, special
gap characters, and characters from an Amino Acid Class Covering (AACC)
hierarchy. Although the result of each pairwise comparison is guaranteed to be
optimal, the optimality of the end result (pattern common to all the sequences)
with respect to the input sequences, cannot be guaranteed. However, the method
seems to work well in many cases.

A number of other methods also use pairwise sequence comparisons to build up
a pattern shared by all of or many of the example sequences. Examples are MacAW
(23) and methods proposed by Roytberg (24) and Vingron and Argos (25).

2.2.2. Pattern Discovery Algorithms Based
on Enumerating  or Searching a Solution Space

Some times it is more efficient to start from the other side, that is to start
from the patterns instead of from the sequences. This is called the pattern–
driven approach in ref. 3. One first defines a solution space, i.e., a set of pat-
terns that the algorithm should be able to discover. As a very simple example,
this could be the set of all patterns of length 4 with only identity positions.
Then one searches the solution space to find the patterns having the highest
fitness with respect to the input sequences. The best patterns found are pre-
sented to the user. If the number of patterns to be considered is not too large,
one can simply enumerate and analyze all the patterns. For each pattern one
needs to find the set of matching sequences. This can be done in time linear in
the total length of the sequences. On the other hand, the number of patterns to
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be considered typically increases exponentially with the maximum pattern
length. Thus, normally the time usage of these algorithms depends more heavily
on the definition of the pattern set than on the number and lengths of the
sequences to be analyzed.

2.2.2.1. MOTIF
This method was proposed by Smith et al. (26). They define their solution

space to be the set of patterns on the form A1 – x(d1) – A2 – x(d2) – A3 where A1,
A2, and A3 are single amino acid symbols, and d1 and d2 are non-negative inte-
gers within some range (for instance, less than or equal to 10). For each pattern
in this set, they count the number of matching sequences. For the most promis-
ing patterns, they make an alignment of the matching segments that is then
improved using a heuristic method. Sequences not having the pattern are added
to the alignment. This method is used in making the BLOCKS database (27).

2.2.2.2. ASSET
Neuwald and Green (13) took the idea of Smith et al. (27) further, allowing

for a larger number of identity positions and fixed-length wildcards. As the
number of patterns in the solution space grows exponentially with the maxi-
mum number of pattern positions, exhaustive enumeration cannot be used in
this case. Instead, Neuwald and Green use a depth-first search algorithm to
find the most significant patterns (using a measure of statistical significance).
The search is heuristically pruned by cutting parts of the solution space that
will probably not contain significant patterns. The discovered patterns are com-
bined, if possible, and the matching segments are used as a starting point for a
profile that is then refined using an iterative algorithm.

2.2.2.3. PRATT
We built on the approach of Neuwald and Green when developing the PRATT

program for automatic pattern discovery (1,2). PRATT is described here in some
detail. In PRATT we extended the solution space to include patterns with flexible
wildcards and ambiguous positions. On the other hand, we restricted the search
to only consider patterns that were matched by some minimum proportion
of the sequences (we call those pattern “conserved”). The patterns are written
in the form defined in Subheading 1.1. The user defines restrictions on the
patterns to be considered by specifying the maximum length of wildcards, the
maximum degree of flexibility, etc., effectively defining a class (set) of patterns
to be considered.

PRATT uses a depth-first search to find the conserved patterns with the highest
information content. The search is done in two phases, during the first of which
patterns with only identity positions and (possibly flexible) wildcards are con-
sidered. During the second phase, the best patterns found during the first phase,
are refined, i.e., they are analyzed to see if ambiguous symbols can be added.
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The refinement phase can be done either using an exhaustive search or a heu-
ristic algorithm. During the refinement phase, ambiguous symbols can be
added inside a pattern (substituting wildcard positions), or added to the right
(see Note 2) of a pattern. As an option, patterns with ambiguous symbols can
also be considered during the first phase, but in practice this slows the pro-
gram down considerably.

In the first version of PRATT (ref. 1), an exhaustive search for the best
pattern in the defined class is performed during the first phase. For the sec-
ond phase, one can choose between a heuristic and an exhaustive algorithm.
This version of PRATT can be guaranteed to find the conserved pattern with
the highest information content. In many cases it works very efficiently. How-
ever, when the sequences share strong patterns (with high information con-
tent), the program takes very long time to run. One reason is that the program
contains no mechanism to avoid considering all conserved patterns in the
defined class, and not only the ones with the highest information content.
Motivated by this inefficiency, we designed a new version of the program
that aims at finding only the highest scoring conserved patterns (2). This uses
branch-and-bound and heuristics to reduce the search time. A pruning mecha-
nism is introduced that avoids exploring unnecessarily generalized patterns.
This can be guaranteed to find the best pattern when no flexible spacers are
allowed, but it is heuristic when flexible spacers are allowed (the optimality
of the result cannot be guaranteed). Experimental results indicate that even
when the heuristics are used, PRATT still often finds the highest scoring con-
served patterns.

The resulting program is reasonably efficient. In an experiment, more than
900 of the families in the PROSITE database were analyzed in less than 10 s
each when using default parameters and a UNIX desktop workstation (for
more details, see ref. 2). However, the program can use very much time when
searching for patterns matching a relatively small proportion of the sequences
(e.g., minimum 10%), especially when big sets of sequences are analyzed.
One reason for this is that there is a large number of sequence subsets of size
>10%, and the program will find many patterns that, by chance, match one
such subset. More details on how to use PRATT is included in Subheading
2.3. below.

2.2.2.4. SAGOT AND CO-WORKERS

Sagot et al. have explored using depth-first search and breadth-first search
to find conserved patterns without wildcards but allowing for ambiguous po-
sitions (28,29). They found that breadth-first search is more efficient, but that
it is very memory-intensive and can realistically be applied only for finding
very short patterns.
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In a later paper, Sagot and Viari (30) presents an algorithm using a depth-
first search strategy that is able to discover patterns with both ambiguous
positions and fixed-length wildcards. As in PRATT, they let the user set a
minimum percentage of the sequences that match a pattern for the pattern to
be considered. One advantage of this method over PRATT is that, in prin-
ciple, it is not necessary to specify beforehand which groups of letters are to
be used in ambiguous pattern positions. However, in practice this is neces-
sary when analyzing protein sequences. One also needs to define a limit on
how many times each possible pattern symbol can be used in an individual
pattern. Improvements over the straightforward depth-first search algorithms
are presented that are in many ways similar to the ones we have used in
PRATT. If two patterns match the same segments, and if one of them is a
generalization of the other, only the most specific one is analyzed further in
the search (this corresponds to the pruning of too general patterns in the sec-
ond version of PRATT). Also, they do an initial search (for sketching the
solution space) analogous to the two-phase search strategy used in PRATT.
Programs implementing the algorithms of Sagot and co-workers have not yet
been made publicly available

2.3. Using PRATT to Discover Patterns

The source code for PRATT can be downloaded from ftp://
ftp.ii.uib.no/pub/bio/PRATT. The latest version is 2.2. The pro-
gram is written in ANSI C, and has been compiled and run successfully on a
number of different UNIX operating systems, on Linux, and on OS/2 sys-
tems. There are world wide web servers allowing you to run PRATT on re-
mote servers at EBI (http://www2.ebi.ac.uk/Pratt) and in Bergen (http://
www.ii.uib.no/~inge/Pratt.html). From this page you will also find more in-
formation on the PRATT program (see also refs. 1 and 2). Also, see Note 4
for instructions on how to download and install the program locally.

2.3.1. Input Format and Command Line
PRATT accepts as input sequences in one ASCII text file using either

SWISS-PROT (31) or FASTA format (without annotation — see Note 4).
Depending on the format your sequences are given in, PRATT is started us-
ing the following command: PRATT fasta filename or PRATT
swissprot filename. As an alternative to using the menu described in
Subheading 2.3.2. you can give the parameters on command line after the
filename.

2.3.2. Choosing Parameters
Running PRATT, you get a menu allowing you to choose values for a large

number of parameters. The values chosen determine what type of patterns



Patterns in Protein Sequences 45

PRATT will look for, how they are evaluated, and in what way the results are
presented to you. PRATT’s menu is shown in Table 1. The parameters of
PRATT fall into groups. The first is used to set the minimum number of
sequences a pattern should match (CM and C% parameters). The other groups
contain parameters defining the set of patterns that can be discovered, how
the patterns are to be evaluated, etc.

2.3.2.1. DEFINING A SET OF PATTERNS

Choosing liberal values for pattern restrictions parameters (e.g., allowing for
long, flexible wildcards, ambiguous pattern positions in the initial search — see
Note 5) enables PRATT to find more patterns. On the other hand, if the param-
eters are too liberal, the pattern search might take a long time and require a lot of
memory (see Note 6).

One strategy is to first use quite strict values for the parameters (e.g., using
default parameter values). The analysis using these parameters is normally quite
fast. If no interesting patterns are found, one can

1. reduce the minimum number of sequences that a pattern should match (using the
CM or C% options, and/or

2. use more liberal restrictions on the patterns. For example, one might increase the
maximum length of a wildcard (using the “PX” option), or the maximum flexibility

Table 1.  PRATT’s menu when analyzing a set of 286 sequences contained in the file seqs.

Table 1
Pratt Version 2.2: Analyzing 286 Sequences from File Sequences

Pattern conservation Search parameters

CM: min Nr of Seqs 286 G: pattern graph from seq
C%: min Percentage 100.0

E: search greediness 3
Pattern restrictions R: pattern refinement on
PP: pos in seq off RG: generalize off
PL: max length 50
PN: max Nr of symbols 50 Output
PX: max Nr of x’s 5 OF: output filename seqs.286.pat
FN: max Nr of flexibility 2 OP: pat notation on
FL: max flexibility 2 ON: max nr patterns 50
BI: symbol file off OA: max nr alignments 50

M: match summary on
BN: initial search 20 MR: ratio 10

MV: vertical summary off
Pattern Scoring
S: scoring info
X: eXecute program Q: Quit H: Help
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(referring to the pattern defined in Subheading 1.1., this is the maximum value of
jk – ik) using the FL option. One might want to allow for more flexible wildcards
(using the FN option), or for ambiguous symbols during the initial search (using
the BN option – see Note 5).

This will help to reveal patterns conserved in different subsets of the input
sequences. Another set of parameters in PRATT offers a choice of different evalu-
ation functions.

2.3.2.2. EVALUATION OF PATTERNS

By default, the fitness of a pattern is its information content as defined               in
Subheading 2.1.1. Alternative fitness functions can be chosen using the S op-
tion:

1. MDL — the pattern’s fitness will also depend on how many sequences it matches.
Using this measure, one can also choose values for a set of parameters having to
do with the coding scheme used. The values should be related to the alphabets
used for the sequences and the patterns.

2. tree — the fitness of a pattern will depend on how different the matching
sequences are. This is to correct for biases in the set of input sequences. To use
this one needs to input a file containing an estimate of the phylogenetic tree show-
ing the evolutionary relationships between the sequences, e.g., the guide tree
produced by CLUSTAL W (21). For more details, see ref. 14.

3. ppv — the conserved patterns having the highest information content are scanned
against the SWISS-PROT database to find the number of matches outside the
family. In the analysis it is assumed that all input sequences are from the SWISS-
PROT database. The positive predictive value (ppv) for a pattern is the propor-
tion of the sequences it matches, that actually belongs to the family. The patterns
are ranked by their ppv. In order to use this option, you need to have a local copy
of the SWISS-PROT database in flat file format.

2.3.2.3. SEARCH PARAMETERS

As mentioned in Subheading 2.2.2., PRATT uses heuristics to speed the
search for the best patterns. The user can control the degree of greediness by
adjusting the value of the E parameter. The default value is 3, which gives
reasonable performance on protein sequences (if DNA sequences are to be ana-
lyzed, one should use a lower value). The higher value one chooses for the E
parameter, the more greedy and faster the search will be, but on the other hand,
the more likely one is to miss good patterns. To be guaranteed to find the best
pattern, set E to 0 if you allow for flexible wildcards, or set E to 1 if you do not
allow flexible wildcards (see ref. 2 for details).

2.3.2.4. REFINEMENT PARAMETERS

The patterns found in the initial search can be output directly (set the R
option to “off”) or they can be subjected to the refinement phase. Normally,
during pattern refinement, PRATT will include as few amino acids in the
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ambiguous positions as possible to make the pattern match the required mini-
mum number of sequences. The amino acids included will be a subset of one of
the allowed amino acid groups (see Note 5). By switching on the RG option,
PRATT will include the complete smallest allowed group instead. For example,
assume that ILVF is an allowed group and that the pattern D-x(2)-E can be
refined to D-x-[IV]-E and still be conserved. If RG is set to “off,” this is the
pattern PRATT will find, but if RG is turned on, PRATT will produce the pat-
tern D-x-[ILVF]-E. An argument for including the whole group can be that
if I and V have been seen in this position, then it is likely that other proteins in
the family can have L or F in this position.

2.3.2.5. SETTING OUTPUT PARAMETERS

Normally the patterns found by PRATT are output to a file with the filename
of the input appended with .k.pat where k is the value chosen for the CM
parameter (minimum number of sequences to match a pattern). You can instruct
PRATT to use another filename by using the OF option. Also, you can choose
to output the patterns in a simplified format instead of PROSITE format by
toggling the OP parameter. ON gives the (maximum) number of patterns to be
output, and for the OA best, PRATT will also print the matching segments. If
the M option is on, it will also print a summary of where in the sequences the
different patterns have their matches.

2.3.3. Using Alignments and Query Sequences
From version 2, PRATT uses a pattern graph to define the set of patterns to be

analyzed. All patterns considered in the search are derived from paths in the
graph (for details, see ref. 2). Normally the graph is constructed so that it is
possible to find any conserved pattern in the user-defined class. However, using
the “G” option, the user can instruct PRATT to make the graph from an align-
ment (set “G” to “al”) or from a special query sequence (set “G” to “q”) in order
to restrict PRATT’s search to patterns consistent with the alignment or matching
the special query sequence.

A pattern is said to be consistent with an alignment if each sequence in the
alignment has a match to the pattern so that for each (nonwildcard) pattern posi-
tion the matching sequence symbols are on top of each other in the alignment.
This option is intended to be used when one has obtained a reliable alignment for
a subset of the sequences. This can be the case, e.g., when the structure of some
of the proteins are known. Using an alignment to guide PRATT can also speed up
the program, especially when the alignment is between sequences that are not
too similar. One can also use this option if one has an alignment of the whole set
of sequences. PRATT will then find the patterns from the alignment that score
the highest with respect to any of the evaluation functions supported by PRATT.

Constructing the pattern graph from a special query sequence can be useful if
one wants to use PRATT together with a sequence similarity search (5,6). As-
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sume that you have found a set S of sequences that are similar to a query se-
quence q. Now you can input S (the complete sequences or the segments similar
to segments in q) to PRATT and instruct it to search for patterns matching q
(which will be guaranteed when the pattern graph is constructed from q) and a
minimum number of the sequences in S. This might help to lift similarities out of
the twilight zone. Tatusov et al., among others, has has performed experiments
with a similar approach (32), using a local alignment method where we propose
to use PRATT. One advantage of using PRATT is that it allows for insertions/
deletions between the matching segments (i.e., flexible wildcards).

2.4. Examples
Here we give some examples of results obtained using PRATT version 2.2

running on a Sun Ultra 1. The sequence families analyzed were taken from
PROSITE release 13.0 (November 1995) (4), and the full sequences were
retrieved from release 34 (October 1996) of the SWISS-PROT protein sequence
database (31).

2.4.1. Zinc Finger c2h2 Family
The 286 sequences in the zinc finger c2h2 family in PROSITE (accession

number PS00028), were input to PRATT. Using default parameters (requiring
patterns to match all 286 sequences), the best conserved patterns we got were
H-x(3,5)-H and C-x(2,4)-C (each having an information content of 7.3).
We ran PRATT again, this time setting the PX parameter to 15 to allow for
longer wildcards. Now, the best patterns we got were C-x(2,4)-C-x(12)-
H-x(3,5)-H and C-x(12)-H-x(3,5)-H (having an information con-
tent, respectively, of 14.7 and 11.5). Finally, we set CM to 285 to find patterns
matching all but one sequence (and PX to 15). This time we got the patterns C-
x(2,4)-C-x(3)-[CFILMVY]-x(8)-H-x(3,5)-H (which is the result
of refining C-x(2,4)-C-x(12)-H-x(3,5)-H)  and C-x(3)-
[CFILMVY]-x(8)-H-x(3,5)-H (refinement of C-x(12)-H-x(3,5)-
H). These patterns have an information content of 16.2 and 13.0. We see that
the longest pattern we got is very similar to the one given in PROSITE (see
Subheading 1.). Each of these PRATT runs took 15–20 s.

2.4.2. Somatomedin Family
From SWISS-PROT we retrieved the six (unaligned) sequences contained

in the somatomedin family in PROSITE (accession number PS00524). Run-
ning PRATT using default parameters takes 14 s and produces, as the best con-
served pattern, I-x(0,2)-L-x(1,3)-L-x-[ALPV]-x(3)-L-A-x-
[ANQ]-[EP]-[DS]-x-[KR]-x(3)-[GPT]-x-[GP]-x(3)-[DENS]-
[DEKR]-x(3)-[ACS]-x(3)-[ACN]-x-[FY]-x-[AGQ]-x-[CGT]-x
[ACGT] having an information content of 59.9. Considering that there were
only six sequences, the pattern contains ambiguous positions with too many
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alternative amino acids. The amino acid groups that PRATT by default uses
during refinement are intended for use with bigger sets of sequences. Switch-
ing off refinement (setting “R” to “off”), PRATT takes 12 s and finds as the
best pattern C-x-C-x(3)-C-x(5)-C-C-x-D-x(1,3)-E-x(0,2)-C
(with an information content of 31.4). Disallowing flexible wildcards (setting
FN to 0) we get in less than 1 s, the pattern C-x-C-x(3)-C-x(5)-C-C-
x-D-x(4)-C (with an information content of 29.2). This example illustrates
that one should be careful when choosing values for the parameters; one set of
values does not give the best result in all cases.

2.4.3. Snake Toxin Family
We retrieved the 166 sequences from the snake toxin family in PROSITE (ac-

cession number PS00272). Using default parameters PRATT uses less than 1 s,
but finds no conserved patterns (matching all 166 sequences). Allowing for longer
wildcards (setting PX to 10), PRATT still finds no patterns. Setting CM to 160
(searching for patterns matching at least 160 sequences), PRATT uses 6 s and
finds the pattern G-C-x(1,3)-C (having an information content of 11.5). Re-
ducing CM further to 155, PRATT uses 13 s to find (among others) the pattern
G-C-x(1,3)-C-P-x(8,10)-C-C-x(2)-[DENP] (having an information
content of 25.2). We first found this pattern using the first version of PRATT (1).
The pattern was later included in the PROSITE database. It had 11 false nega-
tives (166 – 155 = 11) and no false positives, i.e., no sequences outside the family
matched the pattern.

We wanted to use PRATT’s option for evaluating patterns by their discrimina-
tory power (see Subheading 2.3.2.), and ran PRATT again setting option S to
ppv and ON to 4 (as PRATT first stores in memory all sequences matching each
pattern, we can only subject a few patterns to this analysis). Apart from this we
used the same parameters as in the last paragraph, and we got the pattern shown
there. PRATT finds this to match 161 sequences in SWISS-PROT out of which
155 are members of the snake toxin family as given in release 13.0 of PROSITE.
This gives a positive predictive value of 0.96. As the information in the SWISS-
PROT and PROSITE databases had not been synchronized since November 1995,
it is likely that the six new matches (which are sequences added to SWISS-PROT
after November 1995) actually belongs to the snake toxin family.

3. Notes
1. As an alternative to patterns, the best conserved part of a set of related sequences can

be described using a profile (33). Although a pattern gives a single amino acid (or a
set of alternative amino acids) for each position in the pattern, a profile specifies a
score for each of the 20 amino acids in each position. Additionally, a profile specifies
position-specific insertion/deletion penalties for each position. The match between a
profile and a sequence is given a score, and a sequence that receives a high score
when compared to a profile for a specific family is believed to belong to that family.
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This differs from patterns where a sequence either matches or does not match the
pattern. Another alternative to patterns is hidden Markov models – see e.g., ref. 34.

2. The reason for this is related to the way matches to patterns are found. A block data
structure (as described in ref. 13) is constructed. Conceptually this is done by first
fixing a constant w. Then the set B of all w-segments (substrings of length w) in the
sequences is generated. In this process w – 1 non-amino acid symbols are appended to
each sequence so that there are l – 1 segments for a sequence of length l. Next, for each
pair (i,a), i being an integer between 1 and w and a being an amino acid symbol, the set
bi,a of segments having a in position i is computed. Now, finding the segments matching
a pattern can be done using set-intersection operations on the sets bi,a. For example, the
set of segments matching A-x(2)-D is b1,A � b4,D. The first pattern symbol is always
matched against the first symbol in each segment, and the segments matching an ex-
tended pattern is found using set intersections between the set of segments matching the
original pattern and the sets in the block data structure corresponding to the extension.
Therefore, it is not straightforward to find matches to a pattern extended to the left.

3. First use ftp to connect to the anonymous ftp server in Bergen using the command ftp.
Log in with user name “anonymous” and use your e-mail address as the password.
Change directory to /pub/bio/PRATT (cd /pub/bio/PRATT) and download the
file Pratt2.2.tar (get Pratt2.2.tar). Exit ftp (bye), and unpack the tar file (tar
xvf Pratt2.2.tar). Compile the program by using the make command (make).
If the system complains, you may have to edit the makefile to use compilers etc. avail-
able on your local system. If things go well, make should produce an executable file
“pratt.” If you have problems, contact your local system support administrator or send
an e-mail to <inge@ii.uib.no>.

4. SWISS-PROT format is the format used for distributing the flat file version of the
SWISS-PROT sequence database (31). Fasta format is very simple. For each sequence
you simply type the sequence name on a separate line beginning with the “>” symbol.
After this line you simply type the sequence. The end of the sequence is marked with
either end-of-file or with a new line with “>” followed by the name of the next sequence.

5. PRATT uses an ordered list of identity and ambiguous symbols that can be included in
patterns. By default, this list first contains the 20 single-letter amino acid symbols and
then it contains a number of groups of amino acids from (22,35). By default, only the
first 20 are allowed during the intial pattern search, and the rest are allowed during the
pattern refinement phase. The user can define his/her own list of pattern symbols. This
is done by making an ascii/text file with one line per symbol. The line should contain
the one-letter amino acid symbols to be contained in the pattern symbol. Thus, if one
wishes to have a pattern symbol [ILV], e.g., one line in the file should simply contain
ILV. The identity symbols should always come at the top of the file. Using option BI,
one can instruct PRATT to read its pattern symbols from an external file (specified
using option BF). Using option BN, one can specify how many of these pattern symbols
should be allowed during the initial pattern search.

6. PRATT can require a lot of memory. The memory usage depends on the total length of
the input sequences. Additionally, the memory usage increases with increasing values
for the maximum pattern length (option PL), the maximum flexibility (F-options), the
number of symbols to be used during initial search (option BN).
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Identification of Domains from Protein Sequences

Chris P. Ponting and Ewan Birney

1. Introduction
The fundamental unit of protein structure is the domain, defined as a region

or regions of a polypeptide that fold independently and possesses a hydropho-
bic core (see Note 1). Domains, particularly those with enzymatic activities,
may possess functions independently of whether they are present in isolation
or else part of a larger multidomain protein. Other domains confer regulatory
and specificity properties to multidomain proteins usually via the provision of
binding sites. Because the majority of eukaryotic proteins, and a large number
of eubacterial and archaeal proteins, are multidomain in character, the determi-
nation of the structures and functions of these proteins requires detailed con-
sideration of their domain architectures.

Experience gathered from decades of structural and molecular biology dem-
onstrates that domain pairs that show similarities in sequence (>35% identity)
also possess a common fold and usually possess similarities in function (1).
These domains are thought to be “homologous,” i.e., they are derived from a
common ancestral gene following its duplication. The amino acid sequences of
these domains, once identical at the time of gene duplication, have diverged
increasingly during their evolution, yet have retained those amino acid proper-
ties that are essential for their proper domain folding, structure, and function.
Similarities between homologous domains sequences may have eroded suffi-
ciently that their common evolutionary heritage is not apparent simply from
their pairwise comparison. In these cases, the existence of a homology rela-
tionship may be inferred either from knowledge of their functions and tertiary
structures, and/or application of sequence analysis methods that use multiple
alignments. Many methods are now available that are used to predict homol-
ogy relationships. In this chapter we survey their use and provide indicators on
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how to realize the predictive potential of sequence analysis by database
searching.

2. Materials
All that is needed to perform sequence analysis is a computer with access to

the Internet. In Table 1, we list a variety of applications that can be accessed
via the World Wide Web (WWW). In general, the user cuts and pastes a query
protein sequence into a form, sets a variety of parameters, and then initiates the
application. Users with nucleotide sequences should first use gene-prediction
algorithms to generate open-reading frame (ORF) predictions (a list of gene
prediction tools is given at http://www.bork.embl-heidelberg.de/
genepredict.html).

Detailed analysis of sequences is best performed using tools compiled and
running locally. Sequence databases, alignment programs, and database search-
ing tools (see Table 1) are all available free via anonymous file transfer protocol
(FTP) (log-in as username “anonymous” and fill in your e-mail address as the
password). Instructions on downloading and compiling files are usually pro-
vided at the ftp site. In general, programs are provided as “platform-specific”
versions that can be installed on different computer systems.

The majority of the applications described here compare protein and not
nucleotide sequences. Consequently, and also if computer disk space is lim-
ited, it is recommended to download protein sequence databases before nucle-
otide databases (see Note 2). For historical reasons, different alignment
programs or editors use different file formats (such as CLUSTALW (ALN),
multiple sequence format (MSF) and Pearson (FASTA) formats). Format con-
version is provided by, among others, the CLUSTALW, CLUSTALX,
SEAVIEW, and READSEQ programs.

3. Methods
Later in this section we suggest a recipe for the analysis of a single protein

sequence with respect to its domain architecture. This recipe uses various pro-
grams that provide different statistical indicators of the significance of predic-
tions. Many of these indicators are derived from nontrivial analyses of score
distributions. Anyone using such statistics to derive homology arguments is
urged to understand their derivation and the limitations of their use.

3.1. Database Searching: Single or Multiple Sequence Queries

There are many methods that find domains in sequence databases (reviewed
in ref. 2). Some of these use distinctive motifs containing relatively few amino
acids (I. Jonassen, this volume) and others use the degrees of amino acid con-
servation present throughout a domain structure as represented in a multiple
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Table 1
Useful Links to Sequence Analysis Sites on the WWW
Single Sequence Analysis via WWW

BLAST (Sequence similarity) http://www.ncbi.nlm.nih.gov/blast/ blast.cgi
COILS (Coiled-coils) http://www.ch.embnet.org/software/COILS_form.html
FASTA3 (Sequence similarity) http://www2.ebi.ac.uk/fasta3/
NETOGLYC (O-glycosylation http://www.cbs.dtu.dk/services/NetOGlyc/
PSI-BLAST (Sequence similarity) http://www.ncbi.nlm.nih.gov/blast/psiblast.cgi
PSORT (Protein localization) http://psort.nibb.ac.jp/form.html
SIGNALP (Signal peptides) http://www.cbs.dtu.dk/services/SignalP/
TMAP (Transmembrane regions) http://www.embl-heidelberg.de/tmap/tmap_sin.html
TMPRED (Transmembrane regions http://www.ch.embnet.org/software TMPRED_form.html

Multiple sequence alignments via WWW

CLUSTALW http://www2.ebi.ac.uk/clustalw/
MSA http://www.ibc.wustl.edu/ibc/msa.html
MULTALIN http://www.toulouse.inra.fr/multalin.html
SAM http://www.cse.ucsc.edu/research/compbio/short_form.html
SIM http://www.expasy.ch/tools/sim-prot.html

Sequence databases via ftp

Protein:

GENPEPT ftp://ncbi.nmlm.nih.gov/genbank/
NRDB (NCBI) ftp://ncbi.nlm.nih.gov/blast/db/
NRDB90 ftp://ftp.ebi.ac.uk/pub/databases/nrdb90/
OWL ftp://ftp.seqnet.dl.ac.uk/pub/database/owl/
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SWISSPROT ftp://ftp/ebi/ac.uk/pub/databases/swissprot/
TREMBL ftp://ftp.ebi.ac.uk/pub/databases/trembl/

Nucleotide:

EMBL ftp://ftp.ebi.ac.uk/pub/databases/embl/release/
GENBANK ftp://ncbi.nlm.nih.gov/genbank/

Multiple sequence databases via WWW

BLOCKS http://www.blocks.fhcrc.org/
PFAM http://www.sanger.ac.uk/Pfam/
PRINTS http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/

PRINTS.html
PRODOM http://protein.toulouse.inra.fr/prodom.html
PROFILESCAN http://www.isrec.isb-sib.ch/software/

PFSCAN_form.html
PROSITE http://www.expasy.ch/sprot/prosite.html
SMART http://smart.embl-heidelberg.de/

Database searching programs via ftp

BLAST ftp://ncbi.nlm.nih.gov/blast/executables/
HMMER ftp://ftp.genetics.wustl.edu/pub/eddy/hmmer/
MOST ftp://ncbi.nlm.nih.gov/pub/koonin/most/
PFSEARCH http://www/isrec.isb-sib.ch/ftp-server/pftools/pft2.2/
PROBE ftp://ncbi.nlm.nih.gov/pub/neuwald/probe1.0/
PSI-BLAST ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools/
SAM http://www.cse.ucse.edu/research/compbio/sam.html
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SSEARCH/FASTA ftp://ftp.virginia.edu/pub/fasta/
WISETOOLS ftp://ftp.sanger.ac.uk/pub/birney/wise2/

Other programs available via ftp

BELVU (Alignment editing) ftp://ftp.cgr.ki.se/pub/esr/belvu/
BOXSHADE (Alignment shading) ftp://www.isrec.isb-sib.ch/pub/sib-Isrec/boxshade/
CLUSTALW (Multiple alignments) ftp://ftp.ebi.ac.uk/pub/software/unix/clustalw/
CLUSTALX (Multiple alignments) ftp://ftp.ebi.ac.uk/pub/software/unix/clustalw/clustalx/
DOTTER (Dot-matix program) ftp://ftp.cgr.ki.se/pub/esr/dotter/
GDE (Alignment editing) ftp://ftp.ebi.ac.uk/pub/software/unix/
MACAW (Multiple alignments) ftp://ncbi.nlm.nih.gov/pub/macaw/
READSEQ (Format conversion) ftp://ftp.bio.indiana.edu/molbio/readseq/
SEAVIEW (Alignment editing) ftp://biom3.univ-lyon1.fr/pub/mol_phylogeny/

seaview/
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alignment. Many of the latter methods are based on similar algorithms. Differ-
ences among the methods are threefold and are due to (1) assumptions made in
the method, (2) the manner by which a domain is represented numerically in
the method, and (3) parameters indicating the statistical significance of matches
reported by the method.

An important consideration is whether a method uses a single sequence or
multiple sequences as input: in general, multiple sequence methods, especially
when multiple alignments are constructed well, significantly outperform single-
sequence methods. However at the onset of an analysis a researcher usually is
aware of only a handful of homologues. As a result, single-sequence searches
are essential to find sufficient examples of a domain to allow the use of more
potent multiple-sequence methods.

3.2. Assumptions Made by the Methods

All methods assume that conservation patterns of different positions in a
sequence or alignment are not correlated (principally, this is for algorithmical
reasons, as the consideration of such correlations would otherwise result in
unreasonably long computation times). Although some methods allow gaps in
matched regions of the domain alignment, others do not. Disallowing gaps
simplifies the computation and also allows classical analytical statistics to be
used to evaluate results (3). Gapped methods almost invariably rely on dynamic
programming methods (4) or else approximations to them. As might be
expected, for gapped methods computation times increase significantly. In
addition, the analytical statistical theory does not yet extend to gapped align-
ments (see Note 3). In these cases, statistical significance has to be estimated
using curve-fitting to assumed distributions or by using a Bayesian framework
to provide inference of the outcome of the search (see Note 4).

3.3. Derivation of the Parameters for the Method

Single-sequence search methods need to estimate the rates by which
sequences have mutated during their evolution. These are usually provided by
an amino acid substitution matrix (see Note 5), and also when using gapped
alignments, a penalty for gaps (see Note 6). Multiple-sequence methods need
to represent numerically the patterns of conservation in a multiple alignment.
Representations of amino acid distributions for each position in the alignment
are often called “profiles.” A probabilistic interpretation of these profiles in the
Hidden Markov Model (HMM), is called a profile-HMM. This does not change
the algorithm used but does change the statistical interpretation of the algo-
rithm (see Note 7). As with single-sequence searches, some multiple sequence
methods allow gaps in the alignment of the domain model with each sequence
(see Note 8).
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3.4. Statistical Results

Database searching methods report scores for the comparison of a target
sequence with a domain model. Usually, methods provide two scores: one that
is not an indicator of statistical significance and one that is. The statistical
interpretation is an estimate of the likelihood that a sequence with that score or
higher is not related to the query sequence or model, and has matched by
chance. Note that such statistics are algorithm-specific, and are not highly-
related to the real biological significance of the hit: many algorithms detect
only a small percentage of true homologues (true positives) with statistical
significance. The scores of undetected homologues (false negatives) lie within
the distribution of scores for unrelated proteins (true negatives) and so are
indistinguishable from the noise. There is always a finite probability that scores
for some unrelated proteins (false positives) may be greater than expected.
Consequently, sequence analysts should always consider the biological con-
texts of possible false positives or false negatives, and also consider the results
of complementary methods.

Statistical results derived from classical (frequentist) approaches provide
some estimate of the probability that a sequence picked at random could have
produced a score equal to, or greater than, the score of a real database sequence,
i.e., P (score > X). This probability estimate is of little use, as it takes no account
of the size of the database searched. Statistics that do, and are commonly
reported in database searches, are:

1. Expect-values (or E-values), which represent the number of sequences with
scores equal to X, or greater, expected absolutely by chance, which is simply P
(score > X) × N, where N is the number of sequences in the database; and,

2. P-values, which represent probabilities, given a database of a particular size, that
random sequences score higher than X. This is not the same as P (score > X)!

An estimated E-value of less than 1 indicates possible significance of the
hit. In our hands an E-value of less than 0.01 is likely to represent an homolo-
gous relationship. This does not mean that all hits with E-values equal to 0.01
are predicted to be real homologues, only that the algorithm estimates that there
is a 1% chance that you would have seen a random sequence of this score or
higher in this particular database search. Do not, however, have 100%
confidence in your algorithm. Be aware that some algorithms (including PSI-
BLAST) appear to underestimate E-values by at least one or two orders of
magnitude.

3.5. A Recipe for In-Depth Analysis of a Sequence

We suggest a four-step protocol for sequence analysis as follows. Because
the requirements for one search often are different from those for another, this
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represents one of several possible approaches. An example of the analysis of a
protein sequence via a combination of methods has been placed on the Web
(http://www.ocms.ox.ac.uk/~ponting/methmb/
example.html).

3.5.1. Step 1: Motifs, Patterns, and Profile-Scans

Table 1 contains the addresses of several Web sites that allow the prediction
of a variety of molecular features from protein sequence information. These
include coiled coils (5), transmembrane helices, protein localization, signal
peptides, and glycosylation sites. Care should be taken in interpreting results
from these methods: e.g., predicted glycosylation sites in intracellular proteins,
and kinase-mediated phosphorylation sites in extracellular proteins, are both
extremely unlikely to be of biological relevance. In addition, these methods do
not predict homology relationships.

Other Web sites provide easy comparisons of a user’s sequence with large
numbers of domain or motif (see Note 1) alignments. If your sequence contains
one or more domains that are represented among collections of mutiple align-
ments, there is a fair chance that they shall be detected. The Profilescan site
“h t t p : / / w w w . i s r e c . i s b - s i b . c h / s o f t w a r e /
PFSCAN_form.html” probably is of most use, as it derives its predictions from
three sources, i.e., Prosite, Pfam, and independent collections of alignments. A
similar server (SMART; http://smart.embl-heidelberg.de/)
should be used for domain and motif detection.

Using these servers in combination is the most rapid way to arrive at func-
tional prediction arguments. Successful domain, coiled coil, or transmembrane
helix prediction using these methods also serves to reduce the “searchspace”: it
is valid to concentrate subsequent searches only on sequence regions that are
not assigned with significant statistics by these methods.

3.5.2. Step 2: Pairwise Methods

A powerful and popular way to assign domains within a query sequence is
via BLAST searches. Early versions of BLAST (6) provided significance esti-
mates for ungapped pairwise alignments. More recent versions have provided
two improvements: pairwise alignments that are gapped, and iterative searches
derived from multiple alignments (7). BLAST searches may be initiated via
Web servers (Fig. 1) or locally, using code contained in the NCBI toolbox
(ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools/). The BLAST
family of programs includes: BLASTP, which compares a protein sequence
with a protein database; BLASTN, which compares a nucleotide sequence with
a nucleotide sequence; BLASTX, which compares a nucleotide sequence (in all
reading frames) with a protein database; TBLASTN, which compares a protein
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sequence with a nucleotide sequence (in all reading frames); and TBLASTX,
which compares a nucleotide sequence (in all reading frames) with a nucle-
otide database (in all reading frames). Current versions of BLAST provide sig-
nificance estimates in terms of E-values (see Note 3). An alternative to BLAST
is SSEARCH (8) which also ascribes E-values to candidate homologues.

Several considerations must be borne in mind during such analyses. The
first is that several nonoverlapping hits to different portions of your query
sequence may indicate that it contains multiple domains. If this appears to be
the case, then scan your BLAST output for hits from sequences contained in
the protein databank (PDB) (a database of known protein structures) or else
initiate a BLAST search against the set of PDB sequences (try using the SCOP
resource: http://scop.mrc-lmb.cam.ac.uk/scop/). A significant
hit against a domain of known tertiary structure immediately provides an accu-
rate prediction of domain boundaries for its homologue contained in your query
sequence (see Note 9). Similarly, a significant hit against the whole of a
polypeptide with bone fide N- and C-termini also provides accurate domain
limits. As previously, successful prediction of a domain allows reduction of the
searchspace in subsequent searches.

Second, the existence of compositionally biased regions in (predominantly
eukaryotic) proteins, such as occurs in collagens, might distort the reported
significance estimates of your findings. Ensure that such “low-complexity
regions” are masked in your query sequence by preprocessing with the program
SEG (9), which is the default option for the NCBI-BLAST servers. Preprocess-
ing your sequence with transmembrane helix and coiled coil prediction algo-
rithms (see Subheading 3.5.1.) also is highly recommended (see Note 10).
However, such algorithms provide imperfect predictions and regions that are
not assigned as coiled coil may yield low E-values against known coiled coil
regions in database proteins such as myosins and kinesins; such alignments are
unlikely to be biologically relevant.

Third, be vigilant against errors. These can be present in all quarters. Your
query sequence or a database sequence may contain one or more frameshift
errors, or they may be artificially truncated or extended beyond the proteins
normal termini. Hypothetical protein sequences deduced from eukaryotic
genome projects frequently are inaccurate as a result of errors in intron–exon
boundary assignments. Such errors often are apparent on construction of a
multiple alignment of homologues: the error-ridden sequence usually demonstrates
substantial nonconservation in regions that are relatively well-conserved
among its homologues. A strategy to combat frameshifts and unknown intron–
exon boundaries is to compare a profile derived from either a similar sequence
or else a multiple alignment of homologues, with the relevant DNA sequence
using PAIRWISE, as described elsewhere (10). Finally, errors are not restricted
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to sequence. Functions of proteins assigned by some are found frequently to be
at odds with those found by others. Unfortunately, this results not only in errors
in the database annotation for the protein in question, but also propagation of
the error to all homologues whose functions are predicted on the basis of the
original misannotation.

3.5.3. Step 3: Constructing a Multiple Alignment

At some stage in any sequence analysis project, a multiple alignment must
be constructed. Constructing an optimal multiple alignment consists of two
stages: calculation of a preliminary alignment using programs such as
CLUSTALW, and its subsequent refinement using manual alignment editors
such as CLUSTALX, GDE, and/or SEAVIEW (see Fig. 1). Manual interven-
tion in otherwise automated procedures is an unfortunate consequence of the
“alignment problem”: algorithms are currently unable to generate alignments
with high accuracies, in comparison with alignments generated from superim-
posed tertiary structures of homologues. This is due to the exponential increase
in memory and computing power required to consider mathematically-optimal
alignments (see Note 11). However, manual editing can greatly improve align-
ments if the following guidelines (cf. ref. 2) are followed:

1. Minimize the number of gaps in an alignment. Consider that insertions and dele-
tions occur predominantly on the exterior surface of proteins and in loops between
secondary-structures. Loops are usually highly variable in structure and in
sequence and so need not be well-aligned. Ensure that those residues in a loop
region between two alignment blocks that are not alignable are shunted (without
gaps) to the alignment block that is either N-terminal or C-terminal to it. Single-
residue insertions can occur within β-strands as “β-bulges.” α-Helices are rela-
tively intolerant of insertions or deletions (although over- or underwinding of
helices can occur). In a small minority of cases an insertion/deletion position in a
loop may accommodate a whole domain structure as a “domain insertion” (11).

2. Maximize conservation of “core” hydrophobic residues. Hydrophobic residues
comprise the majority of proteins interiors and therefore are subject to relatively
strong evolutionary pressures. Ensure that hydrophobic residues in homologues
are aligned within all predicted secondary-structures. Note that the periodicity of
hydrophobic residues in β-strands differs from that in α-helices, which provides
information essential for secondary-structure prediction. Domains that are rich in
cysteine residues, such as several small extracellular domains and nuclear zinc
fingers, are exceptions in that the bulk of their hydrophobic core is provided by
disulphide bridges and metal ions, respectively. These domains are often charac-
terized by poor amino acid conservation and few secondary-structures relative to
their size.
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3. Maximize conservation of residues known through experiment to be important for func-
tion. However, consider that homologues can possess non-identical functions: there are
many instances, e.g., of enzyme homologues that are enzymatically inactive.

4. Minimize the presence of Pro and Gly in the middle of all secondary-structures
except for edge β-strands, and maximize the presence of strings of charged resi-
dues to insertion/deletion positions.

5. Ensure that all subfamilies in an alignment are represented equally by including
only one of each pair of sequences that are greater than, e.g.,  80% identical (the
program BELVU provides such an option).

6. Take care in the choice of domain boundaries. The best evidence for these bound-
aries are experimentally determined N- and C-terminal residues of the protein, or
else detection of an homologue with known tertiary structure. Other indicators to
be considered are limits of domains contiguous to the sequence of interest, degrees
of sequence conservation (or lack of conservation) between closely related homo-
logues, and the presence of low-complexity regions (normally present within
interdomain, rather than intradomain, regions). Tandem repeats, as indicated using
dot-plot algorithms such as Dotter, may also help in determining boundaries.

3.5.4. Step 4: Multiple Sequence Analysis

Once a multiple alignment has been created to your satisfaction, then its
representation (either a profile or a profile-HMM (see Note 7) can be com-
pared with protein sequence databases. There are several tools that have been
written to search databases (Table 1), with which two (WISETOOLS [10] and
HMMER [12]) the authors are most familiar. A profile, constructed using
PAIRWISE of the WISETOOLS suite (10), may be either “negative” or “posi-
tive”: i.e., it may be intended to search databases for similarities with either a
portion of the alignment (a “local” similarity) or the entire alignment (a “glo-
bal” similarity). A profile-based search may be initiated directly using SWISE,
or else indirectly using the menu-driven SEARCHWISE. Both SWISE and
HMMER report E-values from Extreme Value distribution curve fitting (S.
Eddy, personal communcation) (see Note 3). A profile-HMM (see Note 12)
may be compared with databases in searches for local similarities or else glo-
bal similarities; similarity scores are represented as bits scores (see Note 4).
HMMER is recommended when searching for domains that occur multiply
within the same polypeptide chain. As a result of these searches the sequences
of proposed domain homologues should be realigned and searches should
recommence in an iterative manner until no further candidate homologues are
revealed.

In our experience, no single database searching method detects all bona fide
homologues that are detected by the sum of searching methods. Consequently,
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candidate homologues suggested using a single method such as SWISE or
HMMER should be compared with those indicated by other methods. In par-
ticular, the Position-Specific Iterative BLAST (PSI-BLAST) program (7)
allows a database search with a query sequence, with which all candidate
homologues (with low E-values; recommended threshold E < 0.001) are
aligned, and provides iterative comparisons with profiles derived from this and
subsequent alignments, until convergence. Due to the alignment problem dis-
cussed previously, derived alignments are suboptimal. However, PSI-BLAST
has proven to be highly-sensitive in revealing subtle homologies and therefore
is a method of choice in detecting domain homologues. As discussed previ-
ously for other versions of BLAST, the query sequence should be chosen to
exclude transmembrane, low-complexity, and coiled coil regions, as well as
domain sequences that are irrelevant to the search.

Single ungapped motifs (defined in Note 1), such as those encompassing
active or binding sites, may also be compared with databases using the Motif
Searching Tool, MOST (13). This also is an iterative method, and allows choice
of candidate homologues on the basis of E-values (option: e; recommendation,
e 0.05), and closely similar sequences to be discarded (option: i; recommenda-
tion, i 80%). PROBE (14) is a tool that combines an initial BLAST search with
iterations of multiple motif searches on the basis of E-values until convergence
is achieved.

It is imperative that a hypothesis that two sequences represent domain
homologues is justified statistically. This may be achieved using an E-value
threshold and programs such as MOST and PSI-BLAST. However the user
should be aware that the inclusion of a false-positive scoring lower than the
supplied E-value threshold following one iteration negates the identification of
putative homologues detected in subsequent iterations. It is preferable that all
candidate homologues are related by multiple instances of low E-values from
BLAST (or SSEARCH) queries, and essential that their sequences display simi-
larities in their patterns of conservation across their multiple alignment.

Non-statistically based evidence may provide information consistent with a
homology hypothesis. Experimental and contextual information may be used
to predict homology for sequences that score at levels similar to the top true
negative in searches. For example, a predicted domain may possess limits
exactly coincident with the boundaries of a region intervening between two
properly annotated domains; or, the predicted domain may be known experi-
mentally to possess a molecular function equivalent with the functions of the
proteins used to derive the query profile. In contrast, non-statistically based
evidence may provide evidence that two sequences are not homologues. A
sequence may score highly against a query profile, yet the pattern of conserva-
tion and/or domain limits apparent from the alignment of its close homologues
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may differ substantially from the conservation pattern of the query profile’s
alignment.

So far, we have described the comparison of protein sequences with protein
databases. Additional information that is absent from protein databases may be
gleaned from their nucleotide counterparts. It is advised that protein sequences
(using TBLASTN) or profiles (using SWISE) be compared directly to
GENBANK and to the databases of expressed sequence tags (ESTs), sequence
tagged sites (STS), high-throughput genomic sequences (HTGS) and genome
survey sequences (GSS). A set of sequences that are predicted to be homologues
on the basis of statistical and experimental or contextual information may then
be used as the basis for experimentally testable hypotheses concerning function
(see Note 13).

4. Notes

1. Here we employ a terminology discussed elsewhere (2). In short: motifs are short,
conserved regions that are short stretches of domain sequences (e.g., “binding-
site motifs”); patterns are assemblies of one or more motifs; alignment blocks are
ungapped alignments usually representing a single secondary-structure; and,
domains are conserved structural entities with distinctive secondary-structures
and an hydrophobic core. Thus, these terms are not mutually exclusive and, in
particular instances, are interchangeable.

2. Databases are best maintained locally in a simple (FASTA) format of concat-
enated sequences separated by a single header line containing a “>” symbol,
accession codes, and relevant species, gene, and molecular information. Sequence
databases are often redundant: they contain several copies of identical sequences.
Databases that are less redundant than others are SWISSPROT, OWL, and
NCBI’s NRDB. The SWISSPROT database is recommended for its extensive
annotation (see http://www.expasy.ch/sprot/sp-docu.html),
whereas GenPept is recommended for its daily updates (see ftp://
ncbi.nlm.nih.gov/genbank/daily-nc/). All database entries can be
accessed via the highly informative Entrez system (see http://
www.ncbi.nlm.nih.gov/Entrez/index.html), which provides links
between sequence, literature, structure, and taxonomy information.

3. Ungapped BLAST algorithms (6) and the motif-searching tool MOST (13) use
analytically derived statistics from the theory of Karlin and Altschul (3). This
predicts that the distribution of scores of ungapped alignments should follow an
Extreme Value Distribution (EVD) with parameters that can be used to provide P
(score > X), and hence E and P values. Extending this theory to gapped searches
is problematic; it has been suggested that scores from gapped alignments also
vary according to an EVD (7,15). In this approximation, significance statistics
may be estimated from the fit of parameters to presumed random sequences.
These are either precalculated using a comparison to artificial random databases
(as with gapped BLAST methods), or generated “on the fly” from the distribution
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of scores from presumed non-homologues in the same database search (the
“noise”) (as with FASTA and SSEARCH).

4. Inference on the probability of a match being a random sequence or not can be
derived using Bayesian methods for profile-HMMs (12,16). The profile-HMM
provides a likelihood that the sequence was an example of the domain. This like-
lihood is compared to the likelihood that the sequence was generated by a “ran-
dom” model. Profile-HMMs use a simple random model based on the distribution
of amino acids drawn at random from a set of real sequences. The score reported
by the program is a log likelihood ratio (the base of the logarithm is 2, hence the
name “bits score”). This implies that bit scores between different profile-HMMs
are comparable, in contrast to other statistics. For the likelihood ratio to provide
a probability that the sequence came from either the domain HMM or the random
model, estimates of the probability of these outcomes before examining the
sequence have to be made (12,16). In general, these probabilities are not explic-
itly defined, but rather are converted to an ad hoc threshold for the bits score,
over which the search is considered significant. This threshold is suggested to be
around 25 bits (12), although there are cases where very different thresholds are
applicable, in particular, small or all α-helical domains require higher threshold
(35 bits).

5. The amino acid substitution matrix represents what is known of the results of
protein evolution: in trusted multiple alignments, pairs of amino acids that are
often aligned against each are given higher scores relative to pairs of amino acids
that are seldom paired in alignments. These scores are in qualitative agreement
with known physical and chemical properties of amino acids. Numbers in matri-
ces can be interpreted as log-odd ratios of the observed frequency of a pairing,
relative to the frequency expected by chance. Commonly used score matrices are
the BLOSUM (17) and Gonnet (18) series.

6. Gap penalties are a necessity, as mathematically optimal alignments would oth-
erwise be dominated by excessively gapped regions. There are two main forms of
a gap penalty. Linear gap penalties are used when individual gaps are penalized
separately. Affine gap penalties, which are more common, are used when each
gapped region is penalized both for the initiation of the gap and also for its exten-
sion when additional gap positions are needed. Unfortunately, there is no analyti-
cal theory that reliably calculates “optimal” gap penalties. Thus many programs
allow the user complete freedom in setting penalties. However, a series of studies
using both random databases and databases of known structure have provided
some emperically derived optima (15,19). The optimal gap penalty is linked to
the comparison matrix used. For the common BLOSUM62 matrix, gap penalties
of 12 for initiation of a gap and 2 for its extension are considered reasonable.

7. A trivial representation of amino acid conservation in a multiple alignment is the
set of amino acid frequencies at each position. However, this is of little practical
use because (1) multiple alignments are often strongly biased toward the detec-
tion of a particular subfamily of homologues, and (2) this provides insufficient
information concerning amino acid substitution to identify more distant homo-
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logues. The problem of sequence bias is addressed by calculating weights for
each sequence in the multiple alignment using a derived phylogenetic tree (20):
similar sequences are weighted lower than dissimilar ones. A model of evolution
is used to supplement the observed amino acid frequencies in the multiple align-
ment. In standard profile-based methods (20,21) the same amino acid substitu-
tion matrices that are used in single sequence searches are used. In HMM profiles
the model of evolution is represented as an undersampling problem. This pro-
vides a consistent mathematical framework that combines frequencies observed
in the alignment and an evolutionary model. Two models have been found to be
useful. The first is the equivalent to the standard profile techniques recast to fit
the Bayesian framework. The second is a model based around Dirichlet mixtures
of expected amino acid distributions in multiple alignments (22).

8. Gaps generated in aligning a domain model with a target sequence are penalized
to prevent an unrealistic overgapped alignment. In profile methods, gap penalties
are set arbitrarily, in a similar manner to single-sequence searches. The penalties
are multipled by an ad hoc position specific ratio indicating the tolerance of
insertions or deletions at this position. HMM-profiles have a stronger theoretical
basis for setting gap penalties, being the best fit to an assumed distribution from
the observed gap length at each position. As with the raw frequency of amino
acids, the observed gap-length distribution is considered to be an undersampling
of real allowed gaps at each position, and the observed frequencies are modified
by a model of gap evolution.

9. In rare cases, the order of secondary-structures in pairs of homologous domains
is known to be circularly permuted (23). Identifying such homologues and deter-
mination of their domain limits is not a trivial task using conventional methods.

10. In a few cases (e.g., ref. 24), conserved domains are known to contain coiled
coils.

11. Methods used for multiple alignment algorithms are either (1) progressive align-
ment procedures where the multiple alignment proceeds up an evolutionary tree,
fixing the alignment at each node (as in CLUSTALW, PILEUP), or (2) iterative
training procedures that derive a model of the resulting multiple alignment (as in
HMMER, MOST).

12. The default parameters for HMMER (version 1) rarely produce good HMMs. In
our hands both the weighting of sequences (option: -w), and an ad hoc PAM prior
from BLOSUM62 (option: -P blosum62.bla) are required.  HMMs generated by
version 2 of HMMER using default parameters are reliable.

13. Homologues from different organisms that have sequences more similar to each
other than they are to those of other homologues (i.e., “orthologues” [25,26]) are
likely to perform essentially identical molecular and cellular functions, whereas
homologues from the same organism (i.e., “paralogues” [25,26]) are more likely
to perform dissimilar cellular functions, even if their molecular functions are
comparable. More distant homologues are more likely to perform dissimilar —
albeit related — molecular or cellular functions than are closely related ones:
e.g., a divergent Escherichia coli homologue of mammalian phospholipases D
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(that are phosphodiesterases) is known to be an endonuclease (also a phosphodi-
esterase) (27,28).

Addendum
Since the original draft of this chapter, three major advances have in 3 iden-

tifying protein sequences.

1. PSI-BLAST and HMMER (version 2) have been as pre-eminent methods for
database searching.

2. The WISE2 suite (http://www.sanger.ac.uk/software/wise21) is now available for
the cross-comparison of protein and DNA sequences using HMM-based methods.

3. Domain databases, such as PFAM and SMART have considerably reduced the
arduous task of delineating domains in complex multidomain architectures.
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Third Generation Prediction of Secondary
Structures

Burkhard Rost and Chris Sander

1. Introduction
The sequence–structure gap is rapidly increasing. Currently, databases for

protein sequences (e.g., SWISS-PROT [1]) are expanding rapidly, largely due
to large-scale genome sequencing projects: at the beginning of 1998, we know
already all sequences for a dozen of entire genomes (2). This implies that
despite significant improvements of structure determination techniques, the gap
between the number of protein structures in public databases (PDB [3]), and
the number of known protein sequences is increasing. The most successful
theoretical approach to bridging this gap is homology modeling. It effectively
raises the number of “known” 3D structures from 7000 to over 50,000 (4,5).

No general prediction of structure from sequence, yet. John Moult (Center
for Advance Research in Biotechnology [CARB], Washington) has initiated an
important experiment: those who determine protein structures submitted the
sequences of proteins for which they were about to solve the structure to a
“to-be-predicted” database; for each entry in that database predictors could
send in their predictions before a given deadline (the public release of the
structure); finally, the results were compared, and discussed during a workshop
(in Asilomar, CA). The results of the first two critical assessment of protein
structure prediction (CASP) experiments (6,7) demonstrated clearly that we
still cannot predict structure from sequence.

Simplifying the structure prediction problem. The rapidly growing sequence–
structure gap has enticed theoreticians to solve simplified prediction problems
(4). An extreme simplification is the prediction of protein structure in one
dimension (1D), as represented by strings of, e.g., secondary-structure or
residue solvent accessibility. Theoreticians are lucky in that a simplified
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predictions in 1D (e.g., secondary-structure or solvent accessibility [4,8,9])
even when only partially correct — are often useful, e.g., for predicting protein
function, or functional sites.

In this review we focus on recent secondary-structure prediction methods
(for reviews on older methods (10–17), for reviews on other prediction meth-
ods in 1D [4,5,18]). We present some of the new, successful concepts and a few
“hints for the user” based on the currently most widely used secondary-struc-
ture prediction method: PHD.

2. Materials

Assignment of secondary-structure. Secondary-structure is most often
assigned automatically based on the hydrogen bonding pattern between the
backbone carbonyl and NH groups (e.g., by Dictionary of Secondary Structure
assignment of Proteins [DSSP] [19]). DSSP distinguishes eight secondary-struc-
ture classes which are often grouped into three classes: H = helix, E = strand,
and L = non-regular structure. Typically the grouping is as follows: H (α-helix)
-> H, G (310-helix) -> H, I (π-helix) -> H, E (extended strand) -> E, and B
(residue in isolated b-bridge) -> E, T (turn) -> L, S (bend) -> L, (blank = other)
-> L, with the “corrections”: B -> EE, but B_B -> LLL. Note that developers
often use different projections of the eight DSSP classes onto three predicted
classes; most of these yield seemingly higher levels of prediction accuracy. For
example, short helices are more difficult to predict (20) (see also Fig. 5); thus,
converting GGG -> LLL results, on average, in higher levels of prediction
accuracy.

Per-residue prediction accuracy. The simplest and most widely used score
is the three-state-per-residue accuracy, giving the percentage of correctly pre-
dicted residues predicted correctly in either of the three states: helix, strand,
other:

Q3 = 100 · ∑3
i=1 ci / N (1)

where ci is the number of residues predicted correctly in state i (H, E, L), and N
is the number of residues in the protein (or in a given data set). Because typical
data sets contain about 32% H, 21% E, and 47% L, correct prediction of the
nonregular class tends to dominate the three-state accuracy. More fine-grained
methods that avoid this shortcoming are defined in detail elsewhere (21,22).

Per-segment prediction accuracy. Measures for single-residue accuracy do
not completely reflect the quality of a prediction (14,22–26). There are three
simple measures for assessing the quality of predicted secondary-structure seg-
ments: (1) the number of segments in the protein, (2) the average segment
length, and (3) the distribution of the number of segments with length (27).
These measures are related. They are useful in characterizing prediction meth-
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ods, in particular, methods with fairly high per-residue accuracy, yet an unreal-
istic distribution of segments. However, there is a more elaborated score base
on the overlap between predicted and observed segments (22).

Conditions for evaluating sustained performance. A systematic testing of
performance is a precondition for any prediction to become reliably useful. For
example, the history of secondary-structure prediction has partly been a hunt
for highest accuracy scores, with over-optimistic claims by predictors seeding
the skepticism of potential users. Given a separation of a data set into a training
set (used to derive the method) and a test set (or crossvalidation set, used to
evaluate performance), a proper evaluation (or crossvalidation) of prediction
methods needs to meet four requirements: (1) no significant pairwise sequence
identity between proteins used for training and test set, i.e., < 25% (length-
dependent cutoff [28]); (2) all available unique proteins should be used for
testing, as proteins vary considerably in structural complexity; certain features
are easy to predict, others harder; (3) no matter which data sets are used for a
particular evaluation, a standard set should be used for which results are also
always reported; (4) methods should never be optimized with respect to the
data set chosen for final evaluation. In other words, the test set should never be
used before the method is set up.

Number of crossvalidation experiments of NO meaning. Most methods are
evaluated in n-fold crossvalidation experiments (splitting the data set into n
different training and test sets). How many separations should be used, i.e.,
which number of n yields the best evaluation? A misunderstanding is often
spread in the literature: the more separations (the larger n) the better. However,
the exact number of n is not important provided the test set is representative,
and comprehensive and the crossvalidation results are not misused to again
change parameters. In other words, the choice of n has no meaning for the user.

3. Methods
3.1. The Dinosaurs of Secondary Structure Prediction
Are Still Alive

First generation: single-residue statistics. The first experimentally deter-
mined 3D structures of hemoglobin and myoglobin were published in 1960
(29,30). Almost a decade before, Pauling and Corey suggested an explanation
for the formation of certain local conformational patterns such as α-helices
and β-strands (31,32). Shortly later (and still prior to the first published struc-
ture), the first attempt was made to (positively) correlate the content of certain
amino acids (e.g., proline) with the content of an α-helix (33). The idea was
expanded to correlate the content for all amino acids with that of the α-helix
and the β-strand structure (34,35). The field of predicting secondary-structures
had been opened. Most methods of the first generation based on single-residue
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Fig. 1. Three-state-per-residue accuracy of various prediction methods. Shaded
bars: methods of first and second generation; filled bars: methods of third generation.
The left axis showed the normalized three-state-per-residue accuracy, for which a ran-
dom prediction would rate 0%, and an optimal prediction by homology modeling
would rate as 100% (unnormalized values according to Eq. 1, shown on the right
axis):

norm Q3 = 100 · Q3
method – Q3

RAN / Q3
HM – Q3

RAN (1)

with Q3
HM = 88.4%,  and Q3

RAN = 35.2%

Only methods were included for which the accuracy had been compiled based on com-
parable data sets, the sets in particular are K&S62, 62 proteins taken from ref. 45;
LPAG60, 60 proteins taken from ref. 128; Pre124, 124 unique proteins taken from
ref. 48. The methods were: C + F Chou & Fasman (first generation) (42,148); Lim
(first) (43); GORI (first) (53); Schneider (second) (87); ALB (second) (62); GORIII (sec-
ond) (54); LPAG (third) (128); COMBINE (second) (17); S83 (second) (86); NSSP
(third) (84); PHD (third) (48). Most values were recompiled — only those for NSSP
and LPAG were taken from the original publications. The scores for PHD on the three
different data sets illustrated that data sets can be tuned to give more optimistic
(LPAG62), or more realistic estimates for prediction accuracy. The first two structure
prediction contests have indicated that the most conservative estimates of this graph
(Pre124) tend to be slightly too optimistic, still PHD rates at an average accuracy of
about 72% (as originally estimated [18,48]).
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statistics, i.e., from the limited databases evidence was extracted for the prefer-
ence of particular residues for particular secondary-structure states (36–44).
By 1983, it became clear that the performance accuracy had been overstated
(45) (see Fig. 1).

Second generation: segment statistics. The principal improvement of the
second generation of prediction tools was a combination of a larger database of
protein structure and the usage of statistics based on segments: typically 11–21
adjacent residues were taken from a protein and statistics were compiled to evalu-
ate how likely the residue central in that segment was in a particular secondary-
structure state. Similar segments of adjacent residues were also used to base
predictions on more elaborated algorithms, some of which were spun off from
artificial intelligence (46). Almost any algorithm has meanwhile been applied
to the problem of predicting secondary-structures; all were limited to accuracy
levels slightly higher than 60% (see Fig. 1; reports of higher levels of accuracy
were usually based on too small, or non-representative data sets [21,25,47,48]).
The most-used algorithms were based on (1) statistical information (49–61),
(2) physicochemical properties (62), (3) sequence patterns (63–65), (4) multi-
layered (or neural) networks (66–73), (5) graph theory (74,75), (6) multivari-
ate statistics (76,77), (7) expert rules (75,78–82), and (8) nearest-neighbor
algorithms (83–85).

Problems with first- and second-generation methods. All methods from the
first and second generation shared, at least, two of the following problems
(most all three): (1) three-state per-residue accuracy was below 70%, (2) β-
strands were predicted at levels of 28–48%, i.e., only slightly better than ran-
dom, and (3) predicted helices and strands were too short.

The first problem (<100% accuracy) has two sources: (1) secondary-struc-
ture assignments differ even between different crystals of the same protein,
and (2) secondary-structure formation is partially determined by long-range
interactions, i.e., by contacts between residues that are not visible by any
method based on segments of 11–21 adjacent residues. The second problem
(β-strands <50% accuracy) has been explained by the fact that b-sheet forma-
tion is determined by more nonlocal contacts than is α-helix formation. The
third problem was basically overlooked by most developers (for exceptions,
see refs. 86 and 87). This problem makes predictions very difficult to use in
practice (see Fig. 2). As we show in the next paragraph, some of the prediction
methods of the third generation address all three problems simultaneously, and
are clearly superior to the old methods (see Fig. 1). Nevertheless, many of the
secondary-structure prediction methods available today (e.g., in University of
Wisconsin Genetics Computer Group (GCG) [88], or from Internet services
[89]) are unfortunately still using the dinosaurs of secondary-structure
prediction.
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3.2. Breakthrough By Using Evolutionary Information

3.2.1. Is Evolutionary Odyssey Informative?

Variation in sequence space. The exchange of a few residues can already
destabilize a protein (90). This implies that the majority of the 20N possible
sequences of length N form different structures. Has evolution really created
such an immense variety? Random errors in the DNA sequence lead to a differ-
ent translation of protein sequences. These “errors” are the basis for evolution.
Mutations resulting in a structural change are not likely to survive, as the pro-
tein can no longer function appropriately. Furthermore, the universe of stable
structures is not continuous: minor changes on the level of the 3D structure
may destabilize the structure (due to high complexity). Thus, residue exchanges
conserving structure are statistically unlikely. However, the evolutionary pres-
sure to conserve function has led to a record of this unlikely event: structure is
more conserved than sequence (91–93). Indeed, all naturally evolved protein
pairs that have 35 of 100 pairwise identical residues have similar structures
(28,94). However, the attractors of protein structures are even larger: the ma-
jority of protein pairs of similar structures has levels of below 15% pairwise
sequence identity (95,96).

Long-range information in multiple sequence alignments. The residue
substitution patterns observed between proteins of a particular family, i.e.,
changes that conserved structure, are highly specific for the structure of that
family. Furthermore, multiple alignments of sequence families implicitly also
contain information about long-range interactions: suppose residues i and i + 100
are close in 3D, then the types of amino acids that can be exchanged (without
changing structure) at position i are constrained by that their physicochemical
characteriztics have to fit the amino acid types at position i + 100 (97,98).

Fig. 2. Example for typical secondary structure prediction of the second generation.
The protein sequence (SEQ) given was the SH3 structure (131). The observed second-
ary structure (OBS) was assigned by DSSP (19) (H = helix; E = strand; blank = nonregular
structure; the dashes indicate the continuation of the second strand that was missed by
DSSP). The typical prediction of too short segments (TYP) poses the following prob-
lems in practice: (1) Are the residues predicted to be strand in segments 1, 5, and 6
errors, or should the helices be elongated? (2) Should the second and third strand be
joined, or should one of them be ignored, or does the prediction indicate two strands
here? Note: the three-state-per-residue accuracy is 60% for the prediction given.
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3.2.2. Can Evolutionary Information Be Used?

Expert predictions: visual use of alignment information. The first method
that used information from family alignments was proposed in the 1970s
already (99). Furthermore, experts have based single-case predictions success-
fully on multiple alignments (99–116).

Automatic use of alignment information. The simplest way to use alignment
information automatically was first proposed by Maxfield and Scheraga and
by Zvelebil et al. (117,118): predictions were compiled for each protein in an
alignment, and then averaged over all proteins. A slightly more elaborated way
of automatically using evolutionary information is to directly base prediction
on a profile compiled from the multiple sequence alignment (18,21,48). The
following steps are applied in particular for the PHD method (18,119) (see
Fig. 3): (1) A sequence of unknown structure (U) is quickly aligned against the
database of known sequences (typically by BLAST [120]) (i.e., no information
of structure required); (2) proteins with sufficient sequence identity to U to
assure structural similarity are extracted and realigned by a multiple alignment
algorithm MaxHom (121); (3) for each position, the profile of residue
exchanges in the final multiple alignment is compiled, and used as input to a
neural network.

3.2.3. Third Generation: Evolution to Better Predictions

Example chosen: PHD. We illustrated the principal concepts of third gen-
eration methods based on the particular neural network-based method PHD
because it is currently the most accurate method (7), and because most of these
concepts were introduced by this method (21,48). Meanwhile, several other
methods have reported and/or achieved similar levels of performance
(16,18,21,48,84,114,122–129).

Multiple levels of computations. PHD processes the input information on
multiple levels (see the neural network in Fig. 3). The first level is a feed-
forward neural network with three layers of units (input, hidden, and output).
Input to this first-level sequence-to-structure network consists of two contribu-
tions: one from the local sequence, i.e., taken from a window of 13 adjacent
residues, and another from the global sequence. Output of the first-level net-
work is the 1D structural state of the residue at the center of the input window.
The second level is a structure-to-structure network. The next level consists of
an arithmetic average over independently trained networks (jury decision). The
final level is a simple filter.

Balanced predictions by balanced training. The distribution of the training
examples (known structures) is rather uneven: about 32% of the residues are
observed in helix, 21% in strand, and 47% in loop. Choosing the training
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examples proportional to the occurrence in the data set (unbalanced training)
results in a prediction accuracy that mirrors this distribution, e.g., strands are
predicted inferior to helix or loop (20,21,48). A simple way around the data-
base bias is a balanced training: at each time step one example is chosen from
each class, i.e., one window with the central residue in a helix, one with the

Fig. 3. Using evolutionary information to predict secondary structure. Starting from
a sequence of unknown structure (SEQUENCE) the following steps are required to
finally feed evolutionary information into the PHD neural networks (upper right): (1)
a database search for homologues (method BLAST [120]), (2) a refined profile-based
dynamic-programming alignment of the most likely homologues (method MaxHom
[121]), (3) a decision for which proteins will be considered as homologues (length-
dependent cutoff for pairwise sequence identity [28,92]), and (4) a final refinement,
and extraction of the resulting multiple alignment. Numbers 1–3 indicate the points
where users of the PredictProtein service (18) can interfere to improve prediction
accuracy without changes made to the final prediction method PHD.
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central residue in a strand and one representing the loop class. This training
results in a prediction accuracy well balanced between the output states (see
Fig. 4).

Better segment prediction by structure-to-structure networks. The first level
sequence-to-structure network uses as input the following information from 13
adjacent residues: (1) the profile of amino acid substitutions for all 13 residues,
(2) the conservation weights compiled for each column of the multiple align-
ment, (3) the number of insertions, and the number of deletions in each col-
umn, (4) the position of the current segment of 13 residues with respect to the
N- and C-term, (5) the amino acid composition, and (6) the length of the pro-
tein. Output consists of three units coding for helix, strand, and nonregular
structure. The output coding for the second level network is identical to the one
for the first. The dominant input contribution to the second level structure-to-
structure network is the output of the first-level sequence-to-structure network.
The reason for introducing a second level is the following. Networks are trained
by changing the connections between the units such that the error is reduced
for each of the examples successively presented to the network during training.
The examples are chosen at random. Therefore, the examples taken at time
step t and at time step t + 1 are usually not adjacent in sequence. This implies

Fig. 4. Prediction balanced between three secondary structure states. The pies were
valid for a simple neural network prediction not using evolutionary information (sec-
ond generation). The entire pies represented 100% of (A + D) all correctly predicted
residues, (B) all residues in a representative subset of PDB, and (C) all residues pre-
sented during balanced training. The basic message is that the prediction of strand is
not inferior to the one for helix for second-generation methods (A) because strand
formation is more dominated by long-range interactions (as previously argued) but
because the database distributions differ between the three states (B). Simply skewing
the distribution (C) resulted in an equally accurate prediction for all three states (D).
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that the network cannot learn, e.g., that helices contain at least three residues.
The second-level structure-to-structure network introduces a correlation
between adjacent residues with the effect that predicted secondary-structure
segments have length distributions similar to the ones observed (27). Problems
arise, in particular, for short segments (see Fig. 5).

3.3. State-of-the-Art Secondary Structure Prediction

3.3.1. Estimates of Prediction Accuracy

Difference between 60% and 70% accuracy may matter a lot. Some of the
third-generation methods for secondary-structure prediction are clearly supe-
rior to previous methods: β-strands are predicted more accurately; predicted
segments look like those observed; and the overall accuracy is about 10 per-
centage points higher. The advantage in practice is illustrated in Fig. 6. Not
only does the third-generation method (here PHD) gets most segments right,

Fig. 5. Distribution of segment length (A) The number of helical segments ob-
served (open squares; according to DSSP [19]) and predicted (filled triangles; by PHD
[18]) is plotted against their length. Obviously, most short helices are missed by the
prediction. The inlet zooms on longer helices, revealing that PHD predicts slightly too
long helices. Figures for strands and nonregular structures are not given, as the ob-
served and predicted distributions agree relatively well, for longer segments at least.
However, there are important differences for shorter segments: (B) plots the differ-
ences between the numbers of observed–predicted segments at given lengths (helices:
open squares, strands: filled triangles, nonregular structure: dashed line with crosses).
In particular, strands of a single residue are overpredicted; short loop regions and three
helices (10) (three residues) are underpredicted.
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but it also enables one to focus on more reliably predicted residues. The reli-
ability index (Rel in Fig. 6) is compiled as the difference between the output
unit with highest value (winner unit) and the output unit with the next highest
value (normalized to a scale from 0 [low] to 9 [high]). All strongly predicted
residues (* in Fig. 6) are predicted correctly.

Values for expected prediction accuracy are distributions. Statements such
as “secondary-structure is about 90% conserved within sequence families” (22)
refer to averages over distributions. The same holds for the expected prediction
accuracy (see Fig. 7). Such distributions explain why some developers have
overestimated the performance of their tools using data sets of only tens of
proteins (or even fewer). In general, single sequences yield accuracy values
about 10 percentage points lower than multiple alignments (21,25,48). Note that
for most proteins some helix and strand residues are confused (refer to Fig. 7).

Reliability of prediction correlates with accuracy. For the user interested in
a particular protein U, the fact that prediction accuracy varies with the protein
(see Fig. 7) implies a rather unfortunate message: the accuracy for U could be
lower than 40%, or it could be higher than 90% (see Fig. 7). Is there any way to
provide an estimate at which end of the distribution the accuracy for U is likely
to be? Indeed, the reliability index correlates with accuracy. In other words,
residues with a higher reliability index are predicted with higher accuracy

Fig. 6. Example for secondary structure prediction of first–third generation. The
protein sequence (SEQ) given was the SH3 structure (131). The observed secondary
structure (OBS) was assigned by DSSP (19) (H = helix; E = strand; blank = nonregular
structure; the dashes indicated the continuation of the second strand that was missed
by DSSP). The methods are first generation: C + F (42); second generation: GOR (17)
( = GORIII), and third generation: PHD (18). The levels of three-state accuracy were:
C + F = 59%; GOR = 65%; and PHD = 72%. Whereas the first- and second-generation
methods performed above their average accuracy (Fig. 1) for this protein, the PHD
prediction was average (see Figs. 1 and 7). The strength of the PHD prediction was
reflected in the one-digit reliability index (Rel, 0 = low, 9 = high), correlated with
prediction accuracy. All residues predicted at values of Rel > 4 (marked by *) were
predicted correctly.
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(18,21,48). Thus, the reliability index offers an excellent tool to focus on some
key regions predicted at high levels of expected accuracy. Furthermore, the
reliability index averaged over an entire protein correlates with the overall pre-

Fig. 7. Expected variation of prediction accuracy with protein chain. (A) Three-
state per-residue accuracy (see Eq. 1; PDB identifier given for the proteins predicted
worst); (B) percentage of BAD predictions, i.e., residues either predicted in helix and
observed in strand, or predicted in strand and observed in helix (introduced by ref.
14); (B inset) cumulative percentage of proteins with BADly predicted residues (e.g.,
for 80% of the proteins the percentage of confusing helix and strand residues is <7%;
however, for only for 30% of all proteins such a confusion never happened). Given:
distributions (over 721 unique protein chains), averages, and one standard deviation.
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diction accuracy for this protein (see Fig. 8) (Note however, that reliability
indices tend to be unusually high for alignments of sequence families without
very divergent sequences.)

Do we understand why certain proteins are predicted poorly? For some of the
worst predicted proteins, the low level of accuracy could be anticipated from

Fig. 8. Correlation between reliability and accuracy. Residues predicted at higher
reliability are predicted more accurately (18,21,48). Here, we plotted the reliability
index averaged over a protein with the overall accuracy for that protein (A). Even a
simple linear fit (A) provided a reasonably accurate estimate of the performance: for
more than 80% of all proteins the linear fit yielded estimates in the range of less than
±10% accuracy (B).
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their unusual features, e.g., for crambin, or the antifreeze glycoprotein type III.
However, this procedure turned out to be rather arbitrary. First, some proteins
with the same “unusual features” are predicted at high levels of accuracy. Sec-
ond, occasionally similar proteins are predicted at very different levels of ac-
curacy, e.g., both the phosphotidylinonitol 3-kinase (130) and the
Src-homology domain of cytoskeletal spectrin have homologous structures
(131), but prediction accuracy varies between less than 40% (pik) and more
than 70% (spectrin). None of the conclusions from studying poor predictions
has yet yielded a way to better predictions. Nevertheless, two observations
may be added. First, bad alignments (i.e., noninformative and/or falsely aligned
residues) result in bad predictions. Second, the BAD predictions (see Fig. 7B),
i.e., the confusion of helix and strand, are frequently observed in regions that
are stabilized by long-range interactions. For example, the peptide around the
fourth strand of SH3 (see Fig. 6) forms a helix in solution (L. Serrano, personal
communication). Furthermore, helices and strands that are confused despite a
high reliability index often have functional properties, or are correlated to dis-
ease states (B. Rost, unpublished data).

3.3.2. Availability of Methods

Internet prediction services for secondary-structure, in general. Programs
for the prediction of secondary-structure available as Internet services have
mushroomed since the first prediction service PredictProtein went online in
1992 (119,132) (a list of links is found in ref. 133). Unfortunately, not all ser-
vices are sufficiently tested. In general, prediction accuracy is significantly
superior if predictions are based on multiple alignments (4,13,16).

Completely vs. almost automatic. The PHD prediction method is automati-
cally available via the Internet service PredictProtein (18) (send the word help
to PredictProtein@Columbia.edu, or use the World Wide Web inter-
face [132]). Users have the choice between the fully automatic procedure tak-
ing the query sequence through the entire cycle, or expert intervention into the
generation of the alignment. Indeed, without spending much time the result
was that predictions could be easily improved (134).

4. Notes

The following notes result from the experiences one of us (BR) has gathered
by offering, and running the PredictProtein (132) service and during various
structure prediction workshops (135). Some comments apply in particular to
the PHD methods (18,136); however, most hold also for using other second-
ary-structure prediction methods (we strongly recommend reading the detailed
“hints” on the PredictProtein WWW page: [132]).
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4.1. What Can You Expect From Secondary Structure Prediction?

How accurate are the predictions? The expected levels of accuracy (Q3 = 72
± 11%) are valid for typical globular, water-soluble proteins when the multiple
alignment contains many and diverse sequences. High values for the reliability
indices indicate more accurate predictions (Note: for alignments with little
variation in the sequences, the reliability indices adopt misleadingly high val-
ues.) PHD predictions tend to be relatively accurate for porins (18); however,
for helical membrane proteins, other programs ought to be used (5,18,136).

How useful are the predictions? The prediction of secondary-structures can
be accurate enough to assist chain tracing. Furthermore, PHD predictions are
being used as a starting point for modeling 3D structure and predicting func-
tion (115,116,122,137–143).

Is there confusion between strand and helix? PHD (as well as other meth-
ods) focuses on predicting hydrogen bonds. Consequently, occasionally
strongly predicted (high reliability index) helices are observed as strands and
vice versa (see Fig. 7B).

Is there a strong signal from secondary-structure caps? The ends of helices
and strands contain a strong signal. However, on average PHD predicts the
core of helices and strands more accurately than do the caps (20). This seems
to also hold for other methods.

Are internal helices poorly predicted? Steven Benner has indicated that
internal helices are difficult to predict (24,107). On average, this is not the case
for PHD predictions (144).

What about protein design and synthesized peptides? The PHD networks
are trained on naturally evolved proteins. However, the predictions have been
useful in some cases to investigate the influence of single mutations (e.g., for
Chameleon [145,146], or for Janus [147]; B. Rost, unpublished). For short
polypeptides, users should bear in mind that the network input consists of 17
adjacent residues. Thus, shorter sequences may be dominated by the ends
(which are treated as solvents by the current version of PHD).

4.2. How Can You Avoid Pitfalls?

70% correct implies 30% incorrect. The most accurate methods for predict-
ing secondary-structure reach sustained levels of about 70% accuracy. When
interpreting predictions for a particular protein, it is often instructive to mark
the 30% of the residues you suspect to be falsely predicted.

Spread of prediction accuracy. An expected accuracy of 70% does not imply
that for your protein U 70% of all residues are correctly predicted. Instead,
values published for prediction accuracy are averaged over hundreds of unique
proteins. An expected accuracy of 70 ± 10% (one standard deviation) implies
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that, on average, for two-thirds of all proteins between 60 and 80% of the resi-
dues will be predicted correctly (see Fig. 7). Thus, prediction accuracy can be
higher than 80% or lower than 60% for your protein. Few methods supply
well-tested indices for the reliability of predictions (see Fig. 8; [18,134]). Such
indices can help to reduce or increase your trust in a particular prediction.

Special classes of proteins. Prediction methods are usually derived from
knowledge contained in proteins from subsets of current databases. Conse-
quently, they should not be applied to classes of proteins not included in these
subsets, e.g., methods for predicting helices in globular proteins are likely to
fail when applied to predict transmembrane helices. In general, results should
be taken with caution for proteins with unusual features, such as proline-rich
regions, unusually many cysteine bonds, or for domain interfaces.

Better alignments yield better predictions. Multiple-alignment-based pre-
dictions are substantially more accurate than single-sequence-based predic-
tions. How many sequences do you need in your alignment for an
improvement? How sensitive are prediction methods to errors in the align-
ment? The more divergent sequences contained in the alignment, the better
(two distantly related sequences often improve secondary-structure predictions
by several percentage points). Regions with few aligned sequences yield less
reliable predictions. The sensitivity to alignment errors depends on the meth-
ods, e.g., secondary-structure prediction is less sensitive to alignment errors
than accessibility prediction.

Better + worse = even better? Today, several automatic services accomplish
secondary-structure predictions. Some users fall into the what-is-common-is-cor-
rect trap, i.e., they average over all prediction methods and consider identical
regions as more reliable. Such a majority vote may be beneficial. However, the
result will frequently be the worst-of-all prediction. Often, it is preferable to
use reliability indices provided by some methods. Such indices answer the
question: how reliably is the tryptophan at position 307 predicted in a surface
loop? (Note: the correlation between such indices and prediction accuracy is
sufficiently tested for only a few methods.)

1D structure may or may not be sufficient to infer 3D structure. Say you the
following as a prediction for a regular secondary-structure: helix-strand-strand-
helix-strand-strand (H-E-E-H-E-E). Assume that you find a protein of known
structure with the same motif (H-E-E-H-E-E). Can you conclude that the two
proteins have the same fold? Yes and no; your guess may be correct, but there
are various ways to realize the given motif by completely different structures.
For example, at least 16 structurally unrelated proteins contain the secondary-
structure motif H-E-E-H-E-E.
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Addendum
At the third meeting for the Critical Assessment of Structure Prediction

(CASP) in December 1998, David Jones presented a method that extended the
basic idea of 3rd generation prediction methods, i.e., using evolutionary infor-
mation, by replacing previously used sequence alignment procedures with an
iterated PSI-BLAST profile (149). The resulting method PSI-PRED appears to
be more than 2–3 percentage points more accurate than any other method pub-
lished so far (150). About one percentage point of this improvement can be
achieved by simply replacing the alignment profiles (Rost, unpublished).

However, the major step appears to be attributed to the fact that the data-
bases have grown, and developing prediction methods can now be based on
data sets more than 10 times larger than those used to develop the first 3rd
generation tools (Rost, unpublished). The work of David Jones has reactivated
the field, at least one other novel method (JNET: Cuff & Barton, unpublished)
appears clearly moved accurate than the original PHD1 referred to in our review.
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Comparative Protein Structure Modeling

Introduction and Practical Examples with Modeller

Roberto Sánchez and Andrej Sali

1. Introduction
1.1. What is Comparative Protein Structure Modeling?

A useful three-dimensional (3D) model for a protein of unknown structure
(the target) can frequently be built based on one or more related proteins of
known structure (the templates). This is the aim of comparative or homology
protein structure modeling. The necessary conditions are that the similarity
between the target sequence and the template structures is detectable and that
the correct alignment between them can be constructed. For reviews of com-
parative modeling, see refs. 1–5. This approach to structure prediction is pos-
sible because a small change in the protein sequence usually results in a small
change in its 3D structure (6,7).

1.2. Why is Comparative Modeling Useful?

The biochemical function of a protein is defined by its interactions with
other molecules and the biological function is a consequence of these interac-
tions. Although protein function is best determined experimentally (8), it can
sometimes be predicted by matching the sequence of a protein with proteins of
known function (8–10). One way to improve sequence-based predictions of
function is to rely on the known native 3D structure of proteins. The 3D struc-
ture of a protein generally provides more information about its function than
sequence because interactions of a protein with other molecules are determined
by amino acid residues that are close in space but are frequently distant in
sequence. For example, several mouse mast cell proteases have a conserved
surface region of positively charged residues that binds proteoglycans (11).

^
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This region is not easily recognizable in sequence because the constituting resi-
dues occur at variable and sequentially nonlocal positions that form a binding
site only when the protease is fully folded.

Comparative modeling remains the only method that can reliably predict the
3D structure of a protein with an accuracy comparable to that of low-resolution
experimental structures (1). Even such low resolution models are useful to
address biological questions, because function can sometimes be predicted
from only coarse structural features of a model. Typical uses of comparative
models are listed in Table 1. For a review of comparative modeling applica-
tions see refs. 2 and 3.

Three-dimensional structure of proteins from the same family is more con-
served than their sequences (12). Therefore, if similarity between two proteins
is detectable at the sequence level, structural similarity can usually be assumed.
Moreover, proteins that share low or even nondetectable sequence similarity
many times also have similar structures. It has been estimated that approxi-
mately one third of all sequences are related to at least one protein of known
structure (13). Because there are approx 450,000 known protein sequences (14),
comparative modeling could, in principle, be applied to approx 150,000 pro-
teins. This is an order of magnitude more proteins than the number of
experimentally determined protein structures (approx 10,000) (15). Further-
more, the usefulness of comparative modeling is steadily increasing because
the number of different structural folds that proteins adopt is limited (16), and
because the number of experimentally determined new structures is increasing
exponentially (17). It is predicted that, in less than 10 yr, at least one example

Table 1
Common Uses of Comparative Protein Structure Models

Designing (site-directed) mutants to test hypotheses about function
Identifying active and binding sites
Searching for ligands of a given binding site
Designing and improving ligands of a given binding site
Modeling substrate specificity
Predicting antigenic epitopes
Protein–protein docking simulations
Inferring function from calculated electrostatic potential around the

protein
Molecular replacement in X-ray structure refinement
Testing a given sequence–structure alignment
Rationalizing known experimental observations
Planning new experiments
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of most structural folds will be known, making comparative modeling appli-
cable to most globular domains in most protein sequences (1,17).

2. Steps in Comparative Modeling
Comparative modeling usually consists of the following five steps: search for

templates, selection of one or more templates, target–template alignment, model
building, and model evaluation (see Fig. 1). If the model is not satisfactory, some or
all of the steps can be repeated. Each of these steps is described as follows.

2.1. Search for Templates

Comparative modeling usually starts by searching the database of known
protein structures (Protein Data bank, PDB) (15) using the target sequence
as the query. This is generally done by comparing the target sequence with
the sequence of each of the structures in the database. A variety of sequence-
sequence comparison methods can be used (18–20). Sometimes, the availabil-
ity of many sequences related to the target makes it possible to do more
sensitive searching with profile methods and Hidden Markov Models (HMM)
(21–24). It is also possible to search for templates by evaluating directly the
compatibility between the target sequence and each of the structures in the
database. This is achieved by fold-recognition methods also known as “thread-
ing” (25–29). Threading uses sequence–structure fitness functions, such as low-
resolution, knowledge-based force-fields, to evaluate potential target-template
matches. In doing so, threading methods generally do not rely on sequence
similarity. This sometimes allows recognition of structural similarity between
proteins with no detectable sequence similarity (30).

A good starting point for template searches are the many database search
servers on the World Wide Web (WWW) (see Table 2). The most useful ones
are those that search directly against the PDB. If nothing is found with sequence
similarity searches, threading programs and fold-recognition WWW servers
can be used (Table 2). In general, it is useful to try many different methods to
find as many templates as possible. This is especially important when the target
sequence is only remotely related to known structures.

2.2. Template Selection

Once a list of potential templates has been obtained using one or more tem-
plate searching methods, it is necessary to select the templates that are appro-
priate for the particular modeling problem. Usually, the higher the overall
sequence similarity (i.e., higher percentage of identical residues, and lower
number and shorter length of gaps in the alignment) between the target and the
template sequences, the better the template is likely to be. Other factors should
also be taken into account when selecting a template:
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Fig. 1. Steps in comparative protein structure modeling. See text for description of
each step.

1. The family of proteins that includes the target and the templates frequently can
be organized in subfamilies. The construction of a multiple alignment and a phy-
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Table 2
Programs and World Wide Web Servers Useful in Comparative Modeling
Name Typea World Wide Web or e-mail address Referenceb

Template search
BLASTT S www.ncbi.nlm.nih.gov/BLAST/ (64)
FASTA S www.pdb.bnl.gov/pdb-bin/pdbmain (65)
123D S www-lmmb.ncifcrf.gov/~nicka/123D.html (66)
PHDTHREADER S www.embl-heidelberg.de/predictprotein/predictprotein.html (67)
UCLA-DOE FRSVR S www.doe-mbi.ucla.edu/people/frsvr/frsvr.html (68)
PROFIT P www.came.sbg.ac.at (69)
THREADER P globin.bio.warwick.ac.uk/~jones/threader.html (26)
MATCHMAKER P www.scripps.edu/adam/home.html (27)
Modeling
COMPOSER P felix.bioc.cam.ac.uk/soft-base.html (70)
CONGEN P bruc@dino.squibb.com (71)
DRAGON P www.nimr.mrc.ac.uk/~mathbio/a-aszodi/dragon.html (42)
MODELLER P guitar.rockefeller.edu/modeller/modeller.html (40)
NAOMI P (41)
WHAT IF P www.sander.embl-heidelberg.de/whatif/ (72)
INSIGHTII P www.msi.com (a)
LOOK P www.mag.com (37)
QUANTA P www.msi.com (a)
SYBYL P www.tripos.com (b)
SWISS-MOD S www.expasy.ch/SWISS-MODEL.html (73)
Model evaluation
PROCHECK P www.biochem.ucl.ac.uk/~roman/procheck/procheck.html (48)
WHATCHECKc P www.sander.embl-heidelberg.de/whatcheck/ (49)
PROSAIIc P www.came.sbg.ac.at (47)
PROCYONd P www.horus.com/sippl/ (47,69)
BIOTECH S biotech.embl-ebi.ac.uk:8400/ (48,49)
VERIFY3D S www.doe-mbi.ucla.edu/verify3d.html (46)
ERRAT S www.doe-mbi.ucla.edu/errat_server.html (74)

aS = server, P = program.
b(a) Molecular Simulations Inc., San Diego (b) Tripos, St Louis.
cPROCYON is a new software package that includes PROSAII, PROFIT, and other programs.
dThe BIOTECH server uses PROCHECK and WHATCHECK for structure evaluation.
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logenetic tree (31) can help in selecting the template from the subfamily that is
closest to the target sequence.

2. The similarity between the “environment” of the template and the environment
in which the target needs to be modeled should also be considered. The word
“environment” is used here in a broad sense, including everything that is not the
protein itself: solvent, pH, ligands, quaternary interactions, and the like (see Sub-
headings 3.1.2. and 4.2.). In particular, the template(s) bound to the same or
similar ligand(s) as the model should be used whenever possible.

3. The quality of the experimental template structure is another important factor in
template selection. The resolution and R-factor of a crystallographic structure
and the number of restraints per residue for a nuclear magnetic resonance (NMR)
structure are indicative of the accuracy of the structure. This information can
generally be obtained from the template PDB files or from the articles describing
structure determination. If two templates have comparable sequence similarity to
the target, the one determined at the highest resolution should be used.

The criteria for selecting templates also depend on the purpose of a com-
parative model. For instance, if a protein–ligand model is to be constructed, the
choice of the template that contains a similar ligand is probably more impor-
tant than the resolution of the template. On the other hand, if the model is to be
used to analyze the geometry of the active site of an enzyme, it is preferable to
use a high-resolution template. It is not necessary to select only one template.
In fact, the use of several templates generally increases the model accuracy
(see Subheading 3.2. and Notes).

2.3. Target-Template Alignment
To build a model, all comparative modeling programs depend on a list that

establishes structural equivalences between the target and template residues.
This is defined by the alignment of the target and template sequences. Although
many template search methods will produce such an alignment, it is usually
not the optimal target–template alignment. Search methods tend to be tuned for
detection of remote relationships, not for optimal alignments. Therefore, once
templates have been selected, a specialized method should be used to align
them with the target sequence. The alignment is relatively simple to obtain
when the target–template sequence identity is above 40%. In most such cases,
an accurate alignment can be obtained automatically using standard sequence–
sequence alignment methods. If the target–template sequence identity is lower
than 40%, the alignment generally has gaps and needs manual intervention to
minimize the number of misaligned residues. In these low-sequence identity
cases, the alignment accuracy is the most important factor affecting the quality
of the resulting model. Alignments can be improved by including structural
information from the template. For example, gaps should be avoided in sec-
ondary-structure elements, in buried regions, or between two residues that are
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far apart in space. Some alignment methods take such criteria into account (see
Subheading 3.1.3.). However, it is always important to check and edit the
alignment by inspecting the template structure visually, especially if the tar-
get–template sequence identity is low. A misalignment by only one residue
position will result in an error of approximately 4 Å in the model because the
current modeling methods cannot recover from errors in the alignment.

2.4. Model Building

Once an initial target–template alignment has been built, a variety of meth-
ods can be used to construct a 3D model for the target protein. The original and
still most widely used method is modeling by rigid-body assembly (5,32,33).
This method constructs the model from a few core regions and from loops and
sidechains, that are obtained from dissecting related structures. Another family
of methods, modeling by segment matching, relies on the approximate posi-
tions of conserved atoms from the templates to calculate the coordinates of
other atoms (34–37). The third group of methods, modeling by satisfaction of
spatial restraints, uses either distance geometry or optimization techniques to
satisfy spatial restraints obtained from the alignment of the target sequence
with the template structures (38–42). Accuracies of the various model-building
methods are relatively similar when used optimally. Other factors such as tem-
plate selection and alignment accuracy usually have a larger impact on the
model accuracy, especially for models based on less than 40% sequence iden-
tity to the templates. However, it is important that a modeling method allows a
degree of flexibility and automation, which will make it easier and faster to
obtain better models. For example, a method should allow for an easy recalcu-
lation of a model when a change is made in the alignment; it should be straight-
forward to calculate models based on several templates; and the method should
provide the tools to incorporate prior knowledge about the target (e.g., experi-
mental data, or predicted features such as secondary-structure). Here we will
describe automated comparative model building by satisfaction of spatial
restraints as implemented in program MODELLER (40). Reviews of compara-
tive model building methods have been published elsewhere (1–4). Several
programs for comparative modeling are listed in Table 2.

2.4.1. Comparative Modeling with Program MODELLER

MODELLER is a computer program that models protein structure by
satisfaction of spatial restraints (see the Appendix at the end of the chapter for
information on how to obtain MODELLER). It can be used in all stages of
comparative modeling described so far, including template search, target–tem-
plate alignment and model building. Once a target–template alignment is
obtained, the calculation of the 3D model of the target by MODELLER is com-
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pletely automated. The program extracts atom–atom distance and dihedral
angle restraints on the target from the template structure(s) and combines them
with general rules of protein structure such as bond length and angle prefer-
ences. The model is then calculated by an optimization procedure that mini-
mizes violations of the spatial restraints (see Fig. 2). The procedure is

Fig. 2. Comparative modeling by program MODELLER. First, spatial restraints in
the form of atom–atom distances and dihedral angles are extracted from the template
structure(s). The alignment is used to determine equivalent residues between the target
and the template. The restraints are combined into an objective function. Finally, the
model for the target is optimized until a model that best satisfies the spatial restraints is
obtained. This procedure is similar to the one used in structure determination by NMR.
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conceptually similar to the one used in the determination of protein structures
from NMR data. More detailed descriptions of MODELLER can be found else-
where (40,43–45).

2.5. Model Evaluation

After a model has been built, it is important to check it for possible errors.
Two types of evaluation should be carried out: (1) “internal” evaluation of self-
consistency that checks whether or not the model satisfies the restraints used to
calculate it and (2) “external” evaluation that relies on information that was not
used in calculating the model (46,47).

When the model is based on less than approx 30% sequence identity to the
template, the first purpose of the external evaluation is to test whether or not a
correct template was used. This is especially important when the alignment is
only marginally significant or several alternative templates with different struc-
tures are to be evaluated. A complication is that at low similarities the align-
ment generally contains many errors, making it difficult to distinguish between
an incorrect template on one hand and an incorrect alignment with a correct
template on the other hand. It is only possible to recognize a correct template if
the alignment is also approximately correct. This complication can sometimes
be overcome by trying several alternative alignments for each template. One
way to predict whether or not a template is correct is to compare the PROSAII
Z-score (47) for the model and the template structure(s). The Z-score of a model
is a measure of compatibility between its sequence and structure. The model
Z-score should be comparable to the Z-score obtained for the template. However,
this evaluation does not always work. It is sometimes possible that good mod-
els have bad Z-scores because the potential function used in PROSAII is not
suitable for certain fold types.

The second kind of external evaluation is to recognize unreliable regions in
the model. One way to approach this problem is to calculate an energy profile
of the model by a program such as PROSAII. The profile reports the energy for
each position in the model. It is sometimes possible to detect errors in the model
because they appear as peaks of positive energy in the profile. Such regions of
the model should be inspected carefully. Another way of finding unreliable
regions of a model is to evaluate the stereochemistry (bond length and angles,
dihedral angles, atom-atom overlaps, etc.) of the model with programs such as
PROCHECK (48) and WHATCHECK (49). Although errors in stereochemis-
try are rare and less informative than errors detected by profiles, a cluster of
stereochemical errors in the same segment of the model could indicate that the
corresponding region also contains other errors (see Table 2 for a list of evalu-
ation programs and servers). Finally, an important evaluation tool is the experi-
mental knowledge about the protein structure and its function. A model should
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be consistent with experimental observations such as site-directed mutagen-
esis, crosslinking data, ligand binding, and so on.

2.6. The Cycle of Alignment–Modeling–Evaluation

In cases where the best template selection and alignment are not clear, one
powerful way of improving a comparative model is to change the alignment
and/or the template selection and recalculate the model iteratively until no im-
provement in the model is detected (50,51). The more exhaustive is the explo-
ration of the templates and alignments, the more likely it is that the accuracy of
the final model will improve.

3. Examples
This section contains examples of typical comparative modeling cases. All

the examples use program MODELLER and other freely available software. The
first example shows each of the five steps of comparative modeling. The other
three examples concentrate on specific variations of the basic modeling procedure.
The examples are necessarily concise. For more information, the MODELLER
manual (52) and the literature (40,43–45,50,53–55) should be consulted. All the
example files can be obtained as explained in the Appendix at the end of the chapter.

3.1. Example 1: Modeling with a Single Template

THE CASE OF HUMAN BRAIN LIPID-BINDING PROTEIN

Brain lipid-binding protein (BLBP) is a brain-specific member of the fatty
acid-binding protein (FABP) family. When the sequence of this protein was
determined, its function was not known. Thus, a model of the structure of BLBP
was built by comparative modeling, and combined with site-directed mutagen-
esis and binding experiments to understand its ligand specificity (56). The
individual modeling steps are described in Subheading 3.1.1.

3.1.1. Search for Templates

First, it is necessary to put the target sequence (BLBP sequence) into a for-
mat that is readable by MODELLER.MODELLER reads files is the format
similar to the widely used FASTA format (65).

File: blbp.seq

>P1;blbp
sequence:blbp::::::::
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEE
TSIDDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

The first line contains ’>P1; followed by the sequence name, ’blbp’ in
this case. The second line has 10 fields (separated by colons “:”) of which only
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two are used in this case: ’sequence’ (indicating that the file contains a
sequence without known structure) and ’blbp’, the sequence name again.
The rest of the file contains the sequence of BLBP, with ’*’ marking the end
of the sequence. A search for structures that have similar sequence can be per-
formed by the SEQUENCE_SEARCH command of MODELLER. The follow-
ing command file (TOP file) will use the query sequence with the name
’blbp’ (ALIGN_CODES) from the file blbp.seq.

File: search.top

SET SEARCH_RANDOMIZATIONS = 100
SEQUENCE_SEARCH FILE = ’blbp.seq’, ALIGN_CODES = ’blbp’

The SEQUENCE_SEARCH command has many options (52), but in this
example only SEARCH_RANDOMIZATIONS is set to a nondefault value.
SEARCH_RANDOMIZATIONS specifies the number of times the query
sequence is randomized during the calculation of the significance score for
each sequence–sequence comparison. The higher the number of randomiza-
tions, the more accurate the significance scores will be. To execute the TOP
command file, type ’mod search.top’.

3.1.2. Template Selection

The output of the search.top command file is written to the search.log file. If
there is any problem with the command file, it will be reported in the log file.*
At the end of this long file, MODELLER lists the hits sorted by alignment
significance. The example shows only the top 10 hits.

File: search.log

# CODE_1 CODE_2 LEN1 LEN2 NID %ID %ID SCORE SIGNI SIGNI2 SIGNI3
------------------------------------------------------------------------
1 blbp 1hmt 131 131 81 61.8 61.8 96904. 29.9 -999.0 -999.0
2 blbp 1cbs 131 137 55 40.1 42.0 83725. 19.9 -999.0 -999.0
3 blbp 1ifc 131 131 37 28.2 28.2 76909. 15.1 -999.0 -999.0
4 blbp 1mdc 131 130 37 28.2 28.5 72299. 9.7 -999.0 -999.0
5 blbp 1eal 131 127 34 26.0 26.8 69104. 9.1 -999.0 -999.0
6 blbp 1iltA 131 143 25 17.5 19.1 64604. 3.8 -999.0 -999.0
7 blbp 1bgk 131 37 18 13.7 48.6 7774. 3.5 -999.0 -999.0
8 blbp 1tdx 131 133 25 18.8 19.1 64750. 3.3 -999.0 -999.0
9 blbp 1thjA 131 213 43 20.2 32.8 59771. 3.3 -999.0 -999.0

10 blbp 1amy 131 403 55 13.6 42.0 35790. 3.3 -999.0 -999.0

The most important columns in the SEQUENCE_SEARCH output are the
’CODE_2’, ’%ID’ and ’SIGNI’ columns. The ’CODE_2’ column reports
the code of the PDB sequence that was compared with the target sequence. The

*MODELLER always produces a log file. Errors and warnings in log files can be found by
searching for the ’_E>’ and ’_W>’ strings (e.g., with the UNIX grep utility).
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PDB code in each line is the representative of a group of PDB sequences that
share 30% or more sequence identity to each other and have less than 30 resi-
dues or 30% sequence length difference. All the members of the group can be
found in MODELLER’s CHAINS_3.0_30_XN.grp file. The ’%ID’ column
reports the percentage sequence identity between the two sequences (BLBP
and each PDB sequence in this case). In general, a ’%ID’ value above 25–30%
indicates a suitable template unless the alignment is short (less than 100 resi-
dues). A better measure of the significance of the alignment is given by the
SIGNI column (52). A value above 6.0 is generally significant regardless of the
sequence identity. In the foregoing example, five PDB structures have signifi-
cant alignments with the BLBP sequence: 1HMT, 1CBS, 1IFC, 1MDC, 1EAL.
All five proteins belong to the family of fatty acid binding proteins. The most
similar to BLBP is 1HMT (human muscle fatty acid binding protein) with
61.8% sequence identity and a significance score of 29.9. By inspecting the
PDB database (http://www.pdb.bnl.gov) or the CHAINS_3.0_30
_XN.grp file, we find additional structures for the same sequence: 1HMS,
1HMR, 2HMB, and 1HMT all have identical sequences. The main difference
between these four structures is the ligand to which the protein is bound. The
ligands are stearic acid, oleic acid, elaidic acid, and 1-hexyldecanoic acid for
1HMT, 1HMS, 1HMR, and 2HMB, respectively. Thus, the four proteins are in
different “environments.” Assuming the interest is in studying the BLBP/oleic
acid interaction, the template of choice is 1HMS. 1HMS is also a good tem-
plate because it is a high resolution structure (1.4 Å). The coordinate file for
1HMS can be retrieved from the PDB database.

3.1.3. Target–Template Alignment

A good way of aligning a sequence (BLBP) and a structure (1HMS) is the
ALIGN2D command in MODELLER. Although this command is based on the
dynamic programming algorithm (57), it is different from standard sequence–
sequence alignment methods because it takes into account structural informa-
tion from the template when constructing an alignment. This is achieved
through a variable gap penalty function that tends to place gaps in solvent
exposed and curved regions, outside secondary-structure segments, and
between two Cα positions that are close in space (58). As a result, the align-
ment errors are reduced to approximately one-half of those that occur with
standard sequence alignment techniques. This becomes more important as the
similarity (sequence identity) between the sequences decreases and the num-
ber of gaps increases. In this example, the similarity between template and
target is so high that almost any alignment method with reasonable parameters
will result in the same alignment. The following MODELLER TOP file will align
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the BLBP sequence in file blbp.seq with the 1HMS structure in file
1hms.pdb, which is the coordinate file retrieved from the PDB database.

File: align2d-1.top

READ_MODEL FILE = ’1hms.pdb’
SEQUENCE_TO_ALI ALIGN_CODES = ’1hms’
READ_ALIGNMENT FILE = ’blbp.seq’, ALIGN_CODES = ALLIGN_CODES ’blbp’,
ADD_SEQUENCE = on
ALIGN2D
WRITE_ALIGNMENT FILE = ’blbp-1hms.ali’, ALIGNMENT_FORMAT = ’PIR’
WRITE_ALIGNMENT FILE = ’blbp-1hms.pap’, ALIGNMENT_FORMAT = ’PAP’

In the first line, MODELLER reads the 1HMS structure. The
SEQUENCE_TO_ALI command transfers the sequence from the structure to
the alignment in memory and assigns it the name ’1hms’ (ALIGN_CODES).
The third line reads the BLBP sequence from file blbp.seq, assigns it the name
’blbp’  (ALIGN_CODES) and adds it to the alignment in memory
(’ADD_SEQUENCE = on’). The fourth line calls the ALIGN2D command
to perform the alignment. Finally, the alignment is written out in two formats,
’PIR’ and ’PAP’. The PIR format is used by MODELLER in the subsequent
model building stage. The PAP alignment is easier to inspect visually. The TOP
file is executed by typing ’mod align2d-1.top’. The output goes to files
blbp-1hms.ali and blbp-1hms.pap:

File: blbp-1hms.ali

>P1;1hms
structureX:1hms:   1  :  :  131  :  :undefined:undefined:-1.00:-1.00
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp:     :  :     :  :  :  :  0.00:  0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

File: blbp-1hms.pap

 _aln.pos         10        20        30        40        50        60
1hms      VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNT
blbp      VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNT
 _consrvd **** **** ** *** *** **********   **** **   *      *  *****

 _aln.pos         70       80        90       100       110       120
1hms      EISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHG
blbp      EINFQLGEEFEETSIDDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFG
 _consrvd ** * ** ** **  ***  ** * *** ** * ***** **   **  ***   *** *

 _aln.pos        130
1hms      TAVCTRTYEKE
blbp      DIVAVRCYEKA
 _consrvd   *  * ***
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Due to the high similarity and equal lengths of BLBP and 1HMS, there are
no gaps in the alignment. In the PAP format, all identical positions are marked
with a ’*’. The PIR format contains the starting and ending residue numbers
from the 1HMS PDB file (1 and 131, in this case).

3.1.4. Model Building

Once a target–template alignment has been constructed, MODELLER
calculates a 3D model of the target in a completely automated way. The follow-
ing TOP file will generate one model for BLBP based on the 1HMS template
structure and the alignment in file blbp-1hms.ali.

File: model1.top

INCLUDE
SET ALNFILE = ’blbp-1hms.ali’
SET KNOWNS = ’1hms’
SET SEQUENCE = ’blbp’
SET STARTING_MODEL = 1
SET ENDING_MODEL = 1
CALL ROUTINE = ’model’

The first line includes many standard variable and routine definitions. The
following five lines set parameter values for the ’model’ routine. ALNFILE
is the name of the file that contains the target–template alignment in the PIR
format. KNOWNS is the name that corresponds to the template(s) (the known
structure(s)) in ALNFILE (blbp-1hms.ali). SEQUENCE corresponds to
the name of the target sequence in ALNFILE. STARTING_MODEL and
ENDING_MODEL define the number of models that will be calculated for this
alignment. Since STARTING_MODEL and ENDING_MODEL are the same in
this case, only one model will be calculated. The last line in the file calls the
’model’  routine that actually calculates the model. Typing ’mod
model1.top’ will execute the command file. The most important output
files are:

1. model1.log: This file reports warnings, errors, and other useful information
including restraints that remain violated in the final model.

2. blbp.B99990001: The actual model coordinates in the PDB format. This file
can be viewed by any program that reads the PDB format (e.g., RASMOL [59]
http://www.umass.edu/microbio/rasmol/).

3.1.5. Model Evaluation

As discussed before, there are many alternatives for model evaluation. In
this example, PROSAII (47) is used to evaluate the model fold and
PROCHECK (48) is used to check the model’s stereochemistry. Before doing
any external evaluation of the model, one should check the log file from the
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modeling run for errors (model1.log in this example) and restraint viola-
tions (see the MODELLER manual for more details on this (52)).

First, an energy profile of the model is obtained using the PROSAII pro-
gram. It is sometimes possible to identify errors in the model because they
appear as regions of positive energy in the PROSAII profile. In the case of the
BLBP model, no errors were found (see Fig. 3). This is not surprising given the
high similarity between the template and the target. PROSAII is not able to
detect all errors, but if a region of the model has a positive profile, one should
try alternative alignments in that region.* The stereochemistry of the model
can be checked by program PROCHECK. The output of PROCHECK is a
series of POSTSCRIPT  files with evaluations of different aspects of the
model’s stereochemistry. One of the most important charts is the Ramachandran
plot (see Fig. 4) which points out those residues that have anomalous combina-
tions of φ and ψ angles. As mentioned before, a few deviations of this type are
usual even in experimentally determined structures. For example, in Fig. 4,
alanine 6 and aspartate 98 are in disallowed regions of the plot. However, if
several errors cluster in the same region of the model, it is likely that other
errors, such as misalignments, have occurred. In this example, both PROSAII
and PROCHECK confirm that a good quality model was obtained.

3.2. Example 2: Modeling of a Protein/Ligand Complex

ADDING OLEIC ACID TO BLBP

A better way of analyzing the interaction between BLBP and oleic acid is to
add the ligand molecule to the model. To add the ligand that is present in the

Fig. 3. PROSAII (47) energy profile for the BLBP model (see Example 1).

*When using profiles, one should always calculate the profile for the template as well. Some-
times a positive peak appears in the model’s profile as a consequence of a similar peak in the
template’s profile. This does not necessarily mean that there is an error in the template structure
but more likely the evaluation method is reporting a false error for that particular structure. In
such a case, the positive peak in the model probably does not correspond to an error.
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1HMS template (oleic acid) to the BLBP model, all we need to modify is the
alignment file blbp-1hms.ali and the modeling TOP file model1.top.
The new files are shown next:

File: blbp-1hms-ola.ali

>P1;1hms
structureX:1hms:   1  :  :  133 : :undefined:undefined:-1.00:-1.00
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE.*
>P1;blbp
sequence:blbp:     : :     : : : : 0.00: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA.*

Fig. 4. Evaluation of model stereochemistry. The Ramachandran plot was created
for the BLBP model by the PROCHECK program (48) (see Example 1).
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The second line in the alignment file now specifies that the template is to be
used from residue 1 to residue 133 (the oleic acid molecule is residue 133 in
1HMS). The second change in this file is the appearance of the ’.’ character at
the end of each sequence. This character represents the oleic acid molecule in
the alignment.*

The modeling command file model2.top has two changes with respect to
model1.top. First, the name of the alignment file assigned to ALNFILE
was updated. The second change is the addition of ’SET HETATM_IO =
on’. HETATM_IO is a flag that indicates to MODELLER whether or not het-
eroatoms (e.g., nonstandard residues, such as oleic acid) should be read in from
the PDB files.

File: model2.top

INCLUDE
SET ALNFILE = ’blbp-1hms-ola.ali’
SET KNOWNS = ’1hms’
SET SEQUENCE = ’blbp’
SET STARTING_MODEL = 1
SET ENDING_MODEL = 1
SET HETATM_IO = on
CALL ROUTINE = ’model’

MODELLER can be started with this TOP  file by typing ’mod
model2.top’. The BLBP model containing the oleic acid residue docked
into the binding pocket will be written to blbp.B99990001.

It is possible to add ligands which are not present in the template by using
predefined ligands in the MODELLER residue topology libraries. These
ligands include water molecules, metal ions, heme groups, and others. To place
such ligands in the model, additional protein–ligand distance restraints have to
be supplied to MODELLER (52).

3.3. Example 3: Modeling Based on More Than One Template
IMPROVING THE BLBP MODEL

Using more than one template usually improves the quality of the model
because MODELLER is generally able to combine the best regions from each
template when constructing the model (50). Another good template for model-
ing of BLBP is adipocyte lipid binding protein (ALBP), which is 56% identical
to BLBP. Furthermore, a structure of ALBP in complex with oleic acid is avail-
able (PDB code 1LID). To calculate a model for BLBP using both templates,
an alignment of all three sequences was constructed.

*The dot (’.’) character in MODELLER represents a generic residue called a “block”
residue. It can be used to represent any nonstandard residue. For more details, see the
MODELLER manual (52).
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File: align2d-3.top

SET ALIGN_CODES = ’1hms’ ’1lid’
SET ATOM_FILES = ’1hms.pdb’ ’1lid.pdb’
MALIGN3D
SET ADD_SEQUENCE = on, ALIGN_BLOCK = NUMB_OF_SEQUENCES
READ_ALIGNMENT FILE = ’blbp.seq’, ALIGN_CODES = ALIGN_CODES ’blbp’
ALIGN2D
WRITE_ALIGNMENT FILE = ’blbp-1hms-1lid.ali’
WRITE_ALIGNMENT FILE = ’blbp-1hms-1lid.pap’, ALIGNMENT_FORMAT = ’PAP’

The first three lines in the Top file produce a structural alignment of 1HMS
and 1LID using the MALIGN3D command. The BLBP sequence in file
blbp.seq is then added to the structural alignment using the ALIGN2D com-
mand (lines 4–6). The resulting alignment file in the PIR format, blbp-1hms-
1lid.ali, has to be edited manually to include the oleic acid residues as
block residues (see previous example). The edited file is shown here.

File: blbp-1hms-1lid-2.ali

>P1;1hms
structureX:1hms:1    : :133    : :undefined:undefined:-1.00:-1.00
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE.*
>P1;1lid
structureX:1lid:1    : :131    : :undefined:undefined:-1.00:-1.00
CDAFVGTWKLVSSENFDDYMKEVGVGFATRKVAGMAKPNMIISVNGDLVTIRSESTFKNTEISFKLGVEFDEITA
DDRKVKSIITLDGGALVQVQKWDGKSTTIKRKRDGDKLVVECVMKGVTSTRVYERA-*
>P1;blbp
sequence:blbp:     : :     : : : : 0.00: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA.*

Because the conformations of the oleic acid molecules in 1HMS and 1LID
are different, only the 1HMS oleic acid is used as a template. This is done by
replacing the 1LID oleic acid residue in the alignment by a gap character (’-’).
It would be straightforward to produce a BLBP model with the 1LID oleic acid
molecule by changing the blbp-1hms-1lid.ali alignment. Models for
both complexes could be used to design mutants that discriminate between the
two binding modes.

Using the TOP file shown below, MODELLER will generate an “ensemble”
of five models. Because MODELLER uses different starting coordinates for
each model, it is possible that the final models have different conformation in
some regions, especially for sidechains. Those regions of the structure that are
more variable among the models are likely to be modeled less reliably than the
structurally more conserved regions.



Comparative Protein Structure Modeling 115

File: model3.top

INCLUDE
SET ALNFILE = ’blbp-1hms-1lid-2.ali’
SET KNOWNS = ’1hms’ ’1lid’
SET SEQUENCE = ’blbp’
SET STARTING_MODEL = 1
SET ENDING_MODEL = 5
SET HETATM_IO = on
CALL ROUTINE = ’model’

After execution of the Top file, the models will be contained in five files
blbp.B99990001 through blbp.B99990005. A quick way of evaluat-
ing the variability of the models is to superpose their structures. This can be
done with the MALIGN3D command of MODELLER.

File: malign3d.top

SET ATOM_FILES = ’blbp.B99990001’ ’blbp.B99990002’ ’blbp.B99990003’ ;
’blbp.B99990004’ ’blbp.B99990005’
SET WRITE_FIT = on
MALIGN3D

The first line specifies the five coordinate files containing the models. The
second line directs MODELLER to write the superposed structures to new files.
The MALIGN3D command finally superposes the five models and actually
writes the superposed structures in the new orientations to five files
blbp.B99990001.fit through blbp.B99990005.fit. An easy way
to view the superposed models is to concatenate the files with the UNIX ’cat’
command, ’cat blbp.B9999*.fit > sup.pdb’ and display the
sup.pdb file with RASMOL. The superposed models are shown in Fig. 5.

The “best” model can be selected by looking at the value of the MODELLER
objective function in the second line of the model PDB files and choosing the
one with the lowest value. The value of the objective function in MODELLER
is not an absolute measure. It can only be used to compare models calculated
from the same templates and alignments, and rank them accordingly.

File: blbp.B99990001

REMARK Produced by MODELLER: 19-Dec-97 00:49:51     1
REMARK MODELLER OBJECTIVE FUNCTION:      623.0785
ATOM 1 N VAL 1 27.443 41.227 41.628 1.00 0.15 1SG 2
ATOM 2 CA VAL 1 26.733 41.202 42.923 1.00 0.15 1SG 3
ATOM 3 CB VAL 1 27.576 41.899 43.956 1.00 0.15 1SG 4
.
.
.
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3.4. Example 4: The Alignment–Modeling–Evaluation Cycle
THE CASE OF Haloferax Volcanii DIHYDROFOLATE REDUCTASE

Several structures of dihydrofolate reductase (DHFR) are known. However,
the structure of DHFR from Haloferax volcanii was not known and its sequence
identity with DHFRs of known structure is rather low (approx 30%). A model of
H. volcanii DHFR (HVDFR) was constructed before the experimental structure
was solved. Once the crystallographic structure was available, it was possible to
compare it with the model (50). This example illustrates the power of the itera-
tive alignment–modeling–evaluation approach to comparative modeling.

Of all the available DHFR structures, HVDHFR has the sequence most simi-
lar to DHFR from Escherichia coli. The PDB entry 4DFR corresponds to a
high resolution (1.7 Å) E. coli DHFR structure. It contains two copies of the
molecule — named chain A and chain B. According to the authors, the struc-
ture for chain B is of better quality than that of chain A (60). The following
TOP file aligns HVDFR and chain B of 4DFR.

File: align2d-4.top

READ_MODEL FILE = ’4dfr.pdb’, MODEL_SEGMENT ’@:B’ ’X:B’
SEQUENCE_TO_ALI ALIGN_CODES = ’4dfr’
READ_ALIGNMENT FILE = ’hvdfr.seq’, ALIGN_CODES = ALIGN_CODES ’hvdfr’, ADD_SEQUENCE
= on
ALIGN2D
WRITE_ALIGNMENT FILE = ’hvdfr-4dfr.ali’
WRITE_ALIGNMENT FILE = ’hvdfr-4dfr.pap’, ALIGNMENT_FORMAT = ’PAP’, ;
ALIGNMENT_FEATURES = ’indices helix beta’

Fig. 5. Stereo plot of the superposition of five BLBP models from Example 3. The
oleic acid molecule is shown in ball-and-stick representation (75).
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The new options used in this example include MODEL_SEGMENT, which is
used to indicate chain B of 4DFR; and ALIGNMENT_FEATURES, which is
used to output information such as secondary-structure, to the alignment file in
the PAP format.

File: hvdfr-4dfr.pap

 _aln.pos         10        20        30        40        50        60
4dfr      M-ISLIAALAVDRVIGMENAMPW-NLPADLAWFKRNTLDKPVIMGRHTWESIGRPLPGRK
hvdfr     MELVSVAALAENRVIGRDGELPWPSIPADKKQYRSRIADDPVVLGRTTFESMRDDLPGSA
 _helix                            999999999999       999999999
 _beta    9 999999999                           999999            999

 _aln.pos         70        80        90       100       110       120
4dfr      NIILSSQPGT--DDRVTWVKSVDEA--IAACGDVPEIMVIGGGRVYEQFLPKAQKLYLTH
hvdfr     QIVMSRSERSFSVDTAHRAASVEEAVDIAASLDAETAYVIGGAAIYALFQPHLDRMVLSR
 _helix                      99999  99999         99999999
 _beta    99999          99999              9999999            9999999

 _aln.pos        130       140       150       160
4dfr      IDAEVEGDTHFPDYEPDDWESVFSEFHDADAQNSHSYCFKILERR
hvdfr     VPGEYEGDTYYPEWDAAEWELDAETDHEGF--TLQEWVRSASSR
 _helix

 _beta    99               999999999999     999999999999

Using the alignment file hvdfr–4dfr.ali, an initial model is calculated.

File: model4.top

INCLUDE
SET ALNFILE = ’hvdfr-4dfr.ali’
SET KNOWNS = ’4dfr’
SET SEQUENCE = ’hvdfr’
SET STARTING_MODEL = 1
SET ENDING_MODEL = 1
CALL ROUTINE = ’model’

Because the sequence identity between 4DFR and HVDFR is relatively low
(30%), the automated alignment is likely to contain errors. The PROSAII
evaluation of the model (see Fig. 6, upper panel) shows two regions with
positive energy. The first region is around residue 85, the second region is at
the C-terminal end of the protein. Referring to the target–template alignment
shown, (hvdfr-4dfr.pap), it is easy to understand why the first positive
peak appears. The insertion between position 85 and 88 of the alignment was
placed in the middle of an a-helix in the template (the “9” characters on the
first line below the sequence mark the helices). Moving the insertion to the end of
the α-helix may improve the model. The second problem, which occurs in the
C-terminal region of the alignment, is less clear. The deletion in that region of
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the alignment corresponds to the loop between the last two β-strands of 4DFR
(a β-hairpin). Since the profile suggests that this region is in error, an alterna-
tive alignment should be tried. One possibility is that the deletion is actually
longer, making the C-terminal β-hairpin shorter in HVDFR. One plausible
alignment based on this considerations is shown here.

File: hvdfr-4dfr-2.pap

 _aln.pos         10        20        30        40        50        60
4dfr      M-ISLIAALAVDRVIGMENAMPW-NLPADLAWFKRNTLDKPVIMGRHTWESIGRPLPGRK
hvdfr     MELVSVAALAENRVIGRDGELPWPSIPADKKQYRSRIADDPVVLGRTTFESMRDDLPGSA
 _helix                            999999999999       999999999
 _beta    9 999999999                           999999            999

 _aln.pos         70        80        90       100       110       120
4dfr      NIILSSQPGT--DDRVTWVKSVDEAIAACG--DVPEIMVIGGGRVYEQFLPKAQKLYLTH
hvdfr     QIVMSRSERSFSVDTAHRAASVEEAVDIAASLDAETAYVIGGAAIYALFQPHLDRMVLSR
 _helix                      99999  99999         99999999
 _beta    99999          99999              9999999            9999999

 _aln.pos        130       140       150       160
4dfr IDAEVEGDTHFPDYEPDDWESVFSEFHDADAQNSHSYCFKILERR----
hvdfr VPGEYEGDTYYPEWDAAEWELDAETDHE------GFTLQEWVRSASSR
 _helix

 _beta    99               999999999999     999999999999

Fig. 6. PROSAII energy profiles for the initial and final HVDFR models (see
Example 4).
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A new model was calculated. Its PROSAII profile is shown in Fig. 6 (lower
panel). Both positive peaks disappeared and the new profile does not contain
any positive regions. Figure 7 shows the comparison of the C-terminal β-hairpin
of both models and the actual experimental structure (50). This confirms that
the correct choice for the final alignment was made and that PROSAII was
indeed able to detect the error in the initial alignment.

The examples shown here correspond only to the most basic comparative
modeling problems. MODELLER can be used for many more complex
projects, such as multiple chain models (multimers or protein–protein com-
plexes), symmetry-constrained models, modeling of chimeric structures, and
so on. It is also possible to add experimental or predicted data in the form of
additional restraints (e.g., NMR or fluorescence distance measurements, disul-
fide bridges, secondary-structure prediction, and the like). For details and more
examples, see the MODELLER manual (52).

4. Notes
4.1. Errors in Comparative Modeling

As the similarity between the target and the templates decreases, the errors in a
model increase (see Subheading 4.2.). Errors in comparative models can be ex-

Fig. 7. Stereo plot of the superposition of the C-terminal region of the HVDFR
models and the experimental structure (see Example 4). Initial model, dotted line;
final model, thick line; experimental structure, thin line.
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plained based on the facts that the model resembles the templates as much as pos-
sible, and that the modeling procedure cannot recover from misalignments. The
typical errors in comparative models include (45,50,54) (see Fig. 8):

Fig. 8. Typical errors in comparative modeling (54) (A) Errors in sidechain pack-
ing. The Trp 109 residue in the crystal structure of mouse cellular retinoic acid bind-
ing protein I (thin line) is compared with its model (thick line), and with the template
mouse adipocyte lipid-binding protein (broken line). (B) Distortions and shifts in cor-
rectly aligned regions. A region in the crystal structure of mouse cellular retinoic acid
binding protein I (thin line) is compared with its model (thick line), and with the tem-
plate fatty acid binding protein (broken line). (C) Errors in regions without a template.
The Cα trace of the 112–117 loop is shown for the X- ray structure of human eosino-
phil neurotoxin (thin line), its model (thick line), and the template ribonuclease A
structure (residues 111–117; broken line). (D) Errors due to misalignments. The
N-terminal region in the crystal structure of human eosinophil neurotoxin (thin line) is
compared with its model (thick line). The corresponding region of the alignment with
the template ribonuclease A is shown. The black lines show correct equivalences, i.e.,
residues whose Cα atoms are within 5 Å of each other in the optimal least-squares
superposition of the two X-ray structures. The ’a’ characters in the bottom line
indicate helical residues (e) Incorrect template. The X-ray structure of α-trichosanthin
(thin line) is compared with its model (thick line), which was calculated using indole–
3-glycerophosphate synthase as a template.
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1. Errors in sidechain packing: As the sequences diverge, the packing of sidechains
in the protein core changes. Sometimes even the conformation of identical
sidechains is not conserved, a pitfall for many comparative modeling methods.
The sidechain errors are generally not important unless they occur in regions that
are involved in function, such as active sites and ligand-binding sites.

2. Distortions and shifts in correctly aligned regions: As a consequence of sequence
divergence, the mainchain conformation also changes even if the overall fold
remains the same (see Fig. 9). Therefore, it is possible that in some correctly
aligned segments of a model, the template is locally different (<3 Å) from the
target, resulting in an incorrect model in that region. Sometimes the target–tem-
plate differences are not due to differences in sequence but are a consequence of
artifacts in structure determination (e.g., crystal packing) or structure determina-
tion in different environments. The simultaneous use of several templates mini-
mizes this kind of error (50).

3. Errors in regions without a template: Segments of the target sequence that have
no equivalent region in the template structure (insertions) are the most difficult
regions to model. If the insertion is relatively short (usually less than eight resi-
dues), some methods are able to predict reliably the conformation of the back-
bone, but they usually need special attention (1,2). Conditions for the successful
prediction of the conformation of an insertion are the correct alignment and an
accurately modeled environment around the insertion. Insertions longer than 8
residues are generally not possible to model correctly with the current methods.

4. Errors due to misalignments: The largest source of errors in comparative model-
ing are misalignments, especially when the target–template similarity decreases
below 40% (see Fig. 9). For example, at 30% sequence identity on the average
20% of the residues are misaligned (61). A misalignment of a residue by a single
position produces a positional error of approx 4 Å in the model. The current
comparative modeling methods cannot recover from alignment errors because
the model building procedure is not able to modify the target–template align-
ment. However, alignment errors can be corrected or avoided in two ways. First,
it is usually possible to use a large number of sequences, even if most of them do
not have known structures, to construct a family alignment. Multiple alignments
are generally more reliable than pairwise alignments (62). The second way of
improving the alignment is to modify those regions of the alignment that corre-
spond to predicted errors in the model in an iterative way, as described in Sub-
heading 2.6.

5. Incorrect templates: This is a potential problem when distantly related proteins
are used as templates (i.e., less than 30% sequence identity). As discussed before,
models based on incorrect templates can generally be identified at the evaluation
stage. The largest practical problem is to distinguish between a model based on
an incorrect template and a model based on a mostly incorrect alignment with a
correct template. In both cases, the evaluation methods will predict an unreliable
model. A possible solution to this problem is to explore several different align-
ments for the target–template pair. In theory, it should be possible to find align-
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Fig. 9. Average model accuracy as a function of sequence identity. As the sequence
identity between the target sequence and the template structure decreases, the average
structural similarity between the template and the target also decreases (dotted line,
open circles). Structural overlap is defined as the fraction of equivalent Cα atoms. For
the comparison of the model with the actual structure (filled circles), two Cα atoms
were considered equivalent if they were within 3.5 Å of each other and belonged to the
same residue. For comparison of the template structure with the actual target structure
(open circles), two Cα atoms were considered equivalent if they were within 3.5 Å of
each other after alignment and rigid-body superposition by the ALIGN3D command
in MODELLER. At high-sequence identities, the models are close to the templates,
and therefore also close to the experimental target structure (solid line, filled circles).
At low-sequence identities, errors in the target–template alignment become more
frequent and the structural similarity of the model with the experimental target struc-
ture falls below the target–template structural similarity. The difference between the
model and the actual target structure is a combination of the target–template differ-
ences (light area) and the alignment errors (dark area). The figure was constructed by
calculating 3993 comparative models based on single templates of varying similarity
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ments that are accurate enough to produce a good model if the template is cor-
rect. However, in practice the number of possibilities that need to be explored to
find a sufficiently accurate alignment may be too large. Therefore, the only way
to assure that a certain template is incorrect for a particular target is by finding
another template with different structure that produces a better model for the
same target.

4.2. Relationship Between Target–Template Similarity and Model
Accuracy

The quality of a model can be approximately predicted from the sequence
similarity between the target and the template (Fig. 9). Sequence identity above
30% is a relatively good predictor of the expected accuracy of a model. How-
ever, other factors, including the environment, can strongly influence the accu-
racy of a model. For instance, some calcium-binding proteins undergo large
conformational changes when bound to calcium. If a calcium-free template is
used to model the calcium-bound state of a target, it is likely that the model
will be incorrect irrespective of the target–template similarity. This also applies
to experimental determination of protein structure. A structure must be
determined in the functionally meaningful environment. If the target–template
sequence identity falls below 30%, the sequence identity becomes unreliable as a
measure of expected accuracy of a single model. The reason is that the
dispersion of the model–target structural overlap increases with the decrease in
sequence identity. Below 30% sequence identity, it is relatively frequent to
obtain models that deviate significantly, in both directions, from the average
accuracy. It is in such cases, that model evaluation methods (see Subheading
2.5.) are most important to use.

4.3. Are Comparative Models Better than Their Templates?

In general, models are as close to the target structure as the templates, or
slightly closer if the alignment is correct (50). This is not a trivial achievement
because of the many residue substitutions, deletions, and insertions that occur
when the sequence of one protein is transformed into the sequence of another.
Even in a favorable modeling case with a template that is 50% identical to the
target, half of the sidechains change and have to be packed in the protein core
such that they avoid atom clashes and violations of stereochemical restraints.

to the targets. All targets had known (experimentally determined) structures, and there-
fore the comparison of the models and templates with the experimental structures was
possible (63). The top part of the figure shows three models (solid line) compared with
their corresponding experimental structures (dotted line). The models were calculated
with MODELLER in a completely automated fashion before the experimental structures
were available (54). The arrows indicate the target–template similarity in each case.
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When more than one template is used for modeling, it is sometimes possible to
obtain a model that is significantly closer to the target structure than any of the
templates (50). This is so because the model tends to inherit the best regions
from each template, thus minimizing some of the distortions in the correctly
aligned regions. Alignment errors are the main factor that may make models
worse than the templates. However, to represent the target, it is always better to
use a comparative model rather than the template. The reason is that the errors
in the alignment affect similarly the use of the template as a representation of
the target as well as the comparative model based on the same template (50).

4.4. Establishing Remote Protein–Protein Relationships
by Model Evaluation

Evaluation of a comparative model implied by a target–template alignment
is a powerful way of confirming the significance of the alignment. It is often
the case that a sequence similarity search of a database results in only a mar-
ginal or nonsignificant hit even when two proteins are homologous. A good
way of confirming such a hit, when one of the proteins happens to have a known
structure, is to build a comparative model for the sequence of unknown struc-
ture. If the resulting model is of good quality, according to the evaluation meth-
ods described in Subheading 2.5., it is likely that the two proteins have similar
structures (50,51,63). This approach is also useful when structural similarity is
suspected in the absence of sequence similarity.
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Appendix: How to Obtain MODELLER and the Example Files
MODELLER

MODELLER is freely available to academic users. It runs on most UNIX
systems, including PCs running LINUX. The program and data files can be
accessed on the Web at http://guitar.rockefeller.edu/mod-
eler/modeller.html or can be downloaded by FTP from guitar.
rockefeller.edu using the anonymous account. MODELLER, with a
graphical interface, is also available as part of QUANTA, INSIGNTII, and
GENEEXPLORER (Molecular Simulations Inc., San Diego, CA, e-mail:
dje@msi.com).
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Example Files

All example files used in the text, some additional data files, as well as
the links in Table 2 can be accessed on the Web at http://guitar.
rockefeller.edu/modeller/psp/
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A Practical Guide to Protein Structure Prediction

David T. Jones

1. Introduction
The protein-folding problem is one of the greatest remaining challenges in

structural molecular biology (if not the whole of biology). How do proteins
translate from their primary structure (sequence) to tertiary structure? How is
the information encoded? Basically, how do proteins fold? Often, the protein-
folding problem is seen as a computational problem — do we know enough
about the rules of protein structure to program a computer to read in a protein
sequence and output a correct tertiary structure? Aside from the academic
interest in understanding the physics and chemistry of protein folding, why are
so many people interested in finding an algorithm (i.e., a method) for predict-
ing the native structure of a protein given just its sequence?

The ideal way to derive structural information for a given protein is to deter-
mine the structure by X-ray crystallography or nuclear magnetic resonance
(NMR) spectroscopy. There are a number of problems:

1. Some proteins cannot be (easily) crystallized for one reason or another.
2. Crystallography can take anywhere from several months to several years to

determine the structure of a single protein.
3. NMR is, on average, quicker than crystallography but cannot currently be applied

to proteins larger than about 100 residues.
4. There are currently around 100,000 protein sequences known, but only 2000 or

so X-ray structures have been determined to date.
5. As a result of genome projects, the number of known protein sequences is likely

to reach 500,000 by the year 2000.
6. There is unlikely to be a significant increase in the rate of structure determination

in this time frame.
7. Assuming that it was possible to solve the structure of all these unsolved proteins,

it would take approx 500 yr to achieve this goal.
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Protein–structure prediction is, therefore, going to be vital to bridge the gap
between structure and sequence determination. Membrane-bound proteins are
a particular problem — there are only five or so known structures for mem-
brane-bound proteins and yet sequences are known for tens of thousands of
membrane-bound proteins.

Modeling protein structure also allows the planning of protein design and
modification experiments. Molecular modeling has been used to enhance the
activity of enzymes and to design potential new therapeutic agents.

2. Strategies for Protein Structure Prediction
A number of different strategies are available to compute a structure for a

protein sequence (e.g., ref. 1). These can be classified into three broad catego-
ries: comparative modeling, fold recognition, and  methods.

3. Comparative Modeling
At present, the modeling of unknown protein structures by homology repre-

sents the best known method for protein–structure prediction. The modeling
process consists of six basic steps: aligning the target sequence on the back-
bone of the parent structure, building a framework structure, adding and opti-
mizing side chains, building loops, refining the model, and validating
(including estimates of reliability).

3.1. Aligning of the Target Sequence on the Backbone of the
Parent Structures

This step is by far the most important. None of the later steps can compen-
sate for errors made in the initial alignment of the target protein with the par-
ent. Where the degree of sequence similarity is below 40% sequence identity,
standard alignment methods can produce structurally incorrect results for one
or more regions (2). Fortunately, manual adjusting automatically generated
alignments can correct these mistakes.

3.2. Building a Structural Framework

Once a sequence–structure alignment has been produced, a decision must be
made as to which parts of which parent structures are similar enough in confor-
mation to the target protein for use in the initial model. Models can be built
from a single parent structure, but significant improvement can be gained from
the used of related structures. The difficulty in using multiple structures is to
decide which parent to use for each part of the target protein, and where to
assume conformational similarity breaks down. Sometimes, structures with less
overall sequence similarity offer the best choice for segments of structures,
and local sequence similarity can provide a rough indicator of that situation



Protein Structure Prediction 133

(3). Generally, sequence similarity is quite obvious for stretches of the align-
ment, usually approximately corresponding to regions of secondary-structure,
and then becomes unreliable in loop regions.

3.3. Constructing of Core Side Chains

A number of algorithms have been published that accurately build back side
chains with high accuracy given a main-chain conformation (4). When apply-
ing these algorithms to real modeling problems, however, it was found that the
side chains are often built with less accuracy than expected, even for core resi-
dues. The explanation for this appears to be that the main-chain conformation
is generally not modeled accurately enough to allow the side-chain conforma-
tions to be predicted accurately (5).

3.4. Building the Loops

After the core is complete, short regions of chain usually remain to be built
(typically loop regions). A number of algorithms have been published that
appear to be able to accurately build loops (e.g., refs. 6 and 7), but in practice,
loop building is still a difficult part of the modeling process, especially for long
loops.

3.5. Refining the Models

Once an initial model has been built, the next question is whether the struc-
ture can be improved. Most groups attempt to refine the starting model by
either simple energy minimization or molecular dynamics, but there is little
evidence that the overall similarity between the model and the true native struc-
ture is increased by any of these approaches.

3.6. Estimating the Reliability of Models

A number of simple checks can be made to the final model structure to assess
its quality. Two commonly used programs are PROCHECK (8) and
WHATCHECK (9). These programs can, e.g., check the stereochemical quality
of the structures, and can check for unfavorable side chain environments (usually
a good indicator of incorrectly folded protein structures), but it is all to common
to find poor models scoring very well when tested with these programs.

3.7. Recent Developments

There have been very few significant developments in the actual process of
comparative modeling in recent years, but rather than taking this as a sign of
lack of progress, this indicates a significant maturity in the modeling field in
that people are concentrating on the use of existing tools, rather than the
unnecessary development of new ones.
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One of the most impressive recent developments in the modeling field is the
wide availability of reliable automatic comparative modeling programs. In
particular the SWISS-MODEL server (10) has been shown to produce excellent
results in comparison to the results from much more elaborate protocols when
the degree of sequence similarity between parent and target is relatively high. For
more remotely related target-parent pairs, SWISS-MODEL fares less well due to
the fact that it uses automatic sequence alignments. Note that SWISS-MODEL does
allow manually edited alignments to be submitted rather than just a single
sequence, and it is to be expected that given the same initial alignments SWISS-
MODEL would produce results comparable to those obtained by experts in
comparative modeling. The success of SWISS-MODEL is believed to be a very
important progression in the modeling field. Although it perhaps marks the
hammering-in of a single nail into the coffin of “professional” comparative
modeling as a trade, it does mean that nonspecialists (academics at least —
SWISS-MODEL is not an option for commercial researchers) can now produce
excellent models without recourse to an expert, or the purchase of expensive
software. Of course this high degree of automation in the basic process of com-
parative modeling means that the professionals can now concentrate on the
much more important aspects of the modeling process, i.e., validation (check-
ing the model) and evaluation (actually gaining biological insight from it).

4. Fold Recognition
It has long been recognized that proteins often adopt similar folds despite

there being no significant sequence or functional similarity. It has also been
estimated that for 50–70% of new proteins there will be a suitable structure in
the database from which to build a 3D model. Unfortunately, due to insignifi-
cant sequence similarity, many of these go undetected until after 3D structure
of the new protein is solved. Over recent years methods have been developed
that attempt to recognize these fold similarities for pairs of proteins with very
low sequence similarity. These methods are known as fold-recognition meth-
ods or more commonly as threading methods (see Fig. 1).

The term “fold recognition” covers two variations on the same theme. The
problem of finding one or more sequences that are compatible with a fold is
commonly called inverse protein folding. In contrast to this, perhaps a more
useful formulation of fold recognition is detecting of a matching fold given a
sequence. Simply put, if you have a single structure and are trying to find either
one or more sequences that might fold into this structure, then the method is
inverse protein folding. On the other hand, if you have a single sequence and
are interested in finding a structure (from a library of known structures) that is
most likely to resemble the native conformation of the sequence, then the
method is protein folding (by means of fold recognition). There is, of course,
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Fig. 1. A conceptual outline of fold recognition as a solution to the protein-folding
problem. A given sequence (target) is fitted to the backbones of known structures (fold
library), and the goodness-of-fit in each case is evaluated by one of many available
model evaluation procedures (potentials).
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some overlap between inverse protein folding and threading. In particular, both
methods employ some measure of sequence–structure comparability and some
means for performing the sequence–structure alignment. These measures are
either based on 1D sequence properties, such as solvent accessibility (11–13),
or incorporate interresidue pairwise interactions (14–21). The substitution
matrices described by Overington et al. (22) represents an alternative approach
to measuring sequence–structure compatibility for inverse protein folding.

5. Ab Initio Prediction
In many cases, neither comparative modeling nor threading can provide a

useful model for a sequence under study. At present, there is roughly a 50%
chance of finding a protein fold in the protein structure databank, which is
significantly similar to a newly solved protein domain (C. A. Orengo, personal
communication), but of course this chance will increase steadily as more struc-
tures are solved. The real problem in prediction is to know when a suitable
structure is present in the databank. Although it is readily apparent when com-
parative modeling is not viable (e.g., because of lack of significant sequence
similarity to a template protein), knowing when a threading prediction is wrong
is somewhat harder.

By far the most widely applied ab initio prediction methods are those relating
to the prediction of secondary-structure. For many years it seemed that 60%
accuracy was the absolute limit for secondary-structure prediction methods,
but the availability of large families of homologous sequences has recently
revolutionized secondary-structure prediction. Traditional methods such as
GOR (23) or Chou and Fasman (24), when applied to a family of proteins
rather than a single sequence, proved to be much more accurate at identifying
core secondary-structure elements.

There have been many reviews on secondary-structure prediction (e.g.,
ref. 25), and there has been very little significant progress in secondary-structure
prediction in recent years. This is not as bad as it sounds, however, as modern
methods have already achieved a useful level of accuracy by taking into account
evolutionary information extracted from multiply aligned protein sequences
(26). The PHD method of Rost and Sander (26) is probably the most widely
used method today, and the results presented at the CASP2 meeting ([27];and
see later) indicate that PHD is still the method to beat. In the hands of the
authors, PHD manages an average Q3 score (i.e., accuracy) of around 73%. In
other words, 73% of the residues in a protein are expected to be classified
correctly into three secondary structural types (helix, sheet, or coil). However,
it must be realized that this is an average performance when tested over many
proteins. An individual protein may have a much lower or much higher Q3

score than this average.
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Despite the success of the PHD method, other methods are certainly catching
up. Of these, an interesting new contender is the DSC method (28). What makes
this method particularly interesting is that it is relatively simple to implement,
and indeed the authors have made the program code available to other research-
ers. This is a very important difference from PHD, which remains accessible
solely via e-mail or the World Wide Web.

Given that secondary-structure prediction methods can often produce quite
accurate predictions in cases where many related sequences are available for
analysis, it has been natural to ask whether it is possible to assemble correct
folds for proteins based on these predicted elements of secondary-structure
and some means for predicting how these elements pack together. This, of
course, leads naturally to protein-folding simulation, which will be discussed
shortly, but an interesting intermediate method comes from the possibility that
contacts in a protein structure can be predicted , by analyzing multiple sequence
alignments and looking for correlated mutations. Several studies have been
made on this aspect of protein structure prediction (28–32) with some differ-
ences of opinion evident in the conclusions. Although it is certainly possible to
predict specific contacts in protein structures from multiply aligned sequences,
it is difficult to use this information due to the relatively large numbers of false
positives that are output. It is also fair to say that a very large number of related
sequences (i.e., more than 30) is required to make any attempt at such contact
prediction at all.

6. Ab Initio Prediction
Ab initio prediction of protein tertiary structure is, of course, the “holy grail”

of the prediction field. However, there is little evidence that significant progress
toward this goal has been made to date.

In general, methods for ab initio tertiary structure prediction employ some
means for generating different protein-chain conformations and a potential
function with which to evaluate each conformation. Unsurprisingly, there is a
lot of overlap between such ab initio methods and threading methods, and many
potentials used for threading can be used for folding simulations. For folding
simulations, however, other terms often need to be added to take into account
steric hindrance, hydrogen bonding, and general chain compactness. These
terms are not necessary for threading, as the conformations of the structures
onto which the target sequence is being threaded will satisfy all these require-
ments.

Some ab initio methods diverge very little from the basic recipe described
and attempt to minimize a given potential function using some simplified rep-
resentation of a polypeptide chain. Conformations of this chain can be restricted
to points on a lattice (e.g., refs. 33–43) or restricted by choosing discrete main



138 Jones

chain torsion angles (e.g., refs. 44–47). Generally speaking, some kind of
Monte Carlo optimization is used, either based on some variant of “simulated
annealing” or more recently based on a genetic algorithm (48).

In some cases, external information is used to bias the simulation toward
particular regions of conformational space. The most common bias that is often
applied is to use predicted, or even experimentally derived, secondary structural
information. Some recent work has also looked at the possibility of obtaining
reasonable chain folds based on a small number of distance constraints (49–50),
and this kind of approach may be useful not only for structure prediction but
also for assisting in the determination of NMR structures where only limited
data are available.

7. Structure Prediction
This section gives some practical advice on predicting the structure for a

newly determined protein sequence. Before starting out, it is important to be
very clear about what level of detail is required from the prediction. If it is
sufficient to produce a crude topological model for the protein under study,
then there is a much greater chance of success than if an accurate all-atom
model is required. It is important to have specific questions in mind when
attempting structure prediction.

The main rule to follow is to use the simplest and most reliable method that
can do the job. If your protein has a high degree of sequence similarity to a
protein of known structure, then build a model using standard comparative
modeling techniques and leave it alone. If you are able to build a good com-
parative model of your protein, do not bother with more complicated and less
reliable methods such as secondary-structure prediction, threading, or ab initio
folding simulations. In rare circumstances there might be some cause to
enhance a model using a more advanced method.

Following is an outline of a recommended procedure for attempting to predict
the structure of a newly characterized protein sequence. The emphasis here is to
encourage the use of multiple methods rather than relying on a single technique.

7.1. STAGE 1: Sequence Searching

Before moving onto more advanced methods for prediction, it is advisable
to expend effort in detecting homology between the target protein and proteins
of known 3D structure. This seems like an obvious thing to do, but many people
skimp on this step and end up leading themselves astray.

There are a number of sequence comparison software packages that can be
obtained freely from the authors. Two of these packages are recommended:
FASTA3 (51) and PSI-BLAST (52). The FASTA3 package includes not only
FASTA, which is a fast and sensitive sequence-comparison method in its own
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right, but also a good implementation of the widely used Smith-Waterman algo-
rithm (SSEARCH) (53). PSI-BLAST is the latest incarnation of the original BLAST
package (56), and is now capable of generating gapped alignments. Of even
more interest are the new Position Specific Iteration (PSI) Features of PSI-
BLAST. Here, rather than searching a databank of sequences with a single
sequence and then finishing, the program builds a profile based on the initial
search results and uses this profile to search the databank again. If the profile
pulls any more sequences out of the databank, then these new sequences are
added to the profile and the new profile used again to search for more sequences.
This procedure can be terminated after a fixed number of iterations, or can be
allowed to continue until no more sequences are detected (convergence).

One major improvement that has occurred recently with the foregoing
sequence searching programs is that they now output useful measures of statis-
tical significance. Generally, the programs produce an “E-value,” which corre-
sponds to the expected number of hits that would be expected to achieve an
equivalent search score purely by chance.

To use FASTA or PSI-BLAST for structure prediction it is necessary to create
a databank of sequences for which the 3D structure is known. In other words, it
is necessary to extract sequence information from Brookhaven PDB formatted
files (57) and convert these data into a flat-file sequence format (usually the
FASTA file format). Fortunately, already-converted sequence files are readily
available via the World Wide Web or FTP (see resources) — e.g., the NRL3D
data bank.

Let us look at an example for both FASTA3 and PSI-BLAST, starting with
FASTA3. In this case we take, as an example, one of the proteins that were predic-
tion targets in the CASP2 experiment (27). The sequence in question was as follows:

>T0004 Polyribonucleotide Nucleotidyltransferase, S1 motif
AEIEVGRVYTGKVTRIVDFGAFVAIGGGKEGLVHISQIADKRVEKVTDYLQM
GQEVPVKVLEVDRQGRIRLSIKEATEQSQPAA

FASTA3 was used to search the sequences extracted from the Brookhaven
PDB with ktup = 1 (which is the most sensitive setting for FASTA3). After a
few seconds, the following results were produced:

The best scores are: initn init1 opt z-sc E(3576)
1CSP TRANSCRIPTION REGULATION ( 67) 43 43 64 106.3 1.5
1DPRA TRANSCRIPTION REGULATION ( 226) 64 64 67 100.2 3.2
1TDX DNA BINDING REGULATORY PROTEIN ( 226) 64 64 67 100.2 3.2
1GPR PHOSPHOTRANSFERASE ( 162) 40 40 65 100.1 3.3
1NEF REGULATORY FACTOR ( 136) 61 61 61 95.5 5.8
1PREA TOXIN (HEMOLYTIC POLYPEPTIDE) ( 470) 46 46 68 95.3 6
2FCR ELECTRON TRANSPORT ( 173) 38 38 62 95.0 6.3
.
.
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The first thing to look at here is the value in the E-value column. In this case
there are 3576 sequences in the databank (i.e., there are 3576 unique sequences
with known 3D structure). The best-scoring match between the target protein
produces an E-value of 1.5, which indicates that we would expect a similar
score (64) to occur by chance about 1.5 times on average. This is clearly not a
significant result. A 99% confidence would require us to only accept matches
with E-values of 0.01 or less. This is certainly good advice, but what is surpris-
ing in this case is that the correct match has in fact been found. The structure of
the protein represented by PDB entry 1CSP (Cold Shock Protein) is indeed an
excellent model for the structure of target T0004.

Should you always believe the top scoring match in a FASTA3 search? Of
course not. Without any additional information there would be no reason at all
to believe that 1CSP has any relationship to the target protein under study. How-
ever, when the biological relevance of the top hit is considered, then a match to
the target protein looks more plausible. Nevertheless, it is quite risky to ignore
the statistical significance of the search results. However, spotting a useful match
at this stage can be a very useful shortcut to the prediction process.

Assuming that no credible match can be found using FASTA, or the SSEARCH
program included alongside FASTA (which is much slower than FASTA but
slightly more sensitive), then more sensitive sequence-comparison methods
can be tried. In the past, the advice here would have been to use sequence
profiles (54) or Hidden Markov Models (55) to look for very remote sequence
similarities. But then the PSI-BLAST program was made available (52), which
permits very sensitive sequence searches to be carried out with little more effort
than a normal BLAST search.

To use PSI-BLAST to maximum effect, a hybrid sequence databank is re-
quired, which contains the same Brookhaven PDB sequences described, but
also includes other protein sequences taken from a standard protein sequence
databank such as TREMBL, SWISS-PROT, or OWL. In this example, the
databank includes the same 3576 sequences as used with FASTA3, but also
includes 244,827 sequences taken from SWISS-PROT, TREMBL, and OWL.
Why add these 244,827 additional sequences? Recall that PSI-BLAST works
by constructing sequence profiles as it runs. Sequence profiles are generally
improved by including as many diverse sequences as possible, and so these
additional sequences can greatly extend the range of PSI-BLAST in detecting
homology between the target sequence and a PDB sequence.

The target sequence in this case is again taken from the CASP2 experiment:

>T0031; Exfoliative toxin A from Staphylococcus aureus, 242a.a.
EVSAEEIKKHEEKWNKYYGVNAFNLPKELFSKVDEKDRQKYPYNTIGNVFVKGQTSATGVLIGKNTVLT
NRHIAKFANGDPSKVSFRPSINTDDNGNTETPYGEYEVKEILQEPFGAGVDLALIRLKPDQNGVSLGDK
ISPAKIGTSNDLKDGDKLELIGYPFDHKVNQMHRSEIELTTLSRGLRYYGFTVPGNSGSGIFNSNGELV
GIHSSKVSHLDREHQINYGVGIGNYVKRIINEKNE
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PSI-BLAST is run on this sequence using the following parameters: -h
0.001 -j 10, which allows PSI BLAST to make as many as 10 iterations, but
with new sequences being added at each iteration only where the sequences
match the current profile with an E-value of 0.001 or less.

The first iteration from PSI-BLAST produces the following matches:

ETA_STAAU EX8FOLIATIVE TOXIN A PRECURSOR (EC 3.4.21.-) (EPIDERMO... 499 e-141

ETB_STAAU EXFOLIATIVE TOXIN B PRECURSOR (EC 3.4.21.-) (EPIDERMO... 197 4e-50

S21758 glutamic acid-specific endopeptidase - Staphylococcus au... 94 5e-19

STSP_STAAU GLUTAMYL ENDOPEPTIDASE PRECURSOR (EC 3.4.21.19) (STA... 93 1e-18

SAU60589 SAU60589 NID: g1407783 - Staphylococcus aureus. 84 7e-16

SAU63529 SAU63529 NID: g1488694 - Staphylococcus aureus. 72 2e-12

S25140 serine proteinase homolog - Enterococcus faecalis 65 3e-10

C64647 serine proteinase (EC 3.4.21.-) - Helicobacter pylori (s... 50 1e-05

D78376 D78376 NID: g1526427 - Yersinia enterocolitica (strain:W... 48 4e-05

YEHTRA YEHTRA NID: g1419350 - Yersinia enterocolitica. 48 4e-05

CJHTRA CJHTRA NID: g2077988 - Campylobacter jejuni. 46 1e-04

CJU27271 CJU27271 NID: g881374 - Campylobacter jejuni. 46 1e-04

E1181491 YKDA. 45 5e-04

DEGQ_ECOLI PROTEASE DEGQ PRECURSOR (EC 3.4.21.-). 43 0.001

These hits are all significant, but at this stage none of the hits are to any of
the sequences taken from PDB, i.e., sequences with known 3D structure. How-
ever, on the third iteration, the following output is produced:

.

.

POLG_PPVNA GENOME POLYPROTEIN (CONTAINS: N-TERMINAL PROTEIN; HE... 53 1e-06

PSU05771 PSU05771 NID: g1335723 - Peanut stripe virus. 53 1e-06

PSU34972 PSU34972 NID: g1016234 - Peanut stripe virus. 53 1e-06

YNM3_YEAST HYPOTHETICAL 110.9 KD PROTEIN IN SPC98-TOM70 INTERGE... 53 1e-06

PVCHYMOA PVCHYMOA NID: g2462646 - Penaeus vannamei. 52 3e-06

PVCHYMOB PVCHYMOB NID: g2462648 - Penaeus vannamei. 51 4e-06

pdb|1TRY|1TRY trypsin 51 7e-06 fl-

CTR2_VESOR CHYMOTRYPSIN II (EC 3.4.21.1). 49 2e-05

STMSAMP20 STMSAMP20 NID: g474021 - Streptomyces albogriseolus (... 49 2e-05

BCU19287 BCU19287 NID: g625062 - Bean common mosaic virus. 49 2e-05

YMU425966 YMU42596 NID: g1552411 - Yam mosaic virus. 49 2e-05

.

.

Although quite a long way down the list of hits, a statistically significant match
is reported between the target protein and PDB entry 1TRY (E-value = 7 × 10–6).
In subsequent iterations, the E-value for this match drops to as little as 10–20,
which is clearly significant.

In the event of a similarity being detected at this stage, it is advisable to stop
here and consider the construction of an homology model. This is not as easy
as it sounds. Unless the similarity is very obvious, it is will not be trivial to
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produce a correct alignment between the target protein and the protein of known
structure (2).

7.2. Stage 2: Secondary-Structure Prediction

Assuming that no useful matches were found in the first stage, it is neces-
sary to consider using secondary-structure prediction methods. Although sec-
ondary-structure information alone is generally of only limited use, it is
nonetheless helpful to be able to refer to a reliable secondary-structure predic-
tion when attempting to predict the tertiary structure by fold recognition. The
following structural clues can sometimes be obtained through inspection of
predicted secondary structural elements:

1. The structural class of the target protein may be ascertained (all-α, all-β, or α–β).
2. Structural repeats may be detected. By identifying a repeating sequence of sec-

ondary-structures, it is sometimes possible to identify repeated domains in a the
target protein.

3. The sequence of secondary structural elements can be compared to the folds
matched by fold recognition. For fold-recognition methods, which do not use
predicted secondary structure, this “second opinion” is of great value in deter-
mining the degree of confidence to assign to the prediction.

It is worth taking time at this stage to get the best prediction of secondary
structure possible. At present, PHD (26) is the method of choice, but results
from PHD are highly dependent on the number of sequences in the aligned
family and on the quality of the alignment. As a rule, better predictions are
obtained from PHD by submitting a hand-crafted multiple sequence alignment
to the server, rather than relying on the server to make the alignment. In this
way, it is possible to search many different sequence databanks to find extra
related sequences before submitting the alignment to the server.

7.3. Stage 3: Fold Recognition

The following section outlines the practical application of a widely used
threading program, THREADER2 (15,58–59). This is, of course, not the only
threading method, but it is one of the few programs to be made widely avail-
able to the academic community. Although the specifics of this section relates
solely to THREADER2, the principles can be applied to almost any threading
program. The THREADER2 program can be obtained from the following Web
address: http://globin.bio.warwick.ac.uk/~jones/
threader.html

THREADER2 can be used either via a UNIX command-line interface, or as
shown in Fig. 2, using a graphical user interface. The examples here assume
that you are using THREADER2 directly from the command line.
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Fig. 2. THREADER2 plus Threading Analyst in use. The images are screenshots of
THREADER2 being used within a graphical user interface (GUI) developed by Rob
Miller (58). (A) The initial screen shows the distribution of threading scores, along
with a brief description of the type of fold for each match in the fold library. (B) An
analysis of the first model in progress. The alignment is being examined in the context
of the 3D structure. The two plots shown in the upper window are of the threading
energy profiles for both the template and target protein. Where the two profiles are
correlated it is possible to be more confident about the accuracy of the model.
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7.3.1. Starting Out

As an example, we take the following sequence:

>GUN1_STRRE Endo–1,4-beta-glucanase
VEQVRNGTFDTTTDPWWTSNVTAGLSDGRLCADVPGGTTNRWDSAIGQNDITLVKGETYR
FSFHASGIPEGHVVRAVVGLAVSPYDTWQEASPVLTEADGSYSYTFTAPVDTTQGQVAFQ
VGGSTDAWRFCVDDVSLLGGVP

This sequence has no apparent sequence similarity to any other sequence with
a known structure when tested using FASTA3 and PSI-BLAST.

THREADER2 generates a lot of output — usually in the form of a rather
unfriendly table of numbers. However, only a few of them are really important
in most cases. This is really unavoidable, as different scoring schemes each tell
a different side of the story. Matches that score very well in terms of pairwise
energy, but very badly in terms of solvation energy, may be telling something
about the multimeric state of your protein sequence. Fitting a hemoglobin
sequence onto a myoglobin template will give a good pairwise energy score,
but a poor solvation score because hemoglobin is a tetrameric structure and
myoglobin monomeric — the solvent accessibilities for myoglobin will not,
therefore, be an ideal match for those of hemoglobin.

After running THREADER2 on the example sequence, ranking the results
by column 13, which is the Z-score for the combined pairwise-solvation energy,
gives the following top-10 matches:

-191.9488 3.94 4.53 1.55 2.50 2.50 -5.0186 1.73 1.73 -272.1923 2.55 -272.1923 2.55 85.1
67.8 01igcH1
-169.9143 -2.33 3.55 1.06 2.14 2.14 -5.1257 1.76 1.76 -251.8700 2.35 -251.8700 2.35 93.7
68.4 01hplA2
-133.8000 1.52 3.45 1.35 1.54 1.54 -6.2484 2.05 2.05 -233.7066 2.17 -233.7066 2.17 94.2
64.5 03rp2A2
-108.0762 -2.63 2.59 0.10 1.12 1.12 -7.7790 2.46 2.46 -232.4569 2.15 -232.4569 2.15 87.0
78.9 02aaiB1
-156.1925 -2.46 3.47 0.89 1.91 1.91 -4.5850 1.62 1.62 -229.5032 2.13 -229.5032 2.13 86.1
89.5 01dlc02
-116.9902 -0.79 1.49 -1.00 1.27 1.27 -6.1849 2.04 2.04 -215.8823 1.99 -215.8823 1.99 87.5
69.1 01brbE1
-149.4035 1.33 3.57 0.87 1.80 1.80 -4.0816 1.48 1.48 -214.6647 1.98 -214.6647 1.98 84.0
82.9 01f3g00
-131.2358 -0.33 2.74 0.57 1.50 1.50 -4.8574 1.69 1.69 -208.9015 1.92 -208.9015 1.92 94.5
78.9 01eta10
-116.8615 -4.12 2.14 -0.58 1.26 1.26 -4.8859 1.70 1.70 -194.9833 1.78 -194.9833 1.78 97.5
77.6 01sriA0
-110.9676 -0.88 1.65 -1.06 1.17 1.17 -4.9621 1.72 1.72 -190.3084 1.74 -190.3084 1.74 89.5
90.1 01sdyA0

. .

. .

This is the normal result of an initial threading run for a difficult target
sequence. In this case, one very close structural match for the target sequence
is included in the top 10 matches, but not in first place. Also, in this case, the
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accuracy of the sequence–structure alignment is also remarkably good. The
task in this case is to identify which of these matches are false positives, and
which is really the best matching fold. Several things in the initial results indi-
cate that further processing is required to make a more reliable prediction.

The first thing to notice about these results is that the combined Z-scores in
column 13 are rather low. The highest scoring fold only produces a Z-score of
2.55, and this is not a significant score. In tests, the following interpretation of
this Z-score appears valid:

Z > 3.5 Very significant — probably a correct prediction
Z > 3.0 Significant — good chance of being correct
2.7 < Z < 3.0 Borderline significant — possibly correct
2.0 < Z < 2.7 Poor score — could be right, but needs other confirmation
Z < 2.0 Very poor score — probably there are no suitable folds in the

library

Note that these Z-score ranges depend on the number of folds in the fold
library. If you use a much smaller library than the default (which has over 700
folds), the Z-scores will not be useful measures of significance. If you use a
larger library, the significance cutoffs should be increased.

More evidence against the top ranked fold can be seen in columns 2–4:

-191.9488 3.94 4.53 1.55 2.50 2.50 -5.0186 1.73 1.73 -272.1923 2.55 -272.1923 2.55 85.1
67.8 01igcH1
-169.9143 -2.33 3.55 1.06 2.14 2.14 -5.1257 1.76 1.76 -251.8700 2.35 -251.8700 2.35 93.7
68.4 01hplA2
-133.8000 1.52 3.45 1.35 1.54 1.54 -6.2484 2.05 2.05 -233.7066 2.17 -233.7066 2.17 94.2
64.5 03rp2A2
-108.0762 -2.63 2.59 0.10 1.12 1.12 -7.7790 2.46 2.46 -232.4569 2.15 -232.4569 2.15 87.0
78.9 02aaiB1
-156.1925 -2.46 3.47 0.89 1.91 1.91 -4.5850 1.62 1.62 -229.5032 2.13 -229.5032 2.13 86.1
89.5 01dlc02
-116.9902 -0.79 1.49 -1.00 1.27 1.27 -6.1849 2.04 2.04 -215.8823 1.99 -215.8823 1.99 87.5
69.1 01brbE1
-149.4035 1.33 3.57 0.87 1.80 1.80 -4.0816 1.48 1.48 -214.6647 1.98 -214.6647 1.98 84.0
82.9 01f3g00
-131.2358 -0.33 2.74 0.57 1.50 1.50 -4.8574 1.69 1.69 -208.9015 1.92 -208.9015 1.92 94.5
78.9 01eta10
-116.8615 -4.12 2.14 -0.58 1.26 1.26 -4.8859 1.70 1.70 -194.9833 1.78 -194.9833 1.78 97.5
77.6 01sriA0
-110.9676 -0.88 1.65 -1.06 1.17 1.17 -4.9621 1.72 1.72 -190.3084 1.74 -190.3084 1.74 89.5
90.1 01sdyA0

The scores in columns 2–4 give the core-shuffled scores for the relevant match.
This simple shuffling procedure is not as effective as performing a full shuffling
test, but can identify false positives with very little additional computing time.
For the first match, the scores in columns 3 and 4 are actually quite acceptable
in that column 3 is >2.7 and column 4 is >0. Unfortunately, the score in column
2 is >>0, which indicates that the threaded model has a lower energy than the
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native structure itself, which usually indicates a false–positive match. One does
not expect the energy for an approximate model to be better than that for a
sequence threaded onto its native structure. Using these criteria, only 4 of the
top 10 matches are really acceptable.

Of these 4 matches, it is often useful to concentrate on matches which align
the largest proportion of the target sequence, and on this basis the match to
1dlc02 would be the preferred match. Despite this, however, more confidence
can be gained by running a set of more rigorous randomization tests. To save
computer time it is sensible to limit the rigorous randomization tests to only
those matches that looked promising from the initial results, but if time is not

Fig. 3. MOLSCRIPT (61) diagram of influenza virus neuraminidase (63), which
has a β-propellor fold. This fold has an unusually large number of interresidue contacts
for its size, and this seems to allow it to accommodate sequences with a high proportion
of hydrophobic residues. This is a possible explanation why this fold often appears as
a false positive match in fold-recognition experiments.
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an issue then extensive randomizations can be performed on the whole fold
library. In this example, the top 20 matches from the initial threading pass are
reevaluated by sequence shuffling.

7.3.2. Why Shuffle the Target Sequence?

Most threading potentials include terms that strongly favor contacts between
hydrophobic residues. An ideal threading model when evaluated with this kind
of potential function is one where as many contacts between hydrophobic resi-
dues are made as possible. For most target sequences and folds this is not a
problem, but in some cases a threading program can find an alignment between
a particularly hydrophobic sequence and a structure that produces a threading
score far better than that of the native protein sequence fitted onto its own
structure. These “superstable” threadings are a prime cause of false positive
matches in fold recognition. One example of a protein fold that causes particu-
lar problems is the β-propeller (see Fig. 3). This fold is unusual in that it has a
large hydrophobic core and many possible sites that can allow pairs of hydro-
phobic to make contacts. The implication of this for fold recognition is that a
target sequence with a high proportion of hydrophobic residues will find the
β-propeller fold a particularly stable arrangement.

8. Combining Predicted Secondary-Structure with Threading
To provide a final clue to the correct fold, it is often worthwhile considering

the predicted secondary-structure for the target protein. For example, the fol-
lowing sequence was analyzed using the PHD program and then threaded
through a library of folds using THREADER2:

>T0026; ArgR N-term domain from E.coli, 79 a.a.
MRSSAKQEELVKAFKALLKEEKFSSQGEIVAALQEQGFDNINQSKVSRMLTKFGAVRTRNAKMEMVYCL
PAELGVPTTS

Analysis of the threading results for this sequence suggests two possible
folds. Both folds are somewhat similar to the native fold of the target protein,
but one is clearly a better match when the predicted secondary-structure is
used to annotate the sequence–structure alignment.

1.

10        20        30        40        50
----CCCCHHHHHHHHHHCCCCCCCEEHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHC
----SHPTYSEMIAAAIRAEKSRGGSSRQSIQKYIKSHYKVGHNADLQIKLSIRRLLAA
               |    ||    ||   |                           |
MRSSAKQEELVKAFKALLKEEK--FSSQGEIVAALQEQG-FDNINQSKVSRMLTKFGAV
CCCCHHHHHHHHHHHHHHHHCC--CCCHHHHHHHHHHHC-CCCCCCHHHHHHHHHCCCC
        10        20           30         40        50
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   60        70
CCEEEECCCCCCCEEEECC---------
GVLKQTKGVGASGSFRLAK---------

-RTRNA----KMEMVYCLPAELGVPTTS
-EEECC----EEEEEEECCCCCCCCCCC
   60            70
2.

10         20              30           40
--------CHHHHHHHHHHHCCC-CHHHHHHHHCC------CHHHHHHHHCC----CCCC
--------SISSRVKSKRIQLGL-NQAELAQKVGT------TQQSIEQLENG----KTKR
              |        |  |              |             |
MRSSAKQEELVKAFKALLKEEKFSSQGEIVAALQEQGFDNINQSKVSRMLTKFGAVRTRN
CCCCHHHHHHHHHHHHHHHHCCCCCHHHHHHHHHHHCCCCCCCHHHHHHHHHCCCCEEEC
        10        20        30        40        50        60
       50        60
CCCHHHHHHHCCCCHHHHHHCC-
PRFLPELASALGVSVDWLLNGT-
|
A-KMEMVYCLP--AELGVPTTS
C-EEEEEEECC--CCCCCCCCC
         70

Key to secondary-structure notation: C = coil, H = helix, E = strand.
In this example, two β-strands have been predicted at the C-terminus of the

target protein. In alignment (1) these two strands have clearly been aligned
with two strands in the template protein structure, whereas in alignment (2) the
strands are aligned with a helix in the template structure. Clearly, alignment (1)
is preferable. It is important to take into account the estimated reliability of the
secondary-structure prediction in cases such as this. If the small C-terminal
β-sheet had been predicted with very low confidence by the prediction program
then the decision between alignments (1) and (2) would be far less clear-cut. In
this case, however, the two C-terminal strands are very strongly predicted, and
so the decision between the two alignments is easy to make.

9. Other Considerations

There is no substitute for biological knowledge in structure prediction. If the
structure at position 3 in the ranked list of folds looks more plausible than the
structure at the top of the list on the basis of biological function, the biologi-
cally plausible match should be carefully considered. It is also worth noting
whether the predicted structure is a “superfold” (60). A matches to a superfold
(e.g., TIM barrels, globins, immunoglobulins, and the like) does not imply any
functional similarity with the target protein. However, if the target protein has
a significant match to a trypsin-like serine protease fold (which is not a
superfold), then this match should probably discounted unless it is suspected
that the target protein is also a serine protease.
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A further consideration is to check for consistency in the prediction. Extra
confidence in the prediction can be gained if similar folds are found to be in the
top positions of the ranked list. Obviously if three different TIM barrel folds
are in the top three positions, then this is additional support for a TIM barrel-
like fold prediction. Similarly, the whole prediction process can be repeated
with one or more sequences homologous to the target protein (61) to see if the
same prediction is made for each member of the sequence family. If a different
fold is predicted for each member of the family, there can be little confidence
in any of the predicted structures.

Finally, it is definitely worth trying more than one prediction program. Apart
from THREADER2, several other fold-recognition methods are available via
the Web, and if several different methods produce the same prediction, this
significantly increases the degree of confidence in the prediction.

10. Problems with Threading
It must be very clearly understood that most threading programs are aimed

at recognizing single globular protein domains, and perform very poorly when
tried on proteins that are far from this ideal. If you are trying to thread a very
large sequence, say 800 residues, unless you know where the domain bound-
aries are, you will not be very successful. Threading cannot be reliably used for
identifying domain boundaries. If you do know where the domain boundaries
are in your target sequence, then the sequence should be divided into domains
before threading it, with each domain being threaded separately. Where predic-
tions are attempted on very long multidomain sequences then you can be very
suspicious of the results, unless it is clear that the matched protein has a similar
domain structure to the target. For example, the periplasmic small-molecule
binding proteins (e.g., arabinose-binding protein) are two domain structures
(two doubly wound parallel ab domains), but they all match each other fairly
well, as they all have identical domain organization. In contrast, however, pyru-
vate kinase has a number of quite distinct structural domains, and this organi-
zation is quite probably unique to pyruvate kinase. If a target is matched to
pyruvate kinase without allowing for these distinct domains, bogus results willl
result. In general, if it is possible the target sequence should be divided into
likely domains before threading is attempted.

11. How Reliable Is Structure Prediction?
Although the published results for the fold-recognition methods look im-

pressive, it is fair to argue that in all cases the correct answers were already
known, so it is not clear how well they would perform in real situations where
the answers are not known at the time the predictions are made. The results of
a very ambitious worldwide experiment have recently been published in a spe-
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cial issue of the journal Proteins (1), where an attempt was made to find out
how successful different prediction methods were when rigorously blind-tested.
In 1994, John Moult and colleagues approached X-ray crystallographers and
NMR spectroscopists around the world and asked them to deposit the sequences
for any structures they were close to solving in a database. Before these
structures were made public, various teams around the world were then chal-
lenged with the task of predicting each structure. The results of this experiment
were announced at a meeting held at Asilomar, CA, and this ambitious experi-
ment has now become widely known as the Asilomar Experiment (or more
commonly the Asilomar Competition). A second experiment was carried out in
1996, when this series of international experiments was given an official title:
CASP (Critical Assessment in Structure Prediction), but the results of this sec-
ond experiment are still as yet not published. Up-to-date information can be
obtained from the following Web address, however:

http://predictioncenter.llnl.gov

In CASP1, the results for the comparative modeling and ab initio sections
offered few surprises, in that the ab initio methods were reasonably successful
in predicting secondary-structure but not tertiary, and homology modeling
worked well when the proteins concerned had very high sequence similarity.
The results for the fold-recognition section (62), however, showed great prom-
ise. Overall, roughly half of the structures in this part of the competition were
found to have previously observed folds. Almost all of these structures were
correctly predicted by at least one of the teams. The threading method of Jones
et al. (58) proved to be the most successful method, with 5 out of 9 folds cor-
rectly identified, and with a looser definition of structural similarity, 8 out of
11 correct. These results show that, despite their relative early stage of devel-
opment, fold-recognition methods (and threading methods in particular) offer
very exciting prospects for prediction of protein tertiary structure in the near
future. One point that should be made about the predictions from all of the
fold-recognition groups was that the sequence–structure alignments were not
as accurate as might have been hoped when judged against the alignments ob-
tained from structural superposition of the two structures concerned. This is
disappointing, but it is obvious that this will be improved as the methods mature.

12. The Future for Structure Prediction

One major difference between the academic challenge of the protein-fold-
ing problem and the challenge of producing viable prediction tools is that in
the latter case there is an eventual end in sight. As more structures are solved,
more target sequences will find matches in the existing library of known struc-
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tures — matched either by sequence similarity, or by future developments of
threading methods. In terms of practical applications, the protein-folding prob-
lem will begin to vanish. There will, of course, still be a need to better under-
stand protein folding for applications such as protein design, and the problem
of modeling membrane protein structure will remain unsolved for quite some
time to come, but nonetheless, from a practical viewpoint, the problem will be
salved (rather than solved). When will this point be reached? Given the variety
of estimates for the number of naturally occurring protein folds, it is difficult to
say, but with intelligent guesswork it seems likely that that when we have 1500
different folds in our fold libraries we will be in a position to build useful
models for almost every globular protein sequence in a given proteome. At the
present rate at which protein structures are being solved, this point is possibly
20 yr away, but there is now talk of large-scale attempts to crystallize every
globular protein in a typical bacterial proteome. If such projects get underway,
a complete fold library may be only 5–10 yr away. After this point, the protein
folding problem will become largely an academic problem, but it will still be a
challenge to understand how proteins fold.

References
1. Lattman, E. E. (1995) Protein structure prediction: a special issue. Proteins 23,

295–460.
2. Read, J., Brayer, G., Jurek, L., and James, M. N. G. (1984) Critical evaluation of

comparative model building of Streptomyces griseus trypsin. Biochemistry 23,
6570–6575.

3. Greer, J. (1990) Comparative model building methods: application to the family of
the mammalian serine proteases. Proteins 7, 317–334.

4. Vásquez M. (1996) Modeling side chain conformation. Curr. Opin. Struct. Biol. 6,
217–221.

5. Chung, S. Y. and Subbiah, S. (1996) How similar must a template protein be for
homology modeling by side-chain packing methods, in Proceedings of the First
Pacific Symposium on Biocomputing: 1996 Jan 2–6; Kona, HI. (Hunter, L. and
Klein, T., eds.) World Scientific, Singapore, pp. 126–141.

6. Moult, J. and James, M. N. G. (1986) An algorithm for determining the confor-
mation of polypeptide segments in proteins by systematic search. Proteins 1,
146–163.

7. Bruccoleri, R. E. and Karplus, M. (1987) Prediction of the folding of short polypep-
tide segments by uniform conformation sampling. Biopolymers 26, 137–168.

8. Laskowski, R. A., MacArthur, M. W., Moss, D., and Thornton, J. M. (1993)
PROCHECK, a program to check the stereochemical quality of protein structures.
J. Appl. Cryst. 26, 283–291.

9. Hooft, R. W. W., Sander, C., and Vriend, G. (1997) Objectively judging the quality
of a protein structure from a Ramachandran plot. CABIOS 13, 425–430.



152 Jones

10. Peitsch, M. C. (1996) PROMOD and SWISS-MODEL - Internet-based tools for
automated comparative protein modeling. Biochem. Soc. Trans. 24, 274–279.

11. Bowie, J. U., Lüthy, R., and Eisenberg, D. (1991) A method to identify protein
sequences that fold into a known three-dimensional structure. Science 253, 164–170.

12. Holm, L. and Sander, C. (1992) Evaluation of protein models by atomic solvation
preference. J. Mol. Biol. 225, 93–105.

13. Luthardt, G. and Frommel, C. (1994) Local polarity analysis: a sensitive method
that discriminates between native proteins and incorrectly folded models. Protein
Eng. 7, 627–631.

14. Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gottsbacher,
K., Casari, G., and Sippl, M. J. (1990) Identification of native protein folds amongst
a large number of incorrect models: the calculation of low energy conformations
from potentials of mean force. J. Mol. Biol. 216, 167–180.

15. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) A new approach to protein
fold recognition. Nature. 358, 86–89.

16. Sippl, M. J. and Weitckus, S. (1992) Detection of native-like models for amino acid
sequences of unknown three-dimensional structure in a data base of known protein
conformations. Proteins 13, 258-271.

17. Godzik, A. and Skolnick, J. (1992) Sequence-structure matching in globular pro-
teins: application to supersecondary and tertiary structure determination. Proc. Natl.
Acad. Sci. U. S. A. 89, 12,098–12,102.

18. Maiorov, V. N. and Crippen, G. M. (1992) Contact potential that recognizes the
correct folding of globular proteins. J. Mol. Biol. 227, 876–888.

19. Bryant, S. H. and Lawrence, C. E. (1993) An empirical energy function for thread-
ing protein-sequence through the folding motif. Proteins: Struct. Funct. Genet. 16,
92–112.

20. Ouzounis, C., Sander, C., Scharf, M., and Schneider, R. (1993) Prediction of
protein structure by evaluation of sequence-structure fitness. Aligning sequences
to contact profiles derived from three-dimensional structures. J. Mol. Biol. 232,
805–825.

21. Abagyan, R., Frishman, D., and Argos, P. (1994) Recognition of distantly related
proteins through energy calculations. Proteins: Struct. Funct. Genet. 19, 132–140.

22. Overington, J., Donnelly, D., Johnson, M. S., Sali, A., and Blundell, T. L. (1992)
Environment-specific amino-acid substitution tables — tertiary templates and pre-
diction of protein folds. Prot. Sci. 1, 216–226.

23. Garnier, J., Gibrat, J. F., and Robson, B. (1996) GOR method for predicting protein
secondary structure from amino acid sequence. Methods Enzymol. 266, 540–553.

24. Chou, P. Y. and Fasman, G. D. (1978) Prediction of the secondary structure of
proteins from their amino RT acid sequence. Adv. Enzymol. 47, 45–148.

25. Barton, G. J. (1995) Protein secondary structure prediction. Curr. Opin. Struct.
Biol. 5, 372–376.

26. Rost, B. and Sander, C. (1995) Progress of 1D protein structure prediction at last.
Proteins 23, 295–300.

27. Eisenberg, D. (1997) Into the black of night. Nat. Struct. Biol. 4, 95–97.



Protein Structure Prediction 153

28. King, R. D. and Sternberg, M. J. E. (1996) Identification and application of the
concepts important for accurate and reliable protein secondary structure prediction.
Prot. Sci. 5, 2298–2310.

29. Gobel, U., Sander, C., Schneider, R., and Valencia, A. (1994) Correlated mutations
and residue contacts in proteins. Proteins 18, 309–317.

30. Shindyalov, I. N., Kolchanov, N. A., and Sander, C. (1994) Can three-dimensional
contacts in protein structures be predicted by analysis of correlated mutations?
Protein Eng. 7, 349–358.

31. Taylor, W. R. and Hatrick, K. (1994) Compensating changes in protein multiple
sequence alignments. Protein Eng. 7, 341–348.

32. Thomas, D. J., Casari, G., and Sander, C. (1996) The prediction of protein contacts
from multiple sequence alignments. Protein Eng. 9, 941–948.

33. Kolinski, A. and Skolnick, J. (1994) Monte Carlo simulations of protein folding. II.
Application to protein A, ROP, and crambin. Proteins: Struct. Funct. Genet. 18,
353–366.

34. Kolinski, A. and Skolnick, J. (1994) Monte Carlo simulations of protein folding. I.
Lattice model and interaction scheme. Proteins: Struct. Funct. Genet. 18, 338–352.

35. Yee, D. P., Chan, H. S., Havel, T. F., and Dill, K. A. (1994) Does compactness
induce secondary structure in proteins? A study of poly-alanine chains computed
by distance geometry. J. Mol. Biol. 241, 557–573.

36. Hinds, D. A. and Levitt, M. (1994) Exploring conformational space with a simple
lattice model for protein structure. J. Mol. Biol. 243, 668–682.

37. Yue, K., Fiebig, K. M., Thomas, P. D., Hue Sun, Chan, Shakhnovich, E. I., and Dill,
K. A. (1995) A test of lattice protein folding algorithms. Proc. Natl. Acad. Sci. USA
92, 325–329.

38. Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., Thomas, P. D., and Hue
Sun, Chan (1995) Principles of protein folding — a perspective from simple exact
models. Prot. Sci. 4, 561–602.

39. Park, B. H. and Levitt, M. (1995) The complexity and accuracy of discrete state
models of protein structure. J. Mol. Biol. 249, 493–507.

40. Abkevich, V. I., Gutin, A. M., and Shakhnovich, E. I. (1995) Domains in folding of
model proteins. Prot. Sci. 4, 1167–1177.

41. Rykunov, D. S., Reva, B. A., and Finkelstein, A. V. (1995) Accurate general method
for lattice approximation of three-dimensional structure of a chain molecule. Pro-
teins: Struct. Funct. Genet. 22, 100–109.

42. Dewitte, R. S., Michnick, S. W., and Shakhnovich, E. I. (1995) Exhaustive
enumeration of protein conformations using experimental restraints. Prot. Sci. 4,
1780–1791.

43. Covell, D. G. (1994) Lattice model simulations of polypeptide chain folding. J.
Mol. Biol. 235, 1032–1043.

44. Srinivasan, R. and Rose, G. D. (1995) Linus - a hierarchical procedure to predict
the fold of a protein. Proteins 22, 81–99.

45. Dandekar, T. and Argos, P. (1994) Folding the main chain of small proteins with the
genetic algorithm. J. Mol. Biol. 236, 844–861.



154 Jones

46. Sun, S. (1995) A genetic algorithm that seeks native states of peptides and proteins.
Biophys. J. 69, 340–355.

47. Pederson, J. T. and Moult, J. (1995) Ab initio structure prediction for small polypep-
tides and protein fragments using genetic algorithms. Proteins 23, 454–460.

48. Pedersen, J. T. and Moult, J. (1996) Genetic algorithms for protein structure predic-
tion. Curr. Opin. Struct. Biol. 6, 227–231.

49. Aszodi, A. and Taylor, W. R. (1996) Homology modelling by distance geometry.
Fold. Des. 1, 325–334.

50. Skolnick, J., Kolinski, A., and Ortiz, A. R. (1997) MONSSTER: a method for fold-
ing globular proteins with a small number of distance restraints. J. Mol. Biol. 265,
217–241.

51. Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASTP and
FASTA. Methods Enzymol. 183, 63–98.

52. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W.,
and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402.

53. Smith, T. F. and Waterman, M. S. (1981) Comparison of bio-sequences. Adv. Appl.
Math. 2, 482–489.

54. Gribskov, M., Lüthy, R., and Eisenberg, D. (1990) Meth. Enzymol. 188, 146-159.
55. Krogh A., Brown M., Mian I. S., Sjoelander K., and Haussler D. (1994) Hidden

Markov model in computational biology. Applications to protein modelling. J. Mol.
Biol. 235, 1501–1531.

56. Altschul S. F., Gish W., Miller W., Myers E. W., and Lipman D. J. (1990) Basic
local alignment search tool. J. Mol. Biol. 215, 403–410.

57. Abola, E. E., Bernstein, F. C., Bryant, S. H., Koetzle, T. F., and Weng, J. (1987)
Protein Data Bank, in Crystallographic Databases, Data Commission of the Inter-
national Union of Crystallography, Bonn/Cambridge/Chester, pp. 107–132.

58. Jones, D. T., Miller, R. T., and Thornton, J. M. (1995) Successful protein fold rec-
ognition by optimal sequence threading validated by rigorous blind testing. Pro-
teins 23, 387–397.

59. Miller, R. T., Jones, D. T., and Thornton, J. M. (1996) Protein fold recognition by
sequence threading — tools and assessment techniques. FASEB J. 10, 171–178.

60. Orengo, C. A., Jones, D. T., and Thornton, J. M. (1994) Protein superfamilies and
domain superfolds. Nature 372, 631-634.

61. Edwards, Y. J. K. and Perkins, S. J. (1996) Assessment of protein fold predictions
from sequence information: the pedicted alpha/beta doubly wound fold of the von
Willebrand factor ype a domain is similar to its crystal structure. J. Mol. Biol. 260,
277–285.

62. Lemer, C. M. R., Rooman, M. J., and Wodak, S. J. (1995) Protein structure predic-
tion by threading methods: evaluation of current techniques. Proteins 23, 337–355.

63. Burmeister, W. P., Henrissat, B., Bosso, C., Cusack, S., and Ruigrok, R. W. (1993)
Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1, 19–26.



Testing Residue–Residue Mean–Force Potentials 155

155

From: Methods in Molecular Biology, vol. 143: Protein Structure Prediction: Methods and Protocols
Edited by: D. Webster  © Humana Press Inc., Totowa, NJ

8

Derivation and Testing Residue–Residue
Mean–Force Potentials for Use
in Protein Structure Recognition

Boris A. Reva, Alexei V. Finkelstein, and Jeffrey Skolnick

1. Introduction
In protein-structure prediction, simplified energy functions are necessarily

used to allow fast sorting over many conformations. As a rule, these functions
are derived from residue–residue approximation, which attributes all atomic
interactions between residues to a single point within each residue. Physically,
the simplified energies should result from averaging of the atomic interactions
over various positions and conformations of the interacting amino acid resi-
dues, as well as the surrounding solvent molecules. Unfortunately, direct cal-
culation of such mean-force potentials is not possible today both because of
methodological difficulties and the lack of reliable atom-based energy func-
tions.

However, the rapidly increasing database of protein structures induced many
attempts to derive potentials from structural information of proteins (1–8). Most
of these approaches exploit Boltzmann’s equation, which stresses that fre-
quently observed states are the low-energy states. The exponential occurrence-
on-energy dependency has been shown to be valid also for fixed and
nonfluctuating native protein structures (9), although, as it has been shown
recently (10), the Boltzmann-like statistics of native protein structures is main-
tained by the sequence mutations rather than by thermal fluctuations of the
structure, i.e., its physical origin is absolutely different (although its mathemati-
cal form is similar) from that of the conventional Boltzmann statistics of ther-
modynamic ensembles.

Here we apply the results of that analysis to derive energy functions from
known protein structures. Our approach (11,12) is in many, but not in all,
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respects similar to the one originally used by Sippl (1,2). We also derive
pairwise, distance-dependent “mean-force” potentials, treating long-range and
short-range interactions separately. However, our methods of choosing the ref-
erence state for long-range interactions and our treatment of short-range inter-
actions differ from those used by Sippl.

2. Derivation of Pairwise Potentials
2.1. Preparation of the Database

The protein structures used for derivation of energy functions were taken
from the 25% similarity list of Hobohm et al. (13). Any pair of proteins in this
list has a similarity of less than 25% according to the Smith and Waterman (14)
sequence alignment with gap (open-gap penalty, 3.0, gap-elongation penalty,
0.05). From the Hobhom et al. list of October 1997, we entered into our data-
base 372 proteins having no chain breaks, with a resolution better than 2.5 Å
and an R factor less than 0.2. To avoid structurally similar proteins, we deter-
mine all the cases of low root-mean-square derivation (less than 10 Å) between
Ca atom-traced structural pairs. Each of these pairs was analyzed with the struc-
tural classification protein (SCOP) (15) to find if the proteins of the pair
belonged to the same protein family or superfamily. As a result of this analysis,
13 protein chains chosen as the shortest among the homologous pairs, were
removed from the database of 372 proteins. The resulting database includes
359 proteins.

2.2. Extraction of Energy Functions from Protein Statistics

The main task was to estimate the interaction potential εαβ(r) for each pair of
residues α and β (α, β = Gly, Ala, …) divided by a distance r; r is defined from
the positions of the Cβ (or, for some short-range interactions [see below], of the
Cα) atoms. In these estimates, we followed the theory of Boltzmann-like statis-
tics of protein structures by Finkelstein et al. (10).

This theory describes a Boltzmann-like form of protein statistics not using,
as usually assumed, (1,5) a model of a gaslike distribution of residues in a
protein globule (which have been recently criticized (16) for its physical incor-
rectness), but a more natural assumption that protein sequences change with
random mutations that have to maintain the stability of the protein structure.
As a result, each low-energy structural detail (low-energy, residue-to-residue
contact, bend, and so on) increases the number of “protein-stabilizing”
sequences (and therefore this detail is observed often), whereas each high-energy
detail decreases this number and therefore is observed rarely. It is shown also
(10) that a change in the number of protein-stabilizing sequences is exponen-
tially (as in Boltzmann’s law) dependent on the energy of the detail in question.
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The results of this theory, as applied to the obtaining of energy parameters
from protein statistics, can be summarized as follows:

Let us consider a large 3D database of protein structures, and define Ns
αβ as

the number of the αβ-pairs occupying positions i,i+s along a chain (α and β are
amino acids, i is any position in a chain), and Ns

αβ(r) as the number of such pairs
at a distance between αi and βi+s in the database.

According to ref. 10, the expected value of Ns
αβ(r) in the limit of very large

statistics, is:

Ns
αβ(r) = ANs

αβ(r) ws(r)exp[–∆E s
αβ(r)/RTc] (1)

where A is a distance-independent normalization constant; ws(r) is a probabil-
ity of finding i,i+s residues at a distance r in the total set of globular folds (ws(r)
= Ns(r)/∑

r
Ns(r), where Ns(r) = ∑

α 
∑

β 
Ns

αβ(r) is the number of cases where i,i+s
residues are at a distance r, Tc is a “conformatiomal temperature” (9), which is
close to the characteriztic temperature of freezing of native folds approx 300 K
(10); R is the gas constant; and ∆E s

αβ(r) is the effective interaction energy:

∆E s
αβ(r) = ε s

αβ(r) + E
~  s

αβ(r) (2)

Here, ε s
αβ(r) is the energy of direct interaction between residues α and β at a

distance r, and E
~ s
αβ(r) is the mean (averaged over all the possible environments

of the pair αβ in stable protein structures) energy of indirect interaction of α
and β, i.e., of the interaction mediated by all the surrounding residues.

Thus, taking into account the proportionality ws(r) ~ Ns(r), one can write

Ns
αβ(r1)/N

s
αβ(r2) = Ns(r1)/N

s
αβ(r2) · exp(–[ε s

αβ(r1) – ε s
αβ(r2)] + E

~  s
αβ(r1) – E

~  s
αβ(r2)]/RTc) (3)

which corresponds to Eq. 10 of (10), where the term ∆E therein would now
include ε s

αβ(r1) – ε s
αβ(r2), whereas E

~ s
αβ(r1) – E

~ s
αβ(r2), which depends on the pos-

sible amino acid environments of the αβ pair, will contribute to both ∆E and ∆σ/
2RTc terms in that work.

The direct residue–residue interaction energy estimated from Eqs. 1 and 2 gives:

ε s
αβ(r) = –RTcln[Ns

αβ(r)/Ns
αβ · ws(r)] + RTc · ln A – E

~  s
αβ(r) (4)

It is noteworthy that, because the Boltzmann-like statistics of proteins origi-
nates from amino acid mutations, the reference (zero-energy) state for the energy
ε s

αβ(r) obtained from these statistics is a pair of “average” amino acid residues
(in a compact “proteinlike” environment with a secondary-structure and no
sequence specificity) separated by a distance in the chain and in space rather
than an amino acid pair in vacuum or water environment (cf. refs. 4–6).

Equation 4 is valid only when the expected ws(r) value is not zero. When
ws(r) = 0, ε s

αβ(r) cannot be defined from Eq. 4, but must be set to infinity to
make impossible any structure with the distance r between any residues.
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2.3. Long-Range Interactions

When residues are separated in the chain (s > s0 » 1; see Fig. 1A) so that they
can be at a distance where they do not interact, the precise value of s is not
important. Moreover, the order of residues in a pair (αβ or βα) is not relevant.
Our experience (12) shows that the potentials of the long-range interactions
should be based on the distances between the Cβ atoms (for the exception of
Gly residues, where Cα is used, as Cβ is absent).

Fig. 1. A scheme of short-range interactions; residues for which potentials are
derived are shown by filled circles. (A) Long-range interactions depending on the
distance between remote residues α and β. (B) Short-range interactions depending on
the distance between terminal residues α and β. (C) Short-range interactions depending
on chain bending in the intervening residue α (or α and β), which affects the distance
between terminal residues γ and γ. (D) Chiral energy depending on dihedral angle χ
between two planes (i – 1,i,i + 1) and (i,i + 1,i + 2) (determined by the corresponding
Cα atoms) and residues α and β, which affect the value of χ.
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Let us define Nαβ(r) as the total number of cases where the αβ and βα pairs
separated by more than s0 chain residues occur at a distance, or rather in an interval
(the value of the resolution interval D is discussed and optimized below):

P Np – s0 Np

Nαβ(r) = ∑ ∑ ∑ (δqiα
δqjβ

 + δqiβ
δqjα

– δqiα
δqjβ

) θ (∆/2 – |rij – r|) (5)
p=1 i=1 j=i+s0

where P is a number of proteins, Np is a protein p sequence length; qi is a
residue i type; rij is a distance between residues i and j; δαβ = 1, if α = β and δαβ
= 0, if α ≠ β; θ(x) = 1, if x ≥ 0 and θ(x) = 0, if x < 0.

Let us also define N 0
αβ(≥Rαβ) as the total number of cases, where residue

pairs αβ and βα remote along a chain occur at noninteraction distances:

P Np – s0 Np

N 0
αβ(≥Rαβ) = ∑ ∑ ∑ (δqiα

δqjβ
 + δqiβ

δqjα
– δqiα

δqjβ
δαβ) θ (rij – Rαβ) (6)

p=1 i=1 j=i+s0

where Rαβ is the minimal distance where direct interaction between α and β
residues is absent (i.e., εαβ(r) = 0 for r ≥ Rαβ); the values of Rαβ are defined
below.

Then the value of εαβ(r) for the long-range interactions can be estimated as
(11–12):

Nαβ(r) N 0
αβ(≥Rαβ)εαβ(r) = –RTcln [ ——— / ————— ] – [E

~

αβ(r) – E
~

αβ(≥Rαβ)] (7)
Nαβ · w(r) Nαβ · w0(≥Rαβ)

where w(r) and w0(≥Rαβ) are the probabilities of finding the remote residue
pairs at the distances r and r ≥ Rαβ, respectively, in the total set of globular
proteins.

The term E
~

αβ(≥Rαβ) is the average energy of the indirect interactions at
r ≥ Rαβ; because of the averaging of indirect interactions over all the distances
r ≥ Rαβ: this term is small and can be neglected. The term E

~

αβ(r) can be ne-
glected at small distances r < Rαβ where a direct interaction of two residues is
strong.

Thus, one can εαβ(r) estimate as:

εαβ(r) = –RTcln [Nαβ(r) / N *
αβ(r)] (8)

where

w(r) ∑
a ≥ b

∑ Nαβ(r)
N *

αβ(r) = N 0
αβ(≥Rαβ) ———— = N 0

αβ(≥Rαβ) ——————— (9)
w0(≥Rαβ) ∑

a ≥ b
∑ Nαβ(≥Rαβ)

In Eq. 9, the ratio of probabilities w(r)/w0(≥Rαβ) is approximated by the ratio
of the total number of all the remote residue pairs found at a distance r, to the
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total number of all the residue pairs at all the distances r ≥ Rαβ; (sums are taken
over all 20 · (20 + 1)/2 = 210 different residue pairs; the pairs αβ, where α < β,
are taken into account in βα pairs).

Equations 8 and 9 show that the value of εαβ does not change with simulta-
neous multiplication of all the Nαβ(r) terms with a function depending on r
(when r ≥ Rαβ), but does with a function of α and β. This once again shows that
the foregoing definition of εαβ(r) counts the interaction energy from the inter-
action energy ε0(r) for some “average” residue pair, and the function ε0(r) can-
not be found from protein statistics directly. In this study the simple assumption
that

0, when r > Rminε0(r) = { (8a)
+∞, when r ≤ Rmin

where Rmin is an adjustable radius (Rmin ≈ 2.5 – 3.0 Å, see below) works well
enough.

To calculate potentials using formulae Eqs. 8 and 9, one needs to determine
the threshold distances Rαβ (see Table 1). We used the estimate:

Rαβ = Rα' + Rβ' (10)

where Rα' = Rα + δ/2 and Rβ' = Rβ + δ/2 are “effective” radii of residues α and β,
respectively. For a “covalent” residue radius Rα, we simply took the maximal
(overall residues of a given type α in a database) distance between the Cβ (or
Cα for Gly) atom and any other heavy atoms of the residue. To convert a “cova-
lent radius” into something like van der Waals radius R' of a residue, we add (δ/
2) ~ 1.2 Å.

2.4. Short-Range Interactions Depending on Distance Between
Residues

In this study, short-range interactions are defined as the ones between resi-
dues occupying positions i,i + 2, i,i + 3, and i,i + 4 along a chain. This corre-
sponds to (see Fig. 1B).

To estimate these interactions, we neglect the nonimportant distance-inde-
pendent term ln A, and also the energy of indirect interactions, E˜σ

αβ(r) (which

Table 1
Effective Residue Radii (in Å) Used in Derivation of Long-Range Potentialsa

Gly Ala Pro Asn Leu Val Ser Thr Cys Asp Ile His Gln Glu Met Phe Lys Trp Tyr Arg

3.9 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.2 5.6 5.7 6.7 6.8 7.1 7.6

aCovalent residue radii (see ref. 12) are adjusted by efecective van der Waals radius d/2 = 1.2 Å
(see Eq. 10).
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is of a secondary importance, as the residues close in a chain are also close in
space) in Eq. 3, and approximate the probability of finding a pair i,i + s at a
given distance r by the ratio of the total number of all i,i + s residues pairs
found at a distance r, to the total number of i,i + s residue pairs found at all the
distances. We found (12) that potentials based on distances between Cβ atoms
(Cα atoms for Gly) are more accurate than the ones based on Cα atoms only.

Thus, for s = 2,3,4 we have

εs
αβ(r) = –RTcln [Ns

αβ(r) / N*s
αβ(r)] (11)

where
P Np – s

s
αβ(r) = ∑ ∑ (δqiα

δqi+sβ + δqiβ
δqi+sα – δqiα

δqi+sβδαβ) θ (|ri,i+s – r|) (12)
p=1 i=1

and
∑

α
∑

β
N s

αβ(r)
N*s

αβ(r) = ∑
r

Ns
αβ(r) —————— (13)

∑
α

∑
β

∑
r

Ns
αβ(r)

For short-range interactions we distinguish between pairs αβ and βα.

2.5. Short-Range Interactions Depending on Chain Bending

The distance between two residues in positions also depends on residues
that occupy intervening positions (see Fig. 1C): these residues determine the
local chain stiffness.

To take into account these interactions we follow the above approach and
introduce two “bending-energy” terms:

u(2)
α (r) = –RTcln [N

~

α
(2) (r) / N

 ~ *

α
(2) (r)] (14)

and

u(3)
αβ (r) = –RTcln [N

~

αβ
(3) (r) / N

 ~ *

αβ
(3) (r)] (15)

where

P Np – 2

N
~

α
(2) (r) = ∑ ∑ δqi+1α θ (∆/2 – |ri,i+s – r|) (16)

p=1 i=1

∑
α

N
~

α
(2) (r)

N
 ~ *

α
(2) (r) = ∑

r
N
~

α
(2) (r) —————— (17)

∑
r

∑
α

N
~

α
(2) (r)

and

P Np – 3

N
~

α
(3)
β (r) = ∑ ∑ δqi+1αδqi+2β θ (∆/2 – |ri,i+3 – r|) (18)

p=1 i=1
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∑
α

∑
β

N
~

αβ
(3)(r)

N
 ~ *

αβ
(3) (r) = ∑

r
N

~

α
(3)
β (r) —————— (19)

∑
α

∑
β

∑
r

N
~

α
(3)

β (r)

Here, N
~

α
(2) (r) is the number of pairs i,i + 2 with a distance r between i and i

+ 2 residues and the residue α in the i + 1 position; N
~

α
(3)
β (r) is the number of i,i

+ 3 pairs with a distance r between i and i + 3 residues and residues α in i + 1
and β in i + 2 positions (see Fig. 1C). We derive bending potentials using
distances between Cα atoms (12), as they were found to be more accurate than
the ones based on Cβ atoms.

2.6 Chiral Energy Term
We define local chirality of a protein chain as a dihedral angle χ between

two planes determined by Cα atoms of residues occupying positions (i – 1,i,i + 1)
and (i,i + 1,i + 2) along a chain (see Fig. 1D). As usually, the angle χ is counted
off the (i – 1,i) vector to the (i + 1,i + 2) vector in a counterclockwise (if
looking from i + 1 to i) direction. Because secondary-structure elements are
well distinguished by local chirality (α-helices have the angle close to 120°,
whereas the beta structure has the angle close to zero), the residue preferences
in choosing a secondary-structure type are virtually taken into account by
introducing the chirality term. This chirality potential is calculated as:

vαβ(χ) = –RTcln [N̂αβ(χ) / N̂∗
αβ (χ)] (20)

where
P Np – 2

N̂αβ(χ) = ∑ ∑ δqαδqi+1β θ (∆χ/2 – |χi–1, i, i+1, i+2 – χ|) (21)
p=1 i=1

and
∑

α
∑

β
N

~

αβ
(3)(r)

N
 ~ *

αβ
(3) (r) = ∑

r
N

~

α
(3)
β (r) —————— (22)

∑
α

∑
β

∑
r

N
~

α
(3)

β (r)

Here, Nˆ
αβ(χ) is the number of αβ pairs occupying position i,i + 1 along a

chain when a dihedral angle χ formed by Cα atoms of residues (i – 1,i,i + 1,i + 2)
falls into interval (c – ∆χ/2; c + ∆χ/2).

2.7. Sparse Statistics

Above, all the potentials where obtained from equations having a general
form

εx(q) = –RTc ln [Nx(q) / N*
x(q)] (23)

where x = α for uα potential, and x = αβ pair for all other εαβ, uαβ, and vαβ
potentials, whereas Nx(q) and N*

x(q) are the observed and expected number of
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residue pairs, respectively (q = χ for the chiral and q = r for all other poten-
tials). Equation 23 is not applicable for the cases of sparse statistics when one
or both of the terms, Nx(q) and N*

x(q), are equal to zero. In these cases we
define the potentials as follows:

εx(q) = +∞   if N*
x(q) = 0 (24)

εx(q) = RTc · N*
x(q)   if Nx(q) = 0   and N*

x(q) ≠ 0 (25)

Equation 24 is obvious: in this way, we forbid interresidue distances which,
for any physical reason, are not observed in any protein structures (see above).

Equation 25 is rather arbitrary; we use it to obtain some kind of high energy
and, simultaneously, to avoid an infinity that can be caused by sparse statistics
rather than by the physical impossibility of particles at a distance from each
other.

The energy of a chain conformation is the sum of all the individual terms
described.

2.8. Statistical Errors in Potential Estimates
The accuracy of phenomenological potentials depends on the size of the

database used for their derivation. It is important for applications to have an
estimate of the statistical error arising from the finite size of the database.

Such an estimate can be easily made in the following way: let us divide a
database of protein structures into two approximately equal subdatabases, A
and B, and let us derive two corresponding sets of potentials: sets A and B.
Because of statistical fluctuations, potentials A and B will be slightly different.
One can estimate the amplitude of statistical error for a potential εx(r) as:

∆εx = |εA
x – εB

x | / 2 (26)

where εA
x and εB

x and are potentials corresponding to the databases A and B.
In the case of sparse statistics, when NA

x (r) = 0 and/or NB
x (r) = 0, the values

of RTc · N*
x
A(r)/2 and/or RTc · N*

x
B(r)/2 are added to the value of ∆εx.

3. Testing of Potentials in Gapless Threading Test
The accuracy of potentials is estimated using the threading test suggested by

Hendlich et al. (17). In this test, the energy of the native structure is compared
with the energies of alternative structures obtained by threading the native
sequence through all possible structural conformations provided by the back-
bones of a set of proteins. No gaps or insertions are allowed, thus, a chain of N
residues long can be threaded through a host protein molecule of M residues
long in M – N + 1 different ways. Because glycine residues have no Cβ atoms
(which are necessary for threading with Cβ atom-based potentials) we con-
structed virtual Cβ atoms for all glycine residues of the threading database.
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A typical example of the energy distribution for the rotamase molecule (1fkj)
in such a threading experiment is shown in Fig. 2.

To analyze the contribution of different energy terms in the recognition of
protein structure we compare in Tables 2 and 3 the averaged characteriztics of
threading tests for 50 structures given separately by each of the energy terms
(Fifty testing structures were chosen as the shortest ones from the database of
359 proteins. For each of these 50 proteins the rest of the database was used
both for derivation of potentials and as a source of alternative structures for
threading.)

Tables 2 and 3 also show how the accuracy of the different energy terms
depends on the size of the resolution interval. The table presents common mea-
sures of the fold-recognition quality, such as (1) the average ranking, (2) the
average energy gap width, and (3) the average Z-score; Z-score is a relative

Fig. 2. The histogram and the corresponding normal distribution (thin line) of
59,786 threading energies of the rotamase molecule (1fkj). The normal distribution is
built with an average energy of 146.4 and a standard deviation of 32.1. The difference
between the average energy and the native structure energy is 208.7, which corre-
sponds to Z = 208.7/32.1 = 6.5. The difference between the lowest energy of the
misfolded structures and the native structure energy gives the value of the energy gap
(89.2) separating the native structure from misfolded ones.
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Table 3
Characteristics of the Native Structure Recognition in Threading Tests
by Chiral Energy Term at Different Resolutions

Resolution
(degrees) 36 30 24 20 18 15 12 10

<P>b 3.76 2.94 4.06 4.15 3.36 4.90 6.21 9.09
<Z>c 3.61 3.87 3.83 3.94 4.03 4.10 3.98 3.87
<G>d 2.82 3.56 2.41 2.95 3.39 3.36 1.55 –0.21

b,c,d,*See the corresponding footnotes to Table 2.

Table 2
Characteristics of Native Structure Recognition in Threading Tests
by Different Distance-Dependent and Chain-Bending Energy Terms
at Different Resolutionsa

Resolution (Å) 0.25 0.5 1.0 2.0 3.0

<p>b 2.11 2.02* 2.14 2.33 2.38
L <Z>c 5.31 5.35 5.52* 5.45 5.47

<G>d 25.08 25.62* 24.61 21.38 18.61
<P> 224.81 87.04* 138.68 420.12 769.13

S2 <Z> 2.54 2.70* 2.49 2.46 1.81
<G> –8.99 –6.31 –5.94 –5.64* –6.08
<P> 497.85 270.34* 307.57 513.02 370.58

S3 <Z> 1.95 2.39* 2.29 2.14 2.35
<G> –12.92 –9.10 –8.07 –8.10 –5.80*
<P> 2386.96 1244.44 817.63 785.51* 819.04

S4 <Z> 1.64 1.95 2.10 2.08 2.12*
<G> –18.22 –12.60 –9.01 –7.63 –6.98*
<P> 34.32* 61.50 669.22 2228.96 2153.32

B2 <Z> 1.18 2.95* 2.31 1.88 1.81
<G> –3.11* –3.40 –4.30 –4.70 –3.62
<P> 6.52 5.10* 5.47 21.01 39.70

B3 <Z> 3.54 3.89 3.92* 3.21 3.19
<G> –0.91 0.81* –0.06 –3.03 –4.29

aLong-range (L), short-range (S2, S3, S4), and bending (B2, B3) interactions s hown,
respectively, in Fig. 1; Cβ atoms are used as force centers in L, S2, S3, and S4 energy terms and
Cα atoms in B2 and B3 terms.

bAverage position is defined as the geometrical mean: 〈P〉 = [∏
N

i=1
Pi]1/N, where Pi is the posi-

tion of the native fold energy for chain i in the energy-sorted list for this chain, and N is the
number of proteins.

cAverage Z-score; defined as a root-mean-square: 〈P〉 = (1/N) ∑N
i=1 Z2

i1/2 where Zi is
Z-score corresponding to the native fold energy of protein i.

dAverage (arithmetic mean) energy gap (in RTc units) between the lowest energy of an alter-
native structure and the native structure.

*The best value.
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deviation of the native structure energy EN from the mean energy of alternative
structures <E> expressed in the number of the root mean deviations of the
threading energies from the mean, σ:

Z = (〈E〉 – EN) / σ (27)

Table 2 shows that the fold-recognition quality is optimal at the resolution
intervals of approx 0.5–1.0 Å both for long- and short-range potentials (except
of sort-range i,i + 4 interaction (S4), which shows the best accuracy at spacing
approx 2–3 Å). One can see that the short-range potentials are more sensitive
to the optimization of the resolution than the long-range ones.

Table 3 shows that the chiral energy term achieves its highest accuracy at
the resolution range of 30–15°. (For further testing, the resolution of 18° was
chosen as a compromise in average positioning, Z-score, and energy-gap
characteriztics; it corresponds to 0.5–0.8 Å resolution interval for space coor-
dinates.)

Table 4
Characteristics of Native Structure Recognition in Threading Tests
by Different Combinations of Energy Terms at Different Resolutionsa

Resolution (Å) 0.25 0.5 1.0 2.0 3.0

<P>b 2.11 2.02 2.14 2.33 2.38
L <Z>c 5.31 5.35 5.52 5.45 5.47

<G>d 25.08 25.62 24.61 21.38 18.61

<P> 2.87 1.90 2.71 6.00 9.72
SB <Z> 3.82 4.66 4.30 3.73 3.51

<G> 6.61 11.96 5.13 –1.09 –2.43

<P> 1.59 1.35 1.58 1.85 2.43
SBC <Z> 4.54 5.23 4.98 4.65 4.54

<G> 23.54 27.31 20.31 13.18 10.96

<P> 1.18 1.09 1.09 1.22 1.45
LSB <Z> 5.79 6.53 6.43 6.19 6.06

<G> 68.93 71.02 61.88 47.47 40.33

<P> 1.16 1.06 1.07 1.10 1.20
LSBC <Z> 6.16 6.79 6.72 6.55 6.47

<G> 87.50 89.32 81.56 68.21 60.80

aL, SB, SBC, LSB, and LSBC correspond to different combinations of local and long-range
terms: long-range (L); short-range and bending terms (SB); short-range, bending, and chiral
terms (SBC); long-range, short-range, and bending terms (LSB); long-range, short-range, bend-
ing, and chiral terms (LSBC); chiral potental was used at resolution 18° in all the cases.

b,c,d,*See the corresponding footnotes to Table 2.



Testing Residue–Residue Mean–Force Potentials 167

The results in Tables 2 and 3 show that the main contribution to protein–
structure recognition arises primarily from long-range interactions and chiral
and bending energies. Recognition accuracy with different combinations of the
local and long-range energies is presented in Table 4.

Fig. 3. Long-range potentials for (A) Phe–Leu and (B) Arg–Arg residue pairs
derived from the database of 359 proteins at a resolution of 0.5 Å; inaccuracies of the
potentials caused by limited statistics are shown by thin error bars; the estimates are
done by Eq. 26; potential sets A and B were derived from the approximately equal
databases of 180 and 179 proteins obtained by division of the original database of 359
proteins. Errors of the amplitude less than 0.05RTc are not shown. Long-range poten-
tials are infinitely high at distances below 2.5 Å. The dots show that part of potential
that is taken as zero at r ≥ Rα + Rβ.
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Fig. 4. Short-range distance dependent pairwise potentials. The potentials are given
for Ala–Ser residue pair; they are derived from the database of 214 proteins at a
resolution of 1 Å: (a), (b), and (c) correspond, respectively, to the i,i + 2, i,i + 3, i,i +
4 types of short-range interactions (see Fig. 1B); statistical inaccuracy of the potentials
is shown by error bars; errors of amplitude less than 0.05RTc are not shown. The
potentials are infinitely high at r ≤ Rmin = 2.5 Å and r ≥ Rmax = 10.5 Å, 13.5 Å, and 17
Å for, correspondingly, i,i + 2, i,i + 3, i,i + 4 types of short-range interactions.
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One can see that the total contribution of the local energy terms to the over-
all accuracy at the optimal resolution is slightly more than that of long-range
potential.

Plots of typical potentials derived from the data set of 359 proteins at resolu-
tion of 0.5 Å is given in Figs. 3–6. One cannote a significant difference between
long-range (Fig. 3) and short-range (Figs. 4–6) potentials. Long-range
potentials change relatively smoothly with distance and, in essence, have one
energy minimum for attractive (usually hydrophobic) residue pairs and no
minimum for repelling pairs.

Fig. 5. Short-range bending potentials derived from the database of 359 proteins at
a resolution of 0.5 Å: (a) and (b) corresponds, respectively, to Ser residue and to Ala-
Ser residue pair occupying an intervening position (see Fig. 1C); error-bars show sta-
tistical inaccuracy of the potentials; errors of the amplitude less than 0.05RTc are not
shown. The potentials are infinitely high at r ≤ Rmin and r ≥ Rmax; Rmin = 4 Å and 3 Å;
Rmax = 8 Å and 11.5 Å for, correspondingly, i,i + 2 and i,i + 3 types of short-range
bending interactions.
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Short-range potentials are characterized by more abrupt changes; they can
have more than one local minimum, separated by barriers. Also, it is worth
noting that because of the hard-core interatom repulsion, both long-range and
short-range potential wells are bounded at Rmin = 2.5 Å for Cβ-based potentials
and 3 Å for Cα ones; a prohibition of chain disruption restricts the maximal
distance where the short-range potentials act.

The statistical error estimates, calculated by Eq. 26 are shown in Figs. 3–6
by the corresponding error bars. One can see differences in the amplitudes of
the statistical errors, which are relatively small for the long-range interactions
and sometimes rather significant for the short-range ones.

The detailed results of the threading experiment for 50 proteins with Cβ–Cα
combined potentials, derived at the resolution interval of 0.5 Å, are given in
Table 5.

The potentials successfully recognize the native structure: 49 proteins were
evaluated with the lowest energy for their native structures. Because all of the
foregoing energy estimates are done with approximate energy functions, there
is always a chance of finding a structure with lower energy than a given native
one, considering more extensive ensembles of structures.

Table 5 shows large energy gaps between the native and competing folds for
practically all the tested protein chains. However, it is important to stress that
these gaps should depend on the number of tested alternatives: the more the
alternatives, the less the gap. Because the energies of alternative structures have

Fig. 6. Chiral potential for Val–Ala residue pair at resolution of 18°; error bars show
statistical inaccuracy of the potential; errors of the amplitude less than 0.05RTc are not
shown.
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virtually Gaussian distributions (Fig. 2), one can estimate the probability to
find a structure with energy less than a given native one as

p(Z) = (1/√2π) ·
Z
∫

+∞

e(t2/2) dt (28)

where Z is a “Z-score” value. Thus, to find an energy lower than the energy of
a given native structure, one needs to look through the following number of
random structures:

NZ = 1 / p(Z) (29)

Having Z-score values obtained with Cβ–Cα-based potentials, and assuming
that structures obtained in threading give representative ensembles of misfolded
protein-like structures, we found NZ values for each of the 50 proteins tested.
The geometric averaging of the NZ values gives <NZ>~ 1.7 * 1011. Given an
average chain length of 111 residues for 50 tested proteins, these numbers show
that one can predict a protein fold only if the average number of possible back-
bone conformation per residue does not exceed 1011.23/111 = 1.26. For globular
folds where backbone conformations are not independent, this crucial number
is not yet known (for a coil, where backbone conformations are independent,
there are at least three conformations per residue: αR, αL, and β). Because the
backbone conformations used for threading represent only a portion of the
globular folds, and because they are not necessarily compact, the foregoing
estimates indicate that our potentials are adequate for recognition of the native
fold within some restricted set of folds, rather than for distinguishing the native
fold from all possible folds.

4. Notes

1. To reduce biased errors in potentials derived from protein statistics, it is neces-
sary to avoid similar proteins in the database of protein structure. Our experience
shows that tests on sequence similarity alone are not absolutely sufficient for
excluding all remote homologs. We found that pairs of proteins with RMSD (<10
Å) are good candidates for belonging to the same protein family.

2. To achieve the highest accuracy with potentials derived from a given database, it
is necessary to optimize the size of the resolution interval in distance- (angle-)
dependent energy functions to preserve as much detail as possible without intro-
ducing excessive error due to limited statistics.

3. The approach we use here for the derivation of energy functions differs from the
other ones as it is directly based on the theory that explains the origin of
Boltzmann statists in protein structure. However, the derived potentials have the
same peculiarities (10) as correlation functions observed in liquids. They result
from true direct interactions of residues in question and the indirect interactions
of these residues via the surrounding liquids. One can neglect the indirect interac-
tions when (1) direct interactions are strong (i.e., when distances are rather short),
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Table 5
Characteristics of the Native Conformation Position in the Energy-
Sorted List for 50 Proteins Obtained with Cβ–Cα-Based Potentials
Derived at a Resolution Interval of 0.5 Å

Energy gapc

PDB Thread- Posi- in in δ Z-
code Length ings tionb RTc units scored Nz

e

1tgx.A 61 76258 1 2.5 0.1 4.2 0.82*105

1ptx 64 74841 1 42.2 2.2 6.9 0.36*1012

1kve.B 77 70251 1 22.4 0.9 4.8 0.10*107

1cks.B 78 69898 1 67.8 2.4 5.9 0.61*109

1aav.A 85 67440 18 –17.2 –0.7 3.3 0.17*104

1ihf.B 94 64289 1 63.0 1.9 6.3 0.54*1010

1who 94 64289 1 107.7 3.7 7.3 0.98*1013

2hpe.A 99 62547 1 94.5 3.6 7.6 0.76*1014

1lts.D 103 61158 1 71.2 2.2 6.1 0.14*1010

1cmb.A 104 60812 1 42.9 1.1 4.7 0.96*106

1mhl.A 104 60812 1 38.8 1.2 5.0 0.30*107

1onc 103 61158 1 65.8 2.3 6.3 0.85*1010

1kpt.A 105 60468 1 94.2 3.8 8.0 0.14*1016

2psp.A 105 60468 1 149.9 4.7 8.7 0.82*1018

1bri.C 107 59786 1 68.5 2.5 6.6 0.49*1011

1fkj 107 59786 1 89.2 2.8 6.5 0.24*1011

1cew.I 108 59446 1 62.9 1.8 5.8 0.36*109

1jpc 108 59446 1 138.5 4.8 9.0 0.94*1019

1thx 108 59446 1 139.7 4.6 8.4 0.61*1017

1bnd.A 109 59108 1 70.0 2.5 6.9 0.32*1012

1jer 110 58773 1 67.1 2.4 6.8 0.17*1012

1ccr 111 58439 1 76.3 2.2 6.1 0.24*1010

1wad 111 58439 1 78.6 2.3 6.0 0.12*1010

2tgi 112 58106 1 56.1 2.0 6.5 0.34*1011

1dyn.A 113 57775 1 37.6 1.0 4.4 0.19*106

4rhn 115 57116 1 96.0 2.9 6.7 0.84*1011

(continued)

and (2) when a number of residue types is big (10,18); the latter means that
proteins consisting of 20 amino acid types should give more precise potentials
than chain models of two to three residue types (3).

4. In estimating the role of simplified pairwise potentials for the protein-folding
problem, one should not presume to explain with them all of the details of protein
structure. However, these potentials can be useful for efficient discrimination of
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Table 5 (continued)
Characteristics of the Native Conformation Position in the Energy-
Sorted List for 50 Proteins Obtained with Cβ–Cα-Based Potentials
Derived at a Resolution Interval of 0.5 Å

Energy gapc

PDB Thread- Posi- in in δ Z-
code Length ings tionb RTc units scored Nz

e

2rsl.B 120 55475 1 141.7 3.7 7.1 0.13*1013

2pfl 121 55147 1 59.7 1.9 6.1 0.23*1010

1reg.X 122 54820 1 132.5 3.4 7.2 0.27*1013

1whi 122 54820 1 139.9 4.0 7.7 0.17*1015

1bp2 123 54494 1 109.0 3.3 7.5 0.27*1014

1bur.T 123 54494 1 137.7 4.3 8.3 0.21*1017

1msp.A 124 54171 1 77.0 2.1 6.3 0.86*1010

1zia 124 54171 1 128.6 3.5 7.9 0.54*1015

4fgf 124 54171 1 58.0 1.7 5.7 0.20*109

7rsa 124 54171 1 94.8 2.9 6.8 0.25*1012

1otg.A 125 53850 1 115.7 3.3 6.9 0.29*1012

1oun.A 125 53850 1 122.0 3.5 7.3 0.92*1013

2phy 125 53850 1 134.9 4.1 8.0 0.15*1016

1rie 127 53219 1 130.5 3.6 7.6 0.83*1014

1ttb.A 127 53219 1 116.9 3.5 7.2 0.40*1013

1doi 128 52905 1 126.1 3.2 6.6 0.58*1011

3chy 128 52905 1 171.9 4.0 7.5 0.28*1014

1cpq 129 52593 1 80.0 1.7 5.3 0.15*108

1msc 129 52593 1 22.4 0.7 5.6 0.97*108

2aza.A 129 52593 1 92.0 2.8 6.7 0.11*1012

1lzr 130 52283 1 140.6 4.3 8.5 0.14*1018

1lid 131 51976 1 93.5 2.9 6.6 0.36*1011

1lis 131 51976 1 88.8 2.7 7.0 0.70*1012

1lit 131 51976 1 125.6 3.9 8.1 0.25*1016

Avg. 111 57736 1.06 89.3 2.7 6.8 0.17*1012

b,c,dSee footnotes to Table 2.
eNz values are defined in Eqs. 29 and 30; the average Nz is defined as the geometrical mean.

the tiny fraction of most favorable conformations from the vast majority of the
other ones.
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Genetic Algorithms and Protein Folding

Steffen Schulze-Kremer

1. Introduction
Genetic algorithms are, like neural networks, an example par excellence of

an information-processing paradigm that was originally developed and exhib-
ited by nature and later discovered by humans, who subsequently transformed
the general principle into computational algorithms to be put to work in com-
puters. Nature uses the principle of genetic heritage and evolution in an
impressive way. Application of the simple concept of performance based
reproduction of individuals (“survival of the fittest”) led to the rise of well-
adapted organisms that can endure in a potentially adverse environment.
Mutually beneficial interdependencies, cooperation, and even apparently
altruistic behavior can emerge solely by evolution. The investigation of those
phenomena is part of research in artificial life but is not dealt with here.

Evolutionary computation comprises the four main areas of genetic algo-
rithms (1), evolution strategies (2), genetic programming (3), and simulated
annealing (4). Genetic algorithms and evolution strategies emerged at about
the same time in the United States and Germany. Both techniques model the
natural evolution process in order to optimize either a fitness function (evolu-
tion strategies) or the effort of generating subsequent, well-adapted individuals
in successive generations (genetic algorithms). Evolution strategies in their
original form were basically stochastic hill-climbing algorithms and were used
for optimizing complex, multiparameter objective functions that, in practice,
cannot be treated analytically. Genetic algorithms in their original form were
not primarily designed for function optimization but rather to demonstrate the
efficiency of genetic crossover in assembling successful candidates over com-
plicated search spaces. Genetic programming takes the idea of solving an opti-
mization problem by evolution of potential candidates one step further in that
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not only the parameters of a problem but also the structure of a solution is
subject to evolutionary change. Simulated annealing is mathematically similar
to evolution strategies. It was originally derived from a physical model of crys-
tallization. Only two individuals compete for the highest rank according to a
fitness function and the decision about accepting suboptimal candidates is con-
trolled stochastically.

The methods presented in this chapter are heuristic, i.e., they contain a ran-
dom component. As a consequence (and in contrast to deterministic methods),
it can never be guaranteed that the algorithm will find an optimal solution or
even any solution at all. Evolutionary algorithms are therefore used preferably
for applications where deterministic or analytic methods fail, e.g., because the
underlying mathematical model is not well defined or the search space is too
large for systematic, complete search (np completeness). Another application
area for evolutionary algorithms that is rapidly growing is the simulation of
living systems starting with single cells and proceeding to organisms, societ-
ies, or even whole economic systems (5,6).

Work with evolutionary algorithms bears the potential for a philosophically
and epistemologically interesting recursion. At the beginning, evolution
emerged spontaneously in nature. Next, humans discovered the principle of
evolution and acquires knowledge of its mathematical properties. He (“re-”)
defines genetic algorithms for computers. To complete the recursive cycle,
computational genetic algorithms are applied to the very objects (DNA, pro-
teins) of which they had been derived in the beginning. A practical example of
such a meta-recursive application is given in the sections on protein folding.
Figure 1 illustrates this interplay of natural and simulated evolution.

2. Genetic Algorithms
The so-called genetic algorithm (7) is a heuristic method that operates on

pieces of information like nature does on genes in the course of evolution.
Individuals are represented by a linear string of letters of an alphabet (in nature,
nucleotides, in genetic algorithms, bits, characters, strings, numbers, or other
data structures), and they are allowed to mutate, crossover, and reproduce. All
individuals of one generation are evaluated by a fitness function. Depending on
the generation replacement mode, a subset of parents and offspring enters the
next reproduction cycle. After a number of iterations the population consists of
individuals that are well adapted in terms of the fitness function. Although this
setting is reminiscent of a classical function optimization problem, genetic
algorithms were originally designed to demonstrate the benefit of genetic
crossover in an evolutionary scenario, not for function optimization. It cannot
be proven that the individuals of a final generation contain an optimal solution
for the objective encoded in the fitness function but it can be shown
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mathematically that the genetic algorithm optimizes the effort of testing and
producing new individuals if their representation permits development of build-
ing blocks (also called schemata). In that case, the genetic algorithm is driven
by an implicit parallelism and generates significantly more successful progeny
than random search. In a number of applications where the search space was
too large for other heuristic methods, or too complex for analytic treatment,
genetic algorithms produced favorable results (8).

2.1. Basic Algorithm

The basic outline of a genetic algorithm is as follows:

1. Initialize a population of individuals. This can be done either randomly or with
domain-specific background knowledge to start the search with promising seed
individuals. Where available the latter is always recommended.
a. Individuals are represented as a string of bits. This is not a restriction for the

type of problem because other data types (numbers, strings, structures) can
also be encoded as bit strings.

Fig. 1. Interplay of natural and simulated evolution. Responding to nature’s chal-
lenges by her own means. The principle of evolution can be used to model structures
and to stimulate biomolecular reactions.
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b. A fitness function must be defined that takes as input an individual and returns
a number (or a vector) that can be used as a measure of the quality (fitness) of
that individual.

c. The application should be formulated such that the desired solution to the
problem coincides with the most successful individual according to the fit-
ness function.

2. Evaluate all individuals of the arrent population.
3. Generate new individuals. The reproduction probability for an individual is pro-

portional to its relative fitness within the current generation. Reproduction
involves domain-specific genetic operators (see Fig. 2). Operations to produce
new individuals are:
a. Mutation. Substitute one or more bits of an individual randomly by a new

value (0 or 1).
b. Variation. Change the bits in a way that the number encoded by them is

slightly incremented or decremented.
c. Crossover. Exchange parts (single bits or strings of bits) of one individual

with the corresponding parts of another individual. Originally, only one-point
crossover was performed, but theoretically one can process up to L – 1 differ-
ent crossover sites (with L as the length of the individual). For one-point cross-
over, two individuals are aligned and one location on their strings is randomly
chosen as the crossover site. Now the parts from the beginning of the indi-
viduals to the crossover site are exchanged between them. The resulting
hybrid individuals are taken as the new offspring individuals.

4. Select individuals for the new parent generation.

Fig. 2. Genetic operators for the genetic algorithm. Mutation exchanges one single
bit. Variation modifies the encoded value by a small increment (or decrement). Cross-
over (single-point) exchanges a continuous fragment of an individual. Analogously,
more than one crossover point can be selected and only the fragments between those
positions are then exchanged (two-point crossover for two crossover points; uniform
crossover for as many crossover sites as positions in the individual).
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a. In the original genetic algorithm, all offspring were selected and all parents
were discarded. This is motivated by the biological model and is called total
generation replacement.

b. More recent variations of generation replacement compare the original parent
individuals and the offspring which are then ranked by their fitness values.
Only the n best individuals (n is the population size, i.e., the number of indi-
viduals in one generation) are taken into the next generation. This method is
called elitist generation replacement. It guarantees that good individuals are
not lost during a run. With total generation replacement good individuals may
“die out” because they produce only offspring inferior in terms of the fitness
function. Another variant is steady-state replacement. There, two individuals
are randomly selected from the current population. The genetic operators are
applied and the offspring replace the parents in the population. Steady-state
replacement often converges sooner because on average it requires fewer fit-
ness evaluations than elitist or total generation replacement.

5. Go back to step 2 until either a desired fitness value is reached or until a pre-
defined number of iterations is performed.

2.2. Schemata Theorem

The mathematical foundation of genetic algorithms is the schemata theorem
of J. H. Holland (1). It makes a statement about the propagation of schemata
(or building blocks) within all individuals of one generation. A schema is im-
plicitly contained in an individual. Like individuals, schemata consist of bit
strings (1, 0) and can be as long as the individual itself. In addition, schemata
may contain “don’t care” positions where it is not specified whether the bit is 1
or 0, i.e., schemata Hi are made from the alphabet {1, 0, #}. In other words, a
schema is a generalization of (parts of) an individual. For example, the indi-
viduals:

100100100100000111101000101
and

010010010100000111111010101

can be summarized by the schema:

##0##0##01000001111#10#0101

where all identical positions are retained and differing positions marked with a
“#,” which stands for “don’t care.” The length δ(H) of the above schema is 25,
which is the distance from the first to the last fixed symbol (1 or 0 but not #).
The total number of different schemata of length l over an alphabet of cardinal-
ity k is (k + 1)l. Because each string of length l contains 2l schemata, with n
individuals in one generation, there are between 2l and n2l schemata in the
population (depending on the similarity of the n individuals). The order of a
schema o(H) is the number of fixed positions (1 or 0 but not #).
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Let s(H, t) (9) be the number of occurrences of a particular schema H in a
population of n individuals at time t. The bit string Ai of individual i then gets
selected for reproduction with probability pi :

pi = fi / 
j
∑
n

= 1
fj

where fi is the fitness value of the jth individual. The expected number of
occurrences of schema H at time t + 1 is:

s(H, t + 1) = s(H,t) · n · f(H) / 
j
∑
n

= 1
fj

with f(H) as the average fitness of all individuals (strings Ai) that contain H.
Crossover and mutation operators can destroy schemata during reproduction.
The longer a single individual, the smaller the probability that a schema H will
be involved in a crossover event. The longer a schema δ(H), the more likely is
its destruction through recombination with another individual. Hence, for cross-
over the lower bound for the survival probability of a schema H is:

ps ≥ 1 – δ(H) / (L – 1)

with L as the length of one whole individual. If we perform crossover stochas-
tically at a frequency pc the survival probability ps becomes

ps ≥ 1 – pc δ(H) / (L – 1)

Summarizing the effects of independent crossover and reproduction, we
arrive at the following equation for the expected occurrence of a schema H at
time t + 1:

f(H) δ(H)
s(H, t + 1) = s(H,t) · n · ——– · (1 – pc —–— )

j
∑
n

= 1
fj

L – 1

This equation tells us that schemata increase over time proportional to their
relative fitness and inversely proportional to their length. Mutation can effect a
schema H at each of its o(H) fixed positions with mutation probability pm.
Survival of a single constant position in a schema is then ps = 1 – pm and sur-
vival of the entire schema:

ps = (1 – pm)o(H)

which for small pm, can be approximated by ps ≈ 1 – o(H) · pm. Summarizing
the effects of independent mutation, crossover, and variation, we get the fol-
lowing equation for the expected count of a schema H:

f(H) δ(H)
s(H, t + 1) = s(H,t) · n · ——– · (1 – pc —–— – o(H) · pm)

j
∑
n

= 1
fj

L – 1
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Assuming that a schema H could always outperform other schemata by a frac-
tion of the total mean fitness, this equation can be rewritten as:

1–n
j
∑

n

= 1
fi + b

1–n
j
∑

n

= 1
fj δ(H)

s(H, t + 1) = s(H,t) · n · ——————– · (1 – pc —–— – o(H) · pm)
1–n ∑

n

j = 1
fi

L – 1

δ(H)
 = s(H,t) · (1 + b) · (1 – pc —–— – o(H) · pm)L – 1

This equation is of the form fk = f0 · (1 + b)k · g(pc,pm,L,δ(H)), which says that
the number of schemata better than average will exponentially increase over
time. Effectively, many different schemata are sampled implicitly in parallel
and good schemata will persist and grow. This is the basic rationale behind the
genetic algorithm. It is suggested that if the (linear) representation of a prob-
lem allows the formation of schemata then the genetic algorithm can efficiently
produce individuals that continuously improve in terms of the fitness function.

2.3. Handworked Example

Let us examine the performance of the genetic algorithm on a simple
application which is the search for the largest square product of a five bit
integer. Table 1 shows four initial individuals that were randomly generated.

Table 1
Genetic Algorithm at Work (Part I)a

Actual
Reproduction Expected Count

Bit Integer Fitness Probability Count (Roulette
Individual String Value f(i) = i2 f(i)/∑f fi/f wheel)

1 01010 10 100 8.2% 0.33 1
2 10101 21 441 36.1% 1.45 1
3 00010 2 4 0.3% 0.01 0
4 11010 26 676 55.4% 2.22 2

Sum 1221 100.0% 4.01 4
Average 305.25
Max 676

Schemata Pattern In individual Average schema fitness

H1 00### 3 4
H2 1#### 2,4 558.5
H3 #1#1# 1 100

aContinued in Table 2. See main text for explanation.
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The bit strings of the individuals are decoded to unsigned integer values. The
fitness function f (i) = i 2 is used to assign a fitness value to each individual.
Depending on their relative fitness values, the reproduction probability
(between 0% and 100%) for each individual is calculated and converted into
the number of expected successors. Then the so-called roulette wheel algorithm
is used to perform a stochastic selection based on the reproduction probability.
Three particular schemata and their occurrence and distribution over the four
individuals is monitored.

Table 2 shows the situation after reproduction. The individuals selected for
reproduction have been replicated according to their relative fitness. Crossover
sites and mating partners have been assigned randomly. To keep this example
simple, mutation is not used here. After performing crossover, the new fitness
values of the individuals in the new population are calculated. The performance
of the three schemata H1, H2, and H3 is also shown. Schema H1 is of low fitness
because it implies that the decoded integer is smaller than 8. Therefore, this
schema gets only a small chance for reproduction. Actually, H1 dies out as its
only parent (the original individual no. 3) does not get selected for reproduc-
tion. Schemata H2 and H3 both have a reasonable chance for reproduction and
are subsequently found in the new generation. Both average and best fitness
values have significantly improved in the new generation.

Table 2
Genetic Algorithm at Work (Part II)

Mating pool after
reproduction with Mating Crossover New Integer Fitness value

crossover site partners site population value f(i) = i2

010|10 3 3 01010 10 100
10|101 4 2 10010 18 324
110|10 1 3 11010 26 676
11|010 2 2 11101 29 841

Sum 1941
Average 485.25
Max 841
Schemata After reproduction After crossover

Expected Count Actual In New count Actual In
∑ f(H) / f count individual expected count individual

0.01 0 — 0.00 0 —
1.83 3 2, 3, 4 2.54 3 2, 3, 4
0.33 3 1, 3, 4 1.60 2 1, 3
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In this example, we monitored only three schemata. There are, however,
between 25 = 32 and 4.25 = 128 schemata in this small population that were all
implicitly evaluated in the same manner in parallel only at the small computa-
tional cost of copying and exchanging a few bit strings. The implicit arithmetics
of finding and promoting the best schemata do not actually have to be carried
out by the computer. They are, so to speak, side effects of the genetic para-
digm. This implicit parallelism is the basic reason for the efficiency of genetic
algorithms.

As an addendum, the stochastic universal sampling algorithm for minimiza-
tion of fitness values by J. E. Baker is implemented as follows in C program-
ming language. This implementation is especially elegant because the source
code is quite short and the generation of only one random number between 0
and 1 is needed to perform a random selection among all individuals in one
generation according to their individual fitness values.

k = 0; /* k is an integer index of next individual to be selected */
ptr = Rand(); /* spin the roulette wheel; 0 < ptr < 1 */
Scaling_Factor = 1.0 / (Prev_Worst_Fitness - Average_Current_Fitness);
for (Sum = i = 0; i < Popsize; i++) /* Popsize is size of population */
{ /* Fitness[i] is the fitness value of individual i */
if (Fitness[i] < Prev_Worst_Fitness)
Expected_Count = (Prev_Worst_Fitness - Fitness[i]) * Scaling_Factor;
else Expected_Count = 0.0;
for (Sum + = Expected_Count; Sum > ptr; ptr++)

sample[k++] = i; /* sample is an array of “Popsize” integers. */
} /* The value of each array element defines an individual. */

These instructions fill the array sample with integer values in a way that
each individual with a fitness better than the average fitness of the current gen-
eration and better than the worst fitness in the last generation gets a chance of
replication proportional to its fitness. Note the concerted increments of Sum
and ptr in the inner for-loop.

3. Protein-Folding Application
3.1. 2D Protein Model

R. Unger and J. Moult have used a 2D, simplified protein model to demonstrate
the usefulness of a genetic algorithm in the search for minimal energy confor-
mations (10). Their protein model has only two kinds of amino acid residues:
hydrophobic (black circles) and hydrophilic ones (white circles) (see Fig. 3).
The “protein” is a chain of these two types of residues on a 2D, orthogonal
grid. Bond angles are restricted to the values 0°, 90°, 180°, and 270°. The “force
field” to determine the inner energy of a fold is defined to be the sum of all
hydrophobic interactions. A hydrophobic interaction contributes –1 energy
units when two noncovalently bonded hydrophobic residues come to lie
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orthogonally adjacent to each other. For example, the “molecule” in Fig. 3 has
seven hydrophobic interactions and hence an “energy” of –7 units.

This section presents the implementation of a simplified 2D protein model
with a hydrophobic energy function for use with the public domain genetic
algorithms software GENESIS (11). GENESIS version 5.0 was written to pro-
mote the study and application of genetic algorithms for function minimization.
Because genetic algorithms are task-independent optimizers, the user must pro-
vide only a domain-specific crossover operator and an evaluation function that
returns a fitness value for each individual. The GENESIS system was written by
J. J. Grefenstette in the programming language C and is available on the Internet.

To represent the conformation of a 2D protein the following definitions are
used. The primary structure is a list of bits 0 and 1, where 0 stands for a hydro-
philic residue and 1 for a hydrophobic one (see the constant SEQUENCE in the
example code below). The conformation is described by a bit string where
every two bits in sequence define the bond angle between the current residue
and the next one in sequence. Figure 4 explains the meaning of the four direc-
tional codes 00, 01, 10, and 11 for a bond angle.

Fig. 3. Simplified 2D protein model. Each hydrophobic interaction between two
adjacent hydrophobic residues (black circles) contributes –1 energy units. There are
seven such interactions (indicated by dotted arrows) in this molecule.



Genetic Algorithms and Protein Folding 185

Fig. 4. Encoding conformation and direction. A positional code determines the
location of the next residue, whether it is up (01), down (10), to the left (11), or to the
right (00). Note: in analogy to Gray codes in this representation a change of one bit in
the positional code implies an increment of 90° (or –90°) on the bond angle.

Fig. 5. Crossover for 2D proteins. This one-point crossover site is selected to mini-
mize the overlaps between residues of the newly joined fragments.
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Crossover is the prominent operator in genetic algorithms. For 2D proteins
it can be implemented as follows (see Fig. 5). One bond (except the first in a
molecule) is randomly selected. The fragments to the left and right of that bond
(crossover site) are exchanged between two individuals. The new value for the
bond at the crossover site is selected such that the overlap of the two fragments
being joined becomes minimal. Depending on the structure of the fragments,
some overlap in the newly created individuals cannot always be avoided. How-
ever, individuals with overlaps die out quickly because they get high (i.e., bad)
fitness values (see function COUNT_OVERLAPS below). The crossover probability
is set to 60% for every pair of individuals.

The following C-source code is the complete implementation for crossover
of 2D proteins. The file with this code must be named CROSS.C and compiled
and linked with the remaining Genesis files.

/* FILE CROSS.C */

#define SEQ_LENGTH 20 /* 2D protein with 20 residues */
#define STR_LENGTH ((SEQ_LENGTH - 1) * 2) /* 38 bits for 19 bonds */
#define X ((SEQ_LENGTH + 1) * 2) /* max X grid extension */
#define Y ((SEQ_LENGTH + 1) * 2) /* max Y grid extension */

#include “extern.h”

typedef struct choice {
char piece[STR_LENGTH + 1];
double overlaps;

}  choice;

The function SELECT_MIN_OVERLAP determines the one individual with the
smallest number of overlapping residues out of n choices (n = UPPER - LOWER;
UPPER and LOWER are indices of individuals in the current population). If two or
more conformations have the same (smallest) number of overlaps, one of them
is chosen at random.

int select_min_overlap (choice *choices, int lower, int upper)
{
int i, j, best(4);
double tmp = 10e10;

for(i = lower; i < upper; i++)
if (choices[i].overlaps < tmp)
tmp = choices[i].overlaps;

j = 0;
for(i = lower; i < upper; i++)
if (choices[i].overlaps = = tmp)
best[j++] = i;

return (best[Randint (0, j –1)]);
}
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COUNT_OVERLAPS calculates the number of overlapping residues in one individual.

double count_overlaps (char *str)
{
int i, j;
int x = X / 2;
int y = Y / 2;
double sum = 0.0;
static int matrix[X][Y];
for (i = 0; i < X; i++) /* initializing arrays */
for (j = 0; j < Y; j++)
matrix[i][j] = 0;

for (i = 0; i < SEQ_LENGTH; i++) /* filling arrays */
{
matrix[x][y]++;
if (str[2*i] == ‘0’)
if (str[2*i + 1] == ‘0’)

x += 1;
else

y += 1;
else

if (str[2*i + 1] == ‘0’)
y -= 1;

else
x -= 1;

}
for (i = 0; i < X; i++) /* summation */
for (j = 0; j < Y; j++)
if (matrix[i][j] > 1)

sum += matrix[i][j] - 1;
return sum;

}

Next, the source code of the actual CROSSOVER function is presented.
CROSSOVER selects a pair of individuals, finds a crossover site, and exchanges
the fragments to the left and right between the two individuals. The length of
individuals in this application is set to 40, although there are only 19 bonds and
thus 38 bits required. The extra bond allows CROSSOVER to modify the last
bond in the molecule.

Crossover()
{
register int mom, dad; /* participants in the crossover */
register int xpoint; /* first crossover point w.r.t. structure */
register int i, j, k; /* loop control variable */
static int last; /* last element to undergo Crossover */
int boy, gal; /* set if parents differ from offspring */
static int firstflag = 1;
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static char i1[STR_LENGTH + 1], i2[STR_LENGTH + 1];
static char piece1a[STR_LENGTH + 1],piece1b[STR_LENGTH + 1];
static char piece2a[STR_LENGTH + 1],piece2b[STR_LENGTH + 1];
static choice choices(8);

Trace(“Crossover entered”);
Dtrace(“crossover”);

if (firstflag)
{
last = (C_rate*Popsize*Gapsize) - 0.5 ;
firstflag = 0;

}

for (mom = 0; mom < last ; mom += 2)
{
dad = mom + 1; /* kids start as identical copies of parents */
Unpack (New[mom].Gene, i1, Bytes);
Unpack (New[dad].Gene, i2, Bytes);

xpoint = 2 * Randint (1, SEQ_LENGTH - 1);/* crossover point */
strncpy (piece1a, i1, xpoint);
piece1a[xpoint] = ‘\0’;
strcpy (piece1b, i1 + xpoint);
strncpy (piece2a, i2, xpoint);
piece2a[xpoint] = ‘\0’;
strcpy (piece2b, i2 + xpoint);

strcpy (choices[0].piece, piece1a);
strcat (choices[0].piece, piece2b);
for (j = 1; i < 4; i++)
strcpy (choices[i].piece, choices[0].piece);

strcpy (choices(4).piece, piece2a);
strcat (choices(4).piece, piece1b);
for (i = 5; i < 8; i++)
strcpy (choices[i].piece, choices(4).piece);

The foregoing source code performs a crossover at the site XPOINT between
the two individuals I1 and I2 and makes four copies of each of the two resulting
hybrid individuals. In the following FOR-loop the four choices (00, 01, 10, 11)
for the new crossover site are set up. Each bit pair corresponds to one of
the four bond angles (0°, 90°, 270°, and 180°) between two fragments. Now
the overlap of the hybrid fragments joined by each of the four bond angles can
be calculated.

for (k = 0; k < 2; k++)
for (i = 0; i < 2; i++)

for (j = 0; j < 2; j++)
{

choices[k*4 + i*2 + j].piece[xpoint] = i + ‘0’;
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choices[k*4 + i*2 + j].piece[xpoint + 1] = j + ‘0’;
}

for (i = 0; i < 8; i++)
choices[i].overlaps = count_overlaps (choices[i].piece);

Finally, the conformations with the smallest overlap are selected to replace
their parents.

gal = select_min_overlap (choices, 0, 4);
boy = select_min_overlap (choices, 4, 8);
Pack (choices[gal].piece, New[mom].Gene, STR_LENGTH);
Pack (choices[boy].piece, New[dad].Gene, STR_LENGTH);

if ((strcmp (choices[gal].piece, i1) ! = 0) ||
(strcmp (choices[boy].piece, i2) ! = 0))

{
New[mom].Needs_evaluation = 1;
New[dad].Needs_evaluation = 1;

}
}
Trace(“Crossover completed”);

}

Mutation is applied with a probability of 0.1%. The remaining parameters
for this application in GENESIS are listed as follows:

Experiments = 1
Total Trials = 10000

Population Size = 50
Structure Length = 40
Crossover Rate = 0.6
Mutation Rate = 0.001
Generation Gap = 1.0
Scaling Window = 5
Report Interval = 10
Structures Saved = 10
Max Gens w/o Eval = 4

Dump Interval = 10
Dumps Saved = 0

Options = celD
Random Seed = 123456789

Rank Min = 0.75

The fitness function is quite elementary. Only orthogonally neighboring
hydrophobic residues that are not connected by a covalent bond contribute to
the “energy” of a conformation. Each such interaction decrements the fitness
value by one energy unit. (Remember, the lower the fitness value [energy], the
better [more stable] the proton conformation.) If one residue is placed on a grid
point that was already occupied by another residue each such overlap
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increments the fitness value by a penalty sum of 100 energy units. Because the
fitness function is to be minimized, there is a strong tendency to lose individu-
als with overlaps. The following source code must be saved in the file EVAL.C
and compiled and linked with the remaining files of GENESIS.

/* FILE EVAL.C */
#include <stdio.h>
#include <stdlib.h>

#define SEQ_LENGTH 20
#define X ((SEQ_LENGTH + 1) * 2)
#define Y ((SEQ_LENGTH + 1) * 2)
#define SEQUENCE {1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0,

0, 1, 0, 1}

The binary sequence in the constant SEQUENCE corresponds to the 2D primary
structure B-W-B-W-W-B-B-W-B-W-W-B-W-B-B-W-W-B-W-B.

double eval (str, length, vect, genes)
char str[]; /* string representation */
int length; /* length of bit string */
double vect[]; /* floating point representation */
int genes; /* number of elements in vect */
{
int i, j;
int x = X / 2;
int y = Y / 2;
double sum = 0.0;
static int sequence[SEQ_LENGTH] = SEQUENCE;
static int matrix[X][Y](3);

for (i = 0; i < X; i++)
for (j = 0; j < Y; j++)
matrix[i][j][0] = matrix[i][j][1] = matrix[i][j][2] = 0;

for (i = 0; i < SEQ_LENGTH; i++)
{
matrix[x][y][1] = i + 1; /* holds the residue numbers */
matrix[x][y][2] ++; /* counts overlaps */
if (sequence[i])
matrix[x][y][0] = 1; /* determines hydrophobic or ... */

else
matrix[x][y][0] = –1; /* ... hydrophilic */

if (str[2*i] = = “0”)
if (str[2*i + 1] == “0”)
x += 1;

else
y += 1;

else
if (str[2*i + 1] == “0”)
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y -= 1;
else

x -= 1;
}
for (j = 1; i < X - 1; i++)
for (j = 1; j < Y - 1; j++)
{
if (matrix[i][j][2] > 1)
sum + = (matrix[i][j][2] - 1) * 200;

if (matrix[i][j][0] = = 1) /* look for neighboring */
{ /* hydrophobic residue */

if ((matrix[i-1][j][0] == 1) &&
(abs (matrix[i][j][1] - matrix[i–1][j][1]) > 2))
sum--;

if ((matrix[i][j-1][0] == 1) &&
(abs (matrix[i][j][1] - matrix[i][j–1][1]) > 2))
sum--;

if ((matrix[i + 1][j][0] == 1) &&
(abs (matrix[i][j][1] - matrix[i + 1][j][1]) > 2))
sum--;

if ((matrix[i][j + 1][0] == 1) &&
(abs (matrix[i][j][1] - matrix[i][j + 1][1]) > 2))
sum--;

}

}
sum /= 2.0; /* because each hydroph. interaction is counted 2x */
if (sum == 0.0)
sum = 1; /* Genesis cannot cope with fitness zero */

return sum;
}

The following conformations were found by the genetic algorithm (see Figs.
6 and 7). One of them has the optimal fitness value for this application with –9
energy units.

Figure 8 shows the performance of a typical run of the genetic algorithm on
the 2D protein model. As the best individual is always propagated into the next
generation (elitist option “e” in GENESIS, the fitness value for the best indi-
vidual of each generation decreases monotonously. The average fitness, how-
ever, fluctuates considerably because the genetic algorithm produces worse
individuals all the time.

Table 3 shows some data on the performance of the GA. We can see that the
number of trials becomes much smaller than the product of population size and
number of generations. This means that some individuals are propagated with-
out any changes or identical individuals are rediscovered that did not have to be
evaluated again. Ten thousand evaluations divided by 50 individuals in one
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generation gives 200 generations if every individual would have to be evalu-
ated. In this run, however, about 300 generations were performed. Less than 3
(or 8) bit positions remained 100% (or 95%) constant during the run. This defies
any premature convergence and shows that the genetic algorithm is still
improving on its individuals. A maximum average bias of 75% for any bit
position at the end of the run substantiates this finding (i.e., on the average not
more than 75% of all individuals in one generation have the same value at any
bit position). As expected, online (calculated over all evaluations) and offline
performance (calculated only for those better than the average fitness of
the last generation) both decrease steadily along with the best fitness. The
average fitness of the current population tends to fluctuate considerably because
there are always a few individuals created with much worse fitness values.

R. Unger and J. Moult (10) continue to show that the performance of the
genetic algorithm is much more efficient than various Monte Carlo strategies.
The genetic algorithm arrives faster and with less computational effort at better
fitness values than Monte Carlo search. These results show that the genetic

Fig. 6. Near-optimal solution with fitness -8 energy units.
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algorithm is certainly a useful search tool for the simplified protein-folding
model. The next step is now to extend the protein model to three dimensions
and to make the fitness function more realistic. This approach is discussed in
the following sections.

Fig. 7. Optimal solution with fitness -9 energy units.

Fig. 8. Performance of genetic algorithm on the 2D protein model. The best indi-
vidual was always passed on in this run, hence the monotonously decreasing fitness.
The average fitness of all individuals also decreases but fluctuates considerably.
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Table 3
Performance Criteria for the Genetic Algorithm
Gens Trials Lost Conv Bias Online Offline Best Avg

0 50 0 0 0.55 730.24 138.00 98 730.24
1 80 0 0 0.56 683.31 123.00 98 602.04
2 111 0 0 0.57 628.90 115.89 97 513.98
3 141 0 1 0.59 585.48 111.87 97 416.00
4 171 1 1 0.60 547.30 106.92 –3 353.90
5 201 1 1 0.61 505.15 90.44 –4 298.10
6 232 1 1 0.61 474.90 77.82 –4 270.04
7 262 1 1 0.62 443.59 68.35 –5 212.02
8 292 1 1 0.62 414.65 60.81 –5 174.20
...

17 564 0 1 0.67 263.06 29.07 –5 70.42
18 594 1 1 0.67 251.91 27.35 –5 46.66
19 624 1 2 0.69 241.33 25.80 –5 32.70
20 654 1 2 0.68 231.43 24.35 –6 24.68
21 684 1 2 0.68 223.12 23.02 –6 32.66
...

65 2020 1 2 0.76 92.65 3.83 –6 6.70
66 2050 1 2 0.76 91.47 3.68 –6 8.70
67 2080 1 2 0.76 90.28 3.54 –6 6.66
68 2111 1 2 0.76 89.02 3.40 –7 2.74
69 2141 1 3 0.76 87.77 3.25 –7 0.84
70 2171 1 3 0.76 86.54 3.11 –7 0.94
71 2201 1 2 0.76 85.44 2.97 –7 4.82
...

138 4243 1 6 0.77 48.17 –1.83 –7 8.34
139 4273 1 6 0.78 47.87 –1.86 –7 2.54
140 4303 1 3 0.77 47.55 –1.90 –7 4.42
141 4334 1 4 0.77 47.25 –1.94 –8 2.28
142 4365 1 4 0.77 47.04 –1.98 –8 10.44
143 4395 1 4 0.77 46.75 –2.03 –8 2.50

...
262 8012 1 5 0.77 29.05 –4.72 –8 6.46
263 8043 2 6 0.77 28.98 –4.74 –8 6.38
264 8074 2 6 0.77 28.91 –4.75 –8 6.30
265 8105 2 6 0.77 28.81 –4.76 –9 2.34
266 8135 2 6 0.77 28.74 –4.78 –9 8.20
267 8165 2 7 0.76 28.63 –4.80 –9 2.26
268 8195 2 6 0.76 28.53 –4.81 –9 2.30
269 8225 2 6 0.76 28.46 –4.83 –9 4.28
270 8256 2 7 0.76 28.40 –4.84 –9 8.38

“Gens” denotes the number of generations calculated; “Trials” is the number of invocations
of the fitness function; “Lost” refers to the number of bit positions that are 100% identical over
the whole population; “Conv” refers to those that are only 95% identical; “Bias” indicates the
average convergence of all positions (theoretical minimum is 50%); “Online” is the mean of all
fitness evaluations so far; “Offline” is the mean of the current best evaluations, i.e., those that
are improvements over the average of the previous generation; “Best” is the best fitness detected
since the beginning of the run; “Avg” is the average fitness of the current population. Some of
the data of this run were removed for brevity.
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3.2. 3D Protein Model

Here we describe the application of a genetic algorithm to the problem of
3D protein structure prediction (13–14) with a simple force field as the fitness
function. It is a continuation of work presented earlier (15). Similar research
on genetic algorithms and protein folding was done independently by several
groups worldwide. (For more information, or to get in touch with researchers
using genetic algorithms, send an email to one of the following mailing lists:
ga-molecule@interval.com, ga-list-request@aic.nrl.navy.mil or to Melanie
Mitchell at mm@santafe.edu who keeps an extensive bibliography on applica-
tions of genetic algorithms in chemistry. Alternatively, try a search for “genetic
algorithm” in gopher space or the Web, e.g., at gopher://veronica.sunet.se or
http://altavista.digital.com.) Genetic algorithms have been used to predict
optimal sequences to fit structural constraints (16), to fold Crambin in the
Amber force field (17) and Mellitin in an empirical, statistical potential (18),
and to predict main chain-folding patterns of small proteins based on second-
ary-structure predictions (19).

In this section, the individuals of the genetic algorithm are conformations of
a protein and the fitness function is a simple force field. In the following, the
representation formalism, the fitness function and the genetic operators are
described. Then, the results of an ab initio prediction run and of an experiment
for side-chain placement for the protein Crambin is discussed.

3.2.1. Representation Formalism

For every application of a genetic algorithm, one has to decide on a represen-
tation formalism for the “genes.” In this application, the so-called hybrid approach
is taken (8). This means that the genetic algorithm is configured to operate on
numbers, not bit strings as in the original genetic algorithm. A hybrid represen-
tation is usually easier to implement and also facilitates the use of domain specific
operators. However, three potential disadvantages are encountered:

1. Strictly speaking, the mathematical foundation of genetic algorithms holds only
for binary representations, although some of the mathematical properties are also
valid for a floating-point representation.

2. Binary representations run faster in many applications.
3. An additional encoding/decoding process may be required to map numbers onto

bit strings.

It is not the principal goal of this application to find the single optimal con-
formation of a protein based on a force field, but to generate a small set of
nativelike conformations. For this task, the genetic algorithm is an appropriate
tool. For a hybrid representation of proteins, one can use Cartesian coordi-
nates, torsion angles, rotamers, or an otherwise simplified model of residues.
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For a representation in Cartesian coordinates the 3D coordinates of all atoms
in a protein are recorded. This representation has the advantage of being easily
converted to and from the 3D conformation of a protein. However, it has the
disadvantage that a mutation operator would, in most instances, create invalid
protein conformations where some atoms lie too far apart or collide; therefore,
a filter is needed that eliminates invalid individuals. Because such a filter would
consume a disproportionate large amount of CPU time a Cartesian coordinate
representation considerably slows down the search process of a genetic algorithm.

Another representation model is by torsion angles. Here, a protein is
described by a set of torsion angles under the assumption of constant standard
binding geometries. Bond lengths and bond angles are taken to be constant and
cannot be changed by the genetic algorithm. This assumption is certainly a
simplification of the real situation where bond length and bond angle to some
extent depend on the environment of an atom. However, torsion angles pro-
vide enough degrees of freedom to represent any native conformation with
only small root-mean-squares (RMS) deviations. (RMS = root-mean-square
deviation; two conformations are superimposed and the square root is calcu-
lated from the sum of the squares of the distances between corresponding
atoms.)

Special to the torsion angle representation is the fact that even small changes
in the ϕ (phi)/ψ (psi) angles can induce large changes in the overall conforma-
tion. This is useful when creating variability within a population at the begin-
ning of a run. Figure 9 explains the definition of the torsion angles ϕ, ψ, ω
(omega), χ1 (chi1), and χ2 (chi2). A small fragment taken from a hypothetical
protein is shown. Two basic building blocks — the amino acids phenylalanine
(Phe) and glycine (Gly) — are drawn as wire frame models. Atoms are labeled
with their chemical symbols. Bonds in bold print indicate the backbone. The
labels of torsion angles are placed next to their rotatable bonds.

In this report, the torsion angle representation is used. Torsion angles of 129
proteins from the Brookhaven database (20) (PDB) were statistically analyzed
for the definition of the MUTATE operator. The frequency of each torsion angle
in intervals of 10° was determined and the 10 most frequently occurring
intervals are made available for substitution of individual torsion angles by the
MUTATE operator. At the beginning of the run, individuals were initialized
with either a completely extended conformation where all torsion angles are
180°, or by a random selection from the ten most frequently occurring intervals
of each torsion angle. For the ω torsion angle the constant value of 180° was
used because of the rigidity of the peptide bond between the atoms Ci and Ni + 1.
A statistical analysis of ω angles shows that, with the exception of proline
average deviations from the mean of 180° occur rather frequently up to 5°, and
only in rare cases up to 15°.
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The genetic operators in this application operate on the torsion angle repre-
sentation, but the fitness function requires a protein conformation to be
expressed in Cartesian coordinates. For the implementation of a conversion
program, bond angles were taken from the molecular modeling software
Alchemy (21) and bond lengths from the program CHARMM (22). Either a
complete form with explicit hydrogen atoms, or the so-called extended atom
representation with small groups of atoms represented as “superatoms,” can be
calculated. One conformation of a protein is encoded as an array of structures
of the C programming language. The number of structures equals the number
of residues in the protein. Each structure includes a three-letter identifier of the
residue type and 10 floating-point numbers for the torsion angles ϕ, ψ, ω, χ1,
χ2, χ3, χ4, χ5, χ6, and χ7. For residues with less than seven side-chain torsion
angles, the extra fields are filled with a default value. The main chain torsion
angle ω was kept constant at 180°.

3.2.2. Fitness Function

In this application, a simple steric potential energy function was chosen as
the fitness function (i.e., the objective function to be minimized). It is very
difficult to find the global optimum of a potential energy function because of
the large number of degrees of freedom even for a protein of average size. In

Fig. 9. Torsion angles ϕ, ψ, ω, χ1, and χ2.
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general, molecules with n atoms have 3n – 6 degrees of freedom. For the case
of a medium-sized protein of 100 residues this amounts to:

[(100 residues · approximately 20 atoms per residue) · 3] – 6 = 5994

degrees of freedom. Systems of equations with this number of variables are
analytically intractable today. Empirical efforts to heuristically find the opti-
mum are almost as difficult (23). If there are no constraints for the conforma-
tion of a protein, and only its primary structure is given, the number of
conformations for a protein of medium size (100 residues) can be approxi-
mated to:

(5 torsion angles per residue · 5 likely values per torsion angle)100 = 25100

This means that in the worst case 25100 conformations would have to be
evaluated to find the global optimum. This is clearly beyond the capacity of
today’s and tomorrow’s supercomputers. As can be seen from a number of pre-
vious applications, genetic algorithms were able to find suboptimal solutions
to problems with an equally large search space (24–26). Suboptimal in this
context means that it cannot be proven that the solutions generated by the
genetic algorithm do, in fact, include an optimal solution, but that some of the
results generated by the genetic algorithm practically surpassed any previously
known solution. This can be of much help in nonpolynomial complete prob-
lems where no analytical solution of the problem is available.

3.2.3. Conformational Energy

The steric potential energy function was adapted from the program CHARMM.
The total energy of a protein in solution is the sum of the expressions for Ebond

(bond length potential), Ephi (bond angle potential), Etor (torsion angle potential),
Eimpr (improper torsion angle potential), EvdW (van der Waals pair interactions),
Eel (electrostatic potential), EH (hydrogen bonds), and of two expressions for
interaction with the solvent, Ecr and Ecphi:

E = Ebond + Ephi + Etor + Eimpr + EvdW + Eel + Ecr + Ecphi

Here we assume constant bond lengths and bond angles. The expressions
for Ebond, Ephi, and Eimpr are therefore constant for different conformations of
the same protein. The expression EH was omitted because it would have
required the exclusion of the effect of hydrogen bonds from the expressions
for EvdW and Eel. This, however, was not done by the authors of CHARMM in
their version v.21 of the program. In all runs, folding was simulated in vacuum
with no ligands or solvent, i.e., Ecr and Ecphi are constant. This is certainly a
crude simplification of the real situation, but is, nevertheless, more detailed



Genetic Algorithms and Protein Folding 199

than the 2D protein model in Subheading 3.1. Thus, the potential energy
function simplifies to:

E = Etor + Eimpr + EvdW + Eel

Test runs showed that if only the three expressions Etor, EvdW, and Eel are
used, there would not be enough force to drive the protein to a compact folded
state. An exact solution to this problem requires the consideration of entropy.
The calculation of the entropy difference between a folded and unfolded state
is based on the interactions between protein and solvent. Unfortunately, it is
not yet possible to routinely calculate an accurate model of those interactions.
It was therefore decided to introduce an ad hoc pseudoentropic term Epe that
drives the protein to a globular state. The analysis of a number of globular
proteins reveals the following empirical relation between the number of resi-
dues (length) and the diameter:

expected diameter = 8 · 3√length

The pseudoentropic term Epe for a conformation is a function of its actual
diameter. The diameter is defined to be the largest distance between any Cα
atoms in one conformation. An exponential of the difference between actual
and expected diameter is added to the potential energy if that difference is less
than 15 Å. If the difference is greater than 15 Å, a fixed amount of energy is
added (1010 kcal/mol) to avoid exponential overflow. If the actual diameter of
an individual is smaller than the expected diameter, Epe is set to zero. The net
result is that extended conformations have larger energy values and are there-
fore less fit for reproduction than globular conformations.

Epe = 4(actual diameter – expected diameter) [kcal/mol]

Occasionally, if two atoms are very close, the EvdW term can become very
large. The maximum value for EvdW in this case is 1010 kcal/mol and the
expressions for Eel and Etor are not calculated. Runs were performed with the
potential energy function E as described earlier where lower fitness values
mean fitter individuals and with a variant, where the four expressions Etor, EvdW,
Eel, and Epe were given individual weights. The results were similar in all cases.
Especially, scaling down the dominant effect of electrostatic interactions did
not change the results.

3.2.4. Genetic Operators

In order to combine individuals of one generation to produce new offspring,
nature as well as genetic algorithms apply several genetic operators. In this
volume, individuals are protein conformations represented by a set of torsion
angles under the assumption of constant standard binding geometries. Three
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operators are invented to modify these individuals: MUTATE, VARIATE, and
CROSSOVER. The decision about the application of an operator is made dur-
ing run time and can be controlled by various parameters.

3.2.4.1. MUTATE

The first operator is the MUTATE operator. If MUTATE gets activated for a
particular torsion angle, this angle will be replaced by a random choice of one
of the 10 most frequently occurring values for that type of residue. The deci-
sion whether a torsion angle will be modified by MUTATE is made indepen-
dently for each torsion angle in a protein. A random number between 0 and 1 is
generated, and if this number is greater than the MUTATE parameter at that
time, MUTATE is applied. The MUTATE parameter can change dynamically
during a run. The values that MUTATE can choose from come from a statisti-
cal analysis of 129 proteins from PDB. The number of instances in each of the
36 10° intervals was counted for each torsion angle. The 10 most frequent
intervals, each represented by its left boundary, are available for substitution.

3.2.4.2. VARIATE

The VARIATE operator consists of three components: the 1°, 5°, and 10°
operator. Independently and after application of the MUTATE operator for each
torsion angle in a protein two decisions are made: first, whether the VARIATE
operator will be applied and, second, if so which of the three components shall
be selected. The VARIATE operator increments or decrements (always an
independent random chance of 1:2) the torsion angle by 1°, 5°, or 10°. Care is
taken that the range of torsion angles does not exceed the [–180°, 180°] inter-
val. The probability of applying this operator is controlled by the VARIATE
parameter, which can change dynamically during run time. Similarly, three
additional parameters control the probability for choosing among the three
components. Alternatively, instead of three discrete increments, a Gaussian
uniformly distributed increment between –10° and +10° can be used.

3.2.4.3. CROSSOVER

The CROSSOVER operator has two components: the two-point crossover and
the uniform crossover. CROSSOVER is applied to two individuals independently
of the MUTATE and VARIATE operators. First, individuals of the parent genera-
tion, possibly modified by MUTATE and VARIATE, are randomly grouped
pairwise. For each pair, an independent decision is made whether or not to apply
the CROSSOVER operator. The probability of this is controlled by a CROSS-
OVER parameter, which can change dynamically during run time. If the decision
is “no,” the two individuals are not further modified and added to the list of
offspring. If the decision is “yes,” a choice between the two-point crossover and
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the uniform crossover must be made. This decision is controlled by two other
parameters that can also be changed during run time. The two-point crossover
randomly selects two residues on one of the individuals. Then the fragment
between the two residues is exchanged with the corresponding fragment of the
second individual. Alternatively, uniform crossover decides independently for
each residue whether or not to exchange the torsion angles of that residue. The
probability for an exchange is then always 50%.

3.2.4.4. PARAMETERIZATION

As mentioned in the previous paragraphs, there are a number of parameters
that control the run time behavior of a genetic algorithm. The parameter values
used for the experiments that will be presented in the Subheading 3.2.5. are
summarized in Table 4. The main chain torsion angle ω was kept constant at
180°. The initial generation was created by a random selection of torsion angles
from a list of the 10 most frequently occurring values for each angle. Ten indi-
viduals are in one generation. The genetic algorithm was halted after 1000
generations. At the start of the run, the probability for a torsion angle to be

Table 4
Run-Time Parameters

Parameter Value

ω Angle constant 180° on
Initialize start generation random
Number of individuals 10
Number of generations 1000
MUTATE (start) 80%
MUTATE (end) 20%
MUTATE (start) 20%
VARIATE (end) 70%
VARIATE (start 10°) 60%
VARIATE (end 10°) 0%
VARIATE (start 5°) 30%
VARIATE (end 5°) 20%
VARIATE (start 1°) 10%
VARIATE (end 1°) 80%
CROSSOVER (start) 70%
CROSSOVER (end) 10%
CROSSOVER (start uniform) 90%
CROSSOVER (end uniform) 10%
CROSSOVER (start two point) 10%
CROSSOVER (end two point) 90%
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modified by the MUTATE operator is 80%; at the end of the run it becomes
20%. In between, the probability decreases linearly with the number of genera-
tions. In contrast, the probability of applying the VARIATE operator increases
from 20% at the beginning to 70% at the end of the run. The 10° component of
the VARIATE operator is dominant at the start of the run (60%), whereas it is
the 1° component at the end (80%). Similarly, the chance of performing a
CROSSOVER rises from 10% to 70%. At the beginning of the run mainly
uniform CROSSOVER is applied (90%), at the end it is mainly two-point
CROSSOVER (90%). This parameter setting uses a small number of individu-
als but runs over a large number of generations. This keeps computation time
low while allowing a maximum number of crossover events. At the beginning
of the run, MUTATE and uniform CROSSOVER are applied most of the time
to create some variety in the population so that many different regions of the
search space are covered. At the end of the run, the 1° component of the VARI-
ATE operator dominates the scene. This is intended for fine tuning those con-
formations that have survived the selection pressure of evolution so far.

3.2.4.5. GENERATION REPLACEMENT

There are different ways of selecting the individuals for the next generation.
Given the constraint that the number of individuals should remain constant,
some individuals have to be discarded. Transition between generations can be
done by total replacement, elitist replacement, or steady-state replacement. For
total replacement, only the newly created offspring enter the next generation
and the parents of the previous generation are completely discarded. This has
the disadvantage that a fit parent can be lost even if it only produces bad off-
spring once. With elitist replacement, all parents and offspring of one genera-
tion are sorted according to their fitness. If the size of the population is n, then
the n fittest individuals are selected as parents for the following generation.
This mode has been used here. Another variant is steady-state replacement,
where two individuals are selected from the population based on their fitness
and then modified by mutation and crossover. They are then used to replace
their parents.

3.2.5. Ab initio Prediction

A prototype of a genetic algorithm with the representation, fitness function,
and operators as described earlier has been implemented. To evaluate the ab
initio prediction performance of the genetic algorithm the sequence of Crambin
was given to the program. Crambin is a plant seed protein from the cabbage
Crambe abyssinica. Its structure was determined by W. A. Hendrickson and M.
M. Teeter (27 to a resolution of 1.5 Å (see Figs. 10 and 11). Crambin has a
strong amphiphilic character that makes its conformation especially difficult to
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Fig. 10. Stereoprojection of Crambin without side chains.

Fig. 11. Stereoprojection of Crambin with side chains.
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Fig. 12. Two conformations generated by the genetic algorithm.
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predict. However, because of its good resolution and small size of 46 residues,
it was decided to use Crambin as a first candidate for prediction. The following
structures are again displayed in stereo projection. If the observer manages to
look cross eyed at the diagram in a way that superimposes both halves a 3D
image can be perceived.

Figure 12 shows two of the 10 individuals in the last generation of the
genetic algorithm. None of the 10 individuals shows significant structural simi-
larity to the native Crambin conformation. This can be confirmed by superim-
posing the generated structures with the native conformation. Table 5 shows
the RMS differences between all ten individuals and the native conformation.
All values are in the range of 9 Å, which rejects any significant structural simi-
larity.

Although the genetic algorithm did not produce nativelike conformations of
Crambin, the generated backbone conformations could be those of a protein,
i.e., they have no knots or unreasonably protruding extensions. The conforma-
tional results alone would indicate a complete failure of the genetic algorithm
approach to conformational search, but let us have a look at the energies in the
final generation (see Table 6). All individuals have a much lower energy than
native Crambin in the same force field. That means that the genetic algorithm
actually achieved a substantial optimization but that the current fitness func-
tion was not a good indicator of “nativeness” of a conformation.

It is obvious that all individuals generated by the genetic algorithm have a
much higher electrostatic potential than native Crambin. There are three rea-
sons for this.

1. Electrostatic interactions are able to contribute larger amounts of stabilizing
energy than any of the other fitness components.

2. Crambin has six partially charged residues that were not neutralized in this
experiment.

Table 5
RMS Deviations to Native Crambin

Individual RMS Individual RMS

P1 10.07 Å P6 10.31 Å
P2 9.74 Å P7 9.45 Å
P3 9.15 Å P8 10.18 Å
P4 10.14 Å P9 9.37 Å
P5 9.95 Å P10 8.84 Å

The 10 individuals of the last generation were measured against the na-
tive conformation of Crambin. RMS values of around 9 Å for a small pro-
tein as Crambin exclude any significant structural similarity.
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3. The genetic algorithm favored individuals with the lowest total energy, which in
this case was most easily achieved by optimizing electrostatic contributions.

The final generation of only 10 individuals contained two fundamentally
different families of structures (class 1: P1, P2, P4, P5, P6, P8, P9) and (class 2:
P3, P7, P10). Members of one class have a RMS deviation of about 2 Å among
themselves but differ from members of the other class by about 9 Å.

Taking into account the small population size, the significant increase in
total energy of the individuals generated by the GA, and the fact that the final
generation contained two substantially different classes of conformations with
very similar energies, one is led to the conclusion that the search performance
of the genetic algorithm was not that bad at all. What remains a problem is to
find a better fitness function that actually guides the genetic algorithm to
nativelike conformations. Because the only criterion currently known to deter-
mine native conformation is the free energy, the difficulty of this approach
becomes obvious. One possible way to cope with the problem of inadequate
fitness functions is to combine other heuristic criteria together with force field
components in a multivalue vector fitness function. Before we turn to that
approach, let us first examine the performance of the current version for side-
chain placement.

3.2.6. Side-Chain Placement

Crystallographers often face the problem of positioning the side chains of a
protein when the primary structure and the conformation of the backbone is

Table 6
Steric Energies in the Last Generation

Individual Evdw Eel Etor Epe Etotal

P1 –14.9 –2434.5 74.1 75.2 –2336.5
P2 –2.9 –2431.6 76.3 77.4 –2320.8
P3 78.5 –2447.4 79.6 80.7 –2316.1
P4 –11.1 –2409.7 81.8 82.9 –2313.7
P5 83.0 –2440.6 84.1 85.2 –2308.5
P6 –12.3 –2403.8 86.1 87.2 –2303.7
P7 88.3 –2470.8 89.4 90.5 –2297.6
P8 –12.2 –2401.0 91.6 92.7 –2293.7
P9 93.7 –2404.5 94.8 95.9 –2289.1

P10 96.0 –2462.8 97.1 98.2 –2287.5
Crambin –12.8 11.4 60.9 1.7 61.2

For each individual, the van der Waals energy (EvdW), electrostatic energy (Eel), torsion
energy (Etor), psuedoentropic energy (Epe), and the sum of all terms (Etotal) is shown. For com-
parison, the values for native Crambin in the same force field are listed.
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known. At present, there is no method that automatically does side-chain place-
ment with sufficiently high accuracy for routine practical use. Although the
side-chain placement problem is conceptually easier than ab initio tertiary
structure prediction, it is still too complex for analytical treatment.

The genetic algorithm approach as described can be used for side-chain
placement. The torsion angles ϕ, ψ, and ω simply have to be kept constant for
a given backbone. Side-chain placement by the genetic algorithm was done for
Crambin. For each five residues, a superposition of the native and predicted
conformation is shown in stereo projection graphs in Fig. 13. As we can see,
the predictions agree quite well with the native conformation in most cases.
The overall RMS difference in this example is 1.86 Å. This is not as good, as
but is comparable to, the results from a simulated annealing approach (28)
(1.65 Å) and a heuristic approach (29) (1.48 Å).

It must be emphasized that these runs were done without optimizing either
the force field parameters of the fitness function or the run-time parameters of
the genetic algorithm. From a more elaborate and fine-tuned experiment, even
better results should be expected.

3.3. Multiple-Criteria Optimization of Protein Conformations

In this section we introduce additional fitness criteria for the protein-folding
application with genetic algorithms. The rationale is that more information
about genuine protein conformations should improve the fitness function to
guide the genetic algorithm toward nativelike conformations. Some properties
of protein conformations can be used as additional fitness components, whereas
others can be incorporated into genetic operators (e.g., constraints from the
Ramachandran plot). For such an extended fitness function, several incommen-
surable quantities will have to be combined: energy, preferred torsion angles,
secondary-structure propensities, or distributions of polar and hydrophobic
residues. This creates the problem of how to combine the different fitness con-
tributions to arrive at the total fitness of a single individual. Simple summation
of different components has the disadvantage that components with larger num-
bers would dominate the fitness function whether or not they are important or
of any significance at all for a particular conformation. To cope with this diffi-
culty, individual weights for each of the components could be introduced. But
this creates another problem. How should one determine useful values for these
weights? Because there is no general theory known for the proper weighting of
each fitness component, the only way is to try different combinations of values
and evaluate them by their performance of a genetic algorithm on test proteins
with known conformations. However, even for a small number of fitness com-
ponents, a large number of combinations of weights arises that requires as many
test runs for evaluation. Also, “expensive” fitness components as the van der
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Fig. 13. Side-chain placement results. A spatial superimposition in stereoscopic
wire frame diagrams is shown for every five residues of Crambin and the correspond-
ing fragment generated by a genetic algorithm. The amino acid sequence of Crambin
in one letter code is TTCCP SIVAR SNFNV CRLPG TPEAI CATYT GCIII
PGATC PGDYA N.

Waals energy need considerable computation time. Here, two measures were
taken to deal with this situation:

1. Different fitness components are not arithmetically added to produce a single
numerical fitness value, but they are combined in a vector. This means that each
fitness component is individually carried along the whole evaluation process and
is always available explicitly.

2. Parallel processing is employed to evaluate all individuals of one generation
in parallel. For populations of 20–60 individuals, this gave a speedup of about
20-fold compared to small single-processor workstations.

3.3.1. Vector Fitness Function
In this application two versions of a fitness function are used. One version is

a scalar fitness function that calculates the RMS deviation of a newly generated
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individual from the known conformation of the test protein. This geometric
measure should guide the genetic algorithm directly to the desired solution, but
it is only available for proteins with a known conformation. RMS deviation is
calculated as follows:

RMS = √N∑i (|ui – vi|)2/N

Here, i is the index over all corresponding N atoms in the two structures to be
compared, in this case the conformation of an individual (ui) in the current popu-
lation and the known, actual structure (vi) of the test protein. The squares of the
distances between the vectors ui and vi of corresponding atoms are summed and
the square root is taken. The result is a measure of how much each atom in the
individual deviates on average from its true position. RMS values of 0–3 Å
signify strong structural similarity; values of 4–6 Å denote weak structural simi-
larity, whereas for small proteins, RMS-values over 6 Å mean that probably not
even the backbone folding pattern is similar in both conformations.

The other version of the fitness function is a vector of several fitness compo-
nents, which is explained in the following paragraphs. This multivalue vector
fitness function includes the following components:

RMS
Etor

EvdW

Eel

Epe

fitness = polar
hydro
scatter
solvent
Crippen

clash

RMS is the RMS deviation as described earlier. It can only be calculated in
test runs with the protein conformation known beforehand. For the multivalue
vector fitness function, this measure was calculated for each individual to see
how close the genetic algorithm came to the known structure. In these runs,
however, the RMS measure was not used in the offspring selection process.
Selection was done only based on the remaining ten fitness components and a
Pareto selection algorithm, which is explained shortly.

Etor is the torsion energy of a conformation based on the force field data of
the CHARMM force field v.21 with k and n as force field constants depending
on the type of atom and φ as the torsion angle:

Etor = |kφ| – kφ cos(nφ)
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EvdW is the van der Waals energy (also called the Lennard-Jones potential)
with A and B as force field constants depending on the type of atom and r as the
distance between two atoms in one molecule. The indices i and j for the two
atoms may not have identical values and each pair is counted only once:

EvdW = 
excl
∑

(i<j)
 (Aij / rij

12 – Bij / rij
6)

Eel is the electrostatic energy between two atoms with qi,j as the partial
charges of the two atoms i and j and r as the distance between them:

Eel = 
excl
∑

(i<j)
qiqj / 4πε0rij

Epe is a measure to promote compact folding patterns. The expected diam-
eter of a protein can be estimated by a number of techniques. A penalty energy
term is then calculated as follows:

Epe = 4(actual diameter – expected diameter)

Polar is a measure that favors polar residues on the protein surface but not in
the core. Because all fitness contributions should be minimized, a factor of
minus one is required before the sum. The larger the distances of polar residues
to the center of the protein, the better a conformation and the more negative the
value of “polar.” If residue i is one of k polar residues (any of Arg, Lys, Asn,
Asp, Glu, or Gln) in a protein of length N residues and with s as the center of
gravity, then the polar fitness contribution is calculated as follows:

polar = –
N

∑
i
  |ui – s| / k

Hydro is a similar measure that favors hydrophobic residues (Ala, Val, Ile,
Leu, Phe, Pro, Trp) in the core of a protein, whereas scatter promotes compact
folds as it adds up the distances over all Cα atoms irrespective of amino acid
type:

hydro = 
N

∑
i
  |vi – s| / k    scatter = 

N

∑
i
  |vi – s| / N

Solvent is the solvent accessible surface of a conformation in Å2. It is calcu-
lated by a surface triangulation method.

Crippen is an empirical, statistical potential developed by G. Crippen (31).
It is summed over all pairs of atoms that interact within a certain distance.

Clash is a term that counts the number of atomic collisions where any two
atoms come closer than 3.8 Å to each other. This fitness term can be used to
approximate the effect of the van der Waals energy at small distances but at
only a fraction of the computational cost:

0  if  dist(i,j) ≥ 3.8 Å
clash = 

N

∑
j=1

N

∑
j=i+1

overlap(i,j) with overlap(i,j) = { 1  if  dist(i,j) < 3.8 Å
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3.3.2. Specialized Genetic Operators

3.3.2.1. LOCAL TWIST OPERATOR

The LOCAL TWIST operator introduces local conformation changes by per-
forming the ring closure algorithm for polymers of N. Go and H. A. Scheraga
(32) for three consecutive amino acid residues (see Fig. 14). This algorithm
was originally implemented in the RING.FOR program (Quantum Chemical
Exchange Program [QCEP], program no. QCMP 046) in a general way that
operated on six adjacent dihedral angles to bridge a gap with bonds of defined
length and bond angle. The application of this algorithm for a polypeptide
required translation of the program into the C programming language and some
alterations to the program to account for the intermitting rigid ω torsion angle.

The basic concept of the ring-closure algorithm is to find suitable values for
φ1 that satisfy the following equation:

g(φ1) = u+ TαRφ1TβRψ1+πTαRφ2TβRψ2+πTαe1 – cos (β) = 0

Fig. 14. Backbone conformation changed by LOCAL TWIST operator. Stereo-pro-
jection of a portion of three residues and an alternative fold found by the LOCAL
TWIST operator.
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Here, u+ (transposed) and e1 are vectors, and T and R are several translation
and rotation matrices that define the constraints of a local conformation change,
respectively. Angle β describes the rigid geometry of a peptide bond, and φ1 is
the first backbone torsion angle in sequence to be modified. The search for
suitable values of φ1 involves repeated numerical approximations and is there-
fore rather time consuming. Hence, it was decided to distribute the LOCAL
TWIST operator over several processors on a parallel computer (Intel Paragon
with 98 × i860 processors owned by Parallab, University of Bergen, Norway)
so that the calculations can be carried out in parallel for all individuals. In test
runs with RMS deviation to the native conformation as the fitness function, the
LOCAL TWIST operator led to significant improvements in prediction accu-
racy and also to a substantial decrease in overall computation time.

3.3.2.2. PREFERRED BACKBONE CONFORMATIONS

The MUTATE operator of Subheading 3.2.4. is rather crude because it always
uses the left boundary of one of the 10 most frequently occurring 10° intervals for
a torsion angle. To improve the chance of selecting favorable values for the back-
bone torsion angles φ and ψ, a cluster analysis with a modified nearest-neighbor
algorithm (33) was performed for the main chain torsion angles of 66 proteins:

1. Cluster all φ/ψ pairs for each amino acid until 21 clusters are formed.
2. Collect all clusters with less than 10 pairs and add the center of each cluster to the

set of φ/ψ pairs to be used by the MUTATE operator.
3. Repeat the clustering procedure with only the φ/ψ pairs from the clusters with at

least 10 pairs in step 2 and let the clustering program run again until 21 clusters
are formed. The centers of all new clusters complete the list of φ/ψ pairs that
MUTATE uses when substituting individual torsion angles.

This algorithm first identifies small clusters with only few examples in detail
and then clusters more densely populated areas with a finer resolution than a
single clustering would do in one pass. Figure 15 shows the centers of 34
clusters for arginine.

3.3.2.3. SECONDARY STRUCTURE

In addition to a more accurate selection of preferable main chain torsion
angles, predictions of secondary structure were used to reduce the search space.
Two issues arise that must be considered:

1. Which secondary structure prediction algorithm should one rely on?
2. Which torsion angles should be used for the predicted secondary structures?

The first question was addressed by assembling a consensus prediction from
two different methods: the PHD artificial neural network (34) and a statistical
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analysis that uses information theory (35,36). For the second question, there
are two alternate solutions. One alternative is to use torsion angles of idealized
α-helices and β-strands, another is to constrain torsion angles of the predicted
secondary-structures to an interval that includes the conformation with ideal-
ized geometry. The corresponding torsion angles are shown in Table 7.

3.3.3. Genetic Algorithm Performance

Using the genetic algorithm as described earlier produced the following
results. Figure 16 shows the best individual of the final generation of a run
with a population of 30 individuals, the LOCAL TWIST operator in effect, and
RMS deviation as the only fitness component (37). For Crambin, the final RMS
deviation of the conformation generated by the genetic algorithm is 1.08 Å,
which is well within the range of the best resolution from X-ray or NMR struc-
ture elucidation experiments. Another run with the same parameters produced
an individual with an RMS deviation of 0.89 Å. This demonstrates the suitabil-
ity of the genetic algorithm approach to protein folding. Given a reliable fitness
function, the genetic algorithm is able to successfully traverse the torsion-angle
search space.

Other proteins that were used for test purposes of the genetic algorithm with
an RMS-fitness function are the trypsin inhibitor protein (Brookhaven data-

Fig. 15. Thirty-four φ/ψ clusters for arginine. There are 14 small clusters of the first
pass with less than 10 pairs (shown as boxes) and 20 large clusters of the remaining
pairs in the second pass (triangles).



214 Schulze-Kremer

base code 5pti; final RMS deviation 1.48 Å; Fig. 17) and RNAse T1
(Brookhaven database code 2rnt, final RMS deviation 2.32 Å; Fig. 18).

That none of the structures produced in the runs with an RMS-fitness func-
tion were completely identical to the native conformations is explained by the
following three observations:

1. The use of standard binding geometries for reconstructing 3D coordinates from a
set of torsion angles could cause structural alterations where the native confor-
mation does not adhere closely to the theoretically derived ideal bond lengths and
bond angles. In this case the best match will always have an RMS deviation of
greater than zero.

2. The operators MUTATE, VARIATE, and CROSSOVER in theory cannot pro-
duce an exact match even if the target structure is known in detail. This is a result
of the representation formalism that these operators work on. If the current
individual is already structurally similar to the desired protein, a single
application of MUTATE or VARIATE is most likely to introduce mismatches of
previously well-fitting fragments, and thus deteriorates the conformation. This
happens because even if one bond becomes better aligned, the rest of the protein
toward the C-terminal swings away and increases the RMS deviation. CROSS-
OVER is not able to improve this situation for the same reason.

3. Only the LOCAL TWIST operator can improve a fit locally without disturbing
well-fitting fragments that surround the mutation site. However, the applicability
of LOCAL TWIST is mathematically constrained: when starting from a less-
fitting conformation the optimal local improvement is not always found in one
pass. Sometimes it is even impossible to improve a local conformation at all.

Hence, with an increasing number of generations it becomes more and more
difficult to achieve any further improvement in the RMS fitness and the search
stagnates at RMS deviation values between 0–2 Å (Fig. 19).

Another conclusion to draw from the foregoing experiments with the RMS
fitness function is that the fitness function is the crucial topic. This is clearly an
unresolved issue and the subject of ongoing research in protein engineering.

Table 7
Boundaries for Main Chain Torsion Angles in Secondary Structures

Secondary structure φl φu ψl ψu φexact ψexact

α-Helix (narrow interval) –57° –62° –41° –47° –57° –47°
α-Helix (broad interval) –30° –120° 10° –90° — —
β-Strand (narrow interval) –119° –139° 135° 113° –130° 125°
β-Strand (broad interval) –50° –180° 180° 80° — —

φl, ψl and φu, ψu are lower and upper values of the main chain torsion angles in the respective
secondary structure. ψ extract, and φ extract are values for an idealized standard geometry. For
β-strands the values are an average of parallel and antiparallel strands.
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Fig. 16. Crambin predicted by the RMS fitness function. This conformation (solid
line) with an RMS deviation of 1.08 Å to native Crambin (dashed line) was obtained
after 10,000 generations using the LOCAL TWIST, MUTATE, VARIATE, and
CROSSOVER operators and RMS deviation as the fitness function.

Fig. 17. Trypsin inhibitor predicted by the RMS fitness function. Stereoscopic
superposition of the native conformation (dashed line) and one individual of the final
generation (solid line). The RMS deviation is 1.48 Å.
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Some aspects of the computational complexity have already been explained.
This situation led to the following experiments with the genetic algorithm and
a multivalue vector fitness function.

Fig. 18. RNase T1 predicted by the RMS fitness function. Stereoscopic superposi-
tion of the native conformation (dashed line) and one individual of the final generation
(solid line). The RMS deviation is 2.32 Å.

Fig. 19. Performance comparison for the LOCAL TWIST operator. This graph
shows the course of six single experiments with the RMS deviation as the fitness func-
tion. The individual with the best RMS deviation is plotted for each generation. The
two thicker lines at the bottom have the LOCAL TWIST operator switched on after
3000 generations. Reproduction was done by the roulette wheel algorithm. The four
runs without LOCAL TWIST had a population size of 54 individuals, whereas the two
runs with LOCAL TWIST had only 30.
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Figure 20 shows the results of a run with the fitness components polar, Epe,
Etor, Eel, hydro, Crippen, and solvent. This individual had an RMS deviation of
6.27 Å from the native conformation of Crambin. The genetic algorithm did
not use the RMS deviation as part of the fitness function. Only the fitness com-
ponents listed above were used to guide the genetic algorithm. Over the whole
run, some of the fitness components decreased along with the RMS deviation
(Epe, hydro, Crippen, solvent), as was expected. However, the other fitness com-
ponents (polar, Etor, Eel) actually drove the genetic algorithm to conformations
with less similarity to the native Crambin indicating that these propensities
were no good indicators for the “nativeness” of Crambin. In general, no RMS
values better than around 6 Å were detected in similar runs.

The following conformations were generated with the fitness components
Crippen, clash, hydro, and scatter. In addition, constraints on the secondary-
structures of Crambin were imposed by limiting the backbone angles to inter-
vals between the upper and lower values of Table 7. Torsion angle ω was
constrained to 180°. For a general application, the use of secondary structure
constraints requires a highly accurate and reliable secondary structure predic-
tion algorithm that, unfortunately, does not (yet) exist. Figure 21 shows the
backbone of an individual generated by the genetic algorithm with the afore-

Fig. 20. Individual of the final generation of a multi-value fitness run. Only the fitness
components polar, Epe, Etor, Eel, hydro, Crippen, and solvent were used to guide the genetic
algorithm in this run. There is a vague similarity (RMS 6.27 Å) in the overall backbone
fold of the generated individual (solid line) to native Crambin (dashed line).
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mentioned fitness components and that has an RMS deviation from native
Crambin of 4.36 Å.

Another run with the same fitness components was performed for trypsin
inhibitor (Fig. 22). The RMS deviation from native trypsin inhibitor is 6.65 Å.
This is worse than the result for Crambin in Fig. 21 because the lower content
of secondary structure in trypsin inhibitor implies less rigid constraints on the
conformation. This means there are more degrees of freedom, and therefore a
larger search space to traverse.

4. Notes

Summarizing these findings and those of the previous subsections we are
led to the following conclusions.

1. Genetic algorithms proved to be an efficient search tool for both 2D and 3D rep-
resentations of proteins. In a 2D protein model, the genetic algorithm outper-
formed the Monte Carlo search in both the quality of the results and (less) required
computation time. For a 3D protein model with a simple, additive force field as
fitness function, and using a rather small population, the genetic algorithm pro-
duced several individuals (i.e., protein conformations) of dissimilar topology but
each with highly optimized fitness values.

Fig. 21. Folding Crambin with secondary structure constraints. The backbone of
the predicted conformation (solid line) and Crambin (dashed line) have only an RMS
deviation of 4.36 Å. For this run, only the fitness components Crippen, clash, hydro,
and scatter were used in the multivalue vector fitness function.
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2. Given an appropriate fitness function (for test purposes the RMS deviation from
the a priori known conformation can be used) the genetic algorithm application
described in this chapter finds the desired solution within only small deviations.

3. The major problem lies in the fitness function. If there were one index or a set of
indices that return “1” for “the object is (part of) a native protein conformation”
and “0” for “the object is not (part of) a native protein conformation,” one could
expect the genetic algorithm approach to deliver reasonably accurate ab initio
predictions. However, neither mathematical models nor empirical, semiempirical,
and statistical force fields are yet accurate enough to discriminate reliably native
from nonnative conformations without additional constraints. Thus, the genetic

Fig. 22. Backbone folding of trypsin inhibitor. The backbone of the predicted con-
formation (solid line) and trypsin inhibitor (dashed line) have an RMS deviation of
6.65 Å. For this run, only the fitness components Crippen, clash, hydro, and scatter
were used. The comparatively bad performance of the genetic algorithm in compari-
son to the run on Crambin (Fig. 21) is a result of the low content of secondary structure
in trypsin inhibitor, which increases the number of rotational degrees of freedom.
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algorithm produces (sub-)optimal conformations in a different sense than that of
“nativeness.”

4. Because secondary structure in nature and J. H. Holland’s building blocks in the
genetic algorithm are analogous fundamental components for the construction of
the individual, it was hoped that secondary structures would emerge as the build-
ing blocks in a subset of the population (1). This has not yet happened. One pos-
sible explanation is that the fitness functions used are not sensitive enough to
detect and account for the structural benefits in secondary-structures.
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Scoring Functions for ab initio Protein Structure
Prediction
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1. Introduction
The native conformation of a protein is generally assumed to be the one with

the lowest free energy (1). The successful prediction of protein structure
depends on the surmounting of three subproblems: (1) choosing a representa-
tion of protein conformation that includes structures similar to the correct con-
formation but limits the search space; (2) formulating a scoring function that
relates a particular protein conformation to its free energy; and (3) devising a
method to combine the first two elements in a search through conformational
space for the state with the globally optimum score. These three requirements
apply to the major classes of protein structure prediction: homology modeling,
threading (fold recognition), and ab initio folding. In this chapter, we focus on
the second of the three subproblems, that of developing energy functions, and
place an emphasis on functions tailored for ab initio folding, although much of
the discussion will also apply to threading.

The form of a scoring function is dependent on the particular type of prob-
lem to be tackled. For instance, in homology modeling, the backbone (or fold)
of the target protein is assumed to be known, as it is derived from a related
protein with known structure. A suitable function computes the total score for
interactions between pairs of side chains, and side chains with the backbone, to
build side-chain conformations. However, in threading and ab initio folding,
one is primarily concerned with capturing the overall fold, or topology, of the
backbone. For example, consider an ab initio folding scenario in which one
starts with a fully extended polypeptide backbone and attempts to fold it with
respect to some scoring function. In order to make the search problem more
tractable by reducing the degrees of freedom afforded to the protein, side-chain
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atoms are often reduced to a single coordinate (2), thereby decreasing the com-
putational overhead; similarly, the applicable scoring functions are reduced in
complexity. Threading techniques also use these simplified functions to score
the alignment of probe sequences mounted on structures and substructures
found in the Protein Data Bank (PDB) (3). Such functions are suitable because
the original side-chain conformations of the template are discarded when a
probe sequence replaces the identity of the residues.

Obviously, simplified functions cannot be rooted in the same physical prin-
ciples as the all-atom functions used for the molecular simulation of proteins
that require the explicit positions of all the atoms in the protein (4–7). Param-
eters for these potential energy functions, or force fields, are obtained from
experimental data and quantum mechanical calculations. In contrast, most of
the scoring functions used in protein structure prediction fall into the category
of knowledge-based potentials of mean force (8,9). The term “knowledge-based”
refers to the statistical analysis of the properties found within the database of
experimentally determined protein structures. Knowledge-based functions
mine the information-rich protein database by converting properties seen in
native proteins into “pseudoenergies” that reflect the compatibility of a given
sequence with a structure. A wealth of properties of native structures is readily
extracted, for instance, the pairwise interaction of residues, the exposure of nonpo-
lar groups to solvent, the propensity of sequences to form secondary-structure, and
the close packing of protein atoms (10–13). The choice of the property is at the
discretion of the modeler; hence, a knowledge-based function can be derived
using a range of fold representations, from a string of secondary-structure
assignments to a full-atom representation. Whereas simplified scoring functions
are typically knowledge-based, the converse is not true.

Knowledge-based energy functions are not without problems in their theo-
retical justification (14–20). Although the details of this discussion are beyond
the scope of this chapter, the main points are presented here. First, knowledge-
based functions derive their parameter sets from experimental data, typically
by applying the inverse Boltzmann equation to the observed properties in the
protein database:

∆E = –kT ln (f1 / f2) (1)

where the energy difference ∆E between two states is related to the ratio of
their occupancies (f1 and f2); T is the temperature (K) and k is the Boltzmann
constant. f1 is the frequency of observations of a certain type in the database,
and f2 is the number of observations expected by chance (defined by the chosen
reference state, see Subheading 2.1.4.).

At least four assumptions underlie the application of the inverse Boltzmann
equation in this fashion: (1) the set of known stable folds of different proteins
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are representative of proteins in general; (2) the protein set represents a system
at equilibrium; (3) the observed frequencies are independent of each other and
their environment; and (4) the observed frequencies are distributed according
to the Boltzmann equation.

However, Thomas and Dill have shown that interresidue interactions are not
independent (17). Instead, the result of a dominating hydrophobic effect is to
influence the types of interactions that polar residues make, simply because
each structure can only make a limited number of interresidue contacts. For
example, the extracted parameters for charged residues do not mainly reflect
electrostatic interactions; charged residues are driven to the protein surface by
the nonpolar interactions, coupled by chain connectivity and excluded volume
effects. Also, Kocher et al. argue that because protein folding is cooperative,
interresidue interactions cannot be independent (14). Finally, Thomas and Dill
have shown that the size of the proteins used to compile the parameters can
also skew the extracted scores (17).

To circumvent the need for the assumptions surrounding the conversion of
database statistics to true energies, some methods rely instead on Bayesian
formalism (i.e., conditional probabilities) to formulate a scoring function
(21,22). The two formalisms are analogous and follow the same methodology
in practice. We therefore refer to all knowledge-based functions discussed in
this chapter as “scoring” or “objective” functions.

Given that there are a multitude of scoring functions designed for protein
structure prediction by threading and ab initio folding, it is important to under-
stand how they work. In Section 2., we provide examples from work conducted
in our laboratory and in the literature. We dissect out the essential components
of scoring functions for ab initio folding, and compare and contrast the simi-
larities and differences among them. Our intent is not to do an comprehensive
review (8,9,16,23,24) but to stereotype the different components of the various
scoring functions and explain their specific roles.

Ab initio folding methods can be largely placed into two main categories:
fold generation by exhaustive enumeration or by minimization. Each of these
classes can further be subdivided into lattice and off-lattice (torsion-based)
approaches. We will look at an example of each of these four subtypes of ab
initio folding methods. Threading functions will not be discussed explicitly,
but many knowledge-based functions used in ab initio folding can be directly
applied to evaluating sequence–structure compatibility in a threading context
(10,12,13,25). However, successful threading or fold recognition is by no
means limited to the knowledge-based functions described in this chapter.
Many excellent alternatives exist, including methods that use environmental
profiles (11), predicted secondary-structure (26–28), and multiple sequence
alignment (29).
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2. Methods
2.1. General Issues

Although all of the scoring functions discussed as follows were developed
and tested for ab initio folding, some are exclusively knowledge-based. Some
do not rely on the database of known structures but on model forces such as the
hydrophobic effect and hydrogen bonding. Others combine the two approaches.
For the knowledge-based functions, we discuss some general procedural issues.

2.1.1. Selection of a Database

The standard procedure for constructing a fold library to compile a scoring
function is to choose a nonredundant set of proteins that reflect all known folds.
One way to do this is to require that no two proteins in the set share more than
30% sequence identity. Undesired bias can arise from over-representing pro-
teins of a certain size or topology (for instance, α-helical proteins), and thus a
balanced mixture of proteins with different secondary-structures must be used.
The set should also be as large as possible to make the observed statistics robust.

2.1.2. Jackknifing

Development and validation of a scoring function must proceed without spe-
cific knowledge of the target protein. A true threading or ab initio experiment
would be carried out only in the absence of a template structure with suitably
high sequence similarity (otherwise the problem shifts from fold recognition/
generation to homology modeling). Thus, validation of a given scoring func-
tion for use in threading or ab initio folding must ensure that no inadvertent use
of information occurs. One commonly employed technique is that of “jack-
knifing.” Consider the case where parameters for a scoring function is extracted
from a database of 300 proteins. Presumably, the parameters reflect the tenden-
cies of native proteins in general with respect to some property of interest (for
instance, frequencies of pairwise contacts), but in reality the parameters will be
biased in some degree toward the 300 proteins. In practice, this implies that
one cannot validate the scoring function on a test set of proteins that includes
any of the proteins used to compile the parameters (or any related proteins
thereof). Furthermore, training or optimizing a scoring function with respect to
performance on a fixed test set, whether the database was previously jackknifed
or not, is tantamount to introducing knowledge of the test set.

2.1.3. Correction for Sparse Data

If one is extracting many properties from the database, the problem of sparse
data arises. Sippl (10) suggests the following correction for the observed fre-
quency of sequence s in structural state c:
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1
ρ's,c = ρ/σ + ms (σρc + msσs,c) (2)

where ms is the number of occurrences sequence s appears in the database and
rs,c is the unadjusted frequency that sequence s appears in structural state c.
The effective sequence-dependent frequency ρ's,c is equal to a combination of
the sequence-independent frequency ρc and the actual number of sequence-
dependent occurrences of structural state c. The adjustable parameter σ sets the
relative weight of the sequence-independent term (chosen as 50 in ref. 30).
This correction for sparse data is most commonly employed when one is gen-
erating potentials of mean force in at various sequence separations (see Sub-
heading 2.2.2.).

2.1.4. Choice of a Reference State
Knowledge-based scoring functions express their pseudoenergies relative to

a reference state. For example, a reference state might represent a system in
which the actual interaction energy between residue pairs equals zero; i.e., a
system exhibiting the contact frequencies of a randomly interacting system.
This state may or may not include explicit solvent molecules, the presence of
which dramatically affects the resulting effective energy of interaction between
two residues. Because there are many ways to formulate a reference state (20),
this issue is individually addressed where applicable.

2.2. Exhaustive Enumeration Methods
2.2.1. A Lattice Model

In a study by Hinds and Levitt (31), all possible conformations of a sequence
were generated, subject to the bounds, spacing, and geometry of the lattice.
The knowledge-based scoring functions used by the authors had the following
functional form:

E =
cont

∑
acts

eij (3)

where eij is the contact score between residues types i and j and the total
score E is the sum of all pairwise scores observed in the lattice structure. These
so-called contact functions typically are square-welled, i.e., the interaction
between a pair of residues is value eij if the residues are within a cutoff distance
(6–8 Å is customary) and zero otherwise.

The parameters for the 210 values for eij (i.e., in a 20 × 20 symmetrical
matrix) are calculated as

eij = Nij
obs / Nij

exp (4)

where Nij
obs is the number of observed contacts between residue types i and j. In the

selected database and Nij
exp is the number of contacts made in the reference state, or
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Nij
exp = ∑ Cp (Tijp / Tp) (5)

where p is a protein in the database, Tp is the total number of possible tertiary
contacts, and Cp is the number of actual tertiary contacts. The total number of
contacts Tp is a simple function of the total number of residues in protein p, Np:

Tp = (Np – 4)(Np – 5) (6)

Tp is not exactly equal to Np
2 because interactions between nearest neighbors

along the sequence (|i – j| < 5) are disregarded. Tijp is equal to the number of i
and j pairs that are not nearest neighbors in the sequence. The ratio Tijp/Tp is
effectively the product of the concentrations of i and j. Contacts in the database
are counted whenever a heavy atom of one residue is within 4.5 Å of a heavy
atom of another residue.

This technique of recovering effective contact energies from the database is
also referred to as the “quasichemical approach” (2,20). Briefly, this approxi-
mation treats the interacting centers (e.g., residues) as disconnected units that
interact randomly and whose expected (or reference) contact frequency is pro-
portional to their relative concentrations. This particular method uses a refer-
ence state with the compactness and packing patterns of native proteins.

The goal of exhaustive ab initio methods is achieved when the fold closest
to the native structure corresponds to the global energy minimum. If there is
more than one fold that resembles the native fold to within some root-mean-
square (RMS) or distance matrix error (DME) cutoff, then ideally that subset
of folds has better scores than all the other, nonnative folds.

The tetrahedral lattice of Hinds and Levitt is a coarse lattice in that it is only
able to generate walks suggestive of the overall native trace (31). On the other
hand, this lattice can support exhaustive enumeration of most small proteins.
The number of total walks is therefore very large (on the order of 107). Hinds
and Levitt (31) did not report the rank of the nearest-native fold in the ensemble,
but they note that out of the lowest-energy 103–104 folds, there are on the order
of 10 nativelike folds (4–5 Å DME).

2.2.2. An Off-Lattice Model

Next, we examine the four-state off-lattice model of Park and Levitt (30,32).
By using only four states in Ramachandran space, one can reproduce the native
fold to about 2 Å RMS error. Unfortunately, exhaustive enumeration of a small
protein (100 residues) implies 4100, or 1060 conformations, which is intractably
large. However, if one enforces idealized native secondary-structure (i.e., one
state each to represent α and β states), allowing only 10 selected loop and turn
residues to assume the four possible (φ, ψ) possibilities, then one only needs to
contend with 410 folds (about a million). After applying a generic compactness

p



Scoring Functions for ab initio Methods 229

filter, only approx 200,000 structures remain. One may think of this fold
ensemble as the set of all possible arrangements of native secondary structure.

As in the case of Hinds and Levitt (31), for a given set of conformations
there were many (on the order of 102) near-native folds (≤4 Å RMS deviation
from the native structure) present. Park et al. (33) evaluated a series of scoring
functions by computing a Z-score (defined as the number of standard devia-
tions a particular score departs from the mean score in the set) for each near-
native fold. The best functions had the most negative average Z-scores for the
near-native folds (a Z-score ≥ 0 means that the function did not discriminate
better than random for that structure). Table 1 lists some representative func-
tions and their average Z-scores for eight small proteins. Park et al. (33) also
reported that for many functions, one of the near-native folds would rank very
high in the score-sorted list. For instance, the Shell function placed a near-
native fold within the top 100 of every fold ensemble for eight  different pro-
teins (corresponding to the top 0.1 to 1% of a score-scored list). However,
many nonnative folds were also among the lowest-scoring conformations in
each set, even though the near-native folds overall were favored. In other
words, none of the simplified knowledge-based functions could identify near-
native folds without also including some nonnative folds.

The Shell function, the top performer out of our representative set of four
functions is a simple contact function. Whenever a pair of residues that is more
than one residue apart in the sequence is within 7 Å, a score eij is counted.
Nearest neighbors in the sequence are ignored simply because they are always
in close spatial proximity with each other, and hence should not contribute to
the signal. Residues are reduced to a single “interacting center” (or virtual cen-
troid) 3 Å from the Cα atom along the Cα–Cβ vector.

The 210 parameters eij are computed essentially in the same manner as
described in Subheading 2.2.1., in that a compact, randomly mixed refer-
ence state is employed.

Table 1
Performance of Four Selected Energy Functions

Function Z-score

Histogram –1.27
Shell –1.78
Contact (MJ) 0.03
HF –1.51

Four energy functions described by Park et al. (33) were tested
on eight semiexhaustive off-lattice decoy sets. The average Z-
score for the near-native folds (those within 4 Å RMS error of the
native fold) is shown for each function.
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Two subtle differences are:

1. The Shell function counts residues in contact (both in the database and in the set of ab
initio folds) when their virtual centroid positions are within 7 Å of each other.

2. The value of Tp for the Shell function reflects the smaller sequence separation
cutoff for interacting residues (only |i – j| < 2 are ignored).

The Histogram function is an implementation of the Sippl (10) potential of
mean force (PMF). Unlike contact functions, which typically apply the quasi-
chemical approximation in an explicit reference state, a PMF uses an implicit
reference state (see next paragraph). The potential of mean force W between
two interacting centers (e.g., residues) i and j is defined as:

Wij(r) = –kT ln (ρij
obs(r) / ρ(r)) (7)

where ρij is the observed probability density that residues i and j are at
distance r.

The reference state is a hypothetical state for the polypeptide that reflects
the observed interresidue distances of the database with sequence information
removed. As in the case for contact functions via the quasi-chemical approxi-
mation, the energy parameters are extracted from the observed amino acid dis-
tributions in a subset of the PDB. This function is named the Histogram
function because it relates the energy of interaction as a function of observed
interresidue distances (calculated as the distance between the Cβ atoms). Hence,
instead of recovering 210 pairwise contact parameters for the 20 amino acids,
210 histograms are generated. Each histogram reflects the relative frequency
of interresidue distances sampled at 20 uniformly spaced intervals. Further-
more, the classic implementation of the Sippl function (10) involves modeling
the role of local and long-ranged pairwise interactions by generating separate
histograms for pairs of residues at a given separation along the polypeptide
chain (called a topological level).

In the Park and Levitt (30) implementation of the PMF described by Sippl
(10), 10 histograms for each of the residue–pair interactions were generated in
the following manner: 8 for local interactions with sequence separation 3–10,
inclusive; 1 for medium range interactions (sequence separation 11–50, inclu-
sive); and 1 for all other long-range interactions.

Spatial distance bins were computed for each histogram by storing the mini-
mum and maximum distances and dividing the range into 20 equal distance
bins. The correction for sparse data was applied (see Subheading 2.1.3.). If
there is no sample in a particular bin, its occurrence was reset to one to prevent
the computed energy from going to infinity. Fortunately, these slots correspond to
geometries that are very unlikely in real proteins.
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The last of the three knowledge-based functions is called the Contact(MJ)
function. This function differs from the Histogram and Shell functions in one
key respect: the reference state is a random mixture of solvent and amino acids,
which directly models the effect of desolvation in protein folding. A
quasichemical reaction between two amino acids i and j in solvent can be
expressed as:

i – 0 + j – 0 ⇔ i – j + 0 – 0 (8)

where 0 represents a solvent molecule. The effective energy of desolvation and
contact formation eij is determined by separate terms for the effective energy
of breaking the i – 0 and j – 0 interactions and forming i – j and 0 – 0:

eij = e'ij + e'00 – e'i0 – e'j0 (9)

Each energy parameter e' is determined by the same equation used in the Shell
energy function.

The effects of introducing solvation-dependent energies e'i0, e'j0, and e'00

include:

1. Desolvation energies that are more favorable for polar and charged residues than
hydrophobic residues.

2. The introduction of a favorable solvent interaction term, e'00, which causes all the
energy terms to be more favorable (more negative) by a constant.

Each of the e' terms is computed separately using Eq. 4 (31). To extract the
parameters, the following are required:

1. Each residue type i has an average coordination number qi, estimated by scan-
ning the database of known structures for buried residues of type i. When qi is
greater than the number of interresidue contacts made by a particular residue i,
then the difference is set to the number of contacts between residue i and solvent.

2. The number of solvent molecules is a free parameter equal to twice the number of
residues in the protein (30).

3. The total number of contacts in the system is equal to Tp plus the number of
solvent contacts. The coordination of water was set to the the average residue
coordination number.

4. The total number of solvent–solvent contacts is equal to the number of solvent
contacts minus the total number of residue–solvent contacts.

The hydrophobic fitness (HF) function (34) is unusual in that it derives
no parameters from the PDB. Instead, it simply rewards favorable
arrangements of hydrophobic and polar residues. A conformation is scored
favorably if hydrophobic residues (of any type) make more contacts with
other hydrophobic residues than would be expected on average. The over-
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all score is weighted by a term that rewards the burial of hydrophobic
residues. The form of the HF function is:

HF = –(∑ Bi)(∑ [Hi – Hi°]) (10)

where i is hydrophobic {C, F, I, L, M, V, W}; Bi is the number of virtual side-
chain centroids within 10 Å; Hi is the number of hydrophobic residues (plus Y)
with 7.3 Å. Hi° is the expected number of hydrophobic contacts based on a
random distribution of the other residues surrounding residue i, disregarding
the nearest neighbors in the sequence. Hi° is computed by multiplying the frac-
tion of hydrophobic residues with the number of contacts residue i makes.

2.3. Minimization Methods

Scoring functions take on different forms when structure prediction is
attempted on a lattice by minimization protocols. When one is not concerned
with exhaustive enumeration, a finer lattice may be used, thereby improving
the accuracy to which a native fold may be represented. The trade-off is that
one can never be sure that the best fold can be found by minimization, either
because of imperfections in the energy function, search strategy, or both.

Unlike scoring functions used in exhaustive methods, a scoring function used
in minimization must bear the additional burden of favoring generic features of
native states, namely secondary-structures and compactness. Exhaustive meth-
ods can enforce compactness simply by setting the bounds of a lattice or by
simply discarding structures that do not satisfy a radius of gyration cutoff. In
contrast, minimization starts with a random or extended state, and compact-
ness must be monitored by at least one component of the scoring function. The
problem of secondary-structure formation may be surmounted by imposing
native secondary-structure assignments. Otherwise, a combinatorial explosion
in the search process is averted by biased sampling of conformational space
(21) or by ad hoc terms in the energy function favoring secondary-structure
formation (for instance, via hydrogen bonding). The implementation of these terms
is typically specific to a given structural representation (e.g., lattice models
with a certain geometry and spacing), so we will not discuss the functional
forms or parameter derivation at length unless they are illustrative of general
issues.

2.3.1. Minimization on a Lattice

In the study by Kolinski and Skolnick (35), a dual lattice model was used for
folding by optimization of a scoring function. In their scheme, a coarse lattice
was used for the early stages of folding from an expanded state, and refinement
of the initial structures was performed on a finer lattice. The entire scoring
function is written as:

i i
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E = ECα + EH-bond + Erot + Esg-local + Eone + Epair + Etem (11)

and can be divided into three components: sequence-independent terms,
sequence-dependent local and long-range terms, and multibody side-chain
interactions. ECα and EH-bond are the two sequence-independent terms. ECα acts
as an effective Ramachandran potential. Every i, i + 3 inter-Cα distance and its
corresponding chirality (defined by the three intervening virtual Cα–Cα bonds)
are compared with those extracted from the PDB. The resulting energy term
enforces local geometries that favor secondary-structure formation. The sec-
ond generic term, EH-bond, models H-bond formation based on pairs of Cα–Cα
vertices that are 4 or more residues apart in the sequence. A hydrogen bond
between Cα vertices i and j must satisfy the following geometrical restrictions:

|(bi–1 – bi) · rij| ≤ αmax (12)
|(bj–1 – bj) · rij| ≤ αmax

where b is a backbone vector, rij is the vector between the Cα positions, and
αmax is a parameter set by the lattice spacing. An H-bonding cooperativity term
rewards the formation of hydrogen–bond networks by adding to subtotal a sepa-
rate score when consecutive sets of residues i, j and i ± 1, j ± 1 are hydrogen-
bonded.

For sequence-specific energy terms, a simplified representation of side-chain
rotamers (a single interaction center) was used. The energy of a given rotamer
was simply tied to the frequency of that rotamer in the library (Erot). The angle
θ between two consecutive Cα-side-chain vectors was computed and scored as

Esg-local = –ln(cos θobs / cos θexp) (13)

where the expected occurrence assumes a uniform distribution of states. Esg-

local refers to the local interaction of side groups (or side chains).
The long-range interactions include a one-body term (Eone) and a pair poten-

tial (Epair). The former is designed to drive hydrophobic residues into the inte-
rior of a folded chain. This term is designed to penalize extended states and
addresses a central need of all minimization methods to drive the collapse of a
polypeptide chain. This single-body term takes on two forms, one that is related
to the position of a given residue from the center of mass of the polypeptide
chain and a second that considers the number of contacts it makes relative to
the average number for that residue in the database. The pair potential has a
repulsive term that chases steric clash between side chains and other side chains
and the main chain and a statistically derived scoring function similar to those
described elsewhere in this chapter. The cutoff distances for repulsion and
pairwise interaction are dependent on the residues involved. The strength of
attraction is modulated by a factor f that reflects the average backbone orienta-
tion of the secondary-structures:
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f = 1.0 – [cos2(ui, uj) – cos2(20°)]2 (14)

where ui = ri+2 – ri–2 with ri being the position of the ith Cα vertex. The maxi-
mum of this function occurs at 20° and the minimum at 90°.

Finally, the multibody term Etem was added to simulate the cooperativity of
side-chain packing from a molten state to a more nativelike state. The authors
note that in the absence of this term, the folds have the character of molten
globules, i.e., with well-defined secondary structure, but more expanded than
close-packed tertiary structures. The multibody term assumes the following
form:

Etem = (eij + ei+k,j+n)Cij × Ci+k,j+n (15)

where Cij = 1 when residues i and j are in contact and residue spacing |k| = |n|;
k and n assume values of {±3, ±4}.

The relative strength of each of these contributions was set by requiring that
the secondary structure be more prevalent in the collapsed states than in
unfolded conformations.

Starting from a random configuration on the coarse lattice, folding was
attempted for three small proteins (36). In the interest of conciseness, we focus
on the folding of protein A, in many ways the most successful experiment of
the three. The 60-residue fragment of this protein adopts a three-helical bundle
topology. Folding of this protein was carried out 45 times using a simulated
annealing protocol on the coarser lattice. In 19 trials the correct three-helical
conformation was seen; in another 11 trials, a three-helical bundle of incorrect
topology persisted. Overall, the average conformational energy of the correct
folds was lower than that of the incorrect folds, and the reproducibility of the
nonnative folds was much lower than for the nativelike folds. Further refine-
ment of five near-native folds on the finer lattice yielded structures in the 2–3 Å
RMS error range (excluding the residues at the N and C termini).

Note that evaluation of a scoring function per se in minimization experi-
ments is difficult because the observed performance is dependent on the search
strategy as well as the function used. Generally speaking, the best methods
available today can provide nativelike folds in a significant fraction of the fold-
ing trials, as was the case for protein A summarized earlier. However, success-
ful convergence to a nativelike fold is still limited to a handful of proteins.

2.3.2. Folding in Torsion Space
For our example for minimization in torsion space, we choose the work by

Sun and co-workers (37). As with many ab initio methods, the authors rely on
the constraint of native secondary-structure in order to overcome the vast con-
formational search problem. Unlike the exhaustive enumeration strategy of
Park and Levitt (30), this minimization method has large dihedral library with
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which to place the rigid secondary-structure elements. As a first step, the con-
formational search is powered by a genetic algorithm (38) that operates on a
string of paired (φ, ψ) dihedral angles. A second step then refines the search by
choosing a random adjustable residue and changing the torsion angles incre-
mentally to probe the local energy surface for minima. The protein chain is
reduced to a backbone with ideal bonds and angles and trans peptide confor-
mations, and side chains are represented by a virtual atom centered at the aver-
age rotamer observed in the PDB.

The scoring function of Sun, et al. (39) could afford to be much simpler than
the one described. Because native secondary structure was already in place, the
energy terms favoring secondary structure formation were rendered unneces-
sary. In fact, their scoring function is surprisingly simple, as it relies mostly on
hydrophobic interactions balanced by steric repulsion:

ETotal = EHH + Eex (16)

where EHH is an attractive interaction between hydrophobic residues {A, C, I,
L, M, F, W, Y, V}. The magnitude of the attraction is distance-dependent, but
the functional form is an analytical expression rather than a database deriva-
tion like the Histogram function (see Subheading 2.2.2.). The expression is:

EHH = ∑
i   j>

∑
i+1

eij f(dij) (17)

where eij is –1 if and only if i and j are hydrophobic residues and zero otherwise
and dij is the distance between side-chain centroids of residues i and j. The
coefficient f modulates the attraction by the following sigmoidal function:

1.0
f(dij) = 1.0 + e(dij –d0)/dt (18)

dt is a parameter that sets the sharpness of the sigmoidal function (set to 2.5 Å)
and d0 sets the interaction distance (6.5 Å) as the midpoint of the curve. The
attraction is set to zero at 12 Å.

The excluded volume term is also a sigmoidal function between pairs of Cα
atoms or side-chain centroids:

1.0
Eex = C × ∑

ij
  1.0 + e(dij –deff)/dw (19)

where dw is 0.1 Å and deff is 3.6 Å for Cα atoms and 3.2 Å for side-chain cen-
troids. The constant C sets the scale for the repulsive term higher relative to the
attractive term.

To aid the formation of β-sheets during the folding process, a score of –1.0
for hydrogen bonding between β-strands was added for every instance when
certain geometical conditions were met (O–H distance < 2.5 Å and N–H–O
angle between 120° and 180°).
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The method was tested on 10 small proteins. Of these, four of the lowest-
scoring models were within 4 Å RMS error. The authors did not report the
scores of the most nativelike folds the representation could allow in terms of
RMS error, but 8 of the native structures had scores less favorable than the
structures found by the genetic algorithm.

2.4. Extending Knowledge-Based Functions to the Atomic Level

Regardless of the initial fold representation used, protein structures are most
useful when detailed atomic coordinates are known. Although simplified scor-
ing functions are capable of distinguishing near-natives from nonnatives a sig-
nificant fraction of the time, they will not work as well in situations where
subtle differences between different conformations exist. To capture the finer
details of atom–atom interactions in proteins, such as interactions between side-
chain atoms and the rest of protein, a more detailed representation is necessary.
For example, in a situation where two conformations are quite similar to the
experimental structures (within 1–3 Å RMS error for the Cα atoms), we need
all the information we can possibly obtain from the two conformations to
determine which one is more accurate. A one-point-per-residue scoring func-
tion may not be able to discriminate as well as an all-atom discriminatory func-
tion, which takes into account the environment of all the atoms of the main and
the side chain of each residue.

The all-atom probability discrimination function (PDF) as formulated by
Samudrala and Moult (22) is similar to potential of mean force by Sippl (10),
but the formulation is in Bayesian terms, and there is greater detail in the repre-
sentation. There are 167 different atom types used. Scores for interactions
between pairs of atoms for all 167 × 167 possible pairs and for 18 distance
ranges (0.3,3–4,4–5,..,19–20 Å) are compiled using the expression:

s(dab|C) = –ln P(dab|C) / P(dab) (20)

s(dab|C) is the conditional probability of observing two atoms a and b interacting at
a distance d in a correct/native conformation C. P(dab|C) is the probability of
seeing atom types a and b in distance bin d in a correct conformation and is
calculated by:

P(dab|C) = N(dab) / ∑
d

N(dab) (21)

P(dab) is the probability of seeing atom types a and b in the distance d in any
conformation, correct or incorrect:

P(dab) = ∑
ab

N(dab) / ∑
d

∑
ab

N(dab) (22)

N(dab) is the number of occurrences of a, b pairs in distance bin d.
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A scoring function S proportional to the negative log-conditional probabil-
ity of conformation being correct is used to calculate the total score of a con-
formation, given a set of i,j interatomic distances:

S({dab
ij}) = ∑

ij
s(dab |C) (23)

The PDF we have described avoids sparse data problems by not separating
local and nonlocal interactions. Although this leads to an averaging of the two
sorts of environments in the parameters for the scoring function, it does not
appears to diminish predictive ability (22).

In Bayesian terms, the reference state dab is referred to as a “prior distribu-
tion.” In this case, the prior distribution is that found in the set of possible
compact conformations, with the assumption that averaging over different atom
types in experimental conformations is an adequate representation of the ran-
dom arrangements of these atom types in any compact conformation.

Samudrala and Moult (22) have shown that discrimination between native
and nonnative folds deteriorates as the detail in fold representation is reduced.
To illustrate that point here, we run a detailed all-atom scoring function that
takes into account interactions between all 167 pairs of atoms, and another
function that uses only Cβ–Cβ interactions, for two sets of protein structure
conformations. The first is a set of 269 conformations of 434 repressor (PDB
entry 1r69) ranging in RMS deviation (RMSD) from 0.95–14.95 Å. The sec-
ond is a set of “deliberately misfolded structures” created by Holm and Sander
(39). In the latter case, 26 “misfolded conformations” are created by placing
the sequences of the proteins on completely different structures of identical
length, and then energy minimizing them to make them look as proteinlike as
possible. These misfolded conformations range from 8.66–22.43 Å RMSD with
respect to the corresponding native structures.

Table 2 gives the results for the two types of scoring function for 1r69 set of
conformations, and Table 3 gives the results for the two types of functions for
the misfolded decoy set.

In the case of the 1r69 decoy set, even though the Cβ–Cβ scoring function
does quite well, the best scoring conformation selected by the all-atom func-
tion is slightly lower in RMS error, and there is a better correlation between the
score of the conformation and the RMS error to the native conformation. The
Z-score for the single conformation below 1.0 Å and the 27 conformations
below 2 Å is also slightly better in case of the all-atom function.

Given the results in Table 2, it might seem better to use a reduced represen-
tation to speed up the calculation of the fitness of a conformation, as the detailed
representation is only slightly better. When we examine the results in Table 3,
we see that, for the 26 misfolded structures, the all-atom function is able to
identify all the 26 misfolded conformations as being incorrect, with a signifi-
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cant degree of discrimination (the ratio is the score of the incorrect
conformation divided by the score of the correct conformation; the lower
the ratio, the greater the discrimination). However, the Cβ–Cβ scoring function
is unable to correctly identify 6 of the 26 structures as being nonnative, and
the average discrimination ratio is poor relative to the ratio for the all-atom
scoring function.

Although a function should be able to do more than just discriminate native
conformations from nonnative ones, this results indicates that, in an exhaustive or
semiexhaustive folding simulation, the simplified scoring function is more
likely to fail, as it is unable to tell a native structure from a conformation that is
significantly different in this simple test.

From these and other similar tests, it appears that taking into account as
much information as is available in a protein conformation enables one to
achieve better near-native discrimination. Given that it is not too difficult
to generate all-atom models from approximate representations (40,41), the
all-atom scoring function is an useful tool for protein structure prediction.

Table 3
Comparison of the All-Atom and Cβ–Cβ Scoring Functions
for a Set of 26 Deliberately Misfolded Structures

Percent of structures Average
correctly discriminated discrimination ratio

All-atom 100% 0.38
Cβ–Cβ 77% 0.66

For each function, the percentage of structures correctly discriminated and the
average discrimination ratio (score of the incorrect conformation divided by the
score of the correct conformation; the lower the ratio, the better the discrimina-
tion) is given. The all-atom function performs significantly better than the Cβ–Cβ
function.

Table 2
Comparison of the All-Atom and Scoring Cβ–Cβ Functions
for a Set of 269 Conformations of 434 Repressor (PDB entry 1r69)

RMSD of best scoring Correlation between Z score (1
structure score and RMSD and 2 Å cutoff)

All-atom 1.67 Å 0.80 –1.75/–1.42
Cβ–Cβ 1.80 Å 0.63 –1.65/–1.32

For each function, the root-mean-square deviation (RMSD) of the best scoring conforma-
tion, the correlation between the scores and the RMSD of the conformation with that score, and
Z-score, using two different cutoffs to identify near-natives, is given. The detailed all-atom
function performs slightly better than the Cβ–Cβ scoring function.
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2.5. Summary
A well-suited scoring function for ab initio folding represents the most

nativelike conformation as more favorable than all other nonnative ones. Cur-
rent methods do not entirely succeed in this regard, as nonnative folds have
scores that are as good as the near-native candidates, thereby presenting false
positives in exhaustive sampling or traps in minimization. In general, functions
that employ compact reference states are more effective when selecting near-
native folds from sets of compact folds.

The style of protein structure prediction largely dictates the functional forms
and components necessary to compute the score of a conformation. A complete
minimization without external constraints generally requires terms that enforce
secondary-structure and compactness along with pair-specific interactions.
However, applying a biased conformational search based on sequence infor-
mation (21) can greatly reduce the complexity of the energy function necessary
to recover a significant number of native-like folds by minimization.

The success of the binary (hydrophobic and polar) functions suggests that
most of the specificity of the knowledge-based functions, at least with respect
to reduced representations, is due to the frequent occurrence of hydrophobic
contacts in the interior of native proteins. However, this success was observed
in the context of tertiary fold recognition; the native secondary-structure was
already in place.

The use of all-atom scoring functions for selecting near-native folds bears
promise. To overcome the computational overhead involved in using an all-
atom function, one approach could involve sampling large amounts of confor-
mational space using a simplified fold representation and selecting the top
scoring conformations using a simple and fast scoring function. All-atom coor-
dinates for these conformations can then be built, and the best conformations
selected using the all-atom function. This complementary method of structure
prediction would reduce the number of false positives selected by the simpli-
fied function and help avoid local minima traps.

3. Notes
3.1. Generic Simplified Energy Functions
3.1.1. Interaction Centers

Contact functions may vary with respect to their designated “interaction
centers.” Park et al. (33) test contact energy functions that use the Cα as a
separate type of interaction center (in addition to the 20 amino acid centroids).
It appears that the inclusion of the Cα is detrimental for threading methods, as
it crudely monitors the local backbone fitness. Because threading methods
derive their backbone conformations directly from native structures, the Cα
energy terms only add noise to the signal (33).
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The placement of a virtual centroid is also arbitary. For instance, one might
take the mean projection of side-chain centroids in the database onto the Cα–
Cβ vector (13) or the average atomic coordinate centers of all side-chains of a
given type (14). However, the overall performance of a scoring function does
not seem to be very sensitive to the placement of a single interaction center.

3.1.2. Distance-Dependent Energetics

Contact functions are step-functions; when residues are within an arbitrary
cutoff distance an energy term is added to the total score. A single cutoff can be
applied, as in the case of the Shell function described earlier. Alternatively, one
could define different effective interaction distances depending on the pair of
residues (30).

Any “on/off” contact approach may be considered as nonphysical because
Coulombic and van der Waals interactions smoothly increase and decrease as a
function of spatial distance. To address this issue, Park et al. (33) tested a series
of functions with pairwise energetics identical to the contact functions, but
with Lennard–Jones style functional forms (42):

E = ∑ij (A
ij

/rij
8 – Bij/rij

4) (24)

where Aij and Bij are energy parameters dependent on the contact energy eij

between residues i and j and the effective distance of interaction between i and
j. However, the more complex distance-dependent functions did not perform
any better than simple contact functions at discriminating near-native folds in
the test set described earlier (33).

3.1.3. Multibody Interactions

Most statistical potentials are based on frequencies of pairwise interaction,
but functions that include higher-order terms have been developed (25,43A
recent study on four-body interactions describes tendencies that cannot be cap-
tured by a pair potential, such as the preference for certain side-chain size com-
binations in the hydrophobic core (43). It would be interesting to test the
performance of these potentials on the decoy sets described in this chapter.

3.1.4. Reference State

In the Park and Levitt (30) implementation of the solvent-exposed reference
state (see Subheading 2.2.2.), all 210 residue pairwise energies are negative,
which means that the formation of new protein–protein contacts is always pre-
ferred. Practically speaking, if one were to use a solvent-exposed reference
state to fold an polypeptide chain from an extended conformation, a function
such as the Contact(MJ) would favor compact conformations and drive chain
collapse. However, the drawback of using the solvent-exposed reference state
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in screening already-compact conformations is that the discrimination between
the states is weak. Thus, the Shell function, which uses a generic compact shape
as a reference, exhibits far better performance in the Park and Levitt ab initio
test (30). On the other hand, the Shell function is less adept at recognizing a
native fold from an semifolded, expanded decoy conformation generated by
molecular dynamics at high temperature (33), suggesting that this function can-
not be used in minimization methods without another term that monitors com-
pactness.

3.2. Histogram Function

Park et al. (33) observed that the distance-dependent energies extracted by
this function can lead to undesirable results in certain situations. Because the
database of proteins used to compile the parameters includes proteins of all
sizes, the most-favored interresidue distances for a given pair do not reflect
those of the small proteins that serve as ab initio targets. This implies that if
one tries to fold a small protein using only a PMF without an additional term to
enforce compactness, then the most-favored structures will be more expanded
than the native protein. For example, Simons et al. (21) used a scoring method
related to the Histogram function to drive the folding of their small proteins,
but also considered the radius of gyration as part of their final objective func-
tion.

3.3. Hydrophobic Fitness Function

This function, which does not require any parameters from the database,
performed surprisingly well in most of our tests. However, because of its
unusual functional form, is expected to be less amenable for minimization than
screening discrete folds. Moreover, as it does not consider disulfide pairings,
near-native fold recognition for small proteins that depend on disulfide bridges
is noticeably worse than average (33).

3.4. All-Atom Scoring Function

All the interatomic distances in the conformation are calculated given a set
of coordinates. The number of occurrences of atom pairs at particular distances
are stored. This process is repeated for all the coordinate files in the database.
Once the raw counts are collated, a table of negative log conditional probabil-
ity scores for all the 167x167 possible pairs of atoms for the 18 distance ranges
(22) is computed (see Subheading 2.4.).

The all-atom scoring function is susceptible to the problems that plague other
knowledge-based functions because of the following issues: (1) the non-inde-
pendence of pairwise interactions, (2) the lack of sufficient observations for
accurate “pseudoenergies”, (3) an arbitrary reference state, and (4) an averag-
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ing of environments. In practice, (2) is not a severe problem in this
implemention, as the function does not use sequence separation, resulting in a
greater number of observations in a given distance bin; (3) is chosen for the
application at hand: to discriminate compact native conformations from non-
native ones; (1) and (4) require taking into account higher-order interactions,
which, given the size of the current PDB (7) leads to sparse data. As a conse-
quence, a compromise must be made between the number of parameters used
and the size of the database. Based on our studies on various decoy sets (see
Subheading 3.5.), we feel these compromises are justified.

3.5. Using Decoy Sets to Evaluate Scoring Functions

Decoys (nonnative or near-native conformations) are generally used to test
whether a scoring function is useful. Although the utility of a function lies in
its use in exhaustive or minimization methods, a scoring function has to at least
do well in decoy-based tests before it can be considered for simulation. Use of
decoys has its pitfalls, the primary one being that there may be artifacts in a
particular decoy set that are picked up by a scoring function, resulting in accu-
rate discrimination for that decoy set but not for others. For example, the
misfolded decoys described in Subheading 2.4. are slightly expanded relative
to the native structure. Thus a simple function that measures the amount of
compactness does better than the Cβ–Cβ scoring function with a compact refer-
ence state. However, this simple function does not work as well as the Cβ–Cβ
function for the 1r69 decoy set.

Thus an “ideal” function is one that discriminates well (100%) for a variety
of decoy sets. Adding detail to the function appears to move us closer to this
goal (22).
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Ab Initio Loop Modeling and Its Application to
Homology Modeling

Robert E. Bruccoleri

1. Introduction
The modeling of loops remains a challenging theoretical and practical prob-

lem in the prediction of protein structure (1). There are several general meth-
ods for modeling such loops including the use of databases (2–5), simulation
(6–8), and ab initio methods (9–10) as well as other methods described in this
volume. In this chapter, an ab initio method is described that uses conforma-
tional search to thoroughly explore the possible conformations of a loop, and
that uses an energy function to rank this conformations for the prediction of the
loop. In addition, a detailed protocol for homology modeling using the pro-
gram, CONGEN, will be presented along using an example taken from the
recent Comparative Assessment of Structural Prediction 2 (CASP2).

2. Materials
The materials required for homology modeling are the CONGEN molecular

modeling program and a fast computer to run it on. CONGEN is a program for
modeling loops using conformational search (10). In addition, the program has
a large set of molecular modeling commands that are needed to support the
process of loop construction. The program can be obtained over the World Wide
Web by going to the URL, http://www.congen.com/, or by contacting
the author via E-mail, bruc@acm.org.

The program currently runs on most UNIX computers, and runs best on a
Silicon Graphics machine. For most loop-modeling efforts, a machine with 64
MB of RAM, and 1 GB of disk storage should suffice, although more RAM
may be helpful with larger problems. The program can perform calculations in
parallel, so multiprocessor SGI installations can be effectively used.
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*The chain-closure algorithm can perturb the bond angles in the peptide backbone a small
amount.

2.1. Operation of CONGEN

The fundamental problem of generating loop conformations is finding a set
of atomic coordinates for the backbone and side chains that satisfy all its stere-
ochemical and steric constraints. For the sake of efficiency, it is presumed that
bond lengths and bond angles are fixed* and in addition, it is assumed that the
peptide ω torsion angle is also planar. Under these assumptions the only degrees
of freedom in the loop are the torsion angles. Given the chemical structure of
proteins, the search process is divided into backbone and side-chain construc-
tions. The backbone conformational space is normally sampled before the side
chains because the chain-closure condition is very restrictive. As a result, fewer
samples are generated early in the process, which helps to reduce the necessary
computer time.

2.1.1. Backbone Construction

The generation of backbone coordinates depends heavily on the modified
G o and Scheraga chain closure algorithm (12,13). The algorithm is designed
to calculate local deformations of a polymer chain, i.e., finding all possible
arrangements of a polymer anchored at two fixed endpoints. Given stere-
ochemical parameters for the construction of the polymer, and six adjustable
torsion angles between the two fixed points, this algorithm calculates values
for the six torsion angles in order to perfectly connect the polymer from one
endpoint to the other. In the sampling of the backbone, the use of a planar ω
torsion angle reduces the number of free backbone torsion angles per residue to
two, and therefore, three residues are required for the application of the G o
and Scheraga algorithm. For generating conformations of loops with more than
three residues, the backbone torsion angles of all but three residues are sampled,
and the G o and Scheraga procedure is used to close the backbone.

The free sampling of backbone torsion angles is done with the aid of a back-
bone energy map. Bruccoleri and Karplus (1987) calculated the energetics of
constructing the backbone for three different classes of amino acids: glycine,
proline, and all the rest (13a). This information is stored as a map (14) which
gives the energy as a function of discrete values φ, υ, and ω, where ω can only
be 0° (cis) or 180° (trans). A set of maps corresponding to grids of 60°, 30°,
15°, 10°, and 5° have been calculated; typically, a 30° sampling is sufficiently
fine for good agreement.

With regard to the peptide ω angle, only the proline ω angle is normally
allowed to sample cis values. However, CONGEN can be directed to sample
cis omega angles for all amino acids.
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The ring in proline creates special problems. The proline ring constrains the
phi torsion to be close to –65°; any deviation from –65° distorts the ring. The
minimum energy configuration of the proline ring (specifically, 1,2 dimethyl
pyrrolidine) has been determined for a range of φ angles (±90°) about –65°
using energy minimization with a constraint on φ, and a file has been constructed
that contains these energies and the construction parameters necessary to calcu-
late the position of Cβ, Cγ, and Cδ of the proline. All of these energies are adjusted
relative to a minimum ring energy equal to zero. After a chain closure is per-
formed, any conformations that have a proline φ angle whose energy exceeds
the minimum energy by more than the parameter, ERINGPRO, are discarded.
Generally, a large value for ERINGPRO is used (50 kcal/mole) so that the chain-
closure algorithm does not overly restrict proline closures. The cis–trans pep-
tide isomerization is handled by trying all possible combinations of cis and trans
configurations. The user has complete control over which residues can be built
in the cis isomer. As there are only three residues involved in the chain closure,
this results in no more than eight (23) attempts at chain closure.

There are two optimizations performed during the sampling of backbone
torsions. First, whenever any atom is constructed, a check is made to see if the
atom overlaps with the van der Waals radius of any other atom in the system. If
so, that conformation is discarded. The option, MAXEVDW, is used to specify
the maximum allowed van der Waals energy of such a contact. It must be set to
a value of at least 5 kcal/mole. Second, as backbone residues are generated,
CONGEN calculates the distance from the growing end back to the other fixed
point. If that distance is greater than can be reached by fully extended back-
bone, then those conformations are discarded. The option, CLSA, in the back-
bone degree of freedom is used to specify the other endpoint of the loop which
is used for this optimization.

The backbone can be constructed either forward from the N-terminus or
backward from the C-terminus order until only three residues remain. The
N-terminus of the internal segment is anchored on the peptide nitrogen; the
C-terminus is anchored on Cα. When the construction direction is from
the N-terminus to the C terminus, the first torsion to be sampled in a residue is
the ω angle (which normally is sampled just at 180°, and can be sampled at 0°
for prolines or, as an option, all the amino acids). It determines the Cα and the
peptide hydrogen positions. The φ angle determines the position of the carbo-
nyl carbon and the beta carbon of the side chain; and finally, the ϕ angle deter-
mines the carbonyl oxygen and peptide nitrogen of the next residue. When the
construction is in the reverse direction; the ϕ angle determines the peptide
nitrogen; the φ angle determines the carbonyl carbon of the preceding residue,
the peptide hydrogen, and the beta carbon; and the ω angle determines the
position of the preceding residue’s Cα and carbonyl oxygen.



250 Bruccoleri

2.1.2. Sidechain Construction

Given a set of backbone conformations, it remains to generate a set of side-
chain atom positions for each of the backbone conformations. This problem is
divided into two parts — construction of individual side chains and combining
results from individual side chains for all the residues.

As with the backbone atom placement, the atoms of a side chain are posi-
tioned based on free torsion angles. The side-chain torsions are processed from
the backbone out as each succeeding atom requires the position of the previous
atom for its placement. The sampling interval of each torsion can be either
some fixed number of degrees or the period of the torsion energy. If the latter is
used, and the parameters for the torsion energy specify only a single term in the
Fourier series for the torsion energy, then the side-chain torsion energy is
always zero.

It is common for one free torsion to generate the position of more than one
atom because of side-chain branching, nonrotatable bonds, and rings. For
example, although an explicit hydrogen (15) tryptophan has 11 side-chain
atoms to be placed, it has only two free torsion angles. Also, some side-chain
branching is symmetric, e.g., phenylalanine, and CONGEN can use such sym-
metry to reduce the sampling necessary.

As with the backbone construction, a search of the surrounding space is
made for any constructed atom to see if there are any close contacts. However,
with the side chains, there are two ways of checking for such overlaps. The first
method is very simple: given the sampling of the torsion angles, each atom is
constructed and checked for contacts.

The second method — van der Waals avoidance — is more time consum-
ing, but it yields better quality structures. It is a straightforward geometri-
cal problem to determine the range of torsion angles that will avoid
constructing an atom within a given distance of other atoms in the system.
As a side-chain torsion angle, χi, varies, it specifies a circular locus of
points on which atoms can be constructed. If atoms in the vicinity of this
circle are examined, the sectors of the circle that will result in the repulsive
overlap of the constructed atom with its spatial neighbors can be calcu-
lated. The complement of these sectors can be used to determine values for
the χi angles that avoid bad contacts.

The information needed for side-chain construction is stored in a side-chain
topology file. It is a straightforward matter to add new amino acids to this file
so that the structure of unnatural amino acids can be predicted.

Given this method for constructing individual side chains, it remains to com-
bine side-chain conformations for all the side chains attached to a particular
backbone conformer.
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Because the backbone construction process provides the position of Cβ, there
is a strong bias to the side-chain orientation. Thus, an acceptable course of
action is the generation of only one side-chain conformation for each backbone
conformation. A substantial effort must be made to ensure that this one confor-
mation the lowest energy possible for the given backbone. Second, because the
side chains close together in sequence frequently are not close together in space,
and therefore do not interact strongly, it is a reasonable approximation to treat
the side chains quasiindependently. Instead of finding all combinations of side-
chain atomic positions, the side chains can be processed sequentially so that
the time required for side chain placement increases linearly, rather than expo-
nentially, with the number of residues.

This is the basis of the Iterative side-chain construction option. It begins
with an energetically acceptable side-chain conformation for all the side chains.
This conformation is generated, if possible, using the First method described
below. Starting with this conformation, all the possible positions for the side
chain atoms of the first residue are recalculated, and the conformation with the
lowest energy is selected. The value of the evaluation function is also saved.
This regeneration is done with all the other side-chain atoms present so that
their effect can be accounted for. The process is repeated sequentially for the
rest of the side chains in the gap. The process then returns to the first residue
and it is repeated over each side chain until the energies of the side-chain atoms
do not change or until the number of passes reaches an iteration limit. This
method has the virtue that only one conformation is generated per backbone
conformation, and it is an energetically reasonable one. However, if there
are significant interactions between the side-chain atoms, the initial state of
the side chains will bias the iterative process, and the lowest energy side-chain
conformation may be missed.

Other options exist for constructing side chains, and these are described in
the manual. The most relevant for homology construction are the First method
and the Independent method. The First method attempts to find one way of
placing the side chains by performing a series of nested iterations over every
side chain until all atoms are placed with no individual van der Waals contacts
exceeding MAXEVDW in energy. The Independent method performs an exhaus-
tive conformational search for each side chain, but the atoms of the other side
chains in the peptide are ignored; interactions with all other atoms in the sys-
tem are included. This method is only used when a single side chain is being
constructed.

With any of the methods described, the CONGEN command can apply any
of the minimization algorithms to the generated conformations. Minimization
provides an ability to reduce the small van der Waals repulsions that are inevi-
table with coarse torsion grids.
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2.1.3. Degree-of-Freedom Operators

Within CONGEN, the specification of a degree of freedom signifies a com-
puter operation applied to a group (zero or more) of atoms by either sampling a
set of variables or performing an operation on existing atoms. When a confor-
mational search is specified, the user indicates which degrees of freedom are to
be sampled and also their order. The program automatically sets up a nested
iteration over all of them. Only successful samples of a degree of freedom will
invoke the succeeding degrees of freedom.

There are two reasons for taking this abstract approach to the operation of
the search. First, it allows searches of arbitrary complexity to be performed.
Second, the operations inherent in sampling a degree of freedom can be sepa-
rated from the process of managing the search. Such modularity greatly simpli-
fies the implementation of the program. In addition, one can apply the methods
of state space search as developed in research into artificial intelligence (16).

Currently, six degree-of-freedom operators are provided in CONGEN. Three
of them deal with atomic construction using stereochemistry. The backbone
degree of freedom generates the position of the peptide backbone atoms, and
the chain-closure degree of freedom closes a loop. Because the G o and
Scheraga procedure (12) finds multiple solutions to the chain closure, each
solution is treated as a separate sample. The side-chain degree of freedom will
construct side chains onto any number of backbone residues and, depending on
the method, it will generate either single samples or multiple ones.

Two degrees of freedom are involved with input and output. The “Write”
degree of freedom writes a conformation to a file each time it is invoked. It can
also do some limited filtering of what is written by comparing the energy of
each conformer against the minimum energy seen thus far. Normally, this filter
will greatly reduce the number of conformers written to a file. In all cases, this
degree of freedom does not generate any atomic positions, and it always suc-
ceeds. The “Read” degree of freedom can be viewed as an inverse of “Write.” It
reads a set of conformations from a file, and then invokes succeeding degrees
of freedom on each one. Conformations can be selected based on their ener-
gies, so it is possible to set up a “buildup” procedure (17) where the best con-
formations from one search are used as the starting point for adding additional
residues. In addition, this degree of freedom allows a user to input his or her
own set of conformations, which can be generated by arbitrary means. This
approach was used by Martin et al. to process loop conformations as found in a
database (3).

The final degree of freedom is the “Evaluate” degree of freedom. This
operation is responsible for calculating either energies or root-mean-square
(RMS) deviations. When used for energy evaluations, this degree of freedom



Ab Initio Loop Modeling 253

can either calculate the energy, or it can perform minimization or dynamics on
each of the conformers. When used for RMS deviations, it compares the coor-
dinates of the conformations against a reference coordinate set. This is used for
testing the search process; in particular, to see if a search is capable of generat-
ing the original experimental coordinates.

3. Methods
Starting with the sequence of protein for which a structure is desired

(referred to as the target sequence), and the knowledge that there are other
homologous structures already solved, the protocol for homology modeling
consists of seven basic steps. These steps will be illustrated using command
files and results from the construction of the phosphotransferase enzyme IIA
domain (18), which was target 3 in the Comparative Modeling section of
CASP2. Except where otherwise noted, all the command file excerpts assume
that the data structures needed for a CONGEN run have already been created.
In addition, the full input files for CONGEN are included as the casp2
subdirectory of the documentation directory for CONGEN.

3.1. Parent Structure Determination

Using a sequence analysis package such as the Genetics Computer Group
programs (19), and a database of protein sequences taken from the solved struc-
tures in the Brookhaven Protein Data Bank (PDB), use an gapped alignment
tool, such as FASTA, to find the best sequence matches to the target sequence.

The reliability of the homology model can be accurately estimated from the
sequence similarity found (5,20). High-sequence identities, on the order of >70%,
indicate that the homology models will be of high accuracy, with RMS devia-
tions from the native structure on the order of 1 or 2 Å. Low-sequence identities,
on the order of <30%, are likely to result in poor-quality models with RMS
deviations greater than 4 Å. Intermediate sequence identities will have errors
within these values. You must judge whether the information requirements you
have for your structures can tolerate the expected errors before proceeding.

3.2. Alignment

The most critical step in the success of a homology modeling effort is the
alignment of the target sequence to the structure you are building the target
from (5). The method used in my efforts in the CASP2 competition used the
COMPARE command in CONGEN to prevent insertions and deletions in regions
of secondary-structure in the parent structure. To use this method, it is best to
print a table of φ, ϕ, and ω angles and to prepare a labeled Cα stereo plot of the
parent structure. The table can be prepared using analysis facility in CONGEN
as shown in the input fragment in Fig. 1 and the labeled stereo plots can be
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generated using the input fragment in Fig. 2 and displayed using PLT2 using
the input in Fig. 3.

The regions of secondary-structure can be identified by either display only,
but it is valuable to compare the visual and tabular outputs to identify irregu-
larities in the structure. Alpha helical regions are identified by φ, ϕ values near
–57° and –47°, and beta sheet regions are identified by values around –130°
and 130°. Once the regions of secondary-structure are identified, they are

Fig. 1. CONGEN input to generate a torsion-angle table. The analysis facility is
used to construct a torsion angle table, which is edited to remove all torsion angles
except for φ, ϕ, and ω.

Fig. 2. CONGEN input for generating an Cα plot.

Fig. 3. PLT2 input for generating a Cα plot in stereo. These commands make two
drawings at different positions on the paper, with the second drawing rotated 6° around
the y-axis.
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included as values in the PROTECT option of a COMPARE command in the
analysis facility of CONGEN, and the sequence alignment generated by the
program will avoid insertions and deletions in these regions.

In addition, it is valuable to include sets of conserved amino acids into the
RESMATCH option of the COMPARE command, so that the homology will be
computed more accurately. Typically, the amino acids are grouped into ali-
phatic, aromatic, hydroxyl, acid, amide, and base categories.

A sample input is given in Fig. 4.

Fig. 4. CONGEN input to compare parent sequence to target sequence.



256 Bruccoleri

3.3. Splicing

Once the alignment is determined, the next step is the transformation of the
protein from the parent structure to the target structure. This is done using the
SPLICE command. The COMPARE command described in step 2 above will
generate a set of SPLICE commands that you can cut and paste into the com-
mand file for splicing. The splicing command will change the structure of the
protein in the computer. It does this by changing the sequence of the protein,
rebuilding the protein structure file, and then shuffling coordinates to match
atom names. When side chains are changed, CONGEN will initialize the atom
coordinates for those side chains, and you will have to rebuild them as described
in the following step.

The splicing operation is also the time to prepare the plan for modeling all the
changes in sequence. There are three possible choices: use of the parent coordi-
nates, side-chain-only reconstruction, and loop construction. The first choice is
applicable only when the amino acid is same between the parent and target
sequence, but there are circumstances when modeling should be done even if
there is no change in sequence. Side-chain only reconstruction typically applies
in regions where changes in secondary-structure are unlikely. A full-loop recon-
struction is done wherever backbone conformational change is expected.

To decide among these choices, you examine each change along the
sequence. All insertions and deletions require a loop reconstruction. Loops
must be at least four residues long. The endpoints of the loop should corre-
spond to the ends of secondary-structure or highly conserved sequence, but
if the length of a loop is greater than 10 residues, then you must either consider
using shorter loops or use the directed search methods as described in
Subheading 3.5. If you have multiple structures that you can use as parents,
you can examine them all to see if the structures of the end of loop are con-
served, and therefore, you can move the endpoint of the loop to the nearest,
structurally conserved residue.

In regions of the alignment that do not have insertions or deletions, loop
reconstructions may be necessary if there are changes in amino acid sequence
involving glycine or proline. Glycine is much more flexible than the other
amino acids, and proline is much less flexible than the others, specifically
because its φ angle is restricted to approx –60°. Thus the following rules apply
in general, but always keep in mind that glycine and proline serve important
structural purposes, and many changes of sequence involving these amino acids
indicates a change in structure.

Gly → other If φ and ϕ of the glycine are within permitted values for the new
amino acid, then one can leave the backbone alone. Otherwise, the
surrounding region must be rebuilt.
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Pro → other If the proline is found in a conserved region of secondary-structure,
then only the side chain of the new amino acid should be modeled.
Otherwise, the surrounding region must be rebuilt.

Other → gly If the proline is not in a conserved region of secondary-structure,
rebuild surrounding region.

Other → pro If the φ angle of the parent amino acid is close to –60° and if the
proline is in a conserved region, then minimized the proline ring into
place. Otherwise, rebuild as a loop.

If you have multiple structures homologous to your parent structure, it is
important to examine all the differences in structure, and, in general, it is best
to rebuild any part of your target where the parent molecules have any variabil-
ity in structure. There are examples where the same sequence folds into com-
pletely different structures (21). Since we operate on the presumption that
sequence homology implies structural homology, only variation of multiple
parent structures can indicate when this presumption fails.

Finally, you should initialize the coordinates of all the atoms you will be
rebuilding during the construction process. Although CONGEN will initialize
the coordinates for the atoms being constructed in a single conformational
search, it cannot do this for all the searches you perform. Any atoms in a loop
whose length is changed can confound the search. For side-chain-only searches,
you must delete every atom in the side chain except Cβ. For loops, you must
initialize all the atoms in the loop except for the peptide nitrogen of the amino
terminal residue, and the Cα and carbonyl carbon and oxygen of the carboxy
terminal end. Figure 5 illustrates the necessary commands.

3.4. Reconstruction of Changed Side Chains

With the exception of proline, the reconstruction of changed side chains is
performed using a single side-chain conformational search. Prolines require

Fig. 5. Coordinate initialization commands.
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minimization, and a somewhat cumbersome procedure, which is described at
the end of this section.

The main issues with the side chain conformational search are the selection
of the maximum-allowed close contact energy (MAXEVDW), and the possible
inclusion of other side chains in the structure into the conformational search.
Figure 6 gives the prototypical conformational search command.

For the initial attempt to reconstruct the side chains, you should use of a
value of 10 for MAXEVDW, and try the search. If it succeeds, you are done. Oth-
erwise, set the value to “1.0E20,” run the program again, and examine the table

Fig. 6. Side chain construction input file.
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resulting from the close contact search. Find all the residues that have side chains
with high-energy van der Waals contacts to the side chains you are building, and
add these side chains to the ones you have selected for reconstruction. Repeat
the search with a value of 10 for MAXEVDW, and see if it completes. If not, check
the list again, and see if other side chains have to be added.

If the close contacts arise with backbone atoms, then you have four choices.
(1) You can either treat the residues around the backbone atoms as a loop, and
thereby rebuild them completely; (2) you can treat the backbone around
changed side chains as a loop; (3) you can treat both backbones as loops; or (4)
you can raise MAXEVDW specifically for the side chains involved. The choice
depends on whether the backbone structures should be conserved or not. How-
ever, if a changed side chain results in bad contacts with nearby backbone
atoms, it strongly suggests that there is going to be change of structure.

The reconstruction of proline residues requires some effort (see Note 1).
You must first make a copy of the coordinates to the comparison set, use the
internal coordinate construction commands to rebuild all the missing atoms in
the system, copy the proline atoms to the comparison set, swap the comparison
and main set, and then minimize the proline atoms. The command sequence is
illustrated in Fig. 7.

3.5. Construction of Loops

Before the loops can be constructed, it is necessary to visualize the location
of the loops on the structure, and determine a construction order. If a specific
loop is not in contact with any other loop, then it can be constructed in any
order. When there are loops than can interact, it is best to start with the loops
that are shortest (as they are generally predicted more accurately) or to start
with loops that have the most known structure around them (see Note 2). If two
loops are intimately interacting, they can constructed together, but the CPU
time requirements can be substantial. The directed conformational search meth-

Fig. 7. Proline ring minimization.
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odology (22) can be used to shorten the search time for long loops, but at the
risk of missing the lowest energy conformation.

The easiest way to prepare an input file for the construction of one loop is to
take an existing input file, and edit it. The aforementioned splicing step will
specify the residues at the ends of the loops, and the remaining issues are the
order of construction, and the inclusion of additional side chains in addition to
those in the loop. Typically, the order of construction is selected so that back-
bone residues on each side of the loop are constructed from the ends towards
the middle. If one end of a loop is “deeper” in the protein than the other, then
the section that is deeper is constructed first, and then each is constructed
towards the middle. Figure 8 illustrates a sample input file for the construction
of residues 125–130 in segment A of the phosphotransferase IIA domain.

If a loop is so long that an exhaustive search is not feasible, then it may be
necessary to use the directed conformational search (22). In this method,
CONGEN explores the search tree ordered by the energy of the partial confor-

Fig. 8. Loop construction input.
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mations. This method generates low-energy conformations early in the search,
but is not guaranteed to generated the lowest energy structure. There are two
possible directed search options to try, EVAL and MIX. The EVAL option used
the best first method, and the MIX method uses the mixed strategy method.
For shorter loops, the EVAL option is usually better whereas for longer loops,
the MIX can give better results. You can monitor the results by using the
graph_ebytime.perl script, which shows the plot of the energy of gen-
erated conformations against output order. If the curve trends upward, then the
directed search is working directly. If not, then you will have to settle for low-
energy loop conformations instead the lowest possible.

If CONGEN fails to find any conformations for a loop or if the energy of the
conformations is high (see Note 3), you must investigate the reason, correct it,
and rebuild the loop. The first thing to do is to look at the loop region in stereo
using molecular graphics and see if you can identify the problem. The loop
endpoints may be too far apart, or they may be obstructed by other parts of the
molecule. If they are too far apart, then you must add additional residues to the
loop definition so that the new endpoints can be bridged with the additional
residues. If there is an obstruction, then it must either cleared or the van der
Waals cutoff must be raised in order to allow the new loop to be constructed
through the obstruction.

If a visual examination does not reveal why the loop cannot be constructed,
there are a number of tests that can be made using CONGEN. A quick test for
an inadequate number of residues is to set MAXEVDW to 1.0E20, add
MAXCONF 1 to the WRITE degree of freedom, and see if any conformations
are generated. If not, then the distance or geometry of the endpoints precludes
any loop construction. If increasing the van der Waals cutoffs results in loop
conformations, then it is useful to make a series of runs using successively
larger values of MAXEVDW starting at 10 kcal/mole, and see which value results
in conformations. Then, the SEARCH command in the analysis facility can be
used to identify the contacting residues. If the contacts are to other side chains,
then these can be added to the side-chain degree of freedom. If the contacts
involve backbone positions, it may be necessary to review the alignment, and
see if another loop should defined.

One should also be careful that coordinate initialization errors have not
occurred. Errors in initialization can manifest themselves with high bond, bond
angle, or van der Waals energies. Such errors require correction in the splicing
step, and rerunning all the steps starting from that point.

3.6. Construction of Termini

At this point, the only construction remaining is the terminal residues at the
ends of each polypeptide. Each end is constructed using separate CONGEN
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runs, using successive backbone and side-chain degrees of freedom so that
each residue is completely built before the next one is started. A directed search
is used because the number of possible conformations can be very large if more
than three residues are constructed. Figure 9 illustrates the construction of
seven residues on the amino terminus of a protein.

3.7. Short Constrained Minimization

The final step in the construction is a set of short constrained minimizations
to clean up any strain in the molecule. You should also check at this point to see
if all the coordinates have been constructed. Figure 10 illustrates the minimi-

Fig. 9. Amino terminal construction.
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zation step and the check of coordinates. The value, 9999, is used to identify
initialized coordinates in CONGEN.

4. Notes
1. This is a part of CONGEN that needs some redesign.
2. The known structure will help guide the placement of the loop atoms. Our work

on antibody reconstruction(23) shows this principle with construction of anti-
body variable domains.

3. In this context, “high” is somewhat subjective, but typically, large positive ener-
gies for loops is not acceptable.
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The Dead-End Elimination Theorem:

Mathematical Aspects, Implementation, Optimizations,
Evaluation and Performance

Marc De Maeyer, Johan Desmet, and Ignace Lasters

1. Introduction
The placement of amino acid side chains in a given fixed main-chain tem-

plate forms a recurrent but nontrivial task in protein modeling. Even for a small
set of side chains in a given protein, the degrees of freedom for the side chains
lead to an enormous number of combinatorial possibilities, inevitably prohibit-
ing a brute force approach to pinpoint the global minimum energy conforma-
tion (GMEC). The recognition of the existence of statistically relevant discrete
combinations of the dihedral angles (called rotamers) of a side chain forms the
basis of all current side-chain placement techniques (1). Several research
groups have published methods to predict the side chain positions in a fixed
protein main-chain trace (review in refs. 2 and 3)

The dead-end elimination (DEE) algorithm is able to efficiently tackle the
combinatorial problem, i.e., the problem of finding the globally optimal
arrangement of a collection of side chains attached to a fixed main-chain
structure. Contrary to most of the other methods, which try to tackle the com-
binatorial problem directly, the DEE method is based on an elimination tech-
nique. Avoiding a combinatorial explosion, the DEE method detects and
eliminates iteratively those rotamers that cannot be members of the GMEC.
The rotamer elimination occurs on the basis of energetic criteria balancing
rotamers against each other by comparing their main-chain interaction energy
and a lower or higher limit for their interactions with the other side chains of
the protein.
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Since the discovery of the DEE algorithm in 1992 (4) several major theoreti-
cal and practical improvements and fields of application have matured the
method as a novel and promising tool in protein modeling and design.

The first and most natural application has been in the field of homology
modeling. The method is highly suitable for local optimization of a few side
chains (core remodeling, interface between proteins, etc.) as well as the rede-
sign of complete proteins. Using the DEE theorem, it was possible to unravel
the fine detailed side chain–main chain and side chain–side chain interactions
working concurrently, stabilizing the protein structure (5,6). The algorithm has
also been transposed to the docking of small molecules (7) and peptides (8) to
proteins. The method was also very instrumental in the initial positioning of
the side chains in a crude X-ray density map leading to the 3D structure (9) and
the elucidation of the high-oxygen affinity of the trematode myoglobins (10).
Recently, the DEE method has been used in a protein design automation cycle
(11), a de novo protein design experiment (12), and the exploration of the
sequence space that is compatible with a given scaffold (13), forming an even
less trivial application field.

2. Theoretical Considerations
2.1. General Concepts

2.1.1. The Global Minimum Energy Conformation (GMEC)

The ultimate goal of any side-chain placement method is the prediction of
the conformation of the studied protein as it occurs in nature. In this chapter we
concentrate on how we reach the so-called minimum energy conformation
(GMEC) and assume that this is also the conformation of the protein in its
active form. In this respect, it is worth stressing the fact that the DEE method
is, first of all, very instrumental in reducing the huge combinatorial complexity
of the tackled problem. Because the DEE-method eliminates, in a systematic
and rigorous way, all rotamers incompatible with this GMEC state, it is not at
all guaranteed that for all residues all rotamers but one can be eliminated. On
the other hand we have supplemented the DEE method with additional tech-
niques to track down this smaller combinatorial problem. Up to now, the GMEC
conformation was reached for all the studied proteins. These additional meth-
ods are also discussed in this chapter.

2.1.2. The Side-Chain Conformations (Rotamers)

It has been shown in the past that side-chain conformations can be well
described by a library of possible rotameric states (1,14–16). For each of the 20
amino acids these rotamers describe a statistically relevant dihedral angle
combination. Each rotamer is characterized by a set of χ angles, following the
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International Union of Pure and Applied Chemistry (IUPAC) rules (17). For an
overview of the currently used rotamer libraries we refer to the work of De
Maeyer et al. (6). In general, two types of rotamer libraries are used. The first
library (13) is mainly based on the Ponder and Richards analysis (16) and con-
tains for each amino acid side-chain type a number of different rotamers. These
are denoted as a main-chain–independent rotamer library (MIRL). The second
class of libraries splits each amino acid rotamer set into several subsets. These
classes are driven by the φ–ψ angle combination for the amino acid under study.
This library is referred to as the main-chain–dependent rotamer library
(MDRL). This library has the advantage that at each position the number of
rotamers is limited compared to the first type of library. On the other hand, it
has been shown by Schrauber et al. (18) that most libraries suffer from incom-
pleteness, resulting in the inability to correctly predict the GMEC ground state.
In addition, we have convincingly shown that the accuracy of the prediction
reflects the accuracy of the library (6). In this work, we have started from the
rotamer library used in the work of Lasters et al. (19) containing 275 rotamers
distributed over 17 amino acid types. This library was created from the stan-
dard Ponder and Richards library (16), completed with all physically possible
rotamers (standard gauche and trans conformations) not present in the original
set and supplemented with 65 additional rotamers, originating from the lack of
well-defined rotameric states for the amide plane orientation and carboxylate
groups of Asn, Gln, Asp, and Glu (19). Combining this library with the analy-
sis of Schrauber et al. (18) leads to the new basic rotamer library with 331
elements. In addition, by taking one or more user-defined steps around the
rotamer χ angles, an even more detailed library is obtained. In the work of
Ponder and Richards (16) this step-size corresponds to the standard deviation
in c angles distribution in their analysis of 19 well-resolved and refined pro-
teins. In all tests described in this study we expanded the library by taking two
steps of 10° around the χ1 angle of the aromatics (Phe, Tyr, His, Trp), and for
each of these new rotamers we took 2 steps of 20° around the χ2 angle. This
enlarges the rotamer library to 859 elements, referred to as the “large library”
(6). In previous work we used a subset of this large library, referred to as the
“small library,” of only 213 rotamers.

2.1.3. The Conformational Energy

When we describe the side chain conformation as a rotamer, each rotatable
side-chain i may adopt some rotameric state r selected from the library of all
possible conformations. The conformational energy corresponding with a
selected rotamer state that is embedded in the template (i.e., the main-chain
and all the other fixed side chains not to be modeled) can be written as

Etot = Etemplate + ∑
i
 E(ir) + ∑

i
∑
j
 E(ir,js) i < j (1)
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where Etemplate is the self-energy of the template, E(ir) the energy of the side-
chain atoms of rotamer ir, including their self-energy and the interaction with
the template, and E(ir,js) the nonbonded pairwise interaction between rotamers
ir and js. It is clear that E(ir,js) in itself is composed of pairwise atom interaction
energies. The dimensions of the terms E(ir) and E(ir,js) grow, respectively, lin-
early and quadratically as a function of the number of atoms in the studied
system, meaning that the system under consideration is tractable by modern
computers and does not require excessive amounts of memory.

2.2. The Original DEE Theorem
The original DEE theorem (4) states that ir is dead ending (meaning not

being part of the GMEC conformation) with respect to another rotamer it, if
Eq. 2 holds true

E(ir) + ∑
j

min
s
   E(ir,js) > E(it) + ∑

j
max

s
   E(it,js) i ≠ j (2)

This means that only one case jt, satisfying Eq. 2 has to be found in order for ir to
be dead ending. In Eq. 2 the terms min and max refer to the interaction energy of,
respectively, the “best” and the “worst” interacting rotamer of residue j. In words,
this inequality means that ir must be dead ending if the energy of its best possible
interactions with the surroundings (left-hand side of Eq. 2) is larger than that for
another rotamer taken in its worst situation (right-hand side of Eq. 2). As a con-
sequence, we can state that, in searching the GMEC, the rotamer ir can safely be
qualified as a dead-end rotamer and discarded from further considerations. In
practice, it is useful to rewrite Eq. 2 into Eq. 2' as follows:

E(ir) + ∑
j

min
s
   E(ir,js) > min

n
[E(in) + ∑

j
max

s
   E(in,js)]

i ≠ j (2')

Indeed, from this equation we learn that if ir is dead ending relative to another
rotamer it then this rotamer must also be dead ending relative to the rotamer in,
which from the right-hand side of the Eq. 2', shows the lowest possible value.
We may also say that, if ir is not dead ending relative to such rotamer in, it will
not be qualified as dead ending versus any other rotameric state for residue i.
Accordingly, when searching for dead-end rotamers, one can make an ordered
list of the worst rotamer interaction energies for all rotamers of residue i and
use the best of these worst energies as a threshold value for the possible elimi-
nation of rotamers ir — as seen from the left-hand side of Eq. 2'. This equation
has been plotted in the total conformational space versus the interaction energy
of i with the other rotamers in Fig. 1.

2.3. Enhancements of the DEE Theorem
A more powerful form of the DEE criterion has recently been formulated by

Goldstein (20). This criterion ascertains that ir is dead ending if Eq. 3 is fulfilled.
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E(ir) – E(it) + ∑
j

min
s

[E(ir,js) – E(it,js)] > 0 i ≠ j (3)

The DEE criterion in Eq. 3 qualifies ir as dead ending if we can always lower
the energy by taking rotamer ir instead of it while keeping the other rotamers
fixed, the interactions being taken with respect to the same js. Clearly, this modi-
fied criterion is less restrictive than Eq. 2 and consequently has an increased
effectiveness (20). However, it should be noted that this criterion is slower in
execution time as compared to Eq. 2. This equation has been depicted in Fig. 2.
However, we have shown that DEE Eq. 2 remains of great value when searching
for dead-end rotamer pairs. This variant of the DEE inequality is further dis-
cussed in view of two important extensions in Subheading 2.6.

2.4. Extending the DEE to Rotamer Pairs

So far, the DEE has been applied to the interaction of single rotamers. This
criterion alone is, in practical cases, not powerful enough to determine the glo-
bal minimum energy conformation. In the original paper of Desmet et al. (8)
the DEE principle is already extended to rotamer pairs. Of course, this prin-
ciple can be extended to group several side chains into a “superrotamer” (Ri).
This Ri contains all possible combinations of the individual side-chain
rotamers. For ease of reading, we restrict the equations to pairs of rotamers.
The intrinsic energy for a rotamer pair can be written as Eq. 4:

ε([ir,js]) = E(ir) + E(js) + E(ir,js) i ≠ j (4)

Fig. 1. Illustration of the original DEE theorem. The curve shows arbitrary interac-
tion energy profiles for two rotamers ir, it, with each of the possible rotamer combina-
tions for the residues j, j ≠ i. Following Eq. 2, the rotamer ir is dead-ending versus
rotamer it because the minimal interaction energy with all other rotamers is worse than
the maximum of all interaction energies of rotamer it.
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Fig. 2. Illustration of the variant of the DE criterion following Eqs. 3 and 10. The
curve shows arbitrary energy profiles for two rotamers ir, it, with each of the possible
rotamer combinations for the residues j, j ≠ i. This criterion qualifies ir as dead-ending
versus rotamer it because the minimal distance D between the two profiles is positive.

Fig. 3. This figure contains a simple three-residue system, illustrating that dead-
ending rotamer pairs cannot simply be ignored when reiterating the DEE theorem.
This figure has to be interpreted with the help of Tables 2–4, while Table 1 enumer-
ates all possible rotamer interactions. The three residues (i) are represented by circles
and the rotamers (ir) by bold lines and labels. The inherent energy E(ir) of rotamer ir is
indicated in italic. This inherent energy is the sum of the conformational energy of ir in
interaction with itself and the surrounding template. The dashed lines denote the
pairwise rotamer interaction energy terms E(irjs) of Eq. 1. All energy values are given
in arbitrary units.
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A rotamer pair interacting with some rotamer kt has an interaction energy of

ε([ir,js],kt) = E(ir,kt) + E(js,kt)    i,j ≠ k (5)

Applying the DEE theorem to rotamer pairs [ir,js ] following DEE criteria can
be deduced from the Eqs. 2 and 3, yielding respectively

ε([ir,js]) + ∑
k

min
t

ε([ir,js],kt) > ε([iu,jv]) + ∑
k

max
t

ε([iu,jv],kt)    i,j ≠ k (6)

ε([ir,js]) – ε([iu,jv],kt) + ∑
k

min
t

{ε([ir,js],kt) – ε([iu,jv],kt)} > 0 (7)

From a computational and programmatorial point of view, it is important to
note that the implementation of superrotamers becomes quite complex. In prac-
tice it is even impossible to use rotamer pairs in the early stages of the program.
It is worth stressing the fact that a dead-ending pair (DEP) means that it is the
combination of the two rotamers that is incompatible with the GMEC, whereas
one of them may well be part of this GMEC. Only in particular cases is it
allowed to ignore DEPs. This is ruled by the fuzzy-end elimination (FEE) cri-
terion explained in Subheading 2.5. For a full proof of the theorem, we refer to
the work of Lasters and Desmet (21).

2.5. The Fuzzy-End Elimination Problem
Let us use a simple case to shed more light on the origin of the FEE theorem.

Figure 3 depicts a simple three-residue system, each residue having two
rotamers. This is a small system, yet complex enough to explain the problems,
allowing easily the calculation of the GMEC. In Table 1 all possible combina-

Table 1
Calculation of the GMEC Energy of the Simple System
Shown in Fig. 1

Combination residue i
and rotamer n (in) Eglobal

112131 (2 + 40) + 10 = 52
112132 (2 + 40) + 10 = 52
112231 (2 – 30) –5 = –33
112232 (2 – 30) – 5 + 80 = 47
122131 (–10 + 40) + 5 = 35
122132 (–10 + 40) + 5 = 35
122231 (–10 –30) + 100 = 60
122232 (–10 –30) + 100 + 80 = 140

Exhaustive calculation of Eglobal for all possible residue–rotamer combi-
nations. Each combination is defined by a six-digit number where the sub-
script denotes the chosen rotamer. The rotamer combination yielding the
lowest energy (indicated in bold) corresponds to the GMEC.
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tions are enumerated and this identifies rotamer combination 112231 as the
GMEC. Application of the original dead-end elimination criterion of Eq. 2 on
each of the rotamers of the minisystem does not discover any dead-end rotamer.
The values are enumerated in Table 2. Further utilization of the DEE for
rotamer pairs allows the identification for residues 1 and 2 that DEPs can be
found. From Table 3 and Fig. 3 it becomes clear that the rotamer pairs 1121 is
a DEP, because in its best possible interaction with the surrounding template
and other rotamers, it is in a worst situation than the worst possible interaction
energy for the rotamer combination 1221, which is the best of the worst interac-

Table 3
Applying the Dead-End Elimination Theorem for Rotamers Pairs
in Fig. 1.

Rotamer pair Einherent + BEST Einherent + WORST

1121 (2 + 10 + 40) + 0 = 52 (2 + 10 + 40) + 0 = 52
1122 (2 – 5 –30) + 0 = –33 (2 – 5 – 30) + 80 = 47
1221 (–10 + 5 + 40) + 0 = 35 (–10 + 5 + 40) + 0 = 35
1222 (–10 + 100 –30) + 0 = 60 (–10 + 100 –30) + 80 = 140

Application of Eq. 6 to all rotamer pairs for the residues 1 and 2 of Fig. 4 is in detail listed
in this table. It can be concluded that the rotamer pairs 1121 and 1222 of the residue pair 1 and 2
are dead-ending.

Table 2
Applying the Dead-End Elimination Theorem for the Single Rotamers
in Fig. 1

Combination
residue i and
rotamer n (in) Einherent + BEST Einherent + WORST Conclusion

11 2 – 5 = –3 2 + 10 = 12
12 –10 + 5 = –5 –10 + 100 = 90 No DE rotamer found

21 40 + 5 = 45 40 + 10 = 50
22 –30 – 5 = –35 –30 + 100 + 80 = 150 No DE rotamer found

31 0 + 0 = 0 0 + 0 = 0
32 0 + 0 = 0 0 + 80 = 80 No DE rotamer found

Using the data of Fig. 1, the dead-end elimination theorem is utilised for each rotamer
of each residue. With Eq. 2 the best and the worst interaction energies for each of the rotamers
are shown in the BEST and WORST labeled column. Upon application of the dead-end elimi-
nation criterion for the system under study it is found that there can be no rotamers qualified as
dead-ending.
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tion energies (see Table 3). Upon reapplication of the dead-end criterion for
single rotamers, intuitively one would be appealed to remove the previously
found DEP from further consideration in the evaluation of the best and worst
interaction energies as prescribed by the DEE criterion. As shown in Table 4
this may lead to erroneous results if one would think that rotamer 11 is dead
ending, which is in contradiction with the data in Table 1, identifying rotamer
11 being a member of the GMEC. As a consequence we are confronted with a
serious problem, as it is unclear how DEPs may contribute to further elimina-
tion of dead-ending single rotamers. The formulation and proof of a new DE
criterion removes this uncertainty. This theorem has been called “fuzzy-end”
because if the energy contributions of rotamer-pairs are excluded from the
“worst” interaction terms of the DEE criterion, then there is no guarantee that
rotamers that satisfy this inequality are incompatible with the GMEC, i.e., they
may or may not be members of the GMEC.

In perspective of the previous remarks, one may wonder whether DEPs are
at all of any practical use in tracking down the combinatorial rotamer tree.
First, it has been shown and proven (21) that the interaction energies of DEPs
can safely be removed from the “best” interaction energies of the DEE crite-
rion. In this case, novel single dead-end rotamers could be identified by the
simple fact that this left-hand side might become augmented as compared to
the case where all rotamer pairs would have been considered. Second, if, for a
given rotamer ir, all the possible rotamer pairs [ir,js] made with another residue
j are dead ending (denoted as an all-DEP case), then of course ir can never be
member of the GMEC and, as a consequence, ir may safely be removed from
the current set of remaining rotamers. This situation is illustrated in Fig. 4. A
third mechanism by which dead-ending single rotamers may be detected on the
basis DEPs is explained in the logical pairs theorem in Subheading 2.7.

Table 4
Showing the Origin of the FEE Theorem

Combination
residue i and
rotamer n (in) Einherent + BEST Einherent + WORST

11 2 – 5 = –3 2 – 5 = –3 (wrong)
12 –10 + 5 = –5 –10 + 5 = –5 (wrong)

Discarding the two dead-ending rotamer pairs 1121 and 1222 obtained from
Table 3, from further consideration in the evaluation of the dead-end elimination
criterion for single rotamers leads to the erroneous result that rotamer 11 would be
a dead-end rotamer (see also Table 1)



274 De Maeyer, Desmet, and Lasters

2.6. Optimizing the DEE Criterion
In order to demonstrate further optimizations to the method, we first intro-

duce the concept of reduced energies. The reduced energy can be written as

Etemplate E(ir) E(js)E'(ir,js) = ———— + ——— + ——— + E(ir,js) (9)
Cn

2 n – 1 n – 1

where n is the number of residues and Cn
2 = [n.(n – 1)]/2.

Using the reduced energy terms E', the DEE criterion Eq. 3 can be rewritten
more compactly as

∑
j

min
s

[E'(ir,js) – E'(it,js)] > 0 i ≠ j (10)

Equation 10 is more attractive than Eq. 1 and does not affect the enhanced
DE criterion presented in Eq. 3.

This criterion has been further generalized (20) where the T alternate
rotamers it ≠ ir are given weight factors Ct in the DE evaluation of ir. The gen-
eralized criterion, expressed in reduced energy terms E' reads as follows:

∑
j≠i

 min
s

[E'(ir,js) –
t
∑
T

=1
Ct · E'(it,js)] > 0 (11)

where Ct ≥ 0 and ∑Ct = 1. However, the determination of these weight coeffi-
cients was left undetermined. We have presented (19) an iterative procedure to
determine these weight factors that may lead to a more efficient elimination of
single rotamers. First, single dead-ending rotamers are eliminated until exhaus-
tion using the criterion in Eq. 10. In the following steps, we describe the pro-
gram flow to be executed.

1. As will become clear, we need the interaction energies to be positive values.
Because the GMEC is not affected by shifting all energy terms by some constant
value, all interaction energies are augmented by a constant that is chosen
appropriately.

Fig. 4. Illustration of the usage of dead-ending pairs in the elimination of single
dead-ending rotamers based on logical grounds. In this example, the rotamer ir is in a
dead-ending pair situation with all of the remaining rotamers of residue j.
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2. For each of the rotamers it ≠ ir, the min operators of Eq. 10 result in the identifi-
cation of a rotamer combination, one for each j ≠ i residue. We define Mt as the
ensemble of rotamers for the j ≠ i residues that result from the min-operators
in Eq. 10 as is graphically illustrated in Fig. 5. Thus, Mt can be seen as a point in
the conformational space S ¬ i (read as “S not i”) for which the j ≠ i residues have
done their very best to interact favorably with ir and unfavorably with it. Define
now for any rotamer x of residue i

Ix(Mt) = ∑
j≠i

E'(ix,jMt
) where jMt

∈ Mt (12)

In other words, Ix(Mt) is the sum of interaction energies of some rotamer ix

evaluated at the rotamer combinations jMt defined by Mt. In this step we evaluate
the interaction energies for each ix at each of the available Mt points in the
S ¬ i space.

Fig. 5. Some of the notations in the equations are illustrated by these arbitrary energy
profiles. The curves depict interaction energies I of various rotamers ir, it, it' with each
of the possible rotamer combinations for the residues j, j ≠ i. These rotamer combinations
are mapped arbitrarily on the x-axis with each point on this axis denoting some
specific combination. Thus these points constitute the conformational space S ¬ i, (read
as S not i). Mt and Mt' denote those rotamer combinations that result from the DE
criterion (3). These points correspond to rotamer combinations for which the differ-
ence in interaction energies (Ir – It) or (Ir – It') is minimal. Using the DEE criterion (3),
ir would not be qualified as dead-ending, as its interaction curve is not always above
the others. However, by using proper weighting factors in the generalized DE criterion
(11) it is seen that ir is dead-ending. In the shown example, weight factors of 0.7 and
0.3 are applied to the it and it' curves, respectively, resulting in the dashed curve that
nowhere is above the ir curve. The computation of the weight factors is explained in
the text.
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3. In a sense, the points Mt determined in the preceding phase define a list of “criti-
cal” points where the interaction energies for at least one rotamer exceeds maxi-
mally that computed for the DE candidate ir, thus preventing ir to become a
dead-ending rotamer (at these points, ir is a better choice than it). Clearly, we
seek to remedy this situation by estimating proper weight factors for each of the
It energy profiles. To this end, we solve first the following min–max problem.

Maximize W = 
x
∑
T

=1
wx subject to the following constraints for each of the

wx > 0 and Ir(Mt) –
x
∑
T

=1
Ix(Mt) · wx > 0 (13)

points Mt. These constraints are equivalent to urging that the weight coeffi-
cients are such that the Ir curve in Fig. 1 exceeds at each Mt the sum of the other
weighed curves. This problem can be efficiently solved using a numerical
analysis method known as linear programming, for which detailed algorithms
have been published in textbook form (22). Depending on the obtained W value
we follow a different route.

Case W < 1: Exit the procedure, as ir cannot be dead ending by applying the
generalized Eq. 11. Indeed, the situation W < 1 means that the sum of the
weighed curves can only be pushed below the Ir curve by assigning weight
coefficients for which the sum is smaller than unity. But we still have to nor-
malize the weight coefficients by calculating Cx = wx/W.

Because 0 ≤ wx ≤ Cx, the sum of the weighed curves will be shifted upward,
thereby exceeding Ir for at least one of the points Mt (because the normalized coef-
ficients wx were already maximized). Thus the situation W < 1 implies that ir cannot
be considered as dead ending, and consequently forms an exit condition.

Case W ≥ 1: Put Cx = wx/W. Given the truth of Eq. 13, this guarantees that at

each Mt: Ir(Mt) –
x
∑
T

=1
Cx · Ix(Mt) · > 0. This follows immediately from 0 ≤ Cx ≤

wx, E' ≥ 0, and the truth of Eq. 13.

We are now sure that the function 
x
∑
T

=1
Cx · Ix(Mt) is situated below Ir(Mt) at each

point Mt. Of course, there is no guarantee that this will be the case at all points of
S ¬ i. This question can be answered quickly, however, by applying the generalized
dead-end criterion Eq. 11 using the obtained set of weight coefficients. This may
result in the identification of ir as a dead-ending rotamer, and in this event we have
a successful exit. In the other case, the computation of Eq. 11 results in an addi-
tional critical point that is added to the list of points Mt. This defines an additional
constraint and we reiterate to the beginning of step 3.

Note that one cannot get caught in an endless iteration loop, because at each
step W will decrease. Inevitably, once W drops below unity we automatically
meet an exit condition. In practice, it is found that only a few iteration steps are
needed before exiting the procedure.
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2.7. The Logical Pairs Theorem

The concept of DEE can also be applied to rotamer pairs using the DEE
criteria (Eqs. 6 or 7). DEPs may lead to the identification of additional single
dead-ending rotamers thereby further tracking down the size of the rotamer
conformational space. Previously, it has been shown (21) that DEPs may be
safely ignored from the min terms in Eq. 2, leading to

E(ir) + ∑
k

   min
s
     E(ir,js) > E(it) + ∑

j
max

s
   E(it,js)    i ≠ j (14)

no DEP with ir

With regard to the modified criterion (Eq. 3) DEPs can be safely ignored from
the left-hand terms, which leads to the following criterion

∑
j

   min
s

[E'(ir,js) – E'(it,js)] > 0    i ≠ j (15)
no DEP with ir

The validity of this criterion can be shown following the same strategy as pro-
posed previously (21), and along the same lines as exemplified in the proof of
Eq. 11 (for a full proof, see the Appendix of ref. 21). To increase the usefulness
of Eq. 15, a modified form is used in practice:

∑
j

min
s

[P(ir,js) – E'(it,js)] > 0    i ≠ j (16)

where

P(ir,js) = E'(it,js) if [ir,js] ≠ DEP

P(ir,js) = ∞ if [ir,js] = DEP

The advantage of this criterion is that it eliminates automatically rotamers ir

that form DEPs with each of the rotamers of some residue j. Clearly, in such a
case, which we denote as an all-DEPs case, ir cannot be a member of the GMEC
and thus ir becomes excluded solely on logical grounds.

There is also another logical mechanism by which a rotamer ir may be
declared as dead-ending. Suppose that in the course of the DE elimination only
one rotamer remains for some residue j. Clearly this rotamer, denoted as jg,
must be a member of the GMEC. Consequently, all rotamers that are part of
DEPs that contain jg are bound to be dead ending in a logical sense, and thus
can be eliminated without even requiring the evaluation of Eq. 16. This situa-
tion is graphically shown in Fig. 6.

It is interesting to unravel the prevailing mechanism in the elimination of
single rotamers by Eq. 16. In addition to its theoretical interest, the obtained
insights will lead to an optimization in the algorithmic implementation of the
DEPs computation. The following theorem, referred to as the logical pairs theo-
rem, is instrumental for this discussion.
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Given that ir is eliminated by evaluating the DE criterion (Eq. 3) relative to
another rotamer it, it follows that all pairs [ir,jM] where the jM rotamers are
determined from the min operators of Eq. 3 are dead ending by the DE crite-
rion (Eq. 7) for rotamer pairs.

The following corollary to this theorem is of interest. First, we have elimi-
nated until exhaustion all dead-ending single rotamers, and subsequently we
screen for DEPs. Suppose now that [ir,jd] is DEP relative [it,jd]. Such situations
will often occur, as all it takes is that ir has an inherently bad interaction with
jd, whereas it is not in conflict with jd. However, from the logical pairs theorem
jd cannot result from the min operator in the DE criterion for rotamers. Other-
wise, ir would be a dead-ending rotamer, which is in contradiction with the
foregoing, given that all single dead-ending rotamers have been eliminated. As
a consequence, in this case, Eq. 15 becomes identical to the original criterion
(Eq. 3), their min operators yielding the same rotamer jM, thereby precluding
the identification of an additional dead-ending rotamer. A different jM can be
selected only if the jM determined by Eq. 3 is implied in a DEP with ir, whereas
[ir,jM] is not DEP relative [it,jM].

From the foregoing reasoning, it becomes clear that a predominant mecha-
nism by which the removal of DEPs from Eq. 15 is contributing to the further
elimination of single rotamers is by eliminating rotamers ir that make DEPs
with all rotamers of another residue j and this is indeed observed in practice.
Importantly, all-DEPs cases can be computed much more rapidly as compared
to the straight computation of DEPs. Indeed, as shown in Fig. 7, the implemen-

Fig. 6. Illustration of the usage of dead-ending pairs in the elimination of single
dead-ending rotamers based on logical grounds. This figure illustrates the elimination
of rotamers as a cascade effect triggered by the identification of a uniquely defined
residue rotamer, indicated with the letter g. Given the shown DEP cases, this leads to
the identification of three other dead-ending rotamers jr, kr, and kt.
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tation of the search for all-DEPs cases implies an exit condition from the
nested-loop structure that is required to examine all possible pairs. Only, after
exhausting the all-DEPs cases can a full computation of DEPs be done. At this
moment, a large amount of rotamers have already disappeared from the system,
and consequently the computational requirements to determine the DEPs
become strongly reduced.

Fig. 7. General flow in pseudolanguage representation of the Classic form of the
dead-end pair computation. Some of the programmatorial details are not shown in
order not to overload the charts.
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3. Optimizing the Code
3.1. The Rotamer Library

The current implementation of the DEE method uses a collection of side-
chain orientations for each of the rotatable residues. It is clear that sufficient
rotameric states have to be included in this library, allowing a correct predic-
tion of the experimentally determined protein structure. Contrary to intuition,
we have proven that it is exactly this enlargement of the rotamer library that
allowed an important reduction in the number of rotamers at each position of
the protein (6). If one uses a smaller library (being a subset of the large library),
not only are the results inferior, but the time required to eliminate all dead-
ending rotamers becomes larger.

3.2. List of Pairs (LP)

3.2.1. LP for Atom/Atom Interactions in Energy Calculations

As described in the previous sections a pairwize atom interaction energy
term is used to calculate the energy of the protein. It is a well known and safe
practice in energy minimizations and molecular dynamics to take only inter-
acting atoms lying in a sphere around each atom. The cutoff radius in this work
has been set to 8 Å. As a consequence, the initial calculation of the interaction
energies of each rotamer with the template grows roughly linearly with the
number of residues in the protein. The calculation of these list of pairs in the
cutoff sphere is greatly accelerated by using a optimized cubing algorithm.

3.2.2. LP for Rotamer/Rotamer Interactions in DEE Calculations

A similar situation exists for the calculation of rotamer/rotamer interactions
in the DEE calculations. Because the DO loops in the calculations are residue
driven, and to keep memory requirements within bounds, we use residue pair
lists instead of rotamer pair lists. After the initialization phase, a list of interact-
ing residue pairs is set up based on the interaction energy of the two considered
residues, more precisely, if one rotamer pair of the two residues has a nonzero
interaction energy, the residue pair is counted. This list is referred to as the
residue pairs list (RP list). This reduces in a dramatic way the number of itera-
tions in the DO loops when searching for dead-ending rotamers. Whenever a
residue becomes fixed, the RP list is updated.

The concept of RP lists can also be applied to the DEE of the rotamer pairs,
explained in Eq. 6 for the classic rotamer pairs and Eq. 7 for the Goldstein
rotamer pair representation. For easier reading we refer to this as the residue
rotamer-pair list (RRP list). This list is built starting from the RP list. Here, we
even gain more computation time, as larger chunks of the eight-level-deep DO
loop are eliminated. The general flow of the search for dead-ending pairs is
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found in Figs. 7 and 8, respectively, for the classic and Goldstein implementa-
tion of DEE rotamer pairs. How these phases interact with the general flow of
the program is shown in Fig. 9.

3.3. High Energy Threshold Reduction Values (HETR)

3.3.1. HETR for a Rotamer Versus Template

In the initial stage of the program, all side-chain orientations are generated
based on the χ values defined in the rotamer library. Although already from the
start a lot of rotamer conformations may be eliminated from this collection
merely based on a clashing criterion with the template, still a large number of
conformations exist at each position. Different strategies have been followed
also in literature to avoid the combinatorial explosion that all modelers face
when searching the combination of rotamers that shows the least energy. Some
authors (23) have even challenged the existence of a combinatorial barrier in

Fig. 8. General flow in pseudolanguage representation of the generalized form of
the DE pair computation. Some of the programmatorial details are not shown in order
not to overload the charts.
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Fig. 9. General flow in pseudolanguage representation of the DEE implementation
in the Brugel package.
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side-chain placement. These authors argue that each side-chain can be modeled
taking into account only the environment of the template’s backbone atoms.
However, this opinion has been modified by the work of Tanimura et al. (5),
who have clearly shown that side-chain–main-chain and side-chain–side-chain
interactions work concurrently to stabilize the protein structure. That the
GMEC rotamer ig often does not coincide with the rotamer im of least template
interaction energy is demonstrated in Fig. 10. This figure shows the difference in
interaction energy with the template for the ig and im rotamers. The template is
defined as all main-chain atoms; all Cβ atoms; all proline, glycine, alanine, and
disulphide-bonded cysteine residues; and possibly nonmodeled residues.

In order to reduce the number of rotamer elements at each position and with-
out risking the elimination of the ig conformer, we have studied the E(ig) –
E(im) energy difference for a series of proteins (6) using a very detailed rotamer
library of 859 elements. It is observed that, in general, between 40–60% of all
rotamers, the ig does not coincide with the im. On the other hand, it is also
observed that the E(ig) – E(im) energy difference is relatively small. Based on
these experimentally determined energy differences, it was possible to deter-
mine a high-energy threshold reduction (HETR) value of 10 kcal mol–1. As a

Fig. 10. Difference between the template interaction energy of the rotamers im and
ig for the rotatable side chains of ribonuclease T1 (PDB code 1rpga) for all rotatable
residues, using the “large library” of 859 rotamer elements. The term im denotes the
rotamer with the least interaction energy versus the template, whereas ig is the GMEC
energy of the considered residue.
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consequence, all rotamers in a window of 10 kcal mol–1 above the im rotamer
have to be taken as valid solutions in the DEE computations, whereas the oth-
ers can safely be eliminated. On average, for the studied proteins this step leads
to a reduction of ±30% of the number of possible rotameric states before start-
ing the DEE calculations. In total, the whole initialization step removes an
average of between 50–70% of the total possible number of rotameric states.

Such an HETR value could not be determined when working with a subset
of the large library. Indeed, in view of the coarseness of this smaller library, a
larger HETR value has to be defined. As a consequence, the DEE calculations

Table 5
Overview of the 22 Studied Proteins

PDB Reso-
code Protein name # resa # rblb lutionc Hetero groups Ref.

1crn Crambin 46 26 1.0 PO4 + K 60
4rxn Rubredoxin 54 39 1.2 Fe (II) 61
2ovo Ovomucoid 56 39 1.5 — 62
5pti BPTI 57 36 1.0 PO4 + K 63
1igd Protein G immuno 61 49 1.1 — 64

gl binding
3ebx Erabutoxin 62 45 1.4 SO4 65
2sn3 Scorpion neurotoxin 65 41 1.2 2methyl24pentadiol 66
1hoe α-Amylase inhibitor 74 53 2.0 — 67
1ubq Ubiquitin 76 65 1.8 — 68
351c Cytochrome C 82 54 1.6 Heme 69
1rga Ribonuclease T1 104 77 1.7 Ca + GMP 70
256b Cytochrome B562 106 82 1.4 Heme 71
4bp2 Pro-phospholipase A2 115 85 1.6 Ca + met-pentadiol 72
7rsa Ribonuclease A 124 97 1.2 met-propanol 73
1rpg Ribonuclease A 124 97 1.4 met-pentadiol + CPA 74

in complex
2aza Azurin 129 98 1.8 Cu + SO4 75
1lz1 Lysozyme 130 95 1.5 — 76
1mba Myoglobin 147 100 1.6 Heme 77
9wga Wheat-germ agglutinin 170 82 1.8 — 78
2ptc B-trypsin + BPTI 281 200 1.9 Ca 79
3app Penicillopepsin 323 245 1.8 — 80
2apr Acid proteinase 325 239 1.8 Ca 81

aTotal number of residues in the protein.
bNumber of rotatable residues.
cResolution is given in angstroms.
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start with more rotamer states compared to using the large library. In addition
to the longer execution time, the quality of the prediction is also inferior.

3.3.2. HETR for Rotamer/Rotamer Interactions

Another important step in the initialization phase of the DEE implementa-
tion is the calculation of the pairwise rotamer interaction energies. First, all
rotamers that are incompatible with all rotamers of another residue are dead
ending and removed from the list of rotamers. It is also possible to define an
HETR pair value, similar to the HETR criterion. By examining all rotamer pair
interactions for the list of proteins in Table 5, the HETR pair value has been
determined to 20 kcal mol–1. All rotamer pairs of the residues i,j having an
interaction energy that fall outside the window of 20 kcal mol–1 above the
minimum E(ik,jl) pairwise energy are flagged as DEPs. It is important to note
that they are not removed from the list of active rotamers but can indirectly
lead to the discovery of DE rotamers, either in the all DEPs cases, the logical
pairs theorem, or in the next dead-end cycle.

3.4. Removal of Highly Overlapping Rotamers After First
Complete DEE Cycle

For each type of library we have once calculated the complete matrix of the
rotamer/rotamer overlap expressed in percentage volume overlap. The term
“volume overlap” is explained in Subheading 4. This information is stored in
a file and may be read if required. After one complete cycle of the DEE pro-
gram it is possible to reduce the remaining pool of rotamers solely on this
overlap criterion. The user may provide the program with an overlap percent-
age cutoff (here 90%), above which the overlapping rotamers are replaced
by the rotamer having the best interaction energy with the template. The
template is here defined as the backbone, all: Gly-, Ala-, Pro-, and Cys-
bridged residues and all the — so far — fixed residues. If by this procedure
there are residues that become uniquely defined, they are fixed. With this
reduced set of rotamers the DEE cycle is executed once more. It is important
to note that since the system has changed, all flagged DE rotamer pairs have
to be recalculated.

4. Flow of the Program
4.1. The Modeling Package

The DEE algorithm has been implemented in the Brugel package (24).
Although mainly written in FORTRAN 77, advanced memory management is
incorporated, allowing the use of dynamic memory allocation and pointer-
based record structures. This facilitates the ease of programming and does not
require ad hoc buffer size allocation. Besides a graphical menu-driven user
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interface to visually check the results of a computation, the Brugel package
also contains a command line user interface, allowing the execution of a series
of operations in batch form. One of the main characteristics of this modeling
package is the object-oriented user interface. Objects are defined in a very
broad sense. They may contain objects related to the protein like collections
of atoms, residues, chains, tables of one- or three-dimensional values associated
with each residue or atom, i.e., accessible surface area (ASA), but also
nonatom-related objects like lists of strings, integers, and float values. Com-
mands take input and output objects, allowing the user to manipulate in a logi-
cal way the complete description of the studied protein. The basic set of
commands allows the creation of objects, another set allows us to logically
manipulate these objects by creating new objects. To facilitate the manipula-
tion of objects, the commands may be used as inline functions. The input for
these functions is a list of BRUGEL objects in Reverse Polish notation (RPN).
Of course, strong object type checking prevents erroneous results and facili-
tates debugging complex procedures. On top of this command line interface,
the user is allowed to build his or her own supercommands (called procedures)
taking advantage of the object oriented grammatical language. These proce-
dures may take any number of arguments (being objects as specified) and form
the basis of a computer language on itself. All major flow control constructions
like “Do loops” and “If Then Elseif Endif” are implemented in this procedural
language. The advantage of this method is that the procedure can be build with
the help of any type of text editor, creating a file with a sequence of commands
and procedures to be executed and tested beforehand. This procedures are col-
lected in procedure libraries and do not require the recompilation and relinking
of new FORTRAN or C/C + + code. Of course, in case a completely new algo-
rithm is developed or one wants to accelerate a prototyped procedure, a user
interface is provided to link the new code with the existing package.

The energy function used (25) includes the usual terms for bond stretching,
bond–angle bending, a periodic function for the torsion angles, a Lennard–
Jones potential for the nonbonded atom pairs, a 10–12 potential for hydrogen
bonds, and a coulombic function for charged atoms. The dielectric constant
has been set to rij, the distance between the atoms i and j (26). The energy
parameters are based on the CHARMM force field and are used throughout
this work (27). Other groups have already implemented, with success, the DEE
method using their own force field (5,11,20,28). Although it is possible to use
a united-atom representation, usually all atoms including all hydrogens are used
in the energy calculation. In this chapter, carboxylate and imidazole groups
were not protonated. In order to understand better the current implementation
of the DE elimination, we have included a schematic overview of the flow of
the program in Fig. 9.
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4.2. Program Initialization

The package takes as input a PDB-formatted (29) file, the rotamer library,
and the residues to be modeled. This may be the complete set of all rotatable
residues or a subset (buried residues, a hydrophobic cluster, or an interface
with another protein). The user is allowed to define a number of steps with a
well-defined angle size to expand the rotamer library. In this and previous
studies we expanded the library by taking two steps of 10° around the χ1
angle of the aromatics (Phe, Tyr, His, Trp), and for each of these new rotamers
we took two steps of 20° around the χ2 angle. This enlarges the rotamer
library to 859 elements. Next, with the dihedral angles defined in the library,
all rotamer conformations (x-, y-, and z-coordinates of the side chain only) at
each position are generated and stored in memory, avoiding recalculation of
the side-chain coordinates in later steps. In a final initialization step, the file
containing the matrix with the rotamer/rotamer volume overlap percentages
is read in.

4.3. Elimination of Template and Sidechain Incompatible
Rotamers

In this phase of the program two types of energies are calculated. First, the
inherent energy, E(ik) being the sum of the rotamer self-energy and the interac-
tion energy with the template is calculated. The template is defined as the back-
bone and all Gly-, Ala-, Pro-, and Cys-bridged residues. From this global
rotamer pool all rotamers having an interaction energy with the template
exceeding the absolute value of 30 kcal mol–1 are eliminated. Next, at each
residue position, the rotamer interaction energies with the template are sorted
and all rotamers removed from the list having an energy larger than the window
of 10 kcal mol–1 (HETR) above the lowest value.

Second, for the remaining set of rotamers, all pairwise interaction energies
E(ik,jl) are calculated. A rotamer of a given residue having a interaction energy
greater than 30 kcal mol–1 in absolute value with all other rotamers of another
residue is removed. Finally, the application of the HETR pair criterion flags all
those rotamer pairs that are dead-ending.

4.4. The DEE Phase

The previous preparative steps lead the way to eliminate in a reasonably fast
timeframe all dead-ending rotamers, because so many useless rotamers are
eliminated from the total pool of rotamers. Nevertheless, for large proteins, the
number of rotamer combinations is still enormous. It is of the greatest impor-
tance to execute first the less complex equations before proceeding to the more
complex. Also, the computational requirements for the assessment of DEPs are
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much more exigent than those for single rotamers. Both Eqs. 6 and 7 allow
the identification of DEPs. Although Eq. 7 is a much stronger criterion than
Eq. 6, we nevertheless do not relinquish the use of the original DE criterion. In
the first place, Eq. 6 appears to be, in practice, very effective in retrieving
additional single dead-end rotamers. In the second place, this criterion can be
evaluated much faster as compared to the modified criterion (Eq. 7). The ratio-
nale behind this is that the scanning for all possible DEPs evidently requires a
loop over all possible rotamer pairs [ir,js]. The decision whether each such pair
is a DEP relative some other rotamer pair requires an extra loop running over
all alternative pairs. This second loop is nested inside the first loop in case of
Eq. 7 since the comparison between the involved energies is contained within
the min operators of this criterion (see Fig. 8). With regard to Eq. 6, these
loops do not have to be interlaced. Indeed, as shown in Fig. 7, one can first
compute the worst possible interaction energy (right-hand terms in Eq. 6) for
each possible rotamer pair [ik,jl]. The lowest energy value (the so-called best-
of-worst energy) is memorized (4,30). Subsequently, any rotamer pair that has
a minimum interaction energy (left-hand terms in Eq. 6) that is higher than the
best-of-worst energy is bound to be a DEP. Consequently, Eq. 7 is to be
executed after exhausting Eq. 6, at which moment the size of the rotamer sys-
tem is already strongly reduced.

The present flow of dead-end elimination is as follows.

1. Iterative DE elimination of rotamers until exhaustion using the modified crite-
rion (Eq. 15) taking into account previously determined DEPs, if any. Subse-
quently, we search iteratively until exhaustion for DE rotamers using Eq. 11 with
optimized weight coefficients.

2. Computation of DEPs using Eq. 6 as outlined in Fig. 7.
3. Computation of all-DEPs cases using Eq. 7.
4. Full exploration of Eq. 7 as outlined in Fig. 8.

It is understood that as long as new DEPs are found in each of phases 2–4,
we iteratively search for new, single, dead-ending rotamers using the proce-
dure described in step 1.

4.5. Elimination of Redundant Rotamers

At this stage of the program, many rotamers are eliminated and, in some
cases, the GMEC conformation is reached, in which case the final structure is
saved. In case the structure is not yet uniquely defined, a one-time rotamer
pruning based on the volume overlap is used. By this elimination, rotamers of
the same residue with a volume overlap exceeding 90% are replaced by the
rotamer of this subgroup having the best interaction with the so far fixed tem-
plate. Only After this elimination step, the system is reinitialized and, with the
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remaining rotamers, again injected in the DEE cycle searching for new dead-
ending rotamers.

4.6. End Phase Routines

The previously described set of DEE and optimizations are very powerful,
but nevertheless it is possible that a too large number of rotamers is still present
to be tackled by brute force combinatorial techniques. We have developed two
additional techniques to solve this problem. These methods are outlined in
Subheadings 4.6.1. and 4.6.2.

4.6.1. Divide and Conquer Routines (DAC)

The remaining set of residues is divided into subsets A and B. Although the
rotamers of set B are kept as single rotamers, those of subset A are combinatori-
ally unified into superrotamers ℜ. Subsequently one by one all ℜ are tempo-
rarily fixed by considering them as part of the template. Each of the fixed
superrotamers may lead to a list of dead-ending rotamers in the B set. Each
time this list is memorized. The intersecting rotamers of all these lists resulting
from fixing the superrotamers are dead-ending rotamers and may be removed
from the list of left rotamers (proof and effectiveness is illustrated in ref. 31). It
is clear that given the combinatorial nature of this superrotamer, combining
more than two residues into one superrotamer is practically impossible.

4.6.2. Combinatorial Buildup Assisted by DEE

This combinatorial routine generates all possible side-chain combinations
for a growing cluster of residues, starting from the root residue being the one
with the least rotamers left. Instead of simply exploring the full combinatorial
tree, it is attempted to predict the conformation for the remaining rotatable
residues at each specific rotamer combination for the current residue cluster. A
fast and reliable way is using the conventional DEE routines for single resi-
dues. The result of such an attempt is either that all remaining residues have
only one rotamer left or not. The remaining residues become uniquely defined
the algorithm passes to the next cluster node, whereas in the latter case the
current cluster is enlarged with one more residue for combinatorial enumera-
tion. Selecting the next residue to be added is done by searching the residue
with the highest interaction number. This quantity is defined as the number of
nonzero interactions with the already-clustered residues divided by the number
of rotamers of the residue. By recursively calling this routine, the tree is com-
pletely explored. When all combinations of the cluster have been explored, the
algorithm terminates. The GMEC conformation is identified as the cluster ele-
ment that yielded the lowest energy of the total protein.
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4.7. Storage of the GMEC Structure

After execution of the DEE, and the final phase of the program, all rotatable
residues have only one rotamer left and the final GMEC structure is saved in
Brookhaven PDB format. This structure might contain small, short contacts
due to the discretization of the rotamer library. To alleviate these repulsions,
the structure is subjected to 100 steps of steepest descent energy minimization.
In this step, the backbone is kept fixed.

4.8. Automation of the Method

The current implementation of the DEE package is completely automated.
The program takes the PDB-formatted file as input. It is possible to include
water molecules and hetero atoms, although in this study they were stripped
off. Missing hydrogen atoms were generated. In this study the effect of includ-
ing the heme group was tested. Disulphides, prolines, glycines, and alanines
are kept unchanged and form the template structure, together with the main-
chain backbone and the Cβ atoms. The user defines the objects, being the resi-
dues he or she wants to model, the used rotamer library, and steps to be taken
around the χ angles of user-selected residue types. The next phase starts the
actual DEE, removal of redundant rotamers and the final clustering algorithm.
At users’ request, a detailed output is provided during each rotamer elimination
step. Finally, the resulting structure is subjected to 100 steps steepest descent
energy minimization with fixed main-chain atoms in order to alleviate minor
short contacts. Thanks to the procedural language of the modeling package, all
these steps can be edited off line and a single input file submitted to the Brugel
package for batch execution.

Finally, the original X-ray structure and the modeled structure are evaluated
in terms of volume overlap, difference in χ angles, root-mean-square deviation
(RMSD), and scoring quality of the side chains. A typical output is given in
Figs. 11 and 12, and explained in Subheading 5.

5. Evaluation of the Method
5.1. The Protein Test Set

In the current work we used a representative test set of 22 proteins retrieved
from the PDB (29). The proteins are listed in Table 5, together with the total
number of residues in the protein, the number of rotatables, the resolution, the
presence of hetero groups, and the reference to the structure.

5.2. Use of the Volume Overlap Criterion Instead of RMSD or Dc

In literature a wide variety of criteria is used to validate the correctness of
the side-chain prediction. In general, the accuracy of the prediction is evalu-
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Fig. 11. Typical analysis results for the starting residues of the protein Scorpion
neurotoxin (PDB code 2sn3) of a side-chain placement experiment. The structure before
and after the steepest descent minimization is compared with the X-ray structure. The first
line lists the considered residue in the protein, for the crystal and the modeled structure
the percentage of buried surface area as compared with the maximal possible ASA of the
residue type in extended form together with the ϕ and ψ angles. The second line lists
the experimentally determined X-ray χ angles. The third line lists the library rotamer closest
to the experimental value with the χ angles and the RMSD as compared with the X-ray
structure. The fourth and fifth line list, respectively, the χ angles as observed in the modeled
structure before and after the energy minimization step. In addition, the RMSD value and
percentage volume overlap versus the X-ray structure are added.
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ated for two classes of residues — the solvent exposed and buried side chains.
As seen from the literature the definition of buried residue is rather vague.
Some groups use the slightly extended definition of Miller et al. (32). This
definition states that buried residues have less than 10% of their maximal

Fig. 12. Typical score analysis output of the Brugel package for the protein with
PDB code 1rga. The first two lines list the nonbonded energy for the X-ray structure as
compared to the DEE side chain placement program. The three following lines list the
RMS. difference between the X-ray and the modeled structure for less than 10% and
25% solvent accessibility, respectively, and the RMSD for all side chains. The total
volume overlap for the same three accessibility classes is given in the next three lines.
The next table lists for each possible residue type, and for the three defined accessibil-
ity classes, the number of modeled residues, the number of wrongly predicted resi-
dues, and the percentage of correctly modeled residues in each ASA class. The final
line summarizes the information for all residues present in the modeled protein.
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accessible solvent area exposed. Others (5,23,33–39) consider a more permis-
sive threshold of 20–40% accessible surface area exposed to the solvent. There
are mainly two methods used for the evaluation of the correctness of the mod-
eled structure. The first — and most used — method is the RMSD between the
modeled and the experimental X-ray structure. The second method is the com-
parison of the side-chain dihedral angles between the calculated and the X-ray
observed values. There is a considerable variation in the definition of the toler-
ance on χ1, χ2 separately or on the combined χ1 + χ2 used in the evaluation
process (from 20–40°).We have discussed recently (6) the difficulties encoun-
tered when using either the RMSD and ∆χ method. In order to evitate these
problems, a method was needed to evaluate the correctness of modeled side
chains that is sensitive to spatial errors or functional interactions, but insensi-
tive to alternate fitting of the electron density map. The real space fit for a side-
chain evaluates how well the calculated electron density map of the model
coincides with the observed electron density map. Similar to the real space fit
(40 ) and also inspired by the work of Schiffer et al. (41 ) we propose to use the
Van der Waals volume overlap to evaluate how well the volume of the pre-
dicted side-chain volume overlaps with the observed X-ray structure. In a simi-
lar fashion, as the real space fit, the calculated volume overlap becomes
independent of individual χ angle comparisons and evaluates the side chain as
a whole entity. A systematic analysis of a series of proteins allowed us to define
the percentage threshold when a modeled side chain may be considered as cor-
rectly positioned (6). This value was determined to be 70% volume overlap
between the modeled and the X-ray structure.

5.3. Calculation of the Volume Overlap

Provided the experimental structure is present, we are able to calculate the
side chain volume overlap of the calculated and experimental structure. To this
end, an algorithm was implemented allowing the computation of the volume
overlap between any pair of objects. Objects are defined as any user-defined
atom collection of the protein. The computation of the volume overlap between
the observed (X-ray) and predicted side-chain conformation goes as follows
and is applied to each predicted residue. In the first place, two objects are made
containing the side-chain atoms from the X-ray and the modeled structures.
Second, we generate a cubic lattice with a 0.5 Å mesh size encompassing the
Van der Waals envelopes of each objects. A logical AND operation between the
two objects selects the overlapping points of the two objects. The overlapping
volume is then obtained by multiplying the number of points with the volume
of the lattice unit cube. To optimize these calculations, we orient the cubic
lattice along the principal axes of the object containing the atoms of the X-ray
observed side chain. As a consequence, lesser grid points are needed to encom-
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pass fully the Van der Waals envelopes of the side chains thereby increasing
the computational speed. Figure 11 shows a typical output of the analysis phase
for the scorpion neurotoxin protein (PDB code 2sn3).

5.4. Scoring Analysis

It is a well-known fact that solvent exposed residues are less well predicted
as compared to buried residues. We have shown (6) that extending the defini-
tion of Miller et al. (32) for buried (core) residues from less than 10% of the
maximal possible accessible surface area to 25% makes only a marginal differ-
ence in our prediction quality. In addition most other investigators use this
extended view too, facilitating comparison between different methods. The
maximal ASA for each type of amino acid is calculated using the Survol algo-
rithm (42), being part of the Brugel package (24), on the basis of extended
dipeptide units built as terminally blocked amino acids Acetyl-X-NHCH3 (1).
A water probe radius of 1.4 Å. was used throughout all these calculations. A
high overall volume overlap of around 90% between the modeled and X-ray
structure is observed for the core residues. In case the PDB file indicates the
existence of multiple conformations for a residue, the alternative with the high-
est occupancy factor is selected for comparison with the modeled side chain.
An example of the typical Brugel output produced as scoring analysis is shown
in Fig. 12.

6. Performance
The current DEE implementation in the Brugel package has outperformed

the first DEE implementation by several orders of magnitude the computa-
tional needs for the prediction of the side-chain orientation in a fixed back-
bone. At the same time, the accuracy of the rotamer library increased
significantly the quality of the prediction (6). Application of the simple HETR
criterion induced a tenfold execution time reduction for medium-sized proteins
of around 120 residues. Subsequent introduction of the HETR for rotamer pairs
and the usage of residue rotamer pairs lists induced a time gain between 3 for
small proteins (50 residues) to a factor of 22 for large proteins (3app with 325
residues). In addition to this increase in accuracy and decrease in computa-
tional time, the current optimizations decreased also significantly the memory
requirements of the modeling package.

The execution time for each major step in the side-chain placement program
is depicted in Fig. 13. The initialization time grows almost linearly with the
number of residues in the protein (this correlation plot is not shown). As we
observe from Fig. 14, the total execution time is roughly linearly dependent
with the total number of residues in the studied protein. A few exceptions to
this rule are also observed and are due to the exceptionally large number of
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Fig. 13. Plot of the contribution of each phase in the total execution time of the DEE
program for each of the studied proteins. The different gray scales indicate, respec-
tively, the initialization time, the DEE phase, the reapplication of the DEE algorithm
after the elimination of highly overlapping rotamers, and finally the execution time of
the end-stage routines.

Fig. 14. Dependency of the total execution time versus the total number of residues
in each of the 22 studied proteins. Each of these proteins carries its PDB code.
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rotamers left before starting the end-stage routines. The exclusion of the heme
group in cytochrome B562 (structure 256b) in the calculation could partially
explain the longer end-stage phase. Inclusion of hetero groups in myoglobin
(structure 1mba) indeed reduces the conformational space and accelerates the
elimination of dead-ending rotamers. A similar effect is observed for the pro-
tein wheat germ agglutinin (PDB code 9wga, only one chain of the dimer has
been modeled). One monomer of the dimeric form contains 170 residues, but
only 82 rotatable residues. The unusual high Gly contents (40 residues or 23.4%
of the total number of residues) and Cysteine bridges (32 residues or 18.7% of
the total number of residues) makes the conformational space highly con-
strained by the absence of rotatable side chains. This is observed in the very
effective execution of the DEE algorithm. The main reason is that by modeling
in a constrained environment, the interacting rotamers are fixed in an early
stage of the DEE process, thereby increasing the elimination power of the DEE
and FEE processes. The drawback of this speed increase is a somewhat less
accurate side-chain prediction (see Fig. 15). This exemplifies that such pro-
teins would benefit even more from using a very detailed rotamer library.

In a recent review article (3), an alternative method developed by Bower
et al. (43) is referred to as one of the most accurate methods for side chain
prediction. Interestingly this method uses an MDRL in contrast to our DEE
algorithm, which uses an MIRL. Bower et al. compare the average RMSD
results per residue and per structure with the work of Holm and Sander (55)
and Koehl and Delarue (58). The results of processing the results of our 22

Fig. 15. Plot of the percentage overlap of all modeled side chains for each of the
studied proteins. The filled square symbols indicate residues with a solvent accessibil-
ity of less than 25% of their maximum ASA value, whereas the filled circles indicate
the results for all the side chains in the protein.
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proteins in the same way is collected in Table 6. As seen from the table, our
method compares favorably to these three other methods. It is also observed
that in the study of Bower et al. the scoring results using an MIRL are a lot
worse. Both studies (6,43) demonstrate clearly that the choice and quality of
the rotamer library is a keystone prerequisite for an accurate side-chain
placement result. However, using a poorly defined MIRL will always score
worse than a highly optimized MDRL. On the other hand, in the design of new
sequences compatible with a given main chain (12) the usage of MDRL might
be a better choice. Although not only is the number of rotamers at each residue
position is limited, one also searches for sequences with a very high probabil-

Fig. 16. Comparison of the total execution time of the complete DE-based side-
chain prediction for a series of proteins, varying in size up to 325 residues, for two
types of computers. The x-axis lists the total CPU time on a Silicon Graphics R10000
type of computer, whereas the y-axes shows the execution time on a Apple PowerMac
G3/244. The slope of the scatterplot is 1.76.
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ity for a given main-chain fold. In contrast with this, nature may allow very
low rotamer probabilities in a particular protein, in which case an MIRL is
more successful, and better suited in homology modeling work.

The Brugel modeling package has been ported to the Apple PowerMac
series, without severe problems. (M. De Maeyer has ported the Brugel package,
except for the graphical part, onto the Power Macintosh family of computers.
This work has been carried out in a private collaboration with the company
Beagle bvba.) All FORTRAN 77 and C code has been compiled under the
macintosh programmers workshop (MPW) shell using the Absoft compilers
(44). No special optimizations were included to accelerate the execution of the
code. Tests on the G3 family of PowerMacintosh for the same series of proteins
(see Fig. 16) reveal that the high-end Silicon Graphics R10000 workstation
version of the program is only 1.76 times faster compared to the G3. We are
confident that current mathematical methods in protein engineering will also
become available in the more affordable personal computer series.

7. Additional Reading
The current implementation of the DEE method has its major application

field in the area of homology modeling. Recently, other fields of applications
for the DEE algorithm have emerged (9–13). Besides the DEE method to
predict the side-chain conformation on a fixed backbone, other computational
methods have been developed. These methods have been surveyed in two
articles (45,46). We summarize the major methods in this field: genetic
algorithm (47,48), simulated annealing (49,50), lowest-energy conformation
searching (41), systematic search procedures in the context of the backbone
atoms combined with extensive local energy minimizations (23,43,51), local
three-dimensional homology modeling (52), combined sequence and side-

Table 6
Study Processing Results

Koehl and Holm and Bower
Study Delarue (38) Sander (33) et al. (43) DEE

Number of residues subset subset 36048 1944
Average RMSD (Å)

per residue 1.33 1.25 1.25 0.98
Average RMSD (Å)

per structure 2.01 1.96 1.93 1.60

RMSD of the side-chain atoms using four different methods. The measurements include all
side-chain atoms beyond Cβ, and are corrected for crystallographically symmetrical residues
(Asp, Asn, Glu, Phe, Tyr).
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chain conformation network (53), Monte Carlo simulation (33,54–56),
approaches where clusters of residues are examined instead of the whole pro-
tein (16,35,47), a self-consistant field method to iteratively refine a conforma-
tional matrix of protein side chains (57), segment matching method (58), the
dead-end elimination method (8), and the DEE± and fuzzy-end elimination
theorem (5,6,11,12,19,20,21,28).

Homology modeling also forms the first step in the complete prediction of
protein folds. A review article putting all these tools in the perspective of the
prediction of protein folds is worth reading and forms an excellent introduction
in this emerging field (59).
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Classification of Protein Folds

Robert B. Russell

1. Introduction
The classification of three-dimensional (3D) structures now plays a central

role in understanding the principles of protein structure, function, and evolu-
tion. Classification of new structures can provide functional details through
comparison to others, which is of growing importance as X-ray crystallogra-
phy and nuclear magnetic resonance (NMR) spectroscopy can now produce
structures in advance of biochemical characterization (e.g., ref. 1). More gen-
erally, structure classifications themselves provide an excellent source of data
for analyzes of all kinds.

This chapter presents a strategy for classifying protein structures. Steps in
the classification procedure — domains, structural class, folds, superfamilies
— are discussed in turn by reference to examples and relevant literature. Meth-
ods are discussed for discerning when structural similarities are most likely to
indicate an evolutionary and/or functional similarity when sequence similarity
is absent. Finally, a review of the most widely used Internet-based classifica-
tions is given.

2. Methods
2.1. Secondary Structure

Protein folds are nearly always described in terms of the type and arrange-
ment of secondary-structures (i.e., α-helices and β-strands), thus secondary-
structure definition is a good first step in classification. A detailed review of
methods for assigning secondary-structure is beyond the scope of this chapter.
The reader is directed to references (2–4) and those therein.
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2.2. Domain Assignment

Domains conveniently divide protein structures into discrete subunits, which
are frequently classified separately. Protein domains are usually defined by one
or more of the following criteria (see ref. 5 and references therein):

1. Spatially separate regions of protein chains.
2. Sequence and/or structural resemblance to an entire chain from another protein.
3. A specific function associated with a region of the protein structure.
4. A substructure in another protein that meets one or more of requirements 1–3.
5. Repeating substructures within a single chain meeting one or more of require-

ments 1–3.

Definitions 2 and 3 do not necessarily agree, as structural units may not be
associated with a specific function. Some of the best examples of this struc-

Fig. 1. Molscript (68) figure showing ambiguities in domain assignment for the aspartyl
proteases. The bottom of the figure shows a single subunit from the HIV protease (PDB
(69) code 1hiv-a) dimer shown in the middle of the figure. This dimer is equivalent to the
covalently linked heterodimer found in the eukaryotic aspartyl protease (pepsin, PDB
code 4pep) shown at the top of the figure. The single subunit corresponds to a structural
domain, the homo/heterodimer corresponds to the functional domain.
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tural/functional domain disagreement can be seen in the trypsin-like serine
proteases and the pepsin-like aspartyl (acid) proteases (see Fig. 1). In both
examples the functional domain (i.e., the catalytic domain) consists of two
similar structural domains (presumed to be related by gene duplication; e.g.,
ref. 6). For the aspartyl proteases (see Fig. 1) there is further ambiguity as the
retroviral (e.g., HIV) proteases consist of only a single copy of the structural
domain that is functionally active as a homodimer, rather than the covalently
linked heterodimer found in eukaryotes (e.g., pepsin).

For analysis of the principles of protein structure, use of structural domains is
preferable, as these probably fold independently (e.g., each “lobe” of the pro-
teases), and internal pseudo-symmetry (i.e., duplicated domains) can add to the
understanding of the fold. It can be difficult to assign structural domains given
only sequence data, and functional domains are frequently known in the absence
of 3D structure data. It is thus best to consider functional domains during fold
recognition/threading studies, where a protein of unknown structure (and often
a functional domain) is compared to a database of known structures.

Automated methods have been developed for structural domain assignment,
which look for spatially separated compact units (7–10) or hydrophobic cores
(11). Methods can disagree even for relatively simple cases. A good strategy,
adopted by the authors of Class Architecture Topology Homology (CATH)
(12,13), is to combine the results of several algorithms with visual inspection,
as often at least one of the methods will be correct. The property of recurrence
is also very useful in defining domains. If a fragment of a larger protein is
observed in isolation, or in a different domain context, then this adds confi-
dence to the assignment of the segment as an independent folding unit (5,14).

Domains need not comprise single continuous segments of the polypeptide
chain. Domain shuffling during protein evolution means that domains can be
inserted into one another (15), making multisegmented (i.e., discontinuous)
domains (see example 2 in Section 3.).

2.3. Assignment of Structural Class

After assignment of secondary-structures and domains, structural class can be
assigned to domains. Structural classes divide proteins according to secondary-
structure element content and organization. Globular proteins were first grouped
into four classes (16): all α (or α/α), all β (or β/β), α/β, and α + β. However, a fifth
class, small or irregular, is now generally used to group those proteins with few
secondary-structures (often containing multiple disulphides or metals).

2.3.1. One Secondary Structure Type: All α or All β

Class assignment is usually straightforward for domains with predominantly
α-helices or β-sheets. Small elements of secondary-structure, such as 310 heli-
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ces, or small β hairpins are usually ignored in the assignment. Class is some-
what subjective, and may be based on the structure of the protein core rather
than the abundance of α or β residues. Consider, e.g., staphococcyl nuclease
(see Fig. 2), which contains an equal proportion of residues in α helices and β
strands, but is generally classed as all β (12,17) because the core of the fold
comprises an oligonucleotide/oligosaccharride (OB) binding-fold β barrel.
Structural similarity may thus affect the assignment of class.

2.3.2. Both Secondary Structure Types: α/β or α + β

Protein domains that contain a mixture of α helices and β sheets are more
difficult to classify. Historically (16), α/β proteins are those containing both α
helices and β sheets and where there is an intimate association of helices and
strands. In contrast, α + β proteins define those consisting of segregated regions
of helix and sheet. More recently, and perhaps most exemplified by the Struc-
tural Classification of Proteins (SCOP) database, α/β proteins tend to refer to
those structures containing many βαβ units, which consist of two adjacent (e.g.,
hydrogen bonded) β strands connected by a single a a helix in a right-handed
connection, whereas α + β proteins are those not falling easily into this
definition. The authors of the CATH database (12) have done away with the

Fig. 2. Molscript (68) figure showing and example of difficulties in fold class
assignment. Staphococcyl nuclease (PDB code 1snc). The protein contains an equal
proportion of β-strands and α-helices, but is generally classified as all β because of the
β-barrel domain forming the core of the OB fold.
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distinction between α/β and α + β, arguing that it is an architectural distinc-
tion, rather than an inherent difference in secondary structure content.

2.3.3. Other Classes

Proteins with few secondary structures form a category of their own. Fre-
quently these proteins are small, with the tertiary structure dominated by mul-
tiple disulphide bonds, or one or more metal-binding sites. Other fold classes
are used to contain peptides, or multidomain proteins for which no logical
single class or domain divisions can be assigned.

Holm and Sander (18) positioned all structures in the protein database in a
high-dimensional, abstract fold space. When multivariate scaling was used to
project these positions onto a two-dimensional (2D) density plot, five
“attractors” (peaks) were found to cover approx 40% of known folds. These
attractors were found to correspond to architectural features: parallel β, β-mean-
der, α-helical, β-zigzag, and αβ-meander. Their, analysis thus provides an
alternative means to define the “class” of a protein, although some of the
attractors match the traditional classes closely.

2.4. Assignment of Fold

The number, type, connectivity, and arrangement of secondary-structures
define the fold of a protein. Frequently, fold similarities are recognized by
eye-following structure determination, although there are many papers pub-
lished following a structure determination reporting a structure/function simi-
larity not noted by the experimentalists (for examples see refs. 19,20; for
reviews see refs. 21–23). Fold searching should thus be done with care, and
similarities should be considered in a wider context that includes functional
similarity.

It is best to compare each domain of a new structure to a database of those
already known. Even in instances when the fold is known, such searches can
reveal relationships that might be missed. For example, a protein may be easily
seen to adopt an immunoglobulin (Ig)-like β-sandwich structure, but a struc-
ture with a similar function may be buried in the large group of Ig-like folds.

There are several means of searching protein structure databases with a probe
structure (see refs. 21,22 for reviews). Programs such as SSAP (24,25), SARF
(26), and STAMP (27) are available from the respective authors (see Appendix
at the end of the chapter). It is also possible to run DALI (the engine of the
Families of Structurally Similar Proteins [FSSP] database [28,29]) via the
World Wide Web (see Appendix), and methods similar to the structure com-
parison technique of Artymiuk et al. (30) are encoded in QUANTA (31), and
VAST (32) at the National Center for Biology Information (NCBI) (although
VAST comparisons are only currently available for protein structures already



310 Russell

in the database). Structure comparison is also possible within the O crystallo-
graphic package via the program Déjà vu (33). Different methods can give
different results, particularly if structural similarity is slight. It is, therefore,
prudent to run several algorithms and arrive at a consensus.

A phenomenon to consider during fold assignment is circular permutation,
which relates domains that are similar in structure and/or sequence, yet whose
N- and C-terminal portions have been exchanged. Permutations are real events
in nature (see ref. 34 and references therein; for a recent example, see refs.
35,36). Although some structure comparison methods permit matches involving
differences in connectivity, few, if any, are able to detect permutations directly.

2.5. Assignment of Superfamily

It is probably impossible to state definitively whether all proteins adopting a
similar fold are descended from a similar common ancestor (i.e., related
through divergence). For many proteins with similar folds, sequence, structure,
or functional arguments suggest divergence from common ancestor; for others,
no such conclusion can be drawn. Hence, some classifications distinguish
between similarities that are due to divergent evolution, and those that may not
be. It is clear that many homologous proteins have simply diverged beyond the
point where sequence similarity can be detected. The term superfamily is often
used in structure classification to refer to groups of proteins that appear to be
homologous, even in the absence of significant sequence similarity.

Proteins with the same fold that are not thought to share a common ancestor
are often referred to as analogs (to distinguish them from homologs), and are thought
by many to be the result of a convergence to a stable structure. Although there is
little hard evidence, there are some arguments that favor such a convergence.
The number of proteins sampled during evolutionary time is vast, despite an
estimated low number of possible folds (37–40), which may be due to restrictions
on protein architecture. In addition, recent studies on sequence identity, calcu-
lated from structure-based sequence alignments (41,42), show a bimodal distri-
bution. Although the results are very preliminary, the biomodality may suggest
two origins for similarities between protein folds: analogy and homology.

How can analogy and homology be distinguished? A survey of recent litera-
ture (e.g., refs. 38,41–45) shows that one or more of the following features are
often used to deduce a common ancestor (i.e., assign a common superfamily)
given a pair of similar 3D structures:

1. Above a certain level of structural similarity, even if sequence similarity is insig-
nificant, one can be largely confident of a homologous relationship (32,38,45).

2. The conservation of unusual structural features, sometimes outside the common
core secondary structure elements. These features include functionally important
turn conformations (46), left-handed βαβ units (47), or others (e.g., ref. 43).
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3. Low — but significant — sequence identity as calculated after structure superim-
position (i.e., the identity from the structure-based alignment (41]). See ref. 43
for guide (illustrated by example) to how to calculate an associated statistical
significance. It has been suggested (41) that sequence identities from a structure-
based alignment of >12% are more likely to indicate a remote homology. Note
also that structure similarities may confirm marginally significant sequence simi-
larities seen prior to 3D structure determination.

4. The presence of key active site residues, even in the absence of global sequence simi-
larity. This is most often applicable to enzymes, for examples, see refs. 20,48–50.

5. Sequence similarity bridges, or transitivity. Even though two sequences may not
be significantly similar to one another, inspection of homologs found in sequence
searches with each sequence may reveal a “link” or “sequence bridge” linking the
two sequences via significant sequence similarities (e.g., refs. 49–51). In other words,
if domain A is significantly similar to domain B, and domain C is significantly similar
to domain B, then domains A and C can generally be deamed homologous.

2.6. Superfolds, Superfamilies, and Supersites

Certain protein folds are populated by many different superfamilies, suggesting
that the fold has arisen many times by convergent evolution. Such folds have been
termed superfolds (38). For most of these folds, the core structure is highly
symmetrical. Symmetry may imply an easier folding pathway and make con-
vergence more likely than for less symmetrical folds, which often comprise only a
single superfamily (e.g., aspartyl proteases). Examples of superfolds include β/α-
triace phosphate isomerase (TIM)-barrels, Rossmann-like α/β-folds, ferredoxin-like
folds, β-propellers, four-helical up-and-down bundles, Ig-like-β-sandwiches,
β-jelly rolls, OB binding-folds, and SH3-like folds. All are adopted by groups of
seemingly nonhomologous protein, which perform different functions (17,38).

For some of these superfolds, including the β/α-(TIM)-barrels, Rossmann-
like α/β-folds, ferredoxin-like folds, β-propellers, four-helical up-and-down
bundles, proteins from different superfamilies show a tendency to bind ligands
in a common location (even when the nature of the bound atoms is different).
These locations have been termed supersites, as they occur, by definition,
within superfolds (52). Rather than being due to a divergence, supersites are
thought to be a property of the protein fold, such as the alignment of
nonhydrogen-bonded main-chain atoms, or the “helix dipole” (53), that dic-
tates the best location for binding non-protein atoms, regardless of evolution-
ary origin. For some superfolds, it is thus possible to make predictions as to
binding-site locations even in the absence of evidence of a common ancestor.

2.7. Predicting Function from Structural Similarity

Proposals have been made to determine large numbers of protein structures
with the explicit aim of assigning function (54). After analysis of all structures
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within the SCOP database, Russell et al. (52) estimated the fraction of new
structures (ignoring those that are obviously sequence similar to a known struc-
ture) that will currently show binding site or functional similarity via struc-
ture comparison. This estimate (illustrated by a pie chart in Fig. 3) was based
on the distribution of homologous and analogous similarities within SCOP,
and the fraction of superfolds containing supersites (i.e., how often do analogs
have a common binding site?). Currently just under half of new structures will
have accurate binding-site information predicted through structure compari-
son, which highlights the danger of interpreting every structural similarity as
an indication of a common function.

3. Two Examples
Two examples of protein structure similarities are described as below. In

both instances the similarity was not reported by the crystallographers. Both
similarities had clear biological implications that augmented the understand-
ing of protein function following structure determination.

Example 1: β-glucosyltransferase

The structure of β-glucoysltransferease (BGT) was originally reported to
contain two domains of similar topology, each reminiscent of a nucleotide bind-
ing fold (55). Subsequent comparison of BGT to other known structures during

Fig. 3. Pie chart showing how often new structures will have correct binding site
information predicted through structure comparison (adapted from ref. 52).
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two independent studies revealed a close similarity with glycogen phosphory-
lase, GPB (56,57). BGT and GPB differ greatly in length: BGT contains only
351 amino acids compared to GPB’s 842. Despite this, 13 β-strands and 9
α-helices are equivalent (Fig. 4), and 256 pairs of Cα atoms can be superimposed
with a root-mean-square deviation (RMSD) of 3.4 Å (56) (alternatively, 114
Cα atoms can be superimposed with an RMSD of 1.72 Å [57]). The common
fold comprises the entire core BGT structure, with GPB containing numerous
long insertions, which appear to modulate function (see Fig. 4). Superimposi-
tion also reveals striking similarities in the active sites of the two enzymes
(despite surprisingly few residue identities). The observations lead to the sug-
gestion that BGT and GPB share an ancient common ancestor.

Fig. 4. Molscript (68) figure showing the similarity between adenylyl cyclase (PDB
code 1ab8) and the palm domain from DNA polymerase (PDB code 1dpi). The loca-
tion of key aspartyl residues is shown (N.B.: these are serines in the cyclase domain
shown, but are aspartates in the other similar domain forming the active heterodimer).
Equivalent regions in the two structures are shown as ribbons/coil, non equivalent
regions (including the inserted fingers domain) are shown in Cα trace.
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3.2. Example 2: Adenylyl Cyclase

The structure of adenylyl cyclase structure was originally reported to contain a
new protein fold (58). However, subsequent comparison of the structure to the
database found a striking similarity with DNA/RNA polymerases (20) (see Fig. 5).
The core fold adopts the very common ferredoxin-like fold, and although this fold
is seen in many proteins, cyclases and polymerases have a similar binding site, a
similar reaction mechanism, and both contain key Mg2+ binding aspartate residues
(59), known to be critical for polymerase function. The similarity thus provides key
insights into the mechanism of the less-well-understood cyclases.

4. Protein Structure Classifications
Several protein structure classification schemes have become available via

the Internet over the last 5 yr. Below the relative merits of each are discussed.

Fig. 5. Topology diagram showing the similarity between bacterial β-glucosyl-
transferase (BGT; PDB code 1bgu) and glycogen phosphorylase b (GBP; PDB code
1gpb). The figure was adapted from refs. 56 and 57. Dashed lines indicate those regions
in the core of the fold where GPB contains very long insertions relative to BGT.
Descriptions of the function of each insertion are given where known.
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Perhaps the most important general comment is that none of the classifications
give a complete picture. Because all have different strengths, it is best to
consider as many as possible.

4.1. SCOP

SCOP is maintained by Murzin et al. (17) in Cambridge, and is an entirely
manual classification. The class definitions are after Levitt and Chothia (16).
Proteins are generally divided into functional domains, and these are grouped into
a hierarchy consisting of class, fold, superfamily, family, protein, and species.
Proteins are put into the same fold if they have a similar core, which is decided by
manual analysis. The fold definitions in SCOP are more stringent than the other
classifications, and several similar structures are not put into the same fold,
sometimes simply to avoid exceedingly large groups of structures (for example, the
three layered α–β–α Rossmann-fold like structures; A. G. Murzin, personal com-
munication). The subdivisions within each fold (superfamily, family, protein, and
species) group proteins according to the degree of homology. Figure 6 shows a
schematic example of the SCOP classification scheme.

The great strength of SCOP is the very careful assignment of evolutionary
relationships, even in the absence sequence similarity. Proteins in the same

Fig. 6. Example of the classification hierarchy for the SCOP database.
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fold, but in different superfamilies are lacking in evidence for a common
ancestor (analogous folds); those in the same fold and the same superfamily
show some evidence of a common ancestor, which is often based on the features
discussed above.

4.2. CATH

CATH is maintained by Orengo et al. (12) at University College, London.
The classification is partly automated and partly manual, although they work
toward a mostly automated system. They classify proteins according to a hier-
archy that is similar to SCOP, although with some important differences. The
class (C) layer is directly equivalent to that found in SCOP, with the exception
that no distinction between α/β and α + β domains is made. The Architecture
(A) layer, a unique feature of CATH, is an intermediate between class (C) and
fold (or topology, T, in CATH). Protein architecture defines the orientation of
the secondary structures composing the fold, independent of the connectivity
or direction of secondary structure elements. For example, all protein domains
containing a β-barrel regardless of the number of strands forming the barrel, or
the connectivity are placed in a single architecture. The extra level to the hier-
archy makes browsing classifications somewhat easier, and it makes structure
space more continuous than in some of the other classifications. Architecture
also encapsulates many of the descriptions often given with newly solved 3D

Fig. 7. Example of the classification hierarchy for the CATH database (adapted
from ref. 12).
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structures (e.g., the protein contains a β-barrel structure). Figure 7 shows a
schematic example of the CATH classification scheme.

CATH provides excellent peripheral information for every protein structure in
the database. Detailed graphical information as to structural motifs (60), bound
ligands (61), and cross-references to many other data sources are all available.

4.3. FSSP
The FSSP database is provided by Holm and Sander (29) at the European

Bioinformatics Institute (Hinxton, UK). Rather than a classification, FSSP is a
list of protein structural neighbors. After each update of the PDB, each new
protein is compared to all others using sequence and structure comparison
methods. Thus, for each PDB entry, one can obtain a list of sequence and
structure neighbors (the results of a search). There are no discrete boundaries
discerning similarity from dissimilarity. Frequently, proteins that are not
grouped in, e.g., SCOP or CATH, are structural neighbors within FSSP,
reflecting weaker matches not always captured by other classifications that
may, nevertheless, represent biologically meaningful examples (see ref. 48 for
an example). The main drawback to the FSSP database at present is the lack-
of-domain definitions. Multidomain proteins are compared as a whole to the
database, meaning that it may be difficult to see similarities involving a rare
domain when it is connected to one occurring frequently.

4.4. VAST
VAST is a program for structure comparison written by Bryant and co-workers

(32) at the National Institutes of Health NCBI, and forms the basis for adding
structural information to the ENTREZ database facility (62). Like FSSP, this
database is more a list of similarities than a classification, with the same neigh-
boring system found throughout the ENTREZ system. It has the advantages of
being updated immediately following protein databank updates, and because
of its location in ENTREZ, it contains excellent links to protein and nucleotide
sequence data, and to Medline literature references.

4.5. 3Dee
The Protein Domains Database (PDB) (Barton et al., European Bioinformatics

Institute, in press), provides a set of carefully defined protein domains for the
entire protein databank, a structural classification and links to SCOP and other
databases. In addition to providing a graphical view of superimpositions, 3DEE
also provides the unique ability to view different domain assignments.

5. Notes
1. Domain assignment: Repeating units in a structure need not define individual

domains, as many single domain structures possess internal symmetry, e.g., the
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β-trefoils, which contain three similar trefoil motifs that form a single domain. It
is unlikely that the motifs could fold or be functionally active in isolation.

2. Class assignment: Assign class based on the core structure. For example, if a
protein contains a β-barrel with numerous helical insertions, then it is usually
best classified as all-β.

3. Fold assignment: If you have similarities involving separate domains, attempt to
extend them by adding domains. For example, BGT (see Section 3), was origi-
nally commented to have two Rossmann fold domains (55). However, both struc-
tural domains can be superimposed on glycogen phosphorylase (56,57),
indicating an ancient common ancestor.

4. Superfamily assignment:
a. The structure with the highest degree of structural similarity to a probe

structure may not necessarily be the best candidate for superfamily or func-
tional similarity (see adenylyl cyclase and DNA polymerase (20) in the
NCBI–VAST database [63]). Partly this can be due to limitations in the struc-
ture comparison method.

b. Even homologous protein structures can have different functions (e.g., refs.
43,64,65). Consider, e.g., the similarity between sonic hedgehog (a factor)
and DD carboxypeptidase (an enzyme) (65).

c. A common binding-site location is not sufficient to group proteins into the
same superfamily, as some proteins appear to show binding-site similarity in
the absence of homology (e.g., the α/β-barrels; see refs. 52,66).

5. Classifications:

SCOP Advantages
a. Classification is done manually, and with careful consideration of the literature.
b. Includes classifications for structures for which no coordinates are publicly

available.
c. Evolutionary classification is better than any other system.
d. Interactive interface to local copy of protein databank (via RasMol (67]).

SCOP Limitations
a. Groupings at the fold level are fairly stringent, meaning that similar structures

are often not grouped together. Note that this means that proteins belonging to
different folds in SCOP can still show some degree of structural similarity (e.g.,
Ig folds and cupredoxins).

b. Fold/Superfamily definitions are not static. This is also an advantage, as
misclassifications are corrected when more information becomes available.

c. Some folds have been studied in more detail than others.
d. Updates only occur about twice annually.
e. No facility for viewing alignments or superimpositions to date.

CATH Advantages
a. Groupings at the fold level are more lenient than in SCOP, and more useful for

tasks like the assessment of protein fold recognition.
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b. Architecture division makes classification easier to follow.
c. Excellent peripheral resources (e.g., Rasmol, ligand binding, structural charac-

terization, and enzyme-classification annotation).
d. Careful assignment of proteins into domains.

CATH Limitations

a. Updates are infrequent.
b. No facility for viewing alignments or superimpositions to date.
c. Domains are often structural, which means that some fold/superfamily similari-

ties are missed (e.g., the trypsin-like serine proteases).

FSSP/DALI Advantages

a. Fully automated, and as up to date as the PDB.
b. Provides good interactive interface to view both superimpositions and alignments

of structures.
c. Ability to search the PDB with a new structure.
d. Statistical measure provides reliable significance for each similarity.

FSSP/DALI Limitations

a. Fully automated, thus can contain some misclassifications owing to lack of human
interpretation.

b. Currently, the lack of domain assignments can make classification of multidomain
proteins difficult.

VAST/NCBI Advantages

a. Fully automated, and as up to date as the protein databank.
b. Excellent crossreferencing to protein databank, protein/DNA sequence and

literature data through the Entrez system (62).
c. Statistical measure provides reliable significance for each similarity.

VAST/NCBI Limitations

a. Similarities are detected based on arrangements of secondary-structures, which
means some similarities may be missed owing to poor definitions.

b. No domain definitions at present.
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Appendix URLs

Structural Classifications

SCOP (MRC/LMB Cambridge, UK): http://scop.mrc-lmb.cam.ac.uk/scop
(mirrors around the world)

CATH (University College, London, UK): http://www.biochem.ucl.ac.uk/
bsm/cath

FSSP/DALI (European Bioinformatics Institute, Cambridge, UK): http://
www2.ebi.ac.uk/dali/fssp/fssp.html

NCBI/VAST (NCBI, NIH, Bethesda, MD): http://www.ncbi.nlm.nih.gov/
Structure/vast.html

DDBASE (Department of Biochemistry, Cambridge University, UK): http://
www-cryst.bioc.cam.ac.uk/~ddbase/

3DEE (EBI, Cambridge, UK): http://circinus.ebi.ac.uk:8080/3Dee/
help/help_intro.html

Algorithms

Data

Protein Databank (PDB): http://www.pdb.bnl.gov/

Secondary Structure Assignment

DSSP: ftp://ftp.ebi.ac.uk/pub/software/unix/dssp/
STRIDE: http://www.embl-heidelberg.de/stride/stride.html

Domain Assignment

DAD algorithm: http://www.icnet.uk/bmm/domains/assign.html
calculates domains given a set of coordinates

DOMAK program: http://barton.ebi.ac.uk/ downloadable program for
calculating domains

Structure–Database Comparison

DALI: http://www2.ebi.ac.uk/dali/dali.html — compares a query set
of protein coordinates to a database of known structures

SSAP: http://www.biochem.ucl.ac.uk/~orengo/ssap.html — infor-
mation on downloading the SSAP program for protein structure alignment and
superimposition.

SARF: http://www-lmmb.ncifcrf.gov/~nicka/run2.html — compare
two protein structures from the protein databank.

SARF: http://www-lmmb.ncifcrf.gov/~nicka/prerun.html— down-
load SARF2 program for structure comparison.

STAMP: http://barton.ebi.ac.uk/ download STAMP program for structure
comparison.
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Modeling Transmembrane Helix Bundles
by Restrained MD Simulations

Mark S. P. Sansom and Leo Davison

1. Introduction
Integral membrane proteins are a major challenge for protein–structure pre-

diction. It is estimated that about a third of genes code for membrane proteins
(1), and yet high-resolution structures are known for only a handful of these.
Furthermore, technical problems of protein expression and crystallization sug-
gest that an explosive expansion in the number of membrane–protein–structure
determinations is still in the future. In this chapter, attention is restricted to the
major class of membrane proteins, i.e., those formed by bundles of transmem-
brane (TM) α-helices. Prediction methods also exist for those membrane pro-
teins (e.g., porins and some bacterial toxins) that are formed by β-barrels (Kay
Diederichs, personal communication; also see website: http://
loop.biologie.uni-konstanz.de/~kay/om_topo_predict2.html).
However, these methods are not applicable to the majority of membrane pro-
teins and so are not discussed here.

One approach to modeling TM domains is based on two-stage (2) membrane
protein folding (see Fig. 1). In the first stage of folding, TM regions are inserted
into the membrane and form α-helices as they are inserted. Such TM helices lie
approximately perpendicular to the plane of the lipid bilayer. The TM helices then
aggregate within the plane of the membrane during the second stage of folding to
form a TM helix bundle, which is the membrane-spanning domain of the protein.
Mimicking this model of the folding process, structure prediction may also proceed
via two main stages: (1) prediction of TM secondary-structure and topology, i.e., of
the location of helices within the sequence and of their orientation (up/down)
relative to the bilayer plane; followed by (2) prediction of how the TM helices
pack together within the bilayer plane to form a TM helix bundle.
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One problem with prediction of membrane protein structures is the small
number (approx 20) of high-resolution structures that are known. This seri-
ously impedes development of rules or empirical potentials to predict the pack-
ing of TM helices. Thus, ab initio prediction of TM helix packing in the absence
of additional experimental data remains difficult in all but the simplest cases.
However, restraints on possible modes of TM helix packing within a given
membrane protein (or family of membrane proteins) may be obtained, either
from analysis of multiply aligned sequences and/or from analysis of experi-
mental protein chemistry and mutagenesis data. Furthermore, advances in elec-
tron microscopy (EM) mean that for an increasing number of membrane

Fig. 1. Flow diagrams of two-stage folding model (left-hand side) vs modeling pro-
cess (right-hand side) for a TM helix bundle. The gray box encompasses those stages
of modeling that are the main topics of this chapter.
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proteins, low-resolution (9–6 Å) structures are available, which can provide
restraints on the positions and orientations of TM helices. A number of compu-
tational techniques may be used to model packing of TM helices subject to
such restraints. In this chapter we describe a simulated annealing/molecular
dynamics (SA/MD) procedure, which is relatively simple to implement using
standard modeling/simulation packages such as Xplor (3).

At this stage it is important to stress the role of prediction of TM helix bundles.
In other than the simplest cases, such methods are unlikely to yield a unique
model of a given membrane protein. Instead, they yield a number of alternative
possible models, which differ from one another to some extent depending on
the nature and number of restraints employed. Such models are not definitive
structures. However, they do integrate available structural data and extend the
effective resolution of such data. An important role of TM helix bundle models
is to provide a conceptual framework facilitating design of further experiments
to probe the structure–function relationships of membrane proteins.

As an illustration of the methods to be described, we consider modeling the
TM helix bundle of an aquaporin (Aqp). The aquaporins are a family of inte-
gral membrane proteins that transport water across cell membranes (4,5). Sec-
ondary structure and topology prediction studies, supported by a range of
experimental data (6–8), suggest that the Aqp monomer consists of six TM
helices (see Fig. 2). Recently this has been confirmed by low-resolution (6 Å)

Fig. 2. Proposed topology of Aqp (see ref. 6). The six predicted TM helices (H1–H6)
are shown superimposed on the bilayer (gray, stippled). The two loops containing the
NPA motifs are shown folded back into the bilayer region.
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EM images of two-dimensional (2D) crystals of Aqp (9–11). In combination
with sequence analysis, such EM images provide powerful restraints on the
packing of the six TM helices within Aqp models.

2. Sequence Analysis
The first stage of modeling a TM helix bundle is to predict the positions

within the sequence of the TM helices. This may be achieved using a single
protein sequence. However, it seems that the accuracy of secondary structure
prediction is improved if multiple aligned sequences for a number of related
membrane proteins are used. Furthermore, alignment of multiple sequences is
essential if sequence periodicity analysis (see below) is to be employed to
derive restraints for helix bundle modeling. Standard alignment techniques may
be readily applied to membrane proteins (12). Note that one may wish to pass
through sequence alignment and TM helix prediction twice, in that it is advisable
(and physically reasonable) to use higher gap penalties within predicted TM
helices than in the interhelical loops. Methods for prediction of secondary struc-
ture are covered elsewhere in this volume (13) and so is not discussed in any
detail here. Several secondary structure prediction methods are available for
membrane proteins, mainly as Web-based tools (see Table 1). Because of the
small number of three-dimensional (3D) structures for integral membrane pro-
teins it is difficult to be certain of the absolute and relative accuracies of these
methods. However, it is unlikely that prediction of TM secondary structure is
likely to be less than that of secondary structure prediction in general (14), and
so an accuracy of approx 80% may be reasonably assumed. As with all such
predictions, a problem for subsequent modeling is that the “ends” of the heli-
ces are predicted less accurately. Comparisons of different prediction methods
applied to the same sequence, and of related sequences analyzed using the same
method reveal substantial variability in this respect.

We illustrate TM helix prediction with the analysis of human Aqp1 using the
methods listed in Table 1. They vary in the number of TM helices predicted
between five (PHDHTM) and seven (MEMSAT and TOPPRED2). However,
the consensus appears to be six TM helices. The major discrepancies cluster
around the first NPA sequence motif, which may correspond with the
suggestion that this forms a loop that folds back into the membrane. From the
EM images (see below; [9,10]), there appear to be six TM helices. Thus, this
example shows that even though the overall success rate for TM helix
prediction is approx 85%, problems may occur for an individual protein.
Furthermore, even though the PHDtopology, DAS, and TMAP methods all
predict six TM helices, they disagree with respect to the start/end positions of
those helices in the sequence. In particular, PHDtopology seems to predict
rather shorter TM helices than some of the other methods (see Fig. 3).
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Table 1
TM Secondary Structure and Topology Prediction Methods

Program Method Website Refs.

MEMSAT Statistical tables plus http://globin.bio.warwick.ac.uk/~jones/ (55)
expectation maximization memsat.html

TMAP Multiple sequence alignments http://www.embl-heidelberg.de/tmap/ (56,57)
tmap-info.html

PHDHMT Neural network http://www.embl-heidelberg.de/ (58)
predictprotein

PHDTOPOLOGY Neural network plus http://www.embl-heidelberg.de/ (51)
dynamic programming predictprotein

TOPPRED2 Hydrophobicity analysis plus http://www.biokemi.su.se/~server/toppred2 (59,60)
the “positive inside” rule

DAS Dense alignment surface http://www.biokemi.su.se/~server/DAS (61)
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3. Restraints for Modeling
Before attempting to pack together the predicted TM helices, restraints on

their positions and orientations are needed. These may be divided into: (1)
knowledge-based restraints, (2) restraints derived from sequence analysis, and
(3) restraints based on experimental data. Such restraints may be used to deter-
mine starting configuration(s) for helix-packing simulations, and restrict
interhelix motions in such simulations.

In principle, restraints derived from statistical analyzes of known structures
of integral membrane proteins may prove to be the most valuable for guiding
helix-packing simulations. However, the paucity of membrane protein struc-
tures means that, at present, such restraints are relatively weak. For example,
an analysis of 45 TM helices (making 88 helix-packing interactions) in three
independent membrane–protein structures (15) has revealed that TM helices
pack against their neighbors in the sequence. This considerably reduces the
number of possible packing arrangements that need to be considered. It would
also seem reasonable that, on grounds of “compactness,” the number of TM
helix–helix interactions should be maximized. However, the latter consider-
ation is difficult to be certain of on theoretical grounds, and may be biased by
the classes of membrane protein for which crystallographic structures have
been determined.

Fig. 3. Topology prediction for human Aqp1. The six TM helices predicted by
PHDtopology (gray boxes above the sequence) and by a combination of ΤΜΑP and
ΜΕΜSΑΤ (white boxes below sequence) are shown superimposed on the human Aqp1
sequence. The NPA motifs are highlighted in bold italics. For each helix, residues
defining the conserved, inward-facing surface are indicated by a surrounding ellipse
(0; see also Table 3).
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The second class of restraints, based on sequence analysis, provide informa-
tion on relative helix orientations within a bundle. A number of analyses (16,17)
of multiply aligned sequences of those membrane proteins for which a 3D struc-
tures is known suggest that residues within the interior of the helix bundle are
more highly conserved than those of the exterior (lipid-facing) surfaces of the
helices. This is seen as a periodicity in conservation/variability of aligned resi-
dues along the length of a predicted TM helix (see Fig. 4). Such periodicity can
be detected via Fourier analysis as in PERSCAN (17). Application of such
methods to multiply aligned sequences of homologous TM helices for a family
of membrane proteins can provide powerful restraints on which face of a pre-
dicted helix should point out toward the surrounding lipid environment and
which face should point in toward the center of the helix bundle.

The final class of restraints arises from experimental data on a given mem-
brane protein. These may be subdivided into “hard” restraints, derived from

Fig. 4. Periodicity analysis of aligned multiple sequence of TM helices. (A) The
aligned sequences for a predicted TM helix. The vertical gray stripes represent the
most variable (V) residue positions in the helix. (B) The helix seen end on, with
the gray sector representing the variable face of the helix. (C) The same helix as part
of a TM helix bundle, with the variable (gray) face of the helix pointing out into the
surrounding hydrophobic environment made up of lipid acyl tails.
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low-resolution structural data (EM and solid-state nuclear magnetic resonance
[NMR]), and “soft” restraints, derived from e.g., chemical labeling and site-
directed mutagenesis experiments. EM data, typically at 9–6 Å resolution, can
restrain the positions of the centers and long axes of TM helices. Solid-state
NMR approaches (18,19), although in their infancy, can provide distance
restraints between pairs of atoms, located either within the same TM helix (thus
reinforcing secondary-structure predictions) or in different TM helices, thus
restraining possible packing interactions for a helix pair. Site-directed mutagen-
esis, in particular, the substitution of a selected residue by cysteine, may be
combined with protein chemistry. For example, a cysteine may be reacted with
probe reagents or labeled with spectroscopic reporter groups, providing infor-
mation on lipid-exposed residues of helices, e.g. Alternatively, pairs of cys-
teine residues may be introduced, and patterns of disulphide-bridge formation
analyzed in terms of helix–helix interactions present within the intact protein.

For a number of intensively studied membrane proteins, e.g., rhodopsin, a
plethora of data exist. In this case, the interactions of the TM helices are quite
well defined (20) and restrained Monte Carlo methods may be used to obtain a
unique (or near unique — see below) model of the packing of the TM helices.
However, for most membrane proteins there are considerably fewer experi-
mental data, and so the resultant models are inevitably rather less precise.

We now consider the restraints available for Aqp1. As discussed earlier, sec-
ondary structure prediction studies and experimental topology data (6,7) sug-
gest six TM helices, with their N- and C-termini on the intracellular face of the
membrane. This is supported by Fourier transform infrared spectroscopic stud-
ies, which suggest a high α-helical content, with the helices approximately
perpendicular to the bilayer plane (and hence membrane spanning), but with an
average tilt of 20–25° relative to the bilayer normal (21). Periodicity analysis
of multiply aligned sequences for the predicted TM helices yields a surpris-
ingly clear-cut assignment of interior and exterior surfaces for each of the six
helices ([22]; see Fig. 3). Unfortunately, there are not many protein chemistry–
mutagenesis data that place restraints on Aqp models, other than the sugges-
tion that the two NPA-containing loops are involved in the water-transport
mechanism and may be inserted “back into” the membrane. Significantly, low-
resolution EM images provide powerful restraints on the positions and orienta-
tions of the six TM helices. Taken together, the various restraints are sufficient
to enable prediction of a relatively small number of possible models for the
Aqp1 TM helix bundle.

4. Restrained MD Simulations
The following sections provide a description of the use of simulated anneal-

ing (SA)/molecular dynamics (MD) (implemented using Xplor [3]) for gener-
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ating TM helix bundle models. This is illustrated via application to modeling a
six-TM helix bundle for Aqp1, using the restraints described earlier.

4.1. Cα Templates

The first stage of SA/MD is to define a Cα template. This provides an initial
model of the TM helix bundle as a set of idealized helices made up of just Cα
atoms. The starting positions and orientations of these idealized helices embody
the initial assumptions and the restraints on the models. For a simple helix
bundle, e.g., pores formed by symmetrical assemblies of N identical TM
helices, then an initial Cα template is straightforward to devise, provided that
rotational symmetry about the central pore axis is assumed. If, as is the case for
Aqp-1, a low-resolution EM structure is available, this may be used to define
the Cα template. However, if one is interested in a complex membrane protein
(e.g., a transporter molecule with 12 TM helices) and no EM images are
available, then it may be necessary to use a Monte Carlo search method (23,24)
to generate a family of possible Cα templates that are compatible with the
restraints.

For Aqp1, the Cα template was generated as follows. From the EM images it
is evident that the six helices lie at the corners of an irregular hexagon. Thus, in
the Cα template, six idealized helices were positioned on a regular hexagon
with an interaxial separation of 9.4 Å between adjacent helices (see Fig. 5).
The helices were oriented such that their residue conserved faces (see above

Fig. 5. Possible Cα templates for Aqp models. The circles represent the initial
positions of the idealized α-helices. Filled circles have their C-terminus closest to the
viewer, empty circles their N-terminus. The templates for Models-1 and -12 (see
Table 2) are shown.
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and Fig. 3) were pointing toward the center of the bundle. In all Cα templates
the N- and C-termini were intracellular. Furthermore, in accordance with the
analysis of, e.g., ref. 15 and with the EM images, Cα templates had the helices
placed at the apices of the hexagon in either a clockwise or counterclockwise
fashion (see Fig. 5), i.e., sequence-adjacent helices were spatially adjacent.
Thus, 12 Cα templates were possible (see Table 2), and each of these was used
as a starting model for generation of an ensemble of 25 structures by models
using SA/MD.

4.2. Implementing Restraints

Three classes of restraint have been used: (1) intrahelix distance restraints,
to maintain α-helicity of the TM segments, (2) interhelix distance restraints, to
maintain helix orientations identified by periodicity analysis, and (3) “target”
restraints on helices, to maintain the positions and orientations seen in the EM
images. All three classes of restraint may be implemented by adding terms to
the potential energy function used in the MD simulations:

E = ECOVALENT + ENONBONDED + ERESTRAINT (1)

Restraint energies, ERESTRAINT, may take a variety of forms. However, in the
current application distance restraints were used. Distance restraints may act

Table 2
Cα Templates for Aqp Models

Model A B C D E F

1 H1 H2 H3 H4 H5 H6 Clockwise
2 H6 H1 H2 H3 H4 H5 Clockwise
3 H5 H6 H1 H2 H3 H4 Clockwise
4 H4 H5 H6 H1 H2 H3 Clockwise
5 H3 H4 H5 H6 H1 H2 Clockwise
6 H2 H3 H4 H5 H6 H1 Clockwise
7 H1 H6 H5 H4 H3 H2 Counterclockwise
8 H2 H1 H6 H5 H4 H3 Counterclockwise
9 H3 H2 H1 H6 H5 H4 Counterclockwise

10 H4 H3 H2 H1 H6 H5 Counterclockwise
11 H5 H4 H3 H2 H1 H6 Counterclockwise
12 H6 H5 H4 H3 H2 H1 Counterclockwise

The 12 possible Cα templates are defined in terms of which helix in the model (H1–H6)
corresponds to which helix (A– F) in the EM images (see Fig. 5). The “clockwise” models
have helices H1–H6 arranged in a clockwise manner when looking down on the model from
extracellular toward intracellular. The boxed models have helices A, C, and E of the EM images
with their N-termini inside the cell.
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either between pairs of atoms within a model structure (as is the case for both
the intrahelix and the interhelix distance restraints) or between a pair of corre-
sponding atoms in a model structure and a “target” structure, where the latter
represents, e.g., a low-resolution structure derived from EM images. For
example, a distance restraint between atom i and atom j may take the form:

ERESTRAINT = K(dij – dTARGET)2 (2)

where dij is the distance between the two restrained atoms and dTARGET is the
target distance for the restraint. The scale factor K balances the experimentally
derived restraints and the remainder of the energy function.

Intrahelix distance restraints were used to maintain α-helical geometry. They
were between the carbonyl O of residue i and the amide H of residue i + 4.
Target distances for these restraints were based α-helical H-bonding geom-
etries observed in crystal structures of proteins (25). Interhelix distance
restraints were between the Cβ atoms of inward-facing residues (as defined by
periodicity analysis — see above) of helices on opposite sides of the hexameric
bundle. Such restraints oriented the sequence-conserved face of each helix
toward the center of the bundle. Appropriate distances for such restraints (see
Table 3) were derived in an interactive fashion via construction of preliminary
models. A number of SA/MD studies suggested that the pattern of such
restraints (i.e., the pairs of side chains that are restrained) was more important
than the exact value of the dTARGET employed.

“Target” restraints (see Fig. 6) were derived from low resolution EM images
. These images provided approximate coordinates for 6 rods (labeled A–F, see
Fig. 5) of (presumably α-helical) density, sectioned 7 Å above and below the
midplane (z = 0, where the z-axis is perpendicular to the plane of the bilayer)
of the membrane. For each of Models-1 to -12 (i.e., each Cα template, see
Table 2) the midpoint of the Cα atoms of an N-terminal and C-terminal section

Table 3
Interhelix Restraints — Model 7

Helix i Helix j Distance (Å)

H1 F10 H4 T157 12.2
H2 I60 H5 V176 14.2
H3 Y97 H6 A223 12.9
H4 S135 H1 A32 12.2
H5 G173 H2 A64 14.2
H6 F212 H3 A108 12.9

Restraints were applied between the Cβ atoms of listed pairs of residues,
during stage 2 of SA/MD.
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of each TM helix was restrained to minimize their distances from the corre-
sponding sections of density. For example, for Model-1, the midpoint of the Cα
atoms of residues 6 to 12 of H1 was restrained to the z = –7 Å section of rod A
and the midpoint of the Cα atoms of residues 16–22 of H1 was restrained to the
z = + 7 Å section of rod A. In this way, helices H1–H6 were restrained to lie in

Fig. 6. Target restraints derived from EM images of Aqp1. Each rod of density
in the EM image (A–F) is represented by the center of the density at z = –7 Å (open
circles) and the center of the density at z = + 7 Å (filled circles). The view in A is down
a perpendicular to the bilayer, from outside toward inside the cell. The view in B is
perpendicular to that in A, with the extracellular side of the membrane at the top of the
diagram. The target restraints are shown for Model 7, for which density rod A corre-
sponds to helix H1, rod B to H6, and so on, as indicated.
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the positions of rods A–F (with the correspondences as defined in Table 2) in
each of the models 1–12.

4.3. Two Stage SA/MD Protocol

Having defined restraint terms to be added to a potential energy function, an
MD simulation protocol is needed to search for helix-bundle geometries com-
patible with the restraints. Simulated annealing protocols (26) have been used
with some success in protein modeling (27). For modeling TM helix bundles we
have employed simulated annealing via restrained molecular dynamics (SA/
MD; Fig. 7). This is based on methods for NMR structure determination (28).
An early use of this method was the successful prediction of helix packing within
the GCN4 leucine zipper helix dimer (29,30). For membrane proteins, a related
approach has been to predict the structure of a homodimer of TM helices of
glycophorin (31), and a homopentamer of TM helices of phospholamban (32).

Fig. 7. Flow diagram of SA/MD. From each Cα template, stage 1 yields, e.g., 5
structures and stage 2 yields 5 × 5 structures.
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In SA/MD the temperature of the simulation is used to control the sampling
of different conformations. By starting at a high temperature and then progres-
sively decreasing the temperature to 300 K, larger changes in conformation are
possible at the start of the simulation, whereas toward the end of the simulation
only much smaller changes occur. Application of SA/MD to ion channel mod-
els and related membrane proteins has been described in detail in several papers
(33–39). The starting point of stage 1 of SA/MD is a Cα template (see above),
which embodies underlying assumptions concerning the nature of the TM helix
bundle. The other backbone and side-chain atoms are superimposed on the Cα
atoms of the corresponding residue. These atoms “explode” from the Cα atoms,
the positions of which remain fixed throughout stage 1. Annealing starts at
1000 K, during which weights for bond lengths and bond angles, and subse-
quently for planarity and chirality, are gradually increased. A repulsive van der
Waals term is slowly introduced after an initial delay. Once the scale factors of
these components of the empirical energy function reach their final values, the
system is cooled from 1000–300 K, in steps of 10 K and 0.5 ps. During this
cooling the van der Waals radii are reduced to 80% of their standard values in
order to enable atoms to “pass by” one another. Electrostatic terms are not
included during stage 1. Typically five structures are generated for each Cα
template, corresponding to multiple runs of the process with different random
number seeds.

Structures from stage 1 are each subjected to five molecular dynamics runs,
e.g., (stage 2), resulting in an ensemble of 5 × 5 = 25 final structures from a
single Cα template. Initial velocities are assigned corresponding to 500 K. The
distance restraints are introduced at this point, and the Cα positional constraints
are removed. Also during stage 2 electrostatic interactions are introduced into
the potential energy function. On reaching 300 K, a 5-ps burst of constant tem-
perature dynamics is performed, followed by 1000 steps of conjugate gradient
energy minimization.

An important practical consideration is how to implement the foregoing
methods. For SA/MD the program XPLOR (3), developed to implement MD
simulations for X-ray and NMR determination of protein structures, is flexible
and easy to use. However, there are a number of other MD programs (e.g.,
CHARMM [40], AMBER [41,42], GROMOS [43,44], and GROMACS [45]),
which could be used in principle.

The application of SA/MD to generate an ensemble of 25 structures for
Model-1 of Aqp1 is illustrated in Fig. 8. Note the variation in structures within
the final ensemble (see Fig. 8C). Analysis of such variation provides an
indication of the extent to which the final structure is remains underdetermined
by the restraints. To proceed further with modeling, it may be necessary to
select a single structure from such an ensemble. It is difficult to define a “best”
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way in which to do this. One might take the structure that has the lowest root-
mean-square deviation from the ensemble average structure. An alternative is
to take the structure that best satisfies the distance restraints.

4.4. Refining Initial Models

The models described so far consist only of a TM helix bundle. However,
for Aqp (and many other membrane proteins), mutagenesis and other data indi-
cate that the interhelix loops may play important functional roles. It is there-
fore desirable to include at least a preliminary model of such interhelix loops.
Other ways in which one might wish to refine TN helix bundle models include
incorporation of water within transbilayer “pores,” and embedding of models
in a lipid bilayer.

Fig. 8. Stages of SA/MD (illustrated for Model-7). (A) Cα template. (B) Structure
from stage 1. (C) Superimposed Cα traces of 5 structures from the ensemble of 25
structures generated by stage 2. (D) — A single structure from the final ensemble.
Diagrams were drawn using MOLSCRIPT (62) .
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Modeling surface loops of proteins is a nontrivial task. It is particularly dif-
ficult for membrane proteins because there are few experimental structures on
which to base such models. However, a number of methods are available for
modeling loops (46) and we briefly discuss one of them as applied to Model-7
of Aqp1. Examination of the predicted topology for Aqp1 (see Fig. 3) reveals
that the loops between H1 and H2, and between H4 and H5 are relatively short.
It therefore is feasible to model these. Furthermore, it has been suggested on
the basis of site-directed mutagenesis and related studies (6,7) that the loops
containing the NPA motifs fold back into the bilayer (the “hourglass” model)
and probably contribute to the water-permeation pathway. Density in the
EM images, approximately in the center of the helix bundle, has been tenta-
tively identified with these NPA-loops (9,10). So, these two NPA-loops were
also included in the model, using the EM suggestion of their locations as weak
restraints. The loop between H3 and H4 is rather long and there are no
restraints that may be applied. Therefore, it has not (yet) been incorporated
into the Aqp1 model.

For the short interhelical loops (which are believed to lie on the surface), the
only restraint is the (modeled) position of the two helix termini to which the
loops are attached. For the reentrant NPA-loops a weak “target” restraint may
be applied to take into account the suggestions from the EM images. No
secondary structure (e.g., intrahelical) restraints were applied to the loops.
Although one might restrain backbone dihedrals of loops to values from analy-
sis of experimental structures or from conformational searching, this has not
been done in the current study. The approach adopted was as follows. The Cα
coordinates of one selected structure from each ensemble of models (i.e., one
structure each for Models-1 to -12) was used as a new Cα template. Cα tem-
plate coordinates for the H1–H2 and H4–H5 loops were calculated by taking
evenly spaced points along a vector linking the Cα of the C-terminus of H1 (or
H4) and the Cα of the N-terminus of H2 (or H5). Coordinates for each Cα atom
of the loop were generated using a Gaussian distribution (standard deviation =
1 Å) centered on the corresponding point on the C-terminus-to-N-terminus vec-
tor. For the NPA-loops a similar procedure was used. Evenly spaced points
along a V-shape projecting into the center of the helix bundle (with the apex of
the V in the position approximately indicated by the EM images) were used.
The new Cα template was then input to a further run of the SA/MD procedure.
During stage 2, the NPA-containing loops were restrained to lie close to “tar-
get” coordinates derived from the published EM images (10). The H1–H2 and
H4–H5 loops were not restrained.

An example of a model derived by this approach (Model-7) is shown in Fig. 9.
It can be seen that the two NPA-loops are folded back into the center of the
six helix bundle in a quasisymmetrical fashion, as suggested in the original
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“hourglass” model (6). Both NPA-loops adopt a turn conformation in their cen-
tral region. The H1–H2 and H4–H5 loops lie on surface of the molecule. The
shorter H4–H5 loop adopts a turn conformation, whereas the longer H1–H2
loop is rather more irregular. Note that loops were only added to 9 of the 12
models defined in Table 2 (Models-1, -3, -4, -6, -7, -8, -9, -10, and -12).
Examination of the other models (Models-2, -5, and -11) revealed that the
NPA-loops could not be added to them in a manner compatible with the
restraints. Thus, a total of 25 × 9 = 225 possible structures for the Aqp1 TM
helix bundle plus loops were produced.

The problem remains of how to rank the nine models (and how to rank the
25 structures within each model ensemble). This is problematic. For example,
mean-force pairwise residue potentials, which might be used to “score” mod-

Fig. 9. Model-7 of the Aqp1 TM helix bundle, including the H1–H2, H4–H5, and
NPA-containing loops. The view is perpendicular to the plane of the bilayer, with the
extracellular face of the membrane at the top of the diagram.
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els, are as yet not possible for integral membrane proteins. In the absence of a
“structural” score for membrane protein models, all nine models must be pre-
sented as candidate structures for Aqp1, which may be used to aid design of
further experiments. One may examine the models as to their possible func-
tional implications. In particular, Aqp is believed to form a water-selective pore.
Therefore, the dimensions of the pore running through the center of the (loop-
containing) models are functionally relevant. Pore radius profiles may be evalu-
ated using, e.g., HOLE (47,48). Such analysis suggested that Model-7 was a
functionally plausible candidate for the Aqp1 structure. In particular, it had a
continuous pore through the center of the molecule, with a minimum radius
only a little less than that of a water molecule (1.6 Å).

Having identified a possible pore structure, it may be “refined” by more
extended MD simulations. The SA/MD simulations were performed in vacuo.
However, it is likely that complex, anisotropic environment (lipid bilayer plus
water) may affect the conformations of interhelix loops, e.g. Two possible
approaches may be taken to the refinement of the Aqp1 model by extended MD
simulations. One is to add water molecules within the central pore and as
approximately hemispherical caps at the two ends of the molecule and then run
in vacuo MD simulations of combined the (pore + water) system. The alterna-
tive is to embed the Aqp1 model in a lipid bilayer, solvate with water within the
pore and on either face of the bilayer, and then run nanosecond MD simula-
tions of the (pore + water + bilayer) system. The latter is preferable, and is
within the range of current computer power. However, this takes us away from
prediction per se, in the direction of simulations based on model structures,
and are not discussed further. The interested reader is referred to a number of
reviews on this topic (49,50).

5. Notes
In this section we discuss some of problems of this approach to modeling

TM helix bundles. The main difficulty is that of verifying this (or any) method,
because of the lack of a sufficient number of high-resolution structures for
integral membrane proteins. This situation will only improve as further struc-
tures are determined. However, at current rates of progress, it may be awhile
before there is a sufficiently large database of membrane protein structures to
permit development of knowledge-based approaches to prediction for these
membrane proteins. In the meantime, perhaps the only way to proceed is to
apply structure prediction methods to those membrane proteins for which low-
resolution structural data are available, and to see how such models fare as
higher-resolution structural data emerge.

Secondary structure prediction and topology predictions appear to be quite
reliable for the TM helices (51). However, from the perspective of modeling
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membrane protein folds, a problem lies is the imprecision of prediction of the
termini of TM helices. It seems unlikely that purely sequence-based approaches
will make further progress with this problem. A possible solution may lie in
analysis of extended MD simulations of (TM helix + water + bilayer) systems
(52,53), which will provide improved physicochemical insights into the fac-
tors driving TM regions to adopt a helical conformation. In particular, we need
to know more about the conformational preferences of amino acids and in the
“interfacial” region that lies between the hydrophobic bilayer core and the bulk
water facing a bilayer.

A further problem in modeling TM helix bundles is the “softness” of the
restraints employed to orient the helices relative to one another. Although peri-
odicity analysis of aligned TM sequences may enable identification of the
inner/outer faces of TM helices, one cannot be certain how strongly to apply a
restraint derived from such analysis. This may improve as such analysis is
applied to a greater number of membrane proteins. However, it is not only
those restraints derived from sequence analysis that are “soft.” By definition,
low-resolution EM images do not provide accurate positions for helices. In
terms of “hard” restraints, the best hope for the future may lie in solid-state
NMR methods. Results from such studies (18,19) suggest that accurate
estimates of distances between pairs of side-chain atoms may be obtained,
which would greatly increase one’s confidence in restrained SA/MD models.

The main problem with SA/MD as a technique lies in the complexity of
setting up (multiple) Cα templates. As the number of TM helices increases
(e.g., many transport proteins seem to contain approx 12 TM helices [54]), so
does the number of possible Cα templates. This presents the difficulty of hav-
ing to generate large numbers of possible models, and of having to evaluate
and rank even larger numbers of structures. Even though SA/MD is quite fast
(e.g., running Xplor on a Silicon Graphics R1000K 195-MHz processor takes
approx 25 min of computer time to generate a single Aqp structure), with a
large number of possible Cα templates the size of the problem is daunting. A
solution is to use the restraints to preselect more probable Cα templates using,
e.g., a Monte Carlo search method that treats TM helices as rigid rods or cylin-
ders (23,24). However, there is a problem with such an approach, i.e., that of
“mirror images.” If helices are approximated as rods or cylinders, then for a
given set of distance restraints there will always be at least two optimum struc-
tures, which are mirror images of one another. Once an all-atom model is gen-
erated, then if the distance restraints are sufficiently exact, this problem should
disappear. However, it is unlikely that even restraints from solid-state NMR
data will fully resolve this problem. Possibly the only way in which one may
confidently choose between two possible TM helix bundles related to one
another by (approximate) mirror image symmetry is on the basis of EM images.
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If such images are not available, than at least two possible models generated by
MC searches will have to be converted to all atom models by SA/MD and
subsequently refined by extended MD simulations as we discussed.
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Predictive Models of Protein-Active Sites

D. Eric Walters

1. Introduction
For many proteins, we do not have enough information to even attempt to

predict the three-dimensional (3D) structure. Many drug receptors, e.g., are
membrane-bound proteins for which there is not a crystal structure of any
homologous protein available. But drug receptors are proteins for which it
would be especially useful to know the 3D structure. Fortunately for the drug
design problem, it is often sufficient to be able to construct a reasonable model
of the receptor protein’s active site, and there are several ways in which we can
construct such models. In this chapter we consider two approaches to
constructing binding-site models. Both of these use a common starting point: a
series of ligands for which binding (or other biological activity) has been
measured. This structure–activity series serves as a template around which the
active site model is built. The two methods differ only in the ways in which the
binding site is represented (graphical surface or atoms).

2. Theory
There are several assumptions implicit in the foregoing approach:

1. All of the ligands are binding to a common site on the protein.
2. Biological activity is proportional to ligand–protein affinity.
3. All of the ligands bind in low-energy conformations (not necessarily the global

minimum, but a reasonable local minimum).

3. Materials
The most important step in constructing a protein binding-site model is the

selection and preparation of the structure–activity series. There are several
guidelines to be followed:
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1. There should be good reason to expect that all of the compounds in the structure–
activity series act at the same site. If the measured bioactivity is a receptor-bind-
ing assay, there may be little or no doubt. If the measured activity is a response
several steps downstream from the receptor binding event, this may be more dif-
ficult to prove. Suppose you are measuring smooth muscle contraction. Are all of
the compounds acting as agonists at a single type of adrenergic receptor, or are
multiple receptor types involved, or are some of the compounds blocking
metabolism or reuptake of neurotransmitter that is already present?

2. It is important to have as much structural diversity as possible in the structure–
activity series, so that much of the nature of the binding site can be explored. A
parent structure with a simple series of methyl-ethyl-propyl-fluoro-chloro-bromo
substitutions at a single site will only provide information about a limited region
of the receptor site.

3. In order to get models that are quantitative in nature (e.g., able to make some sort
of prediction about binding of new ligands), it is necessary to have ligands with a
broad range of activities or affinities. This is, after all, an interpolation method.

4. All of the ligands must be placed in low-energy conformations. Conformational
analysis is a complex topic (1,2). This means that you have a choice of many
different approaches. It also means that no matter what method you choose, there
will be those who think you did it wrong. Molecular mechanics force-field calcu-
lations are usually sufficiently accurate to identify local minima and to calculate
relative conformational energies within a few kcal/mol. If you are dealing with
relatively rigid molecules (only a few rotatable bonds), you may be able to sys-
tematically explore all of the accessible conformational space. For more flexible
ligands (six or more rotatable torsions), there are other approaches (Monte Carlo
sampling, molecular dynamics, buildup procedures, and others) that can be used.
Modern molecular modeling software packages usually provide several different
approaches to the conformational analysis problem, and it is up to you to select a
method suitable for your particular data set. If you are dealing with a structurally
diverse data set, you may be able to select one ligand with relatively few acces-
sible conformers, then search for conformers of your more flexible ligands that
can superimpose well onto your first ligand.

5. For each ligand in the structure–activity series, charge distribution must be cal-
culated and partial atomic charges must be assigned to the individual atoms. This
can be done using methods ranging from quick, approximate ones such as that of
Gasteiger and Marsili (3), to very computationally intensive ab initio calcula-
tions with large basis sets. However, the receptor-modeling methods we are dis-
cussing are quite approximate and probably do not justify the use of ab initio
calculations. We generally use semiempirical methods such as Stewart’s Molecu-
lar Orbital Package (MOPAC) at the PM3 or AM1 level.

6. Finally, the ligands must be superimposed in a way that produces some common
pattern of shape and charge distribution. There are programs that attempt to do
this automatically and systematically. We have a great deal of respect for the
ability of the human brain to recognize visual patterns, so we prefer to manually
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superimpose structures on a computer graphic workstation. We select an initial
compound on the basis of its high affinity (it should be one of the best-fitting
ligands in the active site) or because it has few conformations to choose from
(adapt the more flexible ligands to the shape of a less flexible one). Because
electronic forces act over greater distances than van der Waals forces, we use
space-filling representations with surfaces colored according to the electrostatic
potential. We first match regions of positive or negative potential, then try to
maximize steric overlap while maintaining electronic overlap.

4. Methods
The optimally superimposed set of ligands, in low-energy conformations, is

the starting material for building models of protein binding sites.

4.1. Method 1: Computed Graphic Surfaces

The simpler (and perhaps more abstract) way to make a model of the bind-
ing site from our assembled ligands is to build a graphic surface over the super-
imposed ligands. Anthony Nicholls’ Graphical Representation and Analysis of
Surface Properties (GRASP) program (4) is particularly well suited to this task.
Hahn and Rogers (5,6) have written specialized software to do this as well.
Many other molecular modeling programs are also able to construct such a
surface.

The next step is to color the surface on the basis of electronic properties.
This usually highlights important electronic interactions as well as hydrogen
bond donors and acceptors. It is assumed that the receptor surface is, for the
most part, complementary to the ligand surface. Electrostatic potential can be
calculated using all ligands, or using one or a few of the most active ligands.
Using all the ligands may show you the absolutely essential features, whereas
using the most active ligands may show you secondary interaction sites that
can increase affinity.

4.1.1. Example

Several years ago, we constructed a model of a receptor site for high-potency
sweeteners (7). Sweet taste is apparently mediated by G protein-coupled
receptors (8), although the receptors have not yet been identified. We chose a
series of five ligands (shown in Fig. 1) on which to base our model. This set
had considerable structural diversity: two aspartic acid derivatives, one
arylurea–aspartyl compound, and two arylguanidine–acetic acid derivatives.
Sweetness potencies covered a range of three orders of magnitude. We were
willing to assume that all of these compounds act at a common receptor because
all five compounds (and other active analogs in each series) have several
features in common:
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1. An ionizable carboxylate group is required for activity.
2. Each compound has two or more polar N–H groups (amine, urea, amide,

guanidinium).
3. Each compound has a large hydrophobic substituent, and in each structural class,

potency depends on the size and shape of the hydrophobic group.
4. The most potent analogs have an aryl ring with strongly electronegative substitu-

tion.

Partial atomic charges were calculated for all five compounds using a
semiempirical method intermediate neglect of differential overlap (INDO/S).
Structures were calculated with carboxylate, amino, and guanidinium groups
in their ionized states.

We first carried out conformational analysis on the dipeptide aspartame, and
found about 150 low-energy conformers. This did not help us much in finding
a starting point. However, the arylguanidines have only five or six low-energy
conformers due to partial conjugation between the aryl ring and the guanidinium
group. We were able to identify a single conformer of the arylguanidines that
could match well with low-energy conformers of the more flexible dipeptides.
In each case it was straightforward to superimpose carboxylate groups, two
different N–H hydrogens, and a hydrophobic substituent. For the most potent
compounds, we could also superimpose the aryl rings.

We chose to manually superimpose the five structures in a standard molecu-
lar-modeling software package (Quanta, ref. 9). Structures were modeled with
electrostatic potential surfaces displayed. We initially superimposed regions

Fig. 1. Five potency sweet-tasting compounds used in constructing a surface model
for a sweet-taste receptor.
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with large electrostatic potential (carboxylate and N–H regions), then adjusted
to maximize steric overlap for all five compounds.

Once the five structures were superimposed, a surface was calculated over
the whole set. The surface was then colored according to the calculated elec-
trostatic potential, based on the partial atomic charges of the five compounds.
Figure 2 shows a schematic representation of the surface.

4.1.2. Testing the Model

The model was tested in several ways. First, it was found that the model is
useful in evaluating possible analogs. In general, compounds that have car-
boxylate and N–H groups in the right locations with something hydrophobic in
the hydrophobic region have a high likelihood of having a sweet taste. The
potency increases as more of the hydrophobic pocket is filled. Furthermore,
structures that extend beyond the boundary of the hydrophobic pocket lose
potency rapidly, indicating that we have done a reasonable job of mapping out
this space. Second, we found that compounds that have negative potential rather
than positive potential around the main N–H site (occupied by the amino group
in Fig. 2) often had a strong bitter taste. Third, we used the model to correctly
predict which stereoisomer in a racemic mixture was responsible for the sweet
taste (10). Finally, we were able to identify compounds lacking one or more
important binding features for receptor model binding, which acted as com-
petitive antagonists for the sweet-taste receptor (11)

Fig. 2. Schematic representation of the surface model derived for the sweet-taste
receptor active site.
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4.2. Method 2: Atom-Based Models

The idea of constructing receptor-site models from atoms (or better yet,
amino acid fragments) is an appealing one. After all, this is what real receptor
sites are made of. The problem lies in the incredible number of degrees of
freedom involved when we do not know anything about the three-dimensional
structure. Which atoms or amino acids should we use? Where should we put
them? How should we orient them?

Nevertheless, there have been several attempts to construct such models on
the basis of one or more active ligands. One such approach is Vedani’s Yak
program (12), in which pseudoreceptors are constructed by the placement of
amino acid side chains. Here we describe a method (Genetically Evolved
Receptor Models, GERM) which we have devised for making atom-based,
receptor-site models (13).

The GERM method uses atoms rather than amino acid fragments for two
reasons. First, we have no basis for deciding what specific amino acid to use in
any part of the receptor model. How are we to choose between aspartate and
glutamate? Thus, we use atoms rather than molecules as our building blocks;
these atoms are selected from the types of atoms that are typically found in
proteins. Second, if we use atoms instead of fragments, we have only three
degrees of freedom for each building block (location in xyz space); with frag-
ments, we would need three more degrees of freedom to describe the orienta-
tion of the fragment.

Still, construction of a receptor model is a high-level combinatorial prob-
lem. Suppose we construct a shell of 60 atoms around our set of aligned ligands.
These atoms represent the layer of receptor atoms that contact the ligands. If
each of these atoms is chosen from a set of 15 different atom types, there are
about 4 × 1070 different models. The GERM method uses a genetic algorithm
(14) to find good models in a reasonable amount of time. The genetic algo-
rithm is a method for rapidly searching through highly multidimensional space;
it does not guarantee that the user will ever find the absolute best solution, but
it very efficiently locates many very good solutions by mimicking the biologi-
cal evolutionary processes of recombination, mutation, and natural selection.

Once again, the starting point is a series of compounds for which biological
activity has been measured. We used a set of 22 high-potency sweeteners (com-
pounds 1, 2, 4, and 5 of Fig. 1, and compounds 6–23 of Fig. 3). As described in
Method 1, all compounds were modeled in low energy conformations and par-
tial atomic charges were calculated using semiempirical methods. Compounds
were superimposed manually using the Quanta program. Eleven of the com-
pounds (2, 5, 6, 8, 9, 11, 13, 16, 19, 20, 23), encompassing a broad range of
structural types as well as a broad range of biological activities (sweetness
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potencies) were selected as the training set. These compounds were used by
the GERM program as the template around which a shell of 60 atoms was
constructed. The program was run using the 11 structures as input. The final
result is a set of models for which there is a high statistical correlation (r = 0.94)

Fig. 3. Additional high potency sweet-tasting compounds used in constructing
atom-based models for the sweet-taste receptor.
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between calculated ligand–receptor model binding and experimentally mea-
sured bioactivity. Each model is an array of atoms forming a shell around the
ligand set, with a specific atom type at each of the positions.

4.2.1. Testing the Model

The first test of the model was to calculate ligand–receptor model-binding
energies for the compounds omitted from the training set, and to extrapolate
predicted potencies from these energies. Average error for these compounds
was 0.44 log unit. This is considered an excellent result, considering the mag-
nitude of error commonly encountered in measuring sweetness potencies with
a human taste panel (15). This level of accuracy is considered useful in the
context of a ligand design application, as well. The model can be used to screen
large numbers of potential synthetic target molecules, allowing the selection of
those that have the highest probability of success.

The result of the GERM calculation is a population of hundreds or thousands
of models, all of which have a high correlation between calculated binding and
measured bioactivity. Comparison of the models across the population (16)
shows that, in some parts of the receptor model, a single atom type is highly
conserved, whereas there is high variability in other regions. The most
conserved positions correspond to the most important features for receptor
recognition. In this series, e.g., in multiple runs of the GERM program, there
were the following consistently observed features:

1. One or two positively charged atoms adjacent to the carboxylate groups of the
high-potency sweeteners.

2. Negatively charged atoms adjacent to the major N–H group site.
3. A series of hydrophobic atom types around the hydrophobic pocket.

In a related study (17), we used a series of HIV protease inhibitors as the
training set, and compared the calculated receptor models with the actual ac-
tive site of the protease. The calculated models incorporated most (but not all)
of the important features of the active site.

5. Notes
1. There are automated methods for structure alignment, such as Kearsley and

Smith’s Steric and Electrostatic ALignment (SEAL) program (18). We prefer
manual alignment, especially for fine adjustment of the alignment, because the
human brain can visually absorb and process pattern information in ways that are
difficult to incorporate into computer programs. Depending on your problem,
you may wish to try automated methods, especially as a source of alternative
alignment ideas.

2. The statistician George E. P. Box is credited with the statement “All models are
wrong, some are useful.” Certainly all models created using these methods will
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have errors. It is important to test such models, e.g., by docking other analogs
into them and seeing whether the model is consistent with all known structure–
activity results. Often, when a new analog is made, it will indicate parts of the
model that are wrong. The model has to be modified, refined, and retested. In our
experience, after just a few rounds of model refinement, the models are often
quite reliable in predicting whether or not new analogs will be active.

3. Both methods implicitly build a completely closed-surface model, although we
know from X-ray crystallographic studies that many binding sites leave some
portion of the ligand exposed to solvent. For computed-surface models, you may
discover some regions of your surface are sensitive to steric violation (compounds
extending beyond the surface have substantially diminished activity). Other
regions may be insensitive to substitution, and these may represent solvent-exposed
parts of the ligand. The atom-based GERM method allows for solvent-exposed
regions by allowing a “null” atom type. Parts of the receptor model can have no atom
at all if this gives a better model. Again, this may point to solvent-exposed areas.

4. In the case of the atom-based GERM models, we have built models around a
series of ligands for which the actual protein structure was known. Twelve HIV
protease inhibitors were superimposed in their protease-bound conformations and
model sites were generated. These were then compared with the protease. Most
of the active site functional groups were present in the final models. In particular,
the hydrophobic side chains, active site aspartates, bound water molecule, and
hydrogen bond donors were reliably reproduced; hydrogen bond acceptors were
often missed.
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Flexible Docking of Peptide Ligands to Proteins

Johan Desmet, Marc De Maeyer, Jan Spriet, and Ignace Lasters

1. Introduction
Computer-simulated ligand binding or docking is a useful technique when

studying intermolecular interactions or designing new pharmaceutical prod-
ucts. In general, the purpose of a docking experiment is twofold: (1) to find the
most probable translational, rotational, and conformational juxtaposition of a
given ligand–receptor pair, and (2) to evaluate the relative goodness-of-fit for
different computed complexes. From a computational point of view, these are
extremely difficult tasks and a satisfactory general solution to the docking prob-
lem has not yet been found. To explain this, let us consider the naïve approach
in which a ligand is systematically moved relative to a given receptor. Here, the
term “moved” must be understood as the combination of all possible transla-
tional, rotational, and conformational changes of the ligand. These operations
define the so-called “docking box,” i.e., the a priori accessible phase space of
the ligand, having dimensions 3 + 3 + N (three translational, three rotational
and N conformational degrees of freedom). While the six topological dimen-
sions already seriously impede a docking simulation, the a priori conforma-
tional flexibility of the ligand and the receptor certainly poses the hardest (and
least studied) problem. A large part of this chapter is devoted to a possible
solution to this problem.

Another critical point is the evaluation of each considered ligand–receptor
structure comprising hundreds or thousands of atoms. The evaluation process
is particularly important since it is meant to serve as a discriminator between
“correct” and “incorrect” binding modes and, for multiple ligand docking,
between binding and nonbinding molecules. Because the ligand binding affinity
is directly related to the binding free energy, it is clear that an evaluation func-
tion that approaches best the experimental free energy is likely to yield the best
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results. On the other hand, the evaluation of a single complex using a detailed
cost function easily consumes in the order of one CPU-s. Therefore, the evalu-
ation routines often consume the largest share of the total computation time.

In this chapter, we describe a combinatorial method for peptide docking that
treats both the receptor and the ligand in a flexible way. The method primarily
emphasizes the conformational part of the docking problem, without ignoring
the translational/rotational and energetical aspects, however. The search method
is basically a combinatorial buildup procedure: in the presence of the receptor
protein, the peptide gradually grows both in length and in its number of confor-
mational appearances. The population of computed peptide fragments can be
effectively kept within bounds by using their relative binding energy as a filter.
These values can be rapidly obtained because of the efficiency of the Dead-
End Elimination (DEE) method, which enables fast remodeling of the side
chains for each generated peptide configuration (1–6). This way, peptides of up
to 20 amino acid residues can be successfully docked.

We briefly recall the algorithm’s working mechanism and we try to rational-
ize its performance in terms of the ligand- and binding-site constitution, the
search strategy (which can be modulated), and the allowed configurational space.
Special attention is paid to the computational limitations of the intrinsically
combinatorial method. The influence of the aforementioned factors is exempli-
fied by a worked-out experiment on the docking simulation of a viral peptide to
the MHC Class I H-2Kb receptor. In general, an excellent agreement can be
obtained between the theoretical and the experimental structures, although sig-
nificant deviations may occur at the level of individual side chains. The method
also provides relevant information about local flexibility of both the ligand and
the receptor. Finally, we demonstrate and discuss the applicability of the method
in cases where the “perfect” backbone of the receptor is unknown.

2. The Peptide-Docking Algorithm
2.1. General Concept

Our docking algorithm falls into the class of combinatorial buildup algo-
rithms. A given peptide sequence is assembled residue by residue in the vicin-
ity of a putative binding site on a receptor. In this way we avoid any
conformational bias from a starting structure because the ligand is built from
scratch. The central feature of the method is a dynamic repository of peptide
fragments which are characterized by their length, rotational/translational off-
set, main-chain dihedral angles, and interaction energy. During a simulation it
is not necessary to store the peptide and receptor side-chain conformations, as
they can be rapidly remodeled when needed. The latter is achieved by the DEE
method, which allows the accurate positioning of 30–40 side chains in less
than one-tenth of a CPU-s. The docking process itself occurs by cyclically
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performing a selection, branching, side-chain modeling, and evaluation/storage
step (see Subheadings 2.3.1. and 2.3.2.). The net result of this process is that
the repository gradually grows in the number of fragments with different posi-
tions, conformations, and length. This approach allows exhaustive and effi-
cient sampling of the phase space at the same time, as the ligand visits the
entire translational, rotational, and conformational space, whereas only ener-
getically favorable fragments are further extended. This means that large “dry”
branches of the combinatorial tree can be truncated at an early stage of the
docking process. Also, because the DEE-routines take care of the side chains,
the sampling of the conformational space can be confined to the peptide main
chain. So far, this is the only approach that allows substantial side-chain flex-
ibility for the receptor molecule and full torsional flexibility for the ligand.

2.2. Input Routines

Our docking routines are linked to the core of the commercial modeling
package Brugel (7), which comprises the basic routines for energy calculation
using the CHARMM molecular mechanics force field (8), rotation around
single bonds, dynamic memory allocation, and the input/output of data such as
atomic coordinates and diagnostic messages.

Prior to starting a docking experiment, the process must be initialized by
reading a configuration script. First, the starting structure of the receptor molecule
and the peptide ligand are read. The initial conformation of the peptide ligand
is of minor importance, but a starting structure is required to define the
connectivities, the bond lengths, and the angles which do not vary during the
docking operations. Also, the initial location of the peptide is used as a conve-
nient way to define the position and the boundaries of the translational docking
box. The latter is an ellipsoidal volume, the principal axes of which are, by
default, aligned with those of the peptide in its initial conformation. The center
of the ellipsoid can either be left at the peptide’s center of gravity or translated
to the Cα-position of the root-residue (the initial building block of the peptide,
see Subheading 2.3.1.). The dimensions and point density of the translational
box can be set in a number of ways. The user can opt for a cubic or a radial
lattice. In the former case, the number of grid points and their (constant) spac-
ing along each of the principal axes define the translational grid. In the latter
case, the grid points are located at the intersection of 26 radial vectors and a
user-defined number of spheres with radii 1∆, 2∆, 4∆, 8∆, …, where ∆ is typi-
cally chosen at 0.5 Å or 1.0 Å. The cubic lattice has a constant spacing and
typically serves to “explore” a complete binding site. In contrast, the radial
lattice has the highest density near its center and is therefore the method of
choice if the binding site is approximately known. At each translational grid
point, the ligand undergoes full, but discrete, rotation. The latter is performed
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by a user-defined number of “roll” rotations around the x-axis (typically 6, i.e.,
in steps of 60°), combined with either 14 or 26 joint “pitch” rotations around
the y-axis and “yaw” rotations around the z-axis.

Another important initialization routine is the loading of the rotamer library.
This library contains 14,891 entries describing the physically possible combi-
nations of main-chain and side-chain conformations of the 20 natural amino
acid types. In contrast to statistical libraries (6,9,10), the rotamer library in this
chapter results from energy parsing of individually generated conformations.
This backbone-dependent library, the construction of which has been described
earlier (11), is available on request. In essence, for each residue type there are
47 low-energy main-chain rotamers, and for each main-chain rotamer there are
a variable number of backbone-compatible side-chain rotamers. Glycine, pro-
line, and N- or C-terminal residues form an exception and have 125, 35, and 12
main-chain rotamers, respectively. The rotamers are stored in a four-dimen-
sional (4D) array structure, where the dimensions indicate the residue type (1–20),
the main-chain conformational type (1–47), the side-chain conformational type
(1-[variable]), and the side-chain dihedral angle number (1–4), respectively.
The separate handling of the main-chain and side-chain conformations is es-
sential within the context of our docking strategy: the DEE-routines require a
number of possible side-chain conformations for a given (generated) peptide
main-chain conformation (see Subheading 2.3.1.).

The configuration script must also contain a list of receptor residue numbers
that are treated in a flexible way during the docking process. Because the num-
ber of flexible receptor residues drastically affects the performance of the algo-
rithm, this selection must be carried out with great care. Typically side chains
within a 4 Å thick layer at the surface of the presumed binding site are kept
flexible, but a preliminary visual inspection of the receptor structure with con-
siderations about local packing and side-chain orientation is advisable. The
limit for convenient docking is about 40 flexible side chains.

Finally, the search path can be controlled in the sense that one can freely
select the peptide residue from where the buildup process will start. In addi-
tion, the way of building up the peptide, i.e., the order in which N- or C-termi-
nally directed residues are added, can be controlled. It has turned out that the
initial building block (the “root” residue) is preferably selected at a residue that
may form tight interactions with the receptor.

2.3. Docking Algorithm

2.3.1. Docking of the Root Residue

Because the method is essentially combinatorial, the main problem is to
keep the number of peptide fragments within manageable proportions. In a
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typical experiment (see Subheading 3.1.) there are 79 translations (using a
radial grid with three spheres, each having 26 points on their surface, plus the
origin), combined with 84 rotations (6 “roll” × 14 “pitch/yaw” rotations), again
combined with 47 main-chain rotamers of the root residue, thus in total 311,892
configurations that are systematically processed. The average calculation time
required per configuration is about 0.05 CPU-s (see Subheading 3.2. and
Table 1). If all these root configurations were to be combined with another 47
rotamers of the next residue, the computational requirements would become
unacceptable. Therefore, we have looked for a discriminating criterion that
allows a substantial reduction of the number of configurations while not losing
“correct” structures. We have found that an absolute energy-based cutoff was
not powerful enough in reducing the configurational space. The reduction to a
predefined number of energetically top-ranked configurations (12) was a priori
discarded because of the different inherent flexibility of the residue types and
the possible variation in interactions for a given residue in different topological
situations. Our results a posteriori confirmed the inappropriateness of such
criterion (see Table 1 and Subheading 3.2.). The most useful elimination cri-
terion was found to be based on the relative binding energy of peptide configu-
rations of the same length. Concretely, the calculated binding energy of a
peptide fragment c, Ebind(c), is compared with the lowest binding energy found

Table 1
Statistical Data of Peptide Fragments Generated During VSV-8 Docking

Length Peptide #Conf #Accep %Accep E_best ∆E_best CPU/s CPU/conf

1 ----Y--- 311,892 920 0.29 –24.4 –24.4 11,358 0.036
2 ----YQ-- 43,240 2,074 4.80 –43.8 –19.4 4,592 0.106
3 ----YQG- 259,250 13,081 5.05 –51.2 –7.4 12,500 0.048
4 ----YQGL 156,972 289 0.18 –73.9 –22.7 5,444 0.035
5 ---VYQGL 13,583 1,064 7.83 –82.0 –8.1 679 0.050
6 --YVYQGL 50,008 1,148 2.30 –109.5 –27.5 4,060 0.081
7 -GYVYQGL 143,500 11,626 8.10 –120.1 –10.6 9,918 0.069
8 RGYVYQGL 139,512 323 0.23 –147.1 –27.0 12,743 0.091

Sum or average: 1,117,957 30,525 2.73 –18.4 61,294 0.055

Column 1: fragment length in number of residues; column 2: fragment sequence in one-letter code
(bold indicates added residue); column 3: total number of investigated configurations; column 4:
number of accepted configurations on basis of eqn. 2, using max_tension = 10 kcal mol–1; column 5:
acceptance ratio in% (#accep/#conf × 100); column 6: binding energy of the lowest energy fragment
in kcal mol–1; column 7: incremental binding energy, i.e., E_best of the given length class minus
E_best of the class of one residue shorter fragments; column 8: CPU-time (in seconds) required to
process all configurations of the given length; column 9: CPU-time per configuration.
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so far for all fragments of the same length, Ebind(lowest(length(c))); the differ-
ence between both is here defined as the “tension” of a given fragment, T(c):

T(c) ≡ Ebind(c) – Ebind(lowest(length(c))) (1)

Fragments in a given configuration are rejected if their tension exceeds a
predefined maximum value, max_tension or, conversely, their binding energy
must be lower than that of the best fragment found so far plus the interval
max_tension:

Ebind(c) ≤ Ebind(lowest(length(c))) + max_tension (2)

Several test experiments have shown that the aimed acceptance ratio of maxi-
mally 1/47 for the root residue could always be attained using a max_tension
value of 10 kcal mol–1 (data not shown).

The processing of each of the possible root configurations occurs as follows.
First, the root residue is translated to the considered translational grid point (by
its Cα-atom), rotated into the appropriate orientation and then the main-chain ϕ
and ψ angles are generated. Next, a quick test on a possible close van der Waals
contact between the root main-chain atoms (including Cβ) and the fixed atoms
of the receptor molecule is performed using a global cutoff energy of + 5 kcal
mol–1. If acceptable, the side-chain conformations (as known in the rotamer
library) are generated and quickly tested for atomic overlap with the fixed part
of the receptor using the same criterion as for the main-chain atoms. Similarly,
the receptor side chains are tested for steric compatibility with the root main-
chain atoms. The coordinates of the remaining side-chain rotamers of both the
peptide root residue and the flexible residues of the receptor are then trans-
ferred to the DEE-routines (see Chapter 12).

The DEE-routines rapidly provide an answer to two important questions:

1. What is the best possible side-chain arrangement given the position and main-
chain conformation of the considered peptide fragment?

2. What is the binding energy of that fragment?

The first problem is addressed by the original DEE-algorithm which has
been speed- and memory-optimized for small sets of rotatable side chains and
for repeated calls with small variations in main-chain coordinates. The net
result is the energetically best possible side-chain conformation of the receptor
and the considered root residue. These results allow then the calculation of the
total energy, defined as the sum of the side-chain self energy, the side-chain–
backbone and the side-chain–side-chain interaction energy. Next, we add to
this value the self-energy of the peptide main chain and then we subtract the
total energy of the receptor side chains that have been modeled once at the start
of the algorithm in the absence of any peptide. This way, we obtain Ebind(c),
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which can be interpreted as the direct interaction energy between the root resi-
due and the receptor, including internal strain in both molecules.

Once the entire set of possible root configurations has been processed, it is
trivial to search the one with the lowest binding energy and to remove configu-
rations with a too high energy, using Eq. 2. Thus, at the end of this routine we
have a list of root configurations for which the binding energy falls within a
given energy interval above the best one, and for which all data necessary to
reconstruct the coordinates is known.

2.3.2. Fragment Extension

In this stage, partial peptide configurations are selected from the fragment
repository and are stepwise elongated one residue at a time. The basic handling
of these fragments is identical to that of the single-residue root configurations
as explained earlier. Still, a number of modifications have been necessary. We
recall that this routine essentially comprises three execution stages: (1) a selec-
tion–combination stage, (2) a DEE side-chain positioning stage, and (3) an
evaluation–storage stage. These stages are executed in a cyclic way until
exhaustion of the fragment repository (see Fig. 1).

In contrast to the systematic exploration of the configurational space for the
root residue, this routine each time screens the fragment repository and selects
a previously accepted configuration using the criterion lowest tension first.
This way, the energetically best or “most probable” fragments are extended
first. Extension occurs by generating the coordinates of all possible main-chain
rotamers of the next N- or C-end directed residue-to-be-added, as defined
in the initialization script. These combinations are then processed individually
in the same way as the root configurations: first a rapid precheck occurs on the
steric compatibility of the added main-chain atoms and, if this is all right, also
on the peptide and receptor side-chain rotamers. From the reduced set of side-
chain rotamers the DEE-routines then calculate the energetically most favor-
able global side-chain arrangement as well as Ebind(c), the binding energy of
each new, extended fragment. Finally, the algorithm decides about the accept-
ability of the elongated fragments by comparing their Ebind(c) with the best
binding energy found so far for fragments of the same length,
Ebind(lowest(length(c))) (Eqs. 1 and 2). Accepted configurations are added to
the fragment repository by storing their characterizing properties, i.e., their
length, rotational–translational offset, main-chain conformation, and interac-
tion energy.

After each cycle, it is checked whether one of the accepted combinations
has yielded a new, lower value for Ebind(lowest(length(c))) and, if so, the
previous value is replaced by the newer. As a consequence, such operation may
indirectly push some of the previously accepted fragment configurations
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Fig. 1. Flowchart of the docking algorithm. The program consecutively executes
the routines labeled (a), then cycles until exhaustion through the routines (b) and then,
also until exhaustion through routines (c). All routines are described in Subheading
2.3. (a) Initialization routines. (b) Docking of the root residue. (c) Fragment extension.
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beyond the acceptance limit (Eq. 1). However, rather than definitely removing
“knocked-out” configurations, the algorithm leaves them untouched because
there is another mechanism by which inactive configurations may be “recov-
ered.” Indeed, it happens that the lowest energy configuration of a particular
length class appears inextensible. In that case, the algorithm selects the next
best configuration as the “lowest.” Inextensibility of a lowest energy configu-
ration can sometimes be ascertained immediately after its appearance (it will
be directly reselected because it has zero tension), but it is also possible that its
“children” (and thus the “parent” as well) are knocked out later due to either
the late appearance of a new configuration with a much lower energy, and/or to
the fact that the children themselves appear inextensible. In such a case,
Ebind(lowest(length(parent))) will increase and it is therefore important that as
many as possible “lost” configurations of length(parent) are recovered — which
would not be possible if they had been removed from the repository. To find
out quickly whether the children of a lowest energy configuration are exten-
sible, their tension is artificially set to zero so that they are reselected at once.
Such (and other) manipulations of the search path are known as “directed
searching” (13,14). Especially in the early stages of the elongation process,
when the sampling of the phase space is still very sparse, the lower bounds of
the acceptance intervals can be quite dynamical.

Besides the special treatment of lowest energy configurations, we also apply
another element of directed searching. We have found that the efficiency of the
search could be drastically improved by retarding a little the selection of longer
fragments. Needless in-depth branching of energetically constrained peptide
fragments can be prevented by forcing the algorithm to select fragments of
length l – 1 until at least a good approximation of Ebind(lowest(l))) is obtained.
In practice, when the fragment repository is screened for the next best configu-
ration, a “penalty” of (length(c) – 1)extra_tension is added to Ebind(c). Here,
extra_tension is a user-defined parameter that we usually set at max_tension/2
≤ extra_tension ≤ max_tension. This drives the elongation process toward a
search in width (i.e., shortest fragments first) rather than in depth.

2.4. End Stage Routines

The algorithm spontaneously comes to an end when all partial peptide configura-
tions have been processed and only full-length peptides are left. Because these con-
figurations are stored merely by their rotational/translational offset and main-chain
dihedral angle values, the algorithm has to retrieve the atomic coordinates by a final
application of the DEE-routines to the peptide and receptor rotatable side chains.
These structures are then output to disk in order of increasing energy. Also, the history
of the docked peptide solutions is given in the form of the tension of the fragments
from which they have originated. This allows the user to verify that the combinato-
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rial tree was not truncated too drastically. Conversely, when too many parent frag-
ments have a tension close to max_tension it means that probably a number of viable
fragments have been improperly rejected and a new experiment with a higher cutoff
value is advisable.

3. Worked Example
3.1. Experimental Setup

We have tested the docking method on several ligand–receptor systems (11),
one of which is here described in detail with special attention to the practical
performance and potential problems. Concretely, we discuss the docking of the
octapeptide VSV-8 (RGYVYQGL) to murine MHC class I H-2Kb (15–17).
The following experimental conditions were used.

1. Peptide buildup: Tyr-5 was chosen as the root residue because of its potential to
form multiple contacts with the ligand-binding site (Starting from Arg-1 or Leu-
8 does not significantly alter the results [11].) Elongation proceeded first toward
the C- and then toward the N-terminal end: ----y--- > ----yq-- > ----yqg- > ----
yqgl > ---vyqgl > ---yvyqgl > -gyvyqgl > rgyvyqgl.

2. Translations: The Cα-atom of the root residue (and by this the whole peptide) was
systematically translated over 79 grid points that were homogeneously distrib-
uted over three spherical shells at distances of 1, 2, and 4 Å from the initial posi-
tion that was taken from the X-ray structure of the complex. The translational
volume (268 Å3) is approximately one-third of the peptide’s molecular volume
(953 Å3).

3. Rotations: At each translational grid point, full rotation was allowed by 6 “rolls”
combined with 14 “pitch/yaw” operations.

4. Conformations: For the peptide residues Tyr-3, Val-4, Tyr-5, and Gln-6, the
rotamer library provides 47 main-chain conformations; for Gly-2 and Gly-7
there are 125 rotamers and for the N- and C-terminal residues Arg-1 and Leu-8
there are 12.

5. Peptide and receptor side-chain conformations: As explained, the side-chain
conformations are rebuilt for each peptide main-chain configuration by the
DEE-routines and therefore do not constitute the combinatorial tree. On average,
there are 16 side-chain rotamers available for each residue main-chain rotamer.
Besides the 8 peptide residues, 28 receptor residues having at least one atom
within 4 Å from the peptide in the complex were assigned to be flexible during
the docking.

6. Water molecules: This experiment was performed in the presence of nine crystal-
lographically determined buried water molecules that were considered as part of
the protein. Experiments in absence of structured water molecules have also been
performed but are discussed elsewhere (11).

7. Other parameters: max_tension = 10 kcal mol–1, extra_tension = 10 kcal mol–1.
This means that fragment configurations were accepted within an interval of 10
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kcal mol–1 and that the combinatorial search occurred in width, i.e., peptide length
class by length class.

8. Other conditions: The experiments were performed on a Silicon Graphics Indigo2
workstation (SGI, Mountain View, CA) equipped with a single R10000-175MHz
processor.

3.2. Program Execution

The experiment finally yielded 323 full-peptide configurations within an
energy interval of 10 kcal mol–1 (see Table 1). The total time required was
61,294 CPU-s or about 17 CPU-h. The initializations took only 61 s and are
ignored in Table 1. In total, 1,117,957 peptide fragment configurations have
been processed as described in Subheading 2.3. and Fig. 1. This means that,
on average, the algorithm investigated about 20 configurations per second
(0.055 s/configuration).

Performing a search in width (length class by length class) also has the
elegant side effect of generating a neat output that can easily be analyzed after-
ward. The statistical results for each class of partial peptides is summarized in
Table 1. The initial docking of the root residue Tyr-5 required the processing
of 311,892 individual configurations. Interestingly, only 920 different con-
figurations had a binding energy within 10 kcal mol–1 above the lowest value
(–24.4 kcal mol–1). This means that 99.71% of the explored space could be
ignored in further extensions. This also shows the importance of selecting a
root residue that forms many potential contacts with the receptor and that there-
fore exhibits a great discriminative power. The side chain of Tyr-5 indeed occu-
pies the deep pocket C in the MHC-receptor-binding site (16). The
straightforward exploration of the phase space for the root residue also con-
sumes a large, but not excessive, share of the total calculation time (11,358
CPU-s or 19%) which indicates that there is still some room for a broader
translational sampling.

The combination of the 920 root configurations with the half-exposed Gln-
6 led to 2074 low-energy dipeptide configurations. Although each of the root con-
figurations have been combined with 47 main-chain rotamers, after
DEE-modeling of the side chains, on average only 2 of them were maintained
(4.80%). The addition of the next residue, Gly-7, caused more difficulties: this
residue type has no side-chain and 125 main-chain rotamers. This required the
investigation of 2074 × 125 = 259,250 individual configurations. Besides the
long calculation time (12,500 s) the acceptance ratio was also quite high
(5.05%), leading to 13,081 different tripeptide configurations. However, the
next residue Leu-8, which is completely buried into pocket F, yielded accept-
able tetrapeptides in only 0.18% of the possible combinations. The extension
then proceeded toward the N-terminus by the addition of Val-8. In the crystal
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structure, this residue is completely directed toward the solvent and this is
reflected in the very high acceptance ratio (7.83%) and the low incremental
binding energy (–8.1 kcal mol–1). In contrast, the next residue Tyr-3 shows a
low acceptance ratio (2.30%) and a quite specific binding (∆E_best = –27.5
kcal mol–1); in the crystal structure this residue occupies the shallow pocket D
(16). The addition of Gly-2 shows about the same features as the other Gly at
position 7: high acceptance ratio and low incremental binding energy. The final
combination with the N-terminal Arg-1 again caused a steep decrease in the
number of (full-length) configurations to only 323. This residue also appeared
to interact strongly with the binding site, which is in agreement with the
experimental observations (15,16).

Fig. 2. Energy distribution of docked peptide fragments. The partial peptide con-
figurations (“fragments”) that have been accepted during the VSV-8 docking experi-
ment (see Subheading 3) are shown by plotting their tension (defined by Eq. 1) as a
function of their length (the number of residues). At the top of the diagram the fragment
constitution is indicated. In order not to overload the picture, only 10% of the accepted
fragments (selected on a random basis) are shown. For the five best full-length peptides
the tensions of the predecessor fragments are indicated by symbols and connected by
straight lines. When read from the left to the right, the curves show the “history” of the
fragments that eventually lead to one of the five best full-length peptides.
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Figure 2 shows the energy distribution of the different accepted peptide
fragments. Interestingly, each length class shows a comparable profile, i.e., a
low density at low tensions and a gradually increasing density at higher ten-
sions. This means that the last-added residue interacts “optimally” for only few
configurations, whereas in the majority of the cases the interaction is “subopti-
mal.” This phenomenon has important consequences with respect to fragment
extension. In cases where low-energy fragments (from the low-density region)
lead to successful extension, the parameter max_tension could in principle be
kept low which would drastically enhance the performance of the program. On
the other hand, it is certainly not guaranteed that the lowest-energy
configuration(s) are always extensible up to the full-length peptide. Therefore,
a considerable safety margin must be included in max_tension to account for
“false positives.” In this experiment we found two such cases, i.e., Tyr-5 and its
neighbor Val-4. Because Tyr-5 (the root residue) can freely translate and rotate
and because of its bulky side chain, it may assume several false positive con-
figurations that have a lower binding energy than in the crystal structure. For
Val-4, the situation is different. In the crystal structure of the complex this
residue is completely solvent oriented, whereas in some of the configurations
generated during the experiment it buries its side chain, thereby leading to
energetically favorable but inextensible configurations. In Fig. 2 we also show
the “history” of the five best full-length peptide configurations, i.e., the tension
of the fragments from which they have originated. It is seen that the best final
results do not always descend from the best intermediates; instead, viable inter-
mediates lie in a range of about 4–8 kcal mol–1. Importantly, this band coin-
cides with the low-density region plus the lower part of the high-density region.
This explains the success of the method for the current experiment, but at the
same time it pinpoints a potential problem when docking peptides that bulge out
from the binding site. Then, correct but weakly interacting, intermediate frag-
ments might not stand the competition with false positives, thereby leading to
wrong results. We have tested this possibility by the docking of SEV-9
(FAPGNYPAL) to the same H-2Kb receptor (11). In this complex, the residues
Gly-4 and Asn-5 form a β-bulge at about the same position as Val-4 in VSV-8
(15). Neither of both residues form van der Waals contacts with the receptor. In
addition, this peptide lacks Tyr-3, which is replaced by Pro. Also, Tyr-6, which
is topologically equivalent to Tyr-5 in VSV-8, forms only half the number of
van der Waals contacts with the receptor (8 instead of 16 [15]). Still, the
obtained structures were in good agreement with the crystal structure (main-
chain root-mean-square deviation [RMSD] = 1.33 ± 0.02 Å), but an explosion
of intermediate fragments was observed when making combinations with the
least-constrained residues Gly-4 and Asn-5 (11). This indicates that the main
difficulty of this approach is not so much the existence of false positive inter-
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mediates (the value of max_tension = 10 kcal mol–1 is sufficiently high to
account for this), but rather the computational time and memory requirements
when a burst of intermediate structures emerge.

3.3. Resulting Structures

Docking of the VSV-8 peptide to the MHC H-2Kb receptor finally yielded
323 structures within an energy interval of 10 kcal mol–1. Of these, 43 had a
binding energy within 5 kcal mol–1 above the lowest (–147.1 kcal mol–1) (dis-
played in Fig. 3). Compared with the crystal structure, the lowest energy pep-
tide had a main-chain RMSD of only 0.56 Å. For the 43 best structures, the
average RMSD was 0.89 ± 0.27 Å, and for all 323 results it was 1.01 ± 0.39 Å.
Although all modeled peptide structures had a sufficiently low RMSD to con-
sider them as correct, a slight degradation in quality was observed for higher-
energy structures. The differences were due to subtle translational and/or
conformational changes, dispersed over the entire peptide (see Fig. 3). The
anchor residues Tyr-3, Tyr-5, and Leu-8 were correctly packed into their
complementary pockets (16,17), although the side chain of Tyr-3 in general
displayed a small coplanar upward shift and the side chain of Leu-8 adopted
two different conformational states. Other apparently bistable conformations
were observed for Gln-6 and Arg-1 (see Fig. 3). The side-chain conformation

Fig. 3. Drawing of the 43 lowest energy peptides resulting from the VSV-8 experi-
ment. The crystallographically determined structure is presented by the sticks model.
Black is used for the main-chain atoms and gray for the side-chain atoms. Only “heavy”
(non-H) atoms are shown. The viewpoint is from the “side” of the peptide with the N-
terminus on the left. In the complex, the peptide is encompassed by the α1α2 domain
(not shown) with the α2-helix in front, the α1-helix at the back, and the β-sheet at the
bottom; the upper part of the peptide is solvent accessible.
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of the former residue depended on the translational position of the peptide main
chain and covaried with a conformational change of the receptor residues Glu-
152 and Arg-155. The side chain of the peptide N-terminal residue Arg-1 was
the least focused and tended to fold back on the main chain.

At the level of the receptor molecule, 24 of the 28 residue side chains that
were kept flexible during the experiment were correctly predicted in the lowest
energy structure (data not shown). The four that were deviating were not
directly involved in ligand binding and their conformations can be considered
as energetically favorable alternative states. For the 43 lowest-energy structures,
we occasionally observed transitions for the side chains that were in contact with
the peptide. Most of these conformational changes are small (for Thr–143,163
and Tyr-84,59,171). Only three side chains underwent significant transitions,
i.e., Lys–66 and, as indicated earlier, Glu-152 and Arg-155. Interestingly, the
alternative conformation for the latter two residues has also been crystallo-
graphically observed, i.e., in the structure of the same H-2Kb receptor
complexed with the nonapeptide SEV-9 (15).

4. Conclusions
By this method we have opted for a combinatorial buildup procedure that

constructs the peptide from scratch in the vicinity of the binding site. In doing
so, we basically follow the approach of Moon and Howe (12) who “grow” a
peptide by combining full-residue rotameric templates. However, the usage of
the DEE-method has proven to be an elegant way to disconnect the main-chain
from the side-chain problem, as first recognized by Leach (18). By this method
one can rapidly obtain the optimal side-chain conformation for each generated
peptide main-chain structure. Importantly, the set of side chains is not limited to
those of the peptide itself, but can include up to about 40 side chains from the
receptor. This allows a considerable degree of flexibility at the level of the
receptor molecule. In earlier experiments on SEV-9 docking to an “imperfect”
H-2Kb receptor structure, we have observed that minor errors in the receptor
main chain (approx 0.7 Å) can be “absorbed” by the flexible treatment of the
side chains (11).

Most other peptide docking methods avoid the combinatorial problem in
different ways, either by a combination of energy minimization and Monte
Carlo simulation (19) or by single-residue docking in combination with loop
closing (20–22). In view of the complexity of the energetical landscape defined
over the numerous translational, rotational, and conformational degrees of free-
dom, it is highly questionable whether these approaches are in general capable
to find the optimal solution(s). From our experience we feel that a combinato-
rial approach is the method of choice when dealing with the rugged landscapes
encountered with the docking of flexible ligands. On the other hand, each com-



374 Desmet, De Maeyer, and Lasters

binatorial procedure invariable faces severe computational limitations that can
be relieved only in particular conditions and by applying clever search tech-
niques and pruning methods. With respect to peptide docking, we have demon-
strated that such techniques can be successfully applied. Concretely, the
pruning of branches (partial peptide configurations) by setting energetical
boundaries (the parameter max_tension) can be accomplished in such a way
that (1) the final optimal solutions do not get lost and (2) the computational
task remains feasible. Within this respect, three very important conclusions can
be drawn from the experimental data presented in Fig. 2.

1. Each fragment length class has a comparable energy distribution profile (i.e., a
low-density at low tensions and a higher density at high tensions) regardless of its
degree of burial. This is a favorable situation, as it means that, if low-tension
inextensible fragments occur, they are not very populated. As a consequence, it
should be possible to readily “unmask” them as false positives by applying more
sophisticated search techniques (research in progress). On the other hand, if
the low-density region comprises good, extensible fragments they will rapidly
lead to low-energy extended fragments, thereby enabling efficient pruning of
this class.

2. Low-energy fragments that lead to full-length peptides appear within a relatively
narrow band of 4–8 kcal mol–1. Together with the previous observation, this a
posteriori justifies the usage of a limited cutoff range (max_tension = 10 kcal
mol–1) to keep the number of intermediate fragments within bounds. It also
means, at least in the studied example, that the bound peptide does not incorpo-
rate considerable local strain.

3. The total number of intermediate fragments remains fairly constant over the dif-
ferent length classes. Perhaps the most important and surprising observation is
the fact that the combinatorial buildup does not lead to an explosion of frag-
ments. On the other hand, the combination with solvent oriented residues like
Gly7 (class 3), Val4 (class 5), and Gly2 (class 7) does significantly increase the
number of fragments. Potential problems related to computational feasibility may
therefore occur when consecutive residues are lacking specific interactions with
the receptor. Still, if the algorithm succeeds to surmount these “difficult resi-
dues” one may expect, in general, a near-linear increase of the number of frag-
ments as a function of their length.

Considering the aforementioned points, we conclude that our peptide dock-
ing algorithm is able to produce structures of the complex that are closely
matching the crystal structure in a reasonable amount of computing time. The
success of the method is most likely due to a combination of (1) the choice of a
combinatorial approach, (2) the usage of a very detailed rotamer library, (3) the
efficient and reliable pruning of the combinatorial tree on basis of the relative
binding energy of peptide fragments, (4) two directed searching techniques,
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and (5) the application of the DEE-method to rapidly determine the optimal
conformation of the side chains of both the peptide and the receptor molecule.
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Geometrical Docking Algorithms

A Practical Approach

Haim J. Wolfson and Ruth Nussinov

1. Introduction
The problem of docking of molecules displaying some level of flexibility is

extremely important in computational structural biology.
Most state-of-the-art docking techniques have been designed toward

approaching the rigid-docking problem (1–17). These methods have generally
been tested on the so-called “bound docking,” where the goal is to predict the
docked configuration of a pair of molecules whose coordinates have been
extracted from the known three-dimensional (3D) structure of their complex
(18). Yet, in the real-life problem, one needs to predict an a priori unknown
structure of a complex, given the structures of the separate molecules. The
structures of these have been determined separately (“unbound docking”). Even
under the best of circumstances, i.e., if there are no major conformational
changes in the separate molecules during their association, we still expect mi-
nor conformational variations, especially at the docking interface (19).

The simplest, and most straightforward, way to extend existing docking meth-
odologies to this realistic unbound case is to relax quantitatively certain con-
straints, handled as parameters in the docking methodologies (19). These
constraints serve to reject unacceptable, false potential docked configurations.
In practice, these constraints enable overcoming two hurdles: on the one hand,
they allow a certain, liberal extent of penetration of the ligand into the receptor.
On the other hand, they enable relaxing the distance thresholds defining prox-
imity of receptor–ligand molecular surfaces, and hence allow the two molecules
to be further apart than they should be if they are to be found in a bound associa-
tion. The obvious downside of such a strategy is the expected dramatic increase
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in the number of potential docked solutions. Such an increase inevitably results
in making the detection of the correct configuration among the false positives
extremely difficult. In general, the run time of computer programs implement-
ing such a strategy increases significantly as compared with their stricter-con-
straints, entirely rigid-docking counterparts. Hence, in order to realistically
implement such a strategy, one should first significantly improve the filtering
approach of the rigid-docking techniques. An alternative, in principle superior
approach, is to take the molecular flexibility into account a priori. Yet, such an
implementation may present even larger hurdles, as it may be expected to involve
extensive conformational searches. These may result in very long run times.

In this chapter we first describe geometrically based rigid-body docking
algorithms. We review the various algorithms, focusing on their advantages and
disadvantages. In particular we discuss our own, computer-vision based
approaches to the docking problem. We proceed to address the critical, realistic,
issue of surface variability. Furthermore, recognition and binding may involve
induced-fit, rather than the classically approached case of lock-and-key
association. We therefore go on to describe current techniques handling such
induced-fit conformational changes, their advantages, and their disadvantages.
In particular, we focus on our hinge-bending, induced-fit, robotics-based
docking methodology, and some of the currently obtained results.

The problem of receptor–ligand recognition and interaction has two major
components: the first involves the 3D geometrical fitting of the molecules,
whereas the second requires that the chemical interactions be optimized (1,20).
In this chapter we confine ourselves to the former.

2. Rigid-Body, Geometry-Based Docking
Geometric complementarity is a central consideration in biomolecular

recognition. Tightly matching molecular surfaces between interacting, bound
molecules yield considerable areas shielded from the solvent. Such interfaces
are essential, as they contribute significantly to the stability of the complex via
the hydrophobic effect. Complementary geometry reflects van der Waals inter-
actions, which are very sharp at short distances. Hence, a tightly matching in-
terface is a necessary condition for a stable complex. Thus, in turn, screening
potential docked conformations with a reasonable geometric complementarity
requirement may rapidly yield a smaller subset, serving as input for detailed
physical–chemical–biological examination. For larger receptor–ligand sys-
tems, such an approach is far more practical than ab initio methods.

Geometric docking is extremely complex, owing to the fact that the computa-
tional costs increase exponentially with the degrees of freedom of the molecules.
For large molecules, containing hundreds, or thousands, of atoms, the number of



Geometrical Docking Algorithms 379

potential conformations is extremely large. Thus, any practical docking approach
must apply some constraints. Rigid-body approaches, which freeze all degrees of
freedom, except three rotations and three translations of the molecule, are frequently
adopted. Nevertheless, even when treated as rigid bodies, a thorough search along
each of the six degrees of freedom requires a large number of steps. Focusing on
the binding sites reduces significantly the complexity of the problem. However,
this necessitates an a priori knowledge of these sites.

There have been several rigid-body geometrically based approaches to dock-
ing (e.g., refs. 1–17). Fifteen years ago, Kuntz and his colleagues have intro-
duced two basic concepts (4). First, they suggested a convenient way for
representing the negative image of the receptor surface, and of the structure of
the ligand. The second concept involved matching of distances between the
receptor negative-image “spheres” and the ligand-positive image, either atoms
or spheres. Because this approach focuses on the docking of the ligand to the
largest cluster of intersecting spheres, it centers on the largest concave regions
of the receptor. This works best for small-ligand docking, such as drugs, par-
ticularly into enzymes, where the small ligands generally bind in the largest
cavities. For larger protein–protein docking, which frequently do not dock into
the largest depressions on the molecular surface of the receptor (21), such an
approach may encounter difficulties. Other geometrical methods have positioned
the surface atoms of the molecules on 3D grids and matched them by rotating
and translating one of the grids, seeking the best fit with the grid of the second
molecule (e.g., ref. 6). The accuracy of grid-based methods depends on the
tesselation of the space, and the number of orientations that are explored. Higher
accuracy requires sampling of a large number of orientations. On the other
hand, too large a number implies a significant increase in complexity. Hence,
although finer, grid-based sampling ensures finding the correct, optimal solu-
tion, such an approach is frequently impractical. A significantly faster grid-
based approach, which utilizes the Fast Fourier Transform, has recently been
suggested (11).

A few years ago we developed geometrically based approaches for molecu-
lar docking (12–15,19). These approaches (12,15) adapt and implement the
Geometric Hashing, computer-vision based algorithm (22), or geometrically
based variants, which are close in spirit (13,14,19). The algorithms are
extremely efficient and utilize entire molecular surfaces. There is no need to
predefine the binding sites, although if such information is available, it speeds
the execution of these methods substantially. A reasonable number of docked
configurations are produced, and the ranking of these potential solutions is
acceptable. Adequate performance is achieved for both large protein–protein
docking, and for small molecules docking into large, or smaller receptors.
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3. Molecular Surface Representation

The problem of protein–protein recognition and docking contains two criti-
cal ingredients. The first is the surface representation. The second is the match-
ing of the surfaces. Accurate representation of the features of the molecular
surfaces is extremely important for the docking calculations. Even a cursory
look at the shapes of the molecular surfaces immediately reveals that they are
highly irregular. This characteriztic complicates the task of an accurate, and
concise surface description. The discrete surface representation of Connolly
(23) is convenient to handle. However, for the purpose of docking, the draw-
back of such a representation is that to adequately describe the molecular sur-
face, tens of thousands of surface points may be needed. Matching these points
would result in a combinatorial explosion (12). Hence, a reduction in the num-
ber of these points is essential.

There are a couple of approaches carrying out such a task. The first has
been devised by Connolly (16). Connolly has described an elegant method for
choosing “critical points.” These describe the most prominent features of the
molecular shape, in the form of “knobs” and “holes.” This is done via a com-
putation of the local convexity at each of the “regular” Connolly surface dots
(23), and selecting the points representing the local minima/maxima of the
shape curvature. We have implemented a variant of this approach in one of our
docking techniques (13,14). In parallel, a second approach to reduce the num-
ber of points is that developed by Lin et al. (24,25). The latter surface repre-
sentation consists of a sparse set of critical points, nicknamed caps, pits, and
belts. These points are the face centers, abstracted from the convex, concave,
and saddle areas of the Connolly surface. The positions they occupy are key to
the shape of the molecular surface, and they are uniquely and accurately de-
fined. The critical points are computed from the faces composing the molecu-
lar surfaces. The centroid of each face is determined, and projected unto the
surface. The face centers comprise the critical points. For each point we also
compute the surface normal and the patch of surface area that the point repre-
sents. The set is divided into subsets containing caps and pits (and belts, which
are not utilized in the docking) correspondingly originating from the convex,
concave (and saddle) faces. Careful examination has shown that surface at-
oms have six face centers. This procedure removes subatomic details. We have
been able to further reduce the number of points, with little or no deterioration
in the quality of the surface representation and its efficacy in the matching
(25). In particular, in addition to the critical points, we have drawn extensively
on the surface normals, and most recently also on the surface areas, repre-
sented by the points.
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4. Docking: Computer-Vision-Based Algorithms

Here we outline briefly the methodology and its rationale. An extensive
description has been given (22,12,15). The current application exploits the
critical points and their normals (15).

The algorithm contains two stages. First, we represent the geometric data of
one of the molecules (e.g., the ligand) in a table, which allows fast comparison
with the geometric data of the second molecule (e.g., the receptor). In such a
way one can significantly speed up the docking algorithm at the expense of
additional storage memory. Because molecules undergo rotations and transla-
tions, the important feature of this methodology is its rotation and translation
invariant representation of the coordinates of the critical points in many differ-
ent reference frames. This (redundant) rotation and translation invariant repre-
sentation affords matching avoiding the very time-consuming steps that are
followed in exhaustive conformational space searches, such as those carried
out utilizing grids. Previously, we have used triplets of surface points to define
a reference frame (12). Currently, we build a Cartesian reference frame for
each pair of critical points (15), and the mean of their normals. The coordinates
of other critical points within a certain radius are represented in these reference
frames and stored in a hash table.

This procedure is carried out for one of the molecules, generally the ligand,
which is the smaller of the two. This is the preprocessing stage. The table is
organized to allow a direct access during the next, recognition stage. In prac-
tice, the address to each table bin consists of the coordinates of the critical
point. The information stored in the bin is the identity of the point (to which
atom it belongs), and any additional information, such as the chemical nature
of the atom, the type of residue, the type of molecule, and the reference frame.
Each critical point is stored in many reference frames, as long as they are based
on critical points in its vicinity. It is this redundancy that ensures finding a
correct solution, even if it involves only partial matching. This feature is
critically important, as we assume that the active site is a priori unknown.
Hence, we expect only a partial fit. Another important point to note is that the
preprocessing is carried out on only one subset of critical points. In general, we
utilize the caps of the ligand. In the recognition stage, we consider the pits of
the receptor. These subsets suffice to find good docked configurations.

In the recognition stage, the receptor is scanned, and a similar calculation is
carried out for the pits. For each reference frame in the receptor, the coordi-
nates of the critical points in its vicinity are calculated, and the hash table is
accessed at the address defined by these. The goal is to find ligand caps that
have close-enough coordinates (within an error threshold) in their correspond-
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ing reference frames. A match, or a vote, is cast for a ligand reference frame if
the coordinates are within that error distance.

In addition, further goodness criteria need to be satisfied, such as similar
surface normal directions. One may also add here any further chemical re-
quirements, such as complementarity in charges, hydrophobic interactions, hy-
drogen bonds, and so on. If a ligand reference frame scores a “large enough”
number of votes, it is an indication that a superposition of this reference frame
with the corresponding receptor frame will result in a docked configuration
containing that same number of matched critical point pairs. Utilizing these
receptor–ligand critical point pairs, we can compute the 3D rotation and trans-
lation, resulting in the best least-squares fit for the frames and their correspond-
ing matching point pairs.

The next step involves the evaluation of the docked configurations.

5. Filtering and Scoring the Docked Configurations
Filtering and scoring the potential docked solutions is an essential step.

There are two goals to this routine. First, it is quite possible that although the
molecular surfaces of the receptor and the ligand match well in one region, the
molecules interpenetrate at other locations. Such solutions need to be filtered
out from the list of docked configurations. For the remaining solutions, the
routine needs to rank them, according to some goodness criteria. Ideally, these
criteria are geometrical and energetic. Here we describe the first of these, which
is geometry based. Within these considerations, we employ angular param-
eters, overlap check, and scoring of the contacts. The implementation of the
realistic surface variability depends on the setting of these parameters.

The first consideration utilized in the filtering of the docked solutions is the
direction of the normals (13,14,19). Although the power of the normals has
been employed in matching to reduce the combinatorics, by supplying an addi-
tional point for building the reference frames, they may also be utilized in the
filtering and in the scoring of the goodness of the matches of the pairs of points.
In addition, the torsion angles formed by the two planes, i.e., that of the plane
defined by the two critical points and one normal, and the second plane deter-
mined by the same critical points and the second normal, may be considered as
well. In the Geometric Hashing approach (15), the torsion angle filtering is
employed already in the voting (i.e., table-accessing) step, as described. The
solutions passing these criteria (13–15,19) are evaluated by a scoring routine.
In order to assess the interpenetration, the receptor is mapped onto a 3D grid.
Interior atoms, exterior atoms, and surface points correspondingly designate
interior, exterior, and surface voxels (14). The scoring routine next transforms
all ligand atoms by the transformation computed for the matching receptor–
ligand point pairs, and maps the ligand atoms onto the same grid. If a ligand
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atom falls into a voxel designated as interior voxel, the solution is rejected. The
remainder of the solutions are scored and ranked. The quality of a scoring func-
tion can be judged by its effectiveness in the filtering and the goodness of its
ranking. Ideally, the lower the root-mean-square deviation (RMSD) between
the docked and the crystal complex (18), the higher the ranking that solution
would be awarded. The ranking score is computed by awarding surface contact
and penalyzing overlaps. Additionally, we may award patches of connected
matching surface points and apply a simple hydrophobicity filter (19).

6. Incorporating Surface Variability: The Bound and Unbound
Cases

Because of surface variability, worse fitting of the molecular surfaces of the
receptor and of the ligand is expected to occur. However, in reality, the situa-
tion would be alleviated by conformational displacements, particularly of sur-
face residues, to optimize the shape complementarity and the intermolecular
interactions. These considerations dictate weaker constraints in accepting and
in retaining docked configurations. On the other hand, the difficulty is that
even for moderately sized protein molecules such a relaxation in determining
what should be considered as complementary shape can already result in a very
large number of solutions. In particular, the problem may be expected to be
more severe if the structures have been determined separately. For example,
docking of an immunoglobulin with its antigen (1hfm – 1lym, i.e., IG*G1 fv
fragment – lysozyme; or 2hflLH – 1lyz, i.e., IG*G1 fab fragment – lysozyme),
with the same definition of shape complementarity as that applied to many
protein crystal complexes (14), results in tens of thousands of docked configu-
rations.

If one scans the obtained complexed conformations, however, it becomes
immediately evident that many of these are rather similar, and represent virtu-
ally the same docked solution. Hence, many docking approaches adopt cluster-
ing schemes. Each cluster represents one docked solution. The difficulty,
however, is in the definition of what constitutes a cluster. That is, how different
can two docked solutions be and still be considered to represent the same
complexed configuration? Frequently the thresholds for the clustering are rather
intuitive. A logical strategy may then involve a trade-off: on one hand, to ensure
obtaining and retaining the correct docked conformation, we are more liberal
in the overlap-filtering constraints. On the other hand, to substantially reduce
the number of solutions, we apply generous clustering. To assess the extent of
the thresholds that should be applied both in the intermolecular penetrations
and in the clustering scheme, we have superimposed the crystal structures of
the same molecules when in the bound, and in the unbound configurations
(19). We have inspected the RMSDs of residues that are on the surface in both
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Table 1
The Complexes (i.e., Bound Cases) Used for the Rigid Body Protein–Protein Docking

Complex PDB Receptor name Ligand name Res. in Å

1 1cho Alpha-chymotrypsin 1-146 (E) Alpha-chymotrypsin 149-245 (E) 1.8
2 1fdl IG*G1 fab fragment (LH) 2-Lysozyme (Y) 2.5
3 1tec Thermitase eglin-c (E) Leech (I) 2.2
4 1tgs Trypsinogen (Z) Pancreatic secretory trypsin inhibitor (I) 1.8
5 2hfl IG*G1 fab fragment (LH) Lysozyme (Y) 2.5
6 2kai Kallikrein a (A13) Bovine pancreatic trypsin inhibitor (I) 2.5
7 2mhb Hemoglobin α chain (A) β chain (13) 2.0
8 2ptc Beta-trypsin (E) Pancreatic trypsin inhibitor (I) 1.9
9 2sec Subtilisin carlsberg (E) Genetically engineered N-acetyl eglin-c (I) 1.8

10 2sni Subtihisin novo (E) Chymotrypsin inhibitor (I) 2.1
11 2tgp Trypsinogen (Z) Pancreatic trypsin inhibitor (I) 1.9
12 3hfm IG*G1 fab fragment (LH) Lysozyine (Y) 3.0
13 4cpa Carboxypeptidase Potato carboxypeptidase a inhibitor (I) 2.5
14 4hvp HIV-1 protease chain A Chain B 2.3
15 4sgb Senine proteinase (E) Potato inhibitor pci-1 (I) 2.1
16 4tpi Trypsinogen (Z) Pancreatic trypsin inhibitor (I) 2.2
17 1abi Hydrolase alpha thrombin (II) Chain L 2.3
18 1acb Hydrolase alpha-chymotrypsin (E) Eglin C (I) 2.0
19 1cse Subtilisin carlsberg (E) Eglin C (I) 1.2
20 1tpa Anhiydro-trypsin (E) Arypsin inhibitor (I) 1.9
21 2sic Subtilisin (E) Subtilisin inhibitor (I) 1.8
22 5hmg Influenza virus hemagglutinin chain E Chain F 3.2
23 6tim Triosephosphate isomerase chain A Chain B 2.2
24 8fab Cab fragment from IGG1 chain A Chain B 1.8
25 9ldt Lactate dehydrogenase chain A Chain B 2.0
26 9rsa Ribonuclease chain A Chain B 1.8

The Protein Database (PDB) code of each complex is noted. The chain is given in parentheses next to the description of the receptor and the
ligand. The resolution of the complex is noted in the last column.
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bound and unbound states; RMSDs that are on the molecular surface in the
uncomplexed molecule, but are buried in the interface in the bound state, and
those that are in the interior of the molecules in both states. These comparisons
provide a reasonable gauge of the extent of movements of surface residues on
binding (19). The drawback of such an approach is the paucity in such pairs of
crystal structures. The statistically poor sample size (25 pairs of structures)
does not allow the extraction of detailed ranges. However, it still enables the
abstraction of a range of values that can be utilized.

This approach reduces considerably the number of docked configurations
that are obtained, and hence aids in the ranking of the correct solutions, i.e.,
those resembling the crystal complexes. Table 1 presents a list of 26 bound
cases that we have utilized in the testing of this approach (19). All cases are
protein–protein complexes. Tables 2 and 3 present the results we have obtained
for these cases. Table 2 shows the reduction in the number of solutions in the
clustered as compared to the unclustered solutions, following three tests:
the overlap test, the hydrophobicity filter, and the connectivity. As we can see,
the reduction is substantial. The table also lists the CPU times of the matching,
in minutes. Table 3 gives the RMSD of the best solution, and the ranking of the
top scoring solution whose RMSD is under 5 Å. The ranking is given for both
unclustered and clustered solutions. The rankings are further listed following
each of these filters. As can be seen from Tables 2 and 3, the quality of these
results is highly desirable: the RMSDs are low, the CPU times (on a 66-MHz
Intel clone) are short, and the ranking high. Furthermore, the same set of param-
eters is used and, in particular, the entire molecular surfaces of the receptor and
of the ligand are utilized, with no predefinition of the active sites. Further
details of the results and of the procedures described here are given in (19).

Table 4 lists the unbound cases we have utilized in our tests (19). Nineteen
receptor–ligand molecule pairs have been docked. The quality of the results
can be assessed by inspection of Tables 5–7. Table 5 gives the number of solu-
tions obtained with the unclustered versus the clustered procedure, as well as
the CPU, in minutes of the docking (matching) stage. As in Table 2, the num-
ber of solutions is listed following each of the filters. Table 6 presents the
ranking of the top scoring solution having an RMSD under 5 Å. Table 7 gives
the best RMSD that Norel et al. (19) have obtained. While certainly, as might
be expected, the quality of the solutions is not as high as that obtained for the
bound, complexed cases, it is still very high. Again, as for the bound case,
entire molecular surfaces are utilized, with no additional biochemical data
regarding the location of the active site. Also, the same set of parameters has
been employed as previously. No further tuning is carried out.

Nevertheless, although these results are acceptable, this docking procedure
works well for unbound cases as long as no appreciable conformational change
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takes place between the unbound and the bound cases. If, however, a major
conformational change does occur between, say, an open, unbound form to a
closed, bound one, such a docking protocol would not be able to perform the
docking successfully.

Table 2
The CPU and the Number of Obtained Potential Solutions
for the Bound Cases

CPU
Unclustered solutions Clustered solutions

Complex PDB docking Overlap HF CC Overlap HF CC

1 1cho 3.3 8355 5375 2951 912 713 471
2 1fdl 17.1 63261 35697 16733 4034 3290 2181
3 1tec 4.3 30215 11227 9473 1659 1154 1042
4 1tgs 5.7 22646 6975 5827 1557 941 831
5 2hfl 20.8 65373 39896 20652 3870 3099 2166
6 2kai 4.4 27668 12110 10775 1791 1327 1227
7 2mnhb 14.3 57014 32995 9155 1809 1481 663
8 2ptc 5.3 26616 10163 8843 1798 1134 1027
9 2sec 3.5 26574 9146 7559 1783 1273 1114

10 2sni 4.4 31148 17801 14174 1926 1542 1367
11 2tgp 3.2 19012 7734 6720 1434 916 828
12 3hfm 21.3 85419 45013 21349 4284 3237 2274
13 4cpa 4.1 21240 12040 11975 1659 1320 1310
14 4hvp 2.8 8927 3723 1797 966 720 411
15 4sgb 1.8 11051 4707 4295 1002 642 591
16 4tpi 4.1 22858 9190 7764 1523 1007 889
17 1abi 12.4 8636 4473 4239 1183 814 773
18 1acb 7.6 34628 16074 13544 1698 1256 1121
19 1cse 3.3 24994 10258 8982 1590 1136 1024
20 1tpa 5.1 23203 8298 7374 1606 1026 950
21 2sic 6.3 48164 23156 12914 2125 1689 1229
22 5hmg 35.3 97260 47170 928 4193 3299 329
23 6tim 21.9 97166 42931 1112 3109 2544 351
24 8fab 4.5 28620 6992 159 1879 1158 93
25 9ldt 48.1 78700 42543 101 3670 3157 67
26 9rsa 5.8 33132 9880 3325 1441 1011 511

The second column indicates the PDB code for the complex. The third column notes the
CPU time (in minutes) for the docking (matching) step. Docking has been performed on a 486
PC clone, running at 66 MHz. Columns 4–6 indicate the number of potential solutions that have
passed the overlap test, the hydrophobicity test (in addition to the overlap filter), and the con-
nectivity filter (in addition to the overlap and hydrophobicity filters), respectively. The overlap
test, the connectivity and the hydrophobicity filters have been described in detail by Norel et al.
(14,19). Columns 7–9 show the number of clusters that passed these same filters, respectively.
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In the next sections, we address such docking cases, where a significant
hinge-bending movements may take place.

7. Flexible Docking Allowing Induced Fit in Proteins
Hinge-bending transitions may occur during molecular recognition and bind-

ing (26). In such cases, movements of whole domains or of small parts may

Table 3
The Rank of the Best Solution

Without clustering With clustering

Complex PDB RMS (Å) Overlap HF CC Overlap HF CC

1 1cho 0.54 1 1 1 1 1 1
2 1fdl 1.50 2899 1994 1932 87 66 20
3 1tec 1.18 5 2 4 1 1 1
4 1tgs 1.14 1 1 1 1 1 1
5 2hfl 1.51 23 30 7 9 9 1
6 2kai 1.17 124 61 49 1 1 11
7 2mhb 0.70 1 1 1 1 1 1
8 2ptc 0.59 1 1 2 1 1 1
9 2sec 2.08 248 37 80 1 1 1

10 2sni 1.07 2 1 4 1 1 1
11 2tgp 0.59 1 1 1 1 1 1
12 3hfm 0.76 103 40 5 2 1 1
13 4cpa 1.02 2 2 2 1 1 3
14 4hvp 2.06 1 1 1 1 1 1
15 4sgb 1.88 71 5 13 1 1 5
16 4tpi 0.52 1 1 1 1 1 1
17 1abi 0.56 1 1 1 1 1 1
18 1acb 0.94 4 1 1 1 1 1
19 1cse 1.32 26 3 23 1 1 2
20 1tpa 0.23 1 1 1 1 1 1
21 2sic 1.11 1 1 5 1 1 1
22 5hmg 1.09 1 1 1 1 1 1
23 6tim 0.50 1 1 1 1 1 1
24 8fab 1.97 3 1 6 2 1 1
25 9ldt 2.52 1 1 1 1 1 1
26 9rsa 1.30 9 3 479 1 1 21

The second column indicates the PDB code for the complex. The third column lists the
RMSDs of the interface atoms for the best solution. The rank of the best solution obtained
following each of the filters (see legend to Table 4) is noted for the unclustered and clustered
solutions. The lowest-ranking solution with an RMSD <5 Å is listed here. Overlap refers to the
overlap test; HF: overlap test and hydrophobicity filter; CC: connectivity filter (in addition to
the overlap and hydrophobicity filters).
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take place at flexible joints. For example, movements of small units have been
observed in the T4 lysozyme, in the catabolite gene-activator protein, in the
triose phosphate isomerase, and in antibody–antigen binding. Binding of a
receptor and a ligand frequently elicits movements of segments of the
molecules that are involved. A switch from an open to a closed conformation
may both push the water molecules out and trap the substrate or the reaction
intermediates. It may also better position the ligand in the receptor pocket (27).

The frequent occurrence of domain (or part) movements suggests that in
seeking to predict docked conformations, such movements ought to be consid-
ered. Approaches carrying out rigid docking computations will be successful
only in those cases where the movements are relatively small, i.e., within the
allowed thresholds.

Previous docking approaches have allowed either induced hinge flexibility
in small ligands, such as drugs (28–34), or partial flexibility in protein recep-
tors (35,36), e.g., partial flexibility of hydrogen bonding groups. None of the
currently available approaches allow domain rotations. The technique we have

Table 4
The Unbound Examples

Complex PDB Receptor name Res. (Å) Ligand name Res. (Å)

1 1hfm-1lym(A) IG*G1 fv fragment Model Hysozyme (A) 2.5
2 1hfm-1lym(B) IG*G1 fv fragment Model Lysozyme (B) 2.5
3 1tgn-4pti Trypsinogen 1.6 Trypsin inhibitor 1.5
4 1tgn-5pti Trypsinogen 1.6 Trypsin inhibitor 1.0
5 1tgn-6pti Trypsinogen 1.6 Trypsin inhibitor 1.7
6 1tld-4pti Beta-trypsin 1.5 Trypsin inhibitor 1.5
7 1tld-5pti Beta-trypsin 1.5 Trypsin inhibitor 1.0
8 1tld-6pti Beta-trypsin 1.5 Trypsin inhibitor 1.7
9 2hfl-1lyz LG*G1 Cab fragment 2.5 Lysozyme 2.0

10 2hfl-6lyz IG*G1 Cab fragment 2.5 Hysozyme 2.0
11 2pka-4pti Kallikrein a 2.0 Trypsin inhibitor 1.5
12 2pka-5pti Kallikrein a 2.0 Trypsin inhibitor 1.0
13 2pka-6pti Kallikrein a 2.0 Trypsin inhibitor 1.7
14 2ptn-4pti Trypsin 1.5 Trypsin inhibitor 1.5
15 2ptn-5pti Trypsin 1.5 Trypsin inhibitor 1.0
16 2ptii-6pti Trypsin 1.5 Trypsin inhibitor 1.7
17 2sbt-2ci2 Subtilisin noVo 2.8 Chymotrypsin inhibitor 2.0
18 Scha(A)-2ovo Alpha-chymotrypsin (A) 1.7 Ovomucoid third domain 1.5
19 Scha(B)-2ovo Alpha-chymotrypsin (B) 1.7 Ovomnucoid third domain 1.5

The PDB codes of the receptors and of the ligands are noted in the PDB column. The resolutions of
the molecules are noted in columns 4 and 6.
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developed (26,37–40) allows such motions to exist either in ligands or in
receptors, large or small. Furthermore, we allow motions about several hinges
simultaneously. We model full 3D rotations at the hinge, where the hinge can
be positioned on the backbone, or at any points chosen in space. By choosing a
hinge point in space, and allowing complete rotations, rather than rotations
about a bond, we implicitly take into account rotations about several consecu-
tive, or nearby, bonds. Addressing local conformational changes is essential if
we are to achieve correct docked configurations of practical value.

On the computational side, the problem of addressing geometrical docking,
allowing hinge bending, is highly complex. There have been two previous
approaches allowing hinge-bending of domains or of smaller molecular
subparts. The first approach docks each part separately. In the next step, the

Table 5
The Number of the Obtained Potential Solutions

CPU
Unclustered solutions Clustered solutions

Complex PDB docking Overlap HF CC Overlap HF CC

1 1hfm-1lym(A) 23.7 107638 68859 32986 26275 20352 11475
2 1hfm-1lym(B) 7.9 65727 39489 19058 26703 19243 10685
3 1tgn-4pti 6.5 39816 21084 9321 7865 5234 2619
4 1tgn-5pti 10.6 57614 30224 13189 10272 6864 3453
5 1tgn-6pti 6.3 38276 15030 7008 4346 2779 1455
6 1tld-4pti 4.9 37256 19998 8562 7808 5413 2659
7 1tld-5pti 7.2 53965 29119 12590 10347 7039 3471
8 1tld-6pti 4.9 36711 14828 6798 4374 2922 1512
9 2hfl-1lyz 20.1 132126 93613 42785 24030 19584 10989

10 2hfl-6lyz 25.2 129921 87895 40457 23991 19157 10733
11 2pka-4pti 3.8 41699 24489 10872 8534 6399 3184
12 2pka-5pti 6.1 63264 36681 15531 11325 8495 4222
13 2pka-6pti 3.7 40437 18314 8349 4727 3385 1756
14 2ptn-4pti 5.6 36773 19376 6715 7688 5213 2156
15 2ptn-5pti 8.0 52990 28105 9546 10171 6923 2880
16 2ptn-6pti 5.5 36170 14045 5162 4336 2784 1200
17 2sbt-2ci2 4.3 50908 31285 14235 10170 7800 3582
18 5cha(A)-2ovo 3.3 38024 22322 13018 4502 3392 2194
19 5cha(B)-2ovo 6.1 39941 23019 13932 4611 3439 2289

The second column notes the PDB code for the example and the third column lists the CPU times
in minutes needed to complete the docking (matching step; see legend to Table 4). Columns 4–6
indicate the number of potential, unclustered solutions which have passed the overlap test, the hydro-
phobicity test, and the connectivity filter, respectively. Columns 7–9 give the number of clusters for
each of the groups of potential solutions. See footnote to Table 2 for details.
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separately docked conformations are screened, seeking consistently docked
solutions (e.g., ref. 28). In such solutions, the two docked parts would be posi-
tioned correctly with respect to each other, with the hinge joining them at the
correct site, and no overlaps taking place at other locations. A major drawback
of such an approach is that it does not use an essential piece of information
a priori, i.e., the fact the we know the location of the hinge. Thus, a substantial
portion of the conformations that are obtained cannot exist for the real joint-
connected molecule. The second approach initially docks one part. The sub-
sequent step involves a full conformational space search, with all rotations
allowed about the hinge. This approach is reminiscent of a grid-based search, and
is thus extremely time consuming and computationally untractable. Our
approach a priori exploits the fact that the different parts belong to the same
molecule, and the location of the hinge is known. It further contains global

Table 6
Rank of Scoring Solutions Having RMSO Under 5Å

Solution number Cluster number

Complex PDB Overlap CC Overlap CC

1 1hfm-1lym(A) 787 999 421 537
2 1hfm-1lym(B) 948 1316 88 281
3 1tgn-4pti 1050 677 71 53
4 1tgn-5pti 845 1045 2 1
5 1tgn-6pti 315 175 2 2
6 1tld-4pti 381 400 40 16
7 1tld-5pti 2615 1414 286 619
8 1tld-6pti 666 466 24 40
9 2hfl-1lyz 960 117 200 110

10 2hfl-6lyz 931 96 461 65
11 2pka-4pti 500 202 356 29
12 2pka-5pti 549 544 67 9
13 2pka-6pti 558 223 58 27
14 2ptn-4pti 363 160 13 9
15 2ptn-5pti 3594 4061 23 34
16 2ptn-6pti 642 480 1 56
17 2sbt-2ci2 1620 1019 154 92
18 5cha(A)-2ovo 30 20 3 11
19 5cha(B)-2ovo 188 86 2 2

The rank of the best solution obtained with and without the connectivity test is given in
columns 3 and 4. The rank of the best clusters is noted in the fifth and sixth columns. See
footnote to Table 3 for additional details.
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consistency checks as an integral part of the matching. The matching votes are
collectively assembled from all parts of the molecule simultaneously. Hence,
this approach finds optimally docked conformations even if one of the parts
(say, the smaller one) collects only a relatively small number of votes, whereas
a second part achieves a favorable molecular surface complementarity of the
two, receptor–ligand molecule-pair. If the two (or more) parts together still
score high, their docked configuration would be retained. The position of the
hinge is picked manually, at the more flexible joints. A full 3D rotation is
allowed at the hinge. This model (26) is more general than the one with a single
rotatable bond, as a rotation about a bond has only one degree of freedom.

Table 7
The RMSD of the Best Solution

HMS with RMS with RMS of
respect to unbound respect to bound superimposed

Complex PDB reference state reference state unbound on bound

1 1hfm-1lym(A) 2.97 2.43 1.88
2 1hfm-1lym(B) 2.80 3.09 2.18
3 1tgn-4pti 1.85 2.56 2.08
4 1tgn-5pti 1.22 1.92 1.23
S 1tgn-6pti 1.75 2.33 1.59
6 1tld-4pti 5.22 5.71 2.01
7 1tld-5pti 4.71 4.93 1.44
8 1tld-6pti 2.18 2.59 1.57
9 2hfl-1lyz 1.79 2.22 1.31
10 2hfl-6lyz 1.08 1.39 1.18
11 2pka-4pti 3.29 3.91 2.27
12 2pka-5pti 1.21 1.84 1.64
13 2pka-6pti 1.82 2.18 1.63
14 2ptn-4pti 3.53 4.41 2.11
15 2ptn-5pti 3.11 2.85 1.37
16 2ptn-6pti 1.28 1.90 1.66
17 2sbt-2ci2 2.62 2.80 1.62
18 5cha(A)-2ovo 1.49 1.76 1.79
19 5cha(B)-2ovo 1.64 2.22 1.77

Column 2 lists the PDB code. Columns 3 and 4 note the RMS of the best solution. Two RMS
values are given, with respect to two reference states. The first is with respect to the matching
unbound–unbound state (with the unbound molecules superimposed on their complexed, bound
PDB counterparts) and the second RMS is computed with respect to the bound, complexed,
PDB solution. The RMS is computed using the interface atoms. See ref. 19 for further details.
The last column shows, for comparison, the RMS between the bound and unbound chains.
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8. The Hinge-Bending, Robotics-Based Algorithm
This method is computer vision and robotics based. As with our rigid-body

approach, it represents and matches the molecules in a transformation-invari-
ant manner (37). There are two stages: preprocessing and recognition. In the
preprocessing step, the smaller (ligand) molecule is considered. The hinge
location is defined to be the origin of a 3D Cartesian coordinate frame, called
the “ligand frame.” Its orientation is set arbitrarily. For each noncollinear triplet
of interest points (e.g., the critical points describing the molecular surface), we
define a unique triplet-based Cartesian frame. Denote the triplet points by a, b,
and c. Define the origin at a, the direction of the x-axis as the direction of the
line from a to b, the direction of the z-axis as the direction of the cross product
of the vectors ab with ac, and the direction of the y-axis as the direction of the
cross product of the unit vectors in the x and z directions. This is the “triplet
frame.” The ordered triplet of the triangle side lengths serves as an address to a
hash table, where the ligand and the part identification are stored. In addition,
the hash table bin contains the transformation between the triplet frame and the
ligand frame.

In the recognition stage, all noncollinear triplets of critical points describing
the receptor molecular surface are considered. For each triplet, their Cartesian
frame is calculated (see above), and the triangle sides computed. The lookup
(hash) table is accessed according to the triangle side lengths. The prerecorded
transformation stored at the corresponding bin is applied to the receptor-based
triplet frame. This results in a computed “candidate ligand frame.” The origin
of the candidate ligand frame is the “candidate hinge location.” A vote is next
cast for the location and the orientation of the candidate, hinge-centered, ligand
frame.

At the end of this recognition stage, after all receptor triangles have been
examined, the accumulator of votes is searched, seeking high scoring hinge
locations. The hinge location defines the 3D translation that the ligand has to
undergo in this candidate docking. The rotations are computed in the next,
verification, stage. The high-scoring hinge locations are determined according
to the minimal percentage value of the number of votes received by the highest
scoring hinge (26).

In the verification step both the interpart (intramolecular) and intermolecu-
lar penetration is checked. The criteria and considerations here are, in general,
as described previously for the rigid-body docking, although the details that
have actually been implemented differ. Similar in spirit, although not in details,
here too, clustering of the transformations is applied. The ranking is computed
by calculating a contact percentage.

This algorithm directly exploits the fact that both parts of the molecule share
the same hinge. This has been done by locating the origin of the ligand refer-
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ence frame at the hinge. Hence, both parts contribute votes to a reference frame
at the same (hinge) location, even though the orientation of the two parts with
respect to each other may be different. In particular, this enables picking up a
correct docked conformation even if one of the parts has only a small number
of matched receptor–ligand critical point pairs. That would occur if overall the
conformation still scores high. On the other hand, had we docked each part
separately, such a solution might have been overlooked.

Here we have described the algorithm for a single hinge, with the hinge
defined to be in the ligand. Nevertheless, it can be easily seen that the situation
is symmetrical. We have already implemented it for the case where the hinge is
in the receptor. In addition, it has already been implemented and applied to the
double-hinge case (26). There, instead of having one ligand frame, we have
two (or more) frames, each centered at a different hinge. During the prepro-
cessing stage, for each ligand triplet in a single part, the transformations to the
two (or more) ligand frames are computed and stored. The recognition stage is
unchanged with one exception: for each receptor triplet we tally votes for as
many frames as the number of transformations stored in the table bin.

9. Some Results Obtained Allowing Hinge Bending
This method has already been applied successfully to a number of bound, and

of unbound, cases achieving quality docked configurations rapidly (26,37–40).
The location of the hinge has been defined by a comparison of the open,

unbound conformation and the closed, bound one. However, different locations
in the general vicinity have also been tested, with similar results. This suggests
that the technique is quite robust. Specifically, we have applied our method to
five bound complexes and one unbound case. The bound cases include the HIV-1
protease complexed with the U-75875 inhibitor, the dihydrofolate reductase
complexed with methotrexate and separately with NADPH, lactate dehydroge-
nase complexed with NAD-lactate, and a FAB fragment of an IgG antibody
complexed with a peptide antigen (residues 69–87 of myohemerythrin [40]). In
each of these cases, the flexible docking has been carried out with hinge bend-
ing in the ligands. In all cases we have reproduced the crystal binding modes.
The average RMSD we have obtained for the correct solution is 1.4 Å and the
average CPU time on a Silicon Graphics SGI-Challenge R8000 machine, is
1 min. The crystallographically correct solutions rank high. In all cases, addi-
tional predictive binding modes are obtained as well (26,37–40).

In addition to the foregoing complexes, we have also examined thoroughly
the calmodulin receptor (CaM) and its peptide ligand (26). There, we have
allowed flexibility either in the ligand, or in the receptor. Moreover, in the ligand,
either one or two hinges have been allowed. Different locations of the hinges
have also been tested, obtaining consistently similar results. Again, low RMSDs
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have been obtained (i.e., for the single-hinge case in the peptide ligand, 2.53 Å
for the first part; 1.17 Å for the second; for the double-hinge case, 2.03 Å for
the first part; 0.98 Å for the second, and 1.03 Å for the third part.) Similarly,
the CPU times are short. A full description is given elsewhere (26).

10. Conclusions
Protein molecules are dynamic entities. Indeed, this is a critical aspect of

their biological function. It is therefore extremely important to consider
molecular flexibility when we develop a realistic docking scheme. Yet imple-
menting such a realization is a very difficult task in practice.

Here we have described several currently available approaches to handle
molecular flexibility. These include techniques for handling flexibility in the
ligands, and partial flexibility in the receptor, as well as our hinge-bending
computer-vision, robotics based techniques. Nevertheless, in addition to bend-
ing and flexing the molecules, molecular surface movements, as described here,
implemented within the framework of either the rigid-body algorithms, or
within the hinge-bending ones, are also a route to consider. For those cases
where the movements are not large, such approaches may prove very useful.
On the other hand, if larger-scale movements need to be enabled, approaches
such as the hinge-bending ones described here could prove a method of choice.
We are currently extending these to handle more than two hinges in either of
the molecules.

Here we have described geometrical algorithms and geometrical-based fil-
tering of the obtained solutions. The next, essential, step is the chemistry of the
interacting molecules (41). This critical aspect is not addressed in this chapter.
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Protein–Protein Docking

Generation and Filtering of Complexes

Michael J. E. Sternberg, Henry A. Gabb, Richard M. Jackson,
and Gidon Moont

1. Introduction
Knowledge of the three-dimensional (3D) structure of a protein–protein

complex provides insights into the function of the system that can guide, for
example, the systematic design of novel regulators of activity. However, at the
end of 1997, there were more than 5000 protein structures in the Brookhaven
databank (PDB) but less than 200 sets of coordinates for protein–protein com-
plexes. This disparity is reminiscent of the protein–sequence/protein–structure
gap and similarity motivates the development of computational methods for
structure prediction. This chapter describes the strategy to start with the coor-
dinates of the two molecules in their unbound states and then computationally
model the structure of the bound complex including the conformational changes
on association. For reviews of the field of protein docking see refs. 1–3.

We first describe the strategy recently developed in our laboratory that
implements a docking study in the following stages (see Fig. 1):

1. Generation of series of docked complexes using the rigid-body approximation.
2. Application of known distance constraints, particularly details of the binding sites

in one or both proteins.
3. Screening the docked structures generated by (1) and (2) to identify the correct

solution by removing false positives.
4. Refinement of the rigid body structure to consider conformational change com-

bined with further screening of possible solutions.

This approach is discussed in the context of related algorithms developed by
other groups.
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Fig. 1. Schematic of the strategy for generating and screening docked protein com-
plexes. The number of complexes generated refer to the test cases of enzyme inhibitors
(see Table 1). FTDOCK performs a global search for the docking of the two starting mol-
ecules. Only complexes that do not have unfavorable electrostatic complementarity are
considered and 4000 complexes ranked by surface complementarity and generated. The
active site of the molecule shown as a speckled sphere is taken as known and used as a
distance constraint (FILTR). The next step (RPDOCK) is screening based on residue–pair
potential using Cβ atoms (Cα for glycine). Then, side-chain rotamers are sampled by a
multicopy method that also performs a limited rigid-body search (MULTIDOCK).
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2. Materials
The software for the strategy is available from our Web site under the home

page http://www.bmm.icnet.uk and is free to academic users. The ini-
tial stage of performing a rigid-body docking is implemented in the program
FTDOCK as reported in Gabb et al. (4). As described in Subheading 3.1.,
FTDOCK performs the rigid-body docking using the Katchalski-Katzir et al.
algorithm (5) that uses Fast Fourier Transforms (FFT) to search the transla-
tional binding space of two rigid molecules. At present, there are two imple-
mentations of FTDOCK: one uses the FFT routines from Numerical Recipes
Software (6) and can be implemented on a variety of hardware platforms and
the other exploits the more efficient Silicon Graphics library functions but is
specific to this platform. FTDOCK can run the FFT as parallel processes on a
Silicon Graphics Challenge computer and a complete search of binding space
can be completed using eight R10000 processors in a few hours. The subse-
quent application of distance constraints is presently implemented in a
postprocessor program FILTR, but this is liable to amendment in subsequent
implementations of the package.

Rigid-body docking is implemented in several other docking protocols and
these procedures can provide suitable starting models for the subsequent filter-
ing and refinement stages. Here we refer to Chapter 17 by Nussinov and
Wolfson in this volume and also the global-range molecular-matching
(GRAMM) implementation of the Katchalski-Katzir et al. algorithm by Vakser
(7) (http://reco3.musc.edu/gramm).

The initial screening of docked complexes can be performed using residue pair
potentials and is implemented in a package called RPDOCK (see Moont et al. [8]).
The subsequent refinement using multicopy conformations for side chains is imple-
mented in MULTIDOCK (see Jackson et al. [9]). For a single 300-residue complex
on a R10000 processor, RPDOCK requires less than 10 s, and MULTIDOCK with-
out solvent <10 min and with solvent around 30 min.

3. Methods
3.1 Rigid-Body Docking by Fourier Correlation Theory

The initial step is the rigid-body docking of the two molecules to generate a
set of complexes and is performed by FTDOCK (see ref. 4 for details). The
approach is based on the Fourier correlation methodology proposed by
Katchalski-Katzir et al. (5). Two molecules A and B are placed onto 3D grids
each of size N × N × N and each node l,m,n is assigned a value

1 for grid points on the surface
al,m,n = ρ for the core (1)

0 for the outside of the molecule
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where ρ has a negative value (we use –15) for grid nodes within the surface
layer of thickness t (we use between 1.5 and 1.2 Å)

bl,m,n = 1 for the molecule (2)
0 for outside of molecule

The complementarity of shape cα,β,γ between the molecules is then evalu-
ated from

cα,β,γ = 
l
∑
N

=1 m
∑
N

=1 n
∑
N

=1
al,m,n · bl+α,m+β,n+γ (3)

where α, β, and γ are the translational shift of molecule B with respect to A for a
given relative orientation of the two grids. A high value for c denotes a complex
with good surface complementarity, whereas a negative value for c denotes a
complex with penetration into the core of molecule A. Low or zero values for c
denote little or no overlap of the surfaces. The use of a surface thickness t pro-
vides a softness to the docking that accommodates local conformational changes
on complex formation. Calculation of c requires N3 multiplications and addi-
tions for every N3 α,β,γ shifts. However, the use of discrete Fourier transforms
reduces the calculation of c to the order of N3 ln N3. For a global search of the
docking of two proteins, c must be calculated for a series of relative orientations
of one molecular grid with respect to the other. A total of 6912 orientations are
required for angular deviations of 15° and 22,105 for 10°.

In general, molecular recognition in protein complex formation includes
both shape complementarity and electrostatic effects. Accordingly, we intro-
duced into the Fourier correlation approach a treatment of electrostatics. The
charge–charge interaction is evaluated from point charges of one molecule
interacting with the potential from the other molecule sampled at grid points. A
key aspect of the treatment of electrostatics is to provide a smoothness to the
energy landscape eliminating artificially highly favorable or very unfavorable
interactions that result from the rigid-body docking, without treatment of con-
formational changes. Charges are assigned to the atoms of molecule A and the
electrostatic potential evaluated outside and as the surface of the molecule from

φl,m,n = ∑
j
  (qj / ε(rij)rij) (4)

where φl,m,n is the potential at node l,m,n (position i), qj is the charge on atom j,
rij is the distance between i and j (with a minimum value of 2 Å to avoid artifi-
cially large values of the potential) and ε(rij) is a distance-dependent dielectric
function. Inside at grid nodes corresponding to core molecule A, φl,m,n is zero.
For molecule B, charges are assigned to neighboring grid points giving a func-
tion ql,m,n. The electrostatic interaction eα,β,γ for a shift of α,β,γ is calculated from

eα,β,γ = 
l
∑
N

=1 m
∑
N

=1 n
∑
N

=1
φl,m,n · ql+α,m+β,n+γ (5)
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This function is analogous to that for shape complementarity and accordingly
is also evaluated by Fourier correlation for computational efficiency.
Benchmarking showed that the electrostatic function is best used as a binary
filter, removing any complex with an unfavorable (>0) interaction. For favor-
able electrostatic interactions, the complexes are scored solely by the shape
complementarity.

The global search is performed by storing the three most favorable com-
plexes for all translations from a scan with a given orientation of the molecules.
After all orientations are sampled, the top set (typically 4,000) of complexes
are examined and filtered. In a test system of six enzyme–inhibitor complexes,
typically a list of hundreds of complexes would need to be examined after a
global search starting from unbound components to identify a model that is
close (<2.5 Å root-mean-square [RMS] for the Cα atoms at the interface) to the
correct structure (see Subheading 3.6.). This lack of selectivity arises in part
from the problems associated with rigid-body docking.

3.2. Distance Constraints

Knowledge of the location of the binding site on one, or both, protein dras-
tically reduces the number of possible complexes. This information is often
available, e.g., knowledge of the active site of an enzyme when docking its
inhibitor. There can also be experimental information from studies such as
mutagenesis or crosslinking. Alternatively, there are computational methods to
predict the location of the binding site from coordinates. Examination of clefts,
charged sites, and potential hydrogen bonding groups in a protein can suggest
a binding site (10). Recently, Jones and Thornton (11) have developed a proce-
dure based on patch analysis that reports a 66% success rate for predicting
binding sites. In addition, phylogenetic analysis mapping conserved sequences
onto a structure can prove to be a valuable tool to predict functional sites
(12,13). Such distance constraints can therefore be applied to list of docked
complexes and in our package a procedure FILTR is supplied.

3.3. Use of Residue Pair Potentials in Screening Docked
Complexes

Generally less than 100 solutions need to be examined after a global search, that
has been followed by filtering on distance restraints. Methods have therefore
been developed for subsequent screening. These approaches need to model the
interactions stabilizing the complex employing functions that are sufficiently
robust to cope with the limitations in modeling the structure of the complex.
Over the last few years, empirically derived residue–residue pair potential have
been widely used in protein modeling, especially fold recognition (see Chapter 7
in this volume by Jones and Chapter 8 by Reva and Finkelstein and review by
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ref. 14). The theory is that because these potentials are derived from observa-
tions, they will incorporate the dominant thermodynamic effects. Moreover,
when evaluated at the residue, rather than the atom level, the functions can
provide a smooth energy landscape that is not dominated by small changes in
atomic positions. These considerations have led us to develop an approach for
screening docked complexes using pair potentials.

The frequencies Fab of pairings between residues of type a and b having a
Cβ–Cβ distance (for Gly Cα) less than a cutoff dcut is evaluated from a
nonredundant database of protein chains. These observed frequencies are com-
pared to those for a random state and the model used for this state is the based
on the molar fractions, i.e., it is purely compositional. Let na and nb be the total
occurrences of residues of types a and b and T the total number of all pairings,

T = 
a
∑
20

=1 b
∑
20

=1
Fab (6)

The molar expected frequency for the a–b pairing is given by

Eab = T · (na /
a
∑
20

=1
na) · (nb /

b
∑
20

=1
nb) (7)

A log-odds score for a pairing of residue types a and b is derived:

Sab = log10 (Fab / Eab) (8)

The total score for a complex is obtained by summing the Sab values for all
residue pairings between the two molecules with the distance less than dcut. In
addition, the potential can only be evaluated between residues that have rela-
tive accessibility above a cutoff of (Acut) to exclude buried side chains. This
total score can then be divided by the total number of contacting pairs of resi-
dues. High-scoring complexes are evaluated by this function to be more favor-
able. This screening procedure is implemented in the program RPDOCK. For
enzyme inhibitors, the recommended approach uses dcut of 12 Å, Acut of 5%,
and divides the total score by the number of contacts. These values would, a
priori, be recommended for other protein–protein complexes. However, for
antibody–antigen complexes, which tend to have a flatter interacting surface, a
different set of parameters is suggested (use dcut of 17 Å, Acut of 20%, and as
before divide by the total score by the number of contacts).

In this approach, the stabilities of the different complexes are directly evalu-
ated from the log–odds ratio. In many applications, these types of log–odds
ratios are converted to a potential of mean force by the application of
Boltzmann’s principle. However, the validity of this approach has been ques-
tioned (15,16) and, accordingly, we simply treat the scores as a statistical mea-
sure of relative stabilities. In our evaluation of this strategy we also considered
an alternate model for the random state based on the contact expected frequency
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(16), but this was found to be less effective in screening docked complexes. In
addition, pair potentials were derived for individual atoms or atomic- function
groups (17). These proved less suitable for screening complexes than the resi-
due-based molar-fraction approach. The poor performance of atomic pair
potentials is probably due to their sensitivity to the atomic positions, which
need to be more precise than can be obtained from a complex generated by
rigid body docking.

3.4. Molecular Mechanics Refinement of Protein Interfaces
Incorporating Solvation

An additional method for screening solutions is to use a molecular mechanics
energy function. We have developed a method to refine protein–protein inter-
faces that models the effect of side-chain conformational change, solvation,
and limited rigid-body movement of the interacting molecules (9). As well as
being a possible screening method, it is also a conformational refinement
procedure, producing information on the energy contributions of specific
residue contributions to protein binding.

The proteins are described at the atomic level by multiple copies of side
chains on a fixed peptide backbone modeled according to commonly occurring
side-chain conformations from the library of Tuffery et al. (18). The surround-
ing solvent environment is described by “soft” sphere Langevin dipoles for
water (see next paragraph) that interact with the protein. Energy refinement is
based on a two-step process in which (1) a probability-based conformational
matrix of the protein side chains is refined iteratively by a mean-field method.
A side chain interacts with the protein backbone and the probability-weighted
average of the surrounding protein side chains and solvent molecules (2) The
resultant protein conformations then undergo rigid-body energy minimization
to relax the interface. Steps (1) and (2) are repeated until convergence of the
interaction energy.

The “soft” sphere Langevin dipole (LD) model reproduces the solvation-
free energy of a solute with its surrounding water environment. The interacting
water molecule is represented by a van der Waals particle, an LD (modeling the
electrostatic interaction), and a field-dependent hydrophobic energy. The model
is based on that developed by Luzhkov and Warshel [19]). In addition to a
realistic solvation model we use a self-consistent mean-field approach to opti-
mize protein side-chain conformations, given the main-chain atom coordinates
(20,21). This describes a protein of N residues whose main-chain coordinates
(N, Cα, C, O, and Cβ) are fixed. A residue side chain, i, (with the exception of
Gly, Ala, and Pro) has a discrete number, Ki, of conformations (rotamers).
Therefore, side-chain degrees of freedom can be defined by a conformational
matrix CM of dimension, N by max(Ki), where each rotamer, k, has a probabil-
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ity of CM(i,k), bounded by the condition that the sum of the probabilities for a
given residue, i, must be equal to 1.

The object of the mean-field approach is to determine the most probable set
of side-chain rotamers from a limited total number of rotamers. The potential
of mean force, E(i,k), on the kth rotamer of residue, i, is given by;

E(i,k) = V(χik) + V(χik,χmc) + 
j=1
∑
N

j≠i l
∑
Kj

=1
 CM(j,l)V(χik,χjl) + Esol(i,k) (9)

where V is the potential energy, χik are the coordinates of atoms in rotamer k of
residue i and χmc are the coordinates of atoms in the protein main chain. The
first term represents the internal energy of the rotamer. The second term repre-
sents the interaction energy between the rotamer and all the main-chain atoms.
These two values are constant for a given rotamer on a given main chain. The
third term represents the interaction energy between the rotamer and all the
rotamers of other residues weighted by their respective probabilities. The fourth
term Esol(i,k) represents the potential of mean force acting at rotamer, k, of
residue, i, due to the surrounding solvent environment. Each residue rotamer
has a number, Mi,kj, of precalculated interactions with all surrounding solvent
sites. For an LD in conflict with a rotamer the probability of the site is depen-
dent on the probability, CMconflict(j,l), of the rotamer in conflict. If no rotamer
is in conflict the probability of the site is 1. Thus the additional solvation term
is given by:

Esol(i,k) = 
LD
∑
Mi,

=1

k

  [1 –
j=1
∑
N

j≠i l
∑
Kj

=1
 CMconflict(j,l)] G(χik + χmc, χLD) (10)

with

0 ≤ [1 –
j=1
∑
N

j≠i l
∑
Kj

=1
 CMconflict(j,l)] ≤ 1 (11)

where G(χik + χmc, χLD) is the free energy of interaction between the main
chain plus side-chain atoms of a given rotamer and the “soft” sphere LD (van
der Waals, electrostatic, and hydrophobic components).

Given the effective potentials acting on all Ki possible rotamers of residue, i,
the probability of the rotamer can be calculated according to the Boltzmann
principle as

CM(i,k) = e–E(i,k)/RT / 
k
∑
Ki

=1
e–E(i,k)/RT (12)

where R is the Boltzmann constant and T is the temperature. The values of
CM(i,k) are substituted back into the equation describing E(i,k) and its new
value recalculated. This process is repeated until values of CM(i,k) converge.
The predicted structure corresponds to the highest probability rotamer for each
residue. Following each complete cycle of side-chain mean-field optimization,
rigid-body minimization was performed on the resultant coordinates of the
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interacting protein molecules (note that solvation cannot be included in this
step). The larger molecule is kept stationary, whereas the six degrees of free-
dom (three rotational and three translational) of the smaller molecule are moved
according to the path determined by the derivatives to minimize the intermo-
lecular interaction energy.

The objective potential energy function used thoughout is a molecular
mechanics force field that includes the “soft” sphere LD model for solvation in
the mean-field optimization step. The protein–protein interaction energies are
constrained to be within boundaries and therefore produce a smoother energy
surface. Unfavorable van der Waals interactions are truncated to a maximum
value of 2.5 kcal/mol. This was chosen to correspond with an electrostatic
interaction scheme in which a minimum allowed distance separation between
two interacting charges qi and qj is set so that atom pairs that come closer than
allowed are rescaled to realistic values.

3.5. Application to Modeling Protein–DNA Complexes

Predictive docking of protein–DNA complexes is considered to be a more
difficult problem than protein–protein complexes, as the DNA tends to undergo
substantial conformational change on association and the highly charged DNA
backbone can dominate in approaches to model the electrostatic component in
molecular recognition. However, the foregoing docking protocol can be modi-
fied to tackle systems, such as repressor–DNA complexes, that do not have a
gross conformational change on association.

FTDOCK has been applied to modeling repressor–DNA (22). A specific
charge set was developed for DNA that damps the phosphate charges and exag-
gerates the partial charges on the chemical groups in the DNA helix groove.
For the protein, the main chain, the fully charged side chains, and Asn, Gln,
and His are assigned charges. In general, for distance filtering, there often is
knowledge of the recognition base sequence, and sometimes residues on the
protein that interact with the DNA have been identified. Empirical potentials
have also been derived analogously to quantify amino acid–nucleotide interac-
tions. The best parameters for screening were found to use a molar fraction
model for the random state with dcut of 13 Å but using a sparse matrix that only
scored interactions with charged or polar amino acids (C, D, E, H, K, N, Q, R,
S, and T). For refinement, there is a requirement to model the conformational
changes in both the DNA and the protein. For this step, the reader is referred to
the MONTY procedure developed by Kaptein’s group (23,24).

3.6. Sample Results

The protein–protein procedure has been evaluated on six enzyme inhibitors
and two antibody–antigen complexes starting with both molecules as unbound
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coordinates and on a further two systems starting with bound antibody
(HyHEL5 and HyHEL10) docking to unbound antigen (4,8,9). A correct pre-
diction is taken as a complex with an RMS deviation of the Cα atoms at the
interface of no more than 2.5 Å. FTDOCK was run for a global search fol-
lowed by applying the distance constraint that one of the three active site resi-
dues must interact with the inhibitor or one of the antibody-combining loops
interacts with the antigen. Table 1 gives the number of solutions in the list
produced by FTDOCK and the number of correct predictions in the list. The
subsequent columns give the rank of the first correct solution after FTDOCK
alone, then screening the FTDOCK results with pair potentials (RPDOCK)
and then screening the FTDOCK results by multicopy refinement without sol-
vent (MULTIDOCK). Finally, the result of first ranking the FTDOCK results
by PRDOCK, taking the top 10% of this list for the enzymes and the top 40%
for the antibodies, and then ranking these by MULTIDOCK is given. For the
enzyme inhibitors, this approach leads to the need to examine no more than
four alternatives with the exception of subtilisin with its inhibitor for which no
correct prediction was generated in the initial FTDOCK scan (see Fig. 2 for
predicted docked complex). For antibody–antigen complex modeling is poorer,
possibly as a result of the lower binding affinities in these systems.

The procedure has also been benchmarked on eight repressor–DNA com-
plexes starting with unbound protein coordinates (except for one repressor)
and model-built B-DNA. In general, the results (22) show that predictive dock-
ing can yield a limited number of repressor–DNA complexes that can be used,
e.g., for the design of subsequent experiments.

3.7. Other Procedures to Screen Docked Protein Complexes

There are several computational methods to predict binding free energies in
biological systems, but we focus our overview to methods that have been
applied specifically to protein docking applications, as not all such methods
are sufficiently robust and/or computationally tractable for the protein–protein
docking problem. It is generally accepted that, although contact score or sur-
face area burial can successfully discriminate between 95–99% of the struc-
tures generated by a typical docking algorithm, it remains unable to
discriminate between the remaining small percentage of solutions (typically
100–1000 structures) (e.g., Shoichet and Kuntz’s study [25]). We have pre-
sented two different but complementary approaches to screening docked solu-
tions. These methods are essentially independent of each other, however, as
shown discrimination is improved by combining the results of the pair-poten-
tial and molecular mechanics refinement methods to give a consensus answer.

There are, however, many other scoring methodologies that are not depen-
dent purely on contact scores–surface area burial. This includes the principle
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Table 1
Discrimination Provided by Generation and Filtering Docked Protein–Protein Complexes

Total no. N ≤ 2.5 Å Rank Rank
after in FTDOCK Rank Rank MULTI- RPDOCK and

System FTDOCK list FTDOCK RPDOCK DOCK MULTI-DOCK

αCHYN-HPTI 94 1 3 1 2 1
αCHY-ovomucoid 86 5 11 3 1 1
Kallikrein-BPTI 363 18 130 5 2 1
Subtilisin-CHY I 26 2 8 1 12 2
Subtilisin-subtilisin I — — — — — —
Trypsin-BPTI 228 8 16 7 26 4
D1.3-lysozyme 694 2 168 34 235 84
D44.1-lysozyme 586 5 39 18 108 42
HyHEL5-lysozyme 516 2 226 97 31 23
HyHEL10-lysozyme 756 5 62 169 13 4

For details, see Subheading 3.6. αCHYN, α-chymotrypsinogen; αCHY, α-chymotrypsin; HPTI, human pancreatic trypsin inhibitor; BPTI,
bovine pancreatic trypsin inhibitor; CHYI-chymotrypsin inhibitor; subtilisin I, subtilisin inhibitor D1.3. D44.1, HyHEL5, and HyHEL10 are
monoclonal antibodies (for details of coordinate files see ref. 4). RPDOCK was run using the recommended values for enzyme-inhibitor and
antibody–antigen complexes (see Subheading 3.3.). Some degenerate identical complexes included our earlier studies have been excluded from
the table.
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Fig. 2. Predicted docking of BPTI to kallikrein. (A) The predicted docking by
FTDOCK of bovine pancreatic trypsin inhibitor (BPTI) to kallikrein (below) shown as
a superposition of the Cα chain trace. Predicted from FTDOCK in white and X-ray in
black. (B) The inhibitory loop of BPTI with three critical side chains is shown as it is
docked to kallekrein (not shown). In white are the results from FTDOCK, in gray the
results after refinement by MULTIDOCK, and in black the X-ray structure of the com-
plex. The most important side chain that buries deep into the active site of kallikrein
has its conformation improved by MULTICOPY.
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that surface area burial is proportional to the free energy of binding if account
is taken of the nature of the constituent interfaces. This is the basis of empiri-
cally derived atomic solvation parameters (26,27), which have been used
extensively in protein–protein recognition. Recently, Wallqvist and Covell (28)
have extended this concept by using a statistically derived atom–atom surface
burial scheme from observations of surface burial by atoms across the interface
of known enzyme-inhibitor complexes. Indeed the subject of statistically
derived atom–atom- (17) and residue–residue (29)-based pair potentials as
applied to protein–protein docking (8) is a relatively unexplored field. However,
atom–atom pair potentials have been employed to estimate the binding free
energy of small molecules to proteins (e.g., ref. 30). Furthermore, multiple
linear regression methods have also been used to derive atom–atom potentials
(e.g., ref. 31) and used to estimate protein-small molecule interactions where
the parameters are estimated using the crystal structures and experimental bind-
ing constants.

Alternatively, molecular mechanics-based energy functions have been
developed with varying levels of sophistication. Energy minimization has been
applied with some success (25,32), as have Monte Carlo docking methods using
grid-based potentials (33–35). Furthermore, attempts to treat the desolvation
effects on binding in addition to interaction potential have been developed.
Cummings et al. (36) and Weng et al. (37) used atomic solvation parameters
(discussed earlier), whereas we (38) developed a continuum approach, where
the free energy change is the sum of the electrostatic free energy (calculated
using the Poisson–Boltzmann equation) and a surface area based hydrophobic
free energy. Abagyan and Totrov (39) have developed a modified image
approximation to calculate the electrostatic solvation contribution to binding,
which has also been used in docking applications. Indeed, several of the
methods we have discussed also take into account the loss in conformational
entropy on binding due to freezing out side-chain motions, and where this
has been combined with a conformational search methodology, encouraging
results have been reported in protein systems where conformational changes
are fairly limited.

4. Conclusions
Over the last few years substantial progress has been made toward solving

the protein-docking problem. For systems such as enzyme inhibitors with a
high binding constant, predictive docking aided by knowledge of an active site
can suggest a list of a few complexes that can provide models for testing. Our
studies suggest that antibody–antigen complexes may be harder to model. Pos-
sibly this is due simply to the lower free energy of association or it may also be
a consequence of clonal selection dictating the antibody structure that binds to
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the antigen, whereas evolution has selected an inhibitor that is optimal (or near
optimal) for binding to the enzyme. Some types of protein–DNA complexes
are also proving amenable to predictive docking. Clearly starting with rigid
bodies will limit the success of the approach to systems with substantial con-
formational change on association.

Comparison of different docking approaches remains difficult. Of particular
value in evaluating strategies are the two blind trials of docking that have been
held (40,41). The continued testing of algorithms against a wide range of tar-
gets will assist in the development of computational methods that are robust
and based around a sound understanding of the protein-docking problem.

5. Notes
5.1. Rigid-Body Docking (FTDOCK)

1. Docking is performed on grid-based representations of the structures, which are
easier to handle computationally and mathematically. Each molecule is reduced
to a discrete function (i.e., discretized) that approximately describes its 3D struc-
ture. The accuracy of the approximation is determined by the resolution of the
grid, which is subject to two constraints. First, the Fast Fourier Transform (FFT)
used by the program requires that grid dimensions be powers of two (i.e., 2, 4, 8,
16, 32, 64, 128, etc.). Second, FTDOCK is written in Fortran 77, which lacks
dynamic memory allocation. Grid sizes must be fixed at compile time rather than
run time. Future versions of the program will remove these restrictions (Fortran
90 and a better, more portable FFT will be used). In the meantime, the user can
improve grid resolution by removing parts of the molecule not involved in bind-
ing. In antibodies, e.g., only the variable portion is involved in antigen binding
and the constant regions can safely be removed.

2. In order to score shape complementarity, it is necessary for FTDOCK to delin-
eate the surface and core of the molecules during discretization. There are several
constraints on the surface thickness. First, it cannot be smaller than the grid spac-
ing. Furthermore, if grid resolution is too coarse then the distinction between
surface and core is poor. However, as the surface layer of the model increases, the
ability to score real shape complementarity diminishes. This leads to predicted
complexes with high correlation scores but considerable surface overlap. There
are two possible solutions to this problem. First, decrease the value of core grid
nodes in the discrete function representing the molecule. This has the effect of
increasing the penalty for surface penetration. Second, use a computer with
sufficient power and memory to handle larger grids. The latter option is recom-
mended.

3. When grid resolution is not a problem, surface thickness can be used to modulate
scoring stringency. A thin surface layer is less tolerant of overlap in the structures,
whereas a thicker surface layer softens the scoring function. For example, if the
user feels that there will be little conformational change on association, a thinner
surface layer is recommended. Similarly, if the available structures are only solved
to low resolution, a thicker surface layer should be used.
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5.2. Refinement of Protein Interfaces (MULTIDOCK)
1. When screening a large number of putative docked complexes (>50), it is sen-

sible to proceed with refinement without the inclusion of solvent. First, the time
saving is substantial (see Subheading 2.). Second, although inclusion of solvent
does appear to enhance the ranking of nativelike solutions, it does not turn a
nativelike solution with a poor in vacuo energy into a high-ranking solution.
Hence solvation can be employed as a final screen on say the top 50 solutions.

2. The total number of residues included in the simulation is presently limited to
450. However, the inclusion of only a limited number of interface residues can
speed up the calculation, i.e., the smaller the number of residues treated by the
multicopy representation in the interface the faster the calculations. In testing on
several systems, a cutoff for inclusion of residues in the mobile interface region
(i.e., for residues whose Cβ atoms are within a given cutoff of any Cβ of the other
molecule) of ≥10 Å gave similar results to longer distances. Also, atom–atom and
residue–residue cutoff distances can be manipulated for the purpose of either
speed or accuracy.

3. The protein ATOM records should be checked for errors before running the pro-
gram, as nonstandard amino acids are not supported. Residues with the incorrect
number of atoms for a given side chain will cause the program to halt. The user
must either truncate the residue, to say, alanine (and change the residue name to
reflect the atoms present), or rebuild the side chain (generally recommended).
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