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Preface

These lecture notes are based on several courses and lectures given at different
places (University Pierre et Marie Curie, University of Bordeaux, CNRS research
groups GRIP and CHANT, University of Roma I) for an audience of mathemati-
cians. The main motivation is indeed the mathematical study of Partial Differential
Equations that arise from biological studies. Among them, parabolic equations are
the most popular and also the most numerous (one of the reasons is that the small
size, at the cell level, is favorable to large viscosities). Many papers and books treat
this subject, from modeling or analysis points of view. This oriented the choice
of subjects for these notes towards less classical models based on integral equa-
tions (where PDEs arise in the asymptotic analysis), transport PDEs (therefore
of hyperbolic type), kinetic equations and their parabolic limits.

The first goal of these notes is to mention (and describe very roughly) various
fields of biology where PDEs are used; the book therefore contains many exam-
ples without mathematical analysis. In some other cases complete mathematical
proofs are detailed, but the choice has been a compromise between technicality
and ease of interpretation of the mathematical result. It is usual in the field to see
mathematics as a black box where to enter specific models, often at the expense of
simplifications. Here, the idea is different; the mathematical proof should be close
to the ‘natural’ structure of the model and reflect somehow its meaning in terms
of applications.

Dealing with first order PDEs, one could think that these notes are relying on
the burden of using the method of characteristics and of defining weak solutions.
We rather consider that, after the numerous advances during the 1980s, it is now
clear that ‘solutions in the sense of distributions’ (because they are unique in a class
exceeding the framework of the Cauchy-Lipschitz theory) is the correct concept.
They allow for abstract manipulations, which we justify in the first section of the
chapter ‘General mathematical tools’, and we use them freely throughout the text.
Then one can concentrate on the intimate mathematical structure of the models.

It is a great pleasure for me to thank all those from whom these notes have
profited; O. Diekmann who gave a series of enlightening lectures; my colleagues
and collaborators and in particular J. Clairambault, L. Corrias and H. Zaag, who
provided a constant motivation for better understanding; St. Boatto who made
several useful suggestions; M. Desnous who helped me with figures. But mostly I
would like to thank our postdocs at E.N.S. and former PhD students; most of the
ideas emerged through discussions with them.

Paris, June 2006 Benôıt Perthame



Chapter 1

From differential equations to
structured population dynamics

Many problems arising in biology may be described, in a first formulation, using
differential equations. This means that the model has been constructed by aver-
aging some population and keeping only the time variable. This average usually
hides some characteristic that can vary from one individual to another. Taking into
account this characteristic leads to the so-called structured population dynamic
equations. The aim of this chapter is to give several examples of this hidden char-
acteristic and to show that it can sometimes represent a physical or physiological
variable (ideally directly measurable). But sometimes it represents a biological or
physiological variable that is not directly accessible to measurement but helps in
a conceptual understanding of phenomena.

We give examples from ecology, which aims at understanding the relations
between organisms themselves and their environment. We also give examples from
immunology, which aims at understanding the interactions between hosts and
parasites (a reference book on the mathematical aspects is [186]), and from the
related field of epidemiology. These topics belong to the more general subject of
population biology, see for instance [95, 218].

Many elaborate questions and mathematical tools (stability, bifurcation the-
ory, Poincaré-Bendixson type theorems, index and topological concepts) can be
used to study differential equations arising in biology. Examples can be found for
instance in [217, 135, 133, 109]. Our purpose is not to present these mathematical
aspects but to give examples where differential systems directly lead to Partial Dif-
ferential Equations or Integral Equations. Therefore we only present some analysis
when a simple argument can give a qualitative property of the system.
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1.1 Invasions and space structure

The simplest model in population biology is the unrestricted growth of a population
of size N(t),

dN(t)
dt

= αN(t),

on which Th. Malthus ([165]) based his theory at the end of the 18th century. It
represents an early stage of colonization in a virgin background where α represents,
as we will see later, an available resource that determines the population growth.
More elaborated is the logistic growth proposed by P.-F. Verhulst in the middle of
the 19th century, where saturation occurs due to a maximum possible occupation
density denoted by K,

dN(t)
dt

= αN(t)
(
K − N(t)

)
.

Because α > 0 here, the state N = 0 is unstable and the population density
converges monotonically to N(t = +∞) = K. In biology, the constant K is usually
called the carrying capacity .

A further improvement in the 1950s (called Allee effect, [4]) is to suppose that
too low densities N(t) (less than K− with the notation below) lead to extinction
by lack of encounters between individuals. This can be modeled by the so-called
bistable equation (the steady states N(t) ≡ 0 and N(t) ≡ K+ are stable and
N(t) ≡ K− is unstable)

dN(t)
dt

= αN(t)
(
1 − N(t)

K−

)(N(t)
K+

− 1
)
, 0 < K− < K+, α > 0.

In fact, ODEs in mathematical modeling in biology go back to early infinitesimal
calculus. For instance in 1760 Daniel Bernoulli [26] computed how many lives
would be saved in Paris by inoculation against smallpop, establishing one of the
first models of immunology.

A first natural question is how such equations can be established based on
individual behaviors and why statistical effects can be neglected. This aspect, in
the context of ecology, can be found in [183, 90, 91, 188] and in [101, 56] in the
context of evolution theory.

A second natural question is what happens if the individuals can move in
space. This leads to structuring the population by a space variable x ∈ R

d (d = 2
in practice, d = 1 is easier) and considering the population density n(t, x) which
at time t occupies the location x. Assuming a random motion of individuals (more
precisely a diffusion process), we arrive at very famous equations. The logistic
equation gives rise to the equation

∂

∂t
n(t, x) − ∆n(t, x) = αn(t, x)

(
K − n(t, x)

)
.
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It is called the Fisher/KPP equation because it was introduced by Fisher ([105])
for the spread of a genetic trait, and studied by Kolmogorov, Petrovski and
Piskunov ([153]). Biology is the prime motivation even though it is now very
famous for studies of combustion and flame propagation).

The bistable equation is extended to become the so-called Allen–Cahn [1]
equation (here 0 < α < 1 is a given parameter)

∂

∂t
n(t, x) − ∆n(t, x) = n(t, x)

(
1 − n(t, x)

)(
n(t, x) − α

)
. (1.1)

It admits a traveling wave solution (front) with a speed that vanishes for α = .5.
Abusively — see (1.20) which propagates a pulse (or a spike) not a front — this
equation is sometimes also called Fitzhugh–Nagumo equation [106, 182].

The study of these equations, and why they represent the propagation of
an invasion front, has leds to numerous publications with probabilistic aspects
([110, 91]), study of traveling waves ([178, 25, 102, 188] and the references therein),
or asymptotic methods ([17, 213, 199]). Also, Turing patterns ([220, 178]) are often
obtained by a combination of such equations.

1.2 Ecology and Lotka–Volterra type of systems

1.2.1 The 2 × 2 Lotka–Volterra system

Mathematical ecology began with the model which is now known as the Lotka–
Volterra system (see [229] for the original paper) or prey-predator system. Here
F (t) represents the population size of prey i.e. food for the predators P (t). Prey
are fed by the natural environment and thus grow with a rate α and are eaten by
the predators at a rate βP (proportional to the number of predators). Predators
die with a rate µ but their growth rate is proportional to the population size F (t)
which represents food for them. We arrive at the equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

dF

dt
= αF − βFP,

dP

dt
= γPF − µP.

(1.2)

This model proposed by Volterra was successful for describing a specific ob-
servation on fishes in the Adriatic sea. The biologist D’Ancona observed the market
for fish during the First World War when fishing had greatly decreased. According
to (1.2), the market can be modeled by the steady state

F̄ =
µ

γ
, P̄ =

α

β
.
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After the war, fishing increased and this led to the observation that the param-
eter α decreased by a small ratio, denoted by ε, while µ increased. The ratio of
predatory fishes then changed according to( P̄

F̄

)
no fishing

=
α γ

µ β
,

( P̄

F̄

)
fishing

=
α(1 − ε)
µ(1 + ε)

γ

β
≈ α γ

µ β
(1 − 2ε). (1.3)

Therefore the model predicts that the proportion of predatory fishes is higher
without fishing as observed during the war, in accordance with the observation of
D’Ancona.

0 2 4 6 8 10 12 14 16 18
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Lotka-Volterra system; F=continuous line, P=dashed line
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Lotka-Volterra system; trajectories in (F,P) phase plane

Figure 1.1: Solutions of Lotka–Volterra system with all parameters equal to 1;

left: F (t) (continuous line) and P (t) (dashed line) for 0 ≤ t ≤ 18, right: trajectories

in (F, P ) plane.

Another feature of this system is the possibility to understand easily the
trajectories and we prove

Lemma 1.1. For initial data F (t = 0) > 0, P (t = 0) > 0, the trajectories of system
(1.2) are periodic and remain positive.

Of course this qualitative lemma is in opposition to the above interpretation
because it proves that the steady state is not locally attractive. This motivates us
to introduce more elaborated (not merely quadratic) nonlinearities (see Section
1.2.2). Notice however that the quantitative conclusion is correct as one can see
from the

Exercise. Prove that the average of
(
F (t), P (t)

)
over one period is

(
F̄ , P̄

)
.

Hint: use the same change of unknown as in the proof of Lemma 1.1 below.

Proof of Lemma 1.1. Even though it is not hamiltionian, the Lotka–Volterra sys-
tem can be reduced to a hamiltonian system by a change of unknowns, and thus
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it admits an invariant quantity. Consider the new variables (ϕ, ψ) and the hamil-
tonian H,

ϕ = lnF, ψ = lnP,

H(ϕ, ψ) = −αψ + βeψ + γeϕ − µϕ.

The system (1.2) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
dϕ

dt
= α − βP = α − βeψ = −Hψ

(
ϕ(t), ψ(t)

)
,

dψ

dt
= γF − µ = γeϕ − µ = Hϕ

(
ϕ(t), ψ(t)

)
,

(1.4)

(this is exactly the definition of a hamiltonian system). This hamiltonian structure
implies that

dH
dt

(ϕ(t), ψ(t)) = Hϕ
dϕ

dt
(t) + Hψ

dψ

dt
(t) = 0.

In other words, for all times t we have H(ϕ(t), ψ(t)) = H(ϕ(0), ψ(0)) and thanks
to the coercivity property

H(ϕ, ψ) → +∞ as |ϕ| + |ψ| → ∞,

we deduce that the trajectories are indeed bounded in (ϕ(t), ψ(t)). This implies
that

(
F (t), P (t)

)
are bounded and bounded away from 0.

The periodicity follows from the same hamiltonian structure because trajec-
tories are confined on the closed curves H(ϕ(t), ψ(t)) = H(ϕ(0), ψ(0)) and one
readily checks that the velocity cannot vanish. A typical trajectory is depicted in
Figure 1.1. �

In fact the terminology Lotka–Volterra systems nowadays contains the general
class of differential systems of the form

dNi(t)
dt

= Ni(t)Fi

(
N1(t), N2(t), . . . , NI(t)

)
, i = 1, 2, . . . , I, (1.5)

where Ni denotes the density number of individuals of the species i, and Fi denotes
the growth rate per capita of the species i. Among them is a generalization of the
system (1.2), where

Fi(n1, n2, . . . , nI) = ri +
I∑

j=1

aijnj .

Another standard case is the replicator system which is again defined thanks to a
square matrix A,

dNi(t)
dt

= Ni(t)
(
(A.N)i − N.A.N

)
, A = At,
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and has the property that solutions live on the subset Ni ≥ 0,
∑

Ni = 1. We refer
to [136] for a survey on the state of the art for this type of these systems and
relations to game theory, see also [135].

Most of the differential equations presented in this section are Lotka–Volterra
systems.

1.2.2 Rosensweig–MacArthur

The periodicity property of solutions to the Lotka–Volterra system, related to its
very particular form, makes it too specific because of the simplicity of the modeling.
More realistic models have been derived which involve natural saturation effects.
We present such a prey-predator model now, taken from [204], which describes
the population density F (t) of algae (food) and the density P (t) of Daphnia (a
waterflea, the predator).⎧⎪⎪⎪⎨⎪⎪⎪⎩

dF

dt
= αF (1 − F

K ) − Imax
F

Fh+F P,

dP

dt
= γ̄Imax

F
Fh+F P − µP.

(1.6)

Here, α and K denote the maximum growth rate and the carrying capacity of the
algae, Imax and Fh are the maximum feeding rates and half-saturation food level
of the Daphnia functional response; γ̄ and µ are the conversion efficiency and per
capita mortality rate of Daphnia. All these parameters are positive.

Lotka–Volterra is a limiting case of this system when we take the parameters
as

K, Imax, Fh → ∞,
Imax

Fh
→ β, γ = β γ̄.

In this limit, the trajectories of the Rosensweig–MacArthur system converge to
those of the Lotka–Volterra system thanks to the general theory of continuity
with respect to parameters in Cauchy-Lipschitz theory (see for instance [65]).

Of course, such a system preserves the positive cone F (t) > 0 and P (t) > 0
and the upper bound F (t) ≤ K. We now assume that the parameters satisfy

µ < γ̄Imax, F̄ < K,

where (F̄ , P̄ ) is the unique positive steady state with F̄ uniquely defined thanks
to

F̄

Fh + F̄
=

µ

γ̄Imax
,

P̄ =
Fh + F̄

Imax
(1 − F̄

K
).

It is easy to check that this steady state is attractive: all trajectories, with F (0) >
0, P (0) > 0 converge to (F̄ , P̄ ) as t → +∞. A typical trajectory is presented in
Figure 1.2.
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Figure 1.2: Solutions of Rosensweig–MacArthur system with all parameters equal

to 1 except K = 4, Imax = Fh = 2; left: F (t) (dashed line) and P (t) (continuous line)

for 0 ≤ t ≤ 35, right: trajectories in (F, P ) plane.

1.2.3 Chemostat (1); several nutrients

A particularly representative differential system of ecology arises in laboratory ex-
periments. A chemostat (see also Section 1.6) contains nutrients Si, i = 1, 2, . . . , I,
and a micro-organism (the example of Daphnia is frequent, see also Section 4.3.1)
which uses the nutrients to grow. The modeling is particularly simple because
Si(t) can measure the mass of chemical constituents that are either free in the
chemostat or absorbed by the micro-organism whose biomass is denoted by n(t).
Therefore we can write an exact balance equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d

dt
Si(t) = R[S0i − Si(t)] − Si(t)ηin(t),

d

dt
n(t) = n(t)

(
I∑

i=1

Si(t)ηi − R

)
.

(1.7)

Here the vector with positive coefficients (S0i)i=1,...,I represents the influx of ‘pure’
nutrients and the terms −RSi(t) and −Rn(t) represent the outflux of the mixture
with rate R > 0. The quadratic term, as usual, represents the predation, with rate
ηi > 0, of the constituent Si.

As we mentioned before, this system contains a fundamental balance law for
the total mass M(t) of constituents (free or absorbed) defined by

M(t) =
I∑

i=1

Si(t) + n(t),

d

dt
M(t) = R

( I∑
i=1

S0i − M(t)
)
, ∀t ≥ 0. (1.8)
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Several more elaborated models exist and many questions are of interest for appli-
cations in ecology (limiting constituents, degradation of n(t) after death. . . ), cf.
[70, 203, 204].

As a mathematical result, let us just mention that the steady state (n̄, S̄1, . . . , S̄I)
is easy to find. If n̄ does not vanish, it is given by

RS0i = S̄i[R + ηin̄],
I∑

i=1

S̄iηi = R,

which can be solved uniquely (by monotonicity in n̄) as

S̄i =
RS0i

R + ηin̄
,

I∑
i=1

S̄iηi = R. (1.9)

Of course this is only possible if
I∑

i=1

S0iηi > R.

Lemma 1.2. Consider an initial state n(0) > 0, Si(0) ≥ 0 and assume that
I∑

i=1

S0iηi < R. Then the solution to (1.7) satisfies

n(t) −−−−→
t→∞ 0, Si(t) −−−−→

t→∞ S̄0i. (1.10)

Lemma 1.3. Consider an initial state n(0) > 0, Si(0) ≥ 0 and assume that
I∑

i=1

S0iηi > R. Then the solution to (1.7) satisfies

n(t) −−−−→
t→∞ n̄, Si(t) −−−−→

t→∞ S̄i, (1.11)

and n̄, S̄i are uniquely given (implicitly) by (1.9).

Notice that the model expresses a balance law. From (1.8), we deduce that

the quantity M(t) =
I∑

i=1

Si(t) + n(t) satisfies

M(t) = Σ − Q0e−Rt, Q0 = M(0) − Σ, Σ =
I∑

i=1

S0,i. (1.12)

Such a bound implies that there are unique global solutions using the Cauchy–
Lipschitz theorem.
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Proof of Lemma 1.2. The equation for Si can be written

d

dt
[Si(t) − S0i] ≤ −R[Si(t) − S0i],

and thus we have also found a Lyapunov functional,

d

dt
[Si(t) − S0i]+ ≤ −R[Si(t) − S0i]+,

which proves that

limsupt→∞ Si(t) ≤ S0i, limsupt→∞
I∑

i=1

ηiSi(t) ≤
I∑

i=1

ηiS0i < R.

Therefore the growth rate of n, namely
∑I

i=1 ηiSi(t)−R is negative for times large
enough and thus n(t) vanishes exponentially. Then, we deduce from the limsup of
Si and (1.12) that in fact Si(t) → S0i. �
Proof of Lemma 1.3. We only prove that liminft→∞n(t) ≥ n̄ and leave the reverse
inequality to the reader.

Firstly, we notice that from the proof above, we have

limsupt→∞Si(t) ≤ S0i. (1.13)

Then, we begin by proving that

liminft→∞n(t) ≥ n1 :=
∑

ηiS0i − R∑
ηi

> 0. (1.14)

Otherwise, we have ∀ε, ∃t(ε) such that for t > t(ε) we have n(t) < n1 − 2ε. And
from (1.12), we deduce that for t large enough∑

Si(t) ≥ Σ − n1 + ε,

and then it follows that

Si(t) ≥ S0i − n1 + ε, ∀i = 1, . . . , I,

(otherwise i with Si(t) ≤ S0i − n1 + ε and (1.13) contradicts the previous state-
ment).

As conclusion, we have∑
ηiSi(t) ≥

∑
ηiS0i − n1

∑
ηi + ε

∑
ηi = R + ε

∑
ηi.

This implies an exponential growth of n(t) which contradicts the boundedness of
M(t) and proves (1.14).
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From this we also deduce that

limsupt→∞Si(t) ≤
RS0i

R + ηin1
.

Indeed, if for some i and t1 we have Si(t1) > RS0i

R+ηin1
, then from the equation of

Si in (1.7), we deduce that Si(t1) decreases.

Then, we can go further and deduce (in the case n1 < n̄ we are done),

liminft→∞n(t) ≥ n2 := n1

∑ ηiS0i

R + ηin1
> n1.

This inequality is again a consequence of (1.13). It remains to iterate the argument
and prove that

limsupt→∞Si(t) ≤
RS0i

R + ηink
, liminft→∞n(t) ≥ nk+1 := nk

∑ ηiS0i

R + ηink
> nk.

As k → ∞ we arrive at the conclusion. �
Exercise. Consider the following variant of the several nutrients chemostat equa-
tion (with conversion factors γi) and prove a result similar to Lemma 1.3,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d

dt
Si(t) = S0i − Si(t) − Si(t)ηin(t),

d

dt
n(t) = −n(t) +

I∑
i=1

γiSi(t)ηin(t).

(1.15)

Hint: Change Si(t) in µiSi(t) and choose µi properly.

1.3 Hodgkin–Huxley, Fitzhugh–Nagumo and pulse

propagation

Electric models with ODE were used very early in physiology. The first one is
maybe the van der Pol system ([222, 223]) for heartbeat. The Hodgkin–Huxley
system has remained as the first model for the propagation of nerve impulses, along
the giant squid axon in the original experiments during the 1950s (see [178, 150]
and the references therein). These models initiated the theories of electrophysiol-
ogy and cardiac or neural rhythms (see [120]). Signal regulation, bursting waves
(episodic bursts of high frequency oscillations), pulses (spikes) propagation enter
the biological observations made in these areas that sustain the modeling proposed
by Hodgkin–Huxley and simplified by Fitzhugh and Nagumo [106, 182]. We refer
to [11, 89, 133, 109] for the explanation of auto-oscillations and bursting oscilla-
tions. Here we just explain the slow-fast dynamics exhibited in this system and
the dynamics of pulses.
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1.3.1 Van der Pol equation and auto-oscillations
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Figure 1.3: Solutions of the van der Pol system (1.17) with A = 5; left: x(t) (contin-

uous line) and y(t) (dashed line), right: trajectories in the phase plane (x, y).
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Figure 1.4: Solutions of the van der Pol system (1.17) with A = 40; left: x(t) (contin-

uous line) and y(t) (dashed line), right: trajectories in the phase plane (x, y).

The van der Pol equation is⎧⎨⎩
ẋ(t) = Ay,

ẏ(t) = −x + Ay(1 − x2).
(1.16)

Here we have used an unusual scaling which is compatible with the limit A → ∞
which is the case of real interest.

Usually the case when A is small is treated. Then, one can better see the
behavior on rescaled unknowns X(t) = x(t/

√
A), Y (t) =

√
A y(t/

√
A) and it
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reduces to Ẋ(s) = Y (s), Ẏ (s) = −X(s)+ o(A), i.e., the harmonic oscillator whose
solutions, (X, Y ) = z0 eis, are periodic with energy E(s) = E0 = (X0)2 + (Y 0)2.
This expresses that a slow dynamics corresponding to the term o(A) corrects the
fast dynamics Ẋ(s) = Y (s), Ẏ (s) = −X(s). The reader will easily find additional
matter on this subject in [11, 133, 109].

When A > 0 the situation changes drastically and trajectories are attracted
by a single stable limit cycle (periodic trajectory). A qualitatively different phe-
nomena occurs called auto-oscillations or self-excited oscillations. This phenom-
ena is exhibited in Figures 1.3 for A = 5 and 1.4 for A = 40. As one can see, the
natural limit here is indeed A → ∞ which we explain in the next subsection and
which provides another, and more interesting, example of slow-fast dynamics.

1.3.2 Slow-fast dynamics and electric pulses
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Figure 1.5: Solutions of the Fitzhugh–Nagumo equation (1.17) with x1 = .55, ε = 0.01;

left: x(t) (dashed line) and y(t) (continuous line), right: trajectories in the phase

plane (x, y) (continuous line) and the curve y = x(1 − x2) (dashed line).

As we have seen, the van der Pol system is an example of slow-fast dynamics
and the same concept applies to the Fitzhugh–Nagumo equation⎧⎨⎩

ẋ(t) = 1
ε [x(1 − x2) − y],

ẏ(t) = x − x1,
(1.17)

where ε > 0 is a (small) parameter and x1 ∈ R is a crucial parameter to be chosen
later. This system, that extends the bistable equation (see Section 1.1), describes
an electric potential and x(t) does not stay within the interval [−1, 1]. Notice
that it can be derived from the van der Pol system (1.16) by Lienard’s change of
variable.

The cubic null-cline y = f(x) = x(1 − x2) achieves a local maximum at
x0 = 1/

√
3 and we set y0 = f(x0). Since f is odd, −x0 is a local minimum point
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and −y0 = f(−x0). Therefore, the function f can be inverted in the two stable
branches as follows:⎧⎨⎩

x ∈] −∞,−x0], y = f(x) ⇐⇒ x = G+(y), y ∈] −∞,−y0],

x ∈ [x0,∞[, y = f(x) ⇐⇒ x = G−(y), y ∈ [y0,∞[.
(1.18)

When x1 ∈] − x0, x0[, the system exhibits periodic solutions (again auto-
oscillations) as depicted in Figure 1.5.

For ε small, we can see that the solution approaches one of the two branches
x = G±(y) and the system is reduced to ẏ = G±(y)−x1 along these two branches,
with a jump from G+ to G− when y(t) exceeds the value f(x0) (and vice-versa).
Again, we refer to [11, 133, 109] for additional matter.

1.3.3 Fitzhugh–Nagumo and concentration pulses

Another type of Fitzhugh–Nagumo system serves to describe concentration pulses.
Therefore we now impose that x(t) ≥ −1 in the following variant of (1.17) where
x(t) + 1 is a concentration:⎧⎨⎩

ẋ(t) = 1
ε [x(1 − x2) − (1 + x)y],

ẏ(t) = [ψ∞(x) − y].
(1.19)

The function ψ∞ is chosen, for instance, as

ψ∞(x) =
{

0 for x ≤ 0,
increasing for 0 ≤ x ≤ 1.
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Figure 1.6: Solutions of Fitzhugh–Nagumo system (1.19) with ε = .005, x0 = 10−3; x(t)

(dashed line) and y(t) (continuous line).

It is used to describe a (say calcium) wave. Here −1 ≤ x(t) ≤ 1, y(t) ≥ 0 is an
invariant region. The state x = −1 refers to normal state and x = 1 refers to
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depressed cells. These are the two stable states for the equation on x when y is
taken to be 0. The relaxation function ψ∞(·) plays the role of relaxing depressed
cells to their normal state with constant of time large compared to the dynamics
of x(t). With an appropriate choice of ψ∞, there is a single stable state x̄ = −1,
ȳ = 0. Typically an outside instability deviates x0 from the stable state to an
initial value x0 > 0. This drives the system to the stable state x ≈ 1 until y(t),
with some delay due to τ which is chosen large enough, compensates for it and
brings back the system to its stable state. In Figure 1.6, the function ψ∞(x) = 4 x2

is used for x ≥ 0.

1.3.4 Fitzhugh–Nagumo system with space structure

Once again, it is natural to consider a space structured version of the above type
of Fitzhugh–Nagumo system. It is used to describe wave (spikes, pulses) propaga-
tions in a spatial region, as potential waves in neural communication by electrical
signaling or calcium waves in the brain during vascular cerebral incidents (see [123]
for instance).
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Figure 1.7: Solutions of the space structured Fitzhugh–Nagumo system (1.20) with

α = .2 and ε = 0.01 (left), ε = 0.001 (right); we represent both u(t, x) (dashed line) and

v(t, x) (continuous line) as a function of x, at a given time. The pulse propagates from

left to right.

We change notation now and denote by n(t, x), v(t, x) (they were denoted
by x + 1 and y in the previous sections) the solutions to⎧⎨⎩

∂
∂tn(t, x) − ε∆n = 1

εn[(1 − n)(n − α) − v],

∂
∂tv(t, x) = v∞(n) − v.

(1.20)

Notice also the analogy with the Allen–Cahn equation for invasion fronts (1.1)
in Section 1.1. Figure 1.7 shows a traveling wave solution (pulse, spike) with
v∞(n) = 3.(n − .4)+ (here the numbers are adapted to α = .2). We choose here
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α = .2 in order to propagate a wave on n in the Allen–Cahn equation and the
equation on v, with a certain delay inhibiting the pulse back to the other stable
value n = 0,

1.4 Virus dynamics and the immune system

A wide class of Lotka–Volterra type of systems arises in the study of host-parasite
dynamics. A typical example is virus/immune system competition but epidemiol-
ogy is closely related too. We now explain how differential systems can be extended
to structured population systems in the case of virus dynamics. The next section
treats epidemiology. The intent is mainly to give examples where the structur-
ing variable has a physiological meaning (these are referred to as physiologically
structured), besides the traditional space structure already mentioned for invasion
fronts in Sections 1.1 and 1.3.

1.4.1 Virus dynamics, immune response

Describing the immune response of a single individual is a domain full of differ-
ential equations. A simple idea is that virusses represent the prey and leukocytes
are the predators, then a model like the prey-predator system of Section 1.2.2 is
satisfactory. However many other effects have to be added.

One of the most general and basic facts in this domain is that not only the
free virus population size v(t) and the population size of uninfected cells f(t) (food
for virus) has to be considered, but also infected cells c(t). Indeed, new viruses are
only produced by the infected cells (they enter the cell and change a segment of
DNA which then reproduces the modified code). On the other hand a free virus
can infect an uninfected cell. We arrive at a system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

df

dt
= α − µff − βfv,

dc

dt
= βfv − µcc,

dv

dt
= γc − µvv.

(1.21)

Consequences of this simple description, further models and comparisons to in
vivo data can be found in [186], [82] and the references therein.

1.4.2 Virulence structure

A major feature has been neglected in the description of Section 1.4.1. Namely,
the possible mutations of a virus which continuously changes its ‘shape’, i.e., its
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molecular conformation. A general account of these aspects can be found in the
survey paper [195]. In [186], it is proposed to take this into account by a large
(but finite) system such as (1.21); in [112] a continuous model with mutations is
proposed with a model close to adaptive dynamics as studied in Section 2.4 below.

In the case of the competition between a tumor and the immune system, a
population structured by a virulence parameter is proposed in [74, 73] (see also the
references therein). The main effect is that the new tumor cells escape continuously
from the attack of the immune system and increase their agressivity. It can also
be thought as very fast and asymmetric mutations (compared to Section 2.4), see
[112]. In a very simplified case, the model can be written as two equations on
the densities n1(t, x) of tumor cells with activation x ≥ 0 and n2(t, x) of immune
system cells with defense ability x ≥ 0,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn1(t, x) + ∂

∂x [x(A1(t) − A2(t))n1] = [α1x − βA2(t)]n1,

∂
∂tn2(t, x) + ∂

∂x [−γxA1(t)n2] = α2xA1(t)n2,

Ai(t) =
∫
{x≥0} x ni(t, x)dx.

(1.22)

The modeling assumptions here are that there is a continuous source of nutrient
for both tumor and immune system cells with rate αi. The immune system kills
tumor cells with a rate β, and also prevents their natural progression through the
A2(t) term in the x-derivative arising in the first equation. Meanwhile the tumor
cells depress the immune system through the A1(t) term in the x-derivative arising
in the second equation.

The long time behavior of this system is studied in [73, 77] (with a third
equation for the normal cells, a nutrient for the tumor cells). The outcome is that,
depending on the initial data, either the tumor cells can ‘win’ (A1(t) → ∞), or the
immune system wins and A1(t) → 0. But there are several ways to express more
precisely the long time asymptotic and several points are still open. A specific
difficulty comes from the multiplication by x in several terms; this induces growth
at infinity which makes the various estimates more difficult.

1.5 Models of epidemiology

We give here another example of a physiologically structured population model
in the context of epidemic propagation. Again the structure variable represents a
biological feature.

1.5.1 Discrete states; SI, SIR, SEIR

The question in epidemiology is to describe the effect of virus infection on a pop-
ulation and no longer on a single individual as in Section 1.4.1. Simplifying again
as much as possible, one is led to define the number density per surface unit of
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various populations. As a first model one can consider susceptible individuals with
size S(t), and infective population with size I(t). When the birth rate, B below, is
constant and limited to susceptible newborn (as the simpler possible model), we
arrive at the SI model ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS

dt
= B − µSS − γSS I,

dI

dt
= γSS I − µII.

(1.23)

Notice the striking analogy with the Lotka–Volterra system (1.2) and the chemo-
stat system (1.2.3). Here the susceptible individuals get infected by contact with
other infected individuals with a rate γS , therefore giving the quadratic loss term
S I in the first equation and the corresponding gain term in the second equa-
tion. The susceptible individuals death rate is denoted by µS and the infected
population death rate is denoted by µI > µS . The total population is therefore
N = S + I.

In a next step one can also consider that a number of infected individuals
recover, and then are immune. We denote this population density by R(t) (for
Removed). Then, in this class of models called (SIR), an example is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= βS(S + I + R) − µSS − γSS I,

dI

dt
= γSS I − µII − βRI,

dR

dt
= βRI − µRR.

(1.24)

Here the interpretation is that uninfected individuals are born from the total
population and die with a rate µS . They get infected by contact with other infected
individuals with a rate γS , therefore giving the quadratic loss term S I in the
first equation and the corresponding gain term in the second equation. Finally,
individuals of the infected population die with a rate µI (which in principle is
higher than the other mortality rates µS and µR) and can recover with a rate βR.
This gives rise to the gain term βRI for the recovered population. Here the total
population is N = S + I + R.

Of course, at this level, the model shares many similarities with the im-
munology system of Section 1.4.1. This comes from the common feature that they
always describe host-parasite populations. The values of the parameter differ how-
ever drastically from one situation to the other and also the extensions to more
realistic models (see [184, 218, 82, 186]).

The main question in this area is to know if an epidemic will spread or not.
This is related to the basic reproduction number, classically denoted by R0 and



18 Chapter 1. From differential equations to structured population dynamics

defined as the number of secondary cases from a single infected individual in a
‘virgin population’ with Ī = R̄ = 0, S̄ = µS/βS. In the case of (1.24), one can
easily check that R0 = S(0)γS/(µI + βR).

Other typical questions in this area are: to know wether the steady states of
such a system are stable, to know the effect of vaccination on the global population,
to add spatial effects and stochasticity, to take into account other intermediary
states (continuous variables are then usually considered) and that immunity can
be lost after some time. Also a classical effect leads to the so-called SEIR models (E
for exposed, those individuals who catch the disease and are in the latent period,
they are infected but not yet infectious).

1.5.2 The Kermack–McKendrick model

In this situation, it is of course natural to postulate models where the infection
state is continuous. This has been proposed by several authors beginning with
Kermack and McKendrick [162, 151]. The book [82] is a very good and recent
account of the subject, see also the analysis of the system below in [143, 231].

d

dt
S(t) = B − µSS(t) − λS(t)S(t),

λS(t) =
∫ ∞

0

κ(x)n(t, x)dx,⎧⎪⎨⎪⎩
∂

∂t
n(t, x) +

∂

∂x
n(t, x) + (µI + βn(x))n(t, x) = 0,

n(t, x = 0) = λS(t)S(t),

d

dt
R(t) =

∫ ∞

0

βn(x)n(t, x)dx.

The interpretation is that n(t, x) is the density of population at age x of infection
and this replaces the compartment I(t) in the SIR system (1.24). Individuals are
infected (at age x = 0 in the infection stage) from susceptible individuals that are
infected by encounter with the infected population at a rate λS(t) depending of
the time x elapsed since infection through a rate κ(x). Notice again the quadratic
term for transition from susceptible to infected. The advantage of the Kermack–
McKendrick model is that one can take into account the variable infectivity level,
and removal rate, depending on the age of the disease. A variant would be to
consider that infected are Removed at a certain age x�.

1.5.3 An immunity structured model

We would like to also mention another physiologically structured model for the
spread of myxoma virus among a rabbit population that we took from [232].
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These authors take into account encounters with infected and uninfected rabbits
in a more detailed manner because susceptibles have a certain immunity level, in
opposition to the Kermack–McKendrick model. They arrive at the system⎧⎨⎩

∂n(t,x)
∂t − ∂

∂x(vn(x)n(t, x)) = (βn − µn)n(t, x) − γ
∫ 1

0
K(x, x′)n(t, x)p(t, x′)dx′,

∂p(t,x)
∂t − ∂

∂x(vp(x)p(t, x)) = −µpp(t, x) + γ
∫ 1

0 K(x, x′)n(t, x)p(t, x′)dx′.
(1.25)

Here n represents the population of uninfected rabbits with an immunity level
x. They are born with a rate βn and become infected by encountering infected
individuals with a rate γ. Also p(t, x) represents the population of infected rabbits
and they only come, by infection, from the n population. As usual µn and µp

denote the mortality rates in the two populations.
It can be considered as a drawback to structure the population with a pa-

rameter that is not physically measurable (as the immunity level x here) and age
is supposed to be an easier parameter [108].

1.6 Ecological model of competition for resources

1.6.1 Chemostat (2): several micro-organisms

We come back to the ecology problem of the chemostat already mentioned in
Section 1.2.3. We now consider a culture of several micro-organisms in a single
substrate (see Figure 1.8). In this situation, the system is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = R(S0 − S) −
I∑

j=1

ηj(S)Nj ,

Ṅi(t) = Ni

(
ηi(S) − R

)
,

S(0) = S0 > 0, Ni(0) = N0
i > 0, ∀i = 1, . . . , I.

(1.26)

The variable S(t) denotes the single substrate (in terms of the mass of a given
representative constituent), Ni(t) is the biomass of the i-th micro-organism in the
chemostat (written in terms of the same constituent), R is the dilution rate of the
input flow of nutrient concentration S0. Finally, the ability for the i-th organism
to use the nutrient S depends only on S in the simplest model, and is denoted by
ηi(S) (uptake rates).

Several variants of the system (1.26) have been proposed. In particular one
can consider that intraspecific competition for the resource leads to uptake func-
tions ηj(S, Nj) that decrease with Nj. We refer to [159, 160] for the analysis of
such cases and for further models.
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Figure 1.8: The principle of the chemostat. An inflow of pure nutrient S0, with rate

R, is compensated by an outflow containing both the micro-organisms and the nutrient

at concentration S(t).

One usually assumes that,

ηi(·) is increasing, ηi(S0) > R, ∀i = 1, . . . , I, (1.27)

the numbers η−1
i (R) are all different. (1.28)

Then there are I + 1 steady states, the trivial one Ni ≡ 0, S = S0, and those I
states composed of a single micro-organism

(0, . . . , 0, N̄i, 0, . . . , 0), S̄ = η−1
i (R) < S0, N̄i = S0 − η−1

i (R).

One can prove the following result, a first example of the selection principle

Theorem 1.1. Under assumptions (1.27), (1.28), among these steady states, the
specific i0 corresponding to S∗ = min1≤i≤I η−1

i (R) (largest population) gives the
globally asymptotically stable state. In other words, one has Ni(t) → 0 for i 
= i0,
Ni0(t) → N∗

i0
= S0 − S∗, S(t) → S∗ as t → ∞.

Remark 1.1. In the case when ηi(·) are linear, ηi(S) = η∗
i S, then η−1

i (R) = R/η∗
i

and the index i0 also corresponds to the formula η∗
i0

= max η∗
i .

Proof. We follow ideas already used for the chemostat with several nutrients but
the additional nonlinearity in the uptake rates leads to improvement of the method.
We divide the proof in four steps. We first consider a balance law of the system,
then we prove a lower bound on

∑
Ni(t), we then prove that S has a limit and

then conclude that S(t) → S∗ as t → ∞.
First step. A balance law. Adding the two equations on S and Ni, we have

d

dt
[S(t) +

I∑
i=1

Ni(t)] + R [S(t) +
I∑

i=1

Ni(t)] = RS0.

Therefore

S(t) +
I∑

i=1

Ni(t) = S0 + Q0 e−Rt, Q0 = [−S0 + S0 +
I∑

i=1

N0
i ]. (1.29)
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We also notice that

S(t) > 0, Ni(t) > 0, ∀t ≥ 0, ∀i = 1, . . . , I.

Second step. A lower bound (non-extinction). We prove that

lim inf
t→∞

I∑
i=1

Ni(t) = M > 0.

Indeed, we have, from the equation on Ni,

d

dt

I∑
i=1

Ni(t) ≥
(
η(S) − R

) I∑
i=1

Ni(t), with η(S) = inf
1≤i≤I

ηi(S).

If
I∑

i=1

Ni(t) approaches 0, S(t) approaches S0 (using the step 1), and thus
I∑

i=1

Ni(t)

increases, using assumption (1.27).
Third step. Asymptotic of S. We now prove that S(t) has a limit as t → ∞.
To do that we compute the equation on Ṡ(t). Using that, from the first step,

Ṡ +
I∑

i=1

Ṅi = −RQ0e
−Rt, we have

d

dt
Ṡ(t) = −

I∑
i=1

ηi(S)Ṅi − Ṡ

I∑
i=1

η′
i(S)Ni − RṠ

= −
I∑

i=1

(
ηi(S) − R

)
Ṅi − Ṡ

I∑
i=1

η′
i(S)Ni + R2Q0 e−Rt

= −
I∑

i=1

(
ηi(S) − R

)2
Ni − Ṡ

I∑
i=1

η′
i(S)Ni + R2Q0 e−Rt.

As in the case discussed in Section 6.1.2, we can multiply by sgn+(Ṡ) and arrive
at a Lyapunov functional

d

dt

(
Ṡ(t)

)
+

≤ −
(
Ṡ(t)

)
+

I∑
i=1

η′
i(S)Ni(t) + R2|Q0| e−Rt

≤ −αM
(
Ṡ(t)

)
+

+ R2|Q0| e−Rt

because η′
i ≥ α > 0 (by assumption (1.28)), and using step 2. From this inequality

and the fact that Ṡ(t) is bounded, we deduce that

αM

∫ ∞

t=0

(
Ṡ(t)

)
+
dt is finite.
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This proves also (still because S(t) is bounded by the first step) that S(t) is of
Bounded Variation on R+, i.e.,

∫∞
t=0

∣∣Ṡ(t)
∣∣dt is finite, see Section 6.5.1 for details.

Therefore it has a limit as t → ∞.
Fourth step. Identifying the limits. We prove that

lim
t→∞S(t) = S∗.

Indeed, otherwise we would have (i) if limt→∞ S(t) > S∗, then limt→∞ ηi0

(
S(t)

)
>

R and then Ni0(t) has an exponential growth, which contradicts the bound proved
in step 1, (ii) if limt→∞ S(t) < S∗, then limt→∞ ηi

(
S(t)

)
< R for all 1 ≤ i ≤ I

and Ni(t) vanishes exponentially which contradicts step 2.
Then, we conclude the lemma because limt→∞ ηi

(
S(t)

)
< R for all i 
= i0

and thus Ni(t) vanishes exponentially. Therefore, using step 1, Ni0(t) tends to
S0 − S∗. �

We refer to [211] for other results in this direction and a general view on
chemostat. As a consequence of Lemma 1.1, there cannot be coexistence of several
micro-organisms in such a model, in opposition to observations (in nature or some-
times laboratories); we refer to [160] for a variant which allows the coexistence of
several micro-organisms.

1.6.2 Continuous model of a chemostat

We now present a natural extension of the previous differential system to a con-
tinuous uptake ability. We have taken this example from [83] and from Chapter 2.
It is obtained formally by saying that the index i becomes a continuous variable
denoted by x below, and this implies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṡ(t) = R(S0 − S) −
∫

x>0
η(x, S)n(t, x)dx, t ≥ 0, x > 0,

∂
∂tn(t, x) = n(t, x)

(
η(x, S) − R

)
,

S(0) = S0 > 0, n(t = 0, x) = n0(x) > 0, n0 ∈ L1 ∩ L∞(R+).

(1.30)

To make this model more interesting one can add mutations as we do in Chapter
2 or [45, 83].

One can easily check that the proof of Lemma 1.1 extends to this physio-
logically structured population model,

Theorem 1.2. Assume

η(x, ·) is increasing, η(x, S0) > R, ∀x > 0,

and denoting the inverse with respect to S by η−1, assume that

∃x0 > 0, S∗ := η−1(x0, R) < η−1(x, R) ∀x 
= x0.
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Then, one has, as t → ∞,

N(t, x) → (S0 − S∗)δ(x = x0), S(t) → S∗.

Such a population which has a single trait is called monomorphic. We refer
to Chapter 2, Sections 2.1 and 2.2 for proofs of a similar selection principle.

1.7 Phytoplankton (light structure)

A nonlinear model has been proposed to explain why phytoplankton does not sink
while it should, being denser than water. In this section, we present the model and
give an introductory analysis. More complete mathematical results can be found
in [144].

A good survey of the subject can be found in [117, 116] together with numer-
ical results. The word phytoplankton covers several species of photosynthesizing
microscopic (2 to 200 µm) organisms (by opposition to zooplankton, a predator for
phytoplankton). For that reason it represents the first stage of an alimentary chain
and an important cause of carbon absorption from atmosphere. These species in-
habit the upper layer of oceans or lakes (50 to 100 m) where light is available,
but they are 2 to 5 percent denser than water. The reasons why phytoplankton
can sustain under these circumstances are various. Some species are able to swim
by means of flagella, some other species are endowed with gas vacuoles (in the
upper layers light creates an increase of weight and of density, but after sinking,
food restriction makes them lighter). Another explanation for up-welling is mix-
ing effects for the lake or ocean which helps minerals come from deep water to
the surface and also creates a ‘turbulent’ suspension of the population that can
reproduce before ultimately sinking. More about this wide subject can be found
in [203].

The full model is a partial differential equation but one can consider an
isolated water column of still water, and we denote by z the vertical coordinate
directed downward. Water surface is at {z = 0} and thus the model is posed for
z ≥ 0 (z axis downward), t ≥ 0,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, z) + vp

∂
∂z n(t, z) − κ ∂2

∂z2 n(t, z) = f(z, S(t, z, [n]) n(t, z),

κ ∂
∂z n(t, 0) + vpn(t, 0) = 0,

n(t, z) → 0 as z → ∞.

(1.31)

As usual n(t, z) denotes the population density at time t and depth z. The diffusion
term takes into account the random motion due to fluctuating water motion, vp > 0
is the vertical transport velocity of gravitational sinking. The birth/death rate
f
(
z, S(t, z, [n])

)
depends on the local light available (and thus it is a decreasing
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function of z), it is positive for small values of z and negative for large z. But it
also takes into account the ‘shading’ effect on a layer by the phytoplankton above
it S(t, z, [n]) =

∫ z

0 n(t, z̄)dz̄. An example is⎧⎨⎩ f
(
z, S(t, z, [n])

)
= B

(
z [1 + σ

∫ z

0 n(t, z̄)dz̄]
)
,

B(0) > 0, B(∞) < 0, B′ < 0.
(1.32)

A complete analysis of the model is given in [144]. A condition on the data is
needed for existence of a (unique) stationary solution. When this condition is
fulfilled, the solution n(t, z) converges as t → ∞ to this steady state. When it is
not fulfilled, it means that the growth zone (B > 0) is too small, and whatever is
the initial data, the solution vanishes for large times.

Here, we restrict ourselves to the so-called layer model of [117, 116]. It consists
in a simple case where B has a (single) discontinuity. Then there are two zones, a
euphotic zone z < H and an aphotic zone z > H , and two real numbers B+, B−,
and we take

B(q) =
{

B+ > 0 for q < H0,
B− < 0 for q > H0,

(1.33)

and this leads to a discontinuity at the layer z = H implicitly defined by the
equation

H0 = H
(
1 + σ

∫ H

0

n(t, z̄)dz̄
)
. (1.34)

It admits a solution because, n being nonnegative, the right-hand side is an in-
creasing function of H from 0 to ∞.

For the layer model, the stationary problem can be solved analytically.

Theorem 1.3 (Layer model). For κ >
v2

p

4B+
, there is a unique stationary nonnegative

solution n(x) ∈ C1(R+) to (1.31)–(1.33) iff H0 > H for H(κ, vp, B
±) a positive

parameter given in the proof below.

Remark 1.2. The general condition which replaces the above two conditions in the
layer case is simply that the solution to⎧⎨⎩ vp

∂
∂z n(z) − κ ∂2

∂z2 n(z) = f(z, 0) n(z),

κ ∂
∂z n(0) + vpn(0) = 0 n(0) = 1,

(1.35)

does not remain positive for all z > 0.
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Proof. First step. Fixed discontinuity. We first prove that there is a unique dis-
continuity parameter H ≥ 0 for which there is a positive solution nH to equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

κnH(z)′′ − vpnH(z)′ + B(z) nH(z) = 0, z > 0,

κn′
H(0) − vpnH(0) = 0, nH(∞) = 0,

B(z) = B+ for z < H, B(z) = B− for z > H.

(1.36)

This is an eigenvalue problem and thus the solution is defined up to a multi-
plicative constant. Hence for z > H , we may choose nH(z) = e−γz, with −γ
the negative root of the characteristic equation κX2 − vpX + B− = 0, i.e.,

γ = 1
2κ (

√
v2

p + 4κ|B−| − vp).

For 0 < z < H, the solution space is the two-dimensional vector space
nH(z) = Aexz + Beβz, A ∈ C, B ∈ C, with α and β the solutions to the charac-
teristic equation κX2 − vpX + B+ = 0 which, under the stated condition on κ are
given by,

α =
1
2κ

(vp − ı
√

4κB+ − v2
p), β =

1
2κ

(vp + ı
√

4κB+ − v2
p).

Then, we have three conditions on A and B coming from the boundary condition
on the surface level z = 0, the continuity and the continuity of derivatives at
z = H ,

A(vp − κα) + B(vp − κβ)B = 0,

AeαH + BeβH = e−γH ,

αAeαH + βBeβH = −γe−γH.

The existence of a unique nontrivial solution amounts to writing

0 = det
(

vp − κα vp − κβ
(γ + α)eαH (γ + β)eβH

)
which is reduced to the simple equation on H ,

(vp − κα)(γ + β)eβH − (vp − κβ)(γ + α)eαH = 0.

Therefore, we find the condition that determines H ,

e(β−α)H =
γ + α

γ + β

vp − κβ

vp − κα
,

or, after introducing the notation

∆± =
√

4κ|B±| ∓ v2
p,
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we end up with

exp
(
ı H

∆+

κ

)
=

∆− − ı∆+

∆− + ı∆+

vp + ı∆+

vp − ı∆+
. (1.37)

Because the complex number on the right-hand side has modulus 1, there is a
single root H with H ∆+

κ ∈ (0, 2π). Also we claim that its imaginary part is
nonnegative and thus

H
∆+

κ
∈ (0, π). (1.38)

Indeed, the sign of its imaginary part is also that of

[(∆− − ı∆+)(vp + ı∆+)]2 = [vp∆− + (∆+)2 + ı(∆− − vp)∆+]2

= real part + 2ı(vp∆− + (∆+)2)(∆− − vp)∆+.

And we obtain the positivity of this imaginary part because ∆− > vp.
We now claim that this is the only possible choice of H > 0 which allows

us to obtain a positive solution n. Indeed, because B = Ā, β = ᾱ, we have for
0 ≤ z ≤ H and by continuity at z = H ,

nH(z) = 2Re (Aeαz) = e−γH Re (eα(z−H)) = e−γH e−
vp
2κ (z−H) cos(

∆+

2κ
(z − H)).

This quantity is positive if and only if cos(∆+

2κ H) > 0, which holds true thanks to
the above condition (1.38).

Second step. Nonlinear problem. Thanks to the first step there is a single possi-
bility for having a positive stationary solution. Namely, we have to find a positive
constant C such that n = CnH , recalling that nH denotes the solution built in
the first step. This is equivalent to saying that

H0 = H [1 + Cσ

∫ H

0

nH(z)dz],

an equation which has a solution C > 0 if and only if H0 > H . �



Chapter 2

Adaptive dynamics; an
asymptotic point of view

So far, we have given examples of physiologically structured populations, i.e.,
structured by a parameter describing a biological, physiological or ecological char-
acteristic of the individuals. Further examples are also described in Chapter 4
below. When this characteristic is inherent to the individual, i.e., it is fixed at the
very beginning of its life, we refer to it as a trait; we prefer to avoid calling it a
phenotype. The theory which focusses on phenotypic evolution driven by small
mutations in replication, while ignoring both sex and genes, is known by the name
Adaptive dynamics and is part of Evolution theory, see [172, 115, 80, 81, 169, 45]
and the references given therein. A general mathematical treatment of the general
subject of selection vs mutation can also be found in [43] (in particular popula-
tion geneticists might prefer the assumption that mutations are rare rather than
small).

The two main ingredients in this theory are (i) the selection principle which
favorizes the population with best adapted trait, and (ii) mutations which allow
off-springs to have slightly different traits than their mother. The combination of
the two effects is studied by adaptive dynamics. This turns out to be an extremely
intricate theory on which several possible mathematical approaches are possible.
One of the reasons is that it is merely impossible to consider this problem without
introducing small parameters (mutations can be small or rare for instance, pop-
ulation should be large in any case but relative death rates can vary). Therefore
adaptive evolution can be studied with various mathematical tools. Evolutionary
game theory is a standard point of view, see for instance [135, 136, 134] after
it was introduced by J. Maynard Smith (see [169]). Probability theory is also
natural because fluctuations are important at the individual level and individual
centered models are naturally stochastic. Departing from an individual centered
stochastic dynamics, several possible limits are possible as the population becomes
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large ([101]). Here we look at models which are in one special class of those limits.
In this chapter, we give a first and very elementary point of view based on

structuring an ODE and including mutations. Our main goal is to apply the cor-
responding asymptotic theory and show how the concept of monomorphic popula-
tion arises naturally in the limit of small mutations over a long time compared to
one generation length. Such rescaling has also been used for the spread of genetic
traits, in a probabilistic framework (see [110] and the references therein).

Our presentation in this chapter follows the lines of [83] but uses a simpler
framework for the population model. We begin with several simple examples of
physiologically structured population (without mutations) where a selection prin-
ciple can be proved. Then we introduce the mutations and this raises the question
of finding the appropriate scales. Here, and this is one the possible scales, we as-
sume that mutations are frequent but have a very small effect on the trait. This
allows us to state an asymptotic problem. We show that it leads to the selection of
a single trait (monomorphic population) but the dynamics of this trait is far from
obvious. A differential equation is not enough to describe it and we introduce,
following [83], a Hamilton–Jacobi equation. The possible asymptotic behaviors of
this trait (monomorphic or dimorphic) are obtained through numerical simula-
tions: continuous evolution, jump, branching from a monomorphic to a dimorphic
population or junction from dimorphic to monomorphic situations.

Our motivation for the model we use in this chapter comes from the chemo-
stat equation (1.30). Consider that the time scale for food consumption is faster
than the time scale of birth, then one naturally ends up with an algebraic equation
for the substrate that is the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(t) = S0 −
∫

η
(
x, S(t)

)
n(t, x)dx, t ≥ 0, x > 0

∂
∂tn(t, x) = n(t, x)

(
η(x, S) − R

)
,

n(t = 0, x) = n0(x) > 0, n0 ∈ L1 ∩ L∞(R+).

(2.1)

When η is linear in S, we arrive at the more explicit formula

S(t) = Qb

( ∫
η(x)n(t, x)dx

)
and this is the form we take in this chapter as a compromise between generality
and simplicity.

2.1 Structured population and selection principle:
a simple case

The first question we consider here is how to give a mathematical description of the
process in which some specific trait is selected in a given environment. It is the best
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adapted trait in terms of using resources and that trait is called an Evolutionary
Stable Strategy (ESS in short). The origin of this denomination ([170]) comes from
evolution theory; no mutant with a different trait can invade a population with the
trait corresponding to an ESS. An example of the selection principle has already
been mentioned, in the case of the chemostat, see Lemma 1.2. Here we give an
easy example that can be treated by explicit computations. In Section 2.2 we give
a more general framework.

To begin with a simple example, we look at a variant of Verhulst’s logistic
equation (see Section 1.1) which we structure with a trait x ∈ R and we illus-
trate the selection principle on this very simple example. We consider that the
reproduction rate depends on the trait, i.e., b = b(x) > 0, and that the death rate
is proportional to the total population number (this is what happens in logistic
growth, see Section 1.1). We arrive at⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dtn(t, x) = b(x)n(t, x) − �(t)n(t, x),

�(t) =
∫

R
n(t, x)dx,

n(t = 0) = n0(x) > 0 for x ∈]xm, xM [, n0(x) = 0 for x 
∈]xm, xM [.
(2.2)

In this situation one can guess that the best adapted trait (highest reproduc-
tion rate here) will be selected. Indeed we have the following selection principle.

Theorem 2.1. Assume that b ∈ C(R), b(·) ≥ b > 0, n0 > 0 and

b(x̄) = max
x∈[xm,xM ]

b(x) is attained for a single x̄ ∈]xm, xM [.

Then, the solution to (2.2) satisfies

�(t) → �̄ = b(x̄), n(t, x) ⇀ b(x̄)δ(x − x̄) as t → ∞. (2.3)

Notice that the equation (2.2) admits many steady states, namely n(x) =
� δ(x = y), � = b(y) for any y, Theorem 2.1 selects the stable trait, the ESS. One
should understand it as the trait that realizes

max
x

[b(x) − �̄] = b(x̄) − �̄ = 0.

The weak limit in (2.3) also indicates that the natural setting for structured popu-
lation models should differ from that for differential equations because functional
spaces (measures here) appear to play a role.

Proof. We give a proof that relies on a simple computation, another proof is pos-
sible based on more abstract arguments and that apply to more general equations
(see Section 2.2). We define

N(t, x) = n(t, x)e
R

t
0 �(s)ds. (2.4)
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This satisfies
dN(t, x)

dt
= b(x)N(t, x),

and thus N(t, x) = n0(x)eb(x)t. We deduce from (2.4) that

d

dt
e

R
t
0 �(s)ds = �(t)e

R
t
0 �(s)ds =

∫
R

N(t, x)dx =
∫

R

n0(x)eb(x)tdx.

Therefore

e
R

t
0 �(s)ds =

∫
R

n0(x)
b(x)

eb(x)tdx + K, K = 1 −
∫

R

n0(x)
b(x)

dx,

∫ t

0

�(s)ds = ln(
∫

R

n0(x)
b(x)

eb(x)tdx + K), (2.5)

�(t) =
∫

R

n0(x)eb(x)tdx/[
∫

R

n0(x)
b(x)

eb(x)tdx + K],

and we notice that the constant K may be negative but the denominator is larger
than 1. This is a Laplace type formula and we can analyze it as follows. As t → ∞,
we have

�(t) ≤ b(x̄)
∫

R

n0(x)
b(x)

eb(x)tdx/[
∫

R

n0(x)
b(x)

eb(x)tdx + K] → b(x̄),

because
∫

R

n0(x)
b(x) eb(x)tdx → ∞. For the reverse inequality, we fix an ε > 0 and

define the set
I(ε) = {x; b(x) ≥ b(x̄) − ε}.

Then, we have

�(t) ≥
∫

I(ε)

n0(x)eb(x)tdx/[
∫

R

n0(x)
b(x)

eb(x)tdx + K]

≥ (b(x̄) − ε)
∫

I(ε)

n0(x)
b(x)

eb(x)tdx/[
∫

R

n0(x)
b(x)

eb(x)tdx + K]

≥ b(x̄) − ε

Aε(t)
,

with

Aε(t) =
K∫

I(ε)
n0(x)
b(x) eb(x)tdx

+

∫
R

n0(x)
b(x) eb(x)tdx∫

I(ε)
n0(x)
b(x) eb(x)tdx

−−−−→
t→∞ 1.

Therefore, we have indeed proved the first statement, namely that

�(t) → b(x̄) as t → ∞.



2.2. Structured population and selection principle: an extension 31

Finally, from (2.4) and the expression of N(t, x), we deduce

n(t, x) = n0(x)eb(x)te−
R

t
0 �(s)ds,

and the claim (2.3) on n(t, x) follows from the limit of �(t) combined with the
same arguments for this Laplace formula. Indeed, for x 
= x̄, we have b(x) < b(x̄)
and thus

n(t, x) = n0(x)e−
R t
0 (�(s)−b(x))ds → 0, t → ∞.

This proves the result. �

2.2 Structured population and selection principle:

an extension

We now prove a selection principle in a more general setting which will be used
later on and does not allow for explicit formulas as in the previous section, namely⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dtn(t, x) =

[
b(x)Qb(�(t)) − d(x)Qd(�(t))

]
n(t, x), x ∈ R,

�(t) =
∫

R
n(t, x)dx,

n(t = 0) = n0(x) > 0.

(2.6)

The term b(x)Qb(�(t))− d(x)Qd(�(t)) can be interpreted as the fitness of individ-
uals with the trait x being given the environment created by the total population.
Here the notation is the same as in the previous section and we assume that
b, d ∈ C(R), Qb, Qd ∈ C1(R+) and there are bm, bM , dM and dm such that

bM ≥ b(·) ≥ bm > 0, dM ≥ d(·) ≥ dm > 0, (2.7)

∃ 0 < �m < �M such that

⎧⎨⎩
maxx∈R

[
b(x)Qb(�M ) − d(x)Qd(�M )

]
< 0,

minx∈R

[
b(x)Qb(�m) − d(x)Qd(�m)

]
> 0,

(2.8)⎧⎨⎩
there is a single pair (x̄, �̄) ∈ R × [�m, �M ] such that

b(x̄)Qb(�̄) − d(x̄)Qd(�̄) = 0 = maxx∈R

[
b(x)Qb(�̄) − d(x)Qd(�̄)

]
.

(2.9)

Notice that there exists a unique �̄ that satisfies the equality

0 = max
x∈R

[
b(x)Qb(�̄) − d(x)Qd(�̄)

]
in (2.9). It is indeed a consequence of (2.8) and of the additional assumption

Q′
b(�) < 0, Q′

d(�) > 0. (2.10)
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In (2.9) we assume additionally that the maximum is attained by a single point x̄;
this is unessential but simplifies the statement below. Finally, we also need that
there is R > 0 such that for � close enough to �̄, then

βR := max
|x|≥R

[
b(x)Qb(�) − d(x)Qd(�)

]
< 0. (2.11)

Again the selection principle applies in this case and gives

Theorem 2.2. With assumptions (2.7)–(2.11), and assuming that n0(x) > 0 and
�m ≤ �(t = 0) ≤ �M , the solution to (2.6) satisfies

�m ≤ �(t) ≤ �M , ∀t ≥ 0, (2.12)

�(t) → �̄, n(t, x) ⇀ �̄δ(x = x̄), as t → ∞. (2.13)

In other words, we recover that the ESS, the unbeatable strategy, is charac-
terized by (2.9) as in the previous section.

Proof. First step. A priori estimate. We first prove (2.12) using assumption (2.8).
Integrating the equation (2.6) in x, we obtain

min
x∈R

[
b(x)Qb(�(t)) − d(x)Qd(�(t))

]
�(t) ≤ d

dt
�(t)

≤ max
x∈R

[
b(x)Qb(�(t)) − d(x)Qd(�(t))

]
�(t).

Therefore, if �(t) approaches �m, it is increasing and thus we have for all times
�m < �(t), and similarly if �(t) approaches �M it is decreasing and thus we have
for all times �(t) < �M .

Second step. A Lyapunov functional. We consider a function P (r) satisfying

rP ′(r) + P (r) = Q(r) :=
Qd(r)
Qb(r)

, (2.14)

a differential equation on the interval [�m, �M ] with several solutions given by
P0(r) + λ

r (but this family is in fact reduced to a single function as far as we are
interested in the expression below) .

Then we compute

d

dt

∫ [ b(x)
d(x)

− P (r)
]
n(t, x)dx

=
∫ [ b(x)

d(x)
− P (r) − �(t)P ′(�(t))

][
b(x)Qb(�(t)) − d(x)Qd(�(t))

]
n(t, x)dx

=
∫

1
d(x)Qb(�(t))

[
b(x)Qb(�(t)) − d(x)Qd(�(t))

]2
n(t, x)dx.
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As a consequence the bounded quantities
∫ [ b(x)

d(x) − P (r)
]
n(t, x)dx are in-

creasing and thus converge as t → ∞,∫ [ b(x)
d(x)

− P (r)
]
n(t, x)dx −−−−→

t→∞ L ∈ R, (2.15)

∫ ∞

0

∫
R

[
b(x)Qb(�(t)) − d(x)Qd(�(t))

]2
n(t, x)dxdt < ∞. (2.16)

Third step. The limit. We now derive a limit for another quantity (we recall the
definition of Q(r) in (2.14))

d

dt

∫ [ b(x)
d(x)

− Q(�(t))
]2

n(t, x)dx

=
∫ [ b(x)

d(x)
− Q(�(t))

]2 [
b(x)Qb(�(t)) − d(x)Qd(�(t))

]
n(t, x)dx

− 2Q′((�(t))
∫ [ b(x)

d(x)
− Q(�(t))

]
n(t, x)dx

×
∫ [

b(x)Qb(�(t)) − d(x)Qd(�(t))
]
n(t, x)dx.

Therefore, using the L∞ and non-extinction bound to upper bound the first term
in the right-hand side, and Cauchy-Schwarz inequality for the second term, we
also have∣∣ d

dt

∫ [ b(x)
d(x)

−Q(�(t))
]2

n(t, x)dx
∣∣ ≤ C

∫ [
b(x)Qb(�(t))−d(x)Qd(�(t))

]2
n(t, x)dx.

As a conclusion of this computation and step (ii), we deduce that

d

dt

∫ [ b(x)
d(x)

− Q(r)
]2

n(t, x)dx ∈ L1(R+).

This is stronger than a mere BV bound which is enough to ensure that it has a
limit, , see Section 6.5.1 for details. Thanks to its integrability (second conclusion
of step (ii)), we conclude∫ [ b(x)

d(x)
− Q(�(t))

]2
n(t, x)dx −−−−→

t→∞ 0.

And again the use of Cauchy-Schwarz inequality results in∫ ∣∣ b(x)
d(x)

− Q(�(t))
∣∣n(t, x)dx −−−−→

t→∞ 0. (2.17)

Combined with the first conclusion of step (ii), we also arrive at∫ [ b(x)
d(x)

− P (�(t))
]
n(t, x)dx =

∫ [ b(x)
d(x)

−Q(�(t)) + [Q − P ](�(t))
]
n(t, x)dx → L,
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and thus [Q − P ](�(t)) �(t) has a limit and finally

�(t) −−−−→
t→∞ �∗. (2.18)

Indeed, on the one hand Q − P is not locally constant because

r(P − Q)′ + P − Q = −rQ′ < 0,

and on the other hand �(t) is Lipschitz continuous (to see this, integrate in x the
equation on n). Notice at this point that we do not use the full assumption (2.10)
but only the consequence that Q′ does not vanish.
Fourth step. Identifying �∗ = �̄. Indeed, if �∗ > �̄, then for t large enough we have

max
x∈R

[b(x)Qb(�(t)) − d(x)Qd(�(t))] < 0,

and the differential inequality of step (i) (upper bound) implies that there is ex-
tinction which is impossible since �(t) ≥ ρm. Also, if �∗ < �̄, then for t large
enough we have

max
x∈R

[b(x)Qb(�(t)) − d(x)Qd(�(t))] > 0,

and for those x’s where [b(x)Qb(�(t)) − d(x)Qd(�(t))] > 0 we have exponential
growth, i.e., blow-up for �(t) which is again a contradiction.
Fifth step. Weak limit for n(t, x). From (2.11), we have for t large enough

d

dt

∫
|x|>R

n(t, x)dx ≤ βR

∫
|x|>R

n(t, x).

Therefore supt>0

∫
|x|>R n(t, x)dx → 0 as R → ∞ (because this is true initially).

This proves that the family
(
n(t, x)

)
t>0

is compact in the weak sense of measures.
Therefore there are subsequences that converge weakly to measures n∗(x) and
�̄ =

∫
n∗(x)dx (we denote integration with measures as Lebesgue integrals to

avoid specific notation).
Sixth step. Conclusion. From (2.17)–(2.18), we know that n∗(x) should be con-
centrated on the set of x’s such that b(x)Qb(�̄) − d(x)Qd(�̄) = 0. With assump-
tion (2.9), this point is unique and thus n∗(x) = �̄δ(x = x̄). Therefore the full
family n(t, x) converges (all subsequences have the same limit!) and the result is
proved. �

2.3 Structured population: cannibalism

Models such as (2.6) are still not as general as one might wish. The simplified
model of a chemostat in (2.1) provides us with an example. Cannibalism is an-
other example of physiologically structured population where not only the total
population counts. We borrow the model from [81] and references therein.
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Here, the trait x ≥ 0 under consideration is the degree of cannibalism, and
0 < α ≤ 1 denotes the efficiency in offspring production from intraspecific preda-
tion, the (irrealistic) model is then written, for t ≥ 0, x ≥ 0, as⎧⎨⎩

∂
∂tn(t, x) = rn(t, x) −

∫∞
0 yn(t, y)dy n(t, x) + α x n(t, x)

∫∞
0 n(t, y)dy,

n(t = 0, x) = n0(x) > 0.
(2.19)

The parameter r is just the growth rate in the absence of cannibalism and one can
see that cannibalism acts as a negative feedback. The growth rate of the population
is indeed lower than the logistic rate r since

d

dt

∫ ∞

0

n(t, x) =
∫ ∞

0

n(t, x)
[
r − (1 − α)

∫ ∞

0

x n(t, x)
]
≤ r

∫ ∞

0

n(t, x). (2.20)

In fact, one can go further and prove that such a population will go extinct,
a behavior rather different from that of the previous sections and that can be
interpreted as an ESS located at x = ∞.

Theorem 2.3. Assume that the initial data in (2.19) decays in x so that∫ ∞

0

n0(x)ex2
dx < ∞ and

∫ ∞

0

xn0(x)dx ≥ r

1 − α
,

then there is a global positive solution to (2.19) and we have the time decay∫ ∞

0

n(t, x)dx decays to 0 as t → ∞.

Remark 2.1. 1. Since, as we see in the proof,
∫∞
0

xn(t, x)dx remains positive, we
conclude that the population is concentrated on a very large trait for large times
as announced above.

2. The assumption
∫∞
0

xn0(x)dx ≥ r
1−α is not necessary (see the exercise

below).
3. Of course one can doubt the possibility to undergo unlimited growth rates

x and this leads to pose the same problem with 0 ≤ x ≤ A. Then the method is
similar and one can prove that the total population converges to ρδ(x = A), in
other words for this model the ESS is x = A (see exercise below).

Proof. We set mk(t) =
∫∞
0

xkn(t, x)dx.
First step. Existence. From (2.20), we derive the a priori estimate m0(t)≤m0(0)ert.
Therefore we have the upper bound

n(t, x) = n0(x)ert+αx
R

t
0 m0(s)−R

t
0 m1(s) ≤ n0(x)ert+αxm0(0)e

rt/r.

This proves that, after using the Cauchy–Lipschitz Theorem, the solutions do
not blow-up in finite time and thus they are global. In particular, thanks to our
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assumption on the initial growth in x, the mk(t) are finite but there is no extinction
in finite time.
Second step. A lower bound on m1. We have (using Cauchy–Schwarz inequality)
some kind of Lyapunov functional

d

dt
m1(t) = m1(t)(r − m1(t)) + αm2(t)m0(t) ≥ m1(t)

(
r − m1(t)(1 − α)

)
. (2.21)

Therefore we find that for all times

m1(t) ≥
r

1 − α
. (2.22)

As a consequence of (2.20), we deduce that m0(t) decays with time to a limit
L0 ≥ 0.
Third step. Limits for the mk(t). We further write

d

dt

mk+1(t)
mk(t)

= α
m0(t)
m2

k(t)
(
mk+2(t)mk(t) − mk+12(t)

)
≥ 0.

Therefore the above ratio has a limit and thus m1(t) → L1 as t → ∞.
If L1 = ∞, obviously from (2.20) we deduce L0 = 0 and the theorem is

proved. We now assume, by opposition, that L1 < +∞, L0 > 0 and thus m2(t)
has a limit L2.
Fourth step. A contradiction. From the inequality (2.21), we deduce that L1 = r

1−α
and this is a contradiction with the exact solution n(t, x) given in step (i). �
Exercise. In the case 0 ≤ x ≤ A, prove that L0 
= 0 and that n → ρδ(x = A). To
do that check that in the proof above

L2L0 = L2
1.

Exercise. Prove that, in Theorem 2.3, the assumption
∫∞
0 xn0(x)dx ≥ r

1−α is not
needed because it will be true at some time t0.

1. Assume m1(t) < r
1−α for all times, then prove that all mk are increasing,

and that m1 → r
1−α , as t → ∞.

2. Using the equation on mk prove they are bounded, and have a limit as t → ∞.

3. Prove a contradiction with the formula for the solution n(t, x) given in step
(i).

2.4 Mutations

Until now we have seen ESS as the best adapted trait; in a population where
initially all the traits are represented the ESS is the only one selected naturally.
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We may ask what happens if a population initially does not represent all the traits
but mutations may occur and create new mutants, that might be better adapted
and thus be selected along with the selection principle we have already described,
which themselves can mutate. . . etc The end of this chapter gives a formalism to
address this question in rigorous mathematical terms.

In order to present this matter we need a more general framework than in
Section 2.2, including a more general fitness in terms of the environment created
by the total population. As we saw in previous sections, we can retain a structured
population model that contains much of the previous examples while keeping some
simplicity, writing⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dtn(t, x) =

[
b(x)Qb(�b(t)) − d(x)Qd(�d(t))

]
n(t, x), x ∈ R, t ≥ 0,

�b(t) =
∫

R
ψb(x)n(t, x)dx, �d(t) =

∫
R

ψd(x)n(t, x)dx,

n(t = 0) = n0(x) ≥ 0.

(2.23)

Here the notation is the same as before and we assume that b, d, ψb, ψd ∈ C(R),
Qb, Qd ∈ C1(R+) and there are real numbers such that

Q′
b(·) ≤ 0, Q′

d(·) ≥ 0, (2.24)⎧⎨⎩
bM ≥ b(·) ≥ bm > 0, dM ≥ d(·) ≥ dm > 0,

ψM ≥ ψb(·), ψd ≥ ψm > 0,
(2.25)

∃ 0 < �m < �M such that

⎧⎨⎩
maxx∈R

[
b(x)Qb(ψm�M ) − d(x)Qd(ψm�M )

]
< 0,

minx∈R

[
b(x)Qb(ψM�m) − d(x)Qd(ψM�m)

]
> 0.
(2.26)

If reproduction is not completely faithful, an individual with trait y may
generate offspring with trait x. Let K(x, y) be the corresponding mutation kernel.
To simplify, we only consider the case K = K(x − y) with K(·) a probability
density. Also the whole birth process should not necessarily give mutations but we
postulate so in order to avoid additional parameters which would not change the
heart of the matter.

To incorporate these mutations in (2.23), we postulate the dynamics given
by ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) = Qb(�b(t))

∫
R

b(y)K(x − y) n(t, y) dy − d(x)Qd(�d(t))n(t, x),

�b(t) =
∫

R
ψb(x)n(t, x)dx, �d(t) =

∫
R

ψd(x)n(t, x)dx,

n(t, 0) = n0(x) ≥ 0.
(2.27)
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Our first claim is that this system is not much harder than an ordinary
differential equation in terms of existence theory. We have

Theorem 2.4. We assume (2.24)–(2.26), that K(·) ∈ L1(R) is a probability density
and n0 ∈ L1 satisfies �m ≤ �0 ≤ �M . Then the system (2.27) has a unique
nonnegative solution such that n, ∂

∂tn ∈ C(R+; L1(R)) and for all t ≥ 0

�0
m ≤ �(t) ≤ �0

M . (2.28)

Proof. The method of proof is similar to that of the Cauchy–Lipschitz theorem
and the main point is a global uniform bound. We begin with this bound and turn
to the existence afterwards.

(i) A priori estimate. We first derive the inequalities (2.28) for nonnegative solu-
tions. To do that, we integrate with respect to x the equation on n in (2.27) and
notice that ∫

R×R

b(y)K(x − y) n(t, y) dy dx =
∫

R

b(y) n(t, y) dy.

Therefore, we obtain

d

dt
�(t) ≤

∫
y∈R

[b(y)Qb(ψm�(t)) − d(y)Qd(ψm�(t))]n(t, y)dy

≤ �(t) max
y∈R

[
b(y)Qb(ψm�(t)) − d(y)Qd(ψm�(t))

]
.

The inequality from above in (2.28) follows directly since, whenever �(t) ap-
proaches �M (from below), then maxy∈R

[
b(y)Qb(ψm�M ) − d(y)Qd(ψm�M )

]
be-

comes negative and then �(t) decreases. A similar argument applies to prove the
lower bound on �(t).

(ii) Existence. We prove existence using the Banach-Picard fixed point theorem.
To do so, we consider the Banach space

X = C
(
[0, T ]; L1(R)

)
, ‖m‖X := sup

0≤t≤T
‖m(t)‖L1(R),

for some T > 0 chosen later on. Then we define the closed subset

C = {m ∈ X, m ≥ 0, ‖m‖X ≤ CΦ},

where CΦ is defined, for T small enough, so that

�M + TbMQb(0)CΦ ≤ CΦ,

and we can always impose for instance CΦ ≤ 2�M .
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For m ∈ C, we define Rb(t) =
∫

R
ψb(x)m(t, x)dx, Rd(t) =

∫
R

ψd(x)m(t, x)dx
and the solution (x by x) to⎧⎨⎩

∂
∂tn(t, x) = Qb(Rb(t))

∫
R

b(y)K(x − y) m(t, y) dy − d(x)Qd(Rd(t))n(t, x),

n(t, 0) = n0(x) ≥ 0.
(2.29)

Then, we claim that the operator

m �→ Φ(m) := n,

has a unique fixed point in C. We prove successively that

(a) Φ : C → C,

(b) Φ is a strong contraction for T small enough (depending only upon CΦ).

Therefore we can apply the Banach–Picard theorem and deduce that Φ has a
unique fixed point in C and the result is proved after iterating this argument on
time-steps [T, 2T ], [2T, 3T ], . . .. Notice also that, because this fixed point n belongs
to X , ∂

∂tn also belongs to X , and in each time-step the solution satisfies, thanks
to step (i), �m ≤ �(t) ≤ �M .

The point (a) follows for example from the solution formula

n(t, x) =n0(x)e−d(x)
R t
0 Qd(Rd)

+ Qb(Rb)
∫ t

s=0

∫
R

b(y)K(x − y) m(s, y) dy e−d(x)
R

t
s

Qd(Rd)ds,

which implies the first two properties n ≥ 0 and n ∈ C
(
[0, T ]; L1(R)

)
. Then, we

also have
d

dt
n(t, x) ≤ Qb(Rb(t))

∫
R

b(y)K(x − y) m(s, y) dy.

Therefore we obtain for t ≤ T ,∫
R

n(t, x)dx ≤
∫

R

n0(x)dx +
∫ t

0

Qb(Rb(s))
∫

R

b(y) m(s, y) dy ds

≤ �M + TbMQb(0) sup
0≤s≤T

R(s)

= �M + TbMQb(0)CΦ

= CΦ.

This proves indeed that Φ(m) belongs to C.
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The point (b) is very standard. By substraction of solutions for two different
m, say m1 and m2, we obtain

∂

∂t
(n1 − n2) = [Qb(R1

b) − Qb(R2
b))]

∫
b(y)K(x − y)m1(y)dy

+ Qb(R2
b)
∫

b(y)K(x − y)(m1(y) − m2(y))dy − d(x)[Qd(R1
d) − Qd(R2

d)]n
1

− d(x)Qd(R2
d)(n

1 − n2).

From the a priori estimates of the step (a), the right-hand side is controlled by

C‖m2 − m1‖L1(R),

for some constant that uses CΦ. Therefore, since the initial data for n2 − n1

vanishes,
‖m2 − m1‖L1(R) ≤ CT ‖m2 − m1‖L1(R),

and we have obtained the strong contraction property for T small enough. Notice
that as mentioned before, this time T is independent of n0. �

2.5 Small mutations: the constrained Hamilton–Jacobi
equation

Along with the principles of adaptive dynamics, we now assume that mutations
are small and we proceed to rescale accordingly the mutation model so as to arrive
at a situation where a natural limit arises.

Hence, we introduce a (small) parameter ε > 0 in the mutation kernel and
we set (and assume)

Kε(z) =
1
ε
K(

z

ε
), K(·) ≥ 0,

∫
K = 1,

∫
ez2

K(z)dz < ∞. (2.30)

It is very clear that the dynamics described by the system (2.27) with Kε in place
of K is not interesting because the effect of mutations is too small. Indeed, we can
write after the change of variable y = x − εz,∫

R

b(y)Kε(x − y) n(t, y) dy =
∫

R

b(x − εz)K(z) n(t, x − εz) dz

−−−→
ε→0

∫
R

b(x)K(z) n(t, x) dz = b(x) n(t, x).

Therefore we end up with the original model (2.23).
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To circumvent this, we observe the phenomena over a long time period, rescal-
ing it with the same parameter ε. Hence we now consider the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε ∂
∂tnε(t, x) = Qb(�b,ε(t))

∫
R

b(y)Kε(x − y) nε(t, y) dy − Qd(�d,ε(t))nε(t, x),

�b,ε(t) =
∫

R
ψb(x)nε(t, x)dx, �d,ε(t) =

∫
R

ψd(x)nε(t, x)dx,

nε(t = 0) = n0
ε(x) ≥ 0.

(2.31)
We explain below that, on this new time scale, a (or several in special cases)
dominant trait x̄(t) is selected (following the selection principle of Sections 2.1
and 2.2). But now, this dominant trait evolves according to an interesting, and
not explicit at all, dynamics. This means that, typically (but not always), we have

nε(t, x) −−−→
ε→0

�̄(t)δ(x − x̄(t)). (2.32)

Such a limiting population is called monomorphic. A polymorphic population cor-
responds to the sum of several Dirac masses in this limit. This arises for instance
in a chemostat with several nutrients ([83]). We will refer to this (these) concen-
tration point(s) as the dominant trait(s).

In order to derive the limiting dynamics, we assume a monomorphic initial
population

nε(t, x) = eϕε(t,x)/ε, n0
ε(x) = eϕ0

ε(x)/ε, (2.33)

such that, as ε vanishes, there holds⎧⎨⎩
∫

R
n0

ε(x)dx → M0 > 0, ϕ0
ε → ϕ0 ≤ 0 uniformly in R,

maxx∈R ϕ0(x) = 0 = ϕ(x̄0) for a single x̄0.
(2.34)

As an example, we might have in mind a gaussian distribution of traits in the
population

n0
ε(x) =

1√
2πε

e−|x|2/2ε, ϕ0
ε(x) = −|x|2 − ε ln(2πε).

It clearly shows that the uniqueness of the maximum point of ϕ0 is equivalent to
the monomorphic Dirac concentration.

The reason why the change of unknown (2.33) is useful can be guessed from
writing the equation on ϕε:

∂ϕε(t, x)
∂t

= e−
ϕε(t,x)

ε Qb(�b,ε(t))
∫

R

b(y)Kε(x − y) e
ϕε(t,y)

ε dy − Qd(�d,ε(t))d(x)

= Qb(�b,ε(t))
∫

R

K(z) b(x + εz) e
ϕε(t,x+εz)−ϕε(t,x)

ε dz − Qd(�d,ε(t))d(x)

−−−→
ε→0

Qb(�b(t))b(x)
∫

R

K(z) ez ∂
∂x ϕ(t,x) dz − Qd(�d(t))d(x).
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Therefore the limiting function ϕ should satisfy the constrained Hamilton–Jacobi
equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tϕ(t, x) = Qb(�b(t))b(x)H

(
∂
∂xϕ(t, x)

)
− Qd(�d(t))d(x), t ≥ 0, x ∈ R,

max
x∈R

ϕ(t, x) = 0, ∀t ≥ 0,

ϕ(t = 0, x) = ϕ0(x) ≤ 0
(2.35)

with

H(p) :=
∫

R

K(z) ezp dz. (2.36)

This function H(·) is called the hamiltonian and has the properties⎧⎨⎩
H(p) > 0, H(0) =

∫
R

K(z) dz = 1, H ′′(p) =
∫

R
K(z) z2 ezp dz > 0,

H ′(0) =
∫

R
K(z) z dz = 0 for K(·) even,

(2.37)
in other words, H(·) is a positive convex and even hamiltonian for K even. Finally
the constraint maxx∈R ϕ(t, x) = 0 is equivalent to saying that ne has bounded
mass and non-extinction.

The problem (2.35)–(2.36) can be understood as follows. The unknowns are
ϕ(t, x) and the density �̄(t) in (2.32). But they do not play the same role. The
parameter �̄(t) defines the Lagrange multipliers Qb(�̄b(t)) and Qd(�̄d(t)) for the
constraint that max ϕ(t, ·) = 0.

When the maximum of ϕ(t, ·) is unique as initially (this is a monomorphic
situation), we can recover the dominant trait in (2.32) by

max
x∈R

ϕ(t, x) = 0 = ϕ(t, x̄(t)).

Also the functions Qb(�̄b(t)) and Qd(�̄d(t)) are then given by

�̄b(t) = ψb(x̄(t))�̄(t), �̄d(t) = ψd(x̄(t))�̄(t).

More details are given at the end of Section 2.7 on the way to use these formulas.

The asymptotic, existence and uniqueness theory for deriving rigorously the
constrained Hamilton-Jacobi equation (2.36) has been developed in [18] in the case
ψb = ψd. In the general case uniqueness is an open question. The main difficulty
is the interpretation of the two Lagrange multipliers Qb(�̄b(t)) and Qd(�̄d(t)) that
makes it possible to contain the dimorphic situation of [83] where an additional
uniqueness criteria is needed, and this is an open problem to find it. Again, we
refer to Section 2.7 for more details.
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We conclude this section by a remark: this asymptotic formalism is robust
and can be extended to many situations under investigation. For instance it can
be extended to systems as in [51] where a population with juveniles and adults is
carried out, leading to a much more complicated hamiltonian.

2.6 A simple case of constrained Hamilton–Jacobi

equation

A particularly simple situation is that of Section 2.1. Then Qb ≡ 1, d ≡ 1 ψd ≡ 1
and Qd(u) = u. Then the constrained Hamilton–Jacobi becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tϕ(t, x) = b(x)H

(
∂
∂xϕ(t, x)

)
− �̄(t), t ≥ 0, x ∈ R,

max
x∈R

ϕ(t, x) = 0 = ϕ(t, x̄(t)), ∀t ≥ 0,

ϕ(t = 0, x) = ϕ0(x) ≤ 0.

(2.38)

Reflecting the simplicity of the model, this situation is particularly simple because
one can reduce it to a more classical Hamilton–Jacobi equation. To do this, we
introduce two new unknown functions

R(t) =
∫ t

0

�(s)ds, ψ(t, x) = ϕ(t, x) + R(t).

Then, we arrive at the Hamilton–Jacobi equation (without a constraint) on ψ,⎧⎨⎩
∂
∂tψ(t, x) = b(x)H

(
∂
∂xψ(t, x)

)
, t ≥ 0, x ∈ R,

ψ(t = 0, x) = ϕ0(x).
(2.39)

This is the reason why one can derive a rigorous result that we state now but that
we prove in Section 2.8. This is not possible for more complex dynamics as in [83],
see also Section 2.9.

We use the notation

Rε(t) =
∫ t

0

�ε(s)ds, ψε(t, x) = ϕε(t, x) + Rε(t). (2.40)

Proposition 2.1. Assume that (2.30) holds. We have, for all t ≥ 0, the bounds

min
(
min
y∈R

b(y), �0
ε

)
≤ �ε(t) ≤ max

(
max
y∈R

b(y), �0
ε

)
. (2.41)
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If the initial data satisfies ϕ0
ε(x) ≤ −|x| + C0

ε , then,

ψε(t, x) ≤ −|x| + C0
ε + t max b max

|p|≤1
H(p), (2.42)

| ∂

∂t
ψε(t, x)| ≤ max

y∈R

|b(y)| max
y∈R

H
( ∂

∂y
ϕ0

ε(y)
)
. (2.43)

Theorem 2.5. We assume that (2.30), (2.34) hold and uniform bounds on the right
hand sides in Proposition 2.1, on ∂

∂xψ0
ε(y) and on ∂2b

∂x2 . Then, after extracting a
subsequence, we have

ψε(t, x) −−−→
ε→0

ψ(t, x), ϕε(t, x) −−−→
ε→0

ϕ(t, x) locally uniformly,

ψ satisfies the Hamilton–Jacobi equation (2.39) in the sense of a viscosity solution
and for all t ≥ 0, maxx∈R ϕ(t, x) = 0. Also the inequalities in Proposition 2.1 hold
for ψ(t, x).

The notion of viscosity solutions for Hamilton–Jacobi equations has been
introduced as a uniqueness criteria by Crandall and Lions (see [69] and the ref-
erences therein). Its definition, motivation and main properties can be found in
several recent surveys and books, see for instance [16, 69, 14, 98].

Theorem 2.5 gives a meaning to the system (2.35), simply the equation on ϕ
has to be understood as an equation on ψ. Again, we refer to [18] for uniqueness.

2.7 A partial canonical equation and dynamics of the

dominant trait

One can try to derive, from the Hamilton–Jacobi equation (2.35)–(2.36), an equa-
tion for the evolution of the dominant trait x̄(t). Such an equation, called canon-
ical equation was proposed by Dieckmann and Law [72] for a model based on a
stochastic process. We derive such an equation in our context and then apply it
to monomorphic and dimorphic examples.

2.7.1 Derivation of a canonical equation

As we explain now, we can do it in our formalism but we can only derive partial
information, namely the sense of variation of the trait. To do so, we assume here
that

∂H(0)
∂p

= 0, i.e., K(·) is even. (2.44)
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Our purpose is to prove

Lemma 2.1. Assuming (2.44), in smoothness regimes, a dominant trait x̄(t) evolves
according to the dynamics (canonical equation)

Qb(�̄b(t))b(x̄(t)) = Qd(�̄d(t))d(x̄(t)), (2.45)

d

dt
x̄(t) =

(
− ∂2ϕ(t, x̄(t))

∂x2

)−1[
Qb(�̄b(t))

∂b(x̄(t))
∂x

− Qd(�̄d(t))
∂d(x̄(t))

∂x

]
, (2.46)

and because ϕ achieves a maximum at x̄(t), we have ∂2

∂x2 ϕ(t, x̄(t)) ≤ 0.

In the terminology of adaptive dynamics, the quantity in the bracket is called
the selection gradient.

Proof. Departing from the property that a dominant trait satisfies ϕ(t, x̄(t)) = 0,
and ϕ(t, x) ≤ 0, we also deduce that

∂

∂t
ϕ(t, x̄(t)) = 0,

∂

∂x
ϕ(t, x̄(t)) = 0,

∂2

∂x2
ϕ(t, x̄(t)) ≤ 0.

From the equation (2.35) we deduce directly (2.45).
We can also calculate

0 =
d

dt

[ ∂

∂x
ϕ(t, x̄(t))

]
=

∂

∂t

∂

∂x
ϕ(t, x̄(t)) + ˙̄x(t)

∂2

∂x2
ϕ(t, x̄(t)).

Next, we differentiate in x the equation (2.35) and arrive at

∂2ϕ(t, x)
∂t ∂x

= Qb(�̄b(t))
∂b(x)
∂x

H(
∂

∂x
ϕ) + b(x)Hp(

∂

∂x
ϕ)

∂2ϕ(t, x)
∂x2

− Qd(�̄d(t))
∂d(x)
∂x

.

At the point x̄(t) we have, along with (2.44), ∂H(0)
∂p = 0 and thus we obtain simply

∂

∂t

∂

∂x
ϕ(t, x̄(t)) = Qb(�̄b(t))

∂b(x̄(t))
∂x

− Qd(�̄d(t))
∂d(x̄(t))

∂x
.

With the above information on ˙̄x(t) we arrive at (2.46). �

Notice that one cannot close this by another equation on ∂2ϕ(t,x̄(t))
∂x2 . Indeed

such an equation involves a higher order derivative ∂3ϕ(t,x̄(t))
∂x3 and so on. Also, it

might turn out that ∂2ϕ(t,x̄(t))
∂x2 vanishes or that ϕ achieves several maxima at some

times. These are singularities where the canonical equation does not apply.

Nevertheless we can infer from the equation (2.46) the dynamics of the dom-
inant trait and we distinguish the monomorphic and dimorphic cases.
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2.7.2 Monomorphic adaptive evolution

We assume that the population is monomorphic, i.e., there is a single trait x̄(t),
at each time, such that ϕ(t, x̄(t)) = 0, or in other words that the limit of nε is a
single Dirac mass. Then, we obtain in (2.31) that

�̄b(t) = �̄(t)ψb(x̄(t)), �̄d(t) = �̄(t)ψd(x̄(t)).

Therefore, using (2.45)

Qb

(
�̄(t)ψb(x̄(t))

)
b(x̄(t)) = Qd

(
�̄(t)ψd(x̄(t))

)
d(x̄(t)) ∀t ≥ 0.

This relation defines (say by continuity) �̄(t) as a function R(x̄(t)) which can be
inserted in (2.46) to obtain a differential equation on x̄(t) (once D2ϕ is known).

At least, we can use the canonical equation (2.46) to deduce that x̄(t) evolves
in the direction of increasing values in x of the quantity

Qb(�̄b(t))b(x) − Qd(�̄d(t))d(x).

This explains the denomination selection gradient for its x derivative. Therefore,(
�̄b(t), �̄d(t), x̄(t)

)
will generically reach a point

(
�̄∗b , �̄

∗
d, x̄

∗), where

0 = Qb(�̄∗b)b(x̄
∗) − Qd(�̄∗d)d(x̄∗) = max

x∈R

[
Qb(�̄∗b )b(x) − Qd(�̄∗d)d(x)

]
, (2.47)

with
�̄∗b = ψb(x̄∗)�̄∗, �̄∗d = ψd(x̄∗)�̄∗. (2.48)

These two formulas (2.47)–(2.48) on the two unknowns x̄∗ and �̄∗ are typical char-
acterizations of the ESS as we have already seen it rigorously in specific examples
(see Sections 2.1 and 2.2).

We recall that the logic behind these formula has been explained in Section
2.2, when ψb and ψd are constant. Then the function

ρ �→ max
x∈R

[
Qb(ψb�̄)b(x) − Qd(ψd�̄)d(x)

]
is monotonic (when Qb is decreasing and Qd is increasing) and can vanish at a
single point �̄∗. Then, if b/d is monotonic, then the maxx is attained itself at a
single point x∗.

2.7.3 Dimorphic adaptive evolution

A dimorphic population can occur if there are two dominant traits

nε(t, x) → �̄1(t)δ(x − x̄1(t)) + �̄2(t)δ(x − x̄2(t)),
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which also means

0 = max
x

ϕ(t, x) = ϕ(t, x̄1(t)) = ϕ(t, x̄2(t)).

According to the relation (2.45) this means that we should have

Qb

(
�̄b(t))

Qd

(
�̄d(t))

=
d(x̄1(t))
b(x̄1(t))

=
d(x̄2(t))
b(x̄2(t))

:= R(t).

In other words, a condition for dimorphism is that b/d is not one-to-one. If it
has a ‘parabolic profile’, the above ratio R(t) determines x̄1(t) and x̄2(t). Which
themselves constrain �1(t) and �2(t) by a first relation

Qb

(
�̄1(t))ψb(x̄1(t))+�̄2(t))ψb(x̄2(t))

)
= R(t)Qb

(
�̄1(t))ψb(x̄1(t))+�̄2(t))ψb(x̄2(t))

)
.

This also means that the two differential equations given by (2.46) are in fact
reduced to the same dynamics (say for instance on x̄1(t)) through the inverse of
the second derivative of ϕ.

The evolution of two such traits is therefore highly constrained and it is not
as easy as before to characterize the dimorphic ESS. The same logic leads to

0 = max
x

[
Qb(�̄∗b )b(x) − Qd(�̄∗dd(x)

]
= Qb(�̄∗b)b(x̄

∗
i ) − Qd(�̄∗d)d(x∗

i ), i = 1, 2,

�̄∗b = �̄∗1ψb(x∗
1) + �̄∗2ψb(x∗

2),

�̄∗d = �̄∗1ψd(x∗
1) + �̄∗2ψd(x∗

2).

Again, we can analyze these formulae in the case where ψb and ψd are con-
stant (and these constants should be different!). Then �̄∗b and �̄∗d are two indepen-
dent Lagrange multipliers and we may expect a one-parameter family of dimorphic
ESS.

Also, the constrained Hamilton–Jacobi equation (2.35) is clearly not enough
to decide between the monomorphic interpretation and the dimorphic equation
and this is a reason for non-uniqueness. In the monomorphic case ϕ(t, ·) achieves a
single maximum with a single Lagrange multiplier in the interpretation n(t, x) =
�(t)δ(x − x̄(t)). In the dimorphic case ϕ(t, ·) achieves two maxima that require
two independent Lagrange multipliers provided by the interpretation n(t, x) =
�1(t)δ(x − x̄1(t)) + �2(t)δ(x − x̄2(t)). It is an open problem to find a criterion for
uniqueness.
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2.7.4 Adaptive evolution: cannibalism

As an example we can treat the simple model of cannibalism from Section 2.3.
This corresponds, after rescaling and introducing mutations, to the equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε ∂
∂tnε(t, x) =

∫
R

(
r + αy�ε(t)

)
Kε(x − y) nε(t, y) dy − �d,ε(t)nε(t, x),

�ε(t) =
∫

R
nε(t, x)dx, �d,ε(t) =

∫
R

xnε(t, x)dx,

nε(t = 0) = n0
ε(x) ≥ 0.

(2.49)

The limit ε → 0 gives the constrained Hamilton–Jacobi equation

∂

∂t
ϕ(t, x) =

(
r + αx�(t)

)
H(∇ϕ) − �d(t). (2.50)

Therefore the dominant trait should satisfy the relation (2.45) which here reads

r + αx̄(t)�(t) = �d(t).

Since there is a single possible solution x̄(t), the population can only be monomor-
phic (see [79] for more elaborate models with possibly dimorphism). Also as we
already had it intuitively from Section 2.3, the canonical equation (2.46) gives the
evolution

d

dt
x̄(t) =

(
− ∂2ϕ(t, x̄(t))

∂x2

)−1

α�(t) > 0,

(here the selection gradient is simply α�(t)) which tells us that the trait increases
(to infinity in principle).

2.7.5 Adaptive evolution: chemostat with two nutrients

In the case of two nutrients with simplified predation function and for fast response
of the nutrients, the system (2.1) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(t) = S01
1+

R
η1(x)n(t,x)dx

, t ≥ 0, x > 0,

S2(t) = S02
1+

R
η2(x)n(t,x)dx

,

∂
∂tn(t, x) = −Rn(t, x) +

∫ (
η1(y)S1(t) + η2(y)S2(t)

)
n(t, y)Kε(x − y)dy,

n(t = 0, x) = n0(x) > 0, n0 ∈ L1 ∩ L∞(R+).
(2.51)

One can deduce the constrained Hamilton–Jacobi equation

∂

∂t
ϕ(t, x) = −R +

(
η1(x)S1(t) + η2(x)S2(t)

)
H(∇ϕ).
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In the present case the selection gradient is η′
1(x)S1(t) + η′

2(x)S2(t).

Therefore the dominant traits should satisfy the relation (2.45) which here
reads

R = η1(x1(t))S1(t) + η2(x1(t))S2(t) = η1(x2(t))S1(t) + η2(x2(t))S2(t).

It is possible to achieve dimorphism if the function η1(x)S1 + η2(x)S2 has a
‘parabolic profile’. This is possible for instance when ηj are positive convex func-
tions with η1 decreasing and η2 increasing.

2.8 A rigorous derivation of the Hamilton–Jacobi
equation

This section is devoted to the proofs of the results stated in Section 2.5.

Proof of Proposition 2.1. The first statement, (2.41), is nothing but the a priori
estimate (2.28). For the second statement, (2.42), we write the Hamilton–Jacobi
equation on ψε⎧⎨⎩

∂
∂tψε(t, x) =

∫
b(x + εz)e(ψε(t,x+εz)−ψε(t,x))/εM(z)dz := Kε

(
x, ψε(t, ·)

)
,

ψε(t = 0, x) = ϕ0
ε(x).

(2.52)
We just notice that ψ̄ε(t) := −|x|+C0

ε + t max b max|p|≤1 H(p) is a supersolution
to this Hamilton–Jacobi equation (and also to (2.39)) since

∂

∂t
ψ̄ε(t, x) = max b max

|p|≤1
H(p) ≥ Kε

(
x, ψ̄(t, ·)

)
and ≥ b(x)H

( ∂

∂x
ψ̄(t, x)

)
.

For the last statement, (2.43), we consider Ψε(t, x) = ∂
∂tψε(t, x) and differentiate

the equation (2.52) to obtain

∂

∂t
Ψε(t, x) =

1
ε

∫
b(x + εz)e(ψε(t,x+εz)−ψε(t,x))/ε

(
Ψε(t, x + εz)−Ψε(t, x)

)
M(z)dz.

At the maximum point, Ψε(t, x0) = maxx∈R Ψε(t, x), we deduce that

∂

∂t
Ψε(t, x0) ≤ 0,

and thus maxx∈R Ψε(t, x) ≤ maxx∈R Ψε(t = 0, x). The same argument leads to
control the minimum. Finally, we use the equation (2.52) at t = 0 to obtain

|Ψε(t = 0, x)| =
∫

b(x + εz)e(ϕ0
ε(x+εz)−ϕ0

ε(x))/εM(z)dz

≤ max
y∈R

|b(y)| max
y∈R

H
( ∂

∂x
ϕ0

ε(y)
)
,

and the third statement is proved. �
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Proof of Theorem 2.5. As a first step, we now derive a bound on the x derivative
of ψε. To do so we fix a time T > 0 and set Φε(t, x) = ∂

∂xψε(t, x). We write the
equation (2.52) as

∂

∂t

ψε(t, x)
b(x)

=
∫

b(x + εz)
b(x)

e(ψε(t,x+εz)−ψε(t,x))/εM(z)dz.

Next, we compute

∂

∂t

Φε(t, x)
b(x)

=
∂

∂t
ψε(t, x)

∂b(x)
∂x

/b(x)2

+
∫

∂

∂x

(b(x + εz)
b(x)

)
e(ψε(t,x+εz)−ψε(t,x))/εM(z)dz

+
1
ε

∫
b(x + εz)

b(x)
e(ψε(t,x+εz)−ψε(t,x))/ε

(
Φε(t, x + εz) − Φε(t, x)

)
M(z)dz.

Again, we consider the maximum point

Φε(t, x0) = max
y∈R

|Φε(t, y)| := Qε(t),

and estimate∣∣∣∣∣ ∂

∂x

(b(x + εz)
b(x)

)∣∣∣∣∣ ≤ ε

[
max
y∈R

∣∣∣∣∣∂2b(y)
∂y2

∣∣∣∣∣ max
y∈R

|b(y)| + max
y∈R

∣∣∣∣∣∂b(y)
∂y

∣∣∣∣∣
2]

/b(x)2.

Multiplying by b(x) we deduce again, because at the maximum point the last term
in the right hand-side is non-positive, and at the minimum point it is nonnegative,
that

d

dt
Qε(t) ≤ max

y∈R

[∣∣∣∣∣ ∂

∂t
ϕ0

ε(y)

∣∣∣∣∣
∣∣∣∣∣∂b(y)

∂x
/b(y)

∣∣∣∣∣
]

+ ε Qb eQε(t)

∫
M(z)dz

with Qb = [maxy∈R |∂
2b(y)
∂y2 | maxy∈R |b(y)| + maxy∈R |∂b(y)

∂y |2]/[miny∈R b(y)]. This
provides a uniform bound on Qε(t) which proves that ψε is locally compact thanks
to the Ascoli–Arzela Theorem.

Therefore we may extract subsequences such that Rε(t) (which is uniformly
lipschitz continuous) and ψε(t, x) converge locally uniformly. This is enough to
pass to the limit in the viscosity sense in the equation (2.52) and to recover (2.39)
(see [16, 69, 14, 98] for basic handling of the Hamilton–Jacobi equation). Finally,
the statement maxx∈R ϕ(t, x) = 0 follows from the bound (2.41) which would
not hold if maxx∈R ϕ(t, x) would be positive or negative in view of the definition
nε = eϕε/ε. �
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2.9 Numerical results and examples of adaptive
evolution

In this section we present several numerical experiments that illustrate possi-
ble evolutions of the dominant traits and that allow comparison between the di-
rect simulation of the structured population equations (2.31) and the constrained
Hamilton–Jacobi equation (2.35). The advantage of the latter is that it requires
very few points compared to the former which require several mesh points per ε.

We first present several possible behaviors for monomorphic situations. They
correspond to the general formalism (2.35) with Qd ≡ 1 and Qb = � =

∫
n(t, x)dx

with a trait which is chosen, for numerical treatment in [0, 1], and we present
various cases of function b(x). A continuous evolution is presented in Figure 2.1
for the function b(x) = .5 + x(2 − x).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

Figure 2.1: Continuous evolution of a trait according to direct simulation of the

structured population equations (2.31) (left) and the constrained Hamilton–Jacobi

equation (2.35) (right). The horizontal coordinate is the trait x and the vertical

coordinate is time.

In Figure 2.2 we illustrate the possibility of a discontinuity of the dominant
trait and this corresponds to the choice b(x) = min(.45 + x2, .55 + .4x), with the
same values of Qb and Qd as before. The main interest of this example is to show
that a mere differential equation cannot be enough to describe the evolution of
the dominant trait.

Finally in Figure 2.3, we show the bifurcation from a monomorphic to a
dimorphic population in the case of the chemostat with two nutrients (2.51), fol-
lowing the theory and example developed in [83].
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Figure 2.2: Same as Figure 2.1 for a trait evolution with a jump in a monomorphic

population (this shows that a differential equation cannot be enough to describe the

evolution of the dominant trait).
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Figure 2.3: Same as Figure 2.1 for a trait evolution which exhibits branching. This is

the case of a chemostat with two nutrients.

Another and in some sense opposite example of possible evolution for a di-
morphic population, is that it evolves toward a monomorphic situation because the
ESS is attractive for both monomorphic and dimorphic populations. We borrow
the Figure 2.4 from [51] where a system for adults and juveniles is treated.
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Figure 2.4: A dimorphic population becomes monomorphic. Taken from [51] who con-

sider a system for adults and juveniles.



Chapter 3

Population balance equations:
the renewal equation

In the next chapters we focus our attention on particular models of physiologically
structured population dynamics where the structure leads to a Partial Differen-
tial Equation (compared to the models in Sections 2.4 and 1.5.3 for instance).
Therefore they involve a different mathematical formalism. But these models also
differ by their biological meaning; the variable x is no longer a trait inherited from
the birth of individuals, but a variable (age structure, size structure, maturity or
maturation structure) that can evolve all along their life.

Another typical property is that these models that are written so as to com-
bine in a non-conservative way, various conservation laws (total mass, total number
of individuals). Also additional terms (death, maturation speed, mixing of several
conservation laws) makes the overall balance law not visible (compared to the case
of the chemostat in Section 1.2.3 for instance). We refer to such models as popula-
tion balance laws by analogy with the conservation laws of physics or continuum
mechanics (see [71]). A natural question is: how should the mathematical tools for
these models be modified to take into account these birth and death processes?

An outcome of our presentation is that a common concept with those models
arising in physics, namely entropy, plays a role here and can be extended to what
we call generalized relative entropy. This kind of model describes unrestricted
growth of the population and thus a Malthus parameter gives the exponential
growth. Once renormalized by this exponential factor, the entropy dissipation
drives the system to a steady state that minimizes the entropy. Of course this con-
clusion is at odds with observations. Biological systems exhibit a strong variability
(certainly due to inherent mutations and adaptation facilities as modeled by adap-
tive dynamics in Chapter 2). But the explanation is simple. Here, the regime is
described by linear equations and thus as mentioned earlier it is limited to the ini-
tial unrestricted growth, when a species is introduced in a favorable environment
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without nutrients limitation, neither competition nor selection. We refer to Sec-
tion 6.4 for the general concept of Generalized Relative Entropy (following [176])
in the framework of second order PDEs or integral equations.

As a warm-up, this chapter deals with a first example, we consider that the
population under consideration is only physiologically structured by age, following
the so-called McKendrick-Von Foerster equation or renewal equation (see [9, 162,
230, 171] for instance). The model was originally introduced for epidemiology and
is now commonly used in demographic studies, however with more ingredients
than we use here (immigration, sex, cultural classes, etc.) but it is also used in
various other applications, [64]. The next chapter deals with the more interesting
case of size structure.

3.1 The renewal equation

Consider a population density n(t, x) ≥ 0 with an age structure x ∈ (0,∞) at time
t ∈ (0,∞) which is only subject to aging and birth, ignoring the death rate for
the time being (see the exercise for an extension with a death rate). Denoting by
B(x) the birth rate, we arrive at the equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) = 0, t ≥ 0, x ≥ 0,

n(t, x = 0) =
∫

B(y)n(t, y)dy,

n(t = 0, x) = n0(x).

(3.1)

We give here a method to analyze the existence, the main properties and the long
time behavior of (3.1) based on the general relative entropy method. More pre-
cisely, we use the method developed in [177]. We also point out that the equation
(3.1) is a special case of the cell division equation (4.16), but it is the only case
where all calculations can be performed explicitly and thus allows very easy anal-
ysis. This explains that it has been commonly used either using the method of
characteristics or following a Laplace transform method due to Feller [100].

The method we develop here is easier, more general because we do not require
that B(x) = 0 for x larger than some x� and expresses results in precise weighted
norms. To illustrate it, we just use the assumptions

B(·) ≥ 0, B ∈ L∞(R+), 1 <

∫ ∞

0

B(x)dx < +∞. (3.2)

See Sections 3.8, 3.9 for extensions of this assumption.

3.2 Eigenelements

Before we state our existence result for the age structured model (3.1), we need
some notation and equations that are used later to state natural results. First of
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all, we look for (λ0, N, φ), first eigenelements associated to the renewal equation
(3.1). These are defined (see Section 6.4) by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂xN(x) + λ0 N(x) = 0, x ≥ 0,

N(0) =
∫

B(y)N(y)dy,

N(·) > 0,
∫

N(y)dy = 1,

(3.3)

⎧⎨⎩ − ∂
∂xφ(x) + λ0 φ(x) = φ(0)B(x), x ≥ 0,

φ(·) ≥ 0,
∫

N(y)φ(y)dy = 1.
(3.4)
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Figure 3.1: Solution φ of the dual eigenvalue problem, normalized differently than

in (3.4), continuous line. The dashed line is B. Left: B(x) = 1.2 1I{x<1}. Right: B(x) =

3 1I{.5≤x≤1}.

The function N is the eigenvector associated with the operator in (3.1) and
φ the eigenvector associated with the adjoint operator. Notice that there is no
boundary condition for equation (3.4), because it should be given at x = ∞ and
it is replaced by the positivity and integrability conditions. The parameter λ0 is
also called the Malthus parameter.

The existence is easy thanks to explicit solutions as we state it now.

Lemma 3.1. Under assumptions (3.2) there is a unique solution (λ0 > 0, N, φ) to
equations (3.3)–(3.4) and φ(x) ≤ ‖B‖L∞/[λ0

∫
yB(y)e−λ0ydy].

Proof. First step. The unique solution to the equation for N gives the formula

N(x) = λ0e
−λ0x. (3.5)

We have to check that it satisfies the boundary condition, i.e.,∫
B(x)e−λ0xdx = 1. (3.6)
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This is possible, with the assumptions (3.2), because the function λ �→ B(x)e−λx

is integrable for all λ > 0 and thus continuous, it is clearly deceasing, and by the
Lebesgue monotone convergence theorem, we have

lim
λ→0+

∫
B(x)e−λxdx > 1, lim

λ→+∞

∫
B(x)e−λxdx = 0.

Therefore there is a unique value λ0 which fulfills the condition (3.6).

Second step. The equation on φ can also be written on Q(x)=φ(x)N(x)/[φ(0)N(0)]
as ⎧⎨⎩

∂
∂xQ(x) = −B(x)N(x)/N(0), x ≥ 0,

Q(x = 0) = 1, Q ≥ 0,
∫

Q(x)dx < ∞,
(3.7)

and the choice of φ(0) then allows the normalization
∫

Nφ = 1. It has a unique
solution, thanks to (3.5) and the condition (3.6), given by

Q(x) = 1 −
∫ x

0

B(y)e−λ0ydy =
∫ ∞

x

B(y)e−λ0ydy.

And we notice that

0 ≤ Q(x) ≤ 1.

Third step. The normalisation
∫

Nφ = 1 is also possible and gives (because B is
bounded) the choice of φ(0). We write, using the Fubini theorem,

1
N(0)φ(0)

=
∫

Q(x)dx =
∫ ∞

0

yB(y)e−λ0ydy.

Therefore

φ(x)N(x)
N(0)φ(0)

= Q(x) ≤ ‖B‖L∞

∫ ∞

x

e−λ0ydy =
‖B‖L∞

λ0
e−λ0x,

and the upper bound on φ follows from N(0) = λ0. �

Notice that the solution N is trivial, but φ can have a more complicated
shape. Two examples are depicted in Figure 3.1. Especially, when B has a compact
support, φ has also a compact support (the convex hull of the support of B and
{0}).

Notice also that the threshold 1 in the integral condition of (3.2) is sharp in
order to ensure an expanding population (but the theory does not use it so much).
See the calculation leading to formula (3.6) of λ0.
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3.3 Existence theory

We are now ready for our first existence result where it is convenient to use the
notation

ñ(t, x) = n(t, x)e−λ0t.

The function ñ satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t ñ(t, x) + ∂

∂x ñ(t, x) + λ0 ñ(t, x) = 0, t ≥ 0, x ≥ 0,

ñ(t, x = 0) =
∫

B(y)ñ(t, y)dy,

ñ(t = 0, x) = n0(x).

(3.8)

Theorem 3.1. Under assumptions (3.2) and for an initial data satisfying

∃C0, |n0(x)| ≤ C0N(x),

there is a unique solution in distribution sense ñ ∈ C
(
R+; L1(R+; φ(x)dx)

)
to

(3.8) and we have

(i) the maximum principle

|ñ(t, x)| ≤ C0N(x) ∀t ≥ 0,

(ii) the comparison principle

n0
1 ≤ n0

2 ⇒ ñ1(t, x) ≤ ñ2(t, x),

(iii) the conservation law and the L1(φ(x)dx) contraction principle hold,∫ ∞

0

ñ(t, x)φ(x)dx =
∫ ∞

0

n0(x)φ(x)dx,∫ ∞

0

|ñ(t, x)|φ(x)dx ≤
∫ ∞

0

|n0(x)|φ(x)dx.

Remark 3.1. The interested reader can check a curiosity here which shows that
the renewal equation is not completely evident. Under the assumption (3.2) and∫

|n0(x)| φ(x)dx < ∞,

there is a weak solution ñ ∈ C
(
R+; L1(R+; φ(x)dx)

)
to the equation written on

ñφ. This solution is built as the limit of the Cauchy sequence as in the proof below.
Surprisingly, it can satisfy ñ(t, 0) = ∞, i.e.,

∫
R

B(x)ñ(t, x)dx = +∞ at t = 0 but
a regularizing effect (in fact closer to a hypercontractivity effect) occurs. We have∫ T

0

∫ ∞

0

B(x)|ñ(t, x)|[ψ(0) − ψ(x)]dx dt ≤ C(T, ψ) < ∞,
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for all decreasing, lipschitz continuous test functions ψ. To prove it, choose simply
the test function ψ in the equation on |ñ| φ (see below) and notice that, because∫
|n(t, x)| φ(x)dx ≤

∫
|n0(x)| φ(x)dx, all the other terms are under control because

they contain φ(x). As a consequence, with ψ = φ, we also have∫ T

0

∫ ∞

0

B(x)|ñ(t, x)|dx dt ≤ C(T,

∫
|n0(x)| φ(x)dx) < ∞.

Proof of Theorem 3.1. We divide the proof in several steps.

First step. We begin with an existence result for n0 ∈ L1(R+; dx). It can be
obtained using the Banach–Picard fixed point theorem in the Banach space

X = C
(
[0, T ]; L1(R+; dx)

)
, ‖n‖X = sup

0≤t≤T
‖n(t)‖L1(R+),

assuming that

T ‖B‖L∞(R+) ≤
1
2
. (3.9)

With this assumption, we obtain ñ as the fixed point of the following operator
T . Being given m ∈ X , we define n := T [m] as the solution n ∈ X of the equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) + λ0n = 0, t ≥ 0, x ≥ 0,

n(t, x = 0) =
∫

B(x)m(t, x)dx,

n(t = 0, x) = n0(x).

Therefore, for two functions m1, m2, and n1 = T [m1], n2 = T [m2] and n = n2−n1,
m = m2 − m1, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) + λ0n(t, x) = 0,

n(t, x = 0) =
∫

B(x)m(t, x)dx,

n(t = 0, x) = 0,

and thus (see the Appendix 6.1)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t |n(t, x)| + ∂

∂x |n(t, x)| + λ0|n(t, x)| = 0,

|n(t, x = 0)| = |
∫

B(x)m(t, x)dx|,

|n(t = 0, x)| = 0.
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From this we deduce, after time integration,

‖n(t)‖L1(R+) ≤
∫ t

0

|n(s, x = 0)
∣∣ds

=
∫ t

0

∣∣ ∫ B(x)m(s, x)dx
∣∣ds

≤ t ‖B‖L∞(R+) sup
0≤s≤t

‖m(s)‖L1(R+).

Taking the sup on 0 ≤ t ≤ T , we have proved that

‖n1 − n2‖X ≤
‖B‖L∞(R+)

2
‖m1 − m2‖X ,

and this means that the operator T is a strict contraction in the Banach space
X which proves the existence of a unique fixed point. As usual we can iterate the
operator on [T, 2T ], [2T, 3T ], . . ., since the condition on T does not depend on the
iteration. With this iteration process, we have built a solution in C

(
R+; L1(R+)

)
.

Second step. The comparison principle (ii) follows from the construction of the
Banach-Picard fixed point. To show this, consider two initial data n0

1, n0
2 and

denote by T1, T2 the corresponding operators of step 1. If n0
1 ≤ n0

2, then for all m
we have T1[m] ≤ T2[m] and thus the fixed point itself (recall the Picard iteration
process) satisfies n1 ≤ n2.

As a direct consequence the maximum principle holds true because ±C0N(x)
are solutions and can be used in (ii).
Third step. Consider now n0 ∈ L1

(
R+; φ(x)dx

)
. By density (recall that φ is

bounded) we can find a sequence n0
k ∈ L1(R+; dx) such that n0

k −−−−→
k→∞ n0 in

L1(R+; φ(x)dx). We denote by ñk(t, x) the corresponding solution to (3.8). Com-
bining (3.8) with the dual equation (3.4), we compute for the solution ñ = ñk−ñp,

∂

∂t

(
ñ(t, x)φ(x)

)
+

∂

∂x

(
ñ(t, x)φ(x)

)
= −φ(0)B(x)ñ(t, x). (3.10)

This implies (see the Appendix 6.1 again) the identity

∂

∂t

(
|ñ(t, x)|φ(x)

)
+

∂

∂x

(
|ñ(t, x)|φ(x)

)
= −φ(0)B(x)|ñ(t, x)|,

and after integration in x we deduce that

d

dt

∫
|ñ(t, x)|φ(x)dx = −φ(0)

∫
B(x)|ñ(t, x)|dx + φ(0)|

∫
B(x)ñ(t, x)dx| ≤ 0.

Therefore, after time integration,∫
|ñk(t) − ñp(t)|φdx ≤

∫
|n0

k − n0
p|φdx, (3.11)
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and thus (ñk) is a Cauchy sequence of C
(
R+; L1(R+; φ(x)dx)

)
. Notice also the uni-

form bound |ñk(t, x)|≤C0N(x). Therefore it converges in C
(
R

+; L1(R+; φ(x)dx)
)
,

and weakly in L∞(R+ × R+) to a solution in the distribution sense to (3.8).
It is unique because the contraction principle (3.11) shows that two possible

solutions coincide on the support of φ, thus on the support of B. Then we arrive
at two transport equations with the same boundary condition at x = 0, with the
same initial data so these two solutions are equal.

Hence we have proved the well-posedness in C
(
R+; L1(R+; φ(x)dx)

)
and the

contraction principle in (iii).
Fourth step. We also deduce from (3.10), after integration in x, that

d

dt

∫
ñ(t, x)φ(x)dx = −φ(0)

∫
B(x)ñ(t, x)dx + φ(0)ñ(t, 0) = 0.

Thus we have recovered the conservation law in (iii). �

3.4 Regularity of solutions

Later on, we will need some regularity results that we state now. We restrict
ourselves to the uniform bounds but any Lp bound on the derivative could be
proved as well using the GRE property on the time derivative as we explain it
now.

Theorem 3.2. Assume (3.2) and that the Lipschitz continuous initial data satisfies
|n0(x)| ≤ C0N(x), | ∂

∂xn0(x)| ≤ C1N(x) and n0(0) =
∫

B(x)n0(x)dx. Then the
solution to (3.8) satisfies

| ∂

∂t
ñ(t, x)| ≤ (C1 + λ0)N(x) ∀t ≥ 0, x ≥ 0, (3.12)

| ∂

∂x
ñ(t, x)| ≤ (C1 + λ0 + λ0C0)N(x) ∀t ≥ 0, x ≥ 0. (3.13)

Proof. We differentiate in t the equation on ñ and, setting q = ∂
∂t ñ we see that

q(t, x) satisfies also the renewal equation (3.8). Hence we can apply the maximum
principle to q (point (i) of Theorem 3.1) and obtain (3.12) noticing that it is true
initially because, using equation (3.8) at time t = 0,

|q(t = 0, x)| = | ∂

∂t
ñ0| = | ∂

∂x
ñ0 + λ0ñ

0| ≤ (C1 + λ0)N(x), x > 0.

On the other hand there is no time jump at t = x = 0 because we have assumed
n0(0) =

∫
B(x)n0(x)dx, and thus (3.12) holds up to x = 0.

The second estimate (3.13) follows because, using again equation (3.8), we have

| ∂

∂x
ñ(t, x)| = | ∂

∂t
ñ(t, x) + λ0ñ(t, x)| ≤ (C1 + λ0)N(x) + λ0C0N(x). �
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If we do not assume the compatibility condition n0(0) =
∫

B(x)n0(x)dx, then
we cannot use the equality ∂

∂t ñ
0 = − ∂

∂x ñ0 − λ0ñ
0 which fails at x = 0 because n0

has a discontinuity at x = 0. In other words | ∂
∂xn0(x) has a Dirac mass at x = 0

and we cannot use the comparison principle.

3.5 Generalized relative entropy

The contraction principle, (iii) of Theorem 3.1, is a special case of a much more
general inequality. It applies to several other equations and all convex functions
can be handled rather than the mere absolute value. We present it here and refer
to Section 6.4 for a more general setting. It turns out that we could derive here
several properties by explicit formulas, but the deep reason they hold true is the
generalized relative entropy property. Many other models share several properties
with the renewal equation and that is because they also satisfy the GRE property.

Theorem 3.3. Under the assumptions of Theorem 3.1, then

(i) for all convex functions H : R+ → R+ with H(0) = 0, and for all t > 0,∫ ∞

0

φ(x)N(x)H
( ñ(t, x)

N(x)
)
dx ≤

∫ ∞

0

φ(x)N(x)H
(n0(x)

N(x)
)
dx,

(ii) for the probability measure dµ(x) = B(x)N(x)
N(0) dx, and for all convex functions

H, ∫ ∞

0

[ ∫ ∞

0

H
( ñ(t, x)

N(x)
)
dµ(x) − H

(∫ ∞

0

ñ(t, x)
N(x)

dµ(x)
)]

dt

≤
∫ ∞

0

φ(x)N(x)H
(n0(x)

N(x)
)
dx.

Proof. We use that
∂

∂t

ñ(t, x)
N(x)

+
∂

∂x

ñ(t, x)
N(x)

= 0,

so that
∂

∂t
H
( ñ(t, x)

N(x)
)

+
∂

∂x
H
( ñ(t, x)

N(x)
)

= 0,

and finally

∂

∂t
[φ(x)N(x)H

( ñ(t, x)
N(x)

)
] +

∂

∂x
[φ(x)N(x)H

( ñ(t, x)
N(x)

)
]

= −φ(0)B(x)N(x)H
( ñ(t, x)

N(x)
)
.
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After integration in x ∈ R+ we find, still denoting by dµ(x) = B(x)N(x)
N(0) dx (a

probability measure in view of (3.6)),

d

dt

∫
φ(x)N(x)H

( ñ(t, x)
N(x)

)
dx

= −φ(0)N(0)
∫

H
( ñ(t, x)

N(x)
)
dµ(x) + φ(0)N(0)H

( ñ(t, 0)
N(0)

)
= φ(0)N(0)

[
−
∫

H
( ñ(t, x)

N(x)
)
dµ(x) + H

(∫ ñ(t, x)
N(x)

dµ(x)
)]

≤ 0,

for all convex functions H with H(0) = 0. The statements (i) and (ii) follow from
this inequality. �

3.6 Long time asymptotic: entropy method

In practice one observes the Stable Age Distribution, i.e., the long time limit of
ñ which is expected to be proportional to the steady state N given by equation
(3.3). In this section, we prove a general statement without a rate. Exponential
rate of convergence is treated afterwards in Section 3.7 where we give a simple
method using a restrictive hypothesis which is improved in Section 3.9.1.

We recall the notation ñ = ne−λ0t which satisfies equation (3.8).

Theorem 3.4. Under assumptions (3.2) and |n0(x)| ≤ CN(x), the solution to (3.1)
given by Theorem 3.1 satisfies∫ ∞

0

|ñ(t, x) − m0N(x)|φ(x)dx ↓ 0 as t → ∞, (3.14)

with m0 =
∫

n0(x)φ(x)dx (a conserved quantity).

Proof. First step. We can always regularize the initial data n0 in L1(φ(x)dx so as
to satisfy the assumptions of Theorem 3.2. Call n0

ε the corresponding new initial
data, then, using the contraction principle we have∫ ∞

0

|n − nε|(t, x)φ(x)dx ≤
∫ ∞

0

|n0 − n0
ε|φ(x)dx := rε → 0,

and also |m0 − m0
ε| ≤ re. Therefore it is enough to prove the result for the regu-

larized initial data. Indeed∫ ∞

0

|ñ(t, x) − m0N(x)|φ(x)dx ≤ 2rε +
∫ ∞

0

|ñε(t, x) − m0
εN(x)|φ(x)dx,

and thus limt→∞
∫∞
0 |ñ(t, x) − m0N(x)|φ(x)dx ≤ 2rε for all ε > 0, which proves

that the limit vanishes because rε → 0.
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Second step. In the regularized case, we set h(t, x) = ñ(t, x)−m0N(x), which is also
a solution to equation (3.8), satisfies |h(t, x)| ≤ C0N(x) and

∫
h(t, x)φ(x)dx = 0

(using the conservation property (iii) of Theorem 3.1). We prove that such a
solution vanishes over a long time. Notice that, by the GRE property, we have∫ ∞

0

|h(t, x)|φ(x)dx ↓ L, as t → ∞.

And it remains to show that L = 0.
Third step. Always in the regularized case, we define the solution to equation (3.8),
hk ∈ C

(
R+; L1(R+; φ(x)dx)

)
, by

hk(t, x) = h(t + k, x), and thus |hk| ≤ C0N.

Using Theorem ii, for H(·) convex with H(0) = 0, we know that∫ ∞

0

[∫
H
(hk(t, x)

N(x)
)
dµ(x)−H

(∫ ∞

0

hk(t, x)
N(x)

dµ(x)
)]

dt := Ik → 0, as k → ∞.

(3.15)
Indeed, from the very definitions of Ik and hk, we have

Ik =
∫ ∞

k

[ ∫
H
(h(t, x)

N(x)
)
dµ(x) − H

(∫ ∞

0

h(t, x)
N(x)

dµ(x)
)]

dt

and the integrand is nonnegative and integrable.
We also notice that hk satisfies equation⎧⎨⎩

∂
∂thk(t, x) + ∂

∂xhk(t, x) + λ0 hk(t, x) = 0, t ≥ 0, x ≥ 0,

hk(t, x = 0) =
∫

B(y)hk(t, y)dy,
∫∞
0 φ(x)hk(t, x)dx = 0.

(3.16)

Next, using the regularity of h (via Theorem 3.2), we may extract a subse-
quence (still denoted hk) such that, for all T > 0,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hk → g in C
(
[0, T ]× R+

)
, 0 ≤ |g| ≤ C0 N(x),∫

B(y)hk(t, y)dy →
∫

B(y)g(t, y)dy in C
(
[0, T ]

)
,∫∞

0
φ(x)g(t, x)dx = 0,

∫∞
0

φ(x)|g(t, x)|dx = L.

We pass to the limit in the entropy relation (3.15) and obtain, by convexity in
weak limits,∫ ∞

0

∫
H
(g(t, x)

N(x)
)
dµ(x)dt ≤ lim

∫ ∞

0

∫
H
(hk(t, x)

N(x)
)
dµ(x)dt

=
∫ ∞

0

H
(∫ ∞

0

g(t, x)
N(x)

dµ(x)
)
dt.

(3.17)
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But from the Jensen inequality, the reverse inequality is also true thus showing
that ∫ ∞

0

∫
H
(g(t, x)

N(x)
)
dµ(x)dt ≥

∫ ∞

0

H
(∫ ∞

0

g(t, x)
N(x)

dµ(x)
)
dt.

This equality for H strictly convex shows that for almost all t > 0, on the support
of µ, i.e., that of B,

g(t, x)
N(x)

= C(t) (independent of x ∈ supp B).

Inserting this information in the limit in distribution sense of equation (3.16),
namely ⎧⎨⎩

∂
∂tg(t, x) + ∂

∂xg(t, x) + λ0 g(t, x) = 0, t ≥ 0, x ≥ 0,

g(t, x = 0) =
∫

B(y)g(t, y)dy,

and thus
∂

∂t

g(t, x)
N(x)

+
∂

∂x

g(t, x)
N(x)

= 0.

Therefore g(t,x)
N(x) ≡ C(t) and C(t) is in fact a constant in t;

g(t, x) = G0 N(x) ∀x ≥ 0.

Using that
∫∞
0 g(t, x)φ(x) = 0, we find that G0 = 0. Now we can conclude that

the limit L of the second step vanishes because, passing to the limit k → ∞ we
have L =

∫∞
0

|g(t, x)|φ(x) → 0 for t → ∞. �

3.7 Long time asymptotic: exponential decay

Theorem 3.5. Under assumption (3.2), and

∃µ0 > 0, s.t. B(x) ≥ µ0
φ(x)
φ(0)

, (3.18)

the solution to (3.1) satisfies∫
|ñ(t, x) − m0N(x)|φ(x)dx ≤ e−µ0t

∫
|n0(x) − m0N(x)|φ(x)dx (3.19)

with m0 =
∫∞
0

n0(x)φ(x)dx a conserved quantity, see Theorem 3.1 (ii).

The assumption (3.18) is restrictive if we have in mind that B can vanish
for x ≈ 0 and be positive afterwards because φ(x) > 0 on the convex hull of the
support of B. But for x large, or close to the end point of the support of B, in
general the quantity φ(x) vanishes faster than B. See Figure 3.1.
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There are two proofs of exponential time convergence that do not use (3.18).
One is through the Laplace transform, and gives a representation of the solution
but not a precise time decay in functional spaces ([171, 143, 100]). The other one,
[124], is based on the invariants of the renewal equation (surprisingly there are
several conserved quantities like

∫
ñφ(x)dx).

Proof. We define
h(t, x) = ñ(t, x) − mN(x).

By linearity it still satisfies the equation⎧⎨⎩
∂
∂th(t, x) + ∂

∂xh(t, x) + λ0 h(t, x) = 0, t ≥ 0, x ≥ 0,

h(t, x = 0) =
∫

B(y)h(t, y)dy.

Since equation (3.4) is the dual equation, we have again by a simple combination
of these two equations,⎧⎨⎩

∂
∂t

[
h(t, x)φ(x)

]
+ ∂

∂x

[
h(t, x)φ(x)

]
= −φ(0)B(x)h(t, x), t ≥ 0, x ≥ 0,

φ(0)h(t, x = 0) = φ(0)
∫

B(y)h(t, y)dy.

Therefore (see Section 6.1)⎧⎨⎩
∂
∂t

[
|h(t, x)|φ(x)

]
+ ∂

∂x

[
|h(t, x)|φ(x)

]
= −φ(0)B(x)|h(t, x)|, t ≥ 0, x ≥ 0,

φ(0)|h(t, x = 0)| = φ(0)|
∫

B(y)h(t, y)dy|.

After integration in x, we obtain since
∫

φ(x)h(t, x)dx = 0,

d
dt

∫
|h(t, x)|φ(x)dx = −φ(0)

∫
B(x)|h(t, x)|dx + φ(0)|

∫
B(x)h(t, x)dx|

= −φ(0)
∫

B(x)|h(t, x)|dx + |
∫
[φ(0)B(x) − µ0φ(x)]h(t, x)dx|

≤ −φ(0)
∫

B(x)|h(t, x)|dx +
∫

[φ(0)B(x) − µ0φ(x)]|h(t, x)|dx

= −µ0

∫
|h(t, x)|φ(x)dx.

We conclude using Gronwall’s lemma. �

We conclude this section by an explicit example. We take

B(x) = ν e−µx, ν > µ,

and thus, assumption (3.2) is satisfied. One computes

λ0 = ν − µ, φ(x) = φ(0)e−µx, N(x) = λ0e
−lbx.

Therefore the assumption (3.18) is satisfied with µ0 = ν.
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3.8 Extension: death rates

As an extension of the previous section, we consider the renewal equation with a
death rate d(x) ≥ 0,⎧⎨⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) + d(x)n(t, x) = 0, t ≥ 0, x ≥ 0,

n(t, x = 0) =
∫

B(y)n(t, y)dy.
(3.20)

In practice, the death rate d(x) can vary drastically for different species: for trees it
is often constant, for fishes it decreases for small values of x (smaller fish are easier
targets for predators) and increases for larger x, for mammals it is often increasing
and unbounded; Gompertz’s law gives a linear growth of d(x) (this is ‘aging’, the
probability of death increases with age) after some age before which it is constant
(when death arises only by stochastic events independently of age). More recent
theories tend to show that after some age d(x) becomes again constant.

We define
D(x) =

∫ x

0

d(y)dy.

Then the equation on m(t, x) = n(t, x)eD(x) is⎧⎨⎩
∂
∂tm(t, x) + ∂

∂xm(t, x) = 0, t ≥ 0, x ≥ 0,

m(t, x = 0) =
∫

B(y)e−D(y)m(t, y)dy.
(3.21)

Therefore we are in the simpler situation studied so far.

Exercise. Assume that

B ≥ 0, B ∈ L∞(R+),
∫

B(x)e−D(x)dx > 1. (3.22)

Write the eigenvalue problem (λ,N, φ) for equation (3.20) and show that there
exists a solution with λ0 > 0 and

∫∞
0

N = 1. Extend the existence theory and the
generalized relative entropy inequality. Make the relation between the eigenele-
ments of equation (3.20) and those of (3.21).

Exercise. Assume that

B ≥ 0, B ∈ L∞(R+), d(x) −−−−→x→∞ ∞.

Show that there exist eigenelements (λ0, N, φ), λ0 ∈ R (no sign condition in this
case) with

∫∞
0

N = 1.

At this level we would like to remark that there is no reason to look for a
positive eigenvalue λ0. Species can also go extinct in certain conditions, a situation
which corresponds to λ0 < 0. However in the case d ≡ 0, the condition λ0 > 0
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is necessary otherwise the equation on N only has growing exponential solutions
which do not really make sense (in terms of biological interpretation), and which
would require very specific assumptions on B such as B(x) = 0 for x ≥ x�.

We also refer to Section 3.9.1 for a more specific example with a death rate.

3.9 More realistic models around the renewal equation

Many variants of the renewal equations have been used and studied in various
areas of biology. We give here several examples and explain roughly the modeling
behind them. They are often nonlinear and we recall that such models were already
mentioned in Section 1.5.2 with the Kermack–McKendrick model in epidemiology.

3.9.1 Renewal equation for cell division cycle (one phase)

This section presents some improvement of the arguments in Section 3.7 to obtain
exponential time decay. We show that it is possible to prove an explicit exponential
rate of convergence, in the natural norm, for situations more general than the mere
assumption (3.18). We illustrate the idea on a model for cell division cycle with
a single phase, see Section 3.9.5 for a motivation. This is a special case of an age
structured equation written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) + k(x)n(t, x) = 0, t ≥ 0, x ≥ 0,

n(t, x = 0) = 2
∫

k(y)n(t, y)dy,

n(t = 0, x) = n0(x),

(3.23)

where the function k(·) can be interpreted as a mitosis rate. When cells undergo
mitosis, they are withdrawn from the balance equation at age x with a rate k(x)
and create two daughter cells at age x = 0 with the same rate.

For our theoretical study, we take for simplicity the mitosis rate

k(x) = β 1I{x≥x∗}, β > 0, x∗ > 0. (3.24)

We recall here the definitions of the eigenelements, and readily check that they
exist here because condition (3.22) is fulfilled,⎧⎨⎩

∂
∂xN(x) + (k(x) + λ0)N(x) = 0, x ≥ 0,

N(x = 0) = 2
∫

k(y)N(y)dy, N > 0,
∫

N(x)dx = 1,⎧⎨⎩
∂
∂xφ(x) − (k(x) + λ0)φ(x) = −2φ(0)k(x), x ≥ 0,

φ ≥ 0,
∫

φ(x)N(x)dx = 1.
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Because k vanishes close to 0, assumption (3.18) does not hold here. Never-
theless we can obtain an exponential rate of convergence.

Theorem 3.6. We assume (3.24) and

e−βx∗/2 >
3
4
, (3.25)

then, for some positive function φ̄ and µ0 given in (3.27), we have∫
|ñ(t, x) − m0N(x)|φ̄(x)dx ≤ e−µ0t

∫
|n0(x) − m0N(x)|φ̄(x)dx, (3.26)

with m0 =
∫

n0φ and some µ0 > 0 given in the proof below.

Proof. First step. We compute the eigenvalue λ0. The basic functions N , Q = Nφ
are given in this case by

N(x) =
{

e−λ0 x for x ≤ x∗,
e−(λ0+β)x eβx∗ for x ≥ x∗,

Q(x) =
{

1 for x ≤ x∗,
2 β

λ0+β N(x) for x ≥ x∗.

Especially, λ0 is defined by 2
∫

k(x)N(x)dx = 1 which gives

λ0 + β = 2βe−λ0 x∗ , (3.27)

an equation which always has a solution 0 < λ0 < β.
Second step. We consider a function c(x) to be chosen later (that replaces 2k(x)
in the right-hand side of the equation defining φ) such that

c(x) ≥ 0,

∫
c(x)N(x)dx = 1. (3.28)

And we set
Q̄(x) = 1 −

∫ x

0

c(y)N(y)dy, Q̄ = Nφ̄. (3.29)

As in the proof of Theorem 3.5, we consider the function h = n(t, x)e−λ0t −
m0N(x), which still satisfies equation (3.23) (with a different Cauchy data) and∫

h(t, x)φ(x)dx = 0. We have by a simple combination of the equation on h and
the equation

∂
∂x φ̄(x) − k(x) φ̄(x) = −c(x),

d
dt

∫
|h(t, x)|φ̄(x)dx = −

∫
|h(t, x)|c(x)dx +

∫
h(t, x)2k(x)dx

= −
∫
|h(t, x)|c(x)dx +

∫
h(t, x)[2k(x) − µφ(x)]dx

≤ −
∫
|h(t, x)|c(x)dx +

∫
|h(t, x)||2k(x) − µφ(x)|dx.
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In order to choose c(x) = µ0φ̄(x) + |2k(x) − µφ(x)|, for some µ0 > 0, and since c
is only constrained via (3.28), it is enough to be sure that∫

|2k(x) − µφ(x)|N(x)dx < 1.

But, assuming 2k(x) > µφ(x) for x > x∗, we have∫ x∗

0

µφ(x)+
∫ ∞

x∗
[2k(x)−µφ(x)]N(x)dx =

β

λ0
(e−λ0 x∗−1)+1−2

β2

(λ0 + β)2
e−λ0 x∗ ,

and this quantity is less than 1 iff β < 2λ0, which is satisfied, in view of the
definition (3.27) of λ0 iff

β

2
+ β < 2βe−

β
2 x∗ ,

which itself is equivalent to (3.25) and is compatible with the sign condition used
above for x > x∗. �

3.9.2 Cell division cycle: numerical results

We now present (Figures 3.2 and 3.3) some numerical results in order to illustrate
the time decay result of Theorem ii.
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Figure 3.2: Solution of the renewal equation in case 1 (peaked renewal kernel).

Left:the total population density as a function of time. Right: the steady state N(x).

We consider the equation (3.20) with a death rate d(x) = 2. ∗ x/xM + k(x)
where we have fixed an adimensionalisation parameter xM , the birth rate b(x) =
2∗k(x) (see the choice of k(x) below) is motivated by a simple case of cell division
cycle (Section 3.9.1). We consider the solution up to the final time tfinal = 3∗xM .
The eigenvalue λ0 is computed numerically (and thus depends upon the discretiza-
tion). One can observe that, after renormalization, the solution converges to a
steady state but with an initial oscillatory behavior. This kind of behavior has
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Figure 3.3: Solution of the renewal equation in case 2 (uniform renewal kernel).

Left: the total population density as a function of time. Right: the steady state

N(x).

been confirmed and matched to experiments on various types of cells in [221], [60]
. . . etc.

As one can see in the numerical tests below, these oscillations are related to
the form of the kernel k(a) used above. We can see that the more ‘peaked’ is the
kernel K, the more oscillations the solution exhibits, thanks to the two cases:

• First case. k(x) = 4 ∗ 1I{xM /2≤x≤xM}, see Figure 3.2.

• Second case. k(x) = 2 ∗ 1I{0≤x≤xM}, see Figure 3.3.

3.9.3 A renewal system with quiescent/proliferative cells

With the same convention as before, we consider another example of an age struc-
tured model. We let x ≥ 0 denote the age of cells but we now assume two states
for cells: the proliferative state with cell density p(t, x) and the quiescent state
with cell density q(t, x) (this can be also called ‘phase G0’ with the terminology of
Section 3.9.5), thus extending the model presented in Section 3.9.1. The balance
equations for the two compartments are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tp(t, x) + ∂

∂xp(t, x) + [B(x) + d(x) + σ1(x)] p(t, x) = σ2(x) q(t, x),

∂
∂tq(t, x) + ∂

∂xq(t, x) + σ2(x) q(t, x) = σ1(x) p(t, x),

p(t, x = 0) = 2
∫

B(y)p(t, y)dy, q(t, x = 0) = 0,

p(t = 0, x) = p0(x), q(t = 0, x) = q0(x).

(3.30)

Here σi are the transition rates from one state to the other and B(x) is the mitosis
rate for cells in the proliferative state, since it is assumed that in the quiescent
state there is no birth.
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This model has been studied in [10] and in particular its long time behavior.
It is however easy to study it along with the general theory developed here. There
are eigenelements (λ0, P, Q), with λ0 > 0, P (x > 0), Q(x > 0) under fairly general
conditions; the formulas are explicit but long to write. Then one has a Generalized
Relative Entropy inequality, following Sections 3.5, 6.3 and 6.4, that explains why(
pe−λ0t, qe−λ0t

)
converges to a multiple of (P, Q), again in spaces with the correct

weights given by the adjoint equation.

3.9.4 The renewal equation with diffusion

We now consider the renewal equation with diffusion and show that the General-
ized Relative Entropy method developed in Section 3.6 applies directly.

The equation with diffusion is written⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) + d(x)n(t, x) = ∂
∂x [ν(x) ∂

∂xn(x)], t ≥ 0, x ≥ 0,

n(t, x = 0) − ν(0) ∂
∂xn(x = 0) =

∫
B(y)n(t, y)dy,

n(t = 0, x) = n0(x).
(3.31)

Our notation follows those of Section 3.6; λ0, N and φ are the first eigenele-
ments of the stationary problem and dual problem⎧⎨⎩

∂
∂xN(x) + (d(x) + λ0)N(x) = ∂

∂x [ν(x) ∂
∂xN(x)], x ≥ 0,

N(x = 0) − ν(0) ∂
∂xN(x = 0) =

∫
B(y)N(y)dy,

∫
N(x)dx = 1,

(3.32)

⎧⎨⎩
− ∂

∂xφ(x) + (d(x) + λ0)φ(x) = ∂
∂x [ν(x) ∂

∂xφ(x)] + b(x)φ(0), x ≥ 0,

ν(0) ∂
∂xφ(0) = 0, φ ≥ 0,

∫
N(x)φ(x)dx = 1.

(3.33)

Theorem 3.7. The entropy equalities hold, for all convex functions H(·) and with
the notation ñ = e−λ0tn,

∂

∂t

∫
N(x)φ(x)H

( ñ(t, x)
N(x)

)
dx = −DH

diff

(
ñ(t)

)
− DH

ren

(
ñ(t)

)
≤ 0,

where the entropy dissipation due to diffusion and to the renewal terms are

DH
diff

(
ñ(t)

)
=
∫

H ′′( ñ(t, x)
N(x)

)
ν(x)N(x)φ(x)

( ∂

∂x

ñ(t, x)
N(x)

)2
dx ≥ 0,

DH
ren

(
ñ(t)

)
= φ(0)

∫ [
H
( ñ(t, x)

N(x)
)
− H

( ñ(t, 0)
N(0)

)
− H ′( ñ(t, 0)

N(0)
)(n(̃t, x)

N(x)
− ñ(t, 0)

N(0)
)]

b(x)N(x)dx ≥ 0.
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Proof. We deduce from the equation on N(x) the additional equality

∂

∂x

1
N(x)

−(d(x)+λ0)
1

N(x)
=

∂

∂x
[ν(x)

∂

∂x

1
N(x)

]−2ν(x)N(x)(
∂

∂x

1
N(x)

)2. (3.34)

Combining equations (3.31) and (3.34) gives us

∂
∂t

en(t,x)
N(x) + ∂

∂x
en(t,x)
N(x) = ∂

∂x [ν(x) ∂
∂x

en(t,x)
N(x) ]

−2ν(x) ∂
∂x ñ(t, x) ∂

∂x
1

N(x) − 2ν(x)ñ(t, x)N(x)( ∂
∂x

1
N(x))

2

= ∂
∂x [ν(x) ∂

∂x
en(t,x)
N(x) ] − 2ν(x)N(x) ∂

∂x
1

N(x)
∂
∂x

en(t,x)
N(x) .

For any function H(·) we deduce an equality similar to the above, namely

∂
∂tH

( en(t,x)
N(x)

)
+ ∂

∂xH
( en(t,x)

N(x)

)
= ∂

∂x [ν ∂
∂xH

( en(t,x)
N(x)

)
] − H ′′( en(t,x)

N(x)

)
ν(x)

(
∂
∂x

en(t,x)
N(x)

)2
−2ν(x)N(x) ∂

∂x
1

N(x)
∂
∂xH

(en(t,x)
N(x)

)
.

And it remains to combine it with the equation for N to ‘undo’ the conservative
form on en(t,x)

N(x) and arrive at

∂
∂tN(x)H

( en(t,x)
N(x)

)
+ ∂

∂xN(x)H
( en(t,x)

N(x)

)
+ d(x)N(x)H

( en(t,x)
N(x)

)
= ∂

∂x [ν ∂
∂xN(x)H

( en(t,x)
N(x)

)
] − H ′′( en(t,x)

N(x)

)
νN(x)

(
∂
∂x

en(t,x)
N(x)

)2
.

We are now close to the entropy inequality for this problem. Using the dual solution
φ gives the entropy form

∂
∂t

∫
N(x)φ(x) H

( en(t,x)
N(x)

)
dx = −

∫
H ′′( en(t,x)

N(x)

)
ν(x)N(x)φ(x)

(
∂
∂x

en(t,x)
N(x)

)2
dx

+φ(0)
[
N(0)H

(en(t,0)
N(0)

)
−
∫

H
( en(t,x)

N(t,x)

)
b(x)N(x)dx

−ν(0)
[
H
(en(t,0)

N(0)

)∂N(0)
∂x + N(0)H ′( en(t,0)

N(0)

)
∂
∂x

en(0)
∂N(0)

]
.

(3.35)
The first line represents the entropy dissipation by diffusion DH

diff , and the bound-
ary terms can be treated as follows. Combining the boundary terms on n(t) and
N we first deduce that

ν(0)N(0)
∂

∂x

ñ(0)
∂N(0)

=
ñ(t, 0)
N(0)

∫
b(x)N(x)dx −

∫
b(x)ñ(t, x)dx,

and we arrive, in (3.35), at the term

φ(0)
[
H
( en(0)

N(0)

)
[N(0) − ν(0) ∂

∂xN(0)]

+
∫

R+ [−H
( en(t,x)

N(t,x)

)
+ H ′( en(0)

N(0)

)( en(t,x)
N(t,x) −

en(t,0)
N(0)

)
]b(x)N(x)dx

]
,

which is the term −DH
ren and which sign results from convexity of H(·). �



3.9. More realistic models around the renewal equation 75

G1

M

S

G2

G0

Figure 3.4: Principle of the cell division cycle and its phases.

3.9.5 A system of renewal equations for cell division cycle

The cell division (mitosis) is the result of a full cycle that a cell should undergo
successfully ([150], Ch. 13). It is usually accepted that the cycle consists in four
phases as depicted in Figure 3.4, (i) a growth phase, denoted G1 (but G stands for
gap), where approximately the cell doubles its size (this is at least well reported
for yeast), (ii) a synthesis phase, denoted by S, where the DNA is duplicated, (iii)
a rest phase, denoted by G2, a usual interpretation is that it is used to check
and repair the errors in S phase, (iv) the mitosis itself, phase M, where the two
DNA folds separate (anaphase) and the cell divides finally. It was discovered in
the early 1980s that the cell division cycle progression is related to variations of
the concentration of certain proteins called cyclins (cyclin B in phase M, cyclin A
in phase S, cyclin C to F in phase G1) and thus we wish to keep this notion in the
mathematical model, see [206]. Also many of the cells stay at rest in a quiescent
phase called G0, typically, skin cells are constantly in the cycle but endothelial
cells are known to stay at rest in phase G0 (also called quiescent state) and may be
activated by Vascular Endothelial Growth Factors when angiogenesis occurs (see
Section 5.5.6). On the other hand, the cell division cycle duration is also extremely
variable, from several minutes to several days, depending on the cells [150], [120].

To fit with the above description, the cell population model uses the density
of cells in the phase i, denoted by ni(t, x), at time t and structured with age x in
the cell, and say i = 0 for the rest phase G0, and i = 1, 2 . . . , I with I = 4 in the
above scenario. We call Ki→i+1(x) ≥ 0 the transition rate from phase i to phase
i + 1 depending on the age x in the phase i (KI→I+1 stands sometimes for KI→1

in order to simplify some notation). As a simple model we can have in mind

Ki→i+1(x) = ki1I{x≥xi}, ki > 0, (3.36)

a constant rate after some age xi is attained. These transition rates could be
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controlled by drugs or by the circadian clock, thus leading to a variant

Ki→i+1(t, x) = ki(t)1I{x≥xi}, (3.37)

then ki(t) is switch activated periodically at certain times in the circadian control,
by a therapy in case of therapeutic control. In the case when ki(t) are periodic,
one can apply Floquet theory in order to extend the results of this chapter along
the lines of Section 6.3.2.

Then the evolution of the density in the phase is modeled via a renewal
equation as studied in Section 3.1. We denote by di > 0 the death rate in the
phase i : as mentioned earlier, it could also be controlled by drugs and incorporate
a circadian rhythm; vi(x) > 0 is the evolution speed in the phase which could also
be controlled by some cyclin level for instance. Hence, for 1 ≤ i ≤ I, t ≥ 0 and
a ≥ 0, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tni(t, x) + ∂

∂x [vi(x)ni(t, x)] + [di(x) + Ki→i+1(x)]ni(t, x) = 0,

vi(0)ni(t, x = 0) =
∫

x′≥0 Ki−1→i(x′) ni−1(t, x′) dx′, 2 ≤ i ≤ I,

v1(0)n1(t, x = 0) = 2τM

∫
x′≥0

KI→1(x′) nI(t, x′) dx′,

(3.38)

where the factor 2 expresses the doubling of cell number after mitosis phase M
and 0 < τM ≤ 1 is the rate of cells which continue the cycle after mitosis. For the
sake of simplicity we have not described the phase G0 which receives the extra
cells after mitosis and possibly can introduce new cells in the phase G1. Of course
our model is completed by a set of Cauchy data

ni(t = 0, x) = n0
i (x) ≥ 0, ∀i = 1, . . . , I, ∀x > 0. (3.39)

This model thus retains some aspects of Rotenberg’s [205] model (see Section
3.9.6) with a discrete set of maturation states (µ in (3.40) corresponding to i in
(3.38)) while keeping the main feature that enough phase progression is needed
for transition to the next phase. Several variants exist and in particular age is not
always the best variable. For instance during the S phase, one can measure the
DNA content that should be doubled at the end ([20]). Also the content in cyclins
is a better structuring parameter than age ([22]).

One can develop a theory similar to that of Section 3.2 for the existence of
eigenelements and the long time convergence to the first eigenvector. Namely we
have (assuming that all coefficients are bounded and vi does not vanish)

Theorem 3.8. There is a unique first eigenelement (λ0 > 0, Ni > 0, φi ≥ 0)
(normalized as usual) under the condition

2τM

I∏
i=1

∫
x≥0

Ki→i+1(x)e−
R

x
0

di+Ki→i+1
vi dx > 1.
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This condition, that replaces (3.2), is obtained by an exact integration of the
steady state equation and following the arguments of Section 3.2.

3.9.6 Maturation structure

Somewhat related but more general is the maturation structured model of Roten-
berg [205]. Then, the physiological structure comes from a maturation velocity
µ ∈ [0, 1], and the observable state x is the biological age, more relevant than the
physical age, in other words, the degree of maturity (and then x/µ is the physical
age in the previous models). Then, the density of population n(t, x, µ) satisfies the
transport equation

∂

∂t
n(t, x, µ) + µ

∂

∂x
n(t, x, µ) + D(x, µ)n(t, x, µ) =

∫
K(x, µ, µ′)n(t, x, µ′)dµ′,

(3.40)
with again boundary conditions at x = 0, and initial data at t = 0,

n(t, x = 0, µ) =
∫

b(x′, µ′, µ)n(t, x′, µ′)dµ′dx′,

n(t = 0, x, µ) = n0(x, µ).

This model enhances stochasticity in time evolution of the population thanks to
the kernel K which allows a random change of the maturation velocity, and also,
as in the previous models, in the birth process. This type of equation is called a
kinetic equation because it arises in kinetic physics, see [53, 196]. We also refer to
[92] for other models with the notion of maturity and to [177] for a Generalized
Relative Entropy approach.

3.9.7 Stem cells and hematopoiesis

A model of Mackey and Rey (see [163] and further papers of the same authors)
has been widely studied ([3] and the references therein). It aims at describing the
production of human red blood cells in the bone marrow structuring it in the age
a of cells and their maturity m. Maturity m = 0 represents pure stem cells and
should be present in order to produce the different blood cells. Mackey and Rey
propose to model it with a coupled system of two nonlinear transport equations
that extend the renewal equations. For t ≥ 0, a ≥ 0, m ≥ 0, they write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tp(t, a, m) + ∂

∂ap(t, a, m) + ∂
∂m [V (m)p(t, a, m)] + d1(m)p(t, a, m) = 0,

p(t, a = 0, m) = b2

(
m, N(t, m)

)
N(t, m),

N(t, m) =
∫∞
0

n(t, a, m)da;
(3.41)
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∂
∂tn(t, a, m) + ∂

∂an + ∂
∂m [V (m)n] + [d2(m) + b2

(
m, N(t, m)

)
]n = 0,

n(t, a = 0, m) = 2
∫

b1(a, m)p
(
t, a, G−1(m)

)
da.

(3.42)

Here, p and n denote the population density of proliferative cells and resting cells,
and D1, d2 their death rate. Cell division occurs according to the term with b1

from proliferative cells (and are born in rest phase).
This system allows us to see at least two interesting features. Firstly, to avoid

boundary condition at m = 0 (which would suppose making explicit a ‘reservoir’
of stem cells with its own independent dynamics, a hypothesis without biological
support), it is assumed that V (0) = 0 and∫ m

0

1
V (m′)

dm′ = +∞ ∀m > 0, V (m) is increasing.

Secondly, cell division is assumed to push backward the cells in their maturity
state, which is the aim of the term G−1(m) with G ∈ C1([0,∞[) and

G : R
+ → R

+, increasing, G(0) = 0, G(m) < m.

The nonlinear term b2(m, N) is decreasing in N .
Important to notice here is that p(t, a, m = 0 does not vanish but has a

dynamics inherited from (3.41) by contrast with the model for the ovulary process,
still structured by maturity in Section 3.9.8.

This model exhibits interesting behaviors as non-vanishing steady states and,
possibly related to known diseases, periodic solutions [2].

3.9.8 Model for ovulary process

A model involving maturating cells has also been proposed by [93, 94] in order to
describe the ovulary process. Here we just present a simplified version which keeps
some flavor of the model and its nonlinearity.

We denote by n(t, a, m) the density of granulosa cells (it should be also
parametrized by the follicle under consideration and the phases should be taken
into account but we do not do it for the sake of simplicity). Again t is the current
time, a is the age in the cycle as usual and µ is a marker for the cell maturity.
Then, the density evolution is driven by the equation⎧⎨⎩

∂
∂tn(t, a, m) + ∂

∂a [g(u)n(t, a, m)] + ∂
∂m [h(m, u)n(t, a, m)] + dn(t, a, m) = 0,

n(t, a = 0, m) = 2n(t, a = 1, m).
(3.43)

As in the model of hematopoiesis (Section 3.9.7), there is no boundary condition
in the maturity variable because it vanishes at m = 0. Typically it has the form

h(m, u) = m
(
β(u) − m

)
,
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where u = u(t) = U(U(t), M(t)) is a ‘control’ parameter driven by the level U(t)
of Follicular Stimulating Hormone (FSH in short). More precisely

M(t) =
∫ ∞

a=0

∫ ∞

m=0

m n(t, a, m)da dm,

and
d

dt
U(t) = S(M(t)) − kU(t).

where S(M) = S0 + 1
1+M(t) denotes the FSH release (from pituitary gland for

instance) and k its degradation rate.

3.9.9 Exercises

Exercise 1. Consider the age structured model for B ∈ C1(R+),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) = 0, t ≥ 0, x ≥ 0,

n(t, x = 0) =
∫∞
0 B(x)n(t, x)dx,

n(t = 0, x) = n0(x) ∈ C1
comp.

(3.44)

1. Give the solution n(t, x) derived by the method of characteristics for the two
cases x < t, x > t.

2. Assuming n0(0) =
∫∞
0

B(x)n0(x)dx, show that it is a C1 solution.

3. Show that it can be reduced to the Lotka equation on β(t) = n(t, x = 0),

β(t) = β0(t) +
∫ t

0

B(s)β(t − s)ds,

and identify β0.

4. Give a definition of solutions in a distribution sense for the case when the
compatibility condition on n0(0) is not satisfied.

Exercise 2. For a function V (x) satisfying the Cauchy–Lipschitz conditions of
Section 6.1.1, consider the maturity structured model{

∂
∂tn(t, x) + ∂

∂x

[
V (x)n(t, x)

]
= 0, t ≥ 0, x ≥ 0,

n(t = 0, x) = n0(x).

1. Show that it admits a solution, without need of a boundary condition at
x = 0, if and only if ∫ ·

0

1
V (y)

dy = ∞.
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2. Prove that the solution is continuous at x = 0 if n0 is.

3. a) For V (x) = x, prove there are eigenelements (with infinite mass), i.e.,
λ0 > 0, N > 0 such that

∂

∂x

[
V (x)N(x)

]
+ λ0N(x) = 0 x ≥ 0;

b) compute the adjoint state

−V
∂

∂x
φ(x) + λ0φ(x) = 0 x ≥ 0;

c) is it possible to normalize them with
∫∞
0

N(x)φ(x) dx = 1?

Exercise 3 (Cell division cycle with proliferative/quiescent states). The following
model is based on the same type of idea as in Section 3.9.7 for cells with two
states.

Consider the model for t ≥ 0, x ≥ 0,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tp(t, x) + ∂

∂xp(t, x) + B p(t, x) = νq(t, x),

∂
∂tq(t, x) + ∂

∂xq(t, x) + ν q(t, x) = 0,

p(t, x = 0) = 0, q(t, x = 0) = 2B
∫∞
0

p(t, x)dx.

(3.45)

1. Give a condition on the parameters (B > 0, ν > 0), B 
= ν, so that there
exist first eigenelements (λ0 > 0, P > 0, Q > 0, φp ≥ 0, φq ≥ 0) and compute
them explicitly, i.e., solutions to⎧⎨⎩

∂
∂xP (x) + [λ0 + B] P (x) = νQ(x), ∂

∂xQ(x) + [λ0 + ν] Q(x) = 0,

P (x = 0) = 0, Q(x = 0) = 2B
∫∞
0

P (x)dx;⎧⎨⎩
− ∂

∂xφ(x) + [λ0 + B] φ(x) = 2Bψ(0),

− ∂
∂xψ(x) + [λ0 + ν] ψ(x) = νφ(x).

2. Give the conserved quantity and the family of generalized relative entropies
for this system.

3. Give the natural weight for the L1 estimate; Give the L∞ estimate.

Exercise 4 (Cell division cycle with several phases). Compute the eigenelements
and prove the result of Theorem 3.8. Write the Generalized Relative Entropy
Inequality.



Chapter 4

Population balance equations:
size structure

For unicellular organisms the renewal equation does not apply, mainly because
age is not the most relevant parameter that determines mitosis (the reproduction
stage). The mass of the cell, its length, its DNA content, the level of certain
proteins as cyclins or some other biological parameters are often more relevant
(see Figure 4.1 for a comparison between budding yeast and bacterium E. Coli).

Figure 4.1: Principle of cell division in E. Coli (left), and yeast (right).

This chapter deals with size structured models as motivated in [171], which
lead to a different type of equations than age structured. It turns out that these
models are much more interesting in terms of their mathematical analysis, as long
as we stay away from the usual assumption ‘the smallest mother cell is twice larger
than the biggest daughter cell’.
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We call ‘equal mitosis’ the case when a cell of size x divides in two cells of
size x/2. We treat it first because the model is simpler than the general case of
asymmetric division. In both cases we base our analysis on the generalized relative
entropy method, once the model has been renormalized by the exponential rate
inherent to its unrestricted growth. Throughout this chapter, we follow arguments
taken from [198, 176, 173].

4.1 Equal mitosis

In this section we restrict ourselves to ‘equal mitosis’ where cells of size x divide in
two equal pieces of size x/2 with a rate B(x). Hence, we now consider the evolution
equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) + B(x) n(t, x) = 4B(2x) n(t, 2x), t > 0, x ≥ 0,

n(t, x = 0) = 0, t > 0,

n(0, x) = n0(x) ≥ 0.
(4.1)

Again B(x) denotes the division (birth) rate. The boundary condition here means
that cells are not introduced in the system with the smallest possible size x = 0.

In order to explain the factor 4 in the right-hand side we have to argue that
n(t, x)dx is the cell density and when mitosis occurs at size 2x it thus creates
2 ∗ n(2x)d(2x) cells. More rigorously one may consider two quantities, the total
population number and its total size (mass). As it is clear from the modeling,
the transport term ∂

∂xn(t, x) leaves the population number unchanged while the
fragmentation term 4B(2x) n(t, 2x)−B(x) n(t, x) increases it with rate B(x). To
see this, we integrate in x the equation and obtain

d
dt

∫
n(t, x)dx = 4

∫
B(2x) n(t, 2x)dx −

∫
B(x) n(t, x)dx

=
∫

B(x) n(t, x)dx.
(4.2)

Then, we consider the total mass which is increased by the transport term and
left unchanged by the fragmentation term, as we see it also by integration in x
after multiplication by x,

d
dt

∫
xn(t, x)dx =

∫
n(t, x)dx + 4

∫
xB(2x) n(t, 2x)dx −

∫
xB(x) n(t, x)dx

=
∫

n(t, x)dx.
(4.3)

In order to understand the global effect of these two partial conservation
laws for each term, we consider again the eigenelements associated to this equa-
tion. They are the solution (λ0, N(x), φ) to the stationary equations (again, λ0 is
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sometimes called the Malthus parameter)⎧⎨⎩
∂
∂xN(x) + (λ0 + B(x)) N(x) = 4B(2x) N(2x), x ≥ 0,

N(0) = 0, N(x) > 0 for x > 0,
∫∞
0

N(x)dx = 1,
(4.4)

⎧⎨⎩
∂
∂xφ(x) − (λ0 + B(x)) φ(x) = −2B(x) φ(x

2 ), x ≥ 0,

φ(x) > 0 for x ≥ 0,
∫∞
0

N(x)φ(x)dx = 1.
(4.5)

In this section we do not give the existence theory of solutions to equation
(4.1) because it is recalled in Section 4.2.3 for the general cell division equation.
Let us just point out that it provides us with weak solutions (in L1 spaces), with
the weight x, but regularity can also be proved easily for smooth B.

4.1.1 An example: B constant

By contrast with the renewal equation studied in Section 3.1, the equal mitosis
equation has rarely explicit solutions and the existence theory for the eigenvalue
problem (4.4)–(4.5) is more elaborate. Hence we begin with the example (see
Section 4.1.2 for another) of B constant for which a solution is known explicitly
(see [13]).

Lemma 4.1. For B(x) ≡ B a constant, then, the solution (λ0, N(x), φ) to (4.4)–
(4.5) is given by

λ0 = B, φ(x) ≡ 1,

N(x) = N̄
∞∑

n=0

(−1)n αn e−2n+1Bx, (4.6)

with α0 = 1, αn = 2
2n−1 αn−1 and N̄ > 0 an appropriate normalization constant.

One can easily notice that this function N vanishes with all its derivatives
at 0 and at infinity. It is depicted in Figure 4.2.

Exercise. For the fragmentation equation, with k ∈ N∗,⎧⎨⎩
∂
∂xN(x) + kB N(x) = k2B N(kx), x ≥ 0,

N(0) = 0,

determine the solution with a formula analogous to (4.6).

Proof. The statement on (λ0, φ) is obvious and we only consider the construction
on N being given that λ0 = B.
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Figure 4.2: Stable size distribution given by (4.4) with B constant. The second curve

shows that predation on small sizes, modeled by an additional death term d(x)N(x),

increases the average size.

We firstly prove that the equation is satisfied. We have

∂

∂x
N(x) = N̄

∞∑
n=0

(−1)nαn2n+1Be−2n+1Bx

= −2BN + N̄

∞∑
n=0

(−1)nαn2(2n − 1)Be−2n+1Bx

= −2BN + 2N̄
∞∑

n=1

(−1)n2αn−1Be−2nB2x

= −2BN + 4BN(2x).

Secondly, we prove that N(0) = 0. We have

αn =
2n

(2n − 1) . . . (21 − 1)

so that
α0 − α1 = 1 − 2

2 − 1
=

−1
2 − 1

,

and

α0 − α1 + α2 =
−1

2 − 1
+

22

(22 − 1)(21 − 1)
=

−1
(22 − 1)(21 − 1)

.

One can readily check by induction that

k∑
n=0

(−1)n αn =
(−1)k

(2k − 1) . . . (21 − 1)
,

which proves the result as k → ∞.
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Thirdly, we prove the positivity of N(x). Multiplying (4.4) by sgn(N(x)) we
obtain

∂

∂x
|N(x)| + 2B|N(x)| = 4BN(2x) sgn(N(x)).

After integration over the half line x ≥ 0, we find

2B

∫ ∞

0

|N(x)|dx = 4B

∫ ∞

0

N(2x)sgn
(
N(x)

)
dx.

Thus, dividing by 2B and changing variable y = 2x in the second integral, we
obtain ∫ ∞

0

|N(x)|dx =
∫ ∞

0

N(y)sgn
(
N(

y

2
)
)
dy.

This proves that sgn(N(x)) = sgn
(
N(x

2 )
)

for all x > 0.
On the other hand, the series (4.6) defining N is alternate for, say, 2Bx ≥ 1,

and thus N(x) > 0 for large x, combined with the above sign property we conclude
the positivity of N . �

Uniqueness for the positive solution to (4.4) can be proved also and we refer
to the more general case of Section 4.2.

The principle behind this construction can be understood in a more general
framework that allows us to cover a large class of functions B(x) (see [173]).

4.1.2 A counterexample: size condition on B

We consider another example which can be computed explicitly and which aims
to prove that a size condition on B is still necessary as in (3.2) or (3.22). As
a consequence of this section, notice however that, from this example, the size
condition is no longer

∫
B > 1! A general result in this direction is stated in

Section 4.2.3 (Lemma 4.4).

We choose

B(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for 0 ≤ x ≤ 1,

b for 1 ≤ x ≤ 2,

0 for 2 ≤ x,

(4.7)

and we have

Lemma 4.2. For b > ln 2 in (4.7) there is a unique solution (λ0, N(x), φ) to (4.4)–
(4.5) and λ0 = 0 for b = ln 2.

For b < ln 2 there is no solution.

Notice that in the case b < ln 2, the solution corresponds to λ0 < 0 and N
with an exponential growth at infinity that we discard here because we cannot
have

∫
N = 1.
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We only consider the existence of (λ0, N) and leave the proof as an exercise.

Exercise. Consider the value N(1) and try to find the parameter λ0 by testing the
possible values λ of λ0 in (4.4).

1. Show that a solution to (4.4) (with λ in place of λ0) is given by

N(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N(1)eλ+be−(λ+b)x for 1 ≤ x ≤ 2,

e−λx2b
∫ 2x

1
N(y)dy for 1/2 ≤ x ≤ 1,

0 for x ≤ 1/2,

(the value for x > 2 does not play a role here) and conclude that a solution
to (4.4) exists only if there is a solution λ0 > 0 to

Ψ(λ) := λ + 2b − 4b[eλ/2 − e−λ+b] = 0.

2. Show that for eb > 2 then Ψ(0) < 0 and that Ψ′(λ) > 1 and conclude that
there is a unique λ0 (and N).

3. For eb < 2, we write

Ψ′(λ) := 1 + 2bX [1 − r(b)X ], 0 < X = e−λ/2 < 1, r(b) = 2e−b > 1.

Show that Ψ(0) > 0, and that the equation Ψ′(λ) = 0 has at most one
solution λm and that, if this is the case, Ψ(λm) > 1 + λm > 0 and conclude
that Ψ(λ) > 0 ∀λ > 0.

4.1.3 The conservation law and generalized relative entropy

The equation (4.1) admits also a family of entropy inequalities which generalizes
the usual conservation law

d

dt

∫
φ(x)ñ(t, x)dx = 0, (4.8)

where we use again the notation ñ = e−λ0tn, a function that solves⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t ñ(t, x) + ∂

∂x ñ(t, x) +
(
λ0 + B(x)

)
ñ(t, x) = 4B(2x) ñ(t, 2x), t > 0, x ≥ 0,

ñ(t, x = 0) = 0, t > 0,

ñ(0, x) = n0(x) ≥ 0.
(4.9)
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Theorem 4.1. Assume there exist eigenelements (λ0, N, φ) solutions to (4.4)–(4.5),
then for all convex and Lipschitz functions H : R → R with H(0) = 0, we have,

d

dt

∫
H
( ñ(t, x)

N(x)
)
N(x) φ(x)dx ≤ −DH(t) ≤ 0, ∀t > 0,

where the entropy dissipation DH(t) ≥ 0 is given by

DH(t) = −4
∫

N(2x)B(2x)φ(x)
[
H ′

( ñ(t, x)
N(x)

)( ñ(t, 2x)
N(2x)

− ñ(t, x)
N(x)

)
+ H

( ñ(t, x)
N(x)

)
− H

( ñ(t, 2x)
N(2x)

)]
dx ≥ 0.

Proof. Using (4.9), we have

∂
∂t

en(t,x)
N(x) + ∂

∂x
en(t,x)
N(x) = 4B(2x)N(2x)

N(x)

[ en(t,2x)
N(2x) − en(t,x)

N(x)

]
,

∂
∂tH

(en(t,x)
N(x)

)
+ ∂

∂xH
(en(t,x)

N(x)

)
= 4B(2x)N(2x)

N(x) H ′( en(t,x)
N(x)

)[ en(t,2x)
N(2x) − en(t,x)

N(x)

]
.

On the other hand

∂
∂x

(
N(x)φ(x)

)
= 4φ(x)B(2x)N(2x) − 2N(x)B(x)φ(x

2 ).

Therefore

∂
∂t

[
N(x)φ(x)H

( en(t,x)
N(x)

)]
+ ∂

∂x

[
N(x)φ(x)H

( en(t,x)
N(x)

)]
= 4B(2x)N(2x)φ(x)H ′(en(t,x)

N(x)

)[ en(t,2x)
N(2x) − en(t,x)

N(x)

]
+
[
4φ(x)B(2x)N(2x) − 2N(x)B(x)φ(x

2 )
]
H
( en(t,x)

N(x)

)
.

After integration in x we arrive at

d
dt

∫ ∞

0

NφH
( ñ(t, x)

N(x)
)

=
∫ ∞

0

4φ(x)B(2x)N(2x)H ′( ñ(t, x)
N(x)

)[ ñ(t, 2x)
N(2x)

− ñ(t, x)
N(x)

]
+
∫ ∞

0

4φ(x)B(2x)N(2x)
[
H
( ñ(t, x)

N(x)
)
− H

( ñ(t, 2x)
N(2x)

)]
dx.

This is exactly the announced result. �

4.1.4 Exponential time decay to Stable Size Distribution

We set again

ñ(t, x) = n(t, x)e−λ0t, h(t, x) = ñ(t, x) −
∫

n0(y)φ(y)dy N(x).

As we will see in Section 4.2 the entropy inequality implies directly that h(t)
vanishes for t → ∞ under very general conditions on b(·, ·). In this section, we
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give a direct exponential rate of convergence for the case B(x) ≡ B (constant),
therefore justifying that N is a Stable Steady Size Distribution. The following
theorem is borrowed from [198] where one can also find an extension of the method
to non-constant division rates B.

Theorem 4.2. Assume B(x) = B, i.e., λ0 = B, φ = 1, then solutions to (4.16)
satisfy

‖h(t, x)‖L1(R+) ≤ e−Bt
[
‖h0(x)‖L1(R+) + 6B‖H0‖L1(R+)

]
, (4.10)

with
H0(x) =

∫ x

0

h0(y) dy → 0 as x → ∞.

Proof. We set

H(t, x) =
∫ x

0

h(t, y)dy.

These functions satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
h(t, x) +

∂

∂x
h(t, x) + 2Bh(t, x) = 4Bh(t, 2x), t > 0, x ≥ 0,

h(t, x = 0) = 0,

∫ ∞

0

h(t, x)dx = 0, ∀t > 0,

(4.11)

and⎧⎪⎨⎪⎩
∂

∂t
H(t, x) +

∂

∂x
H(t, x) + 2BH(t, x) = 2BH(t, 2x), t > 0, x ≥ 0,

H(t, x = 0) = 0, H(t,∞) = 0, ∀t > 0.

(4.12)

First step. We begin with a study of H . We have

∂

∂t
[H(t, x)eBt] +

∂

∂x
[H(t, x)eBt] + B[H(t, x)eBt] = 2B[H(t, 2x)eBt],

and thus

∂

∂t
|H(t, x)eBt| + ∂

∂x
|H(t, x)eBt| + B|H(t, x)eBt| ≤ 2B|H(t, 2x)eBt|.

We find after integration in x, using that H vanishes at infinity that

d

dt

∫ ∞

0

|H(t, x)eBt|dx ≤ 0,

∫ ∞

0

|H(t, x)|dx ≤ e−Bt

∫ ∞

0

|H0(x)|dx. (4.13)

Second step. We work on K(t, x) = ∂
∂tH(t, x). We have⎧⎪⎨⎪⎩

∂

∂t
K(t, x) +

∂

∂x
K(t, x) + 2BK(t, x) = 2BK(t, 2x), t > 0, x ≥ 0,

K(t, x = 0) = 0, K(t,∞) = 0, ∀t > 0.

(4.14)
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Therefore, as in the first step, since

K0(x) = −h0(x) − 2BH0(x) + 2BH0(2x),

we deduce that∫∞
0

|K(t, x)|dx ≤ e−Bt
∫∞
0

|K0(x)|dx

≤ e−Bt
∫∞
0

[
|h0(x)| + 2B|H0(x)| + 2B|H0(2x))|

]
dx

= e−Bt
∫∞
0

[
|h0(x)| + 3B|H0(x)|

]
dx.

(4.15)

Third step. We deduce the time decay of h from this time decay property of H .
Indeed, we compute from (4.12)

h(t, x) =
∂

∂x
H = − ∂

∂t
H(t, x) − 2BH(t, x) + 2BH(t, 2x),

and thus ∫∞
0 |h(t, x)|dx ≤

∫∞
0 |K(t, x)|dx + 3B

∫∞
0 |H(t, x)|dx

≤ e−Bt
{∫∞

0

[
|h0(x)| + 6B

∫∞
0

|H0(x)|dx
}

.

From this, we directly deduce the estimate of the theorem. �

4.2 Size structured model for asymmetric cell division

For asymmetric division, the equation (4.1) can be generalized as (x represents
again the mass or volume of the organism)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂xn(t, x) + B(x)n(t, x) =
∫∞

x b(x, y)n(t, y)dy, t ≥ 0, x ≥ 0,

n(t, x = 0) = 0, t ≥ 0,

n(t = 0, x) = n0(x),
(4.16)

which means that a mother cell of size y ≥ 0 divides in two daughter cells of sizes
x ≥ 0 and x − y ≥ 0 with rate b(x, y).

For consistency with the modeling one has to impose (it turns out that it is
easier now to invert the variables x and y, and thus to consider the division rate
of a cell with size y giving two cells of size x and y − x)

b(x, y) ≥ 0, b(x, y) = 0 for y < x, (4.17)∫
b(x, y)dx = 2B(y), (4.18)∫
xb(x, y)dx = yB(y), (4.19)
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b(x, y) = b(y − x, y). (4.20)

The first assumption takes into account that after division we should have cells of
nonnegative sizes and thus y − x ≥ 0, the second allows us to say that division
occurs giving two cells since, after integration in x we have

d

dt

∫
n(t, x)dx =

∫ ∫
b(x, y)n(t, y)dy dx −

∫
B(x)n(t, x)dx =

∫
B(y)n(t, y)dy.

(4.21)
The third assumption takes into account mass conservation in the division process;
we have, multiplying equation (4.16) by x, and integrating

d

dt

∫
xn(t, x)dx −

∫
n(t, x)dx +

∫
xB(x)n(t, x)dx =

∫ ∫
xb(x, y)n(t, y)dy dx.

and thus
d

dt

∫
xn(t, x)dx =

∫
n(t, x)dx. (4.22)

The last assumption just expresses that the model is the same by accounting only
for the size density n(t, x) or n(t, y − x).

This equation also arises in physics to describe fragmentation processes,
[161, 30, 27]. Then the drift (growth) term ∂

∂xn(t, x) is not present and this is
a fundamental difference. Also, there is no reason to stick with assumption (4.18)
and the number of fragments could be anything (larger than 2 say).

We can recover the renewal equation and the equal mitosis equation as two
particular examples of this equation, for appropriate choice of b,

b(x, y) = B(y) [δ(x = y) + δ(x = 0)], (renewal equation), (4.23)

b(x, y) = 2B(y) δ(x = y/2), (equal mitosis). (4.24)

These choices satisfy the assumptions (4.17)–(4.20). More generally, one can con-
sider, for a parameter 0 ≤ σ ≤ 1, the case

b(x, y) = B(y) [δ(x = σy) + δ(x = (1 − σ)y)], (general mitosis). (4.25)

4.2.1 Existence, regularity and comparison principle

A general, and suboptimal, result can be proved in applying the Banach-Picard
fixed point method as we did in Section 3.3. We state it for the sake of completeness
but do not (re)prove it (see Sections 3.3, 6.6.2).

Theorem 4.3. Assume that B ∈ L∞(R+), B ≥ 0 and that b(·, ·) is a measure sat-
isfying (4.17)–(4.18), and (1+ |x|)n0(x) ∈ L1(R+), then there is a unique solution
in distribution sense n ∈ C(R+; L1(R+)) to (4.16) and we have

n0
1 ≤ n0

2 =⇒ n1(t, x) ≤ n2(t, x),
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‖n(t)‖L1(R+) ≤ ‖n0‖L1(R+)e
‖B‖L∞ t,

d

dt

∫
n(t, x)dx =

∫
B(x)n(t, x)dx.

If (4.19) also holds, then, with m0 =
∫

n0(x)dx,∫
xn(t, x)dx =

∫
xn0(x)dx + t m0 ∀t ≥ 0.

The natural spaces for existence and contraction principle are however some-
what different. Using some stronger assumptions, we also have

Theorem 4.4. With the same assumptions as in Theorem 4.3 and those of Theorem
4.6 for the existence of eigenelements (λ0, N, φ), there is a unique solution n ∈
C
(
R+; L1(φ(x)dx)

)
to (4.16) and we have∫
R+

n(t, x)e−λ0tφ(x)dx =
∫

R+
n0(x)φ(x)dx,∫

R+
|n(t, x)|e−λ0tφ(x)dx =

∫
R+

|n0(x)|φ(x)dx,

C−N(x) ≤ n0(x) ≤ C+N(x) =⇒ C−N(x) ≤ n(t, x)e−λ0t ≤ C+N(x).

These results follow again from the Generalized Relative Entropy principle
which we give below for the cell division equations. We refer to Sections 6.3, 6.4
for a general derivation of this type of results.

Also for later purpose, we can mention a regularity result similar to that in
Theorem 3.2 for age structure

Theorem 4.5. With the same assumptions as in Theorem 4.4 and with initial data
satisfying

|n0(x)| ≤ C0N(x),
∂

∂x
n0(x) ∈ L1(φ(x)dx),

the solution to (4.16) satisfies, setting ñ = ne−λ0t,∫ ∞

0

| ∂

∂t
ñ(t, x)|φ(x)dx ≤ C(n0) ∀t ≥ 0, (4.26)∫ ∞

0

| ∂

∂x
ñ(t, x)|φ(x)dx ≤ C1(n0) ∀t ≥ 0. (4.27)

It is more demanding to establish L∞ bounds for those derivatives; this
requires a control by CN(x) of the initial birth term

∫∞
x b(x, y)n0(y)dy, a condition

that is incompatible with the examples 4.23–4.23 we have in mind.

As it is, Theorem 4.5 provides Bounded Variation (BV in short) regularity of
the solution. This low regularity is compatible with discontinuities and thus with
the discontinuity at x = 0 in the age structured case. It also provides local strong
compactness of families of solutions, see for instance [41, 71, 99].
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Proof. First step. Time derivative. We recall the equation

∂

∂t
ñ(t, x) +

∂

∂x
ñ(t, x) + (λ0 + B(x))ñ(t, x) =

∫ ∞

x

b(x, y)ñ(t, y)dy.

We obtain the equation on q(t, x) = ∂
∂t ñ(t, x), by differentiating it in time, and

thus q satisfies the same equation. From the contraction principle in Theorem 4.4,
we conclude ∫ ∞

0

|q(t, x)|φ(x)dx ≤
∫ ∞

0

|q(t = 0, x)|φ(x)dx.

But

q(t = 0, x) = − ∂

∂x
n0(x) − (λ0 + B(x))n0(x) +

∫ ∞

x

b(x, y)n0(y)dy.

We may bound |n0| by C0N , replace
∫∞

x b(x, y)N(y)dy by the other terms of the
equation on N and we arrive at∫ ∞

0

|q(t = 0, x)|φ(x)dx ≤
∫ ∞

0

[
| ∂

∂x
n0(x) + | ∂

∂x
N(x)|

]
φ(x)dx + 2C0(λ0 + BM ).

Second step. Space derivative. We have

∂

∂x
ñ(t, x) = − ∂

∂t
ñ(t, x) − (λ0 + B(x))ñ(t, x) +

∫ ∞

x

b(x, y)ñ(t, y)dy.

The control of ∂
∂t ñ(t, x) in the first step and |ñ(t, x)|‖eqC0N (see Theorem 4.4)

gives us a control similar to that on the time derivative. �

4.2.2 Generalized relative entropy (1)

We follow our computation of Section 6.4 and begin with a general abstract cal-
culation that does not involve the eigenelements. Namely we consider a solution
ψ(t, x) to the dual equation

∂

∂t
ψ(t, x) +

∂

∂x
ψ(t, x) − B(x)ψ(t, x) = −

∫ ∞

0

b(y, x)ψ(t, y)dy, t ≥ 0, x ≥ 0.

As in the parabolic case, this equation should be understood as a backward prob-
lem. Also we do not assume any relation between B and b(x, y) in this section.

Lemma 4.3. For smooth functions n, p, ψ, with sufficient decay in x at infinity
and for n(t, x) (no specific sign), p(t, x) > 0 solutions to (4.16) and ψ(t, x) ≥ 0 as
above, we have, for all convex functions H : R → R,

d
dt

∫
ψ(t, x)p(t, x)H

(n(t,x)
p(t,x)

)
dx = −DH(t) ≤ 0,

DH(t) =
∫ ∫

ψ(t, x)p(t, y)b(x, y)
{
H
(n(t,y)

p(t,y)

)
− H

(n(t,x)
p(t,x)

)
− H ′(n(t,x)

p(t,x)

)
[n(t,y)
p(t,y) − n(t,x)

p(t,x) ]
}
dx dy.

(4.28)
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We have in mind two possible cases of interest for the choice of p and ψ.
The first one is the periodic case along with Floquet theory (see [176] and Section
6.3.2). The other special case here is to take p(t, x) = Neλ0t and ψ = φeλ0t where
N and φ are the eigenelements associated with the eigenvalue λ0 (see Section
4.2.3). Then we arrive at

d
dt

∫
φ(x)N(x)H

(n(t,x)e−λ0t

N(x)

)
dx = −DH(t) ≤ 0,

DH(t) =
∫ ∫

φ(x)N(y)b(x, y)
{

H
(n(t,y)eλ0t

N(y)

)
− H

(n(t,x)eλ0t

N(x)

)
−H ′(n(t,x)eλ0t

N(x)

)
[n(t,y)eλ0t

N(y) − n(t,x)eλ0t

N(x) ]
}
dx dy.

(4.29)
This is the result that is used below to explain the long time behavior of solutions
to the cell division equation.

Proof. We now skip the time dependency in our notation and compute successively
(leaving the details to the reader)

∂
∂t

(n(x)
p(x)

)
+ ∂

∂x

(n(x)
p(x)

)
=
∫

b(x, y) p(y)
p(x) [

n(y)
p(y) − n(x)

p(x) ]dy, (4.30)

and thus

∂
∂tH

(n(x)
p(x)

)
+ ∂

∂xH
(n(x)

p(x)

)
= H ′(n(x)

p(x)

) ∫
b(x, y)[n(y)

p(x) −
p(y)n(x)

p2(x) ]dy.

But we also have

∂
∂t

(
ψ(x)p(x)

)
+ ∂

∂x

(
ψ(x)p(x)

)
= ψ(x)

∫
b(x, y)p(y)dy − p(x)

∫
b(y, x)ψ(y)dy,

and thus

∂
∂t

(
ψ(x)p(x)H

(n(x)
p(x)

))
+ ∂

∂x

(
ψ(x)p(x)H

(n(x)
p(x)

))
= ψ(x)p(x)H ′(n(x)

p(x)

) ∫
b(x, y)[n(y)

p(x) −
p(y)n(x)

p2(x) ]dy

+H
(n(x)

p(x)

) ∫ [
b(x, y)ψ(x)p(y) − b(y, x)ψ(y)p(x)

]
dy.

Integrating in x this identity and inverting the variables x and y in the very last
term, we obtain the announced equality. �

4.2.3 Eigenelements

As we did for the renewal equation and for equal mitosis, we now consider the first
eigenelements (and in particular the Malthus parameter λ0)⎧⎨⎩

∂
∂xN(x) + (λ0 + B(x))N(x) =

∫∞
x b(x, y)N(y)dy, x ≥ 0,

N(x = 0) = 0, N(x) > 0 for x > 0,
∫

N = 1;
(4.31)
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∂
∂xφ(x) − (λ0 + B(x))φ(x) = −

∫∞
0 b(y, x)φ(y)dy, x ≥ 0,

φ(x) > 0,
∫

φN = 1.
(4.32)

As pointed out by the examples in the renewal and equal mitosis cases,
a (large) size condition on B is needed for existence of these eigenelements. A
general argument can convince us of this and gives

Lemma 4.4. If a solution to (4.4) exists, then∫ ∞

0

B(x)dx ≥ 1/2. (4.33)

Proof. Firstly, after integration in x we obtain (using (4.17))

λ0 =
∫

B(x)N(x)dx ≥ 0.

Secondly, integrating again, but between 0 and x, we find

N(x) ≤
∫ x

z=0

∫∞
y=x

b(z, y)N(y)dydz ≤
∫∞

y=0

∫ y

z=0
b(z, y)N(y)dydz

= 2
∫

B(y)N(y).
(4.34)

Therefore
‖N(x)‖L∞(R+) ≤ 2

∫
B(x)dx ‖N‖L∞(R+),

and if there is a solution, then we should have∫
B(x)dx ≥ 1/2. �

Our assumptions below are stronger since they imply that∫
B = ∞, ‖xB(x)‖L∞(R+) = ∞.

Another heuristic reason for the need of a large enough division rate B is that for
B ≡ 0, there is no solution.

Theorem 4.6. Assume that b(·, ·) is a measure satisfying (4.17)–(4.18), and that
B ∈ L∞(R+), satisfies, for some constants 0 < Bm ≤ BM ,⎧⎨⎩

∀x ≥ 0, B(x) ≤ BM < ∞,

0 < Bm ≤ B(x), ∀x > x−,
(4.35)

then there is a unique solution in distribution sense (λ0, N, φ) to (4.31), (4.32)
and we have

0 < λ− := bm(1 + 2bmx−) ≤ λ0 ≤ BM ,



4.2. Size structured model for asymmetric cell division 95

∀µ < λ0,

∫
eµxN(x)dx ≤ λ0

λ0 − µ
, and eµxN(x) ∈ L∞(R+),

∂

∂x
eµxN(x) ∈ L1(R+), ∀µ < λ0,

φ(x)
1 + x

∈ L∞(R+),
∂

∂x
φ ∈ L∞

loc(R
+).

These results can be improved (see [173]) in terms of assumptions and es-
timates, in particular one can find there the case where B has compact support.
Variants are also given in Section 4.2.5. There, one can also deal with B that
decays to 0 for x large. an assumption which is reasonable because one could wish
to include the fact that for large x cells do not divide.

As noticed in Section 4.1.1, for B(x) ≡ B (a constant) then λ0 = B and
φ ≡ 1, because thanks to assumption (4.18) we have indeed∫ ∞

0

b(x, y) 1 dy = 2B.

But the equation on N never has explicit solutions.

Proof. We use the truncated equation presented in Section 6.6.2 and which can be
solved by the Krein-Rutman theorem (see Theorem 6.6). We prove uniform esti-
mates on this model (6.39) having in mind that we choose truncation parameters
ε → 0, R = Rε → ∞, bε(x, y) → b(x, y) (in the sense of weak convergence to mea-
sures), and Bε(y) = 1

2

∫ y

0
bε(x, y)dx. We would like to point out four difficulties to

keep in mind;

(i) A specific difficulty related to the approximation with b smooth that implies
Bε(0) = 0, a constraint that might disappear in the limit.

(ii) It is obvious that these estimates allow to pass to the limit, strongly in all
Lp(R+), in the solutions Nε and φε. Notice that even though b is a measure
in the limit, solutions are well defined (and stable) in the weak sense because
after testing b(x, y) we obtain quantities as

∫
b(x, y)q(x)dx which are bounded

functions in y.

(iii) The worst case of b is the renewal equation, then we have already mentioned
that N has discontinuity at x = 0. It also proves some kind of optimality in
the above stated estimates.

(iv) By comparison with N , φ(x) can vanish as we know again from the renewal
equation.

Because we are going to work on it now, we recall the truncated equation
(6.39) for N , dropping the index ε in N and R,⎧⎨⎩

∂
∂xN(x) +

(
λε + B(x)

)
N(x) −

∫ R

0 b(x, y)N(y)dy = 0, 0 ≤ x ≤ R,

N(x = 0) = ε, N(x) > 0
∫ R

0
N(x)dx = 1.

(4.36)
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First estimate. We integrate on [0, R] and find

N(R) + λε = N(0) +
∫ R

0

B(y)N(y)dy ≤ ε + BM ,

and thus
λε ≤ ε + BM . (4.37)

Similarly, integrating between 0 and x, we find

N(x) ≤ N(0) +
∫ x

0

∫ z

x

b(z, y)N(y)dydz

≤ ε + 2
∫ ∞

0

B(y)N(y)dy = −ε + 2λε + 2N(R). (4.38)

Second estimate. We multiply by x and integrate on [0, R] and find

RN(R) + λε

∫ R

0 xN(x)dx +
∫ R

0 xB(x)N(x)dx

=
∫ R

0 N(x)dx +
∫ R

0

∫ R

0 xb(x, y)N(y)dydx,

RN(R) + λε

∫ R

0

xN(x)dx = 1.

Thus N(R) ≤ 1/R and coming back to the first estimate we also find

λε ≥ ε − 1
R +

∫ R

0
B(y)N(y)dy

≥ ε − 1
R +

∫ R

x−
bmN(y)dy

≥ ε − 1
R + bm

(
1 −

∫ x−
0

N(y)dy
)

≥ ε − 1
R + bm(1 − x−(−ε + 2λε + 2N(R)))

(see (4.38))) and we arrive, for ε small enough and R large enough, at

(1 + 2x−bm)λε ≥ ε − 1
R + bm(1 − 2x−N(R)),

which gives an explicit lower bound

λε ≥ λε,− = [ε − 1
R + bm(1 − 2x−N(R))]/[(1 + 2x−bm)]. (4.39)

Third estimate. We multiply by eµx and integrate on [0, R] and find

N(R)eµR+ (λε − µ)
∫ R

0
eµxN(x)dx +

∫ R

0
eµxB(x)N(x)dx

= ε +
∫∞
0

∫ y

x=0
eµxb(x, y)dxN(y)dy

= ε +
∫∞
0

∫ y

x=0(1 + µx + · · · + (µx)n

n! + · · · )dxN(y)dy

≤ ε +
∫∞
0

∫ y

x=0
(1 + µx + · · · + xµnyn−1

n! + · · · )dxN(y)dy

≤ ε +
∫∞
0

B(y)(2 + µy + · · · + (µy)n

n! + · · · )N(y)dy

= ε +
∫∞
0

(1 + eµy)B(y)N(y)dy.
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As a consequence we find (see also the first line of the first estimate, and N(R) ≤
1/R) ∫ R

0

eµxN(x)dx ≤ (λε +
1
R

)/(λε − µ). (4.40)

Fourth estimate. Arguing as in the third step but after integration between 0 and
x, we also find that

eµxN(x) ≤ (λε + 1
R ) + bM (λε + 1

R )/(λε − µ),

and similarly we can multiply by eµx and find by the chain rule that ∂
∂xeµxN(x) ∈

L1(R+).
At this stage we have obtained the relevant estimates on N in (4.36) and we

turn to the estimates on the adjoint equation⎧⎨⎩
− ∂

∂xφ(x) +
(
λε + B(x)

)
φ(x) −

∫ R

0
b(y, x)φ(y)dy = εφ(0), 0 ≤ x ≤ R,

φ(x = R) = 0, φ(x) ≥ 0
∫ R

0
φ(x)N(x)dx = 1.

(4.41)
Fifth estimate. From this equation we deduce that

∂

∂x

(
φ(x)e−

R
x
0 (B+λε)

)
≤ 0,

therefore, for some constant C(A) independent of ε we have

∀A > 0, ∃C(A) such that φ(x) ≤ C(A)φ(0). (4.42)

Sixth estimate. Finally we notice that the equation (4.41) can be seen as a backward
transport equation and therefore satisfies the maximum principle and we can easily
build, following [173], an affine supersolution φ̄ that is positive at x = R, therefore
φ(x) ≤ φ̄(x).

This we cannot do on [0, R], but only on a subinterval [A0, R] with the func-
tion ϕ̄(x) = x + ν where

A0 = 2/λε, ν = 1/(BM − λε).

Indeed we have to check that, on [A0, R] we have

− ∂

∂x
ϕ̄ +

(
λε + B

)
ϕ̄ = −1 +

(
λε + B

)
ϕ̄ ≥

∫ R

0

b(y, x)ϕ̄(y)dy = B(x + 2ν),

and this follows from our choice for A0, ν.
Then we conclude the sublinearity of φ by choosing the supersolution φ̄(x) =

Kφ(0)ϕ̄ with K large enough so that

φ̄(x) ≥ φ(x) + ε/λε on [0, A0].
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Therefore we have on [A0, R],

− ∂

∂x
φ̄(x) +

(
λε + B(x)

)
φ̄(x) ≥ εφ(0) +

∫ R

A0

b(y, x)φ̄(y)dy +
∫ A0

0

b(y, x)φ(y)dy,

which is a supersolution to the equation (the same) satisfied by φ. Therefore φ ≤ φ̄
and the result is proved. Then the local Lipschitz regularity of φ follows directly
from the equation (4.41). �

4.2.4 Trend to a Stable Size Distribution

We are now ready to study under which circumstances the renormalized size dis-
tribution n(t, x)e−λ0t can converge in large time to a distribution called the Stable
Size Distribution. This is not always true because the details of the size division
rate b(x, y) is important here and we borrow from [176] the condition: there exists
a C1 function Γ : (0,∞) → (0,∞) such that⎧⎨⎩

{(y = Γ(x), x ≥ 0} ⊆ ∆ = Supp[0,∞[×[0,∞[ b(x, y),

∂
∂xΓ(x) 
= 1 ∀x 
= 0.

(4.43)

This condition has to be understood taking into account that b can be a
measure. For instance in the equal mitosis case, we take Γ(x) = x/2 and this non-
degeneracy condition means B > 0. In the case of the renewal equation, Γ(x) = 0
and again non-degeneracy boils down to B > 0. As in this case, it is possible to
improve the condition in order to include the cases where B vanishes but we prefer
to keep simplicity.

Notice also that we only know exponential rates of convergence in specific
cases: renewal equation as already mentioned ([100, 171, 124]) or assumption
(smallest mother is bigger than the largest daughter cell), equal mitosis, see [198]
and its account in Section 4.1.4. Again we recall that the main difficulty is that,
because b(x, y) vanishes for y < x, we cannot hope for a Poincaré inequality that
controls some generalized relative entropy from its dissipation rate, in contrast
with the case of full scattering equation (Sections 6.3 and 6.4.3).

Theorem 4.7. We make the assumptions of Theorem 4.4 and suppose the non-
degeneracy condition (4.43) on the support of b. Then, the solutions to (4.16) tend
to a steady state. Namely, with ρ =

∫∞
0 n0(x)φ(x)dx,

lim
t→∞

∫ ∞

0

|n(t, x)e−λ0t − ρ N(x)| φ(x) dx = 0. (4.44)

Proof. First step. We set

h(t, x) = n(t, x)e−λ0t − ρ N(x).



4.2. Size structured model for asymmetric cell division 99

We first notice that h(t, x) being a solution to the cell division equation (4.16),
the contraction principle in Theorem 4.4 shows that∫ ∞

0

|n(t, x)e−λ0t − ρ N(x)| φ(x) dx ⇓ L, t → ∞.

And it remains to show that L = 0. As we mentioned for age structured models
(see Section 3.6), the contraction property allows us to do so, by density, for the
BV solutions given by Theorem 4.5, i.e., for those solutions that satisfy for all
t ≥ 0,

|h| ≤ C0N,

∫ ∞

0

| ∂

∂t
h(t, x)|φ(x)dx ≤ C(n0)

∫ ∞

0

| ∂

∂x
h(t, x)|φ(x)dx ≤ C(n0).

(4.45)
Second step. We then introduce the sequence of functions hn(t, ·) = h(t + tn, ·).
After extracting a subsequence, still denoted hn, we have hn → g strongly in
L1([0, T ] × R+) for all T > 0, because of the global BV regularity on h proved in
Theorem 4.5 (see also the comments after this theorem). And we have that g is a
solution to the cell division equation (4.16) and

|g(t, x)| ≤ C0N(t, y).

Third step. We can now work on the entropy dissipation of h(t, x). From the
Generalized Relative Entropy inequality (4.29), we have, using the square entropy
H(u) = u2, ∫∞

0

∫∞
0 φ(x)b(x, y)N(y)|h(t,x)

N(x) − h(t,y)
N(y) |2dxdy dt ≤ C.

Therefore, as n → ∞,∫∞
0

∫∞
0

φ(x)b(x, y)N(y)|hn(t,x)
N(x) − hn(t,y)

N(y) |2dxdy dt

=
∫∞

n

∫∞
0

φ(x)b(x, y)N(y)|h(t,x)
N(x) − h(t,y)

N(y) |2dxdy dt → 0.

By the strong limit of hn we arrive at∫∞
0

∫∞
0

φ(x)b(x, y)N(y)| g(t,x)
N(x) − g(t,y)

N(y) |2dxdy dt = 0. (4.46)

In other words
g

N
(t, Γ(x)) =

g

N
(t, x), ∀t > 0, x ≥ 0. (4.47)

On the other hand, in the limit the entropy dissipation for g/N vanishes in (4.30)
(recall p stands for N in the case at hand) and thus the division part of (4.30)
vanishes for this g/N and we obtain

∂

∂t

g

N
+

∂

∂x

g

N
= 0. (4.48)

Fourth step. Thanks to Lemma 4.5 below we have g(t, x) = Cst and the mass
condition

∫
g(t, x)φ(x)dx = 0 allows us to conclude g = 0 and thus L = 0. �
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Lemma 4.5. Any function u = g/N satisfying (4.48), (4.47) is constant.

Proof. On the one hand, we have

(∂tu)(t, x) = (∂tu(t, Γ(x))) = (∂tu)(t, Γ(x)). (4.49)

On the other hand, we have

(∂xu)(t, x) = (∂xu(t, x)) = (∂xu(t, Γ(x))) = Γ′(x)(∂xu)(t, Γ(x)). (4.50)

We deduce gathering (4.49), (4.50) and using (4.48) that

(∂tu)(t, Γ(x)) + Γ′(x)(∂x)u(t, Γ(x)) = 0, ∀t > 0, x ≥ 0, (4.51)

and from (4.48) we also have

(∂tu)(t, Γ(x)) + (∂x)u(t, Γ(x)) = 0, ∀t > 0, x ≥ 0. (4.52)

Combining (4.51), (4.52) we get

(Γ′(x) − 1)(∂x)u(t, Γ(x)) = 0,

from which we deduce, since Γ′(x) 
= 1,

(∂x)u(t, x) = Γ′(x)(∂x)u(t, Γ(x)) = 0.

Finally using again the transport equation (4.48) we obtain indeed that u is con-
stant. �

4.2.5 Some extensions and exercises

Exercise. We can relax the assumption 0 < Bm ≤ B(x) in Theorem 4.6. We define
α(x) by ∫

y2b(x, y)dy = (1 − α(x))x2B(x),

and assume that, as x → ∞, B(x) decreases to 0 but not too fast, namely

α(x) x2 B(x) − (1 + θ)x ≥ O(1), with θ > 0. (4.53)

1. For equal mitosis, show that α(x) ≡ 1/2.

2. For a solution (λ0, N) to (4.31) with enough decay in x at infinity, show that∫
BN = λ0,

∫
xN(x) = 1/λ0,

and
λ2

0

∫
x2N(x) + λ0

∫
α(x)x2B(x)N(x) = 2.
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3. Show that λ2
0

∫
x2N(x) ≥ 1, and λ0

∫
α(x)x2B(x)N(x) ≥ 1+ θ + O(λ0), and

prove a lower bound on λ0.

4. Conclude that there exists a solution (λ0, N) to (4.31).

Exercise. In the framework on the exercise above, for 0 < β < 1, we define∫
y1+βb(x, y)dy = (1 − αβ(x))x2B(x),

and assume that, as x → ∞,

αβ(x) x1+β B(x) − (1 + θβ)xβ ≥ O(1), with θβ > 0.

1. Show that (this is always true)

(1 + β)
∫

xβN(x) = λ0

∫
x1+βN(x) +

∫
x1+βαβ(x)B(x)N(x),

∫
x1+βαβ(x)B(x)N(x) ≤ β

∫
xβN(x).

2. Prove, with the assumption, a lower bound on λ0. Conclude that there exists
a solution (λ0, N) to (4.31).

3. For equal mitosis, compare the possible constants γ in the time decay rate
B(x) ≤ γ/(1 + x) for this method and that of the exercise above.

Exercise. Consider the equation, with B(x) continuous and satisfying 0 < Bm ≤
B(x) ≤ B < ∞, ⎧⎨⎩ ε ∂

∂xNε + (λe + B)Nε =
∫∞

x b(x, y)Nε(y)dy,

Nε(0) = 0,
∫

Nε = 1,

and prove that as ε → 0

λe → B(0), Nε → δ(x = 0).

Hint: Integrate in dx and x dx.

4.3 Population balance equations: other examples,

nonlinear examples

Several other models arise to describe populations in various contexts. In this
section we present some of them, taken from several fields of applications. We do
not present any specific analysis, which can be carried out by methods similar to
those we have presented before.
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4.3.1 Daphnia (size structured models with finite resource)

We take again the model and explanations from [204] and [171] (see also the
references therein) where empirical data specifying the parameters are given. A
physiologically structured population equation is used again to describe algae as
food (wit density F (t) below) for small aquatic insects Daphnia, with more evolved
biological phenomenology than in Section 1.2.2. We now denote by n(t, x) the
density of Daphnia with size x (here we mean a length),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂x [g(F, x)n(t, x)] + d(F, x)n(t, x) = 0, xb ≤ x < ∞,

g(F, xb)n(t, xb) =
∫ xm

xb
b(F, x)n(t, x)dx,

dF

dt
= Ψ(F ) −

∫ xm

xb
I(F, x)n(t, x)dx.

(4.54)

For example, with some constants γ, xm,. . . ,

g(F, x) = γ
(
xm

F

Fh + F
− x

)
+
, growth rate,

b(F, x) = 1I{x>xj}rmx2 F

Fh + F
, reproduction rate,

d(F, x) = µ, death rate,

I(F, x) = νx2 F

Fh + F
, feeding rate,

Ψ(F ) = αF
(
1 − F

K

)
, autonomous algal dynamics,

or
Ψ(F ) = α

(
1 − F

K

)
.

The first choice corresponds to a logistic growth for algae themselves developing
with constant nutrients; the second choice corresponds to a constant inflow of fresh
non-reproducing food with constant deterioration.

Several remarks explain the shape of these functions:

(i) The positive part in g(F, x) is important and makes the analysis simpler. It
is not always true based on biological evidence; sea-anemones and flatworms
do shrink during food scarcity but highly organized animals like Daphnia
generally do not, according to [171].

(ii) Consequently, there is a maximal possible size xM (F ) = xm
F

Fh+F ≤ xm and
growth will stop after it is reached. This justifies considering that g(F, xm) =
0 and n(t, x) = 0 for x ≥ xm.
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(iii) Setting d = b = 0 and integrating by parts, we deduce that the mass evolves
according to

d

dt

∫∞
xb

x3n(t, x)dx = 3
∫∞
xb

x2g(F, x)n(t, x)dx,

3γ
∫ xmF/(Fh+F )

xb
[xmx2 F

Fh+F − x3]n(t, x)dx.

The loose term 3γx3 means that maintenance is proportional to the mass of
the animal while the gain term 3γxmx2 F

Fh+F means that food is absorbed
proportionaly to the surface of the animal, a term that is balanced by I(F, x).

We refer to [46] for an analysis of such nonlinear models. It is much more
complicated than the linear renewal equation. Typically, steady states exist but
are not always global attractors and periodic solutions may exist (see [177]).

4.3.2 Balance law for cell division with finite resources

The size structured model (4.16) can be extended to include an extra-cellular
environment S(t). An example is, cf. [125],⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn(t, x) + ∂

∂x [r(x, S)n(t, x)] + [d(x) + B(x, S)]n(t, x) =
∫

b(y, x; S)n(t, y)dy,

n(t, x = 0) = 0,

∂
∂tS(t, x) + S(t) = S0 −

∫
r(x, S(t))n(t, x)dx.

(4.55)
Here r(x, S) denotes the growth rate, B(x, S) the division rate, b(x, y; S) the par-
tition function normalized with∫

b(x, y, S)dy = 2B(x, S),
∫

yb(x, y, S)dy = xB(x, S).

As usual n(t, x) represents the number density of cells with size x and S(t) a
nutrient shared by the total population (substrate).

Again this model expresses a ‘conservation law’ for the chemical S(t) since
we have

d

dt

[∫
xn(t, x)dx + S(t)

]
= S0 − S(t) =

∫
d(x)n(t, x)dx.

Other nonlinearities may come in this type of equation. In [24] the author
considers a cannibalistic model for fish farms. They derive a model where the size
structure equation in (4.55) is coupled with the equation

r(x, S) = eaxS(t, x), S(t, x) = ϕ(x) � n(t, ·), x ∈ R,

(in fact the authors works on the variable x which is the log of the size of the
fishes), b = 0 but death terms are also nonlinear with the nonlinearity ψ � n n.
The function ϕ, ψ are data.
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4.3.3 A model for internet TCP connections

Transport equations very similar to those presented in 4.2 arise in many other
applications. By curiosity, we present an example here. It is a model for internet
TCP connections which we take from [13]. Here n(t, w) is the density of windows
of size w routed to a router, q(t) length of the queue at the bottleneck buffer of
the router.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tn(t, w) + (1 − k(t)) ∂

∂w n(t, w) = k(t)[4w n(t, 2w) − w n(t, w)],

n(t, w = 0) = 0,

dq
dt (t) = max

(
0, (1 − k(t))

∫
w>0 w n(t, w)dw − L

)
,

0 ≤ k(t) = F (q(t)) ≤ 1.

(4.56)

Typically, the given function F : R+ → [0, 1] satisfies F (q) = 0 for q < Q < 1
(some given threshold), F increasing (and for instance F (q) = 1 for q ≥ Q).
Depending on the queue length, it is decided either to increase continuously the
size of the windows (q small, this is the transport term) or to divide it by a
factor two (q large, this is the fragmentation term). On the other hand, the buffer
treats the messages with a constant rate L > 0 and they arrive with the rate
(1 − k(t))

∫
w>0 w n(t, w)dw.

Not only the first equation is remarkably analogous to the equal mitosis
equation (4.1), but the nonlinear term shares several features with those of Sections
4.3.1 and 4.3.2 (they arise through a quantity independent of x or w, saturation
effects are present through the ‘max’).

4.3.4 Huxley’s model and actin-myosin interaction

Figure 4.3: Principle of actin-myosin interaction.

A large class of muscles (called contractile or striated muscles, see [150]) work
on the basis of sarcomeres (a kind of biomotor unit a few micrometers long), which
all together lead to the biomechanical properties of muscles. At the individual
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level, sarcomeres are able to create a translation motion (contraction, relaxation
of muscles) by electro-chemical power of myosin-actin bonds (see Figure 4.3). The
(many) myosin heads are linked to a central myosin filament (backbone) but can
move freely until they attach to the surrounding actin soft ‘crystal type structure’
at a distance ξ from a potential minimum of this actin structure. Then the myosin
head is attracted towards the potential minimum by a force deriving from this
potential where they have a tendency to detach by another chemical effect: ATP
has filled the actin head and changed its electrical properties. A disymetry of
the myosin potential (itself controlled by calcium ions Ca++) creates an average
motion in a given direction with a given velocity that is usually denoted ε̇, the
sarcomere velocity.

Huxley’s model [141] aims to describe the density �(t, ξ) of myosin heads
(also called cross-bridges) attached to the actin structure at a distance ξ from
the potential center and creating a bulk motion of velocity ε̇ (ε=strain) of the
sarcomere. Huxley’s model is given by⎧⎨⎩

∂
∂t�(t, ξ) + ε̇ ∂

∂ξ �(t, ξ) = f(ξ)[1 − �(t, ξ)] − g(ξ)�(t, ξ),

�(t = 0, ξ) = �0(ξ), 0 ≤ �0(ξ) ≤ 1.

(4.57)

The rate f describes how many free heads bind to the myosin structure (i.e.
1− �(t, ξ) after a normalization to unity of the density of free + attached heads).
And g describes the unbinding rate of attached myosin heads becoming free after
ATP hydrolysis. A recent review of the biophysical interpretations of such a model
can be found in [193] as well as magnitude orders for these biomotors with respect
to their size, number and forces created. Control problems are treated in [57].

One of the interesting points of such a model is the possibility to derive a
macroscopic elastic model for the myofibre obtained by the collection of sarcom-
eres. This was achieved in [28] and uses the averaged quantities

kc(t) =
∫

R

�(t, ξ)dξ, (crossbridge density),

σc(t) =
∫

R

ξ�(t, ξ)dξ, (stressortension).

For the special case f(ξ) + g(ξ) = Cst and integrating equation (4.57) yields⎧⎨⎩
d
dtkc(t) = F − Ckc(t),

d
dtσc(t) − ε̇kc = G − Cσc(t).

(4.58)
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On the other hand it can also be derived from a kinetic equation at the
microscopic level

∂
∂tψ(t, v, ξ) + v ∂

∂ξ ψ(t, ξ) = f(ξ)[M(v) − ψ(t, v, ξ)] − g(ξ)ψ(t, v, ξ)

+[Fext − ∂
∂ξ V (ξ)] ∂

∂v ψ(t, v, ξ) − ∂
∂v [v−ε̇

T ψ(t, v, ξ)].
(4.59)

Here ψ(t, v, ξ) denotes the density of myosin heads attached to the actin structure
at a distance ξ from the potential center and moving with the velocity v, and M(v)
denotes the (probability) density that a free actin site is reached with velocity v.
The force created by the sawtooth potential V results in the third term in the
right-hand side and the fourth (and last) one expresses the nearly solid structure
of the sarcomere.

The nonlinearity comes from the self-consistent relaxation speed

ε̇ =
1

n(t)

∫
R×R

v ψ(t, v, ξ) dv dξ,

with
n(t) =

∫
R

�(t, ξ)dξ, �(t, ξ) =
∫

R

ψ(t, v, ξ) dv.

In the limit T → 0 we expect that

ψ(t, v, ξ) → δ(v − ε̇)�(t, ξ),

and after v integration we recover Huxley’s model.

There are two theories for the way this operates:

(i) The potential V is symmetric (around its minimum ξ = 0) and the motion
comes from asymmetry in the rates f(ξ) which has a peak at ξ = ξ0 > 0
(the equilibrium position of free myosin heads) while g(ξ) is symmetric (for
instance).

(ii) The potential V is asymmetric (sawtooth) and the rates f, g are symmetric.
Motion comes from the fact that attachment gives rise in average to a force
always in the same direction.

In both cases the theorem should be: if Fext is small enough then there is an
average velocity ε̇ in a given direction but to formalize this mathematically is an
open question.

4.3.5 Molecular motors

Besides muscles that were treated in Section 4.3.4, molecular biomotors are nu-
merous and based on motor proteins1, [140]. They are at the origin of all the

1Motor proteins are molecular machines that directly convert chemical energy to work.
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motions within the cell, which can be seen as a huge trafficking system (see [219]
for the terminology and in a neuronal context) where molecular diffusion competes
with oriented transport along various one-dimensional structures (see Figure 4.4
for an example). As one can find for instance in the book [140], recent progress
of experimental devices has made it possible to measure forces at the molecular
size, to visualize the deformation of filaments as microtubules or actin filaments,
to evaluate how an enzyme can find a target. The next step has been to validate
PDE or stochastic models for these phenomena and there are now many interesting
mathematical questions arising from this description.

ATP-ADP

Figure 4.4: Principle of an actin filament pushing the cell membrane and driven by

a molecular motor.

4.3.6 Conventional kinesis

In several papers (see the review [146]), simple models for molecular biomotors
have been derived where chemical energy is transformed to mechanical energy.
The principle we consider here is that some molecule can reach two conformations
(the density of each being denoted by n1 and n2 below). A bath of such molecules
is moving in a filament and subject to two physical events. First, the filament
induces a smooth, periodic and asymmetric potential seen differently by the two
conformations (and denoted by ψi(x), i = 1, 2 below). Second, fuel consumption
triggers a conformational change between states 1 and 2 with rates denoted by
νi > 0 below. Being given that, at molecular scale, viscosity is important, this leads
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to the system of parabolic equations for the evolution of the densities ni(t, x):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tn

1 − ∂2

∂x2 n1 − ∂
∂x (∇ψ1 n1) + ν1n1 = ν2n2, 0 ≤ x ≤ 1, t > 0,

∂
∂tn

2 − ∂2

∂x2 n2 − ∂
∂x (∇ψ2n2) + ν2n2 = ν1n1,

∂
∂xni(x) −∇ψi ni(x) = 0 at x = 0, 1, i = 1, 2.

(4.60)

Notice that the zero flux condition makes this system conservative,

d

dt

∫ 1

0

[n1(t, x) + n2(t, x)]dx = 0.

This can be interpreted in terms of our previous theory by noticing that in con-
servative cases the adjoint problem admits trivial solutions, here φ1 = φ2 = Cst,
see (4.62) below.

This model, as well as several other biomotors, was analyzed in [61, 62, 152].
In particular, [61] proved that there is a positive steady state solution (N1, N2)
that one can normalize by

∫ 1

0
[N1(x) + N2(x)]dx = 1.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ∂2

∂x2 N1 − ∂
∂x (∇ψ1 N1) + ν1N1 = ν2N2, 0 ≤ x ≤ 1,

− ∂2

∂x2 N2 − ∂
∂x (∇ψ2N2) + ν2N2 = ν1N1,

∂
∂xN i(x) −∇ψi N i(x) = 0 at x = 0, 1, i = 1, 2.

(4.61)

A simple way to see this goes again through the adjoint system, which is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− ∂2

∂x2 φ1 + ∇ψ1 ∂
∂xφ1 + ν1φ1 = ν1φ2, 0 ≤ x ≤ 1,

− ∂2

∂x2 φ2 + ∇ψ2 ∂
∂xφ2 + ν2φ2 = ν2φ1,

∂
∂xφi(x) = 0 at x = 0, 1, i = 1, 2.

(4.62)

As already mentioned, it admits the trivial solution φ1 = φ2 = Cst, which proves
that 0 is the first eigenvalue.

The very deep result in [61] is that the system exhibits a motor effect (the
densities are higher near x = 0 than near x = 1 as depicted in Figure 4.5) under
some precise asymmetry conditions on the potentials ψi and size conditions on the
transition rates νi.

Our purpose here is less ambitious and is to give, without structure conditions
on ψi and νi, an extension to this system of the Relative Entropy property (the
structure behind is of course more general and relies on the coupling through
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Figure 4.5: Motor effect for asymmetric potentials exhibited by the parabolic sys-

tem (4.60). The figure represents the steady state given by (4.61) (left the densities

themselves, right their logarithm). One can observe that the densities concentrate

preferentially on the one hand as proved in [61].

zeroth order terms). It is not surprising that such systems also admit an entropy
principle because they are positivity preserving. the method was previously used
in [87] for another biomotor, the flashing rachet (the model includes a periodic
potential and thus is related to Floquet Theory.

As a consequence we can study the solution of the parabolic system (4.60)
and in particular prove the following properties of the solution.

Theorem 4.8. Assume the potential ψi are smooth and ni(t = 0) ≥ 0 are integrable
and bounded. Then,

0 ≤ ni(t, x) ≤ max
(∥∥∥∥n1(t = 0, ·)

N1(·)

∥∥∥∥
L∞

,

∥∥∥∥n2(t = 0, ·)
N2(·)

∥∥∥∥
L∞

)
N i(x),

for all x ∈ (0, 1), i = 1, 2. We define ρ by∫ 1

0

[n1(t = 0, x) + n2(t = 0, x)]dx = ρ

∫ 1

0

[N1(x) + N2(x)]dx,

then as t → ∞,
∫ 1

0

[
|n1(t, x) − ρN1(x)| + |n2(t, x) − ρN2(x)|

]
dx decays to zero

and

n1(t, ·) → ρN1(·), n2(t, ·) → ρN2(·), in Lp(0, 1), ∀p ∈ [1,∞[.

Again, the proof relies on a General Relative Entropy property of the para-
bolic equation (4.60) that can be expressed as
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Lemma 4.6. For all convex functions H : R → R, and all solutions (n1, n2) to
(4.60), we have the General Relative Entropy Inequality

d
dt

∫ 1

0
[N1(x) H

(n1(t,x)
N1(x)

)
+ N2(x) H

(n2(t,x)
N2(x)

)
]dx

= −
∫ [

N1 H ′′(n1(t,x)
N1(x)

)
[ ∂
∂x

(
n1

N1

)
]2 + N2 H ′′(n2(t,x)

N2(x)

)
[ ∂
∂x

(
n2

N2

)
]2
]
dx

−
∫

ν2N2
[
H ′(n1(t,x)

N1(x)

)
[n2(t,x)

N2(x) − n1(t,x)
N1(x) ] + H

(n1(t,x)
N1(x)

)
− H

(n2(t,x)
N2(x)

)]
dx

−
∫

ν1N1
[
H ′(n2(t,x)

N2(x)

)
[n1(t,x)

N1(x) − n2(t,x)
N2(x) ] + H

(n2(t,x)
N2(x)

)
− H

(n1(t,x)
N1(x)

)]
dx

≤ 0.

Proof. Since this computation follows exactly that of the similar principle for
a parabolic equation (4.60), we just indicate again the main intermediary steps
without details. We have

∂
∂t

(
n1

N1

)
− ∂2

∂x2

(
n1

N1

)
+ 2N1 ∂

∂x

(
n1

N1

)
∂
∂x

(
1

N1

)
− ∂ψ1

∂x
∂
∂x

(
n1

N1

)
= ν2 N2

N1 [ n2

N2 − n1

N1 ].

Therefore, for any smooth function H , we arrive at

∂
∂tN

1H
(

n1

N1

)
− ∂2

∂x2 N1H
(

n1

N1

)
+ N1H ′′( n1

N1

) (
∂
∂x

n1

N1

)2

− ∂
∂x

[
∂ψ1

∂x N1H
(

n1

N1

)]
= ν2N2H ′( n1

N1

)
[ n2

N2 − n1

N1 ] + (ν2N2 − ν1N1)H
(

n1

N1

)
.

After adding the similar result for the quantity ∂
∂tN

2H
(

n2

N2

)
and integration in x,

we arrive at the result. �
Proof of Theorem 4.8. Again these statements are direct consequences of the en-
tropy inequality of Lemma 4.6, and we just indicate the choice of the entropy
function H(·).

For the L∞ bound we set (as in Section 6.3.1)

C = max
(∥∥∥∥n1(t = 0, ·)

N1(·)

∥∥∥∥
L∞

,

∥∥∥∥n2(t = 0, ·)
N2(·)

∥∥∥∥
L∞

)
and the choice H(u) = (u − C)+ concludes the argument. For the L1 contraction
principle it is enough to use H(u) = |u|. And the long time convergence again
requires standard compactness arguments that have already been discussed in
Chapter 3 and Section 4.2.4. �



Chapter 5

Cell motion and chemotaxis

5.1 How do cells move

Chemotaxis refers to several mechanisms through which cells can move in re-
sponse to an external (usually chemical) signal. Several biological devices allow
these small organisms to move. One of them is a family of “propellors” composed
of flagella, very typical for instance of the prokaryotic 1 bacteria Escherichia coli,
see Figure 5.1 left, which allow them to swim. Each flagella is activated by a
‘biomotor’ which responds to some chemical signal. This chemical signal can be
directly emitted by the population of bacteria or created by a chemical reaction
between the environment and the chemical emission of bacteria ([40]). Another
example is Proteus mirabilis which can also swim, but in certain circumstances,
can create multi-nucleoid hyperflagellated ‘swarmers” (see [97]). More evolved liv-
ing organisms like Amebae Dictyostelium discöıdeum crawl by sending forward an
internal “arm” (an actin polymer as in Section 4.3.5), see Figure 5.3. These eu-
karyotes are also famous because they can aggregate under food restrictions. When
the food resources are exhausted these amoebae emit the chemical signal, cyclic
Adenosine Monophosphate (cAMP), which attracts the other amoebae and creates
some kind of transition to a multicellular organism (fruiting body). Changes in
the behavior of the entire body become determinant for survival of the population
afterwards. Precise experiments on the way they react to chemoattractant can be
found in Soll [212], with many questions on the possible interpretations of actual
experiments which could have implications in terms of modeling. Finally let us
mention Myxobacteria which have lived on soil surfaces for billion of years. They
are equipped with two types of motors; they can send a long hair (pilus) in front
of them, stick it into another bacterium, and retract it, thus pulling forward the

1In comparison to eukaryotes, in prokaryotes the chromatin (genetic material) is not enclosed
inside the nucleus but is loosely arranged within the cytoplasm. Moreover there is no structure
like a cytoskeleton to organize the displacement of the components within the cell.
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bacterium; they can also “push” using similar devices ([147], Figure 5.1 right). This
induces a movement which can also lead Myxobacteria to create fruiting bodies.

Figure 5.1: A representation of bacterium Escherichia coli and its flagella.(left) and

of a Myxobacterium and its pilus (right).

Migration of cells occurs in another domain of biomedical science, namely
cancer modeling. Development of cancers are very much related to the ability
of cancerous cells to move, and thus spread and develop faster than healthy cells.
Recently, authors have distinguished the so-called mesenchymal migration, in com-
parison to ameboid migration (see [111]), as represented in Figure 5.2. Mesenchy-
mal migration is characterized by higher levels of adhesion on the extracellular
matrix, of cell elongation, and by degradation of ECM. Another aspect of interac-
tion between cell migration and cancer developments arises for solid tumors; they
can secrete chemical signals (Vascular Endothelial Growth Factors) that produce
the so-called angiogenesis effect. This refers to the formation of capillary network
structure of blood vessels in the direction of the tumor; again the endothelial cells
migrate towards the tumor by chemotactic motion.

focal contact point

ECM

Figure 5.2: A representation of a fibroblast moving in extra-cellular matrix accord-

ing to [111].

Therefore we can understand two very extreme situations. Either the cells
emit a (chemical) signal that attracts the other individuals (we refer to this as
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chemotaxis) or the external signal is consumed by the organism and we refer to
this as angiogenesis model for the sake of simplicity. An intermediary modeling
(in the sense that the chemoattractant is consumed but also produced indirectly)
consists in the chemical synthesis of an exogeneous product and another substance
exhausted by the bacteria ([58, 156, 166]).

These various biological issues and mathematical questions around cell mo-
tion can also be found in the Lecture Notes in Biomathematics edited by Alt and
Hoffmannn [6], in the book of Murray (volume 2) [178] which also contains very
complete information on this subject and in the survey papers [121] for colonies
formation and [137] for mathematical aspects.

In this context, one of the places where mathematics plays a role is to un-
derstand how one can observe collective patterns from individual responses to a
mean signal emitted by the cells themselves. These patterns are typically of two
kinds:

(i) traveling waves are observed, for instance periodic swarm rings for Proteus
Mirabilis ([97]) or band dynamics for Escherichia coli ([40] and the references
therein),

(ii) aggregate formation in E. coli and Dictyostelium.

These questions have attracted very much attention among mathematicians and
physicists. One reason is that an elementary modeling leads to a fascinating nonlin-
ear model (Keller–Segel system) on which the mathematical literature is enormous.
The survey by Horstmann [137, 138] gives the state of the art on these questions.

We present now these models which share the same mathematical structure.
Namely the nonlinearity representing the attracting force arises as a first order
transport term in a diffusion equation.

5.2 Chemotaxis: the Keller–Segel system (d ≥ 2)

The simplest and most classical model used to describe the collective motion of
cells has been developed by Patlak [194] and Keller–Segel [148, 149]. It consists
in a system which describes the evolution of the density of bacteria �(t, x), t ≥ 0,
x ∈ Rd and the concentration c(t, x) of the chemical attracting substance,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t� − ∆� + div(�χ∇c) = 0, t ≥ 0, x ∈ Rd,

α ∂
∂tc − ∆c + τ c = �,

�(t = 0) = �0 ∈ L∞ ∩ L1
+(Rd).

(5.1)

The first equation just expresses the random (brownian) diffusion of the cells with
a bias directed by the chemoattractant concentration with a sensitivity χ. The
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chemoattractant c is directly emitted by the cell, diffused on the substrate and
τ−1/2 represents its activation length.

The notation L1
+ means nonnegative integrable functions, and the parabolic

equation on � gives nonnegative solutions (as expected for the cell density)

�(t, x) ≥ 0, c(t, x) ≥ 0. (5.2)

Another property we will use is the conservation of the total number of cells

m0 :=
∫

Rd

�0(x) dx =
∫

Rd

�(t, x) dx. (5.3)

We have set the problem in a full space for the sake of simplicity (the situation
is complicated enough without bounds). On bounded domains Ω, one uses the no-
flux boundary conditions ∂

∂ν � = ∂
∂ν c = 0 on ∂Ω denoting by ν the outward normal.

We will mostly consider the limit α, τ → 0 and fix the positive parameter
χ > 0 (for an optimal result on the parabolic problem see [66]). Then, the Laplace
equation admits several solutions ([98]) and, of course, we consider the solution
determined by the fundamental solution. We obtain (α = 0, τ = 0 in (5.1))⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t� − ∆� + div(�χ∇c) = 0, t ≥ 0, x ∈ Rd,

∇c = −λd
x

|x|d � �, λd = 1/(d|Bd|),

�(t = 0) = �0 ∈ L∞ ∩ L1
+(Rd).

(5.4)

In two dimensions the situation is somewhat misleading because the corresponding
concentration c = λ2 ln |x| � n is not positive. This means that the situation has
been oversimplified, which is obvious from the beginning in view of more realistic
literature [164, 178].

This system has been widely studied since the 1980s ([59]) and a recent survey
of the mathematical results is due to Horstmann, [137, 138]. To present roughly
the reason why the mathematics of this system is so interesting, let us mention
that in dimension 1 there are global smooth and unique solutions. In dimension 2,
the Keller–Segel system is critical in L1 (for the dimension d it is critical in Ld/2).
This means that for small initial mass it has been proved (initially by [145]) that
the system is well-posed globally in time (see also 5.3 below). But there is blow-
up, i.e. the solution does not remain bounded, for large mass. Radially symmetric
solutions, and the various types of blow-up, have been widely studied: the density
� concentrates as a Dirac mass [127, 225, 78, 39, 208]. Numerical evidence of the
creation of Dirac masses in non-radial situations is shown in [168] as well as the
evolution of Dirac concentrations for this numerical solution. Figure 5.4 presents
a computation in a rectangle with zero flux boundary condition on � and Dirichlet
boundary condition c = 0.
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21

3 4

Figure 5.3: Motion of amoeba Dictyostelium discöıdeum in reaction to a chemoat-

tractant emitted from the dark point at the upper left corner.

5.2.1 Free energy

The Keller–Segel system (5.1) admits several a priori estimates which reflects
the basic modeling assumptions which have already been mentioned: the solution
remains nonnegative and the total mass is conserved

�(t, x) ≥ 0,

∫
Rd

�(t, x)dx := m0.

It also admits a dissipation principle for the free energy Ecc(t) which has been
widely used ([35, 114, 181, 137, 138] . . . etc). In the case α = τ = 0, i.e., of
equation (5.4) which is the only we treat here, it is defined as follows:⎧⎨⎩

Ecc(t) =
∫

Rd [� ln(�) − χ
2 �c] dx,

d
dtEcc(t) = −

∫
Rd �|∇ ln(�) − χ∇c|2 dx ≤ 0.

(5.5)

The main property of this energy is that it is composed of two terms; the entropy∫
Rd � ln(� (which is in essence positive because small values of � do not count in

practice) and the (negative) potential energy −χ
2

∫
Rd �c. This competition on signs

allows for a competition between the dissipative (diffusion) term and the drift.

To derive this free energy principle (5.5), we compute

d
dt

∫
Rd �c dx =

∫
Rd [c ∂

∂t� + � ∂
∂tc] dx

=
∫

Rd [c ∂
∂t� − ∆c ∂

∂tc + τc ∂
∂tc] dx

=
∫

Rd [c ∂
∂t� − c ∂

∂t∆c + τc ∂
∂tc]dx

=
∫

Rd [c ∂
∂t� + c ∂

∂t�] dx.
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Therefore
χ
2

d
dt

∫
Rd �c dx = χ

∫
Rd c∂�

∂t dx

= χ
∫

Rd c[∆� − div(�χ∇c)] dx

= χ
∫

Rd ∇c[−∇� + �χ∇c].

But we also have,

d
dt

∫
Rd � ln(�) =

∫
Rd(1 + ln(�))[∆� − div(�χ∇c)] dx

=
∫

Rd ∇ ln(�)[−∇� + �χ∇c].

Subtracting these two equalities, we recover (5.5). �

The free-energy inequality is reminiscent of Poincaré and log-Sobolev inequal-
ities (see Section 6.5, [12, 155, 228]) because it can be stated as

d

dt

∫
Rd

eχcu[ln(u) +
χ

2
c] = −4

∫
Rd

ec|∇
√

u|2, u = �e−χc.

It is usual to look for an additional inequality for the dissipation rate in entropy
inequalities. We let the reader check the following identity (for χ = 1),

d

dt

∫
Rd

ec

[
|∇

√
u|2 +

�2

2
− |∇c|2

2

]
= −

d∑
i,j=1

∫
Rd

eχc

∣∣∣∣ ∂2√u

∂xi∂xj
− ∂

√
u

∂xi

∂
√

u

∂xj
/
√

u|
∣∣∣∣2

+
d∑

i,j=1

∫
Rd

ec ∂2c

∂xi∂xj

∂
√

u

∂xi

∂
√

u

∂xj
.

This free energy also appears in various other fields of application and has
been studied first in the context of vortex systems in [44]. In particular, the ‘critical
mass’ of chemotaxis appears in this paper as a ‘critical temperature’.

Remark 5.1. The free energy for the full model (5.1) is given by⎧⎨⎩
Ecc(t) =

∫
Rd

[
� ln(�) − χ�c + χ

2 [|∇c|2 + τc2]
]

dx,

d
dtEcc(t) = −

∫
Rd �|∇ ln(�) − χ∇c|2 dx − χα

τ

∫
Rd |∂c

∂t |2dx ≤ 0.
(5.6)

5.2.2 Existence for small Ld/2 norm (d > 2)

We begin with the general situation of the Keller–Segel system set in Rd for d > 2
and will come back to the dimension d = 2 later. We show the existence of solutions
for small initial data. The natural scaling here leads us to consider the space Ld/2.
For a theory in more elaborate spaces see [32].



5.2. Chemotaxis: the Keller–Segel system (d ≥ 2) 117

Theorem 5.1. Let d > 2. There is a universal constant K(d) such that if

�0 ∈ L1(Rd), χ ‖�0‖Ld/2(Rd) ≤ K(d), (5.7)

then the system (5.4) admits a global weak solution � ∈ L∞(
R+; L1 ∩ Ld/2(Rd)

)
,

and ⎧⎨⎩
‖�(t)‖Ld/2(Rd) ≤ ‖�0‖Ld/2(Rd), � ∈ L1+d/2(R+ × Rd),

∇�d/4 ∈ L2(R+ × Rd), ‖∇c‖Ld(d+2)/(d−2)(Rd) ∈ L1+d/2(R+),
(5.8)

∇c(t) ∈ L∞(R+; Lq(R3)),
d

d − 1
< q ≤ d, (5.9)

and, ⎧⎨⎩
‖�(t)‖Ld/2(Rd) ≤ C(d) m0 t−β for t > 0, β = (d − 2)/2,

‖�(t)‖Lp(Rd) ≤ C(d) m0 t−β for t ≥ T (d, p), β = d
2 (1 − 1

p ),
(5.10)

for �0 ∈ Lp(Rd), p ∈ [1,∞[.

This theorem expresses that in the smallness regime, the quadratic term of
the equation (namely n∇c) is so small that it does not have a qualitative effect.
Indeed, the time decay stated here is exactly that of the heat equation for an
initial data in L1(Rd) because

∥∥n0 �
1

(2πt)d/2
e−|x|2/2t

∥∥
Lp(Rd)

≤ C‖n0‖L1(Rd) t−β , β =
d

2
(1 − 1

p
).

In fact the last inequality of (5.10) can be improved to a regularizing effect like
hypercontractivity, because one does not need the additional assumption �0 ∈
Lp(Rd), the mere Ld/2 norm is enough, see [66].

Many variants and other results follow from the proof below. It is possible
to show that this weak solution has more regularity (in Sobolev spaces) when the
initial data has. We do not prove it here and refer to [35] for instance.

Proof of Theorem 5.1. We begin with a formal a priori estimate, based on an
argument due to [145], then we deduce the long time convergence to 0. Finally, we
indicate how to make the argument rigorous.

(i) The theory is based on the following a priori estimate for solutions to
(5.4). It is obtained after multiplying the equation by p �p−1.

d
dt

∫
Rd �p + 4 p−1

p

∫
Rd |∇�p/2|2 = −(p − 1)χ

∫
Rd ∇�p · ∇c

= (p − 1)χ
∫

Rd �p+1

≤ C(d, p)χ
∫

Rd |∇�p/2|2 ‖�‖Ld/2

(5.11)
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after using Gagliardo-Nirenberg-Sobolev inequality (6.34).

We now choose p = d/2, and this leads to the inequality (with C̄(d, d
2 ) =

4p
p−1C(d, d

2 ))

d
dt

∫
Rd �d/2 ≤ 4 d−2

d

[
C̄(d, d

2 )χ‖�‖Ld/2 − 1
] ∫

Rd |∇�d/4|2.

So, whenever we have initially

C̄(d, d
2 )χ‖�0‖Ld/2 ≤ 1/2,

i.e. condition (5.7), then
∫

Rd �(t)d/2 decreases for all times t ≥ 0 (because the
above condition remains satisfied) and the a priori estimate (5.8) follows because
after time integration between 0 and t we find

2 d−2
d

∫ t

0

∫
Rd |∇�d/4|2 ≤

∫
Rd(�0)d/2,

as t → ∞ we obtain the L2 estimate. The control of
∫

Rd �p+1 as in (5.11) gives
the estimate on �1+d/2. Then, we apply the Young convolution inequality to the
equation on ∇c in (5.4), (a) from the bound � ∈ L1+d/2(R+ × R

d) it gives the
last inequality in (5.8), (b) from the bound � ∈ L∞(R+; L1 ∩ Ld/2(Rd)) it gives
directly (5.9).

(ii) To go further and prove that ‖�‖Ld/2 vanishes, we use the Gagliardo–
Nirenberg–Sobolev inequality (6.34) departing from the conclusion of step (i),

d
dt

∫
Rd �d/2 ≤ −C

∫
Rd |∇�d/4|2

≤ −C
∫

�1+d/2/‖�‖Ld/2

≤ −C(m0)(θ−1)(1+d/2)/θ‖�‖(1+d/2−θ)/θ

Ld/2

after using the interpolation inequality ‖�‖Ld/2 ≤ (m0)1−θ‖�‖θ
L1+d/2 with θ =

1 − 4
d2 .
We set u(t) = ‖�(t)‖Ld/2, set α = (1 + d/2)(1 − θ)/θ > 0 and thus arrive at

d
2u(t)d/2−1 d

dtu(t) ≤ −C(m0)−αu(t)(1+d/2−θ)/θ,

and thus
u(t)(−1−d/2+dθ/2)/θ d

dtu(t) ≤ −C(m0)−α,

which also leads to
1
α

d
dtu(t)−α ≥ C(m0)−α.

From the above differential inequality, we deduce that ‖�(t)‖Ld/2 ≤ C m0 t1/α for
large time. Therefore the time decay statement is proved with β = 1/α = (d−2)/2.
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(iii) We prove (5.10) coming back to (5.11). Since we have proved that
‖�(t)‖Ld/2 decays to zero, for t larger than some T (d, p) we have C̄(d, p)‖�(t)‖Ld/2 ≤
1
2 and recover the same situation as in step (ii). We leave the corresponding cal-
culation to the reader.

(iv) In order to prove the existence of a solution with the above properties,
we consider an approximation of equation (5.4). We regularize the equation on c
by a convolution

−∆cε = �ε � ωε, (5.12)

for some regularizing kernel ωε = 1
εd ω(x

ε ) with ω ∈ D+(Rd),
∫

Rd ω = 1. Then,
following the standard parabolic theory, the system of the drift-diffusion equation
on (�ε, cε) admits a unique smooth solution, with fast decay in space, when the
initial data is regularized and truncated. Then, we notice that the above a priori
estimate still holds true since the only modification in the argument consists in
the additional lines∫

Rd ∇�p
ε · ∇cε = −

∫
Rd �p

ε ∆cε

=
∫

Rd �p
ε �ε � ωε

≤ (
∫

Rd �p+1
ε )p/(p+1) (

∫
Rd(�ε � ωε)p+1)1/(p+1)

≤
∫

Rd �p+1
ε .

As a consequence, the a priori bounds in the theorem hold true uniformly in ε and
thus we can pass to the limit. This is easy because of the space gradient estimate
that also follows from the a priori estimate, and because of the Lions–Aubin lemma
which provides time compactness. In the limit, we obtain the results of Theorem
5.1. �

5.2.3 Blow-up for large initial data (d > 2)

We continue with the dimension d > 2 and adapt an argument due to Nagai
[179] to prove that blow-up occurs for large initial data. It was originally given in
[31] and uses a smallness condition homogeneous to the Ld/2 norm although it is
different (see the comment below).

Theorem 5.2. For d > 2, we still set m0 :=
∫

Rd �0(x)dx. There is a constant C,
small enough, such that when

χ

∫
Rd

|x|2
2

�0(x)dx ≤ C (χ m0)d/(d−2),

then there is no global smooth solution, with enough decay in x at infinity, to the
Keller–Segel system (5.4).

Also, notice that the assumption on the small Ld/2(Rd) norm for the existence
Theorem 5.1 is in opposition with the smallness assumption in Theorem 5.2. To
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explain this we argue as follows. Let R > 0, then we have

m0 =
∫

Rd �0(x)dx

≤
∫
{|x|≥R} �0(x)dx +

∫
{|x|≤R} �0(x)dx

≤
∫
{|x|≥R}

|x|2
R2 �0(x)dx + C Rd−2 [

∫
{|x|≤R} �0(x)d/2dx]2/d

= 2
R2 m0

2 + C Rd−2 ‖�0‖Ld/2(Rd)

= C‖�0‖2/d

Ld/2(Rd)
(m0

2)
(d−2)/d,

and the last line has been obtained with an appropriate choice of R = m0
2/‖�0‖Ld/2.

Therefore the assumption that (m0
2)

d−2/(m0)d is small turns out to be incompat-
ible with a small enough norm ‖�0‖Ld/2(Rd).

Proof. We still denote m2(t) :=
∫

Rd

|x|2
2 �(t, x)dx and use the formula

∇c(t, x) = −λd

∫
Rd

x−y
|x−y|d �(t, y)dy.

Next, we compute using mass conservation,

d
dtm2(t) = d m0 + χ

∫
Rd �(t, x) x · ∇c dx

= d m0 − χ λd

∫
Rd×Rd �(x)�(y)x·(x−y)

|x−y|d dx dy

= d m0 − χ λd

2

∫
Rd×Rd �(x)�(y) 1

|x−y|d−2 dx dy

after using the symmetry in the variables x and y in the last term. Then, we arrive
at

d
dtm2(t) ≤ d m0 − χ λd

2Rd−2

∫
|x−y|≤R �(x)�(y) dx dy

≤ d m0 − χ λd

2Rd−2 (m0)2 + λd

2Rd−2

∫
|x−y|≥R

�(x)�(y) dx dy

≤ d m0 − χ λd

2Rd−2 (m0)2 + χ λd

2Rd

∫
Rd×Rd �(x)�(y)|x − y|2 dx dy

≤ d m0 − χ λd

2Rd−2 (m0)2 + 2 χ λd

Rd m0
∫

Rd |x|2�(x) dx

≤ d m0 − χ λd

2Rd−2 (m0)2 + 4 χ λd

Rd m0 m2(t).

We choose R = µ (χ m0)1/(d−2) with µ > 0 small enough and we find

d
dtm2(t) ≤ m0 [−1 + C χ m2(t)

(χ m0)d/(d−2) ].

When χ m2(t = 0) is small enough compared to (χ m0)d, then m2(t) decreases
for all times and thus we conclude

d
dtm2(t) ≤ m0 [−1 + C χ m2(0)

(χ m0)d/(d−2) ] < 0 (and is constant).

This leads to a contradiction since m2(t) cannot vanish for smooth solutions. �



5.3. Critical mass in dimension 2 121

5.3 Critical mass in dimension 2

In this section, we show that in dimension 2 the situation can be made more precise
because there is an explicit critical mass, mcrit = 8π/χ. We prove the global well-
posedness in R2 for solutions with smaller mass and blow-up for larger mass (recall
that mass is conserved according to (5.3)). The following result is proved in [88, 36]
and similar thresholds are known in bounded domains ([114, 137, 138], see also
[181] for the case of a parabolic equation on c).

The mathematical interest here is also to prove existence with an energy
method rather than direct estimates based on Sobolev inequalities as in Sec-
tion 5.2.2 and [145]. This strategy turns out to be much more accurate because
the Gagliardo–Niremberg–Sobolev inequalities introduce thresholds on the critical
mass that are not exact.

Theorem 5.3. In R2, assume
∫

R2 |x|2�0(x)dx < ∞.

(i) (Blow-up) When the initial mass satisfies

m0 :=
∫

R2
�0(x)dx > mcrit := 8π/χ, (5.13)

then any solution to (5.4) becomes a singular measure in finite time.

(ii) When the initial data satisfies
∫

R2 �0(x)| log(�0(x))|dx < ∞ and

m0 :=
∫

R2
�0(x)dx < mcrit := 8π/χ, (5.14)

there are weak solutions to (5.4) satisfying the a priori estimates∫
R2

�[| ln(�(t))| + |x|2] dx ≤ C(t),

‖�(t)‖Lp(R2) ≤ C(p, t, �0) for ‖�0‖Lp(R2) < ∞, 1 < p < ∞.

Remark 5.2. (i) A generic argument in [179] proves blow-up of solutions for
Ω = B, a ball under the conditions that the initial mass satisfies∫

B

�0(x)dx > 8π/χ,

and that the second moment in x is also small enough. In more general
bounded domains, still with no-flux boundary conditions, the critical mass
is 4π because blow-up may occur on the boundary which intuitively acts as
a reflection wall.

(ii) For radial solutions in R2, we will prove in Section 5.4 that one does not need
a finite second moment for blow-up with a supercritical mass. A more subtle
condition is however needed.
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We also refer to Section 5.4 for more information on the blow-up (chemotactic
collapse) in the case of radially symmetric solutions. For the case of more elaborate
geometry our knowledge relies also on computations (see Figure 5.4 for instance).

Figure 5.4: Chemotactic collapse for Keller–Segel model (5.4) set in a rectangle.

This is a logarithmic scale and for symmetry reasons, one fourth of the domain is

shown. Blow-up in fact occurs in the long central axis of the rectangle. (Courtesy

of A. Marrocco)

In the next subsections, we first give a proof of the blow-up statement (i) and
then we consider existence (ii). More details and additional results (in particular
on the long time behavior and intermediary asymptotic) can be found in [36].
Notice also that the above results extend to all dimensions for the log interaction
kernel on c (see Section 5.5.4 and [48]).

5.3.1 Proof of blow-up, concept of weak solution

Formally the blow-up proof is very simple, and the difficulty here is to prove
that the solution becomes a singular measure. We follow Nagai’s argument, first
assuming enough decay in x at infinity; afterwards we state a more precise result.
It is based on the formula

∇c(t, x) = −λ2

∫
R2

x − y

|x − y|2 �(t, y)dy, λ2 =
1
2π

.

Then, we consider the second x moment

m2(t) :=
∫

R2

|x|2
2

�(t, x)dx.

We have, from (5.4),

d
dtm2(t) =

∫
R2

|x|2
2 [∆� − div(�χ∇c)]dx

=
∫

R2 [2� + χ�x · ∇c]dx

= 2m0 − χλ2

∫
R2×R2 �(t, x)�(t, y)x·(x−y)

|x−y|2

= 2m0 − χλ2
2

∫
R2×R2 �(t, x)�(t, y) (x−y)·(x−y)

|x−y|2
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(this last equality just follows by a symmetry argument, interchanging x and y in
the integral). This yields finally,

d

dt
m2(t) = 2m0(1 − χ

8π
m0).

Therefore if we have m0 > 8π/χ, we arrive at the conclusion that m2(t) should
become negative in finite time which is impossible since � is nonnegative. Therefore
the solution cannot be smooth until that time.

In order to go further, analyze more precisely this proof and prove the state-
ment (i) of Theorem 5.3, we need a concept of weak solution to the Keller–Segel
system that can handle L1 solutions and that was used in [208]. To do that, we
use the usual definition of solutions in distribution sense but take advantage of
the symmetry in the drift term. Let ψ ∈ D(R2) be a test function, and test it in
(5.4); we arrive at

d
dt

∫
R2 ψ(x)�(t, x)

=
∫

R2 ∆ψ(x)�(t, x)dx − χ
2π

∫
R2×R2 ∇ψ(x). x−y

|x−y|2 �(t, x)�(t, y)dx dy.

In this equation we still need to make sense of the singularity of order 1/|x − y|.
This can be avoided in defining solutions as uniformly bounded measures in x,
and weakly continuous in time, such that

d
dt

∫
R2 ψ(x)�(t, x)

=
∫

R2 ∆ψ(x)�(t, x)dx − χ
4π

∫
R2×R2 [∇ψ(x) −∇ψ(y)]. x−y

|x−y|2 �(t, x)�(t, y)dx dy.

(5.15)
Because [∇ψ(x)−∇ψ(y)]. x−y

|x−y|2 is bounded by 1, this definition of weak solutions
makes perfect sense for � ∈ L∞(R+; L1(Rd)).

Notice for instance that weak solutions are mass conservative. Indeed, we
can choose a test function ψR(x) = ψ(|x|/R) with ψ a smooth function such that
ψ(r) = 1 for r ≤ 1/2, ψ(r) = 0 for r ≥ 1. Then∣∣∫

R2 ∆ψR(x)�(t, x)dx
∣∣ ≤ C

R2

∫
R2 �(t, x)dx −−−−−→

R→∞ 0,∣∣∣∫
R2×R2 [∇ψR(x) −∇ψR(y)]. x−y

|x−y|2 �(t, x)�(t, y)dx dy|

≤ C
R2

∫
R2×R2 �(t, y)�(t, x)dydx dy −−−−−→

R→∞ 0.

Therefore, passing to the limit R → ∞, we arrive (say test against a test function
in time) at

d

dt

∫
R2

�(t, x)dx = 0.

With the help of this concept of weak solution, we can also prove
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Lemma 5.1. A weak solution to (5.4) in the sense of (5.15) that satisfies∫
R2

(1 + |x|2)�0(x) dx < ∞

also satisfies, as long as it is an L1(R2) function,

d

dt

∫
R2

|x|2 �(t, x) dx = 4m0

(
1 − m0

mcrit

)
. (5.16)

Remark 5.3. This concept of weak solution has only interest before the concentra-
tion as measure. Indeed, as proved in [208], the measure n(x) = Mδ(x) is a weak
solution in the sense of (5.15) (once correctly defined for measures, which is not
direct), only for M = 4π

χ . Indeed, for that measure, (5.15) reduces formally (or for
radially symmetric approximations of that measure) to

0 = M∆ψ(0) − M2χ

4π

2∑
ij=1

D2
ijψ(0)〈yiyj

|y|2 〉 = M∆ψ(0) − M2χ

8π
∆ψ(0).

Proof. Consider a family of functions ψR(|x|) ∈ D(R2) that grows nicely to |x|2 as
R → ∞ as in the above argument for the total mass. Then we compute, as before,

d
dt

∫
R2 ψR � dx =

∫
R2 ∆ψR � dx

− χ
4π

∫
R2

(∇ψR(x)−∇ψR(y))·(x−y)
|x−y|2 �(t, x) �(t, y) dx dy.

As before, both terms in the right-hand side are bounded (because ∆ψR and
(∇ψR(x)−∇ψR(y))·(x−y)

|x−y|2 are bounded). Therefore the quantity
∫

R2 ψR � dx remains
uniformly bounded and thus

∫
R2 ψR � dx < ∞. Finally, as R → ∞, we may pass to

the limit in each term using the Lebesgue monotone convergence theorem (as long
as we can dominate the various terms by the L1 function �). In this circumstance,
we can pass to the limit and obtain equality (5.16). �

This lemma concludes that �(t, x) cannot remain an L1 function after the
first time t∗ when ∫

R2
|x|2 �0(x) dx + 4m0

(
1 − m0

mcrit

)
t∗ = 0,

and the statement (i) of Theorem 5.3 is proved. �

For more about profile of solutions around isolated blow-up points, we refer to
[127, 225], for the Hausdorff dimension of blow-up points (in the hyperbolic case),
we refer to [78] and for dynamics of Dirac concentration points after blow-up, to
[226].
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5.3.2 Existence proof

We follow again [36] and decompose it in two steps. First, we prove equi-integra-
bility and then prove the propagation of Lp norms. As in the higher dimensional
case, we just derive a priori bounds on the solution and we skip the regularization
argument which was already given in Section 5.2.2.

First step. Equi-integrability. We use the energy (see Section 5.2.1)

E(t) =
∫

R2 � log � dx + χ
4π

∫ ∫
R2×R2 �(t, x) �(t, y) log |x − y| dx dy,

and recall that E(t) ≤ E0.
We also recall the logarithmic Hardy–Littlewood–Sobolev inequality (see Sec-

tion 6.5), for any function f ≥ 0 with
∫

R2 f = m0 and
∫

R2 f | ln f | < ∞, then

m0

2

∫
R2 f log f dx +

∫ ∫
R2×R2 f(x)f(y) log |x − y| dx dy ≥ C(m0).

Combining these two inequalities we find∫
R2 �(t, x) log �(t, x) dx ≤ E0 − χ

4π

∫ ∫
R2×R2 �(t, x) �(t, y) log |x − y| dx dy

≤ E0 − 1
4π C(m0) + m0

mcrit

∫
R2 �(t, x) log �(t, x) dx.

For m0

mcrit
< 1 this provides an a priori bound∫

R2 �(t, x) log �(t, x) dx ≤ C1 := 1

1− m0
mcrit

(
E0 − 1

4π C(m0)
)
. (5.17)

On the other hand the inequality (5.16) also provides a bound∫
R2 |x|2�(t, x) dx ≤ C2(T ), ∀t ≤ T.

Combined with (5.17) it gives our final estimate for this step,∫
R2 �(t, x)

∣∣ log �(t, x)
∣∣ dx ≤ C3(T ). (5.18)

Indeed, we write∫
�≤1

�(t)
∣∣ log �(t)

∣∣ =
∫

�≤e−|x|2 �(t)
∣∣ log �(t)

∣∣ +
∫

e−|x|2≤�≤1
�(t)

∣∣ log �(t)
∣∣

≤
∫
|x|2e−|x|2 +

∫
|x|2�(t, x)dx ≤ C + C t.

From the inequality (5.18) it is possible to deduce the existence of weak
solutions (see [88]). Here we continue and prove Lp bounds.

Second step. Lp estimates. We use now Gagliardo–Nirenberg–Sobolev inequality
(the constant is not optimal here)∫

R2 |u|2γ dx ≤ γ2
∫

R2 |u|2(γ−1) dx
∫

R2 |∇u|2 dx. (5.19)
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Then, (5.4) yields, for k > 1,

d
dt

∫
R2

(�−k)p
+

p(p−1) ≤ − 4
p2

∫
R2 |∇(� − k)p/2

+ |2 dx + χ
∫

R2 [
(�−k)p+1

+
p + k(2p − 1)

(�−k)p
+

p(p−1)

+k2 (�−k)p−1
+

p−1 ]dx

≤ − 4
p2

∫
R2 |∇u|2 dx + χ

p

∫
R2 u2γdx + C(k, p)χ[m0 +

∫
R2(� − k)p

+dx]

after using Young’s inequality with u = (� − k)p/2
+ and γ = p+1

p . Next we use
(5.19) and for k > 1,

|u|2(γ−1) = (� − k)+ ≤ �
ln+(�)
ln(k)

≤ C(t)
ln(k)

with the constant C3(t) deduced from step 1. We arrive at

d
dt

∫
R2(� − k)p

+ dx ≤ C(k, p)χ[m0 +
∫

R2(� − k)p
+dx]

+ 1
p3 [(p + 1)2 C3(t)

ln(k) − 4p]
∫

R2 |∇u|2.

We can now conclude the proof. Being given p > 1 and t > 0, we choose k large
enough so that the last term is negative and we conclude the proof of Theorem
5.3 (i). �

Exercise. Consider the more general problem, say with a > 0 and b > 0,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t� − ∆� + div(�a∇c) = 0, x ∈ R2,

−∆c = �b, x ∈ R2,

�(t = 0) = �0 ∈ L∞ ∩ L1
+(R2).

(5.20)

Use a variant of the proof to show that,

(i) there is a global control of Lp norms whenever a + b < 2;

(ii) (ii) when a + b = 2, a smallness condition like (5.14) is needed.

See also [139] for higher dimensions.

5.4 Keller–Segel system: radially symmetric solutions

In fact [126, 127, 180] have made precise the type of blow-up that can occur in
system (5.4) and the chemotactic collapse has been described (formally) for ra-
dial solutions in two dimensions. This means that, at the blow-up time, � exhibits
partial concentration as a Dirac mass of weight 8π

χ at the origin plus an L1 remain-
der. Notice also that by the argument above, we know that a Dirac concentration
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(at least lacking a singular measure) appears at blow-up time but it could be sup-
ported by a one-dimensional subset rather than a single point (but such a behavior
is not expected generically).

In this section we show why radially symmetric solutions are simpler: the
equation we derive satisfies a comparison principle. This fact has led to early
results on this particular case ([179] and the references therein). We can also reach
the steady state easily for d = 2 and have a new intuition of why the critical
mass mcrit arises besides the energy and logarithmic Hardy-Littlewood-Sobolev
inequality. We also prove a refined blow-up result (with a weaker condition than
the second x-moment condition!) which is close enough to exhibit the shape of
the chemotactic collapse solution. For complements and more recent papers on
radially symmetric solutions we refer to [145, 33, 34].

5.4.1 Reduced system with radial symmetry

Radially symmetric solutions in d dimensions of the system (5.4) on �(t, r), c(t, r),
r = |x|, are equivalent to,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t (r

d−1 �) − (rd−1�′)′ + χ(rd−1�c′)′ = 0, t ≥ 0, r ≥ 0,

−(rd−1c′)′ = rd−1�,

�′(t, r = 0) = c(t, r = 0) = 0,

(5.21)

where ′ stands for ∂
∂r and initial data have to be specified. And this can be reduced

to a single equation on the number of cells contained in the ball of radius r and
centered at the origin

M(t, r) = 2π

∫ r

0

σd−1�(t, σ)dσ = −2πrd−1c′(t, r).

We can integrate (5.21) and arrive at⎧⎨⎩
M ′(r) = 2πrd−1�(r),

∂
∂tM(t, r) − rd−1( M ′

rd−1 )′ − χ
2πrd−1 M ′ M = 0.

(5.22)

Notice that the total mass is related to M(t, r) by

m0 =
∫

R2
�(t, x)dx = M(t, r = ∞),

and that M(t, r) should be increasing in r.
As mentioned earlier, there is a great simplification arising here. Namely, the

Keller–Segel system is reduced to a single equation, which differs from Burgers
equation (see [71, 196] for instance) only by its variable coefficients. In particular,
we now have the comparison principle at hand!
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5.4.2 Stationary states

In two dimensions, steady state solutions can be easily derived from this system
by a further reduction. We write for time independent solutions

0 = r2(
M ′

r
)′ − χ

2π
M ′ M = rM ′′ − M ′ +

χ

4π
(M2)′.

And thus, one more simple algebraic manipulation leads to

rM̄ ′ − 2M̄ +
χ

4π
M̄2 = 0, r ≥ 0, M̄(0) = 0, M̄ ′ ≥ 0. (5.23)

The condition M̄(0) = 0 just follows from the definition of M(t, r) and is valid as
long as there is no Dirac mass concentration at x = 0. It also provides us with the
integration constant needed for the right-hand side of (5.23).
One readily checks that there are nontrivial solutions only in the case of a special
value of the total mass, namely we have

Lemma 5.2. There are nontrivial radial steady states to (5.4) only for the critical
mass M̄(∞) = 8π

χ = mcrit, given by

M̄λ(r) =
mcrit

1 + λr−2
.

This is a one-parameter family with λ > 0 related to the scale invariance
of the Keller–Segel model (5.4). Recall also that the above value for the mass is
equivalent to the threshold for blow-up in (5.13).

Coming back to the cell density thanks to the definition of M(t, r), we obtain

�̄λ(r) =
M ′(r)
2πr

=
λ mcrit

π

1
(r2 + λ)2

. (5.24)

This function satisfies ∫
R2

|x|2�̄λ(|x|)dx = +∞.

It has been studied in the context of vortex systems by [44] and one can readily
check that this family minimized the energy functional (see Section 5.2.1). In
particular it gives a hint on the process of formation of a Dirac mass in the
Keller–Segel system because

�̄λ(|x|) −−→
λ→0

mcrit δ(x = 0).

Remark 5.4. In a two-dimensional ball B(0, R) there is a spherically symmetric
solution given by the same formula (5.24) but with 0 ≤ r ≤ R. Then the parameter
λ serves to fix the total mass m0 < mcrit. Notice that this solution corresponds
to zero flux on �, but to c = 0 on ∂B(0, R). The case of Neumann condition on c
leads to multiple solutions (see [137, 138, 114, 49]).
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5.4.3 Refined existence and blow-up

This solution may serve to give a hint on the behavior of generic radially symmetric
solutions and in particular to understand why a singularity can arise only at the
origin.

Theorem 5.4 (Global solutions). In dimension 2, assume that we have

m0 = M(∞) < mcrit, M(t = 0) ≤ M̄λ0 ,

for some λ0 > 0. Then the solution to (5.22) satisfies

M(t, r) → 0 as t → ∞ locally uniformly,

and thus �(t) in (5.21) vanishes in L1(R2) locally.

Theorem 5.5 (Blow-up). In dimension 2, assume that

m0 = M(∞) > mcrit, M(t = 0) ≥ M̄λ0 ,

for some λ0 > 0. Then the solution to (5.21) blows up in finite time.

This theorem expresses that, in the blow-up and existence results proved in
Section 5.3, the limitation on the second moment are in fact useless in the radially
symmetric case. They can be relaxed by the comparison condition with M̄λ0 , which
we recall, has an infinite second momentum.

The proofs are also very different and use a comparison argument with sub-
or supersolutions in the spirit of [145]. A related method can be found in [201]
where the authors go further and prove the concentration of a mass 8π

χ at the
blow-up time, and after an appropriate extension of the notion of solutions, all the
mass will concentrate at the origin.

Proof of Theorem 5.4. Being given, M(∞) < mcrit, we may always choose a posi-
tive number µ < 1 which satisfies µmcrit > M(∞). Then we consider the function

N̄(t, r) = min
(
M(∞), µ M̄λ(t)(r)

)
, λ(t) = λ0 +

χ

π
(µ−1−1)

(
µmcrit−M(∞)

)
t,

and we claim it is a supersolution to (5.22) (with d = 2). Indeed, we have

∂N̄

∂t
= −N̄

r−2

1 + λr−2

dλ(t)
dt

or 0,

N̄ ′ = 2N̄
λr−3

1 + λr−2
or 0.

Next, we may compute the radius R(t) such that for r > R(t) the minimum is
attained by M(∞). It is given by

λ(t)R(t)−2 =
µmcrit − M(∞)

M(∞)
,
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and for r ≤ R(t), we have

∂
∂tN̄ − r( N̄ ′

r )′ − χ
2πr N̄ ′ N̄ = N̄ r−2

1+λr−2 [− dλ(t)
dt + χmcrit

π (1 − µ) λ(t)r−2

1+λr−2 ]

≥ N̄ r−2

1+λr−2 [− dλ(t)
dt + χmcrit

π (1 − µ) λ(t)R(t)−2

1+λR(t)−2 ]

= N̄ r−2

1+λr−2 [− dλ(t)
dt + χ

π (µ−1 − 1)
(
µmcrit − M(∞)

)
]

= 0.

But the minimum of two supersolutions is also a supersolution and thus N̄ is
indeed a supersolution to (5.22).

By the comparison principle, we deduce that the solution (5.22) satisfies
M(t, r) ≤ N̄(t, r) (because it is satisfied initially). We conclude the proof just
noticing that R(t) → ∞ and for a given interval r ∈ (0, R) we therefore have for t
large enough M(t, r) ≤ mcrit/(1 + λ(t)R2) → 0 as t → ∞. �

Proof of Theorem 5.5. We follow the same lines as before and first choose, since
mcrit < M(∞), a value µ0 > 1 which satisfies µ0mcrit < M(∞). We consider now
the function

N̄(t, r) = max
( M(∞)
1 + λ0r−2

,
µ0mcrit

1 + λ(t)r−2

)
,

and we argue in two steps; (i) λ(t) = λ0e−αt for t < t1 large enough, (ii) λ(t) =
λ(t1) − t + t1 for t1 < t < t2 = t1 + λ(t1) the first time λ(t) vanishes, and also we
decrease slightly the value of µ during this step.

We will prove that N̄ is a subsolution as it is the maximum of two subsolutions
and this concludes the proof because we deduce that M(t) ≥ N̄(t) and thus
M(t2, 0) > 0 which is impossible for smooth solutions.

To prove that N̄ is a subsolution, we first notice that M(∞)
1+λ0r−2 is a subsolution

to (5.22) because it is an increasing function and mcrit
1+λ0r−2 is a solution. Secondly,

we consider t < t1 and we have to prove that µ0mcrit
1+λ(t)r−2 is a subsolution only in an

interval r ≤ R(t) where it achieves the max, i.e.,

M(∞)
1 + λ0R(t)−2

=
µ0mcrit

1 + λ(t)R(t)−2
.

Notice that r ≤ R(t) ≤ R0 with M(∞)

1+λ0R−2
0

= µ0mcrit. Then, we compute

∂
∂tN̄ − r( N̄ ′

r )′ − χ
r N̄ ′ N̄ = N̄ r−2

1+λr−2 [− dλ(t)
dt + χmcrit

π (1 − µ0) λr−2

1+λr−2 ]

≤ N̄ r−2

1+λr−2 [− dλ(t)
dt + χmcrit

π (1 − µ0) λR−2
0

1+λR−2
0

]

≤ N̄ r−2

1+λr−2 [− dλ(t)
dt + χmcrit

π (1 − µ0)λR−2
0 ]

= 0,
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choosing

dλ(t)
dt

= −χmcrit

π
(µ0 − 1)λ(t)R−2

0 , α =
χmcrit

π
(µ0 − 1)R−2

0 .

In a third step, we choose t1 large enough so that λ(t1) is as small as necessary
and then consider,

λ(t) = λ(t1) − t + t1, µ(t) = µ0(1 − 2(t − t1)),

for t1 < t < t2 with t2 the time where λ(t2) vanishes, which can be chosen as close
as we wish to t1 by choosing t1 large. Then we have (see the above calculation for
the negative sign of the r-derivatives)

∂
∂tN̄ − r( N̄ ′

r )′ − χ
r N̄ ′ N̄ ≤ N̄ [− 1

r2+λ
dλ(t)

dt + dµ(t)
dt /µ(t)]

< 0,

as long as t < t2 is close enough to t1 which is exactly what we want. We have
obtained again a subsolution which concludes the proof of Theorem 5.5. �

5.5 Related chemotactic and angiogenetic systems

In this section we review some related models that have been proposed or studied
recently; a more extensive presentation of many questions is in [137, 138].

5.5.1 Quorum sensing, volume filling, signal limiting

The blow-up phenomena is sometimes considered as a weakness for the Keller–
Segel system (5.1). Therefore modifications have been proposed to prevent over-
crowding and thus the blow-up phenomena. Examples have been proposed in
[139, 130, 132, 154] and enter the general class⎧⎨⎩

∂
∂t� − div

(
D(�)∇�

)
+ div(�χ(�)∇c) = 0,

τc − ∆c = �,
(5.25)

with τ > 0 a positive parameter and D(u) → ∞ as u → ∞ or χ(u) → 0 as u → ∞.
In such models, one can prevent blow-up using either the nonlinear diffusion D(u)
(volume filling), see [154], or nonlinear sensitivity χ(u) (quorum sensing) [139]. A
very complete study of this kind of system based on energy methods can be found
in [47]; the parabolic case is treated in [215] and the references therein. For similar
questions at the kinetic level, see [55].

A natural question occurs now. We parametrize Dn(u) and χn(u) in such a
way that Dn(u) → 1, χn(u) → 1 as n → ∞. Then, one is supposed to recover
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(5.1) which solutions may blow-up in finite time, thus providing a natural con-
tinuation of singular solutions after blow-up. Is this continuation unique? It has
been observed numerically in [168] that this continuation in fact depends upon the
truncation; a finite element method (that is some kind of truncation) usually ex-
hibits steady concentration points but one can obtain ‘concentration points’ that
move for the model with signal limiting⎧⎨⎩

∂
∂t� − ∆� + div(�χ∇c) = 0,

τc − ∆c = � e−�/A,
(5.26)

where A is a large constant, as proposed in [29]. This phenomena is compatible
with the formula proposed in [226] for the motion of the concentration points
which indeed depends upon the truncation.

A special case of system (5.25) is⎧⎨⎩
∂
∂t� − div

(
D(�)∇�

)
+ div(�(1 − η�)χ∇c) = 0,

τc − ∆c = �.
(5.27)

This system satisfies clearly the maximum principle and as soon as 0 ≤ �0 ≤ η, we
have 0 ≤ �(t) ≤ η. Therefore solutions are global in time. However very interesting
questions arise around various related asymptotic problems ([42, 86]) either for
small diffusions or for η → 0 because various intermediate asymptotic regimes
occur.

Finally an interesting question remains to know if there is blow-up with
sensitivity functions as χ(c) = α

1+c in (5.1). Then an additional difficulty is that
there is no known free energy functional. See the account on this subject in [200,
137].

5.5.2 Reacting chemoattractant

The system (5.1), and most of the variants, are unable to describe swarm rings or
complex patterns that experiments can exhibit. Thus other ingredients are needed
to see these traveling waves, spiral waves initiated patterns, multiple aggregation
points. It can be proved that additional nonlinearities (sensitivity coefficient χ =
ln(c) for instance, birth and saturation terms) can lead to traveling waves [207, 37].
Attracting and repulsing substances, [23], can cause different patterns.

In [40], one can also find another biological explanation. The attractant
(aspartate, c(t, x) with previous notation) is produced by cells themselves when
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consuming fumarate (f(t, x) below). The proposed model is 2⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t� − ∆� + div(�∇c) = 0,

−∆c = � f,

∂
∂tf − β∆f = −γ f �.

(5.28)

The existence of solutions under scale invariant smallness assumptions is
proved in [48]. It is an open question to prove blow-up or existence for large data.

5.5.3 Extra-cellular chemoattractant and active receptors

Still more elaborated models have been proposed in order to render complex pat-
terns before blow-up. They include extra-cellular chemoattractant (u) and active
receptors of the cells (v) and give rise to the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t� − ∆� + div(�χ(v)∇u) = 0,

∂
∂tu − ∆u = F (�, u, v),

∂
∂tv = G(u, v).

(5.29)

Numerical simulations exhibiting patterns closely related to experimental obser-
vations can be found, see [164] for instance.

A general account for the biophysical assumptions (type of cells, type of
substrate) sustaining such models can also be found in [178] as well as many
references and various numerical simulations.

Notice that more accurate models at the kinetic level have been proposed
recently. They take into account various internal states of the cells and can serve
to derive macroscopic systems as (5.29). See [96, 85, 131] and the references therein.

5.5.4 The log interaction kernel and Modified Keller–Segel

From a mathematical point of view, the theory is much better when the chemoat-
tractant c is derived from a different interaction kernel with a fractional diffusion
law, namely ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂n

∂t
= ∆n − χ∇ ·

(
n∇c

)
t > 0, x ∈ Rd,

c = Kd ∗ n t > 0, x ∈ Rd,

n(t = 0) = n0 ≥ 0

(5.30)

2Compared to the system in [40], we have added a term f in the third equation of system
(5.28) in order to impose a priori the inequality f ≥ 0.
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where the critical kernel Kd, and mass Mcrit are defined as

Kd(z) = − 1
dπ

log |z|, Mcrit = 2d2π/χ. (5.31)

For this model, the Modified Keller–Segel system, introduced and studied in
[49], it is proved that, for any dimension d, a theory holds that is very similar to
that of two-dimensional Keller–Segel.

• For
∫

Rd n0(x)dx := M < Mcrit there are global weak solutions, with regular-
izing effects in L∞ (hypercontractivity).

• For M > Mcrit there is blow-up in finite time.

Behind this particular scaling that defines c, there are two properties that do not
hold so nicely for the Keller–Segel system but do hold for the Modified Keller–Segel
system; the second moment satisfies a closed equation and the energy contains
exactly the terms of the Logarithmic Hardy–Littlewood–Sobolev inequality (see
Section 6.5). These are the two equalities

d

dt

∫
Rd

1
2
|x|2n(t, x) dx =

∫
Rd

1
2
|x|2∇ · (∇n − χn∇c) dx

= −
∫

Rd

x · (∇n − χn∇c) dx

=
∫

Rd

(∇ · x)n dx +
χ

dπ

∫
Rd×Rd

n(x)
x · (x − y)
|x − y|2 n(y) dy dx

= M(d − χ

2dπ
M) (5.32)

and the energy functional

F(n) =
∫

Rd

n log n − χ

2

∫
Rd

nc =
∫

Rd

n log n − χ

2

∫
Rd

n K ∗ n, (5.33)

satisfies the property t �→ F
(
n(t)

)
is decreasing, more precisely

d

dt
F
(
n(t)

)
= −

∫
Rd

n|∇ log n − χ∇c|2 ≤ 0. (5.34)

We refer to [49] for a study of the MKS in the full space and in bounded
domains (where again the theory is much better).

5.5.5 Some numerical results

Specific patterns arise from a Keller–Segel model with growth terms presented in
[178] where the reader can find the parameters and specific interpretation⎧⎨⎩

∂
∂t� − D∆� + div( �

(1+c2)∇c) + µ�(δ − �) = 0,

∂
∂t� − ∆c = β�2 − c�.

(5.35)
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Figure 5.5 presents numerical results exhibiting interesting patterns: from left
to right, three different snapshots after the initialization with a high concentration
at the upper right corner. The right most picture is the steady state.

Figure 5.5: Solutions of the K.-S. system with growth (5.35). (up) Parameters have

been chosen in the transition range between diffusion dominant (not shown) and

(down) Stable spots like steady states. (Courtesy of A. Marrocco)

5.5.6 A model from angiogenesis

Related models also appear in biomedical literature to describe the attraction of
cells or blood vessels by an external signal (emitted by a tumor for instance). A
process that is referred to as angiogenesis ([58, 107, 156, 166]). A simplified model,
which shares some aspects of both previous models, is then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂t� − ∆� + div(�∇c) = 0,

∂
∂tc = −� c,

�0 ∈ L∞ ∩ L1
+(Rd), c0 ∈ L∞

+ (Rd).

(5.36)

This model admits an energy dissipation principle,⎧⎪⎨⎪⎩
Eang(t) =

∫
Rd [� ln(�) + 2|∇

√
c|2] dx,

d
dtEang(t) = −

∫
Rd �

[
|∇ ln(�)|2 + 6|∇

√
c|2

]
≤ 0.

(5.37)
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Although apparently simpler than the Keller–Segel system, it presents also
a deep mathematical interest. The first mathematical analysis goes back to [202]
proving well posedness in one dimension and that, with some additional nonlinear-
ities, the system can either blow-up or exhibit extinction, i.e. � vanishes locally in
finite time. As it is written here the model admits global weak solutions for initial
data with finite energy. Strong solutions are obtained in ([67, 68]) but a smallness
assumption is needed in dimensions higher than 3. It is an open question to prove
Lp estimates for large initial data. We also refer to [107] for stability issues.

This angiogenesis model has an additional difficulty compared to the Keller–
Segel system because there is no diffusion on c, which makes it of specific interest.
On the other hand it describes repulsion rather than attraction and this simplifies
some mathematical aspects, for instance both terms in the energy are positive.

5.6 Chemotaxis: kinetic equation

A kinetic model was proposed by [5, 189], based on detailed observations on the
motion of Escherichia coli. As mentioned earlier (see Figure 5.1), bacterium Es-
cherichia Coli is equipped with flagella. When rotated counterclockwise, the flag-
ella act as a propellor resulting in a straight “run”. When rotated clockwise the
bundle of flagella separates, resulting in a “tumble” which reorients the cell but
causes no significant change in location. Bacillus Subtilis (another bacterium) also
moves by ‘run and tumble’ but the runs correspond to clockwise rotations and tum-
bles to counterclockwise rotation of the biomotor. During these runs, the bacterium
can go as fast as 30µm/s (scaled to a car this would be close to 600km/h!). As a
consequence the bacterium moves along straight lines, suddenly stops to choose a
new direction and then continues moving in this new direction. This phenomenon,
called ‘run and tumble’, can be modeled by a stochastic process, the velocity-jump
process [5, 189, 191, 214, 85, 192]. At the level of the population this is equivalent
to writing a kinetic (or linear Boltzmann) type equation.

We first present the kinetic model in a first subsection, with the existence
theory for the nonlinear model which was carried out in [54]. In second and third
subsections, we explain the derivation of the ‘macroscopic’ Keller–Segel models.
We refer to [119, 197, 227] for recent general presentations of the mathematical
theories for kinetic equations. We also point out the recent kinetic model in [128]
for mesenchymal motion i.e. cells moving in fiber networks (extra-cellular matrix)
and degrading them.

5.6.1 Nonlinear transport-scattering equation

This ‘run and tumble’ process is very similar to that of scattering for neutrons that
‘run’ along straight lines until they encounter an atom and then are ‘scattered’ in
a new direction ([72] Ch. 9, [197]). The governing equation is therefore reminiscent
of the seminal Boltzmann equation and is posed for t ≥ 0, x ∈ R

d, ξ ∈ V ⊂ R
d
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v′

x − εv′

v

Figure 5.6: Run and tumble movement for E. Coli.

(it is natural to choose for instance V a ball of Rd centered at the origin, and we
denote by |V | the volume of V ),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tf(t, x, ξ) + ξ · ∇xf = K(t, x, ξ),

K(t, x, ξ) =
∫

V

[
K(c; ξ, ξ′)f(t, x, ξ′) − K(c; ξ′, ξ)f(t, x, ξ)

]
dξ′,

f(t = 0, x, ξ) = f0(x, ξ) ≥ 0, f0 ∈ L1(Rd × V ).

(5.38)

The gradient term expresses the transport of organisms with their own velocity ξ
and the function K(c; ξ, ξ′) ≥ 0 is called the turning rate or scattering kernel and
may also depend on (t, x) through a nonlocal dependency upon the chemoattrac-
tant concentration c(t, x). It gives the rate K(c; ξ, ξ′) of organisms turning from
velocity ξ′ to ξ, and thus the rate K(c; ξ′, ξ) of organisms with velocity ξ that are
subtracted from the balance on f(t, x, ξ). Several possible forms for this kernel can
be found in [129]; here, and the specific form of K is fundamental for the existence
theory we develop below, we restrict ourselves to the case

−∆c = n(t, x) :=
∫

V

f(t, x, ξ)dξ, (5.39)

K(c; ξ, ξ′) = k−
(
c(t, x − εξ′)

)
+ k+

(
c(t, x + εξ)

)
. (5.40)

The term k− expresses roughly a delay ε > 0 in reaction time (a memory effect)
which can be explained by the necessary saturation time of membrane receptors
that control the rotation of the flagella. On the other hand, k+ represents a pos-
sible knowledge of preferred directions (in the sense of higher chemoattractant
concentration), see [5, 6, 129, 142] for further explanations. See [55] for a model
preventing overcrowding.

Notice that these models do not suppose a comparison between two values
of the concentration c(t, x) at different locations, but only a biased turning rate
according to the knowledge of a single value c(t, x ± εξ). We will assume that

k± ∈ C1(R+; R+), k±(0) > 0, 0 ≤ k′
± ≤ Q < ∞. (5.41)
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Also notice that, because of the diffusion equation on c, we arrive at a nonlinear
mean field equation since the interaction is long range (see Subsection 5.8 for com-
ments on this issue). This model shares many similarities with the gravitational
Vlasov-Poisson equation (motion of self-attracting particles, [197]).

In terms of mathematical theory, this model is very interesting because of
the lack of a priori estimates. The kernel being non-symmetric in ξ and ξ′, we have
at hand only the two properties

f(t, x, ξ) ≥ 0 ∀t ≥ 0, (minimum principle), (5.42)∫
Rd×V

f(t, x, ξ)dx dξ =
∫

Rd×V

f0(x, ξ)dx dξ, (mass conservation). (5.43)

This last property follows because we have, inverting the role of ξ and ξ′ in the
two integrals below (and using the Fubini theorem),∫

V

K(t, x, ξ)dξ =
∫

V

∫
V

[
K(c; ξ, ξ′)f(t, x, ξ′) − K(c; ξ′, ξ)f(t, x, ξ)

]
dξ′ dξ = 0.

Even in the linear case, to go further and derive Lp estimates on f for p > 1
is not so easy. The entropy structure behind such general models, which lacks
a “detailed balance principle”, also relies on the Generalized Relative Entropy
method that we used for cell division models (see [176] and Section 6.4).

5.6.2 Existence theory

The existence theory for the nonlinear system (5.38), (5.40), (5.39) was settled in
[54] (thus extending a result in [129] in the linear case) and yields

Theorem 5.6. In dimension d = 3, assume that V is bounded, that (5.41) holds
and that f0 ∈ L∞(Rd × V ); then there is a unique solution to the system (5.38),
(5.40), (5.39), f ∈ C

(
[0,∞); L1(Rd × V )

)
, moreover we have the bounds

0 ≤ f(t, x, ξ) ≤ C(t), 0 ≤ n(t, x) ≤ C(t) |V |,

‖c‖Lp(Rd) ≤ C(t), d < p ≤ ∞,

for some increasing constant C(t).
This also holds in dimension d = 2 for the equation −∆c + c = n for the

chemoattractant.

This result provides global strong solutions and therefore shows a fundamen-
tal difference with the macroscopic model Patlak/Keller–Segel system since we
have seen that the latter exhibits blow-up.

The method of proof of Theorem 5.6 has been extended in [142] to a remark-
able result in dimension 3; namely we can use also, in place of the kernels in (5.40),
kernels such as

K = k−
(
∇c(t, x − εξ′)

)
, or K = k+

(
∇c(t, x + εξ)

)
,
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but the sum is not allowed in this case when the dependency is on ∇c in place of
c.

Theorem 5.7. In any dimension d > 2, assume that V is bounded, that f0 ∈
L∞(Rd × V ) and that the continuous kernel K satisfies either

K(c; ξ, ξ′) ≤ K0 + Q+c(x + εξ) + Q+|∇c(x + εξ)|,

or
K(c; ξ, ξ′) ≤ K0 + Q−c(x − εξ′) + Q−|∇c(x − εξ′)|;

then there is a unique solution to the system (5.38), (5.39), f ∈ C
(
[0,∞); L1(Rd×

V )
)
, moreover we have

0 ≤ f(t, x, ξ) ≤ C(t), 0 ≤ n(t, x) ≤ C(t) |V |,

‖c‖Lp(Rd) ≤ C(t),
d

d − 2
< p ≤ ∞,

‖∇c‖Lp(Rd) ≤ C(t),
d

d − 1
< p ≤ ∞

for some increasing constant C(t).
This also holds in dimension d = 2 for the equation −∆c + c = n for the

chemoattractant and for the general dependency

K(c; ξ, ξ′) ≤ K0 +Q+c(x+εξ)+Q+|∇c(x+εξ)|+Q−c(x−εξ′)+Q−|∇c(x−εξ′)|.

Extensions of these results have been obtained recently in [38].

Proof of Theorem 5.6. Again we only give the a priori estimates; they allow us to
obtain the solutions after using a fixed point method. Also, for the proof we take
ε = 1 in order to simplify notation.

We have,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tf(t, x, ξ) + ξ · ∇xf ≤ K+(t, x, ξ),

K+(t, x, ξ) =
∫

V
K(c; ξ, ξ′)f(t, x, ξ′)dξ′

=
∫

V

[
k−

(
c(t, x − ξ′)

)
+ k+

(
c(t, x + ξ)

)]
f(t, x, ξ′)dξ′,

and thus, using Hölder inequality with 1
p + 1

p′ = 1,

d
dt

∫
Rd×V fp(tx, ξ)dx dξ = p

∫
Rd×V fp−1K+(t, x, ξ)dx dξ

≤ p
(∫

Rd×V
fp′(p−1)dx dξ

)1/p′ (∫
Rd×V

K+(t, x, ξ)pdx dξ
)1/p

.
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Therefore, since p′(p − 1) = p,

d
dt

∫
Rd×V fp(t, x, ξ)dx dξ ≤ p

∫
Rd×V K+(t, x, ξ)pdx dξ

≤ C[ I + II ],

with

I =
∫

Rd×V

[ ∫
V

k−
(
c(t, x − ξ′)

)
f(t, x, ξ′)dξ′

]p
dx dξ

≤
∫

Rd×V

[ ∫
V k−

(
c(t, x − ξ′)

)p′
dξ′

]p/p′ ∫
V fp(t, x, ξ′)dξ′

]
dx dξ

≤ |V |
∫

Rd×V
f(t, x, ξ)pdx dξ supy∈Rd

[ ∫
V

k−
(
c(t, y + η)

)p′
dη
]p/p′

,

and

II =
∫

Rd×V

[ ∫
V k+

(
c(t, x − ξ)

)
f(t, x, ξ′)dξ′

]p
dx dξ

≤ |V |p/p′ ∫
Rd×V

k+

(
c(t, x − ξ)

)p ∫
V

fp(t, x, ξ′)dξ′ dx dξ

≤ |V |p/p′ ∫
Rd×V f(t, x, ξ)pdx dξ supy∈Rd

[ ∫
V k+

(
c(t, y + η)

)p
dη
]
.

As a consequence, we arrive at the inequality

d
dt

∫
Rd×V fp(tx, ξ)dx dξ ≤ C

∫
Rd×V f(t, x, ξ)pdx dξ A[c(t, ·)], (5.44)

with, keeping in mind the assumption on k± given in (5.41),

A[c(t, ·)] = K0 + Q sup
y∈Rd

[
‖c(t, y + ·)‖Lp(V ) + ‖c(t, y + ·)‖Lp′(V )

]p
.

We can go one step further and write

c = cL + cS , cS = λd

1I{|x|≤1}
|x|d−2

� n,

and the long range part interaction cL is easy to handle since

0 ≤ cL(t, x) = λd

1I{|x|>1}
|x|d−2

� n ≤ λd‖n‖L1(Rd) ≤ λd‖f0‖L1(Rd×V ),

because of the mass conservation. Therefore the coefficient A arising in (5.44) is
upper bounded by

A[c(t, ·)] ≤ C + Q
[
‖cS(t, ·)‖Lp(Rd) + ‖cS(t, ·)‖Lp′(Rd)

]p
.

The argument necessary to handle this short range part cS is more elaborate
because of the Lp and Lp′

norms.
To conclude we argue with a bootstrap argument taking into account that

1I{|x|≤1}
|x|d−2 ∈ Lq(Rd) for all 1 ≤ q < d/(d − 2). We begin, as a first step, with p0 = 1

and n ∈ L∞(
0,∞); L1(Rd)

)
and thus, for all q0 < d/(d − 2),

‖cS(t, ·)‖Lq0 (Rd) ≤ C‖n(t, ·)‖L1(Rd) ≤ C‖f0‖L1(Rd×V ).
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With this range for the parameter q, we need to choose p in (5.44) so that p ≤ q
and p′ ≤ q. This is possible with p = q0 > 2 (close to 2 say) if d/(d−2) > 2, which
holds for d = 3 (and for d = 2 if the equation on c is modified as in the statement
so that the long range potential can be handled as before).

This means that the Gronwall inequality gives, for p = p1 = 2,

‖f(t)‖Lp(Rd×V ) ≤ eCt‖f0‖Lp(Rd×V ), ‖n(t)‖Lp(Rd) ≤ CeCt‖f0‖Lp(Rd×V ).

Therefore, as a second step, using the Young inequality, cS ∈ L∞
loc

(
R+; Lq1(Rd)

)
for all q1 ≥ 1 such that 1 + 1

q1
> 1

2 + d−2
d . Such q1 are much larger than those q0

of the first step. They allow us to choose much larger p2 that satisfy both p2 ≤ q1

and p′2 ≤ q1. . . and so on. The reader can easily convince himself that in three or
four steps we arrive at c ∈ L∞

loc

(
R+; L∞(Rd)

)
, and the result on f is proved.

The result on c just follows by elliptic regularity. �
Proof of Theorem 5.7. We now examine the case with dependency k±(∇c(x ± ·))
and skip the dependency on c, again for the sake of simplicity. The above compu-
tation still holds and leads to formula (5.44) with

A[c(t, ·)] = K0 + sup
y∈Rd

[
Q+‖∇c(t, y + ·)‖Lp(V ) + Q−‖∇c(t, y + ·)‖Lp′(V )

]p
,

where we now distinguish k± with a Lipschitz constant Q±.
In order to apply the method developed above, we now use a decomposition

for the convolution kernel associated to ∇c in long and short ranges, namely,

∇c = ∇cL + ∇cS , ∇cS = λd

x 1I{|x|≤1}
|x|d � n,

and the long range interaction is still easy to handle

∇cL = λd

x 1I{|x|>1}
|x|d � n, |∇cL| ≤ C‖f0‖L1(Rd×V ).

As before, we end up with the simpler estimate

A[c(t, ·)] = C +
[
Q+‖∇cS(t, ·)‖Lp(V ) + Q−‖∇cS(t, ·)‖Lp′(V )

]p
.

We explain now why only Q+ or Q− can be present in the turning kernel but
not both. As before the idea is to bootstrap departing from n∈L∞(

(0,∞); L1(Rd)
)

and thus, for all q0 < d/(d − 1),

‖∇cS(t, ·)‖Lq0(Rd) ≤ C‖n(t, ·)‖L1(Rd) ≤ C‖f0‖L1(Rd×V ).

But it turns out that for d ≥ 2 we always have d/(d−1) ≤ 2. Therefore we cannot
have both p > q0 and p′ > q0. If only one term k+ or k− is present, say k+ for
instance, we can still continue. We use p = q0, and

‖f(t)‖Lp(Rd×V ) ≤ eCt‖f0‖Lp(Rd×V ), ‖n(t)‖Lp(Rd) ≤ CeCt‖f0‖Lp(Rd×V ).
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Therefore the Young inequality gives n ∈ L∞
loc

(
R+; Lq1(Rd)

)
with 1+ 1

q1
> 1

q0
+ d−1

d .
Clearly one can choose any q1 such that 1

q1
> 2 d−1

d − 1 = d−2
d and thus we

may choose again p = q1 > q0 and so on. Again we do not check the details of
numerology leading to the L∞ regularity.

If now k− only is present, it is still simpler because we can directly choose
p = +∞, p′ = 1 and we conclude. Indeed, x 1I{|x|≤1}

|x|d ∈ L1(Rd) and thus

‖∇cS(t, ·)‖L1(Rd) ≤ C‖n(t, ·)‖L1(Rd) ≤ C‖f0‖L1(Rd×V ).

In dimension d = 2, with the equation −∆c + c = n, the method developed
above still does not apply directly to the case

K(c; ξ, ξ′) ≤ K0 +Q+c(x+εξ)+Q+|∇c(x+εξ)|+Q−c(x−εξ′)+Q−|∇c(x−εξ′)|.

An additional, and more refined, logarithmic loss in a limiting Young inequality
is needed.

‖∇c‖L2(R2) ≤ C‖n(t, ·)‖L1(R2)

(
log ‖n(t, ·)‖L2(R2)

)1/2
.

The proof is given in Lemma 6.9 in Appendix 6.5.
This inequality induces a logarithmic loss in the Gronwall argument. We do

not carry out the details and refer to [142] for the end of the proof of Theorem 5.7
in the case d = 2. �

5.7 Diffusion limit; back to the Keller–Segel equation

The classical field of application of kinetic equations consists in finding the so-
called transport coefficients in macroscopic equations. The most remarkable ex-
ample is to derive the pressure laws, viscosities and heat conductivities in the
Navier–Stokes system from the Boltzmann equation derived in the early twentieth
century by Chapman and Enskog (see [53] for instance). In the case at hand, this
means that, departing from some knowledge, or some intuition, of the individ-
ual response of cells to the chemical stimulus described by the kernel K, one can
recover the coefficients of a macroscopic equation.

In order to achieve such a program, we need to find regimes where interac-
tions reduce the kinetic equation in (t, x, ξ) to a macroscopic model with variables
(t, x) only. In other words, we need to isolate small parameters which are related
to the relaxation of the density f(t, x, ξ) to specific dependency on ξ, called an
equilibrium state. For the above mentioned reduction from Boltzmann equation
to Navier–Stokes system, the Maxwellian distribution arises naturally

f(t, x, ξ) ≈ �

(2πT )d/2
e−|ξ−u|2/(2T ) .
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Other specific distributions arise in various fields of applications, such as plasma
physics, with each time a direct physical interpretation, [75, 167, 196, 122] and
Section 5.8.

There are several ways to perform this asymptotic analysis and to choose
small parameters in kinetic equations. The most standard ones are the so-called
hydrodynamic limits corresponding to the hyperbolic scale which we explain in the
next section, and the diffusion limit corresponding to the parabolic scale which we
perform now.

5.7.1 Rescaled kinetic chemotaxis model

The simplest example of a diffusion limit is to derive the heat equation from a
scattering equation (see [15, 72, 192] and the references therein). The regime of
interest is when the scattering operator dominates transport and this leads, in the
average, to many ‘tumbles’, and thus to small macroscopic (averaged) velocities.
Then a rescaling is introduced and here it is natural to use the small time scale
ε arising in (5.40). The parabolic scale consists, after a change of time and space
scales, in replacing the equation (5.38) by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tfε(t, x, ξ) + ξ

ε · ∇xfε

+ 1
ε2

∫
V

[
Kε(cε; ξ′, ξ)fε(t, x, ξ) − Kε(cε; ξ, ξ′)fε(t, x, ξ′)

]
dξ′ = 0,

fε(t = 0, x, ξ) = f0(x, ξ) ≥ 0, f0 ∈ L1 ∩ L∞(Rd × V ).
(5.45)

The notation Kε has only been used to put in evidence the dependency upon ε
in the definition of K in (5.40) and we still consider that the chemoattractant
concentration cε(t, x) is related to fε through the Laplace equation (5.39), i.e.,

−∆cε(x) = nε(x), x ∈ R
d. (5.46)

The diffusion limit consists in studying the limit as ε vanishes. This nonlinear
model (5.38), (5.40), (5.39), has been introduced and studied by several authors,
[5, 189, 190, 191, 194, 129], and the linear case, when the chemoattractant con-
centration is a given smooth function, can be found in these references. The main
originality, already present in the linear case, is to raise a drift term in the limit
and not a mere diffusion as usual. A similar problem arises in other applications
such as plasma physics, [75, 185].

Coming back to the question of transport coefficients, the outcome is to make
the relation between two coeficients. At the microscopic scale we use the function
k± for instance, and at the macroscopic scale we have the diffusion D(c, n) and
sensitivity χ(c, n) in the general Keller–Segel model⎧⎨⎩

∂
∂tn(t, x) − div(D · ∇n) + div(n χ · ∇c) = 0, t ≥ 0, x ∈ Rd,

−∆c = n.
(5.47)
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A complete proof of convergence in the nonlinear case is given in [54]. Namely
the follwing is proved.

Theorem 5.8. Under the assumption (5.40),
∫

V ξ dξ = 0, |V | = 1 to simplify, there
is a time T ∗ > 0 such that, as ε → 0,

fε(t, x, ξ) ⇀ n(t, x) 1I{ξ∈V }, weakly in L2
(
[0, T ∗] × R

d × V
)
,

cε(t, x) → c(t, x), ∇cε(t, x) → ∇c(t, x),

and the general Keller–Segel system (5.47) holds in the limit with initial data
n0(x) = 1

|V |
∫

V f0(x, ξ)dξ and with the nonnegative symmetric diffusion matrix D

and symmetric sensitivity matrix given by

D(c) =
1

k+(c) + k−(c)

∫
V

ξ ⊗ ξ dξ, χ(c) =
k′
+(c) + k′

−(c)
k+(c) + k−(c)

∫
V

ξ ⊗ ξ dξ.

This result expresses an interesting effect. The diffusion matrix D(c) only
arises from the symmetric part of the turning kernel K (at zeroth order), while
the drift (and thus the sensitivity χ(c)) arises from the antisymmetric part at first
order in ε. In other words the memory effect is fundamental in order to obtain the
observed collective movement of the cells leading to their aggregation.

We do not prove Theorem 5.8 but instead explain the importance of the
symmetric and small antisymmetric parts. To do that we consider equation (5.45)
with a turning kernel that satisfies

Kε(c, ; ξ, ξ′) = Ks(c; ξ, ξ′)+εKr,ε(c; ξ, ξ′), Ks(c; ξ, ξ′) = Ks(c; ξ′, ξ) ≥ km > 0,
(5.48)

for some symmetric part Ks and some remainder (not necessarily antisymmetric
at this stage) Kr,ε which is however assumed to be bounded. For instance, consider
the case where Kε depends upon c as in (5.40), with a smooth function c, then we
might choose

Ks = k−(c) + k+(c).

5.7.2 Uniform estimate

A first way to see the necessity of the decomposition (5.48), is the derivation of
estimates on fε uniform in ε. This is expressed in

Proposition 5.1. With the assumption (5.48), the solutions to (5.45) satisfy for all
t ≤ T ,

‖fε(t)‖L2(Rd×V ) ≤ eCt ‖f0‖L2(Rd×V ), (5.49)

1
ε2

∫ T

0

∫
Rd×V ×V

|fε(t, x, ξ) − fε(t, x, ξ′)|2dxdξdξ′dt ≤ 2(1 + e2CT )‖f0‖L2(Rd×V ),

(5.50)
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with

C(T ) = sup
0≤t≤T,x∈Rd

∫
V

sup
ξ′∈V

K2
r

Ks
(c; ξ, ξ′)dξ.

We recall that the dependency on (t, x) is only through c in the above formula.

Proof. We multiply (5.45) by fε and integrate in x and ξ. We obtain

1
2

d
dt

∫
Rd×V fε(t)2

= − 1
2ε2

∫
Rd×V ×V

Ks(c; ξ, ξ′) |fε(t, x, ξ) − fε(t, x, ξ′)|2dxdξdξ′

+ 1
ε

∫
Rd×V ×V

Kr,ε(c; ξ, ξ′)
(
fε(t, x, ξ) − fε(t, x, ξ′)

)
fε(t, x, ξ′)dxdξdξ′

≤ − 1
2ε2

∫
Rd×V ×V km |fε(t, x, ξ) − fε(t, x, ξ′)|2dxdξdξ′

+ 1
4ε2

∫
Rd×V ×V km

(
fε(t, x, ξ) − fε((t, x, ξ′)

)
+
∫

Rd×V ×V
Kr,ε(c;ξ,ξ′)2

km
fε(t, x, ξ′)2dxdξdξ′

≤ − 1
4ε2

∫
Rd×V ×V km |fε(t, x, ξ) − fε(t, x, ξ′)|2dxdξdξ′

+C(T )
∫

Rd×V fε(t, x, ξ′)2dxdξ′.

Therefore, we may directly apply Gronwall’s lemma and obtain the first inequality
(5.49). Then, integrating in time the above inequality, and using (5.49), we obtain
(5.50). �

Notice that this L2 bound has consequences. The first one is that nε =∫
V

fεdξ is also bounded in L2. Therefore in dimensions 2 and 3 this implies that
the chemoattactant cε is bounded in L∞. It is proved in [54] that, by a Gronwall
argument this implies

Corollary 5.1. In dimension d = 2 or 3, with the assumption of Proposition 5.1,
the turning kernels (5.40) and f0 ∈ L2(Rd × V ), there is a time T ∗ > 0 such that
the solution to (5.49) is uniformly (in ε and 0 ≤ t ≤ T ∗) bounded in L2(Rd × V )
and cε(t, x) is uniformly bounded in L∞(Rd). Moreover the estimates (5.49) and
(5.50) hold up to this time T ∗.

With this in mind we can proceed and study the limit as ε vanishes. At this
point we would like to recall that this limiting process leads to the Keller–Segel
model that blows-up in finite time. Therefore the result Corollary 5.1 can indeed
hold only on a finite time interval.

5.7.3 Limit as ε vanishes

We first draw some conclusions from the a priori bounds in Proposition 5.1. The
proof of Theorem 5.8 relies on the analysis of the consequences of Proposition 5.1
and on the relation

∂nε

∂t
+ divJε = 0, 0 ≤ t ≤ T ∗, x ∈ R

d, (5.51)
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with
nε(t, x) =

∫
V

fε(t, x, ξ)dξ, Jε =
1
ε

∫
V

ξ fε(t, x, ξ)dξ. (5.52)

This is obtained integrating (5.49) in ξ.

Lemma 5.3. Recalling that
∫

V
ξ dξ = 0 and |V | = 1, for some n ∈ L∞(

(0, T ∗);
L2(Rd)

)
, J ∈ L2

(
(0, T ∗)×Rd

)
, we have after extraction of a subsequence εn → 0,

nε(t, x, ξ) ⇀ n(t, x), weakly in L2
(
(0, T ∗) × R

d
)
,

fε(t, x, ξ) ⇀ n(t, x) 1I{ξ∈V }, weakly in L2
(
(0, T ∗) × R

d × V
)
,

Jε(t, x, ξ) ⇀ J(t, x), weakly in L2
(
(0, T ∗) × R

d
)
.

Proof. From the L∞(
(0, T ∗); L2(Rd × V )

)
bound on fε, we deduce also that nε is

bounded in L∞(
(0, T ∗); L2(Rd)

)
, and thus admits a subsequence that converges

weakly to some n ∈ L∞(
(0, T ∗); L2(Rd)

)
as indicated in the first result.

Next, we use the estimate (5.50) and thus, thanks to the Cauchy–Schwarz
inequality with |V | = 1, we have∫ T∗

0

∫
Rd×V

|fε(t, x, ξ) − nε(t, x)|2dxdξdt

=
∫ T∗

0

∫
Rd×V

|
∫

V
[fε(t, x, ξ) − fε(t, x, ξ′)]dξ′|2dxdξdt

≤
∫ T∗

0

∫
Rd×V ×V

|fε(t, x, ξ) − fε(t, x, ξ′)|2dxdξdξ′dt

≤ Cε2.

This proves that, after further extraction, the weak limit of fε is the same as that
of nε, the second statement.

With the same type of argument, since
∫

V ξ dξ = 0, we have∫ T∗

0

∫
Rd |Jε(t, x)|2dxdt =

∫ T∗

0

∫
Rd |

∫
V ×V

ξ
ε [fε(t, x, ξ) − fε(t, x, ξ′)]dξdξ′|2dxdt

≤ C
ε2

∫ T∗

0

∫
Rd×V ×V |fε(t, x, ξ) − fε(t, x, ξ′)|2dxdξdξ′dt

≤ C

and thus Jε(t, x) is bounded in L2
(
(0, T ∗) × Rd

)
and thus admits a weak limit

also. �
Thanks to this lemma, we may pass to the limit in (5.51), and obtain

∂n

∂t
+ divJ = 0, 0 ≤ t ≤ T ∗, x ∈ R

d. (5.53)

In order to conclude the proof of Theorem 5.8, it remains to identify the ‘flux’
J(t, x). To do so we write the equation (5.49) as

1
ε

∫
V Ks(cε; ξ, ξ′) [fε(t, x, ξ′) − fε(t, x, ξ)]dξ′ = ε ∂

∂tfε + ξ · ∇xfε

+
∫
V

[
Kr,ε(cε; ξ′, ξ)fε(t, x, ξ) − Kr,ε(cε; ξ, ξ′)fε(t, x, ξ′)

]
dξ′.
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We integrate against the weight ξ dξ and obtain (using the specific form of Ks =
k+(cε) + k−(cε) and

∫
V

ξ dξ = 0),

−[k+(cε) + k−(cε)]Jε(t, x) = ε∂nε

∂t + div
∫

V
ξ ⊗ ξfε(t, x, ξ)dξ + Ja,ε(t, x),

with

Ja,ε(t, x) =
∫

V ×V
ξ
[
Kr,ε(cε; ξ′, ξ)fε(t, x, ξ) − Kr,ε(cε; ξ, ξ′)fε(t, x, ξ′)

]
dξ′dξ.

Because of the weak limits in Lemma 5.3, and because cε converges strongly 3, we
may pass to the limit in the distribution sense and obtain

−[k+(c) + k−(c)]J(t, x) = D̄ · ∇n + Ja,

with D̄ the matrix of entries
∫

V ξ ⊗ ξdξ which is enough to deduce the diffusion
matrix D = D̄/

(
k+(c) + k−(c)

)
in Theorem 5.8. It remains to compute Ja,

Ja(t, x) = n(t, x) lim
ε→0

∫
V ×V

ξ
[
Kr,ε(c; ξ′, ξ) − Kr,ε(c; ξ, ξ′)

]
dξ′dξ.

And from (5.40) and (5.48), we have∫
V ×V ξ

[
Kr,ε(c; ξ′, ξ) − Kr,ε(c; ξ, ξ′)

]
dξ′dξ

≈
∫

V ×V
ξ
[
k′
−(c)(−ξ + ξ′) + k′

+(c)(ξ′ − ξ)
]
.∇c dξ′dξ.

This leads to the following components of the vector Ja,

Ja,i(t, x) = −n(t, x) ∂c
∂xj

[
k′
−(c) + k′

+(c)
] ∫

V
ξi ξj dξ.

Altogether, we obtain the coefficients announced in Theorem 5.8. �

5.8 Hydrodynamic limit

The mere scattering model (5.38), (5.40), (5.39) does not allow us to derive a
hydrodynamic limit. Indeed local interactions (in the spirit of the binary collision
operator in Boltzmann equation, [53]) are needed for such a derivation. Local in-
teractions between cells in the kinetic model are not presented in the literature but
several hints that they might exist are based on biochemical investigations. This
pushed [103] to postulate a variant of the scattering equation where, additionally
to the long range interaction due to chemoattraction, some local operator is intro-
duced, thus arriving at a BGK type model (the case of a Vlasov equation is treated
in [122]). Those models have the advantage of avoiding the physical description of

3Here there are technical difficulties; namely some uniform regularity of Kr,ε in c has to be
assumed, and the regularizing effect on cε in space through the Laplace equation is not enough
and time has to be treated also, see [54].



148 Chapter 5. Cell motion and chemotaxis

the local interactions since they only require us to know the equilibrium state (see
the comment at the beginning of Section 5.7)

n

ϑd/2(n)
F

(
ξ − u

ϑ1/2(n)

)
.

Here F : R → [0,∞) is a given smooth function, ϑ : [0,∞) → [0,∞) is a power-
like function and we use now V = Rd because Galilean invariance is fundamental
in this approach. In order to fullfill basic conservation laws (number of cells and
momentum) one assumes that∫

Rd

F (η) dη = 1, i.e.
∫

Rd

n

ϑd/2(n)
F
( ξ − u

ϑ1/2(n)
)
dξ = n,

∫
Rd

ηF (η) dη = 0, i.e.
∫

Rd

ξ
n

ϑd/2(n)
F
( ξ − u

ϑ1/2(n)
)
dξ = nu.

We also need notation for the macroscopic quantities defined as

nε =
∫

Rd

fε(t, x, ξ)dξ, nεuε =
∫

Rd

ξfε(t, x, ξ)dξ.

The quantity uε(t, x) is therefore the average (bulk) velocity of the cells at time t
and point x while ξ is their microscopic density.

With this notation, the model proposed in [103] reads

∂
∂tfε(t, x, ξ)+ ξ · ∇xfε +

∫
Rd K1(ξ, ξ′, c) · ∇c f(ξ′) dξ′

=
∫

Rd K1(ξ′, ξ, c) · ∇c dξ′ f(ξ). − 1
ε

[
fε − n

ϑd/2(n)
F
(

ξ−u
ϑ1/2(n)

)]
.

(5.54)
The scattering kernel has been modified to take into account only the antisymmet-
ric part of K in (5.38) because the main collision operator (zeroth order part of K)
has been replaced by the mere relaxation to the equilibrium. Doing that, one can
notice an important flaw in the model, that nonnegativity of fε is lost because the
turning crosssection K1(v, v′, c) · ∇c has no sign. This disqualifies the model but
the mere relaxation is already an artefact. However it keeps the fundamental idea
and motivation behind this model; (i) scattering only describes interactions with
an external medium (or long range interactions through the chemoattractant) and
thus is fundamentally a linear operator for a given function c(t, x), (ii) but here
we wish to model local self interactions of cells and this requires a nonlinear local
operator (namely the relaxation to the equilibrium state). Additionally, we have
used a hyperbolic scale for the rescaling of (5.38) rather than a parabolic scale as
was done in Section 5.7.
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In the so-called hydrodynamic limit, i.e., ε → 0 in (5.54), we then obtain the
following model for the cell movements⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂n

∂t
+ div(n u) = 0,

∂(nu)
∂t

+ div
(
n u ⊗ u + nϑ(n)p

)
= n ϑ(d+1)/2(n) χ(n, u, c)∇c,

(5.55)

still coupled with the concentration equation −∆c = n (or whatever has been
supposed for the production of c). The matrix χ is given by

χ(n, u, S) =
∫

V ×V

(v − v′) ⊗ K1(u + ϑ1/2v, u + ϑ1/2v′, S)F (v′) dv′ dv.

This type of hyperbolic system is not new. It is reminiscent of fluid dy-
namics (for a compressible gas with gravitational forces, these are models used
in astrophysics). In the context of biology, it has been proposed to describe the
initiation of angiogenesis in [113, 209]. Indeed solutions to this system exhibit
network structures very close to the networks formed by endothelial cells. It is
therefore compatible with the idea that blood vessel formation is related with lo-
cal interactions of cells as one can see in recent experiments. This is not the case
of the Keller–Segel model that describes only long range interactions and does not
give network structures. Numerical simulations of these networks are presented
in Figure 5.7 and taken from from [104] where an accurate algorithm has been
elaborated (see also [113, 209, 103]).

Figure 5.7: Network formation in the hyperbolic system of chemotaxis (5.55) for two

different initial densities (the figure on the right corresponds to twice the density

in the figure on the left). Figure taken from [104].



Chapter 6

General mathematical tools

In this chapter we present several general mathematical tools that have been used
throughout these notes. For several topics, we try to go further than the mere
results that are actually needed. This is aimed at presenting also the context of
mathematical research around the formalisms used in the models we have pre-
sented.

6.1 Transport equations and the method of

characteristics

6.1.1 Transport equation (strong form)

We first consider the transport equation written in the strong form (in contrast
to the conservative, divergence or weak form treated in Section 6.1.2 below)

⎧⎨⎩
∂
∂tu(t, x) + b(t, x) · ∇u(t, x) = 0, t ∈ R, x ∈ R

d,

u(t = 0) = u0 given.
(6.1)

We always assume here that the vector field b ∈ C1(R1+d; Rd) satisfies the Cauchy–
Lipschitz conditions. Namely, for all T > 0, R > 0 there are two constants
M1(T, R), M2(T ) such that

⎧⎨⎩
|b(t, x) − b(t, y)| ≤ M1(T, R)|x − y|, for |t| ≤ T, |x|, |y| ≤ R,

|b(t, x)| ≤ M2(T )(1 + |x|), for |t| ≤ T, x ∈ Rd.
(6.2)



152 Chapter 6. General mathematical tools

This assumption allows us to define the so-called characteristics associated with
equation (6.1), ⎧⎨⎩ Ẋ(t; y) = b

(
t, X(t; y)

)
,

X(0; y) = y ∈ Rd.
(6.3)

They are defined for all times t ∈ R and the mapping y �→ X(t; y) is a C1 dif-
feomorphism on Rd. These are deeply related to the existence of solutions to the
transport equation (6.1).

Theorem 6.1 (Smooth solutions). Under assumptions (6.2), b ∈ C1(R × Rd) and
u0 ∈ C1(Rd), there is a unique C1(R × Rd) solution to (6.1) and it is constant
along the characteristics i.e.

u
(
t, X(t; y)

)
= u0(y), ∀t ∈ R, ∀y ∈ R

d. (6.4)

Proof. We have

d
dtu

(
t, X(t; y)

)
= ∂

∂tu
(
t, X(t; y)

)
+ Ẋ(t; y) · ∇u

(
t, X(t; y)

)
= ∂

∂tu
(
t, X(t; y)

)
+ b

(
t, X(t; y)

)
· ∇u

(
t, X(t; y)

)
.

Therefore, the transport equation holds true if and only if u
(
t, X(t; y)

)
is inde-

pendent of time.
The C1 regularity follows from the differentiability of the flow, because the

d × d matrix DyX(t; y) satisfies the differential equation

d
dtDyX(t; y) = Dxb(t, X(t; y))DyX(t; y) = 0 DyX(t = 0; y) = Id. �

We can deduce some general properties of the solutions to transport equa-
tion in the strong form. These properties are typical of the hyperbolic nature of
transport equations. They are obvious consequences of the representation formula
in Theorem 6.1 and we do not prove them.

Proposition 6.1. The solution of (6.1) satisfies:

(i) (Finite speed of propagation) The value u(t, x) only depends on the values of
u0(y) for |y − x| ≤ |t| ‖b‖L∞.

(ii) (Propagation of singularities) The solution u(t, ·) has the same regularity as
u0 (and not more).

(iii) (Maximum principle) For all t ∈ R, x ∈ Rd, we have

inf
y∈Rd

u0(y) ≤ u(t, x) ≤ sup
y∈Rd

u0(y).

Theorem 6.2 (Weak solutions). Under assumptions (6.2), b ∈ C1(R × Rd) and
u0 ∈ L∞(Rd), there is a unique solution in the distribution sense u ∈ L∞(Rd+1)∩
C
(
R+; L1

loc(R
d)
)

to (6.1) and it is constant along the characteristics i.e. (6.4) holds
true.
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We recall

Definition 6.1. A solution u(t, x) to (6.1) in distribution sense is defined by inte-
gration by parts against smooth functions, i.e., by the equality

−
∫ ∞

0

∫
Rd

u(t, x)
[ ∂

∂t
ϕ(t, x) + div

(
b(t, x)ϕ(t, x)

)]
dxdt =

∫
Rd

ϕ(t = 0, x) u0(x)dx,

(6.5)
for all test functions ϕ ∈ D(R × Rd) (and similarly for negative times).

Proof. Existence. We define a regularized sequence of initial data u0
n = u0 � ρn ∈

C∞(Rd), for some regularizing kernel ρn. We have u0
n → u0 a.e. and in L1

loc(R
d)

and |u0
n| ≤ ‖u0‖L∞ . We denote by un(t, x) the sequence of C1 solutions to (6.1).

On the one hand, since the characteristics define a diffeomorphism, one has
for all T > 0,

‖un(t, x) − um(t, x)‖C((−T,T );L1
loc(R

d)) → 0.

Therefore un(t, x) is a Cauchy sequence in C
(
− T, T ; L1

loc(R
d)
)

and thus it con-
verges in this space to a function u ∈ C

(
R; L1

loc(R
d)
)
. On the other hand, the

corresponding solution un(t, x) given by Theorem 6.1 is also a solution in distri-
bution sense (thanks to usual integration by parts). Therefore, we have for all test
functions ϕ ∈ D(R × R

d),

−
∫∞
0

∫
Rd un(t, x)

[
∂
∂tϕ(t, x) + div

(
b(t, x)ϕ(t, x)

)]
dxdt =

∫
Rd ϕ(t = 0, x) u0

n(x)dx,

and passing to the limit thanks to the Lebesgue theorem, we find (6.5).
Uniqueness. Because of time continuity in L1

loc(R
d), we can first establish the

following variant of (6.5),

−
∫ T

0

∫
Rd u(t, x)[ ∂

∂tϕ(t, x) +div (b(t, x)ϕ(t, x))]dxdt

=
∫

Rd ϕ(0, x) u0(x)dx −
∫

Rd ϕ(T, x) u(T, x)dx,
(6.6)

for all T > 0 and all test functions ϕ ∈ C1(R×Rd) with compact support in space
(and similarly for negative times). For the difference u = u1 − u2 of two solutions
with the same initial data, we therefore obtain

−
∫ T

0

∫
Rd u(t, x)

[
∂
∂tϕ(t, x) + div

(
b(t, x)ϕ(t, x)

)]
dxdt = −

∫
Rd ϕ(T, x) u(T, x)dx.

But, as we see in the next section, one can solve the ‘dual’ or ’backward’ equation
∂
∂tϕ(t, x) + div

(
b(t, x)ϕ(t, x)

)
= 0, ϕ(T, x) ∈ C1

comp(Rd) given.

Its solution is C1 and has compact support in space, therefore we can use it in
(6.6) and finally obtain

0 = −
∫

Rd ϕ(T, x) u(T, x)dx,

and this holds for all test functions ϕ(T, x) ∈ C1
comp(Rd). This proves the result.

�
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6.1.2 Transport equation (conservative form)

We can also consider the conservative form of the transport equation⎧⎨⎩
∂
∂tu(t, x) + div

(
b(t, x)u(t, x)

)
= 0, t ∈ R, x ∈ Rd,

u(t = 0) = u0 given.
(6.7)

In order to give a representation formula, we introduce the notation

J(t; y) = exp
(∫ t

0

div b(s, X(s; y) ds
)
, t ∈ R, y ∈ R

d,

which is nothing but the solution to the differential equation

J̇(t; y) = div b
(
t, X(t; y)

)
J(t; y), J(0, y) = 1.

In other words, thanks to the Liouville theorem,

J(t; y) = Jac
(∂X(t; y)

∂y

)
.

Theorem 6.3. Under assumptions (6.2), b and divb ∈ C1 and u0 ∈ C1(Rd), there
is a unique C1 solution to (6.7) and it satisfies the representation formula

u
(
t, X(t; y)

)
J(t; y) = u0(y), ∀t ∈ R, ∀y ∈ R

d. (6.8)

Proof. We write the conservative transport equation in the form

∂
∂tu(t, x) + b(t, x) · ∇u(t, x) + divb(t, x) u(t, x) = 0,

and thus it is equivalent to writing

d
dtu

(
t, X(t; y)

)
+ div b

(
t, X(t; y)

)
u
(
t, X(t; y)

)
= 0,

which is also equivalent to writing

d
dt

[
u
(
t, X(t; y)

)
J(t; y)

]
= 0.

�
We also deduce from this representation the following abstract. properties

Proposition 6.2. The solution of (6.7) satisfies the properties:

(i) (Finite speed of propagation) The value u(t, x) only depends on the values of
u0(y) for |y − x| ≤ |t| ‖b‖L∞.

(ii) (Propagation of singularities) The solution u(t, ·) has the same regularity as
u0 (and not more).
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And for u0 ∈ L1(Rd),

(iii) (Mass conservation) ∫
x∈Rd

u(t, x) =
∫

y∈Rd

u0(y).

(iv) (L1 stability) ∫
x∈Rd

|u(t, x)| =
∫

y∈Rd

|u0(y)|.

Statements (i) and (ii) are again obvious consequences of the representation
formula (6.8). As for the statements (iii) and (iv), they are consequences, after
a change of variables, of the fact that J is the Jacobian of the diffeomorphism
y �→ X(t; y). But we can also see it directly when u0 has a bounded support.
Then u(t, x) also has bounded support and we can write, thanks to the Lebesgue
theorem and Green’s formula,

d

dt

∫
x∈Rd

u(t, x) =
∫

x∈Rd

∂

∂t
u(t, x) =

∫
x∈Rd

div
(
b u(t, x)

)
= 0.

As for the absolute value, we can see it in the same way but we first need to notice

Proposition 6.3. Under the assumptions of Theorem 6.3, we have in distribution
sense ⎧⎨⎩

∂
∂t |u(t, x)| + div

(
b(t, x)|u(t, x)|

)
= 0, t ∈ R, x ∈ Rd,

|u(t = 0)| = |u0|.
(6.9)

In other words, for all test functions ϕ ∈ D(R1+d), we have

−
∫ ∞

0

∫
x∈Rd

|u(t, x)|
( ∂

∂t
ϕ + b · ∇ϕ

)
=
∫

x∈Rd

|u0(x)| ϕ(t = 0, x)dx.

Proof. We choose the C1 function

Sδ(u) =
{

u2

2δ for |u| ≤ δ,
|u| − δ

2 for |u| ≥ δ.

Using the chain rule, we have

∂
∂tSδ(u) + div

(
b(t, x)Sδ(u)

)
+ div

(
b(t, x)

)
[uS′

δ(u) − Sδ(u)] = 0.

As δ → 0, we have Sδ(u) → |u| strongly in L1
loc and, since |uS′

δ(u)−Sδ(u)| ≤ δ/2,
we obtain the result. �
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Proposition 6.4. Under the assumptions (6.2), b and divb ∈ C1, consider the
measure

u(t, x) = δ
(
x − X(t; y)

)
, X(0; y) = y ∈ R

d.

It is a solution in the distribution sense to equation (6.7) if and only if X(t; y) is
a solution to the differential equation (6.3).

Proof. The measure u(t, x) is a distributional solution means that for all test
functions ϕ(t, x), the identity holds:

−
∫∞
0

∫
Rd u(t, x)

[
∂
∂tϕ + b(t, x) · ∇ϕ

]
dx dt =

∫
Rd u0(x)ϕ(x)dx.

With the Dirac solution, we obtain

−
∫∞
0

∂
∂tϕ

(
t, X(t; y)

)
+ b

(
t, X(t; y)

)
· ∇ϕ

(
t, X(t; y)

)
dt = ϕ(y).

Using the method of characteristics in 6.1.1, we deduce

−
∫∞
0

d
dtϕ

(
t, X(t; y)

)
+
[
b
(
t, X(t; y)

)
− Ẋ(t; y)

]
· ∇ϕ

(
t, X(t; y)

)
dt = ϕ(y).

And we conclude that∫∞
0

[
b
(
t, X(t; y)

)
− Ẋ(t; y)

]
· ∇ϕ

(
t, X(t; y)

)
dt = 0

for all test functions ϕ, which leads to the conclusion of Proposition 6.4. �

6.2 Transport equation (the DiPerna–Lions theory)

It is possible to improve the above results and optimize the assumptions on the ve-
locity field b while keeping existence and uniqueness. This theory is due to DiPerna
and Lions [84], see also [158]. We present for instance the case of the equation un-
der its strong form but many variants are possible, including for instance first
order terms or source terms. Also, we restrict ourselves to the theory ∇b ∈ L1

theory, but we mention the recent extension to ∇b ∈ BV in [7].

Theorem 6.4. Let b ∈ L∞
loc(R

d), ∇b ∈ L1(Rd) and divb ∈ L∞(Rd); then there
exists a unique solution u ∈ L∞(R × Rd) to the equation⎧⎨⎩

∂
∂tu(t, x) + b(t, x) · ∇u(t, x) = 0, t ∈ R, x ∈ Rd,

u(t = 0) = u0 ∈ L∞(Rd).
(6.10)

The notion of solution for the form (6.10) is not completely obvious and we
have in mind to rewrite the equation as

∂

∂t
ϕ(t, x) + div (b(t, x)ϕ(t, x)) − (divb)u(t, x) = 0.
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6.2.1 A regularization Lemma

Before proving this theorem, we need a commutation lemma which is the heart of
the proof.

Lemma 6.1. Let ϕ ∈ L∞ (
(−T, T )× Rd

)
, ∀T > 0, a solution of the transport

equation
∂

∂t
ϕ(t, x) + div (b(t, x)ϕ(t, x)) = 0, t ∈ R, x ∈ R

d. (6.11)

Then, for any regularizing kernel ρε(x) = 1
εd ρ(x

ε ) with ρ ∈ D(Rd), ρ ≥ 0,
∫

ρ = 1,
the convolution ϕε = ϕ � ρε satisfies

∂

∂t
ϕε(t, x) + div (b(t, x)ϕε(t, x)) = rε(t, x) → 0 in L∞ (

(−T, T )× R
d
)
.

Proof. We write

rε(t, x) = div(bϕε) − div(bϕ) � ρε

= (divb)ϕε + b · ∇ϕε − (bϕ) � ∇ρε

= (divb)ϕε +
∫

Rd [b(x) − b(x − y)]ϕ(x − y)∇ρε(y) dy

= (divb)ϕε +
∫ 1

0

∫
Rd ∇b(x − sy) · y∇ρε(y)ϕ(x − y) dy

= Rε + Sε,

with

Rε(t, x) = (divb)ϕε + ∇b(x) ·
(
y ⊗∇ρε(y)

)
� ϕ → 0 ∈ L∞ (

(−T, T ); L1(Rd)
)
,

because y ⊗ ∇ρε(y) is a regularizing kernel that satisfies
∫

yi∇yj ρ(y) dy = 0 for
i 
= j and

∫
yi∇yiρ(y) dy = −1.

On the other hand

Sε(t, x) =
∫ 1

0

∫
Rd [∇b(x − sy) −∇b(x)] · y∇ρε(y)ϕ(x − y) dy,

and thus, on an interval (−T, T ) we have

|Sε(t, x)| ≤ ‖ϕ‖L∞
∫ 1

0

∫
Rd |∇b(x − sy) −∇b(x)| |y∇ρε(y)| dy

≤ ‖ϕ‖L∞
∫

Rd ω(∇b; |y|) |y∇ρε(y)| dy

−→ 0 in L∞(−T, T ) as ε → 0,

where the L1 modulus of continuity is defined by ω(∇b; h) = sup|y|≤h |∇b(x+y)−
∇b(x)| and satisfies ω(∇b; 0) = 0; this is the place where we explicitly use ∇b ∈ L1

and not a mere bounded measure. �
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Remark 6.1. For time dependent velocity fields b, the corresponding assumption
and conclusions are

∇b ∈ L1
(
(−T, T )× R

d
)
, rε → 0 in L1((−T, T )× R

d).

Indeed, in the above argument we just have to control the L1 modulus of continuity
in the space of ∇b.

6.2.2 Proof of Theorem 6.4

Existence. We argue by regularization. Consider bε a family of smooth vector
fields with compact support such that bε is locally bounded, divbε bounded in
L∞, bε → b a.e. and ∇bε → ∇b in L1. Then, using Section 6.1.1, there exists a
unique solution uε to the transport equation in strong form for this velocity field
bε. From the method of characteristics we have |uε| ≤ ‖u0‖L∞ , and thus we can
extract a subsequence which converges in L∞ w − � to a function u(t, x). Then
we may pass to the limit in the definition of weak solutions (6.5) and existence is
proved.
Uniqueness. For uniqueness we consider a solution in distribution sense with van-
ishing initial data. Therefore, for all test function ψ ∈ D(R × Rd), we have∫ ∞

0

u(t, x)
[

∂

∂t
ψ(t, x) + div (b(t, x)ψ(t, x))

]
dx dt = 0.

Consider a T > 0 and a function Ψ ∈ D(Rd). Thanks to the previous step, we can
find a solution ϕ ∈ L∞ (

(−T, T )× Rd
)
, ϕ ∈ L∞ (

(−T, T ); L1(Rd)
)

to⎧⎨⎩
∂
∂tϕ(t, x) + div (b(t, x)ϕ(t, x)) = 0, t ∈ R, x ∈ Rd,

ϕ(t = T, x) = Ψ(x).

Then, using Lemma 6.1, we have

∂

∂t
ϕε(t, x) + div (b(t, x)ϕε(t, x)) = rε(t, x) → 0 in L∞ (

(−T, T ); L1(Rd)
)
.

This function ϕε is still not allowed as a test function because it does not have a
compact support. The truncation in space is a simple matter and we skip this step.
Time truncation can be achieved thanks to a nonincreasing function Kη(t) = 1
for 0 ≤ t ≤ T − η, and Kη(t) = 0 for t ≥ T . Then we use the test function
ψ = Kη(t)ϕε in the weak formulation and arrive at∫ ∞

0

∫
Rd

u(t, x)
[
Kη(t)

∂ϕε(t, x)
∂t

+ ϕε
∂Kη(t)

∂t
+ Kη(t)div

(
b(t, x)ϕε(t, x)

)]
dx dt = 0,

∫ ∞

0

∫
Rd

u(t, x)
[
Kη(t)rε(t, x) + ϕε

∂Kη(t)
∂t

]
dx dt = 0.
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As ε → 0, we deduce ∫ ∞

0

∫
Rd

u(t, x)ϕ
∂

∂t
Kη(t)dx dt = 0.

But ∂
∂tKη(t) → −δ(t = T ) as η → 0 and we deduce, that

∫
Rd u(T, x)Ψ(x) = 0,

for a.e. T > 0. A similar argument for negative times concludes that u ≡ 0 and
uniqueness is proved. �
Exercise. Explain how Peano’s non-uniqueness phenomena is handled in the above
theory, for b(x) =

√
|x| in one space dimension.

6.3 Generalized relative entropy: finite dimensional
systems

We begin with describing the General Entropy Inequality in the case of matrices
and we deal with two theories where it applies to give an entropy based under-
standing of time relaxation. In the framework of the Perron–Frobenius eigenvalue
theorem it explains why the associated dynamic converges to the first (positive)
eigenvector (once correctly normalized). In the framework of Floquet’s eigenvalue
theorem it explains why the associated dynamic converges to the (positive) peri-
odic solution (once correctly normalized).

6.3.1 The Perron–Frobenius theorem

Let aij > 0, 1 ≤ i, j ≤ d, be the coefficients of a matrix A ∈ Md×d(R) (there
are interesting issues with the case aij ≥ 0 but we try to keep simplicity here).
The Perron-Frobenius theorem (see [210] for instance) tells us that A has a first
eigenvalue λ > 0 associated with a positive right eigenvector N ∈ Rd, and a
positive left eigenvector φ ∈ Rd,⎧⎨⎩

A.N = λN, Ni > 0 for i = 1, . . . , d,

φ.A = λφ, φi > 0 for i = 1, . . . , d.

For later purposes, it is convenient to normalize these vectors, so that they are
now uniquely defined. We choose

d∑
i=1

Ni = 1,

d∑
i=1

Ni φi = 1.

We set Ã = A − λId and consider the evolution equation

d

dt
n(t) = Ã.n(t), n(0) = n0. (6.12)
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The solutions to this system converge as t → ∞ with an exponential rate. Indeed,
the following result is classical.

Proposition 6.5. For positive matrices A and solutions to the differential system
(6.12), we have,

ρ :=
d∑

i=1

φini(t) =
d∑

i=1

φin
0
i , (6.13)

d∑
i=1

φi|ni(t)| ≤
d∑

i=1

φi|n0
i |, (6.14)

CNi ≤ ni(t) ≤ CNi with constants given by CNi ≤ n0
i ≤ CNi, (6.15)

and there is a constant α > 0 such that, with ρ given in (6.13), we have

d∑
i=1

φiNi

(ni(t) − ρNi

Ni

)2 ≤
d∑

i=1

φiNi

(n0
i − ρNi

Ni

)2
e−αt. (6.16)

Here, we wish to justify it with an entropy inequality.

Proposition 6.6. Let H(·) be a convex function on R, then the solution to (6.12)
satisfies

d

dt

d∑
i=1

φiNiH
(ni(t)

Ni

)
=

d∑
i,j=1

φiaijNj

[
H ′(ni(t)

Ni

)
[
nj(t)
Nj

− ni(t)
Ni

] − H
(nj(t)

Nj

)
+ H

(ni(t)
Ni

)]
≤ 0.

Definition 6.2. We call the quantity
d∑

i=1

φiNiH
(ni(t)

Ni

)
General Relative Entropy.

Proof of Proposition 6.6. We denote by ãij the coefficients of the matrix Ã and
compute

d
dt

∑
i φiNiH

(ni(t)
Ni

)
=
∑

i,j φiH
′(ni(t)

Ni

)
ãijnj(t)

=
∑

i,j φiãijNjH
′(ni(t)

Ni

)[nj(t)
Nj

− ni(t)
Ni

]
,

because the additional ni(t)
Ni

term vanishes since Ã.N = 0. But we also have, again
thanks to the equation on N and φ, that∑

i,j φiãijNj

[
H
(nj(t)

Nj

)
− H

(ni(t)
Ni

)]
= 0.



6.3. Generalized relative entropy: finite dimensional systems 161

Combining these two identities, we arrive at the equality in Proposition 6.6. The
inequality follows because only the coefficients out of the diagonal, that satisfy
ãij = aij ≥ 0, enter here. �
Proof of Proposition 6.5. Notice that, as a special case of H in Proposition 6.6,
we can choose H(u) = u, which being convex together with −H gives the equality

d

dt

d∑
i=1

φini(t) = 0.

And (6.13) follows. In particular this identifies the value ρ mentioned in (6.13).
The second statement (6.14) follows immediately by choosing the (convex)

entropy function H(u) = |u|.
As for the third statement (6.15), let us consider for instance the upper

bound. It follows choosing the (convex) entropy function H(u) = (u−C)2+ because
for this nonnegative function we have

d∑
i=1

φiNiH
(n0

i

Ni

)
= 0.

Therefore, because the General Relative Entropy decays, it remains zero for all
times,

d∑
i=1

φiNiH
(ni(t)

Ni

)
= 0,

which proves the result.
It remains to prove the exponential time decay statement (6.16). To do that,

we work on
h(t, x) = n(t, x) − ρN,

which verifies
∫

ϕ[n(t, x)− ρN ]dx = 0 and satisfies the same equation as n. Then,
we use the quadratic entropy function H(u) = u2 and the General Entropy In-
equality gives

d

dt

d∑
i=1

φiNi

(
hi(t)
Ni

)2

= −
d∑

i,j=1

φiaijNj

(
hj(t)
Nj

− hi(t)
Ni

)2

≤ 0.

Then, we need a discrete Poincaré inequality.

Lemma 6.2. Being given φi > 0, Ni > 0, aij > 0 for i = 1, . . . , d, j = 1, . . . , d,
i 
= j, there is a constant α > 0 such that for all vector m of components mi,
1 ≤ i ≤ d satisfying

d∑
i=1

φimi = 0,
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we have (Poincaré inequality)

d∑
i,j=1

φiaijNj

(
mj

Nj
− mi

Ni

)2

≥ α

d∑
i=1

φiNi

(
mi

Ni

)2

.

With this lemma, we conclude

d

dt

d∑
i=1

φiNi

(
hi(t)
Ni

)2

≤ −α

d∑
i=1

Ni

(
hi(t)
Ni

)2

,

and then, (6.16) follows by a simple use of Gronwall lemma. �
Proof of Lemma 6.2. After renormalizing the vector m (when it does not vanish,
otherwise the result is obvious), we may suppose that

d∑
i=1

φimi = 0,
d∑

i=1

φiNi

(
mi

Ni

)2

= 1.

Then we argue by contradiction. If such an α does not exist, this means that we
can find a sequence of vectors (mk)(k≥1) such that

d∑
i=1

φim
k
i = 0,

d∑
i=1

φiNi

(
mk

i

Ni

)2

= 1,

d∑
i,j=1

φiaijNj

(
mk

j

Nj
− mk

i

Ni

)2

≤ 1/k.

After extraction of a subsequence, we may pass to the limit mk → m̄ and
this vector satisfies

d∑
i=1

φim̄i = 0,

d∑
i=1

φiNi

(
m̄i

Ni

)2

= 1,

d∑
i,j=1

φiaijNj

(
m̄j

Nj
− m̄i

Ni

)2

= 0.

Therefore, from this last relation, for all i and j = 1, . . . , d, we have

m̄i

Ni
=

m̄j

Nj
:= ν.

By the zero sum condition, we have ν = 0 because

ν

d∑
i=1

φi = 0.

In other words, m̄ = 0 which contradicts the normalization and thus such a α
should exist. �
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Remark 6.2. 1. This entropy structure is related to a characterization of M-
matrices, i.e., those whose terms out of the diagonal are negative, diagonal
terms are positive and dominate the corresponding line. Such a matrix has
an inverse with positive coefficients. It was noticed in [216] that a charac-
terization of M-matrices uses the existence of positive eigenvectors as N and
φ above. Let us point out that the General Relative Entropy inequality also
holds for M-matrices because the diagonal terms do not appear in the in-
equality of Lemma 6.2.

2. The matrix with (positive) coefficients bij = φi aij Nj is doubly stochastic,
i.e., the sum of the lines and columns is 1 (see for instance [210]).

3. Notice that aii − λ < 0 because
∑

j ãijNj = 0. Therefore the matrix C with
coefficients cij = 1

Ni
ãij Nj is that of a Markov process. In other words, we

set yi = xi/Ni, then it satisfies

d

dt
yi(t) = cijyj(t),

and the vector (1, 1, . . . , 1) is the (positive) eigenvector associated to the
eigenvalue 0 of the matrix C, i.e., cii =

∑
j 
=i cij and cij ≥ 0. Then,

(Niφi)(i=1,...,d) is the invariant measure of the Markov process. In particular
this explains the entropy property which is classical for Markov processes
([224]).

6.3.2 The Floquet theory

We now consider T -periodic coefficients aij(t) > 0, 1 ≤ i, j ≤ d, i.e., aij(t +
T ) = aij(t). And we denote by A(t) ∈ Md×d the corresponding matrix. Again our
motivation comes from several questions in biology where such structures arise,
such as seasonal rhythm, circadian rhythm, see [120, 63, 109, 19] for instance.

The Floquet theorem tells us that there is a first ‘Floquet eigenvalue’ λper > 0
and two positive T -periodic functions N(t) ∈ Rd, φ(t) ∈ Rd that are periodic
solutions (uniquely defined up to multiplication by a constant) to the differential
systems

d

dt
N(t) = [A(t) − λperId].N(t), (6.17)

d

dt
φ(t) = φ(t).[A(t) − λperId]. (6.18)

Up to a normalization, these elements (λper > 0, N(t) > 0, φ(t)) are unique and
we normalize again as∫ T

0

d∑
i=1

Ni(t)dt = 1,

∫ T

0

d∑
i=1

φi(t)Ni(t)dt = 1.
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We recall that this case of Floquet theory (which applies to more general sit-
uations than positive matrices) is an application of the Perron–Frobenius theorem
to the resolvent matrix

S(t) = e
R

t
0 A(s)ds,

which has positive coefficients also. A classical introduction to the subject can be
found in [65].

Again, we set Ã(t) = A(t) − λperId and consider the differential system

d

dt
n(t) = Ã.n(t), n(0) = n0.

In the present context we obtain the following version of Proposition 6.5.

Proposition 6.7. For positive matrices A we have,

ρ :=
d∑

i=1

φi(t)ni(t) =
d∑

i=1

φi(t = 0)n0
i , (6.19)

d∑
i=1

φi(t)|ni(t)| ≤
d∑

i=1

φi(t = 0)|n0
i |; (6.20)

if for some constants, we have CNi(t = 0) ≤ n0
i ≤ CNi(t = 0), then

CNi(t) ≤ ni(t) ≤ CNi(t), (6.21)

and there is a constant α > 0 such that

d∑
i=1

φi(t)Ni(t)
(ni(t) − ρNi(t)

Ni(t)
)2 ≤

d∑
i=1

φ0
i N

0
i

(n0
i − ρN0

i

N0
i

)2
e−αt. (6.22)

Again, this can be justified thanks to entropy inequalities.

Proposition 6.8. Let H(·) be a convex function on R, then we have

d

dt

d∑
i=1

φi(t)Ni(t)H
( ni(t)
Ni(t)

)
=

d∑
i,j=1

φiaijNj

[
H ′( ni

Ni

)
[
nj

Nj
− ni

Ni
] − H

( nj

Nj

)
+ H

( ni

Ni

)]
≤ 0.

These two propositions are variants of the corresponding ones in the Perron–
Frobenius theorem and we leave the proofs to the reader. Adapting Lemma 6.2
requires an additional compactness argument based on the Ascoli–Arzela Theorem.
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6.4 Generalized relative entropy: parabolic and integral
PDEs

We now explain the notion of General Relative Entropy on continuous models.
We begin with the most classical equation, namely the parabolic equation for the
unknown n(t, x),

∂n

∂t
−

d∑
i,j=1

∂

∂xi

(
aij

∂n

∂xj

)
+

d∑
i=1

∂

∂xi

(
bin

)
+ dn = 0, x ∈ R

d, (6.23)

where the coefficients depend on t and x, d ≡ d(t, x) (no sign assumed), bi ≡
bi(t, x), and the symmetric matrix A(t, x) =

(
aij(t, x)

)
1≤i,j≤d

satisfies A(t, x) ≥
0. We could possibly set the equation on a domain and assume Dirichlet, zero-
flux, mixed or periodic boundary conditions and then include them in the above
calculation.

Here, it is not obvious to derive a priori bounds on the solution n(t, x), in
contrast to the case A ≥ νId > 0, bi ≡ 0, d(x) ≥ 0 where we have, multiplying
the equation by n|n|p−2 with p > 1,

d

dt

∫ |n(t, x)|p
p

dx +
4ν(p − 1)

p2

∫
|∇np/2|2dx ≤ 0.

Indeed the only remarkable property of (6.23) is the mass conservation and L1

contraction principle

d

dt

∫
n(t, x)dx +

∫
d(t, x)n(t, x)dx = 0,

d

dt

∫ (
n(t, x)

)
+

dx +
∫

d(t, x)
(
n(t, x)

)
+

dx ≤ 0.

On the other hand the conservative Fokker-Planck equation is very standard
when b = −∇V for some convex potential with enough growth at infinity

∂n

∂t
− ∆n − div(∇V n) = 0.

Then, one has N = e−V and the relative entropy
∫

n ln
(

n
N

)
dx is a standard

object related to log-Sobolev inequalities, [12, 52, 155, 228]. It decays with time.
Of course, here we still have the family

∫
NH

(
n
N

)
dx of relative entropies. All

of these entropies, for all convex functions H(·), decays in time, and not only
H(u) = u ln(u).

6.4.1 Coefficients independent of time

In the case of coefficients independent of time, and depending on the values of
aij(x), b(x) and d(x), the solution can exhibit exponential growth or decay as
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t → ∞. Therefore, we will assume that 0 is the first eigenvalue and, following the
Krein–Rutman theorem (see [72]), we also assume that we can find two functions
N(x) > 0, φ(x) > 0, such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
d∑

i,j=1

∂

∂xi

(
aij(x)

∂N

∂xj

)
+

d∑
i=1

∂

∂xi

(
bi(x)N

)
+ d(x)N = 0,

N(x) > 0,
∫

N(x)dx = 1,

(6.24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

d∑
i,j=1

∂

∂xi

(
aij(x)

∂φ

∂xj

)
−

d∑
i=1

bi(x)
∂

∂xi
φ + d(x)φ = 0,

φ(x) > 0,
∫

N(x)φ(x)dx = 1.

(6.25)

These are the first eigenvectors; N for the direct problem and φ for the dual
operator. Notice that such eigenelements do not always exist but there are standard
examples, namely when d ≡ 0, A = Id and there is a potential V such that
b = −∇V . Then, one can readily check that solutions to (6.24)–(6.25) are

N = e−V φ ≡ 1,

when V (x) → ∞ as |x| → ∞ fast enough in order to fulfill the integrability
conditions.

The general relative entropy property of the parabolic equation (6.23) can
be expressed as

Lemma 6.3. For coefficients independent of t, assume that there exist eigenele-
ments N , φ satisfying (6.24)–(6.25). Then for all convex functions H : R → R, and
all solutions n to (6.23) with sufficient decay in x to zero at infinity (|n0| ≤ CN),
we have

d

dt

∫
φ(x) N(x) H

(n(t, x)
N(x)

)
dx

= −
∫

φ N H ′′(n(t, x)
N(x)

) d∑
i,j=1

aij
∂

∂xi

( n

N

) ∂

∂xj

( n

N

)
dx ≤ 0.

For conservative equations, i.e., d ≡ 0, it is usual to take φ ≡ 1, and then
the corresponding principle is classical (especially related to stochastic differential
equations and Markov processes, [224]).

Proof. We just calculate (leaving the intermediary steps to the reader)

∂

∂t

( n

N

)
−

d∑
i,j=1

∂

∂xi

[
aij

∂

∂xj

( n

N

)]
+ 2N

d∑
i,j=1

aij
∂

∂xi

( n

N

) ∂

∂xj

( 1
N

)
+ b · ∇

( n

N

)
= 0.
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Therefore, for any smooth function H , we arrive at

∂

∂t
H
( n

N

)
−

d∑
i,j=1

∂

∂xi

[
aij

∂

∂xj
H
( n

N

)]
+ 2N

d∑
i,j=1

aij
∂

∂xi
H
( n

N

) ∂

∂xj

( 1
N

)
+b · ∇H

(
n
N

)
+ H ′′( n

N

) d∑
i,j=1

aij
∂

∂xi

( n

N

) ∂

∂xj

( n

N

)
= 0.

At this stage we can ‘undo’ the calculation that led from an equation on n to an
equation on n/N and we arrive at

∂

∂t
NH

( n

N

)
−

d∑
i,j=1

∂

∂xi

[
aij

∂

∂xj
NH

( n

N

)]
+ NH ′′( n

N

) d∑
i,j=1

aij
∂

∂xi

( n

N

) ∂

∂xj

( n

N

)
+

d∑
i=1

∂

∂xi

[
biNH

( n

N

)]
+ dNH

( n

N

)
= 0.

Finally, combining it with the equation on φ, we deduce that

∂

∂t
φNH

( n

N

)
−

d∑
i,j=1

∂

∂xi

[
φaij

∂

∂xj
NH

( n

N

)]
+

d∑
i,j=1

∂

∂xi

[
aijNH

( n

N

) ∂

∂xj
φ
]

+φNH ′′( n
N

) d∑
i,j=1

aij
∂

∂xi

( n

N

) ∂

∂xj

( n

N

)
= 0.

After integration in x (because we have assumed sufficient decay in x to zero at
infinity), we arrive at the result stated in Lemma 6.3. �

This lemma can be used in the directions indicated in Section 6.3 (a priori
estimates, long time convergence to a steady state) and we refer to [177, 175, 176]
for specific examples.

As far as long time convergence is concerned, we notice that, as in Lemma 6.2,
a control of entropy by entropy dissipation is useful for exponential convergence
as t → ∞ as in (6.16). For the quadratic entropy, this follows from the Poincaré
inequality

ν

∫
φN

(m

N

)2

≤ 2
∫

φN

d∑
i,j=1

aij
∂

∂xi

(m

N

) ∂

∂xj

(m

N

)
, when

∫
φm = 0.

Such inequalities, as well as log-Sobolev inequalities, are classical when N = e−V

for a potential V (x) with superlinear growth at infinity ([155] for this result and
[228] for general issues on this subject). The change of unknown function to nφ
and Nφ gives the condition Nφ = e−V for V (x) with superlinear growth to ensure
the Poincaré inequality. We are not aware of any general condition on d, b and A
in this direction.
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6.4.2 Time dependent coefficients

In fact the above manipulations are also valid for time dependent coefficients. A
situation similar to the Floquet theory and which is therefore useful for periodic
coefficients for instance. We now consider solutions to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t
N(t, x) −

d∑
i,j=1

∂

∂xi

(
aij(x)

∂N

∂xj

)
+

d∑
i=1

∂

∂xi

(
bi(x)N

)
+ d(x)N = 0,

N(t, x) > 0,

(6.26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
φ(t, x) −

d∑
i,j=1

∂

∂xi

(
aij(x)

∂φ

∂xj

)
−

d∑
i=1

bi(x)
∂

∂xi
φ + d(x)φ = 0,

φ(t, x) > 0.

(6.27)

Then we have

Lemma 6.4. For all convex functions H : R → R, and all solutions n to (6.23)
with sufficient decay in x to zero at infinity, we have

d

dt

∫
φ(t, x) N(t, x) H

( n(t, x)
N(t, x)

)
dx

= −
∫

φ N H ′′( n(t, x)
N(t, x)

) d∑
i,j=1

aij
∂

∂xi

( n

N

) ∂

∂xj

( n

N

)
dx ≤ 0.

Again we leave the proof of this variant to the reader.

6.4.3 Scattering equations

To exhibit another class of equation where the General Relative Entropy inequality
holds true, let us mention the scattering (also called linear Boltzmann) equation

∂

∂t
n(t, x) + kT (x)n(t, x) =

∫
Rd

k(x, y) n(t, y) dy. (6.28)

Here we restrict ourselves to coefficients independent of time for simplicity, but
the same inequality holds in the time dependent case as before. We assume that

0 ≤ kT (·) ∈ L∞(Rd), 0 ≤ k(x, y) ∈ L1 ∩ L∞(
R

2d)
)
.

And we do not make a special assumption on the symmetry of the cross-section
k(x, y) as motivated by turning kernels that appear in various applications such
as bacterial movement [5, 75, 54, 189] and Section 5.6.
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Again, changing kT in kT + λ if necessary in order to have a zero first eigen-
value, we assume that there are solutions N(x) and φ(x) to the stationary equation
and its adjoint, namely

kT (x)N(x) =
∫

Rd

k(x, y) N(y) dy, N(x) > 0, (6.29)

kT (x)φ(x) =
∫

Rd

k(y, x) φ(y) dy, φ(x) > 0. (6.30)

These two steady state solutions allow us to derive the General Relative
Entropy inequality

Lemma 6.5. With the above notation, we have

∂

∂t

[
φ(x) N(x) H

( n(x)
N(x)

)]
+
∫

Rd

k(x, y)
[
φ(y)N(x)H

(n(t, x)
N(x)

)
− φ(x)N(y)H

(n(t, y)
N(y)

)]
dy

=
∫

k(x, y)φ(x)N(y)
[
H
(n(t, x)

N(x)
)
− H

(n(t, y)
N(y)

)
+H ′(n(t, x)

N(x)
)
[
n(t, y)
N(y)

− n(t, x)
N(x)

]
]

dy,

and also (after integration in x),

d

dt

∫
Rd

[
φ(x) N(x) H

( n(x)
N(x)

)]
=
∫

k(x, y)φ(x)N(y)
[
H
(n(t, x)

N(x)
)
− H

(n(t, y)
N(y)

)
+H ′(n(t, x)

N(x)
)
[
n(t, y)
N(y)

− n(t, x)
N(x)

]
]

dy

≤ 0.

Again we leave to the reader the easy computation that leads to this result
and just indicate a class of classical examples where N and φ can be computed
explicitly.

Example 1. We consider the case where the cross-section in the scattering equation
is given by

k(x, y) = k1(x)k2(y).

Then we arrive at (up to a multiplicative constant)

N(x) =
k1(x)
kT (x)

, φ(x) =
k2(x)
kT (x)

,
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and we need the compatibility condition∫
Rd

k2(x)k1(x)
kT (x)2

dx = 1.

As in the case of the Perron–Frobenius thorem in Section 6.3.1, this means that 0
is the first eigenvalue, a condition that can always be met, changing if necessary
kT in λ + kT .

Example 2. We consider the more general case where there exists a function N(x) >
0 such that the scattering cross-section satisfies the symmetry condition (usually
called detailed balance or microreversibility)

k(y, x)N(x) = k(x, y)N(y).

Then the choice kT (y) =
∫

Rd k(x, y)dx gives the solutions N(x) to (6.29), and
φ(x) = 1 to equation (6.30).

Again we conclude with long time convergence and the possibility to prove
exponential time decay to the steady state. As in Lemma 6.2, this follows from a
control of entropy by entropy dissipation and thus for the quadratic entropy, from
the Poincaré inequality

ν

∫
φ(x)N(x)

( h

N

)2
dx ≤

∫
Rd

k(y, x)φ(x)N(y)
[

h(x)
N(x)

− h(y)
N(y)

]2

dy dx,

whenever ∫
Rd

φ(x)h(x)dx = 0.

This is not always true but holds whenever there is a function ψ > 0 such that

ν1 =
∫

Nφ2/ψ < ∞, ν2ψ(y)N(x) ≤ k(x, y), ν = (ν1ν2)−1,

a condition that is fulfilled for instance if we work on a bounded domain in veloc-
ity and k positive (the difficulties in practical examples such as the cell division
equation is that φ need not be bounded in unbounded domains and N can vanish
at infinity).

We write, for any function ψ > 0, and ν1 =
∫

N/ψ,∫
φ(x)N(x)

(
h
N (x)

)2
dx =

∫
φ(x)N(x)

(∫
[ h
N (x) − h

N (y)]φ(y)N(y)dy
)2

dx

≤ ν1

∫ ∫
φ(x)N(x)[ h

N (x) − h
N (y)]2ψ(y)N(y)dydx

≤ ν1ν2

∫ ∫
φ(x)k(x, y)N(y)[ h

N (x) − h
N (y)]2dydx.

Notice that a large class of the examples above enter this condition but not
with the choice ψ = φ.
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6.5 BV functions, Sobolev imbeddings

In this section we gather several results that have been used in several chapters
and that are based on the theory of functional spaces and related inequalities.

6.5.1 BV space; limits

In Sections 1.6.1 and 2.2, we have used an elementary property of functions with
bounded variations (for which a complete and elaborate mathematical theory ex-
ists, see [8]).

Lemma 6.6. Let n ∈ C1(R+) satisfy
∫∞
0 |dn(t)

dt | dt := ‖n‖TV < ∞, then n(t) admits
a limit L as t → ∞.

The notation ‖n‖TV holds for Total Variation, a seminorm that allows us to
define the BV space of L1 functions with finite TV seminorms.

Proof. We first notice that the assumption implies that∫ ∞

A

|dn(t)
dt

| dt = ‖n‖TV −
∫ A

0

|dn(t)
dt

| dt → 0, as A → ∞.

Therefore, we have, for p > k (integers),

|n(k) − n(p)| ≤
∫ p

k

|dn(t)
dt

| dt → 0, as k → ∞,

which implies that
(
n(p)

)
p≥1

is a Cauchy sequence and thus admits a limit L.
It remains to write that, as x → ∞,

|n(x) − L| = lim
p→∞ |n(x) − n(p)| ≤ lim

p→∞

∫ p

x

|dn(t)
dt

| dt =
∫ ∞

x

|dn(t)
dt

| dt → 0,

and the result is proved. �
An extension is as follows (we write it in a general form but supposing the

C1 regularity is enough for the purpose mentioned above)

Lemma 6.7. Let n ∈ L∞(R+) satisfy
∫∞
0 (dn(t)

dt )+ dt < ∞, then n(t) is Total
Variation bounded and thus admits a limit L as t → ∞.

Proof. We can write (still in the C1 case to avoid the difficulty to justify it for
distributional derivatives, which can be done for instance by density)

n(B) − n(A) =
∫ B

A

dn(t)
dt

dt =
∫ ∞

0

(
dn(t)

dt
)+ dt −

∫ ∞

0

(
dn(t)

dt
)− dt.

Therefore ∫ ∞

0

(
dn(t)

dt
)− dt ≤ 2‖n‖	L∞

(R+) +
∫ ∞

0

(
dn(t)

dt
)+ dt.

This proves that
∫∞
0 |dn(t)

dt | dt < ∞, and thus we are reduced to the previous
lemma. �



172 Chapter 6. General mathematical tools

6.5.2 Sobolev inequalities

(i) Sobolev inequality. The standard Sobolev inequality in Rd (see [98, 118] for
instance) states that for all functions u ∈ S(Rd) (smooth functions with fast decay
at infinity)

‖u‖Lp∗(Rd) ≤ C(d, p)‖∇u‖Lp(Rd), ∀1 ≤ p < d,
1
p∗

=
1
p
− 1

d
. (6.31)

The particular relation between p and q stands for homogeneity reasons in x. For
p = d the inequality (6.31) does not hold (with r = ∞) and variants in the space
BMO (Bounded Mean Oscillations) can be stated, [157].

(ii) Gagliardo–Nirenberg–Sobolev inequality can be seen as an interpolation of
this inequality as far as p < d below: for some C(d, p, q) we have⎧⎪⎨⎪⎩

‖u‖Lr(Rd) ≤ C‖∇u‖θ
Lp(Rd)‖u‖

1−θ
Lq(Rd)

,

∀1 ≤ p < d, ∀1 ≤ q ≤ ∞, 1
r = θ

p∗ + 1−θ
q .

(6.32)

The interesting fact here is that we can also reach the limiting case p = d:
for some C(d, q) we also have⎧⎪⎨⎪⎩

‖u‖Lr(Rd) ≤ C‖∇u‖θ
Ld(Rd)‖u‖

1−θ
Lq(Rd)

,

∀1 ≤ q < ∞, 1
r = 1−θ

q .

(6.33)

A special case is used in Section 5.2.2. It is derived with u = �p̄/2, θ = p̄
p̄+1 , p = 2,

r = 2 p̄+1
p̄ , q = d

p̄ . Then we arrive at∫
Rd

�p+1dx ≤ C‖�‖Ld/2(Rd)

∫
Rd

|∇�p/2|2dx, p + 1 ≥ d

2
, (6.34)

(after changing p̄ in p).

6.5.3 Logarithmic inequalities

(i) Logarithmic Sobolev inequalities. There are several related results. As we saw,
quantities like u ln(u) play a fundamental role in chemotaxis (see Section 5.2.1
for instance). Related are the logarithmic Sobolev inequalities (see [76] and the
references therein). For ∫

Rd

|u|pdx = 1, 1 ≤ p < d,

we have ∫
Rd

|u|p ln |u| dx ≤ d

p2
ln
[
Lp

∫
Rd

|∇u|pdx
]
,
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and the best constant is known and attained by explicit functions.

(ii) Poincaré and Logarithmic Sobolev inequalities with weights. There are in-
equalities closer to what we encountered in Section 5.2.1. Namely, for N(x) =
e−(V1+V2) with V2 bounded and D2V1 ≥ C > 0, as soon as the function u satisfies∫

Rd

u(x) N(x)dx = 0,

we have the Poincaré inequality∫
Rd

|u|2 N(x) dx ≤ C

∫
Rd

N(x) |∇u|2dx.

If u satisfies ∫
Rd

u(x) N(x)dx = 1,

we have the Logarithmic Sobolev inequality∫
Rd

|u| ln |u(x)| N(x) dx ≤ C

∫
Rd

N(x) |∇
√

u|2dx.

For proofs and a more precise account on this subject, we refer to [155, 228] for
instance.

(iii) The logarithmic Hardy–Littlewood–Sobolev inequality (see [50, 21, 157]) is
well adapted to the free energy of the Keller–Segel system.

Lemma 6.8. [50, 21] Let f be a nonnegative function in L1(Rd) such that f log f
belongs to L1(Rd). Set

∫
Rd f dx = M , then∫

Rd

f log f dx+
d

M

∫ ∫
Rd×Rd

f(x)f(y) log |x−y| dx dy ≥ M [lnM −C(d)], (6.35)

with C(2) := 1 + log π.

This lemma can be understood in various ways. One possible connection is
through the elliptic equation in dimension d = 2,

−∆c = f.

For f ∈ L1(R2), we do not have c ∈ L∞(R2) (this is a limiting case), nor do we
have ∇c ∈ L2(R2). But for f ln f ∈ L1(Rd) this lemma asserts that

∫
R2 |∇c|2dx =∫

R2 f(x) c(x) dx is bounded.
It can also be considered as the dual of Moser–Trudinger type inequalities,

see [50, 21, 157],∫
Ω

e|h|dx ≤ CΩ exp
[

1
8θ

∫
Ω

|∇h|2dx + |Ω|−1
∣∣ ∫

Ω

hdx
∣∣] ,
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with θ the minimum interior angle of the piecewise smooth domain Ω and h ∈
H1(Ω).

(iv) Logarithmic loss in limiting cases of the Young inequality. In Section 5.6.1,
we used another logarithmic loss, this time in the limiting cases of the Young
inequality. Consider a solution to

∆u(x) = n(x), x ∈ R
d.

The solution is given by a singular convolution and we are interested in the limiting
case when p = 1 of the Young inequality

‖∇u‖Lp∗(Rd) ≤ C(d, p) ‖n‖Lp(Rd) ∀1 < p < d,
1
p∗

=
1
p
− 1

d
.

To go further and treat p = 1, we decompose the gradient in long and short range
parts

∇u = ∇uL + ∇uS .

Then the long range interaction part enjoys good properties for our purpose,

∇uL = λd

x 1I{|x|>1}
|x|d ∗ n, ‖∇uL‖∞ ≤ C‖n‖1.

As for the short range part we write

∇uS = λd

x 1I{|x|<1}
|x|d ∗ n.

Lemma 6.9. For p > 1 one has

‖∇uS‖Ld/(d−1)(Rd) ≤ C(d, p)‖n‖L1(Rd)

(
1 +

∣∣ log(‖n‖Lp(Rd)/‖n‖L1(Rd))
∣∣)(d−1)/d

.

Proof. Let α > 0 be a parameter to be chosen later; we decompose the convolution
kernel as

∇uS = λd

x 1I{α<|x|<1}
|x|d ∗ n + λd

x 1I{|x|<α}
|x|d ∗ n.

Therefore, using the Young inequalities, we arrive at

‖∇uS‖Ld/(d−1)(Rd)≤C‖
1I{α<|x|<1}
|x|d−1

‖d/(d−1) ‖n‖L1(Rd)+‖n‖Lp(Rd) ‖
1I{|x|<α}
|x|d−1

‖Lq(Rd),

with 1 + d−1
d = 1

p + 1
q . Computing the norms of the truncated convolution kernel,

we obtain

‖∇uS‖Ld/(d−1)(Rd) ≤ C| log(α)|(d−1)/d ‖n‖L1(Rd) + C‖n‖Lp(Rd) α(d−1)(1−q)+1.

Finally, we choose

α(d−1)(1−q)+1 =
‖n‖L1(Rd)

‖n‖Lp(Rd)

,

and Lemma 6.9 is proved. �
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6.6 The Krein–Rutman theorem

6.6.1 Krein–Rutman theorem

We give here a simplified version of this theorem which extends in infinite di-
mension the Perron–Froebenius theorem for matrices. See for instance [187], or
[72] Appendix to Chapter VIII, Volume 3 (p.193 and following) or Chapter XXI,
Section 3.4. for more general statements.

In a vector space E one defines an order thanks to a cone K,

x ≥ y ⇔ x − y ∈ K, and x > y ⇔ x − y ∈ Int(K).

A subset K of E is called a cone if

(i) 0 ∈ K,

(ii) x, y ∈ K =⇒ λx + µy ∈ K ∀λ ≥ 0, µ ≥ 0,

(iii) x ∈ K and −x ∈ K =⇒ x = 0.

Additionally,

(iv) the cone K is said to be reproducible if ∀x ∈ E, then ∃y, z ∈ K such that
x = y − z,

(v) it is said to be normal if 0 ≤ x ≤ y =⇒ ‖x‖ ≤ ‖y‖.
Theorem 6.5. (Krein–Rutman) Let (E, ‖ · · · ‖) be a Banach space and A a contin-
uous and compact linear mapping from E into itself. We assume that A is strongly
positive on a closed cone, i.e.,

x ∈ K\{0} =⇒ A(x) > 0.

The spectral radius of A, ρ(A) a positive simple eigenvalue of A associated with a
positive eigenvector, i.e., x0 ∈ Int(K) and it is the only nonnegative eigenvector.

We also recall that for a compact operator, if µ belongs to the spectrum of
T , i.e., T − µI is not one-to-one, then either µ = 0 or µ is an eigenvalue. See [41],
Section 6.2.

This version of the Krein–Rutman theorem does not apply to the Lp spaces
because the interior of the positive cone is empty. Therefore it is better to use the
space of continuous functions. Then the interior of the nonnegative cone is the set
of positive functions. Even though this space is not adapted to PDEs in general,
it allows us to solve a ‘regularized problem’ and it remains to pass to the limit to
solve more realistic problems. We illustrate this on the cell division equation.

For applications to PDEs, this first eigenvalue can also be characterized by
min-max formulas that extend the usual one in finite dimension (Collatz–Wielandt
formula)

ρ(A) = inf{r > 0 s.t. ∃x ∈ R
d\{0}, x ≥ 0, A.x ≤ rx}.
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We refer to [174] for a similar min-max formula for cell division equations and
applications to fitness optimization.

6.6.2 Application to cell division equation

As an example we consider a stationary cell division equation set on a bounded
interval [0, R] (because the Krein–Rutman theorem requires compactness), for con-
tinuous coefficients b and B (as motivated above), and with a boundary condition
allowing for positivity:⎧⎨⎩

∂
∂xn(x) +

(
µ + B(x)

)
n(x) −

∫ R

0
b(x, y)n(y)dy = f(x), 0 ≤ x ≤ R,

n(x = 0) = ε
∫ R

0 n(y)dy.

(6.36)

We define the Banach space E = C0([0, R]) (with the sup norm) and assume, that

0 ≤ B(·) ∈ E, (6.37)

0 ≤ b(·, ·) ∈ C0([0, R] × [0, R]). (6.38)

We prove the following preliminary result that is (very much) improved in
Section 4.2.3:

Theorem 6.6. Assume (6.37)–(6.38) and ε > 0 small enough, then there is a unique
λ0 ∈ R and N, φ ∈ C1([0, R]), solutions to the truncated cell division equation and
its adjoint,⎧⎨⎩

∂
∂xN(x) +

(
λ0 + B(x)

)
N(x) −

∫ R

0
b(x, y)N(y)dy = 0, 0 ≤ x ≤ R,

N(x = 0) = ε
∫ R

0 N(y)dy, N(x) > 0
∫ R

0 N(x)dx = 1;
(6.39)

⎧⎨⎩
− ∂

∂xφ(x) +
(
λ0 + B(x)

)
φ(x) −

∫ R

0
b(y, x)φ(y)dy = εφ(0), 0 ≤ x ≤ R,

φ(x = R) = 0, φ(x) ≥ 0
∫ R

0 φ(x)N(x)dx = 1.
(6.40)

This is a direct application of the Krein–Rutman theorem because one can
define the linear operator on E, A : f �→ n (solution to (6.36)), for which we prove
below that the assumptions of Theorem 6.5 apply. The C1 regularity is nothing
but a consequence of the continuity of B, b and N in (6.39).

Therefore it remains to prove the

Theorem 6.7. Assume ε > 0 small enough and µ > 0 large enough. For f ∈ E,
there is a unique solution n ∈ E, to (6.36). This defines a continuous linear
mapping on E, n = A(f) and A is compact and strongly positive.
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Proof. First step: construction of A. Fix f ∈ E and for m ∈ E, we define n =
T (m) ∈ E as the (explicit) solution to⎧⎨⎩

∂
∂xn(x) +

(
µ + B(x)

)
n(x) =

∫ R

0
b(y, x)m(y)dy + f(x), 0 ≤ x ≤ R,

n(x = 0) = ε
∫ R

0
m(y)dy.

We prove that T is a strict contraction. Therefore it has a unique fixed point
thanks to the Banach–Picard Theorem. This fixed point is a solution to (6.36).

In order to prove that T is a strict contraction, we consider m1 and m2 two
functions in E, we compute for n = n1 − n2, m = m1 − m2,⎧⎨⎩

∂
∂xn(x) +

(
µ + B(x)

)
n(x) =

∫ R

0 b(x, y)m(y)dy, 0 ≤ x ≤ R,

n(x = 0) = ε
∫ R

0
m(y)dy,

therefore⎧⎨⎩
∂
∂x |n(x)| +

(
µ + B(x)

)
|n(x)| ≤

∫ R

0 b(x, y)|m(y)|dy, 0 ≤ x ≤ R,

|n(x = 0)| ≤ ε
∫ R

0
|m(y)|dy.

After integration, we obtain

|n(x)|e
R x
0 (µ+B) ≤ ε

∫ R

0 |m(y)|dy +
∫ x

0 e
R x′
0 (µ+B)

∫ R

0 b(x′, y)|m(y)|dydx′

and thus

|n(x)| ≤ ε
∫ R

0 |m(y)|dy +
∫ x

0 e−
R x

x′(µ+B)
∫ R

0 b(x′, y)|m(y)|dydx′

≤ ‖m‖E

[
εR +

∫ x

0
e−

R x
x′ (µ+B)

∫ R

0
b(x′, y)dydx′ ]

≤ ‖m‖E

[
εR + ‖

∫ R

0
b(·, y)dy‖L∞

∫ x

0
e−µ(x−x′)dx′ ]

≤ ‖m‖E

[
εR + µ−1‖

∫ R

0

b(·, y)dy‖L∞︸ ︷︷ ︸
:=k

]
.

We can choose, as announced, ε small and µ large so that k < 1 and we obtain

‖n‖E ≤ k ‖m‖E.

Thus T is a strict contraction and we have proved the existence of a solution to
(6.36).
Second step: A is continuous. This relies on a general argument which in fact shows
that the linear mapping A is Lipschitz continuous. Indeed, arguing as above

|n(x)|e
R x
0 (µ+B) ≤ ε

∫ R

0
|n(y)|dy

+
∫ x

0
e

R x′
0 (µ+B)

∫ R

0
b(x′, y)|n(y)|dydx′ +

∫ x

0
e

R x′
0 (µ+B)|f(x′)|dx′.
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and thus
|n(x)| ≤ k‖n‖E +

∫ x

0
|f(x′)|dx′ ≤ k‖n‖E + ‖f‖E.

This indeed proves that

‖n‖E ≤ 1
1 − k

‖f‖E.

Third step: A is strongly positive. For f ≥ 0, the operator T of the first step
maps m ≥ 0 to n ≥ 0. Therefore the fixed point n is nonnegative. In other words
n = A(f) ≥ 0. If additionally f does not vanish, then n does not vanish either.
Therefore n(0) = ε

∫ R

0 n(y)dy > 0 and thus

n(x) ≥ n(0) + e−
R x
0 (µ+B)

∫ x

0 e
R x′
0 (µ+B)f(x′)dx′ > 0.

Fourth step: A is compact. For ‖f‖E ≤ 1, the third step proves that n is bounded
in E and thus

∂
∂xn = −(µ + B)n +

∫
b(x, y)n(y)dy + f

is also bounded in E. Therefore by the Ascoli-Arzela theorem the family n is
relatively compact in E. �
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for cancer chronotherapy. ESIAM: Math. Model. Num. Anal. 39 (2005), no.
6, 1069–1086.

[20] B. Basse, B.C. Baguley, E.S. Marshall, W.R. Joseph, B. van Brunt, G. Wake
and D.J.N. Wall, A mathematical model for analysis of the cell cycle in cell
lines derived from human tumors. J. Math. Biol. 47 (2003), no. 4, 295–312.

[21] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-
Trudinger inequality. Ann. of Math. 1 (1993), no. 138, 213–242.

[22] F. Bekkal Brikci, J. Clairambault and B. Perthame, A cell population model
with proliferation and quiescence structured by molecular content. In prepa-
ration.

[23] BenJacob, personal communication (2002).

[24] E. Benôıt and M.-J. Rochet, A continuous model of biomass size spectra
governed by predation and the effect of fishing on them. J. Th. Biology 226
(2004), 9–21.

[25] H. Berestycki and F. Hamel Reaction-Diffusion Equations and Propagation
Phenomena. Series Appl. Math. Sci., Springer, 2005.

[26] D. Bernouilli, Essai d’une nouvelle analyse de la mortalité causée par la
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